Project acronym COSMASS
Project Constraining Stellar Mass and Supermassive Black Hole Growth through Cosmic Times: Paving the way for the next generation sky surveys
Researcher (PI) Vernesa Smolcic
Host Institution (HI) FACULTY OF SCIENCE UNIVERSITY OF ZAGREB
Call Details Starting Grant (StG), PE9, ERC-2013-StG
Summary Understanding how galaxies form in the early universe and how they evolve through cosmic time is a major goal of modern astrophysics. Panchromatic look-back sky surveys significantly advanced the field in the past decade, and we are now entering a 'golden age' of radio astronomy given an order of magnitude improved facilities like JVLA, ATCA and ALMA. I am leading two unique, state-of-the-art (JVLA/ATCA) radio surveys that will push to the next frontiers. The proposed ERC project will focus on the growth of stellar and black-hole mass in galaxies across cosmic time by: 1-probing various types of extremely faint radio sources over cosmic time, revealing the debated abundance of faint radio sources, 2-exploring star formation conditions at early cosmic times, allowing to access for the first time the dust-unbiased cosmic star formation history since the epoch of reionization, 3-performing the first census of high-redshift starbursting galaxies (SMGs), and their role in galaxy formation and evolution, and 4-performing a full census of galaxies hosting supermassive black holes (AGN), with different black-hole accretion modes, and their roles in galaxy evolution.
The exploitation of these radio sky surveys is essential for the preparation and success of the future large facilities like ASKAP, and SKA as they will 1-provide best predictions of the to-date uncertain cosmic radio background seen with the SKA, and 2-optimize photometric redshift estimates, essential for the success of the first ASKAP sky survey (EMU, >2016).
My radio surveys, expected to yield >100 refereed publications, carry an immense legacy value. The proposed ERC funding is essential for the success of these timely surveys, which I will conduct from Croatia. The ERC grant will allow me to lead my own research group working on this novel data, and to even more firmly establish myself as a leading survey scientist, and lead my group to internationally competitive levels, and enhance EU competitiveness.
Summary
Understanding how galaxies form in the early universe and how they evolve through cosmic time is a major goal of modern astrophysics. Panchromatic look-back sky surveys significantly advanced the field in the past decade, and we are now entering a 'golden age' of radio astronomy given an order of magnitude improved facilities like JVLA, ATCA and ALMA. I am leading two unique, state-of-the-art (JVLA/ATCA) radio surveys that will push to the next frontiers. The proposed ERC project will focus on the growth of stellar and black-hole mass in galaxies across cosmic time by: 1-probing various types of extremely faint radio sources over cosmic time, revealing the debated abundance of faint radio sources, 2-exploring star formation conditions at early cosmic times, allowing to access for the first time the dust-unbiased cosmic star formation history since the epoch of reionization, 3-performing the first census of high-redshift starbursting galaxies (SMGs), and their role in galaxy formation and evolution, and 4-performing a full census of galaxies hosting supermassive black holes (AGN), with different black-hole accretion modes, and their roles in galaxy evolution.
The exploitation of these radio sky surveys is essential for the preparation and success of the future large facilities like ASKAP, and SKA as they will 1-provide best predictions of the to-date uncertain cosmic radio background seen with the SKA, and 2-optimize photometric redshift estimates, essential for the success of the first ASKAP sky survey (EMU, >2016).
My radio surveys, expected to yield >100 refereed publications, carry an immense legacy value. The proposed ERC funding is essential for the success of these timely surveys, which I will conduct from Croatia. The ERC grant will allow me to lead my own research group working on this novel data, and to even more firmly establish myself as a leading survey scientist, and lead my group to internationally competitive levels, and enhance EU competitiveness.
Max ERC Funding
1 500 000 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym COSMOLOCALISM
Project Design Global, Manufacture Local: Assessing the Practices, Innovation, and Sustainability Potential of an Emerging Mode of Production
Researcher (PI) Vasileios KOSTAKIS
Host Institution (HI) TALLINNA TEHNIKAULIKOOL
Call Details Starting Grant (StG), SH2, ERC-2018-STG
Summary COSMOLOCALISM will document, analyse, test, evaluate, and create awareness about an emerging mode of production, based on the confluence of the digital commons (e.g. open knowledge and design) with local manufacturing and automation technologies (from 3D printing and CNC machines to low-tech tools and crafts). This convergence could catalyse the transition to new inclusive and circular productive models, such as the “design global, manufacture local” (DGML) model.
DGML describes the processes through which design is developed as a global digital commons, whereas the manufacturing takes place locally, through shared infrastructures and with local biophysical conditions in mind. DGML seems to form economies of scope that promote sustainability and open innovation while celebrating new ways of cooperation. However, such claims rest on thin conceptual and empirical foundations.
COSMOLOCALISM is a multiphase, pilot-driven investigation of the DGML phenomenon that seeks to understand relevant organisational models, their evolution, and their broader political economy/ecology and policy implications. Through the lens of diverse case studies and participatory action research, the conditions under which the DGML model thrives will be explored.
COSMOLOCALISM has three concurrent streams: practices; innovation; and sustainability. First, DGML practices will be studied, patterns will be recognised and their form, function, cultural values, and governance structure will be determined. Second, the relevant open innovation ecosystems and their potential to reorient design and manufacturing practices will be examined. Third, selected DGML products will be evaluated from an environmental sustainability perspective, involving both qualitative and quantitative methods. The interdisciplinary nature of COSMOLOCALISM will explore new horizons to substantively improve our understanding of how we could do “more” and “better” with less.
Summary
COSMOLOCALISM will document, analyse, test, evaluate, and create awareness about an emerging mode of production, based on the confluence of the digital commons (e.g. open knowledge and design) with local manufacturing and automation technologies (from 3D printing and CNC machines to low-tech tools and crafts). This convergence could catalyse the transition to new inclusive and circular productive models, such as the “design global, manufacture local” (DGML) model.
DGML describes the processes through which design is developed as a global digital commons, whereas the manufacturing takes place locally, through shared infrastructures and with local biophysical conditions in mind. DGML seems to form economies of scope that promote sustainability and open innovation while celebrating new ways of cooperation. However, such claims rest on thin conceptual and empirical foundations.
COSMOLOCALISM is a multiphase, pilot-driven investigation of the DGML phenomenon that seeks to understand relevant organisational models, their evolution, and their broader political economy/ecology and policy implications. Through the lens of diverse case studies and participatory action research, the conditions under which the DGML model thrives will be explored.
COSMOLOCALISM has three concurrent streams: practices; innovation; and sustainability. First, DGML practices will be studied, patterns will be recognised and their form, function, cultural values, and governance structure will be determined. Second, the relevant open innovation ecosystems and their potential to reorient design and manufacturing practices will be examined. Third, selected DGML products will be evaluated from an environmental sustainability perspective, involving both qualitative and quantitative methods. The interdisciplinary nature of COSMOLOCALISM will explore new horizons to substantively improve our understanding of how we could do “more” and “better” with less.
Max ERC Funding
1 017 275 €
Duration
Start date: 2019-01-01, End date: 2022-12-31
Project acronym INTLAWRUSSIA
Project International Law and Non-liberal States: The Doctrine and Application of International Law in the Russian Federation
Researcher (PI) Lauri Mälksoo
Host Institution (HI) TARTU ULIKOOL
Call Details Starting Grant (StG), SH2, ERC-2009-StG
Summary The central research question of our project is: what impact does the increasingly non-liberal orientation of the government of the Russian Federation have on the Russian doctrine and practice of international law? As the West and Russia hope to further build their relationship on international law, is it still the same international law that they are talking about? We aim to provide systematic empirical evidence on the use and conceptualization of international law in the Russian Federation. But we intend to go further than that. The project has also a wider theoretical ambition since we intend to analyze the situation in Russia as an example of something beyond Russia itself, namely from the viewpoint of the question of how non-liberal States understand and practice international law. Whether non-liberal States 'behave worse' in respect to international law than liberal States is one of the most important debates in the post-Cold War international legal theory. To combine these two questions - Russia and how non-liberal States relate to international law - promises ground-breaking new insights. Our method includes, beside obvious classical tools of international legal research, using IR theories of constructivism and liberalism. Moreover, we will conduct interviews with Russian judges, politicians and legal academicians in order to get a more nuanced and realistic view on the conceptualization and use of international law in Russia. Besides the PI, the research team includes two post-doc scholars at the Faculty of Law of Tartu University. Three doctoral student positions are also foreseen in the project.
Summary
The central research question of our project is: what impact does the increasingly non-liberal orientation of the government of the Russian Federation have on the Russian doctrine and practice of international law? As the West and Russia hope to further build their relationship on international law, is it still the same international law that they are talking about? We aim to provide systematic empirical evidence on the use and conceptualization of international law in the Russian Federation. But we intend to go further than that. The project has also a wider theoretical ambition since we intend to analyze the situation in Russia as an example of something beyond Russia itself, namely from the viewpoint of the question of how non-liberal States understand and practice international law. Whether non-liberal States 'behave worse' in respect to international law than liberal States is one of the most important debates in the post-Cold War international legal theory. To combine these two questions - Russia and how non-liberal States relate to international law - promises ground-breaking new insights. Our method includes, beside obvious classical tools of international legal research, using IR theories of constructivism and liberalism. Moreover, we will conduct interviews with Russian judges, politicians and legal academicians in order to get a more nuanced and realistic view on the conceptualization and use of international law in Russia. Besides the PI, the research team includes two post-doc scholars at the Faculty of Law of Tartu University. Three doctoral student positions are also foreseen in the project.
Max ERC Funding
500 000 €
Duration
Start date: 2009-09-01, End date: 2014-08-31
Project acronym Sip-Vol+
Project Stress-Induced Plant Volatiles in Biosphere-Atmosphere System
Researcher (PI) Ülo Niinemets
Host Institution (HI) EESTI MAAULIKOOL
Call Details Advanced Grant (AdG), LS8, ERC-2012-ADG_20120314
Summary Vegetation forms a key interface between Earth surface and atmosphere. The important role of vegetation carbon, water and energy exchanges is well established, but the overall impact of plant trace gas (VOC) emission for large-scale Earth processes is poorly understood. Although it is widely accepted that VOCs play major roles in the formation of ozone, secondary organic aerosols (SOA) and cloud condensation nuclei (CNN) with potentially profound impacts on air quality and Earth radiative balance, the research has so far focused only on constitutive emissions from species considered “emitters”. However, differently from constitutive VOCs emitted only by certain species, all plant species can be triggered to emit induced VOCs under abiotic and biotic stress. So far, induced high-reactivity VOCs are not considered in global VOC budget, and thus, this proposal tests the key assumption that VOC emissions worldwide have been vastly underestimated. As global change is resulting in higher level of stress in Earth ecosystems, the relevance of induced emissions is further expected to gain in importance. The current project has the overall objective to evaluate the effect of plant-generated VOC emissions on air composition and environment under global change, with particular emphasis on the role of VOCs induced in response to environmental stress. The study first quantifies the VOC production vs. stress severity relationships across species with differing stress tolerance and advances and parameterizes the qualitative induced VOC model developed by PI. The novel quantitative model is further verified by flux measurements and scaled up to regional and global scales to assess the contribution of induced emissions to overall VOC budget, and study the feedbacks between stress, ozone, SOA and CNN formation and the Earth climate using an hierarchy of available models. This highly cross-disciplinary project is expected to result in key contributions in two research fields of major significance: plant stress tolerance from molecules to globe and the role of vegetation component in atmospheric reactivity and Earth climate. The first part of the study provides fundamental insight into the stress responsiveness of plants with differing tolerance to environmental limitations, extending “leaf economics spectrum”, a hotspot of current plant ecology research. The second part provides quantitative information on large-scale importance of plant VOCs in globally changing climates with major relevance for understanding the role of plants in the Earth’s large scale processes.
Summary
Vegetation forms a key interface between Earth surface and atmosphere. The important role of vegetation carbon, water and energy exchanges is well established, but the overall impact of plant trace gas (VOC) emission for large-scale Earth processes is poorly understood. Although it is widely accepted that VOCs play major roles in the formation of ozone, secondary organic aerosols (SOA) and cloud condensation nuclei (CNN) with potentially profound impacts on air quality and Earth radiative balance, the research has so far focused only on constitutive emissions from species considered “emitters”. However, differently from constitutive VOCs emitted only by certain species, all plant species can be triggered to emit induced VOCs under abiotic and biotic stress. So far, induced high-reactivity VOCs are not considered in global VOC budget, and thus, this proposal tests the key assumption that VOC emissions worldwide have been vastly underestimated. As global change is resulting in higher level of stress in Earth ecosystems, the relevance of induced emissions is further expected to gain in importance. The current project has the overall objective to evaluate the effect of plant-generated VOC emissions on air composition and environment under global change, with particular emphasis on the role of VOCs induced in response to environmental stress. The study first quantifies the VOC production vs. stress severity relationships across species with differing stress tolerance and advances and parameterizes the qualitative induced VOC model developed by PI. The novel quantitative model is further verified by flux measurements and scaled up to regional and global scales to assess the contribution of induced emissions to overall VOC budget, and study the feedbacks between stress, ozone, SOA and CNN formation and the Earth climate using an hierarchy of available models. This highly cross-disciplinary project is expected to result in key contributions in two research fields of major significance: plant stress tolerance from molecules to globe and the role of vegetation component in atmospheric reactivity and Earth climate. The first part of the study provides fundamental insight into the stress responsiveness of plants with differing tolerance to environmental limitations, extending “leaf economics spectrum”, a hotspot of current plant ecology research. The second part provides quantitative information on large-scale importance of plant VOCs in globally changing climates with major relevance for understanding the role of plants in the Earth’s large scale processes.
Max ERC Funding
2 259 366 €
Duration
Start date: 2013-05-01, End date: 2018-04-30