Project acronym NLL
Project Nonlinear Laser Lithography
Researcher (PI) Fatih Ömer Ilday
Host Institution (HI) BILKENT UNIVERSITESI VAKIF
Call Details Consolidator Grant (CoG), PE2, ERC-2013-CoG
Summary "Control of matter via light has always fascinated humankind; not surprisingly, laser patterning of materials is as old as the history of the laser. However, this approach has suffered to date from a stubborn lack of long-range order. We have recently discovered a method for regulating self-organised formation of metal-oxide nanostructures at high speed via non-local feedback, thereby achieving unprecedented levels of uniformity over indefinitely large areas by simply scanning the laser beam over the surface.
Here, we propose to develop hitherto unimaginable levels of control over matter through laser light. The total optical field at any point is determined by the incident laser field and scattered light from the surrounding surface, in a mathematical form similar to that of a hologram. Thus, it is only logical to control the self-organised pattern through the laser field using, e.g., a spatial light modulator. A simple wavefront tilt should change the periodicity of the nanostructures, but much more exciting possibilities include creation of patterns without translational symmetry, i.e., quasicrystals, or patterns evolving non-trivially under scanning, akin to cellular automata. Our initial results were obtained in ambient atmosphere, where oxygen is the dominant reactant, forming oxides. We further propose to control the chemistry by using a plasma jet to sputter a chosen reactive species onto the surface, which is activated by the laser. While we will focus on the basic mechanisms with atomic nitrogen as test reactant to generate compounds such as TiN and SiN, in principle, this approach paves the way to synthesis of an endless list of materials.
By bringing these ideas together, the foundations of revolutionary advances, straddling the boundaries of science fiction, can be laid: laser-controlled self-assembly of plethora of 2D patterns, crystals, and quasicrystals alike, eventually assembled layer by layer into the third dimension -- a 3D material synthesiser."
Summary
"Control of matter via light has always fascinated humankind; not surprisingly, laser patterning of materials is as old as the history of the laser. However, this approach has suffered to date from a stubborn lack of long-range order. We have recently discovered a method for regulating self-organised formation of metal-oxide nanostructures at high speed via non-local feedback, thereby achieving unprecedented levels of uniformity over indefinitely large areas by simply scanning the laser beam over the surface.
Here, we propose to develop hitherto unimaginable levels of control over matter through laser light. The total optical field at any point is determined by the incident laser field and scattered light from the surrounding surface, in a mathematical form similar to that of a hologram. Thus, it is only logical to control the self-organised pattern through the laser field using, e.g., a spatial light modulator. A simple wavefront tilt should change the periodicity of the nanostructures, but much more exciting possibilities include creation of patterns without translational symmetry, i.e., quasicrystals, or patterns evolving non-trivially under scanning, akin to cellular automata. Our initial results were obtained in ambient atmosphere, where oxygen is the dominant reactant, forming oxides. We further propose to control the chemistry by using a plasma jet to sputter a chosen reactive species onto the surface, which is activated by the laser. While we will focus on the basic mechanisms with atomic nitrogen as test reactant to generate compounds such as TiN and SiN, in principle, this approach paves the way to synthesis of an endless list of materials.
By bringing these ideas together, the foundations of revolutionary advances, straddling the boundaries of science fiction, can be laid: laser-controlled self-assembly of plethora of 2D patterns, crystals, and quasicrystals alike, eventually assembled layer by layer into the third dimension -- a 3D material synthesiser."
Max ERC Funding
1 999 920 €
Duration
Start date: 2014-06-01, End date: 2019-05-31
Project acronym WEAR3D
Project Wearable Augmented Reality 3D Displays
Researcher (PI) Hakan Urey
Host Institution (HI) KOC UNIVERSITY
Call Details Advanced Grant (AdG), PE7, ERC-2013-ADG
Summary Wearable displays have advanced rapidly over the past few decades but they are limited in field-of-view due to optical constraints. Likewise, 3D displays have several technological and viewing discomfort limitations. These limitations result from the missing 3D depth cues in stereoscopic displays, which are essential for real 3D and for interactive augmented reality (AR) applications. Wear3D proposal aims to overcome the two fundamental scientific challenges of wearable displays and make them as natural as wearing a pair of eyeglasses: (i) Eliminate the relay lenses. We need to overcome the focusing problem of the eyes in order to completely eliminate the large relay lenses. As a result, miniaturization of wearable displays will be possible by taking full advantage of the advancements in micro-technologies; (ii) Provide all the essential 3D depth cues to avoid perceptual errors and viewing discomfort. We need to enable the two eyes to fixate at the correct depth of the objects rather than the display panel without losing resolution. Thereby, eliminating the conflict between the accommodation and convergence. Overcoming these challenges would enable a display which can provide natural looking and interactive 3D and very wide field-of-view (>100deg) in an eyeglasses form factor. Such a display goes far beyond the state-of-the art in wearable displays and open new research directions for intelligent human-computer interfaces and AR.
Summary
Wearable displays have advanced rapidly over the past few decades but they are limited in field-of-view due to optical constraints. Likewise, 3D displays have several technological and viewing discomfort limitations. These limitations result from the missing 3D depth cues in stereoscopic displays, which are essential for real 3D and for interactive augmented reality (AR) applications. Wear3D proposal aims to overcome the two fundamental scientific challenges of wearable displays and make them as natural as wearing a pair of eyeglasses: (i) Eliminate the relay lenses. We need to overcome the focusing problem of the eyes in order to completely eliminate the large relay lenses. As a result, miniaturization of wearable displays will be possible by taking full advantage of the advancements in micro-technologies; (ii) Provide all the essential 3D depth cues to avoid perceptual errors and viewing discomfort. We need to enable the two eyes to fixate at the correct depth of the objects rather than the display panel without losing resolution. Thereby, eliminating the conflict between the accommodation and convergence. Overcoming these challenges would enable a display which can provide natural looking and interactive 3D and very wide field-of-view (>100deg) in an eyeglasses form factor. Such a display goes far beyond the state-of-the art in wearable displays and open new research directions for intelligent human-computer interfaces and AR.
Max ERC Funding
2 496 525 €
Duration
Start date: 2014-01-01, End date: 2018-12-31