Project acronym 3DNANOMECH
Project Three-dimensional molecular resolution mapping of soft matter-liquid interfaces
Researcher (PI) Ricardo Garcia
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Country Spain
Call Details Advanced Grant (AdG), PE4, ERC-2013-ADG
Summary Optical, electron and probe microscopes are enabling tools for discoveries and knowledge generation in nanoscale sicence and technology. High resolution –nanoscale or molecular-, noninvasive and label-free imaging of three-dimensional soft matter-liquid interfaces has not been achieved by any microscopy method.
Force microscopy (AFM) is considered the second most relevant advance in materials science since 1960. Despite its impressive range of applications, the technique has some key limitations. Force microscopy has not three dimensional depth. What lies above or in the subsurface is not readily characterized.
3DNanoMech proposes to design, build and operate a high speed force-based method for the three-dimensional characterization soft matter-liquid interfaces (3D AFM). The microscope will combine a detection method based on force perturbations, adaptive algorithms, high speed piezo actuators and quantitative-oriented multifrequency approaches. The development of the microscope cannot be separated from its applications: imaging the error-free DNA repair and to understand the relationship existing between the nanomechanical properties and the malignancy of cancer cells. Those problems encompass the different spatial –molecular-nano-mesoscopic- and time –milli to seconds- scales of the instrument.
In short, 3DNanoMech aims to image, map and measure with picoNewton, millisecond and angstrom resolution soft matter surfaces and interfaces in liquid. The long-term vision of 3DNanoMech is to replace models or computer animations of bimolecular-liquid interfaces by real time, molecular resolution maps of properties and processes.
Summary
Optical, electron and probe microscopes are enabling tools for discoveries and knowledge generation in nanoscale sicence and technology. High resolution –nanoscale or molecular-, noninvasive and label-free imaging of three-dimensional soft matter-liquid interfaces has not been achieved by any microscopy method.
Force microscopy (AFM) is considered the second most relevant advance in materials science since 1960. Despite its impressive range of applications, the technique has some key limitations. Force microscopy has not three dimensional depth. What lies above or in the subsurface is not readily characterized.
3DNanoMech proposes to design, build and operate a high speed force-based method for the three-dimensional characterization soft matter-liquid interfaces (3D AFM). The microscope will combine a detection method based on force perturbations, adaptive algorithms, high speed piezo actuators and quantitative-oriented multifrequency approaches. The development of the microscope cannot be separated from its applications: imaging the error-free DNA repair and to understand the relationship existing between the nanomechanical properties and the malignancy of cancer cells. Those problems encompass the different spatial –molecular-nano-mesoscopic- and time –milli to seconds- scales of the instrument.
In short, 3DNanoMech aims to image, map and measure with picoNewton, millisecond and angstrom resolution soft matter surfaces and interfaces in liquid. The long-term vision of 3DNanoMech is to replace models or computer animations of bimolecular-liquid interfaces by real time, molecular resolution maps of properties and processes.
Max ERC Funding
2 499 928 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym 4DBIOSERS
Project Four-Dimensional Monitoring of Tumour Growth by Surface Enhanced Raman Scattering
Researcher (PI) Luis LIZ-MARZAN
Host Institution (HI) ASOCIACION CENTRO DE INVESTIGACION COOPERATIVA EN BIOMATERIALES- CIC biomaGUNE
Country Spain
Call Details Advanced Grant (AdG), PE5, ERC-2017-ADG
Summary Optical bioimaging is limited by visible light penetration depth and stability of fluorescent dyes over extended periods of time. Surface enhanced Raman scattering (SERS) offers the possibility to overcome these drawbacks, through SERS-encoded nanoparticle tags, which can be excited with near-IR light (within the biological transparency window), providing high intensity, stable, multiplexed signals. SERS can also be used to monitor relevant bioanalytes within cells and tissues, during the development of diseases, such as tumours. In 4DBIOSERS we shall combine both capabilities of SERS, to go well beyond the current state of the art, by building three-dimensional scaffolds that support tissue (tumour) growth within a controlled environment, so that not only the fate of each (SERS-labelled) cell within the tumour can be monitored in real time (thus adding a fourth dimension to SERS bioimaging), but also recording the release of tumour metabolites and other indicators of cellular activity. Although 4DBIOSERS can be applied to a variety of diseases, we shall focus on cancer, melanoma and breast cancer in particular, as these are readily accessible by optical methods. We aim at acquiring a better understanding of tumour growth and dynamics, while avoiding animal experimentation. 3D printing will be used to generate hybrid scaffolds where tumour and healthy cells will be co-incubated to simulate a more realistic environment, thus going well beyond the potential of 2D cell cultures. Each cell type will be encoded with ultra-bright SERS tags, so that real-time monitoring can be achieved by confocal SERS microscopy. Tumour development will be correlated with simultaneous detection of various cancer biomarkers, during standard conditions and upon addition of selected drugs. The scope of 4DBIOSERS is multidisciplinary, as it involves the design of high-end nanocomposites, development of 3D cell culture models and optimization of emerging SERS tomography methods.
Summary
Optical bioimaging is limited by visible light penetration depth and stability of fluorescent dyes over extended periods of time. Surface enhanced Raman scattering (SERS) offers the possibility to overcome these drawbacks, through SERS-encoded nanoparticle tags, which can be excited with near-IR light (within the biological transparency window), providing high intensity, stable, multiplexed signals. SERS can also be used to monitor relevant bioanalytes within cells and tissues, during the development of diseases, such as tumours. In 4DBIOSERS we shall combine both capabilities of SERS, to go well beyond the current state of the art, by building three-dimensional scaffolds that support tissue (tumour) growth within a controlled environment, so that not only the fate of each (SERS-labelled) cell within the tumour can be monitored in real time (thus adding a fourth dimension to SERS bioimaging), but also recording the release of tumour metabolites and other indicators of cellular activity. Although 4DBIOSERS can be applied to a variety of diseases, we shall focus on cancer, melanoma and breast cancer in particular, as these are readily accessible by optical methods. We aim at acquiring a better understanding of tumour growth and dynamics, while avoiding animal experimentation. 3D printing will be used to generate hybrid scaffolds where tumour and healthy cells will be co-incubated to simulate a more realistic environment, thus going well beyond the potential of 2D cell cultures. Each cell type will be encoded with ultra-bright SERS tags, so that real-time monitoring can be achieved by confocal SERS microscopy. Tumour development will be correlated with simultaneous detection of various cancer biomarkers, during standard conditions and upon addition of selected drugs. The scope of 4DBIOSERS is multidisciplinary, as it involves the design of high-end nanocomposites, development of 3D cell culture models and optimization of emerging SERS tomography methods.
Max ERC Funding
2 410 771 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym ACCOPT
Project ACelerated COnvex OPTimization
Researcher (PI) Yurii NESTEROV
Host Institution (HI) UNIVERSITE CATHOLIQUE DE LOUVAIN
Country Belgium
Call Details Advanced Grant (AdG), PE1, ERC-2017-ADG
Summary The amazing rate of progress in the computer technologies and telecommunications presents many new challenges for Optimization Theory. New problems are usually very big in size, very special in structure and possibly have a distributed data support. This makes them unsolvable by the standard optimization methods. In these situations, old theoretical models, based on the hidden Black-Box information, cannot work. New theoretical and algorithmic solutions are urgently needed. In this project we will concentrate on development of fast optimization methods for problems of big and very big size. All the new methods will be endowed with provable efficiency guarantees for large classes of optimization problems, arising in practical applications. Our main tool is the acceleration technique developed for the standard Black-Box methods as applied to smooth convex functions. However, we will have to adapt it to deal with different situations.
The first line of development will be based on the smoothing technique as applied to a non-smooth functions. We propose to substantially extend this approach to generate approximate solutions in relative scale. The second line of research will be related to applying acceleration techniques to the second-order methods minimizing functions with sparse Hessians. Finally, we aim to develop fast gradient methods for huge-scale problems. The size of these problems is so big that even the usual vector operations are extremely expensive. Thus, we propose to develop new methods with sublinear iteration costs. In our approach, the main source for achieving improvements will be the proper use of problem structure.
Our overall aim is to be able to solve in a routine way many important problems, which currently look unsolvable. Moreover, the theoretical development of Convex Optimization will reach the state, when there is no gap between theory and practice: the theoretically most efficient methods will definitely outperform any homebred heuristics.
Summary
The amazing rate of progress in the computer technologies and telecommunications presents many new challenges for Optimization Theory. New problems are usually very big in size, very special in structure and possibly have a distributed data support. This makes them unsolvable by the standard optimization methods. In these situations, old theoretical models, based on the hidden Black-Box information, cannot work. New theoretical and algorithmic solutions are urgently needed. In this project we will concentrate on development of fast optimization methods for problems of big and very big size. All the new methods will be endowed with provable efficiency guarantees for large classes of optimization problems, arising in practical applications. Our main tool is the acceleration technique developed for the standard Black-Box methods as applied to smooth convex functions. However, we will have to adapt it to deal with different situations.
The first line of development will be based on the smoothing technique as applied to a non-smooth functions. We propose to substantially extend this approach to generate approximate solutions in relative scale. The second line of research will be related to applying acceleration techniques to the second-order methods minimizing functions with sparse Hessians. Finally, we aim to develop fast gradient methods for huge-scale problems. The size of these problems is so big that even the usual vector operations are extremely expensive. Thus, we propose to develop new methods with sublinear iteration costs. In our approach, the main source for achieving improvements will be the proper use of problem structure.
Our overall aim is to be able to solve in a routine way many important problems, which currently look unsolvable. Moreover, the theoretical development of Convex Optimization will reach the state, when there is no gap between theory and practice: the theoretically most efficient methods will definitely outperform any homebred heuristics.
Max ERC Funding
2 090 038 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym AIR-NB
Project Pre-natal exposure to urban AIR pollution and pre- and post-Natal Brain development
Researcher (PI) Jordi Sunyer
Host Institution (HI) FUNDACION PRIVADA INSTITUTO DE SALUD GLOBAL BARCELONA
Country Spain
Call Details Advanced Grant (AdG), LS7, ERC-2017-ADG
Summary Air pollution is the main urban-related environmental hazard. It appears to affect brain development, although current evidence is inadequate given the lack of studies during the most vulnerable stages of brain development and the lack of brain anatomical structure and regional connectivity data underlying these effects. Of particular interest is the prenatal period, when brain structures are forming and growing, and when the effect of in utero exposure to environmental factors may cause permanent brain injury. I and others have conducted studies focused on effects during school age which could be less profound. I postulate that: pre-natal exposure to urban air pollution during pregnancy impairs foetal and postnatal brain development, mainly by affecting myelination; these effects are at least partially mediated by translocation of airborne particulate matter to the placenta and by placental dysfunction; and prenatal exposure to air pollution impairs post-natal brain development independently of urban context and post-natal exposure to air pollution. I aim to evaluate the effect of pre-natal exposure to urban air pollution on pre- and post-natal brain structure and function by following 900 pregnant women and their neonates with contrasting levels of pre-natal exposure to air pollutants by: i) establishing a new pregnancy cohort and evaluating brain imaging (pre-natal and neo-natal brain structure, connectivity and function), and post-natal motor and cognitive development; ii) measuring total personal exposure and inhaled dose of air pollutants during specific time-windows of gestation, noise, paternal stress and other stressors, using personal samplers and sensors; iii) detecting nanoparticles in placenta and its vascular function; iv) modelling mathematical causality and mediation, including a replication study in an external cohort. The expected results will create an impulse to implement policy interventions that genuinely protect the health of urban citizens.
Summary
Air pollution is the main urban-related environmental hazard. It appears to affect brain development, although current evidence is inadequate given the lack of studies during the most vulnerable stages of brain development and the lack of brain anatomical structure and regional connectivity data underlying these effects. Of particular interest is the prenatal period, when brain structures are forming and growing, and when the effect of in utero exposure to environmental factors may cause permanent brain injury. I and others have conducted studies focused on effects during school age which could be less profound. I postulate that: pre-natal exposure to urban air pollution during pregnancy impairs foetal and postnatal brain development, mainly by affecting myelination; these effects are at least partially mediated by translocation of airborne particulate matter to the placenta and by placental dysfunction; and prenatal exposure to air pollution impairs post-natal brain development independently of urban context and post-natal exposure to air pollution. I aim to evaluate the effect of pre-natal exposure to urban air pollution on pre- and post-natal brain structure and function by following 900 pregnant women and their neonates with contrasting levels of pre-natal exposure to air pollutants by: i) establishing a new pregnancy cohort and evaluating brain imaging (pre-natal and neo-natal brain structure, connectivity and function), and post-natal motor and cognitive development; ii) measuring total personal exposure and inhaled dose of air pollutants during specific time-windows of gestation, noise, paternal stress and other stressors, using personal samplers and sensors; iii) detecting nanoparticles in placenta and its vascular function; iv) modelling mathematical causality and mediation, including a replication study in an external cohort. The expected results will create an impulse to implement policy interventions that genuinely protect the health of urban citizens.
Max ERC Funding
2 499 992 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym AMAIZE
Project Atlas of leaf growth regulatory networks in MAIZE
Researcher (PI) Dirk, Gustaaf Inze
Host Institution (HI) VIB VZW
Country Belgium
Call Details Advanced Grant (AdG), LS9, ERC-2013-ADG
Summary "Understanding how organisms regulate size is one of the most fascinating open questions in biology. The aim of the AMAIZE project is to unravel how growth of maize leaves is controlled. Maize leaf development offers great opportunities to study the dynamics of growth regulatory networks, essentially because leaf development is a linear system with cell division at the leaf basis followed by cell expansion and maturation. Furthermore, the growth zone is relatively large allowing easy access of tissues at different positions. Four different perturbations of maize leaf size will be analyzed with cellular resolution: wild-type and plants having larger leaves (as a consequence of GA20OX1 overexpression), both grown under either well-watered or mild drought conditions. Firstly, a 3D cellular map of the growth zone of the fourth leaf will be made. RNA-SEQ of three different tissues (adaxial- and abaxial epidermis; mesophyll) obtained by laser dissection with an interval of 2.5 mm along the growth zone will allow for the analysis of the transcriptome with high resolution. Additionally, the composition of fifty selected growth regulatory protein complexes and DNA targets of transcription factors will be determined with an interval of 5 mm along the growth zone. Computational methods will be used to construct comprehensive integrative maps of the cellular and molecular processes occurring along the growth zone. Finally, selected regulatory nodes of the growth regulatory networks will be further functionally analyzed using a transactivation system in maize.
AMAIZE opens up new perspectives for the identification of optimal growth regulatory networks that can be selected for by advanced breeding or for which more robust variants (e.g. reduced susceptibility to drought) can be obtained through genetic engineering. The ability to improve the growth of maize and in analogy other cereals could have a high impact in providing food security"
Summary
"Understanding how organisms regulate size is one of the most fascinating open questions in biology. The aim of the AMAIZE project is to unravel how growth of maize leaves is controlled. Maize leaf development offers great opportunities to study the dynamics of growth regulatory networks, essentially because leaf development is a linear system with cell division at the leaf basis followed by cell expansion and maturation. Furthermore, the growth zone is relatively large allowing easy access of tissues at different positions. Four different perturbations of maize leaf size will be analyzed with cellular resolution: wild-type and plants having larger leaves (as a consequence of GA20OX1 overexpression), both grown under either well-watered or mild drought conditions. Firstly, a 3D cellular map of the growth zone of the fourth leaf will be made. RNA-SEQ of three different tissues (adaxial- and abaxial epidermis; mesophyll) obtained by laser dissection with an interval of 2.5 mm along the growth zone will allow for the analysis of the transcriptome with high resolution. Additionally, the composition of fifty selected growth regulatory protein complexes and DNA targets of transcription factors will be determined with an interval of 5 mm along the growth zone. Computational methods will be used to construct comprehensive integrative maps of the cellular and molecular processes occurring along the growth zone. Finally, selected regulatory nodes of the growth regulatory networks will be further functionally analyzed using a transactivation system in maize.
AMAIZE opens up new perspectives for the identification of optimal growth regulatory networks that can be selected for by advanced breeding or for which more robust variants (e.g. reduced susceptibility to drought) can be obtained through genetic engineering. The ability to improve the growth of maize and in analogy other cereals could have a high impact in providing food security"
Max ERC Funding
2 418 429 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym APMPAL-HET
Project Asset Prices and Macro Policy when Agents Learn and are Heterogeneous
Researcher (PI) Albert MARCET TORRENS
Host Institution (HI) Centre de Recerca en Economia Internacional (CREI)
Country Spain
Call Details Advanced Grant (AdG), SH1, ERC-2017-ADG
Summary Based on the APMPAL (ERC) project we continue to develop the frameworks of internal rationality (IR) and optimal signal extraction (OSE). Under IR investors/consumers behave rationally given their subjective beliefs about prices, these beliefs are compatible with data. Under OSE the government has partial information, it knows how policy influences observed variables and signal extraction.
We develop further the foundations of IR and OSE with an emphasis on heterogeneous agents. We study sovereign bond crisis and heterogeneity of beliefs in asset pricing models under IR, using survey data on expectations. Under IR the assets’ stochastic discount factor depends on the agents’ decision function and beliefs; this modifies some key asset pricing results. We extend OSE to models with state variables, forward-looking constraints and heterogeneity.
Under IR agents’ prior beliefs determine the effects of a policy reform. If the government does not observe prior beliefs it has partial information, thus OSE should be used to analyse policy reforms under IR.
If IR heterogeneous workers forecast their productivity either from their own wage or their neighbours’ in a network, low current wages discourage search and human capital accumulation, leading to low productivity. This can explain low development of a country or social exclusion of a group. Worker subsidies redistribute wealth and can increase productivity if they “teach” agents to exit a low-wage state.
We build DSGE models under IR for prediction and policy analysis. We develop time-series tools for predicting macro and asset market variables, using information available to the analyst, and we introduce non-linearities and survey expectations using insights from models under IR.
We study how IR and OSE change the view on macro policy issues such as tax smoothing, debt management, Taylor rule, level of inflation, fiscal/monetary policy coordination, factor taxation or redistribution.
Summary
Based on the APMPAL (ERC) project we continue to develop the frameworks of internal rationality (IR) and optimal signal extraction (OSE). Under IR investors/consumers behave rationally given their subjective beliefs about prices, these beliefs are compatible with data. Under OSE the government has partial information, it knows how policy influences observed variables and signal extraction.
We develop further the foundations of IR and OSE with an emphasis on heterogeneous agents. We study sovereign bond crisis and heterogeneity of beliefs in asset pricing models under IR, using survey data on expectations. Under IR the assets’ stochastic discount factor depends on the agents’ decision function and beliefs; this modifies some key asset pricing results. We extend OSE to models with state variables, forward-looking constraints and heterogeneity.
Under IR agents’ prior beliefs determine the effects of a policy reform. If the government does not observe prior beliefs it has partial information, thus OSE should be used to analyse policy reforms under IR.
If IR heterogeneous workers forecast their productivity either from their own wage or their neighbours’ in a network, low current wages discourage search and human capital accumulation, leading to low productivity. This can explain low development of a country or social exclusion of a group. Worker subsidies redistribute wealth and can increase productivity if they “teach” agents to exit a low-wage state.
We build DSGE models under IR for prediction and policy analysis. We develop time-series tools for predicting macro and asset market variables, using information available to the analyst, and we introduce non-linearities and survey expectations using insights from models under IR.
We study how IR and OSE change the view on macro policy issues such as tax smoothing, debt management, Taylor rule, level of inflation, fiscal/monetary policy coordination, factor taxation or redistribution.
Max ERC Funding
1 524 144 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym BIOTENSORS
Project Biomedical Data Fusion using Tensor based Blind Source Separation
Researcher (PI) Sabine Jeanne A Van Huffel
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Country Belgium
Call Details Advanced Grant (AdG), PE6, ERC-2013-ADG
Summary "Summary: the quest for a general functional tensor framework for blind source separation
Our overall objective is the development of a general functional framework for solving tensor based blind source separation (BSS) problems in biomedical data fusion, using tensor decompositions (TDs) as basic core. We claim that TDs will allow the extraction of fairly complicated sources of biomedical activity from fairly complicated sets of uni- and multimodal data. The power of the new techniques will be demonstrated for three well-chosen representative biomedical applications for which extensive expertise and fully validated datasets are available in the PI’s team, namely:
• Metabolite quantification and brain tumour tissue typing using Magnetic Resonance Spectroscopic Imaging,
• Functional monitoring including seizure detection and polysomnography,
• Cognitive brain functioning and seizure zone localization using simultaneous Electroencephalography-functional MR Imaging integration.
Solving these challenging problems requires that algorithmic progress is made in several directions:
• Algorithms need to be based on multilinear extensions of numerical linear algebra.
• New grounds for separation, such as representability in a given function class, need to be explored.
• Prior knowledge needs to be exploited via appropriate health relevant constraints.
• Biomedical data fusion requires the combination of TDs, coupled via relevant constraints.
• Algorithms for TD updating are important for continuous long-term patient monitoring.
The algorithms are eventually integrated in an easy-to-use open source software platform that is general enough for use in other BSS applications.
Having been involved in biomedical signal processing over a period of 20 years, the PI has a good overview of the field and the opportunities. By working directly at the forefront in close collaboration with the clinical scientists who actually use our software, we can have a huge impact."
Summary
"Summary: the quest for a general functional tensor framework for blind source separation
Our overall objective is the development of a general functional framework for solving tensor based blind source separation (BSS) problems in biomedical data fusion, using tensor decompositions (TDs) as basic core. We claim that TDs will allow the extraction of fairly complicated sources of biomedical activity from fairly complicated sets of uni- and multimodal data. The power of the new techniques will be demonstrated for three well-chosen representative biomedical applications for which extensive expertise and fully validated datasets are available in the PI’s team, namely:
• Metabolite quantification and brain tumour tissue typing using Magnetic Resonance Spectroscopic Imaging,
• Functional monitoring including seizure detection and polysomnography,
• Cognitive brain functioning and seizure zone localization using simultaneous Electroencephalography-functional MR Imaging integration.
Solving these challenging problems requires that algorithmic progress is made in several directions:
• Algorithms need to be based on multilinear extensions of numerical linear algebra.
• New grounds for separation, such as representability in a given function class, need to be explored.
• Prior knowledge needs to be exploited via appropriate health relevant constraints.
• Biomedical data fusion requires the combination of TDs, coupled via relevant constraints.
• Algorithms for TD updating are important for continuous long-term patient monitoring.
The algorithms are eventually integrated in an easy-to-use open source software platform that is general enough for use in other BSS applications.
Having been involved in biomedical signal processing over a period of 20 years, the PI has a good overview of the field and the opportunities. By working directly at the forefront in close collaboration with the clinical scientists who actually use our software, we can have a huge impact."
Max ERC Funding
2 500 000 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym BUBPOL
Project Monetary Policy and Asset Price Bubbles
Researcher (PI) Jordi GalI Garreta
Host Institution (HI) Centre de Recerca en Economia Internacional (CREI)
Country Spain
Call Details Advanced Grant (AdG), SH1, ERC-2013-ADG
Summary "The proposed research project seeks to further our understanding on two important questions for the design of monetary policy:
(a) What are the effects of monetary policy interventions on asset price bubbles?
(b) How should monetary policy be conducted in the presence of asset price bubbles?
The first part of the project will focus on the development of a theoretical framework that can be used to analyze rigorously the implications of alternative monetary policy rules in the presence of asset price bubbles, and to characterize the optimal monetary policy. In particular, I plan to use such a framework to assess the merits of a “leaning against the wind” strategy, which calls for a systematic rise in interest rates in response to the development of a bubble.
The second part of the project will seek to produce evidence, both empirical and experimental, regarding the effects of monetary policy on asset price bubbles. The empirical evidence will seek to identify and estimate the sign and response of asset price bubbles to interest rate changes, exploiting the potential differences in the joint behavior of interest rates and asset prices during “bubbly” episodes, in comparison to “normal” times. In addition, I plan to conduct some lab experiments in order to shed some light on the link between monetary policy and bubbles. Participants will trade two assets, a one-period riskless asset and a long-lived stock, in an environment consistent with the existence of asset price bubbles in equilibrium. Monetary policy interventions will take the form of changes in the short-term interest rate, engineered by the experimenter. The experiments will allow us to evaluate some of the predictions of the theoretical models regarding the impact of monetary policy on the dynamics of bubbles, as well as the effectiveness of “leaning against the wind” policies."
Summary
"The proposed research project seeks to further our understanding on two important questions for the design of monetary policy:
(a) What are the effects of monetary policy interventions on asset price bubbles?
(b) How should monetary policy be conducted in the presence of asset price bubbles?
The first part of the project will focus on the development of a theoretical framework that can be used to analyze rigorously the implications of alternative monetary policy rules in the presence of asset price bubbles, and to characterize the optimal monetary policy. In particular, I plan to use such a framework to assess the merits of a “leaning against the wind” strategy, which calls for a systematic rise in interest rates in response to the development of a bubble.
The second part of the project will seek to produce evidence, both empirical and experimental, regarding the effects of monetary policy on asset price bubbles. The empirical evidence will seek to identify and estimate the sign and response of asset price bubbles to interest rate changes, exploiting the potential differences in the joint behavior of interest rates and asset prices during “bubbly” episodes, in comparison to “normal” times. In addition, I plan to conduct some lab experiments in order to shed some light on the link between monetary policy and bubbles. Participants will trade two assets, a one-period riskless asset and a long-lived stock, in an environment consistent with the existence of asset price bubbles in equilibrium. Monetary policy interventions will take the form of changes in the short-term interest rate, engineered by the experimenter. The experiments will allow us to evaluate some of the predictions of the theoretical models regarding the impact of monetary policy on the dynamics of bubbles, as well as the effectiveness of “leaning against the wind” policies."
Max ERC Funding
799 200 €
Duration
Start date: 2014-01-01, End date: 2017-12-31
Project acronym CALCULUS
Project Commonsense and Anticipation enriched Learning of Continuous representations sUpporting Language UnderStanding
Researcher (PI) Marie-Francine MOENS
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Country Belgium
Call Details Advanced Grant (AdG), PE6, ERC-2017-ADG
Summary Natural language understanding (NLU) by the machine is of large scientific, economic and social value. Humans perform the NLU task in an efficient way by relying on their capability to imagine or anticipate situations. They engage commonsense and world knowledge that is often acquired through perceptual experiences to make explicit what is left implicit in language. Inspired by these characteristics CALCULUS will design, implement and evaluate innovative paradigms supporting NLU, where it will combine old but powerful ideas for language understanding from the early days of artificial intelligence with new approaches from machine learning. The project focuses on the effective learning of anticipatory, continuous, non-symbolic representations of event frames and narrative structures of events that are trained on language and visual data. The grammatical structure of language is grounded in the geometric structure of visual data while embodying aspects of commonsense and world knowledge. The reusable representations are evaluated in a selection of NLU tasks requiring efficient real-time retrieval of the representations and parsing of the targeted written texts. Finally, we will evaluate the inference potential of the anticipatory representations in situations not seen in the training data and when inferring spatial and temporal information in metric real world spaces that is not mentioned in the processed language. The machine learning methods focus on learning latent variable models relying on Bayesian probabilistic models and neural networks and focus on settings with limited training data that are manually annotated. The best models will be integrated in a demonstrator that translates the language of stories to events happening in a 3-D virtual world. The PI has interdisciplinary expertise in natural language processing, joint processing of language and visual data, information retrieval and machine learning needed for the successful realization of the project.
Summary
Natural language understanding (NLU) by the machine is of large scientific, economic and social value. Humans perform the NLU task in an efficient way by relying on their capability to imagine or anticipate situations. They engage commonsense and world knowledge that is often acquired through perceptual experiences to make explicit what is left implicit in language. Inspired by these characteristics CALCULUS will design, implement and evaluate innovative paradigms supporting NLU, where it will combine old but powerful ideas for language understanding from the early days of artificial intelligence with new approaches from machine learning. The project focuses on the effective learning of anticipatory, continuous, non-symbolic representations of event frames and narrative structures of events that are trained on language and visual data. The grammatical structure of language is grounded in the geometric structure of visual data while embodying aspects of commonsense and world knowledge. The reusable representations are evaluated in a selection of NLU tasks requiring efficient real-time retrieval of the representations and parsing of the targeted written texts. Finally, we will evaluate the inference potential of the anticipatory representations in situations not seen in the training data and when inferring spatial and temporal information in metric real world spaces that is not mentioned in the processed language. The machine learning methods focus on learning latent variable models relying on Bayesian probabilistic models and neural networks and focus on settings with limited training data that are manually annotated. The best models will be integrated in a demonstrator that translates the language of stories to events happening in a 3-D virtual world. The PI has interdisciplinary expertise in natural language processing, joint processing of language and visual data, information retrieval and machine learning needed for the successful realization of the project.
Max ERC Funding
2 227 500 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym CDAC
Project "The role of consciousness in adaptive behavior: A combined empirical, computational and robot based approach"
Researcher (PI) Paulus Franciscus Maria Joseph Verschure
Host Institution (HI) UNIVERSIDAD POMPEU FABRA
Country Spain
Call Details Advanced Grant (AdG), SH4, ERC-2013-ADG
Summary "Understanding the nature of consciousness is one of the grand outstanding scientific challenges and two of its features stand out: consciousness is defined as the construction of one coherent scene but this scene is experienced with a delay relative to the action of the agent and not necessarily the cause of actions and thoughts. Did evolution render solutions to the challenge of survival that includes epiphenomenal processes? The Conscious Distributed Adaptive Control (CDAC) project aims at resolving this paradox by using a multi-disciplinary approach to show the functional role of consciousness in adaptive behaviour, to identify its underlying neuronal principles and to construct a neuromorphic robot based real-time conscious architecture. CDAC proposes that the shift from surviving in a physical world to one that is dominated by intentional agents requires radically different control architectures combining parallel and distributed control loops to assure real-time operation together with a second level of control that assures coherence through sequential coherent representation of self and the task domain, i.e. consciousness. This conscious scene is driving dedicated credit assignment and planning beyond the immediately given information. CDAC advances a comprehensive framework progressing beyond the state of the art and will be realized using system level models of a conscious architecture, detailed computational studies of its underlying neuronal substrate focusing, empirical validation with a humanoid robot and stroke patients and the advancement of beyond state of the art tools appropriate to the complexity of its objectives. The CDAC project directly addresses one of the main outstanding questions in science: the function and genesis of consciousness and will advance our understanding of mind and brain, provide radically new neurorehabilitation technologies and contribute to realizing a new generation of robots with advanced social competence."
Summary
"Understanding the nature of consciousness is one of the grand outstanding scientific challenges and two of its features stand out: consciousness is defined as the construction of one coherent scene but this scene is experienced with a delay relative to the action of the agent and not necessarily the cause of actions and thoughts. Did evolution render solutions to the challenge of survival that includes epiphenomenal processes? The Conscious Distributed Adaptive Control (CDAC) project aims at resolving this paradox by using a multi-disciplinary approach to show the functional role of consciousness in adaptive behaviour, to identify its underlying neuronal principles and to construct a neuromorphic robot based real-time conscious architecture. CDAC proposes that the shift from surviving in a physical world to one that is dominated by intentional agents requires radically different control architectures combining parallel and distributed control loops to assure real-time operation together with a second level of control that assures coherence through sequential coherent representation of self and the task domain, i.e. consciousness. This conscious scene is driving dedicated credit assignment and planning beyond the immediately given information. CDAC advances a comprehensive framework progressing beyond the state of the art and will be realized using system level models of a conscious architecture, detailed computational studies of its underlying neuronal substrate focusing, empirical validation with a humanoid robot and stroke patients and the advancement of beyond state of the art tools appropriate to the complexity of its objectives. The CDAC project directly addresses one of the main outstanding questions in science: the function and genesis of consciousness and will advance our understanding of mind and brain, provide radically new neurorehabilitation technologies and contribute to realizing a new generation of robots with advanced social competence."
Max ERC Funding
2 469 268 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym Cholstim
Project Cholinergic modulation of immune homeostasis: new opportunities for treatment
Researcher (PI) Guy Eduard Elisabeth Boeckxstaens
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Country Belgium
Call Details Advanced Grant (AdG), LS7, ERC-2013-ADG
Summary In the gastrointestinal tract, the balance between activation of the mucosal immune system and tolerance should be tightly regulated to maintain immune homeostasis to prevent chronic inflammation and tissue damage. Recently, the new concept was introduced that the vagus nerve plays an important role in modulating immune homeostasis as part of a so-called inflammatory reflex. We provided evidence for this concept in the gastrointestinal tract and showed that vagus nerve stimulation (VNS) reduced inflammation of the intestinal muscle layer. Moreover, we showed that this effect was mediated by activation of enteric cholinergic neurons (cholinergic tone) interacting with intestinal macrophages in the muscle layer. Of interest, we have collected exciting data that the vagus nerve (and thus the cholinergic tone) also significantly contributes to mucosal immune homeostasis. Mice that underwent vagotomy lost their ability to develop tolerance to oral feeding of an antigen, whereas VNS reduced mucosal inflammation in a model of food allergy. Based on these data, we hypothesize that the cholinergic tone is a major determinant of the tolerogenic microenvironment of the mucosal immune system, and want to further explore the immune-modulatory effect of the vagal innervation and enteric neurons on the macrophages residing in the lamina propria. In addition, we will further explore the therapeutic potential and the mechanisms involved of chronic VNS in colitis and food allergy. Finally, we will translate our preclinical findings to the human situation. The anti-inflammatory effect of VNS (applied during surgery) will be studied in human intestinal tissue whereas the therapeutic potential of chronic VNS in Crohn’s disease will be studied in a pilot trial.
The outcome of this project will be ground-breaking and will have an immense impact on clinical management as it will provide new therapeutic opportunities for the treatment of immune-mediated gastrointestinal disorders.
Summary
In the gastrointestinal tract, the balance between activation of the mucosal immune system and tolerance should be tightly regulated to maintain immune homeostasis to prevent chronic inflammation and tissue damage. Recently, the new concept was introduced that the vagus nerve plays an important role in modulating immune homeostasis as part of a so-called inflammatory reflex. We provided evidence for this concept in the gastrointestinal tract and showed that vagus nerve stimulation (VNS) reduced inflammation of the intestinal muscle layer. Moreover, we showed that this effect was mediated by activation of enteric cholinergic neurons (cholinergic tone) interacting with intestinal macrophages in the muscle layer. Of interest, we have collected exciting data that the vagus nerve (and thus the cholinergic tone) also significantly contributes to mucosal immune homeostasis. Mice that underwent vagotomy lost their ability to develop tolerance to oral feeding of an antigen, whereas VNS reduced mucosal inflammation in a model of food allergy. Based on these data, we hypothesize that the cholinergic tone is a major determinant of the tolerogenic microenvironment of the mucosal immune system, and want to further explore the immune-modulatory effect of the vagal innervation and enteric neurons on the macrophages residing in the lamina propria. In addition, we will further explore the therapeutic potential and the mechanisms involved of chronic VNS in colitis and food allergy. Finally, we will translate our preclinical findings to the human situation. The anti-inflammatory effect of VNS (applied during surgery) will be studied in human intestinal tissue whereas the therapeutic potential of chronic VNS in Crohn’s disease will be studied in a pilot trial.
The outcome of this project will be ground-breaking and will have an immense impact on clinical management as it will provide new therapeutic opportunities for the treatment of immune-mediated gastrointestinal disorders.
Max ERC Funding
2 495 200 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym DecodeDiabetes
Project Expanding the genetic etiological and diagnostic spectrum of monogenic diabetes mellitus
Researcher (PI) Jorge FERRER
Host Institution (HI) FUNDACIO CENTRE DE REGULACIO GENOMICA
Country Spain
Call Details Advanced Grant (AdG), LS4, ERC-2017-ADG
Summary Whole genome sequencing is quickly becoming a routine clinical instrument. However, our ability to decipher DNA variants is still largely limited to protein-coding exons, which comprise 1% of the genome. Most known Mendelian mutations are in exons, yet genetic testing still fails to show causal coding mutations in more than 50% of well-characterized Mendelian disorders. This defines a pressing need to interpret noncoding genome sequences, and to establish the role of noncoding mutations in Mendelian disease.
A recent case study harnessed whole genome sequencing, epigenomics, and functional genomics to show that mutations in an enhancer cause most cases of neonatal diabetes due to pancreas agenesis. This example raises major questions: (i) what is the overall impact of penetrant regulatory mutations in human diabetes? (ii) do regulatory mutations cause distinct forms of diabetes? (iii) more generally, can we develop a strategy to systematically tackle regulatory variation in Mendelian disease?
The current project will address these questions with unique resources. First, we have created epigenomic and functional perturbation resources to interpret the regulatory genome in embryonic pancreas and adult pancreatic islets. Second, we have collected an unprecedented international cohort of patients with a phenotype consistent with monogenic diabetes, yet lacking mutations in known gene culprits after genetic testing, and therefore with increased likelihood of harboring noncoding mutations. Third, we have developed a prototype platform to sequence regulatory mutations in a large number of patients.
These resources will be combined with innovative strategies to uncover causal enhancer mutations underlying Mendelian diabetes. If successful, this project will expand the diagnostic spectrum of diabetes, it will discover new genetic regulators of diabetes-relevant networks, and will provide a framework to understand regulatory variation in Mendelian disease.
Summary
Whole genome sequencing is quickly becoming a routine clinical instrument. However, our ability to decipher DNA variants is still largely limited to protein-coding exons, which comprise 1% of the genome. Most known Mendelian mutations are in exons, yet genetic testing still fails to show causal coding mutations in more than 50% of well-characterized Mendelian disorders. This defines a pressing need to interpret noncoding genome sequences, and to establish the role of noncoding mutations in Mendelian disease.
A recent case study harnessed whole genome sequencing, epigenomics, and functional genomics to show that mutations in an enhancer cause most cases of neonatal diabetes due to pancreas agenesis. This example raises major questions: (i) what is the overall impact of penetrant regulatory mutations in human diabetes? (ii) do regulatory mutations cause distinct forms of diabetes? (iii) more generally, can we develop a strategy to systematically tackle regulatory variation in Mendelian disease?
The current project will address these questions with unique resources. First, we have created epigenomic and functional perturbation resources to interpret the regulatory genome in embryonic pancreas and adult pancreatic islets. Second, we have collected an unprecedented international cohort of patients with a phenotype consistent with monogenic diabetes, yet lacking mutations in known gene culprits after genetic testing, and therefore with increased likelihood of harboring noncoding mutations. Third, we have developed a prototype platform to sequence regulatory mutations in a large number of patients.
These resources will be combined with innovative strategies to uncover causal enhancer mutations underlying Mendelian diabetes. If successful, this project will expand the diagnostic spectrum of diabetes, it will discover new genetic regulators of diabetes-relevant networks, and will provide a framework to understand regulatory variation in Mendelian disease.
Max ERC Funding
2 243 746 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym DIDONE
Project The Sources of Absolute Music: Mapping Emotions in Eighteenth-Century Italian Opera
Researcher (PI) alvaro TORRENTE SANCHEZ GUISANDE
Host Institution (HI) UNIVERSIDAD COMPLUTENSE DE MADRID
Country Spain
Call Details Advanced Grant (AdG), SH5, ERC-2017-ADG
Summary The belief that ‘the end of music is to move human affections’ (Descartes, Compendium musicae) has been a central issue in European musical thought since Plato. Opera was invented to recover the power of Ancient music to move the human heart, and its history is a permanent exploration of the capacity of action, words and music to convey emotions.
In the eighteenth century a new type of opera consolidated with the chief concern of expressing the character’s emotions as they changed throughout the drama, inspired by Descartes’ theory of human passions. The key expressive medium was the aria col da capo, where a single, distinct passion was represented, like a concentrated pill of emotional meaning. The ideal corpus to study this issue are the 900 operas set to music by 300 composers on the 27 dramas by Pietro Metastasio (1698-1782). It contains a comprehensive catalogue of emotions in music, a unique window of opportunity to scrutinize conventions that defined music expression and meaning for over a century, paving the way for the emergence of ‘absolute’ instrumental music, autonomous from any other art form.
DIDONE presents an innovative approach to unveil these conventions: the creation of a corpus of 4,000 digitized arias from 200 opera scores based on Metastasio’s eight most popular dramas, to be analysed using traditional methods and big data computer technology. The comparative scrutiny of dozens of different musical settings of the same librettos will reveal how composers correlate specific dramatic circumstances and emotions with distinct poetic and musical features. The results will be applicable to three main fields: (i) opera performance; (ii) analysis and interpretation of other types of music; and (iii) composition in several scenarios, from film soundtracks to creation by Artificial Intelligence. An opera festival will be designed to recover and disseminate this hitherto ignored repertoire, which was essential to define the European musical identity.
Summary
The belief that ‘the end of music is to move human affections’ (Descartes, Compendium musicae) has been a central issue in European musical thought since Plato. Opera was invented to recover the power of Ancient music to move the human heart, and its history is a permanent exploration of the capacity of action, words and music to convey emotions.
In the eighteenth century a new type of opera consolidated with the chief concern of expressing the character’s emotions as they changed throughout the drama, inspired by Descartes’ theory of human passions. The key expressive medium was the aria col da capo, where a single, distinct passion was represented, like a concentrated pill of emotional meaning. The ideal corpus to study this issue are the 900 operas set to music by 300 composers on the 27 dramas by Pietro Metastasio (1698-1782). It contains a comprehensive catalogue of emotions in music, a unique window of opportunity to scrutinize conventions that defined music expression and meaning for over a century, paving the way for the emergence of ‘absolute’ instrumental music, autonomous from any other art form.
DIDONE presents an innovative approach to unveil these conventions: the creation of a corpus of 4,000 digitized arias from 200 opera scores based on Metastasio’s eight most popular dramas, to be analysed using traditional methods and big data computer technology. The comparative scrutiny of dozens of different musical settings of the same librettos will reveal how composers correlate specific dramatic circumstances and emotions with distinct poetic and musical features. The results will be applicable to three main fields: (i) opera performance; (ii) analysis and interpretation of other types of music; and (iii) composition in several scenarios, from film soundtracks to creation by Artificial Intelligence. An opera festival will be designed to recover and disseminate this hitherto ignored repertoire, which was essential to define the European musical identity.
Max ERC Funding
2 498 690 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym E-DUALITY
Project Exploring Duality for Future Data-driven Modelling
Researcher (PI) Johan SUYKENS
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Country Belgium
Call Details Advanced Grant (AdG), PE7, ERC-2017-ADG
Summary Future data-driven modelling is increasingly challenging for many systems due to higher complexity levels, such as in energy systems, environmental and climate modelling, traffic and transport, industrial processes, health, safety, and others. This requires powerful concepts and frameworks that enable the design of high quality predictive models. In this proposal E-DUALITY we will explore and engineer the potential of duality principles for future data-driven modelling. An existing example illustrating the important role of duality in this context is support vector machines, which possess primal and dual model representations, in terms of feature maps and kernels, respectively. Within this project, besides using existing notions of duality that are relevant for data-driven modelling (e.g. Lagrange duality, Legendre-Fenchel duality, Monge-Kantorovich duality), we will also explore new ones. Duality principles will be employed for obtaining a generically applicable framework with unifying insights, handling different system complexity levels, optimal model representations and designing efficient algorithms. This will require taking an integrative approach across different research fields. The new framework should be able to include e.g. multi-view and multiple function learning, multiplex and multilayer networks, tensor models, multi-scale and deep architectures as particular instances and to combine several of such characteristics, in addition to simple basic schemes. It will include both parametric and kernel-based approaches for tasks as regression, classification, clustering, dimensionality reduction, outlier detection and dynamical systems modelling. Higher risk elements are the search for new standard forms in modelling systems with different complexity levels, matching models and representations to system characteristics, and developing algorithms for large scale applications within this powerful new framework.
Summary
Future data-driven modelling is increasingly challenging for many systems due to higher complexity levels, such as in energy systems, environmental and climate modelling, traffic and transport, industrial processes, health, safety, and others. This requires powerful concepts and frameworks that enable the design of high quality predictive models. In this proposal E-DUALITY we will explore and engineer the potential of duality principles for future data-driven modelling. An existing example illustrating the important role of duality in this context is support vector machines, which possess primal and dual model representations, in terms of feature maps and kernels, respectively. Within this project, besides using existing notions of duality that are relevant for data-driven modelling (e.g. Lagrange duality, Legendre-Fenchel duality, Monge-Kantorovich duality), we will also explore new ones. Duality principles will be employed for obtaining a generically applicable framework with unifying insights, handling different system complexity levels, optimal model representations and designing efficient algorithms. This will require taking an integrative approach across different research fields. The new framework should be able to include e.g. multi-view and multiple function learning, multiplex and multilayer networks, tensor models, multi-scale and deep architectures as particular instances and to combine several of such characteristics, in addition to simple basic schemes. It will include both parametric and kernel-based approaches for tasks as regression, classification, clustering, dimensionality reduction, outlier detection and dynamical systems modelling. Higher risk elements are the search for new standard forms in modelling systems with different complexity levels, matching models and representations to system characteristics, and developing algorithms for large scale applications within this powerful new framework.
Max ERC Funding
2 492 500 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym editCRC
Project A genome editing-based approach to study the stem cell hierarchy of human colorectal cancers
Researcher (PI) Eduardo Batlle Gomez
Host Institution (HI) FUNDACIO INSTITUT DE RECERCA BIOMEDICA (IRB BARCELONA)
Country Spain
Call Details Advanced Grant (AdG), LS4, ERC-2013-ADG
Summary A hallmark of cancer is tumor cell heterogeneity, which results from combinations of multiple genetic and epigenetic alterations within an individual tumor. In contrast, we have recently discovered that most human colorectal cancers (CRCs) are composed of mixtures of phenotypically distinct tumor cells organized into a stem cell hierarchy that displays a striking resemblance to the healthy colonic epithelium. We showed that long-term regeneration potential of tumor cells is largely influenced by the position that they occupy within the tumor's hierarchy. To analyze the organization of CRCs without the constraints imposed by tumor cell transplantation experiments, we have developed a method that allows for the first time tracking and manipulating the fate of specific cell populations in whole human tumors. This technology is based on editing the genomes of primary human CRCs cultured in the form of tumor organoids using Zinc-Finger Nucleases to knock-in either lineage tracing or cell ablation alleles in genes that define colorectal cancer stem cells (CRC-SCs) or differentiated-like tumor cells. Edited tumor organoids generate CRCs in mice that reproduce the tumor of origin while carrying the desired genetic modifications. This technological advance opens the gate to perform classical genetic and developmental analysis in human tumors. We will exploit this advantage to address fundamental questions about the cell heterogeneity and organization of human CRCs that cannot be tackled through currently existing experimental approaches such as: Are CRC-SCs the only tumor cell population with long term regenerating potential? Can we cure CRC with anti-CRC-SC specific therapies? Will tumor cell plasticity contribute to the regeneration of the CRC-SC pool after therapy? Do quiescent-SCs regenerate CRC tumors after standard chemotherapy? Can we identify these cells? How do common genetic alterations in CRC influence the CRC hierarchy? Do they affect the stem cell phenotype?
Summary
A hallmark of cancer is tumor cell heterogeneity, which results from combinations of multiple genetic and epigenetic alterations within an individual tumor. In contrast, we have recently discovered that most human colorectal cancers (CRCs) are composed of mixtures of phenotypically distinct tumor cells organized into a stem cell hierarchy that displays a striking resemblance to the healthy colonic epithelium. We showed that long-term regeneration potential of tumor cells is largely influenced by the position that they occupy within the tumor's hierarchy. To analyze the organization of CRCs without the constraints imposed by tumor cell transplantation experiments, we have developed a method that allows for the first time tracking and manipulating the fate of specific cell populations in whole human tumors. This technology is based on editing the genomes of primary human CRCs cultured in the form of tumor organoids using Zinc-Finger Nucleases to knock-in either lineage tracing or cell ablation alleles in genes that define colorectal cancer stem cells (CRC-SCs) or differentiated-like tumor cells. Edited tumor organoids generate CRCs in mice that reproduce the tumor of origin while carrying the desired genetic modifications. This technological advance opens the gate to perform classical genetic and developmental analysis in human tumors. We will exploit this advantage to address fundamental questions about the cell heterogeneity and organization of human CRCs that cannot be tackled through currently existing experimental approaches such as: Are CRC-SCs the only tumor cell population with long term regenerating potential? Can we cure CRC with anti-CRC-SC specific therapies? Will tumor cell plasticity contribute to the regeneration of the CRC-SC pool after therapy? Do quiescent-SCs regenerate CRC tumors after standard chemotherapy? Can we identify these cells? How do common genetic alterations in CRC influence the CRC hierarchy? Do they affect the stem cell phenotype?
Max ERC Funding
2 499 405 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym eNANO
Project FREE ELECTRONS AS ULTRAFAST NANOSCALE PROBES
Researcher (PI) Javier Garcia de Abajo
Host Institution (HI) FUNDACIO INSTITUT DE CIENCIES FOTONIQUES
Country Spain
Call Details Advanced Grant (AdG), PE3, ERC-2017-ADG
Summary With eNANO I will introduce a disruptive approach toward controlling and understanding the dynamical response of material nanostructures, expanding nanoscience and nanotechnology in unprecedented directions. Specifically, I intend to inaugurate the field of free-electron nanoelectronics, whereby electrons evolving in the vacuum regions defined by nanostructures will be generated, guided, and sampled at the nanoscale, thus acting as probes to excite, detect, image, and spectrally resolve polaritonic modes (e.g., plasmons, optical phonons, and excitons) with atomic precision over sub-femtosecond timescales. I will exploit the wave nature of electrons, extending the principles of nanophotonics from photons to electrons, therefore gaining in spatial resolution (by relying on the large reduction in wavelength) and strength of interaction (mediated by Coulomb fields, which in contrast to photons render nonlinear interactions ubiquitous when using free electrons). I will develop the theoretical and computational tools required to investigate this unexplored scenario, covering a wide range of free-electron energies, their elastic interactions with the material atomic structures, and their inelastic coupling to nanoscale dynamical excitations. Equipped with these techniques, I will further address four challenges of major scientific interest: (i) the fundamental limits to the space, time, and energy resolutions achievable with free electrons; (ii) the foundations and feasibility of pump-probe spectral microscopy at the single-electron level; (iii) the exploration of quantum-optics phenomena by means of free electrons; and (iv) the unique perspectives and potential offered by vertically confined free-electrons in 2D crystals. I will face these research frontiers by combining knowledge from different areas through a multidisciplinary theory group, in close collaboration with leading experimentalists, pursuing a radically new approach to study and control the nanoworld.
Summary
With eNANO I will introduce a disruptive approach toward controlling and understanding the dynamical response of material nanostructures, expanding nanoscience and nanotechnology in unprecedented directions. Specifically, I intend to inaugurate the field of free-electron nanoelectronics, whereby electrons evolving in the vacuum regions defined by nanostructures will be generated, guided, and sampled at the nanoscale, thus acting as probes to excite, detect, image, and spectrally resolve polaritonic modes (e.g., plasmons, optical phonons, and excitons) with atomic precision over sub-femtosecond timescales. I will exploit the wave nature of electrons, extending the principles of nanophotonics from photons to electrons, therefore gaining in spatial resolution (by relying on the large reduction in wavelength) and strength of interaction (mediated by Coulomb fields, which in contrast to photons render nonlinear interactions ubiquitous when using free electrons). I will develop the theoretical and computational tools required to investigate this unexplored scenario, covering a wide range of free-electron energies, their elastic interactions with the material atomic structures, and their inelastic coupling to nanoscale dynamical excitations. Equipped with these techniques, I will further address four challenges of major scientific interest: (i) the fundamental limits to the space, time, and energy resolutions achievable with free electrons; (ii) the foundations and feasibility of pump-probe spectral microscopy at the single-electron level; (iii) the exploration of quantum-optics phenomena by means of free electrons; and (iv) the unique perspectives and potential offered by vertically confined free-electrons in 2D crystals. I will face these research frontiers by combining knowledge from different areas through a multidisciplinary theory group, in close collaboration with leading experimentalists, pursuing a radically new approach to study and control the nanoworld.
Max ERC Funding
1 899 788 €
Duration
Start date: 2018-12-01, End date: 2023-11-30
Project acronym FitteR-CATABOLIC
Project Survival of the Fittest: On how to enhance recovery from critical illness through learning from evolutionary conserved catabolic pathways
Researcher (PI) Greta Herman VAN DEN BERGHE
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Country Belgium
Call Details Advanced Grant (AdG), LS7, ERC-2017-ADG
Summary Since a few decades, human patients who suffer from severe illnesses or multiple trauma, conditions that were previously lethal, are being treated in intensive care units (ICUs). Modern intensive care medicine bridges patients from life-threatening conditions to recovery with use of mechanical devices, vasoactive drugs and powerful anti-microbial agents. By postponing death, a new unnatural condition, intensive-care-dependent prolonged (>1 week) critical illness, has been created. About 25% of ICU patients today require prolonged intensive care, sometimes for weeks or months, and these patients are at high risk of death while consuming 75% of resources. Although the primary insult was adequately dealt with, many long-stay patients typically suffer from hypercatabolism, ICU-acquired brain dysfunction and polyneuropathy/myopathy leading to severe muscle weakness, further increasing the risk of late death. As hypercatabolism was considered the culprit, several anabolic interventions were tested, but these showed harm instead of benefit. We previously showed that fasting early during illness is superior to forceful feeding, pointing to certain benefits of catabolic responses. In healthy humans, fasting activates catabolism to provide substrates essential to protect and maintain brain and muscle function. This proposal aims to investigate whether evolutionary conserved catabolic fasting pathways, specifically lipolysis and ketogenesis, can be exploited in the search for prevention of brain dysfunction and muscle weakness in long-stay ICU patients, with the goal to identify a new metabolic intervention to enhance their recovery. The project builds further on our experience with bi-directional translational research - using human material whenever possible and a validated mouse model of sepsis-induced critical illness for objectives that cannot be addressed in patients - and aims to close the loop, from a novel concept to a large randomized controlled trial in patients.
Summary
Since a few decades, human patients who suffer from severe illnesses or multiple trauma, conditions that were previously lethal, are being treated in intensive care units (ICUs). Modern intensive care medicine bridges patients from life-threatening conditions to recovery with use of mechanical devices, vasoactive drugs and powerful anti-microbial agents. By postponing death, a new unnatural condition, intensive-care-dependent prolonged (>1 week) critical illness, has been created. About 25% of ICU patients today require prolonged intensive care, sometimes for weeks or months, and these patients are at high risk of death while consuming 75% of resources. Although the primary insult was adequately dealt with, many long-stay patients typically suffer from hypercatabolism, ICU-acquired brain dysfunction and polyneuropathy/myopathy leading to severe muscle weakness, further increasing the risk of late death. As hypercatabolism was considered the culprit, several anabolic interventions were tested, but these showed harm instead of benefit. We previously showed that fasting early during illness is superior to forceful feeding, pointing to certain benefits of catabolic responses. In healthy humans, fasting activates catabolism to provide substrates essential to protect and maintain brain and muscle function. This proposal aims to investigate whether evolutionary conserved catabolic fasting pathways, specifically lipolysis and ketogenesis, can be exploited in the search for prevention of brain dysfunction and muscle weakness in long-stay ICU patients, with the goal to identify a new metabolic intervention to enhance their recovery. The project builds further on our experience with bi-directional translational research - using human material whenever possible and a validated mouse model of sepsis-induced critical illness for objectives that cannot be addressed in patients - and aims to close the loop, from a novel concept to a large randomized controlled trial in patients.
Max ERC Funding
2 500 000 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym GRIFFIN
Project General compliant aerial Robotic manipulation system Integrating Fixed and Flapping wings to INcrease range and safety
Researcher (PI) Anibal OLLERO
Host Institution (HI) UNIVERSIDAD DE SEVILLA
Country Spain
Call Details Advanced Grant (AdG), PE7, ERC-2017-ADG
Summary The goal of GRIFFIN is the derivation of a unified framework with methods, tools and technologies for the development of flying robots with dexterous manipulation capabilities. The robots will be able to fly minimizing energy consumption, to perch on curved surfaces and to perform dexterous manipulation. Flying will be based on foldable wings with flapping capabilities. They will be able to safely operate in sites where rotorcrafts cannot do it and physically interact with people. Dexterous manipulation will be performed maintaining fixed contact with a surface, such as a pole or a pipe, by means of one or more limbs and manipulating with others overcoming the limitations of dexterous manipulation in free flying of existing aerial manipulators. Compliance will play an important role in these robots and in their flight and manipulation control methods. The control systems will be based on appropriate kinematic, dynamic and aerodynamic models. The GRIFFIN robots will have autonomous perception, reactivity and planning based on these models. They will be also able to associate with others to perform cooperative manipulation tasks. New software tools will be developed to facilitate the design and implementation of these complex robotic systems. Thus, configurations with different complexity could be derived depending on the requirements of flight endurance and manipulation tasks from simple grasping to more complex dexterous manipulation. The implementation will be based on additive and shape deposition manufacturing to fabricate multi-material parts and parts with embedded electronics and sensors. In GRIFFIN we will develop a small flapping wings proof of concept prototype which will be able to land autonomously on a small surface by using computer vision, a manipulation system with the body attached to a pole, and finally full size prototypes which will demonstrate flying, landing and manipulation, including cooperative manipulation, by maintaining the equilibrium.
Summary
The goal of GRIFFIN is the derivation of a unified framework with methods, tools and technologies for the development of flying robots with dexterous manipulation capabilities. The robots will be able to fly minimizing energy consumption, to perch on curved surfaces and to perform dexterous manipulation. Flying will be based on foldable wings with flapping capabilities. They will be able to safely operate in sites where rotorcrafts cannot do it and physically interact with people. Dexterous manipulation will be performed maintaining fixed contact with a surface, such as a pole or a pipe, by means of one or more limbs and manipulating with others overcoming the limitations of dexterous manipulation in free flying of existing aerial manipulators. Compliance will play an important role in these robots and in their flight and manipulation control methods. The control systems will be based on appropriate kinematic, dynamic and aerodynamic models. The GRIFFIN robots will have autonomous perception, reactivity and planning based on these models. They will be also able to associate with others to perform cooperative manipulation tasks. New software tools will be developed to facilitate the design and implementation of these complex robotic systems. Thus, configurations with different complexity could be derived depending on the requirements of flight endurance and manipulation tasks from simple grasping to more complex dexterous manipulation. The implementation will be based on additive and shape deposition manufacturing to fabricate multi-material parts and parts with embedded electronics and sensors. In GRIFFIN we will develop a small flapping wings proof of concept prototype which will be able to land autonomously on a small surface by using computer vision, a manipulation system with the body attached to a pole, and finally full size prototypes which will demonstrate flying, landing and manipulation, including cooperative manipulation, by maintaining the equilibrium.
Max ERC Funding
2 499 750 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym IAXOplus
Project Towards the detection of the axion with the International Axion Observatory
Researcher (PI) Igor GARCIA IRASTORZA
Host Institution (HI) UNIVERSIDAD DE ZARAGOZA
Country Spain
Call Details Advanced Grant (AdG), PE2, ERC-2017-ADG
Summary The nature of the Dark Universe is an outstanding question in modern science, and is connected with our understanding of the reality at the most fundamental level. Despite the enormous success of the Standard Model (SM) of particle physics, a number of shortcomings of the theory and the fact that it does not account for the Dark Matter and Energy, prompt theorists to propose possible hypothetical extensions.
Some of these extensions predict the existence of very-light and very-weakly-coupled axions (or axion-like particles, ALPs). Recent theoretical and phenomenological work is sharpening the physics case of these particles. They are now considered as very motivated portals for physics beyond the SM, and in particular as very plausible Dark Matter candidates. In addition, some intriguing astrophysical observations might be interpreted as hints for their existence.
The International Axion Observatory IAXO is one of the most ambitious proposals to find the axion. Its baseline configuration relies on the search for solar axions, but could also host relic axion detectors. IAXO will go well beyond current experiments' sensitivity and will probe a large fraction of the -still unexplored- parameter space of the axion and ALPs. The scope of the present proposal encompasses the realization of a first complete intermediate experimental stage, BabyIAXO, including prototypes of the IAXO magnet and detection systems. It will already provide relevant physics outcome in the time-frame of the current grant, while preparing the ground for, and extending the physics reach of, the full IAXO. In particular, BabyIAXO will already be able to test a number of axion and ALP models that are invoked by the aforementioned astrophysical hints and therefore already at this stage there is potential for discovery. The detection of a new fundamental pseudoscalar -potentially solving the DM problem- would lead to a breakthrough in Particle Physics, Cosmology and Astrophysics.
Summary
The nature of the Dark Universe is an outstanding question in modern science, and is connected with our understanding of the reality at the most fundamental level. Despite the enormous success of the Standard Model (SM) of particle physics, a number of shortcomings of the theory and the fact that it does not account for the Dark Matter and Energy, prompt theorists to propose possible hypothetical extensions.
Some of these extensions predict the existence of very-light and very-weakly-coupled axions (or axion-like particles, ALPs). Recent theoretical and phenomenological work is sharpening the physics case of these particles. They are now considered as very motivated portals for physics beyond the SM, and in particular as very plausible Dark Matter candidates. In addition, some intriguing astrophysical observations might be interpreted as hints for their existence.
The International Axion Observatory IAXO is one of the most ambitious proposals to find the axion. Its baseline configuration relies on the search for solar axions, but could also host relic axion detectors. IAXO will go well beyond current experiments' sensitivity and will probe a large fraction of the -still unexplored- parameter space of the axion and ALPs. The scope of the present proposal encompasses the realization of a first complete intermediate experimental stage, BabyIAXO, including prototypes of the IAXO magnet and detection systems. It will already provide relevant physics outcome in the time-frame of the current grant, while preparing the ground for, and extending the physics reach of, the full IAXO. In particular, BabyIAXO will already be able to test a number of axion and ALP models that are invoked by the aforementioned astrophysical hints and therefore already at this stage there is potential for discovery. The detection of a new fundamental pseudoscalar -potentially solving the DM problem- would lead to a breakthrough in Particle Physics, Cosmology and Astrophysics.
Max ERC Funding
3 106 875 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym LIPOMET
Project Dietary Influences on Metastasis: How, When, and Why
Researcher (PI) Salvador Aznar Benitah
Host Institution (HI) FUNDACIO INSTITUT DE RECERCA BIOMEDICA (IRB BARCELONA)
Country Spain
Call Details Advanced Grant (AdG), LS4, ERC-2017-ADG
Summary We have recently identified metastasis-initiating cells (MICs) in several types of tumors (Nature, 2017)1.
Intriguingly, MICs: (i) are exclusive in their ability to generate metastases when transplanted; (ii) express the
fatty acid channel CD36 and have a unique lipid metabolic signature; (iii) are exquisitely sensitive to the
levels of fat in circulation, thus providing a link between the predisposition of metastasis and dietary fat; (iv)
are highly sensitive to CD36 inhibition, which almost completely abolishes their metastatic potential.
We still do not know how MICs promote metastasis or how MICs are influenced by dietary fat. In
particular: (A) where are MICs located within the tumor, and does this location influence their behavior?
How and where do they attach and expand at metastatic sites? (B) Why are MICs so sensitive to specific
dietary lipids, and how do these lipids promote metastasis at the molecular and cellular levels? (C) Is the
prolonged consumption of a high-fat diet a risk factor for developing metastatic tumors? If so, what are the
underlying genetic and epigenetic causes for this effect? Can we revert these causes?
To answer these questions, we will combine state-of-the-art in vivo functional models of metastasis, with
quantitative metabolomics and proteomics, epigenetic and geographical position (3D) single-cell
transcriptomic studies, as well as integrative computational analyses, using preclinical models and patientderived
carcinomas of melanoma, oral cancer and breast cancer.
We expect our project to provide fundamental insights into the mechanisms of metastasis, and how they are
influenced by diet. This is highly relevant as 1) large quantities of fatty acids are typically consumed in
Western diets; and 2) metastasis is the leading cause of cancer-related deaths. We also tackle a timely
medical unmet need by exploring the therapeutic anti-metastatic potential of targeting fatty acid metabolism
in cancer patients.
Summary
We have recently identified metastasis-initiating cells (MICs) in several types of tumors (Nature, 2017)1.
Intriguingly, MICs: (i) are exclusive in their ability to generate metastases when transplanted; (ii) express the
fatty acid channel CD36 and have a unique lipid metabolic signature; (iii) are exquisitely sensitive to the
levels of fat in circulation, thus providing a link between the predisposition of metastasis and dietary fat; (iv)
are highly sensitive to CD36 inhibition, which almost completely abolishes their metastatic potential.
We still do not know how MICs promote metastasis or how MICs are influenced by dietary fat. In
particular: (A) where are MICs located within the tumor, and does this location influence their behavior?
How and where do they attach and expand at metastatic sites? (B) Why are MICs so sensitive to specific
dietary lipids, and how do these lipids promote metastasis at the molecular and cellular levels? (C) Is the
prolonged consumption of a high-fat diet a risk factor for developing metastatic tumors? If so, what are the
underlying genetic and epigenetic causes for this effect? Can we revert these causes?
To answer these questions, we will combine state-of-the-art in vivo functional models of metastasis, with
quantitative metabolomics and proteomics, epigenetic and geographical position (3D) single-cell
transcriptomic studies, as well as integrative computational analyses, using preclinical models and patientderived
carcinomas of melanoma, oral cancer and breast cancer.
We expect our project to provide fundamental insights into the mechanisms of metastasis, and how they are
influenced by diet. This is highly relevant as 1) large quantities of fatty acids are typically consumed in
Western diets; and 2) metastasis is the leading cause of cancer-related deaths. We also tackle a timely
medical unmet need by exploring the therapeutic anti-metastatic potential of targeting fatty acid metabolism
in cancer patients.
Max ERC Funding
2 370 625 €
Duration
Start date: 2018-08-01, End date: 2023-07-31
Project acronym METBIOCAT
Project Metal catalysis in biological habitats: New strategies for optical bio-sensing and targeted therapy
Researcher (PI) Jose Luis Mascarenas Cid
Host Institution (HI) UNIVERSIDAD DE SANTIAGO DE COMPOSTELA
Country Spain
Call Details Advanced Grant (AdG), PE5, ERC-2013-ADG
Summary This proposal aims at the discovery of robust transition-metal catalyzed transformations that can take place in aqueous media and cellular lysates, and are susceptible of being exported to living cells. Specifically, we will exploit the special coordination and activation ability of different metal complexes towards pi-systems to induce chemo-selective reactions of designed, abiotic, unsaturated substrates. Moreover, and importantly, the metal catalysts will be conjugated to designed ligands or biopolymers so that the catalytic power of the metal complex can be transferred to specific “in vivo” locations. Initial designs in this latter “high risk” endeavor will be guided by the current knowledge on metal-catalyzed bio-orthogonal chemistry as well as by some precedents on catalysis-based metal-sensing tactics.
Ultimately, we want to install catalytic power in specific cellular sites and/or endow catalytic properties to any selected bio-molecular target. The catalytic activity could then be used to trigger the amplified generation of fluorescent signals or boost the production of bioactive drugs from inert, non-toxic precursors. This will set the basis for the development of efficient bio-sensing and imaging tools, and “in cellulo” diagnosis tactics, and of novel target-directed therapeutic strategies. With the crescent identification of disease-related biomarkers, the development of biomarker-associated diagnosis and therapy protocols is becoming one of the more urgent challenges in modern life sciences. Advances in early diagnosis can have a profound impact in public health, and boost new technology developments.
The transversal expertise of my group in synthesis, metal catalysis, molecular recognition and chemical biology (see PI profile) places us in a rather unique position to tackle this type of interdisciplinary project.
Summary
This proposal aims at the discovery of robust transition-metal catalyzed transformations that can take place in aqueous media and cellular lysates, and are susceptible of being exported to living cells. Specifically, we will exploit the special coordination and activation ability of different metal complexes towards pi-systems to induce chemo-selective reactions of designed, abiotic, unsaturated substrates. Moreover, and importantly, the metal catalysts will be conjugated to designed ligands or biopolymers so that the catalytic power of the metal complex can be transferred to specific “in vivo” locations. Initial designs in this latter “high risk” endeavor will be guided by the current knowledge on metal-catalyzed bio-orthogonal chemistry as well as by some precedents on catalysis-based metal-sensing tactics.
Ultimately, we want to install catalytic power in specific cellular sites and/or endow catalytic properties to any selected bio-molecular target. The catalytic activity could then be used to trigger the amplified generation of fluorescent signals or boost the production of bioactive drugs from inert, non-toxic precursors. This will set the basis for the development of efficient bio-sensing and imaging tools, and “in cellulo” diagnosis tactics, and of novel target-directed therapeutic strategies. With the crescent identification of disease-related biomarkers, the development of biomarker-associated diagnosis and therapy protocols is becoming one of the more urgent challenges in modern life sciences. Advances in early diagnosis can have a profound impact in public health, and boost new technology developments.
The transversal expertise of my group in synthesis, metal catalysis, molecular recognition and chemical biology (see PI profile) places us in a rather unique position to tackle this type of interdisciplinary project.
Max ERC Funding
2 356 276 €
Duration
Start date: 2014-02-01, End date: 2020-01-31
Project acronym Mol-2D
Project Molecule-induced control over 2D Materials
Researcher (PI) Eugenio CORONADO MIRALLES
Host Institution (HI) UNIVERSITAT DE VALENCIA
Country Spain
Call Details Advanced Grant (AdG), PE5, ERC-2017-ADG
Summary We propose to create heterostructures based on functional molecules and 2D materials. As molecular systems we focus on bistable magnetic molecules able to switch between two spin states upon the application of an external stimulus (temperature, light, pressure, electric field etc.). As 2D materials we concentrate on those exhibiting in particular superconductivity or magnetism. The driving idea is to tune/improve the properties of the “all surface” 2D material via an active control of the hybrid interface. This concept, which goes much beyond the conventional chemical functionalization of a 2D material, will provide an entire new class of smart molecular/2D heterostructures, which may be at the origin of a novel generation of hybrid materials and devices of direct application in highly topical fields like electronics, spintronics, molecular sensing and energy storage. Through this molecular approach, we will address major challenges in different areas of the 2D research: i) in 2D physics, we investigate the new properties that should appear in heterostructures involving 2D superconductors and 2D magnets or magnetic molecules; ii) in 2D electronics, we explore the possibility of tuning the superconducting/magnetic properties of a 2D material by applying an external stimulus (light for example), or to design smart electronic/spintronic devices able to respond to physical (light, magnetic field, etc.) or chemical stimuli (trapping of molecules); iii) in 2D composite materials, a general goal is to design hybrid molecular/2D materials with improved properties with respect to the pure 2D material to be used in the fabrication of energy storage devices. To reach these challenging goals an integrative and multidisciplinary approach is proposed in which various facets of chemistry – coordination, solid-state and supramolecular chemistry – are coupled with physics, materials science and nanotechnology.
Summary
We propose to create heterostructures based on functional molecules and 2D materials. As molecular systems we focus on bistable magnetic molecules able to switch between two spin states upon the application of an external stimulus (temperature, light, pressure, electric field etc.). As 2D materials we concentrate on those exhibiting in particular superconductivity or magnetism. The driving idea is to tune/improve the properties of the “all surface” 2D material via an active control of the hybrid interface. This concept, which goes much beyond the conventional chemical functionalization of a 2D material, will provide an entire new class of smart molecular/2D heterostructures, which may be at the origin of a novel generation of hybrid materials and devices of direct application in highly topical fields like electronics, spintronics, molecular sensing and energy storage. Through this molecular approach, we will address major challenges in different areas of the 2D research: i) in 2D physics, we investigate the new properties that should appear in heterostructures involving 2D superconductors and 2D magnets or magnetic molecules; ii) in 2D electronics, we explore the possibility of tuning the superconducting/magnetic properties of a 2D material by applying an external stimulus (light for example), or to design smart electronic/spintronic devices able to respond to physical (light, magnetic field, etc.) or chemical stimuli (trapping of molecules); iii) in 2D composite materials, a general goal is to design hybrid molecular/2D materials with improved properties with respect to the pure 2D material to be used in the fabrication of energy storage devices. To reach these challenging goals an integrative and multidisciplinary approach is proposed in which various facets of chemistry – coordination, solid-state and supramolecular chemistry – are coupled with physics, materials science and nanotechnology.
Max ERC Funding
2 499 950 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym NANOGRAPH@LSI
Project Nanostructuring graphene and graphitic substrates for controlled and reproducible functionalization
Researcher (PI) Steven De Feyter
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Country Belgium
Call Details Advanced Grant (AdG), PE4, ERC-2013-ADG
Summary "Graphene is a new class of promising material with exceptional properties and thus warrants a plethora of potential applications in various domains of science and technology. However, due to intrinsic zero bandgap and inherently low solubility, a prerequisite for the use of graphene in several applications is its controlled and reproducible functionalization in a nanostructured fashion. Being a ‘surface-only’ nanomaterial, its properties are extremely sensitive not only to chemical modification but also to noncovalent interactions with simple organic molecules. A systematic knowledge base for targeted functionalization of graphene still eludes the scientific community. The present experimental protocols suffer from important shortcomings. Firstly, graphene functionalization occurs randomly in solution based methods and there is scarcity of methods that can exert precise control over how and where the reactions/interactions occur. Secondly, due to random functionalization, producing reproducible samples of structurally uniform graphene and graphitic materials remains a major challenge. Lastly, a molecular level understanding of the functionalization process is still lacking which precludes systematic strategies for manipulation of graphene and graphitic materials.
NANOGRAPH@LSI aims to develop systematic experimental protocols for controlled and reproducible (covalent, non-covalent as well as the combination of both) functionalization of graphene and graphitic materials in a nanostructured fashion at the liquid-solid interface (LSI), along with the implementation of new nanoscale characterisation tools, targeting a broad range of applications in the fields of electronics, i.e. graphene bandgap engineering, sensing, and separation. Supramolecular self-assembly of organic building blocks at the liquid-solid interface will be employed as a basic strategy. In view of the above mentioned applications, also upscaling protocols will be developed and implemented."
Summary
"Graphene is a new class of promising material with exceptional properties and thus warrants a plethora of potential applications in various domains of science and technology. However, due to intrinsic zero bandgap and inherently low solubility, a prerequisite for the use of graphene in several applications is its controlled and reproducible functionalization in a nanostructured fashion. Being a ‘surface-only’ nanomaterial, its properties are extremely sensitive not only to chemical modification but also to noncovalent interactions with simple organic molecules. A systematic knowledge base for targeted functionalization of graphene still eludes the scientific community. The present experimental protocols suffer from important shortcomings. Firstly, graphene functionalization occurs randomly in solution based methods and there is scarcity of methods that can exert precise control over how and where the reactions/interactions occur. Secondly, due to random functionalization, producing reproducible samples of structurally uniform graphene and graphitic materials remains a major challenge. Lastly, a molecular level understanding of the functionalization process is still lacking which precludes systematic strategies for manipulation of graphene and graphitic materials.
NANOGRAPH@LSI aims to develop systematic experimental protocols for controlled and reproducible (covalent, non-covalent as well as the combination of both) functionalization of graphene and graphitic materials in a nanostructured fashion at the liquid-solid interface (LSI), along with the implementation of new nanoscale characterisation tools, targeting a broad range of applications in the fields of electronics, i.e. graphene bandgap engineering, sensing, and separation. Supramolecular self-assembly of organic building blocks at the liquid-solid interface will be employed as a basic strategy. In view of the above mentioned applications, also upscaling protocols will be developed and implemented."
Max ERC Funding
2 495 740 €
Duration
Start date: 2013-11-01, End date: 2018-10-31
Project acronym NEXT
Project Towards the NEXT generation of bb0nu experimets
Researcher (PI) Juan Jose Gomez Cadenas
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Country Spain
Call Details Advanced Grant (AdG), PE2, ERC-2013-ADG
Summary Neutrinoless double beta decay is a hypothetical, very slow radioactive process whose observation would establish unambiguously that massive neutrinos are Majorana particles --- that is to say, identical to their antiparticles ---, which implies that a new physics scale beyond the Standard Model must exist. Furthermore, it would prove that total lepton number is not a conserved quantity, suggesting that this new physics could also be the origin of the observed asymmetry between matter and antimatter in the Universe.
In recent years, many innovative ideas have been put forward to improve the sensitivity of \bbonu\ experiments. In general, these propositions have sought to increase the number of experimental signatures available to reject backgrounds while attempting to use isotopes and detector techniques which can be more easily scaled to large masses.
The objective of this project is to realize the NEXT experiment, an innovativedetector based on a high-pressure xenon gas (HPXe) TPC that will run at the Laboratorio Subterr\'aneo de Canfranc (LSC), in Spain.
Our primary goal is to complete the construction and commissioning of a 150 kg HPXe TPC (NEXT-100) by 2014, and start a physics run in 2015 that can improve the present bound set by the EXO experiment and perhaps discover the Majorana nature of neutrinos. In addition, we will carry out an R\&D program focused in demonstrating the scalability of the technology to the ton scale.
Summary
Neutrinoless double beta decay is a hypothetical, very slow radioactive process whose observation would establish unambiguously that massive neutrinos are Majorana particles --- that is to say, identical to their antiparticles ---, which implies that a new physics scale beyond the Standard Model must exist. Furthermore, it would prove that total lepton number is not a conserved quantity, suggesting that this new physics could also be the origin of the observed asymmetry between matter and antimatter in the Universe.
In recent years, many innovative ideas have been put forward to improve the sensitivity of \bbonu\ experiments. In general, these propositions have sought to increase the number of experimental signatures available to reject backgrounds while attempting to use isotopes and detector techniques which can be more easily scaled to large masses.
The objective of this project is to realize the NEXT experiment, an innovativedetector based on a high-pressure xenon gas (HPXe) TPC that will run at the Laboratorio Subterr\'aneo de Canfranc (LSC), in Spain.
Our primary goal is to complete the construction and commissioning of a 150 kg HPXe TPC (NEXT-100) by 2014, and start a physics run in 2015 that can improve the present bound set by the EXO experiment and perhaps discover the Majorana nature of neutrinos. In addition, we will carry out an R\&D program focused in demonstrating the scalability of the technology to the ton scale.
Max ERC Funding
2 791 771 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym NONFLU
Project Non-local dynamics in incompressible fluids
Researcher (PI) Diego CORDOBA GAZOLAZ
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Country Spain
Call Details Advanced Grant (AdG), PE1, ERC-2017-ADG
Summary The goal of this project is to pursue new methods in the mathematical analysis of non-local and non-linear
partial differential equations. For this purpose we present several physical scenarios of interest in the context
of incompressible fluids, from a mathematical point of view as well as for its applications: both from the
standpoint of global well-posedness, existence and uniqueness of weak solutions and as candidates for blowup.
The equations we consider are the incompressible Euler equations, incompressible porous media equation
and the generalized Quasi-geostrophic equation. This research will lead to a deeper understanding of the nature
of the set of initial data that develops finite time singularities as well as those solutions that exist for all time for incompressible flows.
Summary
The goal of this project is to pursue new methods in the mathematical analysis of non-local and non-linear
partial differential equations. For this purpose we present several physical scenarios of interest in the context
of incompressible fluids, from a mathematical point of view as well as for its applications: both from the
standpoint of global well-posedness, existence and uniqueness of weak solutions and as candidates for blowup.
The equations we consider are the incompressible Euler equations, incompressible porous media equation
and the generalized Quasi-geostrophic equation. This research will lead to a deeper understanding of the nature
of the set of initial data that develops finite time singularities as well as those solutions that exist for all time for incompressible flows.
Max ERC Funding
1 779 369 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym OCIAN
Project Ownership, competition, innovation, and antitrust
Researcher (PI) Francesc Xavier Vives Torrents
Host Institution (HI) UNIVERSIDAD DE NAVARRA
Country Spain
Call Details Advanced Grant (AdG), SH1, ERC-2017-ADG
Summary The project intends to study the effect of the ownership structure of firms on competition in product markets, innovation, and aggregate outcomes, and derive welfare and policy implications. The rise of institutional investment, with the profound changes occurred in the asset management industry in the last decades, has implied important variations in the ownership structure of firms. Among them, there has been a formidable increase in common ownership of firms in the same industry, which has raised antitrust concerns, mostly in the US but also in the EU. At the same time, a lack of dynamism in terms of entry and exit, investment and innovation, linked to potential secular stagnation of advanced economies, has been perceived, and blamed on the rise of market power. The proposed research will develop mostly theoretical models to study the effects of changes in the investment industry and firms’ ownership patterns on product markets and the general equilibrium macroeconomic consequences. The proposal consists of five strands. The first three purport to study the effect of changes of the market structure of the investment industry and ownership structure of firms on: i) market power in product markets; ii) investment and innovation incentives in the presence of technological spillovers among firms; and iii) aggregate output, investment, labour supply and income distribution. The fourth strand aims to develop empirical assessments of the developed theory. The final strand of the proposal will derive the antitrust and regulatory implications of the results. Particular attention will be devoted to the impact of changes in the network of control rights and cash flow rights of firms’ owners. The novelty of the approach lies in the integration of the perspectives and tools of industrial organization, corporate finance, and network theory to provide a global view of the relationship between ownership structure, competition and innovation.
Summary
The project intends to study the effect of the ownership structure of firms on competition in product markets, innovation, and aggregate outcomes, and derive welfare and policy implications. The rise of institutional investment, with the profound changes occurred in the asset management industry in the last decades, has implied important variations in the ownership structure of firms. Among them, there has been a formidable increase in common ownership of firms in the same industry, which has raised antitrust concerns, mostly in the US but also in the EU. At the same time, a lack of dynamism in terms of entry and exit, investment and innovation, linked to potential secular stagnation of advanced economies, has been perceived, and blamed on the rise of market power. The proposed research will develop mostly theoretical models to study the effects of changes in the investment industry and firms’ ownership patterns on product markets and the general equilibrium macroeconomic consequences. The proposal consists of five strands. The first three purport to study the effect of changes of the market structure of the investment industry and ownership structure of firms on: i) market power in product markets; ii) investment and innovation incentives in the presence of technological spillovers among firms; and iii) aggregate output, investment, labour supply and income distribution. The fourth strand aims to develop empirical assessments of the developed theory. The final strand of the proposal will derive the antitrust and regulatory implications of the results. Particular attention will be devoted to the impact of changes in the network of control rights and cash flow rights of firms’ owners. The novelty of the approach lies in the integration of the perspectives and tools of industrial organization, corporate finance, and network theory to provide a global view of the relationship between ownership structure, competition and innovation.
Max ERC Funding
1 071 947 €
Duration
Start date: 2018-07-01, End date: 2023-06-30
Project acronym OCONTSOLAR
Project Optimal Control of Thermal Solar Energy Systems
Researcher (PI) Eduardo Francisco de Asis FERNANDEZ CAMACHO
Host Institution (HI) UNIVERSIDAD DE SEVILLA
Country Spain
Call Details Advanced Grant (AdG), PE7, ERC-2017-ADG
Summary OCONTSOLAR aims to develop new control methods to use mobile sensors mounted on drones and unmanned ground vehicles (UGV) as an integral part of the control systems. Sensors mounted on vehicles have been used for surveillance and for gathering information, however these mobile sensors have not been used so far as an integral part of control systems.
Solar power plants will be used as a case study, with the aim of optimizing their operation using spatial irradiance estimations and predictions. Many results will be applicable to other systems such as traffic control in highways and cities, energy management in buildings, micro-grids, agriculture (irrigation and plague control) and flood control. The main objectives and challenges are:
1. Methods to control mobile sensor fleets and integrate them as an essential part of the overall control systems.
2. Spatially distributed solar irradiance estimation methods using a variable fleet of sensors mounted on drones and UGVs.
3. New model predictive control (MPC) algorithms that use mobile solar sensor estimations and predictions to yield safer and more efficient operation of the plants allowing the effective integration of solar energy in systems delivering energy to grids or other systems while satisfying production commitments.
OCONTSOLAR includes proofs of concepts by implementation on the Solar Platform of Almeria and on a solar air conditioning plant installed at the host institution.
Summary
OCONTSOLAR aims to develop new control methods to use mobile sensors mounted on drones and unmanned ground vehicles (UGV) as an integral part of the control systems. Sensors mounted on vehicles have been used for surveillance and for gathering information, however these mobile sensors have not been used so far as an integral part of control systems.
Solar power plants will be used as a case study, with the aim of optimizing their operation using spatial irradiance estimations and predictions. Many results will be applicable to other systems such as traffic control in highways and cities, energy management in buildings, micro-grids, agriculture (irrigation and plague control) and flood control. The main objectives and challenges are:
1. Methods to control mobile sensor fleets and integrate them as an essential part of the overall control systems.
2. Spatially distributed solar irradiance estimation methods using a variable fleet of sensors mounted on drones and UGVs.
3. New model predictive control (MPC) algorithms that use mobile solar sensor estimations and predictions to yield safer and more efficient operation of the plants allowing the effective integration of solar energy in systems delivering energy to grids or other systems while satisfying production commitments.
OCONTSOLAR includes proofs of concepts by implementation on the Solar Platform of Almeria and on a solar air conditioning plant installed at the host institution.
Max ERC Funding
2 500 000 €
Duration
Start date: 2018-09-01, End date: 2024-02-29
Project acronym OIO
Project Organizational Industrial Organization
Researcher (PI) Patrick, Alberic Legros
Host Institution (HI) UNIVERSITE LIBRE DE BRUXELLES
Country Belgium
Call Details Advanced Grant (AdG), SH1, ERC-2013-ADG
Summary "Industrial organization has been influential in shaping our understanding of how firms behave in markets, and also Most of the industrial organization literature is based on the premise that firms are represented by a single decision maker, who is driven by a motive of profit maximization and cost minimization. This assumption is nowadays becoming a constraint on IO theory, preventing it from being able to explain certain observed empirical regularities. For instance, it has been well documented that seemingly identical firms often exhibit differing performance or productivity. Under the existing paradigm, this should not occur, since identical firms should choose the same cost-minimizing technology.
The goal of this proposal is to develop a new IO theory based on a richer view of the firm, one in which non-trivial conflicts of interest among shareholders, workers, managers and consumers will shape firm boundaries. This ""Organizational Industrial Organization'' (OIO) will generate rich new insights for the positive and normative analysis of industries, whether or not firms in these industries have market power. In particular, it will be able to account for heterogeneity in organizations among identical firms, will provide simple explanations for real world examples that would be difficult to understand in the traditional IO setting, but also bring fresh and novel analysis to traditional IO questions like the scale and scope of firms, the dynamics of merger activity, and also to less traditional questions like the roles of the managerial market, finance or corporate governance for industry performance.
This proposal details three work packages that the team will develop in priority in this project:
- Finance, governance, the managerial market and firm boundaries.
- The dynamics of firm boundaries and delegation.
- Market power, scale and scope"
Summary
"Industrial organization has been influential in shaping our understanding of how firms behave in markets, and also Most of the industrial organization literature is based on the premise that firms are represented by a single decision maker, who is driven by a motive of profit maximization and cost minimization. This assumption is nowadays becoming a constraint on IO theory, preventing it from being able to explain certain observed empirical regularities. For instance, it has been well documented that seemingly identical firms often exhibit differing performance or productivity. Under the existing paradigm, this should not occur, since identical firms should choose the same cost-minimizing technology.
The goal of this proposal is to develop a new IO theory based on a richer view of the firm, one in which non-trivial conflicts of interest among shareholders, workers, managers and consumers will shape firm boundaries. This ""Organizational Industrial Organization'' (OIO) will generate rich new insights for the positive and normative analysis of industries, whether or not firms in these industries have market power. In particular, it will be able to account for heterogeneity in organizations among identical firms, will provide simple explanations for real world examples that would be difficult to understand in the traditional IO setting, but also bring fresh and novel analysis to traditional IO questions like the scale and scope of firms, the dynamics of merger activity, and also to less traditional questions like the roles of the managerial market, finance or corporate governance for industry performance.
This proposal details three work packages that the team will develop in priority in this project:
- Finance, governance, the managerial market and firm boundaries.
- The dynamics of firm boundaries and delegation.
- Market power, scale and scope"
Max ERC Funding
1 382 264 €
Duration
Start date: 2015-01-01, End date: 2019-12-31
Project acronym OSYRIS
Project Open SYstems RevISited: From Brownian motion to quantum simulators
Researcher (PI) Maciej Lewenstein
Host Institution (HI) FUNDACIO INSTITUT DE CIENCIES FOTONIQUES
Country Spain
Call Details Advanced Grant (AdG), PE2, ERC-2013-ADG
Summary "This proposal concerns open systems, i.e. systems interacting with the environment, and their fundamental role in natural sciences. The main objectives are: i) to develop theory of Brownian motion for molecules in biological environments; ii) to adapt classical many-body open systems such as kinetic or/and diffusion-aggregation models to the quantum domain; iii) to develop theory of open systems as quantum simulators; finally iv) to develop theory of quantum Brownian motion in inhomogeneous media. Although all these objectives may seem to be quite unrelated, our main goal will be to connect them in order to unambiguously asses the relevance of open systems in specific areas of physics, biology and beyond. Accordingly, objective i) will be explored in close collaboration with experimentalists in which the diffusion of biomolecules on cell membranes requires a description in terms of Brownian motion in correlated disordered potentials. In ii) we will search for many-body kinetic and growth models that provide the configurations that may serve as samples of random potentials desired in i). These models can be regarded as quantum models with non-Hermitian generators of evolution; in some situations they can be generalized to genuine quantum ones, described by a quantum master equation, linking ii) and iii). In iii) we will look for applications of quantum open systems as quantum simulators of condensed matter/high energy physics. We will also look at single particle interactions with quantum many body environment, linking the objectives iii) with iv) and i). Expected results are: a) understanding the relationship between biological function and the spatiotemporal dynamics of single molecules in living cells; b) understanding of the structure of classical many body stochastic models and their relation to quantum ones; c) concrete proposals for open systems quantum simulators; and d) development of tools to characterize and observe quantum Brownian motion."
Summary
"This proposal concerns open systems, i.e. systems interacting with the environment, and their fundamental role in natural sciences. The main objectives are: i) to develop theory of Brownian motion for molecules in biological environments; ii) to adapt classical many-body open systems such as kinetic or/and diffusion-aggregation models to the quantum domain; iii) to develop theory of open systems as quantum simulators; finally iv) to develop theory of quantum Brownian motion in inhomogeneous media. Although all these objectives may seem to be quite unrelated, our main goal will be to connect them in order to unambiguously asses the relevance of open systems in specific areas of physics, biology and beyond. Accordingly, objective i) will be explored in close collaboration with experimentalists in which the diffusion of biomolecules on cell membranes requires a description in terms of Brownian motion in correlated disordered potentials. In ii) we will search for many-body kinetic and growth models that provide the configurations that may serve as samples of random potentials desired in i). These models can be regarded as quantum models with non-Hermitian generators of evolution; in some situations they can be generalized to genuine quantum ones, described by a quantum master equation, linking ii) and iii). In iii) we will look for applications of quantum open systems as quantum simulators of condensed matter/high energy physics. We will also look at single particle interactions with quantum many body environment, linking the objectives iii) with iv) and i). Expected results are: a) understanding the relationship between biological function and the spatiotemporal dynamics of single molecules in living cells; b) understanding of the structure of classical many body stochastic models and their relation to quantum ones; c) concrete proposals for open systems quantum simulators; and d) development of tools to characterize and observe quantum Brownian motion."
Max ERC Funding
1 787 565 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym PREDIMED PLUS
Project Long-term effects of an energy-restricted Mediterranean diet on mortality and cardiovascular disease: the PREDIMED PLUS Study
Researcher (PI) Miguel angel MartInez Gonzalez
Host Institution (HI) UNIVERSIDAD DE NAVARRA
Country Spain
Call Details Advanced Grant (AdG), LS7, ERC-2013-ADG
Summary The impact of weight loss on cardiovascular disease risk within the frame of the Mediterranean dietary pattern has not yet been tested using a sufficiently large randomized trial (Malik, Hu, 2007). We propose to run a parallel group, multi-center, randomized, primary prevention trial (PREDIMED PLUS) on men aged 55-75 years and women 65-75 years, with a body mass index ≥27 to <40 kg/m2 and meeting at least 3 criteria for the metabolic syndrome. The objective of the present research is to address the cardiovascular effect of an intensive weight-loss lifestyle intervention based on an energy-restricted traditional Mediterranean diet in comparison with a less intensive program using Mediterranean diet, but with no energy restriction, behavioural intervention or physical activity programme. The end-point is a composite of major hard clinical cardiovascular events. We hypothesize that an intensive weight-loss lifestyle intervention, including physical activity, based on the traditional Mediterranean food pattern is a sustainable long-term approach for weight reduction among overweight/obese adults and that the achieved lifestyle changes will exert beneficial effects on cardiovascular disease incidence, according to our experience (Estruch R et al., 2012) and research by other investigators (Shai et al., 2008). The rationale for the proposed investigation is that it can provide a new, affordable, and sustainable approach to reduce excess cardiovascular morbidity and mortality among overweight/obese adults, beyond what was already observed in the PREDIMED I trial.
Summary
The impact of weight loss on cardiovascular disease risk within the frame of the Mediterranean dietary pattern has not yet been tested using a sufficiently large randomized trial (Malik, Hu, 2007). We propose to run a parallel group, multi-center, randomized, primary prevention trial (PREDIMED PLUS) on men aged 55-75 years and women 65-75 years, with a body mass index ≥27 to <40 kg/m2 and meeting at least 3 criteria for the metabolic syndrome. The objective of the present research is to address the cardiovascular effect of an intensive weight-loss lifestyle intervention based on an energy-restricted traditional Mediterranean diet in comparison with a less intensive program using Mediterranean diet, but with no energy restriction, behavioural intervention or physical activity programme. The end-point is a composite of major hard clinical cardiovascular events. We hypothesize that an intensive weight-loss lifestyle intervention, including physical activity, based on the traditional Mediterranean food pattern is a sustainable long-term approach for weight reduction among overweight/obese adults and that the achieved lifestyle changes will exert beneficial effects on cardiovascular disease incidence, according to our experience (Estruch R et al., 2012) and research by other investigators (Shai et al., 2008). The rationale for the proposed investigation is that it can provide a new, affordable, and sustainable approach to reduce excess cardiovascular morbidity and mortality among overweight/obese adults, beyond what was already observed in the PREDIMED I trial.
Max ERC Funding
2 078 970 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym PROMETHEUS
Project Pattern formation and mineral self-organization in highly alkaline natural environments
Researcher (PI) Juan Manuel Garcia Ruiz
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Country Spain
Call Details Advanced Grant (AdG), PE10, ERC-2013-ADG
Summary The precipitation of alkaline-earth carbonates in silica-rich alkaline solutions yields nanocrystalline aggregates that develop non-crystallographic morphologies. These purely inorganic hierarchical materials, discovered by the IP of this project, form under geochemically plausible conditions and closely resemble typical biologically induced mineral textures and shapes, thus the name ‘biomorphs’. The existence of silica biomorphs has questioned the use morphology as an unambiguous criterion for detection of primitive life remnants. Beyond applications, the study of silica biomorphs has revealed a totally new morphogenetic mechanism capable of creating crystalline materials with positive or negative constant curvature and biomineral-like textures which lead to the design of new pathways towards concerted morphogenesis and bottom-up self-assembly created by a self-triggered chemical coupling mechanism. The potential interest of these fascinating structures in Earth Sciences has never been explored mostly because of their complexity and multidisciplinary nature. PROMETHEUS proposes an in depth investigation of the nature of mineral structures such as silica biomorphs and chemical gardens, and the role of mineral self-organization in extreme alkaline geological environments. The results will impact current understanding of the early geological and biological history of Earth by pushing forward the unexplored field of inorganic biomimetic pattern formation. PROMETHEUS will provide this discipline with much needed theoretical and experimental foundations for its quantitative application to Earth Sciences. The ambitious research program in PROMETHEUS will require the development of high-end methods and instruments for the non-intrusive in-situ characterization of geochemically important variables, including pH mapping with microscopic resolution, time resolved imaging of concentration gradients, microscopic fluid dynamics, and characterization of ultraslow growth rates.
Summary
The precipitation of alkaline-earth carbonates in silica-rich alkaline solutions yields nanocrystalline aggregates that develop non-crystallographic morphologies. These purely inorganic hierarchical materials, discovered by the IP of this project, form under geochemically plausible conditions and closely resemble typical biologically induced mineral textures and shapes, thus the name ‘biomorphs’. The existence of silica biomorphs has questioned the use morphology as an unambiguous criterion for detection of primitive life remnants. Beyond applications, the study of silica biomorphs has revealed a totally new morphogenetic mechanism capable of creating crystalline materials with positive or negative constant curvature and biomineral-like textures which lead to the design of new pathways towards concerted morphogenesis and bottom-up self-assembly created by a self-triggered chemical coupling mechanism. The potential interest of these fascinating structures in Earth Sciences has never been explored mostly because of their complexity and multidisciplinary nature. PROMETHEUS proposes an in depth investigation of the nature of mineral structures such as silica biomorphs and chemical gardens, and the role of mineral self-organization in extreme alkaline geological environments. The results will impact current understanding of the early geological and biological history of Earth by pushing forward the unexplored field of inorganic biomimetic pattern formation. PROMETHEUS will provide this discipline with much needed theoretical and experimental foundations for its quantitative application to Earth Sciences. The ambitious research program in PROMETHEUS will require the development of high-end methods and instruments for the non-intrusive in-situ characterization of geochemically important variables, including pH mapping with microscopic resolution, time resolved imaging of concentration gradients, microscopic fluid dynamics, and characterization of ultraslow growth rates.
Max ERC Funding
2 431 771 €
Duration
Start date: 2014-08-01, End date: 2019-07-31
Project acronym RADICAL
Project The Radical Plasticity Thesis: How we learn to be conscious
Researcher (PI) Axel Noeel F. Cleeremans
Host Institution (HI) UNIVERSITE LIBRE DE BRUXELLES
Country Belgium
Call Details Advanced Grant (AdG), SH4, ERC-2013-ADG
Summary RADICAL explores the idea that consciousness is something that the brain learns to do rather than a static property of certain neural states vs. others. Here, considering that consciousness is extended both in space and in time, I adopt a resolutely dynamical perspective that mandates an experimental approach focused on change, at different time scales. I suggest that consciousness arises as a result of the brain's continuous attempts at predicting not only the consequences of its actions on the world and on other agents, but also the consequences of activity in one cerebral region on activity in other regions. By this account, the brain continuously and unconsciously learns to redescribe its own activity to itself, so developing systems of metarepresentations that characterise and qualify the target first order representations. Such learned redescriptions form the basis of conscious experience. Learning and plasticity are thus constitutive of consciousness. This is what I call the “Radical Plasticity Thesis”. In a sense, this is the enactive perspective, but turned both inwards and (further) outwards. Consciousness involves “signal detection on the mind”; the conscious mind is the brain's (non-conceptual, implicit) theory about itself. Theoretically, RADICAL offers the possibility of unifying Global Workspace Theory with higher-order Thought Theory by showing how the former can be built through mechanisms that flesh out the latter. Empirically, RADICAL aims at testing these ideas in three domains: (1) the perception action loop, (2) the self-other loop, and (3) the inner loop. 20 experiments leveraging behavioural experimentation, brain imaging, and computational modeling are proposed to test and further develop RADICAL. The overarching goal of the project is to characterize the computational principles that differentiate conscious from unconscious cognition, based on a bold, original, and innovative theory in which learning and plasticity play central roles.
Summary
RADICAL explores the idea that consciousness is something that the brain learns to do rather than a static property of certain neural states vs. others. Here, considering that consciousness is extended both in space and in time, I adopt a resolutely dynamical perspective that mandates an experimental approach focused on change, at different time scales. I suggest that consciousness arises as a result of the brain's continuous attempts at predicting not only the consequences of its actions on the world and on other agents, but also the consequences of activity in one cerebral region on activity in other regions. By this account, the brain continuously and unconsciously learns to redescribe its own activity to itself, so developing systems of metarepresentations that characterise and qualify the target first order representations. Such learned redescriptions form the basis of conscious experience. Learning and plasticity are thus constitutive of consciousness. This is what I call the “Radical Plasticity Thesis”. In a sense, this is the enactive perspective, but turned both inwards and (further) outwards. Consciousness involves “signal detection on the mind”; the conscious mind is the brain's (non-conceptual, implicit) theory about itself. Theoretically, RADICAL offers the possibility of unifying Global Workspace Theory with higher-order Thought Theory by showing how the former can be built through mechanisms that flesh out the latter. Empirically, RADICAL aims at testing these ideas in three domains: (1) the perception action loop, (2) the self-other loop, and (3) the inner loop. 20 experiments leveraging behavioural experimentation, brain imaging, and computational modeling are proposed to test and further develop RADICAL. The overarching goal of the project is to characterize the computational principles that differentiate conscious from unconscious cognition, based on a bold, original, and innovative theory in which learning and plasticity play central roles.
Max ERC Funding
2 286 316 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym RECGLYCANMR
Project Breaking the limits in glycan recognition by NMR
Researcher (PI) Jesus JIMeNEZ-BARBERO
Host Institution (HI) ASOCIACION CENTRO DE INVESTIGACION COOPERATIVA EN BIOCIENCIAS
Country Spain
Call Details Advanced Grant (AdG), PE5, ERC-2017-ADG
Summary Carbohydrates (glycans, sugars) play key roles in virtually all biological events. Given their chemical complexity, understanding their roles in nature requires a multidisciplinary approach. Research in the field is growing, since advances in the area could be part of the solution to many health issues. However, we lack full knowledge on the role of most glycan-mediated events especially at the resolution required from a chemical perspective to manipulate them and create new probes and eventually drugs. Understanding sugar recognition remains a major challenge in science. Although X-ray diffraction has been employed to study sugar/protein complexes, a recent report has highlighted that most sugar conformers deposited in the Protein Data Bank are incorrect. Flexible glycans are handled poorly in X-ray: errors reflect incorrect refinement of sugars, with huge implications when interpreted in the biocontext.I propose to address glycan recognition by using a multidisciplinary approach, combining synthesis, molecular biology and biophysics, with a prominent role for NMR. In RECGLYCANMR I will develop new NMR protocols to decipher key glycan recognition aspects beyond current knowledge: the role of presentation and dynamics and understanding the mechanisms behind the exquisite receptor and ligand selectivity. Importantly, till now, sugar recognition NMR studies have been exclusively limited to in vitro. RECGLYCANMR will break the limits of NMR, studying the interactions in-cell, a crowded ambient where viscosity is doubled respect to water. I am in a unique position to approach this project due to my wide expertise in NMR and the network of collaborators I have established for years, enabling me to access a large variety of synthetic sugars. Discovering the molecular bases of in-cell interactions will provide groundbreaking information on sugar chemical biology and will open unexplored avenues for approaching sugar-associated diseases, as inflammation and viral infections
Summary
Carbohydrates (glycans, sugars) play key roles in virtually all biological events. Given their chemical complexity, understanding their roles in nature requires a multidisciplinary approach. Research in the field is growing, since advances in the area could be part of the solution to many health issues. However, we lack full knowledge on the role of most glycan-mediated events especially at the resolution required from a chemical perspective to manipulate them and create new probes and eventually drugs. Understanding sugar recognition remains a major challenge in science. Although X-ray diffraction has been employed to study sugar/protein complexes, a recent report has highlighted that most sugar conformers deposited in the Protein Data Bank are incorrect. Flexible glycans are handled poorly in X-ray: errors reflect incorrect refinement of sugars, with huge implications when interpreted in the biocontext.I propose to address glycan recognition by using a multidisciplinary approach, combining synthesis, molecular biology and biophysics, with a prominent role for NMR. In RECGLYCANMR I will develop new NMR protocols to decipher key glycan recognition aspects beyond current knowledge: the role of presentation and dynamics and understanding the mechanisms behind the exquisite receptor and ligand selectivity. Importantly, till now, sugar recognition NMR studies have been exclusively limited to in vitro. RECGLYCANMR will break the limits of NMR, studying the interactions in-cell, a crowded ambient where viscosity is doubled respect to water. I am in a unique position to approach this project due to my wide expertise in NMR and the network of collaborators I have established for years, enabling me to access a large variety of synthetic sugars. Discovering the molecular bases of in-cell interactions will provide groundbreaking information on sugar chemical biology and will open unexplored avenues for approaching sugar-associated diseases, as inflammation and viral infections
Max ERC Funding
2 499 980 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym RISK AND DIVERSITY
Project Labor Market Risk and Skill Diversity: Implications for Efficiency, Policy, and Estimation
Researcher (PI) Jan Eeckhout
Host Institution (HI) UNIVERSIDAD POMPEU FABRA
Country Spain
Call Details Advanced Grant (AdG), SH1, ERC-2013-ADG
Summary Labor market risk and skill diversity are central features of the labor market. Arguably, employment risk is one of the biggest sources of uncertainty most individuals face in their life time. Likewise, exploiting the synergies and complementarities between differentially skilled workers is amongst the greatest challenges to firms' hiring decisions. The objective is to analyze the efficiency properties and as a consequence evaluate the role for policy. In order to establish the implications of the mechanisms that govern risk and diversity, I elaborate on concrete applications and discuss estimation in different labor market settings.
In the presence of Labor Market Risk I address the question how asset holdings exacerbate wage inequality. Workers are exposed to the risk of unemployment, and workers with few assets will trade off the lower riskiness of a job against lower wages. Different asset holdings translate into different wages, thus amplifying inequality due to assets with wage inequality. The proposed analysis of unemployment risk can solve for an equilibrium model that incorporates the distribution of assets, while at the same time allowing for heterogeneity in skills. There is no doubt that fully understanding the asset-skill tradeoff is of primary importance for labor market policy. I then study a different angle of labor market risk, namely risk that is due to matching stochastic types, which introduces ex post mismatch. Ex ante, agents match based on the distribution of possible realizations of ex post types. This model is conducive to identification of complementarities between workers and the value of risk sharing.
Skill Diversity, or the allocation of differentially skilled workers across firms of different productivity, is a central feature of the labor market. The aim of this research is to embed the optimal worker composition within firms into standard macro environments to study technological change, information aggregation and spatial diversity.
Summary
Labor market risk and skill diversity are central features of the labor market. Arguably, employment risk is one of the biggest sources of uncertainty most individuals face in their life time. Likewise, exploiting the synergies and complementarities between differentially skilled workers is amongst the greatest challenges to firms' hiring decisions. The objective is to analyze the efficiency properties and as a consequence evaluate the role for policy. In order to establish the implications of the mechanisms that govern risk and diversity, I elaborate on concrete applications and discuss estimation in different labor market settings.
In the presence of Labor Market Risk I address the question how asset holdings exacerbate wage inequality. Workers are exposed to the risk of unemployment, and workers with few assets will trade off the lower riskiness of a job against lower wages. Different asset holdings translate into different wages, thus amplifying inequality due to assets with wage inequality. The proposed analysis of unemployment risk can solve for an equilibrium model that incorporates the distribution of assets, while at the same time allowing for heterogeneity in skills. There is no doubt that fully understanding the asset-skill tradeoff is of primary importance for labor market policy. I then study a different angle of labor market risk, namely risk that is due to matching stochastic types, which introduces ex post mismatch. Ex ante, agents match based on the distribution of possible realizations of ex post types. This model is conducive to identification of complementarities between workers and the value of risk sharing.
Skill Diversity, or the allocation of differentially skilled workers across firms of different productivity, is a central feature of the labor market. The aim of this research is to embed the optimal worker composition within firms into standard macro environments to study technological change, information aggregation and spatial diversity.
Max ERC Funding
2 116 971 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym ROBOTGENSKILL
Project Generalizing human-demonstrated robot skills
Researcher (PI) Joris DE SCHUTTER
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Country Belgium
Call Details Advanced Grant (AdG), PE7, ERC-2017-ADG
Summary Future robots are expected to perform a multitude of complex tasks with high variability, in close collaboration or even physical contact with humans, and in industrial as well as in non-industrial settings. Both human-robot interaction and task variability are major challenges. A lot of progress is needed so that: (1) robots recognize the intention of the human and react with human-like motions; (2) robot end-users, such as operators on the factory floor or people at home, are able to deploy robots for new tasks or new situations in an intuitive way, for example by just demonstrating the task to the robot.
The fundamental challenge addressed in this proposal is: how can a robot generalize a skill that has been demonstrated in a particular situation and apply it to new situations? This project focuses on skills involving rigid objects manipulated by a robot or a human and follows a model-based approach consisting of: (1) conversion of the demonstrated data to an innovative invariant representation of motion and interaction forces; (2) generalization of this representation to a new situation by solving an optimal control problem in which similarity with the invariant representation is maintained while complying with the constraints imposed by the new context. Additional knowledge about the task can be added in the constraints.
Major breakthroughs are that the required number of demonstrations and hence the training effort decrease drastically, similarity with the demonstration is maintained in view of preserving the human-like nature, and task knowledge is easily included.
The methodology is applied to program robot skills involving motion in free space (e.g. human-robot hand over tasks) as well as advanced manipulation skills involving contact (e.g. assembly, cleaning), aiming at impact in industrial and non-industrial settings.
Application of the invariant motion representation in the neighbouring field of biomechanics will further leverage impact.
Summary
Future robots are expected to perform a multitude of complex tasks with high variability, in close collaboration or even physical contact with humans, and in industrial as well as in non-industrial settings. Both human-robot interaction and task variability are major challenges. A lot of progress is needed so that: (1) robots recognize the intention of the human and react with human-like motions; (2) robot end-users, such as operators on the factory floor or people at home, are able to deploy robots for new tasks or new situations in an intuitive way, for example by just demonstrating the task to the robot.
The fundamental challenge addressed in this proposal is: how can a robot generalize a skill that has been demonstrated in a particular situation and apply it to new situations? This project focuses on skills involving rigid objects manipulated by a robot or a human and follows a model-based approach consisting of: (1) conversion of the demonstrated data to an innovative invariant representation of motion and interaction forces; (2) generalization of this representation to a new situation by solving an optimal control problem in which similarity with the invariant representation is maintained while complying with the constraints imposed by the new context. Additional knowledge about the task can be added in the constraints.
Major breakthroughs are that the required number of demonstrations and hence the training effort decrease drastically, similarity with the demonstration is maintained in view of preserving the human-like nature, and task knowledge is easily included.
The methodology is applied to program robot skills involving motion in free space (e.g. human-robot hand over tasks) as well as advanced manipulation skills involving contact (e.g. assembly, cleaning), aiming at impact in industrial and non-industrial settings.
Application of the invariant motion representation in the neighbouring field of biomechanics will further leverage impact.
Max ERC Funding
2 494 971 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym See-ACC
Project Cracking the Anterior Cingulate Code: Toward a Unified Theory of ACC Function
Researcher (PI) Clay HOLROYD
Host Institution (HI) UNIVERSITEIT GENT
Country Belgium
Call Details Advanced Grant (AdG), SH4, ERC-2017-ADG
Summary Anterior cingulate cortex is one of the largest riddles in cognitive neuroscience and presents a major challenge to mental health research. ACC dysfunction contributes to a wide spectrum of psychiatric and neurological disorders but no one knows what it actually does. Although more than a thousand papers are published about it each year, attempts to identify its function have been confounded by the fact that a multiplicity of tasks and events activate ACC, as if it were involved in everything.
Recently, I proposed a theory that reconciles many of the complexities surrounding ACC. This holds that ACC selects and motivates high-level, temporally extended behaviors according to principles of hierarchical reinforcement learning. For example, on this view ACC would be responsible for initiating and sustaining a run up a steep mountain. I have instantiated this theory in two computational models that make explicit the theory's assumptions, while yielding testable predictions. In this project I will integrate the two computational models into a unified, biologically-realistic model of ACC function, which will be evaluated using mathematical techniques from non-linear dynamical systems analysis. I will then systematically test the unified model in a series of experiments involving functional magnetic resonance imaging, electroencephalography and psychopharmacology, in both healthy human subjects and patients.
The establishment of a complete, formal account of ACC will fill an important gap in the cognitive neuroscience of cognitive control and decision making, strongly impact clinical practice, and be important for artificial intelligence and robotics research, which draws inspiration from brain-based mechanisms for cognitive control. The computational modelling work will also link high level, abstract processes associated with hierarchical reinforcement learning with low level cellular mechanisms, enabling the theory to be tested in animal models.
Summary
Anterior cingulate cortex is one of the largest riddles in cognitive neuroscience and presents a major challenge to mental health research. ACC dysfunction contributes to a wide spectrum of psychiatric and neurological disorders but no one knows what it actually does. Although more than a thousand papers are published about it each year, attempts to identify its function have been confounded by the fact that a multiplicity of tasks and events activate ACC, as if it were involved in everything.
Recently, I proposed a theory that reconciles many of the complexities surrounding ACC. This holds that ACC selects and motivates high-level, temporally extended behaviors according to principles of hierarchical reinforcement learning. For example, on this view ACC would be responsible for initiating and sustaining a run up a steep mountain. I have instantiated this theory in two computational models that make explicit the theory's assumptions, while yielding testable predictions. In this project I will integrate the two computational models into a unified, biologically-realistic model of ACC function, which will be evaluated using mathematical techniques from non-linear dynamical systems analysis. I will then systematically test the unified model in a series of experiments involving functional magnetic resonance imaging, electroencephalography and psychopharmacology, in both healthy human subjects and patients.
The establishment of a complete, formal account of ACC will fill an important gap in the cognitive neuroscience of cognitive control and decision making, strongly impact clinical practice, and be important for artificial intelligence and robotics research, which draws inspiration from brain-based mechanisms for cognitive control. The computational modelling work will also link high level, abstract processes associated with hierarchical reinforcement learning with low level cellular mechanisms, enabling the theory to be tested in animal models.
Max ERC Funding
2 380 000 €
Duration
Start date: 2019-07-01, End date: 2024-06-30
Project acronym SEECAT
Project Seeing through cataracts with advanced photonics
Researcher (PI) Pablo Luis Artal Soriano
Host Institution (HI) UNIVERSIDAD DE MURCIA
Country Spain
Call Details Advanced Grant (AdG), LS7, ERC-2013-ADG
Summary "Cataract is the opacification of the crystalline lens of the human eye. It is usually related with age and is one of the leading causes of blindness. The increase in light scatter in the lens reduces the contrast in the retinal images severely degrading vision. The current solution is to perform surgery to remove the natural lens that is substituted by an artificial intraocular lens. This is a successful procedure restoring good quality of vision in most patients. However, in many situations it would be incredible advantageous to actually “see” through a cataractous eye. The optics of the eye is affected by two factors: aberrations and scatter. In the last decade, correcting optical aberrations in the eye was accomplished by using adaptive optics techniques. This permitted to obtain high resolution images of the retina and also to improve vision. However, the possibility of correcting scatter in the eye was never considered before. We propose here the use of spatial and temporal advanced photonics techniques for imaging through the turbid media of the cataractous lens. We envision two direct applications of this technology: a dedicated fundus camera to register images of the retina in patients affected by cataracts and a novel type of opto-electronics spectacles restoring some vision in cataract patients. The fundus camera would offer clinicians the unique opportunity to determine if there is any retinal pathology underneath the cataractous eye. The scatter-correcting goggles would be useful in those cases where surgery were not possible for any reason or as a temporarily relieve until the surgery is performed. The same type of technology could be applied in the case of normal eyes with lower levels of scatter but desiring to achieve a better than normal vision for some specific tasks. This proposal presents a completely new and disruptive idea, which if successful would render immediate and significant benefits to patients worldwide."
Summary
"Cataract is the opacification of the crystalline lens of the human eye. It is usually related with age and is one of the leading causes of blindness. The increase in light scatter in the lens reduces the contrast in the retinal images severely degrading vision. The current solution is to perform surgery to remove the natural lens that is substituted by an artificial intraocular lens. This is a successful procedure restoring good quality of vision in most patients. However, in many situations it would be incredible advantageous to actually “see” through a cataractous eye. The optics of the eye is affected by two factors: aberrations and scatter. In the last decade, correcting optical aberrations in the eye was accomplished by using adaptive optics techniques. This permitted to obtain high resolution images of the retina and also to improve vision. However, the possibility of correcting scatter in the eye was never considered before. We propose here the use of spatial and temporal advanced photonics techniques for imaging through the turbid media of the cataractous lens. We envision two direct applications of this technology: a dedicated fundus camera to register images of the retina in patients affected by cataracts and a novel type of opto-electronics spectacles restoring some vision in cataract patients. The fundus camera would offer clinicians the unique opportunity to determine if there is any retinal pathology underneath the cataractous eye. The scatter-correcting goggles would be useful in those cases where surgery were not possible for any reason or as a temporarily relieve until the surgery is performed. The same type of technology could be applied in the case of normal eyes with lower levels of scatter but desiring to achieve a better than normal vision for some specific tasks. This proposal presents a completely new and disruptive idea, which if successful would render immediate and significant benefits to patients worldwide."
Max ERC Funding
2 374 910 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym TRANSFORMER
Project Structural transformations and phase transitions in real-time
Researcher (PI) Jens Alexander Egon BIEGERT
Host Institution (HI) FUNDACIO INSTITUT DE CIENCIES FOTONIQUES
Country Spain
Call Details Advanced Grant (AdG), PE4, ERC-2017-ADG
Summary Chemical and material sciences are key drivers of our modern economy with transformative impact at all levels of society. In particular, the ability to synthesize and to tailor substances and materials with specific function is all-pervading into modern society. Vital is a firm understanding of structural transformations of molecules and phase transitions of solids as they are omnipresent, e.g. as formation and breakage of molecular bonds, proton motion and isomerization, and as collective phenomena in phase transitions. Gaining insight into the ultrafast correlated dynamics is highly challenging and requires revolutionary methodologies and innovative approaches to capture the dynamics from its onset.
TRANSFORMER will provide unprecedented insight into the real-time electronic and nuclear dynamics of molecular transformations and phase transitions with advanced new methodologies and a multi-faceted approach to the investigation. The project exploits our pioneering achievements in attosecond soft X-ray spectroscopy (XAFS) and laser-induced electron diffraction (LIED) to pinpoint in real-time which electronic states participate at which nuclear configuration. The proposal consists of three objectives:
O1: We will establish the methodical boundaries of LIED for space-time imaging of isolated molecules.
O2: We will extract simultaneous and real-time electronic and nuclear information, thus gain insight into the underlying many-body quantum correlations.
O3: We will use our methodology to realize resolving both, molecular isomerization and a solid’s metal-to-insulator phase transition, in its electronic and nuclear degrees of freedom and in real time.
If successful, TRANSFORMER would undoubtedly provide an unprecedented view into electronic and nuclear dynamics, thereby reaching far beyond the state of the art with clear potential to surpass current limits in molecular and material sciences.
Summary
Chemical and material sciences are key drivers of our modern economy with transformative impact at all levels of society. In particular, the ability to synthesize and to tailor substances and materials with specific function is all-pervading into modern society. Vital is a firm understanding of structural transformations of molecules and phase transitions of solids as they are omnipresent, e.g. as formation and breakage of molecular bonds, proton motion and isomerization, and as collective phenomena in phase transitions. Gaining insight into the ultrafast correlated dynamics is highly challenging and requires revolutionary methodologies and innovative approaches to capture the dynamics from its onset.
TRANSFORMER will provide unprecedented insight into the real-time electronic and nuclear dynamics of molecular transformations and phase transitions with advanced new methodologies and a multi-faceted approach to the investigation. The project exploits our pioneering achievements in attosecond soft X-ray spectroscopy (XAFS) and laser-induced electron diffraction (LIED) to pinpoint in real-time which electronic states participate at which nuclear configuration. The proposal consists of three objectives:
O1: We will establish the methodical boundaries of LIED for space-time imaging of isolated molecules.
O2: We will extract simultaneous and real-time electronic and nuclear information, thus gain insight into the underlying many-body quantum correlations.
O3: We will use our methodology to realize resolving both, molecular isomerization and a solid’s metal-to-insulator phase transition, in its electronic and nuclear degrees of freedom and in real time.
If successful, TRANSFORMER would undoubtedly provide an unprecedented view into electronic and nuclear dynamics, thereby reaching far beyond the state of the art with clear potential to surpass current limits in molecular and material sciences.
Max ERC Funding
2 471 749 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym µTHALYS
Project Micro-Technologies and Heterogeneous Advanced Platforms for Implantable Medical Systems
Researcher (PI) Robert M.O. Puers
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Country Belgium
Call Details Advanced Grant (AdG), PE8, ERC-2013-ADG
Summary The μTHALYS project aims to create a technology platform that enables a next revolution by bringing microsystem technology to the next level in terms of integration, miniaturization and multifunctionality and applying this development to address pending needs in health care.
Several breakthrough materials, basic concepts and fabrication techniques will be developed based on silicon or going far beyond silicon: At the wafer scale integration level, integration of advanced polymers (optics, conductive polymers, ionic polymer-metal composites) will be studied. These will be applied in several novel subminiature actuator and sensor devices with broad application potential, amongst which microfluidic systems, pressure sensing arrays,
In order to come to complex 3D systems combining modalities as optics, microfluidics, actuators and electronics, advanced device level fabrication and hybrid assembly technologies will be studied as well. Furthermore, the methods for packaging implants (flex/stretch interconnect technology, advanced interposers,…) will be pushed far beyond the current state of the art. The adoption of soft, and even
bioresorbable materials for packaging and interconnects will spectacularly improve the human-implant interface.
Another important research line pursued is the study of ultra-low power electronics for medical implants: sensor interfacing, A/D conversion, signal processing, data communication and power transfer.
These fundamental research activities will lead to many applied projects and valorization activities during and long afterwards the end of this grant. In the project itself, two main medical applications are targeted directly: a urinary pacemaker to prevent incontinence, and a new generation of implantable electrodes for neurology.
Summary
The μTHALYS project aims to create a technology platform that enables a next revolution by bringing microsystem technology to the next level in terms of integration, miniaturization and multifunctionality and applying this development to address pending needs in health care.
Several breakthrough materials, basic concepts and fabrication techniques will be developed based on silicon or going far beyond silicon: At the wafer scale integration level, integration of advanced polymers (optics, conductive polymers, ionic polymer-metal composites) will be studied. These will be applied in several novel subminiature actuator and sensor devices with broad application potential, amongst which microfluidic systems, pressure sensing arrays,
In order to come to complex 3D systems combining modalities as optics, microfluidics, actuators and electronics, advanced device level fabrication and hybrid assembly technologies will be studied as well. Furthermore, the methods for packaging implants (flex/stretch interconnect technology, advanced interposers,…) will be pushed far beyond the current state of the art. The adoption of soft, and even
bioresorbable materials for packaging and interconnects will spectacularly improve the human-implant interface.
Another important research line pursued is the study of ultra-low power electronics for medical implants: sensor interfacing, A/D conversion, signal processing, data communication and power transfer.
These fundamental research activities will lead to many applied projects and valorization activities during and long afterwards the end of this grant. In the project itself, two main medical applications are targeted directly: a urinary pacemaker to prevent incontinence, and a new generation of implantable electrodes for neurology.
Max ERC Funding
2 452 885 €
Duration
Start date: 2014-03-01, End date: 2019-02-28