Project acronym ABCvolume
Project The ABC of Cell Volume Regulation
Researcher (PI) Berend Poolman
Host Institution (HI) RIJKSUNIVERSITEIT GRONINGEN
Call Details Advanced Grant (AdG), LS1, ERC-2014-ADG
Summary Cell volume regulation is crucial for any living cell because changes in volume determine the metabolic activity through e.g. changes in ionic strength, pH, macromolecular crowding and membrane tension. These physical chemical parameters influence interaction rates and affinities of biomolecules, folding rates, and fold stabilities in vivo. Understanding of the underlying volume regulatory mechanisms has immediate application in biotechnology and health, yet these factors are generally ignored in systems analyses of cellular functions.
My team has uncovered a number of mechanisms and insights of cell volume regulation. The next step forward is to elucidate how the components of a cell volume regulatory circuit work together and control the physicochemical conditions of the cell.
I propose construction of a synthetic cell in which an osmoregulatory transporter and mechanosensitive channel form a minimal volume regulatory network. My group has developed the technology to reconstitute membrane proteins into lipid vesicles (synthetic cells). One of the challenges is to incorporate into the vesicles an efficient pathway for ATP production and maintain energy homeostasis while the load on the system varies. We aim to control the transmembrane flux of osmolytes, which requires elucidation of the molecular mechanism of gating of the osmoregulatory transporter. We will focus on the glycine betaine ABC importer, which is one of the most complex transporters known to date with ten distinct protein domains, transiently interacting with each other.
The proposed synthetic metabolic circuit constitutes a fascinating out-of-equilibrium system, allowing us to understand cell volume regulatory mechanisms in a context and at a level of complexity minimally needed for life. Analysis of this circuit will address many outstanding questions and eventually allow us to design more sophisticated vesicular systems with applications, for example as compartmentalized reaction networks.
Summary
Cell volume regulation is crucial for any living cell because changes in volume determine the metabolic activity through e.g. changes in ionic strength, pH, macromolecular crowding and membrane tension. These physical chemical parameters influence interaction rates and affinities of biomolecules, folding rates, and fold stabilities in vivo. Understanding of the underlying volume regulatory mechanisms has immediate application in biotechnology and health, yet these factors are generally ignored in systems analyses of cellular functions.
My team has uncovered a number of mechanisms and insights of cell volume regulation. The next step forward is to elucidate how the components of a cell volume regulatory circuit work together and control the physicochemical conditions of the cell.
I propose construction of a synthetic cell in which an osmoregulatory transporter and mechanosensitive channel form a minimal volume regulatory network. My group has developed the technology to reconstitute membrane proteins into lipid vesicles (synthetic cells). One of the challenges is to incorporate into the vesicles an efficient pathway for ATP production and maintain energy homeostasis while the load on the system varies. We aim to control the transmembrane flux of osmolytes, which requires elucidation of the molecular mechanism of gating of the osmoregulatory transporter. We will focus on the glycine betaine ABC importer, which is one of the most complex transporters known to date with ten distinct protein domains, transiently interacting with each other.
The proposed synthetic metabolic circuit constitutes a fascinating out-of-equilibrium system, allowing us to understand cell volume regulatory mechanisms in a context and at a level of complexity minimally needed for life. Analysis of this circuit will address many outstanding questions and eventually allow us to design more sophisticated vesicular systems with applications, for example as compartmentalized reaction networks.
Max ERC Funding
2 247 231 €
Duration
Start date: 2015-07-01, End date: 2020-06-30
Project acronym AGNES
Project ACTIVE AGEING – RESILIENCE AND EXTERNAL SUPPORT AS MODIFIERS OF THE DISABLEMENT OUTCOME
Researcher (PI) Taina Tuulikki RANTANEN
Host Institution (HI) JYVASKYLAN YLIOPISTO
Call Details Advanced Grant (AdG), SH3, ERC-2015-AdG
Summary The goals are 1. To develop a scale assessing the diversity of active ageing with four dimensions that are ability (what people can do), activity (what people do do), ambition (what are the valued activities that people want to do), and autonomy (how satisfied people are with the opportunity to do valued activities); 2. To examine health and physical and psychological functioning as the determinants and social and build environment, resilience and personal skills as modifiers of active ageing; 3. To develop a multicomponent sustainable intervention aiming to promote active ageing (methods: counselling, information technology, help from volunteers); 4. To test the feasibility and effectiveness on the intervention; and 5. To study cohort effects on the phenotypes on the pathway to active ageing.
“If You Can Measure It, You Can Change It.” Active ageing assessment needs conceptual progress, which I propose to do. A quantifiable scale will be developed that captures the diversity of active ageing stemming from the WHO definition of active ageing as the process of optimizing opportunities for health and participation in the society for all people in line with their needs, goals and capacities as they age. I will collect cross-sectional data (N=1000, ages 75, 80 and 85 years) and model the pathway to active ageing with state-of-the art statistical methods. By doing this I will create novel knowledge on preconditions for active ageing. The collected cohort data will be compared to a pre-existing cohort data that was collected 25 years ago to obtain knowledge about changes over time in functioning of older people. A randomized controlled trial (N=200) will be conducted to assess the effectiveness of the envisioned intervention promoting active ageing through participation. The project will regenerate ageing research by launching a novel scale, by training young scientists, by creating new concepts and theory development and by producing evidence for active ageing promotion
Summary
The goals are 1. To develop a scale assessing the diversity of active ageing with four dimensions that are ability (what people can do), activity (what people do do), ambition (what are the valued activities that people want to do), and autonomy (how satisfied people are with the opportunity to do valued activities); 2. To examine health and physical and psychological functioning as the determinants and social and build environment, resilience and personal skills as modifiers of active ageing; 3. To develop a multicomponent sustainable intervention aiming to promote active ageing (methods: counselling, information technology, help from volunteers); 4. To test the feasibility and effectiveness on the intervention; and 5. To study cohort effects on the phenotypes on the pathway to active ageing.
“If You Can Measure It, You Can Change It.” Active ageing assessment needs conceptual progress, which I propose to do. A quantifiable scale will be developed that captures the diversity of active ageing stemming from the WHO definition of active ageing as the process of optimizing opportunities for health and participation in the society for all people in line with their needs, goals and capacities as they age. I will collect cross-sectional data (N=1000, ages 75, 80 and 85 years) and model the pathway to active ageing with state-of-the art statistical methods. By doing this I will create novel knowledge on preconditions for active ageing. The collected cohort data will be compared to a pre-existing cohort data that was collected 25 years ago to obtain knowledge about changes over time in functioning of older people. A randomized controlled trial (N=200) will be conducted to assess the effectiveness of the envisioned intervention promoting active ageing through participation. The project will regenerate ageing research by launching a novel scale, by training young scientists, by creating new concepts and theory development and by producing evidence for active ageing promotion
Max ERC Funding
2 044 364 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym ALLEGRO
Project unrAvelLing sLow modE travelinG and tRaffic: with innOvative data to a new transportation and traffic theory for pedestrians and bicycles
Researcher (PI) Serge Hoogendoorn
Host Institution (HI) TECHNISCHE UNIVERSITEIT DELFT
Call Details Advanced Grant (AdG), SH3, ERC-2014-ADG
Summary A major challenge in contemporary traffic and transportation theory is having a comprehensive understanding of pedestrians and cyclists behaviour. This is notoriously hard to observe, since sensors providing abundant and detailed information about key variables characterising this behaviour have not been available until very recently. The behaviour is also far more complex than that of the much better understood fast mode. This is due to the many degrees of freedom in decision-making, the interactions among slow traffic participants that are more involved and far less guided by traffic rules and regulations than those between car-drivers, and the many fascinating but complex phenomena in slow traffic flows (self-organised patterns, turbulence, spontaneous phase transitions, herding, etc.) that are very hard to predict accurately.
With slow traffic modes gaining ground in terms of mode share in many cities, lack of empirical insights, behavioural theories, predictively valid analytical and simulation models, and tools to support planning, design, management and control is posing a major societal problem as well: examples of major accidents due to bad planning, organisation and management of events are manifold, as are locations where safety of slow modes is a serious issue due to interactions with fast modes.
This programme is geared towards establishing a comprehensive theory of slow mode traffic behaviour, considering the different behavioural levels relevant for understanding, reproducing and predicting slow mode traffic flows in cities. The levels deal with walking and cycling operations, activity scheduling and travel behaviour, and knowledge representation and learning. Major scientific breakthroughs are expected at each of these levels, in terms of theory and modelling, by using innovative (big) data collection and experimentation, analysis and fusion techniques, including social media data analytics, using augmented reality, and remote and crowd sensing.
Summary
A major challenge in contemporary traffic and transportation theory is having a comprehensive understanding of pedestrians and cyclists behaviour. This is notoriously hard to observe, since sensors providing abundant and detailed information about key variables characterising this behaviour have not been available until very recently. The behaviour is also far more complex than that of the much better understood fast mode. This is due to the many degrees of freedom in decision-making, the interactions among slow traffic participants that are more involved and far less guided by traffic rules and regulations than those between car-drivers, and the many fascinating but complex phenomena in slow traffic flows (self-organised patterns, turbulence, spontaneous phase transitions, herding, etc.) that are very hard to predict accurately.
With slow traffic modes gaining ground in terms of mode share in many cities, lack of empirical insights, behavioural theories, predictively valid analytical and simulation models, and tools to support planning, design, management and control is posing a major societal problem as well: examples of major accidents due to bad planning, organisation and management of events are manifold, as are locations where safety of slow modes is a serious issue due to interactions with fast modes.
This programme is geared towards establishing a comprehensive theory of slow mode traffic behaviour, considering the different behavioural levels relevant for understanding, reproducing and predicting slow mode traffic flows in cities. The levels deal with walking and cycling operations, activity scheduling and travel behaviour, and knowledge representation and learning. Major scientific breakthroughs are expected at each of these levels, in terms of theory and modelling, by using innovative (big) data collection and experimentation, analysis and fusion techniques, including social media data analytics, using augmented reality, and remote and crowd sensing.
Max ERC Funding
2 458 700 €
Duration
Start date: 2015-11-01, End date: 2020-10-31
Project acronym AMYTOX
Project Amyloid fibril cytotoxicity: new insights from novel approaches
Researcher (PI) Sheena Radford
Host Institution (HI) UNIVERSITY OF LEEDS
Call Details Advanced Grant (AdG), LS1, ERC-2012-ADG_20120314
Summary Despite the discovery of amyloidosis more than a century ago, the molecular and cellular mechanisms of these devastating human disorders remain obscure. In addition to their involvement in disease, amyloid fibrils perform physiological functions, whilst others have potentials as biomaterials. To realise their use in nanotechnology and to enable the development of amyloid therapies, there is an urgent need to understand the molecular pathways of amyloid assembly and to determine how amyloid fibrils interact with cells and cellular components. The challenges lie in the transient nature and low population of aggregating species and the panoply of amyloid fibril structures. This molecular complexity renders identification of the culprits of amyloid disease impossible to achieve using traditional methods.
Here I propose a series of exciting experiments that aim to cast new light on the molecular and cellular mechanisms of amyloidosis by exploiting approaches capable of imaging individual protein molecules or single protein fibrils in vitro and in living cells. The proposal builds on new data from our laboratory that have shown that amyloid fibrils (disease-associated, functional and created from de novo designed sequences) kill cells by a mechanism that depends on fibril length and on cellular uptake. Specifically, I will (i) use single molecule fluorescence and non-covalent mass spectrometry and to determine why short fibril samples disrupt biological membranes more than their longer counterparts and electron tomography to determine, for the first time, the structural properties of cytotoxic fibril ends; (ii) develop single molecule force spectroscopy to probe the interactions between amyloid precursors, fibrils and cellular membranes; and (iii) develop cell biological assays to discover the biological mechanism(s) of amyloid-induced cell death and high resolution imaging and electron tomography to visualise amyloid fibrils in the act of killing living cells.
Summary
Despite the discovery of amyloidosis more than a century ago, the molecular and cellular mechanisms of these devastating human disorders remain obscure. In addition to their involvement in disease, amyloid fibrils perform physiological functions, whilst others have potentials as biomaterials. To realise their use in nanotechnology and to enable the development of amyloid therapies, there is an urgent need to understand the molecular pathways of amyloid assembly and to determine how amyloid fibrils interact with cells and cellular components. The challenges lie in the transient nature and low population of aggregating species and the panoply of amyloid fibril structures. This molecular complexity renders identification of the culprits of amyloid disease impossible to achieve using traditional methods.
Here I propose a series of exciting experiments that aim to cast new light on the molecular and cellular mechanisms of amyloidosis by exploiting approaches capable of imaging individual protein molecules or single protein fibrils in vitro and in living cells. The proposal builds on new data from our laboratory that have shown that amyloid fibrils (disease-associated, functional and created from de novo designed sequences) kill cells by a mechanism that depends on fibril length and on cellular uptake. Specifically, I will (i) use single molecule fluorescence and non-covalent mass spectrometry and to determine why short fibril samples disrupt biological membranes more than their longer counterparts and electron tomography to determine, for the first time, the structural properties of cytotoxic fibril ends; (ii) develop single molecule force spectroscopy to probe the interactions between amyloid precursors, fibrils and cellular membranes; and (iii) develop cell biological assays to discover the biological mechanism(s) of amyloid-induced cell death and high resolution imaging and electron tomography to visualise amyloid fibrils in the act of killing living cells.
Max ERC Funding
2 498 465 €
Duration
Start date: 2013-05-01, End date: 2019-04-30
Project acronym ANOBEST
Project Structure function and pharmacology of calcium-activated chloride channels: Anoctamins and Bestrophins
Researcher (PI) Raimund Dutzler
Host Institution (HI) UNIVERSITAT ZURICH
Call Details Advanced Grant (AdG), LS1, ERC-2013-ADG
Summary Calcium-activated chloride channels (CaCCs) play key roles in a range of physiological processes such as the control of membrane excitability, photoreception and epithelial secretion. Although the importance of these channels has been recognized for more than 30 years their molecular identity remained obscure. The recent discovery of two protein families encoding for CaCCs, Anoctamins and Bestrophins, was a scientific breakthrough that has provided first insight into two novel ion channel architectures. Within this proposal we aim to determine the first high resolution structures of members of both families and study their functional behavior by an interdisciplinary approach combining biochemistry, X-ray crystallography and electrophysiology. The structural investigation of eukaryotic membrane proteins is extremely challenging and will require us to investigate large numbers of candidates to single out family members with superior biochemical properties. During the last year we have made large progress in this direction. By screening numerous eukaryotic Anoctamins and prokaryotic Bestrophins we have identified well-behaved proteins for both families, which were successfully scaled-up and purified. Additional family members will be identified within the course of the project. For these stable proteins we plan to grow crystals diffracting to high resolution and to proceed with structure determination. With first structural information in hand we will perform detailed functional studies using electrophysiology and complementary biophysical techniques to gain mechanistic insight into ion permeation and gating. As the pharmacology of both families is still in its infancy we will in later stages also engage in the identification and characterization of inhibitors and activators of Anoctamins and Bestrophins to open up a field that may ultimately lead to the discovery of novel therapeutic strategies targeting calcium-activated chloride channels.
Summary
Calcium-activated chloride channels (CaCCs) play key roles in a range of physiological processes such as the control of membrane excitability, photoreception and epithelial secretion. Although the importance of these channels has been recognized for more than 30 years their molecular identity remained obscure. The recent discovery of two protein families encoding for CaCCs, Anoctamins and Bestrophins, was a scientific breakthrough that has provided first insight into two novel ion channel architectures. Within this proposal we aim to determine the first high resolution structures of members of both families and study their functional behavior by an interdisciplinary approach combining biochemistry, X-ray crystallography and electrophysiology. The structural investigation of eukaryotic membrane proteins is extremely challenging and will require us to investigate large numbers of candidates to single out family members with superior biochemical properties. During the last year we have made large progress in this direction. By screening numerous eukaryotic Anoctamins and prokaryotic Bestrophins we have identified well-behaved proteins for both families, which were successfully scaled-up and purified. Additional family members will be identified within the course of the project. For these stable proteins we plan to grow crystals diffracting to high resolution and to proceed with structure determination. With first structural information in hand we will perform detailed functional studies using electrophysiology and complementary biophysical techniques to gain mechanistic insight into ion permeation and gating. As the pharmacology of both families is still in its infancy we will in later stages also engage in the identification and characterization of inhibitors and activators of Anoctamins and Bestrophins to open up a field that may ultimately lead to the discovery of novel therapeutic strategies targeting calcium-activated chloride channels.
Max ERC Funding
2 176 000 €
Duration
Start date: 2014-02-01, End date: 2020-01-31
Project acronym ARGO
Project The Quest of the Argonautes - from Myth to Reality
Researcher (PI) JOHN VAN DER OOST
Host Institution (HI) WAGENINGEN UNIVERSITY
Call Details Advanced Grant (AdG), LS1, ERC-2018-ADG
Summary Argonaute nucleases are key players of the eukaryotic RNA interference (RNAi) system. Using small RNA guides, these Argonaute (Ago) proteins specifically target complementary RNA molecules, resulting in regulation of a wide range of crucial processes, including chromosome organization, gene expression and anti-virus defence. Since 2010, my research team has studied closely-related prokaryotic Argonaute (pAgo) variants. This has revealed spectacular mechanistic variations: several thermophilic pAgos catalyse DNA-guided cleavage of double stranded DNA, but only at elevated temperatures. Interestingly, a recently discovered mesophilic Argonaute (CbAgo) can generate double strand DNA breaks at moderate temperatures, providing an excellent basis for this ARGO project. In addition, genome analysis has revealed many distantly-related Argonaute variants, often with unique domain architectures. Hence, the currently known Argonaute homologs are just the tip of the iceberg, and the stage is set for making a big leap in the exploration of the Argonaute family. Initially we will dissect the molecular basis of functional and mechanistic features of uncharacterized natural Argonaute variants, both in eukaryotes (the presence of an Ago-like subunit in the Mediator complex, strongly suggests a regulatory role of an elusive non-coding RNA ligand) and in prokaryotes (selected Ago variants possess distinct domains indicating novel functionalities). After their thorough biochemical characterization, I aim at engineering the functionality of the aforementioned CbAgo through an integrated rational & random approach, i.e. by tinkering of domains, and by an unprecedented in vitro laboratory evolution approach. Eventually, natural & synthetic Argonautes will be selected for their exploitation, and used for developing original genome editing applications (from silencing to base editing). Embarking on this ambitious ARGO expedition will lead us to many exciting discoveries.
Summary
Argonaute nucleases are key players of the eukaryotic RNA interference (RNAi) system. Using small RNA guides, these Argonaute (Ago) proteins specifically target complementary RNA molecules, resulting in regulation of a wide range of crucial processes, including chromosome organization, gene expression and anti-virus defence. Since 2010, my research team has studied closely-related prokaryotic Argonaute (pAgo) variants. This has revealed spectacular mechanistic variations: several thermophilic pAgos catalyse DNA-guided cleavage of double stranded DNA, but only at elevated temperatures. Interestingly, a recently discovered mesophilic Argonaute (CbAgo) can generate double strand DNA breaks at moderate temperatures, providing an excellent basis for this ARGO project. In addition, genome analysis has revealed many distantly-related Argonaute variants, often with unique domain architectures. Hence, the currently known Argonaute homologs are just the tip of the iceberg, and the stage is set for making a big leap in the exploration of the Argonaute family. Initially we will dissect the molecular basis of functional and mechanistic features of uncharacterized natural Argonaute variants, both in eukaryotes (the presence of an Ago-like subunit in the Mediator complex, strongly suggests a regulatory role of an elusive non-coding RNA ligand) and in prokaryotes (selected Ago variants possess distinct domains indicating novel functionalities). After their thorough biochemical characterization, I aim at engineering the functionality of the aforementioned CbAgo through an integrated rational & random approach, i.e. by tinkering of domains, and by an unprecedented in vitro laboratory evolution approach. Eventually, natural & synthetic Argonautes will be selected for their exploitation, and used for developing original genome editing applications (from silencing to base editing). Embarking on this ambitious ARGO expedition will lead us to many exciting discoveries.
Max ERC Funding
2 177 158 €
Duration
Start date: 2019-07-01, End date: 2024-06-30
Project acronym ATG9_SOLVES_IT
Project In vitro high resolution reconstitution of autophagosome nucleation and expansion catalyzed byATG9
Researcher (PI) Sharon TOOZE
Host Institution (HI) THE FRANCIS CRICK INSTITUTE LIMITED
Call Details Advanced Grant (AdG), LS1, ERC-2017-ADG
Summary Autophagy is a conserved, lysosomal-mediated pathway required for cell homeostasis and survival. It is controlled by the master regulators of energy (AMPK) and growth (TORC1) and mediated by the ATG (autophagy) proteins. Deregulation of autophagy is implicated in cancer, immunity, infection, aging and neurodegeneration. Autophagosomes form and expand using membranes from the secretory and endocytic pathways but how this occurs is not understood. ATG9, the only transmembrane ATG protein traffics through the cell in vesicles, and is essential for rapid initiation and expansion of the membranes which form the autophagosome. Crucially, how ATG9 functions is unknown. I will determine how ATG9 initiates the formation and expansion of the autophagosome by amino acid starvation through a molecular dissection of proteins resident in ATG9 vesicles which modulate the composition and property of the initiating membrane. I will employ high resolution light and electron microscopy to characterize the nucleation of the autophagosome, proximity-specific biotinylation and quantitative Mass Spectrometry to uncover the proteome required for the function of the ATG9, and optogenetic tools to acutely regulate signaling lipids. Lastly, with our tools and knowledge I will develop an in vitro reconstitution system to define at a molecular level how ATG9 vesicle proteins, membranes that interact with ATG9 vesicles, and other accessory ATG components nucleate and form an autophagosome. In vitro reconstitution of autophagosomes will be assayed biochemically, and by correlative light and cryo-EM and cryo-EM tomography, while functional reconstitution of autophagy will be tested by selective cargo recruitment. The development of a reconstituted system and identification proteins and lipids which are key components for autophagosome formation will provide a means to identify a new generation of targets for translational work leading to manipulation of autophagy for disease related therapies.
Summary
Autophagy is a conserved, lysosomal-mediated pathway required for cell homeostasis and survival. It is controlled by the master regulators of energy (AMPK) and growth (TORC1) and mediated by the ATG (autophagy) proteins. Deregulation of autophagy is implicated in cancer, immunity, infection, aging and neurodegeneration. Autophagosomes form and expand using membranes from the secretory and endocytic pathways but how this occurs is not understood. ATG9, the only transmembrane ATG protein traffics through the cell in vesicles, and is essential for rapid initiation and expansion of the membranes which form the autophagosome. Crucially, how ATG9 functions is unknown. I will determine how ATG9 initiates the formation and expansion of the autophagosome by amino acid starvation through a molecular dissection of proteins resident in ATG9 vesicles which modulate the composition and property of the initiating membrane. I will employ high resolution light and electron microscopy to characterize the nucleation of the autophagosome, proximity-specific biotinylation and quantitative Mass Spectrometry to uncover the proteome required for the function of the ATG9, and optogenetic tools to acutely regulate signaling lipids. Lastly, with our tools and knowledge I will develop an in vitro reconstitution system to define at a molecular level how ATG9 vesicle proteins, membranes that interact with ATG9 vesicles, and other accessory ATG components nucleate and form an autophagosome. In vitro reconstitution of autophagosomes will be assayed biochemically, and by correlative light and cryo-EM and cryo-EM tomography, while functional reconstitution of autophagy will be tested by selective cargo recruitment. The development of a reconstituted system and identification proteins and lipids which are key components for autophagosome formation will provide a means to identify a new generation of targets for translational work leading to manipulation of autophagy for disease related therapies.
Max ERC Funding
2 121 055 €
Duration
Start date: 2018-07-01, End date: 2023-06-30
Project acronym ATMMACHINE
Project Structural mechanism of recognition, signaling and resection of DNA double-strand breaks
Researcher (PI) Karl-Peter Hopfner
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Call Details Advanced Grant (AdG), LS1, ERC-2012-ADG_20120314
Summary DNA double-strand breaks are perhaps the most harmful DNA damages and result in carcinogenic chromosome aberrations. Cells protect their genome by activating a complex signaling and repair network, collectively denoted DNA damage response (DDR). A key initial step of the DDR is the activation of the 360 kDa checkpoint kinase ATM (ataxia telangiectasia mutated) by the multifunctional DSB repair factor Mre11-Rad50-Nbs1 (MRN). MRN senses and tethers DSBs, processes DSBs for further resection, and recruits and activates ATM to trigger the DDR. A mechanistic basis for the activities of the core DDR sensor MRN has not been established, despite intense research over the past decade. Our recent breakthroughs on structures of core Mre11-Rad50 and Mre11-Nbs1 complexes enable us now address three central questions to finally clarify the mechanism of MRN in the DDR:
- How does MRN interact with DNA or DNA ends in an ATP dependent manner?
- How do MRN and associated factors such as CtIP process blocked DNA ends?
- How do MRN and DNA activate ATM?
We will employ an innovative structural biology hybrid methods approach by combining X-ray crystallography, electron microscopy and small angle scattering with crosslink mass spectrometry and combine the structure-oriented techniques with validating in vitro and in vivo functional studies. The anticipated outcome will clarify the structural mechanism of one of the most important but enigmatic molecular machineries in maintaining genome stability and also help understand the molecular defects associated with several prominent cancer predisposition and neurodegenerative disorders.
Summary
DNA double-strand breaks are perhaps the most harmful DNA damages and result in carcinogenic chromosome aberrations. Cells protect their genome by activating a complex signaling and repair network, collectively denoted DNA damage response (DDR). A key initial step of the DDR is the activation of the 360 kDa checkpoint kinase ATM (ataxia telangiectasia mutated) by the multifunctional DSB repair factor Mre11-Rad50-Nbs1 (MRN). MRN senses and tethers DSBs, processes DSBs for further resection, and recruits and activates ATM to trigger the DDR. A mechanistic basis for the activities of the core DDR sensor MRN has not been established, despite intense research over the past decade. Our recent breakthroughs on structures of core Mre11-Rad50 and Mre11-Nbs1 complexes enable us now address three central questions to finally clarify the mechanism of MRN in the DDR:
- How does MRN interact with DNA or DNA ends in an ATP dependent manner?
- How do MRN and associated factors such as CtIP process blocked DNA ends?
- How do MRN and DNA activate ATM?
We will employ an innovative structural biology hybrid methods approach by combining X-ray crystallography, electron microscopy and small angle scattering with crosslink mass spectrometry and combine the structure-oriented techniques with validating in vitro and in vivo functional studies. The anticipated outcome will clarify the structural mechanism of one of the most important but enigmatic molecular machineries in maintaining genome stability and also help understand the molecular defects associated with several prominent cancer predisposition and neurodegenerative disorders.
Max ERC Funding
2 498 019 €
Duration
Start date: 2013-05-01, End date: 2018-04-30
Project acronym ATTACK
Project Pressured to Attack: How Carrying-Capacity Stress Creates and Shapes Intergroup Conflict
Researcher (PI) Carsten DE DREU
Host Institution (HI) UNIVERSITEIT LEIDEN
Call Details Advanced Grant (AdG), SH3, ERC-2017-ADG
Summary Throughout history, what has been causing tremendous suffering is groups of people fighting each other. While behavioral science research has advanced our understanding of such intergroup conflict, it has exclusively focused on micro-level processes within and between groups at conflict. Disciplines that employ a more historical perspective like climate studies or political geography report that macro-level pressures due to changes in climate or economic scarcity can go along with social unrest and wars. How do these macro-level pressures relate to micro-level processes? Do they both occur independently, or do macro-level pressures trigger micro-level processes that cause intergroup conflict? And if so, which micro-level processes are triggered, and how?
With unavoidable signs of climate change and increasing resource scarcities, answers to these questions are urgently needed. Here I propose carrying-capacity stress (CCS) as the missing link between macro-level pressures and micro-level processes. A group experiences CCS when its resources do not suffice to maintain its functionality. CCS is a function of macro-level pressures and creates intergroup conflict because it impacts micro-level motivation to contribute to one’s group’s fighting capacity and shapes the coordination of individual contributions to out-group aggression through emergent norms, communication and leadership.
To test these propositions I develop a parametric model of CCS that is amenable to measurement and experimentation, and use techniques used in my work on conflict and cooperation: Meta-analyses and time-series analysis of macro-level historical data; experiments on intergroup conflict; and measurement of neuro-hormonal correlates of cooperation and conflict. In combination, this project provides novel multi-level conflict theory that integrates macro-level discoveries in climate research and political geography with micro-level processes uncovered in the biobehavioral sciences
Summary
Throughout history, what has been causing tremendous suffering is groups of people fighting each other. While behavioral science research has advanced our understanding of such intergroup conflict, it has exclusively focused on micro-level processes within and between groups at conflict. Disciplines that employ a more historical perspective like climate studies or political geography report that macro-level pressures due to changes in climate or economic scarcity can go along with social unrest and wars. How do these macro-level pressures relate to micro-level processes? Do they both occur independently, or do macro-level pressures trigger micro-level processes that cause intergroup conflict? And if so, which micro-level processes are triggered, and how?
With unavoidable signs of climate change and increasing resource scarcities, answers to these questions are urgently needed. Here I propose carrying-capacity stress (CCS) as the missing link between macro-level pressures and micro-level processes. A group experiences CCS when its resources do not suffice to maintain its functionality. CCS is a function of macro-level pressures and creates intergroup conflict because it impacts micro-level motivation to contribute to one’s group’s fighting capacity and shapes the coordination of individual contributions to out-group aggression through emergent norms, communication and leadership.
To test these propositions I develop a parametric model of CCS that is amenable to measurement and experimentation, and use techniques used in my work on conflict and cooperation: Meta-analyses and time-series analysis of macro-level historical data; experiments on intergroup conflict; and measurement of neuro-hormonal correlates of cooperation and conflict. In combination, this project provides novel multi-level conflict theory that integrates macro-level discoveries in climate research and political geography with micro-level processes uncovered in the biobehavioral sciences
Max ERC Funding
2 490 383 €
Duration
Start date: 2018-08-01, End date: 2023-07-31
Project acronym BAM
Project Becoming A Minority
Researcher (PI) Maurice CRUL
Host Institution (HI) STICHTING VU
Call Details Advanced Grant (AdG), SH3, ERC-2016-ADG
Summary In the last forty years, researchers in the Field of Migration and Ethnic Studies looked at the integration of migrants and their descendants. Concepts, methodological tools and theoretical frameworks have been developed to measure and predict integration outcomes both across different ethnic groups and in comparison with people of native descent. But are we also looking into the actual integration of the receiving group of native ‘white’ descent in city contexts where they have become a numerical minority themselves? In cities like Amsterdam, now only one in three youngsters under age fifteen is of native descent. This situation, referred to as a majority-minority context, is a new phenomenon in Western Europe and it presents itself as one of the most important societal and psychological transformations of our time. I argue that the field of migration and ethnic studies is stagnating because of the one-sided focus on migrants and their children. This is even more urgent given the increased ant-immigrant vote. These pressing scientific and societal reasons pushed me to develop the project BAM (Becoming A Minority). The project will be executed in three harbor cities, Rotterdam, Antwerp and Malmö, and three service sector cities, Amsterdam, Frankfurt and Vienna. BAM consists of 5 subprojects: (1) A meta-analysis of secondary data on people of native ‘white’ descent in the six research sites; (2) A newly developed survey for the target group; (3) An analysis of critical circumstances of encounter that trigger either positive or rather negative responses to increased ethnic diversity (4) Experimental diversity labs to test under which circumstances people will change their attitudes or their actions towards increased ethnic diversity; (5) The formulation of a new theory of integration that includes the changed position of the group of native ‘white’ descent as an important actor.
Summary
In the last forty years, researchers in the Field of Migration and Ethnic Studies looked at the integration of migrants and their descendants. Concepts, methodological tools and theoretical frameworks have been developed to measure and predict integration outcomes both across different ethnic groups and in comparison with people of native descent. But are we also looking into the actual integration of the receiving group of native ‘white’ descent in city contexts where they have become a numerical minority themselves? In cities like Amsterdam, now only one in three youngsters under age fifteen is of native descent. This situation, referred to as a majority-minority context, is a new phenomenon in Western Europe and it presents itself as one of the most important societal and psychological transformations of our time. I argue that the field of migration and ethnic studies is stagnating because of the one-sided focus on migrants and their children. This is even more urgent given the increased ant-immigrant vote. These pressing scientific and societal reasons pushed me to develop the project BAM (Becoming A Minority). The project will be executed in three harbor cities, Rotterdam, Antwerp and Malmö, and three service sector cities, Amsterdam, Frankfurt and Vienna. BAM consists of 5 subprojects: (1) A meta-analysis of secondary data on people of native ‘white’ descent in the six research sites; (2) A newly developed survey for the target group; (3) An analysis of critical circumstances of encounter that trigger either positive or rather negative responses to increased ethnic diversity (4) Experimental diversity labs to test under which circumstances people will change their attitudes or their actions towards increased ethnic diversity; (5) The formulation of a new theory of integration that includes the changed position of the group of native ‘white’ descent as an important actor.
Max ERC Funding
2 499 714 €
Duration
Start date: 2017-11-01, End date: 2022-10-31
Project acronym BayCellS
Project A Bayesian Framework for Cellular Structural Biology
Researcher (PI) Michael Nilges
Host Institution (HI) INSTITUT PASTEUR
Call Details Advanced Grant (AdG), LS1, ERC-2011-ADG_20110310
Summary The functioning of a single cell or organism is governed by the laws of chemistry and physics. The bridge from biology to chemistry and physics is provided by structural biology: to understand the functioning of a cell, it is necessary to know the atomic structure of macromolecular assemblies, which may contain hundreds of components. To characterise the structures of the increasingly large and often flexible complexes, high resolution structure determination (as was possible for example for the ribosome) will likely stay the exception, and multiple sources of structural data at multiple resolutions are employed. Integrating these data into one consistent picture poses particular difficulties, since data are much more sparse than in high resolution methods, and the data sets from heterogeneous sources are of highly different and unknown quality and may be mutually inconsistent, and that data are in general averaged over large ensembles and long times. Molecular modelling, a crucial element of any structure determination, plays an even more important role in these multi-scale and multi-technique approaches, not only to obtain structures from the data, but also to evaluate their reliability. This proposal is to develop a consistent framework for this highly complex data integration problem, principally based on Bayesian probability theory. Appropriate models for the major types data types used in hybrid approaches will be developed, as well as representations to include structural knowledge for the components of the complexes, at multiple scales. The new methods will be applied to a series of problems with increasing complexity, going from the determination of protein complexes with high resolution information, over low resolution structures based on protein-protein interaction data such as the nuclear pore, to the genome organisation in the nucleus.
Summary
The functioning of a single cell or organism is governed by the laws of chemistry and physics. The bridge from biology to chemistry and physics is provided by structural biology: to understand the functioning of a cell, it is necessary to know the atomic structure of macromolecular assemblies, which may contain hundreds of components. To characterise the structures of the increasingly large and often flexible complexes, high resolution structure determination (as was possible for example for the ribosome) will likely stay the exception, and multiple sources of structural data at multiple resolutions are employed. Integrating these data into one consistent picture poses particular difficulties, since data are much more sparse than in high resolution methods, and the data sets from heterogeneous sources are of highly different and unknown quality and may be mutually inconsistent, and that data are in general averaged over large ensembles and long times. Molecular modelling, a crucial element of any structure determination, plays an even more important role in these multi-scale and multi-technique approaches, not only to obtain structures from the data, but also to evaluate their reliability. This proposal is to develop a consistent framework for this highly complex data integration problem, principally based on Bayesian probability theory. Appropriate models for the major types data types used in hybrid approaches will be developed, as well as representations to include structural knowledge for the components of the complexes, at multiple scales. The new methods will be applied to a series of problems with increasing complexity, going from the determination of protein complexes with high resolution information, over low resolution structures based on protein-protein interaction data such as the nuclear pore, to the genome organisation in the nucleus.
Max ERC Funding
2 130 212 €
Duration
Start date: 2012-05-01, End date: 2017-04-30
Project acronym BIOMEMOS
Project Higher order structure and function of biomembranes
Researcher (PI) Poul Nissen
Host Institution (HI) AARHUS UNIVERSITET
Call Details Advanced Grant (AdG), LS1, ERC-2009-AdG
Summary The biomembrane is a prerequisite of life. It enables the cell to maintain a controlled environment and to establish electrochemical gradients as rapidly accessible energy stores. Biomembranes also provide scaffold for organisation and spatial definition of signal transmission in the cell. Crystal structures of membrane proteins are determined with an increasing pace. Along with functional studies integral studies of individual membrane proteins are now widely implemented. The BIOMEMOS proposal goes a step further and approaches the function of the biomembrane at the higher level of membrane protein complexes. Through a combination of X-ray crystallography, electrophysiology, general biochemistry, biophysics and bioinformatics and including also the application of single-particle cryo-EM and small-angle X-ray scattering, the structure and function of membrane protein complexes of key importance in life will be investigated. The specific targets for investigation in this proposal include: 1) higher-order complexes of P-type ATPase pumps such as signalling complexes of Na+,K+-ATPase, and 2) development of methods for structural studies of membrane protein complexes Based on my unique track record in structural studies of large, difficult structures (ribosomes and membrane proteins) in the setting of a thriving research community in structural biology and biomembrane research in Aarhus provides a critical momentum for a long-term activity. The activity will take advantage of the new possibilities offered by synchrotron sources in Europe. Furthermore, a single-particle cryo-EM research group formed on my initiative in Aarhus, and a well-established small-angle X-ray scattering community provides for an optimal setting through multiple cues in structural biology and functional studies
Summary
The biomembrane is a prerequisite of life. It enables the cell to maintain a controlled environment and to establish electrochemical gradients as rapidly accessible energy stores. Biomembranes also provide scaffold for organisation and spatial definition of signal transmission in the cell. Crystal structures of membrane proteins are determined with an increasing pace. Along with functional studies integral studies of individual membrane proteins are now widely implemented. The BIOMEMOS proposal goes a step further and approaches the function of the biomembrane at the higher level of membrane protein complexes. Through a combination of X-ray crystallography, electrophysiology, general biochemistry, biophysics and bioinformatics and including also the application of single-particle cryo-EM and small-angle X-ray scattering, the structure and function of membrane protein complexes of key importance in life will be investigated. The specific targets for investigation in this proposal include: 1) higher-order complexes of P-type ATPase pumps such as signalling complexes of Na+,K+-ATPase, and 2) development of methods for structural studies of membrane protein complexes Based on my unique track record in structural studies of large, difficult structures (ribosomes and membrane proteins) in the setting of a thriving research community in structural biology and biomembrane research in Aarhus provides a critical momentum for a long-term activity. The activity will take advantage of the new possibilities offered by synchrotron sources in Europe. Furthermore, a single-particle cryo-EM research group formed on my initiative in Aarhus, and a well-established small-angle X-ray scattering community provides for an optimal setting through multiple cues in structural biology and functional studies
Max ERC Funding
2 444 180 €
Duration
Start date: 2010-04-01, End date: 2015-03-31
Project acronym BIOSEC
Project Biodiversity and Security: understanding environmental crime, illegal wildlife trade and threat finance.
Researcher (PI) Rosaleen DUFFY
Host Institution (HI) THE UNIVERSITY OF SHEFFIELD
Call Details Advanced Grant (AdG), SH3, ERC-2015-AdG
Summary The core intellectual aim of BIOSEC is to explore whether concerns about biodiversity protection and global security are becoming integrated, and if so, in what ways. It will do so via building new theoretical approaches for political ecology.
Achim Steiner, UN Under-Secretary General and Executive Director of UNEP recently stated ‘the scale and role of wildlife and forest crime in threat finance calls for much wider policy attention’. The argument that wildlife trafficking constitutes a significant source of ‘threat finance’ takes two forms: first as a lucrative business for organised crime networks in Europe and Asia, and second as a source of finance for militias and terrorist networks, most notably Al Shabaab, Lord’s Resistance Army and Janjaweed.
BIOSEC is a four year project designed to lead debates on these emerging challenges. It will build pioneering theoretical approaches and generate new empirical data. BIOSEC takes a fully integrated approach: it will produce a better conceptual understanding of the role of illegal wildlife trade in generating threat finance; it will examine the links between source and end user countries for wildlife products; and it will investigate and analyse the emerging responses of NGOs, government agencies and international organisations to these challenges.
BIOSEC goes beyond the ‘state-of-the art’ because biodiversity protection and global security currently inhabit distinctive intellectual ‘silos’; however, they need to be analysed via an interdisciplinary research agenda that cuts across human geography, politics and international relations, criminology and conservation biology. This research is timely because in the last two years, the idea that the illegal wildlife trade constitutes a major security threat has become more prevalent in academic and policy circles, yet it is an area that is under researched and poorly understood. These recent shifts demand urgent conceptual and empirical interrogation.
Summary
The core intellectual aim of BIOSEC is to explore whether concerns about biodiversity protection and global security are becoming integrated, and if so, in what ways. It will do so via building new theoretical approaches for political ecology.
Achim Steiner, UN Under-Secretary General and Executive Director of UNEP recently stated ‘the scale and role of wildlife and forest crime in threat finance calls for much wider policy attention’. The argument that wildlife trafficking constitutes a significant source of ‘threat finance’ takes two forms: first as a lucrative business for organised crime networks in Europe and Asia, and second as a source of finance for militias and terrorist networks, most notably Al Shabaab, Lord’s Resistance Army and Janjaweed.
BIOSEC is a four year project designed to lead debates on these emerging challenges. It will build pioneering theoretical approaches and generate new empirical data. BIOSEC takes a fully integrated approach: it will produce a better conceptual understanding of the role of illegal wildlife trade in generating threat finance; it will examine the links between source and end user countries for wildlife products; and it will investigate and analyse the emerging responses of NGOs, government agencies and international organisations to these challenges.
BIOSEC goes beyond the ‘state-of-the art’ because biodiversity protection and global security currently inhabit distinctive intellectual ‘silos’; however, they need to be analysed via an interdisciplinary research agenda that cuts across human geography, politics and international relations, criminology and conservation biology. This research is timely because in the last two years, the idea that the illegal wildlife trade constitutes a major security threat has become more prevalent in academic and policy circles, yet it is an area that is under researched and poorly understood. These recent shifts demand urgent conceptual and empirical interrogation.
Max ERC Funding
1 822 729 €
Duration
Start date: 2016-09-01, End date: 2020-08-31
Project acronym BIRTOACTION
Project From birth to action: regulation of gene expression through transcription complex biogenesis
Researcher (PI) Laszlo Tora
Host Institution (HI) CENTRE EUROPEEN DE RECHERCHE EN BIOLOGIE ET MEDECINE
Call Details Advanced Grant (AdG), LS1, ERC-2013-ADG
Summary "Transcriptional regulation of protein coding genes in eukaryotic cells requires a complex interplay of sequence-specific DNA-binding factors, co-activators, general transcription factors (GTFs), RNA polymerase II and the epigenetic status of target sequences. Nuclear transcription complexes function as large multiprotein assemblies and are often composed of functional modules. The regulated decision-making that exists in cells governing the assembly and the allocation of factors to different transcription complexes to regulate distinct gene expression pathways is not yet understood. To tackle this fundamental question, we will systematically analyse the regulated biogenesis of transcription complexes from their sites of translation in the cytoplasm, through their assembly intermediates and nuclear import, to their site of action in the nucleus. The project will have four main Aims to decipher the biogenesis of transcription complexes:
I) Investigate their co-translation-driven assembly
II) Determine their cytoplasmic intermediates and factors required for their assembly pathways
III) Uncover their nuclear import
IV) Understand at the single molecule level their nuclear assembly, dynamics and action at target genes
To carry out these aims we propose a combination of multidisciplinary and cutting edge approaches, out of which some of them will be high-risk taking, while others will utilize methods routinely run by the group. The project builds on several complementary expertise and knowledge either already existing in the group or that will be implemented during the project. At the end of the proposed project we will obtain novel results extensively describing the different steps of the regulatory mechanisms that control the assembly and the consequent gene regulatory function of transcription complexes. Thus, we anticipate that the results of our research will have a major impact on the field and will lead to a new paradigm for contemporary metazoan transcription."
Summary
"Transcriptional regulation of protein coding genes in eukaryotic cells requires a complex interplay of sequence-specific DNA-binding factors, co-activators, general transcription factors (GTFs), RNA polymerase II and the epigenetic status of target sequences. Nuclear transcription complexes function as large multiprotein assemblies and are often composed of functional modules. The regulated decision-making that exists in cells governing the assembly and the allocation of factors to different transcription complexes to regulate distinct gene expression pathways is not yet understood. To tackle this fundamental question, we will systematically analyse the regulated biogenesis of transcription complexes from their sites of translation in the cytoplasm, through their assembly intermediates and nuclear import, to their site of action in the nucleus. The project will have four main Aims to decipher the biogenesis of transcription complexes:
I) Investigate their co-translation-driven assembly
II) Determine their cytoplasmic intermediates and factors required for their assembly pathways
III) Uncover their nuclear import
IV) Understand at the single molecule level their nuclear assembly, dynamics and action at target genes
To carry out these aims we propose a combination of multidisciplinary and cutting edge approaches, out of which some of them will be high-risk taking, while others will utilize methods routinely run by the group. The project builds on several complementary expertise and knowledge either already existing in the group or that will be implemented during the project. At the end of the proposed project we will obtain novel results extensively describing the different steps of the regulatory mechanisms that control the assembly and the consequent gene regulatory function of transcription complexes. Thus, we anticipate that the results of our research will have a major impact on the field and will lead to a new paradigm for contemporary metazoan transcription."
Max ERC Funding
2 500 000 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym C-CLEAR
Project Complement: to clear or not to clear
Researcher (PI) Piet Gros
Host Institution (HI) UNIVERSITEIT UTRECHT
Call Details Advanced Grant (AdG), LS1, ERC-2017-ADG
Summary Mammalian complement recognizes a variety of cell-surface danger and damage signals to clear invading microbes and injured host cells, while protecting healthy host cells. Improper complement responses contribute to diverse pathologies, ranging from bacterial infections up to paralyzing Guillain-Barré syndrome and schizophrenia. What determines the balance between complement attack reactions and host-cell defense measures and, thus, what drives cell fate is unclear.
My lab has a long-standing track record in elucidating molecular mechanisms underlying key complement reactions. We have revealed, for example, how the interplay between assembly and proteolysis of these large multi-domain protein complexes achieves elementary regulatory functions, such as localization, amplification and inhibition, in the central (so-called alternative) pathway of complement. Results from my lab underpin research programs for the development of novel therapeutic approaches in academia and industry.
Here the goal is to understand how the molecular mechanisms of complement attack and defense on cell membranes determine clearance of a cell. Enabled by new mechanistic insights and preliminary data we can now address both long-standing and novel questions. In particular, we will address the role of membrane organization and dynamics in complement attack and defense. Facilitated by recent technological developments, we will combine crystallography, cryo-EM, cryo-ET and high-resolution microscopy to resolve complement complex formations and reactions on membranes.
Thus, this project aims to provide an integrative understanding of the molecular complement mechanisms that determine cell fate. Results will likely be of immediate importance for novel therapeutic approaches for a range of complement-related diseases. Furthermore, it will provide clarity into the general, and possibly fundamental, role of complement in tissue maintenance in mammals.
Summary
Mammalian complement recognizes a variety of cell-surface danger and damage signals to clear invading microbes and injured host cells, while protecting healthy host cells. Improper complement responses contribute to diverse pathologies, ranging from bacterial infections up to paralyzing Guillain-Barré syndrome and schizophrenia. What determines the balance between complement attack reactions and host-cell defense measures and, thus, what drives cell fate is unclear.
My lab has a long-standing track record in elucidating molecular mechanisms underlying key complement reactions. We have revealed, for example, how the interplay between assembly and proteolysis of these large multi-domain protein complexes achieves elementary regulatory functions, such as localization, amplification and inhibition, in the central (so-called alternative) pathway of complement. Results from my lab underpin research programs for the development of novel therapeutic approaches in academia and industry.
Here the goal is to understand how the molecular mechanisms of complement attack and defense on cell membranes determine clearance of a cell. Enabled by new mechanistic insights and preliminary data we can now address both long-standing and novel questions. In particular, we will address the role of membrane organization and dynamics in complement attack and defense. Facilitated by recent technological developments, we will combine crystallography, cryo-EM, cryo-ET and high-resolution microscopy to resolve complement complex formations and reactions on membranes.
Thus, this project aims to provide an integrative understanding of the molecular complement mechanisms that determine cell fate. Results will likely be of immediate importance for novel therapeutic approaches for a range of complement-related diseases. Furthermore, it will provide clarity into the general, and possibly fundamental, role of complement in tissue maintenance in mammals.
Max ERC Funding
2 332 500 €
Duration
Start date: 2018-07-01, End date: 2023-06-30
Project acronym CANCER&AGEING
Project COMMOM MECHANISMS UNDERLYING CANCER AND AGEING
Researcher (PI) Manuel Serrano
Host Institution (HI) FUNDACION CENTRO NACIONAL DE INVESTIGACIONES ONCOLOGICAS CARLOS III
Call Details Advanced Grant (AdG), LS1, ERC-2008-AdG
Summary "In recent years, we have made significant contributions to the understanding of the tumour suppressors p53, p16INK4a, and ARF, particularly in relation with cellular senescence and aging. The current project is motivated by two hypothesis: 1) that the INK4/ARF locus is a sensor of epigenetic damage and this is at the basis of its activation by oncogenes and aging; and, 2) that the accumulation of cellular damage and stress is at the basis of both cancer and aging, and consequently ""anti-damage genes"", such as tumour suppressors, simultaneously counteract both cancer and aging. With regard to the INK4/ARF locus, the project includes: 1.1) the generation of null mice for the Regulatory Domain (RD) thought to be essential for the proper regulation of the locus; 1.2) the study of the INK4/ARF anti-sense transcription and its importance for the assembly of Polycomb repressive complexes; 1.3) the generation of mice carrying the human INK4/ARF locus to analyze, among other aspects, whether the known differences between the human and murine loci are ""locus autonomous""; and, 1.4) to analyze the INK4/ARF locus in the process of epigenetic reprogramming both from ES cells to differentiated cells and, conversely, from differentiated cells to induced-pluripotent stem (iPS) cells. With regard to the impact of ""anti-damage genes"" on cancer and aging, the project includes: 2.1) the analysis of the aging of super-INK4/ARF mice and super-p53 mice; 2.2) we have generated super-PTEN mice and we will examine whether PTEN not only confers cancer resistance but also anti-aging activity; and, finally, 2.3) we have generated super-SIRT1 mice, which is among the best-characterized anti-aging genes in non-mammalian model systems (where it is named Sir2) involved in protection from metabolic damage, and we will study the cancer and aging of these mice. Together, this project will significantly advance our understanding of the molecular mechanisms underlying cancer and aging."
Summary
"In recent years, we have made significant contributions to the understanding of the tumour suppressors p53, p16INK4a, and ARF, particularly in relation with cellular senescence and aging. The current project is motivated by two hypothesis: 1) that the INK4/ARF locus is a sensor of epigenetic damage and this is at the basis of its activation by oncogenes and aging; and, 2) that the accumulation of cellular damage and stress is at the basis of both cancer and aging, and consequently ""anti-damage genes"", such as tumour suppressors, simultaneously counteract both cancer and aging. With regard to the INK4/ARF locus, the project includes: 1.1) the generation of null mice for the Regulatory Domain (RD) thought to be essential for the proper regulation of the locus; 1.2) the study of the INK4/ARF anti-sense transcription and its importance for the assembly of Polycomb repressive complexes; 1.3) the generation of mice carrying the human INK4/ARF locus to analyze, among other aspects, whether the known differences between the human and murine loci are ""locus autonomous""; and, 1.4) to analyze the INK4/ARF locus in the process of epigenetic reprogramming both from ES cells to differentiated cells and, conversely, from differentiated cells to induced-pluripotent stem (iPS) cells. With regard to the impact of ""anti-damage genes"" on cancer and aging, the project includes: 2.1) the analysis of the aging of super-INK4/ARF mice and super-p53 mice; 2.2) we have generated super-PTEN mice and we will examine whether PTEN not only confers cancer resistance but also anti-aging activity; and, finally, 2.3) we have generated super-SIRT1 mice, which is among the best-characterized anti-aging genes in non-mammalian model systems (where it is named Sir2) involved in protection from metabolic damage, and we will study the cancer and aging of these mice. Together, this project will significantly advance our understanding of the molecular mechanisms underlying cancer and aging."
Max ERC Funding
2 000 000 €
Duration
Start date: 2009-04-01, End date: 2015-03-31
Project acronym Celcelfus
Project Cell-Cell fusion in fertilization and developmental biology: a structural biology approach
Researcher (PI) Félix A. Rey
Host Institution (HI) INSTITUT PASTEUR
Call Details Advanced Grant (AdG), LS1, ERC-2013-ADG
Summary My group has made seminal contributions in the past toward understanding the mechanism of membrane fusion used by enveloped viruses to infect a cell. This aim of this ERC grant proposal is to achieve similar breakthroughs in understanding fusion between cells, both during fertilization and organogenesis. This proposal is based in recent important results not yet published.
We have determined the crystal structure of the C. elegans protein EFF-1, a member of the “fusion family” (FF). EFF-1 is responsible for a cell-cell fusion event during skin formation in the nematode. Strikingly, the crystal structure shows that EFF-1 is homologous to the “Class II” viral protein fusogens, thus indicating that they have diverged from a common ancestor. The observed homology could not be identified by other means because the proteins have diverged to the point where no remnants of sequence similarity are left, yet the tertiary and quaternary organization is the same. However, the homotypic fusion mechanism of EFF-1 is clearly different to that of viral fusion proteins.
This proposal intends to build on the momentum generated by this exciting discovery, in an attempt to cast light into the fusion mechanism of FF proteins. We will reconstitute them in artificial liposomes and will also follow them within cells with the use of light microscopy. We will also focus in determining the crystal structure of the monomeric pre-fusion form of EFF-1,and of the intact trans-membrane post fusion trimer. In parallel, we want to make use the experience accumulated over the years in crystallizing viral glycoproteins, to apply it to the conserved family of HAP2/GSC1 proteins involved in fusion of gametes during fertilization. These proteins exhibit a similar pattern of secondary structure elements in the ectodomain as class II proteins, but only a crystallographic analysis can identify a possible structural homology and provide the basis to understand the molecular mechanisms of cell-cell fusion.
Summary
My group has made seminal contributions in the past toward understanding the mechanism of membrane fusion used by enveloped viruses to infect a cell. This aim of this ERC grant proposal is to achieve similar breakthroughs in understanding fusion between cells, both during fertilization and organogenesis. This proposal is based in recent important results not yet published.
We have determined the crystal structure of the C. elegans protein EFF-1, a member of the “fusion family” (FF). EFF-1 is responsible for a cell-cell fusion event during skin formation in the nematode. Strikingly, the crystal structure shows that EFF-1 is homologous to the “Class II” viral protein fusogens, thus indicating that they have diverged from a common ancestor. The observed homology could not be identified by other means because the proteins have diverged to the point where no remnants of sequence similarity are left, yet the tertiary and quaternary organization is the same. However, the homotypic fusion mechanism of EFF-1 is clearly different to that of viral fusion proteins.
This proposal intends to build on the momentum generated by this exciting discovery, in an attempt to cast light into the fusion mechanism of FF proteins. We will reconstitute them in artificial liposomes and will also follow them within cells with the use of light microscopy. We will also focus in determining the crystal structure of the monomeric pre-fusion form of EFF-1,and of the intact trans-membrane post fusion trimer. In parallel, we want to make use the experience accumulated over the years in crystallizing viral glycoproteins, to apply it to the conserved family of HAP2/GSC1 proteins involved in fusion of gametes during fertilization. These proteins exhibit a similar pattern of secondary structure elements in the ectodomain as class II proteins, but only a crystallographic analysis can identify a possible structural homology and provide the basis to understand the molecular mechanisms of cell-cell fusion.
Max ERC Funding
2 478 800 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym CelluFuel
Project Designer Cellulosomes by Single Molecule Cut & Paste
Researcher (PI) Hermann Eduard Gaub
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Call Details Advanced Grant (AdG), LS1, ERC-2011-ADG_20110310
Summary Biofuel from wood and waste will be a substantial share of our future energy mix. The conversion of lignocellulose to fermentable polysaccharides is the current bottleneck. We propose to use single molecule cut and paste technology to assemble designer cellulosoms and combine enzymes from different species with nanocatalysts.
Summary
Biofuel from wood and waste will be a substantial share of our future energy mix. The conversion of lignocellulose to fermentable polysaccharides is the current bottleneck. We propose to use single molecule cut and paste technology to assemble designer cellulosoms and combine enzymes from different species with nanocatalysts.
Max ERC Funding
2 351 450 €
Duration
Start date: 2012-03-01, End date: 2018-02-28
Project acronym CFRFSS
Project Chromatin Fiber and Remodeling Factor Structural Studies
Researcher (PI) Timothy John Richmond
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Advanced Grant (AdG), LS1, ERC-2012-ADG_20120314
Summary "DNA in higher organisms is organized in a nucleoprotein complex called chromatin. The structure of chromatin is responsible for compacting DNA to fit within the nucleus and for governing its access in nuclear processes. Epigenetic information is encoded chiefly via chromatin modifications. Readout of the genetic code depends on chromatin remodeling, a process actively altering chromatin structure. An understanding of the hierarchical structure of chromatin and of structurally based, remodeling mechanisms will have enormous impact for developments in medicine.
Following our high resolution structure of the nucleosome core particle, the fundamental repeating unit of chromatin, we have endeavored to determine the structure of the chromatin fiber. We showed with our X-ray structure of a tetranucleosome how nucleosomes could be organized in the fiber. Further progress has been limited by structural polymorphism and crystal disorder, but new evidence on the in vivo spacing of nucleosomes in chromatin should stimulate more advances. Part A of this application describes how we would apply these new findings to our cryo-electron microscopy study of the chromatin fiber and to our crystallographic study of a tetranucleosome containing linker histone.
Recently, my laboratory succeeded in providing the first structurally based mechanism for nucleosome spacing by a chromatin remodeling factor. We combined the X-ray structure of ISW1a(ATPase) bound to DNA with cryo-EM structures of the factor bound to two different nucleosomes to build a model showing how this remodeler uses a dinucleosome, not a mononucleosome, as its substrate. Our results from a functional assay using ISW1a further justified this model. Part B of this application describes how we would proceed to the relevant cryo-EM and X-ray structures incorporating dinucleosomes. Our recombinant ISW1a allows us to study in addition the interaction of the ATPase domain with nucleosome substrates."
Summary
"DNA in higher organisms is organized in a nucleoprotein complex called chromatin. The structure of chromatin is responsible for compacting DNA to fit within the nucleus and for governing its access in nuclear processes. Epigenetic information is encoded chiefly via chromatin modifications. Readout of the genetic code depends on chromatin remodeling, a process actively altering chromatin structure. An understanding of the hierarchical structure of chromatin and of structurally based, remodeling mechanisms will have enormous impact for developments in medicine.
Following our high resolution structure of the nucleosome core particle, the fundamental repeating unit of chromatin, we have endeavored to determine the structure of the chromatin fiber. We showed with our X-ray structure of a tetranucleosome how nucleosomes could be organized in the fiber. Further progress has been limited by structural polymorphism and crystal disorder, but new evidence on the in vivo spacing of nucleosomes in chromatin should stimulate more advances. Part A of this application describes how we would apply these new findings to our cryo-electron microscopy study of the chromatin fiber and to our crystallographic study of a tetranucleosome containing linker histone.
Recently, my laboratory succeeded in providing the first structurally based mechanism for nucleosome spacing by a chromatin remodeling factor. We combined the X-ray structure of ISW1a(ATPase) bound to DNA with cryo-EM structures of the factor bound to two different nucleosomes to build a model showing how this remodeler uses a dinucleosome, not a mononucleosome, as its substrate. Our results from a functional assay using ISW1a further justified this model. Part B of this application describes how we would proceed to the relevant cryo-EM and X-ray structures incorporating dinucleosomes. Our recombinant ISW1a allows us to study in addition the interaction of the ATPase domain with nucleosome substrates."
Max ERC Funding
2 500 000 €
Duration
Start date: 2013-01-01, End date: 2017-12-31
Project acronym ChromADICT
Project Chromatin Adaptations through Interactions of Chaperones in Time
Researcher (PI) Genevieve ALMOUZNI
Host Institution (HI) INSTITUT CURIE
Call Details Advanced Grant (AdG), LS1, ERC-2015-AdG
Summary A central question in chromatin biology is how to organize the genome and mark specific regions with histone variants. Understanding how to establish and maintain, but also change chromatin states is a fundamental challenge. Histone chaperones, escort factors that regulate the supply, loading, and degradation of histone variants, are key in their placement at specific chromatin landmarks and bridge organization from nucleosomes to higher order structures. A series of studies have underlined chaperone-variant partner selectivity in multicellular organisms, yet recently, dosage imbalances in natural and pathological contexts highlight plasticity in these interactions. Considering known changes in histone dosage during development, one should evaluate chaperone function not as fixed modules, but as a dynamic circuitry that adapts to cellular needs during the cell cycle, replication and repair, differentiation, development and pathology.
Here we propose to decipher the mechanisms enabling adaptability to natural and experimentally induced changes in the dosage of histone chaperones and variants over time. To follow new and old proteins, and control dosage, we will engineer cellular and animal models and exploit quantitative readout methods using mass spectrometry, imaging, and single-cell approaches. We will evaluate with an unprecedented level of detail the impact on i) soluble histone complexes and ii) specific chromatin landmarks (centromere, telomeres, heterochromatin and regulatory elements) and their crosstalk. We will apply this to determine the impact of these parameters during distinct developmental transitions, such as ES cell differentiation and T cell commitment in mice.
We aim to define general principles for variants in nuclear organization and dynamic changes during the cell cycle/repair and in differentiation and unravel locus specific-roles of chaperones as architects and bricklayers of the genome, in designing and building specific nuclear domains.
Summary
A central question in chromatin biology is how to organize the genome and mark specific regions with histone variants. Understanding how to establish and maintain, but also change chromatin states is a fundamental challenge. Histone chaperones, escort factors that regulate the supply, loading, and degradation of histone variants, are key in their placement at specific chromatin landmarks and bridge organization from nucleosomes to higher order structures. A series of studies have underlined chaperone-variant partner selectivity in multicellular organisms, yet recently, dosage imbalances in natural and pathological contexts highlight plasticity in these interactions. Considering known changes in histone dosage during development, one should evaluate chaperone function not as fixed modules, but as a dynamic circuitry that adapts to cellular needs during the cell cycle, replication and repair, differentiation, development and pathology.
Here we propose to decipher the mechanisms enabling adaptability to natural and experimentally induced changes in the dosage of histone chaperones and variants over time. To follow new and old proteins, and control dosage, we will engineer cellular and animal models and exploit quantitative readout methods using mass spectrometry, imaging, and single-cell approaches. We will evaluate with an unprecedented level of detail the impact on i) soluble histone complexes and ii) specific chromatin landmarks (centromere, telomeres, heterochromatin and regulatory elements) and their crosstalk. We will apply this to determine the impact of these parameters during distinct developmental transitions, such as ES cell differentiation and T cell commitment in mice.
We aim to define general principles for variants in nuclear organization and dynamic changes during the cell cycle/repair and in differentiation and unravel locus specific-roles of chaperones as architects and bricklayers of the genome, in designing and building specific nuclear domains.
Max ERC Funding
2 499 697 €
Duration
Start date: 2016-07-01, End date: 2021-06-30
Project acronym ChromatidCohesion
Project Establishment of Sister Chromatid Cohesion
Researcher (PI) Frank Uhlmann
Host Institution (HI) THE FRANCIS CRICK INSTITUTE LIMITED
Call Details Advanced Grant (AdG), LS1, ERC-2014-ADG
Summary Following their synthesis during DNA replication, sister chromatids remain paired by the cohesin complex, which forms the basis for their faithful segregation during cell division. Cohesin is a large ring-shaped protein complex, incorporating an ABC-type ATPase module. Despite its importance for genome stability, the molecular mechanism of cohesin action remains as intriguing as it remains poorly understood. How is cohesin topologically loaded onto chromatin? How is it unloaded again? What happens to cohesin during DNA replication in S-phase, so that it establishes cohesion between newly synthesized sister chromatids? We propose to capitalise on our recent success in the biochemical reconstitution of topological cohesin loading onto DNA. This lays the foundation for a work programme encompassing a combination of biochemical, single molecule, structural and genetic approaches to address the above questions. Five work packages will investigate cohesin’s molecular behaviour during its life-cycle on chromosomes, including the ATP binding and hydrolysis-dependent conformational changes that make this molecular machine work. It will be complemented by mechanistic analyses of the cofactors that help cohesin to load onto chromosomes and establish sister chromatid cohesion. The insight gained will not only advance our molecular knowledge of sister chromatid cohesion. It will more generally advance our understanding of the ubiquitous family of chromosomal SMC ATPases, of which cohesin is a member, and their activity of shaping and segregating genomes.
Summary
Following their synthesis during DNA replication, sister chromatids remain paired by the cohesin complex, which forms the basis for their faithful segregation during cell division. Cohesin is a large ring-shaped protein complex, incorporating an ABC-type ATPase module. Despite its importance for genome stability, the molecular mechanism of cohesin action remains as intriguing as it remains poorly understood. How is cohesin topologically loaded onto chromatin? How is it unloaded again? What happens to cohesin during DNA replication in S-phase, so that it establishes cohesion between newly synthesized sister chromatids? We propose to capitalise on our recent success in the biochemical reconstitution of topological cohesin loading onto DNA. This lays the foundation for a work programme encompassing a combination of biochemical, single molecule, structural and genetic approaches to address the above questions. Five work packages will investigate cohesin’s molecular behaviour during its life-cycle on chromosomes, including the ATP binding and hydrolysis-dependent conformational changes that make this molecular machine work. It will be complemented by mechanistic analyses of the cofactors that help cohesin to load onto chromosomes and establish sister chromatid cohesion. The insight gained will not only advance our molecular knowledge of sister chromatid cohesion. It will more generally advance our understanding of the ubiquitous family of chromosomal SMC ATPases, of which cohesin is a member, and their activity of shaping and segregating genomes.
Max ERC Funding
2 120 100 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym CHROMOREP
Project Reconstitution of Chromosome Replication and Epigenetic Inheritance
Researcher (PI) John Diffley
Host Institution (HI) THE FRANCIS CRICK INSTITUTE LIMITED
Call Details Advanced Grant (AdG), LS1, ERC-2014-ADG
Summary A PubMed search for ‘epigenetic’ identifies nearly 35,000 entries, yet the molecular mechanisms by which chromatin modification and gene expression patterns are actually inherited during chromosome replication — mechanisms which lie at the heart of epigenetic inheritance of gene expression — are still largely uncharacterised. Understanding these mechanisms would be greatly aided if we could reconstitute the replication of chromosomes with purified proteins. The past few years have seen great progress in understanding eukaryotic DNA replication through the use of cell-free replication systems and reconstitution of individual steps in replication with purified proteins and naked DNA. We will use these in vitro replication systems together with both established and novel chromatin assembly systems to understand: a) how chromatin influences replication origin choice and timing, b) how nucleosomes on parental chromosomes are disrupted during replication and are distributed to daughter chromatids, and c) how chromatin states and gene expression patterns are re-established after passage of the replication fork. We will begin with simple, defined templates to learn basic principles, and we will use this knowledge to reconstitute genome-wide replication patterns. The experimental plan will exploit our well-characterised yeast systems, and where feasible explore these questions with human proteins. Our work will help explain how epigenetic inheritance works at a molecular level, and will complement work in vivo by many others. It will also underpin our long-term research goals aimed at making functional chromosomes from purified, defined components to understand how DNA replication interacts with gene expression, DNA repair and chromosome segregation.
Summary
A PubMed search for ‘epigenetic’ identifies nearly 35,000 entries, yet the molecular mechanisms by which chromatin modification and gene expression patterns are actually inherited during chromosome replication — mechanisms which lie at the heart of epigenetic inheritance of gene expression — are still largely uncharacterised. Understanding these mechanisms would be greatly aided if we could reconstitute the replication of chromosomes with purified proteins. The past few years have seen great progress in understanding eukaryotic DNA replication through the use of cell-free replication systems and reconstitution of individual steps in replication with purified proteins and naked DNA. We will use these in vitro replication systems together with both established and novel chromatin assembly systems to understand: a) how chromatin influences replication origin choice and timing, b) how nucleosomes on parental chromosomes are disrupted during replication and are distributed to daughter chromatids, and c) how chromatin states and gene expression patterns are re-established after passage of the replication fork. We will begin with simple, defined templates to learn basic principles, and we will use this knowledge to reconstitute genome-wide replication patterns. The experimental plan will exploit our well-characterised yeast systems, and where feasible explore these questions with human proteins. Our work will help explain how epigenetic inheritance works at a molecular level, and will complement work in vivo by many others. It will also underpin our long-term research goals aimed at making functional chromosomes from purified, defined components to understand how DNA replication interacts with gene expression, DNA repair and chromosome segregation.
Max ERC Funding
1 983 019 €
Duration
Start date: 2015-11-01, End date: 2020-10-31
Project acronym CHRONO
Project Chronotype, health and family: The role of biology, socio- and natural environment and their interaction
Researcher (PI) Melinda MILLS
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Advanced Grant (AdG), SH3, ERC-2018-ADG
Summary The widespread use of electronic devices, artificial light and rise of the 24-hour economy means that more individuals experience disruption of their chronotype, which is the natural circadian rhythm that regulates sleep and activity levels. The natural and medical sciences focus on the natural environment (e.g., light exposure), genetics, biology and health consequences, whereas the social sciences have largely explored the socio-environment (e.g., working regulations) and psychological and familial consequences of nonstandard work schedules. For the first time CHRONO bridges these disparate disciplines to ask: What is the role of biology, the natural and socio-environment and their interaction on predicting and understanding resilience to chronotype disruption and how does this in turn impact an individual’s health (sleep, cancer, obesity, digestive problems) and family (partnership, children) outcomes? I propose to: (1) develop a multifactor interdisciplinary theoretical model; (2) disrupt data collection by crowdsourcing a sociogenomic dataset with novel measures; (3) discover and validate with informed machine learning innovative measures of chronotype (molecular genetic, accelerometer, microbiome, patient-record, self-reported) and the natural and socio-environment; (4) ask fundamentally new substantive questions to determine how chronotype disruption influences health and family outcomes and, via Biology x Environment interaction (BxE), whether this is moderated by the natural or socio-environment; and, (5) develop new statistical models and methods to cope with contentious issues, answer longitudinal questions and engage in novel quasi-experiments (e.g., policy and life course changes) to transcend description to identify endogenous factors and causal mechanisms. Interdisciplinary in the truest sense, CHRONO will overturn long-held substantive findings of the causes and consequences of chronotype disruption.
Summary
The widespread use of electronic devices, artificial light and rise of the 24-hour economy means that more individuals experience disruption of their chronotype, which is the natural circadian rhythm that regulates sleep and activity levels. The natural and medical sciences focus on the natural environment (e.g., light exposure), genetics, biology and health consequences, whereas the social sciences have largely explored the socio-environment (e.g., working regulations) and psychological and familial consequences of nonstandard work schedules. For the first time CHRONO bridges these disparate disciplines to ask: What is the role of biology, the natural and socio-environment and their interaction on predicting and understanding resilience to chronotype disruption and how does this in turn impact an individual’s health (sleep, cancer, obesity, digestive problems) and family (partnership, children) outcomes? I propose to: (1) develop a multifactor interdisciplinary theoretical model; (2) disrupt data collection by crowdsourcing a sociogenomic dataset with novel measures; (3) discover and validate with informed machine learning innovative measures of chronotype (molecular genetic, accelerometer, microbiome, patient-record, self-reported) and the natural and socio-environment; (4) ask fundamentally new substantive questions to determine how chronotype disruption influences health and family outcomes and, via Biology x Environment interaction (BxE), whether this is moderated by the natural or socio-environment; and, (5) develop new statistical models and methods to cope with contentious issues, answer longitudinal questions and engage in novel quasi-experiments (e.g., policy and life course changes) to transcend description to identify endogenous factors and causal mechanisms. Interdisciplinary in the truest sense, CHRONO will overturn long-held substantive findings of the causes and consequences of chronotype disruption.
Max ERC Funding
2 499 811 €
Duration
Start date: 2019-11-01, End date: 2024-10-31
Project acronym COCO
Project The molecular complexity of the complement system
Researcher (PI) Piet Gros
Host Institution (HI) UNIVERSITEIT UTRECHT
Call Details Advanced Grant (AdG), LS1, ERC-2008-AdG
Summary The complement system is a regulatory pathway in mammalian plasma that enables the host to recognize and clear invading pathogens and altered host cells, while protecting healthy host tissue. This regulatory system consists of ~30 large multi-domain plasma and cell-surface proteins, that act in concert through an interplay of proteolysis and complex formations on target membranes. We study the molecular events on membranes that ensure initiation and amplification of the response, protection of host cells and activation of immune responses leading to cell lysis, phagocytosis and B-cell stimulation.
In the past few years, we have resolved the structural details of the large complement proteins involved in the central, aspecific labelling and amplification step; with recent data we revealed the structural basis of the assembly and activity of the protease complex associated with this step. These insights into the central aspecific reaction, and the experiences gained on working with these large multi-domain proteins and complexes, give us an excellent starting point to addres the questions of specificity, protection and activation of immune cells.
The goal of the proposal is to elucidate the multivalent molecular mechanisms of recognition, regulation and immune cell activation of the complement system on target membranes. We will use protein crystallography and electron microscopy to study the interactions and conformational changes involved in protein complex formation, and (single-molecule) fluorescence to resolve the multivalent molecular events, the conformational states and transitions that occur on the membrane. The combined data will provide mechanistic insights into the specifity of immune clearance by the complement system.
Understanding the molecular mechanisms of complement activation and regulation will be instrumental in developing more potent therapeutics to control infections, prevent tissue damage and fight tumours by immunotherapies.
Summary
The complement system is a regulatory pathway in mammalian plasma that enables the host to recognize and clear invading pathogens and altered host cells, while protecting healthy host tissue. This regulatory system consists of ~30 large multi-domain plasma and cell-surface proteins, that act in concert through an interplay of proteolysis and complex formations on target membranes. We study the molecular events on membranes that ensure initiation and amplification of the response, protection of host cells and activation of immune responses leading to cell lysis, phagocytosis and B-cell stimulation.
In the past few years, we have resolved the structural details of the large complement proteins involved in the central, aspecific labelling and amplification step; with recent data we revealed the structural basis of the assembly and activity of the protease complex associated with this step. These insights into the central aspecific reaction, and the experiences gained on working with these large multi-domain proteins and complexes, give us an excellent starting point to addres the questions of specificity, protection and activation of immune cells.
The goal of the proposal is to elucidate the multivalent molecular mechanisms of recognition, regulation and immune cell activation of the complement system on target membranes. We will use protein crystallography and electron microscopy to study the interactions and conformational changes involved in protein complex formation, and (single-molecule) fluorescence to resolve the multivalent molecular events, the conformational states and transitions that occur on the membrane. The combined data will provide mechanistic insights into the specifity of immune clearance by the complement system.
Understanding the molecular mechanisms of complement activation and regulation will be instrumental in developing more potent therapeutics to control infections, prevent tissue damage and fight tumours by immunotherapies.
Max ERC Funding
1 700 000 €
Duration
Start date: 2009-04-01, End date: 2014-03-31
Project acronym CohesinMolMech
Project Molecular mechanisms of cohesin-mediated sister chromatid cohesion and chromatin organization
Researcher (PI) Jan-Michael Peters
Host Institution (HI) FORSCHUNGSINSTITUT FUR MOLEKULARE PATHOLOGIE GESELLSCHAFT MBH
Call Details Advanced Grant (AdG), LS1, ERC-2015-AdG
Summary During S-phase newly synthesized “sister” DNA molecules become physically connected. This sister chromatid cohesion resists the pulling forces of the mitotic spindle and thereby enables the bi-orientation and subsequent symmetrical segregation of chromosomes. Cohesion is mediated by ring-shaped cohesin complexes, which are thought to entrap sister DNA molecules topologically. In mammalian cells, cohesin is loaded onto DNA at the end of mitosis by the Scc2-Scc4 complex, becomes acetylated during S-phase, and is stably “locked” on DNA during S- and G2-phase by sororin. Sororin stabilizes cohesin on DNA by inhibiting Wapl, which can otherwise release cohesin from DNA again. In addition to mediating cohesion, cohesin also has important roles in organizing higher-order chromatin structures and in gene regulation. Cohesin performs the latter functions in both proliferating and post-mitotic cells and mediates at least some of these together with the sequence-specific DNA-binding protein CTCF, which co-localizes with cohesin at many genomic sites. Although cohesin and CTCF perform essential functions in mammalian cells, it is poorly understood how cohesin is loaded onto DNA by Scc2-Scc4, how cohesin is positioned in the genome, how cohesin is released from DNA again by Wapl, and how Wapl is inhibited by sororin. Likewise, it is not known how cohesin establishes cohesion during DNA replication and how cohesin cooperates with CTCF to organize chromatin structure. Here we propose to address these questions by combining biochemical reconstitution, single-molecule TIRF microscopy, genetic and cell biological approaches. We expect that the results of these studies will advance our understanding of cell division, chromatin structure and gene regulation, and may also provide insight into the etiology of disorders that are caused by cohesin dysfunction, such as Down syndrome and “cohesinopathies” or cancers, in which cohesin mutations have been found to occur frequently.
Summary
During S-phase newly synthesized “sister” DNA molecules become physically connected. This sister chromatid cohesion resists the pulling forces of the mitotic spindle and thereby enables the bi-orientation and subsequent symmetrical segregation of chromosomes. Cohesion is mediated by ring-shaped cohesin complexes, which are thought to entrap sister DNA molecules topologically. In mammalian cells, cohesin is loaded onto DNA at the end of mitosis by the Scc2-Scc4 complex, becomes acetylated during S-phase, and is stably “locked” on DNA during S- and G2-phase by sororin. Sororin stabilizes cohesin on DNA by inhibiting Wapl, which can otherwise release cohesin from DNA again. In addition to mediating cohesion, cohesin also has important roles in organizing higher-order chromatin structures and in gene regulation. Cohesin performs the latter functions in both proliferating and post-mitotic cells and mediates at least some of these together with the sequence-specific DNA-binding protein CTCF, which co-localizes with cohesin at many genomic sites. Although cohesin and CTCF perform essential functions in mammalian cells, it is poorly understood how cohesin is loaded onto DNA by Scc2-Scc4, how cohesin is positioned in the genome, how cohesin is released from DNA again by Wapl, and how Wapl is inhibited by sororin. Likewise, it is not known how cohesin establishes cohesion during DNA replication and how cohesin cooperates with CTCF to organize chromatin structure. Here we propose to address these questions by combining biochemical reconstitution, single-molecule TIRF microscopy, genetic and cell biological approaches. We expect that the results of these studies will advance our understanding of cell division, chromatin structure and gene regulation, and may also provide insight into the etiology of disorders that are caused by cohesin dysfunction, such as Down syndrome and “cohesinopathies” or cancers, in which cohesin mutations have been found to occur frequently.
Max ERC Funding
2 500 000 €
Duration
Start date: 2016-10-01, End date: 2021-09-30
Project acronym CONANX
Project Consumer culture in an age of anxiety: political and moral economies of food
Researcher (PI) Peter Jackson
Host Institution (HI) THE UNIVERSITY OF SHEFFIELD
Call Details Advanced Grant (AdG), SH3, ERC-2008-AdG
Summary Food safety and security are high priority issues throughout Europe at present, the subject of intense government concern, public interest, media speculation and academic scrutiny. With few exceptions, academic research on food has been fragmented with too little interaction between food scientists, health researchers and social scientists. This application builds on the success of a recently completed research programme (Changing Families, Changing Food, 2005-8) which brought together an inter-disciplinary team of over 40 researchers from the food, health and social sciences to address the complex relationships between families and food which lie at the heart of current concerns about food safety and public health. The current proposal aims to take forward the findings of that programme regarding the socially embedded nature of contemporary food choice and to make a step change in our understanding of contemporary consumer anxiety through a focused and concerted programme of research on the political and moral economies of food. The project focuses on consumer anxieties about food at a range of geographic scales, from the global scale of international food markets to the domestic scale of individual households. By taking a whole chain approach -- examining food production and consumption at all points along the chain from farm to fork -- the findings of our research will enable a major advance in our understanding of contemporary anxieties around food, with tangible effects on public health (including the reduction of obesity, diabetes and coronary heart disease).
Summary
Food safety and security are high priority issues throughout Europe at present, the subject of intense government concern, public interest, media speculation and academic scrutiny. With few exceptions, academic research on food has been fragmented with too little interaction between food scientists, health researchers and social scientists. This application builds on the success of a recently completed research programme (Changing Families, Changing Food, 2005-8) which brought together an inter-disciplinary team of over 40 researchers from the food, health and social sciences to address the complex relationships between families and food which lie at the heart of current concerns about food safety and public health. The current proposal aims to take forward the findings of that programme regarding the socially embedded nature of contemporary food choice and to make a step change in our understanding of contemporary consumer anxiety through a focused and concerted programme of research on the political and moral economies of food. The project focuses on consumer anxieties about food at a range of geographic scales, from the global scale of international food markets to the domestic scale of individual households. By taking a whole chain approach -- examining food production and consumption at all points along the chain from farm to fork -- the findings of our research will enable a major advance in our understanding of contemporary anxieties around food, with tangible effects on public health (including the reduction of obesity, diabetes and coronary heart disease).
Max ERC Funding
1 684 460 €
Duration
Start date: 2009-01-01, End date: 2012-12-31
Project acronym CONOPP
Project "Contexts of Opportunity: Explaining Cross-National Variation in the Links Between Childhood Disadvantage, Young Adult Demographic Behaviour and Later-Life Outcomes"
Researcher (PI) Aart Cornelis Liefbroer
Host Institution (HI) KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN - KNAW
Call Details Advanced Grant (AdG), SH3, ERC-2012-ADG_20120411
Summary "In an era of worldwide increasing inequalities, key social science issues about the production and reproduction of social inequality gain renewed attention. One central issue is the role played by demographic events and trajectories in producing and reproducing inequalities. This proposal examines this issue by studying the relationships between the experience of childhood social disadvantage, demographic decision-making during young adulthood and later-life economic, social and health outcomes from a comparative perspective. The key contribution of this proposal is that it studies cross-national variation in the strength of these relationships and focuses on one general explanation: the strength of the relationships depend on the opportunities that societies offer to abate the adverse impact of economic and social deprivation. I will pay attention to three aspects of the national context: (1) economic aspects, like the level of economic development and growth in a country, (2) cultural aspects, like the extent to which strong norms on family-related behaviour are operative, and (3) aspects of institutional arrangements, like the openness of the educational system, and existing family policies and general social policies. I will test whether the strength of the links between childhood disadvantage, young adult demographic behaviour and subsequent outcomes depend on these three aspects of the ‘contexts of opportunity’. To test these ideas, I will use retrospective and prospective data from the Generations and Gender Programme, and use a combination of sophisticated methods, including multi-level analysis, latent variable analysis and sequence analysis. In doing so, this project will elucidate the role of demography in the reproduction of inequalities and highlight key opportunity structures that influence the strength of the relevant links between social background, young adult demographic behaviours and subsequent outcomes."
Summary
"In an era of worldwide increasing inequalities, key social science issues about the production and reproduction of social inequality gain renewed attention. One central issue is the role played by demographic events and trajectories in producing and reproducing inequalities. This proposal examines this issue by studying the relationships between the experience of childhood social disadvantage, demographic decision-making during young adulthood and later-life economic, social and health outcomes from a comparative perspective. The key contribution of this proposal is that it studies cross-national variation in the strength of these relationships and focuses on one general explanation: the strength of the relationships depend on the opportunities that societies offer to abate the adverse impact of economic and social deprivation. I will pay attention to three aspects of the national context: (1) economic aspects, like the level of economic development and growth in a country, (2) cultural aspects, like the extent to which strong norms on family-related behaviour are operative, and (3) aspects of institutional arrangements, like the openness of the educational system, and existing family policies and general social policies. I will test whether the strength of the links between childhood disadvantage, young adult demographic behaviour and subsequent outcomes depend on these three aspects of the ‘contexts of opportunity’. To test these ideas, I will use retrospective and prospective data from the Generations and Gender Programme, and use a combination of sophisticated methods, including multi-level analysis, latent variable analysis and sequence analysis. In doing so, this project will elucidate the role of demography in the reproduction of inequalities and highlight key opportunity structures that influence the strength of the relevant links between social background, young adult demographic behaviours and subsequent outcomes."
Max ERC Funding
1 545 000 €
Duration
Start date: 2013-06-01, End date: 2018-05-31
Project acronym CRYOSOCIETIES
Project Suspended Life: Exploring Cryopreservation Practices in Contemporary Societies
Researcher (PI) Thomas LEMKE
Host Institution (HI) JOHANN WOLFGANG GOETHE-UNIVERSITATFRANKFURT AM MAIN
Call Details Advanced Grant (AdG), SH3, ERC-2017-ADG
Summary Cryopreservation practices are an essential dimension of contemporary life sciences. They make possible the freezing and storage of cells, tissues and other organic materials at very low temperatures and the subsequent thawing of these at a future date without apparent loss of vitality. Although cryotechnologies are fundamental to reproductive technologies, regenerative medicine, transplantation surgery and conservation biology, they have largely escaped scholarly attention in science and technology studies, anthropology and sociology.
CRYOSOCIETIES explores the crucial role of cryopreservation in affecting temporalities and the concept of life. The project is based on the thesis that in contemporary societies, cryopreservation practices bring into existence a new form of life: “suspended life”. “Suspended life” enables vital processes to be kept in a liminal state in which biological substances are neither fully alive nor dead. CRYOSOCIETIES generates profound empirical knowledge about the creation of “suspended life” through three ethnographic studies that investigate various sites of cryopreservation. A fourth subproject develops a complex theoretical framework in order to grasp the temporal and spatial regimes of the different cryopractices.
CRYOSOCIETIES breaks analytical ground in three important ways. First, the project provides the first systematic and comprehensive empirical study of “suspended life” and deepens our knowledge of how cryopreservation works in different settings. Secondly, it undertakes pioneering work on cryopreservation practices in Europe, generating novel ways of understanding how “suspended life” is assembled, negotiated and mobilised in European societies. Thirdly, CRYOSOCIETIES develops an innovative methodological and theoretical framework in order to address the relationality and materiality of cryopreservation practices and to explore the concept of vitality and the politics of life in the 21st century.
Summary
Cryopreservation practices are an essential dimension of contemporary life sciences. They make possible the freezing and storage of cells, tissues and other organic materials at very low temperatures and the subsequent thawing of these at a future date without apparent loss of vitality. Although cryotechnologies are fundamental to reproductive technologies, regenerative medicine, transplantation surgery and conservation biology, they have largely escaped scholarly attention in science and technology studies, anthropology and sociology.
CRYOSOCIETIES explores the crucial role of cryopreservation in affecting temporalities and the concept of life. The project is based on the thesis that in contemporary societies, cryopreservation practices bring into existence a new form of life: “suspended life”. “Suspended life” enables vital processes to be kept in a liminal state in which biological substances are neither fully alive nor dead. CRYOSOCIETIES generates profound empirical knowledge about the creation of “suspended life” through three ethnographic studies that investigate various sites of cryopreservation. A fourth subproject develops a complex theoretical framework in order to grasp the temporal and spatial regimes of the different cryopractices.
CRYOSOCIETIES breaks analytical ground in three important ways. First, the project provides the first systematic and comprehensive empirical study of “suspended life” and deepens our knowledge of how cryopreservation works in different settings. Secondly, it undertakes pioneering work on cryopreservation practices in Europe, generating novel ways of understanding how “suspended life” is assembled, negotiated and mobilised in European societies. Thirdly, CRYOSOCIETIES develops an innovative methodological and theoretical framework in order to address the relationality and materiality of cryopreservation practices and to explore the concept of vitality and the politics of life in the 21st century.
Max ERC Funding
2 497 587 €
Duration
Start date: 2019-04-01, End date: 2024-03-31
Project acronym CRYOTRANSLATION
Project High Resolution cryo-EM Analysis of Ribosome-associated Functions
Researcher (PI) Roland Beckmann
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Call Details Advanced Grant (AdG), LS1, ERC-2011-ADG_20110310
Summary "Translation of the genetically encoded information into polypeptides, protein biosynthesis, is a central function executed by ribosomes in all cells. In the case of membrane protein synthesis, integration into the membrane usually occurs co-translationally and requires a ribosome-associated translocon (SecYEG/Sec61). This highly coordinated process is poorly understood, since high-resolution structural information is lacking. Although single particle cryo-electron microscopy (cryo-EM) has given invaluable structural insights for such dynamic ribosomal complexes, the resolution is so far limited to 5-10 Å for asymmetrical particles. Thus, the mechanistic depth and reliability of interpretation has accordingly been limited.
Here, I propose to use single particle cryo-EM at improved, molecular resolution of 3-4 Å to study two fundamental ribosome-associated processes:
(i) co-translational integration of polytopic membrane proteins and
(ii) recycling of the eukaryotic ribosome.
First, we will visualize nascent polytopic membrane proteins inserting into the lipid bilayer via the bacterial ribosome-bound SecYEG translocon. Notably, the translocon will be embedded in a lipid environment provided by so-called nanodiscs. Second, we will visualize in a similar approach membrane protein insertion via the YidC insertase, the main alternative translocon. Third, as a novel research direction, we will determine the structure and function of eukaryotic ribosome recycling complexes involving the ABC-ATPase RLI.
The results will allow, together with functional biochemical data, an in-depth molecular structure-function analysis of these fundamental ribosome-associated processes. Moreover, reaching molecular resolution for asymmetrical particles by single particle cryo-EM will lift this technology to a level of analytical power approaching X-ray and NMR methods. ERC funding would allow for this highly challenging research to be conducted in an internationally competitive way in Europe."
Summary
"Translation of the genetically encoded information into polypeptides, protein biosynthesis, is a central function executed by ribosomes in all cells. In the case of membrane protein synthesis, integration into the membrane usually occurs co-translationally and requires a ribosome-associated translocon (SecYEG/Sec61). This highly coordinated process is poorly understood, since high-resolution structural information is lacking. Although single particle cryo-electron microscopy (cryo-EM) has given invaluable structural insights for such dynamic ribosomal complexes, the resolution is so far limited to 5-10 Å for asymmetrical particles. Thus, the mechanistic depth and reliability of interpretation has accordingly been limited.
Here, I propose to use single particle cryo-EM at improved, molecular resolution of 3-4 Å to study two fundamental ribosome-associated processes:
(i) co-translational integration of polytopic membrane proteins and
(ii) recycling of the eukaryotic ribosome.
First, we will visualize nascent polytopic membrane proteins inserting into the lipid bilayer via the bacterial ribosome-bound SecYEG translocon. Notably, the translocon will be embedded in a lipid environment provided by so-called nanodiscs. Second, we will visualize in a similar approach membrane protein insertion via the YidC insertase, the main alternative translocon. Third, as a novel research direction, we will determine the structure and function of eukaryotic ribosome recycling complexes involving the ABC-ATPase RLI.
The results will allow, together with functional biochemical data, an in-depth molecular structure-function analysis of these fundamental ribosome-associated processes. Moreover, reaching molecular resolution for asymmetrical particles by single particle cryo-EM will lift this technology to a level of analytical power approaching X-ray and NMR methods. ERC funding would allow for this highly challenging research to be conducted in an internationally competitive way in Europe."
Max ERC Funding
2 995 640 €
Duration
Start date: 2012-05-01, End date: 2017-04-30
Project acronym CsnCRL
Project The molecular basis of CULLIN E3 ligase regulation by the COP9 signalosome
Researcher (PI) Nicolas Thoma
Host Institution (HI) FRIEDRICH MIESCHER INSTITUTE FOR BIOMEDICAL RESEARCH FONDATION
Call Details Advanced Grant (AdG), LS1, ERC-2014-ADG
Summary Specificity in the ubiquitin-proteasome system is largely conferred by ubiquitin E3 ligases (E3s). Cullin-RING ligases (CRLs), constituting ~30% of all E3s in humans, mediate the ubiquitination of ~20% of the proteins degraded by the proteasome. CRLs are divided into seven families based on their cullin constituent. Each cullin binds a RING domain protein, and a vast repertoire of adaptor/substrate receptor modules, collectively creating more than 200 distinct CRLs. All CRLs are regulated by the COP9 signalosome (CSN), an eight-protein isopeptidase that removes the covalently attached activator, NEDD8, from the cullin. Independent of NEDD8 cleavage, CSN forms protective complexes with CRLs, which prevents destructive auto-ubiquitination.
The integrity of the CSN-CRL system is crucially important for the normal cell physiology. Based on our previous work on CRL structures (Fischer, et al., Nature 2014; Fischer, et al., Cell 2011) and that of isolated CSN (Lingaraju et al., Nature 2014), We now intend to provide the underlying molecular mechanism of CRL regulation by CSN. Structural insights at atomic resolution, combined with in vitro and in vivo functional studies are designed to reveal (i) how the signalosome deneddylates and maintains the bound ligases in an inactive state, (ii) how the multiple CSN subunits bind to structurally diverse CRLs, and (iii) how CSN is itself subject to regulation by post-translational modifications or additional further factors.
The ERC funding would allow my lab to pursue an ambitious interdisciplinary approach combining X-ray crystallography, cryo-electron microscopy, biochemistry and cell biology. This is expected to provide a unique molecular understanding of CSN action. Beyond ubiquitination, insight into this >13- subunit CSN-CRL assembly will allow examining general principles of multi-subunit complex action and reveal how the numerous, often essential, subunits contribute to complex function.
Summary
Specificity in the ubiquitin-proteasome system is largely conferred by ubiquitin E3 ligases (E3s). Cullin-RING ligases (CRLs), constituting ~30% of all E3s in humans, mediate the ubiquitination of ~20% of the proteins degraded by the proteasome. CRLs are divided into seven families based on their cullin constituent. Each cullin binds a RING domain protein, and a vast repertoire of adaptor/substrate receptor modules, collectively creating more than 200 distinct CRLs. All CRLs are regulated by the COP9 signalosome (CSN), an eight-protein isopeptidase that removes the covalently attached activator, NEDD8, from the cullin. Independent of NEDD8 cleavage, CSN forms protective complexes with CRLs, which prevents destructive auto-ubiquitination.
The integrity of the CSN-CRL system is crucially important for the normal cell physiology. Based on our previous work on CRL structures (Fischer, et al., Nature 2014; Fischer, et al., Cell 2011) and that of isolated CSN (Lingaraju et al., Nature 2014), We now intend to provide the underlying molecular mechanism of CRL regulation by CSN. Structural insights at atomic resolution, combined with in vitro and in vivo functional studies are designed to reveal (i) how the signalosome deneddylates and maintains the bound ligases in an inactive state, (ii) how the multiple CSN subunits bind to structurally diverse CRLs, and (iii) how CSN is itself subject to regulation by post-translational modifications or additional further factors.
The ERC funding would allow my lab to pursue an ambitious interdisciplinary approach combining X-ray crystallography, cryo-electron microscopy, biochemistry and cell biology. This is expected to provide a unique molecular understanding of CSN action. Beyond ubiquitination, insight into this >13- subunit CSN-CRL assembly will allow examining general principles of multi-subunit complex action and reveal how the numerous, often essential, subunits contribute to complex function.
Max ERC Funding
2 200 677 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym CYRE
Project Cytokine Receptor Signaling Revisited: Implementing novel concepts for cytokine-based therapies
Researcher (PI) Jan Tavernier
Host Institution (HI) VIB
Call Details Advanced Grant (AdG), LS1, ERC-2013-ADG
Summary "Cytokine receptor signaling is an essential part of the intercellular communication networks that govern key physiological processes in the body. Cytokine dysfunction is associated with numerous pathologies including autoimmune disorders and cancer, and both cytokines and cytokine antagonists have found their way into the clinic. Yet, there are still many unfulfilled promises and opportunities. In this project we will reinvestigate key aspects of cytokine receptor activation and signaling using novel insights and techniques recently developed in our laboratory. This will include the AcTakine concept for cell-specific targeting of cytokine activity, and applications of our MAPPIT, KISS and Virotrap toolboxes to systematically map protein interactions involved in cytokine signaling. We expect to obtain important new insights, both in fundamental and in applied medical sciences."
Summary
"Cytokine receptor signaling is an essential part of the intercellular communication networks that govern key physiological processes in the body. Cytokine dysfunction is associated with numerous pathologies including autoimmune disorders and cancer, and both cytokines and cytokine antagonists have found their way into the clinic. Yet, there are still many unfulfilled promises and opportunities. In this project we will reinvestigate key aspects of cytokine receptor activation and signaling using novel insights and techniques recently developed in our laboratory. This will include the AcTakine concept for cell-specific targeting of cytokine activity, and applications of our MAPPIT, KISS and Virotrap toolboxes to systematically map protein interactions involved in cytokine signaling. We expect to obtain important new insights, both in fundamental and in applied medical sciences."
Max ERC Funding
2 487 728 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym Dam2Age
Project DNA Damage and Repair and its Impact on Healthy Ageing
Researcher (PI) Jan HOEIJMAKERS
Host Institution (HI) ERASMUS UNIVERSITAIR MEDISCH CENTRUM ROTTERDAM
Call Details Advanced Grant (AdG), LS1, ERC-2016-ADG
Summary We pioneered an initially highly controversial connection between DNA damage and (accelerated) aging. In the previous ERC grant ‘DamAge’ we reached the stage that (segmental) aging in DNA repair-deficient mice can be largely controlled. The severity of the repair defect determines the rate of segmental aging; the repair pathways affected influence which organs age fast; conditional repair mutants allow targeting accelerated aging to any organ. Importantly, we found that dietary restriction (DR), the only universal intervention known to delay aging, extends remaining life- and healthspan in progeroid Ercc1Δ/- mutants by 200% (see Vermeij et al., Nature 2016 and fig.2). Also Xpg-/- progeroid repair mice strongly benefit from DR, generalizing this finding. The prominent Alzheimer- and Parkinson-like neurodegeneration is even retarded up to 30-fold(!) disclosing powerful untapped reserves unleashed by 30% less food, with enormous clinical potential. Also we discovered that in accelerated and normal aging gene expression declines due to accumulating stochastic transcription-blocking lesions and that DR counteracts genomic dysfunction. In Dam2Age we will focus on the cross-talk between DNA damage, aging and DR with emphasis on the relevance for normal aging, elucidate underlying mechanisms and use our unique -for DR research superior- mouse models and a variety of novel assays to search for effective nutritional-pharmacological DR mimetics. This serves as a stepping stone towards potent universal therapy for a range of repair-deficient progeroid syndromes and prevention of many aging-related diseases, most urgently dementia’s, to promote sustained health.
Summary
We pioneered an initially highly controversial connection between DNA damage and (accelerated) aging. In the previous ERC grant ‘DamAge’ we reached the stage that (segmental) aging in DNA repair-deficient mice can be largely controlled. The severity of the repair defect determines the rate of segmental aging; the repair pathways affected influence which organs age fast; conditional repair mutants allow targeting accelerated aging to any organ. Importantly, we found that dietary restriction (DR), the only universal intervention known to delay aging, extends remaining life- and healthspan in progeroid Ercc1Δ/- mutants by 200% (see Vermeij et al., Nature 2016 and fig.2). Also Xpg-/- progeroid repair mice strongly benefit from DR, generalizing this finding. The prominent Alzheimer- and Parkinson-like neurodegeneration is even retarded up to 30-fold(!) disclosing powerful untapped reserves unleashed by 30% less food, with enormous clinical potential. Also we discovered that in accelerated and normal aging gene expression declines due to accumulating stochastic transcription-blocking lesions and that DR counteracts genomic dysfunction. In Dam2Age we will focus on the cross-talk between DNA damage, aging and DR with emphasis on the relevance for normal aging, elucidate underlying mechanisms and use our unique -for DR research superior- mouse models and a variety of novel assays to search for effective nutritional-pharmacological DR mimetics. This serves as a stepping stone towards potent universal therapy for a range of repair-deficient progeroid syndromes and prevention of many aging-related diseases, most urgently dementia’s, to promote sustained health.
Max ERC Funding
2 251 719 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym DAMAGE
Project DNA damage and the connection with cancer, premature aging and longevity
Researcher (PI) Jan Hendrik Jozef Hoeijmakers
Host Institution (HI) ERASMUS UNIVERSITAIR MEDISCH CENTRUM ROTTERDAM
Call Details Advanced Grant (AdG), LS1, ERC-2008-AdG
Summary We study DNA damage and genome stability and its impact on human health using nucleotide excision repair (NER) as paradigm. Patients with NER defects present a perplexing clinical heterogeneity ranging from extreme cancer predisposition to dramatic neurodevelopmental deficits. To elucidate the underlying mechanism we adopted an integral strategy from gene to patient and contributed to resolving the NER reaction in vitro and its dynamic organization in vivo, using molecular genetics, advanced life cell imaging and photobleaching. Mouse NER mutants revealed an unexpected link between DNA damage and (premature) aging, as strong as the DNA damage-cancer connection. We found a striking correlation between type/severity of the repair defect and degree of premature aging, with some mutants dying of aging in 3 weeks! Pathological and functional analysis and expression profiling confirmed that this is bona fide aging. Conditional mutants allowed targeting accelerated aging to specific organs/stages of development e.g. dramatic aging only in brain. Expression profiling revealed that short-lived repair mutants mount a survival response that attempts to extend lifespan by investing in defenses at the expense of growth. The ambitious objective of this multi-disciplinary proposal is to obtain an integral understanding of the biological/medical impact of DNA damage and the important survival response, with emphasis on rational-based prevention and intervention strategies for cancer and other aging-related diseases using the rapidly aging mouse mutants as tools. Triggering the survival response at adulthood is expected to postpone many aging-related diseases including cancer and to strongly improve quality of life at later age. We already identified compounds that influence rapid aging in mice and demonstrated the potency of the survival response to withstand ischemia reperfusion damage. Thus, this proposal addresses the major medical challenges faced by our society.
Summary
We study DNA damage and genome stability and its impact on human health using nucleotide excision repair (NER) as paradigm. Patients with NER defects present a perplexing clinical heterogeneity ranging from extreme cancer predisposition to dramatic neurodevelopmental deficits. To elucidate the underlying mechanism we adopted an integral strategy from gene to patient and contributed to resolving the NER reaction in vitro and its dynamic organization in vivo, using molecular genetics, advanced life cell imaging and photobleaching. Mouse NER mutants revealed an unexpected link between DNA damage and (premature) aging, as strong as the DNA damage-cancer connection. We found a striking correlation between type/severity of the repair defect and degree of premature aging, with some mutants dying of aging in 3 weeks! Pathological and functional analysis and expression profiling confirmed that this is bona fide aging. Conditional mutants allowed targeting accelerated aging to specific organs/stages of development e.g. dramatic aging only in brain. Expression profiling revealed that short-lived repair mutants mount a survival response that attempts to extend lifespan by investing in defenses at the expense of growth. The ambitious objective of this multi-disciplinary proposal is to obtain an integral understanding of the biological/medical impact of DNA damage and the important survival response, with emphasis on rational-based prevention and intervention strategies for cancer and other aging-related diseases using the rapidly aging mouse mutants as tools. Triggering the survival response at adulthood is expected to postpone many aging-related diseases including cancer and to strongly improve quality of life at later age. We already identified compounds that influence rapid aging in mice and demonstrated the potency of the survival response to withstand ischemia reperfusion damage. Thus, this proposal addresses the major medical challenges faced by our society.
Max ERC Funding
2 000 000 €
Duration
Start date: 2010-01-01, End date: 2014-12-31
Project acronym DAMAGE BYPASS
Project Mechanistic analysis of DNA damage bypass in the context of chromatin and genome replication
Researcher (PI) Helle Doerte Ulrich
Host Institution (HI) INSTITUT FUR MOLEKULARE BIOLOGIE GGMBH
Call Details Advanced Grant (AdG), LS1, ERC-2012-ADG_20120314
Summary During its duplication, DNA, the carrier of our genetic information, is particularly vulnerable to decay, and the capacity of cells to deal with replication stress has been recognised as a major factor protecting us from genome instability and cancer. A major pathway that allows cells to overcome or bypass DNA lesions during replication is activated by posttranslational modifications of the sliding clamp protein PCNA. Whereas monoubiquitylation of PCNA allows mutagenic translesion synthesis by damage-tolerant DNA polymerases, polyubiquitylation is required for an error-free pathway that involves template switching to the undamaged sister chromatid, involving a recombination-like mechanism. Hence, damage bypass contributes to genome maintenance, but can itself be a source of genomic instability. It is therefore not surprising that PRR is a highly regulated process whose activity is limited to the appropriate situations by stringent control mechanisms.
The proposed project aims at understanding DNA damage bypass in its cellular context. Using a combination of new and established technology, we will address the role of chromatin dynamics in the reaction, its spatial and temporal control in relation to genome replication, and its coordination with other PCNA-dependent processes in the cell. To this end, we will establish technology to isolate and analyse the composition of damage bypass tracts, develop and implement novel methods to induce lesions and image damage processing in live cells, and exploit a spectrum of biochemical and biophysical techniques to investigate the role of PCNA as a molecular tool-belt in the coordination of its interaction partners. In combination, these approaches will give important insight into how the replication of damaged DNA is managed with high efficiency and accuracy within the cell.
Summary
During its duplication, DNA, the carrier of our genetic information, is particularly vulnerable to decay, and the capacity of cells to deal with replication stress has been recognised as a major factor protecting us from genome instability and cancer. A major pathway that allows cells to overcome or bypass DNA lesions during replication is activated by posttranslational modifications of the sliding clamp protein PCNA. Whereas monoubiquitylation of PCNA allows mutagenic translesion synthesis by damage-tolerant DNA polymerases, polyubiquitylation is required for an error-free pathway that involves template switching to the undamaged sister chromatid, involving a recombination-like mechanism. Hence, damage bypass contributes to genome maintenance, but can itself be a source of genomic instability. It is therefore not surprising that PRR is a highly regulated process whose activity is limited to the appropriate situations by stringent control mechanisms.
The proposed project aims at understanding DNA damage bypass in its cellular context. Using a combination of new and established technology, we will address the role of chromatin dynamics in the reaction, its spatial and temporal control in relation to genome replication, and its coordination with other PCNA-dependent processes in the cell. To this end, we will establish technology to isolate and analyse the composition of damage bypass tracts, develop and implement novel methods to induce lesions and image damage processing in live cells, and exploit a spectrum of biochemical and biophysical techniques to investigate the role of PCNA as a molecular tool-belt in the coordination of its interaction partners. In combination, these approaches will give important insight into how the replication of damaged DNA is managed with high efficiency and accuracy within the cell.
Max ERC Funding
2 476 388 €
Duration
Start date: 2013-03-01, End date: 2018-02-28
Project acronym DDRNA
Project A novel direct role of non coding RNA in DNA damage response activation
Researcher (PI) Fabrizio D'adda Di Fagagna
Host Institution (HI) IFOM FONDAZIONE ISTITUTO FIRC DI ONCOLOGIA MOLECOLARE
Call Details Advanced Grant (AdG), LS1, ERC-2012-ADG_20120314
Summary DNA, if damaged, cannot be replaced. If not replaceable, it must be repaired. The so-called “DNA damage response” (DDR) is a coordinate set of evolutionary conserved events that arrest the cell-cycle (DNA damage checkpoint function) in proliferating cells and attempts DNA repair. Until DNA damage has not been repaired in full, cell proliferation is not resumed in normal cells.
DNA damage is a physiological event. Ageing and cancer are both associated with DNA damage accumulation. In the past, we contribute to better understand the mechanisms and the consequences of DNA damage generation and DDR activation in both settings.
We have recently identified a completely hitherto undiscovered level of control of DDR activation, so far considered a proteinaceous only signaling cascade. We have discovered that short RNA species are detectable at DNA damage sites and are necessary for DDR activation at DNA lesions. These RNA species are generated by an evolutionary-conserved RNA processing machinery. However, they serve purposes never reported before.
We believe that our findings change radically our understanding of DDR modulation in mammals and disclose a fertile unspoilt ground for exciting investigations.
Summary
DNA, if damaged, cannot be replaced. If not replaceable, it must be repaired. The so-called “DNA damage response” (DDR) is a coordinate set of evolutionary conserved events that arrest the cell-cycle (DNA damage checkpoint function) in proliferating cells and attempts DNA repair. Until DNA damage has not been repaired in full, cell proliferation is not resumed in normal cells.
DNA damage is a physiological event. Ageing and cancer are both associated with DNA damage accumulation. In the past, we contribute to better understand the mechanisms and the consequences of DNA damage generation and DDR activation in both settings.
We have recently identified a completely hitherto undiscovered level of control of DDR activation, so far considered a proteinaceous only signaling cascade. We have discovered that short RNA species are detectable at DNA damage sites and are necessary for DDR activation at DNA lesions. These RNA species are generated by an evolutionary-conserved RNA processing machinery. However, they serve purposes never reported before.
We believe that our findings change radically our understanding of DDR modulation in mammals and disclose a fertile unspoilt ground for exciting investigations.
Max ERC Funding
2 329 200 €
Duration
Start date: 2013-06-01, End date: 2018-05-31
Project acronym DEAD2THEEND
Project RNA poly(A) tail: the beginning of the end
Researcher (PI) Elena Conti
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Advanced Grant (AdG), LS1, ERC-2011-ADG_20110310
Summary "The degradation of mature mRNAs has emerged as a key step in the regulation of eukaryotic gene expression. Modulation of the half-life of mRNAs via their degradation is a powerful and versatile mechanism to swiftly alter the expression of proteins in response to changes in physiological conditions. The decay of mRNAs is performed by a set of macromolecular complexes that act in a sequential and coordinated manner, progressively eroding the ends of the transcript until its degradation is complete. These macromolecular assemblies contain only a few catalytically active subunits and a large number of regulatory components. How and why the activities are regulated within the architecture of the complexes is largely unknown. Also unclear are the mechanisms with which the complexes communicate with each other and/or with the changing composition of the nucleic acid. In this project, we will reconstitute the key protein complexes in mRNA decay from recombinant proteins in vitro. Specifically, we will focus on the evolutionary conserved deadenylation, decapping and exosome-Ski complexes. The reconstituted complexes will be used for structural studies to derive atomic models of the holoenzymes using a combination of X-ray crystallography and cryoelectron microscopy. In parallel to obtaining static views of the individual steps in the pathway, we will establish the assays to study how information from one processing step is passed on to the next in a dynamic manner. We will address the basis for the timing and interrelationship of the conserved enzymatic machineries and the influence of the mRNP composition on their activity. Our final goal is to recapitulate the complex behavior of the mRNA decay pathway in vitro. Our lab has extensive experience in biochemical reconstitution of protein complexes, in vitro biochemical assays and X-ray crystallography. In the next five years, we plan to implement cryoelectron microscopy within the scope of this proposal."
Summary
"The degradation of mature mRNAs has emerged as a key step in the regulation of eukaryotic gene expression. Modulation of the half-life of mRNAs via their degradation is a powerful and versatile mechanism to swiftly alter the expression of proteins in response to changes in physiological conditions. The decay of mRNAs is performed by a set of macromolecular complexes that act in a sequential and coordinated manner, progressively eroding the ends of the transcript until its degradation is complete. These macromolecular assemblies contain only a few catalytically active subunits and a large number of regulatory components. How and why the activities are regulated within the architecture of the complexes is largely unknown. Also unclear are the mechanisms with which the complexes communicate with each other and/or with the changing composition of the nucleic acid. In this project, we will reconstitute the key protein complexes in mRNA decay from recombinant proteins in vitro. Specifically, we will focus on the evolutionary conserved deadenylation, decapping and exosome-Ski complexes. The reconstituted complexes will be used for structural studies to derive atomic models of the holoenzymes using a combination of X-ray crystallography and cryoelectron microscopy. In parallel to obtaining static views of the individual steps in the pathway, we will establish the assays to study how information from one processing step is passed on to the next in a dynamic manner. We will address the basis for the timing and interrelationship of the conserved enzymatic machineries and the influence of the mRNP composition on their activity. Our final goal is to recapitulate the complex behavior of the mRNA decay pathway in vitro. Our lab has extensive experience in biochemical reconstitution of protein complexes, in vitro biochemical assays and X-ray crystallography. In the next five years, we plan to implement cryoelectron microscopy within the scope of this proposal."
Max ERC Funding
2 499 344 €
Duration
Start date: 2012-04-01, End date: 2017-03-31
Project acronym DisCont
Project Discontinuities in Household and Family Formation
Researcher (PI) Francesco Candeloro Billari
Host Institution (HI) UNIVERSITA COMMERCIALE LUIGI BOCCONI
Call Details Advanced Grant (AdG), SH3, ERC-2015-AdG
Summary Household, family and fertility changes are key drivers of population dynamics. Discovering and explaining the velocity of these changes is essential to understand the current situation and to provide scientific evidence on our demographic future. DisCont will provide seminal contributions by studying the impact of macro-level discontinuities on household and family formation (including fertility) in post-industrial contemporary societies. In the past decade, two macro-level discontinuities have radically transformed lives: the Great Recession and the digitalization of life and of the life course. Although their short-term and long-term impacts are likely to be fundamental, they have not yet been systematically analysed. Through a coordinated series of theoretically-founded empirical studies based on linked macro- and micro-level data, and using a comparative perspective, DisCont will argue that macro-level discontinuities are crucial in explaining broad changes in household and family formation, and that their effects can be persistent either for the population as a whole, or for specific cohorts. DisCont will contribute to five areas: 1) it will make theoretical advances by showing the importance of macro-level discontinuities in the explanation of changes in household and family formation in particular, and in population dynamics in general; 2) it will substantially advance our knowledge of household and family formation in post-industrial contemporary societies; 3) it will contribute in a systematic and path-breaking way to research on the broader societal impact of digitalization and of the Great Recession; 4) it will bring a paradigm shift in Age-Period-Cohort modelling; 5) it will make ground-breaking contributions on the demographic use of “big data” and on the use of agent-based models for the population-level implications of household and family change.
Summary
Household, family and fertility changes are key drivers of population dynamics. Discovering and explaining the velocity of these changes is essential to understand the current situation and to provide scientific evidence on our demographic future. DisCont will provide seminal contributions by studying the impact of macro-level discontinuities on household and family formation (including fertility) in post-industrial contemporary societies. In the past decade, two macro-level discontinuities have radically transformed lives: the Great Recession and the digitalization of life and of the life course. Although their short-term and long-term impacts are likely to be fundamental, they have not yet been systematically analysed. Through a coordinated series of theoretically-founded empirical studies based on linked macro- and micro-level data, and using a comparative perspective, DisCont will argue that macro-level discontinuities are crucial in explaining broad changes in household and family formation, and that their effects can be persistent either for the population as a whole, or for specific cohorts. DisCont will contribute to five areas: 1) it will make theoretical advances by showing the importance of macro-level discontinuities in the explanation of changes in household and family formation in particular, and in population dynamics in general; 2) it will substantially advance our knowledge of household and family formation in post-industrial contemporary societies; 3) it will contribute in a systematic and path-breaking way to research on the broader societal impact of digitalization and of the Great Recession; 4) it will bring a paradigm shift in Age-Period-Cohort modelling; 5) it will make ground-breaking contributions on the demographic use of “big data” and on the use of agent-based models for the population-level implications of household and family change.
Max ERC Funding
2 400 555 €
Duration
Start date: 2017-02-01, End date: 2022-01-31
Project acronym DNA2REPAIR
Project DNA strand break repair and links to human disease
Researcher (PI) Stephen West
Host Institution (HI) THE FRANCIS CRICK INSTITUTE LIMITED
Call Details Advanced Grant (AdG), LS1, ERC-2014-ADG
Summary Our genetic material is continually subjected to damage, either from endogenous sources such as reactive oxygen species, produced as by-products of oxidative metabolism, from the breakdown of replication forks during cell growth, or by agents in the environment such as ionising radiation or carcinogenic chemicals. To cope with DNA damage, cells employ elaborate and effective repair processes that specifically recognise a wide variety of lesions in DNA. These repair systems are essential for the maintenance of genome integrity. Unfortunately, some individuals are genetically predisposed to crippling diseases or cancers that are the direct result of mutations in genes involved in the DNA damage response. For several years our work has been at the forefront of basic biological research in the area of DNA repair, and in particular we have made significant contributions to the understanding of inheritable diseases such as breast cancer, Fanconi anemia, and the neurodegenerative disorder Ataxia with Oculomotor Apraxia (AOA). The focus of this ERC proposal is: (i) to determine the mechanism of action and high-resolution structure of the BRCA2 tumour suppressor, and to provide a detailed picture of the interplay between BRCA2, PALB2, RAD51AP1 and the RAD51 paralogs, in terms of RAD51 filament assembly, using biochemical, electron microscopic and cell biological approaches, (ii) to determine the biological role of a unique structure-selective tri-nuclease complex (SLX1-SLX4-MUS81-EME1-XPF-ERCC1), with particular emphasis on its roles in DNA crosslink repair and Fanconi anemia, and (iii) to understand the actions of Senataxin, which is defective in AOA2, in protecting against genome instability in neuronal cells. These three distinct and yet inter-related areas of the research programme will provide an improved understanding of basic mechanisms of DNA repair and thereby underpin future therapeutic developments that will help individuals afflicted with these diseases.
Summary
Our genetic material is continually subjected to damage, either from endogenous sources such as reactive oxygen species, produced as by-products of oxidative metabolism, from the breakdown of replication forks during cell growth, or by agents in the environment such as ionising radiation or carcinogenic chemicals. To cope with DNA damage, cells employ elaborate and effective repair processes that specifically recognise a wide variety of lesions in DNA. These repair systems are essential for the maintenance of genome integrity. Unfortunately, some individuals are genetically predisposed to crippling diseases or cancers that are the direct result of mutations in genes involved in the DNA damage response. For several years our work has been at the forefront of basic biological research in the area of DNA repair, and in particular we have made significant contributions to the understanding of inheritable diseases such as breast cancer, Fanconi anemia, and the neurodegenerative disorder Ataxia with Oculomotor Apraxia (AOA). The focus of this ERC proposal is: (i) to determine the mechanism of action and high-resolution structure of the BRCA2 tumour suppressor, and to provide a detailed picture of the interplay between BRCA2, PALB2, RAD51AP1 and the RAD51 paralogs, in terms of RAD51 filament assembly, using biochemical, electron microscopic and cell biological approaches, (ii) to determine the biological role of a unique structure-selective tri-nuclease complex (SLX1-SLX4-MUS81-EME1-XPF-ERCC1), with particular emphasis on its roles in DNA crosslink repair and Fanconi anemia, and (iii) to understand the actions of Senataxin, which is defective in AOA2, in protecting against genome instability in neuronal cells. These three distinct and yet inter-related areas of the research programme will provide an improved understanding of basic mechanisms of DNA repair and thereby underpin future therapeutic developments that will help individuals afflicted with these diseases.
Max ERC Funding
2 203 153 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym DNAREPAIR
Project Defects in DNA strand break repair and links to inheritable disease
Researcher (PI) Stephen West
Host Institution (HI) THE FRANCIS CRICK INSTITUTE LIMITED
Call Details Advanced Grant (AdG), LS1, ERC-2009-AdG
Summary Our genetic material is continually subjected to damage, either from endogenous sources such as reactive oxygen species produced as by-products of oxidative metabolism, from the breakdown of replication forks during cell growth, or by agents in the environment such as ionising radiation or carcinogenic chemicals. To cope with DNA damage, cells employ elaborate and effective repair processes that specifically recognise a wide variety of lesions in DNA. These repair systems are essential for the maintenance of genome integrity. Unfortunately, some individuals are genetically predisposed to crippling diseases or cancers that are the direct result of mutations in genes involved in the DNA damage response. For several years our work has been at the forefront of basic biological research in the area of DNA repair, and in particular we have made significant contributions to the understanding of inheritable diseases such as breast cancer, Fanconi anemia, and the neurodegenerative disease Ataxia with Oculomotor Apraxia-1 (AOA-1). The focus of this ERC proposal is: (i) to define the phenotypic interplay between three inheritable cancer predisposition syndromes, Fanconi anemia, Bloom s syndrome and breast cancers caused by mutation of BRCA2, (ii) to determine the biological role of the newly discovered GEN1 Holliday junction resolvase in homologous recombination and repair, and (iii) to understand the actions of Aprataxin and Senataxin in relation to the inheritable neurodegenerative diseases AOA-1 and AOA-2, respectively. Our studies will provide an improved understanding of basic mechanisms of DNA repair and thereby underpin future therapeutic developments that will help individuals afflicted with these diseases.
Summary
Our genetic material is continually subjected to damage, either from endogenous sources such as reactive oxygen species produced as by-products of oxidative metabolism, from the breakdown of replication forks during cell growth, or by agents in the environment such as ionising radiation or carcinogenic chemicals. To cope with DNA damage, cells employ elaborate and effective repair processes that specifically recognise a wide variety of lesions in DNA. These repair systems are essential for the maintenance of genome integrity. Unfortunately, some individuals are genetically predisposed to crippling diseases or cancers that are the direct result of mutations in genes involved in the DNA damage response. For several years our work has been at the forefront of basic biological research in the area of DNA repair, and in particular we have made significant contributions to the understanding of inheritable diseases such as breast cancer, Fanconi anemia, and the neurodegenerative disease Ataxia with Oculomotor Apraxia-1 (AOA-1). The focus of this ERC proposal is: (i) to define the phenotypic interplay between three inheritable cancer predisposition syndromes, Fanconi anemia, Bloom s syndrome and breast cancers caused by mutation of BRCA2, (ii) to determine the biological role of the newly discovered GEN1 Holliday junction resolvase in homologous recombination and repair, and (iii) to understand the actions of Aprataxin and Senataxin in relation to the inheritable neurodegenerative diseases AOA-1 and AOA-2, respectively. Our studies will provide an improved understanding of basic mechanisms of DNA repair and thereby underpin future therapeutic developments that will help individuals afflicted with these diseases.
Max ERC Funding
2 449 091 €
Duration
Start date: 2010-06-01, End date: 2015-05-31
Project acronym DYNACOTINE
Project Signal transduction and allosteric modulation of nicotinic acetylcholine receptors:from ion channel electrophysiology to atomic 3D structures
Researcher (PI) Pierre-Jean CORRINGER
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), LS1, ERC-2017-ADG
Summary Nicotinic acetylcholine receptors (nAChRs) mediate neuronal synaptic transmission and modulation. They contribute to higher brain functions such as cognition and reward and are important drug targets. Recent studies have revealed that these acetylcholine-gated ion channels display an unanticipated conformational plasticity, adopting multiple allosteric states that shape the time course of their electrophysiological response. To date, a single nAChR structure has been solved at high resolution, and our understanding of the conformational transitions remains so far elusive.
To address this challenge, we propose to develop a top-down approach starting from the study of the conformational transitions of nAChRs functionally expressed in cells, and then dissecting the molecular mechanisms on purified proteins. In WP1, we will develop an innovative fluorescence quenching approach to follow the protein motions concomitant with channel opening at the cell membrane. In WP2, we will further exploit this technique on purified proteins, to study the role/requirement of lipids, and their pharmacological crosstalk with allosteric modulators acting at the transmembrane domain. In WP3, the gained knowledge will open original routes to solve 3D structures of nAChRs, in novel conformations and in complex with allosteric modulators. The research will be centered on the major brain nAChRs, primarily the homomeric α7 and also the heteromeric α4β2 nAChRs that are major physiological players and key potential therapeutic targets.
This multidisciplinary project combines electrophysiology, fluorescence, pharmacology, membrane protein biochemistry and structural biology, together with in silico modeling, molecular dynamics and ligand docking. The results will provide fundamental insights into the allosteric mechanisms underlying both nAChR function and its modulation by allosteric modulators that hold promises in therapeutics.
Summary
Nicotinic acetylcholine receptors (nAChRs) mediate neuronal synaptic transmission and modulation. They contribute to higher brain functions such as cognition and reward and are important drug targets. Recent studies have revealed that these acetylcholine-gated ion channels display an unanticipated conformational plasticity, adopting multiple allosteric states that shape the time course of their electrophysiological response. To date, a single nAChR structure has been solved at high resolution, and our understanding of the conformational transitions remains so far elusive.
To address this challenge, we propose to develop a top-down approach starting from the study of the conformational transitions of nAChRs functionally expressed in cells, and then dissecting the molecular mechanisms on purified proteins. In WP1, we will develop an innovative fluorescence quenching approach to follow the protein motions concomitant with channel opening at the cell membrane. In WP2, we will further exploit this technique on purified proteins, to study the role/requirement of lipids, and their pharmacological crosstalk with allosteric modulators acting at the transmembrane domain. In WP3, the gained knowledge will open original routes to solve 3D structures of nAChRs, in novel conformations and in complex with allosteric modulators. The research will be centered on the major brain nAChRs, primarily the homomeric α7 and also the heteromeric α4β2 nAChRs that are major physiological players and key potential therapeutic targets.
This multidisciplinary project combines electrophysiology, fluorescence, pharmacology, membrane protein biochemistry and structural biology, together with in silico modeling, molecular dynamics and ligand docking. The results will provide fundamental insights into the allosteric mechanisms underlying both nAChR function and its modulation by allosteric modulators that hold promises in therapeutics.
Max ERC Funding
2 282 105 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym ECCENTRIC
Project Epigenetic challenges in centromere inheritance during the cell cycle
Researcher (PI) Geneviève Almouzni - Pettinotti
Host Institution (HI) INSTITUT CURIE
Call Details Advanced Grant (AdG), LS1, ERC-2009-AdG
Summary Studies concerning the mechanism of DNA replication have advanced our understanding of genetic transmission through multiple cell cycles. Recent work has shed light on possible means to ensure the stable transmission of information beyond just DNA and the concept of epigenetic inheritance has emerged. Considering chromatin-based information, key candidates have arisen as epigenetic marks including DNA and histone modifications, histone variants, non-histone chromatin proteins, nuclear RNA as well as higher-order chromatin organization. Thus, understanding the dynamics and stability of these marks following disruptive events during replication and repair and throughout the cell cycle becomes of critical importance for the maintenance of any given chromatin state. To approach these issues, we propose to study the maintenance of heterochromatin at centromeres, key chromosomal regions for the proper chromosome segregation. Our current goal is to access to the sophisticated mechanisms that have evolved in order to facilitate inheritance of epigenetic marks not only at the replication fork, but also at other stages of the cell cycle, during repair and development. Beyond inheritance of DNA methylation, understanding how inheritance of histone variants and their modifications can be controlled either coupled or not coupled to DNA replication will be a major focus of this project. Our studies will build on the expertise and tools developed over the years in a strategy that integrates molecular, cellular, and biochemical approaches. This will be combined with the use of new technologies to monitor cell cycle (Fucci), protein dynamics (SNAP-Tagging) together with single molecule analysis involving DNA and chromatin combing. We wish to define a possible framework for an understanding of both the stability and reversibility of epigenetic marks and their dynamics at centromeres. These lessons may teach us general principles of inheritance of epigenetic states.
Summary
Studies concerning the mechanism of DNA replication have advanced our understanding of genetic transmission through multiple cell cycles. Recent work has shed light on possible means to ensure the stable transmission of information beyond just DNA and the concept of epigenetic inheritance has emerged. Considering chromatin-based information, key candidates have arisen as epigenetic marks including DNA and histone modifications, histone variants, non-histone chromatin proteins, nuclear RNA as well as higher-order chromatin organization. Thus, understanding the dynamics and stability of these marks following disruptive events during replication and repair and throughout the cell cycle becomes of critical importance for the maintenance of any given chromatin state. To approach these issues, we propose to study the maintenance of heterochromatin at centromeres, key chromosomal regions for the proper chromosome segregation. Our current goal is to access to the sophisticated mechanisms that have evolved in order to facilitate inheritance of epigenetic marks not only at the replication fork, but also at other stages of the cell cycle, during repair and development. Beyond inheritance of DNA methylation, understanding how inheritance of histone variants and their modifications can be controlled either coupled or not coupled to DNA replication will be a major focus of this project. Our studies will build on the expertise and tools developed over the years in a strategy that integrates molecular, cellular, and biochemical approaches. This will be combined with the use of new technologies to monitor cell cycle (Fucci), protein dynamics (SNAP-Tagging) together with single molecule analysis involving DNA and chromatin combing. We wish to define a possible framework for an understanding of both the stability and reversibility of epigenetic marks and their dynamics at centromeres. These lessons may teach us general principles of inheritance of epigenetic states.
Max ERC Funding
2 490 483 €
Duration
Start date: 2010-06-01, End date: 2015-12-31
Project acronym ECHO
Project Early conditions, delayed adult effects and morbidity, disability and mortality in modern human populations
Researcher (PI) Alberto Palloni
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Advanced Grant (AdG), SH3, ERC-2017-ADG
Summary This project aims to reformulate and generalize standard theories of human health and mortality. It proposes new formal models and a systematic agenda to empirically test hypotheses that link developmental biology, epigenetics and adult human illness, disability and mortality. We seek to break new ground developing innovative formal models for illnesses and mortality, testing new hypotheses about the evolution of human health and, to the extent permitted by findings, reformulating standard theories to make them applicable to a less restrictive segment of populations than they are now. Over the past two decades there has been massive growth of research on the nature of delayed adult effects of conditions experienced in early life. This field of research is known as the Developmental Origins of Adult Health and Disease (DOHaD). Increasing evidence suggests that the mechanisms that are implicated are epigenetic and constitute an evolved adaptation selected over thousands of years to improve fitness in changing landscapes. The emergence of DOHaD is as close as we will ever come to a paradigmatic shift in the study of human health, disability and mortality. The most tantalizing possibility is that advances in our understanding of epigenetic mechanisms will shed light on pathways linking early exposures and delayed adult health thus fundamentally transforming our understanding of human illnesses and, in one fell swoop, bridge population health, epigenetics, and developmental and evolutionary biology. The overarching goal of this project is to contribute to this nascent area of study by (a) proposing new formal demographic models of health, disability and mortality; (b) empirically testing DOHaD predictions with population data; (c) testing a microsimulation model to verify DOHaD predictions about two conditions, obesity and Type 2 Diabetes, and (d) assessing the adult health, disability and mortality toll implicated by relations between early conditions, obesity and T2D.
Summary
This project aims to reformulate and generalize standard theories of human health and mortality. It proposes new formal models and a systematic agenda to empirically test hypotheses that link developmental biology, epigenetics and adult human illness, disability and mortality. We seek to break new ground developing innovative formal models for illnesses and mortality, testing new hypotheses about the evolution of human health and, to the extent permitted by findings, reformulating standard theories to make them applicable to a less restrictive segment of populations than they are now. Over the past two decades there has been massive growth of research on the nature of delayed adult effects of conditions experienced in early life. This field of research is known as the Developmental Origins of Adult Health and Disease (DOHaD). Increasing evidence suggests that the mechanisms that are implicated are epigenetic and constitute an evolved adaptation selected over thousands of years to improve fitness in changing landscapes. The emergence of DOHaD is as close as we will ever come to a paradigmatic shift in the study of human health, disability and mortality. The most tantalizing possibility is that advances in our understanding of epigenetic mechanisms will shed light on pathways linking early exposures and delayed adult health thus fundamentally transforming our understanding of human illnesses and, in one fell swoop, bridge population health, epigenetics, and developmental and evolutionary biology. The overarching goal of this project is to contribute to this nascent area of study by (a) proposing new formal demographic models of health, disability and mortality; (b) empirically testing DOHaD predictions with population data; (c) testing a microsimulation model to verify DOHaD predictions about two conditions, obesity and Type 2 Diabetes, and (d) assessing the adult health, disability and mortality toll implicated by relations between early conditions, obesity and T2D.
Max ERC Funding
2 852 655 €
Duration
Start date: 2019-03-01, End date: 2024-02-29
Project acronym ECSAnVis
Project Extreme Citizen Science: Analysis and Visualisation
Researcher (PI) Mordechai Elazar (Muki) HAKLAY
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Advanced Grant (AdG), SH3, ERC-2015-AdG
Summary The challenge of Extreme Citizen Science is to enable any community, regardless of literacy or education, to initiate, run, and use the result of a local citizen science activity, so they can be empowered to address and solve issues that concern them. Citizen Science is understood here as the participation of members of the public in a scientific project, from shaping the question, to collecting the data, analysing it and using the knowledge that emerges from it. Over the past 3 years, under the leadership of Prof. Muki Haklay, the Extreme Citizen Science programme at UCL has demonstrated that non-literate people and those with limited technical literacy can participate in formulating research questions and collecting the data that is important to them. Extreme Citizen Science: Analysis and Visualisation (ECSAnVis) takes the next ambitious step – developing geographical analysis and visualisation tools that can be used, successfully, by people with limited literacy, in a culturally appropriate way. At the core of the proposal is the imperative to see technology as part of socially embedded practices and culture and avoid ‘technical fixes’.
The development of novel, socially and culturally accessible Geographic Information System (GIS) interface and underlying algorithms, will provide communities with tools to support them to combine their local environmental knowledge with scientific analysis to improve environmental management. In an exciting collaboration with local indigenous partners on case studies in critically important, yet fragile and menaced ecosystems in the Amazon and the Congo-basin, our network of anthropologists, ecologists, computer scientists, designers and electronic engineers will develop innovative hardware, software and participatory methodologies that will enable any community to use this innovative GIS.
The research will contribute to the fields of geography, geographic information science, anthropology, development, agronomy and conservation.
Summary
The challenge of Extreme Citizen Science is to enable any community, regardless of literacy or education, to initiate, run, and use the result of a local citizen science activity, so they can be empowered to address and solve issues that concern them. Citizen Science is understood here as the participation of members of the public in a scientific project, from shaping the question, to collecting the data, analysing it and using the knowledge that emerges from it. Over the past 3 years, under the leadership of Prof. Muki Haklay, the Extreme Citizen Science programme at UCL has demonstrated that non-literate people and those with limited technical literacy can participate in formulating research questions and collecting the data that is important to them. Extreme Citizen Science: Analysis and Visualisation (ECSAnVis) takes the next ambitious step – developing geographical analysis and visualisation tools that can be used, successfully, by people with limited literacy, in a culturally appropriate way. At the core of the proposal is the imperative to see technology as part of socially embedded practices and culture and avoid ‘technical fixes’.
The development of novel, socially and culturally accessible Geographic Information System (GIS) interface and underlying algorithms, will provide communities with tools to support them to combine their local environmental knowledge with scientific analysis to improve environmental management. In an exciting collaboration with local indigenous partners on case studies in critically important, yet fragile and menaced ecosystems in the Amazon and the Congo-basin, our network of anthropologists, ecologists, computer scientists, designers and electronic engineers will develop innovative hardware, software and participatory methodologies that will enable any community to use this innovative GIS.
The research will contribute to the fields of geography, geographic information science, anthropology, development, agronomy and conservation.
Max ERC Funding
2 500 000 €
Duration
Start date: 2016-11-01, End date: 2021-10-31
Project acronym EditMHC
Project How MHC-I editing complexes shape the hierarchical immune response
Researcher (PI) Robert TAMPÉ
Host Institution (HI) JOHANN WOLFGANG GOETHE-UNIVERSITATFRANKFURT AM MAIN
Call Details Advanced Grant (AdG), LS1, ERC-2017-ADG
Summary Our body constantly encounters pathogens or malignant transformation. Consequently, the adaptive immune system is in place to eliminate infected or cancerous cells. Specific immune reactions are triggered by selected peptide epitopes presented on major histocompatibility complex class I (MHC-I) molecules, which are scanned by cytotoxic T lymphocytes.
Intracellular transport, loading, and editing of antigenic peptides onto MHC-I are coordinated by a highly dynamic multisubunit peptide-loading complex (PLC) in the ER membrane. This multitasking machinery orchestrates the translocation of proteasomal degradation products into the ER as well as the loading and proofreading of MHC-I molecules.
Sampling of myriads of different peptide/MHC-I allomorphs requires a precisely coordinated quality control network in a single macromolecular assembly, including the transporter associated with antigen processing TAP1/2, the MHC-I heterodimer, the oxidoreductase ERp57, and the ER chaperones tapasin and calreticulin. Proofreading by MHC-I editing complexes guarantees that only very stable peptide/MHC-I complexes are released to the cell surface.
This proposal aims to gain a holistic understanding of the PLC and MHC-I proofreading complexes, which are essential for cellular immunity. We strive to elucidate the mechanistic basis of the antigen translocation complex TAP as well as the MHC-I chaperone complexes within the PLC. This high-risk/high-gain project will define the inner working of the PLC, which constitutes the central machinery of immune surveillance in health and diseases. The results will provide detailed insights into the architecture and dynamics of the PLC and will ultimately pave the way for unraveling general principles of intracellular membrane-embedded multiprotein assemblies in the human body. Furthermore, we will deliver a detailed understanding of mechanisms at work in viral immune evasion.
Summary
Our body constantly encounters pathogens or malignant transformation. Consequently, the adaptive immune system is in place to eliminate infected or cancerous cells. Specific immune reactions are triggered by selected peptide epitopes presented on major histocompatibility complex class I (MHC-I) molecules, which are scanned by cytotoxic T lymphocytes.
Intracellular transport, loading, and editing of antigenic peptides onto MHC-I are coordinated by a highly dynamic multisubunit peptide-loading complex (PLC) in the ER membrane. This multitasking machinery orchestrates the translocation of proteasomal degradation products into the ER as well as the loading and proofreading of MHC-I molecules.
Sampling of myriads of different peptide/MHC-I allomorphs requires a precisely coordinated quality control network in a single macromolecular assembly, including the transporter associated with antigen processing TAP1/2, the MHC-I heterodimer, the oxidoreductase ERp57, and the ER chaperones tapasin and calreticulin. Proofreading by MHC-I editing complexes guarantees that only very stable peptide/MHC-I complexes are released to the cell surface.
This proposal aims to gain a holistic understanding of the PLC and MHC-I proofreading complexes, which are essential for cellular immunity. We strive to elucidate the mechanistic basis of the antigen translocation complex TAP as well as the MHC-I chaperone complexes within the PLC. This high-risk/high-gain project will define the inner working of the PLC, which constitutes the central machinery of immune surveillance in health and diseases. The results will provide detailed insights into the architecture and dynamics of the PLC and will ultimately pave the way for unraveling general principles of intracellular membrane-embedded multiprotein assemblies in the human body. Furthermore, we will deliver a detailed understanding of mechanisms at work in viral immune evasion.
Max ERC Funding
2 181 250 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym EmpoweredLifeYears
Project The Demography of Sustainable Human Wellbeing
Researcher (PI) Wolfgang Lutz
Host Institution (HI) INTERNATIONALES INSTITUT FUER ANGEWANDTE SYSTEMANALYSE
Call Details Advanced Grant (AdG), SH3, ERC-2016-ADG
Summary This project will apply two distinctly demographic concepts to research questions that go far beyond demography. The wellbeing indicators proposed here will be based on life table methods and the recently operationalized concept of Demographic Metabolism – modelling social change through the replacement of generations – will be used to get a quantitative analytical handle on the temporal dynamics of improving human wellbeing.
The project will theoretically develop, empirically estimate, test and forecast indicators of human wellbeing that are based on life table methods and hence reflect the basic – but often overlooked fact – that being alive is a necessary prerequisite for enjoying any quality of life. But since mere survival is not sufficient as an ultimate goal for most people the person years lived at each age will be weighted with four different dimensions of empowerment: health, literacy, happiness and being out of poverty. These are four dimensions of an indicator tentatively called ELY (Empowered Life Years). ELY will also serve as the explanandum of a global level econometric estimation of the determinants of wellbeing considering human, manufactured and natural capitals as well as knowledge and institutions.
The global level analysis is complemented by a set of strategically chosen in-depth systems-analytical case studies in Namibia/Western Cape, Nepal, Costa Rica and historical Finland modelling the population-development-environment (PDE) interactions including feed-backs e.g. from environmental degradation to wellbeing and taking the trends of ELY in different sub-populations as sustainability criteria. They will also include stake holder involvement and science-policy interactions.
This innovative inter-disciplinary cross-fertilisation can potentially make an important contribution to the current discussions about operationalizing the criteria and end goal of sustainable development and developing better human wellbeing based metrics of progress.
Summary
This project will apply two distinctly demographic concepts to research questions that go far beyond demography. The wellbeing indicators proposed here will be based on life table methods and the recently operationalized concept of Demographic Metabolism – modelling social change through the replacement of generations – will be used to get a quantitative analytical handle on the temporal dynamics of improving human wellbeing.
The project will theoretically develop, empirically estimate, test and forecast indicators of human wellbeing that are based on life table methods and hence reflect the basic – but often overlooked fact – that being alive is a necessary prerequisite for enjoying any quality of life. But since mere survival is not sufficient as an ultimate goal for most people the person years lived at each age will be weighted with four different dimensions of empowerment: health, literacy, happiness and being out of poverty. These are four dimensions of an indicator tentatively called ELY (Empowered Life Years). ELY will also serve as the explanandum of a global level econometric estimation of the determinants of wellbeing considering human, manufactured and natural capitals as well as knowledge and institutions.
The global level analysis is complemented by a set of strategically chosen in-depth systems-analytical case studies in Namibia/Western Cape, Nepal, Costa Rica and historical Finland modelling the population-development-environment (PDE) interactions including feed-backs e.g. from environmental degradation to wellbeing and taking the trends of ELY in different sub-populations as sustainability criteria. They will also include stake holder involvement and science-policy interactions.
This innovative inter-disciplinary cross-fertilisation can potentially make an important contribution to the current discussions about operationalizing the criteria and end goal of sustainable development and developing better human wellbeing based metrics of progress.
Max ERC Funding
1 819 250 €
Duration
Start date: 2017-11-01, End date: 2022-10-31
Project acronym EMPSI
Project Receptors, Channels and Transporters:
Development and Application of Novel Technologies for Structure Determination
Researcher (PI) Christopher Gordon Tate
Host Institution (HI) MEDICAL RESEARCH COUNCIL
Call Details Advanced Grant (AdG), LS1, ERC-2013-ADG
Summary Structure determination of G protein-coupled receptors (GPCRs) has been exceedingly successful over the last 5 years due to the development of complimentary generic methodologies that will now allow the structure determination of virtually any GPCR. However, these technologies address only two aspects of the process, namely the stability of the receptors during purification and the ability to form well-diffracting crystals. The strategies also apply only to GPCRs and not transporters or ion channels. The recent successes have been of GPCRs that are expressed in either yeasts or in insect cells using the baculovirus expression system, but many membrane proteins are expressed poorly in these systems or may be expressed in a misfolded non-functional form. A second issue with the future structure determination of GPCRs is the lack of generic technologies to allow the crystallisation of arrestin-GPCR and G protein-GPCR complexes. Although one G protein GPCR complex has been crystallised this was exceedingly diffciult and resulted in poor resolution of the GPCR component of the complex. We believe that it is possible to thermostabilise both arrestin and heterotrimeric G proteins, which will allow a simplified strategy for the crystallisation and structure determination of GPCR complexes. This is based on the development of the strategy of conformational thermostabilisation of GPCRs developed in our lab that has resulted in the structure determination of 3 different GPCRs bound to either antagonists, partial agonists, full agonists and/or biased agonists.
The aims are:
1. The development of generic methodology for the production of eukaryotic membrane proteins in mammalian cells.
2. The development of a thermostable functional arrestin mutant
3. Structures of β1-adrenoceptor, adenosine A2A receptor and angiotensin receptor bound to a G protein and arrestin
4. Understanding the role of each amino acid residue in the activation process of GPCRs through saturation mutagenes
Summary
Structure determination of G protein-coupled receptors (GPCRs) has been exceedingly successful over the last 5 years due to the development of complimentary generic methodologies that will now allow the structure determination of virtually any GPCR. However, these technologies address only two aspects of the process, namely the stability of the receptors during purification and the ability to form well-diffracting crystals. The strategies also apply only to GPCRs and not transporters or ion channels. The recent successes have been of GPCRs that are expressed in either yeasts or in insect cells using the baculovirus expression system, but many membrane proteins are expressed poorly in these systems or may be expressed in a misfolded non-functional form. A second issue with the future structure determination of GPCRs is the lack of generic technologies to allow the crystallisation of arrestin-GPCR and G protein-GPCR complexes. Although one G protein GPCR complex has been crystallised this was exceedingly diffciult and resulted in poor resolution of the GPCR component of the complex. We believe that it is possible to thermostabilise both arrestin and heterotrimeric G proteins, which will allow a simplified strategy for the crystallisation and structure determination of GPCR complexes. This is based on the development of the strategy of conformational thermostabilisation of GPCRs developed in our lab that has resulted in the structure determination of 3 different GPCRs bound to either antagonists, partial agonists, full agonists and/or biased agonists.
The aims are:
1. The development of generic methodology for the production of eukaryotic membrane proteins in mammalian cells.
2. The development of a thermostable functional arrestin mutant
3. Structures of β1-adrenoceptor, adenosine A2A receptor and angiotensin receptor bound to a G protein and arrestin
4. Understanding the role of each amino acid residue in the activation process of GPCRs through saturation mutagenes
Max ERC Funding
2 378 162 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym ENABLE
Project Elucidating natural bilayer lipid environments
Researcher (PI) Carol Robinson
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Advanced Grant (AdG), LS1, ERC-2015-AdG
Summary Excising a membrane protein from its natural environment, preserving the lipid bilayer, and characterising the lipids that surround it is the ‘holy grail’ of membrane protein biophysics. However, with some 40,000 different lipid structures the challenges we face in understanding selective binding arise not just from the complexity and dynamics of the lipidome, but also from the transient nature of protein lipid interactions. To overcome these challenges we will take mass spectrometry (MS) into a new era, allowing, for the first time, the study of proteins in an environment as close as possible to the natural one. To do this we will (i) characterise protein lipid interactions by employing a high resolution Orbitrap mass spectrometer developed in-house, specifically for membrane proteins, (ii) capture the native lipid environment in vehicles suitable for use in conjunction with MS, and (iii) establish a new platform to be known as integral membrane protein desorption electrospray ionization (impDESI). Designed and built in-house impDESI is capable of releasing membrane proteins from surfaces directly into the mass spectrometer (MS). We will develop impDESI for membrane mimetics, and subsequently portions of natural membranes, enabling us to extract proteins with oligomeric state preserved and native lipid binding intact. The development of impDESI, in conjunction with high resolution Orbitrap MS, and coupled with the optimisation of membrane mimetics, has the potential to radically transform our understanding of native lipid binding, not only directly, but also temporally and spatially. Together these advances will answer key questions about how lipids modulate protein interfaces, occupy different binding sites, modulate membrane protein structure and modify function in vivo. Given the importance of membrane proteins as potential drugs targets understanding their modulation by lipids would be a major step towards more effective drug development.
Summary
Excising a membrane protein from its natural environment, preserving the lipid bilayer, and characterising the lipids that surround it is the ‘holy grail’ of membrane protein biophysics. However, with some 40,000 different lipid structures the challenges we face in understanding selective binding arise not just from the complexity and dynamics of the lipidome, but also from the transient nature of protein lipid interactions. To overcome these challenges we will take mass spectrometry (MS) into a new era, allowing, for the first time, the study of proteins in an environment as close as possible to the natural one. To do this we will (i) characterise protein lipid interactions by employing a high resolution Orbitrap mass spectrometer developed in-house, specifically for membrane proteins, (ii) capture the native lipid environment in vehicles suitable for use in conjunction with MS, and (iii) establish a new platform to be known as integral membrane protein desorption electrospray ionization (impDESI). Designed and built in-house impDESI is capable of releasing membrane proteins from surfaces directly into the mass spectrometer (MS). We will develop impDESI for membrane mimetics, and subsequently portions of natural membranes, enabling us to extract proteins with oligomeric state preserved and native lipid binding intact. The development of impDESI, in conjunction with high resolution Orbitrap MS, and coupled with the optimisation of membrane mimetics, has the potential to radically transform our understanding of native lipid binding, not only directly, but also temporally and spatially. Together these advances will answer key questions about how lipids modulate protein interfaces, occupy different binding sites, modulate membrane protein structure and modify function in vivo. Given the importance of membrane proteins as potential drugs targets understanding their modulation by lipids would be a major step towards more effective drug development.
Max ERC Funding
2 481 744 €
Duration
Start date: 2016-06-01, End date: 2021-05-31
Project acronym EnvJustice
Project A GLOBAL MOVEMENT FOR ENVIRONMENTAL JUSTICE: The EJAtlas
Researcher (PI) Joan MARTÍNEZ ALIER
Host Institution (HI) UNIVERSITAT AUTONOMA DE BARCELONA
Call Details Advanced Grant (AdG), SH3, ERC-2015-AdG
Summary "The Environmental Justice Atlas (www.ejatlas.org) is a global database built by us, drawing on activist and academic knowledge. It maps 1500 conflicts. To improve geographical and thematic coverage it will grow to 3000 by 2019. It systematizes conflicts across 100+ fields documenting the commodities at stake, the actors involved, impacts, forms of mobilizations and outcomes allowing analyses that will lead to a general theory of ecological distribution conflicts.
We shall research the links between changes in social metabolism and resource extraction conflicts at the “commodity frontiers”. Also other questions in political ecology and social movement theory such as the effectiveness of direct action by grassroots protesters compared to institutional forms of contention. Does the involvement of different actors, e.g. indigenous groups, relate to different conflict outcomes? How often does the IUCN ally itself to ""the environmentalism of the poor""? Do mobilizations and outcomes vary across sectors (mining, hydroelectric dams, waste incinerators) according to project differences in economic and biophysical dimensions, environmental and health risks? Are conflicts on point resources (mining, oil extraction) regularly different from conflicts in agriculture? Can we track networked resistances against Western companies, compared to those from China or other countries?
Resistance to environmental damage has brought into being many local and some international EJOs pushing for alternative social transformations. We shall study the Vocabulary of Environmental Justice they deploy: climate justice, water justice, food sovereignty, biopiracy, sacrifice zones, and other terms specific to countries: Chinese “cancer villages”, Indian “sand mafias”, Brazilian “green deserts” (eucalyptus plantations). Finally, are there signs of an alliance between the Global Environmental Justice Movement and the small European movement for “prosperity without growth”, décroissance, Post-Wachstum?"
Summary
"The Environmental Justice Atlas (www.ejatlas.org) is a global database built by us, drawing on activist and academic knowledge. It maps 1500 conflicts. To improve geographical and thematic coverage it will grow to 3000 by 2019. It systematizes conflicts across 100+ fields documenting the commodities at stake, the actors involved, impacts, forms of mobilizations and outcomes allowing analyses that will lead to a general theory of ecological distribution conflicts.
We shall research the links between changes in social metabolism and resource extraction conflicts at the “commodity frontiers”. Also other questions in political ecology and social movement theory such as the effectiveness of direct action by grassroots protesters compared to institutional forms of contention. Does the involvement of different actors, e.g. indigenous groups, relate to different conflict outcomes? How often does the IUCN ally itself to ""the environmentalism of the poor""? Do mobilizations and outcomes vary across sectors (mining, hydroelectric dams, waste incinerators) according to project differences in economic and biophysical dimensions, environmental and health risks? Are conflicts on point resources (mining, oil extraction) regularly different from conflicts in agriculture? Can we track networked resistances against Western companies, compared to those from China or other countries?
Resistance to environmental damage has brought into being many local and some international EJOs pushing for alternative social transformations. We shall study the Vocabulary of Environmental Justice they deploy: climate justice, water justice, food sovereignty, biopiracy, sacrifice zones, and other terms specific to countries: Chinese “cancer villages”, Indian “sand mafias”, Brazilian “green deserts” (eucalyptus plantations). Finally, are there signs of an alliance between the Global Environmental Justice Movement and the small European movement for “prosperity without growth”, décroissance, Post-Wachstum?"
Max ERC Funding
1 910 811 €
Duration
Start date: 2016-06-01, End date: 2021-05-31
Project acronym EPICut
Project Molecular mechanisms, evolutionary impacts and applications of prokaryotic epigenetic-targeted immune systems
Researcher (PI) Mark Dominik SZCZELKUN
Host Institution (HI) UNIVERSITY OF BRISTOL
Call Details Advanced Grant (AdG), LS1, ERC-2017-ADG
Summary Interactions between bacteria and their viruses (bacteriophages) have led to the evolution of a wide range of bacterial mechanisms to resist viral infection. The exploitation of such systems has produced true revolutions in biotechnology; firstly, the restriction-modification (RM) enzymes for genetic engineering, and secondly, CRISPR-Cas9 for gene editing. This project aims to unravel the mechanisms and consequences of prokaryotic immune systems that target covalently-modified DNA, such as base methylation, hydroxymethylation and glucosylation. Very little is known about these Type IV restriction enzymes at a mechanistic level, or about their importance to the coevolution of prokaryotic-phage communities. I propose a unique interdisciplinary approach that combines biophysical and single-molecule analysis of enzyme function, nucleoprotein structure determination, prokaryotic evolutionary ecology, and epigenome sequencing, to link the molecular mechanisms of prokaryotic defence to individual, population and community-level phenotypes. This knowledge is vital to a full understanding of how bacterial immunity influences horizontal gene transfer, including the spread of virulence or antimicrobial resistance. In addition, a deeper analysis of enzyme function will support our reengineering of these systems to produce improved restriction enzyme tools for the mapping of eukaryotic epigenetics markers.
Summary
Interactions between bacteria and their viruses (bacteriophages) have led to the evolution of a wide range of bacterial mechanisms to resist viral infection. The exploitation of such systems has produced true revolutions in biotechnology; firstly, the restriction-modification (RM) enzymes for genetic engineering, and secondly, CRISPR-Cas9 for gene editing. This project aims to unravel the mechanisms and consequences of prokaryotic immune systems that target covalently-modified DNA, such as base methylation, hydroxymethylation and glucosylation. Very little is known about these Type IV restriction enzymes at a mechanistic level, or about their importance to the coevolution of prokaryotic-phage communities. I propose a unique interdisciplinary approach that combines biophysical and single-molecule analysis of enzyme function, nucleoprotein structure determination, prokaryotic evolutionary ecology, and epigenome sequencing, to link the molecular mechanisms of prokaryotic defence to individual, population and community-level phenotypes. This knowledge is vital to a full understanding of how bacterial immunity influences horizontal gene transfer, including the spread of virulence or antimicrobial resistance. In addition, a deeper analysis of enzyme function will support our reengineering of these systems to produce improved restriction enzyme tools for the mapping of eukaryotic epigenetics markers.
Max ERC Funding
2 196 414 €
Duration
Start date: 2018-08-01, End date: 2023-07-31
Project acronym EPISWITCH
Project Mechanistic basis of nucleation and spreading underlying a Polycomb-mediated epigenetic switch
Researcher (PI) Caroline DEAN
Host Institution (HI) JOHN INNES CENTRE
Call Details Advanced Grant (AdG), LS1, ERC-2018-ADG
Summary Polycomb-mediated epigenetic regulation of gene expression is central to development and environmental plasticity in most eukaryotes. Polycomb Repressive Complex 2 (PRC2) is targeted to genomic sites, known as nucleation regions or Polycomb Response elements, and switches those targets to an epigenetically silenced state. But what constitutes the switching mechanism is unknown. Core epigenetic switching mechanisms have proven difficult to elucidate due to the complex molecular feedbacks involved. We will exploit a well-characterized gene system, Arabidopsis FLC, to address a central question – what are the core events that constitute a Polycomb switch?
Our hypothesis is that the epigenetic switch involves stochastic conformationally-induced oligomerization, generating an ordered protein assembly of PRC2 accessory proteins and PRC2, that is then robustly distributed onto both daughter strands during DNA replication through self-templating feedback mechanisms. We will determine the local chromatin features that promote the epigenetic switch independently at each allele (i.e., in cis). We will also dissect the involvement of DNA replication in the transition from metastable to long-term epigenetic silencing, associated with the Polycomb complex spreading across the body of the locus.
This interdisciplinary proposal combines molecular genetics/biology, computational biology, with structural biology, achieved through close working relationships with Prof. Martin Howard (John Innes Centre), Dr Mariann Bienz (MRC Laboratory of Molecular Biology, Cambridge) and Dr Julian Sale, (MRC Laboratory of Molecular Biology, Cambridge). This blue-sky programme aims to provide important new concepts in Polycomb-mediated epigenetic switching mechanisms, important for the whole epigenetics field.
Summary
Polycomb-mediated epigenetic regulation of gene expression is central to development and environmental plasticity in most eukaryotes. Polycomb Repressive Complex 2 (PRC2) is targeted to genomic sites, known as nucleation regions or Polycomb Response elements, and switches those targets to an epigenetically silenced state. But what constitutes the switching mechanism is unknown. Core epigenetic switching mechanisms have proven difficult to elucidate due to the complex molecular feedbacks involved. We will exploit a well-characterized gene system, Arabidopsis FLC, to address a central question – what are the core events that constitute a Polycomb switch?
Our hypothesis is that the epigenetic switch involves stochastic conformationally-induced oligomerization, generating an ordered protein assembly of PRC2 accessory proteins and PRC2, that is then robustly distributed onto both daughter strands during DNA replication through self-templating feedback mechanisms. We will determine the local chromatin features that promote the epigenetic switch independently at each allele (i.e., in cis). We will also dissect the involvement of DNA replication in the transition from metastable to long-term epigenetic silencing, associated with the Polycomb complex spreading across the body of the locus.
This interdisciplinary proposal combines molecular genetics/biology, computational biology, with structural biology, achieved through close working relationships with Prof. Martin Howard (John Innes Centre), Dr Mariann Bienz (MRC Laboratory of Molecular Biology, Cambridge) and Dr Julian Sale, (MRC Laboratory of Molecular Biology, Cambridge). This blue-sky programme aims to provide important new concepts in Polycomb-mediated epigenetic switching mechanisms, important for the whole epigenetics field.
Max ERC Funding
2 101 325 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym ERC-ID
Project Excision Repair and chromatin interaction dynamics
Researcher (PI) Willem Vermeulen
Host Institution (HI) ERASMUS UNIVERSITAIR MEDISCH CENTRUM ROTTERDAM
Call Details Advanced Grant (AdG), LS1, ERC-2013-ADG
Summary "DNA damage is a fact of life. Lesions hamper genome function, induce mutations causing cancer and trigger senescence or cell death contributing to aging. Therefore cells are equipped with a sophisticated defence machinery: DNA Damage Response (DDR) including different repair pathways. Nucleotide excision repair (NER) is versatile repair process, eliminating helix-distorting lesions, e.g. bulky adducts and sun-induced lesions. Very cytotoxic transcription-blocking lesions are removed by a dedicated sub-pathway, transcription-coupled (TC-)NER. The impact of NER is highlighted by 4 disorders: xeroderma pigmentosum (XP), Cockayne syndrome (CS), trichothiodystrophy and UV-sensitive syndrome (UVSS). XP patients are cancer-prone due to global-genome (GG-)NER defects, whereas CS patients, impaired in TC-NER, display progeroid features, which are thought to derive from endogenous oxidative DNA lesions hampering transcription. Consistent with this, CS cells are sensitive to oxidative agents, whereas TC-NER-deficient UVSS patients are not sensitive to oxidative agents and do not display aging features. This implies lesion-specific TC-NER, arguing for distinct operational TC-repair machineries. The relative importance of DDR pathways varies with the type of damage, cell type and stage of development determining onset of cancer and aging pathologies. The challenging ambition of this proposal is to gain in depth insight into the role of NER in protection against cancer and aging by an integral multi-disciplinary approach which includes new mouse models for novel TC-NER genes, live cell and tissue NER kinetic analyses, advanced proteomics and analysis of NER-related chromatin dynamics to dissect cross-talk with other pathways. The strength of this project is the comprehensive strategy, availability of unique tools (e.g. collection of bona fide NER mutant mice), operational top notch technical platforms for all proposed approaches and proven competence and expertise."
Summary
"DNA damage is a fact of life. Lesions hamper genome function, induce mutations causing cancer and trigger senescence or cell death contributing to aging. Therefore cells are equipped with a sophisticated defence machinery: DNA Damage Response (DDR) including different repair pathways. Nucleotide excision repair (NER) is versatile repair process, eliminating helix-distorting lesions, e.g. bulky adducts and sun-induced lesions. Very cytotoxic transcription-blocking lesions are removed by a dedicated sub-pathway, transcription-coupled (TC-)NER. The impact of NER is highlighted by 4 disorders: xeroderma pigmentosum (XP), Cockayne syndrome (CS), trichothiodystrophy and UV-sensitive syndrome (UVSS). XP patients are cancer-prone due to global-genome (GG-)NER defects, whereas CS patients, impaired in TC-NER, display progeroid features, which are thought to derive from endogenous oxidative DNA lesions hampering transcription. Consistent with this, CS cells are sensitive to oxidative agents, whereas TC-NER-deficient UVSS patients are not sensitive to oxidative agents and do not display aging features. This implies lesion-specific TC-NER, arguing for distinct operational TC-repair machineries. The relative importance of DDR pathways varies with the type of damage, cell type and stage of development determining onset of cancer and aging pathologies. The challenging ambition of this proposal is to gain in depth insight into the role of NER in protection against cancer and aging by an integral multi-disciplinary approach which includes new mouse models for novel TC-NER genes, live cell and tissue NER kinetic analyses, advanced proteomics and analysis of NER-related chromatin dynamics to dissect cross-talk with other pathways. The strength of this project is the comprehensive strategy, availability of unique tools (e.g. collection of bona fide NER mutant mice), operational top notch technical platforms for all proposed approaches and proven competence and expertise."
Max ERC Funding
2 500 000 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym EUKARYOTIC RIBOSOME
Project Structural studies of the eukaryotic ribosome by X-ray crystallography
Researcher (PI) Nenad Ban
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Advanced Grant (AdG), LS1, ERC-2009-AdG
Summary The ribosome is a large cellular organelle that plays a central role in the process of protein synthesis in all organisms. Currently, structural information at atomic resolution exists only for bacterial ribosomes and some of their functional complexes. Eukaryotic ribosomes are larger and significantly more complex than their bacterial counterparts. They consist of two unequal subunits with a combined molecular weight of approximately 4 million Daltons and contain 70-80 different protein molecules and four different RNAs. Currently the only structural information on eukaryotic ribosomes is available from cryo electron microscopic reconstructions in the nanometer resolution range, which is insufficient to derive information about the function of the eukaryotic ribosome at the atomic level. The aim of this proposal is to use X-ray crystallography to obtain structural and functional information on the eukaryotic ribosome and its functional complexes at high resolution. The key targets of the structural work will be: i) the structure of the small ribosomal subunit, ii) the structure of the large ribosomal subunit, and iii) structures of complexes involved in the initiation of protein synthesis. Besides the obvious fundamental importance of this research for understanding protein synthesis in eukaryotes the proposed studies will also be the prerequisite for understanding the structural basis of the regulation of protein synthesis in normal cells and how it is perturbed in various diseases. Finally, comparing the structures of bacterial and eukaryotic ribosomes is important for understanding the specificity of various clinically used antibiotics for the bacterial ribosome.
Summary
The ribosome is a large cellular organelle that plays a central role in the process of protein synthesis in all organisms. Currently, structural information at atomic resolution exists only for bacterial ribosomes and some of their functional complexes. Eukaryotic ribosomes are larger and significantly more complex than their bacterial counterparts. They consist of two unequal subunits with a combined molecular weight of approximately 4 million Daltons and contain 70-80 different protein molecules and four different RNAs. Currently the only structural information on eukaryotic ribosomes is available from cryo electron microscopic reconstructions in the nanometer resolution range, which is insufficient to derive information about the function of the eukaryotic ribosome at the atomic level. The aim of this proposal is to use X-ray crystallography to obtain structural and functional information on the eukaryotic ribosome and its functional complexes at high resolution. The key targets of the structural work will be: i) the structure of the small ribosomal subunit, ii) the structure of the large ribosomal subunit, and iii) structures of complexes involved in the initiation of protein synthesis. Besides the obvious fundamental importance of this research for understanding protein synthesis in eukaryotes the proposed studies will also be the prerequisite for understanding the structural basis of the regulation of protein synthesis in normal cells and how it is perturbed in various diseases. Finally, comparing the structures of bacterial and eukaryotic ribosomes is important for understanding the specificity of various clinically used antibiotics for the bacterial ribosome.
Max ERC Funding
2 446 725 €
Duration
Start date: 2010-07-01, End date: 2015-06-30
Project acronym EUKDNAREP
Project The Initiation of Eukaryotic DNA Replication: Mechanism, Regulation and Role in Genome Stability
Researcher (PI) John Diffley
Host Institution (HI) THE FRANCIS CRICK INSTITUTE LIMITED
Call Details Advanced Grant (AdG), LS1, ERC-2009-AdG
Summary In each cell cycle, eukaryotic cells must faithfully replicate large genomes in a relatively short time. This is accomplished by initiating DNA replication from many replication origins distributed along chromosomes. Ensuring that each origin is efficiently activated once and only once per cell cycle is crucial for maintaining the integrity of the genome. Recent evidence indicates that defects in the regulation of origin firing may be important contributors to genome instability in cancer. Strict once per cell cycle DNA replication is achieved by a two-step mechanism. DNA replication origins are first licensed by loading an inactive DNA helicase (Mcm2-7) into pre-replicative complexes (pre-RCs). This can only occur during G1 phase. Initiation then occurs during S phase, triggered by cyclin dependent kinases (CDKs) and Dbf4-dependent kinase (DDK), which promote recruitment of proteins required for helicase activation and replisome assembly. Research proposed herein will lead to a deeper understanding of the mechanism and regulation of DNA replication. We have reconstituted the licensing reaction with purified proteins which will be used to characterise the mechanism of licensing and the mechanism by which licensing is regulated in the cell cycle. We will also use this system to reconstitute events leading to the initiation of DNA replication. We will use genetic and biochemical approaches to characterise the mechanisms by which perturbed licensing causes gross chromosome rearrangements. We will also explore mechanisms involved in regulating the temporal programme of origin firing and how origin firing is regulated in response to DNA damage. Work in budding yeast and mammalian cells will be pursued in parallel to exploit the specific advantages of each system.
Summary
In each cell cycle, eukaryotic cells must faithfully replicate large genomes in a relatively short time. This is accomplished by initiating DNA replication from many replication origins distributed along chromosomes. Ensuring that each origin is efficiently activated once and only once per cell cycle is crucial for maintaining the integrity of the genome. Recent evidence indicates that defects in the regulation of origin firing may be important contributors to genome instability in cancer. Strict once per cell cycle DNA replication is achieved by a two-step mechanism. DNA replication origins are first licensed by loading an inactive DNA helicase (Mcm2-7) into pre-replicative complexes (pre-RCs). This can only occur during G1 phase. Initiation then occurs during S phase, triggered by cyclin dependent kinases (CDKs) and Dbf4-dependent kinase (DDK), which promote recruitment of proteins required for helicase activation and replisome assembly. Research proposed herein will lead to a deeper understanding of the mechanism and regulation of DNA replication. We have reconstituted the licensing reaction with purified proteins which will be used to characterise the mechanism of licensing and the mechanism by which licensing is regulated in the cell cycle. We will also use this system to reconstitute events leading to the initiation of DNA replication. We will use genetic and biochemical approaches to characterise the mechanisms by which perturbed licensing causes gross chromosome rearrangements. We will also explore mechanisms involved in regulating the temporal programme of origin firing and how origin firing is regulated in response to DNA damage. Work in budding yeast and mammalian cells will be pursued in parallel to exploit the specific advantages of each system.
Max ERC Funding
2 449 999 €
Duration
Start date: 2010-05-01, End date: 2015-04-30
Project acronym EURECA
Project Eukaryotic Regulated RNA Catabolism
Researcher (PI) Torben Heick Jensen
Host Institution (HI) AARHUS UNIVERSITET
Call Details Advanced Grant (AdG), LS1, ERC-2013-ADG
Summary "Regulation and fidelity of gene expression is fundamental to the differentiation and maintenance of all living organisms. While historically attention has been focused on the process of transcriptional activation, we predict that RNA turnover pathways are equally important for gene expression regulation. This has been implied for selected protein-coding RNAs (mRNAs) but is virtually unexplored for non-protein-coding RNAs (ncRNAs).
The intention of the EURECA proposal is to establish cutting-edge research to characterize mammalian nuclear RNA turnover; its factor utility, substrate specificity and regulatory capacity. We foresee that RNA turnover is at the core of gene expression regulation - forming intricate connection to RNA productive systems – thus, being centrally placed to determine RNA fate. EURECA seeks to dramatically improve our understanding of cellular decision processes impacting RNA levels and to establish models for how regulated RNA turnover helps control key biological processes.
The realization that the number of ncRNA producing genes was previously grossly underestimated foretells that ncRNA regulation will impact on most aspects of cell biology. Consistently, aberrant ncRNA levels correlate with human disease phenotypes and RNA turnover complexes are linked to disease biology. Still, solid models for how ncRNA turnover regulate biological processes in higher eukaryotes are not available. Moreover, which ncRNAs retain function and which are merely transcriptional by-products remain a major challenge to sort out. The circumstances and kinetics of ncRNA turnover are therefore important to delineate as these will ultimately relate to the likelihood of molecular function. A fundamental challenge here is to also discern which protein complements of non-coding ribonucleoprotein particles (ncRNPs) are (in)compatible with function. Balancing single transcript/factor analysis with high-throughput methodology, EURECA will address these questions."
Summary
"Regulation and fidelity of gene expression is fundamental to the differentiation and maintenance of all living organisms. While historically attention has been focused on the process of transcriptional activation, we predict that RNA turnover pathways are equally important for gene expression regulation. This has been implied for selected protein-coding RNAs (mRNAs) but is virtually unexplored for non-protein-coding RNAs (ncRNAs).
The intention of the EURECA proposal is to establish cutting-edge research to characterize mammalian nuclear RNA turnover; its factor utility, substrate specificity and regulatory capacity. We foresee that RNA turnover is at the core of gene expression regulation - forming intricate connection to RNA productive systems – thus, being centrally placed to determine RNA fate. EURECA seeks to dramatically improve our understanding of cellular decision processes impacting RNA levels and to establish models for how regulated RNA turnover helps control key biological processes.
The realization that the number of ncRNA producing genes was previously grossly underestimated foretells that ncRNA regulation will impact on most aspects of cell biology. Consistently, aberrant ncRNA levels correlate with human disease phenotypes and RNA turnover complexes are linked to disease biology. Still, solid models for how ncRNA turnover regulate biological processes in higher eukaryotes are not available. Moreover, which ncRNAs retain function and which are merely transcriptional by-products remain a major challenge to sort out. The circumstances and kinetics of ncRNA turnover are therefore important to delineate as these will ultimately relate to the likelihood of molecular function. A fundamental challenge here is to also discern which protein complements of non-coding ribonucleoprotein particles (ncRNPs) are (in)compatible with function. Balancing single transcript/factor analysis with high-throughput methodology, EURECA will address these questions."
Max ERC Funding
2 497 960 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym EXORICO
Project Exosome and ribosome coupling
Researcher (PI) Elena Conti
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Advanced Grant (AdG), LS1, ERC-2016-ADG
Summary To date, mechanistic studies on the macromolecular complexes that synthesize or degrade RNAs or proteins have investigated these machines individually to understand how they execute different steps in the gene expression process. Although the individual complexes catalyze their reactions independently of each other in vitro, increasing evidence suggests that they function in a highly coordinated manner in vivo. The molecular basis for such a coordination remains largely unknown. During the past five years, our group has focused on deciphering the mechanisms of multiprotein complexes that mediate mRNA turnover in S. cerevisiae. Here, I propose to take these analyses to the next level and visualize how a major RNA degradation machine, the exosome, is directly coupled to the protein-synthesis machine, the ribosome. In particular, we want to study two different exosome-ribosome assemblies that underpin opposite outcomes of RNA degradation: a constructive function of the nuclear exosome in the maturation of the large ribosomal subunit and a destructive function of the cytoplasmic exosome in the elimination of ribosome-bound mRNAs. Building on our preliminary data from both the yeast and human systems, we will use a combination of bottom-up biochemical reconstitutions and top-down endogenous purifications to isolate 1) an exosome complex and its nuclear cofactors bound to a pre-60S ribosomal subunit and 2) an exosome complex and its cytoplasmic cofactors bound to a stalled 80S ribosome. We will determine the structures of these ~3 - 4 MDa nuclear and cytoplasmic assemblies using the combined information from cryo-electron microscopy and X-ray crystallography approaches. The structural studies, combined with biochemical and genetic information, will reveal how these machines interact and coordinate RNA metabolism with protein synthesis. Overall, this work will provide important insight into the principles that coordinate different steps of eukaryotic gene expression.
Summary
To date, mechanistic studies on the macromolecular complexes that synthesize or degrade RNAs or proteins have investigated these machines individually to understand how they execute different steps in the gene expression process. Although the individual complexes catalyze their reactions independently of each other in vitro, increasing evidence suggests that they function in a highly coordinated manner in vivo. The molecular basis for such a coordination remains largely unknown. During the past five years, our group has focused on deciphering the mechanisms of multiprotein complexes that mediate mRNA turnover in S. cerevisiae. Here, I propose to take these analyses to the next level and visualize how a major RNA degradation machine, the exosome, is directly coupled to the protein-synthesis machine, the ribosome. In particular, we want to study two different exosome-ribosome assemblies that underpin opposite outcomes of RNA degradation: a constructive function of the nuclear exosome in the maturation of the large ribosomal subunit and a destructive function of the cytoplasmic exosome in the elimination of ribosome-bound mRNAs. Building on our preliminary data from both the yeast and human systems, we will use a combination of bottom-up biochemical reconstitutions and top-down endogenous purifications to isolate 1) an exosome complex and its nuclear cofactors bound to a pre-60S ribosomal subunit and 2) an exosome complex and its cytoplasmic cofactors bound to a stalled 80S ribosome. We will determine the structures of these ~3 - 4 MDa nuclear and cytoplasmic assemblies using the combined information from cryo-electron microscopy and X-ray crystallography approaches. The structural studies, combined with biochemical and genetic information, will reveal how these machines interact and coordinate RNA metabolism with protein synthesis. Overall, this work will provide important insight into the principles that coordinate different steps of eukaryotic gene expression.
Max ERC Funding
2 004 375 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym FAMHEALTH
Project "Family life courses, intergenerational exchanges and later life health"
Researcher (PI) Emily Marjatta Dorothea Grundy
Host Institution (HI) LONDON SCHOOL OF ECONOMICS AND POLITICAL SCIENCE
Call Details Advanced Grant (AdG), SH3, ERC-2012-ADG_20120411
Summary "The overall aim of this research programme is to uncover how family life courses influence health and well-being in later adulthood, whether family related strengths or disadvantages relevant to health offset or compound socio-economic sources of disadvantage, and the extent to which these associations are influenced by societal factors. An important element will be to consider the role of intergenerational influences, including support flows. The geographical focus will be on Europe and the methodological focus on the advanced quantitative analysis of large scale longitudinal data sets. These data sets, chosen for their complementary strengths, will include both country specific and cross national sources. Three major interlinked strands of work will be undertaken. These will focus on 1) Impacts of parenting and partnership histories on health and mortality in mid and later life. 2) Intergenerational support exchanges: demographic, cultural and policy influences and effects on health of both providers and receivers. 3) An over arching theme to be addressed in the above strands and consolidated in the third is how investments in family and social networks are related to socio-economic disparities in later life health and mortality. The programme is will bring together perspectives from a range of disciplines to address issues of great relevance to current policy challenges in Europe. It is challenging because of the problem of dealing with issues of health selection and possible bias arising from various kinds of missing data which will require methodological care and innovation. Results will contribute to the development of theory, the development of methods and provide substantive knowledge relevant to the health and well-being of older Europeans."
Summary
"The overall aim of this research programme is to uncover how family life courses influence health and well-being in later adulthood, whether family related strengths or disadvantages relevant to health offset or compound socio-economic sources of disadvantage, and the extent to which these associations are influenced by societal factors. An important element will be to consider the role of intergenerational influences, including support flows. The geographical focus will be on Europe and the methodological focus on the advanced quantitative analysis of large scale longitudinal data sets. These data sets, chosen for their complementary strengths, will include both country specific and cross national sources. Three major interlinked strands of work will be undertaken. These will focus on 1) Impacts of parenting and partnership histories on health and mortality in mid and later life. 2) Intergenerational support exchanges: demographic, cultural and policy influences and effects on health of both providers and receivers. 3) An over arching theme to be addressed in the above strands and consolidated in the third is how investments in family and social networks are related to socio-economic disparities in later life health and mortality. The programme is will bring together perspectives from a range of disciplines to address issues of great relevance to current policy challenges in Europe. It is challenging because of the problem of dealing with issues of health selection and possible bias arising from various kinds of missing data which will require methodological care and innovation. Results will contribute to the development of theory, the development of methods and provide substantive knowledge relevant to the health and well-being of older Europeans."
Max ERC Funding
1 423 110 €
Duration
Start date: 2013-07-01, End date: 2018-06-30
Project acronym FAMILIES IN CONTEXT
Project "Families in context: Unraveling the ways in which policy, economic, and cultural contexts structure generational interdependencies in families and their life outcomes"
Researcher (PI) Pearl Annette Dykstra
Host Institution (HI) ERASMUS UNIVERSITEIT ROTTERDAM
Call Details Advanced Grant (AdG), SH3, ERC-2012-ADG_20120411
Summary "Recognizing that in ageing societies many parents are also children, even grandchildren, in a multi-generational structure, the project has generational interdependencies in families as its unifying theme. Interdependencies exist when family members are emotionally, financially, practically, and morally reliant on and responsible to each other. The project’s main objective is to unravel the ways in which policy, economic, and cultural contexts structure intergenerational dependencies in families and their life outcomes. Sub-project 1: Transcending space starts from the premise that new insights can be gained from acknowledging the distinction between family and household. It focuses on the ways in which different kinds of intergenerational transfers (emotional, practical, financial) are affected by proximity versus distance. Sub-project 2: Drivers of family behaviour starts from the premise that new insights can be gained from comparing and contrasting different theoretical models underlying generational interdependence. It aims to find out whether family members help each other for different reasons, depending on where they live. Sub-project 3: Back-up functions starts from the premise that new insights can be gained from taking a multigenerational view of family ties, across life phases. It examines the necessity of family members to provide money, practical help, care, and lodging to the young and the old, given limited public safety nets. Sub-project 4: Rethinking men in families starts from the premise that insights can be gained from a more balanced treatment of men and women across topics in the research literature on families. It focuses on men with limited generational interdependencies and men in multigenerational families. The Generations and Gender Surveys (GGS) are the primary source of data. Given the absence of a survey on the family ties of migrants from CEE countries, a new survey will be carried out among Polish migrants to the Netherlands."
Summary
"Recognizing that in ageing societies many parents are also children, even grandchildren, in a multi-generational structure, the project has generational interdependencies in families as its unifying theme. Interdependencies exist when family members are emotionally, financially, practically, and morally reliant on and responsible to each other. The project’s main objective is to unravel the ways in which policy, economic, and cultural contexts structure intergenerational dependencies in families and their life outcomes. Sub-project 1: Transcending space starts from the premise that new insights can be gained from acknowledging the distinction between family and household. It focuses on the ways in which different kinds of intergenerational transfers (emotional, practical, financial) are affected by proximity versus distance. Sub-project 2: Drivers of family behaviour starts from the premise that new insights can be gained from comparing and contrasting different theoretical models underlying generational interdependence. It aims to find out whether family members help each other for different reasons, depending on where they live. Sub-project 3: Back-up functions starts from the premise that new insights can be gained from taking a multigenerational view of family ties, across life phases. It examines the necessity of family members to provide money, practical help, care, and lodging to the young and the old, given limited public safety nets. Sub-project 4: Rethinking men in families starts from the premise that insights can be gained from a more balanced treatment of men and women across topics in the research literature on families. It focuses on men with limited generational interdependencies and men in multigenerational families. The Generations and Gender Surveys (GGS) are the primary source of data. Given the absence of a survey on the family ties of migrants from CEE countries, a new survey will be carried out among Polish migrants to the Netherlands."
Max ERC Funding
2 179 862 €
Duration
Start date: 2013-05-01, End date: 2018-04-30
Project acronym FamilyComplexity
Project Intergenerational Reproduction and Solidarity in an Era of Family Complexity
Researcher (PI) Matthijs Kalmijn
Host Institution (HI) UNIVERSITEIT VAN AMSTERDAM
Call Details Advanced Grant (AdG), SH3, ERC-2014-ADG
Summary One of the important consequences of the Second Demographic Transition has been the increasing complexity of families. The aim of this project is to study how rising family complexity has affected two fundamental aspects of intergenerational relationships: reproduction and solidarity. Theoretically, family complexity is distinguished into four dimensions: (a) the length, timing and nature of exposure to the child, (c) biological relatedness to the child, and (c) characteristics of parent-parent ties (triadic effects), (d) characteristics of the wider family network. Using insights from several disciplines, I develop a common theoretical framework for understanding intergenerational reproduction and solidarity. To test the theory, an innovative multiactor survey is developed with an oversampling strategy in which for each adult child, information is collected on all parent figures, and for each parent, information on all adult children. In addition, register data are used to analyze one aspect of reproduction in a dynamic fashion (educational reproduction) and vignette data are used to analyze one aspect of solidarity in more depth (norms prescribing solidarity). By studying reproduction and solidarity as outcomes, I shift the traditional focus from examining how the SDT has affected individual well-being, to the question of how the SDT has affected relationships. In doing so, I analyze a new problem in demography and sociology and contribute to classic debates about population ageing and social inequality. Theoretically, the study of family complexity yields unique opportunities to test ideas about the nature of intergenerational relationships and will shed new light on the traditional dichotomy of social vis-à-vis biological bases of intergenerational relationships. Methodological innovation is made by developing solutions for well-known problems of multiactor data, thereby strengthening the theoretical relevance of survey data for the social sciences.
Summary
One of the important consequences of the Second Demographic Transition has been the increasing complexity of families. The aim of this project is to study how rising family complexity has affected two fundamental aspects of intergenerational relationships: reproduction and solidarity. Theoretically, family complexity is distinguished into four dimensions: (a) the length, timing and nature of exposure to the child, (c) biological relatedness to the child, and (c) characteristics of parent-parent ties (triadic effects), (d) characteristics of the wider family network. Using insights from several disciplines, I develop a common theoretical framework for understanding intergenerational reproduction and solidarity. To test the theory, an innovative multiactor survey is developed with an oversampling strategy in which for each adult child, information is collected on all parent figures, and for each parent, information on all adult children. In addition, register data are used to analyze one aspect of reproduction in a dynamic fashion (educational reproduction) and vignette data are used to analyze one aspect of solidarity in more depth (norms prescribing solidarity). By studying reproduction and solidarity as outcomes, I shift the traditional focus from examining how the SDT has affected individual well-being, to the question of how the SDT has affected relationships. In doing so, I analyze a new problem in demography and sociology and contribute to classic debates about population ageing and social inequality. Theoretically, the study of family complexity yields unique opportunities to test ideas about the nature of intergenerational relationships and will shed new light on the traditional dichotomy of social vis-à-vis biological bases of intergenerational relationships. Methodological innovation is made by developing solutions for well-known problems of multiactor data, thereby strengthening the theoretical relevance of survey data for the social sciences.
Max ERC Funding
2 499 533 €
Duration
Start date: 2015-11-01, End date: 2020-10-31
Project acronym FamilyTies
Project Family ties that bind: A new view of internal migration, immobility and labour-market outcomes
Researcher (PI) Clara MULDER
Host Institution (HI) RIJKSUNIVERSITEIT GRONINGEN
Call Details Advanced Grant (AdG), SH3, ERC-2016-ADG
Summary Internal migration (long-distance moves within national borders) is generally assumed to be beneficial to individuals and households. This FamilyTies project has been designed to make a decisive contribution to a much more comprehensive explanation of internal migration and its labour-market outcomes than current, mainly economic, explanations have achieved thus far. It introduces a novel perspective on internal migration and immobility, which focuses on the role of family outside the household in deciding on whether and where to relocate, and which takes into account contemporary family complexity: the family ties perspective. The aim is to identify the role of family ties in internal migration, immobility and labour-market outcomes. The objectives are:
1. Identifying the role of family ties as a deterrent of migration and key determinant of immobility.
2. Explaining migration towards family in relation to migration in other directions.
3. Determining to what extent and for whom family-related motives drive migration and immobility.
4. Unravelling how individual labour-market outcomes of migration versus immobility differ between (im)mobility related to family ties and (im)mobility due to other factors.
Geo-coded register and census data containing micro-links between family members will be used for Sweden, Norway, Denmark, the Netherlands and Belgium, as well as survey data for Sweden, the Netherlands, the UK, the USA and New Zealand. These will be analysed using advanced applications of hazard regression, logistic regression, OLS regression and structural equation models, which take into account the multilevel and multi-actor structure of the data and issues of endogeneity and self-selection. The project will provide major new insights into migration, immobility and labour-market outcomes, and input for better predictions and policies concerning migration, population growth and decline, ethnic segregation, labour-market flexibility and family support.
Summary
Internal migration (long-distance moves within national borders) is generally assumed to be beneficial to individuals and households. This FamilyTies project has been designed to make a decisive contribution to a much more comprehensive explanation of internal migration and its labour-market outcomes than current, mainly economic, explanations have achieved thus far. It introduces a novel perspective on internal migration and immobility, which focuses on the role of family outside the household in deciding on whether and where to relocate, and which takes into account contemporary family complexity: the family ties perspective. The aim is to identify the role of family ties in internal migration, immobility and labour-market outcomes. The objectives are:
1. Identifying the role of family ties as a deterrent of migration and key determinant of immobility.
2. Explaining migration towards family in relation to migration in other directions.
3. Determining to what extent and for whom family-related motives drive migration and immobility.
4. Unravelling how individual labour-market outcomes of migration versus immobility differ between (im)mobility related to family ties and (im)mobility due to other factors.
Geo-coded register and census data containing micro-links between family members will be used for Sweden, Norway, Denmark, the Netherlands and Belgium, as well as survey data for Sweden, the Netherlands, the UK, the USA and New Zealand. These will be analysed using advanced applications of hazard regression, logistic regression, OLS regression and structural equation models, which take into account the multilevel and multi-actor structure of the data and issues of endogeneity and self-selection. The project will provide major new insights into migration, immobility and labour-market outcomes, and input for better predictions and policies concerning migration, population growth and decline, ethnic segregation, labour-market flexibility and family support.
Max ERC Funding
2 499 419 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym FORCEFULACTIN
Project Coordinated regulation of actin dynamics in cell motility and morphogenesis : from molecules to reconstituted biomimetic assays
Researcher (PI) Marie-France Carlier Épouse Pantaloni
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), LS1, ERC-2009-AdG
Summary An impressive variety of motile and morphogenetic processes are driven by site-directed polarized asssembly of actin filaments. In the past ten years, breathtaking advances coming from cell biology, cell biophysics, and biochemistry have brought insight into the molecular bases for production of force and movement by site-directed actin polymerization. Yet, we do not know, with the detail sufficient to understand how force is produced, by which molecular mechanisms the filaments are nucleated or created by branching. We do not know by which elementary steps insertional polymerization of barbed ends of filaments against the membrane is performed by different protein machineries, nor how these machineries work in a coordinated fashion. Here we propose a multiscale and interdisciplinary approach of the mechanisms used by the major actin nucleators to organize the motile response of actin. The elementary reactions involved in the processive walk of formin at the growing barbed ends of filaments and the role of ATP hydrolysis in force production will be analyzed by a combination of biochemical solution studies and physical methods using functionalized GUVs and optical tweezers. The multifunctionality of WH2 domains involved in actin sequestration, filament nucleation severing and processive elongation will be similarly examined in an interdisciplinary perspective from structural biology at atomic resolution to physics at the mesoscopic scale. Biochemical and structural methods and single molecule measurements (TIRFM) will shed light into the elementary steps and structural mechanism of filament branching. Biomimetic assays with functionalized GUVs associated with biophysical methods like FRAP or fluorescence correlation spectroscopy will elucidate how different filament initiating machineries segregate in the membrane as a consequence of their interactions with growing filaments and function in a coordinated fashion during actin-based motility.
Summary
An impressive variety of motile and morphogenetic processes are driven by site-directed polarized asssembly of actin filaments. In the past ten years, breathtaking advances coming from cell biology, cell biophysics, and biochemistry have brought insight into the molecular bases for production of force and movement by site-directed actin polymerization. Yet, we do not know, with the detail sufficient to understand how force is produced, by which molecular mechanisms the filaments are nucleated or created by branching. We do not know by which elementary steps insertional polymerization of barbed ends of filaments against the membrane is performed by different protein machineries, nor how these machineries work in a coordinated fashion. Here we propose a multiscale and interdisciplinary approach of the mechanisms used by the major actin nucleators to organize the motile response of actin. The elementary reactions involved in the processive walk of formin at the growing barbed ends of filaments and the role of ATP hydrolysis in force production will be analyzed by a combination of biochemical solution studies and physical methods using functionalized GUVs and optical tweezers. The multifunctionality of WH2 domains involved in actin sequestration, filament nucleation severing and processive elongation will be similarly examined in an interdisciplinary perspective from structural biology at atomic resolution to physics at the mesoscopic scale. Biochemical and structural methods and single molecule measurements (TIRFM) will shed light into the elementary steps and structural mechanism of filament branching. Biomimetic assays with functionalized GUVs associated with biophysical methods like FRAP or fluorescence correlation spectroscopy will elucidate how different filament initiating machineries segregate in the membrane as a consequence of their interactions with growing filaments and function in a coordinated fashion during actin-based motility.
Max ERC Funding
2 434 195 €
Duration
Start date: 2010-05-01, End date: 2015-10-31
Project acronym FORMKIN
Project The formal demography of kinship and family
Researcher (PI) Hal CASWELL
Host Institution (HI) UNIVERSITEIT VAN AMSTERDAM
Call Details Advanced Grant (AdG), SH3, ERC-2017-ADG
Summary Every individual is connected to a network of kin --- her/his family in the broad sense of that term --- that develops and changes as the individual ages. Family network affect demographic, economic, and health-related aspects of life and society. Despite its undeniable importance, remarkably little formal theory exists to show how kin dynamics are determined by mortality, fertility, and other variables.
This project will develop a comprehensive mathematical model for kinship. It will be applicable to any kind of kin, in any population, based on any kind of age-classified or multistate structure. At the individual level, it will provide deterministic and stochastic properties of kin and kin characterstics, account for both dead and living kin, apply to age-, stage-, or multistate models, incorporate time variation, and include a general sensitivity analysis. At the cohort level, it will yield the means and variances of the lifetime experience of kin of any specified type. At the population level, the models will provide the distributions of kin characteristics, and the sources of their variance, as a function of population growth, and provide a link to population projections.
The mathematical methods will be based on a novel development of coupled systems of subsidized matrix population models and their stochastic counterparts, on variance partitioning within and between ages, and on stochastic models with rewards. The use of matrix methods will provide results vastly exceeding any approximate or simulation procedures now in use, and be readily implemented in matrix-oriented stastical software. As a proof of concept and to search for patterns, exploratory analyses will be conducted using national and international life table and fertility data, model life tables, and detailed individual register data. A sequence of research workshops are planned to help communicate the results and develop new ideas and applications.
Summary
Every individual is connected to a network of kin --- her/his family in the broad sense of that term --- that develops and changes as the individual ages. Family network affect demographic, economic, and health-related aspects of life and society. Despite its undeniable importance, remarkably little formal theory exists to show how kin dynamics are determined by mortality, fertility, and other variables.
This project will develop a comprehensive mathematical model for kinship. It will be applicable to any kind of kin, in any population, based on any kind of age-classified or multistate structure. At the individual level, it will provide deterministic and stochastic properties of kin and kin characterstics, account for both dead and living kin, apply to age-, stage-, or multistate models, incorporate time variation, and include a general sensitivity analysis. At the cohort level, it will yield the means and variances of the lifetime experience of kin of any specified type. At the population level, the models will provide the distributions of kin characteristics, and the sources of their variance, as a function of population growth, and provide a link to population projections.
The mathematical methods will be based on a novel development of coupled systems of subsidized matrix population models and their stochastic counterparts, on variance partitioning within and between ages, and on stochastic models with rewards. The use of matrix methods will provide results vastly exceeding any approximate or simulation procedures now in use, and be readily implemented in matrix-oriented stastical software. As a proof of concept and to search for patterns, exploratory analyses will be conducted using national and international life table and fertility data, model life tables, and detailed individual register data. A sequence of research workshops are planned to help communicate the results and develop new ideas and applications.
Max ERC Funding
1 232 861 €
Duration
Start date: 2018-06-01, End date: 2023-05-31
Project acronym FUTURESOC
Project Forecasting Societies Adaptive Capacities to Climate Change
Researcher (PI) Wolfgang Lutz
Host Institution (HI) INTERNATIONALES INSTITUT FUER ANGEWANDTE SYSTEMANALYSE
Call Details Advanced Grant (AdG), SH3, ERC-2008-AdG
Summary This interdisciplinary project (combining social and earth sciences) addresses a key gap in the knowledge of global assessments concerning the likely consequences of future climate change on future human wellbeing. More information about the determinants of future adaptive capacity is necessary for setting policy priorities today: Should the significant funds allocated for adaptation be invested in enhancing existing infrastructure or currently practiced agricultural strategies (some of which may not be tenable under future climates), or should they invest alternatively in enhancing human empowerment through education and health which in consequence will enable affected societies to better cope with whatever challenges the future will bring? This study is expected to bring significant progress in this difficult multidisciplinary, yet highly relevant, field through a combination of: (a) New global science-based, long-term projections of human capital (population by age, sex and level of education) as a key element of adaptive capacity; (b) Three empirical multi-national studies on key factors involved in past vulnerability and adaptations to the Sahelian drought, Hurricane Mitch and the Asian tsunami; (c) Three prospective case studies assessing future adaptive capacity for the Phuket region, Mauritius and the Nicobar islands; (d) All held together and put into perspective by the elaboration of a new demographic theory of long-term social change with predictive power. This rather complex project structure is necessary for reaching generalizable and useful results. All components have been designed to complement each other to maximize the chances of achieving path-breaking and at the same time tangible results in this highly complex, multidisciplinary field. All components of the study will build on previous work of IIASA and Wolfgang Lutz and hence minimize the need to acquire additional experience for the case study sites or for the methodology used.
Summary
This interdisciplinary project (combining social and earth sciences) addresses a key gap in the knowledge of global assessments concerning the likely consequences of future climate change on future human wellbeing. More information about the determinants of future adaptive capacity is necessary for setting policy priorities today: Should the significant funds allocated for adaptation be invested in enhancing existing infrastructure or currently practiced agricultural strategies (some of which may not be tenable under future climates), or should they invest alternatively in enhancing human empowerment through education and health which in consequence will enable affected societies to better cope with whatever challenges the future will bring? This study is expected to bring significant progress in this difficult multidisciplinary, yet highly relevant, field through a combination of: (a) New global science-based, long-term projections of human capital (population by age, sex and level of education) as a key element of adaptive capacity; (b) Three empirical multi-national studies on key factors involved in past vulnerability and adaptations to the Sahelian drought, Hurricane Mitch and the Asian tsunami; (c) Three prospective case studies assessing future adaptive capacity for the Phuket region, Mauritius and the Nicobar islands; (d) All held together and put into perspective by the elaboration of a new demographic theory of long-term social change with predictive power. This rather complex project structure is necessary for reaching generalizable and useful results. All components have been designed to complement each other to maximize the chances of achieving path-breaking and at the same time tangible results in this highly complex, multidisciplinary field. All components of the study will build on previous work of IIASA and Wolfgang Lutz and hence minimize the need to acquire additional experience for the case study sites or for the methodology used.
Max ERC Funding
2 438 402 €
Duration
Start date: 2009-03-01, End date: 2014-07-31
Project acronym GANGS
Project Gangs, Gangsters, and Ganglands: Towards a Global Comparative Ethnography
Researcher (PI) Dennis RODGERS
Host Institution (HI) FONDATION POUR L INSTITUT DE HAUTES ETUDES INTERNATIONALES ET DU DEVELOPPEMENT
Call Details Advanced Grant (AdG), SH3, ERC-2017-ADG
Summary Gangs occupy a key position in the global imaginary of violence, widely perceived and represented as primary sources of brutality and insecurity. This can be related to the fact that they are one of a small number of truly global phenomena, found in almost every society across both time and space. At the same time, however, as almost 100 years of gang research have highlighted, the phenomenon can vary significantly in form, dynamics, and consequences. While there have been many insightful studies of gangs, the overwhelming majority have focused on a single group or location, and we still lack a proper sense of what kinds of gang dynamics might be general, and which ones are specific to particular times and places. The GANGS project will develop a systematic comparative investigation of global gang dynamics, to better understand why they emerge, how they evolve over time, whether they are associated with particular urban configurations, how and why individuals join gangs, and what impact this has on their potential futures. It will draw on original ethnographic research carried out in multiple locations, adopting an explicitly tripartite focus on “Gangs”, “Gangsters”, and “Ganglands” in order to better explore the interplay between group, individual, and contextual factors. The first will consider the organisational dynamics of gangs, the second will focus on individual gang members and their trajectories before, during, and after their involvement in a gang, while the third will reflect on the contexts within which gangs emerge and evolve. Research will combine innovative collaborative ethnography in Nicaragua, South Africa, and France, a ground-breaking comparison of 35 individual gang member life histories from across Africa, Asia, Europe, North and South America, and unique joint ethnographic investigations into the political economy of three gang-affected cities in Nicaragua, France, and South Africa.
Summary
Gangs occupy a key position in the global imaginary of violence, widely perceived and represented as primary sources of brutality and insecurity. This can be related to the fact that they are one of a small number of truly global phenomena, found in almost every society across both time and space. At the same time, however, as almost 100 years of gang research have highlighted, the phenomenon can vary significantly in form, dynamics, and consequences. While there have been many insightful studies of gangs, the overwhelming majority have focused on a single group or location, and we still lack a proper sense of what kinds of gang dynamics might be general, and which ones are specific to particular times and places. The GANGS project will develop a systematic comparative investigation of global gang dynamics, to better understand why they emerge, how they evolve over time, whether they are associated with particular urban configurations, how and why individuals join gangs, and what impact this has on their potential futures. It will draw on original ethnographic research carried out in multiple locations, adopting an explicitly tripartite focus on “Gangs”, “Gangsters”, and “Ganglands” in order to better explore the interplay between group, individual, and contextual factors. The first will consider the organisational dynamics of gangs, the second will focus on individual gang members and their trajectories before, during, and after their involvement in a gang, while the third will reflect on the contexts within which gangs emerge and evolve. Research will combine innovative collaborative ethnography in Nicaragua, South Africa, and France, a ground-breaking comparison of 35 individual gang member life histories from across Africa, Asia, Europe, North and South America, and unique joint ethnographic investigations into the political economy of three gang-affected cities in Nicaragua, France, and South Africa.
Max ERC Funding
2 498 079 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym GLOBAL-RURAL
Project The Global Countryside: Rural Change and Development in Globalization
Researcher (PI) Michael Woods
Host Institution (HI) ABERYSTWYTH UNIVERSITY
Call Details Advanced Grant (AdG), SH3, ERC-2013-ADG
Summary "GLOBAL-RURAL aims to advance our understanding of the workings and impact of globalization in rural regions through the development and application of new conceptual and methodological approaches. Globalization has a pervasive influence in transforming rural economies and societies, with implications for the major societal challenges of environmental change and resource security. However, in comparison to studies of the global city, relatively little research has focused on the ‘global countryside’, and existing research lacks integration. GLOBAL-RURAL will develop an integrated perspective by drawing on relational analysis (and particularly the approaches of ‘assemblage theory’ and ‘countertopography’) to focus on the actual mechanics by which rural localities are ‘re-made’ through engagement with globalization processes, examining the mediating effect of national and regional context and the opportunity for local interventions. The research will be organized through five work packages. WP1 will develop the methodological application of assemblage theory to analysing the global countryside, informed by case studies in 6 countries. WP2 will combine GIS analysis of quantitative and qualitative data to produce new narratives and visualisations of globalization processes, impacts and responses. WP3 will focus on mundane, ‘everyday globalization’ in a Welsh small town, using a countertopographic methodology. WP4 will apply the assemblage methodology developed in WP1 to analysing the differential global engagement of rural localities in Brazil, China and Tanzania. WP5 will apply the methodology to examine conflicts around renewable energy schemes, mining and water projects and industrial agriculture in rural areas, and the implications for strategies to address global challenges. A sixth work package, WP6, will identify the policy applications of the research, and disseminate research findings to academic and non-academic users."
Summary
"GLOBAL-RURAL aims to advance our understanding of the workings and impact of globalization in rural regions through the development and application of new conceptual and methodological approaches. Globalization has a pervasive influence in transforming rural economies and societies, with implications for the major societal challenges of environmental change and resource security. However, in comparison to studies of the global city, relatively little research has focused on the ‘global countryside’, and existing research lacks integration. GLOBAL-RURAL will develop an integrated perspective by drawing on relational analysis (and particularly the approaches of ‘assemblage theory’ and ‘countertopography’) to focus on the actual mechanics by which rural localities are ‘re-made’ through engagement with globalization processes, examining the mediating effect of national and regional context and the opportunity for local interventions. The research will be organized through five work packages. WP1 will develop the methodological application of assemblage theory to analysing the global countryside, informed by case studies in 6 countries. WP2 will combine GIS analysis of quantitative and qualitative data to produce new narratives and visualisations of globalization processes, impacts and responses. WP3 will focus on mundane, ‘everyday globalization’ in a Welsh small town, using a countertopographic methodology. WP4 will apply the assemblage methodology developed in WP1 to analysing the differential global engagement of rural localities in Brazil, China and Tanzania. WP5 will apply the methodology to examine conflicts around renewable energy schemes, mining and water projects and industrial agriculture in rural areas, and the implications for strategies to address global challenges. A sixth work package, WP6, will identify the policy applications of the research, and disseminate research findings to academic and non-academic users."
Max ERC Funding
2 263 107 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym GLOBALSPORT
Project "Globalization, Sports and the Precarity of Masculinity"
Researcher (PI) Niko Besnier
Host Institution (HI) UNIVERSITEIT VAN AMSTERDAM
Call Details Advanced Grant (AdG), SH3, ERC-2011-ADG_20110406
Summary "In the last few decades, the erosion of the social and economic structures that previously provided a straightforward raison d’être to men have transformed, in all societies of the world, masculinity into a problematic category. In the Global South, deepening economic, political and social insecurities have further compounded the fragility of masculinity. Younger men in particular find it increasingly difficult to secure a productive role in local economies, and many in the world’s more destitute countries are investing their hopes in the possibility of becoming a successful professional athlete. But athletic talent can only translate into economic productivity in the industrial North, and athletic migrations have become, for large number of boys, young men, families, villages, nations and states in the Global South, the solution for a masculinity under threat, the way out of economic precarity, and the embodiment of millenarian hope. At the same time, athletic bodies are inherently fragile, the sports industry fickle, and the paths of migrant athletes strewn with obstacles, rendering deeply problematic yet unavoidable the dependence of so many individuals on the success of a few. This multi-sited comparative ethnographic project seeks to investigate the migratory dynamics at play between selected developing countries and selected countries in the industrial world in three different sports, soccer-football, rugby union, and cricket. It explores ways in which these three sports represent for young talented hopeful in the Global South various embodiments of hope for the redemption of masculinity and of its productive potentials. The research will open new theoretical avenues for an understanding of the constitution of masculinity in the context of globalisation, changes in the structure of nation-states and the meaning of citizenship, and the constitution of everyday lives in more destitute regions of the world."
Summary
"In the last few decades, the erosion of the social and economic structures that previously provided a straightforward raison d’être to men have transformed, in all societies of the world, masculinity into a problematic category. In the Global South, deepening economic, political and social insecurities have further compounded the fragility of masculinity. Younger men in particular find it increasingly difficult to secure a productive role in local economies, and many in the world’s more destitute countries are investing their hopes in the possibility of becoming a successful professional athlete. But athletic talent can only translate into economic productivity in the industrial North, and athletic migrations have become, for large number of boys, young men, families, villages, nations and states in the Global South, the solution for a masculinity under threat, the way out of economic precarity, and the embodiment of millenarian hope. At the same time, athletic bodies are inherently fragile, the sports industry fickle, and the paths of migrant athletes strewn with obstacles, rendering deeply problematic yet unavoidable the dependence of so many individuals on the success of a few. This multi-sited comparative ethnographic project seeks to investigate the migratory dynamics at play between selected developing countries and selected countries in the industrial world in three different sports, soccer-football, rugby union, and cricket. It explores ways in which these three sports represent for young talented hopeful in the Global South various embodiments of hope for the redemption of masculinity and of its productive potentials. The research will open new theoretical avenues for an understanding of the constitution of masculinity in the context of globalisation, changes in the structure of nation-states and the meaning of citizenship, and the constitution of everyday lives in more destitute regions of the world."
Max ERC Funding
2 015 960 €
Duration
Start date: 2012-09-01, End date: 2017-08-31
Project acronym GLOBHEALTH
Project "From International to Global: Knowledge, Diseases and the Postwar Government of Health."
Researcher (PI) Jean-Paul Gaudilliere
Host Institution (HI) INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
Call Details Advanced Grant (AdG), SH3, ERC-2013-ADG
Summary "This project aims at a socio-historical study of the transition between the two regimes of knowledge and action, which have characterized the government of health after World War II: the regime of international public health, dominating during the first decades of the postwar era, which was centered on eradication policies, nation-states and international UN organizations; the present regime of global health, which emerged in the 1980s and is centered on risk management and chronic diseases, market-driven regulations, and private-public alliances.
The project seeks to understand this transition in terms of globalization processes, looking at the making of knowledge, the production and commercialization of health goods, the implementation of public health programs, and routine medical work. It will focus on four fields of investigations: tuberculosis, mental health, traditional medicine and medical genetics in order to understand how categories, standardized treatment regimens, industrial products, management tools or specific specialties have become elements in the global government of health. The project associates historical and anthropological investigations of practices in both international and local sites with strong interests in: a) the changing roles of WHO; b) the developments taking place in non-Western countries, India in the first place.
The expected benefits of this research strategy are: a) to take into account social worlds including laboratories, hospitals, enterprises, public health institutions and international organizations; b) to approach the global as something translated in and emerging from local practices and local knowledge; c) to explore different levels of circulations beyond the classical question of North-South transfers; d) to deepen our understanding of the transition from the political and economical order of the Cold War into a neo-liberal and multi-centric age of uncertainty."
Summary
"This project aims at a socio-historical study of the transition between the two regimes of knowledge and action, which have characterized the government of health after World War II: the regime of international public health, dominating during the first decades of the postwar era, which was centered on eradication policies, nation-states and international UN organizations; the present regime of global health, which emerged in the 1980s and is centered on risk management and chronic diseases, market-driven regulations, and private-public alliances.
The project seeks to understand this transition in terms of globalization processes, looking at the making of knowledge, the production and commercialization of health goods, the implementation of public health programs, and routine medical work. It will focus on four fields of investigations: tuberculosis, mental health, traditional medicine and medical genetics in order to understand how categories, standardized treatment regimens, industrial products, management tools or specific specialties have become elements in the global government of health. The project associates historical and anthropological investigations of practices in both international and local sites with strong interests in: a) the changing roles of WHO; b) the developments taking place in non-Western countries, India in the first place.
The expected benefits of this research strategy are: a) to take into account social worlds including laboratories, hospitals, enterprises, public health institutions and international organizations; b) to approach the global as something translated in and emerging from local practices and local knowledge; c) to explore different levels of circulations beyond the classical question of North-South transfers; d) to deepen our understanding of the transition from the political and economical order of the Cold War into a neo-liberal and multi-centric age of uncertainty."
Max ERC Funding
2 307 432 €
Duration
Start date: 2014-08-01, End date: 2019-07-31
Project acronym Glowsome
Project Encapsulated eukaryotic ribosome assembly
Researcher (PI) Eduard Christian HURT
Host Institution (HI) RUPRECHT-KARLS-UNIVERSITAET HEIDELBERG
Call Details Advanced Grant (AdG), LS1, ERC-2016-ADG
Summary The production of fully functional ribosomes is vital for every cell, with failure causing human diseases called ribosomopathies. Eukaryotic ribosome assembly is catalyzed by ~200 assembly factors that guarantee efficient and accurate production of ribosomal subunits along a temporally and spatially ordered pathway. About one third of these factors are utilized in the formation of the earliest biogenesis intermediate, termed 90S pre-ribosome or small subunit processome. Recent insight into the 90S structure from a eukaryotic thermophile, Chaetomium thermophilum, has provided a first spatial impression on this most sophisticated process, which includes co-transcriptional RNA folding and processing, and incorporation of ribosomal proteins. Our key discovery was that the nascent ribosomal RNA, which if linear would form a long thread, is co-transcriptionally mounted into a mold formed by a highly interconnected RNA-protein scaffold on the 90S pre-ribosome. This finding raises a novel concept in RNA biology that nascent RNA folds and matures in a protected environment, which is reminiscent of protein folding that can also occur in folding chambers. I plan to challenge the idea that the 90S particle indeed encapsulates the RNA transiently, in order to protect it from unproductive interactions, allowing stepwise folding and maturation in a cascade of interdependent reactions and the involvement of energy-consuming enzymes. The groundbreaking aim of this proposal is to decipher how these processes occur in an encapsulated environment, using C. thermophilum as a model organism. This high-risk project will depend on the successful establishment of novel assays that recapitulate eukaryotic ribosome assembly in vitro, exploiting the thermostable nature of the 90S pre-ribosome. Mechanistic insight into ribosome biogenesis will lead to a better understanding of how this multifaceted process is linked to other key cellular pathways and development of diseases including cancer.
Summary
The production of fully functional ribosomes is vital for every cell, with failure causing human diseases called ribosomopathies. Eukaryotic ribosome assembly is catalyzed by ~200 assembly factors that guarantee efficient and accurate production of ribosomal subunits along a temporally and spatially ordered pathway. About one third of these factors are utilized in the formation of the earliest biogenesis intermediate, termed 90S pre-ribosome or small subunit processome. Recent insight into the 90S structure from a eukaryotic thermophile, Chaetomium thermophilum, has provided a first spatial impression on this most sophisticated process, which includes co-transcriptional RNA folding and processing, and incorporation of ribosomal proteins. Our key discovery was that the nascent ribosomal RNA, which if linear would form a long thread, is co-transcriptionally mounted into a mold formed by a highly interconnected RNA-protein scaffold on the 90S pre-ribosome. This finding raises a novel concept in RNA biology that nascent RNA folds and matures in a protected environment, which is reminiscent of protein folding that can also occur in folding chambers. I plan to challenge the idea that the 90S particle indeed encapsulates the RNA transiently, in order to protect it from unproductive interactions, allowing stepwise folding and maturation in a cascade of interdependent reactions and the involvement of energy-consuming enzymes. The groundbreaking aim of this proposal is to decipher how these processes occur in an encapsulated environment, using C. thermophilum as a model organism. This high-risk project will depend on the successful establishment of novel assays that recapitulate eukaryotic ribosome assembly in vitro, exploiting the thermostable nature of the 90S pre-ribosome. Mechanistic insight into ribosome biogenesis will lead to a better understanding of how this multifaceted process is linked to other key cellular pathways and development of diseases including cancer.
Max ERC Funding
2 000 000 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym GLYCOPOISE
Project Glycosylation: Programmes for Observation, Inhibition and Structure-based Exploitation of key carbohydrate-active enzymes
Researcher (PI) Gideon John Davies
Host Institution (HI) UNIVERSITY OF YORK
Call Details Advanced Grant (AdG), LS1, ERC-2012-ADG_20120314
Summary The development of new approaches to dissect the diverse roles for carbohydrates in living cells is a major challenge for modern cell biology. The huge diversity of carbohydrates is reflected in a multiplicity of function; in addition to acting as energy sources, carbohydrates play major roles in structure, signalling and epigenetics. The work programme will build upon the applicant’s excellence in the mechanistic and structural enzymology of carbohydrate-active enzymes to tackle the key challenges of modern cellular glycobiology. Our vision is to provide fundamental structural and mechanistic-dissection of key proteins and their complexes and to use these as the foundation to deliver enzyme inhibitors as tools to probe the cellular function of specific glycans. The programme’s three strands will each scale a major pinnacle of carbohydrate biochemistry. Strand 1 will focus on mammalian glycosidases involved in glycocerebroside metabolism and genetic disease. We will unlock new 3-D information for glycocerebrosidase 2 (GBA2) and use these together with GBA1 to design and exploit novel and specific enzyme inhibitors as mechanistic and cellular probes, novel chaperones and imaging agents. Strand 2 will focus on the key endoplasmic reticulum enzyme endomannosidase, both its mechanistic novelty and its exploitation to perturb cellular glycans to unlock its biological roles and deliver compounds for anti-viral therapeutics. Strand 3 will probe the modification and elaboration of specific human N-glycans and their role in cell surface receptor biology. It will focus on the GlcNAc transferase V catalysed formation of polylactosamine epitopes and their regulation of growth factor signalling at the cell surface both in health and cancerous tissues. GlycoPOISE will both answer cardinal structural and chemical mechanistic questions in the enzymology of glycobiology and inform strategies for the observation and inhibition of carbohydrate-active enzymes and their exploitation
Summary
The development of new approaches to dissect the diverse roles for carbohydrates in living cells is a major challenge for modern cell biology. The huge diversity of carbohydrates is reflected in a multiplicity of function; in addition to acting as energy sources, carbohydrates play major roles in structure, signalling and epigenetics. The work programme will build upon the applicant’s excellence in the mechanistic and structural enzymology of carbohydrate-active enzymes to tackle the key challenges of modern cellular glycobiology. Our vision is to provide fundamental structural and mechanistic-dissection of key proteins and their complexes and to use these as the foundation to deliver enzyme inhibitors as tools to probe the cellular function of specific glycans. The programme’s three strands will each scale a major pinnacle of carbohydrate biochemistry. Strand 1 will focus on mammalian glycosidases involved in glycocerebroside metabolism and genetic disease. We will unlock new 3-D information for glycocerebrosidase 2 (GBA2) and use these together with GBA1 to design and exploit novel and specific enzyme inhibitors as mechanistic and cellular probes, novel chaperones and imaging agents. Strand 2 will focus on the key endoplasmic reticulum enzyme endomannosidase, both its mechanistic novelty and its exploitation to perturb cellular glycans to unlock its biological roles and deliver compounds for anti-viral therapeutics. Strand 3 will probe the modification and elaboration of specific human N-glycans and their role in cell surface receptor biology. It will focus on the GlcNAc transferase V catalysed formation of polylactosamine epitopes and their regulation of growth factor signalling at the cell surface both in health and cancerous tissues. GlycoPOISE will both answer cardinal structural and chemical mechanistic questions in the enzymology of glycobiology and inform strategies for the observation and inhibition of carbohydrate-active enzymes and their exploitation
Max ERC Funding
2 500 000 €
Duration
Start date: 2013-05-01, End date: 2019-04-30
Project acronym GULAGECHOES
Project Gulag Echoes in the “multicultural prison”: historical and geographical influences on the identity and politics of ethnic minority prisoners in the communist successor states of Russia Europe.
Researcher (PI) Judith PALLOT
Host Institution (HI) HELSINGIN YLIOPISTO
Call Details Advanced Grant (AdG), SH3, ERC-2017-ADG
Summary "The project will examine the impact of the system of penality developed in the Soviet gulag on the ethnic identification and political radicalisation of prisoners in the Soviet Union and the communist successor states of Europe today. It is informed by the proposition that prisons are sites of ethnic identity construction but that the processes involved vary within and between states. In the project, the focus is on the extent to which particular ""prison-styles"" affect the social relationships, self-identification and political association of ethnic minority prisoners. After the collapse of the Soviet Union, the communist successor states all set about reforming their prison systems to bring them into line with international and European norms. However, all to a lesser or greater extent still have legacies of the system gestated in the Soviet Gulag and exported to East-Central-Europe after WWII. These may include the internal organisation of penal space, a collectivist approach to prisoner management, penal labour and, as in Russian case, a geographical distribution of the penal estate that results in prisoners being sent excessively long distances to serve their sentences. It is the how these legacies, interacting with other forces (including official and popular discourses, formal policy and individual life-histories) transform, confirm, and suppress the ethnic identification of prisoners that the project seeks to excavate. It will use a mixed method approach to answer research questions, including interviews with ex-prisoners and prisoners' families, the use of archival and documentary sources and social media. The research will use case studies to analyze the experiences of ethnic minority prisoners over time and through space. These provisionally will be Chechens, Tartars, Ukrainians, Estonians, migrant Uzbek and Tadjik workers and Roma and the country case studies are the Russian Federation, Georgia and Romania."
Summary
"The project will examine the impact of the system of penality developed in the Soviet gulag on the ethnic identification and political radicalisation of prisoners in the Soviet Union and the communist successor states of Europe today. It is informed by the proposition that prisons are sites of ethnic identity construction but that the processes involved vary within and between states. In the project, the focus is on the extent to which particular ""prison-styles"" affect the social relationships, self-identification and political association of ethnic minority prisoners. After the collapse of the Soviet Union, the communist successor states all set about reforming their prison systems to bring them into line with international and European norms. However, all to a lesser or greater extent still have legacies of the system gestated in the Soviet Gulag and exported to East-Central-Europe after WWII. These may include the internal organisation of penal space, a collectivist approach to prisoner management, penal labour and, as in Russian case, a geographical distribution of the penal estate that results in prisoners being sent excessively long distances to serve their sentences. It is the how these legacies, interacting with other forces (including official and popular discourses, formal policy and individual life-histories) transform, confirm, and suppress the ethnic identification of prisoners that the project seeks to excavate. It will use a mixed method approach to answer research questions, including interviews with ex-prisoners and prisoners' families, the use of archival and documentary sources and social media. The research will use case studies to analyze the experiences of ethnic minority prisoners over time and through space. These provisionally will be Chechens, Tartars, Ukrainians, Estonians, migrant Uzbek and Tadjik workers and Roma and the country case studies are the Russian Federation, Georgia and Romania."
Max ERC Funding
2 494 685 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym HIDDENTIMENMR
Project NMR detected nanosecond to microsecond dynamics for biomolecular recognition dynamics
Researcher (PI) Christian Griesinger
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Advanced Grant (AdG), LS1, ERC-2008-AdG
Summary NMR spectroscopy detects in a unique way with atomic resolution biomolecular dynamics in the previously hidden time range between approximately 5 nano- to 50 microseconds (ns-ms time range). The detection of this motion happens in equilibrium under physiological conditions without the need for a triggering reaction. On the example of ubiquitin, this dynamics was found by us to be important for molecular recognition between proteins implying conformational selection rather than induced fit. Only free solution ensembles including this dynamics accessed the full conformational heterogeneity of structures in recognition complexes. Molecular dynamics analysis suggests high correlation of these ns-ms dynamical modes. Here, we propose to establish with NMR experimentally the correlated nature of the ns-ms dynamics, to describe ensembles reflecting ns-ms and sub-ns dynamics by separating the time scales. In this context, using temperature jump-infra-red spectroscopy and solid state NMR we want to determine the time scale of the ns to ms motion more precisely. Since the ns-ms time scale is slower than diffusion, dynamics on this time scale could be a mechanism of regulating or limiting the kinetics of molecular association and recognition. Therefore, we want to determine on-rates by NMR spectroscopy and want to explore whether mutants that do not affect the binding interface but will affect the dynamics modulate the on-rates. This would allow the control of binding kinetics and explore the influence of ns-¼s dynamics on protein-protein recognition on the long run also for membrane proteins. In addition specificity for drug interactions could be increased addressing extremal conformations present in the ns-¼s ensembles for homologous proteins with otherwise very similar average structures at interaction interfaces. If the proposal is successful this would open up new opportunities for drug design and design of protein-protein interactions.
Summary
NMR spectroscopy detects in a unique way with atomic resolution biomolecular dynamics in the previously hidden time range between approximately 5 nano- to 50 microseconds (ns-ms time range). The detection of this motion happens in equilibrium under physiological conditions without the need for a triggering reaction. On the example of ubiquitin, this dynamics was found by us to be important for molecular recognition between proteins implying conformational selection rather than induced fit. Only free solution ensembles including this dynamics accessed the full conformational heterogeneity of structures in recognition complexes. Molecular dynamics analysis suggests high correlation of these ns-ms dynamical modes. Here, we propose to establish with NMR experimentally the correlated nature of the ns-ms dynamics, to describe ensembles reflecting ns-ms and sub-ns dynamics by separating the time scales. In this context, using temperature jump-infra-red spectroscopy and solid state NMR we want to determine the time scale of the ns to ms motion more precisely. Since the ns-ms time scale is slower than diffusion, dynamics on this time scale could be a mechanism of regulating or limiting the kinetics of molecular association and recognition. Therefore, we want to determine on-rates by NMR spectroscopy and want to explore whether mutants that do not affect the binding interface but will affect the dynamics modulate the on-rates. This would allow the control of binding kinetics and explore the influence of ns-¼s dynamics on protein-protein recognition on the long run also for membrane proteins. In addition specificity for drug interactions could be increased addressing extremal conformations present in the ns-¼s ensembles for homologous proteins with otherwise very similar average structures at interaction interfaces. If the proposal is successful this would open up new opportunities for drug design and design of protein-protein interactions.
Max ERC Funding
2 212 000 €
Duration
Start date: 2009-07-01, End date: 2014-06-30
Project acronym HOTMEIOSIS
Project "Meiotic recombination: How, where and why? Mechanisms and Implications"
Researcher (PI) Bernard Robert De Massy
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), LS1, ERC-2012-ADG_20120314
Summary "During meiosis, homologous recombination plays a mechanical role by connecting homologous chromosomes, thus allowing proper chromosome segregation during the first meiotic division. In most species, the absence of meiotic recombination leads to sterility. In addition, recombination generates new combinations of alleles, increases genome diversity and plays a major role in genome evolution.
Meiotic recombination is initiated by the programmed induction of DNA double-strand breaks (DSBs), but how these events are controlled at the molecular level and how they are constrained by selective pressures during evolution is not understood.
Our recent historical discovery that the Prdm9 gene controls the localization of recombination in the mouse and human genomes revolutionizes our view on this process, with one main unanticipated finding: the highly dynamic and fast evolution of Prdm9 and of meiotic DSB sites in the genome. Understanding meiotic recombination clearly requires the development of novel approaches to analyze this process from both molecular and evolutionary perspectives.
To this aim, we will develop an extensive analysis of Prdm9 as its activity, role, regulators and sites of action in the genome need to be identified and understood in order to gain insight into its dynamics and evolution.
We will develop a unique and challenging strategy to overcome the limitation of laboratory mice and pioneer the analysis of Prdm9 and recombination activity in wild mice.
We thus aim at making a breakthrough in the field by bringing molecular genetics and evolutionary biology together, to grasp the significance of meiotic recombination for genome evolution and sexual reproduction in eukaryotes."
Summary
"During meiosis, homologous recombination plays a mechanical role by connecting homologous chromosomes, thus allowing proper chromosome segregation during the first meiotic division. In most species, the absence of meiotic recombination leads to sterility. In addition, recombination generates new combinations of alleles, increases genome diversity and plays a major role in genome evolution.
Meiotic recombination is initiated by the programmed induction of DNA double-strand breaks (DSBs), but how these events are controlled at the molecular level and how they are constrained by selective pressures during evolution is not understood.
Our recent historical discovery that the Prdm9 gene controls the localization of recombination in the mouse and human genomes revolutionizes our view on this process, with one main unanticipated finding: the highly dynamic and fast evolution of Prdm9 and of meiotic DSB sites in the genome. Understanding meiotic recombination clearly requires the development of novel approaches to analyze this process from both molecular and evolutionary perspectives.
To this aim, we will develop an extensive analysis of Prdm9 as its activity, role, regulators and sites of action in the genome need to be identified and understood in order to gain insight into its dynamics and evolution.
We will develop a unique and challenging strategy to overcome the limitation of laboratory mice and pioneer the analysis of Prdm9 and recombination activity in wild mice.
We thus aim at making a breakthrough in the field by bringing molecular genetics and evolutionary biology together, to grasp the significance of meiotic recombination for genome evolution and sexual reproduction in eukaryotes."
Max ERC Funding
2 491 899 €
Duration
Start date: 2013-09-01, End date: 2018-08-31
Project acronym INO3D
Project Mechanism of ATP Dependent Chromatin Modelling and Editing by INO80 Remodellers
Researcher (PI) Karl-Peter HOPFNER
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Call Details Advanced Grant (AdG), LS1, ERC-2018-ADG
Summary Nucleosomes, ~147 base pairs of DNA wrapped around an histone protein octamer, package and protect nuclear DNA but also carry important biological information. The position and composition of nucleosomes along chromosomal DNA is a key element of defining the state and identity of a cell. Chromatin remodellers are ATP dependent molecular machines that position, move or edit nucleosomes in a genome wide manner. Collectively, they shape the nucleosome landscape and play central roles in the maintenance and differentiation of cells, but also in pathological transformations. INO80, a megadalton large remodeller consisting of 15 or more subunits, is involved in replication, gene expression and DNA repair. It models chromatin by positioning barrier nucleosomes around nucleosome free regions, editing nucleosomes and generating nucleosome arrays. However, structural mechanisms for INO80 and other remodelling machines are poorly understood due to their complexity. To provide a comprehensive mechanistic framework, to understand how INO80 senses nucleosome free regions to position barrier nucleosomes and how it generates arrays or senses DNA breaks, I propose a challenging but ground-breaking endeavour using a combination of cryo-EM and functional approaches. We address structures of fungal and human INO80 complexes at promoter regions, on di-nucleosomes and at DNA ends and develop quantitative positioning assays to reveal common and distinct features of shaping chromatin in different species. We also explore cryo-EM as tool towards revealing distinct steps the chemo-mechanical remodelling reactions. The proposed research will help derive fundamental molecular principles underlying the modelling of the nucleosome landscape.
Summary
Nucleosomes, ~147 base pairs of DNA wrapped around an histone protein octamer, package and protect nuclear DNA but also carry important biological information. The position and composition of nucleosomes along chromosomal DNA is a key element of defining the state and identity of a cell. Chromatin remodellers are ATP dependent molecular machines that position, move or edit nucleosomes in a genome wide manner. Collectively, they shape the nucleosome landscape and play central roles in the maintenance and differentiation of cells, but also in pathological transformations. INO80, a megadalton large remodeller consisting of 15 or more subunits, is involved in replication, gene expression and DNA repair. It models chromatin by positioning barrier nucleosomes around nucleosome free regions, editing nucleosomes and generating nucleosome arrays. However, structural mechanisms for INO80 and other remodelling machines are poorly understood due to their complexity. To provide a comprehensive mechanistic framework, to understand how INO80 senses nucleosome free regions to position barrier nucleosomes and how it generates arrays or senses DNA breaks, I propose a challenging but ground-breaking endeavour using a combination of cryo-EM and functional approaches. We address structures of fungal and human INO80 complexes at promoter regions, on di-nucleosomes and at DNA ends and develop quantitative positioning assays to reveal common and distinct features of shaping chromatin in different species. We also explore cryo-EM as tool towards revealing distinct steps the chemo-mechanical remodelling reactions. The proposed research will help derive fundamental molecular principles underlying the modelling of the nucleosome landscape.
Max ERC Funding
2 201 875 €
Duration
Start date: 2019-10-01, End date: 2024-09-30
Project acronym InTo
Project Intergroup toleration: It’s Nature, Processes, and Consequences for Culturally Diverse Societies
Researcher (PI) Michael (Maykel) VERKUIJTEN
Host Institution (HI) UNIVERSITEIT UTRECHT
Call Details Advanced Grant (AdG), SH3, ERC-2016-ADG
Summary Increasingly our societies are becoming more diverse and how to live with this diversity is one of the most pressing questions of our time. In Europe, intergroup tolerance has been proposed as a key aspect of living harmoniously and productively with diversity; it is critical because objection and disagreement about what is good and right are inevitable. A diverse, egalitarian, and peaceful society does not require that we all like each other, but it does require that people at least tolerate one another. Yet, there has been very little by way of social psychological theorizing and systematic empirical research on intergroup toleration.
This research will advance the state of the art in the social sciences by moving beyond intergroup stereotypes, prejudices and discrimination, and focusing on the social psychology of intergroup toleration in which differences are endured. This new line of research will unravel the interrelated aspects of toleration. We will elucidate: (1) the underlying psychological aspects of tolerance (the objection component), 2) the psychological processes underlying tolerance (the acceptance component), 3) the limits of tolerance (the rejection component), and 4) the social psychological consequences of being tolerated. This program has a coherent theoretical framework and empirically toleration will be examined by using a combination of survey data, framing experiments, and lab experiments involving EEG. The research will provide key insights into the social psychological dynamics of intergroup toleration. This can form the basis for developing and implementing initiatives and approaches that contribute to a more tolerant society. Given the contested nature of cultural diversity and the absence of systematic social psychological investigations, the proposed research is both ground-breaking and timely.
Summary
Increasingly our societies are becoming more diverse and how to live with this diversity is one of the most pressing questions of our time. In Europe, intergroup tolerance has been proposed as a key aspect of living harmoniously and productively with diversity; it is critical because objection and disagreement about what is good and right are inevitable. A diverse, egalitarian, and peaceful society does not require that we all like each other, but it does require that people at least tolerate one another. Yet, there has been very little by way of social psychological theorizing and systematic empirical research on intergroup toleration.
This research will advance the state of the art in the social sciences by moving beyond intergroup stereotypes, prejudices and discrimination, and focusing on the social psychology of intergroup toleration in which differences are endured. This new line of research will unravel the interrelated aspects of toleration. We will elucidate: (1) the underlying psychological aspects of tolerance (the objection component), 2) the psychological processes underlying tolerance (the acceptance component), 3) the limits of tolerance (the rejection component), and 4) the social psychological consequences of being tolerated. This program has a coherent theoretical framework and empirically toleration will be examined by using a combination of survey data, framing experiments, and lab experiments involving EEG. The research will provide key insights into the social psychological dynamics of intergroup toleration. This can form the basis for developing and implementing initiatives and approaches that contribute to a more tolerant society. Given the contested nature of cultural diversity and the absence of systematic social psychological investigations, the proposed research is both ground-breaking and timely.
Max ERC Funding
2 205 494 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym INZI
Project Investigating Networks of Zoonosis Innovation
Researcher (PI) James Rob Smith
Host Institution (HI) THE UNIVERSITY OF EDINBURGH
Call Details Advanced Grant (AdG), SH3, ERC-2011-ADG_20110406
Summary INZI aims to analyse the complex interplay of actors, policies and projects that have shaped research into and control of Human African Trypanosomiasis (HAT) until the present day. Research has mainly been steered from outside of Africa, firstly by colonial authorities and latterly by an array of agencies, foundations and international organisations. Despite this, investment in research and control measures has declined and fragmented across Africa. This project seeks to examine, in proper historical context and from a systematic perspective, the evolution of Africa’s HAT research apparatus, to gain insight into the relationship between science and development, and build our understanding of how science can work better for development.
INZI will generate a panoptic, integrated analysis of the evolving HAT global assemblage in order to extend our knowledge of 1) The evolving relationship between the organisation of science and the development of material technologies in developing country contexts; 2) The relationship between policy and practice in mediating particular scientific and technological trajectories; and 3) The nature of innovation, what it means in a developing country context, and how it may be promoted. This will significantly advance our understanding of how science is practiced in developing countries, how technologies emerge, and ultimately how science and technological innovation can be organised to ensure development is transformational, not unobtainable.
Empirical research will be focused around five ‘research strands’ that each reflects a key modality or dimension of HAT research and control. These strands are: 1) Institutions; 2) Markets; 3) Partnerships; 4) Systems, and 5) Locations. Alongside the development of these five research strands, and in constant interaction with them, a series of connective analytical activities will be designed to truly integrate analysis of ‘micro-level processes’ and ‘macro-structures and forces’.
Summary
INZI aims to analyse the complex interplay of actors, policies and projects that have shaped research into and control of Human African Trypanosomiasis (HAT) until the present day. Research has mainly been steered from outside of Africa, firstly by colonial authorities and latterly by an array of agencies, foundations and international organisations. Despite this, investment in research and control measures has declined and fragmented across Africa. This project seeks to examine, in proper historical context and from a systematic perspective, the evolution of Africa’s HAT research apparatus, to gain insight into the relationship between science and development, and build our understanding of how science can work better for development.
INZI will generate a panoptic, integrated analysis of the evolving HAT global assemblage in order to extend our knowledge of 1) The evolving relationship between the organisation of science and the development of material technologies in developing country contexts; 2) The relationship between policy and practice in mediating particular scientific and technological trajectories; and 3) The nature of innovation, what it means in a developing country context, and how it may be promoted. This will significantly advance our understanding of how science is practiced in developing countries, how technologies emerge, and ultimately how science and technological innovation can be organised to ensure development is transformational, not unobtainable.
Empirical research will be focused around five ‘research strands’ that each reflects a key modality or dimension of HAT research and control. These strands are: 1) Institutions; 2) Markets; 3) Partnerships; 4) Systems, and 5) Locations. Alongside the development of these five research strands, and in constant interaction with them, a series of connective analytical activities will be designed to truly integrate analysis of ‘micro-level processes’ and ‘macro-structures and forces’.
Max ERC Funding
1 539 786 €
Duration
Start date: 2012-03-01, End date: 2018-02-28
Project acronym ISLAM-OPHOB-ISM
Project Nativism, Islamophobism and Islamism in the Age of Populism: Culturalisation and Religionisation of what is Social, Economic and Political in Europe
Researcher (PI) Ayhan KAYA
Host Institution (HI) ISTANBUL BILGI UNIVERSITESI
Call Details Advanced Grant (AdG), SH3, ERC-2017-ADG
Summary The main research question of the study is: How and why do some European citizens generate a populist and Islamophobist discourse to express their discontent with the current social, economic and political state of their national and European contexts, while some members of migrant-origin communities with Muslim background generate an essentialist and radical form of Islamist discourse within the same societies? The main premise of this study is that various segments of the European public (radicalizing young members of both native populations and migrant-origin populations with Muslim background), who have been alienated and swept away by the flows of globalization such as deindustrialization, mobility, migration, tourism, social-economic inequalities, international trade, and robotic production, are more inclined to respectively adopt two mainstream political discourses: Islamophobism (for native populations) and Islamism (for Muslim-migrant-origin populations). Both discourses have become pivotal along with the rise of the civilizational rhetoric since the early 1990s. On the one hand, the neo-liberal age seems to be leading to the nativisation of radicalism among some groups of host populations while, on the other hand, it is leading to the islamization of radicalism among some segments of deprived migrant-origin populations. The common denominator of these groups is that they are both downwardly mobile and inclined towards radicalization. Hence, this project aims to scrutinize social, economic, political and psychological sources of the processes of radicalization among native European youth and Muslim-origin youth with migration background, who are both inclined to express their discontent through ethnicity, culture, religion, heritage, homogeneity, authenticity, past, gender and patriarchy. The field research will comprise four migrant receiving countries: Germany, France, Belgium, and the Netherlands, and two migrant sending countries: Turkey and Morocco.
Summary
The main research question of the study is: How and why do some European citizens generate a populist and Islamophobist discourse to express their discontent with the current social, economic and political state of their national and European contexts, while some members of migrant-origin communities with Muslim background generate an essentialist and radical form of Islamist discourse within the same societies? The main premise of this study is that various segments of the European public (radicalizing young members of both native populations and migrant-origin populations with Muslim background), who have been alienated and swept away by the flows of globalization such as deindustrialization, mobility, migration, tourism, social-economic inequalities, international trade, and robotic production, are more inclined to respectively adopt two mainstream political discourses: Islamophobism (for native populations) and Islamism (for Muslim-migrant-origin populations). Both discourses have become pivotal along with the rise of the civilizational rhetoric since the early 1990s. On the one hand, the neo-liberal age seems to be leading to the nativisation of radicalism among some groups of host populations while, on the other hand, it is leading to the islamization of radicalism among some segments of deprived migrant-origin populations. The common denominator of these groups is that they are both downwardly mobile and inclined towards radicalization. Hence, this project aims to scrutinize social, economic, political and psychological sources of the processes of radicalization among native European youth and Muslim-origin youth with migration background, who are both inclined to express their discontent through ethnicity, culture, religion, heritage, homogeneity, authenticity, past, gender and patriarchy. The field research will comprise four migrant receiving countries: Germany, France, Belgium, and the Netherlands, and two migrant sending countries: Turkey and Morocco.
Max ERC Funding
2 276 125 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym KINCON
Project Molecular bases of kinetochore-microtubule attachment and their implications for cell cycle control
Researcher (PI) Andrea Musacchio
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Advanced Grant (AdG), LS1, ERC-2008-AdG
Summary Equal partition of the genetic material to the daughter cells in mitosis requires the accurate anchorage of the mother cell s chromosomes to spindle microtubules. This process takes place at kinetochores, complex scaffolds containing ~100 different proteins. Conceptually, kinetochores can be viewed as performing four distinct but highly integrated functions: 1) they bind centromeric chromatin at a specialized protein-DNA interface; 2) they build a dynamic microtubule-binding interface that is tightly linked to the centromere-binding interface; 3) they correct erroneous microtubule attachments; 4) they synchronize the progression of the cell cycle oscillator with the progression of the microtubule-kinetochore attachment process. In mammals, all four functions are essential, and their abrogation has untenable consequences for normal cell life. Conversely, their partial impairment has been implicated in chromosome instability and in the development of cancer and an array of genetic diseases. Our goal is to be able to map the kinetochore functions schematized above to the as yet largely uncharacterized architecture of the kinetochore and to unravel the elements of feedback control that allow their integration. By using a combination of structural and functional methods, we have made several recent important contributions to the field of kinetochore biology. In this application, we propose to take our efforts to a new level of complexity that will allow us to gain an integrated view of how kinetochores bind microtubules, how they correct improper attachment, and how they coordinate microtubule attachment with cell cycle progression. Our approach rests on strong experience in biochemical reconstitution and structural analysis, and is complemented by the introduction of methods to assess and model the dynamic responses of kinetochores to their variable environment.
Summary
Equal partition of the genetic material to the daughter cells in mitosis requires the accurate anchorage of the mother cell s chromosomes to spindle microtubules. This process takes place at kinetochores, complex scaffolds containing ~100 different proteins. Conceptually, kinetochores can be viewed as performing four distinct but highly integrated functions: 1) they bind centromeric chromatin at a specialized protein-DNA interface; 2) they build a dynamic microtubule-binding interface that is tightly linked to the centromere-binding interface; 3) they correct erroneous microtubule attachments; 4) they synchronize the progression of the cell cycle oscillator with the progression of the microtubule-kinetochore attachment process. In mammals, all four functions are essential, and their abrogation has untenable consequences for normal cell life. Conversely, their partial impairment has been implicated in chromosome instability and in the development of cancer and an array of genetic diseases. Our goal is to be able to map the kinetochore functions schematized above to the as yet largely uncharacterized architecture of the kinetochore and to unravel the elements of feedback control that allow their integration. By using a combination of structural and functional methods, we have made several recent important contributions to the field of kinetochore biology. In this application, we propose to take our efforts to a new level of complexity that will allow us to gain an integrated view of how kinetochores bind microtubules, how they correct improper attachment, and how they coordinate microtubule attachment with cell cycle progression. Our approach rests on strong experience in biochemical reconstitution and structural analysis, and is complemented by the introduction of methods to assess and model the dynamic responses of kinetochores to their variable environment.
Max ERC Funding
2 500 000 €
Duration
Start date: 2009-03-01, End date: 2014-09-30
Project acronym LIFE2YEARS1066
Project 10/66 ten years on – monitoring and improving health expectancy by targeting frailty among older people in middle income countries
Researcher (PI) Martin James Prince
Host Institution (HI) KING'S COLLEGE LONDON
Call Details Advanced Grant (AdG), SH3, ERC-2013-ADG
Summary "Population ageing and the transition from infectious to chronic diseases is occurring more rapidly in middle than it did in high income countries. Chronic diseases are already leading causes of death in all regions, but the focus on preventing premature mortality neglects the societal impact of the emerging epidemic on disability/dependence, particularly in older people. The PIs 12 year program of population research in Latin America, China and India provides uniquely detailed data on the extent, patterning and impact of the epidemic among older people in societies undergoing profound demographic, social and economic change. The focus for this project is the potential to modify trajectories of ageing through prevention and targeted intervention. Whether, in ageing societies, we can add ‘life to years’ as well as ‘years to life’ is an unresolved question.
The project will delineate secular trends (2005-2015) in the health of older people by completing a third prevalence wave survey in catchment areas previously surveyed in 2004-2006 and 2007-2009. Health expectancies (HE), summarising effects of morbidity and mortality, provide evidence of direct policy-relevance on the impact of population ageing on health. Inequalities in HE (disability-free and dependence-free life expectancies) will be evaluated within and between countries. Multistate analyses will assess their determinants, unpacking influences of socioeconomic position, chronic disease and underlying frailty on incidence of disability and care-dependence, recovery and mortality, thus identifying priorities for prevention and intervention. Knowledge from the population research will be translated during the project into development of a simple practice-based multidimensional risk assessment tool, which could then be linked to implementation of a new WHO guideline (co-developed by the PI) for prevention/management of care dependence in frail older people in resource poor settings."
Summary
"Population ageing and the transition from infectious to chronic diseases is occurring more rapidly in middle than it did in high income countries. Chronic diseases are already leading causes of death in all regions, but the focus on preventing premature mortality neglects the societal impact of the emerging epidemic on disability/dependence, particularly in older people. The PIs 12 year program of population research in Latin America, China and India provides uniquely detailed data on the extent, patterning and impact of the epidemic among older people in societies undergoing profound demographic, social and economic change. The focus for this project is the potential to modify trajectories of ageing through prevention and targeted intervention. Whether, in ageing societies, we can add ‘life to years’ as well as ‘years to life’ is an unresolved question.
The project will delineate secular trends (2005-2015) in the health of older people by completing a third prevalence wave survey in catchment areas previously surveyed in 2004-2006 and 2007-2009. Health expectancies (HE), summarising effects of morbidity and mortality, provide evidence of direct policy-relevance on the impact of population ageing on health. Inequalities in HE (disability-free and dependence-free life expectancies) will be evaluated within and between countries. Multistate analyses will assess their determinants, unpacking influences of socioeconomic position, chronic disease and underlying frailty on incidence of disability and care-dependence, recovery and mortality, thus identifying priorities for prevention and intervention. Knowledge from the population research will be translated during the project into development of a simple practice-based multidimensional risk assessment tool, which could then be linked to implementation of a new WHO guideline (co-developed by the PI) for prevention/management of care dependence in frail older people in resource poor settings."
Max ERC Funding
2 449 461 €
Duration
Start date: 2014-08-01, End date: 2019-07-31
Project acronym LINEUB
Project Linear ubiquitin chains - novel cellular signals involved in inflammation and cancer
Researcher (PI) Ivan Dikic
Host Institution (HI) JOHANN WOLFGANG GOETHE-UNIVERSITATFRANKFURT AM MAIN
Call Details Advanced Grant (AdG), LS1, ERC-2009-AdG
Summary Ubiquitin (Ub) is a small modifier that labels proteins in a highly specific manner. Like phosphorylation, modification of proteins by Ub is prevalent in the majority of cellular processes. An increasing number of distinct functions have been assigned to different types of ubiquitin modifications (monoUb and different Lys-linked chains). Moreover, aberrations in the ubiquitin system underlie many disease states, including cancer, inflammatory, immune and metabolic disorders as well as neurodegeneration. The most recently described physiological ubiquitin modification is the linear ubiquitin chain, in which ubiquitin monomers are conjugated via Met-Gly linkages. We have found that linear ubiquitin chains bind specifically to the NEMO adaptor molecule, an event critical for the proper regulation of NF-ºB signaling (Rahighi, 2009). Here we propose to use a multidisciplinary strategy to study the role of linear ubiquitination in the NF-ºB pathway, autophagy, apoptosis and DNA repair and how these changes can impact on disease states such as inflammation and cancer development. Scientific objectives are: " Characterize the components of linear ubiquitination: E3 ligases, specific substrates and domains recognizing linear ubiquitin chains " Elucidate the in vivo role of linear ubiquitination in the regulation of the NF-ºB pathway, apoptosis and DNA repair. " Reveal the molecular basis for the connections between linear ubiquitination and selective autophagy " Identify elements in the linear ubiquitin network as potential drug targets " Generate transgenic mouse models of inflammatory diseases and cancer " Develop system and computational biology approaches to assess the global role of linear ubiquitination in cellular proteome
Summary
Ubiquitin (Ub) is a small modifier that labels proteins in a highly specific manner. Like phosphorylation, modification of proteins by Ub is prevalent in the majority of cellular processes. An increasing number of distinct functions have been assigned to different types of ubiquitin modifications (monoUb and different Lys-linked chains). Moreover, aberrations in the ubiquitin system underlie many disease states, including cancer, inflammatory, immune and metabolic disorders as well as neurodegeneration. The most recently described physiological ubiquitin modification is the linear ubiquitin chain, in which ubiquitin monomers are conjugated via Met-Gly linkages. We have found that linear ubiquitin chains bind specifically to the NEMO adaptor molecule, an event critical for the proper regulation of NF-ºB signaling (Rahighi, 2009). Here we propose to use a multidisciplinary strategy to study the role of linear ubiquitination in the NF-ºB pathway, autophagy, apoptosis and DNA repair and how these changes can impact on disease states such as inflammation and cancer development. Scientific objectives are: " Characterize the components of linear ubiquitination: E3 ligases, specific substrates and domains recognizing linear ubiquitin chains " Elucidate the in vivo role of linear ubiquitination in the regulation of the NF-ºB pathway, apoptosis and DNA repair. " Reveal the molecular basis for the connections between linear ubiquitination and selective autophagy " Identify elements in the linear ubiquitin network as potential drug targets " Generate transgenic mouse models of inflammatory diseases and cancer " Develop system and computational biology approaches to assess the global role of linear ubiquitination in cellular proteome
Max ERC Funding
2 440 560 €
Duration
Start date: 2010-06-01, End date: 2015-05-31
Project acronym LIVEDIFFERENCE
Project Living with Difference in Europe - Making Communities out of Strangers in an era of super-mobility and super-diversity
Researcher (PI) Gillian Margaret Valentine
Host Institution (HI) THE UNIVERSITY OF SHEFFIELD
Call Details Advanced Grant (AdG), SH3, ERC-2009-AdG
Summary We are witnessing unprecedented levels of mobility (within and beyond the European Union) and population change. In this context, how we develop the capacity to live with difference is the key question of the 21st century. It is this fundamental research question which this proposal addresses (an issue that is particularly pertinent given rising levels of insecurity generated by post 9/11 terrorism and the current global financial crisis). This will be achieved by the generation of a new body of information and understanding about the extent and nature of everyday encounters with difference through five inter-linked projects, each collecting original empirical data in the UK and Poland. My vision is to advance the theorization of meaningful contact by using this data about spatial practices of encounter and intersectionality to shed new light on mostly unevidenced interdisciplinary theories of cosmopolitanism; and to develop further an innovative social topographic approach for transcending conventional comparative research perspectives by producing a sophisticated model of the complex webs of connection across the research locations, integrating the findings from a post-colonial and post-communist state. I will develop new horizons in methodological practice through the development of biographical timelines, and audio diaries to capture qualitative longitudinal data; video-elicitation of encounters with difference; and radical spatial experiments to create meaningful contact. The findings will provide an integrated evidence base about everyday understandings of difference and spatial practices of encounter that will inform, and nuance, European policies and strategies for living with difference. This programme will be unique internationally and will open up new directions in the interdisciplinary study of cosmopolitanism.
Summary
We are witnessing unprecedented levels of mobility (within and beyond the European Union) and population change. In this context, how we develop the capacity to live with difference is the key question of the 21st century. It is this fundamental research question which this proposal addresses (an issue that is particularly pertinent given rising levels of insecurity generated by post 9/11 terrorism and the current global financial crisis). This will be achieved by the generation of a new body of information and understanding about the extent and nature of everyday encounters with difference through five inter-linked projects, each collecting original empirical data in the UK and Poland. My vision is to advance the theorization of meaningful contact by using this data about spatial practices of encounter and intersectionality to shed new light on mostly unevidenced interdisciplinary theories of cosmopolitanism; and to develop further an innovative social topographic approach for transcending conventional comparative research perspectives by producing a sophisticated model of the complex webs of connection across the research locations, integrating the findings from a post-colonial and post-communist state. I will develop new horizons in methodological practice through the development of biographical timelines, and audio diaries to capture qualitative longitudinal data; video-elicitation of encounters with difference; and radical spatial experiments to create meaningful contact. The findings will provide an integrated evidence base about everyday understandings of difference and spatial practices of encounter that will inform, and nuance, European policies and strategies for living with difference. This programme will be unique internationally and will open up new directions in the interdisciplinary study of cosmopolitanism.
Max ERC Funding
2 181 400 €
Duration
Start date: 2010-06-01, End date: 2014-05-31
Project acronym MASCP
Project Mechanisms of alternative pre-mRNA splicing regulation in cancer and pluripotent cells
Researcher (PI) Juan Alberto Valcárcel Juárez
Host Institution (HI) FUNDACIO CENTRE DE REGULACIO GENOMICA
Call Details Advanced Grant (AdG), LS1, ERC-2014-ADG
Summary Alternative splicing of messenger RNA precursors is a prevalent form of gene regulation that greatly expands the coding capacity and regulatory opportunities of higher eukaryotic genomes. It contributes to cell differentiation and pluripotency and its deregulation promotes cancer progression, as evidenced by the frequent occurrence of cancer-associated mutations in splicing factors, which are also targets of anti-tumor drugs. Despite its prevalence and relevance, the underlying mechanisms of regulation remain poorly understood. This proposal aims to develop and apply systematic approaches that can allow us to carry out the equivalent of genetic analysis of splicing regulation in cancer and pluripotent cells. These technologies can help to unweave the complex network of functional interactions within the spliceosome and of the spliceosome with regulatory factors, exhaustively map the contribution of regulatory sequences and be used to investigate, with unprecedented detail, mechanisms of regulation for essentially any regulator or alternative splicing event operating in a particular cell line. Such approaches can offer a unique opportunity to address key unresolved mechanistic questions, including the molecular basis for positional effects of splicing regulatory factors (RNA Maps), the regulatory potential of the core spliceosome and the integration of alternative splicing with other cell regulatory programs. We will combine these approaches with biochemical and cellular assays to investigate detailed mechanisms of regulation relevant for the control of cell proliferation and/or pluripotency in cancer and induced pluripotent stem (iPS) cells. Progress in this area can contribute to reveal the molecular logic governing a key layer of gene regulation and has the potential to discover novel factors and regulatory circuits that trigger or modulate cell growth, differentiation and cancer progression.
Summary
Alternative splicing of messenger RNA precursors is a prevalent form of gene regulation that greatly expands the coding capacity and regulatory opportunities of higher eukaryotic genomes. It contributes to cell differentiation and pluripotency and its deregulation promotes cancer progression, as evidenced by the frequent occurrence of cancer-associated mutations in splicing factors, which are also targets of anti-tumor drugs. Despite its prevalence and relevance, the underlying mechanisms of regulation remain poorly understood. This proposal aims to develop and apply systematic approaches that can allow us to carry out the equivalent of genetic analysis of splicing regulation in cancer and pluripotent cells. These technologies can help to unweave the complex network of functional interactions within the spliceosome and of the spliceosome with regulatory factors, exhaustively map the contribution of regulatory sequences and be used to investigate, with unprecedented detail, mechanisms of regulation for essentially any regulator or alternative splicing event operating in a particular cell line. Such approaches can offer a unique opportunity to address key unresolved mechanistic questions, including the molecular basis for positional effects of splicing regulatory factors (RNA Maps), the regulatory potential of the core spliceosome and the integration of alternative splicing with other cell regulatory programs. We will combine these approaches with biochemical and cellular assays to investigate detailed mechanisms of regulation relevant for the control of cell proliferation and/or pluripotency in cancer and induced pluripotent stem (iPS) cells. Progress in this area can contribute to reveal the molecular logic governing a key layer of gene regulation and has the potential to discover novel factors and regulatory circuits that trigger or modulate cell growth, differentiation and cancer progression.
Max ERC Funding
2 159 574 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym MECHANICITY
Project Morphology, Energy and Climate Change in the City
Researcher (PI) Michael Batty
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Advanced Grant (AdG), SH3, ERC-2009-AdG
Summary Despite half a century of sustained research into the structure of cities, we still cannot answer the most basic questions of how their morphology is affected by the energy and income of their populations. We do not know if cities will become more compact or more spread out as energy usage changes due to global warming and as we switch to renewable energy sources. What we need is much more robust theory with applicable computer models for forecasting such impacts. Many of the rudiments involving agglomeration economics, growth theory, trade, nonlinear dynamics, and fractal geometry have already been put in place with the complexity sciences providing a framework for this new social physics. But so far, energy has been strangely absent. Here we will embrace this role, thus generating theory and models able to address what cities will look like if current predictions of climate change are borne out. We will organise the project into six related themes. First, we will extend theories of urban morphology based on fractals, scaling and allometry to incorporate energetics in analogy to transport and network processes. Second we will link these to statistical thermodynamics in spatial interaction and location modelling where energy, entropy, and accessibility are central. Third we will aggregate our theories to enable comparative analyses of city shape, compactness, energy use, and density. Fourth, we will explore different dynamic regimes building on self-criticality and bifurcation. Fifth, we will make these ideas operational building on our London Tyndall Centre model, and on related work in Phoenix and Shanghai. Last, we will construct a web-based laboratory for posing what if questions about climate change and energy balance using our theoretical and empirical models.
Summary
Despite half a century of sustained research into the structure of cities, we still cannot answer the most basic questions of how their morphology is affected by the energy and income of their populations. We do not know if cities will become more compact or more spread out as energy usage changes due to global warming and as we switch to renewable energy sources. What we need is much more robust theory with applicable computer models for forecasting such impacts. Many of the rudiments involving agglomeration economics, growth theory, trade, nonlinear dynamics, and fractal geometry have already been put in place with the complexity sciences providing a framework for this new social physics. But so far, energy has been strangely absent. Here we will embrace this role, thus generating theory and models able to address what cities will look like if current predictions of climate change are borne out. We will organise the project into six related themes. First, we will extend theories of urban morphology based on fractals, scaling and allometry to incorporate energetics in analogy to transport and network processes. Second we will link these to statistical thermodynamics in spatial interaction and location modelling where energy, entropy, and accessibility are central. Third we will aggregate our theories to enable comparative analyses of city shape, compactness, energy use, and density. Fourth, we will explore different dynamic regimes building on self-criticality and bifurcation. Fifth, we will make these ideas operational building on our London Tyndall Centre model, and on related work in Phoenix and Shanghai. Last, we will construct a web-based laboratory for posing what if questions about climate change and energy balance using our theoretical and empirical models.
Max ERC Funding
2 336 806 €
Duration
Start date: 2010-07-01, End date: 2015-12-31
Project acronym MEMBRANEATTACK
Project Molecular and cellular imaging of membrane interactions in pathogen attack and immune defense
Researcher (PI) Helen Saibil
Host Institution (HI) BIRKBECK COLLEGE - UNIVERSITY OF LONDON
Call Details Advanced Grant (AdG), LS1, ERC-2011-ADG_20110310
Summary "The immune system and pathogens both use membrane pore-forming proteins to penetrate cellular membranes, in order to kill target cells or to allow passage of pathogenic organisms such as malaria parasites, listeria, or toxoplasma. For both fundamental and practical reasons, it is important to understand the biological actions of the ""arms race"" underlying virulence, pathogenesis and immune defense. The key weapon in this membrane attack is a class of proteins that upon activation undergo a dramatic conversion from water-soluble monomers to a large, membrane-inserted assembly. Both the human immune response and microbial pathogenesis rely on membrane disruption by perforin-like proteins for attack and counterattack. This protein superfamily encompasses perforin and complement pore-forming assemblies in the immune system, as well as the more distantly related bacterial cholesterol-dependent cytolysins. With recent advances in electron cryo-microscopy, tomography and correlative fluorescence microscopy, it is now possible to relate the workings of protein machines in model systems such as liposomes to their actions in the cellular context. I wish to capitalize on these technical advances and visualize membrane interactions at the moment the intracellular pathogen Toxoplasma gondii bursts out of its host cell, as well as the delivery of lethal cargo from the cytotoxic lymphocyte to its target cell through the immune synapse. These studies will correlate 3D spatial information at cellular and molecular levels to reveal the operation of dynamic cellular machinery. I have chosen a well-ordered system that can bridge the gulf between cell biology and atomic structure. Innovations in sample preparation combined with state-of the art imaging methods will lead to the molecular definition of a fundamental process in “hostile” communication between cells and will broaden the landscape for drug design for immune disorders and major infectious diseases."
Summary
"The immune system and pathogens both use membrane pore-forming proteins to penetrate cellular membranes, in order to kill target cells or to allow passage of pathogenic organisms such as malaria parasites, listeria, or toxoplasma. For both fundamental and practical reasons, it is important to understand the biological actions of the ""arms race"" underlying virulence, pathogenesis and immune defense. The key weapon in this membrane attack is a class of proteins that upon activation undergo a dramatic conversion from water-soluble monomers to a large, membrane-inserted assembly. Both the human immune response and microbial pathogenesis rely on membrane disruption by perforin-like proteins for attack and counterattack. This protein superfamily encompasses perforin and complement pore-forming assemblies in the immune system, as well as the more distantly related bacterial cholesterol-dependent cytolysins. With recent advances in electron cryo-microscopy, tomography and correlative fluorescence microscopy, it is now possible to relate the workings of protein machines in model systems such as liposomes to their actions in the cellular context. I wish to capitalize on these technical advances and visualize membrane interactions at the moment the intracellular pathogen Toxoplasma gondii bursts out of its host cell, as well as the delivery of lethal cargo from the cytotoxic lymphocyte to its target cell through the immune synapse. These studies will correlate 3D spatial information at cellular and molecular levels to reveal the operation of dynamic cellular machinery. I have chosen a well-ordered system that can bridge the gulf between cell biology and atomic structure. Innovations in sample preparation combined with state-of the art imaging methods will lead to the molecular definition of a fundamental process in “hostile” communication between cells and will broaden the landscape for drug design for immune disorders and major infectious diseases."
Max ERC Funding
2 311 036 €
Duration
Start date: 2012-06-01, End date: 2018-05-31
Project acronym MEMFOLD
Project New approaches to the study of membrane-protein folding in vivo and in silico
Researcher (PI) Gunnar Von Heijne
Host Institution (HI) STOCKHOLMS UNIVERSITET
Call Details Advanced Grant (AdG), LS1, ERC-2008-AdG
Summary Membrane proteins are central players in many if not most cellular processes: cell-cell interaction, signal transduction, nerve conduction, small molecule transport, macromolecular trafficking, etc. A growing number of high-resolution membrane protein structures provide important insights not only into function but also into the general structural constraints imposed by the lipid bilayer. In contrast, almost no information is available concerning how membrane proteins fold in vivo. Mainly, this is because of a lack of suitable assays to follow the folding process. The main objective of this proposal is to develop a broad range of new methods, largely based on chemical-biology approaches combined with protein engineering, to study membrane protein insertion, folding, and assembly in vivo or under in vivo-like conditions. We will aim for quantitative studies whenever possible. Questions we will address include: What are the in vivo kinetics of transmembrane-helix integration? What are the energetics of membrane insertion of non-natural amino acid side chains with physico-chemical properties distinct from those of the 20 natural amino acids? What kinds of residue-residue interactions drive interactions between transmembrane helices and between membrane protein subunits? How should we best design and verify novel interacting transmembrane helices? Given the importance of membrane proteins in both basic and applied biological research, we expect that a deeper understanding of the molecular interactions that drive their folding and stabilize their structure in vivo will have a major impact across many areas of molecular life science.
Summary
Membrane proteins are central players in many if not most cellular processes: cell-cell interaction, signal transduction, nerve conduction, small molecule transport, macromolecular trafficking, etc. A growing number of high-resolution membrane protein structures provide important insights not only into function but also into the general structural constraints imposed by the lipid bilayer. In contrast, almost no information is available concerning how membrane proteins fold in vivo. Mainly, this is because of a lack of suitable assays to follow the folding process. The main objective of this proposal is to develop a broad range of new methods, largely based on chemical-biology approaches combined with protein engineering, to study membrane protein insertion, folding, and assembly in vivo or under in vivo-like conditions. We will aim for quantitative studies whenever possible. Questions we will address include: What are the in vivo kinetics of transmembrane-helix integration? What are the energetics of membrane insertion of non-natural amino acid side chains with physico-chemical properties distinct from those of the 20 natural amino acids? What kinds of residue-residue interactions drive interactions between transmembrane helices and between membrane protein subunits? How should we best design and verify novel interacting transmembrane helices? Given the importance of membrane proteins in both basic and applied biological research, we expect that a deeper understanding of the molecular interactions that drive their folding and stabilize their structure in vivo will have a major impact across many areas of molecular life science.
Max ERC Funding
1 999 999 €
Duration
Start date: 2009-04-01, End date: 2015-03-31
Project acronym MEMSEMBLE
Project Assembling biomembranes: fundamentals of membrane transporter folding and creation of synthetic modules
Researcher (PI) Paula Jane Booth
Host Institution (HI) KING'S COLLEGE LONDON
Call Details Advanced Grant (AdG), LS1, ERC-2011-ADG_20110310
Summary Self-assembly is a hallmark of Biology. We are far from a complete understanding of this natural assembly, which in turn limits our ability to mimic biological construction in the bioengineering of tuneable synthetic systems.
This proposal addresses the major challenge of membrane protein folding. Here, I intend to make a step change to my pioneering biophysical studies and investigate co-translational membrane protein folding. A central feature will be the creation of synthetic systems to probe key events in co-translational folding, as the protein folds in the membrane whilst emerging from the ribosome. An ambitious target is to make these systems tuneable, which will provide a new tool for the fabrication of membrane proteins and artificial cells in Synthetic Biology. The assembly of a tuneable artificial module that affords control over membrane protein synthesis is unprecedented.
I focus on the ubiquitous superfamily of major facilitator proteins, namely the best studied family member, lactose permease, LacY. This proposal has state of the art biophysical mechanistic studies at its core, which interleave into Cell and Synthetic Biology. There are two themes:
Theme 1. Determination of fundamental membrane protein folding parameters: folding transition states and lipid control
Phi-value analysis will be used to probe the folding transition state of LacY; the first such analysis of a multi-domain membrane protein. Lipid parameters that control LacY folding will be quantified, including bilayer asymmetry using novel droplet interface bilayer methods.
Theme 2: construction of tuneable synthetic co-translational folding systems
Engineered ribosomes and translocon insertion machinery will be incorporated and LacY folding will be controlled. Translation will be regulated or halted using mutant ribosomes, arrest sequences, altered codon usage and controlling tRNA addition. Trapped LacY folding intermediates will be studied using biophysical methods.
Summary
Self-assembly is a hallmark of Biology. We are far from a complete understanding of this natural assembly, which in turn limits our ability to mimic biological construction in the bioengineering of tuneable synthetic systems.
This proposal addresses the major challenge of membrane protein folding. Here, I intend to make a step change to my pioneering biophysical studies and investigate co-translational membrane protein folding. A central feature will be the creation of synthetic systems to probe key events in co-translational folding, as the protein folds in the membrane whilst emerging from the ribosome. An ambitious target is to make these systems tuneable, which will provide a new tool for the fabrication of membrane proteins and artificial cells in Synthetic Biology. The assembly of a tuneable artificial module that affords control over membrane protein synthesis is unprecedented.
I focus on the ubiquitous superfamily of major facilitator proteins, namely the best studied family member, lactose permease, LacY. This proposal has state of the art biophysical mechanistic studies at its core, which interleave into Cell and Synthetic Biology. There are two themes:
Theme 1. Determination of fundamental membrane protein folding parameters: folding transition states and lipid control
Phi-value analysis will be used to probe the folding transition state of LacY; the first such analysis of a multi-domain membrane protein. Lipid parameters that control LacY folding will be quantified, including bilayer asymmetry using novel droplet interface bilayer methods.
Theme 2: construction of tuneable synthetic co-translational folding systems
Engineered ribosomes and translocon insertion machinery will be incorporated and LacY folding will be controlled. Translation will be regulated or halted using mutant ribosomes, arrest sequences, altered codon usage and controlling tRNA addition. Trapped LacY folding intermediates will be studied using biophysical methods.
Max ERC Funding
2 312 389 €
Duration
Start date: 2012-05-01, End date: 2018-04-30
Project acronym MERA
Project Mechanism of Enzyme Rhodopsin Activation
Researcher (PI) Peter Hegemann
Host Institution (HI) HUMBOLDT-UNIVERSITAET ZU BERLIN
Call Details Advanced Grant (AdG), LS1, ERC-2015-AdG
Summary "Channelrhodopsin, which was discovered and described as a light-gated ion channel in my laboratory, has revolutionized the field of neuroscience over the past decade by enabling researchers to specifically activate selected neurons in a large ensemble of neuronal cells with short light flashes, a technology we now call ""Optogenetics."" However, though highly desirable, the inactivation of specific cells using moderate or low light intensities is not yet possible. The recently discovered rhodopsin-guanylyl-cyclase (RhGC) of the fungus Blastocladiella emersonii offers an elegant solution to this problem. Moreover, RhGC is a totally novel and uncharacterized sensory photoreceptor, and the first member of an enzyme rhodopsin family that urgently awaits in-depth characterization. Accordingly, the goal of the “mechanism of enzyme rhodopsin activation” (MERA) proposal is to obtain a comprehensive understanding of this novel photoreceptor, and to determine its functionality for broad application in optogenetics and other research fields. The MERA project is subdivided into four objectives. The first objective is the characterization and engineering of RhGC in cell lines and neurons as well as coexpression of RhGC with a cGMP-gated K+ channel to develop a ""Light-Hypopolarizer"" for cell inactivation. The second objective is to understand the dynamics of RhGC using a variety of biophysical technologies including time resolved UV-vis, FTIR, and Raman and EPR spectroscopy. A third objective is the generation of crystals for X-ray crystallography and the development of a three dimensional RhGC model. The fourth and final objective is the computer-aided conversion of RhGC into a rhodopsin-phosphodiesterase (RhPDE) for down-regulation of the second messenger cGMP and/or cAMP using light. The ultimate outcome will be a detailed understanding of a novel class of sensory photoreceptors with new perspectives for broad optogenetic applications."
Summary
"Channelrhodopsin, which was discovered and described as a light-gated ion channel in my laboratory, has revolutionized the field of neuroscience over the past decade by enabling researchers to specifically activate selected neurons in a large ensemble of neuronal cells with short light flashes, a technology we now call ""Optogenetics."" However, though highly desirable, the inactivation of specific cells using moderate or low light intensities is not yet possible. The recently discovered rhodopsin-guanylyl-cyclase (RhGC) of the fungus Blastocladiella emersonii offers an elegant solution to this problem. Moreover, RhGC is a totally novel and uncharacterized sensory photoreceptor, and the first member of an enzyme rhodopsin family that urgently awaits in-depth characterization. Accordingly, the goal of the “mechanism of enzyme rhodopsin activation” (MERA) proposal is to obtain a comprehensive understanding of this novel photoreceptor, and to determine its functionality for broad application in optogenetics and other research fields. The MERA project is subdivided into four objectives. The first objective is the characterization and engineering of RhGC in cell lines and neurons as well as coexpression of RhGC with a cGMP-gated K+ channel to develop a ""Light-Hypopolarizer"" for cell inactivation. The second objective is to understand the dynamics of RhGC using a variety of biophysical technologies including time resolved UV-vis, FTIR, and Raman and EPR spectroscopy. A third objective is the generation of crystals for X-ray crystallography and the development of a three dimensional RhGC model. The fourth and final objective is the computer-aided conversion of RhGC into a rhodopsin-phosphodiesterase (RhPDE) for down-regulation of the second messenger cGMP and/or cAMP using light. The ultimate outcome will be a detailed understanding of a novel class of sensory photoreceptors with new perspectives for broad optogenetic applications."
Max ERC Funding
2 398 750 €
Duration
Start date: 2016-10-01, End date: 2021-09-30
Project acronym METABOp53
Project Metabolic functions of p53 in non-cancer pathologies
Researcher (PI) Karen Vousden
Host Institution (HI) BEATSON INSTITUTE FOR CANCER RESEARCH LBG
Call Details Advanced Grant (AdG), LS1, ERC-2012-ADG_20120314
Summary Extensive study of the p53 protein has resulted in a detailed understanding of its role in tumour suppression, information that is being used to develop small molecule modulators of p53 that are presently under evaluation for cancer therapy. However, it has recently become clear that p53 also plays roles in aspects of human health and disease extending beyond cancer - although most of these are poorly understood. We therefore propose to investigate some of these non-cancer functions of p53, with an emphasis on the role of p53 in the regulation of metabolism, extending to an analysis of whether p53 contributes to pathologies such as diabetes and obesity. This is a pioneering project that brings p53 research into new areas, yet builds on the solid platform of existing knowledge about the regulation and function of p53. State of the art genomic, proteomic, metabolomic and imaging analyses will be used to identify the roles of p53 in the response to metabolic stress caused by nutrient deficiency or excess, and investigate how these activities balance cell survival and cell death. Models will be developed to address how these functions of p53 relate to the control of metabolism and disease in vivo. Understanding how the cellular response to metabolic stress is controlled, and identifying a role for p53 in the regulation of metabolic homeostasis has enormous potential to influence the diagnosis and treatment of disease. The proposal will help to define the role of p53 in the development of diabetes and obesity, and lay the groundwork for the investigation of a role for p53 in other pathologies, such as neurodegenerative disease, cardiovascular disease and liver disease. These studies will therefore have far-reaching impact on some of the most prominent health threats in the developed world.
Summary
Extensive study of the p53 protein has resulted in a detailed understanding of its role in tumour suppression, information that is being used to develop small molecule modulators of p53 that are presently under evaluation for cancer therapy. However, it has recently become clear that p53 also plays roles in aspects of human health and disease extending beyond cancer - although most of these are poorly understood. We therefore propose to investigate some of these non-cancer functions of p53, with an emphasis on the role of p53 in the regulation of metabolism, extending to an analysis of whether p53 contributes to pathologies such as diabetes and obesity. This is a pioneering project that brings p53 research into new areas, yet builds on the solid platform of existing knowledge about the regulation and function of p53. State of the art genomic, proteomic, metabolomic and imaging analyses will be used to identify the roles of p53 in the response to metabolic stress caused by nutrient deficiency or excess, and investigate how these activities balance cell survival and cell death. Models will be developed to address how these functions of p53 relate to the control of metabolism and disease in vivo. Understanding how the cellular response to metabolic stress is controlled, and identifying a role for p53 in the regulation of metabolic homeostasis has enormous potential to influence the diagnosis and treatment of disease. The proposal will help to define the role of p53 in the development of diabetes and obesity, and lay the groundwork for the investigation of a role for p53 in other pathologies, such as neurodegenerative disease, cardiovascular disease and liver disease. These studies will therefore have far-reaching impact on some of the most prominent health threats in the developed world.
Max ERC Funding
2 437 814 €
Duration
Start date: 2013-02-01, End date: 2018-01-31
Project acronym MigrantLife
Project Understanding Life Trajectories of Immigrants and Their Descendants in Europe and Projecting Future Trends
Researcher (PI) Hill KULU
Host Institution (HI) THE UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS
Call Details Advanced Grant (AdG), SH3, ERC-2018-ADG
Summary In recent decades, European countries have witnessed increasing immigration streams and ethnic heterogeneity of their populations. Facilitating immigrant integration and social cohesion has become a major societal issue. The project moves beyond previous research by first investigating how employment, housing and family trajectories evolve and interact in the lives of descendants of post-WWII immigrants and post-1990 immigrants in the UK, France, Germany and Sweden, and how factors related to a societal context, an early life context and critical transitions shape their life histories. Second, the study will project their future life trajectories using innovative simulation techniques, considering the main life domains and diversity between and within immigrant groups. Although recent studies report substantial diversity in employment, in housing and in family patterns among descendants of post-war immigrants and recent immigrants in Europe, the causes of this heterogeneity remain far from clear. Furthermore, it is not known whether observed differences between immigrants and natives are short-term outcomes in a long-term process of cultural and economic integration or rather reflections of different pathways and outcomes for immigrants and their descendants. The project will exploit large-scale longitudinal data from four countries and apply advanced longitudinal methods, including multichannel sequence analysis and multilevel event history analysis. Microsimulation will be applied to project life histories for immigrants and their descendants. The project will significantly deepen our understanding of the relationships between the three life domains, and the causes of less and more successful life trajectories among immigrants and their descendants. This project will show whether the current heterogeneity between and within immigrant and minority groups vanishes over time or rather persists, suggesting an increasing diversity of European societies.
Summary
In recent decades, European countries have witnessed increasing immigration streams and ethnic heterogeneity of their populations. Facilitating immigrant integration and social cohesion has become a major societal issue. The project moves beyond previous research by first investigating how employment, housing and family trajectories evolve and interact in the lives of descendants of post-WWII immigrants and post-1990 immigrants in the UK, France, Germany and Sweden, and how factors related to a societal context, an early life context and critical transitions shape their life histories. Second, the study will project their future life trajectories using innovative simulation techniques, considering the main life domains and diversity between and within immigrant groups. Although recent studies report substantial diversity in employment, in housing and in family patterns among descendants of post-war immigrants and recent immigrants in Europe, the causes of this heterogeneity remain far from clear. Furthermore, it is not known whether observed differences between immigrants and natives are short-term outcomes in a long-term process of cultural and economic integration or rather reflections of different pathways and outcomes for immigrants and their descendants. The project will exploit large-scale longitudinal data from four countries and apply advanced longitudinal methods, including multichannel sequence analysis and multilevel event history analysis. Microsimulation will be applied to project life histories for immigrants and their descendants. The project will significantly deepen our understanding of the relationships between the three life domains, and the causes of less and more successful life trajectories among immigrants and their descendants. This project will show whether the current heterogeneity between and within immigrant and minority groups vanishes over time or rather persists, suggesting an increasing diversity of European societies.
Max ERC Funding
2 446 524 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym MIRIAM
Project Mismatch repair interactome and mutagenesis
Researcher (PI) Josef Jiricny
Host Institution (HI) UNIVERSITAT ZURICH
Call Details Advanced Grant (AdG), LS1, ERC-2011-ADG_20110310
Summary "The mismatch repair (MMR) system has evolved to correct errors of DNA replication and prevent recombination between non-homologous sequences. Correspondingly, MMR malfunction leads to increased mutation rates and illegitimate recombination, and individuals with inherited MMR gene mutations are predisposed to cancer of the colon and other organs. However, MMR has recently been implicated in processes ranging from DNA damage signaling and drug sensitivity to antibody maturation, some of which contradict and even subvert the classical role of MMR as a guardian of genomic integrity. We suspect that the latter processes are linked to a new, non-canonical MMR (ncMMR) pathway that can be activated outside of the S- and G2 phases of the cell cycle by a variety of lesions and structures. ncMMR lacks strand directionality, involves long stretches of DNA degradation, and our preliminary in vitro evidence suggests that resynthesis of these repair tracts can be mediated not only by high-fidelity, replicative polymerases, but also by error-prone enzymes. In this scenario, ncMMR would actually contribute to mutagenesis. I plan to deploy proteomic, genomic and imaging technologies to identify the components of the ncMMR “mutasome” and to reconstitute the system from purified recombinant components. Furthermore, I wish to study the “action radius” of MMR proteins by characterizing their interactome and analyze its dependence on endogenous states (e.g. cell cycle stages) and exogenous stimuli (e.g. drug treatments) in human and chicken (DT40) cells, and Xenopus laevis egg extracts. I intend to exploit a new system of inducible protein replacement that was recently developed in my laboratory, to stably express MMR, replication, repair and recombination proteins (both wild type and variants). This program should increase our understanding of the pivotal role of MMR in DNA metabolism and its involvement in human disease and cancer."
Summary
"The mismatch repair (MMR) system has evolved to correct errors of DNA replication and prevent recombination between non-homologous sequences. Correspondingly, MMR malfunction leads to increased mutation rates and illegitimate recombination, and individuals with inherited MMR gene mutations are predisposed to cancer of the colon and other organs. However, MMR has recently been implicated in processes ranging from DNA damage signaling and drug sensitivity to antibody maturation, some of which contradict and even subvert the classical role of MMR as a guardian of genomic integrity. We suspect that the latter processes are linked to a new, non-canonical MMR (ncMMR) pathway that can be activated outside of the S- and G2 phases of the cell cycle by a variety of lesions and structures. ncMMR lacks strand directionality, involves long stretches of DNA degradation, and our preliminary in vitro evidence suggests that resynthesis of these repair tracts can be mediated not only by high-fidelity, replicative polymerases, but also by error-prone enzymes. In this scenario, ncMMR would actually contribute to mutagenesis. I plan to deploy proteomic, genomic and imaging technologies to identify the components of the ncMMR “mutasome” and to reconstitute the system from purified recombinant components. Furthermore, I wish to study the “action radius” of MMR proteins by characterizing their interactome and analyze its dependence on endogenous states (e.g. cell cycle stages) and exogenous stimuli (e.g. drug treatments) in human and chicken (DT40) cells, and Xenopus laevis egg extracts. I intend to exploit a new system of inducible protein replacement that was recently developed in my laboratory, to stably express MMR, replication, repair and recombination proteins (both wild type and variants). This program should increase our understanding of the pivotal role of MMR in DNA metabolism and its involvement in human disease and cancer."
Max ERC Funding
2 208 084 €
Duration
Start date: 2012-04-01, End date: 2016-08-31
Project acronym mitoCalcium
Project Mitochondrial calcium signalling: molecules, roles and pharmacological targeting
Researcher (PI) Rosario Rizzuto
Host Institution (HI) UNIVERSITA DEGLI STUDI DI PADOVA
Call Details Advanced Grant (AdG), LS1, ERC-2011-ADG_20110310
Summary Mitochondrial Ca2+ homeostasis is an important component of the calcium-mediated cellular response to extracellular stimuli. It controls key organelle functions, such as aerobic metabolism and the induction of apoptotic cell death, and shapes the spatio-temporal pattern of the cytosolic [Ca2+] increase. While its physiological and pathological relevance is now fully appreciated, lack of molecular insight has severely limited mechanistic understanding and pharmacological targeting. We have now identified the long sought “mitochondrial Ca2+ uniporter” (MCU). This project stems from this ground-breaking result, and with a multidisciplinary approach investigates the biological role of MCU, tackling also its structure/function relationship and possible pharmacological exploitation. Specifically, the project will be divided in five major tasks: i) the elucidation of the subcellular distribution of MCU and of the supramolecular organization of the mitochondrial Ca2+ influx machinery; ii) the clarification of the cross-talk with other signaling pathways, with major focus on regulatory mechanisms based on post-translational modifications (phosphorylation, acetylation, oxidation); iii) the development of suitable heterologous systems, in which wild-type MCU or mutants can be expressed; the purified protein (or the isolated mitochondria) will be utilized in electrophysiological studies to investigate the functional properties of the channel; iv) the elucidation of the protein structure, with the aim of developing specific inhibitors, based on molecular modeling and crystallization of the protein produced in the appropriate heterologous system; v) the generation of conditional and tissue-specific knockout models for investigating MCU function in vivo; the analysis of the phenotype, including the sensitivity to genetic or environmental causes of disease, will provide insight into the role of mitochondrial Ca2+ dysregulation in the pathogenesis and treatment of human disorders.
Summary
Mitochondrial Ca2+ homeostasis is an important component of the calcium-mediated cellular response to extracellular stimuli. It controls key organelle functions, such as aerobic metabolism and the induction of apoptotic cell death, and shapes the spatio-temporal pattern of the cytosolic [Ca2+] increase. While its physiological and pathological relevance is now fully appreciated, lack of molecular insight has severely limited mechanistic understanding and pharmacological targeting. We have now identified the long sought “mitochondrial Ca2+ uniporter” (MCU). This project stems from this ground-breaking result, and with a multidisciplinary approach investigates the biological role of MCU, tackling also its structure/function relationship and possible pharmacological exploitation. Specifically, the project will be divided in five major tasks: i) the elucidation of the subcellular distribution of MCU and of the supramolecular organization of the mitochondrial Ca2+ influx machinery; ii) the clarification of the cross-talk with other signaling pathways, with major focus on regulatory mechanisms based on post-translational modifications (phosphorylation, acetylation, oxidation); iii) the development of suitable heterologous systems, in which wild-type MCU or mutants can be expressed; the purified protein (or the isolated mitochondria) will be utilized in electrophysiological studies to investigate the functional properties of the channel; iv) the elucidation of the protein structure, with the aim of developing specific inhibitors, based on molecular modeling and crystallization of the protein produced in the appropriate heterologous system; v) the generation of conditional and tissue-specific knockout models for investigating MCU function in vivo; the analysis of the phenotype, including the sensitivity to genetic or environmental causes of disease, will provide insight into the role of mitochondrial Ca2+ dysregulation in the pathogenesis and treatment of human disorders.
Max ERC Funding
2 432 400 €
Duration
Start date: 2012-04-01, End date: 2017-03-31
Project acronym MitoCRISTAE
Project Mitochondrial Cristae Biogenesis
Researcher (PI) Stefan Jakobs
Host Institution (HI) UNIVERSITAETSMEDIZIN GOETTINGEN - GEORG-AUGUST-UNIVERSITAET GOETTINGEN - STIFTUNG OEFFENTLICHEN RECHTS
Call Details Advanced Grant (AdG), LS1, ERC-2018-ADG
Summary Mitochondrial cristae biogenesis is an enigma ever since the first imaging of mitochondria, the ‘powerhouses’ of eukaryotic cells, by electron microscopy in the 1950s. The mitochondrial cristae, dynamic and structurally conserved invaginations of the mitochondrial inner membrane, are essential for respiratory ATP generation. Thereby, the form and function of the mitochondrial inner membrane are deeply intertwined. Indeed, irregular or disturbed cristae morphologies are believed to cause numerous human diseases, including neurodegeneration, cardiomyopathies, metabolic disorders and cancer.
Previous approaches to study cristae biogenesis have relied primarily on the use of 2D electron microscopy and biochemistry to analyse mutant cells defective in cristae formation. Based on striking pilot experiments, we propose to study cristae biogenesis by a radically different approach. We will induce synchronous cristae development in gene-edited cell lines initially defective in cristae formation. We will then follow de novo cristae biogenesis over time by combining a series of enabling approaches, including live cell and MINFLUX super-resolution microscopy, 3D (cryo) electron microscopy, label-free (SWATH) mass spectrometry, and single molecule counting. These technologies have just emerged in the last few years, and thus this proposal would not have been possible a few years ago. The primary aim of this proposal is to establish a deep, comprehensive and quantitative understanding of cristae biogenesis in human cells. Using theses insights, we will also investigate the effects of mutations in mitochondrial proteins associated with human diseases on cristae biogenesis.
Altogether, if successful, the outcome will represent a paradigm shift in our knowledge of how mitochondrial ultrastructure in healthy and diseased cells is generated and maintained. Our findings might spark innovative and novel strategies for the treatment of devastating human mitopathies.
Summary
Mitochondrial cristae biogenesis is an enigma ever since the first imaging of mitochondria, the ‘powerhouses’ of eukaryotic cells, by electron microscopy in the 1950s. The mitochondrial cristae, dynamic and structurally conserved invaginations of the mitochondrial inner membrane, are essential for respiratory ATP generation. Thereby, the form and function of the mitochondrial inner membrane are deeply intertwined. Indeed, irregular or disturbed cristae morphologies are believed to cause numerous human diseases, including neurodegeneration, cardiomyopathies, metabolic disorders and cancer.
Previous approaches to study cristae biogenesis have relied primarily on the use of 2D electron microscopy and biochemistry to analyse mutant cells defective in cristae formation. Based on striking pilot experiments, we propose to study cristae biogenesis by a radically different approach. We will induce synchronous cristae development in gene-edited cell lines initially defective in cristae formation. We will then follow de novo cristae biogenesis over time by combining a series of enabling approaches, including live cell and MINFLUX super-resolution microscopy, 3D (cryo) electron microscopy, label-free (SWATH) mass spectrometry, and single molecule counting. These technologies have just emerged in the last few years, and thus this proposal would not have been possible a few years ago. The primary aim of this proposal is to establish a deep, comprehensive and quantitative understanding of cristae biogenesis in human cells. Using theses insights, we will also investigate the effects of mutations in mitochondrial proteins associated with human diseases on cristae biogenesis.
Altogether, if successful, the outcome will represent a paradigm shift in our knowledge of how mitochondrial ultrastructure in healthy and diseased cells is generated and maintained. Our findings might spark innovative and novel strategies for the treatment of devastating human mitopathies.
Max ERC Funding
2 286 248 €
Duration
Start date: 2019-10-01, End date: 2024-09-30
Project acronym MITRAC
Project Mitochondrial translational regulation coupled to respiratory chain assembly and protein import
Researcher (PI) Peter Rehling
Host Institution (HI) UNIVERSITAETSMEDIZIN GOETTINGEN - GEORG-AUGUST-UNIVERSITAET GOETTINGEN - STIFTUNG OEFFENTLICHEN RECHTS
Call Details Advanced Grant (AdG), LS1, ERC-2013-ADG
Summary "Mitochondrial respiratory chain complexes assemble from nuclear- and mitochondria-encoded subunits in the inner membrane. To protect cells from accumulating unassembled subunits in the membrane, ROS generation, or damage of mitochondrial integrity, regulatory mechanisms to balance and control the fidelity of the assembly process have evolved, encorporating a retention system enabling the preservation of a select few founding complexes for on-demand assembly. In yeast mitochondria, a feedback mechanism has been identified for the cytochrome oxidase in which assembly-intermediates specifically inactivate translation of the core subunit Cox1. It is controversially debated if similar translation regulating mechanisms exist in human mitochondria. However, our recent findings show that in human mitochondria assembly intermediates of respiratory chain complexes affect translation, nevertheless the underlying sensing and signalling mechanisms as well as the protein components appear to be more complex than in yeast. We aim to understand how this regulatory cycle is established; how does a distinct assembly intermediate of cytochrome oxidase signal the translation system, and how the influx of imported subunits contributes to this process. These goals are conceptually deeply rooted in a comprehensive understanding of the membrane protein complex assembly process and the factors that promote its progression. These objectives are of key importance for understanding the molecular pathology of mitochondrial encephalomyopathies that are frequently due to respiratory chain assembly and quality control malfunction. The aim of our analyses is to provide insight as to how translation can be coupled to the assembly of a membrane protein complex comprised of subunits of dual genetic origin and to decipher mitochondrial translational regulation coupling to the influx of imported nuclear encoded subunits."
Summary
"Mitochondrial respiratory chain complexes assemble from nuclear- and mitochondria-encoded subunits in the inner membrane. To protect cells from accumulating unassembled subunits in the membrane, ROS generation, or damage of mitochondrial integrity, regulatory mechanisms to balance and control the fidelity of the assembly process have evolved, encorporating a retention system enabling the preservation of a select few founding complexes for on-demand assembly. In yeast mitochondria, a feedback mechanism has been identified for the cytochrome oxidase in which assembly-intermediates specifically inactivate translation of the core subunit Cox1. It is controversially debated if similar translation regulating mechanisms exist in human mitochondria. However, our recent findings show that in human mitochondria assembly intermediates of respiratory chain complexes affect translation, nevertheless the underlying sensing and signalling mechanisms as well as the protein components appear to be more complex than in yeast. We aim to understand how this regulatory cycle is established; how does a distinct assembly intermediate of cytochrome oxidase signal the translation system, and how the influx of imported subunits contributes to this process. These goals are conceptually deeply rooted in a comprehensive understanding of the membrane protein complex assembly process and the factors that promote its progression. These objectives are of key importance for understanding the molecular pathology of mitochondrial encephalomyopathies that are frequently due to respiratory chain assembly and quality control malfunction. The aim of our analyses is to provide insight as to how translation can be coupled to the assembly of a membrane protein complex comprised of subunits of dual genetic origin and to decipher mitochondrial translational regulation coupling to the influx of imported nuclear encoded subunits."
Max ERC Funding
2 283 817 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym MMPPF
Project Modern Marronage? The Pursuit and Practice of Freedom in the Contemporary World
Researcher (PI) Julia O'CONNELL DAVIDSON
Host Institution (HI) UNIVERSITY OF BRISTOL
Call Details Advanced Grant (AdG), SH3, ERC-2017-ADG
Summary Contemporary antislavery campaigners invoke the history of Atlantic World slavery to highlight the plight of 48 million people today living in exceptionally harsh circumstances, described as ‘modern slavery’. Yet in a world where many are oppressed and exploited, the lines between ‘modern slavery’ and other forms of drudgery, exclusion, and domination, are not easily drawn. Critics argue that the dominant discourse of ‘modern slavery’ relies upon a highly selective vision of injustice and suffering, and fails to consider or challenge the structural inequalities and systems of domination (race, caste, class, gender, age, nationality) that routinely restrict rights and freedoms. The proposed project retains a concern with the continuing significance of Atlantic World history, but upturns conventional discourse by interrogating the problem of freedom – as opposed to slavery - in the contemporary world. Through fieldwork in Brazil, Ghana, Italy, Portugal and the UK with groups that appear in dominant discourse as at risk of ‘modern slavery’, its key aims are: i) to revisit histories of marronage and other strategies by which enslaved and newly emancipated people sought to move closer to freedom in the Atlantic World historically, and ask what light they can shed on the perception, pursuit and practice of freedom by marginalized and rightless people in the Atlantic World today; ii) to use insights from this dialogue between past and present to contribute to theoretical debates on freedom, and its relation to agency, honour, gender, age, race, mobility, property, and personhood; iii) to work with research participants to co-produce counter-narratives to conventional antislavery stories of ‘modern slavery’, and, by communicating them through performance as well as text, encourage more nuanced popular and political debate on the contemporary meaning and practice of freedom.
Summary
Contemporary antislavery campaigners invoke the history of Atlantic World slavery to highlight the plight of 48 million people today living in exceptionally harsh circumstances, described as ‘modern slavery’. Yet in a world where many are oppressed and exploited, the lines between ‘modern slavery’ and other forms of drudgery, exclusion, and domination, are not easily drawn. Critics argue that the dominant discourse of ‘modern slavery’ relies upon a highly selective vision of injustice and suffering, and fails to consider or challenge the structural inequalities and systems of domination (race, caste, class, gender, age, nationality) that routinely restrict rights and freedoms. The proposed project retains a concern with the continuing significance of Atlantic World history, but upturns conventional discourse by interrogating the problem of freedom – as opposed to slavery - in the contemporary world. Through fieldwork in Brazil, Ghana, Italy, Portugal and the UK with groups that appear in dominant discourse as at risk of ‘modern slavery’, its key aims are: i) to revisit histories of marronage and other strategies by which enslaved and newly emancipated people sought to move closer to freedom in the Atlantic World historically, and ask what light they can shed on the perception, pursuit and practice of freedom by marginalized and rightless people in the Atlantic World today; ii) to use insights from this dialogue between past and present to contribute to theoretical debates on freedom, and its relation to agency, honour, gender, age, race, mobility, property, and personhood; iii) to work with research participants to co-produce counter-narratives to conventional antislavery stories of ‘modern slavery’, and, by communicating them through performance as well as text, encourage more nuanced popular and political debate on the contemporary meaning and practice of freedom.
Max ERC Funding
1 847 596 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym MOLRHEOSTAT
Project Downhill Folding Protein Modules as Conformational Rheostats: Roles in Molecular Biology and Applications as Biosensors
Researcher (PI) Victor Muñoz
Host Institution (HI) FUNDACION IMDEA NANOCIENCIA
Call Details Advanced Grant (AdG), LS1, ERC-2012-ADG_20120314
Summary Protein folding and function is a perfect arena towards growing the grassroots of quantitative and synthetic biology. This is so because all cellular processes controlled by proteins can ultimately be traced back to physico-chemical properties encoded in their aminoacid sequences. MOLRHEOSTAT is framed within these goals, focusing on the investigation of novel connections between protein folding and function via a multidisciplinary approach that combines experiment (single molecule spectroscopy, high-resolution NMR, protein engineering and design), theory and computer simulations.
Conventionally, proteins are portrayed as conformational switches that fold and function by flipping between an on-state (native, active) and an off-state (inactive, unfolded) in response to stimuli. However, last years have witnessed the discovery of protein modules that undergo continuous conformational changes upon unfolding (downhill folding). MOLRHEOSTAT aims at investigating the functional and technological implications of downhill folding. The goal is to determine whether downhill folding modules can be exploited to build conformational rheostats; that is, proteins that continuously modulate a signal or response at the single molecule level by tuning their folding conformational ensemble. Conformational rheostats could open a new realm of applications as synthetic biomolecular devices as well as regulatory mechanisms for controlling complex biochemical processes carried out by macromolecular assemblies. These ideas will be explored on two specific objectives:
1) Implementation of a general approach for building high-performance, ultrafast, single-molecule sensors based on downhill protein folding modules.
2) Analysis of the roles of conformational rheostats in the regulation of three fundamental processes in molecular biology (coordination in protein networks, DNA sliding and homing-to-target of transcription factors, and molecular springs in macromolecular assemblies).
Summary
Protein folding and function is a perfect arena towards growing the grassroots of quantitative and synthetic biology. This is so because all cellular processes controlled by proteins can ultimately be traced back to physico-chemical properties encoded in their aminoacid sequences. MOLRHEOSTAT is framed within these goals, focusing on the investigation of novel connections between protein folding and function via a multidisciplinary approach that combines experiment (single molecule spectroscopy, high-resolution NMR, protein engineering and design), theory and computer simulations.
Conventionally, proteins are portrayed as conformational switches that fold and function by flipping between an on-state (native, active) and an off-state (inactive, unfolded) in response to stimuli. However, last years have witnessed the discovery of protein modules that undergo continuous conformational changes upon unfolding (downhill folding). MOLRHEOSTAT aims at investigating the functional and technological implications of downhill folding. The goal is to determine whether downhill folding modules can be exploited to build conformational rheostats; that is, proteins that continuously modulate a signal or response at the single molecule level by tuning their folding conformational ensemble. Conformational rheostats could open a new realm of applications as synthetic biomolecular devices as well as regulatory mechanisms for controlling complex biochemical processes carried out by macromolecular assemblies. These ideas will be explored on two specific objectives:
1) Implementation of a general approach for building high-performance, ultrafast, single-molecule sensors based on downhill protein folding modules.
2) Analysis of the roles of conformational rheostats in the regulation of three fundamental processes in molecular biology (coordination in protein networks, DNA sliding and homing-to-target of transcription factors, and molecular springs in macromolecular assemblies).
Max ERC Funding
2 290 319 €
Duration
Start date: 2013-05-01, End date: 2018-04-30
Project acronym MOOSE
Project Molecular Mechanism of Oxygen Sensing by Enzymes
Researcher (PI) Christopher Joseph Schofield
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Advanced Grant (AdG), LS1, ERC-2008-AdG
Summary The hypoxic response in humans is regulated by enzymes that catalyse the post-translational hydroxylation of hypoxia inducible factor (HIF). Prolyl-hydroxylation signals for HIF-alpha degradation whilst asparaginyl-hydroxylation blocks the transcriptional activity of HIF. The absolute requirement of the HIF hydroxylases for oxygen enables them to act as hypoxia sensors. The overall goal of the proposed programme is to capitalize on recent advances in this field arising from the joint Schofield and Ratcliffe laboratories, in a multidisciplinary chemistry-biology approach aimed at opening new horizons both for the basic molecular understanding, and for the therapeutic manipulation, of the human transcriptional response to hypoxia. The specific objectives of the proposed programme will be pursued via defined and syngergistic work packages and include (i) To develop and apply state-of-the-art methods for monitoring oxygen-dependant hydroxylation within cells that will enable us to examine the role of the hydroxylases as signal integration points for redox factors; (ii) To define the existence and nature of the structural and kinetic features that underpin the physiological function of HIF hydroxylases in oxygen homeostasis; (iii) To define the extent and biological roles of post-translational hydroxylation in human cells; (iv) To develop novel templates for selective inhibition and activation of individual human HIF hydroxylases. We will follow a multidisciplinary approach ranging from kinetic and high-resolution structural analyses on the hydroxylases to studies in animal cells. We aim that the results will not only be of use in ongoing pharmaceutical attempts to modulate the natural hypoxic response for the treatment of ischemic disease and cancer, but will serve as a paradigm for biomedicinal analyses of signalling systems.
Summary
The hypoxic response in humans is regulated by enzymes that catalyse the post-translational hydroxylation of hypoxia inducible factor (HIF). Prolyl-hydroxylation signals for HIF-alpha degradation whilst asparaginyl-hydroxylation blocks the transcriptional activity of HIF. The absolute requirement of the HIF hydroxylases for oxygen enables them to act as hypoxia sensors. The overall goal of the proposed programme is to capitalize on recent advances in this field arising from the joint Schofield and Ratcliffe laboratories, in a multidisciplinary chemistry-biology approach aimed at opening new horizons both for the basic molecular understanding, and for the therapeutic manipulation, of the human transcriptional response to hypoxia. The specific objectives of the proposed programme will be pursued via defined and syngergistic work packages and include (i) To develop and apply state-of-the-art methods for monitoring oxygen-dependant hydroxylation within cells that will enable us to examine the role of the hydroxylases as signal integration points for redox factors; (ii) To define the existence and nature of the structural and kinetic features that underpin the physiological function of HIF hydroxylases in oxygen homeostasis; (iii) To define the extent and biological roles of post-translational hydroxylation in human cells; (iv) To develop novel templates for selective inhibition and activation of individual human HIF hydroxylases. We will follow a multidisciplinary approach ranging from kinetic and high-resolution structural analyses on the hydroxylases to studies in animal cells. We aim that the results will not only be of use in ongoing pharmaceutical attempts to modulate the natural hypoxic response for the treatment of ischemic disease and cancer, but will serve as a paradigm for biomedicinal analyses of signalling systems.
Max ERC Funding
3 000 000 €
Duration
Start date: 2009-03-01, End date: 2014-02-28
Project acronym MUNCODD
Project Role of long non coding RNA in muscle differentiation and disease
Researcher (PI) Irene Bozzoni
Host Institution (HI) UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA
Call Details Advanced Grant (AdG), LS1, ERC-2013-ADG
Summary "The field of interest applies to the study of muscle differentiation and disease. The main objective of this project is to deepen our knowledge on the molecular networks controlling normal muscle differentiation, and to identify their alteration in pathology. The state of art in this field is thoroughly advanced since well-established master regulators (transcriptional factors and miRNAs) have been deeply characterized and integrated in regulatory circuitries controlling muscle development and differentiation. However, recent discoveries point to the hierarchically relevant role of a previously disregarded class of transcripts, named long non-coding RNAs (lncRNAs), in the control of gene expression.
Therefore, a major objective of this project is to re-evaluate and re-design established molecular circuitries known to control muscle differentiation in the light of the contribution of this complex class of transcripts. In more general terms, the project will shed light on the biogenesis and function of lncRNAs and how they contribute to cellular and organismal biology.
This is a very new and innovative field of research that holds promise for a significant increase in our understanding of basic molecular processes and should constitute a vast and largely unexplored territory for the development of novel therapeutics and diagnostics."
Summary
"The field of interest applies to the study of muscle differentiation and disease. The main objective of this project is to deepen our knowledge on the molecular networks controlling normal muscle differentiation, and to identify their alteration in pathology. The state of art in this field is thoroughly advanced since well-established master regulators (transcriptional factors and miRNAs) have been deeply characterized and integrated in regulatory circuitries controlling muscle development and differentiation. However, recent discoveries point to the hierarchically relevant role of a previously disregarded class of transcripts, named long non-coding RNAs (lncRNAs), in the control of gene expression.
Therefore, a major objective of this project is to re-evaluate and re-design established molecular circuitries known to control muscle differentiation in the light of the contribution of this complex class of transcripts. In more general terms, the project will shed light on the biogenesis and function of lncRNAs and how they contribute to cellular and organismal biology.
This is a very new and innovative field of research that holds promise for a significant increase in our understanding of basic molecular processes and should constitute a vast and largely unexplored territory for the development of novel therapeutics and diagnostics."
Max ERC Funding
2 000 000 €
Duration
Start date: 2014-07-01, End date: 2019-06-30
Project acronym NANO-MEMEC
Project Membrane-based nano-mechanobiology: Role of mechanical forces in remodelling the spatiotemporal nanoarchitecture of the plasma membrane
Researcher (PI) María Filomena García Parajo
Host Institution (HI) FUNDACIO INSTITUT DE CIENCIES FOTONIQUES
Call Details Advanced Grant (AdG), LS1, ERC-2017-ADG
Summary Through evolution, cells have developed the exquisite ability to sense, transduce and integrate mechanical and biochemical signals (i.e. mechanobiology) to generate appropriate responses. These key events are rooted at the molecular and nanoscale levels, a size regime difficult to access, hindering our progress towards mechanistic understanding of mechanobiology. Recent evidence from my Lab (and others) shows that the lateral nanoscale organisation of mechanosensitive membrane receptors and signalling molecules is crucial for cell function. Yet, current models of mechanosensing are based on force-induced molecular conformations, completely overlooking the chief role of mechanical forces on the nanoscale spatiotemporal organisation of the plasma membrane.
The GOAL of NANO-MEMEC is to provide mechanistic understanding on the role of mechanical stimuli in the spatiotemporal nanoarchitecture of adhesion signalling platforms at the cell membrane. To overcome the technical challenges of probing these processes at the relevant spatiotemporal scales, I will exploit cuttingedge biophysical tools exclusively developed in my Lab that combine super-resolution optical nanoscopy and single molecule dynamics in conjunction with simultaneous mechanical stimulation of living cells. Using this integrated approach, I will: First: dissect mechanical and biochemical coupling of membrane mechanosensing at the nanoscale. Second: visualise the coordinated recruitment of integrin-associated signalling proteins in response to force, i.e., mechanotransduction. Third: test how force-induced spatiotemporal membrane remodelling influences the migratory capacity of immune cells, i.e., mechanoresponse. NANO-MEMEC conveys a new fundamental concept to the field of mechanobiology: the roles of mechanical stimuli in the
dynamic remodelling of membrane nanocompartments, modulating signal transduction and ultimately affecting cell response, opening new-fangled research avenues in the years to come.
Summary
Through evolution, cells have developed the exquisite ability to sense, transduce and integrate mechanical and biochemical signals (i.e. mechanobiology) to generate appropriate responses. These key events are rooted at the molecular and nanoscale levels, a size regime difficult to access, hindering our progress towards mechanistic understanding of mechanobiology. Recent evidence from my Lab (and others) shows that the lateral nanoscale organisation of mechanosensitive membrane receptors and signalling molecules is crucial for cell function. Yet, current models of mechanosensing are based on force-induced molecular conformations, completely overlooking the chief role of mechanical forces on the nanoscale spatiotemporal organisation of the plasma membrane.
The GOAL of NANO-MEMEC is to provide mechanistic understanding on the role of mechanical stimuli in the spatiotemporal nanoarchitecture of adhesion signalling platforms at the cell membrane. To overcome the technical challenges of probing these processes at the relevant spatiotemporal scales, I will exploit cuttingedge biophysical tools exclusively developed in my Lab that combine super-resolution optical nanoscopy and single molecule dynamics in conjunction with simultaneous mechanical stimulation of living cells. Using this integrated approach, I will: First: dissect mechanical and biochemical coupling of membrane mechanosensing at the nanoscale. Second: visualise the coordinated recruitment of integrin-associated signalling proteins in response to force, i.e., mechanotransduction. Third: test how force-induced spatiotemporal membrane remodelling influences the migratory capacity of immune cells, i.e., mechanoresponse. NANO-MEMEC conveys a new fundamental concept to the field of mechanobiology: the roles of mechanical stimuli in the
dynamic remodelling of membrane nanocompartments, modulating signal transduction and ultimately affecting cell response, opening new-fangled research avenues in the years to come.
Max ERC Funding
2 212 063 €
Duration
Start date: 2018-12-01, End date: 2023-11-30
Project acronym NCB-TNT
Project New chemical biology for tailoring novel therapeutics
Researcher (PI) James Henderson Naismith
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Advanced Grant (AdG), LS1, ERC-2013-ADG
Summary Most of our drugs derive from natural products, many more natural products possess biological activity but our inability to synthesise novel analogues hampers our ability to use them either as tools or medicines. Cyclic peptides are common structural motifs in natural products and medicines (vancomycin, gramicidin). They are widely recognised to constitute a promising and still underexploited class of molecule for novel therapeutics; specifically an important role for cyclic peptides in the inhibition of protein-protein interactions has been demonstrated. We will harness the power of the recently identified macrocyclases from the ribosomally-derived cyanobactin superfamily to prepare diverse modified cyclic peptides. These enzymes exhibit the remarkable ability to macrocyclise unactivated peptide substrates. Different members of this family of macrocyclases process peptides into macrocycles containing from six up to twenty residues. We have characterised and re-engineered one member of the family (PatG) which makes eight residue macrocycles. We will determine the structural and biochemical features of the macrocyclases that are known to lead to six or to twenty residue macrocycles. We will use these insights to put these enzymes to work in novel chemical reactions. We will combine macrocyclases with other enzymes from the cyanobactin biosynthetic pathways (whose structures and mechanism we have largely determined) and work on solid phase peptide substrates. By bringing together the power of solid phase methods (split and pool) and the novel chemistry enabled by the enzymes, we will generate highly diverse macrocyclic scaffolds containing amino acids, enzymatically modified amino acids, non-natural amino acids and non-amino acid building blocks. Successful completion of the project will revolutionise the design of cyclic peptide-inspired libraries with diverse backbone scaffolds for applications in target identification, drug discovery and tool screening.
Summary
Most of our drugs derive from natural products, many more natural products possess biological activity but our inability to synthesise novel analogues hampers our ability to use them either as tools or medicines. Cyclic peptides are common structural motifs in natural products and medicines (vancomycin, gramicidin). They are widely recognised to constitute a promising and still underexploited class of molecule for novel therapeutics; specifically an important role for cyclic peptides in the inhibition of protein-protein interactions has been demonstrated. We will harness the power of the recently identified macrocyclases from the ribosomally-derived cyanobactin superfamily to prepare diverse modified cyclic peptides. These enzymes exhibit the remarkable ability to macrocyclise unactivated peptide substrates. Different members of this family of macrocyclases process peptides into macrocycles containing from six up to twenty residues. We have characterised and re-engineered one member of the family (PatG) which makes eight residue macrocycles. We will determine the structural and biochemical features of the macrocyclases that are known to lead to six or to twenty residue macrocycles. We will use these insights to put these enzymes to work in novel chemical reactions. We will combine macrocyclases with other enzymes from the cyanobactin biosynthetic pathways (whose structures and mechanism we have largely determined) and work on solid phase peptide substrates. By bringing together the power of solid phase methods (split and pool) and the novel chemistry enabled by the enzymes, we will generate highly diverse macrocyclic scaffolds containing amino acids, enzymatically modified amino acids, non-natural amino acids and non-amino acid building blocks. Successful completion of the project will revolutionise the design of cyclic peptide-inspired libraries with diverse backbone scaffolds for applications in target identification, drug discovery and tool screening.
Max ERC Funding
2 499 991 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym Nedd8Activate
Project How does the ubiquitin-like protein NEDD8 activate ubiquitin ligase machineries?
Researcher (PI) Brenda Schulman
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Advanced Grant (AdG), LS1, ERC-2017-ADG
Summary Post-translational modification by ubiquitin and ubiquitin-like proteins (UBLs) is a major eukaryotic regulatory mechanism. Nonetheless, we have little understanding of the detailed mechanisms by which most E3 ligases mark specific targets with monoubiquitin, multiple ubiquitins or specific polyubiquitin chains, or of how UBL modifications transform the functions of their targets. This proposal addresses both problems. First, we will discover the structural mechanisms by which the UBL NEDD8 (58% identical to ubiquitin) activates numerous distinct functions of its targets, which are cullin subunits of cullin-RING E3 ubiquitin ligases (CRLs). Second, we will take a tour-de-force structural, biochemical, and molecular cell biological approach to determine how NEDD8-activated E3 ligases regulate their substrates. Because CRLs form nearly half of all E3 ligases, and as we recently discovered, neddylated CRLs act in part by activating monoubiquitylation by another family of E3 ligases (Ariadne-family RBR E3s), the proposed studies will establish paradigms for a major fraction of ubiquitylating enzymes. To achieve these goals, we will devise novel chemical biology tools to capture fleeting assemblies that typically only occur during chemical reactions, and visualize structures of neddylated CRLs “in action” by cryo EM. We will generate a resource of novel reagents that detect, label, and affinity purify activated forms of E3 ligases to temporally track their interactions during pathways they regulate in cells. And we will define the mechanisms and structures of a class of atypical, disease-associated giant E3 ligases whose domains and interacting partners are so peculiar that their activities remain elusive. Overall, we will comprehensively define how a UBL directly regulates its targets, and how two major E3 ligase families mediate regulation.
Summary
Post-translational modification by ubiquitin and ubiquitin-like proteins (UBLs) is a major eukaryotic regulatory mechanism. Nonetheless, we have little understanding of the detailed mechanisms by which most E3 ligases mark specific targets with monoubiquitin, multiple ubiquitins or specific polyubiquitin chains, or of how UBL modifications transform the functions of their targets. This proposal addresses both problems. First, we will discover the structural mechanisms by which the UBL NEDD8 (58% identical to ubiquitin) activates numerous distinct functions of its targets, which are cullin subunits of cullin-RING E3 ubiquitin ligases (CRLs). Second, we will take a tour-de-force structural, biochemical, and molecular cell biological approach to determine how NEDD8-activated E3 ligases regulate their substrates. Because CRLs form nearly half of all E3 ligases, and as we recently discovered, neddylated CRLs act in part by activating monoubiquitylation by another family of E3 ligases (Ariadne-family RBR E3s), the proposed studies will establish paradigms for a major fraction of ubiquitylating enzymes. To achieve these goals, we will devise novel chemical biology tools to capture fleeting assemblies that typically only occur during chemical reactions, and visualize structures of neddylated CRLs “in action” by cryo EM. We will generate a resource of novel reagents that detect, label, and affinity purify activated forms of E3 ligases to temporally track their interactions during pathways they regulate in cells. And we will define the mechanisms and structures of a class of atypical, disease-associated giant E3 ligases whose domains and interacting partners are so peculiar that their activities remain elusive. Overall, we will comprehensively define how a UBL directly regulates its targets, and how two major E3 ligase families mediate regulation.
Max ERC Funding
2 193 871 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym NEXTGENBIM
Project NEXT-GENERATION BUILDING INFORMATION MODELING TO SUPPORT EVALUATION OF HUMAN BEHAVIOR IN BUILT ENVIRONMENTS
Researcher (PI) Yehuda Kalay
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Advanced Grant (AdG), SH3, ERC-2013-ADG
Summary This proposal argues that current building modeling tools, including popular BIM (Building Information Modeling) systems, provide a poor, inadequate representation of buildings: they represent only the physical and material characteristics of buildings. Buildings, unlike other products, cannot be understood independently of their context, of their intended use, and of their intended users.
This shortcoming hinders the ability of current building models to support evaluations other than those based on physical and material characteristics of the building, such as lighting, energy consumption, and structural stability. In particular, the impact of a building that has not yet been built on the life and activities of its future users—a key element in determining whether or not the proposed building will meet the needs of its intended users—is not afforded by current building models. To afford comprehensive prediction and evaluation of future buildings, we also need to model the purpose and function of the building, and the social, cultural, and economic profile of the people who will use it.
Although predicting users' behavior in a built environment and their interaction with the building and with other people is a highly complex task, vast research exists that is devoted to analyzing and explaining human behavior in built environments. Still, due to the shortcomings of building models, this knowledge rarely make into the practice of architectural design, at the time buildings are being designed.
The proposed research aims at remedying that shortcoming by developing a more a comprehensive building modeling method, which will include form, function, and use information. A better model will lead to better designed buildings. In an era when the irrevocable impact of the built environment on the cost, quality, and perhaps even possibility of life on earth has been recognized, the need to make every effort to improve the tools used by building designers is self-evident.
Summary
This proposal argues that current building modeling tools, including popular BIM (Building Information Modeling) systems, provide a poor, inadequate representation of buildings: they represent only the physical and material characteristics of buildings. Buildings, unlike other products, cannot be understood independently of their context, of their intended use, and of their intended users.
This shortcoming hinders the ability of current building models to support evaluations other than those based on physical and material characteristics of the building, such as lighting, energy consumption, and structural stability. In particular, the impact of a building that has not yet been built on the life and activities of its future users—a key element in determining whether or not the proposed building will meet the needs of its intended users—is not afforded by current building models. To afford comprehensive prediction and evaluation of future buildings, we also need to model the purpose and function of the building, and the social, cultural, and economic profile of the people who will use it.
Although predicting users' behavior in a built environment and their interaction with the building and with other people is a highly complex task, vast research exists that is devoted to analyzing and explaining human behavior in built environments. Still, due to the shortcomings of building models, this knowledge rarely make into the practice of architectural design, at the time buildings are being designed.
The proposed research aims at remedying that shortcoming by developing a more a comprehensive building modeling method, which will include form, function, and use information. A better model will lead to better designed buildings. In an era when the irrevocable impact of the built environment on the cost, quality, and perhaps even possibility of life on earth has been recognized, the need to make every effort to improve the tools used by building designers is self-evident.
Max ERC Funding
1 629 370 €
Duration
Start date: 2013-12-01, End date: 2018-11-30
Project acronym NOVRIB
Project Novel Insights into Multi-drug Resistance to Antibiotics and the Primordial Ribosome
Researcher (PI) Ada Yonath
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Advanced Grant (AdG), LS1, ERC-2012-ADG_20120314
Summary Multi-drug resistant phenotype formation creates global severe clinical threat among the most important challenges facing medicine today, dictating an urgent need for novel approaches. We aim to reveal the scope and mechanisms of resistance in pathogens, by studies that have not been pursued so far worldwide. In parallel we initiated innovative research towards understanding the ribosome origin, aiming at illuminating the transition from the primordial RNA world to the contemporary coded translation era, alongside exploring new targets and providing useful clues for antibiotics design. We base our interdisciplinary objectives on our discoveries originating from the ribosomes high resolution structures, the results of our pioneering efforts and subsequent perseverance.
By revealing unique properties of genuine pathogens that facilitate their exclusive resistance pathways,instead of depending solely on benign eubacterial models, we expect to gain matchless new insights. As no crystals of ribosomes from pathogens are available, we have initiated crystallographic studies, and present here preliminary results on two pathogenic life threatening bacteria, Staphylococcus aureus (associated with MRSA resistance) and Mycobacterium tuberculosis via Mycobacterium smegmatis that serve as its medical diagnostic tool. We also aim at experimentally defining the intra-ribosome region suggested by us to be a vestige of a prebiotic apparatus (proto-ribosome) by designing autonomous molecular entities with catalytic capabilities. Constructs the bind substrates have already been obtained. The expected enhancement in understanding peptide bond formation should lead to novel insights into this universal essential process. Our studies are designed to provide unprecedentedly powerful new tools for minimizing pathogens resistance thus should be of immense therapeutic relevance & will open up new horizons for researchers seeking response to challenges of the increasing antibiotic resistance.
Summary
Multi-drug resistant phenotype formation creates global severe clinical threat among the most important challenges facing medicine today, dictating an urgent need for novel approaches. We aim to reveal the scope and mechanisms of resistance in pathogens, by studies that have not been pursued so far worldwide. In parallel we initiated innovative research towards understanding the ribosome origin, aiming at illuminating the transition from the primordial RNA world to the contemporary coded translation era, alongside exploring new targets and providing useful clues for antibiotics design. We base our interdisciplinary objectives on our discoveries originating from the ribosomes high resolution structures, the results of our pioneering efforts and subsequent perseverance.
By revealing unique properties of genuine pathogens that facilitate their exclusive resistance pathways,instead of depending solely on benign eubacterial models, we expect to gain matchless new insights. As no crystals of ribosomes from pathogens are available, we have initiated crystallographic studies, and present here preliminary results on two pathogenic life threatening bacteria, Staphylococcus aureus (associated with MRSA resistance) and Mycobacterium tuberculosis via Mycobacterium smegmatis that serve as its medical diagnostic tool. We also aim at experimentally defining the intra-ribosome region suggested by us to be a vestige of a prebiotic apparatus (proto-ribosome) by designing autonomous molecular entities with catalytic capabilities. Constructs the bind substrates have already been obtained. The expected enhancement in understanding peptide bond formation should lead to novel insights into this universal essential process. Our studies are designed to provide unprecedentedly powerful new tools for minimizing pathogens resistance thus should be of immense therapeutic relevance & will open up new horizons for researchers seeking response to challenges of the increasing antibiotic resistance.
Max ERC Funding
2 487 989 €
Duration
Start date: 2013-02-01, End date: 2018-01-31