Project acronym ANSR
Project Ab initio approach to nuclear structure and reactions (++)
Researcher (PI) Christian Erik Forssen
Host Institution (HI) CHALMERS TEKNISKA HOEGSKOLA AB
Country Sweden
Call Details Starting Grant (StG), PE2, ERC-2009-StG
Summary Today, much interest in several fields of physics is devoted to the study of small, open quantum systems, whose properties are profoundly affected by the environment; i.e., the continuum of decay channels. In nuclear physics, these problems were originally studied in the context of nuclear reactions but their importance has been reestablished with the advent of radioactive-beam physics and the resulting interest in exotic nuclei. In particular, strong theory initiatives in this area of research will be instrumental for the success of the experimental program at the Facility for Antiproton and Ion Research (FAIR) in Germany. In addition, many of the aspects of open quantum systems are also being explored in the rapidly evolving research on ultracold atomic gases, quantum dots, and other nanodevices. A first-principles description of open quantum systems presents a substantial theoretical and computational challenge. However, the current availability of enormous computing power has allowed theorists to make spectacular progress on problems that were previously thought intractable. The importance of computational methods to study quantum many-body systems is stressed in this proposal. Our approach is based on the ab initio no-core shell model (NCSM), which is a well-established theoretical framework aimed originally at an exact description of nuclear structure starting from realistic inter-nucleon forces. A successful completion of this project requires extensions of the NCSM mathematical framework and the development of highly advanced computer codes. The '++' in the project title indicates the interdisciplinary aspects of the present research proposal and the ambition to make a significant impact on connected fields of many-body physics.
Summary
Today, much interest in several fields of physics is devoted to the study of small, open quantum systems, whose properties are profoundly affected by the environment; i.e., the continuum of decay channels. In nuclear physics, these problems were originally studied in the context of nuclear reactions but their importance has been reestablished with the advent of radioactive-beam physics and the resulting interest in exotic nuclei. In particular, strong theory initiatives in this area of research will be instrumental for the success of the experimental program at the Facility for Antiproton and Ion Research (FAIR) in Germany. In addition, many of the aspects of open quantum systems are also being explored in the rapidly evolving research on ultracold atomic gases, quantum dots, and other nanodevices. A first-principles description of open quantum systems presents a substantial theoretical and computational challenge. However, the current availability of enormous computing power has allowed theorists to make spectacular progress on problems that were previously thought intractable. The importance of computational methods to study quantum many-body systems is stressed in this proposal. Our approach is based on the ab initio no-core shell model (NCSM), which is a well-established theoretical framework aimed originally at an exact description of nuclear structure starting from realistic inter-nucleon forces. A successful completion of this project requires extensions of the NCSM mathematical framework and the development of highly advanced computer codes. The '++' in the project title indicates the interdisciplinary aspects of the present research proposal and the ambition to make a significant impact on connected fields of many-body physics.
Max ERC Funding
1 304 800 €
Duration
Start date: 2009-12-01, End date: 2014-11-30
Project acronym BFTERRA
Project Biogenesis and Functions of Telomeric Repeat-containing RNA
Researcher (PI) Claus Maria Azzalin
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Country Switzerland
Call Details Starting Grant (StG), LS1, ERC-2009-StG
Summary Telomeres are heterochromatic nucleoprotein complexes located at the end of linear eukaryotic chromosomes. Contrarily to a longstanding dogma, we have recently demonstrated that mammalian telomeres are transcribed into TElomeric Repeat containing RNA (TERRA) molecules. TERRA transcripts contain telomeric RNA repeats and are produced at least in part by DNA-dependent RNA polymerase II-mediated transcription of telomeric DNA. TERRA molecules form discrete nuclear foci that co-localize with telomeric heterochromatin in both interphase and transcriptionally inactive metaphase cells. This indicates that TERRA is an integral component of telomeres and suggests that TERRA might participate in maintaining proper telomere heterochromatin. We will use a variety of biochemistry, cell biology, molecular biology and microscopy based approaches applied to cultured mammalian cells and to the yeast Schizosaccharomyces pombe, to achieve four distinct major goals: i) We will over-express or deplete TERRA in mammalian cells in order to characterize the molecular details of putative TERRA-associated functions in maintaining normal telomere structure and function; ii) We will locate TERRA promoter regions on different human chromosome ends; iii) We will generate mammalian cellular systems in which to study artificially seeded telomeres that can be transcribed in an inducible fashion; iv) We will identify physiological regulators of TERRA by analyzing it in mammalian cultured cells where the functions of candidate factors are compromised. In parallel, taking advantage of the recent discovery of TERRA also in fission yeast, we will systematically analyze TERRA levels in fission yeast mutants derived from a complete gene knockout collection. The study of TERRA regulation and function at chromosome ends will strongly contribute to our understanding of how telomeres are maintained and will help to clarify the general functions of mammalian non-coding RNAs.
Summary
Telomeres are heterochromatic nucleoprotein complexes located at the end of linear eukaryotic chromosomes. Contrarily to a longstanding dogma, we have recently demonstrated that mammalian telomeres are transcribed into TElomeric Repeat containing RNA (TERRA) molecules. TERRA transcripts contain telomeric RNA repeats and are produced at least in part by DNA-dependent RNA polymerase II-mediated transcription of telomeric DNA. TERRA molecules form discrete nuclear foci that co-localize with telomeric heterochromatin in both interphase and transcriptionally inactive metaphase cells. This indicates that TERRA is an integral component of telomeres and suggests that TERRA might participate in maintaining proper telomere heterochromatin. We will use a variety of biochemistry, cell biology, molecular biology and microscopy based approaches applied to cultured mammalian cells and to the yeast Schizosaccharomyces pombe, to achieve four distinct major goals: i) We will over-express or deplete TERRA in mammalian cells in order to characterize the molecular details of putative TERRA-associated functions in maintaining normal telomere structure and function; ii) We will locate TERRA promoter regions on different human chromosome ends; iii) We will generate mammalian cellular systems in which to study artificially seeded telomeres that can be transcribed in an inducible fashion; iv) We will identify physiological regulators of TERRA by analyzing it in mammalian cultured cells where the functions of candidate factors are compromised. In parallel, taking advantage of the recent discovery of TERRA also in fission yeast, we will systematically analyze TERRA levels in fission yeast mutants derived from a complete gene knockout collection. The study of TERRA regulation and function at chromosome ends will strongly contribute to our understanding of how telomeres are maintained and will help to clarify the general functions of mammalian non-coding RNAs.
Max ERC Funding
1 602 600 €
Duration
Start date: 2009-10-01, End date: 2014-09-30
Project acronym ERGODICNONCOMPACT
Project Ergodic theory on non compact spaces
Researcher (PI) Omri Moshe Sarig
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Country Israel
Call Details Starting Grant (StG), PE1, ERC-2009-StG
Summary The proposal is to look for, and investigate, new ergodic theoretic types of behavior for dynamical systems which act on non compact spaces. These could include transience and non-trivial ways of escape to infinity, critical phenomena similar to phase transitions, and new types of measure rigidity. There are potential applications to smooth ergodic theory (non-uniform hyperbolicity), algebraic ergodic theory (actions on homogeneous spaces), and probability theory (weakly dependent stochastic processes).
Summary
The proposal is to look for, and investigate, new ergodic theoretic types of behavior for dynamical systems which act on non compact spaces. These could include transience and non-trivial ways of escape to infinity, critical phenomena similar to phase transitions, and new types of measure rigidity. There are potential applications to smooth ergodic theory (non-uniform hyperbolicity), algebraic ergodic theory (actions on homogeneous spaces), and probability theory (weakly dependent stochastic processes).
Max ERC Funding
539 479 €
Duration
Start date: 2009-10-01, End date: 2014-09-30
Project acronym FLATRONICS
Project Electronic devices based on nanolayers
Researcher (PI) Andras Kis
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Country Switzerland
Call Details Starting Grant (StG), PE3, ERC-2009-StG
Summary The main objective of this research proposal is to explore the electrical properties of nanoscale devices and circuits based on nanolayers. Nanolayers cover a wide span of possible electronic properties, ranging from semiconducting to superconducting. The possibility to form electrical circuits by varying their geometry offers rich research and practical opportunities. Together with graphene, nanolayers could form the material library for future nanoelectronics where different materials could be mixed and matched to different functionalities.
Summary
The main objective of this research proposal is to explore the electrical properties of nanoscale devices and circuits based on nanolayers. Nanolayers cover a wide span of possible electronic properties, ranging from semiconducting to superconducting. The possibility to form electrical circuits by varying their geometry offers rich research and practical opportunities. Together with graphene, nanolayers could form the material library for future nanoelectronics where different materials could be mixed and matched to different functionalities.
Max ERC Funding
1 799 996 €
Duration
Start date: 2009-09-01, End date: 2014-08-31
Project acronym HYBRIDQED
Project Hybrid Cavity Quantum Electrodynamics with Atoms and Circuits
Researcher (PI) Andreas Joachim Wallraff
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Country Switzerland
Call Details Starting Grant (StG), PE3, ERC-2009-StG
Summary We plan to investigate the strong coherent interaction of light and matter on the level of individual photons and atoms or atom-like systems. In particular, we will explore large dipole moment superconducting artificial atoms and natural Rydberg atoms interacting with radiation fields contained in quasi-one-dimensional on-chip microwave frequency resonators. In these resonators photons generate field strengths that exceed those in conventional mirror based resonators by orders of magnitude and they can also be stored for long times. This allows us to reach the strong coupling limit of cavity quantum electrodynamics (QED) using superconducting circuits, an approach known as circuit QED. In this project we will explore novel approaches to perform quantum optics experiments in circuits. We will develop techniques to generate and detect non-classical radiation fields using nonlinear resonators and chip-based interferometers. We will also further advance the circuit QED approach to quantum information processing. Our main goal is to develop an interface between circuit and atom based realizations of cavity QED. In particular, we will couple Rydberg atoms to on-chip resonators. To achieve this goal we will first investigate the interaction of ensembles of atoms in a beam with the coherent fields in a transmission line or a resonator. We will perform spectroscopy and we will investigate on-chip dispersive detection schemes for Rydberg atoms. We will also explore the interaction of Rydberg atoms with chip surfaces in dependence on materials, temperature and geometry. Experiments will be performed from 300 K down to millikelvin temperatures. We will realize and characterize on-chip traps for Rydberg atoms. Using trapped atoms we will explore their coherent dynamics. Finally, we aim at investigating the single atom and single photon limit. When realized, this system will be used to explore the first quantum coherent interface between atomic and solid state qubits.
Summary
We plan to investigate the strong coherent interaction of light and matter on the level of individual photons and atoms or atom-like systems. In particular, we will explore large dipole moment superconducting artificial atoms and natural Rydberg atoms interacting with radiation fields contained in quasi-one-dimensional on-chip microwave frequency resonators. In these resonators photons generate field strengths that exceed those in conventional mirror based resonators by orders of magnitude and they can also be stored for long times. This allows us to reach the strong coupling limit of cavity quantum electrodynamics (QED) using superconducting circuits, an approach known as circuit QED. In this project we will explore novel approaches to perform quantum optics experiments in circuits. We will develop techniques to generate and detect non-classical radiation fields using nonlinear resonators and chip-based interferometers. We will also further advance the circuit QED approach to quantum information processing. Our main goal is to develop an interface between circuit and atom based realizations of cavity QED. In particular, we will couple Rydberg atoms to on-chip resonators. To achieve this goal we will first investigate the interaction of ensembles of atoms in a beam with the coherent fields in a transmission line or a resonator. We will perform spectroscopy and we will investigate on-chip dispersive detection schemes for Rydberg atoms. We will also explore the interaction of Rydberg atoms with chip surfaces in dependence on materials, temperature and geometry. Experiments will be performed from 300 K down to millikelvin temperatures. We will realize and characterize on-chip traps for Rydberg atoms. Using trapped atoms we will explore their coherent dynamics. Finally, we aim at investigating the single atom and single photon limit. When realized, this system will be used to explore the first quantum coherent interface between atomic and solid state qubits.
Max ERC Funding
1 954 464 €
Duration
Start date: 2009-09-01, End date: 2014-08-31
Project acronym ID-CAB
Project Individual differences in Collective Animal Behaviour
Researcher (PI) David Sumpter
Host Institution (HI) UPPSALA UNIVERSITET
Country Sweden
Call Details Starting Grant (StG), LS8, ERC-2009-StG
Summary One of the key challenges in scientific research is to link together our understanding of different levels of biological organisation. This challenge is fundamental to the scientific endeavour: from understand how genes interact to drive the cell, to how cells interact to form organisms, up to how organisms interact to form groups and societies. My own and the research of others has addressed this question in the context of the collective behaviour of animals. Mathematical models of complex systems have been used to successfully predict experimental outcome. Most previous studies are however limited in one important aspect: individuals are treated as identical units. The aim of the proposed research proposed is to investigate features which produce differences within the units. The model systems of our study will be sticklebacks, homing pigeons and house sparrows. Individuals can differ from each other on a range of time scales, from information acquired within the last few minutes, through socially learnt information, to genetically inherited differences. Through a series of experiments on each of the study species, the development of mathematical models which incorporate between individual differences, and novel forms of data analysis, we will begin to understand the role played by individual differences within groups. We will look at the rules of motion for fish and birds; the role of personality in decision-making and how short term information differences improve decision-making accuracy. Achieving the project objectives will greatly enhance our understanding of the relationship between individual animals and the groups they live in, as well as impacting on our understanding of individual differences in other areas of biology.
Summary
One of the key challenges in scientific research is to link together our understanding of different levels of biological organisation. This challenge is fundamental to the scientific endeavour: from understand how genes interact to drive the cell, to how cells interact to form organisms, up to how organisms interact to form groups and societies. My own and the research of others has addressed this question in the context of the collective behaviour of animals. Mathematical models of complex systems have been used to successfully predict experimental outcome. Most previous studies are however limited in one important aspect: individuals are treated as identical units. The aim of the proposed research proposed is to investigate features which produce differences within the units. The model systems of our study will be sticklebacks, homing pigeons and house sparrows. Individuals can differ from each other on a range of time scales, from information acquired within the last few minutes, through socially learnt information, to genetically inherited differences. Through a series of experiments on each of the study species, the development of mathematical models which incorporate between individual differences, and novel forms of data analysis, we will begin to understand the role played by individual differences within groups. We will look at the rules of motion for fish and birds; the role of personality in decision-making and how short term information differences improve decision-making accuracy. Achieving the project objectives will greatly enhance our understanding of the relationship between individual animals and the groups they live in, as well as impacting on our understanding of individual differences in other areas of biology.
Max ERC Funding
977 768 €
Duration
Start date: 2010-02-01, End date: 2015-01-31
Project acronym IMMUNOSWITCH
Project Switch recombination: a model system for DNA editing and repair in human lymphocytes with relevance for primary immunodeficiency and cancer formation
Researcher (PI) Qiang Pan Hammarstroem
Host Institution (HI) KAROLINSKA INSTITUTET
Country Sweden
Call Details Starting Grant (StG), LS6, ERC-2009-StG
Summary The aim of this project is to try to understand the complex molecular mechanisms involved in DNA editing, repair and recombination during immunoglobulin class switch recombination (CSR) and somatic hypermutation (SHM). We have developed a series of PCR-based assays to study in vivo generated CSR junctions and the pattern of mutations introduced in the immunoglobulin variable region genes in human B cells, allowing us to characterize CSR and SHM in patients with immunodeficiency due to defect(s) in DNA repair/recombination. Novel in vitro CSR assays, based on GFP expression, allowing quantitative measurement of substrate recombination, are also being developed. In addition, we have initiated an evolutionary analysis of the function and structure of activation-induced deaminase, an essential molecule involved both in CSR and SHM, aiming to identify CSR specific-cofactor(s). Combining these approaches, we will be able to define the DNA repair pathways involved in CSR and SHM. The suggested project requires access to patients with various defects in the DNA repair pathways. Many of these diseases are exceedingly rare. However, through worldwide collaboration, we have obtained samples from a majority of the diagnosed patients. We are also refining the existing screening methods and developing novel methods, that will allow identification of additional patients both with recognized and new diseases caused by mutations in DNA repair pathways. Finally, we hope to be able to address the question whether illegitimate CSR events are associated with predisposition to lymphomagenesis in patients with immunodeficiency/DNA repair defect(s), by analyzing the CSR induced chromosomal breaks and translocations in these patients. A large-scale sequencing project is also planned to characterize the CSRnome in B-cell lymphoma samples.
Summary
The aim of this project is to try to understand the complex molecular mechanisms involved in DNA editing, repair and recombination during immunoglobulin class switch recombination (CSR) and somatic hypermutation (SHM). We have developed a series of PCR-based assays to study in vivo generated CSR junctions and the pattern of mutations introduced in the immunoglobulin variable region genes in human B cells, allowing us to characterize CSR and SHM in patients with immunodeficiency due to defect(s) in DNA repair/recombination. Novel in vitro CSR assays, based on GFP expression, allowing quantitative measurement of substrate recombination, are also being developed. In addition, we have initiated an evolutionary analysis of the function and structure of activation-induced deaminase, an essential molecule involved both in CSR and SHM, aiming to identify CSR specific-cofactor(s). Combining these approaches, we will be able to define the DNA repair pathways involved in CSR and SHM. The suggested project requires access to patients with various defects in the DNA repair pathways. Many of these diseases are exceedingly rare. However, through worldwide collaboration, we have obtained samples from a majority of the diagnosed patients. We are also refining the existing screening methods and developing novel methods, that will allow identification of additional patients both with recognized and new diseases caused by mutations in DNA repair pathways. Finally, we hope to be able to address the question whether illegitimate CSR events are associated with predisposition to lymphomagenesis in patients with immunodeficiency/DNA repair defect(s), by analyzing the CSR induced chromosomal breaks and translocations in these patients. A large-scale sequencing project is also planned to characterize the CSRnome in B-cell lymphoma samples.
Max ERC Funding
1 888 166 €
Duration
Start date: 2009-12-01, End date: 2014-11-30
Project acronym INCEL
Project Revealing the molecular architecture of integrin mediated cell adhesion
Researcher (PI) Ohad Medalia
Host Institution (HI) University of Zurich
Country Switzerland
Call Details Starting Grant (StG), LS1, ERC-2009-StG
Summary Cell adhesions play an important role in the organization, growth, maturation, and function of living cells. Interaction of cells with the extracellular matrix (ECM) plays an essential role in a variety of disease states , inflammation, and repair of damaged tissues. At the cellular level, many of the biological responses to external stimuli originate at adhesion loci, such as focal adhesions (FA), which link cells to the ECM . Cell adhesion is mediated by receptor proteins such as cadherins and integrins. The precise molecular composition, dynamics and signalling activity of these adhesion assemblies determine the specificity of adhesion-induced signals and their effects on the cell. However, characterization of the molecular architecture of FAs is highly challenging, and it thus remains unclear how these molecules function together, how they are recruited to the adhesion site, how they are turned over, and how they function in vivo. In this project, I aim to conduct an interdisciplinary study that will provide a quantum step forward in the understanding of the functional organization of FAs. We will analyze, for the first time, the three-dimensional structure of FAs in wild-type cells and in cells deficient in the specific proteins involved in the cell-adhesion machinery. We will study the effect of specific geometries on the functional architecture of focal adhesions in 3D. A combination of state-of-the-art technologies, such cryo-electron tomography of intact cells, gold cluster chemistry for in situ labeling, and modulation of the underlying matrix using micro- and nano-patterned adhesive surfaces, together with correlative light, atomic force and electron microscopy, will provide a hybrid approach for dissecting out the complex process of cell adhesion.In summary, this project addresses the properties of FAs across a wide range of complexities and dimensions, from macroscopic cellular phenomena to the physical nature of these molecular assemblies
Summary
Cell adhesions play an important role in the organization, growth, maturation, and function of living cells. Interaction of cells with the extracellular matrix (ECM) plays an essential role in a variety of disease states , inflammation, and repair of damaged tissues. At the cellular level, many of the biological responses to external stimuli originate at adhesion loci, such as focal adhesions (FA), which link cells to the ECM . Cell adhesion is mediated by receptor proteins such as cadherins and integrins. The precise molecular composition, dynamics and signalling activity of these adhesion assemblies determine the specificity of adhesion-induced signals and their effects on the cell. However, characterization of the molecular architecture of FAs is highly challenging, and it thus remains unclear how these molecules function together, how they are recruited to the adhesion site, how they are turned over, and how they function in vivo. In this project, I aim to conduct an interdisciplinary study that will provide a quantum step forward in the understanding of the functional organization of FAs. We will analyze, for the first time, the three-dimensional structure of FAs in wild-type cells and in cells deficient in the specific proteins involved in the cell-adhesion machinery. We will study the effect of specific geometries on the functional architecture of focal adhesions in 3D. A combination of state-of-the-art technologies, such cryo-electron tomography of intact cells, gold cluster chemistry for in situ labeling, and modulation of the underlying matrix using micro- and nano-patterned adhesive surfaces, together with correlative light, atomic force and electron microscopy, will provide a hybrid approach for dissecting out the complex process of cell adhesion.In summary, this project addresses the properties of FAs across a wide range of complexities and dimensions, from macroscopic cellular phenomena to the physical nature of these molecular assemblies
Max ERC Funding
1 294 000 €
Duration
Start date: 2009-11-01, End date: 2015-10-31
Project acronym LABCHIP_MULTIPLEX
Project Simultaneous Detection of Multiple DNA and Protein Targets on Paramagnetic Beads Packed in Microfluidic Channels using Quantum Dots as Tracers
Researcher (PI) Martin Pumera
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Country Switzerland
Call Details Starting Grant (StG), PE4, ERC-2009-StG
Summary The detection of DNA hybridization and protein recoginittion event (immunoassay) is very important for the diagnosis and treatment of genetic diseases, for the detection infectious agents and for reliable forensic analysis. Recent activity has focused on the development of hybridization assays that permit simultaneous determination of multiple DNA or protein targets, using optical or electrochemical coding technology, based on unique encoding properties of semiconductor crystal nanoparticle tags (quantum dots). Described multi-target bio assays were performed in batch mode, involving significant amount of steps, connected with the possibility of human error, time and reagents consuming. Lab-on-a-chip technology offers tremendous potential for obtaining desired analytical information in a simpler, faster and cheaper way compared to traditional batch/laboratory-based technology. Particularly attractive for multiple DNA and protein recognition applications (i.e. point-of-care) is the high-throughput, automation, versatility, portability, reagent/sample economy and high-performance of such micromachined devices. Overall objective of the proposed research is to create and characterize a portable microanalyzer, based on a novel advanced Lab-on-a-Chip technology with magnetic separation and end-column quantum dots tracers voltammetric detection of multiple DNA and protein targets for point-of-care , automated, high-throughput, sensitive, selective and simultaneous assays. The new micro-total analytical system will rely on coupling of microfluidic transport of samples, effective flow-through magnetic separation complementary/non-complementary DNA and protein targets and a novel chip-based voltammetric stripping detection of quantum dot tags. To successfully complete such advanced micro-total analytical system, several fundamental and practical issues will be addressed.
Summary
The detection of DNA hybridization and protein recoginittion event (immunoassay) is very important for the diagnosis and treatment of genetic diseases, for the detection infectious agents and for reliable forensic analysis. Recent activity has focused on the development of hybridization assays that permit simultaneous determination of multiple DNA or protein targets, using optical or electrochemical coding technology, based on unique encoding properties of semiconductor crystal nanoparticle tags (quantum dots). Described multi-target bio assays were performed in batch mode, involving significant amount of steps, connected with the possibility of human error, time and reagents consuming. Lab-on-a-chip technology offers tremendous potential for obtaining desired analytical information in a simpler, faster and cheaper way compared to traditional batch/laboratory-based technology. Particularly attractive for multiple DNA and protein recognition applications (i.e. point-of-care) is the high-throughput, automation, versatility, portability, reagent/sample economy and high-performance of such micromachined devices. Overall objective of the proposed research is to create and characterize a portable microanalyzer, based on a novel advanced Lab-on-a-Chip technology with magnetic separation and end-column quantum dots tracers voltammetric detection of multiple DNA and protein targets for point-of-care , automated, high-throughput, sensitive, selective and simultaneous assays. The new micro-total analytical system will rely on coupling of microfluidic transport of samples, effective flow-through magnetic separation complementary/non-complementary DNA and protein targets and a novel chip-based voltammetric stripping detection of quantum dot tags. To successfully complete such advanced micro-total analytical system, several fundamental and practical issues will be addressed.
Max ERC Funding
1 400 000 €
Duration
Start date: 2010-04-01, End date: 2015-03-31
Project acronym LARGEMS
Project The Dynamic Composition of Protein Complexes: A New Perspective in Structural Biology
Researcher (PI) Michal Sharon
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Country Israel
Call Details Starting Grant (StG), PE4, ERC-2009-StG
Summary 80% of the proteome exists in complexes or large macromolecular assemblies. It is accepted that revealing the structure of these protein complexes is a key towards mechanistic understanding of cellular processes. Yet, this might not be sufficient; a higher level of complexity probably exists and protein complexes may not be static and uniform in form and function as thought. A protein complex may actually represent an ensemble of compositionally distinct entities with functional versatility. My main aim is to provide evidence for this conceptual change and to reveal the dynamic architecture of a protein assembly. As a model system, I will investigate the COP9 signalosome (CSN), an evolutionary conserved multisubunit complex, which is involved in a variety of essential functions ranging from cell-cycle progression, DNA-repair and apoptosis. My strategy is based on a comprehensive approach, made up of four main steps; i) Revealing the structural organization of the native complex. ii) Establishing whether the complex has co-existing independent modules that function separately of, or coordinately with the holocomplex. iii) Monitoring in real-time the biogenesis and activation pathway of the complex and developing an approach for shifting its oligomerization equilibrium. iv) Determining the correlation between modularity of the complex and cell cycle progression and comparing its composition in healthy versus cancerous cells. I will integrate genetic, biochemical and structural biology approaches. In particular, I will apply a state of the art mass spectrometry technique, that will enable us to define the stoichiometry, subunit composition, dynamic interactions and structural organization of protein complexes isolated directly from the cellular environment.
Summary
80% of the proteome exists in complexes or large macromolecular assemblies. It is accepted that revealing the structure of these protein complexes is a key towards mechanistic understanding of cellular processes. Yet, this might not be sufficient; a higher level of complexity probably exists and protein complexes may not be static and uniform in form and function as thought. A protein complex may actually represent an ensemble of compositionally distinct entities with functional versatility. My main aim is to provide evidence for this conceptual change and to reveal the dynamic architecture of a protein assembly. As a model system, I will investigate the COP9 signalosome (CSN), an evolutionary conserved multisubunit complex, which is involved in a variety of essential functions ranging from cell-cycle progression, DNA-repair and apoptosis. My strategy is based on a comprehensive approach, made up of four main steps; i) Revealing the structural organization of the native complex. ii) Establishing whether the complex has co-existing independent modules that function separately of, or coordinately with the holocomplex. iii) Monitoring in real-time the biogenesis and activation pathway of the complex and developing an approach for shifting its oligomerization equilibrium. iv) Determining the correlation between modularity of the complex and cell cycle progression and comparing its composition in healthy versus cancerous cells. I will integrate genetic, biochemical and structural biology approaches. In particular, I will apply a state of the art mass spectrometry technique, that will enable us to define the stoichiometry, subunit composition, dynamic interactions and structural organization of protein complexes isolated directly from the cellular environment.
Max ERC Funding
1 500 000 €
Duration
Start date: 2009-09-01, End date: 2014-08-31
Project acronym LAST
Project Large Scale Privacy-Preserving Technology in the Digital World - Infrastructure and Applications
Researcher (PI) Yehuda Lindell
Host Institution (HI) BAR ILAN UNIVERSITY
Country Israel
Call Details Starting Grant (StG), PE6, ERC-2009-StG
Summary Data mining provides large benefits to the commercial, government and homeland security sectors, but the aggregation and storage of huge amounts of data about citizens inevitably leads to erosion of privacy. To achieve the benefits that data mining has to offer, while at the same time enhancing privacy, we need technological solutions that simultaneously enable data mining while preserving privacy. The current state of the art has focused on providing privacy-preserving solutions for very specific problems, and has thus taken a local perspective. Although this is an important first step in the development of privacy-preserving solutions, it is time for a global perspective on the problem that aims for providing full integrated solutions. Our goal in this research is to study privacy and develop comprehensive solutions for enhancing it in the digital era. Our proposed research project includes foundational research on privacy, an infrastructure level for achieving anonymity over the Internet, key cryptographic tools for constructing privacy-preserving protocols, and development of large-scale applications that are built on top of all of the above. The novelty of our research is in our focus on fundamental issues towards comprehensive solutions that are aimed for large-scale data sources. The project s outcome will allow migration from local solutions for specific problems that are suited for small to medium scale data sources to comprehensive privacy-preserving database and data mining solutions for large scale data warehouses. Achieving this great challenge carries immense scientific, technological and societal rewards.
Summary
Data mining provides large benefits to the commercial, government and homeland security sectors, but the aggregation and storage of huge amounts of data about citizens inevitably leads to erosion of privacy. To achieve the benefits that data mining has to offer, while at the same time enhancing privacy, we need technological solutions that simultaneously enable data mining while preserving privacy. The current state of the art has focused on providing privacy-preserving solutions for very specific problems, and has thus taken a local perspective. Although this is an important first step in the development of privacy-preserving solutions, it is time for a global perspective on the problem that aims for providing full integrated solutions. Our goal in this research is to study privacy and develop comprehensive solutions for enhancing it in the digital era. Our proposed research project includes foundational research on privacy, an infrastructure level for achieving anonymity over the Internet, key cryptographic tools for constructing privacy-preserving protocols, and development of large-scale applications that are built on top of all of the above. The novelty of our research is in our focus on fundamental issues towards comprehensive solutions that are aimed for large-scale data sources. The project s outcome will allow migration from local solutions for specific problems that are suited for small to medium scale data sources to comprehensive privacy-preserving database and data mining solutions for large scale data warehouses. Achieving this great challenge carries immense scientific, technological and societal rewards.
Max ERC Funding
1 921 316 €
Duration
Start date: 2009-10-01, End date: 2014-09-30
Project acronym MAQD
Project Mathematical Aspects of Quantum Dynamics
Researcher (PI) Benjamin Schlein
Host Institution (HI) University of Zurich
Country Switzerland
Call Details Starting Grant (StG), PE1, ERC-2009-StG
Summary The main goal of this proposal is to reach
a better mathematical understanding of
the dynamics of quantum mechanical
systems. In particular I plan to work
on the following three projects along
this direction. A. Effective Evolution
Equations for Macroscopic Systems.
The derivation of effective evolution
equations from first principle microscopic
theories is a fundamental task of statistical
mechanics. I have been involved in
several projects related to the derivation
of the Hartree and the Gross-Piteavskii
equation from many body quantum
dynamics. I plan to continue to work on
these problems and to use these results
to obtain new information on the many
body dynamics. B. Spectral Properties
of Random Matrices. The correlations
among eigenvalues of large random
matrices are expected to be independent
of the distribution of the entries. This
conjecture, known as universality, is
of great importance for random matrix
theory. In collaboration with L. Erdos and
H.-T. Yau, we established the validity of
Wigner's semicircle law on
microscopic scales, and we proved the
emergence of eigenvalue repulsion. In
the future, we plan to continue to study
Wigner matrices to prove, on the longer
term, universality. C. Locality Estimates in
Quantum Dynamics. Anharmonic lattice
systems are very important models in
non-equilibrium statistical mechanics.
With B. Nachtergaele, H. Raz, and R.
Sims, we proved Lieb-Robinson type
inequalities (giving an upper bound on
the speed of propagation of signals), for
a certain class of anharmonicity. Next, we
plan to extend these results to a larger
class of anharmonic potentials, and to
apply these bounds to establish other
fundamental properties of the dynamics
of anharmonic systems, such as the
existence of its thermodynamical limit.
Summary
The main goal of this proposal is to reach
a better mathematical understanding of
the dynamics of quantum mechanical
systems. In particular I plan to work
on the following three projects along
this direction. A. Effective Evolution
Equations for Macroscopic Systems.
The derivation of effective evolution
equations from first principle microscopic
theories is a fundamental task of statistical
mechanics. I have been involved in
several projects related to the derivation
of the Hartree and the Gross-Piteavskii
equation from many body quantum
dynamics. I plan to continue to work on
these problems and to use these results
to obtain new information on the many
body dynamics. B. Spectral Properties
of Random Matrices. The correlations
among eigenvalues of large random
matrices are expected to be independent
of the distribution of the entries. This
conjecture, known as universality, is
of great importance for random matrix
theory. In collaboration with L. Erdos and
H.-T. Yau, we established the validity of
Wigner's semicircle law on
microscopic scales, and we proved the
emergence of eigenvalue repulsion. In
the future, we plan to continue to study
Wigner matrices to prove, on the longer
term, universality. C. Locality Estimates in
Quantum Dynamics. Anharmonic lattice
systems are very important models in
non-equilibrium statistical mechanics.
With B. Nachtergaele, H. Raz, and R.
Sims, we proved Lieb-Robinson type
inequalities (giving an upper bound on
the speed of propagation of signals), for
a certain class of anharmonicity. Next, we
plan to extend these results to a larger
class of anharmonic potentials, and to
apply these bounds to establish other
fundamental properties of the dynamics
of anharmonic systems, such as the
existence of its thermodynamical limit.
Max ERC Funding
750 000 €
Duration
Start date: 2009-12-01, End date: 2014-11-30
Project acronym MINE
Project Molecular Interfacial structure and dynamics of Nanoscopic droplets in Emulsions (MINE)
Researcher (PI) Sylvie Roke
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Country Switzerland
Call Details Starting Grant (StG), PE4, ERC-2009-StG
Summary Emulsions consist of one liquid dispersed as nanoscopic droplets in another liquid, such as milk, and butter. The understanding of the structure and stability of emulsions is commonly obtained from empirical studies in which a macroscopic parameter (like temperature or concentration of constituents) is varied. Since the work of Irving Langmuir and others (published in 1917) it is well established that the stability and properties of these nanoscopic droplets are strongly influenced by the state of the droplet interface. However, despite the abundance and importance of emulsions in our daily lives, the molecular mechanisms that dictate the stability and properties of emulsions are still unknown. This lack of insight is caused by the system itself: the condensed surrounding medium forms an impenetrable barrier to most molecular probes. Nonlinear light scattering spectroscopy, a novel method I have developed (both theoretically and experimentally), offers a way of obtaining molecular information (chemical composition, molecular orientation, ordering and chirality) of the interfaces of nanoscopic particles in solution. With this method it should be possible to observe, in-situ, non-invasively and label-free, the molecules at the interface of the nanoscopic droplets in solution. I therefore propose to form a small group that investigates interfaces of nanoscopic droplets in emulsions on the molecular level and timescale. Using femtosecond nonlinear light scattering methods we can finally observe the molecules that dictate the structure and stability of emulsions in action.
Summary
Emulsions consist of one liquid dispersed as nanoscopic droplets in another liquid, such as milk, and butter. The understanding of the structure and stability of emulsions is commonly obtained from empirical studies in which a macroscopic parameter (like temperature or concentration of constituents) is varied. Since the work of Irving Langmuir and others (published in 1917) it is well established that the stability and properties of these nanoscopic droplets are strongly influenced by the state of the droplet interface. However, despite the abundance and importance of emulsions in our daily lives, the molecular mechanisms that dictate the stability and properties of emulsions are still unknown. This lack of insight is caused by the system itself: the condensed surrounding medium forms an impenetrable barrier to most molecular probes. Nonlinear light scattering spectroscopy, a novel method I have developed (both theoretically and experimentally), offers a way of obtaining molecular information (chemical composition, molecular orientation, ordering and chirality) of the interfaces of nanoscopic particles in solution. With this method it should be possible to observe, in-situ, non-invasively and label-free, the molecules at the interface of the nanoscopic droplets in solution. I therefore propose to form a small group that investigates interfaces of nanoscopic droplets in emulsions on the molecular level and timescale. Using femtosecond nonlinear light scattering methods we can finally observe the molecules that dictate the structure and stability of emulsions in action.
Max ERC Funding
1 150 000 €
Duration
Start date: 2009-11-01, End date: 2014-10-31
Project acronym MINT
Project Multiphoton Ionization Nano-Therapy
Researcher (PI) Dvir Yelin
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Country Israel
Call Details Starting Grant (StG), PE7, ERC-2009-StG
Summary The application of nanotechnology for addressing key problems in clinical diagnosis and therapy holds great promise in medicine and in cancer in particular. Recent works have shown significant progress in nanoparticle-mediated drug delivery and therapy. In these applications, however, the small dimensions of the nanoparticles have been used primarily for efficient delivery and specificity, while the effects mediated by the nanoparticles occur away from the particle itself, affecting the entire cell\tumour volume. We propose to study and develop, for the first time, a novel scheme for cancer therapy that treats cancer cells at nanoscale resolutions. Briefly, when noble-metal nanoparticles are illuminated with femtosecond laser pulses tuned to their plasmonic resonance, order-of-magnitude enhancements of the optical fields several nanometres away from their surfaces lead to local damage only to nearby molecules or cellular organelles. This process, which practically involves no toxic agents, is at the basis for this proposal; we will utilize techniques for targeting nanoparticles to cells, initiate and control cancer cell destruction using nanoparticles and femtosecond laser pulses, and develop technology for conducting image-guided minimally invasive cancer therapy in remote locations of the body. Preliminary results supporting the proposed scheme include nonlinear optical imaging and ablation of living cells, in vivo endoscopic imaging of cancerous tumour nodules, and computer simulations of light-nanoparticle interactions. Using state-of-the-art concepts in nanotechnology, biology, chemistry, and medicine, the proposed novel multidisciplinary research will attempt at offering a feasible and safe addition to existing forms of cancer therapy.
Summary
The application of nanotechnology for addressing key problems in clinical diagnosis and therapy holds great promise in medicine and in cancer in particular. Recent works have shown significant progress in nanoparticle-mediated drug delivery and therapy. In these applications, however, the small dimensions of the nanoparticles have been used primarily for efficient delivery and specificity, while the effects mediated by the nanoparticles occur away from the particle itself, affecting the entire cell\tumour volume. We propose to study and develop, for the first time, a novel scheme for cancer therapy that treats cancer cells at nanoscale resolutions. Briefly, when noble-metal nanoparticles are illuminated with femtosecond laser pulses tuned to their plasmonic resonance, order-of-magnitude enhancements of the optical fields several nanometres away from their surfaces lead to local damage only to nearby molecules or cellular organelles. This process, which practically involves no toxic agents, is at the basis for this proposal; we will utilize techniques for targeting nanoparticles to cells, initiate and control cancer cell destruction using nanoparticles and femtosecond laser pulses, and develop technology for conducting image-guided minimally invasive cancer therapy in remote locations of the body. Preliminary results supporting the proposed scheme include nonlinear optical imaging and ablation of living cells, in vivo endoscopic imaging of cancerous tumour nodules, and computer simulations of light-nanoparticle interactions. Using state-of-the-art concepts in nanotechnology, biology, chemistry, and medicine, the proposed novel multidisciplinary research will attempt at offering a feasible and safe addition to existing forms of cancer therapy.
Max ERC Funding
1 782 600 €
Duration
Start date: 2009-12-01, End date: 2014-11-30
Project acronym MIRTURN
Project Mechanisms of microRNA biogenesis and turnover
Researcher (PI) Helge Grosshans
Host Institution (HI) FRIEDRICH MIESCHER INSTITUTE FOR BIOMEDICAL RESEARCH FONDATION
Country Switzerland
Call Details Starting Grant (StG), LS2, ERC-2009-StG
Summary MicroRNAs (miRNAs) are a novel class of genes, accounting for >1% of genes in a typical animal genome. They constitute an important layer of gene regulation that affects diverse processes such as cell differentiation, apoptosis, and metabolism. Despite such critical roles, deciphering the mechanism of action of miRNAs has been difficult, leading to multiple, partially contradictory, models of miRNA activity. Moreover, adding an additional layer of complexity, it is now emerging that miRNA activity is regulated by various mechanisms that we are only beginning to identify. Our objective is to understand how miRNAs are regulated under physiological conditions, in the roundworm Caenorhabditis elegans. We will focus on pathways of miRNA turnover, an issue of fundamental importance that has received little attention because miRNAs are widely held to be highly stable molecules. However, miRNA over-accumulation causes aberrant development and disease, prompting us to test rigorously whether degradation can antagonize miRNA activity and either identify the machinery involved, or confirm the dominance of other regulatory modalities, whose components we will identify. C. elegans is the organism in which miRNAs and many components of the miRNA machinery were discovered. However, previous studies emphasized genetics and cell biology approaches, limiting the degree of mechanistic insight that could be obtained. In addition to exploiting the traditional strengths of C. elegans, we will therefore develop and apply biochemical and genomic techniques to obtain a comprehensive understanding of miRNA regulation, enabling us to demonstrate both molecular mechanisms and physiological relevance. Given the importance of miRNAs in development and disease, identifying the regulators of these tiny gene regulators will be both of scientific interest and biomedical relevance.
Summary
MicroRNAs (miRNAs) are a novel class of genes, accounting for >1% of genes in a typical animal genome. They constitute an important layer of gene regulation that affects diverse processes such as cell differentiation, apoptosis, and metabolism. Despite such critical roles, deciphering the mechanism of action of miRNAs has been difficult, leading to multiple, partially contradictory, models of miRNA activity. Moreover, adding an additional layer of complexity, it is now emerging that miRNA activity is regulated by various mechanisms that we are only beginning to identify. Our objective is to understand how miRNAs are regulated under physiological conditions, in the roundworm Caenorhabditis elegans. We will focus on pathways of miRNA turnover, an issue of fundamental importance that has received little attention because miRNAs are widely held to be highly stable molecules. However, miRNA over-accumulation causes aberrant development and disease, prompting us to test rigorously whether degradation can antagonize miRNA activity and either identify the machinery involved, or confirm the dominance of other regulatory modalities, whose components we will identify. C. elegans is the organism in which miRNAs and many components of the miRNA machinery were discovered. However, previous studies emphasized genetics and cell biology approaches, limiting the degree of mechanistic insight that could be obtained. In addition to exploiting the traditional strengths of C. elegans, we will therefore develop and apply biochemical and genomic techniques to obtain a comprehensive understanding of miRNA regulation, enabling us to demonstrate both molecular mechanisms and physiological relevance. Given the importance of miRNAs in development and disease, identifying the regulators of these tiny gene regulators will be both of scientific interest and biomedical relevance.
Max ERC Funding
1 782 200 €
Duration
Start date: 2010-05-01, End date: 2015-04-30
Project acronym NEUROCHEMS
Project From neurons to behavior: analysis of the mechanisms underlying sensory coding and plasticity in chemical senses
Researcher (PI) Alan, Jacques, Henri, Cyrus Carleton
Host Institution (HI) UNIVERSITE DE GENEVE
Country Switzerland
Call Details Starting Grant (StG), LS5, ERC-2009-StG
Summary How sensory processing is occurring into the brain and how to relate behavior to neuronal activities are key questions in modern neuroscience. Understanding the neural codes underlying brain function will be of great importance for future implementation of brain-machine interfaces. This research project proposes to study the cellular and network mechanisms controlling sensory perception. In particular, we would like to precise how sensory stimuli are coded by brain networks and how these representations may be influenced by experience or modulatory brain centers. In order to address these general questions, we propose to study olfaction as model sensory system. The olfactory system is central to the behavior of rodents (animal models that we study), is highly plastic and largely modulated by the neuromodulatory brain centers. We propose to use a combination of genetic, electrophysiological, imaging and behavioral methods to study how odor information is processed in the central nervous system as it moves from the periphery to higher areas of the brain. We showed in the past that sensory information can be contained in dynamic neural ensemble. We propose to show that ensemble dynamics may be the basis of odor coding in the olfactory bulb and to describe the mechanisms underlying cortical coding that would allow us to relate neuronal activity to behavior. In addition, we hope to show the existence of a novel form of plasticity in the olfactory bulb namely ensemble plasticity. We believe that the general questions addressed in the study of these sensory systems go beyond understanding olfactory sensory perception and could potentially be generalized to the function of many brain regions.
Summary
How sensory processing is occurring into the brain and how to relate behavior to neuronal activities are key questions in modern neuroscience. Understanding the neural codes underlying brain function will be of great importance for future implementation of brain-machine interfaces. This research project proposes to study the cellular and network mechanisms controlling sensory perception. In particular, we would like to precise how sensory stimuli are coded by brain networks and how these representations may be influenced by experience or modulatory brain centers. In order to address these general questions, we propose to study olfaction as model sensory system. The olfactory system is central to the behavior of rodents (animal models that we study), is highly plastic and largely modulated by the neuromodulatory brain centers. We propose to use a combination of genetic, electrophysiological, imaging and behavioral methods to study how odor information is processed in the central nervous system as it moves from the periphery to higher areas of the brain. We showed in the past that sensory information can be contained in dynamic neural ensemble. We propose to show that ensemble dynamics may be the basis of odor coding in the olfactory bulb and to describe the mechanisms underlying cortical coding that would allow us to relate neuronal activity to behavior. In addition, we hope to show the existence of a novel form of plasticity in the olfactory bulb namely ensemble plasticity. We believe that the general questions addressed in the study of these sensory systems go beyond understanding olfactory sensory perception and could potentially be generalized to the function of many brain regions.
Max ERC Funding
1 399 998 €
Duration
Start date: 2009-12-01, End date: 2014-11-30
Project acronym NOVEL TOOLS IN PD
Project Novel tools for real time monitoring and quantification of protein aggregation in Parkinson s disease and related neurodegenerative disorders
Researcher (PI) Hilal Lashuel
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Country Switzerland
Call Details Starting Grant (StG), LS5, ERC-2009-StG
Summary To understand the molecular basis of any biological process, it is critical that one is not only able to visualize and monitor molecular events that underlie this process, but also to possess the tools to manipulate these events in a spatial and temporal fashion both in and out of the cell. The overall objective of this proposal is to apply chemical biology approaches to allow real time monitoring of protein aggregation and to dissect the role of specific disease-associated post-translational modifications, phosphorylation, nitration, and truncation on the structure, aggregation, and biochemical properties of monomeric a-syn in health and disease. To achieve these goals, we plan to use a combination of organic chemistry, molecular biology, proteomics, protein engineering, and semisynthetic strategies to facilitate site-specific introduction of post-translational modifications that can be masked and activated in a controllable manner, both inside and outside living cells. Modified synthetic ±-syn will be introduced into primary neurons and cellular models of synucleinopathies and the consequences of masking or activating specific modifications will be assessed using biochemical, immunofluorescence, and live imaging techniques (Specific Aim 1). The absence of specific molecular probes that allow in vivo monitoring and quantitative measurement of toxic misfolded and aggregation intermediates represents a major impediment to understanding the relationship among protein misfolding, post-translational modification, protein aggregation, neurodegeneration, and cell death in PD and other neurodegenerative disorders. To address this challenge, we plan to develop and characterize novel antibodies that target different species along the amyloid formation pathway of ±-syn (Specific Aim 2).
Summary
To understand the molecular basis of any biological process, it is critical that one is not only able to visualize and monitor molecular events that underlie this process, but also to possess the tools to manipulate these events in a spatial and temporal fashion both in and out of the cell. The overall objective of this proposal is to apply chemical biology approaches to allow real time monitoring of protein aggregation and to dissect the role of specific disease-associated post-translational modifications, phosphorylation, nitration, and truncation on the structure, aggregation, and biochemical properties of monomeric a-syn in health and disease. To achieve these goals, we plan to use a combination of organic chemistry, molecular biology, proteomics, protein engineering, and semisynthetic strategies to facilitate site-specific introduction of post-translational modifications that can be masked and activated in a controllable manner, both inside and outside living cells. Modified synthetic ±-syn will be introduced into primary neurons and cellular models of synucleinopathies and the consequences of masking or activating specific modifications will be assessed using biochemical, immunofluorescence, and live imaging techniques (Specific Aim 1). The absence of specific molecular probes that allow in vivo monitoring and quantitative measurement of toxic misfolded and aggregation intermediates represents a major impediment to understanding the relationship among protein misfolding, post-translational modification, protein aggregation, neurodegeneration, and cell death in PD and other neurodegenerative disorders. To address this challenge, we plan to develop and characterize novel antibodies that target different species along the amyloid formation pathway of ±-syn (Specific Aim 2).
Max ERC Funding
1 495 400 €
Duration
Start date: 2009-12-01, End date: 2014-11-30
Project acronym NOWIRE
Project Network Coding for Wireless Networks
Researcher (PI) Christina Fragouli
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Country Switzerland
Call Details Starting Grant (StG), PE7, ERC-2009-StG
Summary Our goal is to develop fundamentally new architectures for wireless networks that offer the convenience of wireless communication while achieving the performance, predictability and security of wired networks. The wireless channel is inherently a shared medium characterized by limited resources and complex signal interactions between transmitted signals. The question we address is how do we transmit information over wireless and how do we exploit the wireless channel properties to share its resources. Ours is a fundamentally different approach to existing strategies, that builds on new physical and packet layer sharing and cooperation paradigms that we have been working on, to extract the optimal throughput and reliability performance from the wireless medium. These are recent breakthroughs in (i) network coding and (ii) wireless cooperation. Network coding is a new area bringing a novel paradigm for network information flow that enables cooperation at a packet level to optimally share the network resources. Deployment of the first network coding ideas in wireless have already indicated benefits as large as a factor of ten in terms of throughput. Complex signal interactions caused by the inherent broadcast nature of wireless channels, is traditionally viewed as an impediment to be mitigated. Recently it has been demonstrated that one can utilize interference to develop cooperation at the wireless signal level (physical layer) for arbitrary wireless networks. This can give significant capacity advantages over techniques that mitigate interference. Both these ideas can radically affect the way information is communicated, stored and collected, and can revolutionize the design of future wireless networks. In this project we plan to addess several fundamental questions that develop on these themes. We take a complete view of these ideas by not only developing the underlying theory but also through validation on wireless testbeds.
Summary
Our goal is to develop fundamentally new architectures for wireless networks that offer the convenience of wireless communication while achieving the performance, predictability and security of wired networks. The wireless channel is inherently a shared medium characterized by limited resources and complex signal interactions between transmitted signals. The question we address is how do we transmit information over wireless and how do we exploit the wireless channel properties to share its resources. Ours is a fundamentally different approach to existing strategies, that builds on new physical and packet layer sharing and cooperation paradigms that we have been working on, to extract the optimal throughput and reliability performance from the wireless medium. These are recent breakthroughs in (i) network coding and (ii) wireless cooperation. Network coding is a new area bringing a novel paradigm for network information flow that enables cooperation at a packet level to optimally share the network resources. Deployment of the first network coding ideas in wireless have already indicated benefits as large as a factor of ten in terms of throughput. Complex signal interactions caused by the inherent broadcast nature of wireless channels, is traditionally viewed as an impediment to be mitigated. Recently it has been demonstrated that one can utilize interference to develop cooperation at the wireless signal level (physical layer) for arbitrary wireless networks. This can give significant capacity advantages over techniques that mitigate interference. Both these ideas can radically affect the way information is communicated, stored and collected, and can revolutionize the design of future wireless networks. In this project we plan to addess several fundamental questions that develop on these themes. We take a complete view of these ideas by not only developing the underlying theory but also through validation on wireless testbeds.
Max ERC Funding
1 771 520 €
Duration
Start date: 2009-09-01, End date: 2014-08-31
Project acronym ORGELNANOCARBMATER
Project A Universal Supramolecular Approach toward Organic Electronic Materials and Nanostructured Carbonaceous Materials from Molecular Precursors
Researcher (PI) Holger Frauenrath
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Country Switzerland
Call Details Starting Grant (StG), PE5, ERC-2009-StG
Summary Research in novel energy sources, efficient energy storage, sustainable chemical technology, and smaller microelectronic devices with interfaces for biological systems are among the current challenges in science and technology. Carbonaceous materials and organic electronic materials which speak the language of biomaterials will play a central role in the search for possible solutions. We aim to develop a universal supramolecular approach for their preparation and propose to develop synthetic pathways toward conjugated oligomers carrying hydrogen-bonded substituents, such as oligopeptide-polymer conjugates. These substituents serve as a supramolecular motif promoting the aggregation of the molecular precursors into single crystals, thin films, or soluble one-dimensional nanostructures. The obtained ordered phases or nanostructures from conjugated molecules themselves are highly interesting candidates for applications in photovoltaic, light-emitting, or semiconducting devices. Related nanostructures from oligo(phenylene)s or oligo(ethynylene)s will serve as reactive molecular precursors for a conversion into soluble graphene ribbon nanostructures. Finally, this approach will be extended toward the preparation of carbonaceous materials from amphiphilic oligo(ethynylene)s as energy-rich molecular precursors under preservation of the mesoscopic morphology, surface chemistry, and carbon microstructure. The obtained materials are highly interesting with respect to ion or hydrogen storage, and transition-metal-free catalysis. Hence, this research project aims to combine synthetic organic chemistry, supramolecular chemistry, and materials science in order to both deliver novel materials and improve our understanding in utilizing supramolecular-synthetic methods in their preparation.
Summary
Research in novel energy sources, efficient energy storage, sustainable chemical technology, and smaller microelectronic devices with interfaces for biological systems are among the current challenges in science and technology. Carbonaceous materials and organic electronic materials which speak the language of biomaterials will play a central role in the search for possible solutions. We aim to develop a universal supramolecular approach for their preparation and propose to develop synthetic pathways toward conjugated oligomers carrying hydrogen-bonded substituents, such as oligopeptide-polymer conjugates. These substituents serve as a supramolecular motif promoting the aggregation of the molecular precursors into single crystals, thin films, or soluble one-dimensional nanostructures. The obtained ordered phases or nanostructures from conjugated molecules themselves are highly interesting candidates for applications in photovoltaic, light-emitting, or semiconducting devices. Related nanostructures from oligo(phenylene)s or oligo(ethynylene)s will serve as reactive molecular precursors for a conversion into soluble graphene ribbon nanostructures. Finally, this approach will be extended toward the preparation of carbonaceous materials from amphiphilic oligo(ethynylene)s as energy-rich molecular precursors under preservation of the mesoscopic morphology, surface chemistry, and carbon microstructure. The obtained materials are highly interesting with respect to ion or hydrogen storage, and transition-metal-free catalysis. Hence, this research project aims to combine synthetic organic chemistry, supramolecular chemistry, and materials science in order to both deliver novel materials and improve our understanding in utilizing supramolecular-synthetic methods in their preparation.
Max ERC Funding
1 700 000 €
Duration
Start date: 2009-09-01, End date: 2014-08-31
Project acronym PAC
Project Proofs and Computation
Researcher (PI) Eliyahu Ben Sasson
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Country Israel
Call Details Starting Grant (StG), PE6, ERC-2009-StG
Summary The project described in this proposal studies formal proofs and their interaction with computation. The study of propositional proofs is connected to a spectrum of problems in our field, starting with the meta-mathematical quest to explain our failure to understand computation and make progress on the basic questions haunting our field (such as P vs. NP), and ending with the industry-driven quest for better algorithms for solving instances of the satisfiability problem. In a seemingly different direction, the recent introduction of magical probabilistically checkable proofs (PCPs) has opened new horizons in computer science, ranging from a deeper understanding of approximation algorithms and their limits to the construction of super-efficient protocols for the verification of proofs and computations. We suggest to study proofs and computation with three main objectives. First, to construct better SAT solvers via a better understanding of propositional proof systems. Second, to expand the range of applications of PCPs and transform them from the purely theoretical objects that they currently are to practical and accessible formats for use in all settings where proofs are encountered. Third, to expand our theoretical understanding of the intrinsic limits of proofs, with an eye towards explaining why we are unable to make significant progress on central questions in computational complexity. We believe this project can bridge across different regions of computer science such as SAT solving and proof complexity, theory and practice, propositional proofs and probabilistically checkable ones. And its expected impact will start on the theoretical mathematical level that forms the foundation of computer science and percolate to more practical areas of our field.
Summary
The project described in this proposal studies formal proofs and their interaction with computation. The study of propositional proofs is connected to a spectrum of problems in our field, starting with the meta-mathematical quest to explain our failure to understand computation and make progress on the basic questions haunting our field (such as P vs. NP), and ending with the industry-driven quest for better algorithms for solving instances of the satisfiability problem. In a seemingly different direction, the recent introduction of magical probabilistically checkable proofs (PCPs) has opened new horizons in computer science, ranging from a deeper understanding of approximation algorithms and their limits to the construction of super-efficient protocols for the verification of proofs and computations. We suggest to study proofs and computation with three main objectives. First, to construct better SAT solvers via a better understanding of propositional proof systems. Second, to expand the range of applications of PCPs and transform them from the purely theoretical objects that they currently are to practical and accessible formats for use in all settings where proofs are encountered. Third, to expand our theoretical understanding of the intrinsic limits of proofs, with an eye towards explaining why we are unable to make significant progress on central questions in computational complexity. We believe this project can bridge across different regions of computer science such as SAT solving and proof complexity, theory and practice, propositional proofs and probabilistically checkable ones. And its expected impact will start on the theoretical mathematical level that forms the foundation of computer science and percolate to more practical areas of our field.
Max ERC Funding
1 743 676 €
Duration
Start date: 2009-12-01, End date: 2015-09-30
Project acronym PALMASSEMBLY
Project Protein assembly: From the molecular scale to the mesoscale with super-resolution imaging
Researcher (PI) Suliana Manley
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Country Switzerland
Call Details Starting Grant (StG), LS1, ERC-2009-StG
Summary Cellular responses to external signals begin at the plasma membrane, where the dynamic assembly of receptors can regulate cellular activity. Membrane-enveloped viruses, including the human immunodeficiency virus (HIV) also assemble at the plasma membrane, exploiting mechanisms evolved for cellular trafficking. However, our physical paradigm for how proteins form mesoscale assemblies is far from complete. While the organization and dynamics of membrane proteins are heterogeneous, commonly used fluorescence-based measurements lack information at the molecular scale. In contrast, single molecule measurements limited to looking at only a few molecules in a given cell lack ensemble information. Thus, the study of protein assembly has been limited by a lack of spatially resolved, dynamic information on ensembles of molecules. We will use super-resolution fluorescence imaging techniques combined with live cell imaging and single molecule tracking to determine how the dynamics of protein assembly are coordinated. The long-term goal of my research is to use quantitative fluorescence methods to identify the physical mechanisms for protein transport and organization in cells. The objective of this proposal is to establish quantitative models of protein assembly in two specific biological systems which were selected for the distinct characteristics of their assembly, and their relevance to human health. This will test the central hypothesis that molecular assembly is enhanced by the organization of the plasma membrane in the form of cytoskeletal elements and protein-lipid platforms. This interdisciplinary research will provide an experimental foundation for a statistical description of the cell, whose behaviour is embedded in protein organization and dynamics.
Summary
Cellular responses to external signals begin at the plasma membrane, where the dynamic assembly of receptors can regulate cellular activity. Membrane-enveloped viruses, including the human immunodeficiency virus (HIV) also assemble at the plasma membrane, exploiting mechanisms evolved for cellular trafficking. However, our physical paradigm for how proteins form mesoscale assemblies is far from complete. While the organization and dynamics of membrane proteins are heterogeneous, commonly used fluorescence-based measurements lack information at the molecular scale. In contrast, single molecule measurements limited to looking at only a few molecules in a given cell lack ensemble information. Thus, the study of protein assembly has been limited by a lack of spatially resolved, dynamic information on ensembles of molecules. We will use super-resolution fluorescence imaging techniques combined with live cell imaging and single molecule tracking to determine how the dynamics of protein assembly are coordinated. The long-term goal of my research is to use quantitative fluorescence methods to identify the physical mechanisms for protein transport and organization in cells. The objective of this proposal is to establish quantitative models of protein assembly in two specific biological systems which were selected for the distinct characteristics of their assembly, and their relevance to human health. This will test the central hypothesis that molecular assembly is enhanced by the organization of the plasma membrane in the form of cytoskeletal elements and protein-lipid platforms. This interdisciplinary research will provide an experimental foundation for a statistical description of the cell, whose behaviour is embedded in protein organization and dynamics.
Max ERC Funding
1 542 518 €
Duration
Start date: 2009-12-01, End date: 2015-11-30
Project acronym PLANETOGENESIS
Project Building the next generation of planet formation models: protoplanetary disks, internal structure, and formation of planetary systems
Researcher (PI) Yann Alibert
Host Institution (HI) UNIVERSITAET BERN
Country Switzerland
Call Details Starting Grant (StG), PE9, ERC-2009-StG
Summary The discovery of extra-solar planetary systems with properties so different from those of our own Solar System has overturned our theoretical understanding of how planets and planetary systems form. Indeed, planet formation models have to link observations of two classes of objects: Protoplanetary disk, whose structure and early evolution provide the initial conditions of planets formation, and actual detected planets. The observational knowledge of these two classes of objects will see in the near future dramatic improvements, with three major breakthroughs: 1) high angular resolution observations will tightly constrain the structure and early evolution of protoplanetary disks, 2) direct observation of extrasolar planets will allow to understand their internal structure as well as their formation process, and 3) detection of very low mass extrasolar planets will constrain the mass function of planets and planetary systems, down to the terrestrial planet regime The goal of this project is to develop a theoretical understanding of planet formation that quantitatively stands up to these observational confrontations. For this, we will build on the basis of first generation planet formation models developed at the time the PI was assistant at the Physikalisches Institute of the University of Berne. The PI, a PhD student, and a Postdoc will conduct three inter-related sub-projects linked to the three breakthroughs mentioned above: A) improving the disk part of planet formation models, B) determining the internal structure of forming planets, including the effects of accretion shocks and envelope pollution by infalling planetesimals, and calculating their early evolution, and C) building planetary system formation models, including both gas giant and low mass rocky planets.
Summary
The discovery of extra-solar planetary systems with properties so different from those of our own Solar System has overturned our theoretical understanding of how planets and planetary systems form. Indeed, planet formation models have to link observations of two classes of objects: Protoplanetary disk, whose structure and early evolution provide the initial conditions of planets formation, and actual detected planets. The observational knowledge of these two classes of objects will see in the near future dramatic improvements, with three major breakthroughs: 1) high angular resolution observations will tightly constrain the structure and early evolution of protoplanetary disks, 2) direct observation of extrasolar planets will allow to understand their internal structure as well as their formation process, and 3) detection of very low mass extrasolar planets will constrain the mass function of planets and planetary systems, down to the terrestrial planet regime The goal of this project is to develop a theoretical understanding of planet formation that quantitatively stands up to these observational confrontations. For this, we will build on the basis of first generation planet formation models developed at the time the PI was assistant at the Physikalisches Institute of the University of Berne. The PI, a PhD student, and a Postdoc will conduct three inter-related sub-projects linked to the three breakthroughs mentioned above: A) improving the disk part of planet formation models, B) determining the internal structure of forming planets, including the effects of accretion shocks and envelope pollution by infalling planetesimals, and calculating their early evolution, and C) building planetary system formation models, including both gas giant and low mass rocky planets.
Max ERC Funding
1 395 323 €
Duration
Start date: 2010-02-01, End date: 2015-11-30
Project acronym PTPSBDC
Project The role of protein-tyrosine phosphatases in breast development and cancer
Researcher (PI) Mohamed Bentires-Alj
Host Institution (HI) FRIEDRICH MIESCHER INSTITUTE FOR BIOMEDICAL RESEARCH FONDATION
Country Switzerland
Call Details Starting Grant (StG), LS4, ERC-2009-StG
Summary Each year 1.1 million new cases of breast cancer will occur among women worldwide and 400,000 women will die from this disease. Although progress has been made in understanding breast tumor biology, most of the relevant molecules and pathways remain undefined. Their delineation is critical to a rational approach to breast cancer therapy. This proposal focuses on the role of the under-explored family of protein-tyrosine phosphatases (PTPs) in the normal and neoplastic breast. Virtually all cell signaling pathways are modulated by reversible protein tyrosine phosphorylation, which is regulated by two classes of enzymes: protein-tyrosine kinases (PTKs) and PTPs. Not surprisingly, tyrosine phosphorylation has an important role in breast development and cancer. Whereas the role of specific PTKs, like the HER2 receptor, in breast cancer is well studied, almost nothing is known about the function of specific PTPs in this disease. Our preliminary data suggest that PTP1B has an important role in breast differentiation and that both PTP1B and SHP2 play positive roles in breast cancer. The two predominant goals of this proposal are: First, to delineate the role of PTP1B and other PTPs in normal breast development and differentiation; second, to address the roles of PTP1B and other PTPs in the maintenance of breast cancer and metastasis and to assess their merits as drug targets. These studies not only use state-of-the-art ex vivo and in vivo models for studying breast pathophysiology, but also cross the boundaries between the developmental and cancer research fields and between basic science and clinical applications. Our research should ultimately lead to the rational design of targeted therapies that will improve the clinical management of patients with breast cancer.
Summary
Each year 1.1 million new cases of breast cancer will occur among women worldwide and 400,000 women will die from this disease. Although progress has been made in understanding breast tumor biology, most of the relevant molecules and pathways remain undefined. Their delineation is critical to a rational approach to breast cancer therapy. This proposal focuses on the role of the under-explored family of protein-tyrosine phosphatases (PTPs) in the normal and neoplastic breast. Virtually all cell signaling pathways are modulated by reversible protein tyrosine phosphorylation, which is regulated by two classes of enzymes: protein-tyrosine kinases (PTKs) and PTPs. Not surprisingly, tyrosine phosphorylation has an important role in breast development and cancer. Whereas the role of specific PTKs, like the HER2 receptor, in breast cancer is well studied, almost nothing is known about the function of specific PTPs in this disease. Our preliminary data suggest that PTP1B has an important role in breast differentiation and that both PTP1B and SHP2 play positive roles in breast cancer. The two predominant goals of this proposal are: First, to delineate the role of PTP1B and other PTPs in normal breast development and differentiation; second, to address the roles of PTP1B and other PTPs in the maintenance of breast cancer and metastasis and to assess their merits as drug targets. These studies not only use state-of-the-art ex vivo and in vivo models for studying breast pathophysiology, but also cross the boundaries between the developmental and cancer research fields and between basic science and clinical applications. Our research should ultimately lead to the rational design of targeted therapies that will improve the clinical management of patients with breast cancer.
Max ERC Funding
1 571 365 €
Duration
Start date: 2010-02-01, End date: 2015-01-31
Project acronym QUORUMPROBES
Project An Integrated Chemical Platform to Elucidate Eukaryotic Sensing of Bacterial Crosstalk
Researcher (PI) Michael Meijler
Host Institution (HI) BEN-GURION UNIVERSITY OF THE NEGEV
Country Israel
Call Details Starting Grant (StG), PE5, ERC-2009-StG
Summary The term quorum sensing (QS) describes the ability of a population of unicellular bacteria to act as a single multicellular organism in a cell-density-dependent manner. Bacteria achieve this feat by the use of small diffusible molecules to exchange information among themselves. Examples of QS-controlled behaviors are bioluminescence, virulence factor expression and biofilm formation. These processes are advantageous to a bacterial population only when they are carried out simultaneously by its members. In recent years, a surprising new role has been found for several QS molecules diverse eukaryotes have been found to react strongly to the presence of these compounds. My aim is to examine the hypothesis that diverse eukaryotic species have developed mechanisms to react to the presence of specific bacterial QS molecules in a receptor-mediated fashion. Specifically, we aim to identify receptors that are highly specific for the Pseudomonas aeruginosa QSM 3-oxo-C12-AHL, as no receptor has been identified yet. This is a significant challenge, that we will address developing an innovative platform of chemical, biochemical and microbiological investigations. Identification of specific QSM receptors in eukaryotes will allow us to further understand the complex mechanisms of coexistence and evolution of coexistence between prokaryotes and eukaryotes. The insight obtained from these experiments could lead to: a) an increased understanding of important principles that guide the evolution of symbiotic relationships between competing species; b) new approaches in the treatment of P. aeruginosa infections, as well as to potential new drugs for the treatment of autoimmune diseases; c) the development of an integrated platform that will enable the discovery of unknown receptors for small hydrophobic bioactive compounds.
Summary
The term quorum sensing (QS) describes the ability of a population of unicellular bacteria to act as a single multicellular organism in a cell-density-dependent manner. Bacteria achieve this feat by the use of small diffusible molecules to exchange information among themselves. Examples of QS-controlled behaviors are bioluminescence, virulence factor expression and biofilm formation. These processes are advantageous to a bacterial population only when they are carried out simultaneously by its members. In recent years, a surprising new role has been found for several QS molecules diverse eukaryotes have been found to react strongly to the presence of these compounds. My aim is to examine the hypothesis that diverse eukaryotic species have developed mechanisms to react to the presence of specific bacterial QS molecules in a receptor-mediated fashion. Specifically, we aim to identify receptors that are highly specific for the Pseudomonas aeruginosa QSM 3-oxo-C12-AHL, as no receptor has been identified yet. This is a significant challenge, that we will address developing an innovative platform of chemical, biochemical and microbiological investigations. Identification of specific QSM receptors in eukaryotes will allow us to further understand the complex mechanisms of coexistence and evolution of coexistence between prokaryotes and eukaryotes. The insight obtained from these experiments could lead to: a) an increased understanding of important principles that guide the evolution of symbiotic relationships between competing species; b) new approaches in the treatment of P. aeruginosa infections, as well as to potential new drugs for the treatment of autoimmune diseases; c) the development of an integrated platform that will enable the discovery of unknown receptors for small hydrophobic bioactive compounds.
Max ERC Funding
1 392 000 €
Duration
Start date: 2009-12-01, End date: 2014-11-30
Project acronym RECONMET
Project Reconstruction of methane flux from lakes: development and application of a new approach
Researcher (PI) Oliver Heiri
Host Institution (HI) UNIVERSITAET BERN
Country Switzerland
Call Details Starting Grant (StG), PE10, ERC-2009-StG
Summary Reconstruction of methane flux from lakes: development and application of a new approach
Summary
Reconstruction of methane flux from lakes: development and application of a new approach
Max ERC Funding
1 554 000 €
Duration
Start date: 2009-12-01, End date: 2014-11-30
Project acronym SEXGENTRANSEVOLUTION
Project Sex-biased genome and transcriptome evolution in mammals
Researcher (PI) Henrik Kaessmann
Host Institution (HI) UNIVERSITE DE LAUSANNE
Country Switzerland
Call Details Starting Grant (StG), LS2, ERC-2009-StG
Summary Mammalian males and females have many phenotypic differences. These differences, collectively referred to as sexual dimorphism, are the consequence of natural and sexual selection for phenotypic traits that affect the fitness of each sex and are encoded in the genome. Part of the underlying genomic differences between the sexes are found on sex specific (the Y) or sex biased chromosomes (the X), while many sexually dimorphic traits probably result from autosomal gene expression differences in sex specific or somatic tissues. However, the origin and evolution of sex-biased genes in mammals has not been studied in detail. I propose to generate the first detailed qualitative and quantitative transcriptome data using next generation sequencing technologies for a unique collection of germline and somatic tissues from representatives of all major mammalian lineages: placental mammals, marsupials, and the egg-laying monotremes. Together with detailed transcriptome data from birds (the evolutionary sister lineage), complementary experiments (e.g. methylome analyses), and available genomic resources from these species, these unprecedented data will allow an integrated analysis of the origin and functional evolution of mammalian sex chromosomes, the emergence of new sex biased genes, and the evolution of gene expression in germline versus somatic tissues in mammals at large. The proposed work will thus substantially increase our power to understand how mammalian genomes evolved the capacity to produce such pronounced sexually dimorphic traits. Beyond research pertaining to sex biased genome evolution, our data will represent a unique resource for future investigations of mammalian gene functions and serve as a basis for exploring the evolution of other mammal specific phenotypes.
Summary
Mammalian males and females have many phenotypic differences. These differences, collectively referred to as sexual dimorphism, are the consequence of natural and sexual selection for phenotypic traits that affect the fitness of each sex and are encoded in the genome. Part of the underlying genomic differences between the sexes are found on sex specific (the Y) or sex biased chromosomes (the X), while many sexually dimorphic traits probably result from autosomal gene expression differences in sex specific or somatic tissues. However, the origin and evolution of sex-biased genes in mammals has not been studied in detail. I propose to generate the first detailed qualitative and quantitative transcriptome data using next generation sequencing technologies for a unique collection of germline and somatic tissues from representatives of all major mammalian lineages: placental mammals, marsupials, and the egg-laying monotremes. Together with detailed transcriptome data from birds (the evolutionary sister lineage), complementary experiments (e.g. methylome analyses), and available genomic resources from these species, these unprecedented data will allow an integrated analysis of the origin and functional evolution of mammalian sex chromosomes, the emergence of new sex biased genes, and the evolution of gene expression in germline versus somatic tissues in mammals at large. The proposed work will thus substantially increase our power to understand how mammalian genomes evolved the capacity to produce such pronounced sexually dimorphic traits. Beyond research pertaining to sex biased genome evolution, our data will represent a unique resource for future investigations of mammalian gene functions and serve as a basis for exploring the evolution of other mammal specific phenotypes.
Max ERC Funding
1 901 522 €
Duration
Start date: 2010-02-01, End date: 2015-01-31
Project acronym SINGLE-CELL GENOMICS
Project Single-cell Gene Regulation in Differentiation and Pluripotency
Researcher (PI) Thore Rickard Hakan Sandberg
Host Institution (HI) KAROLINSKA INSTITUTET
Country Sweden
Call Details Starting Grant (StG), LS2, ERC-2009-StG
Summary We aim to study transcriptomes with single-cell resolution, a long-standing goal in biology, to answer fundamental questions about gene regulation. The main objective concerns gene regulation during in vivo differentiation and in pluripotent cells by studying single-cells from murine preimplantation embryos, a model system with natural single-cell resolution, important biology and medical potential. This would also allow us to explore general regulatory principles of gene expression programs of individual cells. This research program will be accomplished by novel deep sequencing technology of mRNAs (mRNA-Seq) to obtain quantitative, unbiased and genome-wide gene and isoform expression measurements. We are therefore developing new experimental and computational methods for genome-wide analyses of transcriptomes at single-cell resolution. The biological significances of the proposed research are unique insights into early embryonic development. Deep sequencing of transcriptomes will also reveal post-transcriptional gene regulation important for pluripotent cells and identified pluripotency-specific gene and isoform expressions will be important for future stem cell based therapies. The inherit single-cell nature of the model system together with its important biology makes it a model systems exceptionally well suited for a systems biology approach aiming to characterize gene regulation at single-cell resolution. The novel methodology has tremendous potential to enable complete mRNA characterization of individual cells. The deep sequencing approach with state-of-the-art computational analyses is both more quantitative than previous methods and it will give readouts on alternative isoforms generated by alternative promoters, splicing and polyadenylation.
Summary
We aim to study transcriptomes with single-cell resolution, a long-standing goal in biology, to answer fundamental questions about gene regulation. The main objective concerns gene regulation during in vivo differentiation and in pluripotent cells by studying single-cells from murine preimplantation embryos, a model system with natural single-cell resolution, important biology and medical potential. This would also allow us to explore general regulatory principles of gene expression programs of individual cells. This research program will be accomplished by novel deep sequencing technology of mRNAs (mRNA-Seq) to obtain quantitative, unbiased and genome-wide gene and isoform expression measurements. We are therefore developing new experimental and computational methods for genome-wide analyses of transcriptomes at single-cell resolution. The biological significances of the proposed research are unique insights into early embryonic development. Deep sequencing of transcriptomes will also reveal post-transcriptional gene regulation important for pluripotent cells and identified pluripotency-specific gene and isoform expressions will be important for future stem cell based therapies. The inherit single-cell nature of the model system together with its important biology makes it a model systems exceptionally well suited for a systems biology approach aiming to characterize gene regulation at single-cell resolution. The novel methodology has tremendous potential to enable complete mRNA characterization of individual cells. The deep sequencing approach with state-of-the-art computational analyses is both more quantitative than previous methods and it will give readouts on alternative isoforms generated by alternative promoters, splicing and polyadenylation.
Max ERC Funding
1 654 384 €
Duration
Start date: 2010-02-01, End date: 2015-01-31
Project acronym SIRAID
Project SIRT6 activation for countering age-related metabolic diseases
Researcher (PI) Haim Cohen
Host Institution (HI) BAR ILAN UNIVERSITY
Country Israel
Call Details Starting Grant (StG), LS4, ERC-2009-StG
Summary The significant increase in the human lifespan during the last century confronts us with great medical challenges. To answer them, one must understand and control the mechanisms that determine the rate of ageing. The sirtuins, and in particular the mammalian member SIRT6, are a family of NAD+ dependent deacetylases that were implicated in ageing and the regulation of metabolism. Much evidence correlates SIRT6 with the regulation of ageing, primarily the manifestation of ageing related pathologies in SIRT6 deficient mice, and the induction of SIRT6 by calorie-restricted diet that delays ageing and reduces its related diseases. Nonetheless, the role of SIRT6 in ageing and the mechanisms by which it might act are still elusive. To explore it at the molecular mechanistic level, SIRAID aims to i) study the role of SIRT6 in glucose and fat metabolism under high fat diet; ii) to determine whether SIRT6 is involved in regulating life span, and to characterise how SIRT6 is activated by calorie restriction; and iii) to perform large scale SILAC-based proteomics screening for SIRT6 substrates. These results will then be used for the development of small activator molecules of SIRT6 that may be used therapeutically for age related metabolic diseases. Taken together, we suggest a multifaceted approach that will allow us to explore the role of SIRT6 in ageing and metabolism, and to translate this knowledge to counter and prevent the medical problems associated with human longevity.
Summary
The significant increase in the human lifespan during the last century confronts us with great medical challenges. To answer them, one must understand and control the mechanisms that determine the rate of ageing. The sirtuins, and in particular the mammalian member SIRT6, are a family of NAD+ dependent deacetylases that were implicated in ageing and the regulation of metabolism. Much evidence correlates SIRT6 with the regulation of ageing, primarily the manifestation of ageing related pathologies in SIRT6 deficient mice, and the induction of SIRT6 by calorie-restricted diet that delays ageing and reduces its related diseases. Nonetheless, the role of SIRT6 in ageing and the mechanisms by which it might act are still elusive. To explore it at the molecular mechanistic level, SIRAID aims to i) study the role of SIRT6 in glucose and fat metabolism under high fat diet; ii) to determine whether SIRT6 is involved in regulating life span, and to characterise how SIRT6 is activated by calorie restriction; and iii) to perform large scale SILAC-based proteomics screening for SIRT6 substrates. These results will then be used for the development of small activator molecules of SIRT6 that may be used therapeutically for age related metabolic diseases. Taken together, we suggest a multifaceted approach that will allow us to explore the role of SIRT6 in ageing and metabolism, and to translate this knowledge to counter and prevent the medical problems associated with human longevity.
Max ERC Funding
1 510 968 €
Duration
Start date: 2009-10-01, End date: 2014-09-30
Project acronym SMARTDRUGENTITIES
Project Sophisticated Well-Targeted Therapeutic Entities based on Biologically Compatible Ti(IV) Active Cores and Building Blocks
Researcher (PI) Edit Tshuva (Goldberg)
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Country Israel
Call Details Starting Grant (StG), PE5, ERC-2009-StG
Summary I propose to develop sophisticated anti-tumor agents targeted particularly to the location of activity. My team has recently introduced a new family of Ti(IV) complexes that demonstrates higher activity than known compounds with substantially higher stability and defined hydrolytic behavior, properties that were found to be essential. I propose to study various derivatives and identify the parameters affecting activity, including steric and electronic effects, enantiomeric purity, ligand lability etc., and elucidation various mechanistic aspects of reactivity. More importantly, I propose to construct pH-sensitive transport units that will allow protection of the sensitive active species throughout their delivery and release only near the target location based on the variable pH conditions of different human tissues. In particular, unique spherical molecules held together by metal-ligand interactions will be prepared. The building blocks will consist of the planar ligands of C3-axis bound to three biocompatible Ti(IV) ions each with defined angles and geometry. The resulting spherical compounds will be utilized to encapsulate the active complexes and release them upon hydrolysis at the desired pH based on the pH-dependent hydrolysis pattern already established for related compounds. Preliminary calculations have confirmed the possibility of forming these compounds, which are particularly matching in their expected size to encapsulate our complexes. Larger spheres will also be prepared as cavities for larger molecules, which may be linked together for the delivery of multiple drugs. These compounds may find applications in various areas where a protected environment or delivery of sensitive compounds is required, such as in gene therapy, nano-technology, and catalysis.
Summary
I propose to develop sophisticated anti-tumor agents targeted particularly to the location of activity. My team has recently introduced a new family of Ti(IV) complexes that demonstrates higher activity than known compounds with substantially higher stability and defined hydrolytic behavior, properties that were found to be essential. I propose to study various derivatives and identify the parameters affecting activity, including steric and electronic effects, enantiomeric purity, ligand lability etc., and elucidation various mechanistic aspects of reactivity. More importantly, I propose to construct pH-sensitive transport units that will allow protection of the sensitive active species throughout their delivery and release only near the target location based on the variable pH conditions of different human tissues. In particular, unique spherical molecules held together by metal-ligand interactions will be prepared. The building blocks will consist of the planar ligands of C3-axis bound to three biocompatible Ti(IV) ions each with defined angles and geometry. The resulting spherical compounds will be utilized to encapsulate the active complexes and release them upon hydrolysis at the desired pH based on the pH-dependent hydrolysis pattern already established for related compounds. Preliminary calculations have confirmed the possibility of forming these compounds, which are particularly matching in their expected size to encapsulate our complexes. Larger spheres will also be prepared as cavities for larger molecules, which may be linked together for the delivery of multiple drugs. These compounds may find applications in various areas where a protected environment or delivery of sensitive compounds is required, such as in gene therapy, nano-technology, and catalysis.
Max ERC Funding
1 400 000 €
Duration
Start date: 2009-10-01, End date: 2014-09-30
Project acronym SOFTGROWTH
Project Growth and Shaping of Soft Tissue
Researcher (PI) Eran Sharon
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Country Israel
Call Details Starting Grant (StG), PE5, ERC-2009-StG
Summary Many natural structures are made of soft tissue that undergoes complicated continuous shape transformations that accurately and reliably serve specific elaborate tasks. Such processes can be slow, as in growth of a tissue, leading from an initial, featureless, shape to the desired elaborate structure of the adult organ. In other cases continuous shape transformations of soft tissue are rapid and are used for the production of mechanical work, as in the case of the action of the hart. Our understanding of natural growth is limited and our ability to produce controlled motions of soft tissue is poor. A central problem in both cases is how to incorporate all local changes in the tissue in order to determine the mechanical state of the entire body. In addition, there are problems regarding how to measure a deforming body and how to characterize the deformation. Finally, there is a problem of how to control motion and growth in artificial and natural soft tissues. I propose a multi disciplinary study, based on an approach I have started developing. According to it there is an underlying common mathematical way to describe continuous large shape transformations of stretchable tissues. This approach clearly defines the way to determine the mechanical state of a deformed tissue and to measure its local growth/deformation. The project will involve a theoretical study within mechanics and differential geometry, an experimental-physics work, which will be focused on the construction of responsive deformable tissue elements and measurements of their shape evolution, and a biophysical work, in which the natural growth and motion of leaves will be measured and will be correlated with biological activities. Such an integrative study has the potential of advancing our understanding of the fascinating process of growth and to improve our ability to construct bio-inspired "soft machinery".
Summary
Many natural structures are made of soft tissue that undergoes complicated continuous shape transformations that accurately and reliably serve specific elaborate tasks. Such processes can be slow, as in growth of a tissue, leading from an initial, featureless, shape to the desired elaborate structure of the adult organ. In other cases continuous shape transformations of soft tissue are rapid and are used for the production of mechanical work, as in the case of the action of the hart. Our understanding of natural growth is limited and our ability to produce controlled motions of soft tissue is poor. A central problem in both cases is how to incorporate all local changes in the tissue in order to determine the mechanical state of the entire body. In addition, there are problems regarding how to measure a deforming body and how to characterize the deformation. Finally, there is a problem of how to control motion and growth in artificial and natural soft tissues. I propose a multi disciplinary study, based on an approach I have started developing. According to it there is an underlying common mathematical way to describe continuous large shape transformations of stretchable tissues. This approach clearly defines the way to determine the mechanical state of a deformed tissue and to measure its local growth/deformation. The project will involve a theoretical study within mechanics and differential geometry, an experimental-physics work, which will be focused on the construction of responsive deformable tissue elements and measurements of their shape evolution, and a biophysical work, in which the natural growth and motion of leaves will be measured and will be correlated with biological activities. Such an integrative study has the potential of advancing our understanding of the fascinating process of growth and to improve our ability to construct bio-inspired "soft machinery".
Max ERC Funding
1 000 000 €
Duration
Start date: 2009-12-01, End date: 2014-11-30
Project acronym STRONGPCP
Project Strong Probabilistically Checkable Proofs
Researcher (PI) Irit Dveer Dinur
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Country Israel
Call Details Starting Grant (StG), PE6, ERC-2009-StG
Summary Probabilistically Checkable Proofs (PCPs) encapsulate the striking idea that verification of proofs becomes nearly trivial if one is willing to use randomness. The PCP theorem, proven in the early 90's, is a cornerstone of modern computational complexity theory. It completely revises our notion of a proof, leading to an amazingly robust behavior: A PCP proof is guaranteed to have an abundance of errors if attempting to prove a falsity. This stands in sharp contrast to our classical notion of a proof whose correctness can collapse due to one wrong step. An important drive in the development of PCP theory is the revolutionary effect it had on the field of approximation. Feige et. al. [JACM, 1996] discovered that the PCP theorem is *equivalent* to the inapproximability of several classical optimization problems. Thus, PCP theory has resulted in a leap in our understanding of approximability and opened the gate to a flood of results. To date, virtually all inapproximability results are based on the PCP theorem, and while there is an impressive body of work on hardness-of-approximation, much work still lies ahead. The central goal of this proposal is to obtain stronger PCPs than currently known, leading towards optimal inapproximability results and novel notions of robustness in computation and in proofs. This study will build upon (i) new directions opened up by my novel proof of the PCP theorem [JACM, 2007]; and on (ii) state-of-the-art PCP machinery involving techniques from algebra, functional and harmonic analysis, probability, combinatorics, and coding theory. The broader impact of this study spans a better understanding of limits for approximation algorithms saving time and resources for algorithm designers; and new understanding of robustness in a variety of mathematical contexts, arising from the many connections between PCPs and stability questions in combinatorics, functional analysis, metric embeddings, probability, and more.
Summary
Probabilistically Checkable Proofs (PCPs) encapsulate the striking idea that verification of proofs becomes nearly trivial if one is willing to use randomness. The PCP theorem, proven in the early 90's, is a cornerstone of modern computational complexity theory. It completely revises our notion of a proof, leading to an amazingly robust behavior: A PCP proof is guaranteed to have an abundance of errors if attempting to prove a falsity. This stands in sharp contrast to our classical notion of a proof whose correctness can collapse due to one wrong step. An important drive in the development of PCP theory is the revolutionary effect it had on the field of approximation. Feige et. al. [JACM, 1996] discovered that the PCP theorem is *equivalent* to the inapproximability of several classical optimization problems. Thus, PCP theory has resulted in a leap in our understanding of approximability and opened the gate to a flood of results. To date, virtually all inapproximability results are based on the PCP theorem, and while there is an impressive body of work on hardness-of-approximation, much work still lies ahead. The central goal of this proposal is to obtain stronger PCPs than currently known, leading towards optimal inapproximability results and novel notions of robustness in computation and in proofs. This study will build upon (i) new directions opened up by my novel proof of the PCP theorem [JACM, 2007]; and on (ii) state-of-the-art PCP machinery involving techniques from algebra, functional and harmonic analysis, probability, combinatorics, and coding theory. The broader impact of this study spans a better understanding of limits for approximation algorithms saving time and resources for algorithm designers; and new understanding of robustness in a variety of mathematical contexts, arising from the many connections between PCPs and stability questions in combinatorics, functional analysis, metric embeddings, probability, and more.
Max ERC Funding
1 639 584 €
Duration
Start date: 2009-09-01, End date: 2016-06-30
Project acronym TREATPD
Project Cell and gene therapy based approaches for treatment of Parkinson's disease: from models to clinics
Researcher (PI) Deniz Kirik
Host Institution (HI) MAX IV Laboratory, Lund University
Country Sweden
Call Details Starting Grant (StG), LS5, ERC-2009-StG
Summary Parkinson s disease is one of the common causes of disability in the aging population, representing a major health problem for the affected individuals and a socioeconomic burden to the society. In the present proposal, the applicant puts forward an ambitious but feasible program to tackle a number of significant issues that remain unsolved in the field. He combines his strong track record in animal models of Parkinson s disease and novel cell and gene therapy-based therapeutic strategies with powerful bio-imaging techniques in order to make bold steps towards translation of new and better treatments to patients suffering from this illness. He does so in a manner that combines, on one hand, the strength of clearly-defined hypotheses and well-established tools for results towards clinical translation, with high-risk high-reward projects that hold the potential to yield ground-breaking discoveries in implementation of novel imaging techniques, on the other.
Summary
Parkinson s disease is one of the common causes of disability in the aging population, representing a major health problem for the affected individuals and a socioeconomic burden to the society. In the present proposal, the applicant puts forward an ambitious but feasible program to tackle a number of significant issues that remain unsolved in the field. He combines his strong track record in animal models of Parkinson s disease and novel cell and gene therapy-based therapeutic strategies with powerful bio-imaging techniques in order to make bold steps towards translation of new and better treatments to patients suffering from this illness. He does so in a manner that combines, on one hand, the strength of clearly-defined hypotheses and well-established tools for results towards clinical translation, with high-risk high-reward projects that hold the potential to yield ground-breaking discoveries in implementation of novel imaging techniques, on the other.
Max ERC Funding
1 508 940 €
Duration
Start date: 2009-11-01, End date: 2014-10-31
Project acronym UFO
Project Uncovering the origins of friction
Researcher (PI) Jean-Francois Molinari
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Country Switzerland
Call Details Starting Grant (StG), PE8, ERC-2009-StG
Summary Nanotechnology is a new frontier in research and new tools must be developed. As surface to volume ratios become large, engineering at the nanoscale will be dominated by surface science. The study of Contact Mechanics at nanoscales nanotribology- needs to fully account for adhesive forces, third-body interactions and deformation mechanisms at contacting asperities. Understanding these factors as well as the morphological evolution of contact clusters has the potential of explaining the origins of frictional forces and wear. This will guide us in the design of tailored-made lubricants and surface morphologies, which, in turn, will help reduce the high societal cost of wear damage. This ERCstg proposal describes a plan to establish a world-leading group in Contact Mechanics at length scales ranging from the atomic to macroscopic scales relevant to Civil or Mechanical Engineering structural applications. Our approach will have recourse to molecular dynamics coupled with the finite-element method for an accurate description of atomic interactions at the contact surface, and of long-range elastic forces. The project is interdisciplinary as the deepening of our understanding of Contact Mechanics will necessitate Computer Science developments. A central objective of the research will be the release of an open, 3D parallel, finite-element platform dedicated to contact applications. The PI will assemble a team of Engineers and Computer Scientists to ensure a successful and perennial diffusion in the European academic and industrial network. The research will therefore explore the origins of friction, a scientific quest of fundamental importance to many industrial applications, and will also create a stable base for sharing scientific-computing resources.
Summary
Nanotechnology is a new frontier in research and new tools must be developed. As surface to volume ratios become large, engineering at the nanoscale will be dominated by surface science. The study of Contact Mechanics at nanoscales nanotribology- needs to fully account for adhesive forces, third-body interactions and deformation mechanisms at contacting asperities. Understanding these factors as well as the morphological evolution of contact clusters has the potential of explaining the origins of frictional forces and wear. This will guide us in the design of tailored-made lubricants and surface morphologies, which, in turn, will help reduce the high societal cost of wear damage. This ERCstg proposal describes a plan to establish a world-leading group in Contact Mechanics at length scales ranging from the atomic to macroscopic scales relevant to Civil or Mechanical Engineering structural applications. Our approach will have recourse to molecular dynamics coupled with the finite-element method for an accurate description of atomic interactions at the contact surface, and of long-range elastic forces. The project is interdisciplinary as the deepening of our understanding of Contact Mechanics will necessitate Computer Science developments. A central objective of the research will be the release of an open, 3D parallel, finite-element platform dedicated to contact applications. The PI will assemble a team of Engineers and Computer Scientists to ensure a successful and perennial diffusion in the European academic and industrial network. The research will therefore explore the origins of friction, a scientific quest of fundamental importance to many industrial applications, and will also create a stable base for sharing scientific-computing resources.
Max ERC Funding
1 773 000 €
Duration
Start date: 2009-09-01, End date: 2014-08-31
Project acronym UMICIS
Project Uncultivated Microbes In Situ - a Computational Biology Approach to Determine Molecular Capabilities and Ecological Roles
Researcher (PI) Christian Von Mering
Host Institution (HI) University of Zurich
Country Switzerland
Call Details Starting Grant (StG), LS2, ERC-2009-StG
Summary Most of nature s biodiversity, and many potentially useful metabolic capabilities, remain hidden among the vast numbers of uncharacterized environmental microbes. Because cultivation is still not possible for most of these microbes, cultivation-independent molecular techniques such as polymerase chain reaction (PCR), fluorescent in situ hybridization (FISH), or shotgun DNA sequencing have been used in order to study their function and ecology in their natural habitats. However, none of the above techniques have so far been sufficient for any systematic assignment of molecular functions to distinct microbial lineages. Thus, most of the molecular ecology of natural microbes remains elusive. Here, we propose a computational meta-analysis and synthesis of existing and newly generated molecular sequence data sampled directly from the environment combining DNA sequencing data (metagenomics), and proteome expression data (metaproteomics). This analysis will be coupled to computational modelling of genome content evolution at the community level. We will aim to assess how gene repertoires of microbial communities, and their taxonomic compositions, change across distinct environments, in response to changed conditions, and through time. We plan to address fundamental questions in microbial ecology, including the extent of cooperation among members of the communities, stability of community composition at evolutionary timescales, the importance of lateral gene transfers, the extent of functional adaptation/regulation in situ, and whether gene occurrence and expression patterns are diagnostic of community functions and ecological status.
Summary
Most of nature s biodiversity, and many potentially useful metabolic capabilities, remain hidden among the vast numbers of uncharacterized environmental microbes. Because cultivation is still not possible for most of these microbes, cultivation-independent molecular techniques such as polymerase chain reaction (PCR), fluorescent in situ hybridization (FISH), or shotgun DNA sequencing have been used in order to study their function and ecology in their natural habitats. However, none of the above techniques have so far been sufficient for any systematic assignment of molecular functions to distinct microbial lineages. Thus, most of the molecular ecology of natural microbes remains elusive. Here, we propose a computational meta-analysis and synthesis of existing and newly generated molecular sequence data sampled directly from the environment combining DNA sequencing data (metagenomics), and proteome expression data (metaproteomics). This analysis will be coupled to computational modelling of genome content evolution at the community level. We will aim to assess how gene repertoires of microbial communities, and their taxonomic compositions, change across distinct environments, in response to changed conditions, and through time. We plan to address fundamental questions in microbial ecology, including the extent of cooperation among members of the communities, stability of community composition at evolutionary timescales, the importance of lateral gene transfers, the extent of functional adaptation/regulation in situ, and whether gene occurrence and expression patterns are diagnostic of community functions and ecological status.
Max ERC Funding
1 129 800 €
Duration
Start date: 2010-02-01, End date: 2016-01-31
Project acronym UPCON
Project Ultra-Pure nanowire heterostructures and energy CONversion
Researcher (PI) Anna Fontcuberta I Morral
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Country Switzerland
Call Details Starting Grant (StG), PE5, ERC-2009-StG
Summary This proposal is devoted to the synthesis of ultra-pure semiconductor nanowire heterostructures for energy conversion applications in the photovoltaic domain. Nanowires are filamentary crystals with a very high ratio of length to diameter, the latter being in the nanometer range. Nanowires are of significant interest owing to their large surface-to-volume ratio and low-dimensional properties, as well as attractive building blocks of novel devices, including for novel energy conversion applications. The most widely employed nanowire growth method relies on the use of gold, which is known to be an impurity limiting mobility and carrier lifetime in semiconductors. It is generally realized that nanowires with higher purity could enable significant advances in both fundamental studies and technological applications. This proposal combines two complementary and essential aspects of semiconductor nanowires: (i) synthesis in extremely clean conditions and (ii) their application to new concepts of photovoltaic devices. The first part involves the use of Molecular Beam Epitaxy (MBE) system for the synthesis of III-V semiconductor nanowires and heterostructures. Special emphasis will be given in the synthesis of new heterostructure designs, i.e. across the nanowire radius and along the growth axis. The fabrication of ordered arrays of nanowires on large areas and on silicon substrates will also be investigated. In the second part, nanowire based solar cells will be designed, fabricated and characterized. Particular emphasis will be given toward understanding the role of geometry and interfaces in the energy conversion efficiency of the novel nanowire-based solar cells. Here, the high cleanliness and precise heteroepitaxial growth of MBE nanowires will allow us to perform fundamental studies, generating ground-breaking knowledge on the microscopic processes in energy conversion. This project will foster the use of nanotechnology in the energy challenges of the XXI century.
Summary
This proposal is devoted to the synthesis of ultra-pure semiconductor nanowire heterostructures for energy conversion applications in the photovoltaic domain. Nanowires are filamentary crystals with a very high ratio of length to diameter, the latter being in the nanometer range. Nanowires are of significant interest owing to their large surface-to-volume ratio and low-dimensional properties, as well as attractive building blocks of novel devices, including for novel energy conversion applications. The most widely employed nanowire growth method relies on the use of gold, which is known to be an impurity limiting mobility and carrier lifetime in semiconductors. It is generally realized that nanowires with higher purity could enable significant advances in both fundamental studies and technological applications. This proposal combines two complementary and essential aspects of semiconductor nanowires: (i) synthesis in extremely clean conditions and (ii) their application to new concepts of photovoltaic devices. The first part involves the use of Molecular Beam Epitaxy (MBE) system for the synthesis of III-V semiconductor nanowires and heterostructures. Special emphasis will be given in the synthesis of new heterostructure designs, i.e. across the nanowire radius and along the growth axis. The fabrication of ordered arrays of nanowires on large areas and on silicon substrates will also be investigated. In the second part, nanowire based solar cells will be designed, fabricated and characterized. Particular emphasis will be given toward understanding the role of geometry and interfaces in the energy conversion efficiency of the novel nanowire-based solar cells. Here, the high cleanliness and precise heteroepitaxial growth of MBE nanowires will allow us to perform fundamental studies, generating ground-breaking knowledge on the microscopic processes in energy conversion. This project will foster the use of nanotechnology in the energy challenges of the XXI century.
Max ERC Funding
1 286 000 €
Duration
Start date: 2010-01-01, End date: 2014-12-31