Project acronym Epiherigans
Project Writing, reading and managing stress with H3K9me
Researcher (PI) Susan GASSER
Host Institution (HI) FRIEDRICH MIESCHER INSTITUTE FOR BIOMEDICAL RESEARCH FONDATION
Call Details Advanced Grant (AdG), LS2, ERC-2016-ADG
Summary Epigenetic inheritance is the transmission of information, generally in the form of DNA methylation or post-translational modifications on histones that regulate the availability of underlying genetic information for transcription. RNA itself feeds back to contribute to histone modification. Sequence accessibility is both a matter of folding the chromatin fibre to alter access to recognition motifs, and the local concentration of factors needed for efficient transcriptional initiation, elongation, termination or mRNA stability. In heterochromatin we find a subset of regulatory factors in carefully balanced concentrations that are maintained in part by the segregation of active and inactive domains. Histone H3 K9 methylation is key to this compartmentation.
C. elegans provides an ideal system in which to study chromatin-based gene repression. We have demonstrated that histone H3 K9 methylation is the essential signal for the sequestration of heterochromatin at the nuclear envelope in C. elegans. The recognition of H3K9me1/2/3 by an inner nuclear envelope-bound chromodomain protein, CEC-4, actively sequesters heterochromatin in embryos, and contributes redundantly in adult tissues.
Epiherigans has the ambitious goal to determine definitively what targets H3K9 methylation, and identify its physiological roles. We will examine how this mark contributes to the epigenetic recognition of repeat vs non-repeat sequence, and mediates a stress-induced response to oxidative damage. We will examine the link between these and the spatial clustering of heterochromatic domains. Epiherigans will develop an integrated approach to identify in vivo the factors that distinguish repeats from non-repeats, self from non-self within genomes and will examine how H3K9me contributes to a persistent ROS or DNA damage stress response. It represents a crucial step towards understanding of how our genomes use heterochromatin to modulate, stabilize and transmit chromatin organization.
Summary
Epigenetic inheritance is the transmission of information, generally in the form of DNA methylation or post-translational modifications on histones that regulate the availability of underlying genetic information for transcription. RNA itself feeds back to contribute to histone modification. Sequence accessibility is both a matter of folding the chromatin fibre to alter access to recognition motifs, and the local concentration of factors needed for efficient transcriptional initiation, elongation, termination or mRNA stability. In heterochromatin we find a subset of regulatory factors in carefully balanced concentrations that are maintained in part by the segregation of active and inactive domains. Histone H3 K9 methylation is key to this compartmentation.
C. elegans provides an ideal system in which to study chromatin-based gene repression. We have demonstrated that histone H3 K9 methylation is the essential signal for the sequestration of heterochromatin at the nuclear envelope in C. elegans. The recognition of H3K9me1/2/3 by an inner nuclear envelope-bound chromodomain protein, CEC-4, actively sequesters heterochromatin in embryos, and contributes redundantly in adult tissues.
Epiherigans has the ambitious goal to determine definitively what targets H3K9 methylation, and identify its physiological roles. We will examine how this mark contributes to the epigenetic recognition of repeat vs non-repeat sequence, and mediates a stress-induced response to oxidative damage. We will examine the link between these and the spatial clustering of heterochromatic domains. Epiherigans will develop an integrated approach to identify in vivo the factors that distinguish repeats from non-repeats, self from non-self within genomes and will examine how H3K9me contributes to a persistent ROS or DNA damage stress response. It represents a crucial step towards understanding of how our genomes use heterochromatin to modulate, stabilize and transmit chromatin organization.
Max ERC Funding
2 500 000 €
Duration
Start date: 2017-06-01, End date: 2022-05-31
Project acronym FRONTIERS OF RNAI-II
Project High resolution and chemical genetic approaches to RNA silencing mechanisms
Researcher (PI) Olivier Robert Georges Voinnet
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Advanced Grant (AdG), LS2, ERC-2012-ADG_20120314
Summary In eukaryotes, silencing small (s)RNAs, including micro (mi)RNAs and small interfering (si)RNAs, regulate many aspects of biology, including cell differentiation, development, hormonal responses, or defense. In particular, many plant and metazoan miRNAs play crucial roles in embryonic/post-embryonic development; the precise timing and localization of their expression is thus crucial to their action. Hence, specific miRNA repertoires underlie specific cell identities, and deviations from such repertoires often have deleterious consequences such as cancer. Many miRNAs also help organisms to adapt to stress, thus, given their importance in virtually all aspects of biology, understanding how, when and where miRNAs exert their actions is of paramount importance. To date, however, the few approaches to miRNA-mediated silencing in whole organisms have not taken into account the exquisite definition, in space and time, of their biogenesis and action, leading to an inaccurate view of the biology of these molecules at the systems level.
Using the root system of the model plant Arabidopsis thaliana, we propose to explore, at single-cell and subcellular resolution levels, the biology of the main miRNA effector protein, ARGONAUTE 1 (AGO1) in intact tissues. Using a combination of state-of the-art technologies for single-cell forward genetics, protein purification and RNA/polysome profiling, we will establish a functional spatiotemporal map of the root AGO1-sRNAome and identify cell-specific modifiers of sRNA biogenesis and action. As a complement to the above approaches, chemical genetics will isolate small molecules allowing direct and specific manipulation of AGO1-dependent sRNA pathways in planta. RNA silencing modifier compounds will also accelerate forward and reverse approaches of RNA silencing in plants with sensitized genetic backgrounds, and uncover novel connections between miRNA/siRNA and physiological or metabolic pathways.
Summary
In eukaryotes, silencing small (s)RNAs, including micro (mi)RNAs and small interfering (si)RNAs, regulate many aspects of biology, including cell differentiation, development, hormonal responses, or defense. In particular, many plant and metazoan miRNAs play crucial roles in embryonic/post-embryonic development; the precise timing and localization of their expression is thus crucial to their action. Hence, specific miRNA repertoires underlie specific cell identities, and deviations from such repertoires often have deleterious consequences such as cancer. Many miRNAs also help organisms to adapt to stress, thus, given their importance in virtually all aspects of biology, understanding how, when and where miRNAs exert their actions is of paramount importance. To date, however, the few approaches to miRNA-mediated silencing in whole organisms have not taken into account the exquisite definition, in space and time, of their biogenesis and action, leading to an inaccurate view of the biology of these molecules at the systems level.
Using the root system of the model plant Arabidopsis thaliana, we propose to explore, at single-cell and subcellular resolution levels, the biology of the main miRNA effector protein, ARGONAUTE 1 (AGO1) in intact tissues. Using a combination of state-of the-art technologies for single-cell forward genetics, protein purification and RNA/polysome profiling, we will establish a functional spatiotemporal map of the root AGO1-sRNAome and identify cell-specific modifiers of sRNA biogenesis and action. As a complement to the above approaches, chemical genetics will isolate small molecules allowing direct and specific manipulation of AGO1-dependent sRNA pathways in planta. RNA silencing modifier compounds will also accelerate forward and reverse approaches of RNA silencing in plants with sensitized genetic backgrounds, and uncover novel connections between miRNA/siRNA and physiological or metabolic pathways.
Max ERC Funding
2 251 600 €
Duration
Start date: 2013-07-01, End date: 2018-06-30
Project acronym GameofGates
Project Solute carrier proteins as the gates managing chemical access to cells
Researcher (PI) Giulio SUPERTI-FURGA
Host Institution (HI) CEMM - FORSCHUNGSZENTRUM FUER MOLEKULARE MEDIZIN GMBH
Call Details Advanced Grant (AdG), LS2, ERC-2015-AdG
Summary Chemical exchange between cells and their environment occurs at cellular membranes, the interface where biology meets chemistry. Studying mechanisms of drug resistance, I realized that SoLute Carrier proteins (SLCs), not only represent the major class of small molecule transporters, but that they are encoded by one of the most neglected group of human genes. I identified a case where an SLC controls the activity of mTOR, suggesting that other SLCs may be involved in signalling. This formed the basis for the GameofGates project proposal. The name refers to SLCs as a metaphor for cellular gates coordinating access to resources following game rules that are largely unknown but worth learning, as the acquired knowledge could impact our understanding of cellular physiology and open avenues for innovative treatment of human diseases.
GameofGates (GoG) plans the investigation of SLC function by comprehensively and deeply charting the genetic and protein interaction landscape of SLCs in a human cell line, while monitoring fitness, drug sensitivity and metabolic state. GoG aims at functionally de-orphanize many SLCs by assessing hundreds of thousands of genetic interactions as well as thousands protein and drug interactions. I hypothesize that SLC action is linked to signalling pathways and plays an important role in integration of metabolism and cell regulation for successful homeostasis. I propose that whole circuits of SLCs may be linked to particular nutrient auxotrophy states and that knowledge of these dependencies could instruct assessment of vulnerabilities in cancer cells. In turn, these could be pharmacologically exploited using existing or future drugs. Overall, GoG should position enough pieces into functional and regulatory networks in the SLC puzzle game to facilitate future work and motivate the community to embrace investigation of SLCs as conveyers of metabolic and chemical integration of cell biology with physiology and, in a wider scope, ecology.
Summary
Chemical exchange between cells and their environment occurs at cellular membranes, the interface where biology meets chemistry. Studying mechanisms of drug resistance, I realized that SoLute Carrier proteins (SLCs), not only represent the major class of small molecule transporters, but that they are encoded by one of the most neglected group of human genes. I identified a case where an SLC controls the activity of mTOR, suggesting that other SLCs may be involved in signalling. This formed the basis for the GameofGates project proposal. The name refers to SLCs as a metaphor for cellular gates coordinating access to resources following game rules that are largely unknown but worth learning, as the acquired knowledge could impact our understanding of cellular physiology and open avenues for innovative treatment of human diseases.
GameofGates (GoG) plans the investigation of SLC function by comprehensively and deeply charting the genetic and protein interaction landscape of SLCs in a human cell line, while monitoring fitness, drug sensitivity and metabolic state. GoG aims at functionally de-orphanize many SLCs by assessing hundreds of thousands of genetic interactions as well as thousands protein and drug interactions. I hypothesize that SLC action is linked to signalling pathways and plays an important role in integration of metabolism and cell regulation for successful homeostasis. I propose that whole circuits of SLCs may be linked to particular nutrient auxotrophy states and that knowledge of these dependencies could instruct assessment of vulnerabilities in cancer cells. In turn, these could be pharmacologically exploited using existing or future drugs. Overall, GoG should position enough pieces into functional and regulatory networks in the SLC puzzle game to facilitate future work and motivate the community to embrace investigation of SLCs as conveyers of metabolic and chemical integration of cell biology with physiology and, in a wider scope, ecology.
Max ERC Funding
2 389 782 €
Duration
Start date: 2016-10-01, End date: 2021-09-30
Project acronym HUCNC
Project Conserved Non-Coding Sequences; function, variability and phenotypic consequences
Researcher (PI) Stylianos Antonarakis
Host Institution (HI) UNIVERSITE DE GENEVE
Call Details Advanced Grant (AdG), LS2, ERC-2009-AdG
Summary Comparative genomics revealed that ~5% of the human genome is conserved among mammals. This fraction is likely functional, and could harbor pathogenic mutations. We have shown (Nature 2002, Science 2003) that more than half of the constrained fraction of the genome consists of Conserved Non-Coding sequences (CNCs). Model organisms provided evidence for enhancer activity for a fraction of CNCs; in addition another fraction is part of large non-coding RNAs (lincRNA). However, the function of the majority of CNCs is unknown. Importantly, a few pathogenic mutations in CNCs have been associated with genetic disorders. We propose to i) perform functional analysis of CNCs, and ii) identify the spectrum of pathogenic CNC mutations in recognizable human phenotypes. The aims are: 1. Functional genomic connectivity of CNCs 1a. Use 4C in CNCs in various cell types and determine their physical genomic interactions. 1b. Perform targeted disruption of CNCs in cells and assess the functional outcomes. 2. Pathogenic variation of CNCs 2a. Assess the common variation in CNCs: i) common deletion/insertions in 350 samples by aCGH of all human CNCs; ii) common SNP/small indels using DNA selection and High Throughput Sequencing (HTS) of CNCs in 100 samples. 2b. Identify likely pathogenic mutations in developmental syndromes. Search for i) large deletions and duplications of CNCs using aCGH in 1500 samples with malformation syndromes, 1000 from spontaneous abortions, and 500 with X-linked mental retardation; and ii) point mutations in these samples by targeted HTS. The distinction between pathogenic and non-pathogenic variants is difficult, and we propose approaches to meet the challenge. 3. Genetic control (cis and trans eQTLs) of expression variation of CNC lincRNAs, using 200 samples.
Summary
Comparative genomics revealed that ~5% of the human genome is conserved among mammals. This fraction is likely functional, and could harbor pathogenic mutations. We have shown (Nature 2002, Science 2003) that more than half of the constrained fraction of the genome consists of Conserved Non-Coding sequences (CNCs). Model organisms provided evidence for enhancer activity for a fraction of CNCs; in addition another fraction is part of large non-coding RNAs (lincRNA). However, the function of the majority of CNCs is unknown. Importantly, a few pathogenic mutations in CNCs have been associated with genetic disorders. We propose to i) perform functional analysis of CNCs, and ii) identify the spectrum of pathogenic CNC mutations in recognizable human phenotypes. The aims are: 1. Functional genomic connectivity of CNCs 1a. Use 4C in CNCs in various cell types and determine their physical genomic interactions. 1b. Perform targeted disruption of CNCs in cells and assess the functional outcomes. 2. Pathogenic variation of CNCs 2a. Assess the common variation in CNCs: i) common deletion/insertions in 350 samples by aCGH of all human CNCs; ii) common SNP/small indels using DNA selection and High Throughput Sequencing (HTS) of CNCs in 100 samples. 2b. Identify likely pathogenic mutations in developmental syndromes. Search for i) large deletions and duplications of CNCs using aCGH in 1500 samples with malformation syndromes, 1000 from spontaneous abortions, and 500 with X-linked mental retardation; and ii) point mutations in these samples by targeted HTS. The distinction between pathogenic and non-pathogenic variants is difficult, and we propose approaches to meet the challenge. 3. Genetic control (cis and trans eQTLs) of expression variation of CNC lincRNAs, using 200 samples.
Max ERC Funding
2 353 920 €
Duration
Start date: 2010-07-01, End date: 2015-06-30
Project acronym I-FIVE
Project Interferon-focused Innate Immunity Interactome and Inhibitome
Researcher (PI) Giulio Gino Maria Superti Furga
Host Institution (HI) CEMM - FORSCHUNGSZENTRUM FUER MOLEKULARE MEDIZIN GMBH
Call Details Advanced Grant (AdG), LS2, ERC-2009-AdG
Summary After a decade of development in model organisms and later in mammalian cells, mass spectrometry-based functional proteomics approaches have come of age and are ready to enable a systematic study of the innate immune system. We propose to cross the large-scale proteomics and innate immunity disciplines to obtain a functionally annotated map of the molecular machinery involved in viral recognition and leading to the hallmark interferon response, through a three-pronged approach: 1. Map the interactome of innate immunity proteins in macrophages to establish the network of components leading to interferon production; 2. Chart the interactions of molecular patterns, mostly nucleic acids, to identify the receptors and sensors at the non-self/self interface; 3. Study viral pathogenicity factors as molecular jammers of the anti-viral response and elucidate their mode of action to uncover critical nodes (inhibitome). Datasets are integrated and released at regular intervals with embargoed windows allowing a network of collaborators/own laboratory to do in-depth validation. New components at data intersections will be tested through loss-of-function experiments and standardized read-outs for the interferon pathway as well as genetic association with autoimmune diseases. Because of its unbiased/large scope and its cross-validating approaches, wherein the newly mapped circuitry is modeled, challenged by inducers and perturbed by viral agents, i-FIVE has the potential to promote a systems-level understanding of the interferon branch of molecular innate immunity. This insight may in turn create medical opportunities for the treatment of autoimmune disorders, septic shoc, arthritis as well as in boosting anti-viral responses.
Summary
After a decade of development in model organisms and later in mammalian cells, mass spectrometry-based functional proteomics approaches have come of age and are ready to enable a systematic study of the innate immune system. We propose to cross the large-scale proteomics and innate immunity disciplines to obtain a functionally annotated map of the molecular machinery involved in viral recognition and leading to the hallmark interferon response, through a three-pronged approach: 1. Map the interactome of innate immunity proteins in macrophages to establish the network of components leading to interferon production; 2. Chart the interactions of molecular patterns, mostly nucleic acids, to identify the receptors and sensors at the non-self/self interface; 3. Study viral pathogenicity factors as molecular jammers of the anti-viral response and elucidate their mode of action to uncover critical nodes (inhibitome). Datasets are integrated and released at regular intervals with embargoed windows allowing a network of collaborators/own laboratory to do in-depth validation. New components at data intersections will be tested through loss-of-function experiments and standardized read-outs for the interferon pathway as well as genetic association with autoimmune diseases. Because of its unbiased/large scope and its cross-validating approaches, wherein the newly mapped circuitry is modeled, challenged by inducers and perturbed by viral agents, i-FIVE has the potential to promote a systems-level understanding of the interferon branch of molecular innate immunity. This insight may in turn create medical opportunities for the treatment of autoimmune disorders, septic shoc, arthritis as well as in boosting anti-viral responses.
Max ERC Funding
1 974 022 €
Duration
Start date: 2010-04-01, End date: 2015-03-31
Project acronym MAXMAP
Project Developing maximum-resolution genotype-phenotype maps using whole-genome polymorphism data
Researcher (PI) Lars Magnus Henrik Nordborg
Host Institution (HI) GREGOR MENDEL INSTITUT FUR MOLEKULARE PFLANZENBIOLOGIE GMBH
Call Details Advanced Grant (AdG), LS2, ERC-2010-AdG_20100317
Summary Although pioneered by human geneticists as a potential solution to the challenging problem of finding the genetic basis of common human diseases, genome-wide association studies (GWAS) have, owing to advances in genotyping and sequencing technology, become an obvious general approach for studying the genetics of natural variation. They are particularly useful when inbred lines are available because once these lines have been genotyped they can be phenotyped multiple times, making it possible (as well as extremely cost-effective) to study many different traits in many different environments, while replicating the phenotypic measurements to reduce environmental noise. Here we propose to continue our groundbreaking GWAS work in the model plant Arabidopsis thaliana. We will explore the limits of the approach, moving beyond marker-trait linkage disequilibrium to full sequence information. We will carry out GWAS of important life-history traits using over 1000 inbred A. thaliana lines for which nearly complete sequence information is available. The GWAS will be complemented by linkage mapping in F2 crosses to eliminate confounding linkage disequilibrium, associations will be verified experimentally, and confirmed causal polymorphisms will be added to the model in an iterative manner in order to create an increasingly refined genotype-phenotype map.
Summary
Although pioneered by human geneticists as a potential solution to the challenging problem of finding the genetic basis of common human diseases, genome-wide association studies (GWAS) have, owing to advances in genotyping and sequencing technology, become an obvious general approach for studying the genetics of natural variation. They are particularly useful when inbred lines are available because once these lines have been genotyped they can be phenotyped multiple times, making it possible (as well as extremely cost-effective) to study many different traits in many different environments, while replicating the phenotypic measurements to reduce environmental noise. Here we propose to continue our groundbreaking GWAS work in the model plant Arabidopsis thaliana. We will explore the limits of the approach, moving beyond marker-trait linkage disequilibrium to full sequence information. We will carry out GWAS of important life-history traits using over 1000 inbred A. thaliana lines for which nearly complete sequence information is available. The GWAS will be complemented by linkage mapping in F2 crosses to eliminate confounding linkage disequilibrium, associations will be verified experimentally, and confirmed causal polymorphisms will be added to the model in an iterative manner in order to create an increasingly refined genotype-phenotype map.
Max ERC Funding
2 183 956 €
Duration
Start date: 2011-05-01, End date: 2016-04-30
Project acronym MEDEA
Project Mechanisms of Epigenetic regulation in Development, Evolution and Adaptation
Researcher (PI) Ulrich Grossniklaus
Host Institution (HI) UNIVERSITAT ZURICH
Call Details Advanced Grant (AdG), LS2, ERC-2009-AdG
Summary Over the last decade epigenetic gene regulation has become a major focus of scientific research as it was shown to play an important role in normal plant and animal development, but also in the ontogeny of human disease. A role of epigenetic processes in evolution, however, has found little general support to date. The goal of this project is to understand the complex interplay of epigenetic mechanisms in plant development and evolution. Many of the approaches we use rely on the recent advances in sequencing technologies, which allow the analysis of molecular characters at an unprecedented level and speed. To achieve our goal, we will focus on two epigenetic paradigms. In Program A, we will focus on dissecting the mechanisms of genomic imprinting at the MEDEA (MEA) locus in Arabidopsis, which we will investigate using genetic, molecular, and innovative biochemical approaches to gain a comprehensive picture of the complex interplay of various epigenetic pathways. In program B, we will analyze the role of epigenetic change in adaptation and evolution using (i) an experimental selection approach in Arabidopsis, where genome-wide analyses of epigenetic modifications have become possible, and (ii) a stable, heritable, epigenetic change occurring in Mimulus populations. In this system, an epigenetic switch of the pollinator syndrome leads to reproductive isolation and, therefore, has an effect on population structure and thus the evolutionary trajectory. These experimental systems each offer unique opportunities to shed light onto the underlying mechanisms controlling epigenetic states. In combination with the new methodologies used, these analyses promise to provide step change in our understanding of epigenetic processes at the level of genes, organisms, and populations.
Summary
Over the last decade epigenetic gene regulation has become a major focus of scientific research as it was shown to play an important role in normal plant and animal development, but also in the ontogeny of human disease. A role of epigenetic processes in evolution, however, has found little general support to date. The goal of this project is to understand the complex interplay of epigenetic mechanisms in plant development and evolution. Many of the approaches we use rely on the recent advances in sequencing technologies, which allow the analysis of molecular characters at an unprecedented level and speed. To achieve our goal, we will focus on two epigenetic paradigms. In Program A, we will focus on dissecting the mechanisms of genomic imprinting at the MEDEA (MEA) locus in Arabidopsis, which we will investigate using genetic, molecular, and innovative biochemical approaches to gain a comprehensive picture of the complex interplay of various epigenetic pathways. In program B, we will analyze the role of epigenetic change in adaptation and evolution using (i) an experimental selection approach in Arabidopsis, where genome-wide analyses of epigenetic modifications have become possible, and (ii) a stable, heritable, epigenetic change occurring in Mimulus populations. In this system, an epigenetic switch of the pollinator syndrome leads to reproductive isolation and, therefore, has an effect on population structure and thus the evolutionary trajectory. These experimental systems each offer unique opportunities to shed light onto the underlying mechanisms controlling epigenetic states. In combination with the new methodologies used, these analyses promise to provide step change in our understanding of epigenetic processes at the level of genes, organisms, and populations.
Max ERC Funding
2 496 641 €
Duration
Start date: 2010-04-01, End date: 2015-12-31
Project acronym NucleolusChromatin
Project Analysis of the nucleolus in genome organization and function
Researcher (PI) Raffaella SANTORO
Host Institution (HI) UNIVERSITAT ZURICH
Call Details Advanced Grant (AdG), LS2, ERC-2017-ADG
Summary In eukaryotic cells, the higher-order organization of genomes is functionally important to ensure correct execution of gene expression programs. For instance, as cells differentiate into specialized cell types, chromosomes undergo diverse structural and organizational changes that affect gene expression and other cellular functions. However, how this process is achieved is still poorly understood. The elucidation of the mechanisms that control the spatial architecture of the genome and its contribution to gene regulation is a key open issue in molecular biology, relevant for physiological and pathological processes.
Increasing evidence indicated that large-scale folding of chromatin may affect gene expression by locating genes to specific nuclear subcompartments that are either stimulatory or inhibitory to transcription. Nuclear periphery (NP) and nucleolus are two important nuclear landmarks where repressive chromatin domains are often located. The interaction of chromosomes with NP and nucleolus is thought to contribute to a basal chromosome architecture and genome function. However, while the role of NP in genome organization has been well documented, the function of the nucleolus remains yet elusive.
To fully understand how genome organization regulates chromatin and gene expression states, it is necessary to obtain a comprehensive functional map of genome compartmentalization. However, so far, only domains associating with NP (LADs) have been identified and characterized while nucleolar-associated domains (NADs) remained under-investigated. The aim of this project is to fill this gap by developing methods to identify and characterize NADs and analyse the role of the nucleolus in genome organization, moving toward the obtainment of a comprehensive functional map of genome compartmentalization for each cell state and providing novel insights into basic principles of genome organization and its role in gene expression and cell function that yet remain elusive.
Summary
In eukaryotic cells, the higher-order organization of genomes is functionally important to ensure correct execution of gene expression programs. For instance, as cells differentiate into specialized cell types, chromosomes undergo diverse structural and organizational changes that affect gene expression and other cellular functions. However, how this process is achieved is still poorly understood. The elucidation of the mechanisms that control the spatial architecture of the genome and its contribution to gene regulation is a key open issue in molecular biology, relevant for physiological and pathological processes.
Increasing evidence indicated that large-scale folding of chromatin may affect gene expression by locating genes to specific nuclear subcompartments that are either stimulatory or inhibitory to transcription. Nuclear periphery (NP) and nucleolus are two important nuclear landmarks where repressive chromatin domains are often located. The interaction of chromosomes with NP and nucleolus is thought to contribute to a basal chromosome architecture and genome function. However, while the role of NP in genome organization has been well documented, the function of the nucleolus remains yet elusive.
To fully understand how genome organization regulates chromatin and gene expression states, it is necessary to obtain a comprehensive functional map of genome compartmentalization. However, so far, only domains associating with NP (LADs) have been identified and characterized while nucleolar-associated domains (NADs) remained under-investigated. The aim of this project is to fill this gap by developing methods to identify and characterize NADs and analyse the role of the nucleolus in genome organization, moving toward the obtainment of a comprehensive functional map of genome compartmentalization for each cell state and providing novel insights into basic principles of genome organization and its role in gene expression and cell function that yet remain elusive.
Max ERC Funding
2 500 000 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym PROTEOMICS V3.0
Project Proteomics v3.0: Development, Implementation and Dissemination of a Third Generation Proteomics Technology
Researcher (PI) Rudolf Aebersold
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Advanced Grant (AdG), LS2, ERC-2008-AdG
Summary Quantitative proteomics is a key technology for the life sciences in general and for systems biology in particular. So far, however, technical limitations have made it impossible to analyze the complete proteome of any species. It is the general goal of this proposal to develop, implement, apply and disseminate a new proteomic strategy that has the potential to generate quantitative proteomic datasets at an unprecedented depth, throughput, accuracy and robustness. Specifically, the new technology will identify and quantify every protein in a proteome. The title of the project Proteomics v3.0 was chosen to indicate the transformation of proteomics into its third phase, after 2D gel electrophoresis and LC-MS/MS based shotgun proteomics. Proteomics v3.0 is based on two sequential steps, emulating the strategy that has been immensely successful in the genomic sciences. In the first step the proteomic space is completely mapped out to generate a proteomic resource that is akin to the genomic sequence database. In the second step rapid and accurate assays will be developed to unambiguously identify and quantify any protein of the respective proteome in a multitude of samples. These assays will be made publicly accessible to support quantitative proteomic studies in the respective species. The strategy will first be implemented and tested in the yeast S. cerevisiae. In a later stage of the project it will be extended to the more complicated human proteome and include the development of assays that also probe the state of modification, splice forms and other types of protein variants generated by a specific open reading frame. Overall, the project will transform quantitative proteomics from a highly specialized technology practiced at a high level in a few laboratories worldwide into a commodity technology accessible, in principle to every group.
Summary
Quantitative proteomics is a key technology for the life sciences in general and for systems biology in particular. So far, however, technical limitations have made it impossible to analyze the complete proteome of any species. It is the general goal of this proposal to develop, implement, apply and disseminate a new proteomic strategy that has the potential to generate quantitative proteomic datasets at an unprecedented depth, throughput, accuracy and robustness. Specifically, the new technology will identify and quantify every protein in a proteome. The title of the project Proteomics v3.0 was chosen to indicate the transformation of proteomics into its third phase, after 2D gel electrophoresis and LC-MS/MS based shotgun proteomics. Proteomics v3.0 is based on two sequential steps, emulating the strategy that has been immensely successful in the genomic sciences. In the first step the proteomic space is completely mapped out to generate a proteomic resource that is akin to the genomic sequence database. In the second step rapid and accurate assays will be developed to unambiguously identify and quantify any protein of the respective proteome in a multitude of samples. These assays will be made publicly accessible to support quantitative proteomic studies in the respective species. The strategy will first be implemented and tested in the yeast S. cerevisiae. In a later stage of the project it will be extended to the more complicated human proteome and include the development of assays that also probe the state of modification, splice forms and other types of protein variants generated by a specific open reading frame. Overall, the project will transform quantitative proteomics from a highly specialized technology practiced at a high level in a few laboratories worldwide into a commodity technology accessible, in principle to every group.
Max ERC Funding
2 400 000 €
Duration
Start date: 2009-04-01, End date: 2014-03-31
Project acronym PROTEOMICS4D
Project Proteomics 4D: The proteome in context
Researcher (PI) Rudolf Aebersold
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Advanced Grant (AdG), LS2, ERC-2014-ADG
Summary Elements operating in the context of a system generate results that are different from the simple addition of the results of each element. This notion is one of the basic tenants of systems science. In systems biology/medicine complex (disease) phenotypes arise from multiple interacting factors, specifically proteins. Yet, the biochemical and mechanistic base of complex phenotypes remain elusive.
An array of powerful genomic technologies including GWAS, WGS, transcriptomics, epigenetic analyses and proteomics have identified numerous factors that contribute to complex phenotypes. It can be expected that over the next few years, genetic factors contributing to specific complex phenotypes will be comprehensively identified, while their interactions will remain elusive.
The project “Proteomics 4D: The proteome in context “explores the concept, that complex phenotypes arise from the perturbation of modules of interacting proteins and that these modules integrate seemingly independent genomic variants into a single biochemical response. We will develop and apply a generic technology to directly measure the composition, topology and structure of wild type and genetically perturbed protein modules and relate structural changes to their functional output.
This will be achieved by a the integration of quantitative proteomic and phosphoproteomic technologies determining molecular phenotypes, and hybrid structural methods consisting of chemical cross-linking and mass spectrometry, cryoEM and computational data integration to probe structural perturbations.
The project will focus initially on the structural and functional effects of cancer associated mutations in protein kinase modules and then generalize to study perturbed modules in any tissue and disease state. The resources supporting this technology will be disseminated to catalyze a broad transformation of biology and molecular medicine towards the analysis of the proteome as a modular entity, the proteome in context.
Summary
Elements operating in the context of a system generate results that are different from the simple addition of the results of each element. This notion is one of the basic tenants of systems science. In systems biology/medicine complex (disease) phenotypes arise from multiple interacting factors, specifically proteins. Yet, the biochemical and mechanistic base of complex phenotypes remain elusive.
An array of powerful genomic technologies including GWAS, WGS, transcriptomics, epigenetic analyses and proteomics have identified numerous factors that contribute to complex phenotypes. It can be expected that over the next few years, genetic factors contributing to specific complex phenotypes will be comprehensively identified, while their interactions will remain elusive.
The project “Proteomics 4D: The proteome in context “explores the concept, that complex phenotypes arise from the perturbation of modules of interacting proteins and that these modules integrate seemingly independent genomic variants into a single biochemical response. We will develop and apply a generic technology to directly measure the composition, topology and structure of wild type and genetically perturbed protein modules and relate structural changes to their functional output.
This will be achieved by a the integration of quantitative proteomic and phosphoproteomic technologies determining molecular phenotypes, and hybrid structural methods consisting of chemical cross-linking and mass spectrometry, cryoEM and computational data integration to probe structural perturbations.
The project will focus initially on the structural and functional effects of cancer associated mutations in protein kinase modules and then generalize to study perturbed modules in any tissue and disease state. The resources supporting this technology will be disseminated to catalyze a broad transformation of biology and molecular medicine towards the analysis of the proteome as a modular entity, the proteome in context.
Max ERC Funding
2 208 150 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym ReaDMe
Project Readout of DNA methylation
Researcher (PI) Dirk Schubeler
Host Institution (HI) FRIEDRICH MIESCHER INSTITUTE FOR BIOMEDICAL RESEARCH FONDATION
Call Details Advanced Grant (AdG), LS2, ERC-2014-ADG
Summary DNA and chromatin modifications are essential for proper control of gene expression during development. How these marks alter transcriptional programs and modulate binding patterns of sequence specific transcription factors (TF) remains poorly understood. This currently limits our interpretation of epigenomic maps towards their incorporation into predictive models of gene regulation.
ReaDMe has the ambitious goal to systematically define the sensitivity of TFs to local levels of DNA methylation in vivo. We will use a combination of genomics, genome editing and proteomics tools to comprehensively identify transcriptional regulators that respond to DNA methylation. As a first approach, we will interrogate changes in the global TF binding landscape when DNA methylation is ablated from the genome. Using both embryonic stem cells and somatic cells, these experiments are aimed at identifying sites that are occupied by TFs in a DNA methylation dependent manner within different cellular context. Secondly, we will combine parallelized chromosomal insertions with targeted footprinting to determine the link between DNA sequence context, methylation density and TF binding. In a third approach we will define the global chromatin proteome as a function of DNA methylation. Through the use of a novel and orthogonal proteomics assay, we will characterize DNA methylation sensitive changes in the chromatin-bound proteome. Candidate factors predicted from all approaches will be validated and functionally characterized through direct genome-wide mapping as well as loss of function analysis.
ERC funding would enable ReaDMe to develop an integrated setup to in vivo identify and characterize where DNA methylation influences the cis-regulatory landscape by modulating binding profiles of trans-acting factors. This goal represents a crucial step towards comprehensive understanding of the genomic readout of DNA methylation and its impact on gene regulation.
Summary
DNA and chromatin modifications are essential for proper control of gene expression during development. How these marks alter transcriptional programs and modulate binding patterns of sequence specific transcription factors (TF) remains poorly understood. This currently limits our interpretation of epigenomic maps towards their incorporation into predictive models of gene regulation.
ReaDMe has the ambitious goal to systematically define the sensitivity of TFs to local levels of DNA methylation in vivo. We will use a combination of genomics, genome editing and proteomics tools to comprehensively identify transcriptional regulators that respond to DNA methylation. As a first approach, we will interrogate changes in the global TF binding landscape when DNA methylation is ablated from the genome. Using both embryonic stem cells and somatic cells, these experiments are aimed at identifying sites that are occupied by TFs in a DNA methylation dependent manner within different cellular context. Secondly, we will combine parallelized chromosomal insertions with targeted footprinting to determine the link between DNA sequence context, methylation density and TF binding. In a third approach we will define the global chromatin proteome as a function of DNA methylation. Through the use of a novel and orthogonal proteomics assay, we will characterize DNA methylation sensitive changes in the chromatin-bound proteome. Candidate factors predicted from all approaches will be validated and functionally characterized through direct genome-wide mapping as well as loss of function analysis.
ERC funding would enable ReaDMe to develop an integrated setup to in vivo identify and characterize where DNA methylation influences the cis-regulatory landscape by modulating binding profiles of trans-acting factors. This goal represents a crucial step towards comprehensive understanding of the genomic readout of DNA methylation and its impact on gene regulation.
Max ERC Funding
2 136 969 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym TRANSPOS-X
Project Transposable elements, their controllers and the genesis of human-specific transcriptional networks
Researcher (PI) Didier Trono
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Advanced Grant (AdG), LS2, ERC-2015-AdG
Summary Transposable elements (TEs) account for more than two thirds of the human genome. They can inactivate
genes, provide novel coding functions, sprinkle chromosomes with recombination-prone repetitive
sequences, and modulate cellular gene expression through a wide variety of transcriptional and
posttranscriptional influences. As a consequence, TEs are considered as essential motors of evolution yet
they are occasionally associated with disease, causing about one hundred Mendelian disorders and possibly
contributing to several human cancers. As expected for such genomic threats, TEs are subjected to tight
epigenetic control imposed from the very first days of embryogenesis, in part owing to their recognition by
sequence-specific RNA- and protein-based repressors. It is generally considered that the evolutionary
selection of these TE controllers reflects a simple host-pathogen arms race, and that their action results in the
early and permanent silencing of their targets. We have recently uncovered new evolutionary evidence and
obtained genomic and functional data that invalidate this dual assumption, and suggest instead that
transposable elements and their epigenetic controllers establish species-specific transcriptional networks that
play critical roles in human development and physiology. The general objective of the present proposal is to
explore the breadth of this phenomenon, to decipher its mechanisms, to unveil its functional implications,
and to probe how this knowledge could be exploited for basic research, biotechnology and clinical medicine.
Summary
Transposable elements (TEs) account for more than two thirds of the human genome. They can inactivate
genes, provide novel coding functions, sprinkle chromosomes with recombination-prone repetitive
sequences, and modulate cellular gene expression through a wide variety of transcriptional and
posttranscriptional influences. As a consequence, TEs are considered as essential motors of evolution yet
they are occasionally associated with disease, causing about one hundred Mendelian disorders and possibly
contributing to several human cancers. As expected for such genomic threats, TEs are subjected to tight
epigenetic control imposed from the very first days of embryogenesis, in part owing to their recognition by
sequence-specific RNA- and protein-based repressors. It is generally considered that the evolutionary
selection of these TE controllers reflects a simple host-pathogen arms race, and that their action results in the
early and permanent silencing of their targets. We have recently uncovered new evolutionary evidence and
obtained genomic and functional data that invalidate this dual assumption, and suggest instead that
transposable elements and their epigenetic controllers establish species-specific transcriptional networks that
play critical roles in human development and physiology. The general objective of the present proposal is to
explore the breadth of this phenomenon, to decipher its mechanisms, to unveil its functional implications,
and to probe how this knowledge could be exploited for basic research, biotechnology and clinical medicine.
Max ERC Funding
2 500 000 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym UPRmt
Project The Mitochondrial Unfolded Protein Response
Researcher (PI) Johan Henri Louise AUWERX
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Advanced Grant (AdG), LS2, ERC-2017-ADG
Summary Mitochondria—organelles specialized in energy harvesting through oxidative phosphorylation (Oxphos)—critically influence metabolism, health and lifespan. Evolved from endosymbiotic proteobacteria, mitochondria retained the vestige of the bacterial genome, the mitochondrial DNA, which encodes 13 subunits of the Oxphos complexes, while the remaining ~80 Oxphos components and the rest of the mitochondrial proteome are encoded on nuclear DNA, translated in the cytoplasm and imported in the mitochondria. The control of the mitochondrial proteome by two genomes exposes these organelles to proteotoxic stress in case of an imbalance between the nuclear- and mitochondrial-encoded proteins. Upon such stress, several mitochondrial protein quality control (mtPQC) pathways, including the mitochondrial unfolded protein response (UPRmt), will sense, transmit and re-establish mitochondrial proteostasis through mitonuclear regulatory circuits. Although a robust UPRmt circuit improves health and lifespan in C. elegans, much less is known about mtPQC in vertebrates. We propose here to characterize UPRmt pathways across 3 species by: (1) mapping mammalian UPRmt genes and networks in vivo after the induction of the UPRmt in a large murine genetic reference population at 3 different times throughout life with 2 different inducers; (2) integrating these UPRmt networks with a wide set of clinical, mitochondrial, and molecular phenotypes collected throughout life to establish links between UPRmt mechanisms and health- and lifespan; (3) mechanistically validating the most important UPRmt pathways, using loss-of-function studies in cells, worms and mice; and (4) clinically translating promising UPRmt hits, using genetic association studies in human cohorts. The insight gained will mechanistically define the UPRmt networks from worms to humans and will provide the next step in translating the benefits of activating the UPRmt—initially observed in invertebrates—into targeted human therapies.
Summary
Mitochondria—organelles specialized in energy harvesting through oxidative phosphorylation (Oxphos)—critically influence metabolism, health and lifespan. Evolved from endosymbiotic proteobacteria, mitochondria retained the vestige of the bacterial genome, the mitochondrial DNA, which encodes 13 subunits of the Oxphos complexes, while the remaining ~80 Oxphos components and the rest of the mitochondrial proteome are encoded on nuclear DNA, translated in the cytoplasm and imported in the mitochondria. The control of the mitochondrial proteome by two genomes exposes these organelles to proteotoxic stress in case of an imbalance between the nuclear- and mitochondrial-encoded proteins. Upon such stress, several mitochondrial protein quality control (mtPQC) pathways, including the mitochondrial unfolded protein response (UPRmt), will sense, transmit and re-establish mitochondrial proteostasis through mitonuclear regulatory circuits. Although a robust UPRmt circuit improves health and lifespan in C. elegans, much less is known about mtPQC in vertebrates. We propose here to characterize UPRmt pathways across 3 species by: (1) mapping mammalian UPRmt genes and networks in vivo after the induction of the UPRmt in a large murine genetic reference population at 3 different times throughout life with 2 different inducers; (2) integrating these UPRmt networks with a wide set of clinical, mitochondrial, and molecular phenotypes collected throughout life to establish links between UPRmt mechanisms and health- and lifespan; (3) mechanistically validating the most important UPRmt pathways, using loss-of-function studies in cells, worms and mice; and (4) clinically translating promising UPRmt hits, using genetic association studies in human cohorts. The insight gained will mechanistically define the UPRmt networks from worms to humans and will provide the next step in translating the benefits of activating the UPRmt—initially observed in invertebrates—into targeted human therapies.
Max ERC Funding
2 500 000 €
Duration
Start date: 2018-11-01, End date: 2023-10-31