Project acronym 2-HIT
Project Genetic interaction networks: From C. elegans to human disease
Researcher (PI) Ben Lehner
Host Institution (HI) FUNDACIO CENTRE DE REGULACIO GENOMICA
Call Details Starting Grant (StG), LS2, ERC-2007-StG
Summary Most hereditary diseases in humans are genetically complex, resulting from combinations of mutations in multiple genes. However synthetic interactions between genes are very difficult to identify in population studies because of a lack of statistical power and we fundamentally do not understand how mutations interact to produce phenotypes. C. elegans is a unique animal in which genetic interactions can be rapidly identified in vivo using RNA interference, and we recently used this system to construct the first genetic interaction network for any animal, focused on signal transduction genes. The first objective of this proposal is to extend this work and map a comprehensive genetic interaction network for this model metazoan. This project will provide the first insights into the global properties of animal genetic interaction networks, and a comprehensive view of the functional relationships between genes in an animal. The second objective of the proposal is to use C. elegans to develop and validate experimentally integrated gene networks that connect genes to phenotypes and predict genetic interactions on a genome-wide scale. The methods that we develop and validate in C. elegans will then be applied to predict phenotypes and interactions for human genes. The final objective is to dissect the molecular mechanisms underlying genetic interactions, and to understand how these interactions evolve. The combined aim of these three objectives is to generate a framework for understanding and predicting how mutations interact to produce phenotypes, including in human disease.
Summary
Most hereditary diseases in humans are genetically complex, resulting from combinations of mutations in multiple genes. However synthetic interactions between genes are very difficult to identify in population studies because of a lack of statistical power and we fundamentally do not understand how mutations interact to produce phenotypes. C. elegans is a unique animal in which genetic interactions can be rapidly identified in vivo using RNA interference, and we recently used this system to construct the first genetic interaction network for any animal, focused on signal transduction genes. The first objective of this proposal is to extend this work and map a comprehensive genetic interaction network for this model metazoan. This project will provide the first insights into the global properties of animal genetic interaction networks, and a comprehensive view of the functional relationships between genes in an animal. The second objective of the proposal is to use C. elegans to develop and validate experimentally integrated gene networks that connect genes to phenotypes and predict genetic interactions on a genome-wide scale. The methods that we develop and validate in C. elegans will then be applied to predict phenotypes and interactions for human genes. The final objective is to dissect the molecular mechanisms underlying genetic interactions, and to understand how these interactions evolve. The combined aim of these three objectives is to generate a framework for understanding and predicting how mutations interact to produce phenotypes, including in human disease.
Max ERC Funding
1 100 000 €
Duration
Start date: 2008-09-01, End date: 2014-04-30
Project acronym 3D-OA-HISTO
Project Development of 3D Histopathological Grading of Osteoarthritis
Researcher (PI) Simo Jaakko Saarakkala
Host Institution (HI) OULUN YLIOPISTO
Call Details Starting Grant (StG), LS7, ERC-2013-StG
Summary "Background: Osteoarthritis (OA) is a common musculoskeletal disease occurring worldwide. Despite extensive research, etiology of OA is still poorly understood. Histopathological grading (HPG) of 2D tissue sections is the gold standard reference method for determination of OA stage. However, traditional 2D-HPG is destructive and based only on subjective visual evaluation. These limitations induce bias to clinical in vitro OA diagnostics and basic research that both rely strongly on HPG.
Objectives: 1) To establish and validate the very first 3D-HPG of OA based on cutting-edge nano/micro-CT (Computed Tomography) technologies in vitro; 2) To use the established method to clarify the beginning phases of OA; and 3) To validate 3D-HPG of OA for in vivo use.
Methods: Several hundreds of human osteochondral samples from patients undergoing total knee arthroplasty will be collected. The samples will be imaged in vitro with nano/micro-CT and clinical high-end extremity CT devices using specific contrast-agents to quantify tissue constituents and structure in 3D in large volume. From this information, a novel 3D-HPG is developed with statistical classification algorithms. Finally, the developed novel 3D-HPG of OA will be applied clinically in vivo.
Significance: This is the very first study to establish 3D-HPG of OA pathology in vitro and in vivo. Furthermore, the developed technique hugely improves the understanding of the beginning phases of OA. Ultimately, the study will contribute for improving OA patients’ quality of life by slowing the disease progression, and for providing powerful tools to develop new OA therapies."
Summary
"Background: Osteoarthritis (OA) is a common musculoskeletal disease occurring worldwide. Despite extensive research, etiology of OA is still poorly understood. Histopathological grading (HPG) of 2D tissue sections is the gold standard reference method for determination of OA stage. However, traditional 2D-HPG is destructive and based only on subjective visual evaluation. These limitations induce bias to clinical in vitro OA diagnostics and basic research that both rely strongly on HPG.
Objectives: 1) To establish and validate the very first 3D-HPG of OA based on cutting-edge nano/micro-CT (Computed Tomography) technologies in vitro; 2) To use the established method to clarify the beginning phases of OA; and 3) To validate 3D-HPG of OA for in vivo use.
Methods: Several hundreds of human osteochondral samples from patients undergoing total knee arthroplasty will be collected. The samples will be imaged in vitro with nano/micro-CT and clinical high-end extremity CT devices using specific contrast-agents to quantify tissue constituents and structure in 3D in large volume. From this information, a novel 3D-HPG is developed with statistical classification algorithms. Finally, the developed novel 3D-HPG of OA will be applied clinically in vivo.
Significance: This is the very first study to establish 3D-HPG of OA pathology in vitro and in vivo. Furthermore, the developed technique hugely improves the understanding of the beginning phases of OA. Ultimately, the study will contribute for improving OA patients’ quality of life by slowing the disease progression, and for providing powerful tools to develop new OA therapies."
Max ERC Funding
1 500 000 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym 4D-PET
Project Innovative PET scanner for dynamic imaging
Researcher (PI) José María BENLLOCH BAVIERA
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Advanced Grant (AdG), LS7, ERC-2015-AdG
Summary The main objective of 4D-PET is to develop an innovative whole-body PET scanner based in a new detector concept that stores 3D position and time of every single gamma interaction with unprecedented resolution. The combination of scanner geometrical design and high timing resolution will enable developing a full sequence of all gamma-ray interactions inside the scanner, including Compton interactions, like in a 3D movie. 4D-PET fully exploits Time Of Flight (TOF) information to obtain a better image quality and to increase scanner sensitivity, through the inclusion in the image formation of all Compton events occurring inside the detector, which are always rejected in state-of-the-art PET scanners. The new PET design will radically improve state-of-the-art PET performance features, overcoming limitations of current PET technology and opening up new diagnostic venues and very valuable physiological information
Summary
The main objective of 4D-PET is to develop an innovative whole-body PET scanner based in a new detector concept that stores 3D position and time of every single gamma interaction with unprecedented resolution. The combination of scanner geometrical design and high timing resolution will enable developing a full sequence of all gamma-ray interactions inside the scanner, including Compton interactions, like in a 3D movie. 4D-PET fully exploits Time Of Flight (TOF) information to obtain a better image quality and to increase scanner sensitivity, through the inclusion in the image formation of all Compton events occurring inside the detector, which are always rejected in state-of-the-art PET scanners. The new PET design will radically improve state-of-the-art PET performance features, overcoming limitations of current PET technology and opening up new diagnostic venues and very valuable physiological information
Max ERC Funding
2 048 386 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym 5COFM
Project Five Centuries of Marriages
Researcher (PI) Anna Cabré
Host Institution (HI) UNIVERSITAT AUTONOMA DE BARCELONA
Call Details Advanced Grant (AdG), SH6, ERC-2010-AdG_20100407
Summary This long-term research project is based on the data-mining of the Llibres d'Esposalles conserved at the Archives of the Barcelona Cathedral, an extraordinary data source comprising 244 books of marriage licenses records. It covers about 550.000 unions from over 250 parishes of the Diocese between 1451 and 1905. Its impeccable conservation is a miracle in a region where parish archives have undergone massive destruction. The books include data on the tax posed on each couple depending on their social class, on an eight-tiered scale. These data allow for research on multiple aspects of demographic research, especially on the very long run, such as: population estimates, marriage dynamics, cycles, and indirect estimations for fertility, migration and survival, as well as socio-economic studies related to social homogamy, social mobility, and transmission of social and occupational position. Being continuous over five centuries, the source constitutes a unique instrument to study the dynamics of population distribution, the expansion of the city of Barcelona and the constitution of its metropolitan area, as well as the chronology and the geography in the constitution of new social classes.
To this end, a digital library and a database, the Barcelona Historical Marriages Database (BHiMaD), are to be created and completed. An ERC-AG will help doing so while undertaking the research analysis of the database in parallel.
The research team, at the U. Autònoma de Barcelona, involves researchers from the Center for Demo-graphic Studies and the Computer Vision Center experts in historical databases and computer-aided recognition of ancient manuscripts. 5CofM will serve the preservation of the original “Llibres d’Esposalles” and unlock the full potential embedded in the collection.
Summary
This long-term research project is based on the data-mining of the Llibres d'Esposalles conserved at the Archives of the Barcelona Cathedral, an extraordinary data source comprising 244 books of marriage licenses records. It covers about 550.000 unions from over 250 parishes of the Diocese between 1451 and 1905. Its impeccable conservation is a miracle in a region where parish archives have undergone massive destruction. The books include data on the tax posed on each couple depending on their social class, on an eight-tiered scale. These data allow for research on multiple aspects of demographic research, especially on the very long run, such as: population estimates, marriage dynamics, cycles, and indirect estimations for fertility, migration and survival, as well as socio-economic studies related to social homogamy, social mobility, and transmission of social and occupational position. Being continuous over five centuries, the source constitutes a unique instrument to study the dynamics of population distribution, the expansion of the city of Barcelona and the constitution of its metropolitan area, as well as the chronology and the geography in the constitution of new social classes.
To this end, a digital library and a database, the Barcelona Historical Marriages Database (BHiMaD), are to be created and completed. An ERC-AG will help doing so while undertaking the research analysis of the database in parallel.
The research team, at the U. Autònoma de Barcelona, involves researchers from the Center for Demo-graphic Studies and the Computer Vision Center experts in historical databases and computer-aided recognition of ancient manuscripts. 5CofM will serve the preservation of the original “Llibres d’Esposalles” and unlock the full potential embedded in the collection.
Max ERC Funding
1 847 400 €
Duration
Start date: 2011-05-01, End date: 2016-04-30
Project acronym ABEP
Project Asset Bubbles and Economic Policy
Researcher (PI) Jaume Ventura Fontanet
Host Institution (HI) Centre de Recerca en Economia Internacional (CREI)
Call Details Advanced Grant (AdG), SH1, ERC-2009-AdG
Summary Advanced capitalist economies experience large and persistent movements in asset prices that are difficult to justify with economic fundamentals. The internet bubble of the 1990s and the real state market bubble of the 2000s are two recent examples. The predominant view is that these bubbles are a market failure, and are caused by some form of individual irrationality on the part of market participants. This project is based instead on the view that market participants are individually rational, although this does not preclude sometimes collectively sub-optimal outcomes. Bubbles are thus not a source of market failure by themselves but instead arise as a result of a pre-existing market failure, namely, the existence of pockets of dynamically inefficient investments. Under some conditions, bubbles partly solve this problem, increasing market efficiency and welfare. It is also possible however that bubbles do not solve the underlying problem and, in addition, create negative side-effects. The main objective of this project is to develop this view of asset bubbles, and produce an empirically-relevant macroeconomic framework that allows us to address the following questions: (i) What is the relationship between bubbles and financial market frictions? Special emphasis is given to how the globalization of financial markets and the development of new financial products affect the size and effects of bubbles. (ii) What is the relationship between bubbles, economic growth and unemployment? The theory suggests the presence of virtuous and vicious cycles, as economic growth creates the conditions for bubbles to pop up, while bubbles create incentives for economic growth to happen. (iii) What is the optimal policy to manage bubbles? We need to develop the tools that allow policy makers to sustain those bubbles that have positive effects and burst those that have negative effects.
Summary
Advanced capitalist economies experience large and persistent movements in asset prices that are difficult to justify with economic fundamentals. The internet bubble of the 1990s and the real state market bubble of the 2000s are two recent examples. The predominant view is that these bubbles are a market failure, and are caused by some form of individual irrationality on the part of market participants. This project is based instead on the view that market participants are individually rational, although this does not preclude sometimes collectively sub-optimal outcomes. Bubbles are thus not a source of market failure by themselves but instead arise as a result of a pre-existing market failure, namely, the existence of pockets of dynamically inefficient investments. Under some conditions, bubbles partly solve this problem, increasing market efficiency and welfare. It is also possible however that bubbles do not solve the underlying problem and, in addition, create negative side-effects. The main objective of this project is to develop this view of asset bubbles, and produce an empirically-relevant macroeconomic framework that allows us to address the following questions: (i) What is the relationship between bubbles and financial market frictions? Special emphasis is given to how the globalization of financial markets and the development of new financial products affect the size and effects of bubbles. (ii) What is the relationship between bubbles, economic growth and unemployment? The theory suggests the presence of virtuous and vicious cycles, as economic growth creates the conditions for bubbles to pop up, while bubbles create incentives for economic growth to happen. (iii) What is the optimal policy to manage bubbles? We need to develop the tools that allow policy makers to sustain those bubbles that have positive effects and burst those that have negative effects.
Max ERC Funding
1 000 000 €
Duration
Start date: 2010-04-01, End date: 2015-03-31
Project acronym ADHESWITCHES
Project Adhesion switches in cancer and development: from in vivo to synthetic biology
Researcher (PI) Mari Johanna Ivaska
Host Institution (HI) TURUN YLIOPISTO
Call Details Consolidator Grant (CoG), LS3, ERC-2013-CoG
Summary Integrins are transmembrane cell adhesion receptors controlling cell proliferation and migration. Our objective is to gain fundamentally novel mechanistic insight into the emerging new roles of integrins in cancer and to generate a road map of integrin dependent pathways critical in mammary gland development and integrin signalling thus opening new targets for therapeutic interventions. We will combine an in vivo based translational approach with cell and molecular biological studies aiming to identify entirely novel concepts in integrin function using cutting edge techniques and synthetic-biology tools.
The specific objectives are:
1) Integrin inactivation in branching morphogenesis and cancer invasion. Integrins regulate mammary gland development and cancer invasion but the role of integrin inactivating proteins in these processes is currently completely unknown. We will investigate this using genetically modified mice, ex-vivo organoid models and human tissues with the aim to identify beneficial combinational treatments against cancer invasion.
2) Endosomal adhesomes – cross-talk between integrin activity and integrin “inside-in signaling”. We hypothesize that endocytosed active integrins engage in specialized endosomal signaling that governs cell survival especially in cancer. RNAi cell arrays, super-resolution STED imaging and endosomal proteomics will be used to investigate integrin signaling in endosomes.
3) Spatio-temporal co-ordination of adhesion and endocytosis. Several cytosolic proteins compete for integrin binding to regulate activation, endocytosis and recycling. Photoactivatable protein-traps and predefined matrix micropatterns will be employed to mechanistically dissect the spatio-temporal dynamics and hierarchy of their recruitment.
We will employ innovative and unconventional techniques to address three major unanswered questions in the field and significantly advance our understanding of integrin function in development and cancer.
Summary
Integrins are transmembrane cell adhesion receptors controlling cell proliferation and migration. Our objective is to gain fundamentally novel mechanistic insight into the emerging new roles of integrins in cancer and to generate a road map of integrin dependent pathways critical in mammary gland development and integrin signalling thus opening new targets for therapeutic interventions. We will combine an in vivo based translational approach with cell and molecular biological studies aiming to identify entirely novel concepts in integrin function using cutting edge techniques and synthetic-biology tools.
The specific objectives are:
1) Integrin inactivation in branching morphogenesis and cancer invasion. Integrins regulate mammary gland development and cancer invasion but the role of integrin inactivating proteins in these processes is currently completely unknown. We will investigate this using genetically modified mice, ex-vivo organoid models and human tissues with the aim to identify beneficial combinational treatments against cancer invasion.
2) Endosomal adhesomes – cross-talk between integrin activity and integrin “inside-in signaling”. We hypothesize that endocytosed active integrins engage in specialized endosomal signaling that governs cell survival especially in cancer. RNAi cell arrays, super-resolution STED imaging and endosomal proteomics will be used to investigate integrin signaling in endosomes.
3) Spatio-temporal co-ordination of adhesion and endocytosis. Several cytosolic proteins compete for integrin binding to regulate activation, endocytosis and recycling. Photoactivatable protein-traps and predefined matrix micropatterns will be employed to mechanistically dissect the spatio-temporal dynamics and hierarchy of their recruitment.
We will employ innovative and unconventional techniques to address three major unanswered questions in the field and significantly advance our understanding of integrin function in development and cancer.
Max ERC Funding
1 887 910 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym Aftermath
Project THE AFTERMATH OF THE EAST ASIAN WAR OF 1592-1598.
Researcher (PI) Rebekah CLEMENTS
Host Institution (HI) UNIVERSITAT AUTONOMA DE BARCELONA
Call Details Starting Grant (StG), SH6, ERC-2017-STG
Summary Aftermath seeks to understand the legacy of the East Asian War of 1592-1598. This conflict involved over 500,000 combatants from Japan, China, and Korea; up to 100,000 Korean civilians were abducted to Japan. The war caused momentous demographic upheaval and widespread destruction, but also had long-lasting cultural impact as a result of the removal to Japan of Korean technology and skilled labourers. The conflict and its aftermath bear striking parallels to events in East Asia during World War 2, and memories of the 16th century war remain deeply resonant in the region. However, the war and its immediate aftermath are also significant because they occurred at the juncture of periods often characterized as “medieval” and “early modern” in the East Asian case. What were the implications for the social, economic, and cultural contours of early modern East Asia? What can this conflict tell us about war “aftermath” across historical periods and about such periodization itself? There is little Western scholarship on the war and few studies in any language cross linguistic, disciplinary, and national boundaries to achieve a regional perspective that reflects the interconnected history of East Asia. Aftermath will radically alter our understanding of the region’s history by providing the first analysis of the state of East Asia as a result of the war. The focus will be on the period up to the middle of the 17th century, but not precluding ongoing effects. The team, with expertise covering Japan, Korea, and China, will investigate three themes: the movement of people and demographic change, the impact on the natural environment, and technological diffusion. The project will be the first large scale investigation to use Japanese, Korean, and Chinese sources to understand the war’s aftermath. It will broaden understandings of the early modern world, and push the boundaries of war legacy studies by exploring the meanings of “aftermath” in the early modern East Asian context.
Summary
Aftermath seeks to understand the legacy of the East Asian War of 1592-1598. This conflict involved over 500,000 combatants from Japan, China, and Korea; up to 100,000 Korean civilians were abducted to Japan. The war caused momentous demographic upheaval and widespread destruction, but also had long-lasting cultural impact as a result of the removal to Japan of Korean technology and skilled labourers. The conflict and its aftermath bear striking parallels to events in East Asia during World War 2, and memories of the 16th century war remain deeply resonant in the region. However, the war and its immediate aftermath are also significant because they occurred at the juncture of periods often characterized as “medieval” and “early modern” in the East Asian case. What were the implications for the social, economic, and cultural contours of early modern East Asia? What can this conflict tell us about war “aftermath” across historical periods and about such periodization itself? There is little Western scholarship on the war and few studies in any language cross linguistic, disciplinary, and national boundaries to achieve a regional perspective that reflects the interconnected history of East Asia. Aftermath will radically alter our understanding of the region’s history by providing the first analysis of the state of East Asia as a result of the war. The focus will be on the period up to the middle of the 17th century, but not precluding ongoing effects. The team, with expertise covering Japan, Korea, and China, will investigate three themes: the movement of people and demographic change, the impact on the natural environment, and technological diffusion. The project will be the first large scale investigation to use Japanese, Korean, and Chinese sources to understand the war’s aftermath. It will broaden understandings of the early modern world, and push the boundaries of war legacy studies by exploring the meanings of “aftermath” in the early modern East Asian context.
Max ERC Funding
1 444 980 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym Age Asymmetry
Project Age-Selective Segregation of Organelles
Researcher (PI) Pekka Aleksi Katajisto
Host Institution (HI) HELSINGIN YLIOPISTO
Call Details Starting Grant (StG), LS3, ERC-2015-STG
Summary Our tissues are constantly renewed by stem cells. Over time, stem cells accumulate cellular damage that will compromise renewal and results in aging. As stem cells can divide asymmetrically, segregation of harmful factors to the differentiating daughter cell could be one possible mechanism for slowing damage accumulation in the stem cell. However, current evidence for such mechanisms comes mainly from analogous findings in yeast, and studies have concentrated only on few types of cellular damage.
I hypothesize that the chronological age of a subcellular component is a proxy for all the damage it has sustained. In order to secure regeneration, mammalian stem cells may therefore specifically sort old cellular material asymmetrically. To study this, I have developed a novel strategy and tools to address the age-selective segregation of any protein in stem cell division. Using this approach, I have already discovered that stem-like cells of the human mammary epithelium indeed apportion chronologically old mitochondria asymmetrically in cell division, and enrich old mitochondria to the differentiating daughter cell. We will investigate the mechanisms underlying this novel phenomenon, and its relevance for mammalian aging.
We will first identify how old and young mitochondria differ, and how stem cells recognize them to facilitate the asymmetric segregation. Next, we will analyze the extent of asymmetric age-selective segregation by targeting several other subcellular compartments in a stem cell division. Finally, we will determine whether the discovered age-selective segregation is a general property of stem cell in vivo, and it's functional relevance for maintenance of stem cells and tissue regeneration. Our discoveries may open new possibilities to target aging associated functional decline by induction of asymmetric age-selective organelle segregation.
Summary
Our tissues are constantly renewed by stem cells. Over time, stem cells accumulate cellular damage that will compromise renewal and results in aging. As stem cells can divide asymmetrically, segregation of harmful factors to the differentiating daughter cell could be one possible mechanism for slowing damage accumulation in the stem cell. However, current evidence for such mechanisms comes mainly from analogous findings in yeast, and studies have concentrated only on few types of cellular damage.
I hypothesize that the chronological age of a subcellular component is a proxy for all the damage it has sustained. In order to secure regeneration, mammalian stem cells may therefore specifically sort old cellular material asymmetrically. To study this, I have developed a novel strategy and tools to address the age-selective segregation of any protein in stem cell division. Using this approach, I have already discovered that stem-like cells of the human mammary epithelium indeed apportion chronologically old mitochondria asymmetrically in cell division, and enrich old mitochondria to the differentiating daughter cell. We will investigate the mechanisms underlying this novel phenomenon, and its relevance for mammalian aging.
We will first identify how old and young mitochondria differ, and how stem cells recognize them to facilitate the asymmetric segregation. Next, we will analyze the extent of asymmetric age-selective segregation by targeting several other subcellular compartments in a stem cell division. Finally, we will determine whether the discovered age-selective segregation is a general property of stem cell in vivo, and it's functional relevance for maintenance of stem cells and tissue regeneration. Our discoveries may open new possibilities to target aging associated functional decline by induction of asymmetric age-selective organelle segregation.
Max ERC Funding
1 500 000 €
Duration
Start date: 2016-05-01, End date: 2021-04-30
Project acronym AGNES
Project ACTIVE AGEING – RESILIENCE AND EXTERNAL SUPPORT AS MODIFIERS OF THE DISABLEMENT OUTCOME
Researcher (PI) Taina Tuulikki RANTANEN
Host Institution (HI) JYVASKYLAN YLIOPISTO
Call Details Advanced Grant (AdG), SH3, ERC-2015-AdG
Summary The goals are 1. To develop a scale assessing the diversity of active ageing with four dimensions that are ability (what people can do), activity (what people do do), ambition (what are the valued activities that people want to do), and autonomy (how satisfied people are with the opportunity to do valued activities); 2. To examine health and physical and psychological functioning as the determinants and social and build environment, resilience and personal skills as modifiers of active ageing; 3. To develop a multicomponent sustainable intervention aiming to promote active ageing (methods: counselling, information technology, help from volunteers); 4. To test the feasibility and effectiveness on the intervention; and 5. To study cohort effects on the phenotypes on the pathway to active ageing.
“If You Can Measure It, You Can Change It.” Active ageing assessment needs conceptual progress, which I propose to do. A quantifiable scale will be developed that captures the diversity of active ageing stemming from the WHO definition of active ageing as the process of optimizing opportunities for health and participation in the society for all people in line with their needs, goals and capacities as they age. I will collect cross-sectional data (N=1000, ages 75, 80 and 85 years) and model the pathway to active ageing with state-of-the art statistical methods. By doing this I will create novel knowledge on preconditions for active ageing. The collected cohort data will be compared to a pre-existing cohort data that was collected 25 years ago to obtain knowledge about changes over time in functioning of older people. A randomized controlled trial (N=200) will be conducted to assess the effectiveness of the envisioned intervention promoting active ageing through participation. The project will regenerate ageing research by launching a novel scale, by training young scientists, by creating new concepts and theory development and by producing evidence for active ageing promotion
Summary
The goals are 1. To develop a scale assessing the diversity of active ageing with four dimensions that are ability (what people can do), activity (what people do do), ambition (what are the valued activities that people want to do), and autonomy (how satisfied people are with the opportunity to do valued activities); 2. To examine health and physical and psychological functioning as the determinants and social and build environment, resilience and personal skills as modifiers of active ageing; 3. To develop a multicomponent sustainable intervention aiming to promote active ageing (methods: counselling, information technology, help from volunteers); 4. To test the feasibility and effectiveness on the intervention; and 5. To study cohort effects on the phenotypes on the pathway to active ageing.
“If You Can Measure It, You Can Change It.” Active ageing assessment needs conceptual progress, which I propose to do. A quantifiable scale will be developed that captures the diversity of active ageing stemming from the WHO definition of active ageing as the process of optimizing opportunities for health and participation in the society for all people in line with their needs, goals and capacities as they age. I will collect cross-sectional data (N=1000, ages 75, 80 and 85 years) and model the pathway to active ageing with state-of-the art statistical methods. By doing this I will create novel knowledge on preconditions for active ageing. The collected cohort data will be compared to a pre-existing cohort data that was collected 25 years ago to obtain knowledge about changes over time in functioning of older people. A randomized controlled trial (N=200) will be conducted to assess the effectiveness of the envisioned intervention promoting active ageing through participation. The project will regenerate ageing research by launching a novel scale, by training young scientists, by creating new concepts and theory development and by producing evidence for active ageing promotion
Max ERC Funding
2 044 364 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym AGRIWESTMED
Project Origins and spread of agriculture in the south-western Mediterranean region
Researcher (PI) Maria Leonor Peña Chocarro
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Advanced Grant (AdG), SH6, ERC-2008-AdG
Summary This project focuses on one of the most fascinating events of the long history of the human species: the origins and spread of agriculture. Research over the past 40 years has provided an invaluable dataset on crop domestication and the spread of agriculture into Europe. However, despite the enormous advances in research there are important areas that remain almost unexplored, some of immense interest. This is the case of the western Mediterranean region from where our knowledge is still limited (Iberian Peninsula) or almost inexistent (northern Morocco). The last few years have witnessed a considerable increase in archaeobotany and the effort of a group of Spanish researchers working together in different aspects of agriculture has started to produce the first results. My proposal will approach the study of the arrival of agriculture to the western Mediterranean by exploring different interrelated research areas. The project involves the
application of different techniques (analysis of charred plant remains, pollen and non-pollen microfossils, phytoliths, micro-wear analyses, isotopes, soil micromorphology, genetics, and ethnoarchaeology) which will help to define the emergence and spread of agriculture in the area, its likely place of origin, its main technological attributes as well as the range crop husbandry practices carried out. The interaction between the different approaches and the methodologies involved will allow achieving a greater understanding of the type of agriculture that characterized the first farming communities in the most south-western part of Europe.
Summary
This project focuses on one of the most fascinating events of the long history of the human species: the origins and spread of agriculture. Research over the past 40 years has provided an invaluable dataset on crop domestication and the spread of agriculture into Europe. However, despite the enormous advances in research there are important areas that remain almost unexplored, some of immense interest. This is the case of the western Mediterranean region from where our knowledge is still limited (Iberian Peninsula) or almost inexistent (northern Morocco). The last few years have witnessed a considerable increase in archaeobotany and the effort of a group of Spanish researchers working together in different aspects of agriculture has started to produce the first results. My proposal will approach the study of the arrival of agriculture to the western Mediterranean by exploring different interrelated research areas. The project involves the
application of different techniques (analysis of charred plant remains, pollen and non-pollen microfossils, phytoliths, micro-wear analyses, isotopes, soil micromorphology, genetics, and ethnoarchaeology) which will help to define the emergence and spread of agriculture in the area, its likely place of origin, its main technological attributes as well as the range crop husbandry practices carried out. The interaction between the different approaches and the methodologies involved will allow achieving a greater understanding of the type of agriculture that characterized the first farming communities in the most south-western part of Europe.
Max ERC Funding
1 545 169 €
Duration
Start date: 2009-04-01, End date: 2013-03-31
Project acronym AIR-NB
Project Pre-natal exposure to urban AIR pollution and pre- and post-Natal Brain development
Researcher (PI) Jordi Sunyer
Host Institution (HI) FUNDACION PRIVADA INSTITUTO DE SALUD GLOBAL BARCELONA
Call Details Advanced Grant (AdG), LS7, ERC-2017-ADG
Summary Air pollution is the main urban-related environmental hazard. It appears to affect brain development, although current evidence is inadequate given the lack of studies during the most vulnerable stages of brain development and the lack of brain anatomical structure and regional connectivity data underlying these effects. Of particular interest is the prenatal period, when brain structures are forming and growing, and when the effect of in utero exposure to environmental factors may cause permanent brain injury. I and others have conducted studies focused on effects during school age which could be less profound. I postulate that: pre-natal exposure to urban air pollution during pregnancy impairs foetal and postnatal brain development, mainly by affecting myelination; these effects are at least partially mediated by translocation of airborne particulate matter to the placenta and by placental dysfunction; and prenatal exposure to air pollution impairs post-natal brain development independently of urban context and post-natal exposure to air pollution. I aim to evaluate the effect of pre-natal exposure to urban air pollution on pre- and post-natal brain structure and function by following 900 pregnant women and their neonates with contrasting levels of pre-natal exposure to air pollutants by: i) establishing a new pregnancy cohort and evaluating brain imaging (pre-natal and neo-natal brain structure, connectivity and function), and post-natal motor and cognitive development; ii) measuring total personal exposure and inhaled dose of air pollutants during specific time-windows of gestation, noise, paternal stress and other stressors, using personal samplers and sensors; iii) detecting nanoparticles in placenta and its vascular function; iv) modelling mathematical causality and mediation, including a replication study in an external cohort. The expected results will create an impulse to implement policy interventions that genuinely protect the health of urban citizens.
Summary
Air pollution is the main urban-related environmental hazard. It appears to affect brain development, although current evidence is inadequate given the lack of studies during the most vulnerable stages of brain development and the lack of brain anatomical structure and regional connectivity data underlying these effects. Of particular interest is the prenatal period, when brain structures are forming and growing, and when the effect of in utero exposure to environmental factors may cause permanent brain injury. I and others have conducted studies focused on effects during school age which could be less profound. I postulate that: pre-natal exposure to urban air pollution during pregnancy impairs foetal and postnatal brain development, mainly by affecting myelination; these effects are at least partially mediated by translocation of airborne particulate matter to the placenta and by placental dysfunction; and prenatal exposure to air pollution impairs post-natal brain development independently of urban context and post-natal exposure to air pollution. I aim to evaluate the effect of pre-natal exposure to urban air pollution on pre- and post-natal brain structure and function by following 900 pregnant women and their neonates with contrasting levels of pre-natal exposure to air pollutants by: i) establishing a new pregnancy cohort and evaluating brain imaging (pre-natal and neo-natal brain structure, connectivity and function), and post-natal motor and cognitive development; ii) measuring total personal exposure and inhaled dose of air pollutants during specific time-windows of gestation, noise, paternal stress and other stressors, using personal samplers and sensors; iii) detecting nanoparticles in placenta and its vascular function; iv) modelling mathematical causality and mediation, including a replication study in an external cohort. The expected results will create an impulse to implement policy interventions that genuinely protect the health of urban citizens.
Max ERC Funding
2 499 992 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym AMORE
Project A distributional MOdel of Reference to Entities
Researcher (PI) Gemma BOLEDA TORRENT
Host Institution (HI) UNIVERSIDAD POMPEU FABRA
Call Details Starting Grant (StG), SH4, ERC-2016-STG
Summary "When I asked my seven-year-old daughter ""Who is the boy in your class who was also new in school last year, like you?"", she instantly replied ""Daniel"", using the descriptive content in my utterance to identify an entity in the real world and refer to it. The ability to use language to refer to reality is crucial for humans, and yet it is very difficult to model. AMORE breaks new ground in Computational Linguistics, Linguistics, and Artificial Intelligence by developing a model of linguistic reference to entities implemented as a computational system that can learn its own representations from data.
This interdisciplinary project builds on two complementary semantic traditions: 1) Formal semantics, a symbolic approach that can delimit and track linguistic referents, but does not adequately match them with the descriptive content of linguistic expressions; 2) Distributional semantics, which can handle descriptive content but does not associate it to individuated referents. AMORE synthesizes the two approaches into a unified, scalable model of reference that operates with individuated referents and links them to referential expressions characterized by rich descriptive content. The model is a distributed (neural network) version of a formal semantic framework that is furthermore able to integrate perceptual (visual) and linguistic information about entities. We test it extensively in referential tasks that require matching noun phrases (“the Medicine student”, “the white cat”) with entity representations extracted from text and images.
AMORE advances our scientific understanding of language and its computational modeling, and contributes to the far-reaching debate between symbolic and distributed approaches to cognition with an integrative proposal. I am in a privileged position to carry out this integration, since I have contributed top research in both distributional and formal semantics.
"
Summary
"When I asked my seven-year-old daughter ""Who is the boy in your class who was also new in school last year, like you?"", she instantly replied ""Daniel"", using the descriptive content in my utterance to identify an entity in the real world and refer to it. The ability to use language to refer to reality is crucial for humans, and yet it is very difficult to model. AMORE breaks new ground in Computational Linguistics, Linguistics, and Artificial Intelligence by developing a model of linguistic reference to entities implemented as a computational system that can learn its own representations from data.
This interdisciplinary project builds on two complementary semantic traditions: 1) Formal semantics, a symbolic approach that can delimit and track linguistic referents, but does not adequately match them with the descriptive content of linguistic expressions; 2) Distributional semantics, which can handle descriptive content but does not associate it to individuated referents. AMORE synthesizes the two approaches into a unified, scalable model of reference that operates with individuated referents and links them to referential expressions characterized by rich descriptive content. The model is a distributed (neural network) version of a formal semantic framework that is furthermore able to integrate perceptual (visual) and linguistic information about entities. We test it extensively in referential tasks that require matching noun phrases (“the Medicine student”, “the white cat”) with entity representations extracted from text and images.
AMORE advances our scientific understanding of language and its computational modeling, and contributes to the far-reaching debate between symbolic and distributed approaches to cognition with an integrative proposal. I am in a privileged position to carry out this integration, since I have contributed top research in both distributional and formal semantics.
"
Max ERC Funding
1 499 805 €
Duration
Start date: 2017-02-01, End date: 2022-01-31
Project acronym ANGEOM
Project Geometric analysis in the Euclidean space
Researcher (PI) Xavier Tolsa Domenech
Host Institution (HI) UNIVERSITAT AUTONOMA DE BARCELONA
Call Details Advanced Grant (AdG), PE1, ERC-2012-ADG_20120216
Summary "We propose to study different questions in the area of the so called geometric analysis. Most of the topics we are interested in deal with the connection between the behavior of singular integrals and the geometry of sets and measures. The study of this connection has been shown to be extremely helpful in the solution of certain long standing problems in the last years, such as the solution of the Painlev\'e problem or the obtaining of the optimal distortion bounds for quasiconformal mappings by Astala.
More specifically, we would like to study the relationship between the L^2 boundedness of singular integrals associated with Riesz and other related kernels, and rectifiability and other geometric notions. The so called David-Semmes problem is probably the main open problem in this area. Up to now, the techniques used to deal with this problem come from multiscale analysis and involve ideas from Littlewood-Paley theory and quantitative techniques of rectifiability. We propose to apply new ideas that combine variational arguments with other techniques which have connections with mass transportation. Further, we think that it is worth to explore in more detail the connection among mass transportation, singular integrals, and uniform rectifiability.
We are also interested in the field of quasiconformal mappings. We plan to study a problem regarding the quasiconformal distortion of quasicircles. This problem consists in proving that the bounds obtained recently by S. Smirnov on the dimension of K-quasicircles are optimal. We want to apply techniques from quantitative geometric measure theory to deal with this question.
Another question that we intend to explore lies in the interplay of harmonic analysis, geometric measure theory and partial differential equations. This concerns an old problem on the unique continuation of harmonic functions at the boundary open C^1 or Lipschitz domain. All the results known by now deal with smoother Dini domains."
Summary
"We propose to study different questions in the area of the so called geometric analysis. Most of the topics we are interested in deal with the connection between the behavior of singular integrals and the geometry of sets and measures. The study of this connection has been shown to be extremely helpful in the solution of certain long standing problems in the last years, such as the solution of the Painlev\'e problem or the obtaining of the optimal distortion bounds for quasiconformal mappings by Astala.
More specifically, we would like to study the relationship between the L^2 boundedness of singular integrals associated with Riesz and other related kernels, and rectifiability and other geometric notions. The so called David-Semmes problem is probably the main open problem in this area. Up to now, the techniques used to deal with this problem come from multiscale analysis and involve ideas from Littlewood-Paley theory and quantitative techniques of rectifiability. We propose to apply new ideas that combine variational arguments with other techniques which have connections with mass transportation. Further, we think that it is worth to explore in more detail the connection among mass transportation, singular integrals, and uniform rectifiability.
We are also interested in the field of quasiconformal mappings. We plan to study a problem regarding the quasiconformal distortion of quasicircles. This problem consists in proving that the bounds obtained recently by S. Smirnov on the dimension of K-quasicircles are optimal. We want to apply techniques from quantitative geometric measure theory to deal with this question.
Another question that we intend to explore lies in the interplay of harmonic analysis, geometric measure theory and partial differential equations. This concerns an old problem on the unique continuation of harmonic functions at the boundary open C^1 or Lipschitz domain. All the results known by now deal with smoother Dini domains."
Max ERC Funding
1 105 930 €
Duration
Start date: 2013-05-01, End date: 2018-04-30
Project acronym AngioGenesHD
Project Epistasis analysis of angiogenes with high cellular definition
Researcher (PI) Rui Miguel Dos Santos Benedito
Host Institution (HI) CENTRO NACIONAL DE INVESTIGACIONESCARDIOVASCULARES CARLOS III (F.S.P.)
Call Details Starting Grant (StG), LS4, ERC-2014-STG
Summary Blood and lymphatic vessels have been the subject of intense investigation due to their important role in cancer development and in cardiovascular diseases. The significant advance in the methods used to modify and analyse gene function have allowed us to obtain a much better understanding of the molecular mechanisms involved in the regulation of the biology of blood vessels. However, there are two key aspects that significantly diminish our capacity to understand the function of gene networks and their intersections in vivo. One is the long time that is usually required to generate a given double mutant vertebrate tissue, and the other is the lack of single-cell genetic and phenotypic resolution. We have recently performed an in vivo comparative transcriptome analysis of highly angiogenic endothelial cells experiencing different VEGF and Notch signalling levels. These are two of the most important molecular mechanisms required for the adequate differentiation, proliferation and sprouting of endothelial cells. Using the information generated from this analysis, the overall aim of the proposed project is to characterize the vascular function of some of the previously identified genes and determine how they functionally interact with these two signalling pathways. We propose to use novel inducible genetic tools that will allow us to generate a spatially and temporally regulated fluorescent cell mosaic matrix for quantitative analysis. This will enable us to analyse with unprecedented speed and resolution the function of several different genes simultaneously, during vascular development, homeostasis or associated diseases. Understanding the genetic epistatic interactions that control the differentiation and behaviour of endothelial cells, in different contexts, and with high cellular definition, has the potential to unveil new mechanisms with high biological and therapeutic relevance.
Summary
Blood and lymphatic vessels have been the subject of intense investigation due to their important role in cancer development and in cardiovascular diseases. The significant advance in the methods used to modify and analyse gene function have allowed us to obtain a much better understanding of the molecular mechanisms involved in the regulation of the biology of blood vessels. However, there are two key aspects that significantly diminish our capacity to understand the function of gene networks and their intersections in vivo. One is the long time that is usually required to generate a given double mutant vertebrate tissue, and the other is the lack of single-cell genetic and phenotypic resolution. We have recently performed an in vivo comparative transcriptome analysis of highly angiogenic endothelial cells experiencing different VEGF and Notch signalling levels. These are two of the most important molecular mechanisms required for the adequate differentiation, proliferation and sprouting of endothelial cells. Using the information generated from this analysis, the overall aim of the proposed project is to characterize the vascular function of some of the previously identified genes and determine how they functionally interact with these two signalling pathways. We propose to use novel inducible genetic tools that will allow us to generate a spatially and temporally regulated fluorescent cell mosaic matrix for quantitative analysis. This will enable us to analyse with unprecedented speed and resolution the function of several different genes simultaneously, during vascular development, homeostasis or associated diseases. Understanding the genetic epistatic interactions that control the differentiation and behaviour of endothelial cells, in different contexts, and with high cellular definition, has the potential to unveil new mechanisms with high biological and therapeutic relevance.
Max ERC Funding
1 481 375 €
Duration
Start date: 2015-03-01, End date: 2020-02-29
Project acronym ANPROB
Project Analytic-probabilistic methods for borderline singular integrals
Researcher (PI) Tuomas Pentinpoika Hytönen
Host Institution (HI) HELSINGIN YLIOPISTO
Call Details Starting Grant (StG), PE1, ERC-2011-StG_20101014
Summary The proposal consists of an extensive research program to advance the understanding of singular integral operators of Harmonic Analysis in various situations on the borderline of the existing theory. This is to be achieved by a creative combination of techniques from Analysis and Probability. On top of the standard arsenal of modern Harmonic Analysis, the main probabilistic tools are the martingale transform inequalities of Burkholder, and random geometric constructions in the spirit of the random dyadic cubes introduced to Nonhomogeneous Analysis by Nazarov, Treil and Volberg.
The problems to be addressed fall under the following subtitles, with many interconnections and overlap: (i) sharp weighted inequalities; (ii) nonhomogeneous singular integrals on metric spaces; (iii) local Tb theorems with borderline assumptions; (iv) functional calculus of rough differential operators; and (v) vector-valued singular integrals.
Topic (i) is a part of Classical Analysis, where new methods have led to substantial recent progress, culminating in my solution in July 2010 of a celebrated problem on the linear dependence of the weighted operator norm on the Muckenhoupt norm of the weight. The proof should be extendible to several related questions, and the aim is to also address some outstanding open problems in the area.
Topics (ii) and (v) deal with extensions of the theory of singular integrals to functions with more general domain and range spaces, allowing them to be abstract metric and Banach spaces, respectively. In case (ii), I have recently been able to relax the requirements on the space compared to the established theories, opening a new research direction here. Topics (iii) and (iv) are concerned with weakening the assumptions on singular integrals in the usual Euclidean space, to allow certain applications in the theory of Partial Differential Equations. The goal is to maintain a close contact and exchange of ideas between such abstract and concrete questions.
Summary
The proposal consists of an extensive research program to advance the understanding of singular integral operators of Harmonic Analysis in various situations on the borderline of the existing theory. This is to be achieved by a creative combination of techniques from Analysis and Probability. On top of the standard arsenal of modern Harmonic Analysis, the main probabilistic tools are the martingale transform inequalities of Burkholder, and random geometric constructions in the spirit of the random dyadic cubes introduced to Nonhomogeneous Analysis by Nazarov, Treil and Volberg.
The problems to be addressed fall under the following subtitles, with many interconnections and overlap: (i) sharp weighted inequalities; (ii) nonhomogeneous singular integrals on metric spaces; (iii) local Tb theorems with borderline assumptions; (iv) functional calculus of rough differential operators; and (v) vector-valued singular integrals.
Topic (i) is a part of Classical Analysis, where new methods have led to substantial recent progress, culminating in my solution in July 2010 of a celebrated problem on the linear dependence of the weighted operator norm on the Muckenhoupt norm of the weight. The proof should be extendible to several related questions, and the aim is to also address some outstanding open problems in the area.
Topics (ii) and (v) deal with extensions of the theory of singular integrals to functions with more general domain and range spaces, allowing them to be abstract metric and Banach spaces, respectively. In case (ii), I have recently been able to relax the requirements on the space compared to the established theories, opening a new research direction here. Topics (iii) and (iv) are concerned with weakening the assumptions on singular integrals in the usual Euclidean space, to allow certain applications in the theory of Partial Differential Equations. The goal is to maintain a close contact and exchange of ideas between such abstract and concrete questions.
Max ERC Funding
1 100 000 €
Duration
Start date: 2011-11-01, End date: 2016-10-31
Project acronym ANTILEAK
Project Development of antagonists of vascular leakage
Researcher (PI) Pipsa SAHARINEN
Host Institution (HI) HELSINGIN YLIOPISTO
Call Details Consolidator Grant (CoG), LS4, ERC-2017-COG
Summary Dysregulation of capillary permeability is a severe problem in critically ill patients, but the mechanisms involved are poorly understood. Further, there are no targeted therapies to stabilize leaky vessels in various common, potentially fatal diseases, such as systemic inflammation and sepsis, which affect millions of people annually. Although a multitude of signals that stimulate opening of endothelial cell-cell junctions leading to permeability have been characterized using cellular and in vivo models, approaches to reverse the harmful process of capillary leakage in disease conditions are yet to be identified. I propose to explore a novel autocrine endothelial permeability regulatory system as a potentially universal mechanism that antagonizes vascular stabilizing ques and sustains vascular leakage in inflammation. My group has identified inflammation-induced mechanisms that switch vascular stabilizing factors into molecules that destabilize vascular barriers, and identified tools to prevent the barrier disruption. Building on these discoveries, my group will use mouse genetics, structural biology and innovative, systematic antibody development coupled with gene editing and gene silencing technology, in order to elucidate mechanisms of vascular barrier breakdown and repair in systemic inflammation. The expected outcomes include insights into endothelial cell signaling and permeability regulation, and preclinical proof-of-concept antibodies to control endothelial activation and vascular leakage in systemic inflammation and sepsis models. Ultimately, the new knowledge and preclinical tools developed in this project may facilitate future development of targeted approaches against vascular leakage.
Summary
Dysregulation of capillary permeability is a severe problem in critically ill patients, but the mechanisms involved are poorly understood. Further, there are no targeted therapies to stabilize leaky vessels in various common, potentially fatal diseases, such as systemic inflammation and sepsis, which affect millions of people annually. Although a multitude of signals that stimulate opening of endothelial cell-cell junctions leading to permeability have been characterized using cellular and in vivo models, approaches to reverse the harmful process of capillary leakage in disease conditions are yet to be identified. I propose to explore a novel autocrine endothelial permeability regulatory system as a potentially universal mechanism that antagonizes vascular stabilizing ques and sustains vascular leakage in inflammation. My group has identified inflammation-induced mechanisms that switch vascular stabilizing factors into molecules that destabilize vascular barriers, and identified tools to prevent the barrier disruption. Building on these discoveries, my group will use mouse genetics, structural biology and innovative, systematic antibody development coupled with gene editing and gene silencing technology, in order to elucidate mechanisms of vascular barrier breakdown and repair in systemic inflammation. The expected outcomes include insights into endothelial cell signaling and permeability regulation, and preclinical proof-of-concept antibodies to control endothelial activation and vascular leakage in systemic inflammation and sepsis models. Ultimately, the new knowledge and preclinical tools developed in this project may facilitate future development of targeted approaches against vascular leakage.
Max ERC Funding
1 999 770 €
Duration
Start date: 2018-05-01, End date: 2023-04-30
Project acronym AP-1-FUN
Project AP-1 (Fos/Jun) Functions in Physiology and Disease
Researcher (PI) Erwin F. Wagner
Host Institution (HI) FUNDACION CENTRO NACIONAL DE INVESTIGACIONES ONCOLOGICAS CARLOS III
Call Details Advanced Grant (AdG), LS4, ERC-2008-AdG
Summary Our research interests lie in breaking new ground in studying mechanism-based functions of AP-1 (Fos/Jun) in vivo with the aim of obtaining a more global perspective on AP-1 in human physiology and disease/cancer. The unresolved issues regarding the AP-1 subunit composition will be tackled biochemically and genetically in various cell types including bone, liver and skin, the primary organs affected by altered AP-1 activity. I plan to utilize the knowledge gained on AP-1 functions in the mouse and transfer it to human disease. The opportunities here lie in exploiting the knowledge of AP-1 target genes and utilizing this information to interfere with pathways involved in normal physiology and disease/cancer. The past investigations revealed that the functions of AP-1 are an essential node at the crossroads between life and death in different cellular systems. I plan to further exploit our findings and concentrate on utilising better mouse models to define these connections. The emphasis will be on identifying molecular signatures and potential treatments in models for cancer, inflammatory and fibrotic diseases. Exploring genetically modified stem cell-based therapies in murine and human cells is an ongoing challenge I would like to meet in the forthcoming years at the CNIO. In addition, the mouse models will be used for mechanism-driven therapeutic strategies and these studies will be undertaken in collaboration with the Experimental Therapeutics Division and the service units such as the tumor bank. The project proposal is divided into 6 Goals (see also Figure 1): Some are a logical continuation based on previous work with completely new aspects (Goal 1-2), some focussing on in depth molecular analyses of disease models with innovative and unconventional concepts, such as for inflammation and cancer, psoriasis and fibrosis (Goal 3-5). A final section is devoted to mouse and human ES cells and their impact for regenerative medicine in bone diseases and cancer.
Summary
Our research interests lie in breaking new ground in studying mechanism-based functions of AP-1 (Fos/Jun) in vivo with the aim of obtaining a more global perspective on AP-1 in human physiology and disease/cancer. The unresolved issues regarding the AP-1 subunit composition will be tackled biochemically and genetically in various cell types including bone, liver and skin, the primary organs affected by altered AP-1 activity. I plan to utilize the knowledge gained on AP-1 functions in the mouse and transfer it to human disease. The opportunities here lie in exploiting the knowledge of AP-1 target genes and utilizing this information to interfere with pathways involved in normal physiology and disease/cancer. The past investigations revealed that the functions of AP-1 are an essential node at the crossroads between life and death in different cellular systems. I plan to further exploit our findings and concentrate on utilising better mouse models to define these connections. The emphasis will be on identifying molecular signatures and potential treatments in models for cancer, inflammatory and fibrotic diseases. Exploring genetically modified stem cell-based therapies in murine and human cells is an ongoing challenge I would like to meet in the forthcoming years at the CNIO. In addition, the mouse models will be used for mechanism-driven therapeutic strategies and these studies will be undertaken in collaboration with the Experimental Therapeutics Division and the service units such as the tumor bank. The project proposal is divided into 6 Goals (see also Figure 1): Some are a logical continuation based on previous work with completely new aspects (Goal 1-2), some focussing on in depth molecular analyses of disease models with innovative and unconventional concepts, such as for inflammation and cancer, psoriasis and fibrosis (Goal 3-5). A final section is devoted to mouse and human ES cells and their impact for regenerative medicine in bone diseases and cancer.
Max ERC Funding
2 500 000 €
Duration
Start date: 2009-11-01, End date: 2015-10-31
Project acronym APMPAL
Project Asset Prices and Macro Policy when Agents Learn
Researcher (PI) Albert Marcet Torrens
Host Institution (HI) FUNDACIÓ MARKETS, ORGANIZATIONS AND VOTES IN ECONOMICS
Call Details Advanced Grant (AdG), SH1, ERC-2012-ADG_20120411
Summary "A conventional assumption in dynamic models is that agents form their expectations in a very sophisticated manner. In particular, that they have Rational Expectations (RE). We develop some tools to relax this assumption while retaining fully optimal behaviour by agents. We study implications for asset pricing and macro policy.
We assume that agents have a consistent set of beliefs that is close, but not equal, to RE. Agents are ""Internally Rational"", that is, they behave rationally given their system of beliefs. Thus, it is conceptually a small deviation from RE. It provides microfoundations for models of adaptive learning, since the learning algorithm is determined by agents’ optimal behaviour. In previous work we have shown that this framework can match stock price and housing price fluctuations, and that policy implications are quite different.
In this project we intend to: i) develop further the foundations of internally rational (IR) learning, ii) apply this to explain observed asset price price behavior, such as stock prices, bond prices, inflation, commodity derivatives, and exchange rates, iii) extend the IR framework to the case when agents entertain various models, iv) optimal policy under IR learning and under private information when some hidden shocks are not revealed ex-post. Along the way we will address policy issues such as: effects of creating derivative markets, sovereign spread as a signal of sovereign default risk, tests of fiscal sustainability, fiscal policy when agents learn, monetary policy (more specifically, QE measures and interest rate policy), and the role of credibility in macro policy."
Summary
"A conventional assumption in dynamic models is that agents form their expectations in a very sophisticated manner. In particular, that they have Rational Expectations (RE). We develop some tools to relax this assumption while retaining fully optimal behaviour by agents. We study implications for asset pricing and macro policy.
We assume that agents have a consistent set of beliefs that is close, but not equal, to RE. Agents are ""Internally Rational"", that is, they behave rationally given their system of beliefs. Thus, it is conceptually a small deviation from RE. It provides microfoundations for models of adaptive learning, since the learning algorithm is determined by agents’ optimal behaviour. In previous work we have shown that this framework can match stock price and housing price fluctuations, and that policy implications are quite different.
In this project we intend to: i) develop further the foundations of internally rational (IR) learning, ii) apply this to explain observed asset price price behavior, such as stock prices, bond prices, inflation, commodity derivatives, and exchange rates, iii) extend the IR framework to the case when agents entertain various models, iv) optimal policy under IR learning and under private information when some hidden shocks are not revealed ex-post. Along the way we will address policy issues such as: effects of creating derivative markets, sovereign spread as a signal of sovereign default risk, tests of fiscal sustainability, fiscal policy when agents learn, monetary policy (more specifically, QE measures and interest rate policy), and the role of credibility in macro policy."
Max ERC Funding
1 970 260 €
Duration
Start date: 2013-06-01, End date: 2018-08-31
Project acronym APMPAL-HET
Project Asset Prices and Macro Policy when Agents Learn and are Heterogeneous
Researcher (PI) Albert MARCET TORRENS
Host Institution (HI) FUNDACIÓ MARKETS, ORGANIZATIONS AND VOTES IN ECONOMICS
Call Details Advanced Grant (AdG), SH1, ERC-2017-ADG
Summary Based on the APMPAL (ERC) project we continue to develop the frameworks of internal rationality (IR) and optimal signal extraction (OSE). Under IR investors/consumers behave rationally given their subjective beliefs about prices, these beliefs are compatible with data. Under OSE the government has partial information, it knows how policy influences observed variables and signal extraction.
We develop further the foundations of IR and OSE with an emphasis on heterogeneous agents. We study sovereign bond crisis and heterogeneity of beliefs in asset pricing models under IR, using survey data on expectations. Under IR the assets’ stochastic discount factor depends on the agents’ decision function and beliefs; this modifies some key asset pricing results. We extend OSE to models with state variables, forward-looking constraints and heterogeneity.
Under IR agents’ prior beliefs determine the effects of a policy reform. If the government does not observe prior beliefs it has partial information, thus OSE should be used to analyse policy reforms under IR.
If IR heterogeneous workers forecast their productivity either from their own wage or their neighbours’ in a network, low current wages discourage search and human capital accumulation, leading to low productivity. This can explain low development of a country or social exclusion of a group. Worker subsidies redistribute wealth and can increase productivity if they “teach” agents to exit a low-wage state.
We build DSGE models under IR for prediction and policy analysis. We develop time-series tools for predicting macro and asset market variables, using information available to the analyst, and we introduce non-linearities and survey expectations using insights from models under IR.
We study how IR and OSE change the view on macro policy issues such as tax smoothing, debt management, Taylor rule, level of inflation, fiscal/monetary policy coordination, factor taxation or redistribution.
Summary
Based on the APMPAL (ERC) project we continue to develop the frameworks of internal rationality (IR) and optimal signal extraction (OSE). Under IR investors/consumers behave rationally given their subjective beliefs about prices, these beliefs are compatible with data. Under OSE the government has partial information, it knows how policy influences observed variables and signal extraction.
We develop further the foundations of IR and OSE with an emphasis on heterogeneous agents. We study sovereign bond crisis and heterogeneity of beliefs in asset pricing models under IR, using survey data on expectations. Under IR the assets’ stochastic discount factor depends on the agents’ decision function and beliefs; this modifies some key asset pricing results. We extend OSE to models with state variables, forward-looking constraints and heterogeneity.
Under IR agents’ prior beliefs determine the effects of a policy reform. If the government does not observe prior beliefs it has partial information, thus OSE should be used to analyse policy reforms under IR.
If IR heterogeneous workers forecast their productivity either from their own wage or their neighbours’ in a network, low current wages discourage search and human capital accumulation, leading to low productivity. This can explain low development of a country or social exclusion of a group. Worker subsidies redistribute wealth and can increase productivity if they “teach” agents to exit a low-wage state.
We build DSGE models under IR for prediction and policy analysis. We develop time-series tools for predicting macro and asset market variables, using information available to the analyst, and we introduce non-linearities and survey expectations using insights from models under IR.
We study how IR and OSE change the view on macro policy issues such as tax smoothing, debt management, Taylor rule, level of inflation, fiscal/monetary policy coordination, factor taxation or redistribution.
Max ERC Funding
1 524 144 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym ARISYS
Project Engineering an artificial immune system with functional components assembled from prokaryotic parts and modules
Researcher (PI) Víctor De Lorenzo Prieto
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Advanced Grant (AdG), LS9, ERC-2012-ADG_20120314
Summary The objective of this project is to overcome current limitations for antibody production that are inherent to the extant immune system of vertebrates. This will be done by creating an all-in-one artificial/synthetic counterpart based exclusively on prokaryotic parts, devices and modules. To this end, ARISYS will exploit design concepts, construction hierarchies and standardization notions that stem from contemporary Synthetic Biology for the assembly and validation of (what we believe is) the most complex artificial biological system ventured thus far. This all-bacterial immune-like system will not only simplify and make affordable the manipulations necessary for antibody generation, but will also permit the application of such binders by themselves or displayed on bacterial cells to biotechnological challenges well beyond therapeutic and health-related uses. The work plan involves the assembly and validation of autonomous functional modules for [i] displaying antibody/affibody (AB) scaffolds attached to the surface of bacterial cells, [ii] conditional diversification of target-binding sequences of the ABs, [iii] contact-dependent activation of gene expression, [iv] reversible bi-stable switches, and [v] clonal selection and amplification of improved binders. These modules composed of stand-alone parts and bearing well defined input/output functions, will be assembled in the genomic chassis of streamlined Escherichia coli and Pseudomonas putida strains. The resulting molecular network will make the ABs expressed and displayed on the cell surface to proceed spontaneously (or at the user's decision) through subsequent cycles of affinity and specificity maturation towards antigens or other targets presented to the bacterial population. In this way, a single, easy-to-handle (albeit heavily engineered) strain will govern all operations that are typically scattered in a multitude of separate methods and apparatuses for AB production.
Summary
The objective of this project is to overcome current limitations for antibody production that are inherent to the extant immune system of vertebrates. This will be done by creating an all-in-one artificial/synthetic counterpart based exclusively on prokaryotic parts, devices and modules. To this end, ARISYS will exploit design concepts, construction hierarchies and standardization notions that stem from contemporary Synthetic Biology for the assembly and validation of (what we believe is) the most complex artificial biological system ventured thus far. This all-bacterial immune-like system will not only simplify and make affordable the manipulations necessary for antibody generation, but will also permit the application of such binders by themselves or displayed on bacterial cells to biotechnological challenges well beyond therapeutic and health-related uses. The work plan involves the assembly and validation of autonomous functional modules for [i] displaying antibody/affibody (AB) scaffolds attached to the surface of bacterial cells, [ii] conditional diversification of target-binding sequences of the ABs, [iii] contact-dependent activation of gene expression, [iv] reversible bi-stable switches, and [v] clonal selection and amplification of improved binders. These modules composed of stand-alone parts and bearing well defined input/output functions, will be assembled in the genomic chassis of streamlined Escherichia coli and Pseudomonas putida strains. The resulting molecular network will make the ABs expressed and displayed on the cell surface to proceed spontaneously (or at the user's decision) through subsequent cycles of affinity and specificity maturation towards antigens or other targets presented to the bacterial population. In this way, a single, easy-to-handle (albeit heavily engineered) strain will govern all operations that are typically scattered in a multitude of separate methods and apparatuses for AB production.
Max ERC Funding
2 422 271 €
Duration
Start date: 2013-05-01, End date: 2019-04-30
Project acronym ArtEmpire
Project An ARTery of EMPIRE. Conquest, Commerce, Crisis, Culture and the Panamanian Junction (1513-1671)
Researcher (PI) Bethany Aram Worzella
Host Institution (HI) UNIVERSIDAD PABLO DE OLAVIDE
Call Details Consolidator Grant (CoG), SH6, ERC-2014-CoG
Summary European incursions onto the narrow isthmian pass that divided and connected the Atlantic and Pacific oceans made it a strategic node of the Spanish Empire and a crucial site for early modern globalization. On the front lines of the convergence of four continents, Old Panama offers an unusual opportunity for examining the diverse, often asymmetrical impacts of cultural and commercial contacts. The role of Italian, Portuguese, British, Dutch, and French interests in the area, as well as an influx of African slaves and Asian merchandise, have left a unique material legacy that requires an integrated, interdisciplinary approach to its varied sources. Bones, teeth and artifacts on this artery of Empire offer the possibility of new insights into the cultural and biological impact of early globalization. They also invite an interdisciplinary approach to different groups’ tactics for survival, including possible dietary changes, and the pursuit of profit. Such strategies may have led the diverse peoples inhabiting this junction, from indigenous allies to African and Asian bandits to European corsairs, to develop and to favor local production and Pacific trade networks at the expense of commerce with the metropolis.
This project applies historical, archaeological and archaeometric methodologies to evidence of encounters between peoples and goods from Europe, America, Africa and Asia that took place on the Isthmus of Panama during the sixteenth and seventeenth centuries. Forging an interdisciplinary approach to early globalization, it challenges both Euro-centric and Hispano-phobic interpretations of the impact of the conquest of America, traditionally seen as a demographic catastrophe that reached its nadir in the so-called seventeenth-century crisis. Rather than applying quantitative methods to incomplete source material, researchers will adopt a contextualized, inter-disciplinary, qualitative approach to diverse agents involved in cultural and commercial exchange.
Summary
European incursions onto the narrow isthmian pass that divided and connected the Atlantic and Pacific oceans made it a strategic node of the Spanish Empire and a crucial site for early modern globalization. On the front lines of the convergence of four continents, Old Panama offers an unusual opportunity for examining the diverse, often asymmetrical impacts of cultural and commercial contacts. The role of Italian, Portuguese, British, Dutch, and French interests in the area, as well as an influx of African slaves and Asian merchandise, have left a unique material legacy that requires an integrated, interdisciplinary approach to its varied sources. Bones, teeth and artifacts on this artery of Empire offer the possibility of new insights into the cultural and biological impact of early globalization. They also invite an interdisciplinary approach to different groups’ tactics for survival, including possible dietary changes, and the pursuit of profit. Such strategies may have led the diverse peoples inhabiting this junction, from indigenous allies to African and Asian bandits to European corsairs, to develop and to favor local production and Pacific trade networks at the expense of commerce with the metropolis.
This project applies historical, archaeological and archaeometric methodologies to evidence of encounters between peoples and goods from Europe, America, Africa and Asia that took place on the Isthmus of Panama during the sixteenth and seventeenth centuries. Forging an interdisciplinary approach to early globalization, it challenges both Euro-centric and Hispano-phobic interpretations of the impact of the conquest of America, traditionally seen as a demographic catastrophe that reached its nadir in the so-called seventeenth-century crisis. Rather than applying quantitative methods to incomplete source material, researchers will adopt a contextualized, inter-disciplinary, qualitative approach to diverse agents involved in cultural and commercial exchange.
Max ERC Funding
1 998 875 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym ARTSOUNDSCAPES
Project The sound of special places: exploring rock art soundscapes and the sacred
Researcher (PI) A. Margarita DIAZ-ANDREU
Host Institution (HI) UNIVERSITAT DE BARCELONA
Call Details Advanced Grant (AdG), SH6, ERC-2017-ADG
Summary The ARTSOUNDSCAPES project deals with sound, rock art and sacred landscapes among past hunter-gatherers and early agricultural societies around the world. The potential of sound to stimulate powerful emotions makes it a common medium for conferring places with extraordinary agency. Ethnographic and ethnohistorical sources indicate that these sites are often endowed with a sacred significance and, in many cases, they also receive special treatment, including the production of rock paintings. Despite the aural experience being an integral component of the human condition and a key element in ritual, archaeology has largely been unable to study it systematically. Rock art landscapes are no exception and, although some studies have been made, they have largely been reproached for their lack of scientific rigour and subjectivity. ARTSOUNDSCAPES will fully address this weakness by investigating the perception of sound in rock art landscapes from an interdisciplinary approach. Borrowing methods developed in acoustic engineering, the project will assess, from an objective and quantitative perspective, the acoustic properties of rock art landscapes in selected areas around the world: the Western/Central Mediterranean in Europe, Siberia in Asia, and Baja California in North America. Human experiences associated with altered or mystical states invoked by the identified special sonic characteristics of these landscapes will be further tested by exploring the psychoacoustic effects these soundscapes have on people and their neural correlate to brain activity. The project will also thoroughly survey ethnographic attitudes to sacred soundscapes based on both current premodern societies and ethnohistorical sources. The groundbreaking combination of this array of interdisciplinary approaches will facilitate the ultimate aim of the project: to propose a phenomenological understanding of sacred soundscapes among late hunter-gatherers and early agriculturalists around the world.
Summary
The ARTSOUNDSCAPES project deals with sound, rock art and sacred landscapes among past hunter-gatherers and early agricultural societies around the world. The potential of sound to stimulate powerful emotions makes it a common medium for conferring places with extraordinary agency. Ethnographic and ethnohistorical sources indicate that these sites are often endowed with a sacred significance and, in many cases, they also receive special treatment, including the production of rock paintings. Despite the aural experience being an integral component of the human condition and a key element in ritual, archaeology has largely been unable to study it systematically. Rock art landscapes are no exception and, although some studies have been made, they have largely been reproached for their lack of scientific rigour and subjectivity. ARTSOUNDSCAPES will fully address this weakness by investigating the perception of sound in rock art landscapes from an interdisciplinary approach. Borrowing methods developed in acoustic engineering, the project will assess, from an objective and quantitative perspective, the acoustic properties of rock art landscapes in selected areas around the world: the Western/Central Mediterranean in Europe, Siberia in Asia, and Baja California in North America. Human experiences associated with altered or mystical states invoked by the identified special sonic characteristics of these landscapes will be further tested by exploring the psychoacoustic effects these soundscapes have on people and their neural correlate to brain activity. The project will also thoroughly survey ethnographic attitudes to sacred soundscapes based on both current premodern societies and ethnohistorical sources. The groundbreaking combination of this array of interdisciplinary approaches will facilitate the ultimate aim of the project: to propose a phenomenological understanding of sacred soundscapes among late hunter-gatherers and early agriculturalists around the world.
Max ERC Funding
2 239 375 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym AVATAR
Project Integrating Genomics and Avatar Mouse Models to Personalize Pancreatic Cancer Treatment
Researcher (PI) Manuel HIDALGO MEDINA
Host Institution (HI) HOSPITAL UNIVERSITARIO DE FUENLABRADA
Call Details Advanced Grant (AdG), LS7, ERC-2014-ADG
Summary The prognosis of patients with metastatic pancreatic cancer (PDAC) is very poor. Recent studies have started to elucidate the genetic landscape of this disease to show that PDAC is a genetically complex, unstable, and heterogeneous cancer. However, in-depth analysis of individual patient genomes couple with personalize Avatar mouse models is providing highly effective therapeutic opportunities for the individual patient. Thus, metastatic PDAC appears a candidate disease to implement a genomics-base, personalized treatment approach. In this project, we will conduct an open label, multicenter, randomized phase III study in patients with standard of care resistant metastatic pancreatic cancer aiming to test the hypothesis that an integrated personalized treatment approach improves survival compare to a conventional treatment. Patients randomized to the personalize treatment arm will undergo a biopsy of a metastatic lesion to perform a targeted genome analysis using next generation sequencing. In addition, we will generate a personalize Avatar mouse model from the same patient. We will employ sophisticated bioinformatic analysis as well as mining of drug response-genetic databases to select, for each individual patient, candidate therapeutic targets that will be experimentally tested in the patient´s Avatar model to select the most effective regimen that will ultimately applied to the patient. In addition, based on the genomic data, we will design an individualized monitoring plan for each patient using BEAMing technology to monitor circulating levels of mutated genes. Furthermore, with a discovery goal, we will perform in depth genomic analysis of metastatic PDAC lesions in this cohort of clinically well-annotated patients with Avatar mouse models for therapeutic validation. Overall we expect this work will contribute to our understanding of PDAC and will favourably impact the treatment of this dismal cancer.
Summary
The prognosis of patients with metastatic pancreatic cancer (PDAC) is very poor. Recent studies have started to elucidate the genetic landscape of this disease to show that PDAC is a genetically complex, unstable, and heterogeneous cancer. However, in-depth analysis of individual patient genomes couple with personalize Avatar mouse models is providing highly effective therapeutic opportunities for the individual patient. Thus, metastatic PDAC appears a candidate disease to implement a genomics-base, personalized treatment approach. In this project, we will conduct an open label, multicenter, randomized phase III study in patients with standard of care resistant metastatic pancreatic cancer aiming to test the hypothesis that an integrated personalized treatment approach improves survival compare to a conventional treatment. Patients randomized to the personalize treatment arm will undergo a biopsy of a metastatic lesion to perform a targeted genome analysis using next generation sequencing. In addition, we will generate a personalize Avatar mouse model from the same patient. We will employ sophisticated bioinformatic analysis as well as mining of drug response-genetic databases to select, for each individual patient, candidate therapeutic targets that will be experimentally tested in the patient´s Avatar model to select the most effective regimen that will ultimately applied to the patient. In addition, based on the genomic data, we will design an individualized monitoring plan for each patient using BEAMing technology to monitor circulating levels of mutated genes. Furthermore, with a discovery goal, we will perform in depth genomic analysis of metastatic PDAC lesions in this cohort of clinically well-annotated patients with Avatar mouse models for therapeutic validation. Overall we expect this work will contribute to our understanding of PDAC and will favourably impact the treatment of this dismal cancer.
Max ERC Funding
2 498 688 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym B-INNATE
Project Innate signaling networks in B cell antibody production: new targets for vaccine development
Researcher (PI) Andrea Cerutti
Host Institution (HI) FUNDACIO INSTITUT MAR D INVESTIGACIONS MEDIQUES IMIM
Call Details Advanced Grant (AdG), LS6, ERC-2011-ADG_20110310
Summary The long-term goal of this proposal is to explore a novel immune pathway that involves an unexpected interplay between marginal zone (MZ) B cells and neutrophils. MZ B cells are strategically positioned at the interface between the immune system and the circulation and rapidly produce protective antibodies to blood-borne pathogens through a T cell-independent pathway that remains poorly understood. We recently found that the human spleen contains a novel subset of B cell helper neutrophils (NBH cells) with a phenotype and gene expression profile distinct from those of conventional circulating neutrophils (NC cells). In this proposal, we hypothesize that NC cells undergo splenic reprogramming into NBH cells through an IL-10-dependent pathway involving perifollicular sinusoidal endothelial cells. We contend that these unique endothelial cells release NC cell-attracting chemokines and IL-10 upon sensing blood-borne bacteria through Toll-like receptors. We also argue that IL-10 from sinusoidal endothelial cells stimulates NC cells to differentiate into NBH cells equipped with powerful MZ B cell-stimulating activity. The following three aims will be pursued. Aim 1 is to determine the mechanisms by which splenic sinusoidal endothelial cells induce reprogramming of NC cells into NBH cells upon sensing bacteria through Toll-like receptors. Aim 2 is to elucidate the mechanisms by which NBH cells induce IgM production, IgG and IgA class switching, and plasma cell differentiation in MZ B cells. Aim 3 is to evaluate the mechanisms by which NBH cells induce V(D)J gene somatic hypermutation and high-affinity antibody production in MZ B cells. These studies will uncover previously unknown facets of the immunological function of neutrophils by taking advantage of unique cells and tissues from patients with rare primary immunodeficiencies and by making use of selected mouse models. Results from these studies may also lead to the identification of novel vaccine strategies.
Summary
The long-term goal of this proposal is to explore a novel immune pathway that involves an unexpected interplay between marginal zone (MZ) B cells and neutrophils. MZ B cells are strategically positioned at the interface between the immune system and the circulation and rapidly produce protective antibodies to blood-borne pathogens through a T cell-independent pathway that remains poorly understood. We recently found that the human spleen contains a novel subset of B cell helper neutrophils (NBH cells) with a phenotype and gene expression profile distinct from those of conventional circulating neutrophils (NC cells). In this proposal, we hypothesize that NC cells undergo splenic reprogramming into NBH cells through an IL-10-dependent pathway involving perifollicular sinusoidal endothelial cells. We contend that these unique endothelial cells release NC cell-attracting chemokines and IL-10 upon sensing blood-borne bacteria through Toll-like receptors. We also argue that IL-10 from sinusoidal endothelial cells stimulates NC cells to differentiate into NBH cells equipped with powerful MZ B cell-stimulating activity. The following three aims will be pursued. Aim 1 is to determine the mechanisms by which splenic sinusoidal endothelial cells induce reprogramming of NC cells into NBH cells upon sensing bacteria through Toll-like receptors. Aim 2 is to elucidate the mechanisms by which NBH cells induce IgM production, IgG and IgA class switching, and plasma cell differentiation in MZ B cells. Aim 3 is to evaluate the mechanisms by which NBH cells induce V(D)J gene somatic hypermutation and high-affinity antibody production in MZ B cells. These studies will uncover previously unknown facets of the immunological function of neutrophils by taking advantage of unique cells and tissues from patients with rare primary immunodeficiencies and by making use of selected mouse models. Results from these studies may also lead to the identification of novel vaccine strategies.
Max ERC Funding
2 214 035 €
Duration
Start date: 2012-04-01, End date: 2017-09-30
Project acronym BacBio
Project Mechanistic and functional studies of Bacillus biofilms assembly on plants, and their impact in sustainable agriculture and food safety
Researcher (PI) Diego Francisco Romero Hinojosa
Host Institution (HI) UNIVERSIDAD DE MALAGA
Call Details Starting Grant (StG), LS9, ERC-2014-STG
Summary Sustainable agriculture is an ambitious concept conceived to improve productivity but minimizing side effects. Why the efficiency of a biocontrol agent is so variable? How can different therapies be efficiently exploited in a combined way to combat microbial diseases? These are questions that need investigation to convey with criteria of sustainability. What I present is an integral proposal aim to study the microbial ecology and specifically bacterial biofilms as a central axis of two differential but likely interconnected scenarios in plant health: i) the beneficial interaction of the biocontrol agent (BCA) Bacillus subtilis, and ii) the non-conventional interaction of the food-borne pathogen Bacillus cereus.
I will start working with B. subtilis, and reasons are: 1) Different isolates are promising BCAs and are commercialized for such purpose, 2) There exist vast information of the genetics circuitries that govern important aspects of B. subtilis physiology as antibiotic production, cell differentiation, and biofilm formation. In parallel I propose to study the way B. cereus, a food-borne pathogenic bacterium interacts with vegetables. I am planning to set up a multidisciplinary approach that will combine genetics, biochemistry, proteomics, cell biology and molecular biology to visualize how these bacterial population interacts, communicates with plants and other microorganisms, or how all these factors trigger or inhibit the developmental program ending in biofilm formation. I am also interested on knowing if structural components of the bacterial extracellular matrix (exopolysaccharides or amyloid proteins) are important for bacterial fitness. If this were the case, I will also investigate which external factors affect their expression and assembly in functional biofilms. The insights get on these studies are committed to impulse our knowledge on microbial ecology and their biotechnological applicability to sustainable agriculture and food safety.
Summary
Sustainable agriculture is an ambitious concept conceived to improve productivity but minimizing side effects. Why the efficiency of a biocontrol agent is so variable? How can different therapies be efficiently exploited in a combined way to combat microbial diseases? These are questions that need investigation to convey with criteria of sustainability. What I present is an integral proposal aim to study the microbial ecology and specifically bacterial biofilms as a central axis of two differential but likely interconnected scenarios in plant health: i) the beneficial interaction of the biocontrol agent (BCA) Bacillus subtilis, and ii) the non-conventional interaction of the food-borne pathogen Bacillus cereus.
I will start working with B. subtilis, and reasons are: 1) Different isolates are promising BCAs and are commercialized for such purpose, 2) There exist vast information of the genetics circuitries that govern important aspects of B. subtilis physiology as antibiotic production, cell differentiation, and biofilm formation. In parallel I propose to study the way B. cereus, a food-borne pathogenic bacterium interacts with vegetables. I am planning to set up a multidisciplinary approach that will combine genetics, biochemistry, proteomics, cell biology and molecular biology to visualize how these bacterial population interacts, communicates with plants and other microorganisms, or how all these factors trigger or inhibit the developmental program ending in biofilm formation. I am also interested on knowing if structural components of the bacterial extracellular matrix (exopolysaccharides or amyloid proteins) are important for bacterial fitness. If this were the case, I will also investigate which external factors affect their expression and assembly in functional biofilms. The insights get on these studies are committed to impulse our knowledge on microbial ecology and their biotechnological applicability to sustainable agriculture and food safety.
Max ERC Funding
1 453 563 €
Duration
Start date: 2015-03-01, End date: 2021-02-28
Project acronym BacRafts
Project Architecture of bacterial lipid rafts; inhibition of virulence and antibiotic resistance using raft-disassembling small molecules
Researcher (PI) Daniel López Serrano
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Starting Grant (StG), LS6, ERC-2013-StG
Summary Membranes of eukaryotic cells organize signal transduction proteins into microdomains or lipid rafts whose integrity is essential for numerous cellular processes. Lipid rafts has been considered a fundamental step to define the cellular complexity of eukaryotes, assuming that bacteria do not require such a sophisticated organization of their signaling networks. However, I have discovered that bacteria organize many signaling pathways in membrane microdomains similar to the eukaryotic lipid rafts. Perturbation of bacterial lipid rafts leads to a potent and simultaneous impairment of all raft-harbored signaling pathways. Consequently, the disassembly of lipid rafts in pathogens like Staphylococcus aureus generates a simultaneous inhibition of numerous infection-related processes that can be further explored to control bacterial infections. This unexpected sophistication in membrane organization is unprecedented in bacteria and hence, this proposal will explore the molecular basis of the assembly of bacterial lipid rafts and their role in the infection-related processes. These questions will be addressed in three main goals: First, I will elucidate the molecular components and the mechanism of assembly of bacterial lipid rafts using S. aureus as model organism. Second, I will dissect the molecular basis that links the functionality of the infection-related processes to the integrity of bacterial lipid rafts. Third, my collection of anti-raft small molecules that are able to disrupt lipid rafts will be tested as antimicrobial agents to prevent hospital-acquired infections, abrogate pre-existing infections and develop bacteria-free materials that can be used in clinical settings. I will use a number of molecular approaches in combination with cutting-edge techniques in flow cytometry, cell-imaging and transcriptomics to clarify the architecture and functionality of lipid rafts and demonstrate the feasibility of targeting lipid a new strategy for anti-microbial therapy.
Summary
Membranes of eukaryotic cells organize signal transduction proteins into microdomains or lipid rafts whose integrity is essential for numerous cellular processes. Lipid rafts has been considered a fundamental step to define the cellular complexity of eukaryotes, assuming that bacteria do not require such a sophisticated organization of their signaling networks. However, I have discovered that bacteria organize many signaling pathways in membrane microdomains similar to the eukaryotic lipid rafts. Perturbation of bacterial lipid rafts leads to a potent and simultaneous impairment of all raft-harbored signaling pathways. Consequently, the disassembly of lipid rafts in pathogens like Staphylococcus aureus generates a simultaneous inhibition of numerous infection-related processes that can be further explored to control bacterial infections. This unexpected sophistication in membrane organization is unprecedented in bacteria and hence, this proposal will explore the molecular basis of the assembly of bacterial lipid rafts and their role in the infection-related processes. These questions will be addressed in three main goals: First, I will elucidate the molecular components and the mechanism of assembly of bacterial lipid rafts using S. aureus as model organism. Second, I will dissect the molecular basis that links the functionality of the infection-related processes to the integrity of bacterial lipid rafts. Third, my collection of anti-raft small molecules that are able to disrupt lipid rafts will be tested as antimicrobial agents to prevent hospital-acquired infections, abrogate pre-existing infections and develop bacteria-free materials that can be used in clinical settings. I will use a number of molecular approaches in combination with cutting-edge techniques in flow cytometry, cell-imaging and transcriptomics to clarify the architecture and functionality of lipid rafts and demonstrate the feasibility of targeting lipid a new strategy for anti-microbial therapy.
Max ERC Funding
1 493 126 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym BAR2LEGAB
Project Women travelling to seek abortion care in Europe: the impact of barriers to legal abortion on women living in countries with ostensibly liberal abortion laws
Researcher (PI) Silvia De Zordo
Host Institution (HI) UNIVERSITAT DE BARCELONA
Call Details Starting Grant (StG), SH2, ERC-2015-STG
Summary In many European countries with ostensibly liberal abortion laws, women face legal restrictions to abortion beyond the first trimester of pregnancy, as well as other barriers to legal abortion, in particular shortages of providers willing and able to offer abortion due to poor training and to conscientious objection among physicians. The Council of Europe has recognized that conscientious objection can make access to safe abortion more difficult or impossible, particularly in rural areas and for low income women, who are forced to travel far to seek abortion care, including abroad. The WHO also highlights that delaying abortion care increases risks for women’s reproductive health. Despite the relevance of this topic from a public health and human rights perspective, the impact of procedural and social barriers to legal abortion on women in countries with ostensibly liberal abortion laws has not been studied by social scientists in Europe. This five-year research project is envisaged as a ground-breaking multi-disciplinary, mixed-methods investigation that will fill this gap, by capitalizing on previous, pioneer anthropological research of the PI on abortion and conscientious objection. It will contribute to the anthropology of reproduction in Europe, and particularly to the existing literature on abortion, conscientious objection and the medicalization of reproduction, and to the international debate on gender inequalities and citizenship, by exploring how barriers to legal abortion are constructed and how women embody and challenge them in different countries, by travelling or seeking illegal abortion, as well as their conceptualizations of abortion and their self perception as moral/political subjects. The project will be carried out in France, Italy and Spain, where the few existing studies show that women face several barriers to legal abortion as well as in the UK, the Netherlands and Spain, where Italian and French women travel to seek abortion care.
Summary
In many European countries with ostensibly liberal abortion laws, women face legal restrictions to abortion beyond the first trimester of pregnancy, as well as other barriers to legal abortion, in particular shortages of providers willing and able to offer abortion due to poor training and to conscientious objection among physicians. The Council of Europe has recognized that conscientious objection can make access to safe abortion more difficult or impossible, particularly in rural areas and for low income women, who are forced to travel far to seek abortion care, including abroad. The WHO also highlights that delaying abortion care increases risks for women’s reproductive health. Despite the relevance of this topic from a public health and human rights perspective, the impact of procedural and social barriers to legal abortion on women in countries with ostensibly liberal abortion laws has not been studied by social scientists in Europe. This five-year research project is envisaged as a ground-breaking multi-disciplinary, mixed-methods investigation that will fill this gap, by capitalizing on previous, pioneer anthropological research of the PI on abortion and conscientious objection. It will contribute to the anthropology of reproduction in Europe, and particularly to the existing literature on abortion, conscientious objection and the medicalization of reproduction, and to the international debate on gender inequalities and citizenship, by exploring how barriers to legal abortion are constructed and how women embody and challenge them in different countries, by travelling or seeking illegal abortion, as well as their conceptualizations of abortion and their self perception as moral/political subjects. The project will be carried out in France, Italy and Spain, where the few existing studies show that women face several barriers to legal abortion as well as in the UK, the Netherlands and Spain, where Italian and French women travel to seek abortion care.
Max ERC Funding
1 495 753 €
Duration
Start date: 2016-10-01, End date: 2021-09-30
Project acronym BCLYM
Project Molecular mechanisms of mature B cell lymphomagenesis
Researcher (PI) Almudena Ramiro
Host Institution (HI) CENTRO NACIONAL DE INVESTIGACIONESCARDIOVASCULARES CARLOS III (F.S.P.)
Call Details Starting Grant (StG), LS3, ERC-2007-StG
Summary Most of the lymphomas diagnosed in the western world are originated from mature B cells. The hallmark of these malignancies is the presence of recurrent chromosome translocations that usually involve the immunoglobulin loci and a proto-oncogene. As a result of the translocation event the proto-oncogene becomes deregulated under the influence of immunoglobulin cis sequences thus playing an important role in the etiology of the disease. Upon antigen encounter mature B cells engage in the germinal center reaction, a complex differentiation program of critical importance to the development of the secondary immune response. The germinal center reaction entails the somatic remodelling of immunoglobulin genes by the somatic hypermutation and class switch recombination reactions, both of which are triggered by Activation Induced Deaminase (AID). We have previously shown that AID also initiates lymphoma-associated c-myc/IgH chromosome translocations. In addition, the germinal center reaction involves a fine-tuned balance between intense B cell proliferation and program cell death. This environment seems to render B cells particularly vulnerable to malignant transformation. We aim at studying the molecular events responsible for B cell susceptibility to lymphomagenesis from two perspectives. First, we will address the role of AID in the generation of lymphomagenic lesions in the context of AID specificity and transcriptional activation. Second, we will approach the regulatory function of microRNAs of AID-dependent, germinal center events. The proposal aims at the molecular understanding of a process that lies in the interface of immune regulation and oncogenic transformation and therefore the results will have profound implications both to basic and clinical understanding of lymphomagenesis.
Summary
Most of the lymphomas diagnosed in the western world are originated from mature B cells. The hallmark of these malignancies is the presence of recurrent chromosome translocations that usually involve the immunoglobulin loci and a proto-oncogene. As a result of the translocation event the proto-oncogene becomes deregulated under the influence of immunoglobulin cis sequences thus playing an important role in the etiology of the disease. Upon antigen encounter mature B cells engage in the germinal center reaction, a complex differentiation program of critical importance to the development of the secondary immune response. The germinal center reaction entails the somatic remodelling of immunoglobulin genes by the somatic hypermutation and class switch recombination reactions, both of which are triggered by Activation Induced Deaminase (AID). We have previously shown that AID also initiates lymphoma-associated c-myc/IgH chromosome translocations. In addition, the germinal center reaction involves a fine-tuned balance between intense B cell proliferation and program cell death. This environment seems to render B cells particularly vulnerable to malignant transformation. We aim at studying the molecular events responsible for B cell susceptibility to lymphomagenesis from two perspectives. First, we will address the role of AID in the generation of lymphomagenic lesions in the context of AID specificity and transcriptional activation. Second, we will approach the regulatory function of microRNAs of AID-dependent, germinal center events. The proposal aims at the molecular understanding of a process that lies in the interface of immune regulation and oncogenic transformation and therefore the results will have profound implications both to basic and clinical understanding of lymphomagenesis.
Max ERC Funding
1 596 000 €
Duration
Start date: 2008-12-01, End date: 2014-11-30
Project acronym BHIVE
Project Bio-derived HIgh Value polymers through novel Enzyme function
Researcher (PI) Emma Rusi Master
Host Institution (HI) AALTO KORKEAKOULUSAATIO SR
Call Details Consolidator Grant (CoG), LS9, ERC-2014-CoG
Summary Recent advances in systems-level study of cells and organisms have revealed the enormous potential to live more sustainably through better use of biological processes. Plants sustainably synthesize the most abundant and diverse materials on Earth. By applying recent advances in life science technology, we can better harness renewable plant resources and bioconversion processes, to develop environmentally and politically sustainable human enterprise and lifestyles. At the same time, the global market for high-value biochemicals and bioplastics from forest and agricultural sources is rapidly increasing, which presents new opportunities for forest and agricultural sectors.
The overall aim of BHIVE is to illuminate uncharted regions of genome and metagenome sequences to discover entirely new protein families that can be used to sustainably synthesize novel, high-value biomaterials from renewable plant resources. The approach will include three parallel research thrusts: 1) strategic analysis of transcriptome and metagenome sequences to identify proteins with entirely unknown function relevant to biomass (lignocellulose) transformation, 2) mapping of uncharted regions within phylogenetic trees of poorly characterized enzyme families with recognized potential to modify the chemistry and biophysical properties of plant polysaccharides, and 3) the design and development of novel enzyme screens to directly address the increasing limitations of existing assays to uncover entirely new protein functions. BHIVE will be unique in its undivided focus on characterizing lignocellulose-active proteins encoded by the 30-40% of un-annotated sequence, or genomic “dark matter”, typical of nearly all genome sequences. In this way, BHIVE tackles a key constraint to fully realizing the societal and environmental benefits of the genomics era.
Summary
Recent advances in systems-level study of cells and organisms have revealed the enormous potential to live more sustainably through better use of biological processes. Plants sustainably synthesize the most abundant and diverse materials on Earth. By applying recent advances in life science technology, we can better harness renewable plant resources and bioconversion processes, to develop environmentally and politically sustainable human enterprise and lifestyles. At the same time, the global market for high-value biochemicals and bioplastics from forest and agricultural sources is rapidly increasing, which presents new opportunities for forest and agricultural sectors.
The overall aim of BHIVE is to illuminate uncharted regions of genome and metagenome sequences to discover entirely new protein families that can be used to sustainably synthesize novel, high-value biomaterials from renewable plant resources. The approach will include three parallel research thrusts: 1) strategic analysis of transcriptome and metagenome sequences to identify proteins with entirely unknown function relevant to biomass (lignocellulose) transformation, 2) mapping of uncharted regions within phylogenetic trees of poorly characterized enzyme families with recognized potential to modify the chemistry and biophysical properties of plant polysaccharides, and 3) the design and development of novel enzyme screens to directly address the increasing limitations of existing assays to uncover entirely new protein functions. BHIVE will be unique in its undivided focus on characterizing lignocellulose-active proteins encoded by the 30-40% of un-annotated sequence, or genomic “dark matter”, typical of nearly all genome sequences. In this way, BHIVE tackles a key constraint to fully realizing the societal and environmental benefits of the genomics era.
Max ERC Funding
1 977 781 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym BILITERACY
Project Bi-literacy: Learning to read in L1 and in L2
Researcher (PI) Manuel Francisco Carreiras Valiña
Host Institution (HI) BCBL BASQUE CENTER ON COGNITION BRAIN AND LANGUAGE
Call Details Advanced Grant (AdG), SH4, ERC-2011-ADG_20110406
Summary Learning to read is probably one of the most exciting discoveries in our life. Using a longitudinal approach, the research proposed examines how the human brain responds to two major challenges: (a) the instantiation a complex cognitive function for which there is no genetic blueprint (learning to read in a first language, L1), and (b) the accommodation to new statistical regularities when learning to read in a second language (L2). The aim of the present research project is to identify the neural substrates of the reading process and its constituent cognitive components, with specific attention to individual differences and reading disabilities; as well as to investigate the relationship between specific cognitive functions and the changes in neural activity that take place in the course of learning to read in L1 and in L2. The project will employ a longitudinal design. We will recruit children before they learn to read in L1 and in L2 and track reading development with both cognitive and neuroimaging measures over 24 months. The findings from this project will provide a deeper understanding of (a) how general neurocognitive factors and language specific factors underlie individual differences – and reading disabilities– in reading acquisition in L1 and in L2; (b) how the neuro-cognitive circuitry changes and brain mechanisms synchronize while instantiating reading in L1 and in L2; (c) what the limitations and the extent of brain plasticity are in young readers. An interdisciplinary and multi-methodological approach is one of the keys to success of the present project, along with strong theory-driven investigation. By combining both we will generate breakthroughs to advance our understanding of how literacy in L1 and in L2 is acquired and mastered. The research proposed will also lay the foundations for more applied investigations of best practice in teaching reading in first and subsequent languages, and devising intervention methods for reading disabilities.
Summary
Learning to read is probably one of the most exciting discoveries in our life. Using a longitudinal approach, the research proposed examines how the human brain responds to two major challenges: (a) the instantiation a complex cognitive function for which there is no genetic blueprint (learning to read in a first language, L1), and (b) the accommodation to new statistical regularities when learning to read in a second language (L2). The aim of the present research project is to identify the neural substrates of the reading process and its constituent cognitive components, with specific attention to individual differences and reading disabilities; as well as to investigate the relationship between specific cognitive functions and the changes in neural activity that take place in the course of learning to read in L1 and in L2. The project will employ a longitudinal design. We will recruit children before they learn to read in L1 and in L2 and track reading development with both cognitive and neuroimaging measures over 24 months. The findings from this project will provide a deeper understanding of (a) how general neurocognitive factors and language specific factors underlie individual differences – and reading disabilities– in reading acquisition in L1 and in L2; (b) how the neuro-cognitive circuitry changes and brain mechanisms synchronize while instantiating reading in L1 and in L2; (c) what the limitations and the extent of brain plasticity are in young readers. An interdisciplinary and multi-methodological approach is one of the keys to success of the present project, along with strong theory-driven investigation. By combining both we will generate breakthroughs to advance our understanding of how literacy in L1 and in L2 is acquired and mastered. The research proposed will also lay the foundations for more applied investigations of best practice in teaching reading in first and subsequent languages, and devising intervention methods for reading disabilities.
Max ERC Funding
2 487 000 €
Duration
Start date: 2012-05-01, End date: 2017-04-30
Project acronym BIOCOM
Project Biotic community attributes and ecosystem functioning: implications for predicting and mitigating global change impacts
Researcher (PI) Fernando Tomás Maestre Gil
Host Institution (HI) UNIVERSIDAD REY JUAN CARLOS
Call Details Starting Grant (StG), LS8, ERC-2009-StG
Summary Increases in nutrient availability and temperature, and changes in precipitation patterns and biodiversity are important components of global environmental change. Thus, it is imperative to understand their impacts on the functioning of natural ecosystems. Substantial research efforts are being currently devoted to predict how biodiversity will respond to global change. However, little is known on the relative importance of biodiversity against other attributes of biotic communities, such as species cover and spatial pattern, as a driver of ecosystem processes. Furthermore, the effects of global change on the relationships between these attributes and ecosystem functioning are virtually unknown. This project aims to evaluate the relationships between community attributes (species richness, composition, evenness, cover, and spatial pattern) and key processes related to ecosystem functioning under different global change scenarios. Its specific objectives are to: i) evaluate the relative importance of community attributes as drivers of ecosystem functioning, ii) assess how multiple global change drivers will affect key ecosystem processes, iii) test whether global change drivers modify observed community attributes-ecosystem functioning relationships, iv) develop models to forecast global change effects on ecosystem functioning, and v) set up protocols for the establishment of mitigation actions based on the results obtained. They will be achieved by integrating experimental and modeling approaches conducted with multiple biotic communities at different spatial scales. Such integrated framework has not been tackled before, and constitutes a ground breaking advance over current research efforts on global change. This proposal will also open the door to new research lines exploring the functional role of community attributes and their importance as modulators of ecosystem responses to global change.
Summary
Increases in nutrient availability and temperature, and changes in precipitation patterns and biodiversity are important components of global environmental change. Thus, it is imperative to understand their impacts on the functioning of natural ecosystems. Substantial research efforts are being currently devoted to predict how biodiversity will respond to global change. However, little is known on the relative importance of biodiversity against other attributes of biotic communities, such as species cover and spatial pattern, as a driver of ecosystem processes. Furthermore, the effects of global change on the relationships between these attributes and ecosystem functioning are virtually unknown. This project aims to evaluate the relationships between community attributes (species richness, composition, evenness, cover, and spatial pattern) and key processes related to ecosystem functioning under different global change scenarios. Its specific objectives are to: i) evaluate the relative importance of community attributes as drivers of ecosystem functioning, ii) assess how multiple global change drivers will affect key ecosystem processes, iii) test whether global change drivers modify observed community attributes-ecosystem functioning relationships, iv) develop models to forecast global change effects on ecosystem functioning, and v) set up protocols for the establishment of mitigation actions based on the results obtained. They will be achieved by integrating experimental and modeling approaches conducted with multiple biotic communities at different spatial scales. Such integrated framework has not been tackled before, and constitutes a ground breaking advance over current research efforts on global change. This proposal will also open the door to new research lines exploring the functional role of community attributes and their importance as modulators of ecosystem responses to global change.
Max ERC Funding
1 463 374 €
Duration
Start date: 2010-01-01, End date: 2015-09-30
Project acronym BIOCON
Project Biological origins of linguistic constraints
Researcher (PI) Juan Manuel Toro
Host Institution (HI) UNIVERSIDAD POMPEU FABRA
Call Details Starting Grant (StG), SH4, ERC-2012-StG_20111124
Summary The linguistic capacity to express and comprehend an unlimited number of ideas when combining a limited number of elements has only been observed in humans. Nevertheless, research has not fully identified the components of language that make it uniquely human and that allow infants to grasp the complexity of linguistic structure in an apparently effortless manner. Research on comparative cognition suggests humans and other species share powerful learning mechanisms and basic perceptual abilities we use for language processing. But humans display remarkable linguistic abilities that other animals do not possess. Understanding the interplay between general mechanisms shared across species and more specialized ones dedicated to the speech signal is at the heart of current debates in human language acquisition. This is a highly relevant issue for researchers in the fields of Psychology, Linguistics, Biology, Philosophy and Cognitive Neuroscience. By conducting experiments across several populations (human adults and infants) and species (human and nonhuman animals), and using a wide array of experimental techniques, the present proposal hopes to shed some light on the origins of shared biological constraints that guide more specialized mechanisms in the search for linguistic structure. More specifically, we hope to understand how general perceptual and cognitive mechanisms likely present in other animals constrain the way humans tackle the task of language acquisition. Our hypothesis is that differences between humans and other species are not the result of humans being able to process increasingly complex structures that are the hallmark of language. Rather, differences might be due to humans and other animals focusing on different cues present in the signal to extract relevant information. This research will hint at what is uniquely human and what is shared across different animals species.
Summary
The linguistic capacity to express and comprehend an unlimited number of ideas when combining a limited number of elements has only been observed in humans. Nevertheless, research has not fully identified the components of language that make it uniquely human and that allow infants to grasp the complexity of linguistic structure in an apparently effortless manner. Research on comparative cognition suggests humans and other species share powerful learning mechanisms and basic perceptual abilities we use for language processing. But humans display remarkable linguistic abilities that other animals do not possess. Understanding the interplay between general mechanisms shared across species and more specialized ones dedicated to the speech signal is at the heart of current debates in human language acquisition. This is a highly relevant issue for researchers in the fields of Psychology, Linguistics, Biology, Philosophy and Cognitive Neuroscience. By conducting experiments across several populations (human adults and infants) and species (human and nonhuman animals), and using a wide array of experimental techniques, the present proposal hopes to shed some light on the origins of shared biological constraints that guide more specialized mechanisms in the search for linguistic structure. More specifically, we hope to understand how general perceptual and cognitive mechanisms likely present in other animals constrain the way humans tackle the task of language acquisition. Our hypothesis is that differences between humans and other species are not the result of humans being able to process increasingly complex structures that are the hallmark of language. Rather, differences might be due to humans and other animals focusing on different cues present in the signal to extract relevant information. This research will hint at what is uniquely human and what is shared across different animals species.
Max ERC Funding
1 305 973 €
Duration
Start date: 2013-01-01, End date: 2018-12-31
Project acronym BIODESERT
Project Biological feedbacks and ecosystem resilience under global change: a new perspective on dryland desertification
Researcher (PI) Fernando Tomás Maestre Gil
Host Institution (HI) UNIVERSIDAD DE ALICANTE
Call Details Consolidator Grant (CoG), LS8, ERC-2014-CoG
Summary Changes in climate and land use (e.g., increased grazing pressure), are two main global change components that also act as major desertification drivers. Understanding how drylands will respond to these drivers is crucial because they occupy 41% of the terrestrial surface and are home to over 38% of the world’s human population. Land degradation already affects ~250 million people in the developing world, which rely upon the provision of many ecosystem processes (multifunctionality). This proposal aims to develop a better understanding of the functioning and resilience of drylands (i.e. their ability to respond to and recover from disturbances) to major desertification drivers. Its objectives are to: 1) test how changes in climate and grazing pressure determine spatiotemporal patterns in multifunctionality in global drylands, 2) assess how biotic attributes (e.g., biodiversity, cover) modulate ecosystem resilience to climate change and grazing pressure at various spatial scales, 3) test and develop early warning indicators of desertification, and 4) forecast the onset of desertification and its ecological consequences under different climate and grazing scenarios. I will use various biotic communities/attributes, ecosystem services and spatial scales (from local to global), and will combine approaches from several disciplines. Such comprehensive and highly integrated research endeavor is novel and constitutes a ground breaking advance over current research efforts on desertification. This project will provide a mechanistic understanding on the processes driving multifunctionality under different global change scenarios, as well as key insights to forecast future scenarios for the provisioning of ecosystem services in drylands, and to test and develop early warning indicators of desertification. This is of major importance to attain global sustainability and key Millennium Development Goals, such as the eradication of poverty.
Summary
Changes in climate and land use (e.g., increased grazing pressure), are two main global change components that also act as major desertification drivers. Understanding how drylands will respond to these drivers is crucial because they occupy 41% of the terrestrial surface and are home to over 38% of the world’s human population. Land degradation already affects ~250 million people in the developing world, which rely upon the provision of many ecosystem processes (multifunctionality). This proposal aims to develop a better understanding of the functioning and resilience of drylands (i.e. their ability to respond to and recover from disturbances) to major desertification drivers. Its objectives are to: 1) test how changes in climate and grazing pressure determine spatiotemporal patterns in multifunctionality in global drylands, 2) assess how biotic attributes (e.g., biodiversity, cover) modulate ecosystem resilience to climate change and grazing pressure at various spatial scales, 3) test and develop early warning indicators of desertification, and 4) forecast the onset of desertification and its ecological consequences under different climate and grazing scenarios. I will use various biotic communities/attributes, ecosystem services and spatial scales (from local to global), and will combine approaches from several disciplines. Such comprehensive and highly integrated research endeavor is novel and constitutes a ground breaking advance over current research efforts on desertification. This project will provide a mechanistic understanding on the processes driving multifunctionality under different global change scenarios, as well as key insights to forecast future scenarios for the provisioning of ecosystem services in drylands, and to test and develop early warning indicators of desertification. This is of major importance to attain global sustainability and key Millennium Development Goals, such as the eradication of poverty.
Max ERC Funding
1 894 450 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym BIOFORCE
Project Simultaneous multi-pathway engineering in crop plants through combinatorial genetic transformation: Creating nutritionally biofortified cereal grains for food security
Researcher (PI) Paul Christou
Host Institution (HI) UNIVERSIDAD DE LLEIDA
Call Details Advanced Grant (AdG), LS9, ERC-2008-AdG
Summary BIOFORCE has a highly ambitious applied objective: to create transgenic cereal plants that will provide a near-complete micronutrient complement (vitamins A, C, E, folate and essential minerals Ca, Fe, Se and Zn) for malnourished people in the developing world, as well as built-in resistance to insects and parasitic weeds. This in itself represents a striking advance over current efforts to address food insecurity using applied biotechnology in the developing world. We will also address fundamental mechanistic aspects of multi-gene/pathway engineering through transcriptome and metabolome profiling. Fundamental science and applied objectives will be achieved through the application of an exciting novel technology (combinatorial genetic transformation) developed and patented by my research group. This allows the simultaneous transfer of an unlimited number of transgenes into plants followed by library-based selection of plants with appropriate genotypes and phenotypes. All transgenes integrate into one locus ensuring expression stability over multiple generations. This proposal represents a new line of research in my laboratory, founded on incremental advances in the elucidation of transgene integration mechanisms in plants over the past two and a half decades. In addition to scientific issues, BIOFORCE address challenges such as intellectual property, regulatory and biosafety issues and crucially how the fruits of our work will be taken up through philanthropic initiatives in the developing world while creating exploitable opportunities elsewhere. BIOFORCE is comprehensive and it provides a complete package that stands to make an unprecedented contribution to food security in the developing world, while at the same time generating new knowledge to streamline and simplify multiplex gene transfer and the simultaneous modification of multiple complex plant metabolic pathways
Summary
BIOFORCE has a highly ambitious applied objective: to create transgenic cereal plants that will provide a near-complete micronutrient complement (vitamins A, C, E, folate and essential minerals Ca, Fe, Se and Zn) for malnourished people in the developing world, as well as built-in resistance to insects and parasitic weeds. This in itself represents a striking advance over current efforts to address food insecurity using applied biotechnology in the developing world. We will also address fundamental mechanistic aspects of multi-gene/pathway engineering through transcriptome and metabolome profiling. Fundamental science and applied objectives will be achieved through the application of an exciting novel technology (combinatorial genetic transformation) developed and patented by my research group. This allows the simultaneous transfer of an unlimited number of transgenes into plants followed by library-based selection of plants with appropriate genotypes and phenotypes. All transgenes integrate into one locus ensuring expression stability over multiple generations. This proposal represents a new line of research in my laboratory, founded on incremental advances in the elucidation of transgene integration mechanisms in plants over the past two and a half decades. In addition to scientific issues, BIOFORCE address challenges such as intellectual property, regulatory and biosafety issues and crucially how the fruits of our work will be taken up through philanthropic initiatives in the developing world while creating exploitable opportunities elsewhere. BIOFORCE is comprehensive and it provides a complete package that stands to make an unprecedented contribution to food security in the developing world, while at the same time generating new knowledge to streamline and simplify multiplex gene transfer and the simultaneous modification of multiple complex plant metabolic pathways
Max ERC Funding
2 290 046 €
Duration
Start date: 2009-04-01, End date: 2014-03-31
Project acronym BIZEB
Project Bio-Imaging of Zoonotic and Emerging Bunyaviruses
Researcher (PI) Juha Huiskonen
Host Institution (HI) HELSINGIN YLIOPISTO
Call Details Consolidator Grant (CoG), LS1, ERC-2014-CoG
Summary We aim to understand host cell entry of enveloped viruses at molecular level. A crucial step in this process is when the viral membrane fuses with the cell membrane. Similarly to cell–cell fusion, this step is mediated by fusion proteins (classes I–III). Several medically important viruses, notably dengue and many bunyaviruses, harbour a class II fusion protein. Class II fusion protein structures have been solved in pre- and post-fusion conformation and in some cases different factors promoting fusion have been determined. However, questions about the most important steps of this key process remain unanswered. I will focus on the entry mechanism of bunyaviruses by using cutting-edge, high spatial and temporal resolution bio-imaging techniques. These viruses have been chosen as a model system to maximise the significance of the project: they form an emerging viral threat to humans and animals, no approved vaccines or antivirals exist for human use and they are less studied than other class II fusion protein systems. Cryo-electron microscopy and tomography will be used to solve high-resolution structures (up to ~3 Å) of viruses, in addition to virus–receptor and virus–membrane complexes. Advanced fluorescence microscopy techniques will be used to probe the dynamics of virus entry and fusion in vivo and in vitro. Deciphering key steps in virus entry is expected to contribute to rational vaccine and drug design. During this project I aim to establish a world-class laboratory in structural and cellular biology of emerging viruses. The project greatly benefits from our unique biosafety level 3 laboratory offering advanced bio-imaging techniques. Furthermore it will also pave way for similar projects on other infectious viruses. Finally the novel computational image processing methods developed in this project will be broadly applicable for the analysis of flexible biological structures, which often pose the most challenging yet interesting questions in structural biology.
Summary
We aim to understand host cell entry of enveloped viruses at molecular level. A crucial step in this process is when the viral membrane fuses with the cell membrane. Similarly to cell–cell fusion, this step is mediated by fusion proteins (classes I–III). Several medically important viruses, notably dengue and many bunyaviruses, harbour a class II fusion protein. Class II fusion protein structures have been solved in pre- and post-fusion conformation and in some cases different factors promoting fusion have been determined. However, questions about the most important steps of this key process remain unanswered. I will focus on the entry mechanism of bunyaviruses by using cutting-edge, high spatial and temporal resolution bio-imaging techniques. These viruses have been chosen as a model system to maximise the significance of the project: they form an emerging viral threat to humans and animals, no approved vaccines or antivirals exist for human use and they are less studied than other class II fusion protein systems. Cryo-electron microscopy and tomography will be used to solve high-resolution structures (up to ~3 Å) of viruses, in addition to virus–receptor and virus–membrane complexes. Advanced fluorescence microscopy techniques will be used to probe the dynamics of virus entry and fusion in vivo and in vitro. Deciphering key steps in virus entry is expected to contribute to rational vaccine and drug design. During this project I aim to establish a world-class laboratory in structural and cellular biology of emerging viruses. The project greatly benefits from our unique biosafety level 3 laboratory offering advanced bio-imaging techniques. Furthermore it will also pave way for similar projects on other infectious viruses. Finally the novel computational image processing methods developed in this project will be broadly applicable for the analysis of flexible biological structures, which often pose the most challenging yet interesting questions in structural biology.
Max ERC Funding
1 998 375 €
Duration
Start date: 2015-04-01, End date: 2020-03-31
Project acronym BLOODCELLSCROSSTALK
Project The Crosstalk Between Red And White Blood Cells: The Case Of Fish
Researcher (PI) Maria del Mar Ortega-Villaizan Romo
Host Institution (HI) UNIVERSIDAD MIGUEL HERNANDEZ DE ELCHE
Call Details Starting Grant (StG), LS9, ERC-2014-STG
Summary Fish are the phylogenetically oldest vertebrate group with an immune system with clear similarities to the immune system of mammals. However, it is an actual matter of fact that the current knowledge of the fish immune system seems to lack the key piece to complete the puzzle.
In 1953 Nelson described a new role of human red blood cells (RBCs) which would go beyond the simple transport of O2 to the tissues. This new role, involved in the defence against microbes, described the antibody and complement-dependent binding of microbial immune complexes to RBCs. Regardless of the importance of this finding in the field of microbial infection, this phenomenon has been poorly evaluated. Just recently, a set of biological processes relevant to immunity have been described in the RBCs of a diverse group of organisms, which include: pathogen recognition, pathogen binding and clearance and cytokines production. Furthermore, it has been demonstrated that nucleated erythrocytes from fish and avian species develop specific responses to different pathogen associated molecular patterns and produce soluble factors that modulate leukocyte activity.
In the light of these pieces of evidences, and in an attempt to improve the knowledge of the immune mechanism(s) responsible for fish protection against viral infections, we raised the question: could nucleated fish erythrocytes be the key mediators of the antiviral responses? To answer this question we decided to focus our project on the evaluation of the crosstalk between red and white blood cells in the scenario of fish viral infections and prophylaxis. For that a working model composed of the rainbow trout and the viral haemorrhagic septicaemia virus (VHSV) was chosen, being the objectives of the project to evaluate: i) the implication trout RBCs (tRBCs) in the clearance of VHSV, and ii) the involvement of tRBCs in the blood transportation of the glycoprotein G of VHSV (GVHSV), the antigen encoded by the DNA vaccine.
Summary
Fish are the phylogenetically oldest vertebrate group with an immune system with clear similarities to the immune system of mammals. However, it is an actual matter of fact that the current knowledge of the fish immune system seems to lack the key piece to complete the puzzle.
In 1953 Nelson described a new role of human red blood cells (RBCs) which would go beyond the simple transport of O2 to the tissues. This new role, involved in the defence against microbes, described the antibody and complement-dependent binding of microbial immune complexes to RBCs. Regardless of the importance of this finding in the field of microbial infection, this phenomenon has been poorly evaluated. Just recently, a set of biological processes relevant to immunity have been described in the RBCs of a diverse group of organisms, which include: pathogen recognition, pathogen binding and clearance and cytokines production. Furthermore, it has been demonstrated that nucleated erythrocytes from fish and avian species develop specific responses to different pathogen associated molecular patterns and produce soluble factors that modulate leukocyte activity.
In the light of these pieces of evidences, and in an attempt to improve the knowledge of the immune mechanism(s) responsible for fish protection against viral infections, we raised the question: could nucleated fish erythrocytes be the key mediators of the antiviral responses? To answer this question we decided to focus our project on the evaluation of the crosstalk between red and white blood cells in the scenario of fish viral infections and prophylaxis. For that a working model composed of the rainbow trout and the viral haemorrhagic septicaemia virus (VHSV) was chosen, being the objectives of the project to evaluate: i) the implication trout RBCs (tRBCs) in the clearance of VHSV, and ii) the involvement of tRBCs in the blood transportation of the glycoprotein G of VHSV (GVHSV), the antigen encoded by the DNA vaccine.
Max ERC Funding
1 823 250 €
Duration
Start date: 2015-04-01, End date: 2020-03-31
Project acronym Brain Health Toolbox
Project The Brain Health Toolbox: Facilitating personalized decision-making for effective dementia prevention
Researcher (PI) Alina Gabriela SOLOMON
Host Institution (HI) ITA-SUOMEN YLIOPISTO
Call Details Starting Grant (StG), LS7, ERC-2018-STG
Summary Preventing dementia and Alzheimer disease (AD) is a global priority. Previous single-intervention failures stress the critical need for a new multimodal preventive approach in these complex multifactorial conditions. The Brain Health Toolbox is designed to create a seamless continuum from accurate dementia prediction to effective prevention by i) developing the missing disease models and prediction tools for multimodal prevention; ii) testing them in actual multimodal prevention trials; and iii) bridging the gap between non-pharmacological and pharmacological approaches by designing a combined multimodal prevention trial based on a new European adaptive trial platform. Disease models and prediction tools will be multi-dimensional, i.e. a broad range of risk factors and biomarker types, including novel markers. An innovative machine learning method will be used for pattern identification and risk profiling to highlight most important contributors to an individual’s overall risk level. This is crucial for early identification of individuals with high dementia risk and/or high likelihood of specific brain pathologies, quantifying an individual’s prevention potential, and longitudinal risk and disease monitoring, also beyond trial duration. Three Toolbox test scenarios are considered: use for selecting target populations, assessing heterogeneity of intervention effects, and use as trial outcome. The project is based on a unique set-up aligning several new multimodal lifestyle trials aiming to adapt and test non-pharmacological interventions to different geographic, economic and cultural settings, with two reference libraries (observational - large datasets; and interventional - four recently completed pioneering multimodal lifestyle prevention trials). The Brain Health Toolbox covers the entire continuum from general populations to patients with preclinical/prodromal disease stages, and will provide tools for personalized decision-making for dementia prevention.
Summary
Preventing dementia and Alzheimer disease (AD) is a global priority. Previous single-intervention failures stress the critical need for a new multimodal preventive approach in these complex multifactorial conditions. The Brain Health Toolbox is designed to create a seamless continuum from accurate dementia prediction to effective prevention by i) developing the missing disease models and prediction tools for multimodal prevention; ii) testing them in actual multimodal prevention trials; and iii) bridging the gap between non-pharmacological and pharmacological approaches by designing a combined multimodal prevention trial based on a new European adaptive trial platform. Disease models and prediction tools will be multi-dimensional, i.e. a broad range of risk factors and biomarker types, including novel markers. An innovative machine learning method will be used for pattern identification and risk profiling to highlight most important contributors to an individual’s overall risk level. This is crucial for early identification of individuals with high dementia risk and/or high likelihood of specific brain pathologies, quantifying an individual’s prevention potential, and longitudinal risk and disease monitoring, also beyond trial duration. Three Toolbox test scenarios are considered: use for selecting target populations, assessing heterogeneity of intervention effects, and use as trial outcome. The project is based on a unique set-up aligning several new multimodal lifestyle trials aiming to adapt and test non-pharmacological interventions to different geographic, economic and cultural settings, with two reference libraries (observational - large datasets; and interventional - four recently completed pioneering multimodal lifestyle prevention trials). The Brain Health Toolbox covers the entire continuum from general populations to patients with preclinical/prodromal disease stages, and will provide tools for personalized decision-making for dementia prevention.
Max ERC Funding
1 498 268 €
Duration
Start date: 2019-02-01, End date: 2024-01-31
Project acronym BRAIN2BRAIN
Project Towards two-person neuroscience
Researcher (PI) Riitta Kyllikki Hari
Host Institution (HI) AALTO KORKEAKOULUSAATIO SR
Call Details Advanced Grant (AdG), LS5, ERC-2008-AdG
Summary Humans interact with other people throughout their lives. This project aims to demonstrate that the complex social shaping of the human brain can be adequately tackled only by taking a leap from the conven-tional single-person neuroscience to two-person neuroscience. We will (1) develop a conceptual framework and experimental setups for two-person neuroscience, (2) apply time-sensitive methods for studies of two interacting persons, monitoring both brain and autonomic nervous activity to also cover the brain body connection, (3) use gaze as an index of subject s attention to simplify signal analysis in natural environments, and (4) apply insights from two-person neuroscience into disorders of social interaction. Brain activity will be recorded with millisecond-accurate whole-scalp (306-channel) magnetoencepha-lography (MEG), associated with EEG, and with the millimeter-accurate 3-tesla functional magnetic reso-nance imaging (fMRI). Heart rate, respiration, galvanic skin response, and pupil diameter inform about body function. A new psychophysiological interaction setting will be built, comprising a two-person eye-tracking system. Novel analysis methods will be developed to follow the interaction and possible synchronization of the two persons signals. This uncoventional approach crosses borders of neuroscience, social psychology, psychophysiology, psychiatry, medical imaging, and signal analysis, with intriguing connections to old philosophical questions, such as intersubjectivity and emphatic attunement. The results could open an unprecedented window into human human, instead of just brain brain, interactions, helping to understand also social disorders, such as autism and schizophrenia. Further applications include master apprentice and patient therapist relationships. Advancing from studies of single persons towards two-person neuroscience shows promise of a break-through in understanding the dynamic social shaping of human brain and mind.
Summary
Humans interact with other people throughout their lives. This project aims to demonstrate that the complex social shaping of the human brain can be adequately tackled only by taking a leap from the conven-tional single-person neuroscience to two-person neuroscience. We will (1) develop a conceptual framework and experimental setups for two-person neuroscience, (2) apply time-sensitive methods for studies of two interacting persons, monitoring both brain and autonomic nervous activity to also cover the brain body connection, (3) use gaze as an index of subject s attention to simplify signal analysis in natural environments, and (4) apply insights from two-person neuroscience into disorders of social interaction. Brain activity will be recorded with millisecond-accurate whole-scalp (306-channel) magnetoencepha-lography (MEG), associated with EEG, and with the millimeter-accurate 3-tesla functional magnetic reso-nance imaging (fMRI). Heart rate, respiration, galvanic skin response, and pupil diameter inform about body function. A new psychophysiological interaction setting will be built, comprising a two-person eye-tracking system. Novel analysis methods will be developed to follow the interaction and possible synchronization of the two persons signals. This uncoventional approach crosses borders of neuroscience, social psychology, psychophysiology, psychiatry, medical imaging, and signal analysis, with intriguing connections to old philosophical questions, such as intersubjectivity and emphatic attunement. The results could open an unprecedented window into human human, instead of just brain brain, interactions, helping to understand also social disorders, such as autism and schizophrenia. Further applications include master apprentice and patient therapist relationships. Advancing from studies of single persons towards two-person neuroscience shows promise of a break-through in understanding the dynamic social shaping of human brain and mind.
Max ERC Funding
2 489 643 €
Duration
Start date: 2009-01-01, End date: 2014-12-31
Project acronym BrainDrain
Project Translational implications of the discovery of brain-draining lymphatics
Researcher (PI) Kari ALITALO
Host Institution (HI) HELSINGIN YLIOPISTO
Call Details Advanced Grant (AdG), LS7, ERC-2016-ADG
Summary In 2010, 800 billion Euros was spent on brain diseases in Europe and the cost is expected to increase due to the aging population. – Here I propose to exploit our new discovery for research to alleviate this disease burden. In work selected by Nature Medicine among the top 10 ”Notable Advances” and by Science as one of the 10 ”Breakthroughs of the year” 2015, we discovered a meningeal lymphatic vascular system that serves brain homeostasis. We want to reassess current concepts about cerebrovascular dynamics, fluid drainage and cellular trafficking in physiological conditions, in Alzheimer’s disease mouse models and in human postmortem tissues. First, we will study the development and properties of meningeal lymphatics and how they are sustained during aging. We then want to analyse the clearance of macromolecules and protein aggregates in Alzheimer’s disease in mice that lack the newly discovered meningeal lymphatic drainage system. We will study if growth factor-mediated expansion of lymphatic vessels alleviates the parenchymal accumulation of neurotoxic amyloid beta and pathogenesis of Alzheimer’s disease and brain damage after traumatic brain injury. We will further analyse the role of lymphangiogenic growth factors and lymphatic vessels in brain solute clearance, immune cell trafficking and in a mouse model of multiple sclerosis. The meningeal lymphatics could be involved in a number of neurodegenerative and neuroinflammatory diseases of considerable human and socioeconomic burden. Several of our previous concepts have already been translated to clinical development and we aim to develop proof-of-principle therapeutic concepts in this project. I feel that we are just now in a unique position to advance frontline European translational biomedical research in this suddenly emerging field, which has received great attention worldwide.
Summary
In 2010, 800 billion Euros was spent on brain diseases in Europe and the cost is expected to increase due to the aging population. – Here I propose to exploit our new discovery for research to alleviate this disease burden. In work selected by Nature Medicine among the top 10 ”Notable Advances” and by Science as one of the 10 ”Breakthroughs of the year” 2015, we discovered a meningeal lymphatic vascular system that serves brain homeostasis. We want to reassess current concepts about cerebrovascular dynamics, fluid drainage and cellular trafficking in physiological conditions, in Alzheimer’s disease mouse models and in human postmortem tissues. First, we will study the development and properties of meningeal lymphatics and how they are sustained during aging. We then want to analyse the clearance of macromolecules and protein aggregates in Alzheimer’s disease in mice that lack the newly discovered meningeal lymphatic drainage system. We will study if growth factor-mediated expansion of lymphatic vessels alleviates the parenchymal accumulation of neurotoxic amyloid beta and pathogenesis of Alzheimer’s disease and brain damage after traumatic brain injury. We will further analyse the role of lymphangiogenic growth factors and lymphatic vessels in brain solute clearance, immune cell trafficking and in a mouse model of multiple sclerosis. The meningeal lymphatics could be involved in a number of neurodegenerative and neuroinflammatory diseases of considerable human and socioeconomic burden. Several of our previous concepts have already been translated to clinical development and we aim to develop proof-of-principle therapeutic concepts in this project. I feel that we are just now in a unique position to advance frontline European translational biomedical research in this suddenly emerging field, which has received great attention worldwide.
Max ERC Funding
2 420 429 €
Duration
Start date: 2017-08-01, End date: 2022-07-31
Project acronym BREATHE
Project BRain dEvelopment and Air polluTion ultrafine particles in scHool childrEn
Researcher (PI) Jordi Sunyer Deu
Host Institution (HI) FUNDACION PRIVADA INSTITUTO DE SALUD GLOBAL BARCELONA
Call Details Advanced Grant (AdG), LS7, ERC-2010-AdG_20100317
Summary Traffic-related air pollution is an important environmental problem that may affect neurodevelopment. Ultrafine particles (UFP) translocate to the brains of experimental animals resulting in local proinflammatory overexpression. As the basic elements for thinking are acquired by developing brains during infancy and childhood, susceptibility may be elevated in early life.
We postulate that traffic-related air pollution (particularly UFPs and metals/hydrocarbons content) impairs neurodevelopment in part via effects on frontal lobe maturation, likely increasing attention-deficit/hyperactivity disorder (ADHD). BREATHE objectives are to develop valid methods to measure children's personal UFP exposure and to develop valid neuroimaging methods to assess correlations between neurobehavior, neurostructural alterations and particle deposition in order to reveal how traffic pollution affects children¿s exposure to key contaminants and brain development, and identify susceptible subgroups.
We have conducted general population birth cohort studies providing preliminary evidence of residential air pollution effects on prenatal growth and mental development.
We aim to demonstrate short and long-term effects on neurodevelopment using innovative epidemiological methods interfaced with environmental chemistry and neuroimaging following 4000 children from 40 schools with contrasting high/low traffic exposure in six linked components involving: repeated psychometric tests, UFP exposure assessment using personal, school and home measurements, gene-environment interactions on inflammation, detoxification pathways and ADHD genome-wide-associated genes, neuroimaging (magnetic resonance imaging/spectroscopy) in ADHD/non-ADHD children, integrative causal modeling using mathematics, and replication in 2900 children with neurodevelopment followed from pregnancy.
We believe the expected results will have worldwide global planning and policy implications.
Summary
Traffic-related air pollution is an important environmental problem that may affect neurodevelopment. Ultrafine particles (UFP) translocate to the brains of experimental animals resulting in local proinflammatory overexpression. As the basic elements for thinking are acquired by developing brains during infancy and childhood, susceptibility may be elevated in early life.
We postulate that traffic-related air pollution (particularly UFPs and metals/hydrocarbons content) impairs neurodevelopment in part via effects on frontal lobe maturation, likely increasing attention-deficit/hyperactivity disorder (ADHD). BREATHE objectives are to develop valid methods to measure children's personal UFP exposure and to develop valid neuroimaging methods to assess correlations between neurobehavior, neurostructural alterations and particle deposition in order to reveal how traffic pollution affects children¿s exposure to key contaminants and brain development, and identify susceptible subgroups.
We have conducted general population birth cohort studies providing preliminary evidence of residential air pollution effects on prenatal growth and mental development.
We aim to demonstrate short and long-term effects on neurodevelopment using innovative epidemiological methods interfaced with environmental chemistry and neuroimaging following 4000 children from 40 schools with contrasting high/low traffic exposure in six linked components involving: repeated psychometric tests, UFP exposure assessment using personal, school and home measurements, gene-environment interactions on inflammation, detoxification pathways and ADHD genome-wide-associated genes, neuroimaging (magnetic resonance imaging/spectroscopy) in ADHD/non-ADHD children, integrative causal modeling using mathematics, and replication in 2900 children with neurodevelopment followed from pregnancy.
We believe the expected results will have worldwide global planning and policy implications.
Max ERC Funding
2 499 230 €
Duration
Start date: 2011-08-01, End date: 2016-07-31
Project acronym BSD
Project Euler systems and the conjectures of Birch and Swinnerton-Dyer, Bloch and Kato
Researcher (PI) Victor Rotger cerdà
Host Institution (HI) UNIVERSITAT POLITECNICA DE CATALUNYA
Call Details Consolidator Grant (CoG), PE1, ERC-2015-CoG
Summary In order to celebrate mathematics in the new millennium, the Clay Mathematics Institute established seven $1.000.000 Prize Problems. One of these is the conjecture of Birch and Swinnerton-Dyer (BSD), widely open since the 1960's. The main object of this proposal is developing innovative and unconventional strategies for proving groundbreaking results towards the resolution of this problem and their generalizations by Bloch and Kato (BK).
Breakthroughs on BSD were achieved by Coates-Wiles, Gross, Zagier and Kolyvagin, and Kato. Since then, there have been nearly no new ideas on how to tackle BSD. Only very recently, three independent revolutionary approaches have seen the light: the works of (1) the Fields medalist Bhargava, (2) Skinner and Urban, and (3) myself and my collaborators. In spite of that, our knowledge of BSD is rather poor. In my proposal I suggest innovating strategies for approaching new horizons in BSD and BK that I aim to develop with the team of PhD and postdoctoral researchers that the CoG may allow me to consolidate. The results I plan to prove represent a departure from the achievements obtained with my coauthors during the past years:
I. BSD over totally real number fields. I plan to prove new ground-breaking instances of BSD in rank 0 for elliptic curves over totally real number fields, generalizing the theorem of Kato (by providing a new proof) and covering many new scenarios that have never been considered before.
II. BSD in rank r=2. Most of the literature on BSD applies when r=0 or 1. I expect to prove p-adic versions of the theorems of Gross-Zagier and Kolyvagin in rank 2.
III. Darmon's 2000 conjecture on Stark-Heegner points. I plan to prove Darmon’s striking conjecture announced at the ICM2000 by recasting it in terms of special values of p-adic L-functions.
Summary
In order to celebrate mathematics in the new millennium, the Clay Mathematics Institute established seven $1.000.000 Prize Problems. One of these is the conjecture of Birch and Swinnerton-Dyer (BSD), widely open since the 1960's. The main object of this proposal is developing innovative and unconventional strategies for proving groundbreaking results towards the resolution of this problem and their generalizations by Bloch and Kato (BK).
Breakthroughs on BSD were achieved by Coates-Wiles, Gross, Zagier and Kolyvagin, and Kato. Since then, there have been nearly no new ideas on how to tackle BSD. Only very recently, three independent revolutionary approaches have seen the light: the works of (1) the Fields medalist Bhargava, (2) Skinner and Urban, and (3) myself and my collaborators. In spite of that, our knowledge of BSD is rather poor. In my proposal I suggest innovating strategies for approaching new horizons in BSD and BK that I aim to develop with the team of PhD and postdoctoral researchers that the CoG may allow me to consolidate. The results I plan to prove represent a departure from the achievements obtained with my coauthors during the past years:
I. BSD over totally real number fields. I plan to prove new ground-breaking instances of BSD in rank 0 for elliptic curves over totally real number fields, generalizing the theorem of Kato (by providing a new proof) and covering many new scenarios that have never been considered before.
II. BSD in rank r=2. Most of the literature on BSD applies when r=0 or 1. I expect to prove p-adic versions of the theorems of Gross-Zagier and Kolyvagin in rank 2.
III. Darmon's 2000 conjecture on Stark-Heegner points. I plan to prove Darmon’s striking conjecture announced at the ICM2000 by recasting it in terms of special values of p-adic L-functions.
Max ERC Funding
1 428 588 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym BUBPOL
Project Monetary Policy and Asset Price Bubbles
Researcher (PI) Jordi Galí Garreta
Host Institution (HI) Centre de Recerca en Economia Internacional (CREI)
Call Details Advanced Grant (AdG), SH1, ERC-2013-ADG
Summary "The proposed research project seeks to further our understanding on two important questions for the design of monetary policy:
(a) What are the effects of monetary policy interventions on asset price bubbles?
(b) How should monetary policy be conducted in the presence of asset price bubbles?
The first part of the project will focus on the development of a theoretical framework that can be used to analyze rigorously the implications of alternative monetary policy rules in the presence of asset price bubbles, and to characterize the optimal monetary policy. In particular, I plan to use such a framework to assess the merits of a “leaning against the wind” strategy, which calls for a systematic rise in interest rates in response to the development of a bubble.
The second part of the project will seek to produce evidence, both empirical and experimental, regarding the effects of monetary policy on asset price bubbles. The empirical evidence will seek to identify and estimate the sign and response of asset price bubbles to interest rate changes, exploiting the potential differences in the joint behavior of interest rates and asset prices during “bubbly” episodes, in comparison to “normal” times. In addition, I plan to conduct some lab experiments in order to shed some light on the link between monetary policy and bubbles. Participants will trade two assets, a one-period riskless asset and a long-lived stock, in an environment consistent with the existence of asset price bubbles in equilibrium. Monetary policy interventions will take the form of changes in the short-term interest rate, engineered by the experimenter. The experiments will allow us to evaluate some of the predictions of the theoretical models regarding the impact of monetary policy on the dynamics of bubbles, as well as the effectiveness of “leaning against the wind” policies."
Summary
"The proposed research project seeks to further our understanding on two important questions for the design of monetary policy:
(a) What are the effects of monetary policy interventions on asset price bubbles?
(b) How should monetary policy be conducted in the presence of asset price bubbles?
The first part of the project will focus on the development of a theoretical framework that can be used to analyze rigorously the implications of alternative monetary policy rules in the presence of asset price bubbles, and to characterize the optimal monetary policy. In particular, I plan to use such a framework to assess the merits of a “leaning against the wind” strategy, which calls for a systematic rise in interest rates in response to the development of a bubble.
The second part of the project will seek to produce evidence, both empirical and experimental, regarding the effects of monetary policy on asset price bubbles. The empirical evidence will seek to identify and estimate the sign and response of asset price bubbles to interest rate changes, exploiting the potential differences in the joint behavior of interest rates and asset prices during “bubbly” episodes, in comparison to “normal” times. In addition, I plan to conduct some lab experiments in order to shed some light on the link between monetary policy and bubbles. Participants will trade two assets, a one-period riskless asset and a long-lived stock, in an environment consistent with the existence of asset price bubbles in equilibrium. Monetary policy interventions will take the form of changes in the short-term interest rate, engineered by the experimenter. The experiments will allow us to evaluate some of the predictions of the theoretical models regarding the impact of monetary policy on the dynamics of bubbles, as well as the effectiveness of “leaning against the wind” policies."
Max ERC Funding
799 200 €
Duration
Start date: 2014-01-01, End date: 2017-12-31
Project acronym CALLIOPE
Project voCAL articuLations Of Parliamentary Identity and Empire
Researcher (PI) Josephine HOEGAERTS
Host Institution (HI) HELSINGIN YLIOPISTO
Call Details Starting Grant (StG), SH5, ERC-2017-STG
Summary What did politicians sound like before they were on the radio and television? The fascination with politicians’ vocal characteristics and quirks is often connected to the rise of audio-visual media. But in the age of the printed press, political representatives also had to ‘speak well’ – without recourse to amplification.
Historians and linguists have provided sophisticated understandings of the discursive and aesthetic aspects of politicians’ language, but have largely ignored the importance of the acoustic character of their speech. CALLIOPE studies how vocal performances in parliament have influenced the course of political careers and political decision making in the 19th century. It shows how politicians’ voices helped to define the diverse identities they articulated. In viewing parliament through the lens of audibility, the project offers a new perspective on political representation by reframing how authority was embodied (through performances that were heard, rather than seen). It does so for the Second Chamber in Britain and France, and in dialogue with ‘colonial’ modes of speech in Kolkata and Algiers, which, we argue, exerted considerable influence on European vocal culture.
The project devises an innovative methodological approach to include the sound of the human voice in studies of the past that precede acoustic recording. Adapting methods developed in sound studies and combining them with the tools of political history, the project proposes a new way to analyse parliamentary reporting, while also drawing on a variety of sources that are rarely connected to the history of politics.
The main source material for the study comprise transcripts of parliamentary speech (official reports and renditions by journalists). However, the project also mobilizes educational, satirical and fictional sources to elucidate the convoluted processes that led to the cultivation, exertion, reception and evaluation of a voice ‘fit’ for nineteenth-century politics.
Summary
What did politicians sound like before they were on the radio and television? The fascination with politicians’ vocal characteristics and quirks is often connected to the rise of audio-visual media. But in the age of the printed press, political representatives also had to ‘speak well’ – without recourse to amplification.
Historians and linguists have provided sophisticated understandings of the discursive and aesthetic aspects of politicians’ language, but have largely ignored the importance of the acoustic character of their speech. CALLIOPE studies how vocal performances in parliament have influenced the course of political careers and political decision making in the 19th century. It shows how politicians’ voices helped to define the diverse identities they articulated. In viewing parliament through the lens of audibility, the project offers a new perspective on political representation by reframing how authority was embodied (through performances that were heard, rather than seen). It does so for the Second Chamber in Britain and France, and in dialogue with ‘colonial’ modes of speech in Kolkata and Algiers, which, we argue, exerted considerable influence on European vocal culture.
The project devises an innovative methodological approach to include the sound of the human voice in studies of the past that precede acoustic recording. Adapting methods developed in sound studies and combining them with the tools of political history, the project proposes a new way to analyse parliamentary reporting, while also drawing on a variety of sources that are rarely connected to the history of politics.
The main source material for the study comprise transcripts of parliamentary speech (official reports and renditions by journalists). However, the project also mobilizes educational, satirical and fictional sources to elucidate the convoluted processes that led to the cultivation, exertion, reception and evaluation of a voice ‘fit’ for nineteenth-century politics.
Max ERC Funding
1 499 905 €
Duration
Start date: 2018-03-01, End date: 2023-02-28
Project acronym CANCER SIGNALOSOMES
Project Spatially and temporally regulated membrane complexes in cancer cell invasion and cytokinesis
Researcher (PI) Johanna Ivaska
Host Institution (HI) TEKNOLOGIAN TUTKIMUSKESKUS VTT
Call Details Starting Grant (StG), LS1, ERC-2007-StG
Summary Cancer progression, characterized by uncontrolled proliferation and motility of cells, is a complex and deadly process. Integrins, a major cell surface adhesion receptor family, are transmembrane proteins known to regulate cell behaviour by transducing extracellular signals to cytoplasmic protein complexes. We and others have shown that recruitment of specific protein complexes by the cytoplasmic domains of integrins is important in tumorigenesis. Here our aim is to study three interrelated processes in cancer progression which involve integrin signalling, but which have not been elucidated earlier at all. 1) Integrins in cell division (cytokinesis). Since coordinated action of the cytoskeleton and membranes is needed both for cell division and motility, shared integrin functions can regulate both events. 2) Dynamic integrin signalosomes at the leading edge of invading cells. Spatially and temporally regulated, integrin-protein complexes at the front of infiltrating cells are likely to dictate the movement of cancer cells in tissues. 3) Transmembrane segments of integrins as scaffolds for integrin signalling. In addition to cytosolic proteins, integrins most likely interact with proteins within the membrane resulting into new signalling modalities. In this proposal we will use innovative, modern and even unconventional techniques (such as RNAi and live-cell arrays detecting integrin traffic, cell motility and multiplication, laser-microdissection, proteomics and bacterial-two-hybrid screens) to unravel these new integrin functions, for which we have preliminary evidence. Each project will give fundamentally novel mechanistic insight into the role of integrins in cancer. Moreover, these interdisciplinary new openings will increase our understanding in cancer progression in general and will open new possibilities for therapeutic intervention targeting both cancer proliferation and dissemination in the body.
Summary
Cancer progression, characterized by uncontrolled proliferation and motility of cells, is a complex and deadly process. Integrins, a major cell surface adhesion receptor family, are transmembrane proteins known to regulate cell behaviour by transducing extracellular signals to cytoplasmic protein complexes. We and others have shown that recruitment of specific protein complexes by the cytoplasmic domains of integrins is important in tumorigenesis. Here our aim is to study three interrelated processes in cancer progression which involve integrin signalling, but which have not been elucidated earlier at all. 1) Integrins in cell division (cytokinesis). Since coordinated action of the cytoskeleton and membranes is needed both for cell division and motility, shared integrin functions can regulate both events. 2) Dynamic integrin signalosomes at the leading edge of invading cells. Spatially and temporally regulated, integrin-protein complexes at the front of infiltrating cells are likely to dictate the movement of cancer cells in tissues. 3) Transmembrane segments of integrins as scaffolds for integrin signalling. In addition to cytosolic proteins, integrins most likely interact with proteins within the membrane resulting into new signalling modalities. In this proposal we will use innovative, modern and even unconventional techniques (such as RNAi and live-cell arrays detecting integrin traffic, cell motility and multiplication, laser-microdissection, proteomics and bacterial-two-hybrid screens) to unravel these new integrin functions, for which we have preliminary evidence. Each project will give fundamentally novel mechanistic insight into the role of integrins in cancer. Moreover, these interdisciplinary new openings will increase our understanding in cancer progression in general and will open new possibilities for therapeutic intervention targeting both cancer proliferation and dissemination in the body.
Max ERC Funding
1 529 369 €
Duration
Start date: 2008-08-01, End date: 2013-07-31
Project acronym CANCER&AGEING
Project COMMOM MECHANISMS UNDERLYING CANCER AND AGEING
Researcher (PI) Manuel Serrano
Host Institution (HI) FUNDACION CENTRO NACIONAL DE INVESTIGACIONES ONCOLOGICAS CARLOS III
Call Details Advanced Grant (AdG), LS1, ERC-2008-AdG
Summary "In recent years, we have made significant contributions to the understanding of the tumour suppressors p53, p16INK4a, and ARF, particularly in relation with cellular senescence and aging. The current project is motivated by two hypothesis: 1) that the INK4/ARF locus is a sensor of epigenetic damage and this is at the basis of its activation by oncogenes and aging; and, 2) that the accumulation of cellular damage and stress is at the basis of both cancer and aging, and consequently ""anti-damage genes"", such as tumour suppressors, simultaneously counteract both cancer and aging. With regard to the INK4/ARF locus, the project includes: 1.1) the generation of null mice for the Regulatory Domain (RD) thought to be essential for the proper regulation of the locus; 1.2) the study of the INK4/ARF anti-sense transcription and its importance for the assembly of Polycomb repressive complexes; 1.3) the generation of mice carrying the human INK4/ARF locus to analyze, among other aspects, whether the known differences between the human and murine loci are ""locus autonomous""; and, 1.4) to analyze the INK4/ARF locus in the process of epigenetic reprogramming both from ES cells to differentiated cells and, conversely, from differentiated cells to induced-pluripotent stem (iPS) cells. With regard to the impact of ""anti-damage genes"" on cancer and aging, the project includes: 2.1) the analysis of the aging of super-INK4/ARF mice and super-p53 mice; 2.2) we have generated super-PTEN mice and we will examine whether PTEN not only confers cancer resistance but also anti-aging activity; and, finally, 2.3) we have generated super-SIRT1 mice, which is among the best-characterized anti-aging genes in non-mammalian model systems (where it is named Sir2) involved in protection from metabolic damage, and we will study the cancer and aging of these mice. Together, this project will significantly advance our understanding of the molecular mechanisms underlying cancer and aging."
Summary
"In recent years, we have made significant contributions to the understanding of the tumour suppressors p53, p16INK4a, and ARF, particularly in relation with cellular senescence and aging. The current project is motivated by two hypothesis: 1) that the INK4/ARF locus is a sensor of epigenetic damage and this is at the basis of its activation by oncogenes and aging; and, 2) that the accumulation of cellular damage and stress is at the basis of both cancer and aging, and consequently ""anti-damage genes"", such as tumour suppressors, simultaneously counteract both cancer and aging. With regard to the INK4/ARF locus, the project includes: 1.1) the generation of null mice for the Regulatory Domain (RD) thought to be essential for the proper regulation of the locus; 1.2) the study of the INK4/ARF anti-sense transcription and its importance for the assembly of Polycomb repressive complexes; 1.3) the generation of mice carrying the human INK4/ARF locus to analyze, among other aspects, whether the known differences between the human and murine loci are ""locus autonomous""; and, 1.4) to analyze the INK4/ARF locus in the process of epigenetic reprogramming both from ES cells to differentiated cells and, conversely, from differentiated cells to induced-pluripotent stem (iPS) cells. With regard to the impact of ""anti-damage genes"" on cancer and aging, the project includes: 2.1) the analysis of the aging of super-INK4/ARF mice and super-p53 mice; 2.2) we have generated super-PTEN mice and we will examine whether PTEN not only confers cancer resistance but also anti-aging activity; and, finally, 2.3) we have generated super-SIRT1 mice, which is among the best-characterized anti-aging genes in non-mammalian model systems (where it is named Sir2) involved in protection from metabolic damage, and we will study the cancer and aging of these mice. Together, this project will significantly advance our understanding of the molecular mechanisms underlying cancer and aging."
Max ERC Funding
2 000 000 €
Duration
Start date: 2009-04-01, End date: 2015-03-31
Project acronym CancerADAPT
Project Targeting the adaptive capacity of prostate cancer through the manipulation of transcriptional and metabolic traits
Researcher (PI) Arkaitz CARRACEDO PEREZ
Host Institution (HI) ASOCIACION CENTRO DE INVESTIGACION COOPERATIVA EN BIOCIENCIAS
Call Details Consolidator Grant (CoG), LS4, ERC-2018-COG
Summary The composition and molecular features of tumours vary during the course of the disease, and the selection pressure imposed by the environment is a central component in this process. Evolutionary principles have been exploited to explain the genomic aberrations in cancer. However, the phenotypic changes underlying disease progression remain poorly understood. In the past years, I have contributed to identify and characterise the therapeutic implications underlying metabolic alterations that are intrinsic to primary tumours or metastasis. In CancerADAPT I postulate that cancer cells rely on adaptive transcriptional & metabolic mechanisms [converging on a Metabolic Phenotype] in order to rapidly succeed in their establishment in new microenvironments along disease progression. I aim to predict the molecular cues that govern the adaptive properties in prostate cancer (PCa), one of the most commonly diagnosed cancers in men and an important source of cancer-related deaths. I will exploit single cell RNASeq, spatial transcriptomics and multiregional OMICs in order to identify the transcriptional and metabolic diversity within tumours and along disease progression. I will complement experimental strategies with computational analyses that identify and classify the predicted adaptation strategies of PCa cells in response to variations in the tumour microenvironment. Metabolic phenotypes postulated to sustain PCa adaptability will be functionally and mechanistically deconstructed. We will identify therapeutic strategies emanating from these results through in silico methodologies and small molecule high-throughput screening, and evaluate their potential to hamper the adaptability of tumour cells in vitro and in vivo, in two specific aspects: metastasis and therapy response. CancerADAPT will generate fundamental understanding on how cancer cells adapt in our organism, in turn leading to therapeutic strategies that increase the efficacy of current treatments.
Summary
The composition and molecular features of tumours vary during the course of the disease, and the selection pressure imposed by the environment is a central component in this process. Evolutionary principles have been exploited to explain the genomic aberrations in cancer. However, the phenotypic changes underlying disease progression remain poorly understood. In the past years, I have contributed to identify and characterise the therapeutic implications underlying metabolic alterations that are intrinsic to primary tumours or metastasis. In CancerADAPT I postulate that cancer cells rely on adaptive transcriptional & metabolic mechanisms [converging on a Metabolic Phenotype] in order to rapidly succeed in their establishment in new microenvironments along disease progression. I aim to predict the molecular cues that govern the adaptive properties in prostate cancer (PCa), one of the most commonly diagnosed cancers in men and an important source of cancer-related deaths. I will exploit single cell RNASeq, spatial transcriptomics and multiregional OMICs in order to identify the transcriptional and metabolic diversity within tumours and along disease progression. I will complement experimental strategies with computational analyses that identify and classify the predicted adaptation strategies of PCa cells in response to variations in the tumour microenvironment. Metabolic phenotypes postulated to sustain PCa adaptability will be functionally and mechanistically deconstructed. We will identify therapeutic strategies emanating from these results through in silico methodologies and small molecule high-throughput screening, and evaluate their potential to hamper the adaptability of tumour cells in vitro and in vivo, in two specific aspects: metastasis and therapy response. CancerADAPT will generate fundamental understanding on how cancer cells adapt in our organism, in turn leading to therapeutic strategies that increase the efficacy of current treatments.
Max ERC Funding
1 999 882 €
Duration
Start date: 2019-11-01, End date: 2024-10-31
Project acronym CANCERLINC
Project Functional and Mecahnistic Roles of Large Intergenic Non-coding RNAs in Cancer
Researcher (PI) Maite Huarte Martinez
Host Institution (HI) FUNDACION PARA LA INVESTIGACION MEDICA APLICADA FIMA
Call Details Starting Grant (StG), LS1, ERC-2011-StG_20101109
Summary Mammalian cells express thousands of RNA molecules structurally similar to protein coding genes –they are large, spliced, poly-adenylated, transcribed by RNA Pol II, with conserved promoters and exonic structures –however lack coding capacity. Although thousands exist, only few of these large intergenic non-coding RNAs (lincRNAs) have been characterized. The few that have, show powerful biological roles as regulators of gene expression by diverse epigenetic and non-epigenetic mechanisms. Significantly, their expression patterns suggest that some lincRNAs are involved in cellular pathways critical in cancer, like the p53 pathway. I explored this association demonstrating that p53 induces the expression of many lincRNAs. One them, named lincRNA-p21, is directly induced by p53 to play a critical role in the p53 response, being required for the global repression of genes that interfere with p53 induction of apoptosis. My results, together with the emerging evidence in the field, suggest that lincRNAs may play key roles in numerous tumor-suppressor and oncogenic pathways, representing an unknown paradigm in cellular transformation. However, their mechanisms of function and biological roles remain largely unexplored.
The goal of this project is to decipher the functional and biological roles of lincRNAs in the context of oncogenic pathways to better understand the cellular mechanisms of gene regulation at the epigenetic and non-epigenetic levels, and be able to implement lincRNA use for diagnostics and therapies. In order to accomplish these goals we will integrate molecular and cell biology techniques with functional genomics approaches and in vivo studies. Importantly, the profiling of patient samples will reveal the relevance of our findings in human disease. Together, the functional study of lincRNAs will not only be crucial for developing improved diagnostics and therapies, but also will help a better understanding of the mechanisms that govern cellular network.
Summary
Mammalian cells express thousands of RNA molecules structurally similar to protein coding genes –they are large, spliced, poly-adenylated, transcribed by RNA Pol II, with conserved promoters and exonic structures –however lack coding capacity. Although thousands exist, only few of these large intergenic non-coding RNAs (lincRNAs) have been characterized. The few that have, show powerful biological roles as regulators of gene expression by diverse epigenetic and non-epigenetic mechanisms. Significantly, their expression patterns suggest that some lincRNAs are involved in cellular pathways critical in cancer, like the p53 pathway. I explored this association demonstrating that p53 induces the expression of many lincRNAs. One them, named lincRNA-p21, is directly induced by p53 to play a critical role in the p53 response, being required for the global repression of genes that interfere with p53 induction of apoptosis. My results, together with the emerging evidence in the field, suggest that lincRNAs may play key roles in numerous tumor-suppressor and oncogenic pathways, representing an unknown paradigm in cellular transformation. However, their mechanisms of function and biological roles remain largely unexplored.
The goal of this project is to decipher the functional and biological roles of lincRNAs in the context of oncogenic pathways to better understand the cellular mechanisms of gene regulation at the epigenetic and non-epigenetic levels, and be able to implement lincRNA use for diagnostics and therapies. In order to accomplish these goals we will integrate molecular and cell biology techniques with functional genomics approaches and in vivo studies. Importantly, the profiling of patient samples will reveal the relevance of our findings in human disease. Together, the functional study of lincRNAs will not only be crucial for developing improved diagnostics and therapies, but also will help a better understanding of the mechanisms that govern cellular network.
Max ERC Funding
1 500 000 €
Duration
Start date: 2012-01-01, End date: 2017-12-31
Project acronym CANCERMETAB
Project Metabolic requirements for prostate cancer cell fitness
Researcher (PI) Arkaitz Carracedo Perez
Host Institution (HI) ASOCIACION CENTRO DE INVESTIGACION COOPERATIVA EN BIOCIENCIAS
Call Details Starting Grant (StG), LS4, ERC-2013-StG
Summary The actual view of cellular transformation and cancer progression supports the notion that cancer cells must undergo metabolic reprogramming in order to survive in a hostile environment. This field has experienced a renaissance in recent years, with the discovery of cancer genes regulating metabolic homeostasis, in turn being accepted as an emergent hallmark of cancer. Prostate cancer presents one of the highest incidences in men mostly in developed societies and exhibits a significant association with lifestyle environmental factors. Prostate cancer recurrence is thought to rely on a subpopulation of cancer cells with low-androgen requirements, high self-renewal potential and multidrug resistance, defined as cancer-initiating cells. However, whether this cancer cell fraction presents genuine metabolic properties that can be therapeutically relevant remains undefined. In CancerMetab, we aim to understand the potential benefit of monitoring and manipulating metabolism for prostate cancer prevention, detection and therapy. My group will carry out a multidisciplinary strategy, comprising cellular systems, genetic mouse models of prostate cancer, human epidemiological and clinical studies and bioinformatic analysis. The singularity of this proposal stems from the approach to the three key aspects that we propose to study. For prostate cancer prevention, we will use our faithful mouse model of prostate cancer to shed light on the contribution of obesity to prostate cancer. For prostate cancer detection, we will overcome the consistency issues of previously reported metabolic biomarkers by adding robustness to the human studies with mouse data integration. For prostate cancer therapy, we will focus on a cell population for which the metabolic requirements and the potential of targeting them for therapy have been overlooked to date, that is the prostate cancer-initiating cell compartment.
Summary
The actual view of cellular transformation and cancer progression supports the notion that cancer cells must undergo metabolic reprogramming in order to survive in a hostile environment. This field has experienced a renaissance in recent years, with the discovery of cancer genes regulating metabolic homeostasis, in turn being accepted as an emergent hallmark of cancer. Prostate cancer presents one of the highest incidences in men mostly in developed societies and exhibits a significant association with lifestyle environmental factors. Prostate cancer recurrence is thought to rely on a subpopulation of cancer cells with low-androgen requirements, high self-renewal potential and multidrug resistance, defined as cancer-initiating cells. However, whether this cancer cell fraction presents genuine metabolic properties that can be therapeutically relevant remains undefined. In CancerMetab, we aim to understand the potential benefit of monitoring and manipulating metabolism for prostate cancer prevention, detection and therapy. My group will carry out a multidisciplinary strategy, comprising cellular systems, genetic mouse models of prostate cancer, human epidemiological and clinical studies and bioinformatic analysis. The singularity of this proposal stems from the approach to the three key aspects that we propose to study. For prostate cancer prevention, we will use our faithful mouse model of prostate cancer to shed light on the contribution of obesity to prostate cancer. For prostate cancer detection, we will overcome the consistency issues of previously reported metabolic biomarkers by adding robustness to the human studies with mouse data integration. For prostate cancer therapy, we will focus on a cell population for which the metabolic requirements and the potential of targeting them for therapy have been overlooked to date, that is the prostate cancer-initiating cell compartment.
Max ERC Funding
1 498 686 €
Duration
Start date: 2013-11-01, End date: 2019-10-31
Project acronym CBSCS
Project Physiology of the adult carotid body stem cell niche
Researcher (PI) Ricardo Pardal
Host Institution (HI) UNIVERSIDAD DE SEVILLA
Call Details Starting Grant (StG), LS3, ERC-2010-StG_20091118
Summary The discovery of adult neural stem cells (NSCs) has broaden our view of the physiological plasticity of the nervous system,
and has opened new perspectives on the possibility of tissue regeneration and repair in the brain. NSCs reside in specialized
niches in the adult mammalian nervous system, where they are exposed to specific paracrine signals regulating their
behavior. These neural progenitors are generally in a quiescent state within their niche, and they activate their proliferation
depending on tissue regenerative and growth needs. Understanding the mechanisms by which NSCs enter and exit the
quiescent state is crucial for the comprehension of the physiology of the adult nervous system. In this project we will study
the behavior of a specific subpopulation of adult neural stem cells recently described by our group in the carotid body (CB).
This small organ constitutes the most important chemosensor of the peripheral nervous system and has neuronal glomus
cells responsible for the chemosensing, and glia-like sustentacular cells which were thought to have just a supportive role.
We recently described that these sustentacular cells are dormant stem cells able to activate their proliferation in response to a
physiological stimulus like hypoxia, and to differentiate into new glomus cells necessary for the adaptation of the organ.
Due to our precise experimental control of the activation and deactivation of the CB neurogenic niche, we believe the CB is
an ideal model to study fundamental questions about adult neural stem cell physiology and the interaction with the niche. We
propose to study the cellular and molecular mechanisms by which these carotid body stem cells enter and exit the quiescent
state, which will help us understand the physiology of adult neurogenic niches. Likewise, understanding this neurogenic
process will improve the efficacy of using glomus cells for cell therapy against neurological disease, and might help us
understand some neural tumors.
Summary
The discovery of adult neural stem cells (NSCs) has broaden our view of the physiological plasticity of the nervous system,
and has opened new perspectives on the possibility of tissue regeneration and repair in the brain. NSCs reside in specialized
niches in the adult mammalian nervous system, where they are exposed to specific paracrine signals regulating their
behavior. These neural progenitors are generally in a quiescent state within their niche, and they activate their proliferation
depending on tissue regenerative and growth needs. Understanding the mechanisms by which NSCs enter and exit the
quiescent state is crucial for the comprehension of the physiology of the adult nervous system. In this project we will study
the behavior of a specific subpopulation of adult neural stem cells recently described by our group in the carotid body (CB).
This small organ constitutes the most important chemosensor of the peripheral nervous system and has neuronal glomus
cells responsible for the chemosensing, and glia-like sustentacular cells which were thought to have just a supportive role.
We recently described that these sustentacular cells are dormant stem cells able to activate their proliferation in response to a
physiological stimulus like hypoxia, and to differentiate into new glomus cells necessary for the adaptation of the organ.
Due to our precise experimental control of the activation and deactivation of the CB neurogenic niche, we believe the CB is
an ideal model to study fundamental questions about adult neural stem cell physiology and the interaction with the niche. We
propose to study the cellular and molecular mechanisms by which these carotid body stem cells enter and exit the quiescent
state, which will help us understand the physiology of adult neurogenic niches. Likewise, understanding this neurogenic
process will improve the efficacy of using glomus cells for cell therapy against neurological disease, and might help us
understand some neural tumors.
Max ERC Funding
1 476 000 €
Duration
Start date: 2010-11-01, End date: 2015-10-31
Project acronym CDAC
Project "The role of consciousness in adaptive behavior: A combined empirical, computational and robot based approach"
Researcher (PI) Paulus Franciscus Maria Joseph Verschure
Host Institution (HI) UNIVERSIDAD POMPEU FABRA
Call Details Advanced Grant (AdG), SH4, ERC-2013-ADG
Summary "Understanding the nature of consciousness is one of the grand outstanding scientific challenges and two of its features stand out: consciousness is defined as the construction of one coherent scene but this scene is experienced with a delay relative to the action of the agent and not necessarily the cause of actions and thoughts. Did evolution render solutions to the challenge of survival that includes epiphenomenal processes? The Conscious Distributed Adaptive Control (CDAC) project aims at resolving this paradox by using a multi-disciplinary approach to show the functional role of consciousness in adaptive behaviour, to identify its underlying neuronal principles and to construct a neuromorphic robot based real-time conscious architecture. CDAC proposes that the shift from surviving in a physical world to one that is dominated by intentional agents requires radically different control architectures combining parallel and distributed control loops to assure real-time operation together with a second level of control that assures coherence through sequential coherent representation of self and the task domain, i.e. consciousness. This conscious scene is driving dedicated credit assignment and planning beyond the immediately given information. CDAC advances a comprehensive framework progressing beyond the state of the art and will be realized using system level models of a conscious architecture, detailed computational studies of its underlying neuronal substrate focusing, empirical validation with a humanoid robot and stroke patients and the advancement of beyond state of the art tools appropriate to the complexity of its objectives. The CDAC project directly addresses one of the main outstanding questions in science: the function and genesis of consciousness and will advance our understanding of mind and brain, provide radically new neurorehabilitation technologies and contribute to realizing a new generation of robots with advanced social competence."
Summary
"Understanding the nature of consciousness is one of the grand outstanding scientific challenges and two of its features stand out: consciousness is defined as the construction of one coherent scene but this scene is experienced with a delay relative to the action of the agent and not necessarily the cause of actions and thoughts. Did evolution render solutions to the challenge of survival that includes epiphenomenal processes? The Conscious Distributed Adaptive Control (CDAC) project aims at resolving this paradox by using a multi-disciplinary approach to show the functional role of consciousness in adaptive behaviour, to identify its underlying neuronal principles and to construct a neuromorphic robot based real-time conscious architecture. CDAC proposes that the shift from surviving in a physical world to one that is dominated by intentional agents requires radically different control architectures combining parallel and distributed control loops to assure real-time operation together with a second level of control that assures coherence through sequential coherent representation of self and the task domain, i.e. consciousness. This conscious scene is driving dedicated credit assignment and planning beyond the immediately given information. CDAC advances a comprehensive framework progressing beyond the state of the art and will be realized using system level models of a conscious architecture, detailed computational studies of its underlying neuronal substrate focusing, empirical validation with a humanoid robot and stroke patients and the advancement of beyond state of the art tools appropriate to the complexity of its objectives. The CDAC project directly addresses one of the main outstanding questions in science: the function and genesis of consciousness and will advance our understanding of mind and brain, provide radically new neurorehabilitation technologies and contribute to realizing a new generation of robots with advanced social competence."
Max ERC Funding
2 469 268 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym CDSIF
Project Contour dynamics and singularities in incompressible flows
Researcher (PI) Diego Cordoba
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Starting Grant (StG), PE1, ERC-2007-StG
Summary The search of singularities in incompressible flows has become a major challenge in the area of non-linear partial differential equations and is relevant in applied mathematics, physics and engineering. The existence of such singularities would have important consequences for the understanding of turbulence. One way to make progress in this direction, is to study plausible scenarios for the singularities supported by experiments or numerical analysis. With the more sophisticated numerical tools now available, the subject has recently gained considerable momentum. The main goal of this project is to study analytically several incompressible fluid models. In particular solutions that involve the possible formation of singularities or quasi-singular structures.
Summary
The search of singularities in incompressible flows has become a major challenge in the area of non-linear partial differential equations and is relevant in applied mathematics, physics and engineering. The existence of such singularities would have important consequences for the understanding of turbulence. One way to make progress in this direction, is to study plausible scenarios for the singularities supported by experiments or numerical analysis. With the more sophisticated numerical tools now available, the subject has recently gained considerable momentum. The main goal of this project is to study analytically several incompressible fluid models. In particular solutions that involve the possible formation of singularities or quasi-singular structures.
Max ERC Funding
650 000 €
Duration
Start date: 2008-09-01, End date: 2013-08-31
Project acronym CEAD
Project Contextualizing Evidence for Action on Diabetes in low-resource Settings: A mixed-methods case study in Quito and Esmeraldas, Ecuador.
Researcher (PI) Lucy Anne Parker
Host Institution (HI) UNIVERSIDAD MIGUEL HERNANDEZ DE ELCHE
Call Details Starting Grant (StG), SH3, ERC-2018-STG
Summary The relentless rise in diabetes is one of the greatest global health emergencies of the 21st century. The increase is most pronounced in low and middle income countries where today three quarters of people with diabetes live and over 80% of the deaths attributed to non-communicable diseases occur. In light of the wealth of knowledge already available about how to tackle the problem, most major international organizations call for the adoption healthy public policies and initiatives to strengthening health systems. However, implementation of recommended action remains limited in many settings. Most evidence comes from high-income settings and may generate recommendations that cannot be successfully implemented in other settings without careful consideration and contextualization. I propose here that this “know-do” gap can be reduced by revealing the barriers to implementing evidence-based recommendations, engaging local stakeholders in developing context-led innovations and developing a tool-kit for contextualizing and implementing diabetes recommendations in low-resource settings. I plan the research in two carefully selected settings in Ecuador, with mixed-methods combining quantitative epidemiological research and qualitative methodology to generate the rich and varied knowledge that is required to trigger policy action and/or changes in care models. Furthermore, I will engage patients, community members, health workers and decision makers in the process of knowledge generation, interpretation and use. The overarching objective is hence, to explore the process by which global recommendations can be translated into context-specific, evidence-informed action for diabetes prevention in low-resource settings. The findings will support the global endeavour to bridge the global “know-do” gap, one of the most important public health challenges this century and a great opportunity for strengthening health systems and achieving health equity.
Summary
The relentless rise in diabetes is one of the greatest global health emergencies of the 21st century. The increase is most pronounced in low and middle income countries where today three quarters of people with diabetes live and over 80% of the deaths attributed to non-communicable diseases occur. In light of the wealth of knowledge already available about how to tackle the problem, most major international organizations call for the adoption healthy public policies and initiatives to strengthening health systems. However, implementation of recommended action remains limited in many settings. Most evidence comes from high-income settings and may generate recommendations that cannot be successfully implemented in other settings without careful consideration and contextualization. I propose here that this “know-do” gap can be reduced by revealing the barriers to implementing evidence-based recommendations, engaging local stakeholders in developing context-led innovations and developing a tool-kit for contextualizing and implementing diabetes recommendations in low-resource settings. I plan the research in two carefully selected settings in Ecuador, with mixed-methods combining quantitative epidemiological research and qualitative methodology to generate the rich and varied knowledge that is required to trigger policy action and/or changes in care models. Furthermore, I will engage patients, community members, health workers and decision makers in the process of knowledge generation, interpretation and use. The overarching objective is hence, to explore the process by which global recommendations can be translated into context-specific, evidence-informed action for diabetes prevention in low-resource settings. The findings will support the global endeavour to bridge the global “know-do” gap, one of the most important public health challenges this century and a great opportunity for strengthening health systems and achieving health equity.
Max ERC Funding
1 475 334 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym CELLDOCTOR
Project Quantitative understanding of a living system and its engineering as a cellular organelle
Researcher (PI) Luis Serrano
Host Institution (HI) FUNDACIO CENTRE DE REGULACIO GENOMICA
Call Details Advanced Grant (AdG), LS2, ERC-2008-AdG
Summary The idea of harnessing living organisms for treating human diseases is not new but, so far, the majority of the living vectors used in human therapy are viruses which have the disadvantage of the limited number of genes and networks that can contain. Bacteria allow the cloning of complex networks and the possibility of making a large plethora of compounds, naturally or through careful redesign. One of the main limitations for the use of bacteria to treat human diseases is their complexity, the existence of a cell wall that difficult the communication with the target cells, the lack of control over its growth and the immune response that will elicit on its target. Ideally one would like to have a very small bacterium (of a mitochondria size), with no cell wall, which could be grown in Vitro, be genetically manipulated, for which we will have enough data to allow a complete understanding of its behaviour and which could live as a human cell parasite. Such a microorganism could in principle be used as a living vector in which genes of interests, or networks producing organic molecules of medical relevance, could be introduced under in Vitro conditions and then inoculated on extracted human cells or in the organism, and then become a new organelle in the host. Then, it could produce and secrete into the host proteins which will be needed to correct a genetic disease, or drugs needed by the patient. To do that, we need to understand in excruciating detail the Biology of the target bacterium and how to interface with the host cell cycle (Systems biology aspect). Then we need to have engineering tools (network design, protein design, simulations) to modify the target bacterium to behave like an organelle once inside the cell (Synthetic biology aspect). M.pneumoniae could be such a bacterium. It is one of the smallest free-living bacterium known (680 genes), has no cell wall, can be cultivated in Vitro, can be genetically manipulated and can enter inside human cells.
Summary
The idea of harnessing living organisms for treating human diseases is not new but, so far, the majority of the living vectors used in human therapy are viruses which have the disadvantage of the limited number of genes and networks that can contain. Bacteria allow the cloning of complex networks and the possibility of making a large plethora of compounds, naturally or through careful redesign. One of the main limitations for the use of bacteria to treat human diseases is their complexity, the existence of a cell wall that difficult the communication with the target cells, the lack of control over its growth and the immune response that will elicit on its target. Ideally one would like to have a very small bacterium (of a mitochondria size), with no cell wall, which could be grown in Vitro, be genetically manipulated, for which we will have enough data to allow a complete understanding of its behaviour and which could live as a human cell parasite. Such a microorganism could in principle be used as a living vector in which genes of interests, or networks producing organic molecules of medical relevance, could be introduced under in Vitro conditions and then inoculated on extracted human cells or in the organism, and then become a new organelle in the host. Then, it could produce and secrete into the host proteins which will be needed to correct a genetic disease, or drugs needed by the patient. To do that, we need to understand in excruciating detail the Biology of the target bacterium and how to interface with the host cell cycle (Systems biology aspect). Then we need to have engineering tools (network design, protein design, simulations) to modify the target bacterium to behave like an organelle once inside the cell (Synthetic biology aspect). M.pneumoniae could be such a bacterium. It is one of the smallest free-living bacterium known (680 genes), has no cell wall, can be cultivated in Vitro, can be genetically manipulated and can enter inside human cells.
Max ERC Funding
2 400 000 €
Duration
Start date: 2009-03-01, End date: 2015-02-28
Project acronym CELLPLASTICITY
Project New Frontiers in Cellular Reprogramming: Exploiting Cellular Plasticity
Researcher (PI) Manuel SERRANO MARUGAN
Host Institution (HI) FUNDACIO INSTITUT DE RECERCA BIOMEDICA (IRB BARCELONA)
Call Details Advanced Grant (AdG), LS4, ERC-2014-ADG
Summary "Our research group has worked over the years at the interface between cancer and ageing, with a strong emphasis on mouse models. More recently, we became interested in cellular reprogramming because we hypothesized that understanding cellular plasticity could yield new insights into cancer and ageing. Indeed, during the previous ERC Advanced Grant, we made relevant contributions to the fields of cellular reprogramming (Nature 2013), cellular senescence (Cell 2013), cancer (Cancer Cell 2012), and ageing (Cell Metabolism 2012). Now, we take advantage of our diverse background and integrate the above processes. Our unifying hypothesis is that cellular plasticity lies at the basis of tissue regeneration (“adaptive cellular plasticity”), as well as at the origin of cancer (“maladaptive gain of cellular plasticity”) and ageing (“maladaptive loss of cellular plasticity”). A key experimental system will be our “reprogrammable mice” (with inducible expression of the four Yamanaka factors), which we regard as a tool to induce cellular plasticity in vivo. The project is divided as follows: Objective #1 – Cellular plasticity and cancer: role of tumour suppressors in in vivo de-differentiation and reprogramming / impact of transient de-differentiation on tumour initiation / lineage tracing of Oct4 to determine whether a transient pluripotent-state occurs during cancer. Objective #2 – Cellular plasticity in tissue regeneration and ageing: impact of transient de-differentiation on tissue regeneration / contribution of the damage-induced microenvironment to tissue regeneration / impact of transient de-differentiation on ageing. Objective #3: New frontiers in cellular plasticity: chemical manipulation of cellular plasticity in vivo / new states of pluripotency / characterization of in vivo induced pluripotency and its unique properties. We anticipate that the completion of this project will yield new fundamental insights into cancer, regeneration and ageing."
Summary
"Our research group has worked over the years at the interface between cancer and ageing, with a strong emphasis on mouse models. More recently, we became interested in cellular reprogramming because we hypothesized that understanding cellular plasticity could yield new insights into cancer and ageing. Indeed, during the previous ERC Advanced Grant, we made relevant contributions to the fields of cellular reprogramming (Nature 2013), cellular senescence (Cell 2013), cancer (Cancer Cell 2012), and ageing (Cell Metabolism 2012). Now, we take advantage of our diverse background and integrate the above processes. Our unifying hypothesis is that cellular plasticity lies at the basis of tissue regeneration (“adaptive cellular plasticity”), as well as at the origin of cancer (“maladaptive gain of cellular plasticity”) and ageing (“maladaptive loss of cellular plasticity”). A key experimental system will be our “reprogrammable mice” (with inducible expression of the four Yamanaka factors), which we regard as a tool to induce cellular plasticity in vivo. The project is divided as follows: Objective #1 – Cellular plasticity and cancer: role of tumour suppressors in in vivo de-differentiation and reprogramming / impact of transient de-differentiation on tumour initiation / lineage tracing of Oct4 to determine whether a transient pluripotent-state occurs during cancer. Objective #2 – Cellular plasticity in tissue regeneration and ageing: impact of transient de-differentiation on tissue regeneration / contribution of the damage-induced microenvironment to tissue regeneration / impact of transient de-differentiation on ageing. Objective #3: New frontiers in cellular plasticity: chemical manipulation of cellular plasticity in vivo / new states of pluripotency / characterization of in vivo induced pluripotency and its unique properties. We anticipate that the completion of this project will yield new fundamental insights into cancer, regeneration and ageing."
Max ERC Funding
2 488 850 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym CHAI
Project Cardiovascular Health effects of Air pollution in Andhra Pradesh, India
Researcher (PI) Cathryn Tonne
Host Institution (HI) FUNDACION PRIVADA INSTITUTO DE SALUD GLOBAL BARCELONA
Call Details Starting Grant (StG), LS7, ERC-2013-StG
Summary While there is convincing evidence that exposure to particulate air pollution causes cardiovascular mortality and morbidity, nearly all of this evidence is based on populations in high-income countries where concentrations are relatively low. There is large uncertainty regarding the relationship between combustion particles and cardiovascular risk for concentrations higher than outdoor concentrations in urban areas of high-income countries and lower than active smoking. Exposures for our study population are likely to be in this range.
We will investigate the cardiovascular health effects of exposure to particles from outdoor and household sources within a prospective cohort in Andhra Pradesh, India. Firstly, we will characterise exposure of participants using an integrated approach utilising outdoor mobile monitoring, personal monitoring, and questionnaire data. We will then collect data on participants’ activities and location using ‘life-logging’ from which activities driving exposure can be identified. Finally, we will quantify the association between exposure to particles and biomarkers of atherosclerosis.
This research will shed light on the relationship between particles and cardiovascular risk at concentration ranges where there is the largest uncertainty. It will provide some of the first evidence of the cardiovascular health effects of medium-term exposure to particulate air pollution outside of a high-income country. The research will also provide evidence regarding the relative contribution of sources and activities linked to high exposure, forming the basis of recommendations for exposure reduction.
Summary
While there is convincing evidence that exposure to particulate air pollution causes cardiovascular mortality and morbidity, nearly all of this evidence is based on populations in high-income countries where concentrations are relatively low. There is large uncertainty regarding the relationship between combustion particles and cardiovascular risk for concentrations higher than outdoor concentrations in urban areas of high-income countries and lower than active smoking. Exposures for our study population are likely to be in this range.
We will investigate the cardiovascular health effects of exposure to particles from outdoor and household sources within a prospective cohort in Andhra Pradesh, India. Firstly, we will characterise exposure of participants using an integrated approach utilising outdoor mobile monitoring, personal monitoring, and questionnaire data. We will then collect data on participants’ activities and location using ‘life-logging’ from which activities driving exposure can be identified. Finally, we will quantify the association between exposure to particles and biomarkers of atherosclerosis.
This research will shed light on the relationship between particles and cardiovascular risk at concentration ranges where there is the largest uncertainty. It will provide some of the first evidence of the cardiovascular health effects of medium-term exposure to particulate air pollution outside of a high-income country. The research will also provide evidence regarding the relative contribution of sources and activities linked to high exposure, forming the basis of recommendations for exposure reduction.
Max ERC Funding
1 200 000 €
Duration
Start date: 2015-01-01, End date: 2018-12-31
Project acronym CHANGING FAMILIES
Project Changing Families: Causes, Consequences and Challenges for Public Policy
Researcher (PI) Nezih Guner
Host Institution (HI) FUNDACIÓ MARKETS, ORGANIZATIONS AND VOTES IN ECONOMICS
Call Details Starting Grant (StG), SH1, ERC-2010-StG_20091209
Summary The household and family structure in every major industrialized country changed in a fundamental way during the last couple of decades. First, marriage is less important today, as divorce, cohabitation, and single-motherhood are much more common. Second, female labor force participation has increased dramatically. As a result of these changes, today s households are very far from traditional breadwinner husband and housekeeper wife paradigm. These dramatic changes generated significant public interest and a large body of literature that tries to understand causes and consequences of these changes.
This project has two main goals. First, it studies changes in household and family structure. The particular questions that it tries to answer are: 1) What are economic factors behind the rise in premarital sex and its destigmatization? What determines parents incentives to socialize their children and affect their attitudes? 2) What are the causes and consequences of the recent rise in assortative mating and diverging marriage patterns by different educational groups? 3) Why are marriage patterns among blacks so different than whites in the U.S.?
The second aim of this project is to improve our understanding of income risk, the role of social insurance policies and labor market dynamics by building models that explicitly considers two-earner households. In particular, we ask the following set of questions: 1) What is the role of social insurance policies (income maintenance programs or progressive taxation) in an economy populated by two-earner households facing uninsurable idiosyncratic risk? 2) How does marriage and labor market dynamics interact and how important this interaction for our understanding of labor supply and marriage decisions?
Summary
The household and family structure in every major industrialized country changed in a fundamental way during the last couple of decades. First, marriage is less important today, as divorce, cohabitation, and single-motherhood are much more common. Second, female labor force participation has increased dramatically. As a result of these changes, today s households are very far from traditional breadwinner husband and housekeeper wife paradigm. These dramatic changes generated significant public interest and a large body of literature that tries to understand causes and consequences of these changes.
This project has two main goals. First, it studies changes in household and family structure. The particular questions that it tries to answer are: 1) What are economic factors behind the rise in premarital sex and its destigmatization? What determines parents incentives to socialize their children and affect their attitudes? 2) What are the causes and consequences of the recent rise in assortative mating and diverging marriage patterns by different educational groups? 3) Why are marriage patterns among blacks so different than whites in the U.S.?
The second aim of this project is to improve our understanding of income risk, the role of social insurance policies and labor market dynamics by building models that explicitly considers two-earner households. In particular, we ask the following set of questions: 1) What is the role of social insurance policies (income maintenance programs or progressive taxation) in an economy populated by two-earner households facing uninsurable idiosyncratic risk? 2) How does marriage and labor market dynamics interact and how important this interaction for our understanding of labor supply and marriage decisions?
Max ERC Funding
1 037 000 €
Duration
Start date: 2010-11-01, End date: 2015-10-31
Project acronym CHROMOREPAIR
Project Genome Maintenance in the Context of Chromatin
Researcher (PI) Oscar Fernández-Capetillo Ruiz
Host Institution (HI) FUNDACION CENTRO NACIONAL DE INVESTIGACIONES ONCOLOGICAS CARLOS III
Call Details Starting Grant (StG), LS1, ERC-2007-StG
Summary With the availability of the essentially complete sequence of the human genome, as well as a rapid development of massive sequencing techniques, the research efforts to understand genetics and disease from a cis standpoint will soon reach an endpoint. However, our emerging knowledge of gene regulation networks reveals that epigenetic regulation of the hereditary information plays crucial roles in various biological events through its influence on processes such as transcription, DNA replication and chromosome architecture. Another scenario in which the control of chromatin structure is crucial is the repair of lesions in genomic DNA. There is mounting evidence, particularly from model organisms such as Saccharomyces cerevisiae, that histone modifying enzymes (acetylases, deacetylases, kinases, …) are essential components of the machinery that maintains genome integrity and thereby guards against cancer, degenerative diseases and ageing. However, little is known about the specific “code” of histone tail modifications that coordinate DNA repair, and the impact that an aberrant “histone code” may have on human health. In CHROMOREPAIR we will systematically analyze the chromatin remodelling process that undergoes at DNA lesions and evaluate the impact that chromatin alterations have on the access, signaling and repair of DNA damage. Furthermore, we propose to translate our in vitro knowledge to the development of mouse models that help us evaluate how modulation of chromatin status impinges on genome maintenance and therefore on cancer and aging. As a provocative line of research and based on our preliminary data, we propose that certain chromatin alterations could not only impair but also in some cases promote a more robust response to DNA breaks, which could be a novel and not yet explored way to potentiate the elimination of pre-cancerous cells.
Summary
With the availability of the essentially complete sequence of the human genome, as well as a rapid development of massive sequencing techniques, the research efforts to understand genetics and disease from a cis standpoint will soon reach an endpoint. However, our emerging knowledge of gene regulation networks reveals that epigenetic regulation of the hereditary information plays crucial roles in various biological events through its influence on processes such as transcription, DNA replication and chromosome architecture. Another scenario in which the control of chromatin structure is crucial is the repair of lesions in genomic DNA. There is mounting evidence, particularly from model organisms such as Saccharomyces cerevisiae, that histone modifying enzymes (acetylases, deacetylases, kinases, …) are essential components of the machinery that maintains genome integrity and thereby guards against cancer, degenerative diseases and ageing. However, little is known about the specific “code” of histone tail modifications that coordinate DNA repair, and the impact that an aberrant “histone code” may have on human health. In CHROMOREPAIR we will systematically analyze the chromatin remodelling process that undergoes at DNA lesions and evaluate the impact that chromatin alterations have on the access, signaling and repair of DNA damage. Furthermore, we propose to translate our in vitro knowledge to the development of mouse models that help us evaluate how modulation of chromatin status impinges on genome maintenance and therefore on cancer and aging. As a provocative line of research and based on our preliminary data, we propose that certain chromatin alterations could not only impair but also in some cases promote a more robust response to DNA breaks, which could be a novel and not yet explored way to potentiate the elimination of pre-cancerous cells.
Max ERC Funding
948 426 €
Duration
Start date: 2008-12-01, End date: 2013-11-30
Project acronym CIRGEN
Project Circulating Gender in the Global Enlightenment: Ideas, Networks, Agencies
Researcher (PI) Monica Bolufer Peruga
Host Institution (HI) UNIVERSITAT DE VALENCIA
Call Details Advanced Grant (AdG), SH6, ERC-2017-ADG
Summary Research on the role played by women as actors and by gender as a cultural category has crucially contributed to historiographical revision of the Enlightenment and its legacy to the modern world. However, the perspective adopted has been national or, if comparative, mostly radial. A leap forward is urgent because current circulationist approaches to the Enlightenment tend to forget its key gender dimension and to underplay contributions from Southern Europe. This projects offers, for the first time in the field, a systematic,truly transnational and transatlantic approach, which knits together cultural, intellectual, gender and postcolonial history, literary, philosophical and visual studies. It looks at the cultural transfer of gender notions in global perspective around five axes: translation, learned sociability, travel, reading and sensibility, to be explored through textual and iconographic analysis and archival research. Adopting the vantage point of Spain and its empire will allow to question approaches based either on the “national context” or the centre-periphery dichotomy, to reassess the role of the Catholic Enlightenment in the making of modernity and to highlight the mediating roles played by local actors, male and female, in processes of sociocultural change.
CIRGEN’s specific objectives are: to challenge dichotomous visions of Enlightenment discourses of gender by stressing their plural (and often conflictive) contribution to modernity; to decenter customary radial perspectives by stressing multilateral dialogues both within Europe and beyond; to better understand the role played by gender in the cultural geography of Enlightenment, particularly in the construction of the South/North symbolic divide; to produce empirically grounded evidence of the practical and iconic role of women in the making of modern reading publics; to foster innovative scholarship on the gendering of emotions in defining national identities and moral standards of civilization.
Summary
Research on the role played by women as actors and by gender as a cultural category has crucially contributed to historiographical revision of the Enlightenment and its legacy to the modern world. However, the perspective adopted has been national or, if comparative, mostly radial. A leap forward is urgent because current circulationist approaches to the Enlightenment tend to forget its key gender dimension and to underplay contributions from Southern Europe. This projects offers, for the first time in the field, a systematic,truly transnational and transatlantic approach, which knits together cultural, intellectual, gender and postcolonial history, literary, philosophical and visual studies. It looks at the cultural transfer of gender notions in global perspective around five axes: translation, learned sociability, travel, reading and sensibility, to be explored through textual and iconographic analysis and archival research. Adopting the vantage point of Spain and its empire will allow to question approaches based either on the “national context” or the centre-periphery dichotomy, to reassess the role of the Catholic Enlightenment in the making of modernity and to highlight the mediating roles played by local actors, male and female, in processes of sociocultural change.
CIRGEN’s specific objectives are: to challenge dichotomous visions of Enlightenment discourses of gender by stressing their plural (and often conflictive) contribution to modernity; to decenter customary radial perspectives by stressing multilateral dialogues both within Europe and beyond; to better understand the role played by gender in the cultural geography of Enlightenment, particularly in the construction of the South/North symbolic divide; to produce empirically grounded evidence of the practical and iconic role of women in the making of modern reading publics; to foster innovative scholarship on the gendering of emotions in defining national identities and moral standards of civilization.
Max ERC Funding
2 499 415 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym CITIZINGLOBAL
Project Citizens, Institutions and Globalization
Researcher (PI) Giacomo Antonio Maria PONZETTO
Host Institution (HI) Centre de Recerca en Economia Internacional (CREI)
Call Details Starting Grant (StG), SH1, ERC-2016-STG
Summary Globalization has brought the world economy unprecedented prosperity, but it poses governance challenges. It needs governments to provide the infrastructure for global economic integration and to refrain from destructive protectionism; yet it can engender popular discontent and a crisis of democracy. My proposal will study when trade- and productivity-enhancing policies enjoy democratic support; why voters may support instead inefficient surplus-reducing policies; and how political structure reacts to globalization.
Part A studies the puzzling popularity of protectionism and how lobbies can raise it by manipulating information. It will study empirically if greater transparency causes lower trade barriers. It will introduce salience theory to political economics and argue that voters overweight concentrated losses and disregard diffuse benefits. It will show that lobbies can raise protection by channeling information to insiders and advertising the plight of displaced workers.
Part B studies inefficient infrastructure policy and the ensuing spatial misallocation of economic activity. It will show that voters’ unequal knowledge lets local residents capture national policy. They disregard nationwide positive externalities, so investment in major cities is insufficient, but also nationwide taxes, so spending in low-density areas is excessive. It will argue that the fundamental attribution error causes voter opposition to growth-enhancing policies and efficient incentive schemes like congestion pricing.
Part C studies how the size of countries and international unions adapts to expanding trade opportunities. It will focus on three forces: cultural diversity, economies of scale and scope in government, and trade-reducing border effects. It will show they explain increasing country size in the 19th century; the rise and fall of colonial empires; and the recent emergence of regional and global economic unions, accompanied by a peaceful increase in the number of countries.
Summary
Globalization has brought the world economy unprecedented prosperity, but it poses governance challenges. It needs governments to provide the infrastructure for global economic integration and to refrain from destructive protectionism; yet it can engender popular discontent and a crisis of democracy. My proposal will study when trade- and productivity-enhancing policies enjoy democratic support; why voters may support instead inefficient surplus-reducing policies; and how political structure reacts to globalization.
Part A studies the puzzling popularity of protectionism and how lobbies can raise it by manipulating information. It will study empirically if greater transparency causes lower trade barriers. It will introduce salience theory to political economics and argue that voters overweight concentrated losses and disregard diffuse benefits. It will show that lobbies can raise protection by channeling information to insiders and advertising the plight of displaced workers.
Part B studies inefficient infrastructure policy and the ensuing spatial misallocation of economic activity. It will show that voters’ unequal knowledge lets local residents capture national policy. They disregard nationwide positive externalities, so investment in major cities is insufficient, but also nationwide taxes, so spending in low-density areas is excessive. It will argue that the fundamental attribution error causes voter opposition to growth-enhancing policies and efficient incentive schemes like congestion pricing.
Part C studies how the size of countries and international unions adapts to expanding trade opportunities. It will focus on three forces: cultural diversity, economies of scale and scope in government, and trade-reducing border effects. It will show they explain increasing country size in the 19th century; the rise and fall of colonial empires; and the recent emergence of regional and global economic unions, accompanied by a peaceful increase in the number of countries.
Max ERC Funding
960 000 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym CleverGenes
Project Novel Gene Therapy Based on the Activation of Endogenous Genes for the Treatment of Ischemia - Concepts of endogenetherapy, release of promoter pausing, promoter-targeted ncRNAs and nuclear RNAi
Researcher (PI) Seppo Ylä-Herttuala
Host Institution (HI) ITA-SUOMEN YLIOPISTO
Call Details Advanced Grant (AdG), LS7, ERC-2014-ADG
Summary Background: Therapeutic angiogenesis with vascular endothelial growth factors (VEGFs) has great potential to become a novel, minimally invasive new treatment for a large number of patients with severe myocardial ischemia. However, this requires development of new technology. Advancing state-of-the-art: We propose a paradigm shift in gene therapy for chronic ischemia by activating endogenous VEGF-A,-B and -C genes and angiogenic transcription programs from the native promoters instead of gene transfer of exogenous cDNA to target tissues. We will develop a new platform technology (endogenetherapy) based on our novel concept of the release of promoter pausing and new promoter-targeted upregulating short hairpinRNAs, tissue-specific superenhancerRNAs activating specific transcription centers involving gene clusters in different chromosomal regions, small circularRNAs formed from self-splicing exons-introns that can be regulated with oligonucleotides and small molecules such as metabolites, nuclear RNAi vectors and specific CRISPR/gRNAmutatedCas9-VP16 technology with an ability to target integration into genomic safe harbor sites. After preclinical studies in mice and in a newly developed chronic cardiac ischemia model in pigs with special emphasis on the analysis of clinically relevant blood flow, metabolic and functional outcomes based on MRI, ultrasound, photoacoustic and PET imaging, the best construct will be taken to a phase I clinical study in patients with severe myocardial ischemia. Since endogenetherapy also involves epigenetic changes, which are reversible and long-lasting, we expect to efficiently activate natural angiogenic programs. Significance: If successful, this approach will begin a new era in gene therapy. Since there is a clear lack of technology capable of targeted upregulation of endogenous genes, the novel endogenetherapy approach may become widely applicable beyond cardiovascular diseases also in other areas of medicine and biomedical research.
Summary
Background: Therapeutic angiogenesis with vascular endothelial growth factors (VEGFs) has great potential to become a novel, minimally invasive new treatment for a large number of patients with severe myocardial ischemia. However, this requires development of new technology. Advancing state-of-the-art: We propose a paradigm shift in gene therapy for chronic ischemia by activating endogenous VEGF-A,-B and -C genes and angiogenic transcription programs from the native promoters instead of gene transfer of exogenous cDNA to target tissues. We will develop a new platform technology (endogenetherapy) based on our novel concept of the release of promoter pausing and new promoter-targeted upregulating short hairpinRNAs, tissue-specific superenhancerRNAs activating specific transcription centers involving gene clusters in different chromosomal regions, small circularRNAs formed from self-splicing exons-introns that can be regulated with oligonucleotides and small molecules such as metabolites, nuclear RNAi vectors and specific CRISPR/gRNAmutatedCas9-VP16 technology with an ability to target integration into genomic safe harbor sites. After preclinical studies in mice and in a newly developed chronic cardiac ischemia model in pigs with special emphasis on the analysis of clinically relevant blood flow, metabolic and functional outcomes based on MRI, ultrasound, photoacoustic and PET imaging, the best construct will be taken to a phase I clinical study in patients with severe myocardial ischemia. Since endogenetherapy also involves epigenetic changes, which are reversible and long-lasting, we expect to efficiently activate natural angiogenic programs. Significance: If successful, this approach will begin a new era in gene therapy. Since there is a clear lack of technology capable of targeted upregulation of endogenous genes, the novel endogenetherapy approach may become widely applicable beyond cardiovascular diseases also in other areas of medicine and biomedical research.
Max ERC Funding
2 437 500 €
Duration
Start date: 2015-11-01, End date: 2020-10-31
Project acronym CLIMASLOW
Project Slowing Down Climate Change: Combining Climate Law and Climate Science to Identify the Best Options to Reduce Emissions of Short-Lived Climate Forcers in Developing Countries
Researcher (PI) Kati Marjo Johanna Kulovesi
Host Institution (HI) ITA-SUOMEN YLIOPISTO
Call Details Starting Grant (StG), SH2, ERC-2015-STG
Summary The ClimaSlow project opens new interdisciplinary horizons to identify the best opportunities to enhance the global legal and regulatory framework for reducing emissions of short-lived climate pollutants (SLCFs), with particular attention to developing countries as projected key sources of future SLCF emissions. It proceeds from the assumption that strengthening the global legal and regulatory framework for SLCFs would bring important benefits in terms of slowing down climate change and reducing local air pollution. However, legal and regulatory options to step up action on SLCFs have not been studied comprehensively. Furthermore, the climate impacts of the various options are not adequately understood.
In contrast to traditional legal analysis that would focus one legal system or instrument, the project will study the relevant legal and regulatory frameworks comprehensively, considering the international, regional, national and transnational levels. It will seek to identify various options, both formal legal instruments and informal regulatory initiatives, to strengthen the global legal and regulatory frameworks applicable to SLCFs. In addition to providing information on best options to regulate SLCFs, this novel, comprehensive approach will help scholars to improve their understanding of the implications of ongoing changes in global legal landscape, including its presumed fragmentation and deformalisation.
Addressing an important gap in current knowledge, the project will combine analysis of the merits of the various legal and regulatory options with estimates of their climate change impacts on the basis of climate modeling. This way, it will be able to identify the alternatives that are the most promising both from the legal point of view and in terms of climate change mitigation potential. The project will generate information that is policy-relevant and context-specific but can simultaneously provide broader lessons and open new interdisciplinary horizons.
Summary
The ClimaSlow project opens new interdisciplinary horizons to identify the best opportunities to enhance the global legal and regulatory framework for reducing emissions of short-lived climate pollutants (SLCFs), with particular attention to developing countries as projected key sources of future SLCF emissions. It proceeds from the assumption that strengthening the global legal and regulatory framework for SLCFs would bring important benefits in terms of slowing down climate change and reducing local air pollution. However, legal and regulatory options to step up action on SLCFs have not been studied comprehensively. Furthermore, the climate impacts of the various options are not adequately understood.
In contrast to traditional legal analysis that would focus one legal system or instrument, the project will study the relevant legal and regulatory frameworks comprehensively, considering the international, regional, national and transnational levels. It will seek to identify various options, both formal legal instruments and informal regulatory initiatives, to strengthen the global legal and regulatory frameworks applicable to SLCFs. In addition to providing information on best options to regulate SLCFs, this novel, comprehensive approach will help scholars to improve their understanding of the implications of ongoing changes in global legal landscape, including its presumed fragmentation and deformalisation.
Addressing an important gap in current knowledge, the project will combine analysis of the merits of the various legal and regulatory options with estimates of their climate change impacts on the basis of climate modeling. This way, it will be able to identify the alternatives that are the most promising both from the legal point of view and in terms of climate change mitigation potential. The project will generate information that is policy-relevant and context-specific but can simultaneously provide broader lessons and open new interdisciplinary horizons.
Max ERC Funding
1 456 179 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym CLOCK
Project CLIMATE ADAPTATION TO SHIFTING STOCKS
Researcher (PI) Elena Ojea
Host Institution (HI) UNIVERSIDAD DE VIGO
Call Details Starting Grant (StG), SH3, ERC-2015-STG
Summary Management of marine fisheries is still far from incorporating adaptation to climate change, even though global stocks are heavily overexploited and climate change is adding additional pressure to the resource. In fact, there is growing evidence that current fisheries management systems may no longer be effective under climate change, and this will translate into both ecological and socioeconomic impacts. This research project argues that the combination of fisheries management science and socio-ecological systems thinking is necessary in order to advance in fisheries adaptation to climate change. To this end, the main objectives are set to: 1) Identify and understand the new challenges raised by climate change for current sustainable fisheries management; 2) Develop a novel approach to fisheries adaptation within a socio-ecological framework; 3) Provide empirical evidence on potential solutions for the adaptation of fisheries management systems; and 4) Help introduce fisheries adaptation at the top of the regional and international adaptation policy agendas. To do this, I will combine model and simulation approaches to fisheries with specific case studies where both biophysical and economic variables will be studied an modelled, but also individuals will be given the opportunity to participate in an active way, learning from participatory methods their preferences towards adaptation and the consequences of the new scenarios climate change poses. Three potential case studies are identified for property rights over stocks, property rights over space, and Marine Reserves in two European and one international case study areas. As a result, I expect to develop a new Adaptation Framework for fisheries management that can be scalable, transferable and easily operationalized, and a set of case study examples on how to integrate theory and participatory processes with the aim of increasing social, ecological and institutional resilience to climate change.
Summary
Management of marine fisheries is still far from incorporating adaptation to climate change, even though global stocks are heavily overexploited and climate change is adding additional pressure to the resource. In fact, there is growing evidence that current fisheries management systems may no longer be effective under climate change, and this will translate into both ecological and socioeconomic impacts. This research project argues that the combination of fisheries management science and socio-ecological systems thinking is necessary in order to advance in fisheries adaptation to climate change. To this end, the main objectives are set to: 1) Identify and understand the new challenges raised by climate change for current sustainable fisheries management; 2) Develop a novel approach to fisheries adaptation within a socio-ecological framework; 3) Provide empirical evidence on potential solutions for the adaptation of fisheries management systems; and 4) Help introduce fisheries adaptation at the top of the regional and international adaptation policy agendas. To do this, I will combine model and simulation approaches to fisheries with specific case studies where both biophysical and economic variables will be studied an modelled, but also individuals will be given the opportunity to participate in an active way, learning from participatory methods their preferences towards adaptation and the consequences of the new scenarios climate change poses. Three potential case studies are identified for property rights over stocks, property rights over space, and Marine Reserves in two European and one international case study areas. As a result, I expect to develop a new Adaptation Framework for fisheries management that can be scalable, transferable and easily operationalized, and a set of case study examples on how to integrate theory and participatory processes with the aim of increasing social, ecological and institutional resilience to climate change.
Max ERC Funding
1 184 931 €
Duration
Start date: 2016-10-01, End date: 2021-09-30
Project acronym CLR SENSING NECROSIS
Project Immune Functions of Myeloid Syk-coupled C-type Lectin Receptors Sensing Necrosis
Researcher (PI) David Sancho Madrid
Host Institution (HI) CENTRO NACIONAL DE INVESTIGACIONESCARDIOVASCULARES CARLOS III (F.S.P.)
Call Details Starting Grant (StG), LS6, ERC-2010-StG_20091118
Summary Necrosis triggers an inflammatory response driven by macrophages that normally contributes to tissue repair but, under certain conditions, can induce a state of chronic inflammation that forms the basis of many diseases. In addition, dendritic cell (DC)-mediated presentation of antigens from necrotic cells can trigger adaptive immunity in infection-free situations, such as autoimmunity or therapy-induced tumour rejection. Recently, we and others have identified the myeloid C-type lectin receptors (CLRs) CLEC9A (DNGR-1), in DC, and Mincle, in macrophages, as receptors for necrotic cells that can signal via the Syk kinase. Previous studies on similar Syk-coupled CLRs showed that Dectin-1 and Dectin-2 can induce innate and adaptive immune responses. We thus hypothesise that recognition of cell death by myeloid Syk-coupled CLRs is at the root of immune pathologies associated with accumulation of dead cells. The overall objective of this proposal is to investigate necrosis sensing by myeloid cells as a trigger of immunity and to study the underlying molecular mechanisms. Our first goal is to characterise signalling and gene induction via CLEC9A as a model necrosis receptor in DCs. Second, we will investigate the role of myeloid Syk-coupled necrosis-sensing CLRs in animal models of atherosclerosis, lupus and immunity to chemotherapy-treated tumours. Our preliminary data suggest that additional receptors can couple necrosis recognition to the Syk pathway in DC; thus, our third aim is to identify novel myeloid Syk-coupled receptors for necrotic cells. Characterisation of the outcomes of sensing necrosis by myeloid Syk-coupled receptors and their effect on the proposed pathologies promises to identify new mechanisms and targets for the treatment of these diseases.
Summary
Necrosis triggers an inflammatory response driven by macrophages that normally contributes to tissue repair but, under certain conditions, can induce a state of chronic inflammation that forms the basis of many diseases. In addition, dendritic cell (DC)-mediated presentation of antigens from necrotic cells can trigger adaptive immunity in infection-free situations, such as autoimmunity or therapy-induced tumour rejection. Recently, we and others have identified the myeloid C-type lectin receptors (CLRs) CLEC9A (DNGR-1), in DC, and Mincle, in macrophages, as receptors for necrotic cells that can signal via the Syk kinase. Previous studies on similar Syk-coupled CLRs showed that Dectin-1 and Dectin-2 can induce innate and adaptive immune responses. We thus hypothesise that recognition of cell death by myeloid Syk-coupled CLRs is at the root of immune pathologies associated with accumulation of dead cells. The overall objective of this proposal is to investigate necrosis sensing by myeloid cells as a trigger of immunity and to study the underlying molecular mechanisms. Our first goal is to characterise signalling and gene induction via CLEC9A as a model necrosis receptor in DCs. Second, we will investigate the role of myeloid Syk-coupled necrosis-sensing CLRs in animal models of atherosclerosis, lupus and immunity to chemotherapy-treated tumours. Our preliminary data suggest that additional receptors can couple necrosis recognition to the Syk pathway in DC; thus, our third aim is to identify novel myeloid Syk-coupled receptors for necrotic cells. Characterisation of the outcomes of sensing necrosis by myeloid Syk-coupled receptors and their effect on the proposed pathologies promises to identify new mechanisms and targets for the treatment of these diseases.
Max ERC Funding
1 297 671 €
Duration
Start date: 2010-12-01, End date: 2016-08-31
Project acronym COMPLEX-FISH
Project Complex eco-evolutionary dynamics of aquatic ecosystems faced with human-induced and environmental stress
Researcher (PI) Anna KUPARINEN
Host Institution (HI) JYVASKYLAN YLIOPISTO
Call Details Consolidator Grant (CoG), LS8, ERC-2017-COG
Summary Resilience and recovery ability are key determinants of species persistence and viability in a changing world. Populations exposed to rapid environmental changes and human-induced alterations are often affected by both ecological and evolutionary processes and their interactions, that is, eco-evolutionary dynamics. The integrated perspective offered by eco-evolutionary dynamics is vital for understanding drivers of resilience and recovery of natural populations undergoing rapid changes and exposed to multiple stressors. However, the feedback mechanisms, and the ways in which evolution and phenotypic changes scale up to interacting species, communities, and ecosystems, remains poorly understood. The objective of my proposal is to bridge and close this gap by merging the fields of ecology and evolution into two interfaces of complex biological dynamics. I will do this in the context of conservation and sustainable harvesting of aquatic ecosystems. I will develop a novel mechanistic theory of eco-evolutionary ecosystem dynamics, by coupling the theory of allometric trophic networks with the theory of life-history evolution. I will analyse the eco-evolutionary dynamics of aquatic ecosystems to identify mechanisms responsible for species and ecosystem resilience and recovery ability. This will be done through systematic simulation studies and detailed analyses of three aquatic ecosystems. The project delves into the mechanisms through which anthropogenic and environmental drivers alter the eco-evolutionary dynamics of aquatic ecosystems. Mechanistic understanding of these dynamics, and their consequences to species and ecosystems, has great potential to resolve fundamental yet puzzling patterns observed in natural populations and to identify species and ecosystem properties regulating resilience and recovery ability. This will drastically change our ability to assess the risks related to current and future anthropogenic and environmental influences on aquatic ecosystems.
Summary
Resilience and recovery ability are key determinants of species persistence and viability in a changing world. Populations exposed to rapid environmental changes and human-induced alterations are often affected by both ecological and evolutionary processes and their interactions, that is, eco-evolutionary dynamics. The integrated perspective offered by eco-evolutionary dynamics is vital for understanding drivers of resilience and recovery of natural populations undergoing rapid changes and exposed to multiple stressors. However, the feedback mechanisms, and the ways in which evolution and phenotypic changes scale up to interacting species, communities, and ecosystems, remains poorly understood. The objective of my proposal is to bridge and close this gap by merging the fields of ecology and evolution into two interfaces of complex biological dynamics. I will do this in the context of conservation and sustainable harvesting of aquatic ecosystems. I will develop a novel mechanistic theory of eco-evolutionary ecosystem dynamics, by coupling the theory of allometric trophic networks with the theory of life-history evolution. I will analyse the eco-evolutionary dynamics of aquatic ecosystems to identify mechanisms responsible for species and ecosystem resilience and recovery ability. This will be done through systematic simulation studies and detailed analyses of three aquatic ecosystems. The project delves into the mechanisms through which anthropogenic and environmental drivers alter the eco-evolutionary dynamics of aquatic ecosystems. Mechanistic understanding of these dynamics, and their consequences to species and ecosystems, has great potential to resolve fundamental yet puzzling patterns observed in natural populations and to identify species and ecosystem properties regulating resilience and recovery ability. This will drastically change our ability to assess the risks related to current and future anthropogenic and environmental influences on aquatic ecosystems.
Max ERC Funding
1 999 391 €
Duration
Start date: 2018-06-01, End date: 2023-05-31
Project acronym CompSCHoice
Project A Comprehensive Approach to School Choice and Education
Researcher (PI) Caterina Calsamiglia Costa
Host Institution (HI) INSTITUTE OF POLITICAL ECONOMY AND GOVERNANCE
Call Details Starting Grant (StG), SH1, ERC-2014-STG
Summary School choice is one of the most hotly debated policies in education. Advocates argue that school choice allows equal access to high quality schooling for all. High-income families have always had more choice, either through residential choice or through enrolment in private schools. Therefore increased choice should also improve equity by allowing minority and low-income students to choose too. On the other hand, school choice critics suggest that school choice can increase sorting between schools based on their socio-economics status, suggesting high-income families benefit more from these policies.
Three different and disconnected literatures in economics provide different and often contradicting answers to these questions. We propose a unified theoretical framework that merges these three literatures and allows for a comprehensive analysis on school choice design and its impact on actual choice, outcomes and segregation in schools and neighborhoods. Unique and newly constructed data sets are used to address novel empirical challenges. The data constructed for Barcelona shall become one of the largest and most comprehensive data sets not only on school choice but also on public education worldwide.
Using the data set from Barcelona we 1) estimate families’ preferences and, for the first time, evaluate the efficiency of different mechanism through structural estimation of our model and counterfactual analysis. We then 2) evaluate the impact that peer effects have on parents' choice and on outcomes. Exploiting the occurrence of hurricane Katrina in New Orleans and the aid programs implemented we aim at 3) estimating the distribution of willingness to pay for quality schools for families with different socio-economics. And last we exploit a policy change in Catalunya in 2009 to 4) provide evidence on how increased flexibility of the school system to adapt for differential maturity levels affects individual short and medium-term outcomes.
Summary
School choice is one of the most hotly debated policies in education. Advocates argue that school choice allows equal access to high quality schooling for all. High-income families have always had more choice, either through residential choice or through enrolment in private schools. Therefore increased choice should also improve equity by allowing minority and low-income students to choose too. On the other hand, school choice critics suggest that school choice can increase sorting between schools based on their socio-economics status, suggesting high-income families benefit more from these policies.
Three different and disconnected literatures in economics provide different and often contradicting answers to these questions. We propose a unified theoretical framework that merges these three literatures and allows for a comprehensive analysis on school choice design and its impact on actual choice, outcomes and segregation in schools and neighborhoods. Unique and newly constructed data sets are used to address novel empirical challenges. The data constructed for Barcelona shall become one of the largest and most comprehensive data sets not only on school choice but also on public education worldwide.
Using the data set from Barcelona we 1) estimate families’ preferences and, for the first time, evaluate the efficiency of different mechanism through structural estimation of our model and counterfactual analysis. We then 2) evaluate the impact that peer effects have on parents' choice and on outcomes. Exploiting the occurrence of hurricane Katrina in New Orleans and the aid programs implemented we aim at 3) estimating the distribution of willingness to pay for quality schools for families with different socio-economics. And last we exploit a policy change in Catalunya in 2009 to 4) provide evidence on how increased flexibility of the school system to adapt for differential maturity levels affects individual short and medium-term outcomes.
Max ERC Funding
1 207 500 €
Duration
Start date: 2015-08-01, End date: 2020-07-31
Project acronym CORKtheCAMBIA
Project Thickening of plant organs by nested stem cells
Researcher (PI) Ari Pekka MÄHÖNEN
Host Institution (HI) HELSINGIN YLIOPISTO
Call Details Consolidator Grant (CoG), LS3, ERC-2018-COG
Summary Growth originates from meristems, where stem cells are located. Lateral meristems, which provide thickness to tree stems and other plant organs, include vascular cambium (produces xylem [wood] and phloem); and cork cambium (forms cork, a tough protective layer).
We recently identified the molecular mechanism that specifies stem cells of vascular cambium. Unexpectedly, this same set of experiments revealed also novel aspects of the regulation of cork cambium, a meristem whose development has remained unknown. CORKtheCAMBIA aims to identify the stem cells of cork cambium and reveal how they mechanistically regulate plant organ thickening. Thus, stemming from these novel unpublished findings and my matching expertise on plant stem cells and lateral growth, the timing is perfect to discover the molecular mechanism underlying specification of stem cells of cork cambium.
To identify the origin of stem cells of cork cambium, 1st-we will combine lineage tracing with a detailed molecular marker analysis. To deduce the cell dynamics of cork cambium, 2nd-we will follow regeneration of the stem cells after ablation of this meristem. To discover the molecular factors regulating the stem cell specification of cork cambium, 3rd-we will utilize molecular genetics and a novel method (inducible CRISPR/Cas9 mutant targeting) being developed in my lab. Since the lateral growth is orchestrated by two adjacent, nested meristems, cork and vascular cambia, the growth process must be tightly co-regulated. Thus, 4th-an in silico model of the intertwined growth process will be generated. By combining modelling with experimentation, we will uncover mechanistically how cork and vascular cambium coordinate lateral growth.
CORKtheCAMBIA will thus provide long-awaited insight into the regulatory mechanisms specifying the stem cells of lateral meristem as whole, lay the foundation for studies on radial thickening and facilitate rational manipulation of lateral meristems of crop plants and trees.
Summary
Growth originates from meristems, where stem cells are located. Lateral meristems, which provide thickness to tree stems and other plant organs, include vascular cambium (produces xylem [wood] and phloem); and cork cambium (forms cork, a tough protective layer).
We recently identified the molecular mechanism that specifies stem cells of vascular cambium. Unexpectedly, this same set of experiments revealed also novel aspects of the regulation of cork cambium, a meristem whose development has remained unknown. CORKtheCAMBIA aims to identify the stem cells of cork cambium and reveal how they mechanistically regulate plant organ thickening. Thus, stemming from these novel unpublished findings and my matching expertise on plant stem cells and lateral growth, the timing is perfect to discover the molecular mechanism underlying specification of stem cells of cork cambium.
To identify the origin of stem cells of cork cambium, 1st-we will combine lineage tracing with a detailed molecular marker analysis. To deduce the cell dynamics of cork cambium, 2nd-we will follow regeneration of the stem cells after ablation of this meristem. To discover the molecular factors regulating the stem cell specification of cork cambium, 3rd-we will utilize molecular genetics and a novel method (inducible CRISPR/Cas9 mutant targeting) being developed in my lab. Since the lateral growth is orchestrated by two adjacent, nested meristems, cork and vascular cambia, the growth process must be tightly co-regulated. Thus, 4th-an in silico model of the intertwined growth process will be generated. By combining modelling with experimentation, we will uncover mechanistically how cork and vascular cambium coordinate lateral growth.
CORKtheCAMBIA will thus provide long-awaited insight into the regulatory mechanisms specifying the stem cells of lateral meristem as whole, lay the foundation for studies on radial thickening and facilitate rational manipulation of lateral meristems of crop plants and trees.
Max ERC Funding
1 999 752 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym CORPI
Project Conversion, Overlapping Religiosities, Polemics, Interaction: Early Modern Iberia and Beyond
Researcher (PI) Mercedes Garcia-Arenal Rodriguez
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Advanced Grant (AdG), SH6, ERC-2012-ADG_20120411
Summary In an early sixteenth-century treatise Martín de Figuerola, a convert from Islam who sought to convince the Muslims of Valencia and Aragon to join him, reports a story he claims to have heard from the Muslim judge of Cocentaina (Valencia). The latter had told him that, in marriage contracts between local Muslims, it was customary for women to demand that their husbands take them to the capital city of Valencia for the springtime festivities of Corpus Christi and those of the Virgin Mary in August. Simply put, the purpose of this project is to unravel the complex interplay of all the ingredients that this apparently trivial yet fascinating anecdote encapsulates. It will bring under close analysis the existence in sixteenth-century Iberia of cross-currents common to different religious groups, areas of local religiosity in which different religions overlapped, and vague or hybrid sorts of religiosity which indicate the blurring of clear ascriptions, categories, and borders. At the same time, it will also scrutinize the efforts made by different social actors (and generations of scholars after them) to establish clear, essential differentiations, to define neat categories and ascriptions, and thus to separate, reject, and stigmatize individuals and groups. The project will study adversarial relationships reconceived as dependencies, against a complex backdrop of dramatic religious change: shortly before Martín de Figuerola’s text was written, Iberia's Jews had been expelled, and a few years later its Muslims would be forced to convert to Christianity, only to be expelled in their turn a century later. The multi-faceted analysis of these phenomena will involve unearthing new archival material, most notably Inquisition trials, as well as numerous sixteenth- and seventeenth-century texts (both manuscripts and early modern editions) ranging from new translations of the Qur’an and other Jewish and Islamic classics, to a rich polemical literature.
Summary
In an early sixteenth-century treatise Martín de Figuerola, a convert from Islam who sought to convince the Muslims of Valencia and Aragon to join him, reports a story he claims to have heard from the Muslim judge of Cocentaina (Valencia). The latter had told him that, in marriage contracts between local Muslims, it was customary for women to demand that their husbands take them to the capital city of Valencia for the springtime festivities of Corpus Christi and those of the Virgin Mary in August. Simply put, the purpose of this project is to unravel the complex interplay of all the ingredients that this apparently trivial yet fascinating anecdote encapsulates. It will bring under close analysis the existence in sixteenth-century Iberia of cross-currents common to different religious groups, areas of local religiosity in which different religions overlapped, and vague or hybrid sorts of religiosity which indicate the blurring of clear ascriptions, categories, and borders. At the same time, it will also scrutinize the efforts made by different social actors (and generations of scholars after them) to establish clear, essential differentiations, to define neat categories and ascriptions, and thus to separate, reject, and stigmatize individuals and groups. The project will study adversarial relationships reconceived as dependencies, against a complex backdrop of dramatic religious change: shortly before Martín de Figuerola’s text was written, Iberia's Jews had been expelled, and a few years later its Muslims would be forced to convert to Christianity, only to be expelled in their turn a century later. The multi-faceted analysis of these phenomena will involve unearthing new archival material, most notably Inquisition trials, as well as numerous sixteenth- and seventeenth-century texts (both manuscripts and early modern editions) ranging from new translations of the Qur’an and other Jewish and Islamic classics, to a rich polemical literature.
Max ERC Funding
2 498 026 €
Duration
Start date: 2013-04-01, End date: 2019-03-31
Project acronym CORTEXFOLDING
Project Understanding the development and function of cerebral cortex folding
Researcher (PI) Victor Borrell Franco
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Starting Grant (StG), LS5, ERC-2012-StG_20111109
Summary The mammalian cerebral cortex was subject to a dramatic expansion in surface area during evolution. This process is recapitulated during development and is accompanied by folding of the cortical sheet, which allows fitting a large cortical surface within a limited cranial volume. A loss of cortical folds is linked to severe intellectual impairment in humans, so cortical folding is believed to be crucial for brain function. However, developmental mechanisms responsible for cortical folding, and the influence of this on cortical function, remain largely unknown. The goal of this proposal is to understand the genetic and cellular mechanisms that control the developmental expansion and folding of the cerebral cortex, and what is the impact of these processes on its functional organization. Human studies have identified genes essential for the proper folding of the human cerebral cortex. Genetic manipulations in mice have unraveled specific functions for some of those genes in the development of the cerebral cortex. But because the mouse cerebral cortex does not fold naturally, the mechanisms of cortical expansion and folding in larger brains remain unknown. We will study these mechanisms on ferret, an ideal model with a naturally folded cerebral cortex. We will combine the advantages of ferrets with cell biology, genetics and next-generation transcriptomics, together with state-of-the-art in vivo, in vitro and in silico approaches, including in vivo imaging of functional columnar maps. The successful execution of this project will provide insights into developmental and genetic risk factors for anomalies in human cortical topology, and into mechanisms responsible for the early formation of cortical functional maps.
Summary
The mammalian cerebral cortex was subject to a dramatic expansion in surface area during evolution. This process is recapitulated during development and is accompanied by folding of the cortical sheet, which allows fitting a large cortical surface within a limited cranial volume. A loss of cortical folds is linked to severe intellectual impairment in humans, so cortical folding is believed to be crucial for brain function. However, developmental mechanisms responsible for cortical folding, and the influence of this on cortical function, remain largely unknown. The goal of this proposal is to understand the genetic and cellular mechanisms that control the developmental expansion and folding of the cerebral cortex, and what is the impact of these processes on its functional organization. Human studies have identified genes essential for the proper folding of the human cerebral cortex. Genetic manipulations in mice have unraveled specific functions for some of those genes in the development of the cerebral cortex. But because the mouse cerebral cortex does not fold naturally, the mechanisms of cortical expansion and folding in larger brains remain unknown. We will study these mechanisms on ferret, an ideal model with a naturally folded cerebral cortex. We will combine the advantages of ferrets with cell biology, genetics and next-generation transcriptomics, together with state-of-the-art in vivo, in vitro and in silico approaches, including in vivo imaging of functional columnar maps. The successful execution of this project will provide insights into developmental and genetic risk factors for anomalies in human cortical topology, and into mechanisms responsible for the early formation of cortical functional maps.
Max ERC Funding
1 701 116 €
Duration
Start date: 2013-01-01, End date: 2018-06-30
Project acronym CRC PROGRAMME
Project Dissecting the roles of the beta-catenin and Tcf genetic programmes during colorectal cancer progression
Researcher (PI) Eduard Batlle Gomez
Host Institution (HI) FUNDACIO INSTITUT DE RECERCA BIOMEDICA (IRB BARCELONA)
Call Details Starting Grant (StG), LS6, ERC-2007-StG
Summary Most colorectal cancers (CRCs) are initiated by activating mutations in components of the Wnt signalling pathway. Physiological Wnt signals are required for the specification and maintenance of the stem and progenitor cell compartments of the intestinal crypts. We demonstrated that early colorectal lesions exhibit a constitutive Wnt target gene programme, which is very similar to that of normal intestinal stem and progenitor cells. We originally proposed that colorectal adenomas behave as clusters of intestinal cells locked into a constitutive crypt progenitor phenotype. Given the prevalence of Wnt signalling mutations in CRC, an outstanding endeavour is the characterization of the similarities and differences in the instructions dictated by beta-catenin and Tcf to normal intestinal cells vs. CRC cells. Here, we propose to systematically compare and catalogue the beta-catenin/Tcf genetic programmes in intestinal progenitor/stem cells, intestinal adenomas and late CRCs. Transcriptomic analysis of isolated normal progenitor cells and tumor cell populations combined with bioinformatic analysis of gene regulatory networks will allow us to workout the hierarchical interactions downstream of beta-catenin and Tcf. Moreover, functional analysis of key beta-catenin/Tcf target genes using genetically modified mice models will help us to pinpoint which Wnt-controlled functions are essential for tumor maintenance and progression in vivo. Moreover, we seek to understand the tumor suppressor role of EphB2 and EphB3 receptors, two beta-catenin/Tcf target genes in normal crypts and benign colorectal adenomas, that block cancer progression by compartmentalizing tumor cells at the onset of CRC. Overall, our results will shed light on the relationship between stem/progenitor cells and cancer and hold potential for the future development of both therapeutic and diagnostic tools.
Summary
Most colorectal cancers (CRCs) are initiated by activating mutations in components of the Wnt signalling pathway. Physiological Wnt signals are required for the specification and maintenance of the stem and progenitor cell compartments of the intestinal crypts. We demonstrated that early colorectal lesions exhibit a constitutive Wnt target gene programme, which is very similar to that of normal intestinal stem and progenitor cells. We originally proposed that colorectal adenomas behave as clusters of intestinal cells locked into a constitutive crypt progenitor phenotype. Given the prevalence of Wnt signalling mutations in CRC, an outstanding endeavour is the characterization of the similarities and differences in the instructions dictated by beta-catenin and Tcf to normal intestinal cells vs. CRC cells. Here, we propose to systematically compare and catalogue the beta-catenin/Tcf genetic programmes in intestinal progenitor/stem cells, intestinal adenomas and late CRCs. Transcriptomic analysis of isolated normal progenitor cells and tumor cell populations combined with bioinformatic analysis of gene regulatory networks will allow us to workout the hierarchical interactions downstream of beta-catenin and Tcf. Moreover, functional analysis of key beta-catenin/Tcf target genes using genetically modified mice models will help us to pinpoint which Wnt-controlled functions are essential for tumor maintenance and progression in vivo. Moreover, we seek to understand the tumor suppressor role of EphB2 and EphB3 receptors, two beta-catenin/Tcf target genes in normal crypts and benign colorectal adenomas, that block cancer progression by compartmentalizing tumor cells at the onset of CRC. Overall, our results will shed light on the relationship between stem/progenitor cells and cancer and hold potential for the future development of both therapeutic and diagnostic tools.
Max ERC Funding
1 602 817 €
Duration
Start date: 2008-09-01, End date: 2013-08-31
Project acronym CROSSLOCATIONS
Project Crosslocations in the Mediterranean: rethinking the socio-cultural dynamics of relative positioning
Researcher (PI) Sarah Francesca Green
Host Institution (HI) HELSINGIN YLIOPISTO
Call Details Advanced Grant (AdG), SH5, ERC-2015-AdG
Summary The Mediterranean, a key socio-cultural, economic and political crossroads, has shifted its relative position recently, with profound effects for relations between the peoples associated with its diverse parts. Crosslocations is a groundbreaking theoretical approach that goes beyond current borders research to analyse the significance of the changes in relations between places and peoples that this involves. It does this through explaining shifts in the relative positioning of the Mediterranean’s many locations – i.e. the changing values of where people are rather than who they are. Approaches focusing on people’s identities, statecraft or networks do not provide a way to research how the relative value of ‘being somewhere in particular’ is changing and diversifying.
The approach builds on the idea that in socio-cultural terms, location is a form of political, social, economic, and technical relative positioning, involving diverse scales that calibrate relative values (here called ‘locating regimes’). This means locations are both multiple and historically variable, so different types of location may overlap in the same geographical space, particularly in crossroads regions such as the Mediterranean. The dynamics between them alter relations between places, significantly affecting people’s daily lives, including their life chances, wellbeing, environmental, social and political conditions and status.
The project will first research the locating regimes crossing the Mediterranean region (border regimes, infrastructures; digital technologies; fiscal, financial and trading systems; environmental policies; and social and religious structures); then intensively ethnographically study the socio-cultural dynamics of relative positioning that these regimes generate in selected parts of the Mediterranean region. Through explaining the dynamics of relative location, Crosslocations will transform our understanding of trans-local, socio-cultural relations and separations.
Summary
The Mediterranean, a key socio-cultural, economic and political crossroads, has shifted its relative position recently, with profound effects for relations between the peoples associated with its diverse parts. Crosslocations is a groundbreaking theoretical approach that goes beyond current borders research to analyse the significance of the changes in relations between places and peoples that this involves. It does this through explaining shifts in the relative positioning of the Mediterranean’s many locations – i.e. the changing values of where people are rather than who they are. Approaches focusing on people’s identities, statecraft or networks do not provide a way to research how the relative value of ‘being somewhere in particular’ is changing and diversifying.
The approach builds on the idea that in socio-cultural terms, location is a form of political, social, economic, and technical relative positioning, involving diverse scales that calibrate relative values (here called ‘locating regimes’). This means locations are both multiple and historically variable, so different types of location may overlap in the same geographical space, particularly in crossroads regions such as the Mediterranean. The dynamics between them alter relations between places, significantly affecting people’s daily lives, including their life chances, wellbeing, environmental, social and political conditions and status.
The project will first research the locating regimes crossing the Mediterranean region (border regimes, infrastructures; digital technologies; fiscal, financial and trading systems; environmental policies; and social and religious structures); then intensively ethnographically study the socio-cultural dynamics of relative positioning that these regimes generate in selected parts of the Mediterranean region. Through explaining the dynamics of relative location, Crosslocations will transform our understanding of trans-local, socio-cultural relations and separations.
Max ERC Funding
2 433 234 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym CUMTAS
Project Customized Micro Total Analysis Systems to Study Human Phase I Metabolism
Researcher (PI) Tiina Marjukka Sikanen
Host Institution (HI) HELSINGIN YLIOPISTO
Call Details Starting Grant (StG), LS9, ERC-2012-StG_20111109
Summary The goal of this project is to develop inexpensive, high-throughput technology to screen the thus far unexplored metabolic interactions between environmental and household chemicals and clinically relevant drugs. The main influential focus will be on human phase I metabolism (redox reactions) of common toxicants like agrochemicals and plasticizers. On the basis of their structural resemblance to pharmaceuticals and endogenous compounds, many of these chemicals are suspected to have critical effects on cytochrome P450 metabolism which is the main detoxification route of pharmaceuticals in man. However, with the current analytical instrumentation, screening of such large chemical pool would take several years, and new chemicals would be introduced faster than the old ones are screened. Thus, the main technological goal of this project is to develop novel, practically zero-cost analytical instruments that enable characterization of a compound’s metabolic profile at very high speed (<1 min/sample). This goal is achieved through miniaturization and high degree of integration of analytical instrumentation by microfabrication means, an approach often called lab(oratory)-on-a-chip. The microfabricated arrays are envisioned to incorporate all analytical key functions required (i.e., sample pretreatment, metabolic reaction, separation of the reaction products, detection) on a single chip. Thanks to the reduced dimensions, the amount of chemical waste and consumption of expensive reagents are significantly reduced. In this project, several different microfabrication techniques, from delicate cleanroom processes to extremely simple printing techniques, will be exploited to produce smart microfluidic designs and multifunctional surfaces. Towards the end of the project, more focus will be put on “printable microfluidics” which provides a truly low-cost approach for fabrication of highly customized microfluidic assays. Numerical modelling is also an integral part of the work.
Summary
The goal of this project is to develop inexpensive, high-throughput technology to screen the thus far unexplored metabolic interactions between environmental and household chemicals and clinically relevant drugs. The main influential focus will be on human phase I metabolism (redox reactions) of common toxicants like agrochemicals and plasticizers. On the basis of their structural resemblance to pharmaceuticals and endogenous compounds, many of these chemicals are suspected to have critical effects on cytochrome P450 metabolism which is the main detoxification route of pharmaceuticals in man. However, with the current analytical instrumentation, screening of such large chemical pool would take several years, and new chemicals would be introduced faster than the old ones are screened. Thus, the main technological goal of this project is to develop novel, practically zero-cost analytical instruments that enable characterization of a compound’s metabolic profile at very high speed (<1 min/sample). This goal is achieved through miniaturization and high degree of integration of analytical instrumentation by microfabrication means, an approach often called lab(oratory)-on-a-chip. The microfabricated arrays are envisioned to incorporate all analytical key functions required (i.e., sample pretreatment, metabolic reaction, separation of the reaction products, detection) on a single chip. Thanks to the reduced dimensions, the amount of chemical waste and consumption of expensive reagents are significantly reduced. In this project, several different microfabrication techniques, from delicate cleanroom processes to extremely simple printing techniques, will be exploited to produce smart microfluidic designs and multifunctional surfaces. Towards the end of the project, more focus will be put on “printable microfluidics” which provides a truly low-cost approach for fabrication of highly customized microfluidic assays. Numerical modelling is also an integral part of the work.
Max ERC Funding
1 499 668 €
Duration
Start date: 2013-05-01, End date: 2019-02-28
Project acronym CZOSQP
Project Noncommutative Calderón-Zygmund theory, operator space geometry and quantum probability
Researcher (PI) Javier Parcet Hernandez
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Starting Grant (StG), PE1, ERC-2010-StG_20091028
Summary Von Neumann's concept of quantization goes back to the foundations of quantum mechanics
and provides a noncommutative model of integration. Over the years, von Neumann algebras
have shown a profound structure and set the right framework for quantizing portions of algebra,
analysis, geometry and probability. A fundamental part of my research is devoted to develop a
very much expected Calderón-Zygmund theory for von Neumann algebras. The lack of natural
metrics partly justifies this long standing gap in the theory. Key new ingredients come from
recent results on noncommutative martingale inequalities, operator space theory and quantum
probability. This is an ambitious research project and applications include new estimates for
noncommutative Riesz transforms, Fourier and Schur multipliers on arbitrary discrete groups
or noncommutative ergodic theorems. Other related objectives of this project include Rubio
de Francia's conjecture on the almost everywhere convergence of Fourier series for matrix
valued functions or a formulation of Fefferman-Stein's maximal inequality for noncommutative
martingales. Reciprocally, I will also apply new techniques from quantum probability in
noncommutative Lp embedding theory and the local theory of operator spaces. I have already
obtained major results in this field, which might be useful towards a noncommutative form of
weighted harmonic analysis and new challenging results on quantum information theory.
Summary
Von Neumann's concept of quantization goes back to the foundations of quantum mechanics
and provides a noncommutative model of integration. Over the years, von Neumann algebras
have shown a profound structure and set the right framework for quantizing portions of algebra,
analysis, geometry and probability. A fundamental part of my research is devoted to develop a
very much expected Calderón-Zygmund theory for von Neumann algebras. The lack of natural
metrics partly justifies this long standing gap in the theory. Key new ingredients come from
recent results on noncommutative martingale inequalities, operator space theory and quantum
probability. This is an ambitious research project and applications include new estimates for
noncommutative Riesz transforms, Fourier and Schur multipliers on arbitrary discrete groups
or noncommutative ergodic theorems. Other related objectives of this project include Rubio
de Francia's conjecture on the almost everywhere convergence of Fourier series for matrix
valued functions or a formulation of Fefferman-Stein's maximal inequality for noncommutative
martingales. Reciprocally, I will also apply new techniques from quantum probability in
noncommutative Lp embedding theory and the local theory of operator spaces. I have already
obtained major results in this field, which might be useful towards a noncommutative form of
weighted harmonic analysis and new challenging results on quantum information theory.
Max ERC Funding
1 090 925 €
Duration
Start date: 2010-10-01, End date: 2015-09-30
Project acronym Danger ATP
Project Regulation of inflammatory response by extracellular ATP and P2X7 receptor signalling: through and beyond the inflammasome
Researcher (PI) Pablo Pelegrin Vivancos
Host Institution (HI) FUNDACION PARA LA FORMACION E INVESTIGACION SANITARIAS DE LA REGION DE MURCIA
Call Details Consolidator Grant (CoG), LS6, ERC-2013-CoG
Summary Inflammatory diseases affect over 80 million people worldwide and accompany many diseases of industrialized countries, being the majority of them infection-free conditions. There are few efficient anti-inflammatory drugs to treat chronic inflammation and thus, there is an urgent need to validate novel targets. We now know that innate immunity is the main coordinator and driver of inflammation. Recently, we and others have shown that the activation of purinergic P2X7 receptors (P2X7R) in immune cells is a novel and increasingly validated pathway to initiate inflammation through the activation of the NLRP3 inflammasome and the release of IL-1β and IL-18 cytokines. However, how NLRP3 sense P2X7R activation is not fully understood. Furthermore, extracellular ATP, the physiological P2X7R agonist, is a crucial danger signal released by injured cells, and one of the most important mediators of infection-free inflammation. We have also identified novel signalling roles for P2X7R independent on the NLRP3 inflammasome, including the release of proteases or inflammatory lipids. Therefore, P2X7R has generated increasing interest as a therapeutic target in inflammatory diseases, being drug like P2X7R antagonist in clinical trials to treat inflammatory diseases. However, it is often questioned the functionality of P2X7R in vivo, where it is thought that extracellular ATP levels are below the threshold to activate P2X7R. The overall significance of this proposal relays to elucidate how extracellular ATP controls host-defence in vivo, ultimately depicting P2X7R signalling through and beyond inflammasome activation. We foresee that our results will generate a leading innovative knowledge about in vivo extracellular ATP signalling during the host response to infection and sterile danger.
Summary
Inflammatory diseases affect over 80 million people worldwide and accompany many diseases of industrialized countries, being the majority of them infection-free conditions. There are few efficient anti-inflammatory drugs to treat chronic inflammation and thus, there is an urgent need to validate novel targets. We now know that innate immunity is the main coordinator and driver of inflammation. Recently, we and others have shown that the activation of purinergic P2X7 receptors (P2X7R) in immune cells is a novel and increasingly validated pathway to initiate inflammation through the activation of the NLRP3 inflammasome and the release of IL-1β and IL-18 cytokines. However, how NLRP3 sense P2X7R activation is not fully understood. Furthermore, extracellular ATP, the physiological P2X7R agonist, is a crucial danger signal released by injured cells, and one of the most important mediators of infection-free inflammation. We have also identified novel signalling roles for P2X7R independent on the NLRP3 inflammasome, including the release of proteases or inflammatory lipids. Therefore, P2X7R has generated increasing interest as a therapeutic target in inflammatory diseases, being drug like P2X7R antagonist in clinical trials to treat inflammatory diseases. However, it is often questioned the functionality of P2X7R in vivo, where it is thought that extracellular ATP levels are below the threshold to activate P2X7R. The overall significance of this proposal relays to elucidate how extracellular ATP controls host-defence in vivo, ultimately depicting P2X7R signalling through and beyond inflammasome activation. We foresee that our results will generate a leading innovative knowledge about in vivo extracellular ATP signalling during the host response to infection and sterile danger.
Max ERC Funding
1 794 948 €
Duration
Start date: 2014-09-01, End date: 2019-08-31
Project acronym DeAge
Project Deconstructing Ageing: from molecular mechanisms to intervention strategies
Researcher (PI) Carlos LOPEZ OTIN
Host Institution (HI) UNIVERSIDAD DE OVIEDO
Call Details Advanced Grant (AdG), LS4, ERC-2016-ADG
Summary Over many years, our research group has explored the complex relationship between cancer and ageing. As part of this work, we have generated mouse models of protease deficiency which are protected from cancer but exhibit accelerated ageing. Further studies with these mice have allowed us to unveil novel mechanisms of both normal and pathological ageing, to discover two new human progeroid syndromes, and to develop therapies for the Hutchinson-Gilford progeria syndrome, now in clinical trials. We have also integrated data from many laboratories to first define The hallmarks of ageing and the current possibilities for Metabolic control of longevity. Now, we propose to leverage our extensive experience in this field to further explore the relative relevance of cell-intrinsic and -extrinsic mechanisms of ageing. Our central hypothesis is that ageing derives from the combination of both systemic and cell-autonomous deficiencies which lead to the characteristic loss of fitness associated with this process. Accordingly, it is necessary to integrate multiple approaches to understand the mechanisms underlying ageing. This integrative and multidisciplinary project is organized around three major aims: 1) to characterize critical cell-intrinsic alterations which drive ageing; 2) to investigate ageing as a systemic process; and 3) to design intervention strategies aimed at expanding longevity. To fully address these objectives, we will use both hypothesis-driven and unbiased approaches, including next-generation sequencing, genome editing, and cell reprogramming. We will also perform in vivo experiments with mouse models of premature ageing, genomic and metagenomic studies with short- and long-lived organisms, and functional analyses with human samples from both progeria patients and centenarians. The information derived from this project will provide new insights into the molecular mechanisms of ageing and may lead to discover new opportunities to extend human healthspan.
Summary
Over many years, our research group has explored the complex relationship between cancer and ageing. As part of this work, we have generated mouse models of protease deficiency which are protected from cancer but exhibit accelerated ageing. Further studies with these mice have allowed us to unveil novel mechanisms of both normal and pathological ageing, to discover two new human progeroid syndromes, and to develop therapies for the Hutchinson-Gilford progeria syndrome, now in clinical trials. We have also integrated data from many laboratories to first define The hallmarks of ageing and the current possibilities for Metabolic control of longevity. Now, we propose to leverage our extensive experience in this field to further explore the relative relevance of cell-intrinsic and -extrinsic mechanisms of ageing. Our central hypothesis is that ageing derives from the combination of both systemic and cell-autonomous deficiencies which lead to the characteristic loss of fitness associated with this process. Accordingly, it is necessary to integrate multiple approaches to understand the mechanisms underlying ageing. This integrative and multidisciplinary project is organized around three major aims: 1) to characterize critical cell-intrinsic alterations which drive ageing; 2) to investigate ageing as a systemic process; and 3) to design intervention strategies aimed at expanding longevity. To fully address these objectives, we will use both hypothesis-driven and unbiased approaches, including next-generation sequencing, genome editing, and cell reprogramming. We will also perform in vivo experiments with mouse models of premature ageing, genomic and metagenomic studies with short- and long-lived organisms, and functional analyses with human samples from both progeria patients and centenarians. The information derived from this project will provide new insights into the molecular mechanisms of ageing and may lead to discover new opportunities to extend human healthspan.
Max ERC Funding
2 456 250 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym DecodeDiabetes
Project Expanding the genetic etiological and diagnostic spectrum of monogenic diabetes mellitus
Researcher (PI) Jorge FERRER
Host Institution (HI) FUNDACIO CENTRE DE REGULACIO GENOMICA
Call Details Advanced Grant (AdG), LS4, ERC-2017-ADG
Summary Whole genome sequencing is quickly becoming a routine clinical instrument. However, our ability to decipher DNA variants is still largely limited to protein-coding exons, which comprise 1% of the genome. Most known Mendelian mutations are in exons, yet genetic testing still fails to show causal coding mutations in more than 50% of well-characterized Mendelian disorders. This defines a pressing need to interpret noncoding genome sequences, and to establish the role of noncoding mutations in Mendelian disease.
A recent case study harnessed whole genome sequencing, epigenomics, and functional genomics to show that mutations in an enhancer cause most cases of neonatal diabetes due to pancreas agenesis. This example raises major questions: (i) what is the overall impact of penetrant regulatory mutations in human diabetes? (ii) do regulatory mutations cause distinct forms of diabetes? (iii) more generally, can we develop a strategy to systematically tackle regulatory variation in Mendelian disease?
The current project will address these questions with unique resources. First, we have created epigenomic and functional perturbation resources to interpret the regulatory genome in embryonic pancreas and adult pancreatic islets. Second, we have collected an unprecedented international cohort of patients with a phenotype consistent with monogenic diabetes, yet lacking mutations in known gene culprits after genetic testing, and therefore with increased likelihood of harboring noncoding mutations. Third, we have developed a prototype platform to sequence regulatory mutations in a large number of patients.
These resources will be combined with innovative strategies to uncover causal enhancer mutations underlying Mendelian diabetes. If successful, this project will expand the diagnostic spectrum of diabetes, it will discover new genetic regulators of diabetes-relevant networks, and will provide a framework to understand regulatory variation in Mendelian disease.
Summary
Whole genome sequencing is quickly becoming a routine clinical instrument. However, our ability to decipher DNA variants is still largely limited to protein-coding exons, which comprise 1% of the genome. Most known Mendelian mutations are in exons, yet genetic testing still fails to show causal coding mutations in more than 50% of well-characterized Mendelian disorders. This defines a pressing need to interpret noncoding genome sequences, and to establish the role of noncoding mutations in Mendelian disease.
A recent case study harnessed whole genome sequencing, epigenomics, and functional genomics to show that mutations in an enhancer cause most cases of neonatal diabetes due to pancreas agenesis. This example raises major questions: (i) what is the overall impact of penetrant regulatory mutations in human diabetes? (ii) do regulatory mutations cause distinct forms of diabetes? (iii) more generally, can we develop a strategy to systematically tackle regulatory variation in Mendelian disease?
The current project will address these questions with unique resources. First, we have created epigenomic and functional perturbation resources to interpret the regulatory genome in embryonic pancreas and adult pancreatic islets. Second, we have collected an unprecedented international cohort of patients with a phenotype consistent with monogenic diabetes, yet lacking mutations in known gene culprits after genetic testing, and therefore with increased likelihood of harboring noncoding mutations. Third, we have developed a prototype platform to sequence regulatory mutations in a large number of patients.
These resources will be combined with innovative strategies to uncover causal enhancer mutations underlying Mendelian diabetes. If successful, this project will expand the diagnostic spectrum of diabetes, it will discover new genetic regulators of diabetes-relevant networks, and will provide a framework to understand regulatory variation in Mendelian disease.
Max ERC Funding
2 243 746 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym DIADRUG
Project Insulin resistance and diabetic nephropathy - development of novel in vivo models for drug discovery
Researcher (PI) Sanna Lehtonen
Host Institution (HI) HELSINGIN YLIOPISTO
Call Details Starting Grant (StG), LS9, ERC-2009-StG
Summary Up to one third of diabetic patients develop nephropathy, a serious complication of diabetes. Microalbuminuria is the earliest sign of the complication, which may ultimately develop to end-stage renal disease requiring dialysis or a kidney transplant. Insulin resistance and metabolic syndrome are associated with an increased risk for diabetic nephropathy. Interestingly, glomerular epithelial cells or podocytes have recently been shown to be insulin responsive. Further, nephrin, a key structural component of podocytes, is essential for insulin action in these cells. Our novel findings show that adaptor protein CD2AP, an interaction partner of nephrin, associates with regulators of insulin signaling and glucose transport in glomeruli. The results suggest that nephrin and CD2AP are involved, by association with these proteins, in the regulation of insulin signaling and glucose transport in podocytes. We hypothesize that podocytes can develop insulin resistance and that disturbances in insulin response affect podocyte function and contribute to the development of diabetic nephropathy. The aim of this project is to clarify the mechanisms leading to development of insulin resistance in podocytes and to study the association between insulin resistance and the development of diabetic nephropathy. For this we will develop transgenic zebrafish and mouse models by overexpressing/knocking down insulin signaling-associated proteins specifically in podocytes. Further, we aim to identify novel drug leads to treat insulin resistance and diabetic nephropathy by performing high-throughput small molecule library screens on the developed transgenic fish models. The ultimate goal is to find a treatment to combat the early stages of diabetic nephropathy in humans.
Summary
Up to one third of diabetic patients develop nephropathy, a serious complication of diabetes. Microalbuminuria is the earliest sign of the complication, which may ultimately develop to end-stage renal disease requiring dialysis or a kidney transplant. Insulin resistance and metabolic syndrome are associated with an increased risk for diabetic nephropathy. Interestingly, glomerular epithelial cells or podocytes have recently been shown to be insulin responsive. Further, nephrin, a key structural component of podocytes, is essential for insulin action in these cells. Our novel findings show that adaptor protein CD2AP, an interaction partner of nephrin, associates with regulators of insulin signaling and glucose transport in glomeruli. The results suggest that nephrin and CD2AP are involved, by association with these proteins, in the regulation of insulin signaling and glucose transport in podocytes. We hypothesize that podocytes can develop insulin resistance and that disturbances in insulin response affect podocyte function and contribute to the development of diabetic nephropathy. The aim of this project is to clarify the mechanisms leading to development of insulin resistance in podocytes and to study the association between insulin resistance and the development of diabetic nephropathy. For this we will develop transgenic zebrafish and mouse models by overexpressing/knocking down insulin signaling-associated proteins specifically in podocytes. Further, we aim to identify novel drug leads to treat insulin resistance and diabetic nephropathy by performing high-throughput small molecule library screens on the developed transgenic fish models. The ultimate goal is to find a treatment to combat the early stages of diabetic nephropathy in humans.
Max ERC Funding
2 000 000 €
Duration
Start date: 2009-11-01, End date: 2014-10-31
Project acronym DIDONE
Project The Sources of Absolute Music: Mapping Emotions in Eighteenth-Century Italian Opera
Researcher (PI) Álvaro TORRENTE SANCHEZ GUISANDE
Host Institution (HI) UNIVERSIDAD COMPLUTENSE DE MADRID
Call Details Advanced Grant (AdG), SH5, ERC-2017-ADG
Summary The belief that ‘the end of music is to move human affections’ (Descartes, Compendium musicae) has been a central issue in European musical thought since Plato. Opera was invented to recover the power of Ancient music to move the human heart, and its history is a permanent exploration of the capacity of action, words and music to convey emotions.
In the eighteenth century a new type of opera consolidated with the chief concern of expressing the character’s emotions as they changed throughout the drama, inspired by Descartes’ theory of human passions. The key expressive medium was the aria col da capo, where a single, distinct passion was represented, like a concentrated pill of emotional meaning. The ideal corpus to study this issue are the 900 operas set to music by 300 composers on the 27 dramas by Pietro Metastasio (1698-1782). It contains a comprehensive catalogue of emotions in music, a unique window of opportunity to scrutinize conventions that defined music expression and meaning for over a century, paving the way for the emergence of ‘absolute’ instrumental music, autonomous from any other art form.
DIDONE presents an innovative approach to unveil these conventions: the creation of a corpus of 4,000 digitized arias from 200 opera scores based on Metastasio’s eight most popular dramas, to be analysed using traditional methods and big data computer technology. The comparative scrutiny of dozens of different musical settings of the same librettos will reveal how composers correlate specific dramatic circumstances and emotions with distinct poetic and musical features. The results will be applicable to three main fields: (i) opera performance; (ii) analysis and interpretation of other types of music; and (iii) composition in several scenarios, from film soundtracks to creation by Artificial Intelligence. An opera festival will be designed to recover and disseminate this hitherto ignored repertoire, which was essential to define the European musical identity.
Summary
The belief that ‘the end of music is to move human affections’ (Descartes, Compendium musicae) has been a central issue in European musical thought since Plato. Opera was invented to recover the power of Ancient music to move the human heart, and its history is a permanent exploration of the capacity of action, words and music to convey emotions.
In the eighteenth century a new type of opera consolidated with the chief concern of expressing the character’s emotions as they changed throughout the drama, inspired by Descartes’ theory of human passions. The key expressive medium was the aria col da capo, where a single, distinct passion was represented, like a concentrated pill of emotional meaning. The ideal corpus to study this issue are the 900 operas set to music by 300 composers on the 27 dramas by Pietro Metastasio (1698-1782). It contains a comprehensive catalogue of emotions in music, a unique window of opportunity to scrutinize conventions that defined music expression and meaning for over a century, paving the way for the emergence of ‘absolute’ instrumental music, autonomous from any other art form.
DIDONE presents an innovative approach to unveil these conventions: the creation of a corpus of 4,000 digitized arias from 200 opera scores based on Metastasio’s eight most popular dramas, to be analysed using traditional methods and big data computer technology. The comparative scrutiny of dozens of different musical settings of the same librettos will reveal how composers correlate specific dramatic circumstances and emotions with distinct poetic and musical features. The results will be applicable to three main fields: (i) opera performance; (ii) analysis and interpretation of other types of music; and (iii) composition in several scenarios, from film soundtracks to creation by Artificial Intelligence. An opera festival will be designed to recover and disseminate this hitherto ignored repertoire, which was essential to define the European musical identity.
Max ERC Funding
2 498 690 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym DOGPSYCH
Project Canine models of human psychiatric disease: identifying novel anxiety genes with the help of man's best friend
Researcher (PI) Hannes Tapani Lohi
Host Institution (HI) HELSINGIN YLIOPISTO
Call Details Starting Grant (StG), LS2, ERC-2010-StG_20091118
Summary Anxiety disorders include different forms of pathological fear and anxiety and rank among the most common health concerns in human medicine. Millions of people become affected every year, and many of them do not respond to treatments. Anxiety disorders are heritable, but genetically complex. As a result, traditional gene mapping methods in the human population with prominent locus and allelic heterogeneity have not succeeded. Similarly, rodents have provided some insights into the circuitry of anxiety, but naturally occurring versions do not exist and gene deletion studies have not provided adequate models. To break through and identify new anxiety genes, I propose a novel and unique approach that resorts to man s best friend, dog. Taking advantage of the exaggerated genetic homogeneity characteristic of purebred dogs, recent genomics tools and the existence of naturally occurring heritable behaviour disorders in dogs can remedy the current lack of a suitable animal model of human psychiatric disorders. I propose to collect and perform a genome-wide association study in four breed-specific anxiety traits in dogs representing the three major forms of human anxiety: compulsive pacing and tail-chasing, noise phobia, and shyness corresponding to human OCD, panic disorder and social phobia, respectively. Canine anxiety disorders respond to human medications and other phenomenological studies suggest a share biological mechanism in both species. The proposed research has the potential to discover new genetic risk factors, which eventually will shed light on the biological basis of common neuropsychiatric disorders in both dog and human, provide insight into etiological mechanisms, enable identification of individuals at high-risk for adverse health outcomes, and facilitate development of tailored treatments.
Summary
Anxiety disorders include different forms of pathological fear and anxiety and rank among the most common health concerns in human medicine. Millions of people become affected every year, and many of them do not respond to treatments. Anxiety disorders are heritable, but genetically complex. As a result, traditional gene mapping methods in the human population with prominent locus and allelic heterogeneity have not succeeded. Similarly, rodents have provided some insights into the circuitry of anxiety, but naturally occurring versions do not exist and gene deletion studies have not provided adequate models. To break through and identify new anxiety genes, I propose a novel and unique approach that resorts to man s best friend, dog. Taking advantage of the exaggerated genetic homogeneity characteristic of purebred dogs, recent genomics tools and the existence of naturally occurring heritable behaviour disorders in dogs can remedy the current lack of a suitable animal model of human psychiatric disorders. I propose to collect and perform a genome-wide association study in four breed-specific anxiety traits in dogs representing the three major forms of human anxiety: compulsive pacing and tail-chasing, noise phobia, and shyness corresponding to human OCD, panic disorder and social phobia, respectively. Canine anxiety disorders respond to human medications and other phenomenological studies suggest a share biological mechanism in both species. The proposed research has the potential to discover new genetic risk factors, which eventually will shed light on the biological basis of common neuropsychiatric disorders in both dog and human, provide insight into etiological mechanisms, enable identification of individuals at high-risk for adverse health outcomes, and facilitate development of tailored treatments.
Max ERC Funding
1 381 807 €
Duration
Start date: 2010-10-01, End date: 2015-09-30
Project acronym DOMESTICATION
Project Domestication in Action - Tracing Archaeological Markers of Human-Animal Interaction
Researcher (PI) Anna-Kaisa SALMI
Host Institution (HI) OULUN YLIOPISTO
Call Details Starting Grant (StG), SH6, ERC-2017-STG
Summary The project will create new methodology for identification and interpretation of animal domestication, with a case study pertaining to reindeer domestication among the indigenous Sámi in northern Fennoscandia. Identification of early animal domestication is complicated due to the limited human control over the animals’ life cycles in early stages of domestication, leading to difficulties in interpreting morphological and genetic data, as well as in using traditional concepts and definitions of domestication. These problems are especially pressing in the study of reindeer domestication, characterized by very limited human control over animals. However, understanding reindeer domestication is important to local communities as well as to the scientific community due to central role of human-reindeer relation as a carrier of culture and identity among many peoples, including Sámi of northern Fennoscandia.
As a novel approach, we propose a focus on interactional events between humans and animals as indications of domestication taking place. We will create methods aimed at identifying interactional events such as draught use and feeding, between reindeer and humans. The methodological package includes physical activity reconstruction through entheseal changes, pathological lesions and bone cross-sections, and analysis of stable isotopes as indicator of animal diet. These methods will then be applied for archaeological reindeer bone finds and the results will be checked against aDNA data to examine changing human-animal relationships among the Sámi. The project has a potential to break new ground in understanding animal domestication as human-animal interaction, a viewpoint pivotal in today’s human-animal studies. Moreover, the project has potential of methodological breakthroughs and creation of transferable methodology. The results will be relevant to local communities and researchers dealing with domestication, human-animal studies and colonial histories.
Summary
The project will create new methodology for identification and interpretation of animal domestication, with a case study pertaining to reindeer domestication among the indigenous Sámi in northern Fennoscandia. Identification of early animal domestication is complicated due to the limited human control over the animals’ life cycles in early stages of domestication, leading to difficulties in interpreting morphological and genetic data, as well as in using traditional concepts and definitions of domestication. These problems are especially pressing in the study of reindeer domestication, characterized by very limited human control over animals. However, understanding reindeer domestication is important to local communities as well as to the scientific community due to central role of human-reindeer relation as a carrier of culture and identity among many peoples, including Sámi of northern Fennoscandia.
As a novel approach, we propose a focus on interactional events between humans and animals as indications of domestication taking place. We will create methods aimed at identifying interactional events such as draught use and feeding, between reindeer and humans. The methodological package includes physical activity reconstruction through entheseal changes, pathological lesions and bone cross-sections, and analysis of stable isotopes as indicator of animal diet. These methods will then be applied for archaeological reindeer bone finds and the results will be checked against aDNA data to examine changing human-animal relationships among the Sámi. The project has a potential to break new ground in understanding animal domestication as human-animal interaction, a viewpoint pivotal in today’s human-animal studies. Moreover, the project has potential of methodological breakthroughs and creation of transferable methodology. The results will be relevant to local communities and researchers dealing with domestication, human-animal studies and colonial histories.
Max ERC Funding
1 490 915 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym DORMANTOOCYTE
Project Understanding the Balbiani body: A super-organelle linked to dormancy in oocytes
Researcher (PI) Elvan Boke
Host Institution (HI) FUNDACIO CENTRE DE REGULACIO GENOMICA
Call Details Starting Grant (StG), LS3, ERC-2017-STG
Summary Female germ cells, oocytes, are highly specialised cells. They ensure the continuity of species by providing the female genome and mitochondria along with most of the nutrients and housekeeping machinery the early embryo needs after fertilisation. Oocytes are remarkable in their ability to survive for long periods of time, up to 50 years in humans, and retain the ability to give rise to a young organism while other cells age and die. Surprisingly little is known about oocyte dormancy. A key feature of dormant oocytes of virtually all vertebrates is the presence of a Balbiani body, which is a non-membrane bound compartment that contains most of the organelles in dormant oocytes and disappears as the oocyte matures.
The goal of this proposal is to combine genetic and biochemical perturbations with imaging and the state of the art proteomics techniques to reveal the mechanisms dormant oocytes employ to remain viable. My previous research has shown that the Balbiani body forms an amyloid-like cage around organelles that could be protective. This has led me to identify the large number of unanswered questions about the cell biology of a dormant oocyte. In this proposal, we will study three of these questions: 1) What is the metabolic nature of organelles in dormant oocytes? 2) How does the Balbiani body disassemble and release the complement of organelles when oocytes start to mature? 3) What is the structure and function of the Balbiani body in mammals? We will use oocytes from two vertebrate species, frogs and mice, which are complementary for their ease of handling and relationship to human physiology.
By studying the Balbiani body, this proposal will provide fundamental insights into organisation and function of organelles in oocytes and the regulation of physiological amyloid-like structures. More generally, the proposed experiments open up new avenues into the mechanisms that protect organelles from ageing and how oocytes stay dormant for many decades.
Summary
Female germ cells, oocytes, are highly specialised cells. They ensure the continuity of species by providing the female genome and mitochondria along with most of the nutrients and housekeeping machinery the early embryo needs after fertilisation. Oocytes are remarkable in their ability to survive for long periods of time, up to 50 years in humans, and retain the ability to give rise to a young organism while other cells age and die. Surprisingly little is known about oocyte dormancy. A key feature of dormant oocytes of virtually all vertebrates is the presence of a Balbiani body, which is a non-membrane bound compartment that contains most of the organelles in dormant oocytes and disappears as the oocyte matures.
The goal of this proposal is to combine genetic and biochemical perturbations with imaging and the state of the art proteomics techniques to reveal the mechanisms dormant oocytes employ to remain viable. My previous research has shown that the Balbiani body forms an amyloid-like cage around organelles that could be protective. This has led me to identify the large number of unanswered questions about the cell biology of a dormant oocyte. In this proposal, we will study three of these questions: 1) What is the metabolic nature of organelles in dormant oocytes? 2) How does the Balbiani body disassemble and release the complement of organelles when oocytes start to mature? 3) What is the structure and function of the Balbiani body in mammals? We will use oocytes from two vertebrate species, frogs and mice, which are complementary for their ease of handling and relationship to human physiology.
By studying the Balbiani body, this proposal will provide fundamental insights into organisation and function of organelles in oocytes and the regulation of physiological amyloid-like structures. More generally, the proposed experiments open up new avenues into the mechanisms that protect organelles from ageing and how oocytes stay dormant for many decades.
Max ERC Funding
1 381 286 €
Duration
Start date: 2018-03-01, End date: 2023-02-28
Project acronym DROSADAPTATION
Project New approaches to long-standing questions: adaptation in Drosophila
Researcher (PI) Josefa Gonzalez Perez
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Consolidator Grant (CoG), LS8, ERC-2014-CoG
Summary Understanding how organisms adapt to their environments is a long-standing problem in Biology with far-reaching implications: adaptation affects the ability of species to survive in changing environments, host-pathogen interactions, and resistance to pesticides and drugs. Despite recent progress, adaptation is to date a poorly understood process largely due to limitations of current approaches that focus (i) on a priori candidate genes, (ii) on signals of selection at the DNA level without functional validation of the identified candidates, and (iii) on small sets of adaptive mutations that do not represent the variability present in natural populations. As a result, major questions such as what is the relative importance of different types of mutations in adaptation?, and what is the importance of epigenetic changes in adaptive evolution?, remain largely unanswered.
To gain a deep understanding of adaptation, we need to systematically identify adaptive mutations across space and time, pinpoint their molecular mechanisms and discover their fitness effects. To this end, Drosophila melanogaster has proven to be an ideal organism. Besides the battery of genetic tools and resources available, D. melanogaster has recently adapted to live in out of Africa environments. We and others have already shown that transposable elements (TEs) have substantially contributed to the adaptation of D. melanogaster to different environmental challenges. Here, we propose to use state-of-the-art techniques, such as Illumina TruSeq sequencing and CRISPR/Cas9 genome editing, to systematically identify and characterize in detail adaptive TE insertions in D. melanogaster natural populations. Only by moving from gathering anecdotic evidence to applying global approaches, we will be able to start constructing a quantitative and predictive theory of adaptation that will be relevant for other species as well.
Summary
Understanding how organisms adapt to their environments is a long-standing problem in Biology with far-reaching implications: adaptation affects the ability of species to survive in changing environments, host-pathogen interactions, and resistance to pesticides and drugs. Despite recent progress, adaptation is to date a poorly understood process largely due to limitations of current approaches that focus (i) on a priori candidate genes, (ii) on signals of selection at the DNA level without functional validation of the identified candidates, and (iii) on small sets of adaptive mutations that do not represent the variability present in natural populations. As a result, major questions such as what is the relative importance of different types of mutations in adaptation?, and what is the importance of epigenetic changes in adaptive evolution?, remain largely unanswered.
To gain a deep understanding of adaptation, we need to systematically identify adaptive mutations across space and time, pinpoint their molecular mechanisms and discover their fitness effects. To this end, Drosophila melanogaster has proven to be an ideal organism. Besides the battery of genetic tools and resources available, D. melanogaster has recently adapted to live in out of Africa environments. We and others have already shown that transposable elements (TEs) have substantially contributed to the adaptation of D. melanogaster to different environmental challenges. Here, we propose to use state-of-the-art techniques, such as Illumina TruSeq sequencing and CRISPR/Cas9 genome editing, to systematically identify and characterize in detail adaptive TE insertions in D. melanogaster natural populations. Only by moving from gathering anecdotic evidence to applying global approaches, we will be able to start constructing a quantitative and predictive theory of adaptation that will be relevant for other species as well.
Max ERC Funding
2 392 521 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym DrugComb
Project Informatics approaches for the rational selection of personalized cancer drug combinations
Researcher (PI) Jing TANG
Host Institution (HI) HELSINGIN YLIOPISTO
Call Details Starting Grant (StG), LS7, ERC-2016-STG
Summary Making cancer treatment more personalized and effective is one of the grand challenges in our health care system. However, many drugs have entered clinical trials but so far showed limited efficacy or induced rapid development of resistance. We critically need multi-targeted drug combinations, which shall selectively inhibit the cancer cells and block the emergence of drug resistance. This project will develop mathematical and computational tools to identify drug combinations that can be used to provide personalized and more effective therapeutic strategies that may prevent acquired resistance. Utilizing molecular profiling and pharmacological screening data from patient-derived leukaemia and ovarian cancer samples, I will develop model-based clustering methods for identification of patient subgroups that are differentially responsive to first-line chemotherapy. For patients resistant to chemotherapy, I will develop network modelling approaches to predict the most potential drug combinations by understanding the underlying drug target interactions. The drug combination prediction will be made for each patient and will be validated using a preclinical drug testing platform on patient samples. I will explore the drug combination screen data to identify significant synergy at the therapeutically relevant doses. The drug combination hits will be mapped into signalling networks to infer their mechanisms. Drug combinations with selective efficacy in individual patient samples or in sample subgroups will be further translated into in treatment options by clinical collaborators. This will lead to novel and personalized strategies to treat cancer patients.
Summary
Making cancer treatment more personalized and effective is one of the grand challenges in our health care system. However, many drugs have entered clinical trials but so far showed limited efficacy or induced rapid development of resistance. We critically need multi-targeted drug combinations, which shall selectively inhibit the cancer cells and block the emergence of drug resistance. This project will develop mathematical and computational tools to identify drug combinations that can be used to provide personalized and more effective therapeutic strategies that may prevent acquired resistance. Utilizing molecular profiling and pharmacological screening data from patient-derived leukaemia and ovarian cancer samples, I will develop model-based clustering methods for identification of patient subgroups that are differentially responsive to first-line chemotherapy. For patients resistant to chemotherapy, I will develop network modelling approaches to predict the most potential drug combinations by understanding the underlying drug target interactions. The drug combination prediction will be made for each patient and will be validated using a preclinical drug testing platform on patient samples. I will explore the drug combination screen data to identify significant synergy at the therapeutically relevant doses. The drug combination hits will be mapped into signalling networks to infer their mechanisms. Drug combinations with selective efficacy in individual patient samples or in sample subgroups will be further translated into in treatment options by clinical collaborators. This will lead to novel and personalized strategies to treat cancer patients.
Max ERC Funding
1 500 000 €
Duration
Start date: 2017-06-01, End date: 2022-05-31
Project acronym DSBRECA
Project Relevance of double strand break repair pathway choice in human disease and cancer
Researcher (PI) Pablo Huertas Sanchez
Host Institution (HI) UNIVERSIDAD DE SEVILLA
Call Details Starting Grant (StG), LS2, ERC-2011-StG_20101109
Summary "Double strand breaks (DSBs) repair is essential for normal development. While the complete inability to repair DSBs leads to embryonic lethality and cell death, mutations that hamper this repair cause genetically inherited syndromes, with or without cancer predisposition. The phenotypes associated with these syndromes are extremely varied, and can include growth and mental retardation, ataxia, skeletal abnormalities, immunodeficiency, premature aging, etc. Moreover, DSBs play an extremely relevant role in the biology of cancer. Alterations in the DSBs repair pathways facilitate tumour progression and are selected early on during cancer development. On the other hand, DSBs are the molecular base of radiotherapies and chemotherapies. This double role of DSBs in both, the genesis and treatment of cancer makes the understanding of the mechanisms that control their repair of capital importance in cancer research.
DSBs are repaired by two major mechanisms that compete for the same substrate. Both ends of the DSB can be simple re-joined with little or no processing, a mechanism known as non-homologous end-joining. On the other hand, DSBs can be processed and engaged in a more complex repair pathway called homologous recombination. This pathway uses the information present in a homologue sequence. The balance between these two pathways is exquisitely controlled and its alteration leads to the appearance of chromosomal abnormalities and contribute to the diseases aforementioned. However, and despite its importance, the network controlling the choice between both is poorly understood.
Here, we propose a series of research lines designed to investigate how the choice between both DSBs repair pathways is made, its relevance for cellular and organismal survival and disease, and its potential as a therapeutic target for the treatment of cancer and some genetically inherited disorders."
Summary
"Double strand breaks (DSBs) repair is essential for normal development. While the complete inability to repair DSBs leads to embryonic lethality and cell death, mutations that hamper this repair cause genetically inherited syndromes, with or without cancer predisposition. The phenotypes associated with these syndromes are extremely varied, and can include growth and mental retardation, ataxia, skeletal abnormalities, immunodeficiency, premature aging, etc. Moreover, DSBs play an extremely relevant role in the biology of cancer. Alterations in the DSBs repair pathways facilitate tumour progression and are selected early on during cancer development. On the other hand, DSBs are the molecular base of radiotherapies and chemotherapies. This double role of DSBs in both, the genesis and treatment of cancer makes the understanding of the mechanisms that control their repair of capital importance in cancer research.
DSBs are repaired by two major mechanisms that compete for the same substrate. Both ends of the DSB can be simple re-joined with little or no processing, a mechanism known as non-homologous end-joining. On the other hand, DSBs can be processed and engaged in a more complex repair pathway called homologous recombination. This pathway uses the information present in a homologue sequence. The balance between these two pathways is exquisitely controlled and its alteration leads to the appearance of chromosomal abnormalities and contribute to the diseases aforementioned. However, and despite its importance, the network controlling the choice between both is poorly understood.
Here, we propose a series of research lines designed to investigate how the choice between both DSBs repair pathways is made, its relevance for cellular and organismal survival and disease, and its potential as a therapeutic target for the treatment of cancer and some genetically inherited disorders."
Max ERC Funding
1 416 866 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym DYCON
Project Dynamic Control and Numerics of Partial Differential Equations
Researcher (PI) Enrique Zuazua
Host Institution (HI) FUNDACION DEUSTO
Call Details Advanced Grant (AdG), PE1, ERC-2015-AdG
Summary This project aims at making a breakthrough contribution in the broad area of Control of Partial Differential Equations (PDE) and their numerical approximation methods by addressing key unsolved issues appearing systematically in real-life applications.
To this end, we pursue three objectives: 1) to contribute with new key theoretical methods and results, 2) to develop the corresponding numerical tools, and 3) to build up new computational software, the DYCON-COMP computational platform, thereby bridging the gap to applications.
The field of PDEs, together with numerical approximation and simulation methods and control theory, have evolved significantly in the last decades in a cross-fertilization process, to address the challenging demands of industrial and cross-disciplinary applications such as, for instance, the management of natural resources, meteorology, aeronautics, oil industry, biomedicine, human and animal collective behaviour, etc. Despite these efforts, some of the key issues still remain unsolved, either because of a lack of analytical understanding, of the absence of efficient numerical solvers, or of a combination of both.
This project identifies and focuses on six key topics that play a central role in most of the processes arising in applications, but which are still poorly understood: control of parameter dependent problems; long time horizon control; control under constraints; inverse design of time-irreversible models; memory models and hybrid PDE/ODE models, and finite versus infinite-dimensional dynamical systems.
These topics cannot be handled by superposing the state of the art in the various disciplines, due to the unexpected interactive phenomena that may emerge, for instance, in the fine numerical approximation of control problems. The coordinated and focused effort that we aim at developing is timely and much needed in order to solve these issues and bridge the gap from modelling to control, computer simulations and applications.
Summary
This project aims at making a breakthrough contribution in the broad area of Control of Partial Differential Equations (PDE) and their numerical approximation methods by addressing key unsolved issues appearing systematically in real-life applications.
To this end, we pursue three objectives: 1) to contribute with new key theoretical methods and results, 2) to develop the corresponding numerical tools, and 3) to build up new computational software, the DYCON-COMP computational platform, thereby bridging the gap to applications.
The field of PDEs, together with numerical approximation and simulation methods and control theory, have evolved significantly in the last decades in a cross-fertilization process, to address the challenging demands of industrial and cross-disciplinary applications such as, for instance, the management of natural resources, meteorology, aeronautics, oil industry, biomedicine, human and animal collective behaviour, etc. Despite these efforts, some of the key issues still remain unsolved, either because of a lack of analytical understanding, of the absence of efficient numerical solvers, or of a combination of both.
This project identifies and focuses on six key topics that play a central role in most of the processes arising in applications, but which are still poorly understood: control of parameter dependent problems; long time horizon control; control under constraints; inverse design of time-irreversible models; memory models and hybrid PDE/ODE models, and finite versus infinite-dimensional dynamical systems.
These topics cannot be handled by superposing the state of the art in the various disciplines, due to the unexpected interactive phenomena that may emerge, for instance, in the fine numerical approximation of control problems. The coordinated and focused effort that we aim at developing is timely and much needed in order to solve these issues and bridge the gap from modelling to control, computer simulations and applications.
Max ERC Funding
2 065 125 €
Duration
Start date: 2016-10-01, End date: 2021-09-30
Project acronym DYMOLAMO
Project Dynamic Modeling of Labor Market Mobility and Human Capital Accumulation
Researcher (PI) Joan LLULL CABRER
Host Institution (HI) FUNDACIÓ MARKETS, ORGANIZATIONS AND VOTES IN ECONOMICS
Call Details Starting Grant (StG), SH1, ERC-2018-STG
Summary In today’s globalized world, labor mobility is at the core of the political debate and a centerpiece for economic policy. The design of migration policies, such as selective, skill-biased, immigration policies, policies to encourage the integration of immigrants, or ones that facilitate geographical mobility to increase labor market opportunities of disadvantaged workers, requires a good understanding of a more fundamental issue: understanding the role of internal migration and immigration in shaping the career paths and human capital accumulation of workers. This project aims at providing a coherent analysis that allows us to understand the interactions between labor mobility and human capital accumulation, and their implications for economic policy design.
This project focuses on three main issues: labor mobility, labor market effects of immigration, and the interaction between the two. Our questions are: (a) What are the role of temporary and permanent contracts in shaping career paths and geographic mobility of workers? (b) Does the forgone human capital accumulation during a recession produce a lost generation? Is this alleviated by geographical mobility? (c) What is the role of geographical and occupational mobility in spreading or containing the effects of technological progress on wage inequality? (d) To what extent selective immigration policies maximize native workers’ prospects and wellbeing? (e) How can we increase degree of assimilation of immigrants?
To address these questions, we will develop dynamic equilibrium models that explicitly characterize human capital accumulation decisions of workers and how these decisions interact with migration. Our proposed models will introduce rich labor market structures and a variety of economic shocks. They will require the implementation of novel estimation methods, which we will also develop. The estimated models will be used to evaluate and design key economic policies for the labor market.
Summary
In today’s globalized world, labor mobility is at the core of the political debate and a centerpiece for economic policy. The design of migration policies, such as selective, skill-biased, immigration policies, policies to encourage the integration of immigrants, or ones that facilitate geographical mobility to increase labor market opportunities of disadvantaged workers, requires a good understanding of a more fundamental issue: understanding the role of internal migration and immigration in shaping the career paths and human capital accumulation of workers. This project aims at providing a coherent analysis that allows us to understand the interactions between labor mobility and human capital accumulation, and their implications for economic policy design.
This project focuses on three main issues: labor mobility, labor market effects of immigration, and the interaction between the two. Our questions are: (a) What are the role of temporary and permanent contracts in shaping career paths and geographic mobility of workers? (b) Does the forgone human capital accumulation during a recession produce a lost generation? Is this alleviated by geographical mobility? (c) What is the role of geographical and occupational mobility in spreading or containing the effects of technological progress on wage inequality? (d) To what extent selective immigration policies maximize native workers’ prospects and wellbeing? (e) How can we increase degree of assimilation of immigrants?
To address these questions, we will develop dynamic equilibrium models that explicitly characterize human capital accumulation decisions of workers and how these decisions interact with migration. Our proposed models will introduce rich labor market structures and a variety of economic shocks. They will require the implementation of novel estimation methods, which we will also develop. The estimated models will be used to evaluate and design key economic policies for the labor market.
Max ERC Funding
1 400 250 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym DynaOmics
Project From longitudinal proteomics to dynamic individualized diagnostics
Researcher (PI) Laura Linnea Maria Elo-Uhlgren
Host Institution (HI) TURUN YLIOPISTO
Call Details Starting Grant (StG), LS7, ERC-2015-STG
Summary Longitudinal omics data hold great promise to improve biomarker detection and enable dynamic individualized predictions. Recent technological advances have made proteomics an increasingly attractive option but clinical longitudinal proteomic datasets are still rare and computational tools for their analysis underdeveloped. The objective of this proposal is to create a roadmap to detect clinically feasible protein markers using longitudinal data and effective computational tools. A biomedical focus is on early detection of Type 1 diabetes (T1D). Specific objectives are:
1) Novel biomarker detector using longitudinal data. DynaOmics introduces novel types of multi-level dynamic markers that are undetectable in conventional single-time cross-sectional studies (e.g. within-individual changes in abundance or associations), develops optimization methods for their robust and reproducible detection within and across individuals, and validates their utility in well-defined samples.
2) Individualized disease risk prediction dynamically. DynaOmics develops dynamic individualized predictive models using the multi-level longitudinal proteome features and novel statistical and machine learning methods that have previously not been used in this context, including joint models of longitudinal and time-to-event data, and one-class classification type techniques.
3) Dynamic prediction of T1D. DynaOmics builds a predictive model of dynamic T1D risk to assist early detection of the disease, which is crucial for developing future therapeutic and preventive strategies. T1D typically involves a relatively long symptom-free period before clinical diagnosis but current tools to predict early T1D risk have restricted power.
The objectives involve innovative and unconventional approaches and address major unmet challenges in the field, having high potential to open new avenues for diagnosis and treatment of complex diseases and fundamentally novel insights towards precision medicine.
Summary
Longitudinal omics data hold great promise to improve biomarker detection and enable dynamic individualized predictions. Recent technological advances have made proteomics an increasingly attractive option but clinical longitudinal proteomic datasets are still rare and computational tools for their analysis underdeveloped. The objective of this proposal is to create a roadmap to detect clinically feasible protein markers using longitudinal data and effective computational tools. A biomedical focus is on early detection of Type 1 diabetes (T1D). Specific objectives are:
1) Novel biomarker detector using longitudinal data. DynaOmics introduces novel types of multi-level dynamic markers that are undetectable in conventional single-time cross-sectional studies (e.g. within-individual changes in abundance or associations), develops optimization methods for their robust and reproducible detection within and across individuals, and validates their utility in well-defined samples.
2) Individualized disease risk prediction dynamically. DynaOmics develops dynamic individualized predictive models using the multi-level longitudinal proteome features and novel statistical and machine learning methods that have previously not been used in this context, including joint models of longitudinal and time-to-event data, and one-class classification type techniques.
3) Dynamic prediction of T1D. DynaOmics builds a predictive model of dynamic T1D risk to assist early detection of the disease, which is crucial for developing future therapeutic and preventive strategies. T1D typically involves a relatively long symptom-free period before clinical diagnosis but current tools to predict early T1D risk have restricted power.
The objectives involve innovative and unconventional approaches and address major unmet challenges in the field, having high potential to open new avenues for diagnosis and treatment of complex diseases and fundamentally novel insights towards precision medicine.
Max ERC Funding
1 499 869 €
Duration
Start date: 2016-06-01, End date: 2021-05-31
Project acronym DYNURBAN
Project Urban dynamics: learning from integrated models and big data
Researcher (PI) Diego PUGA
Host Institution (HI) FUNDACION CENTRO DE ESTUDIOS MONETARIOS Y FINANCIEROS
Call Details Advanced Grant (AdG), SH1, ERC-2015-AdG
Summary City growth is driven by a combination of systematic determinants and shocks. Random growth models predict realistic city size distributions but ignore, for instance, the strong empirical association between human capital and city growth. Models with systematic determinants predict degenerate size distributions. We will develop an integrated model that combines systematic and random determinants to explain the link between human capital, entrepreneurship and growth, while generating relevant city size distributions. We will calibrate the model to quantify the contribution of cities to aggregate growth.
Urban growth also has a poorly understood spatial component. Combining gridded data of land use, population, businesses and roads for 3 decennial periods we will track the evolution of land use in the US with an unprecedented level of spatial detail. We will pay particular attention to the magnitude and causes of “slash-and-burn” development: instances when built-up land stops meeting needs in terms of use and intensity and, instead of being redeveloped, it is abandoned while previously open space is built up.
Job-to-job flows across cities matter for efficiency and during the recent crisis they have plummeted. We will study them with individual social security data. Even if there have only been small changes in mismatch between unemployed workers and vacancies during the crisis, if workers shy away from moving to take a job in another city, misallocation can increase substantially.
We will also study commuting flows for Spain and the UK based on anonymized cell phone location records. We will identify urban areas by iteratively aggregating municipalities if more than a given share of transit flows end in the rest of the urban area. We will also measure the extent to which people cross paths with others opening the possibility of personal interactions, and assess the extent to which this generates productivity-enhancing agglomeration economies.
Summary
City growth is driven by a combination of systematic determinants and shocks. Random growth models predict realistic city size distributions but ignore, for instance, the strong empirical association between human capital and city growth. Models with systematic determinants predict degenerate size distributions. We will develop an integrated model that combines systematic and random determinants to explain the link between human capital, entrepreneurship and growth, while generating relevant city size distributions. We will calibrate the model to quantify the contribution of cities to aggregate growth.
Urban growth also has a poorly understood spatial component. Combining gridded data of land use, population, businesses and roads for 3 decennial periods we will track the evolution of land use in the US with an unprecedented level of spatial detail. We will pay particular attention to the magnitude and causes of “slash-and-burn” development: instances when built-up land stops meeting needs in terms of use and intensity and, instead of being redeveloped, it is abandoned while previously open space is built up.
Job-to-job flows across cities matter for efficiency and during the recent crisis they have plummeted. We will study them with individual social security data. Even if there have only been small changes in mismatch between unemployed workers and vacancies during the crisis, if workers shy away from moving to take a job in another city, misallocation can increase substantially.
We will also study commuting flows for Spain and the UK based on anonymized cell phone location records. We will identify urban areas by iteratively aggregating municipalities if more than a given share of transit flows end in the rest of the urban area. We will also measure the extent to which people cross paths with others opening the possibility of personal interactions, and assess the extent to which this generates productivity-enhancing agglomeration economies.
Max ERC Funding
1 292 586 €
Duration
Start date: 2016-08-01, End date: 2021-07-31
Project acronym DYSTRUCTURE
Project The Dynamical and Structural Basis of Human Mind Complexity: Segregation and Integration of Information and Processing in the Brain
Researcher (PI) Gustavo Deco
Host Institution (HI) UNIVERSIDAD POMPEU FABRA
Call Details Advanced Grant (AdG), SH4, ERC-2011-ADG_20110406
Summary "Perceptions, memories, emotions, and everything that makes us human, demand the flexible integration of information represented and computed in a distributed manner. The human brain is structured into a large number of areas in which information and computation are highly segregated. Normal brain functions require the integration of functionally specialized but widely distributed brain areas. Furthermore, human behavior entails a flexible task- dependent interplay between different subsets of these brain areas in order to integrate them according to the corresponding goal-directed requirements. We contend that the functional and encoding roles of diverse neuronal populations across areas are subject to intra- and inter-cortical dynamics. More concretely, we hypothesize that coherent oscillations within frequency-specific large-scale networks and coherent structuring of the underlying fluctuations are crucial mechanisms for the flexible integration of distributed processing and interaction of representations.
The project aims to elucidate precisely the interplay and mutual entrainment between local brain area dynamics and global network dynamics and their breakdown in brain diseases. We wish to better understand how segregated distributed information and processing are integrated in a flexible and context-dependent way as required for goal-directed behavior. It will allow us to comprehend the mechanisms underlying brain functions by complementing structural and activation based analyses with dynamics. We expect to gain a full explanation of the mechanisms that mediate the interactions between global and local spatio-temporal patterns of activity revealed at many levels of observations (fMRI, EEG, MEG) in humans under task and resting conditions, complemented and further constrained by using more detailed characterization of brain dynamics via Local Field Potentials and neuronal recording in animals under task and resting conditions."
Summary
"Perceptions, memories, emotions, and everything that makes us human, demand the flexible integration of information represented and computed in a distributed manner. The human brain is structured into a large number of areas in which information and computation are highly segregated. Normal brain functions require the integration of functionally specialized but widely distributed brain areas. Furthermore, human behavior entails a flexible task- dependent interplay between different subsets of these brain areas in order to integrate them according to the corresponding goal-directed requirements. We contend that the functional and encoding roles of diverse neuronal populations across areas are subject to intra- and inter-cortical dynamics. More concretely, we hypothesize that coherent oscillations within frequency-specific large-scale networks and coherent structuring of the underlying fluctuations are crucial mechanisms for the flexible integration of distributed processing and interaction of representations.
The project aims to elucidate precisely the interplay and mutual entrainment between local brain area dynamics and global network dynamics and their breakdown in brain diseases. We wish to better understand how segregated distributed information and processing are integrated in a flexible and context-dependent way as required for goal-directed behavior. It will allow us to comprehend the mechanisms underlying brain functions by complementing structural and activation based analyses with dynamics. We expect to gain a full explanation of the mechanisms that mediate the interactions between global and local spatio-temporal patterns of activity revealed at many levels of observations (fMRI, EEG, MEG) in humans under task and resting conditions, complemented and further constrained by using more detailed characterization of brain dynamics via Local Field Potentials and neuronal recording in animals under task and resting conditions."
Max ERC Funding
2 467 530 €
Duration
Start date: 2012-07-01, End date: 2017-06-30
Project acronym EarlyDev
Project Brain networks for processing social signals of emotions: early development and the emergence of individual differences
Researcher (PI) Jukka Matias Leppänen
Host Institution (HI) TAMPEREEN YLIOPISTO
Call Details Starting Grant (StG), SH4, ERC-2011-StG_20101124
Summary Recent research has shown that genetic variations in central serotonin function are associated with biases in emotional information processing (heightened attention to signals of negative emotion) and that these biases contribute significantly to vulnerability to affective disorders. Here, we propose to examine a novel hypothesis that the biases in attention to emotional cues are ontogenetically primary, arise very early in development, and modulate an individual’s interaction with the environment during development. The four specific aims of the project are to 1) test the hypothesis that developmental processes resulting in increased functional connectivity of visual and emotion/attention-related neural systems (i.e., increased phase-synchrony of oscillatory activity) from 5 to 7 months of age are associated with the emergence of an overt attentional bias towards affectively salient facial expressions at 7 months of age, 2) use eye-tracking to ascertain that the attentional bias in 7-month-old infants reflects sensitivity to the emotional signal value of facial expressions instead of correlated non-emotional features, 3) test the hypothesis that increased serotonergic tone early in life (through genetic polymorphisms or exposure to serotonin enhancing drugs) is associated with reduced control of attention to affectively salient facial expressions and reduced temperamental emotion-regulation at 7, 24 and 48 months of age, and 4) examine the plasticity of the attentional bias towards emotional facial expressions in infancy, particularly whether the bias can be overridden by using positive reinforcers. The proposed studies will be the first to explicate the neural bases and nature of early-emerging cognitive deficits and biases that pose a risk for emotional dysfunction. As such, the results will be very important for developing intervention methods that benefit of the plasticity of the developing brain and skill formation to support healthy development.
Summary
Recent research has shown that genetic variations in central serotonin function are associated with biases in emotional information processing (heightened attention to signals of negative emotion) and that these biases contribute significantly to vulnerability to affective disorders. Here, we propose to examine a novel hypothesis that the biases in attention to emotional cues are ontogenetically primary, arise very early in development, and modulate an individual’s interaction with the environment during development. The four specific aims of the project are to 1) test the hypothesis that developmental processes resulting in increased functional connectivity of visual and emotion/attention-related neural systems (i.e., increased phase-synchrony of oscillatory activity) from 5 to 7 months of age are associated with the emergence of an overt attentional bias towards affectively salient facial expressions at 7 months of age, 2) use eye-tracking to ascertain that the attentional bias in 7-month-old infants reflects sensitivity to the emotional signal value of facial expressions instead of correlated non-emotional features, 3) test the hypothesis that increased serotonergic tone early in life (through genetic polymorphisms or exposure to serotonin enhancing drugs) is associated with reduced control of attention to affectively salient facial expressions and reduced temperamental emotion-regulation at 7, 24 and 48 months of age, and 4) examine the plasticity of the attentional bias towards emotional facial expressions in infancy, particularly whether the bias can be overridden by using positive reinforcers. The proposed studies will be the first to explicate the neural bases and nature of early-emerging cognitive deficits and biases that pose a risk for emotional dysfunction. As such, the results will be very important for developing intervention methods that benefit of the plasticity of the developing brain and skill formation to support healthy development.
Max ERC Funding
1 397 351 €
Duration
Start date: 2012-02-01, End date: 2017-01-31
Project acronym ECHO
Project Early conditions, delayed adult effects and morbidity, disability and mortality in modern human populations
Researcher (PI) Alberto Palloni
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Advanced Grant (AdG), SH3, ERC-2017-ADG
Summary This project aims to reformulate and generalize standard theories of human health and mortality. It proposes new formal models and a systematic agenda to empirically test hypotheses that link developmental biology, epigenetics and adult human illness, disability and mortality. We seek to break new ground developing innovative formal models for illnesses and mortality, testing new hypotheses about the evolution of human health and, to the extent permitted by findings, reformulating standard theories to make them applicable to a less restrictive segment of populations than they are now. Over the past two decades there has been massive growth of research on the nature of delayed adult effects of conditions experienced in early life. This field of research is known as the Developmental Origins of Adult Health and Disease (DOHaD). Increasing evidence suggests that the mechanisms that are implicated are epigenetic and constitute an evolved adaptation selected over thousands of years to improve fitness in changing landscapes. The emergence of DOHaD is as close as we will ever come to a paradigmatic shift in the study of human health, disability and mortality. The most tantalizing possibility is that advances in our understanding of epigenetic mechanisms will shed light on pathways linking early exposures and delayed adult health thus fundamentally transforming our understanding of human illnesses and, in one fell swoop, bridge population health, epigenetics, and developmental and evolutionary biology. The overarching goal of this project is to contribute to this nascent area of study by (a) proposing new formal demographic models of health, disability and mortality; (b) empirically testing DOHaD predictions with population data; (c) testing a microsimulation model to verify DOHaD predictions about two conditions, obesity and Type 2 Diabetes, and (d) assessing the adult health, disability and mortality toll implicated by relations between early conditions, obesity and T2D.
Summary
This project aims to reformulate and generalize standard theories of human health and mortality. It proposes new formal models and a systematic agenda to empirically test hypotheses that link developmental biology, epigenetics and adult human illness, disability and mortality. We seek to break new ground developing innovative formal models for illnesses and mortality, testing new hypotheses about the evolution of human health and, to the extent permitted by findings, reformulating standard theories to make them applicable to a less restrictive segment of populations than they are now. Over the past two decades there has been massive growth of research on the nature of delayed adult effects of conditions experienced in early life. This field of research is known as the Developmental Origins of Adult Health and Disease (DOHaD). Increasing evidence suggests that the mechanisms that are implicated are epigenetic and constitute an evolved adaptation selected over thousands of years to improve fitness in changing landscapes. The emergence of DOHaD is as close as we will ever come to a paradigmatic shift in the study of human health, disability and mortality. The most tantalizing possibility is that advances in our understanding of epigenetic mechanisms will shed light on pathways linking early exposures and delayed adult health thus fundamentally transforming our understanding of human illnesses and, in one fell swoop, bridge population health, epigenetics, and developmental and evolutionary biology. The overarching goal of this project is to contribute to this nascent area of study by (a) proposing new formal demographic models of health, disability and mortality; (b) empirically testing DOHaD predictions with population data; (c) testing a microsimulation model to verify DOHaD predictions about two conditions, obesity and Type 2 Diabetes, and (d) assessing the adult health, disability and mortality toll implicated by relations between early conditions, obesity and T2D.
Max ERC Funding
2 852 655 €
Duration
Start date: 2019-03-01, End date: 2024-02-29
Project acronym editCRC
Project A genome editing-based approach to study the stem cell hierarchy of human colorectal cancers
Researcher (PI) Eduardo Batlle Gómez
Host Institution (HI) FUNDACIO INSTITUT DE RECERCA BIOMEDICA (IRB BARCELONA)
Call Details Advanced Grant (AdG), LS4, ERC-2013-ADG
Summary A hallmark of cancer is tumor cell heterogeneity, which results from combinations of multiple genetic and epigenetic alterations within an individual tumor. In contrast, we have recently discovered that most human colorectal cancers (CRCs) are composed of mixtures of phenotypically distinct tumor cells organized into a stem cell hierarchy that displays a striking resemblance to the healthy colonic epithelium. We showed that long-term regeneration potential of tumor cells is largely influenced by the position that they occupy within the tumor's hierarchy. To analyze the organization of CRCs without the constraints imposed by tumor cell transplantation experiments, we have developed a method that allows for the first time tracking and manipulating the fate of specific cell populations in whole human tumors. This technology is based on editing the genomes of primary human CRCs cultured in the form of tumor organoids using Zinc-Finger Nucleases to knock-in either lineage tracing or cell ablation alleles in genes that define colorectal cancer stem cells (CRC-SCs) or differentiated-like tumor cells. Edited tumor organoids generate CRCs in mice that reproduce the tumor of origin while carrying the desired genetic modifications. This technological advance opens the gate to perform classical genetic and developmental analysis in human tumors. We will exploit this advantage to address fundamental questions about the cell heterogeneity and organization of human CRCs that cannot be tackled through currently existing experimental approaches such as: Are CRC-SCs the only tumor cell population with long term regenerating potential? Can we cure CRC with anti-CRC-SC specific therapies? Will tumor cell plasticity contribute to the regeneration of the CRC-SC pool after therapy? Do quiescent-SCs regenerate CRC tumors after standard chemotherapy? Can we identify these cells? How do common genetic alterations in CRC influence the CRC hierarchy? Do they affect the stem cell phenotype?
Summary
A hallmark of cancer is tumor cell heterogeneity, which results from combinations of multiple genetic and epigenetic alterations within an individual tumor. In contrast, we have recently discovered that most human colorectal cancers (CRCs) are composed of mixtures of phenotypically distinct tumor cells organized into a stem cell hierarchy that displays a striking resemblance to the healthy colonic epithelium. We showed that long-term regeneration potential of tumor cells is largely influenced by the position that they occupy within the tumor's hierarchy. To analyze the organization of CRCs without the constraints imposed by tumor cell transplantation experiments, we have developed a method that allows for the first time tracking and manipulating the fate of specific cell populations in whole human tumors. This technology is based on editing the genomes of primary human CRCs cultured in the form of tumor organoids using Zinc-Finger Nucleases to knock-in either lineage tracing or cell ablation alleles in genes that define colorectal cancer stem cells (CRC-SCs) or differentiated-like tumor cells. Edited tumor organoids generate CRCs in mice that reproduce the tumor of origin while carrying the desired genetic modifications. This technological advance opens the gate to perform classical genetic and developmental analysis in human tumors. We will exploit this advantage to address fundamental questions about the cell heterogeneity and organization of human CRCs that cannot be tackled through currently existing experimental approaches such as: Are CRC-SCs the only tumor cell population with long term regenerating potential? Can we cure CRC with anti-CRC-SC specific therapies? Will tumor cell plasticity contribute to the regeneration of the CRC-SC pool after therapy? Do quiescent-SCs regenerate CRC tumors after standard chemotherapy? Can we identify these cells? How do common genetic alterations in CRC influence the CRC hierarchy? Do they affect the stem cell phenotype?
Max ERC Funding
2 499 405 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym EDSGEL
Project Likelihood-based estimation of non-linear and non-normal DSGE models
Researcher (PI) Juan Francisco Rubio-Ramirez
Host Institution (HI) FUNDACION CENTRO DE ESTUDIOS MONETARIOS Y FINANCIEROS
Call Details Starting Grant (StG), SH1, ERC-2009-StG
Summary DSGE models are the standard tool of quantitative macroeconomics. We use them to measure economics phenomena and to provide policy advice. However, since Kydland and Prescott s 1982, the profession has fought about how to take these models to the data. Kydland and Prescott proposed to calibrate their model. Why? Macroeconomists could not compute their models efficiently. Moreover, the techniques required for estimating DSGE models using the likelihood did not exist. Finally, models were ranked very badly by likelihood ratio tests. Calibration offered a temporary solution. By focusing only on a very limited set of moments of the model, researchers could claim partial success and keep developing their theory. The landscape changed in the 1990s. There were developments along three fronts. First, macroeconomists learned how to efficiently compute equilibrium models with rich dynamics. Second, statisticians developed simulation techniques like Markov chain Monte Carlo (MCMC), which we require to estimate DSGE models. Third, and perhaps most important, computer power has become so cheap that we can now do things that were unthinkable 20 years ago. This proposal tries to estimate non-linear and/or non-normal DSGE models using a likelihood approach. Why non-linear models? Previous research has proved that second order approximation errors in the policy function have first order effects on the likelihood function. Why non-normal models? Time-varying volatility is key to understanding the Great Moderation. Kim and Nelson (1999), McConnell and Pérez-Quirós (2000), and Stock and Watson (2002) have documented a decline in the variance of output growth since the mid 1980s. Only DSGE models with richer structure than normal innovations can account for this.
Summary
DSGE models are the standard tool of quantitative macroeconomics. We use them to measure economics phenomena and to provide policy advice. However, since Kydland and Prescott s 1982, the profession has fought about how to take these models to the data. Kydland and Prescott proposed to calibrate their model. Why? Macroeconomists could not compute their models efficiently. Moreover, the techniques required for estimating DSGE models using the likelihood did not exist. Finally, models were ranked very badly by likelihood ratio tests. Calibration offered a temporary solution. By focusing only on a very limited set of moments of the model, researchers could claim partial success and keep developing their theory. The landscape changed in the 1990s. There were developments along three fronts. First, macroeconomists learned how to efficiently compute equilibrium models with rich dynamics. Second, statisticians developed simulation techniques like Markov chain Monte Carlo (MCMC), which we require to estimate DSGE models. Third, and perhaps most important, computer power has become so cheap that we can now do things that were unthinkable 20 years ago. This proposal tries to estimate non-linear and/or non-normal DSGE models using a likelihood approach. Why non-linear models? Previous research has proved that second order approximation errors in the policy function have first order effects on the likelihood function. Why non-normal models? Time-varying volatility is key to understanding the Great Moderation. Kim and Nelson (1999), McConnell and Pérez-Quirós (2000), and Stock and Watson (2002) have documented a decline in the variance of output growth since the mid 1980s. Only DSGE models with richer structure than normal innovations can account for this.
Max ERC Funding
909 942 €
Duration
Start date: 2010-07-01, End date: 2015-06-30
Project acronym EDST
Project Economic Development and Structural Transformation
Researcher (PI) Maria Paula BUSTOS
Host Institution (HI) FUNDACION CENTRO DE ESTUDIOS MONETARIOS Y FINANCIEROS
Call Details Starting Grant (StG), SH1, ERC-2016-STG
Summary The early development literature documented that the growth path of most advanced economies was accompanied by a process of structural transformation. As economies develop, the share of agriculture in employment falls and workers migrate to cities to find employment in the industrial and service sectors [Clark (1940), Kuznets (1957)]. In the first industrialized countries, technical improvements in agriculture favoured the development of industry and services by releasing labour, increasing demand and raising profits to finance other activities. However, several scholars noted that the positive effects of agricultural productivity on economic development are no longer operative in open economies. In addition, there is a large theoretical literature highlighting how market failures can retard structural transformation in developing countries. In particular, financial frictions might constrain the reallocation of capital and thus retard the process of labour reallocation. In this project, we propose to contribute to our understanding of structural transformation by providing direct empirical evidence on the effects of exogenous shocks to local agricultural and manufacturing productivity on the reallocation of capital and labour across sectors, firms and space in Brazil. For this purpose, we construct the first data set that permits to jointly observe labour and credit flows across sectors and space. To exploit the spatial dimension of the capital allocation problem, we design a new empirical which exploits the geographical structure of bank branch networks. Similarly, we propose to study the spatial dimension of the labour allocation problem by exploiting differences in migration costs across regions due to transportation and social networks.
Summary
The early development literature documented that the growth path of most advanced economies was accompanied by a process of structural transformation. As economies develop, the share of agriculture in employment falls and workers migrate to cities to find employment in the industrial and service sectors [Clark (1940), Kuznets (1957)]. In the first industrialized countries, technical improvements in agriculture favoured the development of industry and services by releasing labour, increasing demand and raising profits to finance other activities. However, several scholars noted that the positive effects of agricultural productivity on economic development are no longer operative in open economies. In addition, there is a large theoretical literature highlighting how market failures can retard structural transformation in developing countries. In particular, financial frictions might constrain the reallocation of capital and thus retard the process of labour reallocation. In this project, we propose to contribute to our understanding of structural transformation by providing direct empirical evidence on the effects of exogenous shocks to local agricultural and manufacturing productivity on the reallocation of capital and labour across sectors, firms and space in Brazil. For this purpose, we construct the first data set that permits to jointly observe labour and credit flows across sectors and space. To exploit the spatial dimension of the capital allocation problem, we design a new empirical which exploits the geographical structure of bank branch networks. Similarly, we propose to study the spatial dimension of the labour allocation problem by exploiting differences in migration costs across regions due to transportation and social networks.
Max ERC Funding
1 486 500 €
Duration
Start date: 2017-03-01, End date: 2022-02-28
Project acronym EFFORT
Project Effort and Social Inequality: Advancing Measurement and Understanding Parental Origin Effects
Researcher (PI) JONAS FALK RADL
Host Institution (HI) UNIVERSIDAD CARLOS III DE MADRID
Call Details Starting Grant (StG), SH3, ERC-2017-STG
Summary This project aims to understand the role of effort in the reproduction of social inequality. While large-scale test programs like PISA have produced impressive amounts of data on the determinants of cognitive abilities, there is scant evidence on socio-economic differences in cognitive effort. Better understanding the social origins of effort pushes the frontier of knowledge on intergenerational mobility and allows improving equality of opportunity. Specifically, the aim of the project is to answer three research questions:
1. To what extent do children’s effort levels differ by parental socioeconomic background? (descriptive component).
2. Can existing disparities in effort by social background be explained by (a) the intergenerational transmission of effort from parents to children, and (b) varying motivations and differential susceptibility to incentives? (analytical component).
3. What are the best techniques to measure cognitive effort and what are the strengths and weaknesses of measures routinely used in different scientific disciplines? (methodological component).
The project will develop and exploit cutting-edge methods of effort measurement such as real-effort tasks and psychophysiological techniques like pupillometry. Their immense potential has remained untapped in inequality research thus far. Experimental data will be collected for a large sample of school-age children and their parents in Spain and Germany. Subjective effort dispositions will be further analyzed using (inter)national surveys. The triangulation of carefully chosen methodologies will provide the first reliable evidence on socioeconomic differences in effort and stimulate new research (e.g. on gender or ethnic differentials in effort). Cross-validation analysis will detect possible biases of commonly used effort measures. The research findings will provide valuable insights for educational practitioners and decisive evidence for normative debates about social inequality and policy design.
Summary
This project aims to understand the role of effort in the reproduction of social inequality. While large-scale test programs like PISA have produced impressive amounts of data on the determinants of cognitive abilities, there is scant evidence on socio-economic differences in cognitive effort. Better understanding the social origins of effort pushes the frontier of knowledge on intergenerational mobility and allows improving equality of opportunity. Specifically, the aim of the project is to answer three research questions:
1. To what extent do children’s effort levels differ by parental socioeconomic background? (descriptive component).
2. Can existing disparities in effort by social background be explained by (a) the intergenerational transmission of effort from parents to children, and (b) varying motivations and differential susceptibility to incentives? (analytical component).
3. What are the best techniques to measure cognitive effort and what are the strengths and weaknesses of measures routinely used in different scientific disciplines? (methodological component).
The project will develop and exploit cutting-edge methods of effort measurement such as real-effort tasks and psychophysiological techniques like pupillometry. Their immense potential has remained untapped in inequality research thus far. Experimental data will be collected for a large sample of school-age children and their parents in Spain and Germany. Subjective effort dispositions will be further analyzed using (inter)national surveys. The triangulation of carefully chosen methodologies will provide the first reliable evidence on socioeconomic differences in effort and stimulate new research (e.g. on gender or ethnic differentials in effort). Cross-validation analysis will detect possible biases of commonly used effort measures. The research findings will provide valuable insights for educational practitioners and decisive evidence for normative debates about social inequality and policy design.
Max ERC Funding
1 499 572 €
Duration
Start date: 2018-03-01, End date: 2023-02-28
Project acronym ELECTRIC CHALLENGES
Project Current Tools and Policy Challenges in Electricity Markets
Researcher (PI) Natalia FABRA PORTELA
Host Institution (HI) UNIVERSIDAD CARLOS III DE MADRID
Call Details Consolidator Grant (CoG), SH1, ERC-2017-COG
Summary The fight against climate change is among Europe’s top policy priorities. In this research agenda, I propose to push out the frontier in the area of Energy and Environmental Economics by carrying out policy-relevant research on a pressing issue: how to design optimal regulatory and market-based solutions to achieve a least cost transition towards a low-carbon economy.
The European experience provides unique natural experiments with which to test some of the most contentious issues that arise in the context of electricity markets, including the potential to change households’ demand patterns through dynamic pricing, the scope of renewables to mitigate market power and depress wholesale market prices, and the design and performance of the auctions for renewable support. While there is a body of policy work on these issues, it generally does not meet the required research standards.
In this research, I will rely on cutting-edge theoretical, empirical, and simulation tools to disentangle these topics, while providing key economic insights that are relevant beyond electricity markets. On the theory front, I propose to develop new models that incorporate the intermittency of renewables to characterize optimal bidding as a key, broadly omitted ingredient in previous analysis. In turn, these models will provide a rigorous structure for the empirical and simulation analysis, which will rely both on traditional econometrics for casual inference as well as on state-of-the-art machine learning methods to construct counterfactual scenarios for policy analysis.
While my focus is on energy and environmental issues, my research will also provide methodological contributions for other areas - particularly those related to policy design and policy evaluation. The conclusions of this research should prove valuable for academics, as well as to policy makers to assess the impact of environmental and energy policies and redefine them where necessary.
Summary
The fight against climate change is among Europe’s top policy priorities. In this research agenda, I propose to push out the frontier in the area of Energy and Environmental Economics by carrying out policy-relevant research on a pressing issue: how to design optimal regulatory and market-based solutions to achieve a least cost transition towards a low-carbon economy.
The European experience provides unique natural experiments with which to test some of the most contentious issues that arise in the context of electricity markets, including the potential to change households’ demand patterns through dynamic pricing, the scope of renewables to mitigate market power and depress wholesale market prices, and the design and performance of the auctions for renewable support. While there is a body of policy work on these issues, it generally does not meet the required research standards.
In this research, I will rely on cutting-edge theoretical, empirical, and simulation tools to disentangle these topics, while providing key economic insights that are relevant beyond electricity markets. On the theory front, I propose to develop new models that incorporate the intermittency of renewables to characterize optimal bidding as a key, broadly omitted ingredient in previous analysis. In turn, these models will provide a rigorous structure for the empirical and simulation analysis, which will rely both on traditional econometrics for casual inference as well as on state-of-the-art machine learning methods to construct counterfactual scenarios for policy analysis.
While my focus is on energy and environmental issues, my research will also provide methodological contributions for other areas - particularly those related to policy design and policy evaluation. The conclusions of this research should prove valuable for academics, as well as to policy makers to assess the impact of environmental and energy policies and redefine them where necessary.
Max ERC Funding
1 422 375 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym Elephant Project
Project How elephants grow old
Researcher (PI) Virpi Annikki Lummaa
Host Institution (HI) TURUN YLIOPISTO
Call Details Consolidator Grant (CoG), LS8, ERC-2014-CoG
Summary The ageing population structure of most European countries has major health, economic and social consequences that lead to a need to better understand both the evolutionary limitations of deferring ageing, as well as the mechanisms involved in growing old. Ageing involves reduced fertility, mobility and ability to combat disease, but some individuals cope with growing old better than others. Improving the quality of life at old age and predicting future changes in longevity patterns of societies might depend on our ability to develop indicators of how old we really are and how many healthy years we have ahead, and how those indicators depend on our health history across several decades. Yet, most model species used in biology are short-lived and provide a poor comparison to long-lived mammals such as humans. Further, they do not often inform on the mechanisms of ageing alongside its fitness consequences in natural populations of long-lived mammals. This project integrates different ageing mechanisms with unique data on lifelong disease and reproductive history in the most long-lived non-human mammal studied so far, the Asian elephant. I will examine how different mechanisms of ageing (telomere dynamics, oxidative stress and telomerase activity) interact with lifelong disease and reproductive history, and current endocrinological measures of stress and reproductive status. This will help us to better understand both the mechanisms of ageing and their consequences on senescence rates. To do so, I will combine the most comprehensive demographic data (N~10.000) on Asian elephants in the world with bi-monthly health assessments and disease records across life (N~2500) and with longitudinal markers of ageing and hormonal correlates of stress and reproductive potential (N~240). Understanding changes in health across life and its links to ageing rates, stress levels and life-history in a species as long-lived as humans will be relevant to a large range of end-users.
Summary
The ageing population structure of most European countries has major health, economic and social consequences that lead to a need to better understand both the evolutionary limitations of deferring ageing, as well as the mechanisms involved in growing old. Ageing involves reduced fertility, mobility and ability to combat disease, but some individuals cope with growing old better than others. Improving the quality of life at old age and predicting future changes in longevity patterns of societies might depend on our ability to develop indicators of how old we really are and how many healthy years we have ahead, and how those indicators depend on our health history across several decades. Yet, most model species used in biology are short-lived and provide a poor comparison to long-lived mammals such as humans. Further, they do not often inform on the mechanisms of ageing alongside its fitness consequences in natural populations of long-lived mammals. This project integrates different ageing mechanisms with unique data on lifelong disease and reproductive history in the most long-lived non-human mammal studied so far, the Asian elephant. I will examine how different mechanisms of ageing (telomere dynamics, oxidative stress and telomerase activity) interact with lifelong disease and reproductive history, and current endocrinological measures of stress and reproductive status. This will help us to better understand both the mechanisms of ageing and their consequences on senescence rates. To do so, I will combine the most comprehensive demographic data (N~10.000) on Asian elephants in the world with bi-monthly health assessments and disease records across life (N~2500) and with longitudinal markers of ageing and hormonal correlates of stress and reproductive potential (N~240). Understanding changes in health across life and its links to ageing rates, stress levels and life-history in a species as long-lived as humans will be relevant to a large range of end-users.
Max ERC Funding
1 949 316 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym ELONGAN
Project Gene editing and in vitro approaches to understand conceptus elongation in ungulates
Researcher (PI) Pablo BERMEJO-ÁLVAREZ
Host Institution (HI) INSTITUTO NACIONAL DE INVESTIGACION Y TECNOLOGIA AGRARIA Y ALIMENTARIA OA MP
Call Details Starting Grant (StG), LS9, ERC-2017-STG
Summary In contrast to human or rodent embryos, ungulate embryos do not implant into the uterus right after blastocyst hatching. Before implantation, the hatched ungulate blastocyst must undergo dramatic morphological changes characterized by cell differentiation, proliferation and migration processes leading to the development of extra-embryonic membranes, the appearance of a flat embryonic disc and gastrulation. This prolonged preimplantation development is termed conceptus elongation and deficiencies on this process constitute the most frequent cause of reproductive failures in ungulates, including the 4 most relevant mammalian livestock species in Europe. The purpose of this project is to elucidate the factors involved in conceptus elongation by gene editing and in vitro culture approaches. A first objective will be to identify key genes involved in differentiation processes by RNA-seq analysis of different embryo derivatives from bovine conceptuses at different developmental stages. Subsequently, the function of some of the genes identified as well as others known to play a crucial role in mouse development or putatively involved in embryo-maternal interactions will be assessed. For this aim, bovine embryos in which a candidate gene has been ablated (KO) will be generated by CRISPR and transferred to recipient females to assess in vivo the function of such particular gene on conceptus development. A second set of experiments pursue the development of an in vitro system for conceptus elongation that would bypass the requirement for in vivo experiments. For this aim we will perform metabolomics and proteomics analyses of bovine uterine fluid at different stages and will use these data to rationally develop a culture system able to sustain conceptus development. The knowledge generated by this project will serve to develop strategies to enhance farming profitability by reducing embryonic loss and to understand Developmental Biology questions unanswered by the mouse model.
Summary
In contrast to human or rodent embryos, ungulate embryos do not implant into the uterus right after blastocyst hatching. Before implantation, the hatched ungulate blastocyst must undergo dramatic morphological changes characterized by cell differentiation, proliferation and migration processes leading to the development of extra-embryonic membranes, the appearance of a flat embryonic disc and gastrulation. This prolonged preimplantation development is termed conceptus elongation and deficiencies on this process constitute the most frequent cause of reproductive failures in ungulates, including the 4 most relevant mammalian livestock species in Europe. The purpose of this project is to elucidate the factors involved in conceptus elongation by gene editing and in vitro culture approaches. A first objective will be to identify key genes involved in differentiation processes by RNA-seq analysis of different embryo derivatives from bovine conceptuses at different developmental stages. Subsequently, the function of some of the genes identified as well as others known to play a crucial role in mouse development or putatively involved in embryo-maternal interactions will be assessed. For this aim, bovine embryos in which a candidate gene has been ablated (KO) will be generated by CRISPR and transferred to recipient females to assess in vivo the function of such particular gene on conceptus development. A second set of experiments pursue the development of an in vitro system for conceptus elongation that would bypass the requirement for in vivo experiments. For this aim we will perform metabolomics and proteomics analyses of bovine uterine fluid at different stages and will use these data to rationally develop a culture system able to sustain conceptus development. The knowledge generated by this project will serve to develop strategies to enhance farming profitability by reducing embryonic loss and to understand Developmental Biology questions unanswered by the mouse model.
Max ERC Funding
1 480 880 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym EMTASY
Project Common molecular pathways in epithelial-mesenchymal transition and left-right asymmetries
Researcher (PI) Maria Angela Nieto Toledano
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Advanced Grant (AdG), LS3, ERC-2012-ADG_20120314
Summary The majority of animals show an external bilateral symmetry, precluding the observation of multiple internal left-right (L/R) asymmetries which are fundamental for organ packaging and function. A prominent molecular pathway converging on and downstream of the Pitx2 transcription factor confers left-handed information in the left side of the embryo, with players expressed on the right ensuring that the left determinants are excluded. Therefore, conferring or excluding left identity in left and right hand sides, respectively, drives L/R asymmetry. Some indications suggest that a program actively specifying right–handed information could exist on the right. Our recent findings support this view. In a screening for novel regulators of the epithelial to mesenchymal transition (EMT), we have identified a transcription factor, EMT2, which similarly to well known factor Snail, it is an EMT inducer. The EMT is crucial for the development of tissues during embryonic development and for the progression of carcinomas to the invasive state. Strikingly, again as Snail, in addition to promote EMT, the EMT2 factor is predominantly expressed on the right side and may operate instructing L/R identity on the right-hand side of the embryo.
With this background, our knowledge of the EMT and a series of genome-wide high-throughput approaches and a comprehensive functional analysis using the chick, the fish and the mouse as model systems we propose to reveal the putative molecular pathways conveying right-handed information and to reveal commonalities between L/R pathways and the EMT. In the long run, we aim at better understanding human pathologies that involve these morphogenetic and cellular processes, including pathological situs conditions (i.e. altered organ positioning) and cancer progression.
Summary
The majority of animals show an external bilateral symmetry, precluding the observation of multiple internal left-right (L/R) asymmetries which are fundamental for organ packaging and function. A prominent molecular pathway converging on and downstream of the Pitx2 transcription factor confers left-handed information in the left side of the embryo, with players expressed on the right ensuring that the left determinants are excluded. Therefore, conferring or excluding left identity in left and right hand sides, respectively, drives L/R asymmetry. Some indications suggest that a program actively specifying right–handed information could exist on the right. Our recent findings support this view. In a screening for novel regulators of the epithelial to mesenchymal transition (EMT), we have identified a transcription factor, EMT2, which similarly to well known factor Snail, it is an EMT inducer. The EMT is crucial for the development of tissues during embryonic development and for the progression of carcinomas to the invasive state. Strikingly, again as Snail, in addition to promote EMT, the EMT2 factor is predominantly expressed on the right side and may operate instructing L/R identity on the right-hand side of the embryo.
With this background, our knowledge of the EMT and a series of genome-wide high-throughput approaches and a comprehensive functional analysis using the chick, the fish and the mouse as model systems we propose to reveal the putative molecular pathways conveying right-handed information and to reveal commonalities between L/R pathways and the EMT. In the long run, we aim at better understanding human pathologies that involve these morphogenetic and cellular processes, including pathological situs conditions (i.e. altered organ positioning) and cancer progression.
Max ERC Funding
2 460 000 €
Duration
Start date: 2013-05-01, End date: 2018-12-31
Project acronym EnDeCAD
Project Enhancers Decoding the Mechanisms Underlying CAD Risk
Researcher (PI) Minna Unelma KAIKKONEN-MÄÄTTÄ
Host Institution (HI) ITA-SUOMEN YLIOPISTO
Call Details Starting Grant (StG), LS4, ERC-2018-STG
Summary In recent years, genome-wide association studies (GWAS) have discovered hundreds of single nucleotide polymorphisms (SNPs) which are significantly associated with coronary artery disease (CAD). However, the SNPs identified by GWAS explain typically only small portion of the trait heritability and vast majority of variants do not have known biological roles. This is explained by variants lying within noncoding regions such as in cell type specific enhancers and additionally ‘the lead SNP’ identified in GWAS may not be the ‘the causal SNP’ but only linked with a trait associated SNP. Therefore, a major priority for understanding disease mechanisms is to understand at the molecular level the function of each CAD loci. In this study we aim to bring the functional characterization of SNPs associated with CAD risk to date by focusing our search for causal SNPs to enhancers of disease relevant cell types, namely endothelial cells, macrophages and smooth muscle cells of the vessel wall, hepatocytes and adipocytes. By combination of massively parallel enhancer activity measurements, collection of novel eQTL data throughout cell types under disease relevant stimuli, identification of the target genes in physical interaction with the candidate enhancers and establishment of correlative relationships between enhancer activity and gene expression we hope to identify causal enhancer variants and link them with target genes to obtain a more complete picture of the gene regulatory events driving disease progression and the genetic basis of CAD. Linking these findings with our deep phenotypic data for cardiovascular risk factors, gene expression and metabolomics has the potential to improve risk prediction, biomarker identification and treatment selection in clinical practice. Ultimately, this research strives for fundamental discoveries and breakthrough that advance our knowledge of CAD and provides pioneering steps towards taking the growing array of GWAS for translatable results.
Summary
In recent years, genome-wide association studies (GWAS) have discovered hundreds of single nucleotide polymorphisms (SNPs) which are significantly associated with coronary artery disease (CAD). However, the SNPs identified by GWAS explain typically only small portion of the trait heritability and vast majority of variants do not have known biological roles. This is explained by variants lying within noncoding regions such as in cell type specific enhancers and additionally ‘the lead SNP’ identified in GWAS may not be the ‘the causal SNP’ but only linked with a trait associated SNP. Therefore, a major priority for understanding disease mechanisms is to understand at the molecular level the function of each CAD loci. In this study we aim to bring the functional characterization of SNPs associated with CAD risk to date by focusing our search for causal SNPs to enhancers of disease relevant cell types, namely endothelial cells, macrophages and smooth muscle cells of the vessel wall, hepatocytes and adipocytes. By combination of massively parallel enhancer activity measurements, collection of novel eQTL data throughout cell types under disease relevant stimuli, identification of the target genes in physical interaction with the candidate enhancers and establishment of correlative relationships between enhancer activity and gene expression we hope to identify causal enhancer variants and link them with target genes to obtain a more complete picture of the gene regulatory events driving disease progression and the genetic basis of CAD. Linking these findings with our deep phenotypic data for cardiovascular risk factors, gene expression and metabolomics has the potential to improve risk prediction, biomarker identification and treatment selection in clinical practice. Ultimately, this research strives for fundamental discoveries and breakthrough that advance our knowledge of CAD and provides pioneering steps towards taking the growing array of GWAS for translatable results.
Max ERC Funding
1 498 647 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym EndoMitTalk
Project Endolysosomal-mitochondria crosstalk in cell and organism homeostasis
Researcher (PI) María MITTELBRUM
Host Institution (HI) UNIVERSIDAD AUTONOMA DE MADRID
Call Details Starting Grant (StG), LS4, ERC-2016-STG
Summary For many years, mitochondria were viewed as semiautonomous organelles, required only for cellular energetics. This view has been displaced by the concept that mitochondria are fully integrated into the life of the cell and that mitochondrial function and stress response rapidly affect other organelles, and even other tissues. A recent discovery from my lab demonstrated that mitochondrial metabolism regulates lysosomal degradation (Cell Metabolism, 2015), thus opening the way to investigate the mechanism behind communication between these organelles and its consequences for homeostasis. With this proposal, we want to assess how mitochondrial crosstalk with endolysosomal compartment controls cellular homeostasis and how mitochondrial dysfunction in certain tissues may account for systemic effects on the rest of the organism. EndoMitTalk will deliver significant breakthroughs on (1) the molecular mediators of endolysosomal-mitochondria communication, and how deregulation of this crosstalk alters cellular (2), and organism homeostasis (3). Our central goals are: 1a,b. To identify metabolic and physical connections mediating endolysosomal-mitochondria crosstalk; 2a. To decode the consequences of altered interorganelle communication in cellular homeostasis 2b. To study the therapeutic potential of improving lysosomal function in respiration-deficient cells; 3a. To assess how unresolved organelle dysfunction and metabolic stresses exclusively in immune cells affects organism homeostasis and lifespan. 3b. To decipher the molecular mediators by which organelle dysfunction in T cells contributes to age-associated diseases, with special focus in cardiorenal and metabolic syndromes. In sum, EndoMitTalk puts forward an ambitious and multidisciplinary but feasible program with the wide purpose of understanding and improving clinical interventions in mitochondrial diseases and age-related pathologies.
Summary
For many years, mitochondria were viewed as semiautonomous organelles, required only for cellular energetics. This view has been displaced by the concept that mitochondria are fully integrated into the life of the cell and that mitochondrial function and stress response rapidly affect other organelles, and even other tissues. A recent discovery from my lab demonstrated that mitochondrial metabolism regulates lysosomal degradation (Cell Metabolism, 2015), thus opening the way to investigate the mechanism behind communication between these organelles and its consequences for homeostasis. With this proposal, we want to assess how mitochondrial crosstalk with endolysosomal compartment controls cellular homeostasis and how mitochondrial dysfunction in certain tissues may account for systemic effects on the rest of the organism. EndoMitTalk will deliver significant breakthroughs on (1) the molecular mediators of endolysosomal-mitochondria communication, and how deregulation of this crosstalk alters cellular (2), and organism homeostasis (3). Our central goals are: 1a,b. To identify metabolic and physical connections mediating endolysosomal-mitochondria crosstalk; 2a. To decode the consequences of altered interorganelle communication in cellular homeostasis 2b. To study the therapeutic potential of improving lysosomal function in respiration-deficient cells; 3a. To assess how unresolved organelle dysfunction and metabolic stresses exclusively in immune cells affects organism homeostasis and lifespan. 3b. To decipher the molecular mediators by which organelle dysfunction in T cells contributes to age-associated diseases, with special focus in cardiorenal and metabolic syndromes. In sum, EndoMitTalk puts forward an ambitious and multidisciplinary but feasible program with the wide purpose of understanding and improving clinical interventions in mitochondrial diseases and age-related pathologies.
Max ERC Funding
1 498 625 €
Duration
Start date: 2017-03-01, End date: 2022-02-28