Project acronym ADaPTIVE
Project Analysing Diversity with a Phenomic approach: Trends in Vertebrate Evolution
Researcher (PI) Anjali Goswami
Host Institution (HI) NATURAL HISTORY MUSEUM
Call Details Starting Grant (StG), LS8, ERC-2014-STG
Summary What processes shape vertebrate diversity through deep time? Approaches to this question can focus on many different factors, from life history and ecology to large-scale environmental change and extinction. To date, the majority of studies on the evolution of vertebrate diversity have focused on relatively simple metrics, specifically taxon counts or univariate measures, such as body size. However, multivariate morphological data provides a more complete picture of evolutionary and palaeoecological change. Morphological data can also bridge deep-time palaeobiological analyses with studies of the genetic and developmental factors that shape variation and must also influence large-scale patterns of evolutionary change. Thus, accurately reconstructing the patterns and processes underlying evolution requires an approach that can fully represent an organism’s phenome, the sum total of their observable traits.
Recent advances in imaging and data analysis allow large-scale study of phenomic evolution. In this project, I propose to quantitatively analyse the deep-time evolutionary diversity of tetrapods (amphibians, reptiles, birds, and mammals). Specifically, I will apply and extend new imaging, morphometric, and analytical tools to construct a multivariate phenomic dataset for living and extinct tetrapods from 3-D scans. I will use these data to rigorously compare extinction selectivity, timing, pace, and shape of adaptive radiations, and ecomorphological response to large-scale climatic shifts across all tetrapod clades. To do so, I will quantify morphological diversity (disparity) and rates of evolution spanning over 300 million years of tetrapod history. I will further analyse the evolution of phenotypic integration by quantifying not just the traits themselves, but changes in the relationships among traits, which reflect the genetic, developmental, and functional interactions that shape variation, the raw material for natural selection.
Summary
What processes shape vertebrate diversity through deep time? Approaches to this question can focus on many different factors, from life history and ecology to large-scale environmental change and extinction. To date, the majority of studies on the evolution of vertebrate diversity have focused on relatively simple metrics, specifically taxon counts or univariate measures, such as body size. However, multivariate morphological data provides a more complete picture of evolutionary and palaeoecological change. Morphological data can also bridge deep-time palaeobiological analyses with studies of the genetic and developmental factors that shape variation and must also influence large-scale patterns of evolutionary change. Thus, accurately reconstructing the patterns and processes underlying evolution requires an approach that can fully represent an organism’s phenome, the sum total of their observable traits.
Recent advances in imaging and data analysis allow large-scale study of phenomic evolution. In this project, I propose to quantitatively analyse the deep-time evolutionary diversity of tetrapods (amphibians, reptiles, birds, and mammals). Specifically, I will apply and extend new imaging, morphometric, and analytical tools to construct a multivariate phenomic dataset for living and extinct tetrapods from 3-D scans. I will use these data to rigorously compare extinction selectivity, timing, pace, and shape of adaptive radiations, and ecomorphological response to large-scale climatic shifts across all tetrapod clades. To do so, I will quantify morphological diversity (disparity) and rates of evolution spanning over 300 million years of tetrapod history. I will further analyse the evolution of phenotypic integration by quantifying not just the traits themselves, but changes in the relationships among traits, which reflect the genetic, developmental, and functional interactions that shape variation, the raw material for natural selection.
Max ERC Funding
1 482 818 €
Duration
Start date: 2015-06-01, End date: 2020-05-31
Project acronym ADREEM
Project Adding Another Dimension – Arrays of 3D Bio-Responsive Materials
Researcher (PI) Mark Bradley
Host Institution (HI) THE UNIVERSITY OF EDINBURGH
Call Details Advanced Grant (AdG), LS9, ERC-2013-ADG
Summary This proposal is focused in the areas of chemical medicine and chemical biology with the key drivers being the discovery and development of new materials that have practical functionality and application. The project will enable the fabrication of thousands of three-dimensional “smart-polymers” that will allow: (i). The precise and controlled release of drugs upon the addition of either a small molecule trigger or in response to disease, (ii). The discovery of materials that control and manipulate cells with the identification of scaffolds that provide the necessary biochemical cues for directing cell fate and drive tissue regeneration and (iii). The development of new classes of “smart-polymers” able, in real-time, to sense and report bacterial contamination. The newly discovered materials will find multiple biomedical applications in regenerative medicine and biotechnology ranging from 3D cell culture, bone repair and niche stabilisation to bacterial sensing/removal, while offering a new paradigm in drug delivery with biomarker triggered drug release.
Summary
This proposal is focused in the areas of chemical medicine and chemical biology with the key drivers being the discovery and development of new materials that have practical functionality and application. The project will enable the fabrication of thousands of three-dimensional “smart-polymers” that will allow: (i). The precise and controlled release of drugs upon the addition of either a small molecule trigger or in response to disease, (ii). The discovery of materials that control and manipulate cells with the identification of scaffolds that provide the necessary biochemical cues for directing cell fate and drive tissue regeneration and (iii). The development of new classes of “smart-polymers” able, in real-time, to sense and report bacterial contamination. The newly discovered materials will find multiple biomedical applications in regenerative medicine and biotechnology ranging from 3D cell culture, bone repair and niche stabilisation to bacterial sensing/removal, while offering a new paradigm in drug delivery with biomarker triggered drug release.
Max ERC Funding
2 310 884 €
Duration
Start date: 2014-11-01, End date: 2019-10-31
Project acronym AHRIMMUNITY
Project The influence of Aryl hydrocarbon receptor ligands on protective and pathological immune responses
Researcher (PI) Brigitta Stockinger
Host Institution (HI) MEDICAL RESEARCH COUNCIL
Call Details Advanced Grant (AdG), LS6, ERC-2008-AdG
Summary The Aryl hydrocarbon receptor is an evolutionary conserved widely expressed transcription factor that mediates the toxicity of a substantial variety of exogenous toxins, but is also stimulated by endogenous physiological ligands. While it is known that this receptor mediates the toxicity of dioxin, this is unlikely to be its physiological function. We have recently identified selective expression of AhR in the Th17 subset of effector CD4 T cells. Ligation of AhR by a candidate endogenous ligand (FICZ) which is a UV metabolite of tryptophan causes expansion of Th17 cells and the induction of IL-22 production. As a consequence, AhR ligation will exacerbate autoimmune diseases such as experimental autoimmune encephalomyelitis. Little is known so far about the impact of AhR ligands on IL-17/IL-22 mediated immune defense functions. IL-22 is considered a pro-inflammatory Th17 cytokine, which is involved in the etiology of psoriasis, but it has also been shown to be a survival factor for epithelial cells. AhR is polymorphic and defined as high or low affinity receptor for dioxin leading to the classification of high and low responder mouse strains based on defined mutations. In humans similar polymorphisms exist and although on the whole human AhR is thought to be of low affinity in humans, there are identified mutations that confer high responder status. No correlations have been made with Th17 mediated immune responses in mice and humans. This study aims to investigate the role of AhR ligands and polymorphisms in autoimmunity as well as protective immune responses using both mouse models and human samples from normal controls as well as psoriasis patients.
Summary
The Aryl hydrocarbon receptor is an evolutionary conserved widely expressed transcription factor that mediates the toxicity of a substantial variety of exogenous toxins, but is also stimulated by endogenous physiological ligands. While it is known that this receptor mediates the toxicity of dioxin, this is unlikely to be its physiological function. We have recently identified selective expression of AhR in the Th17 subset of effector CD4 T cells. Ligation of AhR by a candidate endogenous ligand (FICZ) which is a UV metabolite of tryptophan causes expansion of Th17 cells and the induction of IL-22 production. As a consequence, AhR ligation will exacerbate autoimmune diseases such as experimental autoimmune encephalomyelitis. Little is known so far about the impact of AhR ligands on IL-17/IL-22 mediated immune defense functions. IL-22 is considered a pro-inflammatory Th17 cytokine, which is involved in the etiology of psoriasis, but it has also been shown to be a survival factor for epithelial cells. AhR is polymorphic and defined as high or low affinity receptor for dioxin leading to the classification of high and low responder mouse strains based on defined mutations. In humans similar polymorphisms exist and although on the whole human AhR is thought to be of low affinity in humans, there are identified mutations that confer high responder status. No correlations have been made with Th17 mediated immune responses in mice and humans. This study aims to investigate the role of AhR ligands and polymorphisms in autoimmunity as well as protective immune responses using both mouse models and human samples from normal controls as well as psoriasis patients.
Max ERC Funding
1 242 352 €
Duration
Start date: 2009-02-01, End date: 2014-01-31
Project acronym ALBUGON
Project Genomics and effectoromics to understand defence suppression and disease resistance in Arabidopsis-Albugo candida interactions
Researcher (PI) Jonathan Jones
Host Institution (HI) THE SAINSBURY LABORATORY
Call Details Advanced Grant (AdG), LS6, ERC-2008-AdG
Summary This project focuses on two questions about host/parasite interactions: how do biotrophic plant pathogens suppress host defence? and, what is the basis for pathogen specialization on specific host species? A broadly accepted model explains resistance and susceptibility to plant pathogens. First, pathogens make conserved molecules ( PAMPS ) such as flagellin, that plants detect via cell surface receptors, leading to PAMP-Triggered Immunity (PTI). Second, pathogens make effectors that suppress PTI. Third, plants carry 100s of Resistance (R) genes that detect an effector, and activate Effector-Triggered Immunity (ETI). One effector is sufficient to trigger resistance. Albugo candida (Ac) (white rust) strongly suppresses host defence; Ac-infected Arabidopsis are susceptible to pathogen races to which they are otherwise resistant. Ac is an oomycete, not a fungus. Arabidopsis is resistant to races of Ac that infect brassicas. The proposed project involves three programs. First ( genomics, transcriptomics and bioinformatics ), we will use next-generation sequencing (NGS) methods (Solexa and GS-Flex), and novel transcriptomics methods to define the genome sequence and effector set of three Ac strains, as well as carrying out >40- deep resequencing of 7 additional Ac strains. Second, ( effectoromics ), we will carry out functional assays using Effector Detector Vectors (Sohn Plant Cell 19:4077 [2007]), with the set of Ac effectors, screening for enhanced virulence, for suppression of defence, for effectors that are recognized by R genes in disease resistant Arabidopsis and for host effector targets. Third, ( resistance diversity ), we will characterize Arabidopsis germplasm for R genes to Ac, both for recognition of Arabidopsis strains of Ac, and for recognition in Arabidopsis of effectors from Ac strains that infect brassica. This proposal focuses on Ac, but will establish methods that could discover new R genes in non-hosts against many plant diseases.
Summary
This project focuses on two questions about host/parasite interactions: how do biotrophic plant pathogens suppress host defence? and, what is the basis for pathogen specialization on specific host species? A broadly accepted model explains resistance and susceptibility to plant pathogens. First, pathogens make conserved molecules ( PAMPS ) such as flagellin, that plants detect via cell surface receptors, leading to PAMP-Triggered Immunity (PTI). Second, pathogens make effectors that suppress PTI. Third, plants carry 100s of Resistance (R) genes that detect an effector, and activate Effector-Triggered Immunity (ETI). One effector is sufficient to trigger resistance. Albugo candida (Ac) (white rust) strongly suppresses host defence; Ac-infected Arabidopsis are susceptible to pathogen races to which they are otherwise resistant. Ac is an oomycete, not a fungus. Arabidopsis is resistant to races of Ac that infect brassicas. The proposed project involves three programs. First ( genomics, transcriptomics and bioinformatics ), we will use next-generation sequencing (NGS) methods (Solexa and GS-Flex), and novel transcriptomics methods to define the genome sequence and effector set of three Ac strains, as well as carrying out >40- deep resequencing of 7 additional Ac strains. Second, ( effectoromics ), we will carry out functional assays using Effector Detector Vectors (Sohn Plant Cell 19:4077 [2007]), with the set of Ac effectors, screening for enhanced virulence, for suppression of defence, for effectors that are recognized by R genes in disease resistant Arabidopsis and for host effector targets. Third, ( resistance diversity ), we will characterize Arabidopsis germplasm for R genes to Ac, both for recognition of Arabidopsis strains of Ac, and for recognition in Arabidopsis of effectors from Ac strains that infect brassica. This proposal focuses on Ac, but will establish methods that could discover new R genes in non-hosts against many plant diseases.
Max ERC Funding
2 498 923 €
Duration
Start date: 2009-01-01, End date: 2014-06-30
Project acronym ALZSYN
Project Imaging synaptic contributors to dementia
Researcher (PI) Tara Spires-Jones
Host Institution (HI) THE UNIVERSITY OF EDINBURGH
Call Details Consolidator Grant (CoG), LS5, ERC-2015-CoG
Summary Alzheimer's disease, the most common cause of dementia in older people, is a devastating condition that is becoming a public health crisis as our population ages. Despite great progress recently in Alzheimer’s disease research, we have no disease modifying drugs and a decade with a 99.6% failure rate of clinical trials attempting to treat the disease. This project aims to develop relevant therapeutic targets to restore brain function in Alzheimer’s disease by integrating human and model studies of synapses. It is widely accepted in the field that alterations in amyloid beta initiate the disease process. However the cascade leading from changes in amyloid to widespread tau pathology and neurodegeneration remain unclear. Synapse loss is the strongest pathological correlate of dementia in Alzheimer’s, and mounting evidence suggests that synapse degeneration plays a key role in causing cognitive decline. Here I propose to test the hypothesis that the amyloid cascade begins at the synapse leading to tau pathology, synapse dysfunction and loss, and ultimately neural circuit collapse causing cognitive impairment. The team will use cutting-edge multiphoton and array tomography imaging techniques to test mechanisms downstream of amyloid beta at synapses, and determine whether intervening in the cascade allows recovery of synapse structure and function. Importantly, I will combine studies in robust models of familial Alzheimer’s disease with studies in postmortem human brain to confirm relevance of our mechanistic studies to human disease. Finally, human stem cell derived neurons will be used to test mechanisms and potential therapeutics in neurons expressing the human proteome. Together, these experiments are ground-breaking since they have the potential to further our understanding of how synapses are lost in Alzheimer’s disease and to identify targets for effective therapeutic intervention, which is a critical unmet need in today’s health care system.
Summary
Alzheimer's disease, the most common cause of dementia in older people, is a devastating condition that is becoming a public health crisis as our population ages. Despite great progress recently in Alzheimer’s disease research, we have no disease modifying drugs and a decade with a 99.6% failure rate of clinical trials attempting to treat the disease. This project aims to develop relevant therapeutic targets to restore brain function in Alzheimer’s disease by integrating human and model studies of synapses. It is widely accepted in the field that alterations in amyloid beta initiate the disease process. However the cascade leading from changes in amyloid to widespread tau pathology and neurodegeneration remain unclear. Synapse loss is the strongest pathological correlate of dementia in Alzheimer’s, and mounting evidence suggests that synapse degeneration plays a key role in causing cognitive decline. Here I propose to test the hypothesis that the amyloid cascade begins at the synapse leading to tau pathology, synapse dysfunction and loss, and ultimately neural circuit collapse causing cognitive impairment. The team will use cutting-edge multiphoton and array tomography imaging techniques to test mechanisms downstream of amyloid beta at synapses, and determine whether intervening in the cascade allows recovery of synapse structure and function. Importantly, I will combine studies in robust models of familial Alzheimer’s disease with studies in postmortem human brain to confirm relevance of our mechanistic studies to human disease. Finally, human stem cell derived neurons will be used to test mechanisms and potential therapeutics in neurons expressing the human proteome. Together, these experiments are ground-breaking since they have the potential to further our understanding of how synapses are lost in Alzheimer’s disease and to identify targets for effective therapeutic intervention, which is a critical unmet need in today’s health care system.
Max ERC Funding
2 000 000 €
Duration
Start date: 2016-11-01, End date: 2021-10-31
Project acronym AMYTOX
Project Amyloid fibril cytotoxicity: new insights from novel approaches
Researcher (PI) Sheena Radford
Host Institution (HI) UNIVERSITY OF LEEDS
Call Details Advanced Grant (AdG), LS1, ERC-2012-ADG_20120314
Summary Despite the discovery of amyloidosis more than a century ago, the molecular and cellular mechanisms of these devastating human disorders remain obscure. In addition to their involvement in disease, amyloid fibrils perform physiological functions, whilst others have potentials as biomaterials. To realise their use in nanotechnology and to enable the development of amyloid therapies, there is an urgent need to understand the molecular pathways of amyloid assembly and to determine how amyloid fibrils interact with cells and cellular components. The challenges lie in the transient nature and low population of aggregating species and the panoply of amyloid fibril structures. This molecular complexity renders identification of the culprits of amyloid disease impossible to achieve using traditional methods.
Here I propose a series of exciting experiments that aim to cast new light on the molecular and cellular mechanisms of amyloidosis by exploiting approaches capable of imaging individual protein molecules or single protein fibrils in vitro and in living cells. The proposal builds on new data from our laboratory that have shown that amyloid fibrils (disease-associated, functional and created from de novo designed sequences) kill cells by a mechanism that depends on fibril length and on cellular uptake. Specifically, I will (i) use single molecule fluorescence and non-covalent mass spectrometry and to determine why short fibril samples disrupt biological membranes more than their longer counterparts and electron tomography to determine, for the first time, the structural properties of cytotoxic fibril ends; (ii) develop single molecule force spectroscopy to probe the interactions between amyloid precursors, fibrils and cellular membranes; and (iii) develop cell biological assays to discover the biological mechanism(s) of amyloid-induced cell death and high resolution imaging and electron tomography to visualise amyloid fibrils in the act of killing living cells.
Summary
Despite the discovery of amyloidosis more than a century ago, the molecular and cellular mechanisms of these devastating human disorders remain obscure. In addition to their involvement in disease, amyloid fibrils perform physiological functions, whilst others have potentials as biomaterials. To realise their use in nanotechnology and to enable the development of amyloid therapies, there is an urgent need to understand the molecular pathways of amyloid assembly and to determine how amyloid fibrils interact with cells and cellular components. The challenges lie in the transient nature and low population of aggregating species and the panoply of amyloid fibril structures. This molecular complexity renders identification of the culprits of amyloid disease impossible to achieve using traditional methods.
Here I propose a series of exciting experiments that aim to cast new light on the molecular and cellular mechanisms of amyloidosis by exploiting approaches capable of imaging individual protein molecules or single protein fibrils in vitro and in living cells. The proposal builds on new data from our laboratory that have shown that amyloid fibrils (disease-associated, functional and created from de novo designed sequences) kill cells by a mechanism that depends on fibril length and on cellular uptake. Specifically, I will (i) use single molecule fluorescence and non-covalent mass spectrometry and to determine why short fibril samples disrupt biological membranes more than their longer counterparts and electron tomography to determine, for the first time, the structural properties of cytotoxic fibril ends; (ii) develop single molecule force spectroscopy to probe the interactions between amyloid precursors, fibrils and cellular membranes; and (iii) develop cell biological assays to discover the biological mechanism(s) of amyloid-induced cell death and high resolution imaging and electron tomography to visualise amyloid fibrils in the act of killing living cells.
Max ERC Funding
2 498 465 €
Duration
Start date: 2013-05-01, End date: 2019-04-30
Project acronym ANXIETY MECHANISMS
Project Neurocognitive mechanisms of human anxiety: identifying and
targeting disrupted function
Researcher (PI) Sonia Jane Bishop
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Starting Grant (StG), LS5, ERC-2010-StG_20091118
Summary Within a 12 month period, 20% of adults will meet criteria for one or more clinical anxiety disorders (ADs). These disorders are hugely disruptive, placing an emotional burden on individuals and their families. While both cognitive behavioural therapy and pharmacological treatment are widely viewed as effective strategies for managing ADs, systematic review of the literature reveals that only 30–45% of patients demonstrate a marked response to treatment (anxiety levels being reduced into the nonaffected range). In addition, a significant proportion of initial responders relapse after treatment is discontinued. There is hence a real and marked need to improve upon current approaches to AD treatment.
One possible avenue for improving response rates is through optimizing initial treatment selection. Specifically, it is possible that certain individuals might respond better to cognitive interventions while others might respond better to pharmacological treatment. Recently it has been suggested that there may be two or more distinct biological pathways disrupted in anxiety. If this is the case, then specification of these pathways may be an important step in predicting which individuals are likely to respond to which treatment. Few studies have focused upon this issue and, in particular, upon identifying neural markers that might predict response to cognitive (as opposed to pharmacological) intervention. The proposed research aims to address this. Specifically, it tests the hypothesis that there are at least two mechanisms disrupted in ADs, one entailing amygdala hyper-responsivity to cues that signal threat, the other impoverished recruitment of frontal regions that support cognitive and emotional regulation.
Two series of functional magnetic resonance imaging experiments will be conducted. These will investigate differences in amygdala and frontal function during (a) attentional processing and (b) fear conditioning. Initial clinical experiments will investigate whether Generalised Anxiety Disorder and Specific Phobia involve differing degrees of disruption to frontal versus amygdala function during these tasks. This work will feed into training studies, the goal being to characterize AD patient subgroups that benefit from cognitive training.
Summary
Within a 12 month period, 20% of adults will meet criteria for one or more clinical anxiety disorders (ADs). These disorders are hugely disruptive, placing an emotional burden on individuals and their families. While both cognitive behavioural therapy and pharmacological treatment are widely viewed as effective strategies for managing ADs, systematic review of the literature reveals that only 30–45% of patients demonstrate a marked response to treatment (anxiety levels being reduced into the nonaffected range). In addition, a significant proportion of initial responders relapse after treatment is discontinued. There is hence a real and marked need to improve upon current approaches to AD treatment.
One possible avenue for improving response rates is through optimizing initial treatment selection. Specifically, it is possible that certain individuals might respond better to cognitive interventions while others might respond better to pharmacological treatment. Recently it has been suggested that there may be two or more distinct biological pathways disrupted in anxiety. If this is the case, then specification of these pathways may be an important step in predicting which individuals are likely to respond to which treatment. Few studies have focused upon this issue and, in particular, upon identifying neural markers that might predict response to cognitive (as opposed to pharmacological) intervention. The proposed research aims to address this. Specifically, it tests the hypothesis that there are at least two mechanisms disrupted in ADs, one entailing amygdala hyper-responsivity to cues that signal threat, the other impoverished recruitment of frontal regions that support cognitive and emotional regulation.
Two series of functional magnetic resonance imaging experiments will be conducted. These will investigate differences in amygdala and frontal function during (a) attentional processing and (b) fear conditioning. Initial clinical experiments will investigate whether Generalised Anxiety Disorder and Specific Phobia involve differing degrees of disruption to frontal versus amygdala function during these tasks. This work will feed into training studies, the goal being to characterize AD patient subgroups that benefit from cognitive training.
Max ERC Funding
1 708 407 €
Duration
Start date: 2011-04-01, End date: 2016-08-31
Project acronym APHIDHOST
Project Molecular determinants of aphid host range
Researcher (PI) Jorunn Indra Berit Bos
Host Institution (HI) THE JAMES HUTTON INSTITUTE
Call Details Starting Grant (StG), LS9, ERC-2012-StG_20111109
Summary Many aphid species are restricted to one or few host plants, while some aphids, many of which are of agricultural importance, can infest a wide range of plant species. An important observation is that aphids spend a considerable time on nonhost species, where they probe the leaf tissue and secrete saliva, but for unknown reasons are unable to ingest phloem sap. This suggest that aphids, like plant pathogens, interact with nonhost plants at the molecular level, but potentially are not successful in suppressing plant defenses and/or releasing nutrients. To date, however, the plant cellular changes and the involvement of immune response, such as ETI and PTI, in aphid-host and -nonhost interactions remain elusive. The aim of the proposed project is to gain insight into the level of cellular host reprogramming that takes place during aphid-host interactions, the cellular processes involved in aphid nonhost resistance, and the role of aphid effectors in determining host range. We will compare interactions of two economically important aphid species, Myzus persicae (green peach aphid) and Rhopalosiphum padi (bird cherry oat aphid), with host and nonhost plants. We will investigate local changes in plant cellular processes during aphid-host and -nonhost interactions using microscopy and biochemistry approaches. We will apply a comparative transcriptomics approach and functional assays to identify aphid effectors as potential determinants of host range. Herein we will specifically looks for aphids-species specific effectors and those that are expressed in specific host interactions. To gain insight into molecular mechanisms of effector activities we will identify host targets and investigate the contribution of effector-target interactions to host range. The expected outcomes of the project will, in the long term, contribute to the development of novel strategies to control infestations by aphids and potentially other pests and pathogens, thereby improving food security.
Summary
Many aphid species are restricted to one or few host plants, while some aphids, many of which are of agricultural importance, can infest a wide range of plant species. An important observation is that aphids spend a considerable time on nonhost species, where they probe the leaf tissue and secrete saliva, but for unknown reasons are unable to ingest phloem sap. This suggest that aphids, like plant pathogens, interact with nonhost plants at the molecular level, but potentially are not successful in suppressing plant defenses and/or releasing nutrients. To date, however, the plant cellular changes and the involvement of immune response, such as ETI and PTI, in aphid-host and -nonhost interactions remain elusive. The aim of the proposed project is to gain insight into the level of cellular host reprogramming that takes place during aphid-host interactions, the cellular processes involved in aphid nonhost resistance, and the role of aphid effectors in determining host range. We will compare interactions of two economically important aphid species, Myzus persicae (green peach aphid) and Rhopalosiphum padi (bird cherry oat aphid), with host and nonhost plants. We will investigate local changes in plant cellular processes during aphid-host and -nonhost interactions using microscopy and biochemistry approaches. We will apply a comparative transcriptomics approach and functional assays to identify aphid effectors as potential determinants of host range. Herein we will specifically looks for aphids-species specific effectors and those that are expressed in specific host interactions. To gain insight into molecular mechanisms of effector activities we will identify host targets and investigate the contribution of effector-target interactions to host range. The expected outcomes of the project will, in the long term, contribute to the development of novel strategies to control infestations by aphids and potentially other pests and pathogens, thereby improving food security.
Max ERC Funding
1 463 840 €
Duration
Start date: 2013-02-01, End date: 2018-10-31
Project acronym ArtifiCell
Project Synthetic Cell Biology: Designing organelle transport mechanisms
Researcher (PI) James Edward Rothman
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Advanced Grant (AdG), LS3, ERC-2014-ADG
Summary Imagine being able to design into living cells and organisms de novo vesicle transport mechanisms that do not naturally exist? At one level this is a wild-eyed notion of synthetic biology.
But we contend that this vision can be approached even today, focusing first on the process of exocytosis, a fundamental process that impacts almost every area of physiology. Enough has now been learned about the natural core machinery (as recognized by the award of the 2013 Nobel Prize in Physiology or Medicine to the PI and others) to take highly innovative physics/engineering- and DNA-based approaches to design synthetic versions of the secretory apparatus that could someday open new avenues in genetic medicine.
The central idea is to introduce DNA-based functional equivalents of the core protein machinery that naturally form (coats), target (tethers), and fuse (SNAREs) vesicles. We have already taken first steps by using DNA origami-based templates to produce synthetic phospholipid vesicles and complementary DNA-based tethers to specifically capture these DNA-templated vesicles on targeted bilayers. Others have linked DNA oligonucleotides to trigger vesicle fusion.
The next and much more challenging step is to introduce such processes into living cells. We hope to break this barrier, and in the process start a new field of research into “synthetic exocytosis”, by introducing Peptide-Nucleic Acids (PNAs) of tethers and SNAREs to re-direct naturally-produced secretory vesicles to artificially-programmed targets and provide artificially-programmed regulation. PNAs are chosen mainly because they lack the negatively charged phosphate backbones of DNA, and therefore are more readily delivered into the cell across the plasma membrane. Future steps, would include producing the transport vesicles synthetically within the cell by externally supplied origami-based PNA or similar cages, and - much more speculatively - ultimately using encoded DNA and RNAs to provide these functions.
Summary
Imagine being able to design into living cells and organisms de novo vesicle transport mechanisms that do not naturally exist? At one level this is a wild-eyed notion of synthetic biology.
But we contend that this vision can be approached even today, focusing first on the process of exocytosis, a fundamental process that impacts almost every area of physiology. Enough has now been learned about the natural core machinery (as recognized by the award of the 2013 Nobel Prize in Physiology or Medicine to the PI and others) to take highly innovative physics/engineering- and DNA-based approaches to design synthetic versions of the secretory apparatus that could someday open new avenues in genetic medicine.
The central idea is to introduce DNA-based functional equivalents of the core protein machinery that naturally form (coats), target (tethers), and fuse (SNAREs) vesicles. We have already taken first steps by using DNA origami-based templates to produce synthetic phospholipid vesicles and complementary DNA-based tethers to specifically capture these DNA-templated vesicles on targeted bilayers. Others have linked DNA oligonucleotides to trigger vesicle fusion.
The next and much more challenging step is to introduce such processes into living cells. We hope to break this barrier, and in the process start a new field of research into “synthetic exocytosis”, by introducing Peptide-Nucleic Acids (PNAs) of tethers and SNAREs to re-direct naturally-produced secretory vesicles to artificially-programmed targets and provide artificially-programmed regulation. PNAs are chosen mainly because they lack the negatively charged phosphate backbones of DNA, and therefore are more readily delivered into the cell across the plasma membrane. Future steps, would include producing the transport vesicles synthetically within the cell by externally supplied origami-based PNA or similar cages, and - much more speculatively - ultimately using encoded DNA and RNAs to provide these functions.
Max ERC Funding
3 000 000 €
Duration
Start date: 2015-09-01, End date: 2021-08-31
Project acronym Asterochronometry
Project Galactic archeology with high temporal resolution
Researcher (PI) Andrea MIGLIO
Host Institution (HI) THE UNIVERSITY OF BIRMINGHAM
Call Details Consolidator Grant (CoG), PE9, ERC-2017-COG
Summary The Milky Way is a complex system, with dynamical and chemical substructures, where several competing processes such as mergers, internal secular evolution, gas accretion and gas flows take place. To study in detail how such a giant spiral galaxy was formed and evolved, we need to reconstruct the sequence of its main formation events with high (~10%) temporal resolution.
Asterochronometry will determine accurate, precise ages for tens of thousands of stars in the Galaxy. We will take an approach distinguished by a number of key aspects including, developing novel star-dating methods that fully utilise the potential of individual pulsation modes, coupled with a careful appraisal of systematic uncertainties on age deriving from our limited understanding of stellar physics.
We will then capitalise on opportunities provided by the timely availability of astrometric, spectroscopic, and asteroseismic data to build and data-mine chrono-chemo-dynamical maps of regions of the Milky Way probed by the space missions CoRoT, Kepler, K2, and TESS. We will quantify, by comparison with predictions of chemodynamical models, the relative importance of various processes which play a role in shaping the Galaxy, for example mergers and dynamical processes. We will use chrono-chemical tagging to look for evidence of aggregates, and precise and accurate ages to reconstruct the early star formation history of the Milky Way’s main constituents.
The Asterochronometry project will also provide stringent observational tests of stellar structure and answer some of the long-standing open questions in stellar modelling (e.g. efficiency of transport processes, mass loss on the giant branch, the occurrence of products of coalescence / mass exchange). These tests will improve our ability to determine stellar ages and chemical yields, with wide impact e.g. on the characterisation and ensemble studies of exoplanets, on evolutionary population synthesis, integrated colours and thus ages of galaxies.
Summary
The Milky Way is a complex system, with dynamical and chemical substructures, where several competing processes such as mergers, internal secular evolution, gas accretion and gas flows take place. To study in detail how such a giant spiral galaxy was formed and evolved, we need to reconstruct the sequence of its main formation events with high (~10%) temporal resolution.
Asterochronometry will determine accurate, precise ages for tens of thousands of stars in the Galaxy. We will take an approach distinguished by a number of key aspects including, developing novel star-dating methods that fully utilise the potential of individual pulsation modes, coupled with a careful appraisal of systematic uncertainties on age deriving from our limited understanding of stellar physics.
We will then capitalise on opportunities provided by the timely availability of astrometric, spectroscopic, and asteroseismic data to build and data-mine chrono-chemo-dynamical maps of regions of the Milky Way probed by the space missions CoRoT, Kepler, K2, and TESS. We will quantify, by comparison with predictions of chemodynamical models, the relative importance of various processes which play a role in shaping the Galaxy, for example mergers and dynamical processes. We will use chrono-chemical tagging to look for evidence of aggregates, and precise and accurate ages to reconstruct the early star formation history of the Milky Way’s main constituents.
The Asterochronometry project will also provide stringent observational tests of stellar structure and answer some of the long-standing open questions in stellar modelling (e.g. efficiency of transport processes, mass loss on the giant branch, the occurrence of products of coalescence / mass exchange). These tests will improve our ability to determine stellar ages and chemical yields, with wide impact e.g. on the characterisation and ensemble studies of exoplanets, on evolutionary population synthesis, integrated colours and thus ages of galaxies.
Max ERC Funding
1 958 863 €
Duration
Start date: 2018-04-01, End date: 2023-03-31