Project acronym BFTERRA
Project Biogenesis and Functions of Telomeric Repeat-containing RNA
Researcher (PI) Claus Maria Azzalin
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Country Switzerland
Call Details Starting Grant (StG), LS1, ERC-2009-StG
Summary Telomeres are heterochromatic nucleoprotein complexes located at the end of linear eukaryotic chromosomes. Contrarily to a longstanding dogma, we have recently demonstrated that mammalian telomeres are transcribed into TElomeric Repeat containing RNA (TERRA) molecules. TERRA transcripts contain telomeric RNA repeats and are produced at least in part by DNA-dependent RNA polymerase II-mediated transcription of telomeric DNA. TERRA molecules form discrete nuclear foci that co-localize with telomeric heterochromatin in both interphase and transcriptionally inactive metaphase cells. This indicates that TERRA is an integral component of telomeres and suggests that TERRA might participate in maintaining proper telomere heterochromatin. We will use a variety of biochemistry, cell biology, molecular biology and microscopy based approaches applied to cultured mammalian cells and to the yeast Schizosaccharomyces pombe, to achieve four distinct major goals: i) We will over-express or deplete TERRA in mammalian cells in order to characterize the molecular details of putative TERRA-associated functions in maintaining normal telomere structure and function; ii) We will locate TERRA promoter regions on different human chromosome ends; iii) We will generate mammalian cellular systems in which to study artificially seeded telomeres that can be transcribed in an inducible fashion; iv) We will identify physiological regulators of TERRA by analyzing it in mammalian cultured cells where the functions of candidate factors are compromised. In parallel, taking advantage of the recent discovery of TERRA also in fission yeast, we will systematically analyze TERRA levels in fission yeast mutants derived from a complete gene knockout collection. The study of TERRA regulation and function at chromosome ends will strongly contribute to our understanding of how telomeres are maintained and will help to clarify the general functions of mammalian non-coding RNAs.
Summary
Telomeres are heterochromatic nucleoprotein complexes located at the end of linear eukaryotic chromosomes. Contrarily to a longstanding dogma, we have recently demonstrated that mammalian telomeres are transcribed into TElomeric Repeat containing RNA (TERRA) molecules. TERRA transcripts contain telomeric RNA repeats and are produced at least in part by DNA-dependent RNA polymerase II-mediated transcription of telomeric DNA. TERRA molecules form discrete nuclear foci that co-localize with telomeric heterochromatin in both interphase and transcriptionally inactive metaphase cells. This indicates that TERRA is an integral component of telomeres and suggests that TERRA might participate in maintaining proper telomere heterochromatin. We will use a variety of biochemistry, cell biology, molecular biology and microscopy based approaches applied to cultured mammalian cells and to the yeast Schizosaccharomyces pombe, to achieve four distinct major goals: i) We will over-express or deplete TERRA in mammalian cells in order to characterize the molecular details of putative TERRA-associated functions in maintaining normal telomere structure and function; ii) We will locate TERRA promoter regions on different human chromosome ends; iii) We will generate mammalian cellular systems in which to study artificially seeded telomeres that can be transcribed in an inducible fashion; iv) We will identify physiological regulators of TERRA by analyzing it in mammalian cultured cells where the functions of candidate factors are compromised. In parallel, taking advantage of the recent discovery of TERRA also in fission yeast, we will systematically analyze TERRA levels in fission yeast mutants derived from a complete gene knockout collection. The study of TERRA regulation and function at chromosome ends will strongly contribute to our understanding of how telomeres are maintained and will help to clarify the general functions of mammalian non-coding RNAs.
Max ERC Funding
1 602 600 €
Duration
Start date: 2009-10-01, End date: 2014-09-30
Project acronym FLATRONICS
Project Electronic devices based on nanolayers
Researcher (PI) Andras Kis
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Country Switzerland
Call Details Starting Grant (StG), PE3, ERC-2009-StG
Summary The main objective of this research proposal is to explore the electrical properties of nanoscale devices and circuits based on nanolayers. Nanolayers cover a wide span of possible electronic properties, ranging from semiconducting to superconducting. The possibility to form electrical circuits by varying their geometry offers rich research and practical opportunities. Together with graphene, nanolayers could form the material library for future nanoelectronics where different materials could be mixed and matched to different functionalities.
Summary
The main objective of this research proposal is to explore the electrical properties of nanoscale devices and circuits based on nanolayers. Nanolayers cover a wide span of possible electronic properties, ranging from semiconducting to superconducting. The possibility to form electrical circuits by varying their geometry offers rich research and practical opportunities. Together with graphene, nanolayers could form the material library for future nanoelectronics where different materials could be mixed and matched to different functionalities.
Max ERC Funding
1 799 996 €
Duration
Start date: 2009-09-01, End date: 2014-08-31
Project acronym FROMCHILDTOPARENT
Project From the Child's Genes to Parental Environment and Back to the Child: Gene-environment Correlations in Early Social Development
Researcher (PI) Ariel Knafo
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Country Israel
Call Details Starting Grant (StG), SH4, ERC-2009-StG
Summary The role of children's behavior and temperament is increasingly acknowledged in family research. Gene-environment Correlation (rGE) processes may account for some child effects, as parents react to children s behavior which is in part genetically influenced (evocative rGE). In addition, passive rGE, in which parenting and children s behavior are correlated through overlapping genetic influences on family members behavior may account in part for the parenting-child behavior relationships. The proposed project will be the first one to directly address these issues with DNA information on family members and quality observational data on parent and child behaviors, following children through early development. Two separate longitudinal studies will investigate the paths from children s genes to their behavior, to the way parents react and modify their parenting towards the child, affecting child development: Study 1 will follow first-time parents from pregnancy through children s early childhood, decoupling parent effect and child effects. Study 2 will follow dizygotic twins and their parents through middle childhood, capitalizing on genetic differences between twins reared by the same parents. We will test the hypothesis that parents' characteristics, such as parenting style and parental attitudes, are associated with children's genetic tendencies. Both parenting and child behaviors will be monitored consecutively, to investigate the co-development of parents and children in an evocative rGE process. Child and parent candidate genes relevant to social behavior, notably those from the dompaminergic and serotonergic systems, will be linked to parents behaviors. Pilot results show children s genes predict parenting, and an important task for the study will be to identify mediators of this effect, such as children s temperament. We will lay the ground for further research into the complexity of gene-environment correlations as children and parents co-develop.
Summary
The role of children's behavior and temperament is increasingly acknowledged in family research. Gene-environment Correlation (rGE) processes may account for some child effects, as parents react to children s behavior which is in part genetically influenced (evocative rGE). In addition, passive rGE, in which parenting and children s behavior are correlated through overlapping genetic influences on family members behavior may account in part for the parenting-child behavior relationships. The proposed project will be the first one to directly address these issues with DNA information on family members and quality observational data on parent and child behaviors, following children through early development. Two separate longitudinal studies will investigate the paths from children s genes to their behavior, to the way parents react and modify their parenting towards the child, affecting child development: Study 1 will follow first-time parents from pregnancy through children s early childhood, decoupling parent effect and child effects. Study 2 will follow dizygotic twins and their parents through middle childhood, capitalizing on genetic differences between twins reared by the same parents. We will test the hypothesis that parents' characteristics, such as parenting style and parental attitudes, are associated with children's genetic tendencies. Both parenting and child behaviors will be monitored consecutively, to investigate the co-development of parents and children in an evocative rGE process. Child and parent candidate genes relevant to social behavior, notably those from the dompaminergic and serotonergic systems, will be linked to parents behaviors. Pilot results show children s genes predict parenting, and an important task for the study will be to identify mediators of this effect, such as children s temperament. We will lay the ground for further research into the complexity of gene-environment correlations as children and parents co-develop.
Max ERC Funding
1 443 687 €
Duration
Start date: 2010-01-01, End date: 2015-12-31
Project acronym HEATTRONICS
Project Mesoscopic heattronics: thermal and nonequilibrium effects and fluctuations in nanoelectronics
Researcher (PI) Tero Tapio Heikkilae
Host Institution (HI) JYVASKYLAN YLIOPISTO
Country Finland
Call Details Starting Grant (StG), PE3, ERC-2009-StG
Summary Few systems in nature are entirely in equilibrium. Out of equilibrium, there are heat currents, and different degrees of freedom or parts of studied systems may be described by entirely different temperatures if the concept of temperature is at all well defined. In this project we will study the emergence of the subsystem temperatures in different types of small electronic systems, and the physical phenomena associated with those temperatures. Our emphasis is on the mesoscopic effects, residing between the microscopic world of individual atoms and electrons, and the macroscopic everyday world. In particular, we will research thermometry methods, different types of relaxation, magnitudes of fluctuations and effects at high frequencies. We will explore these effects in a wide variety of systems: normal metals and superconductors, carbon nanostructures, nanoelectromechanical and spintronic systems. Besides contributing to the understanding of the fundamental properties of electronic systems, our studies are directly relevant for the development of thermal sensors and electron refrigerators. The improved understanding of the thermal phenomena will also benefit the study of almost any type of a nonlinear phenomenon in electronics, for example the research of solid-state realizations of quantum computing or the race towards quantum limited mass and force detection.
Summary
Few systems in nature are entirely in equilibrium. Out of equilibrium, there are heat currents, and different degrees of freedom or parts of studied systems may be described by entirely different temperatures if the concept of temperature is at all well defined. In this project we will study the emergence of the subsystem temperatures in different types of small electronic systems, and the physical phenomena associated with those temperatures. Our emphasis is on the mesoscopic effects, residing between the microscopic world of individual atoms and electrons, and the macroscopic everyday world. In particular, we will research thermometry methods, different types of relaxation, magnitudes of fluctuations and effects at high frequencies. We will explore these effects in a wide variety of systems: normal metals and superconductors, carbon nanostructures, nanoelectromechanical and spintronic systems. Besides contributing to the understanding of the fundamental properties of electronic systems, our studies are directly relevant for the development of thermal sensors and electron refrigerators. The improved understanding of the thermal phenomena will also benefit the study of almost any type of a nonlinear phenomenon in electronics, for example the research of solid-state realizations of quantum computing or the race towards quantum limited mass and force detection.
Max ERC Funding
1 322 371 €
Duration
Start date: 2010-01-01, End date: 2015-12-31
Project acronym HYBRIDQED
Project Hybrid Cavity Quantum Electrodynamics with Atoms and Circuits
Researcher (PI) Andreas Joachim Wallraff
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Country Switzerland
Call Details Starting Grant (StG), PE3, ERC-2009-StG
Summary We plan to investigate the strong coherent interaction of light and matter on the level of individual photons and atoms or atom-like systems. In particular, we will explore large dipole moment superconducting artificial atoms and natural Rydberg atoms interacting with radiation fields contained in quasi-one-dimensional on-chip microwave frequency resonators. In these resonators photons generate field strengths that exceed those in conventional mirror based resonators by orders of magnitude and they can also be stored for long times. This allows us to reach the strong coupling limit of cavity quantum electrodynamics (QED) using superconducting circuits, an approach known as circuit QED. In this project we will explore novel approaches to perform quantum optics experiments in circuits. We will develop techniques to generate and detect non-classical radiation fields using nonlinear resonators and chip-based interferometers. We will also further advance the circuit QED approach to quantum information processing. Our main goal is to develop an interface between circuit and atom based realizations of cavity QED. In particular, we will couple Rydberg atoms to on-chip resonators. To achieve this goal we will first investigate the interaction of ensembles of atoms in a beam with the coherent fields in a transmission line or a resonator. We will perform spectroscopy and we will investigate on-chip dispersive detection schemes for Rydberg atoms. We will also explore the interaction of Rydberg atoms with chip surfaces in dependence on materials, temperature and geometry. Experiments will be performed from 300 K down to millikelvin temperatures. We will realize and characterize on-chip traps for Rydberg atoms. Using trapped atoms we will explore their coherent dynamics. Finally, we aim at investigating the single atom and single photon limit. When realized, this system will be used to explore the first quantum coherent interface between atomic and solid state qubits.
Summary
We plan to investigate the strong coherent interaction of light and matter on the level of individual photons and atoms or atom-like systems. In particular, we will explore large dipole moment superconducting artificial atoms and natural Rydberg atoms interacting with radiation fields contained in quasi-one-dimensional on-chip microwave frequency resonators. In these resonators photons generate field strengths that exceed those in conventional mirror based resonators by orders of magnitude and they can also be stored for long times. This allows us to reach the strong coupling limit of cavity quantum electrodynamics (QED) using superconducting circuits, an approach known as circuit QED. In this project we will explore novel approaches to perform quantum optics experiments in circuits. We will develop techniques to generate and detect non-classical radiation fields using nonlinear resonators and chip-based interferometers. We will also further advance the circuit QED approach to quantum information processing. Our main goal is to develop an interface between circuit and atom based realizations of cavity QED. In particular, we will couple Rydberg atoms to on-chip resonators. To achieve this goal we will first investigate the interaction of ensembles of atoms in a beam with the coherent fields in a transmission line or a resonator. We will perform spectroscopy and we will investigate on-chip dispersive detection schemes for Rydberg atoms. We will also explore the interaction of Rydberg atoms with chip surfaces in dependence on materials, temperature and geometry. Experiments will be performed from 300 K down to millikelvin temperatures. We will realize and characterize on-chip traps for Rydberg atoms. Using trapped atoms we will explore their coherent dynamics. Finally, we aim at investigating the single atom and single photon limit. When realized, this system will be used to explore the first quantum coherent interface between atomic and solid state qubits.
Max ERC Funding
1 954 464 €
Duration
Start date: 2009-09-01, End date: 2014-08-31
Project acronym ID-CAB
Project Individual differences in Collective Animal Behaviour
Researcher (PI) David Sumpter
Host Institution (HI) UPPSALA UNIVERSITET
Country Sweden
Call Details Starting Grant (StG), LS8, ERC-2009-StG
Summary One of the key challenges in scientific research is to link together our understanding of different levels of biological organisation. This challenge is fundamental to the scientific endeavour: from understand how genes interact to drive the cell, to how cells interact to form organisms, up to how organisms interact to form groups and societies. My own and the research of others has addressed this question in the context of the collective behaviour of animals. Mathematical models of complex systems have been used to successfully predict experimental outcome. Most previous studies are however limited in one important aspect: individuals are treated as identical units. The aim of the proposed research proposed is to investigate features which produce differences within the units. The model systems of our study will be sticklebacks, homing pigeons and house sparrows. Individuals can differ from each other on a range of time scales, from information acquired within the last few minutes, through socially learnt information, to genetically inherited differences. Through a series of experiments on each of the study species, the development of mathematical models which incorporate between individual differences, and novel forms of data analysis, we will begin to understand the role played by individual differences within groups. We will look at the rules of motion for fish and birds; the role of personality in decision-making and how short term information differences improve decision-making accuracy. Achieving the project objectives will greatly enhance our understanding of the relationship between individual animals and the groups they live in, as well as impacting on our understanding of individual differences in other areas of biology.
Summary
One of the key challenges in scientific research is to link together our understanding of different levels of biological organisation. This challenge is fundamental to the scientific endeavour: from understand how genes interact to drive the cell, to how cells interact to form organisms, up to how organisms interact to form groups and societies. My own and the research of others has addressed this question in the context of the collective behaviour of animals. Mathematical models of complex systems have been used to successfully predict experimental outcome. Most previous studies are however limited in one important aspect: individuals are treated as identical units. The aim of the proposed research proposed is to investigate features which produce differences within the units. The model systems of our study will be sticklebacks, homing pigeons and house sparrows. Individuals can differ from each other on a range of time scales, from information acquired within the last few minutes, through socially learnt information, to genetically inherited differences. Through a series of experiments on each of the study species, the development of mathematical models which incorporate between individual differences, and novel forms of data analysis, we will begin to understand the role played by individual differences within groups. We will look at the rules of motion for fish and birds; the role of personality in decision-making and how short term information differences improve decision-making accuracy. Achieving the project objectives will greatly enhance our understanding of the relationship between individual animals and the groups they live in, as well as impacting on our understanding of individual differences in other areas of biology.
Max ERC Funding
977 768 €
Duration
Start date: 2010-02-01, End date: 2015-01-31
Project acronym INCEL
Project Revealing the molecular architecture of integrin mediated cell adhesion
Researcher (PI) Ohad Medalia
Host Institution (HI) University of Zurich
Country Switzerland
Call Details Starting Grant (StG), LS1, ERC-2009-StG
Summary Cell adhesions play an important role in the organization, growth, maturation, and function of living cells. Interaction of cells with the extracellular matrix (ECM) plays an essential role in a variety of disease states , inflammation, and repair of damaged tissues. At the cellular level, many of the biological responses to external stimuli originate at adhesion loci, such as focal adhesions (FA), which link cells to the ECM . Cell adhesion is mediated by receptor proteins such as cadherins and integrins. The precise molecular composition, dynamics and signalling activity of these adhesion assemblies determine the specificity of adhesion-induced signals and their effects on the cell. However, characterization of the molecular architecture of FAs is highly challenging, and it thus remains unclear how these molecules function together, how they are recruited to the adhesion site, how they are turned over, and how they function in vivo. In this project, I aim to conduct an interdisciplinary study that will provide a quantum step forward in the understanding of the functional organization of FAs. We will analyze, for the first time, the three-dimensional structure of FAs in wild-type cells and in cells deficient in the specific proteins involved in the cell-adhesion machinery. We will study the effect of specific geometries on the functional architecture of focal adhesions in 3D. A combination of state-of-the-art technologies, such cryo-electron tomography of intact cells, gold cluster chemistry for in situ labeling, and modulation of the underlying matrix using micro- and nano-patterned adhesive surfaces, together with correlative light, atomic force and electron microscopy, will provide a hybrid approach for dissecting out the complex process of cell adhesion.In summary, this project addresses the properties of FAs across a wide range of complexities and dimensions, from macroscopic cellular phenomena to the physical nature of these molecular assemblies
Summary
Cell adhesions play an important role in the organization, growth, maturation, and function of living cells. Interaction of cells with the extracellular matrix (ECM) plays an essential role in a variety of disease states , inflammation, and repair of damaged tissues. At the cellular level, many of the biological responses to external stimuli originate at adhesion loci, such as focal adhesions (FA), which link cells to the ECM . Cell adhesion is mediated by receptor proteins such as cadherins and integrins. The precise molecular composition, dynamics and signalling activity of these adhesion assemblies determine the specificity of adhesion-induced signals and their effects on the cell. However, characterization of the molecular architecture of FAs is highly challenging, and it thus remains unclear how these molecules function together, how they are recruited to the adhesion site, how they are turned over, and how they function in vivo. In this project, I aim to conduct an interdisciplinary study that will provide a quantum step forward in the understanding of the functional organization of FAs. We will analyze, for the first time, the three-dimensional structure of FAs in wild-type cells and in cells deficient in the specific proteins involved in the cell-adhesion machinery. We will study the effect of specific geometries on the functional architecture of focal adhesions in 3D. A combination of state-of-the-art technologies, such cryo-electron tomography of intact cells, gold cluster chemistry for in situ labeling, and modulation of the underlying matrix using micro- and nano-patterned adhesive surfaces, together with correlative light, atomic force and electron microscopy, will provide a hybrid approach for dissecting out the complex process of cell adhesion.In summary, this project addresses the properties of FAs across a wide range of complexities and dimensions, from macroscopic cellular phenomena to the physical nature of these molecular assemblies
Max ERC Funding
1 294 000 €
Duration
Start date: 2009-11-01, End date: 2015-10-31
Project acronym INTGEN
Project Intergenerational correlations of schooling, income and health: an investigation of the underlying mechanisms
Researcher (PI) Carl Mikael Lindahl
Host Institution (HI) UPPSALA UNIVERSITET
Country Sweden
Call Details Starting Grant (StG), SH1, ERC-2009-StG
Summary The objective of this project is to use rich Swedish registry data to learn about mechanisms behind intergenerational correlations. Typically, considerably effort has been spent on estimating correlations between outcome variables, such as education and income, for parents and children. However, the estimated correlations are driven by the causal effect of the parental variable of interest as well as unobservable factors such as other family background related variables and a part that is due to genetic transmission between parent and child. Disentangling these parts is very difficult and only recently has researchers made serious attempts to disentangling these different parts. However, findings vary widely across methods and this literature is still in its infancy. Among questions we ask are: How much of the association between outcome variables for the child and a parent is due to a causal effect from the parental variable, and how much is transmitted through unobservable family factors and genetic transmission? What are the intergenerational transmission and channels for life expectancy and health? What is the importance of genes-environmental interaction? Has the importance of genes, environment and its interactions for the intergenerational associations changed during the growth of the Scandinavian welfare state? How many generations does it take for ancestors placement in the income distribution to not longer matter for life success? These questions are directly relevant for policy, and relate to classical social science issues such as inequality of opportunity and level-of-living in general. The innovativeness of this project is based on using the uniqueness of Swedish registry data (ideal to answer these questions), with which one can match biological and adoptive parents, children and siblings, and hence can identify whether children are reared by their biological or adoptive parents, for the population of Swedes.
Summary
The objective of this project is to use rich Swedish registry data to learn about mechanisms behind intergenerational correlations. Typically, considerably effort has been spent on estimating correlations between outcome variables, such as education and income, for parents and children. However, the estimated correlations are driven by the causal effect of the parental variable of interest as well as unobservable factors such as other family background related variables and a part that is due to genetic transmission between parent and child. Disentangling these parts is very difficult and only recently has researchers made serious attempts to disentangling these different parts. However, findings vary widely across methods and this literature is still in its infancy. Among questions we ask are: How much of the association between outcome variables for the child and a parent is due to a causal effect from the parental variable, and how much is transmitted through unobservable family factors and genetic transmission? What are the intergenerational transmission and channels for life expectancy and health? What is the importance of genes-environmental interaction? Has the importance of genes, environment and its interactions for the intergenerational associations changed during the growth of the Scandinavian welfare state? How many generations does it take for ancestors placement in the income distribution to not longer matter for life success? These questions are directly relevant for policy, and relate to classical social science issues such as inequality of opportunity and level-of-living in general. The innovativeness of this project is based on using the uniqueness of Swedish registry data (ideal to answer these questions), with which one can match biological and adoptive parents, children and siblings, and hence can identify whether children are reared by their biological or adoptive parents, for the population of Swedes.
Max ERC Funding
631 600 €
Duration
Start date: 2010-09-01, End date: 2015-08-31
Project acronym LAST
Project Large Scale Privacy-Preserving Technology in the Digital World - Infrastructure and Applications
Researcher (PI) Yehuda Lindell
Host Institution (HI) BAR ILAN UNIVERSITY
Country Israel
Call Details Starting Grant (StG), PE6, ERC-2009-StG
Summary Data mining provides large benefits to the commercial, government and homeland security sectors, but the aggregation and storage of huge amounts of data about citizens inevitably leads to erosion of privacy. To achieve the benefits that data mining has to offer, while at the same time enhancing privacy, we need technological solutions that simultaneously enable data mining while preserving privacy. The current state of the art has focused on providing privacy-preserving solutions for very specific problems, and has thus taken a local perspective. Although this is an important first step in the development of privacy-preserving solutions, it is time for a global perspective on the problem that aims for providing full integrated solutions. Our goal in this research is to study privacy and develop comprehensive solutions for enhancing it in the digital era. Our proposed research project includes foundational research on privacy, an infrastructure level for achieving anonymity over the Internet, key cryptographic tools for constructing privacy-preserving protocols, and development of large-scale applications that are built on top of all of the above. The novelty of our research is in our focus on fundamental issues towards comprehensive solutions that are aimed for large-scale data sources. The project s outcome will allow migration from local solutions for specific problems that are suited for small to medium scale data sources to comprehensive privacy-preserving database and data mining solutions for large scale data warehouses. Achieving this great challenge carries immense scientific, technological and societal rewards.
Summary
Data mining provides large benefits to the commercial, government and homeland security sectors, but the aggregation and storage of huge amounts of data about citizens inevitably leads to erosion of privacy. To achieve the benefits that data mining has to offer, while at the same time enhancing privacy, we need technological solutions that simultaneously enable data mining while preserving privacy. The current state of the art has focused on providing privacy-preserving solutions for very specific problems, and has thus taken a local perspective. Although this is an important first step in the development of privacy-preserving solutions, it is time for a global perspective on the problem that aims for providing full integrated solutions. Our goal in this research is to study privacy and develop comprehensive solutions for enhancing it in the digital era. Our proposed research project includes foundational research on privacy, an infrastructure level for achieving anonymity over the Internet, key cryptographic tools for constructing privacy-preserving protocols, and development of large-scale applications that are built on top of all of the above. The novelty of our research is in our focus on fundamental issues towards comprehensive solutions that are aimed for large-scale data sources. The project s outcome will allow migration from local solutions for specific problems that are suited for small to medium scale data sources to comprehensive privacy-preserving database and data mining solutions for large scale data warehouses. Achieving this great challenge carries immense scientific, technological and societal rewards.
Max ERC Funding
1 921 316 €
Duration
Start date: 2009-10-01, End date: 2014-09-30
Project acronym MINT
Project Multiphoton Ionization Nano-Therapy
Researcher (PI) Dvir Yelin
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Country Israel
Call Details Starting Grant (StG), PE7, ERC-2009-StG
Summary The application of nanotechnology for addressing key problems in clinical diagnosis and therapy holds great promise in medicine and in cancer in particular. Recent works have shown significant progress in nanoparticle-mediated drug delivery and therapy. In these applications, however, the small dimensions of the nanoparticles have been used primarily for efficient delivery and specificity, while the effects mediated by the nanoparticles occur away from the particle itself, affecting the entire cell\tumour volume. We propose to study and develop, for the first time, a novel scheme for cancer therapy that treats cancer cells at nanoscale resolutions. Briefly, when noble-metal nanoparticles are illuminated with femtosecond laser pulses tuned to their plasmonic resonance, order-of-magnitude enhancements of the optical fields several nanometres away from their surfaces lead to local damage only to nearby molecules or cellular organelles. This process, which practically involves no toxic agents, is at the basis for this proposal; we will utilize techniques for targeting nanoparticles to cells, initiate and control cancer cell destruction using nanoparticles and femtosecond laser pulses, and develop technology for conducting image-guided minimally invasive cancer therapy in remote locations of the body. Preliminary results supporting the proposed scheme include nonlinear optical imaging and ablation of living cells, in vivo endoscopic imaging of cancerous tumour nodules, and computer simulations of light-nanoparticle interactions. Using state-of-the-art concepts in nanotechnology, biology, chemistry, and medicine, the proposed novel multidisciplinary research will attempt at offering a feasible and safe addition to existing forms of cancer therapy.
Summary
The application of nanotechnology for addressing key problems in clinical diagnosis and therapy holds great promise in medicine and in cancer in particular. Recent works have shown significant progress in nanoparticle-mediated drug delivery and therapy. In these applications, however, the small dimensions of the nanoparticles have been used primarily for efficient delivery and specificity, while the effects mediated by the nanoparticles occur away from the particle itself, affecting the entire cell\tumour volume. We propose to study and develop, for the first time, a novel scheme for cancer therapy that treats cancer cells at nanoscale resolutions. Briefly, when noble-metal nanoparticles are illuminated with femtosecond laser pulses tuned to their plasmonic resonance, order-of-magnitude enhancements of the optical fields several nanometres away from their surfaces lead to local damage only to nearby molecules or cellular organelles. This process, which practically involves no toxic agents, is at the basis for this proposal; we will utilize techniques for targeting nanoparticles to cells, initiate and control cancer cell destruction using nanoparticles and femtosecond laser pulses, and develop technology for conducting image-guided minimally invasive cancer therapy in remote locations of the body. Preliminary results supporting the proposed scheme include nonlinear optical imaging and ablation of living cells, in vivo endoscopic imaging of cancerous tumour nodules, and computer simulations of light-nanoparticle interactions. Using state-of-the-art concepts in nanotechnology, biology, chemistry, and medicine, the proposed novel multidisciplinary research will attempt at offering a feasible and safe addition to existing forms of cancer therapy.
Max ERC Funding
1 782 600 €
Duration
Start date: 2009-12-01, End date: 2014-11-30
Project acronym NEMSQED
Project Electromechanical quantum coherent systems
Researcher (PI) Mika Antero Sillanpeae
Host Institution (HI) AALTO KORKEAKOULUSAATIO SR
Country Finland
Call Details Starting Grant (StG), PE3, ERC-2009-StG
Summary At a low temperature, nearly macroscopic quantum states can be sustained in superconducting (SC) Josephson junctions. Recently, these superconducting qubits have been coupled to electromagnetic resonators, in a manner analogous to cavity Quantum Electro Dynamics (QED) which describes the interaction between atoms and quantized oscillation modes in the quantum limit. On the other hand, there is yet no experimental evidence of a mode of a mechanical oscillator, such as that of a miniaturized vibrating string, to be chilled down to its quantum ground state. The main part of the proposal involves the use the coupling of Nanomechanical Resonators (NR) to SC qubits employed as artificial atoms in order to address the quantum-classical interface in mechanical motion. Similarly as the SC qubit can exchange quanta with electrical oscillators, it can, in principle, communicate with mechanical modes. The research will begin with demonstrating this kind of electromechanical interaction. In order to tackle experimental surprises, I plan on launching two parallel paths, one with a charge qubit, the other using a phase qubit. The formidable main goal is to experimentally reach the quantum ground state of a mechanical mode. I will investigate the following routes: Make a 1 GHz frequency NR, corresponding to 50 mK, which will reach the ground state at accessible temperatures. On the other hand, I propose to side-band cool a lower-frequency NR via the attached SC qubit. Near the quantum limit, I will start taking advantage of the NR as a building block of electromechanical quantum information. I also propose to push the QED setup of SC qubits coupled to electrical cavities towards more and more complicated states in order to test quantum mechanics in the nearly classical limit.
Summary
At a low temperature, nearly macroscopic quantum states can be sustained in superconducting (SC) Josephson junctions. Recently, these superconducting qubits have been coupled to electromagnetic resonators, in a manner analogous to cavity Quantum Electro Dynamics (QED) which describes the interaction between atoms and quantized oscillation modes in the quantum limit. On the other hand, there is yet no experimental evidence of a mode of a mechanical oscillator, such as that of a miniaturized vibrating string, to be chilled down to its quantum ground state. The main part of the proposal involves the use the coupling of Nanomechanical Resonators (NR) to SC qubits employed as artificial atoms in order to address the quantum-classical interface in mechanical motion. Similarly as the SC qubit can exchange quanta with electrical oscillators, it can, in principle, communicate with mechanical modes. The research will begin with demonstrating this kind of electromechanical interaction. In order to tackle experimental surprises, I plan on launching two parallel paths, one with a charge qubit, the other using a phase qubit. The formidable main goal is to experimentally reach the quantum ground state of a mechanical mode. I will investigate the following routes: Make a 1 GHz frequency NR, corresponding to 50 mK, which will reach the ground state at accessible temperatures. On the other hand, I propose to side-band cool a lower-frequency NR via the attached SC qubit. Near the quantum limit, I will start taking advantage of the NR as a building block of electromechanical quantum information. I also propose to push the QED setup of SC qubits coupled to electrical cavities towards more and more complicated states in order to test quantum mechanics in the nearly classical limit.
Max ERC Funding
1 373 000 €
Duration
Start date: 2010-01-01, End date: 2014-12-31
Project acronym NEUROCHEMS
Project From neurons to behavior: analysis of the mechanisms underlying sensory coding and plasticity in chemical senses
Researcher (PI) Alan, Jacques, Henri, Cyrus Carleton
Host Institution (HI) UNIVERSITE DE GENEVE
Country Switzerland
Call Details Starting Grant (StG), LS5, ERC-2009-StG
Summary How sensory processing is occurring into the brain and how to relate behavior to neuronal activities are key questions in modern neuroscience. Understanding the neural codes underlying brain function will be of great importance for future implementation of brain-machine interfaces. This research project proposes to study the cellular and network mechanisms controlling sensory perception. In particular, we would like to precise how sensory stimuli are coded by brain networks and how these representations may be influenced by experience or modulatory brain centers. In order to address these general questions, we propose to study olfaction as model sensory system. The olfactory system is central to the behavior of rodents (animal models that we study), is highly plastic and largely modulated by the neuromodulatory brain centers. We propose to use a combination of genetic, electrophysiological, imaging and behavioral methods to study how odor information is processed in the central nervous system as it moves from the periphery to higher areas of the brain. We showed in the past that sensory information can be contained in dynamic neural ensemble. We propose to show that ensemble dynamics may be the basis of odor coding in the olfactory bulb and to describe the mechanisms underlying cortical coding that would allow us to relate neuronal activity to behavior. In addition, we hope to show the existence of a novel form of plasticity in the olfactory bulb namely ensemble plasticity. We believe that the general questions addressed in the study of these sensory systems go beyond understanding olfactory sensory perception and could potentially be generalized to the function of many brain regions.
Summary
How sensory processing is occurring into the brain and how to relate behavior to neuronal activities are key questions in modern neuroscience. Understanding the neural codes underlying brain function will be of great importance for future implementation of brain-machine interfaces. This research project proposes to study the cellular and network mechanisms controlling sensory perception. In particular, we would like to precise how sensory stimuli are coded by brain networks and how these representations may be influenced by experience or modulatory brain centers. In order to address these general questions, we propose to study olfaction as model sensory system. The olfactory system is central to the behavior of rodents (animal models that we study), is highly plastic and largely modulated by the neuromodulatory brain centers. We propose to use a combination of genetic, electrophysiological, imaging and behavioral methods to study how odor information is processed in the central nervous system as it moves from the periphery to higher areas of the brain. We showed in the past that sensory information can be contained in dynamic neural ensemble. We propose to show that ensemble dynamics may be the basis of odor coding in the olfactory bulb and to describe the mechanisms underlying cortical coding that would allow us to relate neuronal activity to behavior. In addition, we hope to show the existence of a novel form of plasticity in the olfactory bulb namely ensemble plasticity. We believe that the general questions addressed in the study of these sensory systems go beyond understanding olfactory sensory perception and could potentially be generalized to the function of many brain regions.
Max ERC Funding
1 399 998 €
Duration
Start date: 2009-12-01, End date: 2014-11-30
Project acronym NOVEL TOOLS IN PD
Project Novel tools for real time monitoring and quantification of protein aggregation in Parkinson s disease and related neurodegenerative disorders
Researcher (PI) Hilal Lashuel
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Country Switzerland
Call Details Starting Grant (StG), LS5, ERC-2009-StG
Summary To understand the molecular basis of any biological process, it is critical that one is not only able to visualize and monitor molecular events that underlie this process, but also to possess the tools to manipulate these events in a spatial and temporal fashion both in and out of the cell. The overall objective of this proposal is to apply chemical biology approaches to allow real time monitoring of protein aggregation and to dissect the role of specific disease-associated post-translational modifications, phosphorylation, nitration, and truncation on the structure, aggregation, and biochemical properties of monomeric a-syn in health and disease. To achieve these goals, we plan to use a combination of organic chemistry, molecular biology, proteomics, protein engineering, and semisynthetic strategies to facilitate site-specific introduction of post-translational modifications that can be masked and activated in a controllable manner, both inside and outside living cells. Modified synthetic ±-syn will be introduced into primary neurons and cellular models of synucleinopathies and the consequences of masking or activating specific modifications will be assessed using biochemical, immunofluorescence, and live imaging techniques (Specific Aim 1). The absence of specific molecular probes that allow in vivo monitoring and quantitative measurement of toxic misfolded and aggregation intermediates represents a major impediment to understanding the relationship among protein misfolding, post-translational modification, protein aggregation, neurodegeneration, and cell death in PD and other neurodegenerative disorders. To address this challenge, we plan to develop and characterize novel antibodies that target different species along the amyloid formation pathway of ±-syn (Specific Aim 2).
Summary
To understand the molecular basis of any biological process, it is critical that one is not only able to visualize and monitor molecular events that underlie this process, but also to possess the tools to manipulate these events in a spatial and temporal fashion both in and out of the cell. The overall objective of this proposal is to apply chemical biology approaches to allow real time monitoring of protein aggregation and to dissect the role of specific disease-associated post-translational modifications, phosphorylation, nitration, and truncation on the structure, aggregation, and biochemical properties of monomeric a-syn in health and disease. To achieve these goals, we plan to use a combination of organic chemistry, molecular biology, proteomics, protein engineering, and semisynthetic strategies to facilitate site-specific introduction of post-translational modifications that can be masked and activated in a controllable manner, both inside and outside living cells. Modified synthetic ±-syn will be introduced into primary neurons and cellular models of synucleinopathies and the consequences of masking or activating specific modifications will be assessed using biochemical, immunofluorescence, and live imaging techniques (Specific Aim 1). The absence of specific molecular probes that allow in vivo monitoring and quantitative measurement of toxic misfolded and aggregation intermediates represents a major impediment to understanding the relationship among protein misfolding, post-translational modification, protein aggregation, neurodegeneration, and cell death in PD and other neurodegenerative disorders. To address this challenge, we plan to develop and characterize novel antibodies that target different species along the amyloid formation pathway of ±-syn (Specific Aim 2).
Max ERC Funding
1 495 400 €
Duration
Start date: 2009-12-01, End date: 2014-11-30
Project acronym NOWIRE
Project Network Coding for Wireless Networks
Researcher (PI) Christina Fragouli
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Country Switzerland
Call Details Starting Grant (StG), PE7, ERC-2009-StG
Summary Our goal is to develop fundamentally new architectures for wireless networks that offer the convenience of wireless communication while achieving the performance, predictability and security of wired networks. The wireless channel is inherently a shared medium characterized by limited resources and complex signal interactions between transmitted signals. The question we address is how do we transmit information over wireless and how do we exploit the wireless channel properties to share its resources. Ours is a fundamentally different approach to existing strategies, that builds on new physical and packet layer sharing and cooperation paradigms that we have been working on, to extract the optimal throughput and reliability performance from the wireless medium. These are recent breakthroughs in (i) network coding and (ii) wireless cooperation. Network coding is a new area bringing a novel paradigm for network information flow that enables cooperation at a packet level to optimally share the network resources. Deployment of the first network coding ideas in wireless have already indicated benefits as large as a factor of ten in terms of throughput. Complex signal interactions caused by the inherent broadcast nature of wireless channels, is traditionally viewed as an impediment to be mitigated. Recently it has been demonstrated that one can utilize interference to develop cooperation at the wireless signal level (physical layer) for arbitrary wireless networks. This can give significant capacity advantages over techniques that mitigate interference. Both these ideas can radically affect the way information is communicated, stored and collected, and can revolutionize the design of future wireless networks. In this project we plan to addess several fundamental questions that develop on these themes. We take a complete view of these ideas by not only developing the underlying theory but also through validation on wireless testbeds.
Summary
Our goal is to develop fundamentally new architectures for wireless networks that offer the convenience of wireless communication while achieving the performance, predictability and security of wired networks. The wireless channel is inherently a shared medium characterized by limited resources and complex signal interactions between transmitted signals. The question we address is how do we transmit information over wireless and how do we exploit the wireless channel properties to share its resources. Ours is a fundamentally different approach to existing strategies, that builds on new physical and packet layer sharing and cooperation paradigms that we have been working on, to extract the optimal throughput and reliability performance from the wireless medium. These are recent breakthroughs in (i) network coding and (ii) wireless cooperation. Network coding is a new area bringing a novel paradigm for network information flow that enables cooperation at a packet level to optimally share the network resources. Deployment of the first network coding ideas in wireless have already indicated benefits as large as a factor of ten in terms of throughput. Complex signal interactions caused by the inherent broadcast nature of wireless channels, is traditionally viewed as an impediment to be mitigated. Recently it has been demonstrated that one can utilize interference to develop cooperation at the wireless signal level (physical layer) for arbitrary wireless networks. This can give significant capacity advantages over techniques that mitigate interference. Both these ideas can radically affect the way information is communicated, stored and collected, and can revolutionize the design of future wireless networks. In this project we plan to addess several fundamental questions that develop on these themes. We take a complete view of these ideas by not only developing the underlying theory but also through validation on wireless testbeds.
Max ERC Funding
1 771 520 €
Duration
Start date: 2009-09-01, End date: 2014-08-31
Project acronym PAC
Project Proofs and Computation
Researcher (PI) Eliyahu Ben Sasson
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Country Israel
Call Details Starting Grant (StG), PE6, ERC-2009-StG
Summary The project described in this proposal studies formal proofs and their interaction with computation. The study of propositional proofs is connected to a spectrum of problems in our field, starting with the meta-mathematical quest to explain our failure to understand computation and make progress on the basic questions haunting our field (such as P vs. NP), and ending with the industry-driven quest for better algorithms for solving instances of the satisfiability problem. In a seemingly different direction, the recent introduction of magical probabilistically checkable proofs (PCPs) has opened new horizons in computer science, ranging from a deeper understanding of approximation algorithms and their limits to the construction of super-efficient protocols for the verification of proofs and computations. We suggest to study proofs and computation with three main objectives. First, to construct better SAT solvers via a better understanding of propositional proof systems. Second, to expand the range of applications of PCPs and transform them from the purely theoretical objects that they currently are to practical and accessible formats for use in all settings where proofs are encountered. Third, to expand our theoretical understanding of the intrinsic limits of proofs, with an eye towards explaining why we are unable to make significant progress on central questions in computational complexity. We believe this project can bridge across different regions of computer science such as SAT solving and proof complexity, theory and practice, propositional proofs and probabilistically checkable ones. And its expected impact will start on the theoretical mathematical level that forms the foundation of computer science and percolate to more practical areas of our field.
Summary
The project described in this proposal studies formal proofs and their interaction with computation. The study of propositional proofs is connected to a spectrum of problems in our field, starting with the meta-mathematical quest to explain our failure to understand computation and make progress on the basic questions haunting our field (such as P vs. NP), and ending with the industry-driven quest for better algorithms for solving instances of the satisfiability problem. In a seemingly different direction, the recent introduction of magical probabilistically checkable proofs (PCPs) has opened new horizons in computer science, ranging from a deeper understanding of approximation algorithms and their limits to the construction of super-efficient protocols for the verification of proofs and computations. We suggest to study proofs and computation with three main objectives. First, to construct better SAT solvers via a better understanding of propositional proof systems. Second, to expand the range of applications of PCPs and transform them from the purely theoretical objects that they currently are to practical and accessible formats for use in all settings where proofs are encountered. Third, to expand our theoretical understanding of the intrinsic limits of proofs, with an eye towards explaining why we are unable to make significant progress on central questions in computational complexity. We believe this project can bridge across different regions of computer science such as SAT solving and proof complexity, theory and practice, propositional proofs and probabilistically checkable ones. And its expected impact will start on the theoretical mathematical level that forms the foundation of computer science and percolate to more practical areas of our field.
Max ERC Funding
1 743 676 €
Duration
Start date: 2009-12-01, End date: 2015-09-30
Project acronym PALMASSEMBLY
Project Protein assembly: From the molecular scale to the mesoscale with super-resolution imaging
Researcher (PI) Suliana Manley
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Country Switzerland
Call Details Starting Grant (StG), LS1, ERC-2009-StG
Summary Cellular responses to external signals begin at the plasma membrane, where the dynamic assembly of receptors can regulate cellular activity. Membrane-enveloped viruses, including the human immunodeficiency virus (HIV) also assemble at the plasma membrane, exploiting mechanisms evolved for cellular trafficking. However, our physical paradigm for how proteins form mesoscale assemblies is far from complete. While the organization and dynamics of membrane proteins are heterogeneous, commonly used fluorescence-based measurements lack information at the molecular scale. In contrast, single molecule measurements limited to looking at only a few molecules in a given cell lack ensemble information. Thus, the study of protein assembly has been limited by a lack of spatially resolved, dynamic information on ensembles of molecules. We will use super-resolution fluorescence imaging techniques combined with live cell imaging and single molecule tracking to determine how the dynamics of protein assembly are coordinated. The long-term goal of my research is to use quantitative fluorescence methods to identify the physical mechanisms for protein transport and organization in cells. The objective of this proposal is to establish quantitative models of protein assembly in two specific biological systems which were selected for the distinct characteristics of their assembly, and their relevance to human health. This will test the central hypothesis that molecular assembly is enhanced by the organization of the plasma membrane in the form of cytoskeletal elements and protein-lipid platforms. This interdisciplinary research will provide an experimental foundation for a statistical description of the cell, whose behaviour is embedded in protein organization and dynamics.
Summary
Cellular responses to external signals begin at the plasma membrane, where the dynamic assembly of receptors can regulate cellular activity. Membrane-enveloped viruses, including the human immunodeficiency virus (HIV) also assemble at the plasma membrane, exploiting mechanisms evolved for cellular trafficking. However, our physical paradigm for how proteins form mesoscale assemblies is far from complete. While the organization and dynamics of membrane proteins are heterogeneous, commonly used fluorescence-based measurements lack information at the molecular scale. In contrast, single molecule measurements limited to looking at only a few molecules in a given cell lack ensemble information. Thus, the study of protein assembly has been limited by a lack of spatially resolved, dynamic information on ensembles of molecules. We will use super-resolution fluorescence imaging techniques combined with live cell imaging and single molecule tracking to determine how the dynamics of protein assembly are coordinated. The long-term goal of my research is to use quantitative fluorescence methods to identify the physical mechanisms for protein transport and organization in cells. The objective of this proposal is to establish quantitative models of protein assembly in two specific biological systems which were selected for the distinct characteristics of their assembly, and their relevance to human health. This will test the central hypothesis that molecular assembly is enhanced by the organization of the plasma membrane in the form of cytoskeletal elements and protein-lipid platforms. This interdisciplinary research will provide an experimental foundation for a statistical description of the cell, whose behaviour is embedded in protein organization and dynamics.
Max ERC Funding
1 542 518 €
Duration
Start date: 2009-12-01, End date: 2015-11-30
Project acronym PTPSBDC
Project The role of protein-tyrosine phosphatases in breast development and cancer
Researcher (PI) Mohamed Bentires-Alj
Host Institution (HI) FRIEDRICH MIESCHER INSTITUTE FOR BIOMEDICAL RESEARCH FONDATION
Country Switzerland
Call Details Starting Grant (StG), LS4, ERC-2009-StG
Summary Each year 1.1 million new cases of breast cancer will occur among women worldwide and 400,000 women will die from this disease. Although progress has been made in understanding breast tumor biology, most of the relevant molecules and pathways remain undefined. Their delineation is critical to a rational approach to breast cancer therapy. This proposal focuses on the role of the under-explored family of protein-tyrosine phosphatases (PTPs) in the normal and neoplastic breast. Virtually all cell signaling pathways are modulated by reversible protein tyrosine phosphorylation, which is regulated by two classes of enzymes: protein-tyrosine kinases (PTKs) and PTPs. Not surprisingly, tyrosine phosphorylation has an important role in breast development and cancer. Whereas the role of specific PTKs, like the HER2 receptor, in breast cancer is well studied, almost nothing is known about the function of specific PTPs in this disease. Our preliminary data suggest that PTP1B has an important role in breast differentiation and that both PTP1B and SHP2 play positive roles in breast cancer. The two predominant goals of this proposal are: First, to delineate the role of PTP1B and other PTPs in normal breast development and differentiation; second, to address the roles of PTP1B and other PTPs in the maintenance of breast cancer and metastasis and to assess their merits as drug targets. These studies not only use state-of-the-art ex vivo and in vivo models for studying breast pathophysiology, but also cross the boundaries between the developmental and cancer research fields and between basic science and clinical applications. Our research should ultimately lead to the rational design of targeted therapies that will improve the clinical management of patients with breast cancer.
Summary
Each year 1.1 million new cases of breast cancer will occur among women worldwide and 400,000 women will die from this disease. Although progress has been made in understanding breast tumor biology, most of the relevant molecules and pathways remain undefined. Their delineation is critical to a rational approach to breast cancer therapy. This proposal focuses on the role of the under-explored family of protein-tyrosine phosphatases (PTPs) in the normal and neoplastic breast. Virtually all cell signaling pathways are modulated by reversible protein tyrosine phosphorylation, which is regulated by two classes of enzymes: protein-tyrosine kinases (PTKs) and PTPs. Not surprisingly, tyrosine phosphorylation has an important role in breast development and cancer. Whereas the role of specific PTKs, like the HER2 receptor, in breast cancer is well studied, almost nothing is known about the function of specific PTPs in this disease. Our preliminary data suggest that PTP1B has an important role in breast differentiation and that both PTP1B and SHP2 play positive roles in breast cancer. The two predominant goals of this proposal are: First, to delineate the role of PTP1B and other PTPs in normal breast development and differentiation; second, to address the roles of PTP1B and other PTPs in the maintenance of breast cancer and metastasis and to assess their merits as drug targets. These studies not only use state-of-the-art ex vivo and in vivo models for studying breast pathophysiology, but also cross the boundaries between the developmental and cancer research fields and between basic science and clinical applications. Our research should ultimately lead to the rational design of targeted therapies that will improve the clinical management of patients with breast cancer.
Max ERC Funding
1 571 365 €
Duration
Start date: 2010-02-01, End date: 2015-01-31
Project acronym SIRAID
Project SIRT6 activation for countering age-related metabolic diseases
Researcher (PI) Haim Cohen
Host Institution (HI) BAR ILAN UNIVERSITY
Country Israel
Call Details Starting Grant (StG), LS4, ERC-2009-StG
Summary The significant increase in the human lifespan during the last century confronts us with great medical challenges. To answer them, one must understand and control the mechanisms that determine the rate of ageing. The sirtuins, and in particular the mammalian member SIRT6, are a family of NAD+ dependent deacetylases that were implicated in ageing and the regulation of metabolism. Much evidence correlates SIRT6 with the regulation of ageing, primarily the manifestation of ageing related pathologies in SIRT6 deficient mice, and the induction of SIRT6 by calorie-restricted diet that delays ageing and reduces its related diseases. Nonetheless, the role of SIRT6 in ageing and the mechanisms by which it might act are still elusive. To explore it at the molecular mechanistic level, SIRAID aims to i) study the role of SIRT6 in glucose and fat metabolism under high fat diet; ii) to determine whether SIRT6 is involved in regulating life span, and to characterise how SIRT6 is activated by calorie restriction; and iii) to perform large scale SILAC-based proteomics screening for SIRT6 substrates. These results will then be used for the development of small activator molecules of SIRT6 that may be used therapeutically for age related metabolic diseases. Taken together, we suggest a multifaceted approach that will allow us to explore the role of SIRT6 in ageing and metabolism, and to translate this knowledge to counter and prevent the medical problems associated with human longevity.
Summary
The significant increase in the human lifespan during the last century confronts us with great medical challenges. To answer them, one must understand and control the mechanisms that determine the rate of ageing. The sirtuins, and in particular the mammalian member SIRT6, are a family of NAD+ dependent deacetylases that were implicated in ageing and the regulation of metabolism. Much evidence correlates SIRT6 with the regulation of ageing, primarily the manifestation of ageing related pathologies in SIRT6 deficient mice, and the induction of SIRT6 by calorie-restricted diet that delays ageing and reduces its related diseases. Nonetheless, the role of SIRT6 in ageing and the mechanisms by which it might act are still elusive. To explore it at the molecular mechanistic level, SIRAID aims to i) study the role of SIRT6 in glucose and fat metabolism under high fat diet; ii) to determine whether SIRT6 is involved in regulating life span, and to characterise how SIRT6 is activated by calorie restriction; and iii) to perform large scale SILAC-based proteomics screening for SIRT6 substrates. These results will then be used for the development of small activator molecules of SIRT6 that may be used therapeutically for age related metabolic diseases. Taken together, we suggest a multifaceted approach that will allow us to explore the role of SIRT6 in ageing and metabolism, and to translate this knowledge to counter and prevent the medical problems associated with human longevity.
Max ERC Funding
1 510 968 €
Duration
Start date: 2009-10-01, End date: 2014-09-30
Project acronym STRONGPCP
Project Strong Probabilistically Checkable Proofs
Researcher (PI) Irit Dveer Dinur
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Country Israel
Call Details Starting Grant (StG), PE6, ERC-2009-StG
Summary Probabilistically Checkable Proofs (PCPs) encapsulate the striking idea that verification of proofs becomes nearly trivial if one is willing to use randomness. The PCP theorem, proven in the early 90's, is a cornerstone of modern computational complexity theory. It completely revises our notion of a proof, leading to an amazingly robust behavior: A PCP proof is guaranteed to have an abundance of errors if attempting to prove a falsity. This stands in sharp contrast to our classical notion of a proof whose correctness can collapse due to one wrong step. An important drive in the development of PCP theory is the revolutionary effect it had on the field of approximation. Feige et. al. [JACM, 1996] discovered that the PCP theorem is *equivalent* to the inapproximability of several classical optimization problems. Thus, PCP theory has resulted in a leap in our understanding of approximability and opened the gate to a flood of results. To date, virtually all inapproximability results are based on the PCP theorem, and while there is an impressive body of work on hardness-of-approximation, much work still lies ahead. The central goal of this proposal is to obtain stronger PCPs than currently known, leading towards optimal inapproximability results and novel notions of robustness in computation and in proofs. This study will build upon (i) new directions opened up by my novel proof of the PCP theorem [JACM, 2007]; and on (ii) state-of-the-art PCP machinery involving techniques from algebra, functional and harmonic analysis, probability, combinatorics, and coding theory. The broader impact of this study spans a better understanding of limits for approximation algorithms saving time and resources for algorithm designers; and new understanding of robustness in a variety of mathematical contexts, arising from the many connections between PCPs and stability questions in combinatorics, functional analysis, metric embeddings, probability, and more.
Summary
Probabilistically Checkable Proofs (PCPs) encapsulate the striking idea that verification of proofs becomes nearly trivial if one is willing to use randomness. The PCP theorem, proven in the early 90's, is a cornerstone of modern computational complexity theory. It completely revises our notion of a proof, leading to an amazingly robust behavior: A PCP proof is guaranteed to have an abundance of errors if attempting to prove a falsity. This stands in sharp contrast to our classical notion of a proof whose correctness can collapse due to one wrong step. An important drive in the development of PCP theory is the revolutionary effect it had on the field of approximation. Feige et. al. [JACM, 1996] discovered that the PCP theorem is *equivalent* to the inapproximability of several classical optimization problems. Thus, PCP theory has resulted in a leap in our understanding of approximability and opened the gate to a flood of results. To date, virtually all inapproximability results are based on the PCP theorem, and while there is an impressive body of work on hardness-of-approximation, much work still lies ahead. The central goal of this proposal is to obtain stronger PCPs than currently known, leading towards optimal inapproximability results and novel notions of robustness in computation and in proofs. This study will build upon (i) new directions opened up by my novel proof of the PCP theorem [JACM, 2007]; and on (ii) state-of-the-art PCP machinery involving techniques from algebra, functional and harmonic analysis, probability, combinatorics, and coding theory. The broader impact of this study spans a better understanding of limits for approximation algorithms saving time and resources for algorithm designers; and new understanding of robustness in a variety of mathematical contexts, arising from the many connections between PCPs and stability questions in combinatorics, functional analysis, metric embeddings, probability, and more.
Max ERC Funding
1 639 584 €
Duration
Start date: 2009-09-01, End date: 2016-06-30
Project acronym TEPESS
Project Technologies and psychophysics of spatial sound
Researcher (PI) Ville Pulkki
Host Institution (HI) AALTO KORKEAKOULUSAATIO SR
Country Finland
Call Details Starting Grant (StG), PE7, ERC-2009-StG
Summary Spatial audio is a field, which investigates technologies to capture and reproduce sound in a way that the spatial properties of it are either preserved or modified depending on application. For example, modern surround sound techniques try to reproduce the sound scene perceived by a human listener in the same way than in the original occasion. The principal investigator (PI) has been able to develop a number of technologies in spatial audio field and to transfer them to the industry. The project would have two work packages, one concentrating on development of technology (WP1) and the other on perceptual studies (WP2). The perceptual studies are assumed to help technology development, and new technologies are assumed to reveal new phenomena in perception. The main issue for WP1 is the development of generic audio format. In future all music records and movie audio tracks are targeted to be in this format, which would be suitable for listening with any loudspeaker setup and also with headphones, always with optimal spatial and timbral quality. The development of the format is based on a technique by the PI, which is extended in this work for enhanced playback over loudspeakers and over headphones. Also, new techniques are developed for sound input from different types of microphones and from existing audio formats. The perceptual issues studied in WP2 would be the functioning of spatial hearing with wide sources and complex sound scenarios, together with computational modeling of brain mechanisms devoted to binaural hearing. The crossmodal effects between vision and auditory systems would also be investigated in the anechoic chamber specially equipped for spatial sound research. As the final task, the perceptual quality of developed generic audio format in different listening scenarios would be evaluated with subjective and objective tests.
Summary
Spatial audio is a field, which investigates technologies to capture and reproduce sound in a way that the spatial properties of it are either preserved or modified depending on application. For example, modern surround sound techniques try to reproduce the sound scene perceived by a human listener in the same way than in the original occasion. The principal investigator (PI) has been able to develop a number of technologies in spatial audio field and to transfer them to the industry. The project would have two work packages, one concentrating on development of technology (WP1) and the other on perceptual studies (WP2). The perceptual studies are assumed to help technology development, and new technologies are assumed to reveal new phenomena in perception. The main issue for WP1 is the development of generic audio format. In future all music records and movie audio tracks are targeted to be in this format, which would be suitable for listening with any loudspeaker setup and also with headphones, always with optimal spatial and timbral quality. The development of the format is based on a technique by the PI, which is extended in this work for enhanced playback over loudspeakers and over headphones. Also, new techniques are developed for sound input from different types of microphones and from existing audio formats. The perceptual issues studied in WP2 would be the functioning of spatial hearing with wide sources and complex sound scenarios, together with computational modeling of brain mechanisms devoted to binaural hearing. The crossmodal effects between vision and auditory systems would also be investigated in the anechoic chamber specially equipped for spatial sound research. As the final task, the perceptual quality of developed generic audio format in different listening scenarios would be evaluated with subjective and objective tests.
Max ERC Funding
1 879 458 €
Duration
Start date: 2009-09-01, End date: 2014-08-31
Project acronym TEXTILE
Project An Iconology of the Textile in Art and Architecture
Researcher (PI) Tristan Weddigen
Host Institution (HI) University of Zurich
Country Switzerland
Call Details Starting Grant (StG), SH5, ERC-2009-StG
Summary The fabrication of textiles is one of the oldest cultural technologies. The objective of the proposed interdisciplinary research project is to investigate the historical meanings and functions of the textile medium in art and architecture from the Middle Ages to the present. The exploration of this specific art medium should result in a historical theory or iconology of the textile. The project focussed on the textile discourse engages in a new, complex, and challenging field of research situated between art and architectural history and within cultural and visual studies, involving also other disciplines such as literary studies and social history. Moreover, it aims at connecting the two scientific cultures of the universities and museums, and it draws transdisciplinary expertise from contemporary art. The framework of the project can be described by seven interconnected subject areas which are dedicated to specific questions and which share categories of objects such as figurative tapestries, installation art, literary texts, or architectural materials. This requires a variety of instrumental methods ranging from gender studies to textual analysis, from iconography to anthropological approaches. Two postdoctoral researchers and one doctoral candidate will work on a topic related to one or more of the subject areas. The team s aim is to perform basic research in an innovative and contemporary field, independently of traditional institutional constraints, in order to contribute to the establishment of the history of textile art as an academic discipline and to the advancement of art and architectural history towards a general history of images, media, and artefacts.
Summary
The fabrication of textiles is one of the oldest cultural technologies. The objective of the proposed interdisciplinary research project is to investigate the historical meanings and functions of the textile medium in art and architecture from the Middle Ages to the present. The exploration of this specific art medium should result in a historical theory or iconology of the textile. The project focussed on the textile discourse engages in a new, complex, and challenging field of research situated between art and architectural history and within cultural and visual studies, involving also other disciplines such as literary studies and social history. Moreover, it aims at connecting the two scientific cultures of the universities and museums, and it draws transdisciplinary expertise from contemporary art. The framework of the project can be described by seven interconnected subject areas which are dedicated to specific questions and which share categories of objects such as figurative tapestries, installation art, literary texts, or architectural materials. This requires a variety of instrumental methods ranging from gender studies to textual analysis, from iconography to anthropological approaches. Two postdoctoral researchers and one doctoral candidate will work on a topic related to one or more of the subject areas. The team s aim is to perform basic research in an innovative and contemporary field, independently of traditional institutional constraints, in order to contribute to the establishment of the history of textile art as an academic discipline and to the advancement of art and architectural history towards a general history of images, media, and artefacts.
Max ERC Funding
686 000 €
Duration
Start date: 2009-09-01, End date: 2013-08-31
Project acronym TLIM
Project Talent and Learning in Imperfect Markets
Researcher (PI) Marko Juhani Tervioe
Host Institution (HI) AALTO KORKEAKOULUSAATIO SR
Country Finland
Call Details Starting Grant (StG), SH1, ERC-2009-StG
Summary The overall effectiveness at which the underlying talent resources in an economy are utilized is an important determinant of long-run economic growth and well-being. Recent work has shown that the processes through which talent is discovered and revealed in the economy are likely to suffer from market imperfections that are analogous to problems that have been for long been understood in the context of private provision of job training and education, resulting in not just reduced economic efficiency but also contributing to income inequality. The first basic question is what is the role of talent rents in explaining income inequality? In a static world where all information about talent is known, such talent rents would merely be compensation to a scarce factor of production. However, when the discovery of talent is subject to market imperfections then income differences that ostensibly look like talent rents are partly due to inefficient information rents. This raises the second and novel question, about whether and to what extent observed income differences are due to inefficient rents to information about talent that masquerade as talent rents. I also plan to investigate how technological change has impacted the distribution of talent rents via its effect on the discovery/revelation process of talent. The larger goal of the project is to help understand the economy-wide implications of institutions and policies that govern the discovery and allocation of talent in the economy. Better understanding could also point the way towards improved policy interventions.
Summary
The overall effectiveness at which the underlying talent resources in an economy are utilized is an important determinant of long-run economic growth and well-being. Recent work has shown that the processes through which talent is discovered and revealed in the economy are likely to suffer from market imperfections that are analogous to problems that have been for long been understood in the context of private provision of job training and education, resulting in not just reduced economic efficiency but also contributing to income inequality. The first basic question is what is the role of talent rents in explaining income inequality? In a static world where all information about talent is known, such talent rents would merely be compensation to a scarce factor of production. However, when the discovery of talent is subject to market imperfections then income differences that ostensibly look like talent rents are partly due to inefficient information rents. This raises the second and novel question, about whether and to what extent observed income differences are due to inefficient rents to information about talent that masquerade as talent rents. I also plan to investigate how technological change has impacted the distribution of talent rents via its effect on the discovery/revelation process of talent. The larger goal of the project is to help understand the economy-wide implications of institutions and policies that govern the discovery and allocation of talent in the economy. Better understanding could also point the way towards improved policy interventions.
Max ERC Funding
1 003 440 €
Duration
Start date: 2009-10-01, End date: 2015-03-31
Project acronym TREATPD
Project Cell and gene therapy based approaches for treatment of Parkinson's disease: from models to clinics
Researcher (PI) Deniz Kirik
Host Institution (HI) MAX IV Laboratory, Lund University
Country Sweden
Call Details Starting Grant (StG), LS5, ERC-2009-StG
Summary Parkinson s disease is one of the common causes of disability in the aging population, representing a major health problem for the affected individuals and a socioeconomic burden to the society. In the present proposal, the applicant puts forward an ambitious but feasible program to tackle a number of significant issues that remain unsolved in the field. He combines his strong track record in animal models of Parkinson s disease and novel cell and gene therapy-based therapeutic strategies with powerful bio-imaging techniques in order to make bold steps towards translation of new and better treatments to patients suffering from this illness. He does so in a manner that combines, on one hand, the strength of clearly-defined hypotheses and well-established tools for results towards clinical translation, with high-risk high-reward projects that hold the potential to yield ground-breaking discoveries in implementation of novel imaging techniques, on the other.
Summary
Parkinson s disease is one of the common causes of disability in the aging population, representing a major health problem for the affected individuals and a socioeconomic burden to the society. In the present proposal, the applicant puts forward an ambitious but feasible program to tackle a number of significant issues that remain unsolved in the field. He combines his strong track record in animal models of Parkinson s disease and novel cell and gene therapy-based therapeutic strategies with powerful bio-imaging techniques in order to make bold steps towards translation of new and better treatments to patients suffering from this illness. He does so in a manner that combines, on one hand, the strength of clearly-defined hypotheses and well-established tools for results towards clinical translation, with high-risk high-reward projects that hold the potential to yield ground-breaking discoveries in implementation of novel imaging techniques, on the other.
Max ERC Funding
1 508 940 €
Duration
Start date: 2009-11-01, End date: 2014-10-31