Project acronym ANGIOFAT
Project New mechanisms of angiogenesis modulators in switching between white and brown adipose tissues
Researcher (PI) Yihai Cao
Host Institution (HI) KAROLINSKA INSTITUTET
Country Sweden
Call Details Advanced Grant (AdG), LS4, ERC-2009-AdG
Summary Understanding the molecular mechanisms underlying adipose blood vessel growth or regression opens new fundamentally insight into novel therapeutic options for the treatment of obesity and its related metabolic diseases such as type 2 diabetes and cancer. Unlike any other tissues in the body, the adipose tissue constantly experiences expansion and shrinkage throughout the adult life. Adipocytes in the white adipose tissue have the ability to switch into metabolically highly active brown-like adipocytes. Brown adipose tissue (BAT) contains significantly higher numbers of microvessels than white adipose tissue (WAT) in order to adopt the high rates of metabolism. Thus, an angiogenic phenotype has to be switched on during the transition from WAT into BAT. We have found that acclimation of mice in cold could induce transition from inguinal and epidedymal WAT into BAT by upregulation of angiogenic factor expression and down-regulations of angiogenesis inhibitors (Xue et al, Cell Metabolism, 2009). The transition from WAT into BAT is dependent on vascular endothelial growth factor (VEGF) that primarily targets on vascular endothelial cells via a tissue hypoxia-independent mechanism. VEGF blockade significantly alters adipose tissue metabolism. In another genetic model, we show similar findings that angiogenesis is crucial to mediate the transition from WAT into BAT (Xue et al, PNAS, 2008). Here we propose that the vascular tone determines the metabolic switch between WAT and BAT. Characterization of these novel angiogenic pathways may reveal new mechanisms underlying development of obesity- and metabolism-related disease complications and may define novel therapeutic targets. Thus, the benefit of this research proposal is enormous and is aimed to treat the most common and highly risk human health conditions in the modern time.
Summary
Understanding the molecular mechanisms underlying adipose blood vessel growth or regression opens new fundamentally insight into novel therapeutic options for the treatment of obesity and its related metabolic diseases such as type 2 diabetes and cancer. Unlike any other tissues in the body, the adipose tissue constantly experiences expansion and shrinkage throughout the adult life. Adipocytes in the white adipose tissue have the ability to switch into metabolically highly active brown-like adipocytes. Brown adipose tissue (BAT) contains significantly higher numbers of microvessels than white adipose tissue (WAT) in order to adopt the high rates of metabolism. Thus, an angiogenic phenotype has to be switched on during the transition from WAT into BAT. We have found that acclimation of mice in cold could induce transition from inguinal and epidedymal WAT into BAT by upregulation of angiogenic factor expression and down-regulations of angiogenesis inhibitors (Xue et al, Cell Metabolism, 2009). The transition from WAT into BAT is dependent on vascular endothelial growth factor (VEGF) that primarily targets on vascular endothelial cells via a tissue hypoxia-independent mechanism. VEGF blockade significantly alters adipose tissue metabolism. In another genetic model, we show similar findings that angiogenesis is crucial to mediate the transition from WAT into BAT (Xue et al, PNAS, 2008). Here we propose that the vascular tone determines the metabolic switch between WAT and BAT. Characterization of these novel angiogenic pathways may reveal new mechanisms underlying development of obesity- and metabolism-related disease complications and may define novel therapeutic targets. Thus, the benefit of this research proposal is enormous and is aimed to treat the most common and highly risk human health conditions in the modern time.
Max ERC Funding
2 411 547 €
Duration
Start date: 2010-03-01, End date: 2015-02-28
Project acronym BARRAGE
Project Cell compartmentalization, individuation and diversity
Researcher (PI) Yves Barral
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Country Switzerland
Call Details Advanced Grant (AdG), LS3, ERC-2009-AdG
Summary Asymmetric cell division is a key mechanism for the generation of cell diversity in eukaryotes. During this process, a polarized mother cell divides into non-equivalent daughters. These may differentially inherit fate determinants, irreparable damages or age determinants. Our aim is to decipher the mechanisms governing the individualization of daughters from each other. In the past ten years, our studies identified several lateral diffusion barriers located in the plasma membrane and the endoplasmic reticulum of budding yeast. These barriers all restrict molecular exchanges between the mother cell and its bud, and thereby compartmentalize the cell already long before its division. They play key roles in the asymmetric segregation of various factors. On one side, they help maintain polarized factors into the bud. Thereby, they reinforce cell polarity and sequester daughter-specific fate determinants into the bud. On the other side they prevent aging factors of the mother from entering the bud. Hence, they play key roles in the rejuvenation of the bud, in the aging of the mother, and in the differentiation of mother and daughter from each other. Recently, we accumulated evidence that some of these barriers are subject to regulation, such as to help modulate the longevity of the mother cell in response to environmental signals. Our data also suggest that barriers help the mother cell keep traces of its life history, thereby contributing to its individuation and adaption to the environment. In this project, we will address the following questions: 1 How are these barriers assembled, functioning, and regulated? 2 What type of differentiation processes are they involved in? 3 Are they conserved in other eukaryotes, and what are their functions outside of budding yeast? These studies will shed light into the principles underlying and linking aging, rejuvenation and differentiation.
Summary
Asymmetric cell division is a key mechanism for the generation of cell diversity in eukaryotes. During this process, a polarized mother cell divides into non-equivalent daughters. These may differentially inherit fate determinants, irreparable damages or age determinants. Our aim is to decipher the mechanisms governing the individualization of daughters from each other. In the past ten years, our studies identified several lateral diffusion barriers located in the plasma membrane and the endoplasmic reticulum of budding yeast. These barriers all restrict molecular exchanges between the mother cell and its bud, and thereby compartmentalize the cell already long before its division. They play key roles in the asymmetric segregation of various factors. On one side, they help maintain polarized factors into the bud. Thereby, they reinforce cell polarity and sequester daughter-specific fate determinants into the bud. On the other side they prevent aging factors of the mother from entering the bud. Hence, they play key roles in the rejuvenation of the bud, in the aging of the mother, and in the differentiation of mother and daughter from each other. Recently, we accumulated evidence that some of these barriers are subject to regulation, such as to help modulate the longevity of the mother cell in response to environmental signals. Our data also suggest that barriers help the mother cell keep traces of its life history, thereby contributing to its individuation and adaption to the environment. In this project, we will address the following questions: 1 How are these barriers assembled, functioning, and regulated? 2 What type of differentiation processes are they involved in? 3 Are they conserved in other eukaryotes, and what are their functions outside of budding yeast? These studies will shed light into the principles underlying and linking aging, rejuvenation and differentiation.
Max ERC Funding
2 200 000 €
Duration
Start date: 2010-05-01, End date: 2015-04-30
Project acronym CORALWARM
Project Corals and global warming: The Mediterranean versus the Red Sea
Researcher (PI) Zvy Dubinsky
Host Institution (HI) BAR ILAN UNIVERSITY
Country Israel
Call Details Advanced Grant (AdG), LS8, ERC-2009-AdG
Summary CoralWarm will generate for the first time projections of temperate and subtropical coral survival by integrating sublethal temperature increase effects on metabolic and skeletal processes in Mediterranean and Red Sea key species. CoralWarm unique approach is from the nano- to the macro-scale, correlating molecular events to environmental processes. This will show new pathways to future investigations on cellular mechanisms linking environmental factors to final phenotype, potentially improving prediction powers and paleoclimatological interpretation. Biological and chemical expertise will merge, producing new interdisciplinary approaches for ecophysiology and biomineralization. Field transplantations will be combined with controlled experiments under IPCC scenarios. Corals will be grown in aquaria, exposing the Mediterranean species native to cooler waters to higher temperatures, and the Red Sea ones to gradually increasing above ambient warming seawater. Virtually all state-of-the-art methods will be used, by uniquely combining the investigators expertise. Expected results include responses of algal symbionts photosynthesis, host, symbiont and holobiont respiration, biomineralization rates and patterns, including colony architecture, and reproduction to temperature and pH gradients and combinations. Integration of molecular aspects of potential replacement of symbiont clades, changes in skeletal crystallography, with biochemical and physiological aspects of temperature response, will lead to a novel mechanistic model predicting changes in coral ecology and survival prospect. High-temperature tolerant clades and species will be revealed, allowing future bioremediation actions and establishment of coral refuges, saving corals and coral reefs for future generations.
Summary
CoralWarm will generate for the first time projections of temperate and subtropical coral survival by integrating sublethal temperature increase effects on metabolic and skeletal processes in Mediterranean and Red Sea key species. CoralWarm unique approach is from the nano- to the macro-scale, correlating molecular events to environmental processes. This will show new pathways to future investigations on cellular mechanisms linking environmental factors to final phenotype, potentially improving prediction powers and paleoclimatological interpretation. Biological and chemical expertise will merge, producing new interdisciplinary approaches for ecophysiology and biomineralization. Field transplantations will be combined with controlled experiments under IPCC scenarios. Corals will be grown in aquaria, exposing the Mediterranean species native to cooler waters to higher temperatures, and the Red Sea ones to gradually increasing above ambient warming seawater. Virtually all state-of-the-art methods will be used, by uniquely combining the investigators expertise. Expected results include responses of algal symbionts photosynthesis, host, symbiont and holobiont respiration, biomineralization rates and patterns, including colony architecture, and reproduction to temperature and pH gradients and combinations. Integration of molecular aspects of potential replacement of symbiont clades, changes in skeletal crystallography, with biochemical and physiological aspects of temperature response, will lead to a novel mechanistic model predicting changes in coral ecology and survival prospect. High-temperature tolerant clades and species will be revealed, allowing future bioremediation actions and establishment of coral refuges, saving corals and coral reefs for future generations.
Max ERC Funding
3 332 032 €
Duration
Start date: 2010-06-01, End date: 2016-05-31
Project acronym DEPICT
Project Design principles and controllability of protein circuits
Researcher (PI) Uri Alon
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Country Israel
Call Details Advanced Grant (AdG), LS2, ERC-2009-AdG
Summary Cells use circuits of interacting proteins to respond to their environment. In the past decades, molecular biology has provided detailed knowledge on the proteins in these circuits and their interactions. To fully understand circuit function requires, in addition to molecular knowledge, new concepts that explain how multiple components work together to perform systems level functions. Our lab has been a leader in defining such concepts, based on combined experimental and theoretical study of well characterized circuits in bacteria and human cells. In this proposal we aim to find novel principles on how circuits resist fluctuations and errors, and how they can be controlled by drugs: (1) Why do key regulatory systems use bifunctional enzymes that catalyze antagonistic reactions (e.g. both kinase and phosphatase)? We will test the role of bifunctional enzymes in making circuits robust to variations in protein levels. (2) Why are some genes regulated by a repressor and others by an activator? We will test this in the context of reduction of errors in transcription control. (3) Are there principles that describe how drugs combine to affect protein dynamics in human cells? We will use a novel dynamic proteomics approach developed in our lab to explore how protein dynamics can be controlled by drug combinations. This research will define principles that unite our understanding of seemingly distinct biological systems, and explain their particular design in terms of systems-level functions. This understanding will help form the basis for a future medicine that rationally controls the state of the cell based on a detailed blueprint of their circuit design, and quantitative principles for the effects of drugs on this circuitry.
Summary
Cells use circuits of interacting proteins to respond to their environment. In the past decades, molecular biology has provided detailed knowledge on the proteins in these circuits and their interactions. To fully understand circuit function requires, in addition to molecular knowledge, new concepts that explain how multiple components work together to perform systems level functions. Our lab has been a leader in defining such concepts, based on combined experimental and theoretical study of well characterized circuits in bacteria and human cells. In this proposal we aim to find novel principles on how circuits resist fluctuations and errors, and how they can be controlled by drugs: (1) Why do key regulatory systems use bifunctional enzymes that catalyze antagonistic reactions (e.g. both kinase and phosphatase)? We will test the role of bifunctional enzymes in making circuits robust to variations in protein levels. (2) Why are some genes regulated by a repressor and others by an activator? We will test this in the context of reduction of errors in transcription control. (3) Are there principles that describe how drugs combine to affect protein dynamics in human cells? We will use a novel dynamic proteomics approach developed in our lab to explore how protein dynamics can be controlled by drug combinations. This research will define principles that unite our understanding of seemingly distinct biological systems, and explain their particular design in terms of systems-level functions. This understanding will help form the basis for a future medicine that rationally controls the state of the cell based on a detailed blueprint of their circuit design, and quantitative principles for the effects of drugs on this circuitry.
Max ERC Funding
2 261 440 €
Duration
Start date: 2010-03-01, End date: 2015-02-28
Project acronym DHISP
Project Dorsal Horn Interneurons in Sensory Processing
Researcher (PI) Hanns Ulrich Zeilhofer
Host Institution (HI) University of Zurich
Country Switzerland
Call Details Advanced Grant (AdG), LS5, ERC-2009-AdG
Summary Chronic pain syndromes are to a large extent due to maladaptive plastic changes in the CNS. A CNS area particularly relevant for such changes is the spinal dorsal horn, where inputs from nociceptive and non-nociceptive fibers undergo their first synaptic integration. This area harbors a sophisticated network of interneurons, which function as a gate-control unit for incoming sensory signals. Several different types of interneurons can be distinguished based e.g. on their neurotransmitter and neuropeptide content. Despite more than 40 years of research, our knowledge about the integration of these neurons in dorsal horn circuits and their contribution to sensory processing is still very limited. This proposal aims at a comprehensive characterization of the dorsal horn neuronal network under normal conditions and in chronic pain states with a focus on inhibitory interneurons. A genome-wide analysis of the gene expression profile shall be made from defined dorsal horn interneurons genetically tagged with fluorescent markers and isolated by fluorescence activated cell sorting. A functional characterization of the connectivity of these neurons in spinal cord slices and of their role in in vivo sensory processing shall be achieved with optogenetic tools (channelrhodopsin-2), which permit activation of these neurons with light. Finally, behavioral analyses shall be made in mice after diphteria toxin-mediated ablation of defined interneuron types. All three approaches shall be applied to naïve mice and to mice with inflammatory or neuropathic pain. The results from these studies will improve our understanding of the malfunctioning of sensory processing in chronic pain states and will provide the basis for novel approaches to the prevention or reversal of chronic pain states.
Summary
Chronic pain syndromes are to a large extent due to maladaptive plastic changes in the CNS. A CNS area particularly relevant for such changes is the spinal dorsal horn, where inputs from nociceptive and non-nociceptive fibers undergo their first synaptic integration. This area harbors a sophisticated network of interneurons, which function as a gate-control unit for incoming sensory signals. Several different types of interneurons can be distinguished based e.g. on their neurotransmitter and neuropeptide content. Despite more than 40 years of research, our knowledge about the integration of these neurons in dorsal horn circuits and their contribution to sensory processing is still very limited. This proposal aims at a comprehensive characterization of the dorsal horn neuronal network under normal conditions and in chronic pain states with a focus on inhibitory interneurons. A genome-wide analysis of the gene expression profile shall be made from defined dorsal horn interneurons genetically tagged with fluorescent markers and isolated by fluorescence activated cell sorting. A functional characterization of the connectivity of these neurons in spinal cord slices and of their role in in vivo sensory processing shall be achieved with optogenetic tools (channelrhodopsin-2), which permit activation of these neurons with light. Finally, behavioral analyses shall be made in mice after diphteria toxin-mediated ablation of defined interneuron types. All three approaches shall be applied to naïve mice and to mice with inflammatory or neuropathic pain. The results from these studies will improve our understanding of the malfunctioning of sensory processing in chronic pain states and will provide the basis for novel approaches to the prevention or reversal of chronic pain states.
Max ERC Funding
2 467 000 €
Duration
Start date: 2010-05-01, End date: 2016-04-30
Project acronym EUKARYOTIC RIBOSOME
Project Structural studies of the eukaryotic ribosome by X-ray crystallography
Researcher (PI) Nenad Ban
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Country Switzerland
Call Details Advanced Grant (AdG), LS1, ERC-2009-AdG
Summary The ribosome is a large cellular organelle that plays a central role in the process of protein synthesis in all organisms. Currently, structural information at atomic resolution exists only for bacterial ribosomes and some of their functional complexes. Eukaryotic ribosomes are larger and significantly more complex than their bacterial counterparts. They consist of two unequal subunits with a combined molecular weight of approximately 4 million Daltons and contain 70-80 different protein molecules and four different RNAs. Currently the only structural information on eukaryotic ribosomes is available from cryo electron microscopic reconstructions in the nanometer resolution range, which is insufficient to derive information about the function of the eukaryotic ribosome at the atomic level. The aim of this proposal is to use X-ray crystallography to obtain structural and functional information on the eukaryotic ribosome and its functional complexes at high resolution. The key targets of the structural work will be: i) the structure of the small ribosomal subunit, ii) the structure of the large ribosomal subunit, and iii) structures of complexes involved in the initiation of protein synthesis. Besides the obvious fundamental importance of this research for understanding protein synthesis in eukaryotes the proposed studies will also be the prerequisite for understanding the structural basis of the regulation of protein synthesis in normal cells and how it is perturbed in various diseases. Finally, comparing the structures of bacterial and eukaryotic ribosomes is important for understanding the specificity of various clinically used antibiotics for the bacterial ribosome.
Summary
The ribosome is a large cellular organelle that plays a central role in the process of protein synthesis in all organisms. Currently, structural information at atomic resolution exists only for bacterial ribosomes and some of their functional complexes. Eukaryotic ribosomes are larger and significantly more complex than their bacterial counterparts. They consist of two unequal subunits with a combined molecular weight of approximately 4 million Daltons and contain 70-80 different protein molecules and four different RNAs. Currently the only structural information on eukaryotic ribosomes is available from cryo electron microscopic reconstructions in the nanometer resolution range, which is insufficient to derive information about the function of the eukaryotic ribosome at the atomic level. The aim of this proposal is to use X-ray crystallography to obtain structural and functional information on the eukaryotic ribosome and its functional complexes at high resolution. The key targets of the structural work will be: i) the structure of the small ribosomal subunit, ii) the structure of the large ribosomal subunit, and iii) structures of complexes involved in the initiation of protein synthesis. Besides the obvious fundamental importance of this research for understanding protein synthesis in eukaryotes the proposed studies will also be the prerequisite for understanding the structural basis of the regulation of protein synthesis in normal cells and how it is perturbed in various diseases. Finally, comparing the structures of bacterial and eukaryotic ribosomes is important for understanding the specificity of various clinically used antibiotics for the bacterial ribosome.
Max ERC Funding
2 446 725 €
Duration
Start date: 2010-07-01, End date: 2015-06-30
Project acronym HUCNC
Project Conserved Non-Coding Sequences; function, variability and phenotypic consequences
Researcher (PI) Stylianos Antonarakis
Host Institution (HI) UNIVERSITE DE GENEVE
Country Switzerland
Call Details Advanced Grant (AdG), LS2, ERC-2009-AdG
Summary Comparative genomics revealed that ~5% of the human genome is conserved among mammals. This fraction is likely functional, and could harbor pathogenic mutations. We have shown (Nature 2002, Science 2003) that more than half of the constrained fraction of the genome consists of Conserved Non-Coding sequences (CNCs). Model organisms provided evidence for enhancer activity for a fraction of CNCs; in addition another fraction is part of large non-coding RNAs (lincRNA). However, the function of the majority of CNCs is unknown. Importantly, a few pathogenic mutations in CNCs have been associated with genetic disorders. We propose to i) perform functional analysis of CNCs, and ii) identify the spectrum of pathogenic CNC mutations in recognizable human phenotypes. The aims are: 1. Functional genomic connectivity of CNCs 1a. Use 4C in CNCs in various cell types and determine their physical genomic interactions. 1b. Perform targeted disruption of CNCs in cells and assess the functional outcomes. 2. Pathogenic variation of CNCs 2a. Assess the common variation in CNCs: i) common deletion/insertions in 350 samples by aCGH of all human CNCs; ii) common SNP/small indels using DNA selection and High Throughput Sequencing (HTS) of CNCs in 100 samples. 2b. Identify likely pathogenic mutations in developmental syndromes. Search for i) large deletions and duplications of CNCs using aCGH in 1500 samples with malformation syndromes, 1000 from spontaneous abortions, and 500 with X-linked mental retardation; and ii) point mutations in these samples by targeted HTS. The distinction between pathogenic and non-pathogenic variants is difficult, and we propose approaches to meet the challenge. 3. Genetic control (cis and trans eQTLs) of expression variation of CNC lincRNAs, using 200 samples.
Summary
Comparative genomics revealed that ~5% of the human genome is conserved among mammals. This fraction is likely functional, and could harbor pathogenic mutations. We have shown (Nature 2002, Science 2003) that more than half of the constrained fraction of the genome consists of Conserved Non-Coding sequences (CNCs). Model organisms provided evidence for enhancer activity for a fraction of CNCs; in addition another fraction is part of large non-coding RNAs (lincRNA). However, the function of the majority of CNCs is unknown. Importantly, a few pathogenic mutations in CNCs have been associated with genetic disorders. We propose to i) perform functional analysis of CNCs, and ii) identify the spectrum of pathogenic CNC mutations in recognizable human phenotypes. The aims are: 1. Functional genomic connectivity of CNCs 1a. Use 4C in CNCs in various cell types and determine their physical genomic interactions. 1b. Perform targeted disruption of CNCs in cells and assess the functional outcomes. 2. Pathogenic variation of CNCs 2a. Assess the common variation in CNCs: i) common deletion/insertions in 350 samples by aCGH of all human CNCs; ii) common SNP/small indels using DNA selection and High Throughput Sequencing (HTS) of CNCs in 100 samples. 2b. Identify likely pathogenic mutations in developmental syndromes. Search for i) large deletions and duplications of CNCs using aCGH in 1500 samples with malformation syndromes, 1000 from spontaneous abortions, and 500 with X-linked mental retardation; and ii) point mutations in these samples by targeted HTS. The distinction between pathogenic and non-pathogenic variants is difficult, and we propose approaches to meet the challenge. 3. Genetic control (cis and trans eQTLs) of expression variation of CNC lincRNAs, using 200 samples.
Max ERC Funding
2 353 920 €
Duration
Start date: 2010-07-01, End date: 2015-06-30
Project acronym IMMUNEXPLORE
Project New approaches to analyze and exploit the human B and T cell response against viruses
Researcher (PI) Antonio Lanzavecchia
Host Institution (HI) FONDAZIONE PER L ISTITUTO DI RICERCA IN BIOMEDICINA
Country Switzerland
Call Details Advanced Grant (AdG), LS6, ERC-2009-AdG
Summary Immunological memory confers long term protection against pathogens and is the basis of successful vaccination.
Following antigenic stimulation long lived plasma cells and memory B cells are maintained for a lifetime, conferring immediate protection and enhanced responsiveness to the eliciting antigen. However, in the case of variable pathogens such as influenza virus, B cell memory is only partially effective, depending on the extent of similarity between the preceding and the new viruses. The B cell response is dominated by serotype-specific antibodies and heterosubtypic antibodies capable of neutralizing several serotypes appear to be extremely rare.
Understanding the basis of broadly neutralizing antibody responses is a critical aspect for the development of more effective vaccines. In this project we will explore the specificity and dynamics of human antibody responses to influenza virus by using newly developed technological platforms to culture human B cells and plasma cells and to analyze the repertoire of human naïve and memory T cells. High throughput functional screenings, structural analysis and testing in animal models will provide a thorough characterization of the human immune response. The B cell and T cell analysis aims at understanding fundamental aspects of the immune response such as: the selection and diversification of memory B cells; the individual variability of the antibody response, the mechanisms of T-B cooperation and the consequences of the original antigenic sin and of aging on the immune response. This analysis will be complemented by a translational approach whereby broadly neutralizing human monoclonal antibodies will be developed and used: i) for passive vaccination against highly variable viruses; ii) for vaccine design through the identification and production of recombinant antigens to be used as effective vaccines; and iii) for active vaccination in order to facilitate T cell priming and jump start the immune responses.
Summary
Immunological memory confers long term protection against pathogens and is the basis of successful vaccination.
Following antigenic stimulation long lived plasma cells and memory B cells are maintained for a lifetime, conferring immediate protection and enhanced responsiveness to the eliciting antigen. However, in the case of variable pathogens such as influenza virus, B cell memory is only partially effective, depending on the extent of similarity between the preceding and the new viruses. The B cell response is dominated by serotype-specific antibodies and heterosubtypic antibodies capable of neutralizing several serotypes appear to be extremely rare.
Understanding the basis of broadly neutralizing antibody responses is a critical aspect for the development of more effective vaccines. In this project we will explore the specificity and dynamics of human antibody responses to influenza virus by using newly developed technological platforms to culture human B cells and plasma cells and to analyze the repertoire of human naïve and memory T cells. High throughput functional screenings, structural analysis and testing in animal models will provide a thorough characterization of the human immune response. The B cell and T cell analysis aims at understanding fundamental aspects of the immune response such as: the selection and diversification of memory B cells; the individual variability of the antibody response, the mechanisms of T-B cooperation and the consequences of the original antigenic sin and of aging on the immune response. This analysis will be complemented by a translational approach whereby broadly neutralizing human monoclonal antibodies will be developed and used: i) for passive vaccination against highly variable viruses; ii) for vaccine design through the identification and production of recombinant antigens to be used as effective vaccines; and iii) for active vaccination in order to facilitate T cell priming and jump start the immune responses.
Max ERC Funding
1 979 200 €
Duration
Start date: 2010-09-01, End date: 2015-08-31
Project acronym MEDEA
Project Mechanisms of Epigenetic regulation in Development, Evolution and Adaptation
Researcher (PI) Ulrich Grossniklaus
Host Institution (HI) University of Zurich
Country Switzerland
Call Details Advanced Grant (AdG), LS2, ERC-2009-AdG
Summary Over the last decade epigenetic gene regulation has become a major focus of scientific research as it was shown to play an important role in normal plant and animal development, but also in the ontogeny of human disease. A role of epigenetic processes in evolution, however, has found little general support to date. The goal of this project is to understand the complex interplay of epigenetic mechanisms in plant development and evolution. Many of the approaches we use rely on the recent advances in sequencing technologies, which allow the analysis of molecular characters at an unprecedented level and speed. To achieve our goal, we will focus on two epigenetic paradigms. In Program A, we will focus on dissecting the mechanisms of genomic imprinting at the MEDEA (MEA) locus in Arabidopsis, which we will investigate using genetic, molecular, and innovative biochemical approaches to gain a comprehensive picture of the complex interplay of various epigenetic pathways. In program B, we will analyze the role of epigenetic change in adaptation and evolution using (i) an experimental selection approach in Arabidopsis, where genome-wide analyses of epigenetic modifications have become possible, and (ii) a stable, heritable, epigenetic change occurring in Mimulus populations. In this system, an epigenetic switch of the pollinator syndrome leads to reproductive isolation and, therefore, has an effect on population structure and thus the evolutionary trajectory. These experimental systems each offer unique opportunities to shed light onto the underlying mechanisms controlling epigenetic states. In combination with the new methodologies used, these analyses promise to provide step change in our understanding of epigenetic processes at the level of genes, organisms, and populations.
Summary
Over the last decade epigenetic gene regulation has become a major focus of scientific research as it was shown to play an important role in normal plant and animal development, but also in the ontogeny of human disease. A role of epigenetic processes in evolution, however, has found little general support to date. The goal of this project is to understand the complex interplay of epigenetic mechanisms in plant development and evolution. Many of the approaches we use rely on the recent advances in sequencing technologies, which allow the analysis of molecular characters at an unprecedented level and speed. To achieve our goal, we will focus on two epigenetic paradigms. In Program A, we will focus on dissecting the mechanisms of genomic imprinting at the MEDEA (MEA) locus in Arabidopsis, which we will investigate using genetic, molecular, and innovative biochemical approaches to gain a comprehensive picture of the complex interplay of various epigenetic pathways. In program B, we will analyze the role of epigenetic change in adaptation and evolution using (i) an experimental selection approach in Arabidopsis, where genome-wide analyses of epigenetic modifications have become possible, and (ii) a stable, heritable, epigenetic change occurring in Mimulus populations. In this system, an epigenetic switch of the pollinator syndrome leads to reproductive isolation and, therefore, has an effect on population structure and thus the evolutionary trajectory. These experimental systems each offer unique opportunities to shed light onto the underlying mechanisms controlling epigenetic states. In combination with the new methodologies used, these analyses promise to provide step change in our understanding of epigenetic processes at the level of genes, organisms, and populations.
Max ERC Funding
2 496 641 €
Duration
Start date: 2010-04-01, End date: 2015-12-31
Project acronym METABOLOMIRS
Project Elucidation of MicroRNAs as Regulators of Metabolism and Targets for Therapeutic Intervention
Researcher (PI) Markus Stoffel
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Country Switzerland
Call Details Advanced Grant (AdG), LS4, ERC-2009-AdG
Summary Small RNA-mediated regulation of gene expression is a recent addition to fundamental gene regulatory mechanisms that directly or indirectly affect possibly every gene of a eukaryotic genome. The predominant sources of small RNA in somatic tissues are microRNA genes that encode short dsRNA hairpins of evolutionary conserved sequence. Disorders of metabolism, such as obesity and type 2 diabetes are poorly understood at a molecular level. In this application we propose to explore if miRNA regulatory networks play a role in these diseases. We will employ state of the art methods for identification of small RNAs and their regulated targets and use biochemical, cell and animal model systems to study the detailed molecular mechanisms of metabolic gene regulation by miRNAs. In addition, we will investigate the underlying principles of how RNAs are taken up by cells and develop methods that will improve delivery of miRNA mimetics or inhibitors through cell-specific uptake. The specific aims of this study are: Aim 1: To define the small regulatory miRNA content of liver, muscle and adipose tissue that are associated with abnormal glucose and lipid homeostasis and to dissect the underlying molecular pathways that govern their expression. Aim 2: To characterize the functions of miRNAs in insulin resistance, glucose uptake and production, fatty acid oxidation and lipogenesis. Aim 3: To identify factors and dissect the pathways that regulate RNA uptake by cells and to develop novel pharmacological treatment strategies to manipulate miRNA-expression. Together, this proposal will shed light on the function that miRNA regulatory networks play in metabolism and in the pathophysiology of obesity/type 2 diabetes. In addition, these studies will contribute to the development of new RNA delivery technologies that are urgently needed as experimental tools as well as for novel therapeutic strategies.
Summary
Small RNA-mediated regulation of gene expression is a recent addition to fundamental gene regulatory mechanisms that directly or indirectly affect possibly every gene of a eukaryotic genome. The predominant sources of small RNA in somatic tissues are microRNA genes that encode short dsRNA hairpins of evolutionary conserved sequence. Disorders of metabolism, such as obesity and type 2 diabetes are poorly understood at a molecular level. In this application we propose to explore if miRNA regulatory networks play a role in these diseases. We will employ state of the art methods for identification of small RNAs and their regulated targets and use biochemical, cell and animal model systems to study the detailed molecular mechanisms of metabolic gene regulation by miRNAs. In addition, we will investigate the underlying principles of how RNAs are taken up by cells and develop methods that will improve delivery of miRNA mimetics or inhibitors through cell-specific uptake. The specific aims of this study are: Aim 1: To define the small regulatory miRNA content of liver, muscle and adipose tissue that are associated with abnormal glucose and lipid homeostasis and to dissect the underlying molecular pathways that govern their expression. Aim 2: To characterize the functions of miRNAs in insulin resistance, glucose uptake and production, fatty acid oxidation and lipogenesis. Aim 3: To identify factors and dissect the pathways that regulate RNA uptake by cells and to develop novel pharmacological treatment strategies to manipulate miRNA-expression. Together, this proposal will shed light on the function that miRNA regulatory networks play in metabolism and in the pathophysiology of obesity/type 2 diabetes. In addition, these studies will contribute to the development of new RNA delivery technologies that are urgently needed as experimental tools as well as for novel therapeutic strategies.
Max ERC Funding
2 021 235 €
Duration
Start date: 2010-07-01, End date: 2015-06-30
Project acronym MOTOR CIRCUITS
Project Neuronal circuits controlling motor behavior
Researcher (PI) Silvia Isabelle Arber
Host Institution (HI) FRIEDRICH MIESCHER INSTITUTE FOR BIOMEDICAL RESEARCH FONDATION
Country Switzerland
Call Details Advanced Grant (AdG), LS5, ERC-2009-AdG
Summary How does the assembly of neuronal circuits contribute to the emergence of function controlling dedicated animal behaviors? Finding answers to this question requires a deep understanding of the connectivity map of neuronal circuits controlling a behavior as well as the mechanisms involved in the generation of these specific circuit maps. In the project outlined here, I propose the analysis of the neuronal circuits involved in the generation of motor output, a behavior representing the ultimate output of nearly all nervous system activity. Studying the mouse motor output system will allow the analysis of neuronal circuit connectivity at an exquisite degree of specificity. Owing to the anatomical arrangement of motor neuron pools innervating individual muscles, this system offers the possibility to combine genetic, anatomical and physiological analysis of synaptic specificity with a direct link to a behavioral output. Generation of coordinated motor behavior is functionally linked to the high degree of specificity in presynaptic connections controlling the activation of individual motor neuron pools, yet knowledge on the specificity map of premotor circuits is currently missing. The aim of this research project is to acquire information on the general principles guiding the acquisition, maintenance and developmental plasticity of neuronal connectivity between premotor neurons and functionally defined subpopulations of motor neurons. This project is now possible due to the unique combination of our detailed know-how of the motor system in mice including a variety of genetic animal models, and the application of novel viral circuit tracing technology revealing monosynaptically connected premotor neurons, which we have recently applied successfully to the motor system in mice in vivo. Together, our project will elucidate the anatomical connectome of the motor output system as well as the principles governing the specificity with which motor circuits assemble.
Summary
How does the assembly of neuronal circuits contribute to the emergence of function controlling dedicated animal behaviors? Finding answers to this question requires a deep understanding of the connectivity map of neuronal circuits controlling a behavior as well as the mechanisms involved in the generation of these specific circuit maps. In the project outlined here, I propose the analysis of the neuronal circuits involved in the generation of motor output, a behavior representing the ultimate output of nearly all nervous system activity. Studying the mouse motor output system will allow the analysis of neuronal circuit connectivity at an exquisite degree of specificity. Owing to the anatomical arrangement of motor neuron pools innervating individual muscles, this system offers the possibility to combine genetic, anatomical and physiological analysis of synaptic specificity with a direct link to a behavioral output. Generation of coordinated motor behavior is functionally linked to the high degree of specificity in presynaptic connections controlling the activation of individual motor neuron pools, yet knowledge on the specificity map of premotor circuits is currently missing. The aim of this research project is to acquire information on the general principles guiding the acquisition, maintenance and developmental plasticity of neuronal connectivity between premotor neurons and functionally defined subpopulations of motor neurons. This project is now possible due to the unique combination of our detailed know-how of the motor system in mice including a variety of genetic animal models, and the application of novel viral circuit tracing technology revealing monosynaptically connected premotor neurons, which we have recently applied successfully to the motor system in mice in vivo. Together, our project will elucidate the anatomical connectome of the motor output system as well as the principles governing the specificity with which motor circuits assemble.
Max ERC Funding
2 499 354 €
Duration
Start date: 2010-03-01, End date: 2016-02-29
Project acronym NEXTGENMOLECOL
Project Next Generation Molecular Ecology
Researcher (PI) Hans Ellegren
Host Institution (HI) UPPSALA UNIVERSITET
Country Sweden
Call Details Advanced Grant (AdG), LS8, ERC-2009-AdG
Summary There is an immediate need to increase our understanding of the genetic basis for fitness differences in natural populations (Ellegren and Sheldon Nature 452:169-175, 2008). Fortunately, technological developments within genome research, notably the recent ability to retrieve massive amounts of DNA sequence data based on next generation sequencing , will make possible completely novel investigations of the link between genotypes and phenotypes in non-model organisms. With our background as major players in molecular ecology and evolutionary genomics of non-models for the last 15-20 years, we are excellently placed to take on a leading role in this process, developing a Next Generation Molecular Ecology . This research program will combine studies of candidate genes with large-scale gene expression analysis, several mapping approaches and comparative genomics to study the genetic basis of trait evolution in wild bird populations. First, we will search for and analyse loci involved with reproductive isolation and adaptive population divergence in a well-known system for speciation research the pied flycatcher and the collared flycatcher. A milestone of this program will be genome sequencing of the two flycatcher species. Second, we will track the genetic basis of behaviour using a unique breeding population of zebra finches and benefitting from the recently obtained genome sequence of this species. Third, we will identify the targets for adaptive evolution during avian evolution using comparative genomics. Overall, the program will be able to reveal the molecular genetic architecture behind phenotypic variation. The potential for scientific break-through in this interdisciplinary program should be significant.
Summary
There is an immediate need to increase our understanding of the genetic basis for fitness differences in natural populations (Ellegren and Sheldon Nature 452:169-175, 2008). Fortunately, technological developments within genome research, notably the recent ability to retrieve massive amounts of DNA sequence data based on next generation sequencing , will make possible completely novel investigations of the link between genotypes and phenotypes in non-model organisms. With our background as major players in molecular ecology and evolutionary genomics of non-models for the last 15-20 years, we are excellently placed to take on a leading role in this process, developing a Next Generation Molecular Ecology . This research program will combine studies of candidate genes with large-scale gene expression analysis, several mapping approaches and comparative genomics to study the genetic basis of trait evolution in wild bird populations. First, we will search for and analyse loci involved with reproductive isolation and adaptive population divergence in a well-known system for speciation research the pied flycatcher and the collared flycatcher. A milestone of this program will be genome sequencing of the two flycatcher species. Second, we will track the genetic basis of behaviour using a unique breeding population of zebra finches and benefitting from the recently obtained genome sequence of this species. Third, we will identify the targets for adaptive evolution during avian evolution using comparative genomics. Overall, the program will be able to reveal the molecular genetic architecture behind phenotypic variation. The potential for scientific break-through in this interdisciplinary program should be significant.
Max ERC Funding
2 500 000 €
Duration
Start date: 2010-04-01, End date: 2015-09-30
Project acronym PRIONS
Project The prion protein in health and disease
Researcher (PI) Adriano Aguzzi
Host Institution (HI) University of Zurich
Country Switzerland
Call Details Advanced Grant (AdG), LS5, ERC-2009-AdG
Summary Oligomers are toxic in an array of protein misfolding and aggregation (PMA) disorders. However, the chain of events from protein aggregation to dysfunction is poorly understood. Prion diseases are marked by accumulation of PrPSc, a misfolded variant of wild-type PrPC. PrPC mediates PrPSc neurotoxicity and counteracts toxic PrPC mutants, indicating that a subversion of normal PrPC function may underlie neurodegeneration, and this may not be limited to prion disease. Here, we propose to explore these newly discovered physiological functions of PrPC in three paradigms. We show that PrPC assembles into a multiprotein complex containing a protease; neurotoxic PrPC mutants generate a smaller complex that is uncleaved. We show that neuronal expression of PrPC is required in trans for long-term myelin maintenance in peripheral nerves. We will therefore investigate the hypothesis that a fragment of PrPC transmits signals crucial for axomyelinic integrity. We show that PrPC physically interacts with both amyloid b and islet amyloid polypeptide and attenuates functional impairment mediated by these peptides. We therefore propose to test whether subversion of normal PrPC function is involved in diverse PMA disorders. We developed an ex vivo model that accurately reproduces major features of prion infections, most notably neurodegeneration. We have identified several unexpected PrPSc-induced cellular stress pathways which may be common to other PMA disorders. Using this model system, we will clarify the role of PrPC in cell survival pathways and determine the requirement for PrPC in the pathology of other PMA disorders. This proposal capitalizes on provocative recent results and, if successful, will provide valuable insights into PMA toxicity that will go far beyond prion diseases.
Summary
Oligomers are toxic in an array of protein misfolding and aggregation (PMA) disorders. However, the chain of events from protein aggregation to dysfunction is poorly understood. Prion diseases are marked by accumulation of PrPSc, a misfolded variant of wild-type PrPC. PrPC mediates PrPSc neurotoxicity and counteracts toxic PrPC mutants, indicating that a subversion of normal PrPC function may underlie neurodegeneration, and this may not be limited to prion disease. Here, we propose to explore these newly discovered physiological functions of PrPC in three paradigms. We show that PrPC assembles into a multiprotein complex containing a protease; neurotoxic PrPC mutants generate a smaller complex that is uncleaved. We show that neuronal expression of PrPC is required in trans for long-term myelin maintenance in peripheral nerves. We will therefore investigate the hypothesis that a fragment of PrPC transmits signals crucial for axomyelinic integrity. We show that PrPC physically interacts with both amyloid b and islet amyloid polypeptide and attenuates functional impairment mediated by these peptides. We therefore propose to test whether subversion of normal PrPC function is involved in diverse PMA disorders. We developed an ex vivo model that accurately reproduces major features of prion infections, most notably neurodegeneration. We have identified several unexpected PrPSc-induced cellular stress pathways which may be common to other PMA disorders. Using this model system, we will clarify the role of PrPC in cell survival pathways and determine the requirement for PrPC in the pathology of other PMA disorders. This proposal capitalizes on provocative recent results and, if successful, will provide valuable insights into PMA toxicity that will go far beyond prion diseases.
Max ERC Funding
2 500 000 €
Duration
Start date: 2010-05-01, End date: 2015-04-30
Project acronym SOCIAL LIFE
Project The evolution of social life and division of labour
Researcher (PI) Laurent Keller
Host Institution (HI) UNIVERSITE DE LAUSANNE
Country Switzerland
Call Details Advanced Grant (AdG), LS8, ERC-2009-AdG
Summary The hallmark of social insect colonies is reproductive division of labour which is often associated with dramatic morphological and behavioural differences between queens, workers and males. The aim of this proposal is three-fold. First, we will use our recently developed fiducial identification system to investigate the general principles of social organisation and division of labour. The video tracking of workers labelled with markers derived from the augmented reality library ARTag allows us for the first time to distinguish up to 2000 individuals and precisely locate them every 500ms, hence allowing large-scale experiments addressing the question of how the behaviour of individual workers is influenced by the joint effects of environmental factors and social interactions. The second related aim is to investigate how the level of altruism within colonies and the reliability of communication systems are shaped by colony kin structure. Because it is not possible to conduct artificial evolution with social insects we will use a new experimental system consisting of colonies of small mobile robots with simple vision and communication abilities. This system permits to conduct hundreds of generations of experimental evolution in colonies with variable group composition to identify the factors affecting the evolution of altruism and communication. Finally, we will complement these studies with a genetic perspective using a remarkable genetic social polymorphism that we recently discovered in the fire ant Solenopsis invicta. The advent of new ultra high-throughput sequencing techniques will allow us to document the steps involved in the evolution of this genetic social polymorphism and test the suggestion that the chromosome involved in the social polymorphism has the properties of a sex chromosome. This project will be highly interdisciplinary, involving skills in evolutionary biology, the study of animal behaviour, bioinformatics, engineering and molecular biology
Summary
The hallmark of social insect colonies is reproductive division of labour which is often associated with dramatic morphological and behavioural differences between queens, workers and males. The aim of this proposal is three-fold. First, we will use our recently developed fiducial identification system to investigate the general principles of social organisation and division of labour. The video tracking of workers labelled with markers derived from the augmented reality library ARTag allows us for the first time to distinguish up to 2000 individuals and precisely locate them every 500ms, hence allowing large-scale experiments addressing the question of how the behaviour of individual workers is influenced by the joint effects of environmental factors and social interactions. The second related aim is to investigate how the level of altruism within colonies and the reliability of communication systems are shaped by colony kin structure. Because it is not possible to conduct artificial evolution with social insects we will use a new experimental system consisting of colonies of small mobile robots with simple vision and communication abilities. This system permits to conduct hundreds of generations of experimental evolution in colonies with variable group composition to identify the factors affecting the evolution of altruism and communication. Finally, we will complement these studies with a genetic perspective using a remarkable genetic social polymorphism that we recently discovered in the fire ant Solenopsis invicta. The advent of new ultra high-throughput sequencing techniques will allow us to document the steps involved in the evolution of this genetic social polymorphism and test the suggestion that the chromosome involved in the social polymorphism has the properties of a sex chromosome. This project will be highly interdisciplinary, involving skills in evolutionary biology, the study of animal behaviour, bioinformatics, engineering and molecular biology
Max ERC Funding
2 497 500 €
Duration
Start date: 2010-05-01, End date: 2016-04-30
Project acronym SQMS
Project Synthetic Quantum Many-Body Systems
Researcher (PI) Tilman Holger Esslinger
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Country Switzerland
Call Details Advanced Grant (AdG), PE2, ERC-2009-AdG
Summary This proposal shows a new path to explore frontiers in quantum many-body physics using degenerate atomic gases. We will address fundamental open questions, create novel quantum-many body systems and seek applications beyond the realm of quantum gases. A two-component Fermi gas in an optical lattice is a unique realisation of the Fermi-Hubbard model and it is intimately linked to elementary concepts and open questions in many-body physics. We will develop novel tools for continuous cooling and detection of fermionic atoms in optical lattices. This will enable us to enter the anti-ferromagnetic phase and to study fundamental questions concerning the interplay between localization, coherence and spin-ordering in quantum many-body systems. An intriguing direction towards the creation of novel quantum many-body systems is the coupling of a strongly correlated quantum gas to an optical cavity. Here the cavity creates an effective long-range interaction with global character. This will bring together the physics of strongly-correlated systems and non-linear phenomena using a microscopically accessible system. In this highly explorative field we envisage, as a first experiment, a study of cavity-driven self-organization which may allow us to identify a novel form of a supersolid phase. Rather than investigating or manipulating the quantum gas using light we will also invert this approach and study the light after the interaction with a quantum gas inside a cavity. Using cavity opto-mechanical effects and a van der-Waals blockade by Rydberg atoms excited inside the cavity we will explore squeezing of the light and a novel photon blockade.
Summary
This proposal shows a new path to explore frontiers in quantum many-body physics using degenerate atomic gases. We will address fundamental open questions, create novel quantum-many body systems and seek applications beyond the realm of quantum gases. A two-component Fermi gas in an optical lattice is a unique realisation of the Fermi-Hubbard model and it is intimately linked to elementary concepts and open questions in many-body physics. We will develop novel tools for continuous cooling and detection of fermionic atoms in optical lattices. This will enable us to enter the anti-ferromagnetic phase and to study fundamental questions concerning the interplay between localization, coherence and spin-ordering in quantum many-body systems. An intriguing direction towards the creation of novel quantum many-body systems is the coupling of a strongly correlated quantum gas to an optical cavity. Here the cavity creates an effective long-range interaction with global character. This will bring together the physics of strongly-correlated systems and non-linear phenomena using a microscopically accessible system. In this highly explorative field we envisage, as a first experiment, a study of cavity-driven self-organization which may allow us to identify a novel form of a supersolid phase. Rather than investigating or manipulating the quantum gas using light we will also invert this approach and study the light after the interaction with a quantum gas inside a cavity. Using cavity opto-mechanical effects and a van der-Waals blockade by Rydberg atoms excited inside the cavity we will explore squeezing of the light and a novel photon blockade.
Max ERC Funding
2 000 000 €
Duration
Start date: 2010-03-01, End date: 2015-02-28
Project acronym TERRAINCOGNITA
Project T cell receptor αβ : in control of signal initiation and T cell fate
Researcher (PI) Ed Palmer
Host Institution (HI) UNIVERSITATSSPITAL BASEL
Country Switzerland
Call Details Advanced Grant (AdG), LS6, ERC-2009-AdG
Summary One of the central mysteries of immunology is self-tolerance. How does the human body select ~10e12 T lymphocytes, that are reactive to foreign pathogens but tolerant to normal cellular constituents of the host? Over the last few years, my laboratory identified 2 fundamental mechanisms used by thymocytes to establish T cell tolerance. We demonstrated that the affinity threshold for negative selection is a constant for all thymocytes expressing MHC I restricted TCRs. This binding affinity threshold (KD H 6 ¼M; estimated T1/2 H 2 sec) is the fundamental biophysical parameter used by TCRs to delete autoimmune T cells. We also established how the TCR generates distinct signals for positive and negative selection. At the selection threshold, a small increase in ligand affinity for the T-cell antigen receptor leads to a marked change in the activation and subcellular localization of Ras and mitogen-activated protein kinase (MAPK) signaling intermediates. The ability to compartmentalize signaling molecules differentially within the cell endows the thymocyte with the ability to convert a small change in analogue input (affinity) into a digital output (positive versus negative selection) and provides the molecular basis for central tolerance. In the present application, we plan to fully understand 1-how the biophysical events during antigen binding to the TCR initiate an intracellular signal; 2-how these signals program an unambiguous cell fate and 3-how the system fails, when an autoimmune T cell is generated and activated. We will use a combination of transgenic and knockout mice, biochemistry and molecular imaging to fully define how the TCR functions as a molecular switch.
Summary
One of the central mysteries of immunology is self-tolerance. How does the human body select ~10e12 T lymphocytes, that are reactive to foreign pathogens but tolerant to normal cellular constituents of the host? Over the last few years, my laboratory identified 2 fundamental mechanisms used by thymocytes to establish T cell tolerance. We demonstrated that the affinity threshold for negative selection is a constant for all thymocytes expressing MHC I restricted TCRs. This binding affinity threshold (KD H 6 ¼M; estimated T1/2 H 2 sec) is the fundamental biophysical parameter used by TCRs to delete autoimmune T cells. We also established how the TCR generates distinct signals for positive and negative selection. At the selection threshold, a small increase in ligand affinity for the T-cell antigen receptor leads to a marked change in the activation and subcellular localization of Ras and mitogen-activated protein kinase (MAPK) signaling intermediates. The ability to compartmentalize signaling molecules differentially within the cell endows the thymocyte with the ability to convert a small change in analogue input (affinity) into a digital output (positive versus negative selection) and provides the molecular basis for central tolerance. In the present application, we plan to fully understand 1-how the biophysical events during antigen binding to the TCR initiate an intracellular signal; 2-how these signals program an unambiguous cell fate and 3-how the system fails, when an autoimmune T cell is generated and activated. We will use a combination of transgenic and knockout mice, biochemistry and molecular imaging to fully define how the TCR functions as a molecular switch.
Max ERC Funding
1 930 000 €
Duration
Start date: 2010-04-01, End date: 2015-03-31
Project acronym TIMESIGNAL
Project Signalling within the mammalian circadian timing system
Researcher (PI) Ulrich Schibler
Host Institution (HI) UNIVERSITE DE GENEVE
Country Switzerland
Call Details Advanced Grant (AdG), LS1, ERC-2009-AdG
Summary The main objective of this interdisciplinary research project is to elucidate regulatory mechanisms through which the circadian timing system coordinates temporal physiology. This system has a hierarchical architecture, in that a master clock in the brain s suprachiasmatic nucleus synchronizes subsidiary oscillators in nearly all body cells. The establishment of phase coherence is obviously of utmost importance in the coordination of circadian physiology. While recent studies have identified feeding cycles, hormone rhythms, and body temperature oscillations as timing cues for peripheral clocks, the molecular makeup of the involved signalling mechanisms is largely unknown. Using liver and cultured cells as model systems, we will employ two innovative strategies for the elucidation of relevant signalling pathways. (1) STAR-Prom (Synthetic TAndem Repeat-PROmoter display), a technique developed in our laboratory, will hopefully identify most if not all immediate early transcription factors activated in cultured cells by rhythmic blood-borne and temperature-dependent signals. (2) A transgenic mouse model with conditionally active liver clocks will be explored in the genome-wide identification of coding and non-coding transcripts whose rhythmic accumulation is system-driven. The in vivo significance of the components emerging from these approaches will be assessed via RNA interference. Thus, relevant siRNAs will be injected into the tail vein of mice, and their effect on the phase of circadian liver gene expression will be monitored in freely moving mice by using whole body fluorescence imaging. Physiologically important components will serve as entry points for the identification of upstream and downstream constituents in the corresponding signal transduction cascades.
Summary
The main objective of this interdisciplinary research project is to elucidate regulatory mechanisms through which the circadian timing system coordinates temporal physiology. This system has a hierarchical architecture, in that a master clock in the brain s suprachiasmatic nucleus synchronizes subsidiary oscillators in nearly all body cells. The establishment of phase coherence is obviously of utmost importance in the coordination of circadian physiology. While recent studies have identified feeding cycles, hormone rhythms, and body temperature oscillations as timing cues for peripheral clocks, the molecular makeup of the involved signalling mechanisms is largely unknown. Using liver and cultured cells as model systems, we will employ two innovative strategies for the elucidation of relevant signalling pathways. (1) STAR-Prom (Synthetic TAndem Repeat-PROmoter display), a technique developed in our laboratory, will hopefully identify most if not all immediate early transcription factors activated in cultured cells by rhythmic blood-borne and temperature-dependent signals. (2) A transgenic mouse model with conditionally active liver clocks will be explored in the genome-wide identification of coding and non-coding transcripts whose rhythmic accumulation is system-driven. The in vivo significance of the components emerging from these approaches will be assessed via RNA interference. Thus, relevant siRNAs will be injected into the tail vein of mice, and their effect on the phase of circadian liver gene expression will be monitored in freely moving mice by using whole body fluorescence imaging. Physiologically important components will serve as entry points for the identification of upstream and downstream constituents in the corresponding signal transduction cascades.
Max ERC Funding
2 360 136 €
Duration
Start date: 2010-04-01, End date: 2015-12-31