Project acronym CartiLube
Project Lubricating Cartilage: exploring the relation between lubrication and gene-regulation to alleviate osteoarthritis
Researcher (PI) Jacob KLEIN
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Advanced Grant (AdG), PE4, ERC-2016-ADG
Summary Can we exploit insights from the remarkably lubricated surfaces of articular cartilage, to create lubricants that may alleviate osteoarthritis (OA), the most widespread joint disease, affecting millions? These, succinctly, are the challenges of the present proposal. They are driven by our recent finding that lubrication of destabilised joints leads to changes in gene-regulation of the cartilage-embedded chondrocytes to protect against development of the disease. OA alleviation is known to arise through orthopedically suppressing shear-stresses on the cartilage, and a central premise of this project is that, by reducing friction at the articulating cartilage through suitable lubrication, we may achieve the same beneficial effect on the disease. The objectives of this project are to better understand the origins of cartilage boundary lubrication through examination of friction-reduction by its main molecular components, and exploit that understanding to create lubricants that, on intra-articular injection, will lubricate cartilage sufficiently well to achieve alleviation of OA via gene regulation. The project will examine, via both nanotribometric and macroscopic measurements, how the main molecular species implicated in cartilage lubrication, lipids, hyaluronan and lubricin, and their combinations, act together to form optimally lubricating boundary layers on model surfaces as well as on excised cartilage. Based on this, we shall develop suitable materials to lubricate cartilage in joints, using mouse models. Lubricants will further be optimized with respect to their retention in the joint and cartilage targeting, both in model studies and in vivo. The effect of the lubricants in regulating gene expression, in reducing pain and cartilage degradation, and in promoting stem-cell adhesion to the cartilage will be studied in a mouse model in which OA has been induced. Our results will have implications for treatment of a common, debilitating disease.
Summary
Can we exploit insights from the remarkably lubricated surfaces of articular cartilage, to create lubricants that may alleviate osteoarthritis (OA), the most widespread joint disease, affecting millions? These, succinctly, are the challenges of the present proposal. They are driven by our recent finding that lubrication of destabilised joints leads to changes in gene-regulation of the cartilage-embedded chondrocytes to protect against development of the disease. OA alleviation is known to arise through orthopedically suppressing shear-stresses on the cartilage, and a central premise of this project is that, by reducing friction at the articulating cartilage through suitable lubrication, we may achieve the same beneficial effect on the disease. The objectives of this project are to better understand the origins of cartilage boundary lubrication through examination of friction-reduction by its main molecular components, and exploit that understanding to create lubricants that, on intra-articular injection, will lubricate cartilage sufficiently well to achieve alleviation of OA via gene regulation. The project will examine, via both nanotribometric and macroscopic measurements, how the main molecular species implicated in cartilage lubrication, lipids, hyaluronan and lubricin, and their combinations, act together to form optimally lubricating boundary layers on model surfaces as well as on excised cartilage. Based on this, we shall develop suitable materials to lubricate cartilage in joints, using mouse models. Lubricants will further be optimized with respect to their retention in the joint and cartilage targeting, both in model studies and in vivo. The effect of the lubricants in regulating gene expression, in reducing pain and cartilage degradation, and in promoting stem-cell adhesion to the cartilage will be studied in a mouse model in which OA has been induced. Our results will have implications for treatment of a common, debilitating disease.
Max ERC Funding
2 499 944 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym ColloQuantO
Project Colloidal Quantum Dot Quantum Optics
Researcher (PI) Dan Oron
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE LTD
Call Details Consolidator Grant (CoG), PE4, ERC-2015-CoG
Summary Colloidal semiconductor nanocrystals have already found significant use in various arenas, including bioimaging, displays, lighting, photovoltaics and catalysis. Here we aim to harness the extremely broad synthetic toolbox of colloidal semiconductor quantum dots in order to utilize them as unique sources of quantum states of light, extending well beyond the present attempts to use them as single photon sources. By tailoring the shape, size, composition and the organic ligand layer of quantum dots, rods and platelets, we propose their use as sources exhibiting a deterministic number of emitted photons upon saturated excitation and as tunable sources of correlated and entangled photon pairs. The versatility afforded in their fabrication by colloidal synthesis, rather than by epitaxial growth, presents a potential pathway to overcome some of the significant limitations of present-day solid state sources of nonclassical light, including color tunability, fidelity and ease of assembly into devices.
This program is a concerted effort both on colloidal synthesis of complex multicomponent semiconductor nanocrystals and on cutting edge photophysical studies at the single nanocrystal level. This should enable new types of emitters of nonclassical light, as well as provide a platform for the implementation of recently suggested schemes in quantum optics which have never been experimentally demonstrated. These include room temperature sources of exactly two (or more) photons, correlated photon pairs from quantum dot molecules and entanglement based on time reordering. Fulfilling the optical and material requirements from this type of system, including photostability, control of carrier-carrier interactions, and a large quantum yield, will inevitably reveal some of the fundamental properties of coupled carriers in strongly confined structures.
Summary
Colloidal semiconductor nanocrystals have already found significant use in various arenas, including bioimaging, displays, lighting, photovoltaics and catalysis. Here we aim to harness the extremely broad synthetic toolbox of colloidal semiconductor quantum dots in order to utilize them as unique sources of quantum states of light, extending well beyond the present attempts to use them as single photon sources. By tailoring the shape, size, composition and the organic ligand layer of quantum dots, rods and platelets, we propose their use as sources exhibiting a deterministic number of emitted photons upon saturated excitation and as tunable sources of correlated and entangled photon pairs. The versatility afforded in their fabrication by colloidal synthesis, rather than by epitaxial growth, presents a potential pathway to overcome some of the significant limitations of present-day solid state sources of nonclassical light, including color tunability, fidelity and ease of assembly into devices.
This program is a concerted effort both on colloidal synthesis of complex multicomponent semiconductor nanocrystals and on cutting edge photophysical studies at the single nanocrystal level. This should enable new types of emitters of nonclassical light, as well as provide a platform for the implementation of recently suggested schemes in quantum optics which have never been experimentally demonstrated. These include room temperature sources of exactly two (or more) photons, correlated photon pairs from quantum dot molecules and entanglement based on time reordering. Fulfilling the optical and material requirements from this type of system, including photostability, control of carrier-carrier interactions, and a large quantum yield, will inevitably reveal some of the fundamental properties of coupled carriers in strongly confined structures.
Max ERC Funding
2 000 000 €
Duration
Start date: 2016-05-01, End date: 2021-04-30
Project acronym CoupledNC
Project Coupled Nanocrystal Molecules: Quantum coupling effects via chemical coupling of colloidal nanocrystals
Researcher (PI) Uri BANIN
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Advanced Grant (AdG), PE4, ERC-2016-ADG
Summary Coupling of atoms is the basis of chemistry, yielding the beauty and richness of molecules and materials. Herein I introduce nanocrystal chemistry: the use of semiconductor nanocrystals (NCs) as artificial atoms to form NC molecules that are chemically, structurally and physically coupled. The unique emergent quantum mechanical consequences of the NCs coupling will be studied and tailored to yield a chemical-quantum palette: coherent coupling of NC exciton states; dual color single photon emitters functional also as photo-switchable chromophores in super-resolution fluorescence microscopy; electrically switchable single NC photon emitters for utilization as taggants for neuronal activity and as chromophores in displays; new NC structures for lasing; and coupled quasi-1D NC chains manifesting mini-band formation, and tailored for a quantum-cascade effect for IR photon emission. A novel methodology of controlled oriented attachment of NC building blocks (in particular of core/shell NCs) will be presented to realize the coupled NCs molecules. For this a new type of Janus NC building block will be developed, and used as an element in a Lego-type construction of double quantum dots (dimers), heterodimers coupling two different types of NCs, and more complex NC coupled quantum structures. To realize this NC chemistry approach, surface control is essential, which will be achieved via investigation of the chemical and dynamical properties of the NCs surface ligands layer. As outcome I can expect to decipher NCs surface chemistry and dynamics, including its size dependence, and to introduce Janus NCs with chemically distinct and selectively modified surface faces. From this I will develop a new step-wise approach for synthesis of coupled NCs molecules and reveal the consequences of quantum coupling in them. This will inspire theoretical and further experimental work and will set the stage for the development of the diverse potential applications of coupled NC molecules.
Summary
Coupling of atoms is the basis of chemistry, yielding the beauty and richness of molecules and materials. Herein I introduce nanocrystal chemistry: the use of semiconductor nanocrystals (NCs) as artificial atoms to form NC molecules that are chemically, structurally and physically coupled. The unique emergent quantum mechanical consequences of the NCs coupling will be studied and tailored to yield a chemical-quantum palette: coherent coupling of NC exciton states; dual color single photon emitters functional also as photo-switchable chromophores in super-resolution fluorescence microscopy; electrically switchable single NC photon emitters for utilization as taggants for neuronal activity and as chromophores in displays; new NC structures for lasing; and coupled quasi-1D NC chains manifesting mini-band formation, and tailored for a quantum-cascade effect for IR photon emission. A novel methodology of controlled oriented attachment of NC building blocks (in particular of core/shell NCs) will be presented to realize the coupled NCs molecules. For this a new type of Janus NC building block will be developed, and used as an element in a Lego-type construction of double quantum dots (dimers), heterodimers coupling two different types of NCs, and more complex NC coupled quantum structures. To realize this NC chemistry approach, surface control is essential, which will be achieved via investigation of the chemical and dynamical properties of the NCs surface ligands layer. As outcome I can expect to decipher NCs surface chemistry and dynamics, including its size dependence, and to introduce Janus NCs with chemically distinct and selectively modified surface faces. From this I will develop a new step-wise approach for synthesis of coupled NCs molecules and reveal the consequences of quantum coupling in them. This will inspire theoretical and further experimental work and will set the stage for the development of the diverse potential applications of coupled NC molecules.
Max ERC Funding
2 499 750 €
Duration
Start date: 2017-11-01, End date: 2022-10-31
Project acronym MetamorphChip
Project Dynamic Microfluidic Structures for Analysis of Single Cell Systems
Researcher (PI) Moran Bercovici
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Starting Grant (StG), PE4, ERC-2015-STG
Summary The interaction and communication between individual cells plays a central role in virtually all fields of biology, from the cooperative work of cells in the immune system, through the differentiation of stem cells, and to the proliferation of cancer cells. In recent years it has been shown that these processes are fundamentally coupled to cell-to-cell heterogeneity and variability. Despite the fact that studying cellular ensembles obscures these fundamental biological processes, most current studies consider cell populations, largely due to technological limitations in the ability to dynamically compartmentalize, manipulate, and analyze single cells.
We propose to develop and demonstrate a new concept for a single-cell-level bioanalytical workspace that is dynamically configurable in real time. Making use of electrokinetically driven surface deformations, a physical mechanism recently invented in my lab, the MetamorphChip will be able to dynamically modify its own microfluidic structure, thus allowing complete freedom in the manipulation of individual cells and their environment, in real time.
The project is divided into 5 aims:
1. Deepening our physical understanding of electrokinetically driven surface deformations, and using it to create a “library” of fundamental dynamic elements.
2. Designing, building, and testing the first prototype MetamorphChip.
3. Demonstrating the ability of the MetamorphChip to manipulate single cells and their microenvironment.
4. Performing advanced biochemical analysis on single cells using the chip.
5. Demonstrating the use of the MetamorphChip for experimental study of immune cell interaction.
I strongly believe that successful implementation of this project would fundamentally change the way in which single-cell experiments are conceived and performed.
Summary
The interaction and communication between individual cells plays a central role in virtually all fields of biology, from the cooperative work of cells in the immune system, through the differentiation of stem cells, and to the proliferation of cancer cells. In recent years it has been shown that these processes are fundamentally coupled to cell-to-cell heterogeneity and variability. Despite the fact that studying cellular ensembles obscures these fundamental biological processes, most current studies consider cell populations, largely due to technological limitations in the ability to dynamically compartmentalize, manipulate, and analyze single cells.
We propose to develop and demonstrate a new concept for a single-cell-level bioanalytical workspace that is dynamically configurable in real time. Making use of electrokinetically driven surface deformations, a physical mechanism recently invented in my lab, the MetamorphChip will be able to dynamically modify its own microfluidic structure, thus allowing complete freedom in the manipulation of individual cells and their environment, in real time.
The project is divided into 5 aims:
1. Deepening our physical understanding of electrokinetically driven surface deformations, and using it to create a “library” of fundamental dynamic elements.
2. Designing, building, and testing the first prototype MetamorphChip.
3. Demonstrating the ability of the MetamorphChip to manipulate single cells and their microenvironment.
4. Performing advanced biochemical analysis on single cells using the chip.
5. Demonstrating the use of the MetamorphChip for experimental study of immune cell interaction.
I strongly believe that successful implementation of this project would fundamentally change the way in which single-cell experiments are conceived and performed.
Max ERC Funding
1 744 056 €
Duration
Start date: 2016-04-01, End date: 2021-03-31
Project acronym PhotoMutant
Project Rational Design of Photoreceptor Mutants with Desired Photochemical Properties
Researcher (PI) Igor Schapiro
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Starting Grant (StG), PE4, ERC-2015-STG
Summary From a technological viewpoint photoreceptor proteins, the light-sensitive proteins involved in the sensing and response to light in a variety of organisms, represent biological light converters. Hence they are successfully utilized in a number of technological applications, e.g. the green-fluorescent protein used to visualize spatial and temporal information in cells. However, despite the ground-breaking nature of this utilization in life science and other disciplines, the attempts to design a photoreceptor for a particular application by protein mutation remains an open challenge. This is exactly the scope of my research proposal: the application of multi-scale modelling for the systematic design of biological photoreceptor mutants.
With this target in mind I will study representatives of two prominent photoreceptor proteins subfamilies which are of towering interest to experimentalists: proteorhodopsins and cyanobacteriochromes. Computer models of these proteins will be constructed using accurate multi-scale modeling. Their excitation energies and other properties (e.g. excited-state reactivity and efficiency) will be calculated using multireference methods that were shown to have an accuracy of <3 kcal/mol. The insights gained from simulations of the wild-type proteins will provide the basis for proposing mutations with altered photochemical properties: in essence to predict absorption and emission spectra, excited-state lifetime and quantum yields.
This research requires interactions across the disciplines, as the best candidates will be synthesized and characterized experimentally by collaborators. The outcome of these experiments will provide feedback to improve both the properties of the mutants and the simulation methodology. Ultimately this high-risk/high gain project should derive a comprehensive understanding that would result in novel biotechnological applications, e.g. optogenetic tools, fluorescent probes and biosensors.
Summary
From a technological viewpoint photoreceptor proteins, the light-sensitive proteins involved in the sensing and response to light in a variety of organisms, represent biological light converters. Hence they are successfully utilized in a number of technological applications, e.g. the green-fluorescent protein used to visualize spatial and temporal information in cells. However, despite the ground-breaking nature of this utilization in life science and other disciplines, the attempts to design a photoreceptor for a particular application by protein mutation remains an open challenge. This is exactly the scope of my research proposal: the application of multi-scale modelling for the systematic design of biological photoreceptor mutants.
With this target in mind I will study representatives of two prominent photoreceptor proteins subfamilies which are of towering interest to experimentalists: proteorhodopsins and cyanobacteriochromes. Computer models of these proteins will be constructed using accurate multi-scale modeling. Their excitation energies and other properties (e.g. excited-state reactivity and efficiency) will be calculated using multireference methods that were shown to have an accuracy of <3 kcal/mol. The insights gained from simulations of the wild-type proteins will provide the basis for proposing mutations with altered photochemical properties: in essence to predict absorption and emission spectra, excited-state lifetime and quantum yields.
This research requires interactions across the disciplines, as the best candidates will be synthesized and characterized experimentally by collaborators. The outcome of these experiments will provide feedback to improve both the properties of the mutants and the simulation methodology. Ultimately this high-risk/high gain project should derive a comprehensive understanding that would result in novel biotechnological applications, e.g. optogenetic tools, fluorescent probes and biosensors.
Max ERC Funding
1 397 475 €
Duration
Start date: 2016-02-01, End date: 2021-01-31
Project acronym SHIFTIDES
Project Shifting the oligomerization equilibrium of proteins: a novel therapeutic strategy
Researcher (PI) Assaf Friedler
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Starting Grant (StG), PE4, ERC-2007-StG
Summary The aim of my project is to establish a multidisciplinary platform for quantitative biophysical analysis of protein-protein interactions in health and disease as a basis for drug design: (1) Analyzing protein-protein interactions at the molecular level in healthy systems; (2) Understanding what goes wrong in disease at the molecular level; (3) Development of drugs that will restore the biological system to its healthy conditions. My team will apply this approach to establish the concept of shifting the oligomerization equilibrium of proteins as a therapeutic strategy. I will expand the concepts of allosteric inhibitors and chemical chaperones, and develop the “shiftides”: peptides that shift the oligomerization equilibrium of a protein to modulate its activity, as a new and widely applicable methodology for drug design. I will apply this concept for: (1) inhibiting a protein by binding preferentially to the inactive oligomeric state and shifting the oligomerization equilibrium of the protein towards it; I have demonstrated the feasibility of this approach and developed promising anti-HIV peptides that inhibit the HIV-1 integrase and consequently HIV-1 replication in cells by shifting the integrase oligomerization equilibrium from the active dimer to the inactive tetramer. My team will further develop these peptides, and apply the same approach to inhibit the HIV proteins reverse transcriptase and protease; (2) Activating a protein by binding preferentially to the active oligomeric state and shifting the oligomerization equilibrium towards it: This will be applied for activation of the tumor suppressor p53, by shifting its oligomerization equilibrium from the inactive dimer to the active tetramer. Such shiftides will serve as anti-cancer lead compounds. My project will open new doors in the field of drug design, and at the end of the five-year period will result in a general new methodology to affect protein function for medical purposes.
Summary
The aim of my project is to establish a multidisciplinary platform for quantitative biophysical analysis of protein-protein interactions in health and disease as a basis for drug design: (1) Analyzing protein-protein interactions at the molecular level in healthy systems; (2) Understanding what goes wrong in disease at the molecular level; (3) Development of drugs that will restore the biological system to its healthy conditions. My team will apply this approach to establish the concept of shifting the oligomerization equilibrium of proteins as a therapeutic strategy. I will expand the concepts of allosteric inhibitors and chemical chaperones, and develop the “shiftides”: peptides that shift the oligomerization equilibrium of a protein to modulate its activity, as a new and widely applicable methodology for drug design. I will apply this concept for: (1) inhibiting a protein by binding preferentially to the inactive oligomeric state and shifting the oligomerization equilibrium of the protein towards it; I have demonstrated the feasibility of this approach and developed promising anti-HIV peptides that inhibit the HIV-1 integrase and consequently HIV-1 replication in cells by shifting the integrase oligomerization equilibrium from the active dimer to the inactive tetramer. My team will further develop these peptides, and apply the same approach to inhibit the HIV proteins reverse transcriptase and protease; (2) Activating a protein by binding preferentially to the active oligomeric state and shifting the oligomerization equilibrium towards it: This will be applied for activation of the tumor suppressor p53, by shifting its oligomerization equilibrium from the inactive dimer to the active tetramer. Such shiftides will serve as anti-cancer lead compounds. My project will open new doors in the field of drug design, and at the end of the five-year period will result in a general new methodology to affect protein function for medical purposes.
Max ERC Funding
1 250 000 €
Duration
Start date: 2008-07-01, End date: 2013-06-30
Project acronym SMALLOSTERY
Project Single-molecule spectroscopy of coordinated motions in allosteric proteins
Researcher (PI) Gilad HARAN
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Advanced Grant (AdG), PE4, ERC-2016-ADG
Summary Critical for the function of many proteins, allosteric communication involves transmission of the effect of binding at one site of a protein to another through conformational changes. Yet the structural and dynamic basis for allostery remains poorly understood. In particular, there is no method to follow coordinated large-scale motions of domains and subunits in proteins as they occur. Since the subunits of allosteric proteins often contain multiple domains, any such method entails probing the dynamics along several intra-protein distances simultaneously.
This proposal aims at ameliorating this deficiency by creating the experimental framework for exploring time-dependent coordination of allosteric transitions of multiple units within proteins. Our methodology will rely on single-molecule FRET spectroscopy with multiple labels on the same protein and advanced analysis. We will explore fundamental issues in protein dynamics: relative motions of domains within subunits, propagation of conformational change between subunits, and synchronization of these motions by effector molecules.
To investigate these issues, we have carefully selected three model systems, each representing an important scenario of allosteric regulation. While the homo-oligomeric protein-folder GroEL conserves symmetry in a concerted transition between major structural states, the symmetry of the homo-oligomeric disaggregating machine ClpB is broken via a sequential transition. Symmetry is attained only after binding to DNA and ligands in the third system, the family of RXR heterodimers.
This exciting project will provide the very first catalogue of coordinated and time-ordered motions within and between subunits of allosteric proteins and the first measurement of the time scale of the conformational spread through a large protein. It will enhance dramatically our understanding of how allostery contributes to protein function, influencing future efforts to design drugs for allosteric proteins.
Summary
Critical for the function of many proteins, allosteric communication involves transmission of the effect of binding at one site of a protein to another through conformational changes. Yet the structural and dynamic basis for allostery remains poorly understood. In particular, there is no method to follow coordinated large-scale motions of domains and subunits in proteins as they occur. Since the subunits of allosteric proteins often contain multiple domains, any such method entails probing the dynamics along several intra-protein distances simultaneously.
This proposal aims at ameliorating this deficiency by creating the experimental framework for exploring time-dependent coordination of allosteric transitions of multiple units within proteins. Our methodology will rely on single-molecule FRET spectroscopy with multiple labels on the same protein and advanced analysis. We will explore fundamental issues in protein dynamics: relative motions of domains within subunits, propagation of conformational change between subunits, and synchronization of these motions by effector molecules.
To investigate these issues, we have carefully selected three model systems, each representing an important scenario of allosteric regulation. While the homo-oligomeric protein-folder GroEL conserves symmetry in a concerted transition between major structural states, the symmetry of the homo-oligomeric disaggregating machine ClpB is broken via a sequential transition. Symmetry is attained only after binding to DNA and ligands in the third system, the family of RXR heterodimers.
This exciting project will provide the very first catalogue of coordinated and time-ordered motions within and between subunits of allosteric proteins and the first measurement of the time scale of the conformational spread through a large protein. It will enhance dramatically our understanding of how allostery contributes to protein function, influencing future efforts to design drugs for allosteric proteins.
Max ERC Funding
2 484 722 €
Duration
Start date: 2017-05-01, End date: 2022-04-30
Project acronym THE MR CHALLENGE
Project Expanding the horizons of magnetic resonance in sensitivity, imaging resolution, and availability
Researcher (PI) Aharon Blank
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Starting Grant (StG), PE4, ERC-2007-StG
Summary "We propose to develop and implement advanced magnetic resonance detection and micro-imaging techniques that will benefit many biophysical, chemical, physical, and medical applications. Magnetic resonance (MR) is one of the most profound observation methods in science. MR includes Nuclear Magnetic Resonance (NMR) and Electron Spin Resonance (ESR). It has a variety of applications ranging from chemical structure determination to medical imaging and quantum computing. From a scientific standpoint, MR was the main focus of at least seven Nobel prizes in physics, chemistry, and medicine. From an industrial standpoint, MR is a multibillion industry focused on a range of medical (MRI) and chemical applications (MR spectrometers). Despite the fact that magnetic resonance was discovered more than 60 years ago, there is still plenty of room for new methodologies and applications. This research will confront some of the most challenging issues that this field has yet to offer, which also contain the greatest potential benefits. This is what we call “The MR Challenge”. We will focus on three key MR issues: sensitivity, image resolution, and affordability. Our first goal is to substantially improve the sensitivity of MR spectroscopy and the resolution of MR micro-imaging. We will put most of our efforts on ESR spectroscopy and on the detection of NMR information through an ESR signal (ENDOR). At ambient conditions our goal is to achieve a sensitivity of ~10^4 electron spins and a resolution of 1 micron; at low temperatures we will approach single electron spin sensitivity and image resolution as high as 10nm. In terms of affordability, our goal is to introduce a small probe that is capable of acquiring NMR spectra from samples located outside the magnet (an ""ex-situ"" probe). We will also design and construct a new family of hand-held 3D NMR imaging probes. The new capabilities would be applied in the field of single cell imaging and biophysics, materials science, and medicine."
Summary
"We propose to develop and implement advanced magnetic resonance detection and micro-imaging techniques that will benefit many biophysical, chemical, physical, and medical applications. Magnetic resonance (MR) is one of the most profound observation methods in science. MR includes Nuclear Magnetic Resonance (NMR) and Electron Spin Resonance (ESR). It has a variety of applications ranging from chemical structure determination to medical imaging and quantum computing. From a scientific standpoint, MR was the main focus of at least seven Nobel prizes in physics, chemistry, and medicine. From an industrial standpoint, MR is a multibillion industry focused on a range of medical (MRI) and chemical applications (MR spectrometers). Despite the fact that magnetic resonance was discovered more than 60 years ago, there is still plenty of room for new methodologies and applications. This research will confront some of the most challenging issues that this field has yet to offer, which also contain the greatest potential benefits. This is what we call “The MR Challenge”. We will focus on three key MR issues: sensitivity, image resolution, and affordability. Our first goal is to substantially improve the sensitivity of MR spectroscopy and the resolution of MR micro-imaging. We will put most of our efforts on ESR spectroscopy and on the detection of NMR information through an ESR signal (ENDOR). At ambient conditions our goal is to achieve a sensitivity of ~10^4 electron spins and a resolution of 1 micron; at low temperatures we will approach single electron spin sensitivity and image resolution as high as 10nm. In terms of affordability, our goal is to introduce a small probe that is capable of acquiring NMR spectra from samples located outside the magnet (an ""ex-situ"" probe). We will also design and construct a new family of hand-held 3D NMR imaging probes. The new capabilities would be applied in the field of single cell imaging and biophysics, materials science, and medicine."
Max ERC Funding
1 250 000 €
Duration
Start date: 2008-08-01, End date: 2013-07-31
Project acronym TORMCJ
Project Thermal, optical and redox processes in molecular conduction junctions
Researcher (PI) Abraham Nitzan
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Advanced Grant (AdG), PE4, ERC-2008-AdG
Summary Much of the current intense study of molecular conduction junctions is motivated by their possible technological applications, however this research focuses on fundamental questions associated with the properties and operation of such systems. Junctions based on redox molecules often show non-linear conduction behavior as function of imposed bias. Optical interactions in molecular junctions pertain to junction characterization and control. Issues of heating and thermal stability require a proper definition of thermal states (effective temperature) and the understanding of heat production and thermal conduction in non-equilibrium junctions. This proposal focuses on theoretical problems pertaining to these phenomena with the following goals: (a) Develop theoretical methodologies for treating non-equilibrium molecular systems under the combined driving of electrical bias, thermal gradients and optical fields; (b) provide theoretical tools needed for the understanding and interpretation of new and ongoing experimental efforts involving thermal, optical and redox (charging) phenomena in molecular junctions, and (c) use the acquired insight to suggest new methods for characterization, functionality, control and stability of molecular junctions.
Summary
Much of the current intense study of molecular conduction junctions is motivated by their possible technological applications, however this research focuses on fundamental questions associated with the properties and operation of such systems. Junctions based on redox molecules often show non-linear conduction behavior as function of imposed bias. Optical interactions in molecular junctions pertain to junction characterization and control. Issues of heating and thermal stability require a proper definition of thermal states (effective temperature) and the understanding of heat production and thermal conduction in non-equilibrium junctions. This proposal focuses on theoretical problems pertaining to these phenomena with the following goals: (a) Develop theoretical methodologies for treating non-equilibrium molecular systems under the combined driving of electrical bias, thermal gradients and optical fields; (b) provide theoretical tools needed for the understanding and interpretation of new and ongoing experimental efforts involving thermal, optical and redox (charging) phenomena in molecular junctions, and (c) use the acquired insight to suggest new methods for characterization, functionality, control and stability of molecular junctions.
Max ERC Funding
842 420 €
Duration
Start date: 2008-12-01, End date: 2014-05-31