Project acronym 3DBrainStrom
Project Brain metastases: Deciphering tumor-stroma interactions in three dimensions for the rational design of nanomedicines
Researcher (PI) Ronit Satchi Fainaro
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Advanced Grant (AdG), LS7, ERC-2018-ADG
Summary Brain metastases represent a major therapeutic challenge. Despite significant breakthroughs in targeted therapies, survival rates of patients with brain metastases remain poor. Nowadays, discovery, development and evaluation of new therapies are performed on human cancer cells grown in 2D on rigid plastic plates followed by in vivo testing in immunodeficient mice. These experimental settings are lacking and constitute a fundamental hurdle for the translation of preclinical discoveries into clinical practice. We propose to establish 3D-printed models of brain metastases (Aim 1), which include brain extracellular matrix, stroma and serum containing immune cells flowing in functional tumor vessels. Our unique models better capture the clinical physio-mechanical tissue properties, signaling pathways, hemodynamics and drug responsiveness. Using our 3D-printed models, we aim to develop two new fronts for identifying novel clinically-relevant molecular drivers (Aim 2) followed by the development of precision nanomedicines (Aim 3). We will exploit our vast experience in anticancer nanomedicines to design three therapeutic approaches that target various cellular compartments involved in brain metastases: 1) Prevention of brain metastatic colonization using targeted nano-vaccines, which elicit antitumor immune response; 2) Intervention of tumor-brain stroma cells crosstalk when brain micrometastases establish; 3) Regression of macrometastatic disease by selectively targeting tumor cells. These approaches will materialize using our libraries of polymeric nanocarriers that selectively accumulate in tumors.
This project will result in a paradigm shift by generating new preclinical cancer models that will bridge the translational gap in cancer therapeutics. The insights and tumor-stroma-targeted nanomedicines developed here will pave the way for prediction of patient outcome, revolutionizing our perception of tumor modelling and consequently the way we prevent and treat cancer.
Summary
Brain metastases represent a major therapeutic challenge. Despite significant breakthroughs in targeted therapies, survival rates of patients with brain metastases remain poor. Nowadays, discovery, development and evaluation of new therapies are performed on human cancer cells grown in 2D on rigid plastic plates followed by in vivo testing in immunodeficient mice. These experimental settings are lacking and constitute a fundamental hurdle for the translation of preclinical discoveries into clinical practice. We propose to establish 3D-printed models of brain metastases (Aim 1), which include brain extracellular matrix, stroma and serum containing immune cells flowing in functional tumor vessels. Our unique models better capture the clinical physio-mechanical tissue properties, signaling pathways, hemodynamics and drug responsiveness. Using our 3D-printed models, we aim to develop two new fronts for identifying novel clinically-relevant molecular drivers (Aim 2) followed by the development of precision nanomedicines (Aim 3). We will exploit our vast experience in anticancer nanomedicines to design three therapeutic approaches that target various cellular compartments involved in brain metastases: 1) Prevention of brain metastatic colonization using targeted nano-vaccines, which elicit antitumor immune response; 2) Intervention of tumor-brain stroma cells crosstalk when brain micrometastases establish; 3) Regression of macrometastatic disease by selectively targeting tumor cells. These approaches will materialize using our libraries of polymeric nanocarriers that selectively accumulate in tumors.
This project will result in a paradigm shift by generating new preclinical cancer models that will bridge the translational gap in cancer therapeutics. The insights and tumor-stroma-targeted nanomedicines developed here will pave the way for prediction of patient outcome, revolutionizing our perception of tumor modelling and consequently the way we prevent and treat cancer.
Max ERC Funding
2 353 125 €
Duration
Start date: 2019-04-01, End date: 2024-03-31
Project acronym 4D IMAGING
Project Towards 4D Imaging of Fundamental Processes on the Atomic and Sub-Atomic Scale
Researcher (PI) Ferenc Krausz
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Call Details Advanced Grant (AdG), PE2, ERC-2009-AdG
Summary State-of-the-art microscopy and diffraction imaging provides insight into the atomic and sub-atomic structure of matter. They permit determination of the positions of atoms in a crystal lattice or in a molecule as well as the distribution of electrons inside atoms. State-of-the-art time-resolved spectroscopy with femtosecond and attosecond resolution provides access to dynamic changes in the atomic and electronic structure of matter. Our proposal aims at combining these two frontier techniques of XXI century science to make a long-standing dream of scientist come true: the direct observation of atoms and electrons in their natural state: in motion. Shifts in the atoms positions by tens to hundreds of picometers can make chemical bonds break apart or newly form, changing the structure and/or chemical composition of matter. Electronic motion on similar scales may result in the emission of light, or the initiation of processes that lead to a change in physical or chemical properties, or biological function. These motions happen within femtoseconds and attoseconds, respectively. To make them observable, we need a 4-dimensional (4D) imaging technique capable of recording freeze-frame snapshots of microscopic systems with picometer spatial resolution and femtosecond to attosecond exposure time. The motion can then be visualized by slow-motion replay of the freeze-frame shots. The goal of this project is to develop a 4D imaging technique that will ultimately offer picometer resolution is space and attosecond resolution in time.
Summary
State-of-the-art microscopy and diffraction imaging provides insight into the atomic and sub-atomic structure of matter. They permit determination of the positions of atoms in a crystal lattice or in a molecule as well as the distribution of electrons inside atoms. State-of-the-art time-resolved spectroscopy with femtosecond and attosecond resolution provides access to dynamic changes in the atomic and electronic structure of matter. Our proposal aims at combining these two frontier techniques of XXI century science to make a long-standing dream of scientist come true: the direct observation of atoms and electrons in their natural state: in motion. Shifts in the atoms positions by tens to hundreds of picometers can make chemical bonds break apart or newly form, changing the structure and/or chemical composition of matter. Electronic motion on similar scales may result in the emission of light, or the initiation of processes that lead to a change in physical or chemical properties, or biological function. These motions happen within femtoseconds and attoseconds, respectively. To make them observable, we need a 4-dimensional (4D) imaging technique capable of recording freeze-frame snapshots of microscopic systems with picometer spatial resolution and femtosecond to attosecond exposure time. The motion can then be visualized by slow-motion replay of the freeze-frame shots. The goal of this project is to develop a 4D imaging technique that will ultimately offer picometer resolution is space and attosecond resolution in time.
Max ERC Funding
2 500 000 €
Duration
Start date: 2010-03-01, End date: 2015-02-28
Project acronym 4D-PET
Project Innovative PET scanner for dynamic imaging
Researcher (PI) José María BENLLOCH BAVIERA
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Advanced Grant (AdG), LS7, ERC-2015-AdG
Summary The main objective of 4D-PET is to develop an innovative whole-body PET scanner based in a new detector concept that stores 3D position and time of every single gamma interaction with unprecedented resolution. The combination of scanner geometrical design and high timing resolution will enable developing a full sequence of all gamma-ray interactions inside the scanner, including Compton interactions, like in a 3D movie. 4D-PET fully exploits Time Of Flight (TOF) information to obtain a better image quality and to increase scanner sensitivity, through the inclusion in the image formation of all Compton events occurring inside the detector, which are always rejected in state-of-the-art PET scanners. The new PET design will radically improve state-of-the-art PET performance features, overcoming limitations of current PET technology and opening up new diagnostic venues and very valuable physiological information
Summary
The main objective of 4D-PET is to develop an innovative whole-body PET scanner based in a new detector concept that stores 3D position and time of every single gamma interaction with unprecedented resolution. The combination of scanner geometrical design and high timing resolution will enable developing a full sequence of all gamma-ray interactions inside the scanner, including Compton interactions, like in a 3D movie. 4D-PET fully exploits Time Of Flight (TOF) information to obtain a better image quality and to increase scanner sensitivity, through the inclusion in the image formation of all Compton events occurring inside the detector, which are always rejected in state-of-the-art PET scanners. The new PET design will radically improve state-of-the-art PET performance features, overcoming limitations of current PET technology and opening up new diagnostic venues and very valuable physiological information
Max ERC Funding
2 048 386 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym 5D Heart Patch
Project A Functional, Mature In vivo Human Ventricular Muscle Patch for Cardiomyopathy
Researcher (PI) Kenneth Randall Chien
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Advanced Grant (AdG), LS7, ERC-2016-ADG
Summary Developing new therapeutic strategies for heart regeneration is a major goal for cardiac biology and medicine. While cardiomyocytes can be generated from human pluripotent stem (hPSC) cells in vitro, it has proven difficult to use these cells to generate a large scale, mature human heart ventricular muscle graft on the injured heart in vivo. The central objective of this proposal is to optimize the generation of a large-scale pure, fully functional human ventricular muscle patch in vivo through the self-assembly of purified human ventricular progenitors and the localized expression of defined paracrine factors that drive their expansion, differentiation, vascularization, matrix formation, and maturation. Recently, we have found that purified hPSC-derived ventricular progenitors (HVPs) can self-assemble in vivo on the epicardial surface into a 3D vascularized, and functional ventricular patch with its own extracellular matrix via a cell autonomous pathway. A two-step protocol and FACS purification of HVP receptors can generate billions of pure HVPs- The current proposal will lead to the identification of defined paracrine pathways to enhance the survival, grafting/implantation, expansion, differentiation, matrix formation, vascularization and maturation of the graft in vivo. We will captalize on our unique HVP system and our novel modRNA technology to deliver therapeutic strategies by using the in vivo human ventricular muscle to model in vivo arrhythmogenic cardiomyopathy, and optimize the ability of the graft to compensate for the massive loss of functional muscle during ischemic cardiomyopathy and post-myocardial infarction. The studies will lead to new in vivo chimeric models of human cardiac disease and an experimental paradigm to optimize organ-on-organ cardiac tissue engineers of an in vivo, functional mature ventricular patch for cardiomyopathy
Summary
Developing new therapeutic strategies for heart regeneration is a major goal for cardiac biology and medicine. While cardiomyocytes can be generated from human pluripotent stem (hPSC) cells in vitro, it has proven difficult to use these cells to generate a large scale, mature human heart ventricular muscle graft on the injured heart in vivo. The central objective of this proposal is to optimize the generation of a large-scale pure, fully functional human ventricular muscle patch in vivo through the self-assembly of purified human ventricular progenitors and the localized expression of defined paracrine factors that drive their expansion, differentiation, vascularization, matrix formation, and maturation. Recently, we have found that purified hPSC-derived ventricular progenitors (HVPs) can self-assemble in vivo on the epicardial surface into a 3D vascularized, and functional ventricular patch with its own extracellular matrix via a cell autonomous pathway. A two-step protocol and FACS purification of HVP receptors can generate billions of pure HVPs- The current proposal will lead to the identification of defined paracrine pathways to enhance the survival, grafting/implantation, expansion, differentiation, matrix formation, vascularization and maturation of the graft in vivo. We will captalize on our unique HVP system and our novel modRNA technology to deliver therapeutic strategies by using the in vivo human ventricular muscle to model in vivo arrhythmogenic cardiomyopathy, and optimize the ability of the graft to compensate for the massive loss of functional muscle during ischemic cardiomyopathy and post-myocardial infarction. The studies will lead to new in vivo chimeric models of human cardiac disease and an experimental paradigm to optimize organ-on-organ cardiac tissue engineers of an in vivo, functional mature ventricular patch for cardiomyopathy
Max ERC Funding
2 149 228 €
Duration
Start date: 2017-12-01, End date: 2022-11-30
Project acronym ACB
Project The Analytic Conformal Bootstrap
Researcher (PI) Luis Fernando ALDAY
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Advanced Grant (AdG), PE2, ERC-2017-ADG
Summary The aim of the present proposal is to establish a research team developing and exploiting innovative techniques to study conformal field theories (CFT) analytically. Our approach does not rely on a Lagrangian description but on symmetries and consistency conditions. As such it applies to any CFT, offering a unified framework to study generic CFTs analytically. The initial implementation of this program has already led to striking new results and insights for both Lagrangian and non-Lagrangian CFTs.
The overarching aims of my team will be: To develop an analytic bootstrap program for CFTs in general dimensions; to complement these techniques with more traditional methods and develop a systematic machinery to obtain analytic results for generic CFTs; and to use these results to gain new insights into the mathematical structure of the space of quantum field theories.
The proposal will bring together researchers from different areas. The objectives in brief are:
1) Develop an alternative to Feynman diagram computations for Lagrangian CFTs.
2) Develop a machinery to compute loops for QFT on AdS, with and without gravity.
3) Develop an analytic approach to non-perturbative N=4 SYM and other CFTs.
4) Determine the space of all CFTs.
5) Gain new insights into the mathematical structure of the space of quantum field theories.
The outputs of this proposal will include a new way of doing perturbative computations based on symmetries; a constructive derivation of the AdS/CFT duality; new analytic techniques to attack strongly coupled systems and invaluable new lessons about the space of CFTs and QFTs.
Success in this research will lead to a completely new, unified way to view and solve CFTs, with a huge impact on several branches of physics and mathematics.
Summary
The aim of the present proposal is to establish a research team developing and exploiting innovative techniques to study conformal field theories (CFT) analytically. Our approach does not rely on a Lagrangian description but on symmetries and consistency conditions. As such it applies to any CFT, offering a unified framework to study generic CFTs analytically. The initial implementation of this program has already led to striking new results and insights for both Lagrangian and non-Lagrangian CFTs.
The overarching aims of my team will be: To develop an analytic bootstrap program for CFTs in general dimensions; to complement these techniques with more traditional methods and develop a systematic machinery to obtain analytic results for generic CFTs; and to use these results to gain new insights into the mathematical structure of the space of quantum field theories.
The proposal will bring together researchers from different areas. The objectives in brief are:
1) Develop an alternative to Feynman diagram computations for Lagrangian CFTs.
2) Develop a machinery to compute loops for QFT on AdS, with and without gravity.
3) Develop an analytic approach to non-perturbative N=4 SYM and other CFTs.
4) Determine the space of all CFTs.
5) Gain new insights into the mathematical structure of the space of quantum field theories.
The outputs of this proposal will include a new way of doing perturbative computations based on symmetries; a constructive derivation of the AdS/CFT duality; new analytic techniques to attack strongly coupled systems and invaluable new lessons about the space of CFTs and QFTs.
Success in this research will lead to a completely new, unified way to view and solve CFTs, with a huge impact on several branches of physics and mathematics.
Max ERC Funding
2 171 483 €
Duration
Start date: 2018-12-01, End date: 2023-11-30
Project acronym ACCELERATES
Project Acceleration in Extreme Shocks: from the microphysics to laboratory and astrophysics scenarios
Researcher (PI) Luis Miguel De Oliveira E Silva
Host Institution (HI) INSTITUTO SUPERIOR TECNICO
Call Details Advanced Grant (AdG), PE2, ERC-2010-AdG_20100224
Summary What is the origin of cosmic rays, what are the dominant acceleration mechanisms in relativistic shocks, how do cosmic rays self-consistently influence the shock dynamics, how are relativistic collisionless shocks formed are longstanding scientific questions, closely tied to extreme plasma physics processes, and where a close interplay between the micro-instabilities and the global dynamics is critical.
Relativistic shocks are closely connected with the propagation of intense streams of particles pervasive in many astrophysical scenarios. The possibility of exciting shocks in the laboratory will also be available very soon with multi-PW lasers or intense relativistic particle beams.
Computational modeling is now established as a prominent research tool, by enabling the fully kinetic modeling of these systems for the first time. With the fast paced developments in high performance computing, the time is ripe for a focused research programme on simulation-based studies of relativistic shocks. This proposal therefore focuses on using self-consistent ab initio massively parallel simulations to study the physics of relativistic shocks, bridging the gap between the multidimensional microphysics of shock onset, formation, and propagation and the global system dynamics. Particular focus will be given to the shock acceleration mechanisms and the radiation signatures of the various physical processes, with the goal of solving some of the central questions in plasma/relativistic phenomena in astrophysics and in the laboratory, and opening new avenues between theoretical/massive computational studies, laboratory experiments and astrophysical observations.
Summary
What is the origin of cosmic rays, what are the dominant acceleration mechanisms in relativistic shocks, how do cosmic rays self-consistently influence the shock dynamics, how are relativistic collisionless shocks formed are longstanding scientific questions, closely tied to extreme plasma physics processes, and where a close interplay between the micro-instabilities and the global dynamics is critical.
Relativistic shocks are closely connected with the propagation of intense streams of particles pervasive in many astrophysical scenarios. The possibility of exciting shocks in the laboratory will also be available very soon with multi-PW lasers or intense relativistic particle beams.
Computational modeling is now established as a prominent research tool, by enabling the fully kinetic modeling of these systems for the first time. With the fast paced developments in high performance computing, the time is ripe for a focused research programme on simulation-based studies of relativistic shocks. This proposal therefore focuses on using self-consistent ab initio massively parallel simulations to study the physics of relativistic shocks, bridging the gap between the multidimensional microphysics of shock onset, formation, and propagation and the global system dynamics. Particular focus will be given to the shock acceleration mechanisms and the radiation signatures of the various physical processes, with the goal of solving some of the central questions in plasma/relativistic phenomena in astrophysics and in the laboratory, and opening new avenues between theoretical/massive computational studies, laboratory experiments and astrophysical observations.
Max ERC Funding
1 588 800 €
Duration
Start date: 2011-06-01, End date: 2016-07-31
Project acronym AdS-CFT-solvable
Project Origins of integrability in AdS/CFT correspondence
Researcher (PI) Vladimir Kazakov
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), PE2, ERC-2012-ADG_20120216
Summary Fundamental interactions in nature are well described by quantum gauge fields in 4 space-time dimensions (4d). When the strength of gauge interaction is weak the Feynman perturbation techniques are very efficient for the description of most of the experimentally observable consequences of the Standard model and for the study of high energy processes in QCD.
But in the intermediate and strong coupling regime, such as the relatively small energies in QCD, the perturbation theory fails leaving us with no reliable analytic methods (except the Monte-Carlo simulation). The project aims at working out new analytic and computational methods for strongly coupled gauge theories in 4d. We will employ for that two important discoveries: 1) the gauge-string duality (AdS/CFT correspondence) relating certain strongly coupled gauge Conformal Field
Theories to the weakly coupled string theories on Anty-deSitter space; 2) the solvability, or integrability of maximally supersymmetric (N=4) 4d super Yang-Mills (SYM) theory in multicolor limit. Integrability made possible pioneering exact numerical and analytic results in the N=4 multicolor SYM at any coupling, effectively summing up all 4d Feynman diagrams. Recently, we conjectured a system of functional equations - the AdS/CFT Y-system – for the exact spectrum of anomalous dimensions of all local operators in N=4 SYM. The conjecture has passed all available checks. My project is aimed at the understanding of origins of this, still mysterious integrability. Deriving the AdS/CFT Y-system from the first principles on both sides of gauge-string duality should provide a long-awaited proof of the AdS/CFT correspondence itself. I plan to use the Y-system to study the systematic weak and strong coupling expansions and the so called BFKL limit, as well as for calculation of multi-point correlation functions of N=4 SYM. We hope on new insights into the strong coupling dynamics of less supersymmetric gauge theories and of QCD.
Summary
Fundamental interactions in nature are well described by quantum gauge fields in 4 space-time dimensions (4d). When the strength of gauge interaction is weak the Feynman perturbation techniques are very efficient for the description of most of the experimentally observable consequences of the Standard model and for the study of high energy processes in QCD.
But in the intermediate and strong coupling regime, such as the relatively small energies in QCD, the perturbation theory fails leaving us with no reliable analytic methods (except the Monte-Carlo simulation). The project aims at working out new analytic and computational methods for strongly coupled gauge theories in 4d. We will employ for that two important discoveries: 1) the gauge-string duality (AdS/CFT correspondence) relating certain strongly coupled gauge Conformal Field
Theories to the weakly coupled string theories on Anty-deSitter space; 2) the solvability, or integrability of maximally supersymmetric (N=4) 4d super Yang-Mills (SYM) theory in multicolor limit. Integrability made possible pioneering exact numerical and analytic results in the N=4 multicolor SYM at any coupling, effectively summing up all 4d Feynman diagrams. Recently, we conjectured a system of functional equations - the AdS/CFT Y-system – for the exact spectrum of anomalous dimensions of all local operators in N=4 SYM. The conjecture has passed all available checks. My project is aimed at the understanding of origins of this, still mysterious integrability. Deriving the AdS/CFT Y-system from the first principles on both sides of gauge-string duality should provide a long-awaited proof of the AdS/CFT correspondence itself. I plan to use the Y-system to study the systematic weak and strong coupling expansions and the so called BFKL limit, as well as for calculation of multi-point correlation functions of N=4 SYM. We hope on new insights into the strong coupling dynamics of less supersymmetric gauge theories and of QCD.
Max ERC Funding
1 456 140 €
Duration
Start date: 2013-11-01, End date: 2018-10-31
Project acronym AIR-NB
Project Pre-natal exposure to urban AIR pollution and pre- and post-Natal Brain development
Researcher (PI) Jordi Sunyer
Host Institution (HI) FUNDACION PRIVADA INSTITUTO DE SALUD GLOBAL BARCELONA
Call Details Advanced Grant (AdG), LS7, ERC-2017-ADG
Summary Air pollution is the main urban-related environmental hazard. It appears to affect brain development, although current evidence is inadequate given the lack of studies during the most vulnerable stages of brain development and the lack of brain anatomical structure and regional connectivity data underlying these effects. Of particular interest is the prenatal period, when brain structures are forming and growing, and when the effect of in utero exposure to environmental factors may cause permanent brain injury. I and others have conducted studies focused on effects during school age which could be less profound. I postulate that: pre-natal exposure to urban air pollution during pregnancy impairs foetal and postnatal brain development, mainly by affecting myelination; these effects are at least partially mediated by translocation of airborne particulate matter to the placenta and by placental dysfunction; and prenatal exposure to air pollution impairs post-natal brain development independently of urban context and post-natal exposure to air pollution. I aim to evaluate the effect of pre-natal exposure to urban air pollution on pre- and post-natal brain structure and function by following 900 pregnant women and their neonates with contrasting levels of pre-natal exposure to air pollutants by: i) establishing a new pregnancy cohort and evaluating brain imaging (pre-natal and neo-natal brain structure, connectivity and function), and post-natal motor and cognitive development; ii) measuring total personal exposure and inhaled dose of air pollutants during specific time-windows of gestation, noise, paternal stress and other stressors, using personal samplers and sensors; iii) detecting nanoparticles in placenta and its vascular function; iv) modelling mathematical causality and mediation, including a replication study in an external cohort. The expected results will create an impulse to implement policy interventions that genuinely protect the health of urban citizens.
Summary
Air pollution is the main urban-related environmental hazard. It appears to affect brain development, although current evidence is inadequate given the lack of studies during the most vulnerable stages of brain development and the lack of brain anatomical structure and regional connectivity data underlying these effects. Of particular interest is the prenatal period, when brain structures are forming and growing, and when the effect of in utero exposure to environmental factors may cause permanent brain injury. I and others have conducted studies focused on effects during school age which could be less profound. I postulate that: pre-natal exposure to urban air pollution during pregnancy impairs foetal and postnatal brain development, mainly by affecting myelination; these effects are at least partially mediated by translocation of airborne particulate matter to the placenta and by placental dysfunction; and prenatal exposure to air pollution impairs post-natal brain development independently of urban context and post-natal exposure to air pollution. I aim to evaluate the effect of pre-natal exposure to urban air pollution on pre- and post-natal brain structure and function by following 900 pregnant women and their neonates with contrasting levels of pre-natal exposure to air pollutants by: i) establishing a new pregnancy cohort and evaluating brain imaging (pre-natal and neo-natal brain structure, connectivity and function), and post-natal motor and cognitive development; ii) measuring total personal exposure and inhaled dose of air pollutants during specific time-windows of gestation, noise, paternal stress and other stressors, using personal samplers and sensors; iii) detecting nanoparticles in placenta and its vascular function; iv) modelling mathematical causality and mediation, including a replication study in an external cohort. The expected results will create an impulse to implement policy interventions that genuinely protect the health of urban citizens.
Max ERC Funding
2 499 992 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym ALMA
Project Attosecond Control of Light and Matter
Researcher (PI) Anne L'huillier
Host Institution (HI) LUNDS UNIVERSITET
Call Details Advanced Grant (AdG), PE2, ERC-2008-AdG
Summary Attosecond light pulses are generated when an intense laser interacts with a gas target. These pulses are not only short, enabling the study of electronic processes at their natural time scale, but also coherent. The vision of this proposal is to extend temporal coherent control concepts to a completely new regime of time and energy, combining (i) ultrashort pulses (ii) broadband excitation (iii) high photon energy, allowing scientists to reach not only valence but also inner shells in atoms and molecules, and, when needed, (iv) high spatial resolution. We want to explore how elementary electronic processes in atoms, molecules and more complex systems can be controlled by using well designed sequences of attosecond pulses. The research project proposed is organized into four parts: 1. Attosecond control of light leading to controlled sequences of attosecond pulses We will develop techniques to generate sequences of attosecond pulses with a variable number of pulses and controlled carrier-envelope-phase variation between consecutive pulses. 2. Attosecond control of electronic processes in atoms and molecules We will investigate the dynamics and coherence of phenomena induced by attosecond excitation of electron wave packets in various systems and we will explore how they can be controlled by a controlled sequence of ultrashort pulses. 3. Intense attosecond sources to reach the nonlinear regime We will optimize attosecond light sources in a systematic way, including amplification of the radiation by injecting a free electron laser. This will open up the possibility to develop nonlinear measurement and control schemes. 4. Attosecond control in more complex systems, including high spatial resolution We will develop ultrafast microscopy techniques, in order to obtain meaningful temporal information in surface and solid state physics. Two directions will be explored, digital in line microscopic holography and photoemission electron microscopy.
Summary
Attosecond light pulses are generated when an intense laser interacts with a gas target. These pulses are not only short, enabling the study of electronic processes at their natural time scale, but also coherent. The vision of this proposal is to extend temporal coherent control concepts to a completely new regime of time and energy, combining (i) ultrashort pulses (ii) broadband excitation (iii) high photon energy, allowing scientists to reach not only valence but also inner shells in atoms and molecules, and, when needed, (iv) high spatial resolution. We want to explore how elementary electronic processes in atoms, molecules and more complex systems can be controlled by using well designed sequences of attosecond pulses. The research project proposed is organized into four parts: 1. Attosecond control of light leading to controlled sequences of attosecond pulses We will develop techniques to generate sequences of attosecond pulses with a variable number of pulses and controlled carrier-envelope-phase variation between consecutive pulses. 2. Attosecond control of electronic processes in atoms and molecules We will investigate the dynamics and coherence of phenomena induced by attosecond excitation of electron wave packets in various systems and we will explore how they can be controlled by a controlled sequence of ultrashort pulses. 3. Intense attosecond sources to reach the nonlinear regime We will optimize attosecond light sources in a systematic way, including amplification of the radiation by injecting a free electron laser. This will open up the possibility to develop nonlinear measurement and control schemes. 4. Attosecond control in more complex systems, including high spatial resolution We will develop ultrafast microscopy techniques, in order to obtain meaningful temporal information in surface and solid state physics. Two directions will be explored, digital in line microscopic holography and photoemission electron microscopy.
Max ERC Funding
2 250 000 €
Duration
Start date: 2008-12-01, End date: 2013-11-30
Project acronym ANDLICA
Project Anderson Localization of Light by Cold Atoms
Researcher (PI) Robin KAISER
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), PE2, ERC-2018-ADG
Summary I propose to use large clouds of cold Ytterbium atoms to observe Anderson localization of light in three dimensions, which has challenged theoreticians and experimentalists for many decades.
After the prediction by Anderson of a disorder-induced conductor to insulator transition for electrons, light has been proposed as ideal non interacting waves to explore coherent transport properties in the absence of interactions. The development in experiments and theory over the past several years have shown a route towards the experimental realization of this phase transition.
Previous studies on Anderson localization of light using semiconductor powders or dielectric particles have shown that intrinsic material properties, such as absorption or inelastic scattering of light, need to be taken into account in the interpretation of experimental signatures of Anderson localization. Laser-cooled clouds of atoms avoid the problems of samples used so far to study Anderson localization of light. Ab initio theoretical models, available for cold Ytterbium atoms, have shown that the mere high spatial density of the scattering sample is not sufficient to allow for Anderson localization of photons in three dimensions, but that an additional magnetic field or additional disorder on the level shifts can induce a phase transition in three dimensions.
The role of disorder in atom-light interactions has important consequences for the next generation of high precision atomic clocks and quantum memories. By connecting the mesoscopic physics approach to quantum optics and cooperative scattering, this project will allow better control of cold atoms as building blocks of future quantum technologies. Time-resolved transport experiments will connect super- and subradiant assisted transmission with the extended and localized eigenstates of the system.
Having pioneered studies on weak localization and cooperative scattering enables me to diagnostic strong localization of light by cold atoms.
Summary
I propose to use large clouds of cold Ytterbium atoms to observe Anderson localization of light in three dimensions, which has challenged theoreticians and experimentalists for many decades.
After the prediction by Anderson of a disorder-induced conductor to insulator transition for electrons, light has been proposed as ideal non interacting waves to explore coherent transport properties in the absence of interactions. The development in experiments and theory over the past several years have shown a route towards the experimental realization of this phase transition.
Previous studies on Anderson localization of light using semiconductor powders or dielectric particles have shown that intrinsic material properties, such as absorption or inelastic scattering of light, need to be taken into account in the interpretation of experimental signatures of Anderson localization. Laser-cooled clouds of atoms avoid the problems of samples used so far to study Anderson localization of light. Ab initio theoretical models, available for cold Ytterbium atoms, have shown that the mere high spatial density of the scattering sample is not sufficient to allow for Anderson localization of photons in three dimensions, but that an additional magnetic field or additional disorder on the level shifts can induce a phase transition in three dimensions.
The role of disorder in atom-light interactions has important consequences for the next generation of high precision atomic clocks and quantum memories. By connecting the mesoscopic physics approach to quantum optics and cooperative scattering, this project will allow better control of cold atoms as building blocks of future quantum technologies. Time-resolved transport experiments will connect super- and subradiant assisted transmission with the extended and localized eigenstates of the system.
Having pioneered studies on weak localization and cooperative scattering enables me to diagnostic strong localization of light by cold atoms.
Max ERC Funding
2 490 717 €
Duration
Start date: 2019-10-01, End date: 2024-09-30
Project acronym Antivessel-T-Cells
Project Development of Vascular-Disrupting Lymphocyte Therapy for Tumours
Researcher (PI) Georgios Coukos
Host Institution (HI) CENTRE HOSPITALIER UNIVERSITAIRE VAUDOIS
Call Details Advanced Grant (AdG), LS7, ERC-2012-ADG_20120314
Summary T cell engineering with chimeric antigen receptors has opened the door to effective immunotherapy. CARs are fusion genes encoding receptors whose extracellular domain comprises a single chain variable fragment (scFv) antibody that binds to a tumour surface epitope, while the intracellular domain comprises the signalling module of CD3ζ along with powerful costimulatory domains (e.g. CD28 and/or 4-1BB). CARs are a major breakthrough, since they allow bypassing HLA restrictions or loss, and they can incorporate potent costimulatory signals tailored to optimize T cell function. However, solid tumours present challenges, since they are often genetically unstable, and the tumour microenvironment impedes T cell function. The tumour vasculature is a much more stable and accessible target, and its disruption has catastrophic consequences for tumours. Nevertheless, the lack of affinity reagents has impeded progress in this area. The objectives of this proposal are to develop the first potent and safe tumour vascular-disrupting tumour immunotherapy using scFv’s and CARs uniquely available in my laboratory.
I propose to use these innovative CARs to understand for the first time the molecular mechanisms underlying the interactions between anti-vascular CAR-T cells and tumour endothelium, and exploit them to maximize tumour vascular destruction. I also intend to employ innovative engineering approaches to minimize the chance of reactivity against normal vasculature. Lastly, I propose to manipulate the tumour damage mechanisms ensuing anti-vascular therapy, to maximize tumour rejection through immunomodulation. We are poised to elucidate critical interactions between tumour endothelium and anti-vascular T cells, and bring to bear cancer therapy of unparalleled power. The impact of this work could be transforming, given the applicability of tumour-vascular disruption across most common tumour types.
Summary
T cell engineering with chimeric antigen receptors has opened the door to effective immunotherapy. CARs are fusion genes encoding receptors whose extracellular domain comprises a single chain variable fragment (scFv) antibody that binds to a tumour surface epitope, while the intracellular domain comprises the signalling module of CD3ζ along with powerful costimulatory domains (e.g. CD28 and/or 4-1BB). CARs are a major breakthrough, since they allow bypassing HLA restrictions or loss, and they can incorporate potent costimulatory signals tailored to optimize T cell function. However, solid tumours present challenges, since they are often genetically unstable, and the tumour microenvironment impedes T cell function. The tumour vasculature is a much more stable and accessible target, and its disruption has catastrophic consequences for tumours. Nevertheless, the lack of affinity reagents has impeded progress in this area. The objectives of this proposal are to develop the first potent and safe tumour vascular-disrupting tumour immunotherapy using scFv’s and CARs uniquely available in my laboratory.
I propose to use these innovative CARs to understand for the first time the molecular mechanisms underlying the interactions between anti-vascular CAR-T cells and tumour endothelium, and exploit them to maximize tumour vascular destruction. I also intend to employ innovative engineering approaches to minimize the chance of reactivity against normal vasculature. Lastly, I propose to manipulate the tumour damage mechanisms ensuing anti-vascular therapy, to maximize tumour rejection through immunomodulation. We are poised to elucidate critical interactions between tumour endothelium and anti-vascular T cells, and bring to bear cancer therapy of unparalleled power. The impact of this work could be transforming, given the applicability of tumour-vascular disruption across most common tumour types.
Max ERC Funding
2 500 000 €
Duration
Start date: 2013-08-01, End date: 2018-07-31
Project acronym ARTimmune
Project Programmable ARTificial immune systems to fight cancer
Researcher (PI) Carl FIGDOR
Host Institution (HI) STICHTING KATHOLIEKE UNIVERSITEIT
Call Details Advanced Grant (AdG), LS7, ERC-2018-ADG
Summary Immunotherapy has entered centre stage as a novel treatment modality for cancer. Notwithstanding this major step forward, toxicity and immunosuppression remain major obstacles, and illustrate the pressing need for more powerful and specific immunotherapies against cancer. To overcome these roadblocks, in ARTimmune, I propose to follow a radically different approach by developing local rather than systemic immunotherapies. Taking advantage of the architecture of a lymph node (LN), I aim to design fully synthetic immune niches to locally instruct immune cell function. I hypothesize that programmable synthetic immune niches, when injected next to a tumour, will act as local powerhouses to generate bursts of cytotoxic T cells for tumour destruction, without toxic side effects. Single cell transcriptomics on LN, obtained from patients that are vaccinated against cancer, will provide unique insight in communication within immune cell clusters and provide a blueprint for the intelligent design of synthetic immune niches. Chemical tools will be used to build branched polymeric structures decorated with immunomodulating molecules to mimic LN architecture. These will be injected, mixed with sponge-like scaffolds to provide porosity needed for immune cell infiltration. Programming of immune cell function will be accomplished by in vivo targeting- and proteolytic activation- of immunomodulators for fine-tuning, and to extend the life span of these local powerhouses. The innovative character of ARTimmune comes from: 1) novel fundamental immunological insight in complex communication within LN cell clusters, 2) a revolutionary new approach in immunotherapy, by the development of 3) injectable- and 4) programmable- synthetic immune niches by state-of-the-art chemical technology. When successful, it will revolutionize cancer immunotherapy, moving from maximal tolerable dose systemic treatment with significant toxicity to local low dose treatment in the direct vicinity of a tumour
Summary
Immunotherapy has entered centre stage as a novel treatment modality for cancer. Notwithstanding this major step forward, toxicity and immunosuppression remain major obstacles, and illustrate the pressing need for more powerful and specific immunotherapies against cancer. To overcome these roadblocks, in ARTimmune, I propose to follow a radically different approach by developing local rather than systemic immunotherapies. Taking advantage of the architecture of a lymph node (LN), I aim to design fully synthetic immune niches to locally instruct immune cell function. I hypothesize that programmable synthetic immune niches, when injected next to a tumour, will act as local powerhouses to generate bursts of cytotoxic T cells for tumour destruction, without toxic side effects. Single cell transcriptomics on LN, obtained from patients that are vaccinated against cancer, will provide unique insight in communication within immune cell clusters and provide a blueprint for the intelligent design of synthetic immune niches. Chemical tools will be used to build branched polymeric structures decorated with immunomodulating molecules to mimic LN architecture. These will be injected, mixed with sponge-like scaffolds to provide porosity needed for immune cell infiltration. Programming of immune cell function will be accomplished by in vivo targeting- and proteolytic activation- of immunomodulators for fine-tuning, and to extend the life span of these local powerhouses. The innovative character of ARTimmune comes from: 1) novel fundamental immunological insight in complex communication within LN cell clusters, 2) a revolutionary new approach in immunotherapy, by the development of 3) injectable- and 4) programmable- synthetic immune niches by state-of-the-art chemical technology. When successful, it will revolutionize cancer immunotherapy, moving from maximal tolerable dose systemic treatment with significant toxicity to local low dose treatment in the direct vicinity of a tumour
Max ERC Funding
2 500 000 €
Duration
Start date: 2019-11-01, End date: 2024-10-31
Project acronym ASTEX
Project Attosecond Science by Transmission and Emission of X-rays
Researcher (PI) Jonathan Philip Marangos
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Call Details Advanced Grant (AdG), PE2, ERC-2011-ADG_20110209
Summary "This is a programme of advanced research with potential for high scientific impact and applications to areas of great strategic importance such as renewable energy and biomolecular technology. The aim is to develop and apply a combination of cutting-edge tools to observe and understand dynamics in molecules and condensed phase matter with attosecond temporal and nanometre spatial resolutions. The programme, will exploit two new types of measurements that my group have already begun to develop: high harmonic generation (HHG) spectroscopy and attosecond absorption pump-probe spectroscopy, and will apply them to the measurement of attosecond electron dynamics in large molecules and the condensed phase. These methods rely upon the emission and transmission of soft X-ray attosecond fields that make accessible measurement not only of larger molecules in the gas phase but also thin (micron to nanometre) samples in the condensed phase. This is a research project that will open new frontiers both experimentally and theoretically. The challenge of this research is high and will be met by a concerted programme that is well matched to my teams experimental and theoretical expertise in attosecond physics, ultrafast intense-field science, soft X-ray techniques and advanced techniques for creating gaseous and condensed phase samples."
Summary
"This is a programme of advanced research with potential for high scientific impact and applications to areas of great strategic importance such as renewable energy and biomolecular technology. The aim is to develop and apply a combination of cutting-edge tools to observe and understand dynamics in molecules and condensed phase matter with attosecond temporal and nanometre spatial resolutions. The programme, will exploit two new types of measurements that my group have already begun to develop: high harmonic generation (HHG) spectroscopy and attosecond absorption pump-probe spectroscopy, and will apply them to the measurement of attosecond electron dynamics in large molecules and the condensed phase. These methods rely upon the emission and transmission of soft X-ray attosecond fields that make accessible measurement not only of larger molecules in the gas phase but also thin (micron to nanometre) samples in the condensed phase. This is a research project that will open new frontiers both experimentally and theoretically. The challenge of this research is high and will be met by a concerted programme that is well matched to my teams experimental and theoretical expertise in attosecond physics, ultrafast intense-field science, soft X-ray techniques and advanced techniques for creating gaseous and condensed phase samples."
Max ERC Funding
2 344 390 €
Duration
Start date: 2012-04-01, End date: 2017-03-31
Project acronym AsthmaPhenotypes
Project Understanding asthma phenotypes: going beyond the atopic/non-atopic paradigm
Researcher (PI) Neil Pearce
Host Institution (HI) LONDON SCHOOL OF HYGIENE AND TROPICAL MEDICINE ROYAL CHARTER
Call Details Advanced Grant (AdG), LS7, ERC-2014-ADG
Summary Fifteen years ago it was widely believed that asthma was an allergic/atopic disease caused by allergen exposure in infancy; this produced atopic sensitization and continued exposure resulted in eosinophilic airways inflammation, bronchial hyper-responsiveness and reversible airflow obstruction. It is now clear that this model is at best incomplete. Less than one-half of asthma cases involve allergic (atopic) mechanisms, and most asthma in low-and-middle income countries is non-atopic. Westernization may be contributing to the global increases in asthma prevalence, but this process appears to involve changes in asthma susceptibility rather than increased exposure to “established” asthma risk factors. Understanding why these changes are occurring is essential in order to halt the growing global asthma epidemic.This will require a combination of epidemiological, clinical and basic science studies in a variety of environments.
A key task is to reclassify asthma phenotypes. These are important to: (i) better understand the aetiological mechanisms of asthma; (ii) identify new causes; and (iii) identify new therapeutic measures. There are major opportunities to address these issues using new techniques for sample collection from the airways (sputum induction, nasal lavage), new methods of analysis (microbiome, epigenetics), and new bioinformatics methods for integrating data from multiple sources and levels. There is an unprecedented potential to go beyond the old atopic/non-atopic categorization of phenotypes.
I will therefore conduct analyses to re-examine and reclassify asthma phenotypes. The key features are the inclusion of: (i) both high and low prevalence centres from both high income countries and low-and-middle income countries; (ii) much more detailed biomarker information than has been used for previous studies of asthma phenotypes; and (iii) new bioinformatics methods for integrating data from multiple sources and levels.
Summary
Fifteen years ago it was widely believed that asthma was an allergic/atopic disease caused by allergen exposure in infancy; this produced atopic sensitization and continued exposure resulted in eosinophilic airways inflammation, bronchial hyper-responsiveness and reversible airflow obstruction. It is now clear that this model is at best incomplete. Less than one-half of asthma cases involve allergic (atopic) mechanisms, and most asthma in low-and-middle income countries is non-atopic. Westernization may be contributing to the global increases in asthma prevalence, but this process appears to involve changes in asthma susceptibility rather than increased exposure to “established” asthma risk factors. Understanding why these changes are occurring is essential in order to halt the growing global asthma epidemic.This will require a combination of epidemiological, clinical and basic science studies in a variety of environments.
A key task is to reclassify asthma phenotypes. These are important to: (i) better understand the aetiological mechanisms of asthma; (ii) identify new causes; and (iii) identify new therapeutic measures. There are major opportunities to address these issues using new techniques for sample collection from the airways (sputum induction, nasal lavage), new methods of analysis (microbiome, epigenetics), and new bioinformatics methods for integrating data from multiple sources and levels. There is an unprecedented potential to go beyond the old atopic/non-atopic categorization of phenotypes.
I will therefore conduct analyses to re-examine and reclassify asthma phenotypes. The key features are the inclusion of: (i) both high and low prevalence centres from both high income countries and low-and-middle income countries; (ii) much more detailed biomarker information than has been used for previous studies of asthma phenotypes; and (iii) new bioinformatics methods for integrating data from multiple sources and levels.
Max ERC Funding
2 348 803 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym AtomicGaugeSimulator
Project Classical and Atomic Quantum Simulation of Gauge Theories in Particle and Condensed Matter Physics
Researcher (PI) Uwe-Jens Richard Christian Wiese
Host Institution (HI) UNIVERSITAET BERN
Call Details Advanced Grant (AdG), PE2, ERC-2013-ADG
Summary Gauge theories play a central role in particle and condensed matter physics. Heavy-ion collisions explore the strong dynamics of quarks and gluons, which also governs the deep interior of neutron stars, while strongly correlated electrons determine the physics of high-temperature superconductors and spin liquids. Numerical simulations of such systems are often hindered by sign problems. In quantum link models - an alternative formulation of gauge theories developed by the applicant - gauge fields emerge from discrete quantum variables. In the past year, in close collaboration with atomic physicists, we have established quantum link models as a framework for the atomic quantum simulation of dynamical gauge fields. Abelian gauge theories can be realized with Bose-Fermi mixtures of ultracold atoms in an optical lattice, while non-Abelian gauge fields arise from fermionic constituents embodied by alkaline-earth atoms. Quantum simulators, which do not suffer from the sign problem, shall be constructed to address non-trivial dynamics, including quantum phase transitions in spin liquids, the real-time dynamics of confining strings as well as of chiral symmetry restoration at finite temperature and baryon density, baryon superfluidity, or color-flavor locking. New classical simulation algorithms shall be developed in order to solve severe sign problems, to investigate confining gauge theories, and to validate the proposed quantum simulators. Starting from U(1) and SU(2) gauge theories, an atomic physics tool box shall be developed for quantum simulation of gauge theories of increasing complexity, ultimately aiming at 4-d Quantum Chromodynamics (QCD). This project is based on innovative ideas from particle, condensed matter, and computational physics, and requires an interdisciplinary team of researchers. It has the potential to drastically increase the power of simulations and to address very challenging problems that cannot be solved with classical simulation methods.
Summary
Gauge theories play a central role in particle and condensed matter physics. Heavy-ion collisions explore the strong dynamics of quarks and gluons, which also governs the deep interior of neutron stars, while strongly correlated electrons determine the physics of high-temperature superconductors and spin liquids. Numerical simulations of such systems are often hindered by sign problems. In quantum link models - an alternative formulation of gauge theories developed by the applicant - gauge fields emerge from discrete quantum variables. In the past year, in close collaboration with atomic physicists, we have established quantum link models as a framework for the atomic quantum simulation of dynamical gauge fields. Abelian gauge theories can be realized with Bose-Fermi mixtures of ultracold atoms in an optical lattice, while non-Abelian gauge fields arise from fermionic constituents embodied by alkaline-earth atoms. Quantum simulators, which do not suffer from the sign problem, shall be constructed to address non-trivial dynamics, including quantum phase transitions in spin liquids, the real-time dynamics of confining strings as well as of chiral symmetry restoration at finite temperature and baryon density, baryon superfluidity, or color-flavor locking. New classical simulation algorithms shall be developed in order to solve severe sign problems, to investigate confining gauge theories, and to validate the proposed quantum simulators. Starting from U(1) and SU(2) gauge theories, an atomic physics tool box shall be developed for quantum simulation of gauge theories of increasing complexity, ultimately aiming at 4-d Quantum Chromodynamics (QCD). This project is based on innovative ideas from particle, condensed matter, and computational physics, and requires an interdisciplinary team of researchers. It has the potential to drastically increase the power of simulations and to address very challenging problems that cannot be solved with classical simulation methods.
Max ERC Funding
1 975 242 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym Attoclock
Project Clocking fundamental attosecond electron dynamics
Researcher (PI) Ursula Keller
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Advanced Grant (AdG), PE2, ERC-2012-ADG_20120216
Summary The attoclock is a powerful, new, and unconventional tool to study fundamental attosecond dynamics on an atomic scale. We established its potential by using the first attoclock to measure the tunneling delay time in laser-induced ionization of helium and argon atoms, with surprising results. Building on these first proof-of-principle measurements, I propose to amplify and expand this tool concept to explore the following key questions: How fast can light liberate electrons from a single atom, a single molecule, or a solid-state system? Related are more questions: How fast can an electron tunnel through a potential barrier? How fast is a multi-photon absorption process? How fast is single-photon photoemission? Many of these questions will undoubtedly spark more questions – revealing deeper and more detailed insights on the dynamics of some of the most fundamental and relevant optoelectronic processes.
There are still many unknown and unexplored areas here. Theory has failed to offer definitive answers. Simulations based on the exact time-dependent Schrödinger equation have not been possible in most cases. Therefore one uses approximations and simpler models to capture the essential physics. Such semi-classical models potentially will help to understand attosecond energy and charge transport in larger molecular systems. Indeed the attoclock provides a unique tool to explore different semi-classical models.
For example, the question of whether electron tunneling through an energetically forbidden region takes a finite time or is instantaneous has been subject to ongoing debate for the last sixty years. The tunnelling process, charge transfer, and energy transport all play key roles in electronics, energy conversion, chemical and biological reactions, and fundamental processes important for improved information, health, and energy technologies. We believe the attoclock can help refine and resolve key models for many of these important underlying attosecond processes.
Summary
The attoclock is a powerful, new, and unconventional tool to study fundamental attosecond dynamics on an atomic scale. We established its potential by using the first attoclock to measure the tunneling delay time in laser-induced ionization of helium and argon atoms, with surprising results. Building on these first proof-of-principle measurements, I propose to amplify and expand this tool concept to explore the following key questions: How fast can light liberate electrons from a single atom, a single molecule, or a solid-state system? Related are more questions: How fast can an electron tunnel through a potential barrier? How fast is a multi-photon absorption process? How fast is single-photon photoemission? Many of these questions will undoubtedly spark more questions – revealing deeper and more detailed insights on the dynamics of some of the most fundamental and relevant optoelectronic processes.
There are still many unknown and unexplored areas here. Theory has failed to offer definitive answers. Simulations based on the exact time-dependent Schrödinger equation have not been possible in most cases. Therefore one uses approximations and simpler models to capture the essential physics. Such semi-classical models potentially will help to understand attosecond energy and charge transport in larger molecular systems. Indeed the attoclock provides a unique tool to explore different semi-classical models.
For example, the question of whether electron tunneling through an energetically forbidden region takes a finite time or is instantaneous has been subject to ongoing debate for the last sixty years. The tunnelling process, charge transfer, and energy transport all play key roles in electronics, energy conversion, chemical and biological reactions, and fundamental processes important for improved information, health, and energy technologies. We believe the attoclock can help refine and resolve key models for many of these important underlying attosecond processes.
Max ERC Funding
2 319 796 €
Duration
Start date: 2013-03-01, End date: 2018-02-28
Project acronym AVATAR
Project Integrating Genomics and Avatar Mouse Models to Personalize Pancreatic Cancer Treatment
Researcher (PI) Manuel HIDALGO MEDINA
Host Institution (HI) HOSPITAL UNIVERSITARIO DE FUENLABRADA
Call Details Advanced Grant (AdG), LS7, ERC-2014-ADG
Summary The prognosis of patients with metastatic pancreatic cancer (PDAC) is very poor. Recent studies have started to elucidate the genetic landscape of this disease to show that PDAC is a genetically complex, unstable, and heterogeneous cancer. However, in-depth analysis of individual patient genomes couple with personalize Avatar mouse models is providing highly effective therapeutic opportunities for the individual patient. Thus, metastatic PDAC appears a candidate disease to implement a genomics-base, personalized treatment approach. In this project, we will conduct an open label, multicenter, randomized phase III study in patients with standard of care resistant metastatic pancreatic cancer aiming to test the hypothesis that an integrated personalized treatment approach improves survival compare to a conventional treatment. Patients randomized to the personalize treatment arm will undergo a biopsy of a metastatic lesion to perform a targeted genome analysis using next generation sequencing. In addition, we will generate a personalize Avatar mouse model from the same patient. We will employ sophisticated bioinformatic analysis as well as mining of drug response-genetic databases to select, for each individual patient, candidate therapeutic targets that will be experimentally tested in the patient´s Avatar model to select the most effective regimen that will ultimately applied to the patient. In addition, based on the genomic data, we will design an individualized monitoring plan for each patient using BEAMing technology to monitor circulating levels of mutated genes. Furthermore, with a discovery goal, we will perform in depth genomic analysis of metastatic PDAC lesions in this cohort of clinically well-annotated patients with Avatar mouse models for therapeutic validation. Overall we expect this work will contribute to our understanding of PDAC and will favourably impact the treatment of this dismal cancer.
Summary
The prognosis of patients with metastatic pancreatic cancer (PDAC) is very poor. Recent studies have started to elucidate the genetic landscape of this disease to show that PDAC is a genetically complex, unstable, and heterogeneous cancer. However, in-depth analysis of individual patient genomes couple with personalize Avatar mouse models is providing highly effective therapeutic opportunities for the individual patient. Thus, metastatic PDAC appears a candidate disease to implement a genomics-base, personalized treatment approach. In this project, we will conduct an open label, multicenter, randomized phase III study in patients with standard of care resistant metastatic pancreatic cancer aiming to test the hypothesis that an integrated personalized treatment approach improves survival compare to a conventional treatment. Patients randomized to the personalize treatment arm will undergo a biopsy of a metastatic lesion to perform a targeted genome analysis using next generation sequencing. In addition, we will generate a personalize Avatar mouse model from the same patient. We will employ sophisticated bioinformatic analysis as well as mining of drug response-genetic databases to select, for each individual patient, candidate therapeutic targets that will be experimentally tested in the patient´s Avatar model to select the most effective regimen that will ultimately applied to the patient. In addition, based on the genomic data, we will design an individualized monitoring plan for each patient using BEAMing technology to monitor circulating levels of mutated genes. Furthermore, with a discovery goal, we will perform in depth genomic analysis of metastatic PDAC lesions in this cohort of clinically well-annotated patients with Avatar mouse models for therapeutic validation. Overall we expect this work will contribute to our understanding of PDAC and will favourably impact the treatment of this dismal cancer.
Max ERC Funding
2 498 688 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym AXION
Project Axions: From Heaven to Earth
Researcher (PI) Frank Wilczek
Host Institution (HI) STOCKHOLMS UNIVERSITET
Call Details Advanced Grant (AdG), PE2, ERC-2016-ADG
Summary Axions are hypothetical particles whose existence would solve two major problems: the strong P, T problem (a major blemish on the standard model); and the dark matter problem. It is a most important goal to either observe or rule out the existence of a cosmic axion background. It appears that decisive observations may be possible, but only after orchestrating insight from specialities ranging from quantum field theory and astrophysical modeling to ultra-low noise quantum measurement theory. Detailed predictions for the magnitude and structure of the cosmic axion background depend on cosmological and astrophysical modeling, which can be constrained by theoretical insight and numerical simulation. In parallel, we must optimize strategies for extracting accessible signals from that very weakly interacting source.
While the existence of axions as fundamental particles remains hypothetical, the equations governing how axions interact with electromagnetic fields also govern (with different parameters) how certain materials interact with electromagnetic fields. Thus those materials embody “emergent” axions. The equations have remarkable properties, which one can test in these materials, and possibly put to practical use.
Closely related to axions, mathematically, are anyons. Anyons are particle-like excitations that elude the familiar classification into bosons and fermions. Theoretical and numerical studies indicate that they are common emergent features of highly entangled states of matter in two dimensions. Recent work suggests the existence of states of matter, both natural and engineered, in which anyon dynamics is both important and experimentally accessible. Since the equations for anyons and axions are remarkably similar, and both have common, deep roots in symmetry and topology, it will be fruitful to consider them together.
Summary
Axions are hypothetical particles whose existence would solve two major problems: the strong P, T problem (a major blemish on the standard model); and the dark matter problem. It is a most important goal to either observe or rule out the existence of a cosmic axion background. It appears that decisive observations may be possible, but only after orchestrating insight from specialities ranging from quantum field theory and astrophysical modeling to ultra-low noise quantum measurement theory. Detailed predictions for the magnitude and structure of the cosmic axion background depend on cosmological and astrophysical modeling, which can be constrained by theoretical insight and numerical simulation. In parallel, we must optimize strategies for extracting accessible signals from that very weakly interacting source.
While the existence of axions as fundamental particles remains hypothetical, the equations governing how axions interact with electromagnetic fields also govern (with different parameters) how certain materials interact with electromagnetic fields. Thus those materials embody “emergent” axions. The equations have remarkable properties, which one can test in these materials, and possibly put to practical use.
Closely related to axions, mathematically, are anyons. Anyons are particle-like excitations that elude the familiar classification into bosons and fermions. Theoretical and numerical studies indicate that they are common emergent features of highly entangled states of matter in two dimensions. Recent work suggests the existence of states of matter, both natural and engineered, in which anyon dynamics is both important and experimentally accessible. Since the equations for anyons and axions are remarkably similar, and both have common, deep roots in symmetry and topology, it will be fruitful to consider them together.
Max ERC Funding
2 324 391 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym BARCODE
Project The use of genetic profiling to guide prostate cancer targeted screening and cancer care
Researcher (PI) Rosalind Anne Eeles
Host Institution (HI) THE INSTITUTE OF CANCER RESEARCH: ROYAL CANCER HOSPITAL
Call Details Advanced Grant (AdG), LS7, ERC-2013-ADG
Summary "Prostate cancer is the commonest solid cancer in men in the European Community. There is evidence for genetic predisposition to the development of prostate cancer and our group has found the largest number of such genetic variants described to date worldwide. The next challenge is to harness these discoveries to advance the clinical care of populations and prostate cancer patients to improve screening and target treatments. This proposal, BARCODE, aims to be ground-breaking in this area. BARCODE has two components (1) to profile a population in England using the current 77 genetic variant profile and compare screening outcomes with those from population based screening studies to determine if genetics can target screening more effectively in this disease by identifying prostate cancer that more often needs treatment and (2) genetically profiling men with prostate cancer in the uro-oncology clinic for a panel of genes which predict for worse outcome so that these men can be offered more intensive staging and treatment within clinical trials. This will use next generation sequencing technology using a barcoding system which we have developed to speed up throughput and reduce costs. The PI will spend 35% of her time on this project and she will not charge for her time spent on this grant as she is funded by The University of London UK. The research team at The Institute Of Cancer Research, London, UK is a multidisciplinary team which leads the field of genetic predisposition to prostate cancer and its clinical application and so is well placed to deliver on this research. This application will have a dramatic impact on other researchers as it is ground –breaking and state of the art in its application of genetic findings to public health and cancer care. It will therefore influence the work being undertaken in both these areas to integrate genetic profiling and gene panel analysis into population screening and cancer care respectively."
Summary
"Prostate cancer is the commonest solid cancer in men in the European Community. There is evidence for genetic predisposition to the development of prostate cancer and our group has found the largest number of such genetic variants described to date worldwide. The next challenge is to harness these discoveries to advance the clinical care of populations and prostate cancer patients to improve screening and target treatments. This proposal, BARCODE, aims to be ground-breaking in this area. BARCODE has two components (1) to profile a population in England using the current 77 genetic variant profile and compare screening outcomes with those from population based screening studies to determine if genetics can target screening more effectively in this disease by identifying prostate cancer that more often needs treatment and (2) genetically profiling men with prostate cancer in the uro-oncology clinic for a panel of genes which predict for worse outcome so that these men can be offered more intensive staging and treatment within clinical trials. This will use next generation sequencing technology using a barcoding system which we have developed to speed up throughput and reduce costs. The PI will spend 35% of her time on this project and she will not charge for her time spent on this grant as she is funded by The University of London UK. The research team at The Institute Of Cancer Research, London, UK is a multidisciplinary team which leads the field of genetic predisposition to prostate cancer and its clinical application and so is well placed to deliver on this research. This application will have a dramatic impact on other researchers as it is ground –breaking and state of the art in its application of genetic findings to public health and cancer care. It will therefore influence the work being undertaken in both these areas to integrate genetic profiling and gene panel analysis into population screening and cancer care respectively."
Max ERC Funding
2 499 123 €
Duration
Start date: 2014-10-01, End date: 2019-09-30
Project acronym Bio-Phononics
Project Advanced Microfluidics & Diagnostics using Acoustic Holograms – Bio-Phononics
Researcher (PI) Jonathan Cooper
Host Institution (HI) UNIVERSITY OF GLASGOW
Call Details Advanced Grant (AdG), LS7, ERC-2013-ADG
Summary This proposal seeks to develop a novel technique for fluid and particle manipulations, based upon exploiting the mechanical interactions between acoustic waves and phononic. The new platform involves generating surface acoustic waves (SAWs) on piezoelectric chips, but, unlike previous work, the ultrasonic waves are first coupled into a phononic lattice, which is placed in the path of the ultrasonic wave. The phononic lattice comprises a miniaturised array of mechanical elements which modulates the sound in a manner analogous to how light is “patterned” using a hologram. However, whilst in an optical hologram, the pattern is created by exploiting the differences in refractive indices of the elements of the structure, here the ultrasonic field is modulated both by the elastic contrast between the elements in the array, as well as by the dimensions of the array and its surrounding matrix (including the size and pitch of the features within the array). The result of passing the acoustic wave through a phononic crystal is the formation of new and complex ultrasonic landscapes.
As part of the proposed work we aim to understand the physics of this technology and to exploit its development in a range of medical devices. We will show that by using phononic crystals it is possible to create highly controllable patterns of acoustic field intensities, which propagate into the fluid, creating pressure differences that result in unique flow patterns to enable a new platform for including biological sample processing, medical diagnostics, drug delivery and blood clotting devices – all on low cost disposable devices. Different frequencies of ultrasound will interact with different phononic structures to give different functions, providing a toolbox of different functions. Just as in electronics, where discrete components are combined to create circuits, so we propose to combine different phononic lattices to create fluidic microcircuits with important new applications.
Summary
This proposal seeks to develop a novel technique for fluid and particle manipulations, based upon exploiting the mechanical interactions between acoustic waves and phononic. The new platform involves generating surface acoustic waves (SAWs) on piezoelectric chips, but, unlike previous work, the ultrasonic waves are first coupled into a phononic lattice, which is placed in the path of the ultrasonic wave. The phononic lattice comprises a miniaturised array of mechanical elements which modulates the sound in a manner analogous to how light is “patterned” using a hologram. However, whilst in an optical hologram, the pattern is created by exploiting the differences in refractive indices of the elements of the structure, here the ultrasonic field is modulated both by the elastic contrast between the elements in the array, as well as by the dimensions of the array and its surrounding matrix (including the size and pitch of the features within the array). The result of passing the acoustic wave through a phononic crystal is the formation of new and complex ultrasonic landscapes.
As part of the proposed work we aim to understand the physics of this technology and to exploit its development in a range of medical devices. We will show that by using phononic crystals it is possible to create highly controllable patterns of acoustic field intensities, which propagate into the fluid, creating pressure differences that result in unique flow patterns to enable a new platform for including biological sample processing, medical diagnostics, drug delivery and blood clotting devices – all on low cost disposable devices. Different frequencies of ultrasound will interact with different phononic structures to give different functions, providing a toolbox of different functions. Just as in electronics, where discrete components are combined to create circuits, so we propose to combine different phononic lattices to create fluidic microcircuits with important new applications.
Max ERC Funding
2 208 594 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym BIOMECHTOOLS
Project Biomechanical diagnostic, pre-planning and outcome tools to improve musculoskeletal surgery
Researcher (PI) Nicolaas Verdonschot
Host Institution (HI) STICHTING KATHOLIEKE UNIVERSITEIT
Call Details Advanced Grant (AdG), LS7, ERC-2012-ADG_20120314
Summary The aetiology of many musculoskeletal (MS) diseases is related to biomechanical factors. However, the tools to assess the biomechanical condition of patients used by clinicians and researchers are often crude and subjective leading to non-optimal patient analyses and care. In this project innovations related to imaging, sensor technology and biomechanical modelling are utilized to generate versatile, accurate and objective methods to quantify the (pathological) MS condition of the lower extremity of patients in a unique manner. The project will produce advanced diagnostic, pre-planning and outcome tools which allow clinicians and researchers for detailed biomechanical analysis about abnormal tissue deformations, pathological loading of the joints, abnormal stresses in the hard and soft tissues, and aberrant joint kinematics.
The key objectives of this proposal are:
1) Develop and validate image-based 3-D volumetric elastographic diagnostic methods that can quantify normal and pathological conditions under dynamic loading and which can be linked to biomechanical modelling tools.
2) Create an ultrasound (US)-based system to assess internal joint kinematics which can be used as a diagnostic tool for clinicians and researchers and is a validation tool for biomechanical modelling.
3) Generate and validate an ambulant functional (force and kinematic) diagnostic system which is easy to use and which can be used to provide input data for biomechanical models.
4) Create and validate a new modelling approach that integrates muscle-models with finite element models at a highly personalized level.
5) Generate biomechanical models which have personalized mechanical properties of the hard and soft tissues.
6) Demonstrate the applicability of the personalized diagnostic and pre-planning platform by application to healthy individuals and patient subjects.
Support from the ERC will open new research fields related to biomechanical patient assessment and modeling of MS pathologies.
Summary
The aetiology of many musculoskeletal (MS) diseases is related to biomechanical factors. However, the tools to assess the biomechanical condition of patients used by clinicians and researchers are often crude and subjective leading to non-optimal patient analyses and care. In this project innovations related to imaging, sensor technology and biomechanical modelling are utilized to generate versatile, accurate and objective methods to quantify the (pathological) MS condition of the lower extremity of patients in a unique manner. The project will produce advanced diagnostic, pre-planning and outcome tools which allow clinicians and researchers for detailed biomechanical analysis about abnormal tissue deformations, pathological loading of the joints, abnormal stresses in the hard and soft tissues, and aberrant joint kinematics.
The key objectives of this proposal are:
1) Develop and validate image-based 3-D volumetric elastographic diagnostic methods that can quantify normal and pathological conditions under dynamic loading and which can be linked to biomechanical modelling tools.
2) Create an ultrasound (US)-based system to assess internal joint kinematics which can be used as a diagnostic tool for clinicians and researchers and is a validation tool for biomechanical modelling.
3) Generate and validate an ambulant functional (force and kinematic) diagnostic system which is easy to use and which can be used to provide input data for biomechanical models.
4) Create and validate a new modelling approach that integrates muscle-models with finite element models at a highly personalized level.
5) Generate biomechanical models which have personalized mechanical properties of the hard and soft tissues.
6) Demonstrate the applicability of the personalized diagnostic and pre-planning platform by application to healthy individuals and patient subjects.
Support from the ERC will open new research fields related to biomechanical patient assessment and modeling of MS pathologies.
Max ERC Funding
2 456 400 €
Duration
Start date: 2013-05-01, End date: 2018-04-30
Project acronym BrainBIT
Project All-optical brain-to-brain behaviour and information transfer
Researcher (PI) Francesco PAVONE
Host Institution (HI) UNIVERSITA DEGLI STUDI DI FIRENZE
Call Details Advanced Grant (AdG), PE2, ERC-2015-AdG
Summary Exchange of information between different brains usually takes place through the interaction between bodies and the external environment. The ultimate goal of this project is to establish a novel paradigm of brain-to-brain communication based on direct full-optical recording and controlled stimulation of neuronal activity in different subjects. To pursue this challenging objective, we propose to develop optical technologies well beyond the state of the art for simultaneous neuronal “reading” and “writing” across large volumes and with high spatial and temporal resolution, targeted to the transfer of advantageous behaviour in physiological and pathological conditions.
We will perform whole-brain high-resolution imaging in zebrafish larvae to disentangle the activity patterns related to different tasks. We will then use these patterns as stimulation templates in other larvae to investigate spatio-temporal subject-invariant signatures of specific behavioural states. This ‘pump and probe’ strategy will allow gaining deep insights into the complex relationship between neuronal activity and subject behaviour.
To move towards clinics-oriented studies on brain stimulation therapies, we will complement whole-brain experiments in zebrafish with large area functional imaging and optostimulation in mammals. We will investigate all-optical brain-to-brain information transfer to boost an advantageous behaviour, i.e. motor recovery, in a mouse model of stroke. Mice showing more effective responses to rehabilitation will provide neuronal activity templates to be elicited in other animals, in order to increase rehabilitation efficiency.
We strongly believe that the implementation of new technologies for all-optical transfer of behaviour between different subjects will offer unprecedented views of neuronal activity in healthy and injured brain, paving the way to more effective brain stimulation therapies.
Summary
Exchange of information between different brains usually takes place through the interaction between bodies and the external environment. The ultimate goal of this project is to establish a novel paradigm of brain-to-brain communication based on direct full-optical recording and controlled stimulation of neuronal activity in different subjects. To pursue this challenging objective, we propose to develop optical technologies well beyond the state of the art for simultaneous neuronal “reading” and “writing” across large volumes and with high spatial and temporal resolution, targeted to the transfer of advantageous behaviour in physiological and pathological conditions.
We will perform whole-brain high-resolution imaging in zebrafish larvae to disentangle the activity patterns related to different tasks. We will then use these patterns as stimulation templates in other larvae to investigate spatio-temporal subject-invariant signatures of specific behavioural states. This ‘pump and probe’ strategy will allow gaining deep insights into the complex relationship between neuronal activity and subject behaviour.
To move towards clinics-oriented studies on brain stimulation therapies, we will complement whole-brain experiments in zebrafish with large area functional imaging and optostimulation in mammals. We will investigate all-optical brain-to-brain information transfer to boost an advantageous behaviour, i.e. motor recovery, in a mouse model of stroke. Mice showing more effective responses to rehabilitation will provide neuronal activity templates to be elicited in other animals, in order to increase rehabilitation efficiency.
We strongly believe that the implementation of new technologies for all-optical transfer of behaviour between different subjects will offer unprecedented views of neuronal activity in healthy and injured brain, paving the way to more effective brain stimulation therapies.
Max ERC Funding
2 370 250 €
Duration
Start date: 2016-12-01, End date: 2021-11-30
Project acronym BrainDrain
Project Translational implications of the discovery of brain-draining lymphatics
Researcher (PI) Kari ALITALO
Host Institution (HI) HELSINGIN YLIOPISTO
Call Details Advanced Grant (AdG), LS7, ERC-2016-ADG
Summary In 2010, 800 billion Euros was spent on brain diseases in Europe and the cost is expected to increase due to the aging population. – Here I propose to exploit our new discovery for research to alleviate this disease burden. In work selected by Nature Medicine among the top 10 ”Notable Advances” and by Science as one of the 10 ”Breakthroughs of the year” 2015, we discovered a meningeal lymphatic vascular system that serves brain homeostasis. We want to reassess current concepts about cerebrovascular dynamics, fluid drainage and cellular trafficking in physiological conditions, in Alzheimer’s disease mouse models and in human postmortem tissues. First, we will study the development and properties of meningeal lymphatics and how they are sustained during aging. We then want to analyse the clearance of macromolecules and protein aggregates in Alzheimer’s disease in mice that lack the newly discovered meningeal lymphatic drainage system. We will study if growth factor-mediated expansion of lymphatic vessels alleviates the parenchymal accumulation of neurotoxic amyloid beta and pathogenesis of Alzheimer’s disease and brain damage after traumatic brain injury. We will further analyse the role of lymphangiogenic growth factors and lymphatic vessels in brain solute clearance, immune cell trafficking and in a mouse model of multiple sclerosis. The meningeal lymphatics could be involved in a number of neurodegenerative and neuroinflammatory diseases of considerable human and socioeconomic burden. Several of our previous concepts have already been translated to clinical development and we aim to develop proof-of-principle therapeutic concepts in this project. I feel that we are just now in a unique position to advance frontline European translational biomedical research in this suddenly emerging field, which has received great attention worldwide.
Summary
In 2010, 800 billion Euros was spent on brain diseases in Europe and the cost is expected to increase due to the aging population. – Here I propose to exploit our new discovery for research to alleviate this disease burden. In work selected by Nature Medicine among the top 10 ”Notable Advances” and by Science as one of the 10 ”Breakthroughs of the year” 2015, we discovered a meningeal lymphatic vascular system that serves brain homeostasis. We want to reassess current concepts about cerebrovascular dynamics, fluid drainage and cellular trafficking in physiological conditions, in Alzheimer’s disease mouse models and in human postmortem tissues. First, we will study the development and properties of meningeal lymphatics and how they are sustained during aging. We then want to analyse the clearance of macromolecules and protein aggregates in Alzheimer’s disease in mice that lack the newly discovered meningeal lymphatic drainage system. We will study if growth factor-mediated expansion of lymphatic vessels alleviates the parenchymal accumulation of neurotoxic amyloid beta and pathogenesis of Alzheimer’s disease and brain damage after traumatic brain injury. We will further analyse the role of lymphangiogenic growth factors and lymphatic vessels in brain solute clearance, immune cell trafficking and in a mouse model of multiple sclerosis. The meningeal lymphatics could be involved in a number of neurodegenerative and neuroinflammatory diseases of considerable human and socioeconomic burden. Several of our previous concepts have already been translated to clinical development and we aim to develop proof-of-principle therapeutic concepts in this project. I feel that we are just now in a unique position to advance frontline European translational biomedical research in this suddenly emerging field, which has received great attention worldwide.
Max ERC Funding
2 420 429 €
Duration
Start date: 2017-08-01, End date: 2022-07-31
Project acronym BRCA-ERC
Project Understanding cancer development in BRCA 1/2 mutation carriers for improved Early detection and Risk Control
Researcher (PI) Martin WIDSCHWENDTER
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Advanced Grant (AdG), LS7, ERC-2016-ADG
Summary Recent evidence demonstrates that cancer is overtaking cardiovascular disease as the number one cause of mortality in Europe. This is largely due to the lack of preventative measures for common (e.g. breast) or highly fatal (e.g. ovarian) human cancers. Most cancers are multifactorial in origin. The core hypothesis of this research programme is that the extremely high risk of BRCA1/2 germline mutation carriers to develop breast and ovarian cancer is a net consequence of cell-autonomous (direct effect of BRCA mutation in cells at risk) and cell non-autonomous (produced in distant organs and affecting organs at risk) factors which both trigger epigenetic, cancer-initiating effects.
The project’s aims are centered around the principles of systems medicine and built on a large cohort of BRCA mutation carriers and controls who will be offered newly established cancer screening programmes. We will uncover how ‘cell non-autonomous’ factors work, provide detail on the epigenetic changes in at-risk tissues and investigate whether these changes are mechanistically linked to cancer, study whether we can neutralise this process and measure success in the organs at risk, and ideally in easy to access samples such as blood, buccal and cervical cells.
In my Department for Women’s Cancer we have assembled a powerful interdisciplinary team including computational biologists, functionalists, immunologists and clinician scientists linked to leading patient advocacy groups which is extremely well placed to lead this pioneering project to develop the fundamental understanding of cancer development in women with BRCA mutations. To reset the epigenome, re-establishing normal cell identity and consequently reducing cancer risk without the need for surgery and being able to monitor the efficacy using multicellular epigenetic outcome predictors will be a major scientific and medical breakthrough and possibly applicable to other chronic diseases.
Summary
Recent evidence demonstrates that cancer is overtaking cardiovascular disease as the number one cause of mortality in Europe. This is largely due to the lack of preventative measures for common (e.g. breast) or highly fatal (e.g. ovarian) human cancers. Most cancers are multifactorial in origin. The core hypothesis of this research programme is that the extremely high risk of BRCA1/2 germline mutation carriers to develop breast and ovarian cancer is a net consequence of cell-autonomous (direct effect of BRCA mutation in cells at risk) and cell non-autonomous (produced in distant organs and affecting organs at risk) factors which both trigger epigenetic, cancer-initiating effects.
The project’s aims are centered around the principles of systems medicine and built on a large cohort of BRCA mutation carriers and controls who will be offered newly established cancer screening programmes. We will uncover how ‘cell non-autonomous’ factors work, provide detail on the epigenetic changes in at-risk tissues and investigate whether these changes are mechanistically linked to cancer, study whether we can neutralise this process and measure success in the organs at risk, and ideally in easy to access samples such as blood, buccal and cervical cells.
In my Department for Women’s Cancer we have assembled a powerful interdisciplinary team including computational biologists, functionalists, immunologists and clinician scientists linked to leading patient advocacy groups which is extremely well placed to lead this pioneering project to develop the fundamental understanding of cancer development in women with BRCA mutations. To reset the epigenome, re-establishing normal cell identity and consequently reducing cancer risk without the need for surgery and being able to monitor the efficacy using multicellular epigenetic outcome predictors will be a major scientific and medical breakthrough and possibly applicable to other chronic diseases.
Max ERC Funding
2 497 841 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym BREATHE
Project BRain dEvelopment and Air polluTion ultrafine particles in scHool childrEn
Researcher (PI) Jordi Sunyer Deu
Host Institution (HI) FUNDACION PRIVADA INSTITUTO DE SALUD GLOBAL BARCELONA
Call Details Advanced Grant (AdG), LS7, ERC-2010-AdG_20100317
Summary Traffic-related air pollution is an important environmental problem that may affect neurodevelopment. Ultrafine particles (UFP) translocate to the brains of experimental animals resulting in local proinflammatory overexpression. As the basic elements for thinking are acquired by developing brains during infancy and childhood, susceptibility may be elevated in early life.
We postulate that traffic-related air pollution (particularly UFPs and metals/hydrocarbons content) impairs neurodevelopment in part via effects on frontal lobe maturation, likely increasing attention-deficit/hyperactivity disorder (ADHD). BREATHE objectives are to develop valid methods to measure children's personal UFP exposure and to develop valid neuroimaging methods to assess correlations between neurobehavior, neurostructural alterations and particle deposition in order to reveal how traffic pollution affects children¿s exposure to key contaminants and brain development, and identify susceptible subgroups.
We have conducted general population birth cohort studies providing preliminary evidence of residential air pollution effects on prenatal growth and mental development.
We aim to demonstrate short and long-term effects on neurodevelopment using innovative epidemiological methods interfaced with environmental chemistry and neuroimaging following 4000 children from 40 schools with contrasting high/low traffic exposure in six linked components involving: repeated psychometric tests, UFP exposure assessment using personal, school and home measurements, gene-environment interactions on inflammation, detoxification pathways and ADHD genome-wide-associated genes, neuroimaging (magnetic resonance imaging/spectroscopy) in ADHD/non-ADHD children, integrative causal modeling using mathematics, and replication in 2900 children with neurodevelopment followed from pregnancy.
We believe the expected results will have worldwide global planning and policy implications.
Summary
Traffic-related air pollution is an important environmental problem that may affect neurodevelopment. Ultrafine particles (UFP) translocate to the brains of experimental animals resulting in local proinflammatory overexpression. As the basic elements for thinking are acquired by developing brains during infancy and childhood, susceptibility may be elevated in early life.
We postulate that traffic-related air pollution (particularly UFPs and metals/hydrocarbons content) impairs neurodevelopment in part via effects on frontal lobe maturation, likely increasing attention-deficit/hyperactivity disorder (ADHD). BREATHE objectives are to develop valid methods to measure children's personal UFP exposure and to develop valid neuroimaging methods to assess correlations between neurobehavior, neurostructural alterations and particle deposition in order to reveal how traffic pollution affects children¿s exposure to key contaminants and brain development, and identify susceptible subgroups.
We have conducted general population birth cohort studies providing preliminary evidence of residential air pollution effects on prenatal growth and mental development.
We aim to demonstrate short and long-term effects on neurodevelopment using innovative epidemiological methods interfaced with environmental chemistry and neuroimaging following 4000 children from 40 schools with contrasting high/low traffic exposure in six linked components involving: repeated psychometric tests, UFP exposure assessment using personal, school and home measurements, gene-environment interactions on inflammation, detoxification pathways and ADHD genome-wide-associated genes, neuroimaging (magnetic resonance imaging/spectroscopy) in ADHD/non-ADHD children, integrative causal modeling using mathematics, and replication in 2900 children with neurodevelopment followed from pregnancy.
We believe the expected results will have worldwide global planning and policy implications.
Max ERC Funding
2 499 230 €
Duration
Start date: 2011-08-01, End date: 2016-07-31
Project acronym BSMOXFORD
Project Physics Beyond the Standard Model at the LHC and with Atom Interferometers
Researcher (PI) Savas Dimopoulos
Host Institution (HI) EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
Call Details Advanced Grant (AdG), PE2, ERC-2008-AdG
Summary Elementary particle physics is entering a spectacular new era in which experiments at the Large Hadron Collider (LHC) at CERN will soon start probing some of the deepest questions in physics, such as: Why is gravity so weak? Do elementary particles have substructure? What is the origin of mass? Are there new dimensions? Can we produce black holes in the lab? Could there be other universes with different physical laws? While the LHC pushes the energy frontier, the unprecedented precision of Atom Interferometry, has pointed me to a new tool for fundamental physics. These experiments based on the quantum interference of atoms can test General Relativity on the surface of the Earth, detect gravity waves, and test short-distance gravity, charge quantization, and quantum mechanics with unprecedented precision in the next decade. This ERC Advanced grant proposal is aimed at setting up a world-leading European center for development of a deeper theory of fundamental physics. The next 10 years is the optimal time for such studies to benefit from the wealth of new data that will emerge from the LHC, astrophysical observations and atom interferometry. This is a once-in-a-generation opportunity for making ground-breaking progress, and will open up many new research horizons.
Summary
Elementary particle physics is entering a spectacular new era in which experiments at the Large Hadron Collider (LHC) at CERN will soon start probing some of the deepest questions in physics, such as: Why is gravity so weak? Do elementary particles have substructure? What is the origin of mass? Are there new dimensions? Can we produce black holes in the lab? Could there be other universes with different physical laws? While the LHC pushes the energy frontier, the unprecedented precision of Atom Interferometry, has pointed me to a new tool for fundamental physics. These experiments based on the quantum interference of atoms can test General Relativity on the surface of the Earth, detect gravity waves, and test short-distance gravity, charge quantization, and quantum mechanics with unprecedented precision in the next decade. This ERC Advanced grant proposal is aimed at setting up a world-leading European center for development of a deeper theory of fundamental physics. The next 10 years is the optimal time for such studies to benefit from the wealth of new data that will emerge from the LHC, astrophysical observations and atom interferometry. This is a once-in-a-generation opportunity for making ground-breaking progress, and will open up many new research horizons.
Max ERC Funding
2 200 000 €
Duration
Start date: 2009-05-01, End date: 2014-04-30
Project acronym CAN-IT-BARRIERS
Project Disruption of systemic and microenvironmental barriers to immunotherapy of antigenic tumors
Researcher (PI) Douglas HANAHAN
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Advanced Grant (AdG), LS7, ERC-2018-ADG
Summary The frontier in cancer therapy of orchestrating the immune system to attack tumors is producing unprecedented survival benefit in some patients. The corollary is lack of efficacy both in ostensibly responsive tumor types as well as others that are mostly non-responsive. The basis lies in pre-existing and adaptive resistance mechanisms that circumvent induction of tumor-reactive cytotoxic T cells (CTLs) capable of infiltrating solid tumors and eliminating cancer cells. A priori, cancers induced by expression of human papillomavirus oncogenes should be responsive to immunotherapy: these cancers encode immunogenic neo-antigens – the oncoproteins E6/7 – necessary for their manifestation. Rather, such tumors are poorly responsive to immunotherapies. Results from my lab and others using mouse models of HPV-induced cancer have established an actionable hypothesis: during tumorigenesis, such tumors erect multiple barriers to the induction, infiltration, and killing of cancer cells by tumor antigen-reactive CTLs. These include overarching systemic antigen-nonspecific immunosuppression mediated by expanded populations of myeloid cells in spleen and lymph nodes, complemented by immune response-impairing barriers operative in the tumor microenvironment. A spectrum of models will probe these barriers, genetically and pharmacologically, establishing their functional importance, alone and in concert. A major focus will be on how oncogene-expressing keratinocytes elicit a marked expansion of immunosuppressive myeloid cells in spleen and lymph nodes, and how these myeloid cells in turn inhibit development and activation of CD8 T cells and antigen-presenting dendritic cells. Then we’ll assess the therapeutic potential of barrier-breaking strategies combined with immuno-stimulatory modalities. This project will deliver new knowledge about multi-faceted barriers to immunotherapy in these refractory cancers, helping lay the groundwork for efficacious immunotherapy.
Summary
The frontier in cancer therapy of orchestrating the immune system to attack tumors is producing unprecedented survival benefit in some patients. The corollary is lack of efficacy both in ostensibly responsive tumor types as well as others that are mostly non-responsive. The basis lies in pre-existing and adaptive resistance mechanisms that circumvent induction of tumor-reactive cytotoxic T cells (CTLs) capable of infiltrating solid tumors and eliminating cancer cells. A priori, cancers induced by expression of human papillomavirus oncogenes should be responsive to immunotherapy: these cancers encode immunogenic neo-antigens – the oncoproteins E6/7 – necessary for their manifestation. Rather, such tumors are poorly responsive to immunotherapies. Results from my lab and others using mouse models of HPV-induced cancer have established an actionable hypothesis: during tumorigenesis, such tumors erect multiple barriers to the induction, infiltration, and killing of cancer cells by tumor antigen-reactive CTLs. These include overarching systemic antigen-nonspecific immunosuppression mediated by expanded populations of myeloid cells in spleen and lymph nodes, complemented by immune response-impairing barriers operative in the tumor microenvironment. A spectrum of models will probe these barriers, genetically and pharmacologically, establishing their functional importance, alone and in concert. A major focus will be on how oncogene-expressing keratinocytes elicit a marked expansion of immunosuppressive myeloid cells in spleen and lymph nodes, and how these myeloid cells in turn inhibit development and activation of CD8 T cells and antigen-presenting dendritic cells. Then we’ll assess the therapeutic potential of barrier-breaking strategies combined with immuno-stimulatory modalities. This project will deliver new knowledge about multi-faceted barriers to immunotherapy in these refractory cancers, helping lay the groundwork for efficacious immunotherapy.
Max ERC Funding
2 500 000 €
Duration
Start date: 2020-01-01, End date: 2024-12-31
Project acronym CANCERINNOVATION
Project Using novel methodologies to target and image cancer invasion and therapeutic resistance
Researcher (PI) Margaret Frame
Host Institution (HI) THE UNIVERSITY OF EDINBURGH
Call Details Advanced Grant (AdG), LS7, ERC-2011-ADG_20110310
Summary We aim to develop and apply a suite of new technologies in a novel cancer discovery platform that will link high-definition cancer biology, via state-of-the-art disease imaging and pathway modelling, with development of novel interrogative and therapeutic interventions to test in models of cancer that closely resemble human disease. The work will lead to a new understanding of cancer invasion, how to treat advanced disease in the metastatic niche, how to monitor therapeutic responses and the compensatory mechanisms that cause acquired resistance. Platform development will be based on combined, cross-informing technologies that will enable us to predict optimal ‘maintenance therapies’ for metastatic disease by targeting cancer evolution and spread through combination therapy. A key strand of the platform is the development of quantitative multi-modal imaging in vivo by use of optical window technology to inform detailed understanding of disease and drug mechanisms and predictive capability of pathway biomarkers. Innovative methodologies are urgently needed to address declining approval rates of novel medicines and the unmet clinical needs of treating cancer patients in the advanced disease setting, where tumour spread and survival generally continues unchecked by current therapies. This work will be largely pre-clinical, but will always be mindful of the clinical problem in managing late stage human disease through rationale design of combination therapies with companion diagnostic tests. The cancer survival statistics will be changed if we can curb continuing spread of aggressive, metastatic disease and resistance to therapy by taking smarter combined approaches that make best use of emerging technologies in an innovative way, particularly where they are more predictive of clinical efficacy.
Summary
We aim to develop and apply a suite of new technologies in a novel cancer discovery platform that will link high-definition cancer biology, via state-of-the-art disease imaging and pathway modelling, with development of novel interrogative and therapeutic interventions to test in models of cancer that closely resemble human disease. The work will lead to a new understanding of cancer invasion, how to treat advanced disease in the metastatic niche, how to monitor therapeutic responses and the compensatory mechanisms that cause acquired resistance. Platform development will be based on combined, cross-informing technologies that will enable us to predict optimal ‘maintenance therapies’ for metastatic disease by targeting cancer evolution and spread through combination therapy. A key strand of the platform is the development of quantitative multi-modal imaging in vivo by use of optical window technology to inform detailed understanding of disease and drug mechanisms and predictive capability of pathway biomarkers. Innovative methodologies are urgently needed to address declining approval rates of novel medicines and the unmet clinical needs of treating cancer patients in the advanced disease setting, where tumour spread and survival generally continues unchecked by current therapies. This work will be largely pre-clinical, but will always be mindful of the clinical problem in managing late stage human disease through rationale design of combination therapies with companion diagnostic tests. The cancer survival statistics will be changed if we can curb continuing spread of aggressive, metastatic disease and resistance to therapy by taking smarter combined approaches that make best use of emerging technologies in an innovative way, particularly where they are more predictive of clinical efficacy.
Max ERC Funding
2 499 000 €
Duration
Start date: 2012-08-01, End date: 2017-07-31
Project acronym CanISeeQG
Project Can I see Quantum Gravity?
Researcher (PI) Jan DE BOER
Host Institution (HI) UNIVERSITEIT VAN AMSTERDAM
Call Details Advanced Grant (AdG), PE2, ERC-2018-ADG
Summary The interplay between two of the most important building blocks of nature, quantum mechanics and gravity, has been a great source of inspiration for theoretical physics, leading to discoveries such as the Hawking radiation of black holes and the development of string theory. In turn, the following picture emerged: physics at the most fundamental level is governed by the rules of quantum mechanics while gravity is some effective coarse-grained description of the underlying microscopic theory. Given that the microscopic degrees of freedom are non-local, standard techniques such as the renormalization group and effective field theory a priori do not apply. Nevertheless, we use effective field theories that incorporate general relativity to describe our observations.
With the discovery of gravitational waves and the various ongoing and upcoming experiments that will put general relativity to the test, it has become urgent to assess the validity of the standard framework of effective field theory for describing observable quantum gravity effects. Recent developments in resolving the information loss paradox and the quantum nature of black holes concluded that effective field theory must be modified in a way that uniquely incorporates quantum gravity. The main purpose of this proposal is to describe this modification in a precise and quantitative way, ultimately connecting it to potential experimental discoveries.
In order to achieve this goal, I will approach the problem using a combination of thermodynamics, hydrodynamics and quantum information theory, mostly in the context of the AdS/CFT correspondence, where a precise description of quantum gravity is available. As a by-product of identifying observational features of quantum gravity, I will also make substantial progress in several foundational problems. My broad track record and expertise, and the fact that I have already obtained promising preliminary results, makes me uniquely qualified to lead this endeavor.
Summary
The interplay between two of the most important building blocks of nature, quantum mechanics and gravity, has been a great source of inspiration for theoretical physics, leading to discoveries such as the Hawking radiation of black holes and the development of string theory. In turn, the following picture emerged: physics at the most fundamental level is governed by the rules of quantum mechanics while gravity is some effective coarse-grained description of the underlying microscopic theory. Given that the microscopic degrees of freedom are non-local, standard techniques such as the renormalization group and effective field theory a priori do not apply. Nevertheless, we use effective field theories that incorporate general relativity to describe our observations.
With the discovery of gravitational waves and the various ongoing and upcoming experiments that will put general relativity to the test, it has become urgent to assess the validity of the standard framework of effective field theory for describing observable quantum gravity effects. Recent developments in resolving the information loss paradox and the quantum nature of black holes concluded that effective field theory must be modified in a way that uniquely incorporates quantum gravity. The main purpose of this proposal is to describe this modification in a precise and quantitative way, ultimately connecting it to potential experimental discoveries.
In order to achieve this goal, I will approach the problem using a combination of thermodynamics, hydrodynamics and quantum information theory, mostly in the context of the AdS/CFT correspondence, where a precise description of quantum gravity is available. As a by-product of identifying observational features of quantum gravity, I will also make substantial progress in several foundational problems. My broad track record and expertise, and the fact that I have already obtained promising preliminary results, makes me uniquely qualified to lead this endeavor.
Max ERC Funding
2 500 000 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym CAPER/BREAST CANCE
Project CAPER in Invasive Breast Cancer
Researcher (PI) Michael Lisanti
Host Institution (HI) THE UNIVERSITY OF MANCHESTER
Call Details Advanced Grant (AdG), LS7, ERC-2008-AdG
Summary Breast cancer is a major cause of death in the United States and the Western World. Advanced medical technologies and therapeutic strategies are necessary for the successful detection, diagnosis, and treatment of breast cancer. Here, we propose to use novel technologies (tissue microarrays (TMA) and automated quantivative bioimaging (AQUA)) to identify new therapeutic and prognostic markers for human breast cancer. More specifically, we will study the activation status of a new signaling pathway which we have implicated in breast cancer pathogenesis, using both mouse animal models and cells in culture. For this purpose, we will study the association of CAPER expression with pre-malignant lesions and progression from pre-malignancy to full-blown breast cancer. We expect that this new molecular marker will allow us to improve diagnostic accuracy for individual patients, enhancing both the prognostic predictions as well as the prediction of drug responsiveness for a given patient.
Summary
Breast cancer is a major cause of death in the United States and the Western World. Advanced medical technologies and therapeutic strategies are necessary for the successful detection, diagnosis, and treatment of breast cancer. Here, we propose to use novel technologies (tissue microarrays (TMA) and automated quantivative bioimaging (AQUA)) to identify new therapeutic and prognostic markers for human breast cancer. More specifically, we will study the activation status of a new signaling pathway which we have implicated in breast cancer pathogenesis, using both mouse animal models and cells in culture. For this purpose, we will study the association of CAPER expression with pre-malignant lesions and progression from pre-malignancy to full-blown breast cancer. We expect that this new molecular marker will allow us to improve diagnostic accuracy for individual patients, enhancing both the prognostic predictions as well as the prediction of drug responsiveness for a given patient.
Max ERC Funding
1 500 000 €
Duration
Start date: 2010-01-01, End date: 2014-12-31
Project acronym CATCHIT
Project Coherently Advanced Tissue and Cell Holographic Imaging and Trapping
Researcher (PI) Monika Ritsch-Marte
Host Institution (HI) MEDIZINISCHE UNIVERSITAT INNSBRUCK
Call Details Advanced Grant (AdG), PE2, ERC-2009-AdG
Summary We envisage a new generation of dynamic holographic laser tweezers and stretching tools with unprecedented spatial control of gradient and scattering light forces, to unravel functional mysteries of cell biology and genetics: Based on our recently developed, highly successful and widely recognized amplitude and phase shaping techniques with cascaded spatial light modulators (SLM), we will create new holographic optical manipulators consisting of a line-shaped trap with balanced net scattering forces and controllable local phase-gradients. Combining these line stretchers with spiral phase contrast imaging or nonlinear optical microscopy will allow quantitative study of functional shape changes. The novel tool is hugely more versatile than standard optical tweezers, since direction and magnitude of the scattering force can be designed to precisely follow the structure. In combination with conventional multi-spot traps the line stretcher acts as a sensitive and adaptable local force sensor. In collaboration with local experts we want to tackle hot topics in Genetics, e.g. search for force profile signatures in regions with Copy Number Variations. Possibly the approach may shed light on basic physical characteristics such as, for example, chromosomal fragility in Fra(X) syndrome, the most common monogenic cause of mental retardation. The new design intrinsically offers enhanced microscopic resolution, as SLM-synthesized apertures and waveforms can enlarge the number of spatial frequencies forming the image. Ultimately, nonlinear holography can be implemented, sending phase shaped wavefronts to target samples. This can, e.g., be used to push the sensitivity of nonlinear chemical imaging, or for controlled photo-activation of targeted regions in neurons.
Summary
We envisage a new generation of dynamic holographic laser tweezers and stretching tools with unprecedented spatial control of gradient and scattering light forces, to unravel functional mysteries of cell biology and genetics: Based on our recently developed, highly successful and widely recognized amplitude and phase shaping techniques with cascaded spatial light modulators (SLM), we will create new holographic optical manipulators consisting of a line-shaped trap with balanced net scattering forces and controllable local phase-gradients. Combining these line stretchers with spiral phase contrast imaging or nonlinear optical microscopy will allow quantitative study of functional shape changes. The novel tool is hugely more versatile than standard optical tweezers, since direction and magnitude of the scattering force can be designed to precisely follow the structure. In combination with conventional multi-spot traps the line stretcher acts as a sensitive and adaptable local force sensor. In collaboration with local experts we want to tackle hot topics in Genetics, e.g. search for force profile signatures in regions with Copy Number Variations. Possibly the approach may shed light on basic physical characteristics such as, for example, chromosomal fragility in Fra(X) syndrome, the most common monogenic cause of mental retardation. The new design intrinsically offers enhanced microscopic resolution, as SLM-synthesized apertures and waveforms can enlarge the number of spatial frequencies forming the image. Ultimately, nonlinear holography can be implemented, sending phase shaped wavefronts to target samples. This can, e.g., be used to push the sensitivity of nonlinear chemical imaging, or for controlled photo-activation of targeted regions in neurons.
Max ERC Funding
1 987 428 €
Duration
Start date: 2010-05-01, End date: 2015-04-30
Project acronym CDK6-DrugOpp
Project CDK6 in transcription - turning a foe in a friend
Researcher (PI) Veronika SEXL
Host Institution (HI) VETERINAERMEDIZINISCHE UNIVERSITAET WIEN
Call Details Advanced Grant (AdG), LS7, ERC-2015-AdG
Summary "Translational research aims at applying mechanistic understanding in the development of "precision medicine", which depends on precise diagnostic tools and therapeutic approaches. Cancer therapy is experiencing a switch from non-specific, cytotoxic agents towards molecularly targeted and rationally designed compounds with the promise of greater efficacy and fewer side effects.
The two cell-cycle kinases CDK4 and CDK6 normally facilitate cell-cycle progression but are abnormally activated in certain cancers. CDK6 is up-regulated in hematopoietic malignancies, where it is the predominant cell-cycle kinase. The importance of CDK4/6 for tumor development is underscored by the fact that the US FDA selected inhibitors of the kinase activity of CDK4/6 as "breakthrough of the year 2013". Our recent findings suggest that the effects of the inhibitors may be limited as CDK6 is not only involved in cell-cycle progression: ground-breaking research in my group and others has shown that CDK6 is involved in regulation of transcription in a kinase-independent manner thereby driving the proliferation of leukemic stem cells and tumor formation. We have now identified mutations in CDK6 that convert it from a tumor promoter into a tumor suppressor. This unexpected outcome is accompanied by a distinct transcriptional profile. Separating the tumor-promoting from the tumor suppressive functions may open a novel therapeutic avenue for drug development. We aim at understanding which domains and residues of CDK6 are involved in rewiring the transcriptional landscape to pave the way for sophisticated inhibitors. The idea of turning a cancer cell's own most potent weapon against itself is novel and would represent a new paradigm for drug design. Finally, the understanding of CDK6 functions in tumor promotion and maintenance will also result in better patient stratification and improved treatment decisions for a broad spectrum of cancer types."
Summary
"Translational research aims at applying mechanistic understanding in the development of "precision medicine", which depends on precise diagnostic tools and therapeutic approaches. Cancer therapy is experiencing a switch from non-specific, cytotoxic agents towards molecularly targeted and rationally designed compounds with the promise of greater efficacy and fewer side effects.
The two cell-cycle kinases CDK4 and CDK6 normally facilitate cell-cycle progression but are abnormally activated in certain cancers. CDK6 is up-regulated in hematopoietic malignancies, where it is the predominant cell-cycle kinase. The importance of CDK4/6 for tumor development is underscored by the fact that the US FDA selected inhibitors of the kinase activity of CDK4/6 as "breakthrough of the year 2013". Our recent findings suggest that the effects of the inhibitors may be limited as CDK6 is not only involved in cell-cycle progression: ground-breaking research in my group and others has shown that CDK6 is involved in regulation of transcription in a kinase-independent manner thereby driving the proliferation of leukemic stem cells and tumor formation. We have now identified mutations in CDK6 that convert it from a tumor promoter into a tumor suppressor. This unexpected outcome is accompanied by a distinct transcriptional profile. Separating the tumor-promoting from the tumor suppressive functions may open a novel therapeutic avenue for drug development. We aim at understanding which domains and residues of CDK6 are involved in rewiring the transcriptional landscape to pave the way for sophisticated inhibitors. The idea of turning a cancer cell's own most potent weapon against itself is novel and would represent a new paradigm for drug design. Finally, the understanding of CDK6 functions in tumor promotion and maintenance will also result in better patient stratification and improved treatment decisions for a broad spectrum of cancer types."
Max ERC Funding
2 497 520 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym CERQUTE
Project Certification of quantum technologies
Researcher (PI) Antonio Acín
Host Institution (HI) FUNDACIO INSTITUT DE CIENCIES FOTONIQUES
Call Details Advanced Grant (AdG), PE2, ERC-2018-ADG
Summary Given a quantum system, how can one ensure that it (i) is entangled? (ii) random? (iii) secure? (iv) performs a computation correctly? The concept of quantum certification embraces all these questions and CERQUTE’s main goal is to provide the tools to achieve such certification. The need of a new paradigm for quantum certification has emerged as a consequence of the impressive advances on the control of quantum systems. On the one hand, complex many-body quantum systems are prepared in many labs worldwide. On the other hand, quantum information technologies are making the transition to real applications. Quantum certification is a highly transversal concept that covers a broad range of scenarios –from many-body systems to protocols employing few devices– and questions –from theoretical results and experimental demonstrations to commercial products–. CERQUTE is organized along three research lines that reflect this broadness and inter-disciplinary character: (A) many-body quantum systems: the objective is to provide the tools to identify quantum properties of many-body quantum systems; (B) quantum networks: the objective is to characterize networks in the quantum regime; (C) quantum cryptographic protocols: the objective is to construct cryptography protocols offering certified security. Crucial to achieve these objectives is the development of radically new methods to deal with quantum systems in an efficient way. Expected outcomes are: (i) new methods to detect quantum phenomena in the many-body regime, (ii) new protocols to benchmark quantum simulators and annealers, (iii) first methods to characterize quantum causality, (iv) new protocols exploiting simple network geometries (v) experimentally-friendly cryptographic protocols offering certified security. CERQUTE goes at the heart of the fundamental question of what distinguishes quantum from classical physics and will provide the concepts and protocols for the certification of quantum phenomena and technologies.
Summary
Given a quantum system, how can one ensure that it (i) is entangled? (ii) random? (iii) secure? (iv) performs a computation correctly? The concept of quantum certification embraces all these questions and CERQUTE’s main goal is to provide the tools to achieve such certification. The need of a new paradigm for quantum certification has emerged as a consequence of the impressive advances on the control of quantum systems. On the one hand, complex many-body quantum systems are prepared in many labs worldwide. On the other hand, quantum information technologies are making the transition to real applications. Quantum certification is a highly transversal concept that covers a broad range of scenarios –from many-body systems to protocols employing few devices– and questions –from theoretical results and experimental demonstrations to commercial products–. CERQUTE is organized along three research lines that reflect this broadness and inter-disciplinary character: (A) many-body quantum systems: the objective is to provide the tools to identify quantum properties of many-body quantum systems; (B) quantum networks: the objective is to characterize networks in the quantum regime; (C) quantum cryptographic protocols: the objective is to construct cryptography protocols offering certified security. Crucial to achieve these objectives is the development of radically new methods to deal with quantum systems in an efficient way. Expected outcomes are: (i) new methods to detect quantum phenomena in the many-body regime, (ii) new protocols to benchmark quantum simulators and annealers, (iii) first methods to characterize quantum causality, (iv) new protocols exploiting simple network geometries (v) experimentally-friendly cryptographic protocols offering certified security. CERQUTE goes at the heart of the fundamental question of what distinguishes quantum from classical physics and will provide the concepts and protocols for the certification of quantum phenomena and technologies.
Max ERC Funding
1 735 044 €
Duration
Start date: 2020-01-01, End date: 2024-12-31
Project acronym ChAMPioN
Project Game-changing Precision Medicine for Curing All Myeloproliferative Neoplasms
Researcher (PI) Tessa Holyoake
Host Institution (HI) UNIVERSITY OF GLASGOW
Call Details Advanced Grant (AdG), LS7, ERC-2016-ADG
Summary Despite decades of research, developing ways to overcome drug resistance in cancer is the most challenging bottleneck for curative therapies. This is because, in some forms of cancer, the cancer stem cells from which the diseases arise are constantly evolving, particularly under the selective pressures of drug therapies, in order to survive. The events leading to drug resistance can occur within one or more individual cancer stem cell(s) – and the features of each of these cells need to be studied in detail in order to develop drugs or drug combinations that can eradicate all of them. The BCR-ABL+ and BCR-ABL- myeloproliferative neoplasms (MPN) are a group of proliferative blood diseases that can be considered both exemplars of precision medicine and of the drug resistance bottleneck. While significant advances in the management of MPN have been made using life-long and expensive tyrosine kinase inhibitors (TKI), patients are rarely cured of their disease. This is because TKI fail to eradicate the leukaemia stem cells (LSC) from which MPN arise and which persist in patients on treatment, often leading to pervasive drug resistance, loss of response to therapy and progression to fatal forms of acute leukaemia. My goal is to change the way we study the LSC that persist in MPN patients as a means of delivering more effective precision medicine in MPN that is a “game-changer” leading to therapy-free remission (TFR) and cure. Here, I will apply an innovative strategy, ChAMPioN, to study the response of the MPN LSC to TKI in innovative pre-clinical laboratory models and directly in patients with MPN - up to the resolution of individual LSC. This work will reveal, for the first time, the molecular and clonal evolution of LSC during TKI therapies, thus enabling the development of more accurate predictions of TKI efficacy and resistance and rational approaches for curative drug therapies.
Summary
Despite decades of research, developing ways to overcome drug resistance in cancer is the most challenging bottleneck for curative therapies. This is because, in some forms of cancer, the cancer stem cells from which the diseases arise are constantly evolving, particularly under the selective pressures of drug therapies, in order to survive. The events leading to drug resistance can occur within one or more individual cancer stem cell(s) – and the features of each of these cells need to be studied in detail in order to develop drugs or drug combinations that can eradicate all of them. The BCR-ABL+ and BCR-ABL- myeloproliferative neoplasms (MPN) are a group of proliferative blood diseases that can be considered both exemplars of precision medicine and of the drug resistance bottleneck. While significant advances in the management of MPN have been made using life-long and expensive tyrosine kinase inhibitors (TKI), patients are rarely cured of their disease. This is because TKI fail to eradicate the leukaemia stem cells (LSC) from which MPN arise and which persist in patients on treatment, often leading to pervasive drug resistance, loss of response to therapy and progression to fatal forms of acute leukaemia. My goal is to change the way we study the LSC that persist in MPN patients as a means of delivering more effective precision medicine in MPN that is a “game-changer” leading to therapy-free remission (TFR) and cure. Here, I will apply an innovative strategy, ChAMPioN, to study the response of the MPN LSC to TKI in innovative pre-clinical laboratory models and directly in patients with MPN - up to the resolution of individual LSC. This work will reveal, for the first time, the molecular and clonal evolution of LSC during TKI therapies, thus enabling the development of more accurate predictions of TKI efficacy and resistance and rational approaches for curative drug therapies.
Max ERC Funding
3 005 818 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym Cholstim
Project Cholinergic modulation of immune homeostasis: new opportunities for treatment
Researcher (PI) Guy Eduard Elisabeth Boeckxstaens
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Advanced Grant (AdG), LS7, ERC-2013-ADG
Summary In the gastrointestinal tract, the balance between activation of the mucosal immune system and tolerance should be tightly regulated to maintain immune homeostasis to prevent chronic inflammation and tissue damage. Recently, the new concept was introduced that the vagus nerve plays an important role in modulating immune homeostasis as part of a so-called inflammatory reflex. We provided evidence for this concept in the gastrointestinal tract and showed that vagus nerve stimulation (VNS) reduced inflammation of the intestinal muscle layer. Moreover, we showed that this effect was mediated by activation of enteric cholinergic neurons (cholinergic tone) interacting with intestinal macrophages in the muscle layer. Of interest, we have collected exciting data that the vagus nerve (and thus the cholinergic tone) also significantly contributes to mucosal immune homeostasis. Mice that underwent vagotomy lost their ability to develop tolerance to oral feeding of an antigen, whereas VNS reduced mucosal inflammation in a model of food allergy. Based on these data, we hypothesize that the cholinergic tone is a major determinant of the tolerogenic microenvironment of the mucosal immune system, and want to further explore the immune-modulatory effect of the vagal innervation and enteric neurons on the macrophages residing in the lamina propria. In addition, we will further explore the therapeutic potential and the mechanisms involved of chronic VNS in colitis and food allergy. Finally, we will translate our preclinical findings to the human situation. The anti-inflammatory effect of VNS (applied during surgery) will be studied in human intestinal tissue whereas the therapeutic potential of chronic VNS in Crohn’s disease will be studied in a pilot trial.
The outcome of this project will be ground-breaking and will have an immense impact on clinical management as it will provide new therapeutic opportunities for the treatment of immune-mediated gastrointestinal disorders.
Summary
In the gastrointestinal tract, the balance between activation of the mucosal immune system and tolerance should be tightly regulated to maintain immune homeostasis to prevent chronic inflammation and tissue damage. Recently, the new concept was introduced that the vagus nerve plays an important role in modulating immune homeostasis as part of a so-called inflammatory reflex. We provided evidence for this concept in the gastrointestinal tract and showed that vagus nerve stimulation (VNS) reduced inflammation of the intestinal muscle layer. Moreover, we showed that this effect was mediated by activation of enteric cholinergic neurons (cholinergic tone) interacting with intestinal macrophages in the muscle layer. Of interest, we have collected exciting data that the vagus nerve (and thus the cholinergic tone) also significantly contributes to mucosal immune homeostasis. Mice that underwent vagotomy lost their ability to develop tolerance to oral feeding of an antigen, whereas VNS reduced mucosal inflammation in a model of food allergy. Based on these data, we hypothesize that the cholinergic tone is a major determinant of the tolerogenic microenvironment of the mucosal immune system, and want to further explore the immune-modulatory effect of the vagal innervation and enteric neurons on the macrophages residing in the lamina propria. In addition, we will further explore the therapeutic potential and the mechanisms involved of chronic VNS in colitis and food allergy. Finally, we will translate our preclinical findings to the human situation. The anti-inflammatory effect of VNS (applied during surgery) will be studied in human intestinal tissue whereas the therapeutic potential of chronic VNS in Crohn’s disease will be studied in a pilot trial.
The outcome of this project will be ground-breaking and will have an immense impact on clinical management as it will provide new therapeutic opportunities for the treatment of immune-mediated gastrointestinal disorders.
Max ERC Funding
2 495 200 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym CHROMIUM
Project CHROMIUM
Researcher (PI) Jennifer THOMAS
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Advanced Grant (AdG), PE2, ERC-2015-AdG
Summary Why the Universe is void of anti-matter is one of the remaining Big Questions in Science.One explanation is provided within the Standard Model by violation of Charge Parity (CP) symmetry, producing differences between the behavior of particles and their anti-particles.CP violation in the neutrino sector could allow a mechanism by which the matter-anti matter asymmetry arose.The objective of this proposal is to enable a step change in our sensitivity to CP violation in the neutrino sector. I have pioneered the concepts and led the deployment of a small prototype using a novel approach which could eventually lead to the construction of a revolutionary Mega-ton scale Water Cherenkov (WC) neutrino detector.The goal of my research program is to demonstrate the feasibility of this approach via the construction of an intermediate sized prototype with an expandable fiducial mass of up to 10-20kt. It will use a low-cost and lightweight structure, filled with purified water and submerged for mechanical strength and cosmic ray shielding in a 60m deep flooded mine pit in the path of Fermilab’s NuMI neutrino beam in N. Minnesota.The European contribution to this experiment will be profound and definitive.Applying the idea of fast timing and good position resolution of small photodetectors, already pioneered in Europe, in place of large-area photodetector, we will revolutionize WC design.The game-changing nature of this philosophy will be demonstrated via the proof of the detector construction and the observation of electron neutrino events form the NuMI beam.The successful completion of this R&D program will demonstrate a factor of up to 100 decrease in cost compared to conventional detectors and the proof that precision neutrino measurements could be made inside a few years rather than the presently needed decades.
The project describes a five year program of work amounting to a total funding request of €3.5M, including an extra €1M of equipment funds.
Summary
Why the Universe is void of anti-matter is one of the remaining Big Questions in Science.One explanation is provided within the Standard Model by violation of Charge Parity (CP) symmetry, producing differences between the behavior of particles and their anti-particles.CP violation in the neutrino sector could allow a mechanism by which the matter-anti matter asymmetry arose.The objective of this proposal is to enable a step change in our sensitivity to CP violation in the neutrino sector. I have pioneered the concepts and led the deployment of a small prototype using a novel approach which could eventually lead to the construction of a revolutionary Mega-ton scale Water Cherenkov (WC) neutrino detector.The goal of my research program is to demonstrate the feasibility of this approach via the construction of an intermediate sized prototype with an expandable fiducial mass of up to 10-20kt. It will use a low-cost and lightweight structure, filled with purified water and submerged for mechanical strength and cosmic ray shielding in a 60m deep flooded mine pit in the path of Fermilab’s NuMI neutrino beam in N. Minnesota.The European contribution to this experiment will be profound and definitive.Applying the idea of fast timing and good position resolution of small photodetectors, already pioneered in Europe, in place of large-area photodetector, we will revolutionize WC design.The game-changing nature of this philosophy will be demonstrated via the proof of the detector construction and the observation of electron neutrino events form the NuMI beam.The successful completion of this R&D program will demonstrate a factor of up to 100 decrease in cost compared to conventional detectors and the proof that precision neutrino measurements could be made inside a few years rather than the presently needed decades.
The project describes a five year program of work amounting to a total funding request of €3.5M, including an extra €1M of equipment funds.
Max ERC Funding
3 500 000 €
Duration
Start date: 2016-10-01, End date: 2021-09-30
Project acronym CleverGenes
Project Novel Gene Therapy Based on the Activation of Endogenous Genes for the Treatment of Ischemia - Concepts of endogenetherapy, release of promoter pausing, promoter-targeted ncRNAs and nuclear RNAi
Researcher (PI) Seppo Ylä-Herttuala
Host Institution (HI) ITA-SUOMEN YLIOPISTO
Call Details Advanced Grant (AdG), LS7, ERC-2014-ADG
Summary Background: Therapeutic angiogenesis with vascular endothelial growth factors (VEGFs) has great potential to become a novel, minimally invasive new treatment for a large number of patients with severe myocardial ischemia. However, this requires development of new technology. Advancing state-of-the-art: We propose a paradigm shift in gene therapy for chronic ischemia by activating endogenous VEGF-A,-B and -C genes and angiogenic transcription programs from the native promoters instead of gene transfer of exogenous cDNA to target tissues. We will develop a new platform technology (endogenetherapy) based on our novel concept of the release of promoter pausing and new promoter-targeted upregulating short hairpinRNAs, tissue-specific superenhancerRNAs activating specific transcription centers involving gene clusters in different chromosomal regions, small circularRNAs formed from self-splicing exons-introns that can be regulated with oligonucleotides and small molecules such as metabolites, nuclear RNAi vectors and specific CRISPR/gRNAmutatedCas9-VP16 technology with an ability to target integration into genomic safe harbor sites. After preclinical studies in mice and in a newly developed chronic cardiac ischemia model in pigs with special emphasis on the analysis of clinically relevant blood flow, metabolic and functional outcomes based on MRI, ultrasound, photoacoustic and PET imaging, the best construct will be taken to a phase I clinical study in patients with severe myocardial ischemia. Since endogenetherapy also involves epigenetic changes, which are reversible and long-lasting, we expect to efficiently activate natural angiogenic programs. Significance: If successful, this approach will begin a new era in gene therapy. Since there is a clear lack of technology capable of targeted upregulation of endogenous genes, the novel endogenetherapy approach may become widely applicable beyond cardiovascular diseases also in other areas of medicine and biomedical research.
Summary
Background: Therapeutic angiogenesis with vascular endothelial growth factors (VEGFs) has great potential to become a novel, minimally invasive new treatment for a large number of patients with severe myocardial ischemia. However, this requires development of new technology. Advancing state-of-the-art: We propose a paradigm shift in gene therapy for chronic ischemia by activating endogenous VEGF-A,-B and -C genes and angiogenic transcription programs from the native promoters instead of gene transfer of exogenous cDNA to target tissues. We will develop a new platform technology (endogenetherapy) based on our novel concept of the release of promoter pausing and new promoter-targeted upregulating short hairpinRNAs, tissue-specific superenhancerRNAs activating specific transcription centers involving gene clusters in different chromosomal regions, small circularRNAs formed from self-splicing exons-introns that can be regulated with oligonucleotides and small molecules such as metabolites, nuclear RNAi vectors and specific CRISPR/gRNAmutatedCas9-VP16 technology with an ability to target integration into genomic safe harbor sites. After preclinical studies in mice and in a newly developed chronic cardiac ischemia model in pigs with special emphasis on the analysis of clinically relevant blood flow, metabolic and functional outcomes based on MRI, ultrasound, photoacoustic and PET imaging, the best construct will be taken to a phase I clinical study in patients with severe myocardial ischemia. Since endogenetherapy also involves epigenetic changes, which are reversible and long-lasting, we expect to efficiently activate natural angiogenic programs. Significance: If successful, this approach will begin a new era in gene therapy. Since there is a clear lack of technology capable of targeted upregulation of endogenous genes, the novel endogenetherapy approach may become widely applicable beyond cardiovascular diseases also in other areas of medicine and biomedical research.
Max ERC Funding
2 437 500 €
Duration
Start date: 2015-11-01, End date: 2020-10-31
Project acronym CODE
Project Condensation in designed systems
Researcher (PI) Päivi Elina Törmä
Host Institution (HI) AALTO KORKEAKOULUSAATIO SR
Call Details Advanced Grant (AdG), PE2, ERC-2013-ADG
Summary "Quantum coherent phenomena, especially marcoscopic quantum coherence, are among the most striking predictions of quantum mechanics. They have lead to remarkable applications such as lasers and modern optical technologies, and in the future, breakthroughs such as quantum information processing are envisioned. Macroscopic quantum coherence is manifested in Bose-Einstein condensation (BEC), superfluidity, and superconductivity, which have been observed in a variety of systems and continue to be at the front line of scientific research. Here my objective is to extend the realm of Bose-Einstein condensation into new conceptual and practical directions. I focus on the role of a hybrid character of the object that condenses and on the role of non-equilibrium in the BEC phenomenon. The work is mostly theoretical but has also an experimental part. I study two new types of hybrids, fundamentally different from each other. First, I consider pairing and superfluidity in a mixed geometry. Experimental realization of mixed geometries is becoming feasible in ultracold gases. Second, I explore the possibility of finding novel hybrids of light and matter excitations that may display condensation. By combining insight from these two cases, my goal is to understand how the hybrid and non-equilibrium nature can be exploited to design desirable properties, such as high critical temperatures. In particular, in case of the new light-matter hybrids, the goal is to provide realistic scenarios for, and also experimentally demonstrate, a room temperature BEC."
Summary
"Quantum coherent phenomena, especially marcoscopic quantum coherence, are among the most striking predictions of quantum mechanics. They have lead to remarkable applications such as lasers and modern optical technologies, and in the future, breakthroughs such as quantum information processing are envisioned. Macroscopic quantum coherence is manifested in Bose-Einstein condensation (BEC), superfluidity, and superconductivity, which have been observed in a variety of systems and continue to be at the front line of scientific research. Here my objective is to extend the realm of Bose-Einstein condensation into new conceptual and practical directions. I focus on the role of a hybrid character of the object that condenses and on the role of non-equilibrium in the BEC phenomenon. The work is mostly theoretical but has also an experimental part. I study two new types of hybrids, fundamentally different from each other. First, I consider pairing and superfluidity in a mixed geometry. Experimental realization of mixed geometries is becoming feasible in ultracold gases. Second, I explore the possibility of finding novel hybrids of light and matter excitations that may display condensation. By combining insight from these two cases, my goal is to understand how the hybrid and non-equilibrium nature can be exploited to design desirable properties, such as high critical temperatures. In particular, in case of the new light-matter hybrids, the goal is to provide realistic scenarios for, and also experimentally demonstrate, a room temperature BEC."
Max ERC Funding
1 559 608 €
Duration
Start date: 2013-12-01, End date: 2018-11-30
Project acronym CODIR
Project Colonic Disease Investigation by Robotic Hydro-colonoscopy
Researcher (PI) Alfred Cuschieri
Host Institution (HI) UNIVERSITY OF DUNDEE
Call Details Advanced Grant (AdG), LS7, ERC-2010-AdG_20100317
Summary CODIR proposes a new configuration of fundamental and applied biomedical and engineering multidisciplinary research to explore and characterise colon behavior necessary for the project and wider objectives. Scope and focus is on novel robotic hydro-colonoscopy (RHC), which stems from two considerations: (i) replacement of the flexible colonosocope with a patient-friendly system for inspection of the mucosal surface colon and (ii) the very recent concept of hydro-colonoscopy whereby water is used instead of traditional air insufflation. RHC can enable a breakthrough in patient-compliant complete endoscopic examination and biopsy of the colon for the further study of life threatening disorders of the colon commonly categorized as inflmmatory bowel disease, all of unknown aetilogy despite intensive research. CODIR will provide new insights for biomedical investigation and research applicable to many biomedical fields: biologic [absorption of water and electrolyte from the colon, characterisation of surface topograpgy of the colon, mechanical properties of colonic wall], imaging, mechatronics robot functionality and a novel colonic irrigation and filling system. The ambition is to develop a one-stop holistic system which cleans the colon of faecal debris and then introduces a tethered swimming/ submerging robot for inspection of the mucosal aspect of colon under the control of a clinician operating the endoluminal mini-robot from a control console. A secondary, very important outcome of CODIR is to increase patient compliance (currently 50%) for screening colonoscopy in early diagnosis of colorectal cancer, the worlds second commonest cancer. RHC can overcome major disadvantages of existing colonoscopy examination: discomfort, sedation, thus increasing compliance and enabling future research.
Summary
CODIR proposes a new configuration of fundamental and applied biomedical and engineering multidisciplinary research to explore and characterise colon behavior necessary for the project and wider objectives. Scope and focus is on novel robotic hydro-colonoscopy (RHC), which stems from two considerations: (i) replacement of the flexible colonosocope with a patient-friendly system for inspection of the mucosal surface colon and (ii) the very recent concept of hydro-colonoscopy whereby water is used instead of traditional air insufflation. RHC can enable a breakthrough in patient-compliant complete endoscopic examination and biopsy of the colon for the further study of life threatening disorders of the colon commonly categorized as inflmmatory bowel disease, all of unknown aetilogy despite intensive research. CODIR will provide new insights for biomedical investigation and research applicable to many biomedical fields: biologic [absorption of water and electrolyte from the colon, characterisation of surface topograpgy of the colon, mechanical properties of colonic wall], imaging, mechatronics robot functionality and a novel colonic irrigation and filling system. The ambition is to develop a one-stop holistic system which cleans the colon of faecal debris and then introduces a tethered swimming/ submerging robot for inspection of the mucosal aspect of colon under the control of a clinician operating the endoluminal mini-robot from a control console. A secondary, very important outcome of CODIR is to increase patient compliance (currently 50%) for screening colonoscopy in early diagnosis of colorectal cancer, the worlds second commonest cancer. RHC can overcome major disadvantages of existing colonoscopy examination: discomfort, sedation, thus increasing compliance and enabling future research.
Max ERC Funding
2 999 948 €
Duration
Start date: 2011-08-01, End date: 2016-07-31
Project acronym COGATIMABIO
Project Combined time domain and spectral domain coherence gating for imaging and biosensing
Researcher (PI) Adrian Podoleanu
Host Institution (HI) UNIVERSITY OF KENT
Call Details Advanced Grant (AdG), LS7, ERC-2009-AdG
Summary Revolutionary combination of principles of spectral domain and time domain coherence gating will be researched. The present proposal puts forward: (i) a novel class of optical interferometers, (ii) a novel class of wavefront sensors and (iii) combinations of imaging channels with the novel wavefront sensors. All these are driven by the needs to address the limitations in terms of speed of the time domain (TD) optical coherence tomography (OCT), in terms of range, resolution and focus of the spectral (SD) OCT methods and in terms of spatial resolution of wavefront sensors. A new class of OCT systems is researched, as a marriage between the TD-OCT and SD-OCT methods. The novel methods present the generality of being compatible with both TD-OCT and SD-OCT. It is envisaged that the research results will revolutionise the field of high resolution imaging and high sensitive sensing and open applications not currently possible with the present OCT, confocal microscopy or multiphoton microscopy technology. The method to be researched will allow versatile functionality in measurements, in 3D imaging of moving tissue and functional/low noise imaging by making use of angular compounding or polarisation. Novel directions are opened in the tracking of the axial position of objects (cornea or retina), automatic dispersion compensation as well as improvement in the synchronism between the coherence gate and the focus in axial scanning. Simultaneous measurements over multiple path lengths becomes feasible, with potential applications in high throughput sensing. The methods proposed open novel avenues in biosensing by amplification of tiny frequency shifts or tiny changes in the optical paths. Possible outcome are high sensitive biosensors, multiple imaging at different depths, fast and long range tracking, long axial scanning, coherence gated wavefront sensors with applications in vision sciences and microscopy, protein identification and contrast agents developments.
Summary
Revolutionary combination of principles of spectral domain and time domain coherence gating will be researched. The present proposal puts forward: (i) a novel class of optical interferometers, (ii) a novel class of wavefront sensors and (iii) combinations of imaging channels with the novel wavefront sensors. All these are driven by the needs to address the limitations in terms of speed of the time domain (TD) optical coherence tomography (OCT), in terms of range, resolution and focus of the spectral (SD) OCT methods and in terms of spatial resolution of wavefront sensors. A new class of OCT systems is researched, as a marriage between the TD-OCT and SD-OCT methods. The novel methods present the generality of being compatible with both TD-OCT and SD-OCT. It is envisaged that the research results will revolutionise the field of high resolution imaging and high sensitive sensing and open applications not currently possible with the present OCT, confocal microscopy or multiphoton microscopy technology. The method to be researched will allow versatile functionality in measurements, in 3D imaging of moving tissue and functional/low noise imaging by making use of angular compounding or polarisation. Novel directions are opened in the tracking of the axial position of objects (cornea or retina), automatic dispersion compensation as well as improvement in the synchronism between the coherence gate and the focus in axial scanning. Simultaneous measurements over multiple path lengths becomes feasible, with potential applications in high throughput sensing. The methods proposed open novel avenues in biosensing by amplification of tiny frequency shifts or tiny changes in the optical paths. Possible outcome are high sensitive biosensors, multiple imaging at different depths, fast and long range tracking, long axial scanning, coherence gated wavefront sensors with applications in vision sciences and microscopy, protein identification and contrast agents developments.
Max ERC Funding
1 999 241 €
Duration
Start date: 2010-05-01, End date: 2015-10-31
Project acronym CoMoQuant
Project Correlated Molecular Quantum Gases in Optical Lattices
Researcher (PI) Hanns-Christoph NAEGERL
Host Institution (HI) UNIVERSITAET INNSBRUCK
Call Details Advanced Grant (AdG), PE2, ERC-2017-ADG
Summary In a quantum engineering approach we aim to create strongly correlated molecular quantum gases for polar molecules confined in an optical lattice to two-dimensional geometry with full quantum control of all de-grees of freedom with single molecule control and detection. The goal is to synthesize a high-fidelity molec-ular quantum simulator with thousands of particles and to carry out experiments on phases and dynamics of strongly-correlated quantum matter in view of strong long-range dipolar interactions. Our choice of mole-cule is the KCs dimer, which can either be a boson or a fermion, allowing us to prepare and probe bosonic as well as fermionic dipolar quantum matter in two dimensions. Techniques such as quantum-gas microscopy, perfectly suited for two-dimensional systems, will be applied to the molecular samples for local control and local readout.
The low-entropy molecular samples are created out of quantum degenerate atomic samples by well-established coherent atom paring and coherent optical ground-state transfer techniques. Crucial to this pro-posal is the full control over the molecular sample. To achieve near-unity lattice filling fraction for the mo-lecular samples, we create two-dimensional samples of K-Cs atom pairs as precursors to molecule formation by merging parallel planar systems of K and Cs, which are either in a band-insulating state (for the fermions) or in Mott-insulating state (for the bosons), along the out-of-plane direction.
The polar molecular samples are used to perform quantum simulations on ground-state properties and dy-namical properties of quantum many-body spin systems. We aim to create novel forms of superfluidity, to investigate into novel quantum many-body phases in the lattice that arise from the long-range molecular dipole-dipole interaction, and to probe quantum magnetism and its dynamics such as spin transport with single-spin control and readout. In addition, disorder can be engineered to mimic real physical situations.
Summary
In a quantum engineering approach we aim to create strongly correlated molecular quantum gases for polar molecules confined in an optical lattice to two-dimensional geometry with full quantum control of all de-grees of freedom with single molecule control and detection. The goal is to synthesize a high-fidelity molec-ular quantum simulator with thousands of particles and to carry out experiments on phases and dynamics of strongly-correlated quantum matter in view of strong long-range dipolar interactions. Our choice of mole-cule is the KCs dimer, which can either be a boson or a fermion, allowing us to prepare and probe bosonic as well as fermionic dipolar quantum matter in two dimensions. Techniques such as quantum-gas microscopy, perfectly suited for two-dimensional systems, will be applied to the molecular samples for local control and local readout.
The low-entropy molecular samples are created out of quantum degenerate atomic samples by well-established coherent atom paring and coherent optical ground-state transfer techniques. Crucial to this pro-posal is the full control over the molecular sample. To achieve near-unity lattice filling fraction for the mo-lecular samples, we create two-dimensional samples of K-Cs atom pairs as precursors to molecule formation by merging parallel planar systems of K and Cs, which are either in a band-insulating state (for the fermions) or in Mott-insulating state (for the bosons), along the out-of-plane direction.
The polar molecular samples are used to perform quantum simulations on ground-state properties and dy-namical properties of quantum many-body spin systems. We aim to create novel forms of superfluidity, to investigate into novel quantum many-body phases in the lattice that arise from the long-range molecular dipole-dipole interaction, and to probe quantum magnetism and its dynamics such as spin transport with single-spin control and readout. In addition, disorder can be engineered to mimic real physical situations.
Max ERC Funding
2 356 117 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym CRIPHERASY
Project Critical Phenomena in Random Systems
Researcher (PI) Giorgio Parisi
Host Institution (HI) UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA
Call Details Advanced Grant (AdG), PE2, ERC-2009-AdG
Summary This project aims to get a theoretical understanding of the most important large-scale phenomena in classical and quantum disordered systems. Thanks to the renormalization group approach the critical behaviour of pure systems is under very good control; however disordered systems are in many ways remarkably peculiar (think for example to non-perturbative phenomena like Griffiths singularities), often the conventional approach does not work and many crucial issues are still unclear. My work aims to fill this important hole in our understanding of disordered systems. I will concentrate my efforts on some of the most important and studied systems, i.e. spin glasses, random field ferromagnets (that are realized in nature as diluted antiferromagnets in a field), Anderson and Mott localization (with possible experimental applications to Bose-Einstein condensates and to electron glasses), surface growth in random media (KPZ and DLA models). In this project I want to pursue a new approach to these problems. I aim to compute in the most accurate way the properties of these systems using the original Wilson formulation of the renormalization group with a phase space cell analysis; this is equivalent to solving a statistical model on a hierarchical lattice (Dyson-Bleher-Sinai model). This is not an easy job. In the same conceptual frame we plan to use simultaneously very different techniques: probabilistic techniques, perturbative techniques at high orders, expansions around mean field on Bethe lattice and numerical techniques to evaluate the critical behaviour. I believe that even this restricted approach is very ambitious, but that the theoretical progresses that have been done in unveiling important features of disordered systems suggest that it will be possible to obtain solid results.
Summary
This project aims to get a theoretical understanding of the most important large-scale phenomena in classical and quantum disordered systems. Thanks to the renormalization group approach the critical behaviour of pure systems is under very good control; however disordered systems are in many ways remarkably peculiar (think for example to non-perturbative phenomena like Griffiths singularities), often the conventional approach does not work and many crucial issues are still unclear. My work aims to fill this important hole in our understanding of disordered systems. I will concentrate my efforts on some of the most important and studied systems, i.e. spin glasses, random field ferromagnets (that are realized in nature as diluted antiferromagnets in a field), Anderson and Mott localization (with possible experimental applications to Bose-Einstein condensates and to electron glasses), surface growth in random media (KPZ and DLA models). In this project I want to pursue a new approach to these problems. I aim to compute in the most accurate way the properties of these systems using the original Wilson formulation of the renormalization group with a phase space cell analysis; this is equivalent to solving a statistical model on a hierarchical lattice (Dyson-Bleher-Sinai model). This is not an easy job. In the same conceptual frame we plan to use simultaneously very different techniques: probabilistic techniques, perturbative techniques at high orders, expansions around mean field on Bethe lattice and numerical techniques to evaluate the critical behaviour. I believe that even this restricted approach is very ambitious, but that the theoretical progresses that have been done in unveiling important features of disordered systems suggest that it will be possible to obtain solid results.
Max ERC Funding
2 098 800 €
Duration
Start date: 2010-01-01, End date: 2014-12-31
Project acronym CRITISUP2
Project Criticality and Dual Superfluidity
Researcher (PI) christophe SALOMON
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), PE2, ERC-2016-ADG
Summary Low temperature matter exhibits a spectacular variety of highly ordered states that occur through phase transitions. In quantum systems, phase transitions and associated critical phenomena constitute a central issue of modern physics. Wilson’s theory of renormalization showed that very different physical systems could be unified under the same universality class characterized by critical exponents. The high degree of control offered by ultracold atom experiments sets them as an ideal platform for the investigation of phase transitions and critical phenomena.
CRITISUP2 aims at exploring criticality in superfluid spin ½ Fermi gases where the interplay between temperature spin polarization and interactions is at the origin of a rich phase diagram and a variety of phase transitions. We will measure the corresponding static and dynamic critical exponents, and search for the long-sought Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase predicted over 50 years ago. We will also study the phase diagram and critical counterflow of dual Bose-Fermi superfluids which have emerged as a new paradigm of quantum matter. Cutting-edge Bold Diagrammatic Monte Carlo and new resummation methods, developed in-house, will be confronted to the experiments on the one hand, and provide answers to debated questions on the other.
The expected outcomes of CRITISUP2 will constitute a major leap forward relevant for several fields of modern physics, ranging from condensed-matter to astrophysics, nuclear physics, and high energy physics.
Summary
Low temperature matter exhibits a spectacular variety of highly ordered states that occur through phase transitions. In quantum systems, phase transitions and associated critical phenomena constitute a central issue of modern physics. Wilson’s theory of renormalization showed that very different physical systems could be unified under the same universality class characterized by critical exponents. The high degree of control offered by ultracold atom experiments sets them as an ideal platform for the investigation of phase transitions and critical phenomena.
CRITISUP2 aims at exploring criticality in superfluid spin ½ Fermi gases where the interplay between temperature spin polarization and interactions is at the origin of a rich phase diagram and a variety of phase transitions. We will measure the corresponding static and dynamic critical exponents, and search for the long-sought Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase predicted over 50 years ago. We will also study the phase diagram and critical counterflow of dual Bose-Fermi superfluids which have emerged as a new paradigm of quantum matter. Cutting-edge Bold Diagrammatic Monte Carlo and new resummation methods, developed in-house, will be confronted to the experiments on the one hand, and provide answers to debated questions on the other.
The expected outcomes of CRITISUP2 will constitute a major leap forward relevant for several fields of modern physics, ranging from condensed-matter to astrophysics, nuclear physics, and high energy physics.
Max ERC Funding
2 246 536 €
Duration
Start date: 2017-05-01, End date: 2022-04-30
Project acronym CROSS
Project Cryogenic Rare-event Observatory with Surface Sensitivity
Researcher (PI) Andrea Ernesto Guido GIULIANI
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), PE2, ERC-2016-ADG
Summary CROSS will set the grounds for large-scale experiments searching for neutrinoless double beta decay with zero background at an exposure scale of ~1 tonne x year and with very high energy resolution – about 1.5‰ – in the region of interest. These features will enable searching for lepton number violation with unprecedented sensitivity, penetrating in prospect the direct-ordering region of the neutrino masses. CROSS will be based on arrays of TeO2 and Li2MoO4 bolometers enriched in the isotopes of interest 130Te and 100Mo, respectively. There are strong arguments in favor of these choices, such as the high double beta transition energy of these candidates, the easy crystallization processes of TeO2 and Li2MoO4, and the superior bolometric performance of these compounds in terms of energy resolution and intrinsic purity. The key idea in CROSS is to reject surface events (a dominant background source) by pulse-shape discrimination, obtained by exploiting solid-state-physics phenomena in superconductors. The surfaces of the crystals will be coated by an ultrapure superconductive aluminium film, which will act as a pulse-shape modifier by delaying the pulse development in case of shallow energy depositions, exploiting the long quasi-particle life-time in aluminium. This method will allow getting rid of the light detectors used up to now to discriminate surface alpha particles, simplifying a lot the bolometric structure and achieving the additional advantage to reject also beta surface events, which unfortunately persist as an ultimate background source if only alpha particles are tagged. The intrinsic modularity and the simplicity of the read-out will make CROSS easily expandable. The CROSS program is focused on an intermediate experiment with 90 crystals, installed underground in the Canfranc laboratory, which will be not only extremely competitive in the international context but also a decisive step to demonstrate the enormous potential of CROSS in terms of background.
Summary
CROSS will set the grounds for large-scale experiments searching for neutrinoless double beta decay with zero background at an exposure scale of ~1 tonne x year and with very high energy resolution – about 1.5‰ – in the region of interest. These features will enable searching for lepton number violation with unprecedented sensitivity, penetrating in prospect the direct-ordering region of the neutrino masses. CROSS will be based on arrays of TeO2 and Li2MoO4 bolometers enriched in the isotopes of interest 130Te and 100Mo, respectively. There are strong arguments in favor of these choices, such as the high double beta transition energy of these candidates, the easy crystallization processes of TeO2 and Li2MoO4, and the superior bolometric performance of these compounds in terms of energy resolution and intrinsic purity. The key idea in CROSS is to reject surface events (a dominant background source) by pulse-shape discrimination, obtained by exploiting solid-state-physics phenomena in superconductors. The surfaces of the crystals will be coated by an ultrapure superconductive aluminium film, which will act as a pulse-shape modifier by delaying the pulse development in case of shallow energy depositions, exploiting the long quasi-particle life-time in aluminium. This method will allow getting rid of the light detectors used up to now to discriminate surface alpha particles, simplifying a lot the bolometric structure and achieving the additional advantage to reject also beta surface events, which unfortunately persist as an ultimate background source if only alpha particles are tagged. The intrinsic modularity and the simplicity of the read-out will make CROSS easily expandable. The CROSS program is focused on an intermediate experiment with 90 crystals, installed underground in the Canfranc laboratory, which will be not only extremely competitive in the international context but also a decisive step to demonstrate the enormous potential of CROSS in terms of background.
Max ERC Funding
3 146 598 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym CrUCCial
Project Novel diagnostic and therapeutic approach to inflammatory bowel disease based on functional characterization of patients: the CrUCCial index
Researcher (PI) Severine VERMEIRE
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Advanced Grant (AdG), LS7, ERC-2015-AdG
Summary The clinical phenotype and the outcome of Crohn's disease (CD) and ulcerative colitis (UC), the opposite ends of chronic inflammatory bowel diseases (IBD), are heterogeneous and represent the result of a complex interplay of the gut microbiome with the immune system in genetically predisposed individuals. Disease management is much less heterogeneous as all patients are treated using non-specific anti-inflammatory agents, and only 30-50% achieve clinical and mucosal remission -the goal of therapy nowadays- therefore leaving large margins for improvement. The advances in knowledge about the factors triggering disease onset should be translated to approach the disease from a molecular angle. Key cellular pathways have emerged including bacterial recognition, autophagy, endoplasmic reticulum stress and intestinal barrier function. Functional/molecular characterization of these pathways in a given patient, correlation with meaningful clinical outcomes, and tailoring an individual therapeutic approach has never been attempted and will represent a breakthrough in the current paradigm of treating multifactorial inflammatory conditions. This project aims to functionally characterize patients with CD/UC for the major pathways by using integrated (epi)genetic, transcriptomic, immunologic, barrier integrity and metagenomic studies. From these readouts we will construct an index [the Crohn’s and Ulcerative Colitis Characterization and Intervention trial (CrUCCial) index], reflecting the proportional contribution of each of the pathogenic mechanisms in a given patient. We will next study the correlation of this index and its components to meaningful clinical outcomes and finally, the index will be tested in a pilot study of newly diagnosed patients in whom the disease will be targeted individually based on the components of the CrUCCial index. Our approach, from diagnosis over prognosis to therapy, will revolutionize the paradigm of disease management.
Summary
The clinical phenotype and the outcome of Crohn's disease (CD) and ulcerative colitis (UC), the opposite ends of chronic inflammatory bowel diseases (IBD), are heterogeneous and represent the result of a complex interplay of the gut microbiome with the immune system in genetically predisposed individuals. Disease management is much less heterogeneous as all patients are treated using non-specific anti-inflammatory agents, and only 30-50% achieve clinical and mucosal remission -the goal of therapy nowadays- therefore leaving large margins for improvement. The advances in knowledge about the factors triggering disease onset should be translated to approach the disease from a molecular angle. Key cellular pathways have emerged including bacterial recognition, autophagy, endoplasmic reticulum stress and intestinal barrier function. Functional/molecular characterization of these pathways in a given patient, correlation with meaningful clinical outcomes, and tailoring an individual therapeutic approach has never been attempted and will represent a breakthrough in the current paradigm of treating multifactorial inflammatory conditions. This project aims to functionally characterize patients with CD/UC for the major pathways by using integrated (epi)genetic, transcriptomic, immunologic, barrier integrity and metagenomic studies. From these readouts we will construct an index [the Crohn’s and Ulcerative Colitis Characterization and Intervention trial (CrUCCial) index], reflecting the proportional contribution of each of the pathogenic mechanisms in a given patient. We will next study the correlation of this index and its components to meaningful clinical outcomes and finally, the index will be tested in a pilot study of newly diagnosed patients in whom the disease will be targeted individually based on the components of the CrUCCial index. Our approach, from diagnosis over prognosis to therapy, will revolutionize the paradigm of disease management.
Max ERC Funding
2 494 500 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym CRYTERION
Project Cryogenic Traps for Entanglement Research with Ions
Researcher (PI) Rainer Blatt
Host Institution (HI) UNIVERSITAET INNSBRUCK
Call Details Advanced Grant (AdG), PE2, ERC-2008-AdG
Summary Quantum computers offer a fundamentally new way of information processing. Within the scope of this proposal, quantum information processing with an ion trap quantum computer will be investigated. With the new combination of cryogenic technology and ion traps for quantum computing we intend to build a quantum information processor with strings of up to 50 ions and with two-dimensional ion arrays for an investigation of deterministic many-particle entanglement. The cryogenic traps will be applied for quantum simulations, for fundamental investigations concerning large-scale entanglement and for precision measurements enhanced by quantum metrology techniques employing entangled particles.
Summary
Quantum computers offer a fundamentally new way of information processing. Within the scope of this proposal, quantum information processing with an ion trap quantum computer will be investigated. With the new combination of cryogenic technology and ion traps for quantum computing we intend to build a quantum information processor with strings of up to 50 ions and with two-dimensional ion arrays for an investigation of deterministic many-particle entanglement. The cryogenic traps will be applied for quantum simulations, for fundamental investigations concerning large-scale entanglement and for precision measurements enhanced by quantum metrology techniques employing entangled particles.
Max ERC Funding
2 200 000 €
Duration
Start date: 2008-12-01, End date: 2013-11-30
Project acronym CYTRIX
Project Engineering Cytokines for Super-Affinity Binding to Matrix in Regenerative Medicine
Researcher (PI) Jeffrey Alan Hubbell
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Advanced Grant (AdG), LS7, ERC-2013-ADG
Summary In physiological situations, the extracellular matrix (ECM) sequesters cytokines, localizes them, and modulates their signaling. Thus, physiological signaling from cytokines occurs primarily when the cytokines are interacting with the ECM. In therapeutic use of cytokines, however, this interaction and balance have not been respected; rather the growth factors are merely injected or applied as soluble molecules, perhaps in controlled release forms. This has led to modest efficacy and substantial concerns on safety. Here, we will develop a protein engineering design for second-generation cytokines to lead to their super-affinity binding to ECM molecules in the targeted tissues; this would allow application to a tissue site to yield a tight association with ECM molecules there, turning the tissue itself into a reservoir for cytokine sequestration and presentation. To accomplish this, we have undertaken preliminary work screening a library of cytokines for extraordinarily high affinity binding to a library of ECM molecules. We have thereby identified a small peptide domain within placental growth factor-2 (PlGF-2), namely PlGF-2123-144, that displays super-affinity for a number of ECM proteins. Also in preliminary work, we have demonstrated that recombinant fusion of this domain to low-affinity binding cytokines, namely VEGF-A, PDGF-BB and BMP-2, confers super-affinity binding to ECM molecules and accentuates their functionality in vivo in regenerative medicine models. In the proposed project, based on this preliminary data, we will push forward this protein engineering design, pursuing super-affinity variants of VEGF-A and PDGF-BB in chronic wounds, TGF-beta3 and CXCL11 in skin scar reduction, FGF-18 in osteoarthritic cartilage repair and CXCL12 in stem cell recruitment to ischemic cardiac muscle. Thus, we seek to demonstrate a fundamentally new concept and platform for second-generation growth factor protein engineering.
Summary
In physiological situations, the extracellular matrix (ECM) sequesters cytokines, localizes them, and modulates their signaling. Thus, physiological signaling from cytokines occurs primarily when the cytokines are interacting with the ECM. In therapeutic use of cytokines, however, this interaction and balance have not been respected; rather the growth factors are merely injected or applied as soluble molecules, perhaps in controlled release forms. This has led to modest efficacy and substantial concerns on safety. Here, we will develop a protein engineering design for second-generation cytokines to lead to their super-affinity binding to ECM molecules in the targeted tissues; this would allow application to a tissue site to yield a tight association with ECM molecules there, turning the tissue itself into a reservoir for cytokine sequestration and presentation. To accomplish this, we have undertaken preliminary work screening a library of cytokines for extraordinarily high affinity binding to a library of ECM molecules. We have thereby identified a small peptide domain within placental growth factor-2 (PlGF-2), namely PlGF-2123-144, that displays super-affinity for a number of ECM proteins. Also in preliminary work, we have demonstrated that recombinant fusion of this domain to low-affinity binding cytokines, namely VEGF-A, PDGF-BB and BMP-2, confers super-affinity binding to ECM molecules and accentuates their functionality in vivo in regenerative medicine models. In the proposed project, based on this preliminary data, we will push forward this protein engineering design, pursuing super-affinity variants of VEGF-A and PDGF-BB in chronic wounds, TGF-beta3 and CXCL11 in skin scar reduction, FGF-18 in osteoarthritic cartilage repair and CXCL12 in stem cell recruitment to ischemic cardiac muscle. Thus, we seek to demonstrate a fundamentally new concept and platform for second-generation growth factor protein engineering.
Max ERC Funding
2 368 170 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym DAMESYFLA
Project Electroweak Symmetry Breaking, Flavor and Dark
Matter: One Solution for Three Mysteries
Researcher (PI) Guido Martinelli
Host Institution (HI) SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI DI TRIESTE
Call Details Advanced Grant (AdG), PE2, ERC-2010-AdG_20100224
Summary In the next five years, experiments will give us a unique opportunity to unravel the mysteries of Electroweak Symmetry Breaking, Flavor and Dark Matter. The LHC at CERN will push the Energy frontier well into the TeV region and shed light on electroweak symmetry breaking. The LHCb experiment, super-B factories and other dedicated experiments, also in the lepton sector, will push forward the Intensity frontier and test the Standard Model description of flavor and CP violation with unprecedented accuracy. Earth- and space-based experiments will push forward the Astroparticle frontier, in particular direct and indirect searches for Dark Matter. My goal is to identify a coherent explanation of the three mysteries, as complete and as unique as possible, by combining the vast information coming from the Energy, Intensity and Astroparticle frontiers. This requires a global strategy, making use of highly qualified competences in the relevant branches of theory and phenomenology. I will put together some of the leading particle theorists operating in SISSA, Padua and Rome into a unique and extraordinarily strong team. The variety of competences, ranging from phenomenological fits and data interpretation to unified models and fundamental theories, will be used to interpret the results coming from a wide range of experiments and to formulate a coherent framework to account for them. With the essential contribution of the researchers paid on the project funds, the project will catalyze results going much beyond what the team members could individually achieve. The main support requested to the ERC is for hiring six experienced researchers, the rest of the funds are for optimizing the effectiveness of the team and the research environment.
Summary
In the next five years, experiments will give us a unique opportunity to unravel the mysteries of Electroweak Symmetry Breaking, Flavor and Dark Matter. The LHC at CERN will push the Energy frontier well into the TeV region and shed light on electroweak symmetry breaking. The LHCb experiment, super-B factories and other dedicated experiments, also in the lepton sector, will push forward the Intensity frontier and test the Standard Model description of flavor and CP violation with unprecedented accuracy. Earth- and space-based experiments will push forward the Astroparticle frontier, in particular direct and indirect searches for Dark Matter. My goal is to identify a coherent explanation of the three mysteries, as complete and as unique as possible, by combining the vast information coming from the Energy, Intensity and Astroparticle frontiers. This requires a global strategy, making use of highly qualified competences in the relevant branches of theory and phenomenology. I will put together some of the leading particle theorists operating in SISSA, Padua and Rome into a unique and extraordinarily strong team. The variety of competences, ranging from phenomenological fits and data interpretation to unified models and fundamental theories, will be used to interpret the results coming from a wide range of experiments and to formulate a coherent framework to account for them. With the essential contribution of the researchers paid on the project funds, the project will catalyze results going much beyond what the team members could individually achieve. The main support requested to the ERC is for hiring six experienced researchers, the rest of the funds are for optimizing the effectiveness of the team and the research environment.
Max ERC Funding
1 439 400 €
Duration
Start date: 2011-04-01, End date: 2017-03-31
Project acronym DAMIC-M
Project Unveiling the Hidden: A Search for Light Dark Matter with CCDs
Researcher (PI) Paolo PRIVITERA
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), PE2, ERC-2017-ADG
Summary Dark matter (DM) is a ubiquitous yet invisible presence in our universe. It dictated how galaxies formed in the first place, and now moves stars around them at puzzling speeds. The DM mass in the universe is known to be five times that of ordinary matter; yet its true nature remains elusive.
Weakly interacting massive particles (WIMPs), relics from the early universe, are a compelling explanation chased by sensitive experiments in deep underground laboratories. However, searches for heavy WIMPs (≈100 times the proton mass), the most theoretically natural candidates, have been so far unsuccessful. Nor has evidence for such heavy particles yet been found at the CERN Large Hadron Collider. Alternative scenarios are now under scrutiny, such as the existence of a hidden sector of lighter DM particles that interact, differently than WIMPs, also with electrons.
DAMIC-M (Dark Matter In CCDs at Modane) will search beyond the heavy WIMP paradigm by detecting nuclear recoils and electrons induced by light DM in charge-coupled devices (CCDs). The 0.5 kg detector will be installed at the Laboratoire Souterrain de Modane, France. In this novel and unconventional use of CCDs, which are commonly employed for digital imaging in astronomical telescopes, the ionization charge will be detected in the most massive CCDs ever built with exquisite spatial resolution (15 μm x 15 μm pixel). The crucial innovation in these devices is the non-destructive, repetitive measurement of the pixel charge, which results in the high-resolution detection of a single electron and unprecedented sensitivity to light DM (≈ eV energies are enough to free an electron in silicon). By counting individual charges in a detector with extremely low leakage current – a combination unmatched by any other DM experiment – DAMIC-M will take a leap forward of several orders of magnitude in the exploration of the hidden sector, a jump that may be rewarded by serendipitous discovery.
Summary
Dark matter (DM) is a ubiquitous yet invisible presence in our universe. It dictated how galaxies formed in the first place, and now moves stars around them at puzzling speeds. The DM mass in the universe is known to be five times that of ordinary matter; yet its true nature remains elusive.
Weakly interacting massive particles (WIMPs), relics from the early universe, are a compelling explanation chased by sensitive experiments in deep underground laboratories. However, searches for heavy WIMPs (≈100 times the proton mass), the most theoretically natural candidates, have been so far unsuccessful. Nor has evidence for such heavy particles yet been found at the CERN Large Hadron Collider. Alternative scenarios are now under scrutiny, such as the existence of a hidden sector of lighter DM particles that interact, differently than WIMPs, also with electrons.
DAMIC-M (Dark Matter In CCDs at Modane) will search beyond the heavy WIMP paradigm by detecting nuclear recoils and electrons induced by light DM in charge-coupled devices (CCDs). The 0.5 kg detector will be installed at the Laboratoire Souterrain de Modane, France. In this novel and unconventional use of CCDs, which are commonly employed for digital imaging in astronomical telescopes, the ionization charge will be detected in the most massive CCDs ever built with exquisite spatial resolution (15 μm x 15 μm pixel). The crucial innovation in these devices is the non-destructive, repetitive measurement of the pixel charge, which results in the high-resolution detection of a single electron and unprecedented sensitivity to light DM (≈ eV energies are enough to free an electron in silicon). By counting individual charges in a detector with extremely low leakage current – a combination unmatched by any other DM experiment – DAMIC-M will take a leap forward of several orders of magnitude in the exploration of the hidden sector, a jump that may be rewarded by serendipitous discovery.
Max ERC Funding
3 349 563 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym Dark-OsT
Project Experimental Searches for Oscillating and Transient effects from the Dark Sector
Researcher (PI) Dmitry Budker
Host Institution (HI) JOHANNES GUTENBERG-UNIVERSITAT MAINZ
Call Details Advanced Grant (AdG), PE2, ERC-2015-AdG
Summary The objective of the proposed project is to pioneer a magnetometry-based experimental framework for the detection of time-varying signatures of the ‘dark sector’. This novel approach will enable systematic searches for particles contributing to the dark matter and for dark-energy components.
The nature of dark matter and that of dark energy are among the central open problems in modern physics. There are only few experimental bounds and so far no conclusive observations of dark-sector particles or fields. Experiments enabling a direct coupling to the dark sector and thus a systematic search for and study of the contributing particles and fields would open up new vistas for areas ranging from particle physics to astrophysics and cosmology, and would in particular provide insights into the physics beyond the Standard Model.
Here, we propose a framework for such experimental searches based on high-precision magnetometers, and networks thereof. Our approach is distinct from existing efforts in two ways. First, it will enable searches for so-far unexplored couplings to ultra-light bosonic particles present in the Universe that could be components of dark matter and/or dark energy, in particular axions and axion-like particles (ALPs). Second, we will develop and use devices and methods tailored to search for oscillating and transient, rather than time-independent, effects. Specifically, we will use nuclear magnetic resonance (NMR) techniques for detecting spin precession caused by background axion and ALP dark matter, and geographically separated magnetometers for identify transient effects, such as crossing domain walls of ALP fields, which have been proposed as a possible dark-energy component.
The devices and methods developed in the framework of this project will provide the essential components for unique searches for a broad class of dark-matter and dark-energy candidates and might enable the key experiments to understanding the dark sector.
Summary
The objective of the proposed project is to pioneer a magnetometry-based experimental framework for the detection of time-varying signatures of the ‘dark sector’. This novel approach will enable systematic searches for particles contributing to the dark matter and for dark-energy components.
The nature of dark matter and that of dark energy are among the central open problems in modern physics. There are only few experimental bounds and so far no conclusive observations of dark-sector particles or fields. Experiments enabling a direct coupling to the dark sector and thus a systematic search for and study of the contributing particles and fields would open up new vistas for areas ranging from particle physics to astrophysics and cosmology, and would in particular provide insights into the physics beyond the Standard Model.
Here, we propose a framework for such experimental searches based on high-precision magnetometers, and networks thereof. Our approach is distinct from existing efforts in two ways. First, it will enable searches for so-far unexplored couplings to ultra-light bosonic particles present in the Universe that could be components of dark matter and/or dark energy, in particular axions and axion-like particles (ALPs). Second, we will develop and use devices and methods tailored to search for oscillating and transient, rather than time-independent, effects. Specifically, we will use nuclear magnetic resonance (NMR) techniques for detecting spin precession caused by background axion and ALP dark matter, and geographically separated magnetometers for identify transient effects, such as crossing domain walls of ALP fields, which have been proposed as a possible dark-energy component.
The devices and methods developed in the framework of this project will provide the essential components for unique searches for a broad class of dark-matter and dark-energy candidates and might enable the key experiments to understanding the dark sector.
Max ERC Funding
2 474 875 €
Duration
Start date: 2016-08-01, End date: 2021-07-31
Project acronym DECLIC
Project Exploring the Decoherence of Light in Cavities
Researcher (PI) Serge Haroche
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), PE2, ERC-2009-AdG
Summary The transition from quantum to classical is an essential issue in physics. At a practical level, quantum information thrives to build large quantum systems for tasks in communication or computing beyond the reach of classical devices. At the fundamental level, the question is whether there exists, in addition to environment-induced decoherence, another mechanism responsible for the disappearance of state superpositions at the macroscopic scale. Harmonic oscillators coupled to qubits are ideal to probe the limits of the quantum domain. Among various versions of this system, microwave Cavity Quantum Electrodynamics coupling Rydberg atoms to superconducting cavities has developed tools of un-matched sensitivity and precision. Building on these advances and on the development of deterministic atomic sources, DECLIC proposes to explore the dynamics of fields trapped in cavities and to study their decoherence under various perspectives. It will implement novel ways to generate non-classical states with large photon numbers stored in one cavity or non-locally split between two. DECLIC will record the gradual evolution of these states towards classicality and locality. Along this way, it will explore promising processes such as quantum random walks and collective photonic effects leading to non-classical interferometry breaking the standard quantum limit. Beyond witnessing decoherence, DECLIC will investigate ways to manipulate and control it, either by implementing feedback procedures steering the field towards targeted states, or by engineering artificial environments protecting against decoherence specific states of light. These experiments will provide invaluable clues for the understanding of other oscillator-qubit systems exploring the quantum to classical boundary.
Summary
The transition from quantum to classical is an essential issue in physics. At a practical level, quantum information thrives to build large quantum systems for tasks in communication or computing beyond the reach of classical devices. At the fundamental level, the question is whether there exists, in addition to environment-induced decoherence, another mechanism responsible for the disappearance of state superpositions at the macroscopic scale. Harmonic oscillators coupled to qubits are ideal to probe the limits of the quantum domain. Among various versions of this system, microwave Cavity Quantum Electrodynamics coupling Rydberg atoms to superconducting cavities has developed tools of un-matched sensitivity and precision. Building on these advances and on the development of deterministic atomic sources, DECLIC proposes to explore the dynamics of fields trapped in cavities and to study their decoherence under various perspectives. It will implement novel ways to generate non-classical states with large photon numbers stored in one cavity or non-locally split between two. DECLIC will record the gradual evolution of these states towards classicality and locality. Along this way, it will explore promising processes such as quantum random walks and collective photonic effects leading to non-classical interferometry breaking the standard quantum limit. Beyond witnessing decoherence, DECLIC will investigate ways to manipulate and control it, either by implementing feedback procedures steering the field towards targeted states, or by engineering artificial environments protecting against decoherence specific states of light. These experiments will provide invaluable clues for the understanding of other oscillator-qubit systems exploring the quantum to classical boundary.
Max ERC Funding
2 500 000 €
Duration
Start date: 2010-02-01, End date: 2016-01-31
Project acronym DELPHI
Project Deterministic Logical Photon-Photon Interactions
Researcher (PI) Philippe Grangier
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), PE2, ERC-2009-AdG
Summary The main objective of this proposal is to design and implement a novel scheme for efficient, deterministic, lossless photon-photon interactions, and to exploit it to achieve logical processing and quantum measurements on optical light beams. For that purpose, we will create, study and exploit a new transparent medium, based on the transient excitation of Rydberg polaritons, where the optical non-linearities are so large that they can act at the single photon level. These techniques will be applied to perform quantum measurements and manipulations of light beams. This will include the deterministic generation of single photons and optical Schrödinger's cat states, the implementation of quantum non-demolition (QND) measurements for the photon number and the parity operators, and the demonstration of controlled-phase and controlled-not quantum gates. These operations will be implemented in the optical domain, where they can be combined with efficient propagation in free space or in optical fibers, and with high efficiency detectors already available, in order to open an avenue towards a fully deterministic quantum engineering of light.
Summary
The main objective of this proposal is to design and implement a novel scheme for efficient, deterministic, lossless photon-photon interactions, and to exploit it to achieve logical processing and quantum measurements on optical light beams. For that purpose, we will create, study and exploit a new transparent medium, based on the transient excitation of Rydberg polaritons, where the optical non-linearities are so large that they can act at the single photon level. These techniques will be applied to perform quantum measurements and manipulations of light beams. This will include the deterministic generation of single photons and optical Schrödinger's cat states, the implementation of quantum non-demolition (QND) measurements for the photon number and the parity operators, and the demonstration of controlled-phase and controlled-not quantum gates. These operations will be implemented in the optical domain, where they can be combined with efficient propagation in free space or in optical fibers, and with high efficiency detectors already available, in order to open an avenue towards a fully deterministic quantum engineering of light.
Max ERC Funding
2 496 000 €
Duration
Start date: 2010-01-01, End date: 2014-12-31
Project acronym DENOVOHSC
Project Blood regeneration: de novo development of human hematopoietic stem cells
Researcher (PI) Elaine Anne Dzierzak
Host Institution (HI) THE UNIVERSITY OF EDINBURGH
Call Details Advanced Grant (AdG), LS7, ERC-2013-ADG
Summary Hematopoietic stem cells (HSC) are used in clinical therapies for leukemia and blood-related genetic disorders. Whereas
the number of patients requiring treatment continues to increase, HSC transplantations are limited due to insufficient
patient-matched donor HSCs. The current challenge is to create more matched HSCs. As evidenced by the Nobel Prize
award this year, reprogramming of somatic cells to pluripotent stem cells (iPS) is one of the most important breakthroughs
of recent times. This innovative advance contributes to our ability to reprogram patient-specific cells not only to pluripotency, but also to directly program them to other desired cell lineages. The study of healthy and diseased patient cells in this context will have huge impact on the development of new drug and cell-based treatments. My research is uniquely positioned at the interface of fundamental and translational research at the University of Edinburgh Centre for Inflammation Research and Centre for Regenerative Medicine. Through more than a decade of HSC developmental research, my group has shown that HSCs arise from endothelial cells in a natural reprogramming event. We are one of the few groups worldwide that can isolate these special endothelial cells and show that they yield robust transplantable HSCs (the gold-standard for clinically relevant HSCs). Using our unique expertise I aim to foster new translational strategies to de novo generate human HSCs from patient somatic cells. My aims are to 1) mark and manipulate the program for HSC generation during the endothelial to HSC transition (EHT); 2) define extrinsic molecules affecting EHT and engineer novel niches; 3) reprogram human somatic cells or endothelial derived iPS cells directly to HSCs. These aims will be realized through novel multi-color reporter mouse and ES/iPS lines indicating EHT in real-time, allowing for the isolation and functional validation of de novo HSC generation. These novel models and cultures will significantly advance research and technology, to have major impact on the field.
Summary
Hematopoietic stem cells (HSC) are used in clinical therapies for leukemia and blood-related genetic disorders. Whereas
the number of patients requiring treatment continues to increase, HSC transplantations are limited due to insufficient
patient-matched donor HSCs. The current challenge is to create more matched HSCs. As evidenced by the Nobel Prize
award this year, reprogramming of somatic cells to pluripotent stem cells (iPS) is one of the most important breakthroughs
of recent times. This innovative advance contributes to our ability to reprogram patient-specific cells not only to pluripotency, but also to directly program them to other desired cell lineages. The study of healthy and diseased patient cells in this context will have huge impact on the development of new drug and cell-based treatments. My research is uniquely positioned at the interface of fundamental and translational research at the University of Edinburgh Centre for Inflammation Research and Centre for Regenerative Medicine. Through more than a decade of HSC developmental research, my group has shown that HSCs arise from endothelial cells in a natural reprogramming event. We are one of the few groups worldwide that can isolate these special endothelial cells and show that they yield robust transplantable HSCs (the gold-standard for clinically relevant HSCs). Using our unique expertise I aim to foster new translational strategies to de novo generate human HSCs from patient somatic cells. My aims are to 1) mark and manipulate the program for HSC generation during the endothelial to HSC transition (EHT); 2) define extrinsic molecules affecting EHT and engineer novel niches; 3) reprogram human somatic cells or endothelial derived iPS cells directly to HSCs. These aims will be realized through novel multi-color reporter mouse and ES/iPS lines indicating EHT in real-time, allowing for the isolation and functional validation of de novo HSC generation. These novel models and cultures will significantly advance research and technology, to have major impact on the field.
Max ERC Funding
2 500 000 €
Duration
Start date: 2015-01-01, End date: 2019-12-31
Project acronym DG-PESP-CS
Project Deterministic Generation of Polarization Entangled single Photons Cluster States
Researcher (PI) David Gershoni
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Advanced Grant (AdG), PE2, ERC-2015-AdG
Summary Measurement based quantum computing is one of the most fault-tolerant architectures proposed for quantum information processing. It opens the possibility of performing quantum computing tasks using linear optical systems. An efficient route for measurement based quantum computing utilizes highly entangled states of photons, called cluster states. Propagation and processing quantum information is made possible this way using only single qubit measurements. It is highly resilient to qubit losses. In addition, single qubit measurements of polarization qubits is easily performed with high fidelity using standard optical tools. These features make photonic clusters excellent platforms for quantum information processing.
Constructing photonic cluster states, however, is a formidable challenge, attracting vast amounts of research efforts. While in principle it is possible to build up cluster states using interferometry, such a method is of a probabilistic nature and entails a large overhead of resources. The use of entangled photon pairs reduces this overhead by a small factor only.
We outline a novel route for constructing a deterministic source of photonic cluster states using a device based on semiconductor quantum dot. Our proposal follows a suggestion by Lindner and Rudolph. We use repeated optical excitations of a long lived coherent spin confined in a single semiconductor quantum dot and demonstrate for the first time practical realization of their proposal. Our preliminary demonstration presents a breakthrough in quantum technology since deterministic source of photonic cluster, reduces the resources needed quantum information processing. It may have revolutionary prospects for technological applications as well as to our fundamental understanding of quantum systems.
We propose to capitalize on this recent breakthrough and concentrate on R&D which will further advance this forefront field of science and technology by utilizing the horizons that it opens.
Summary
Measurement based quantum computing is one of the most fault-tolerant architectures proposed for quantum information processing. It opens the possibility of performing quantum computing tasks using linear optical systems. An efficient route for measurement based quantum computing utilizes highly entangled states of photons, called cluster states. Propagation and processing quantum information is made possible this way using only single qubit measurements. It is highly resilient to qubit losses. In addition, single qubit measurements of polarization qubits is easily performed with high fidelity using standard optical tools. These features make photonic clusters excellent platforms for quantum information processing.
Constructing photonic cluster states, however, is a formidable challenge, attracting vast amounts of research efforts. While in principle it is possible to build up cluster states using interferometry, such a method is of a probabilistic nature and entails a large overhead of resources. The use of entangled photon pairs reduces this overhead by a small factor only.
We outline a novel route for constructing a deterministic source of photonic cluster states using a device based on semiconductor quantum dot. Our proposal follows a suggestion by Lindner and Rudolph. We use repeated optical excitations of a long lived coherent spin confined in a single semiconductor quantum dot and demonstrate for the first time practical realization of their proposal. Our preliminary demonstration presents a breakthrough in quantum technology since deterministic source of photonic cluster, reduces the resources needed quantum information processing. It may have revolutionary prospects for technological applications as well as to our fundamental understanding of quantum systems.
We propose to capitalize on this recent breakthrough and concentrate on R&D which will further advance this forefront field of science and technology by utilizing the horizons that it opens.
Max ERC Funding
2 502 974 €
Duration
Start date: 2016-06-01, End date: 2021-05-31
Project acronym DIDO
Project Innovative drugs targeting IDO molecular dynamics in autoimmunity and neoplasia
Researcher (PI) Ursula Grohmann
Host Institution (HI) UNIVERSITA DEGLI STUDI DI PERUGIA
Call Details Advanced Grant (AdG), LS7, ERC-2013-ADG
Summary "Catabolism of amino acids is an ancient survival strategy that also controls immune responses in mammals. Indoleamine 2,3-dioxygenase (IDO), a tryptophan catabolizing enzyme, is recognized as an authentic regulator of immunity in several physiopathologic conditions, including autoimmune diseases, in which it is often defective, and neoplasia, in which it promotes immune unresponsiveness. The PI’s group recently revealed that IDO does not merely degrade tryptophan and produce immunoregulatory kynurenines but also acts as a signal-transducing molecule independently of its enzyme activity. IDO’s signaling function relies on the presence of phosphorylable motifs in a region (small IDO domain) distant from the catalytic site (large IDO domain). Preliminary data indicate that IDO, depending on microenvironmental conditions, can move among distinct cellular compartments. Thus IDO may be considered a ‘moonligthing’ protein, i.e., an ancestral metabolic molecule that, during evolution, has acquired the DYNAMIC feature of moving intracellularly and switching among distinct functions by changing its conformational state. By means of computational studies, Macchiarulo’s group (team member) has identified distinct conformations of IDO, some of which are associated with optimal catalytic activity of the enzyme whereas others may favor tyrosine phosphorylation of IDO’s small domain. A switch between distinct conformations can be induced by the use of ligands that bind either the catalytic site or an accessory pocket outside the IDO catalytic site. The first aim of DIDO is to decipher the relationships between IDO conformations and multiple functions of the enzyme. A second aim is to identify small molecules with drug-like properties capable of modulating distinct IDO’s molecular conformations in order to either potentiate (a new therapeutic approach in autoimmune diseases) or inhibit (more efficient anti-tumor therapeutic strategy) immunoregulatory signaling ability of IDO."
Summary
"Catabolism of amino acids is an ancient survival strategy that also controls immune responses in mammals. Indoleamine 2,3-dioxygenase (IDO), a tryptophan catabolizing enzyme, is recognized as an authentic regulator of immunity in several physiopathologic conditions, including autoimmune diseases, in which it is often defective, and neoplasia, in which it promotes immune unresponsiveness. The PI’s group recently revealed that IDO does not merely degrade tryptophan and produce immunoregulatory kynurenines but also acts as a signal-transducing molecule independently of its enzyme activity. IDO’s signaling function relies on the presence of phosphorylable motifs in a region (small IDO domain) distant from the catalytic site (large IDO domain). Preliminary data indicate that IDO, depending on microenvironmental conditions, can move among distinct cellular compartments. Thus IDO may be considered a ‘moonligthing’ protein, i.e., an ancestral metabolic molecule that, during evolution, has acquired the DYNAMIC feature of moving intracellularly and switching among distinct functions by changing its conformational state. By means of computational studies, Macchiarulo’s group (team member) has identified distinct conformations of IDO, some of which are associated with optimal catalytic activity of the enzyme whereas others may favor tyrosine phosphorylation of IDO’s small domain. A switch between distinct conformations can be induced by the use of ligands that bind either the catalytic site or an accessory pocket outside the IDO catalytic site. The first aim of DIDO is to decipher the relationships between IDO conformations and multiple functions of the enzyme. A second aim is to identify small molecules with drug-like properties capable of modulating distinct IDO’s molecular conformations in order to either potentiate (a new therapeutic approach in autoimmune diseases) or inhibit (more efficient anti-tumor therapeutic strategy) immunoregulatory signaling ability of IDO."
Max ERC Funding
2 442 078 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym DISQUA
Project Disorder physics with ultracold quantum gases
Researcher (PI) Massimo Inguscio
Host Institution (HI) LABORATORIO EUROPEO DI SPETTROSCOPIE NON LINEARI
Call Details Advanced Grant (AdG), PE2, ERC-2009-AdG
Summary Disorder is ubiquitous in nature and has a strong impact on the behaviour of many physical systems. The most celebrated effect of disorder is Anderson localization of single particles, but many other more complex phenomena arise in interacting, many-body systems. A full understanding of how disorder affects the behavior of quantum systems is still missing, also because of the unavoidable presence of nonlinearities, dissipation and thermal effects that make a careful exploration of real condensed-matter systems very difficult. In this project we want to fully exploit the unprecedented potentialities offered by ultracold atomic quantum gases to explore some of the present challenges for our understanding of the physics of disorder. These systems offer indeed the possibility of controlling to a great extent crucial parameters such as the type of disorder, the nonlinearities due to interactions, the temperature and density, the dimensionality, the quantum statistics. A variety of advanced diagnostic techniques allow to gain detailed information on the static and dynamic properties of the system. The potentialities of atomic quantum gases for the study of disorder have already showed up in recent breakthrough experiments. The project aims at an experimental exploration, supported by advanced theory, of the current issues in disordered quantum systems. We will investigate a few frontier themes of general interest: 1) Anderson localization and the interplay of disorder and a weak interaction; 2) strongly correlated, disordered bosonic systems; 3) disordered, interacting fermionic systems. In the research we will employ atomic Bose and Fermi gases with tunable interactions and advanced diagnostic techniques that we have recently contributed to develop. A successful completion of the project will push forward our understanding of the behaviour of quantum systems with disorder, with a potentially large impact on many fields of physics.
Summary
Disorder is ubiquitous in nature and has a strong impact on the behaviour of many physical systems. The most celebrated effect of disorder is Anderson localization of single particles, but many other more complex phenomena arise in interacting, many-body systems. A full understanding of how disorder affects the behavior of quantum systems is still missing, also because of the unavoidable presence of nonlinearities, dissipation and thermal effects that make a careful exploration of real condensed-matter systems very difficult. In this project we want to fully exploit the unprecedented potentialities offered by ultracold atomic quantum gases to explore some of the present challenges for our understanding of the physics of disorder. These systems offer indeed the possibility of controlling to a great extent crucial parameters such as the type of disorder, the nonlinearities due to interactions, the temperature and density, the dimensionality, the quantum statistics. A variety of advanced diagnostic techniques allow to gain detailed information on the static and dynamic properties of the system. The potentialities of atomic quantum gases for the study of disorder have already showed up in recent breakthrough experiments. The project aims at an experimental exploration, supported by advanced theory, of the current issues in disordered quantum systems. We will investigate a few frontier themes of general interest: 1) Anderson localization and the interplay of disorder and a weak interaction; 2) strongly correlated, disordered bosonic systems; 3) disordered, interacting fermionic systems. In the research we will employ atomic Bose and Fermi gases with tunable interactions and advanced diagnostic techniques that we have recently contributed to develop. A successful completion of the project will push forward our understanding of the behaviour of quantum systems with disorder, with a potentially large impact on many fields of physics.
Max ERC Funding
2 500 000 €
Duration
Start date: 2010-03-01, End date: 2015-02-28
Project acronym DQSIM
Project Discrete Quantum Simulator
Researcher (PI) Dieter Meschede
Host Institution (HI) RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITAT BONN
Call Details Advanced Grant (AdG), PE2, ERC-2011-ADG_20110209
Summary We propose to build a two-dimensional (2D) discrete quantum simulator based on ensembles of ultracold neutral atoms. In this system all degrees of freedom will be controlled at the quantum limit: the number and positions of the atoms, as well as their internal (qubit) and vibrational states. The dynamics is implemented by discrete steps of spin-dependent transport combined with controlled cold collisions of the atoms.
Although numerous theoretical studies have considered this architecture as the most promising route to quantum simulation, it has not yet been realized experimentally in all essential aspects.
This simulator allows us to study dynamical properties of single-particle and many-body systems in engineered 2D environments. In single particle discrete systems, also known as quantum walks, we plan to investigate transport properties connected to graphene-like Dirac points, and localization phenomena associated with disorder. In the many-particle setting we will realize 2D cluster states as needed for measurement-based quantum computation, as well as simple quantum cellular automata.
Summary
We propose to build a two-dimensional (2D) discrete quantum simulator based on ensembles of ultracold neutral atoms. In this system all degrees of freedom will be controlled at the quantum limit: the number and positions of the atoms, as well as their internal (qubit) and vibrational states. The dynamics is implemented by discrete steps of spin-dependent transport combined with controlled cold collisions of the atoms.
Although numerous theoretical studies have considered this architecture as the most promising route to quantum simulation, it has not yet been realized experimentally in all essential aspects.
This simulator allows us to study dynamical properties of single-particle and many-body systems in engineered 2D environments. In single particle discrete systems, also known as quantum walks, we plan to investigate transport properties connected to graphene-like Dirac points, and localization phenomena associated with disorder. In the many-particle setting we will realize 2D cluster states as needed for measurement-based quantum computation, as well as simple quantum cellular automata.
Max ERC Funding
2 575 573 €
Duration
Start date: 2012-04-01, End date: 2017-03-31
Project acronym DropletControl
Project Controlling the orientation of molecules inside liquid helium nanodroplets
Researcher (PI) Henrik Stapelfeldt
Host Institution (HI) AARHUS UNIVERSITET
Call Details Advanced Grant (AdG), PE2, ERC-2012-ADG_20120216
Summary In this project I will develop and exploit experimental methods, based on short and intense laser pulses, to control the spatial orientation of molecules dissolved in liquid helium nanodroplets. This idea is, so far, completely unexplored but it has the potential to open a multitude of new opportunities in physics and chemistry. The main objectives are:
1) Complete control and real time monitoring of molecular rotation inside liquid helium droplets, exploring superfluidity of the droplets, the possible formation of quantum vortices, and rotational dephasing due to interaction of the dissolved molecules with the He solvent.
2) Ultrafast imaging of molecules undergoing chemical reaction dynamics inside liquid helium droplets, exploring rapid energy dissipation from reacting molecules to the helium solvent, transition between mirror forms of chiral molecules, strong laser field processes in He-solvated molecules, and structure determination of non crystalizable proteins by electron or x-ray diffraction.
I will achieve the objectives by combining liquid helium droplet technology, ultrafast laser pulse methods and advanced electron and ion imaging detection. The experiments will both rely on existing apparatus in my laboratories and on new vacuum and laser equipment to be set up during the project.
The ability to control how molecules are turned in space is of fundamental importance because interactions of molecules with other molecules, atoms or radiation depend on their spatial orientation. For isolated molecules in the gas phase laser based methods, developed over the past 12 years, now enable very refined and precise control over the spatial orientation of molecules. By contrast, orientational control of molecules in solution has not been demonstrated despite the potential of being able to do so is enormous, notably because most chemistry occurs in a solvent rather than in a gas of isolated molecules.
Summary
In this project I will develop and exploit experimental methods, based on short and intense laser pulses, to control the spatial orientation of molecules dissolved in liquid helium nanodroplets. This idea is, so far, completely unexplored but it has the potential to open a multitude of new opportunities in physics and chemistry. The main objectives are:
1) Complete control and real time monitoring of molecular rotation inside liquid helium droplets, exploring superfluidity of the droplets, the possible formation of quantum vortices, and rotational dephasing due to interaction of the dissolved molecules with the He solvent.
2) Ultrafast imaging of molecules undergoing chemical reaction dynamics inside liquid helium droplets, exploring rapid energy dissipation from reacting molecules to the helium solvent, transition between mirror forms of chiral molecules, strong laser field processes in He-solvated molecules, and structure determination of non crystalizable proteins by electron or x-ray diffraction.
I will achieve the objectives by combining liquid helium droplet technology, ultrafast laser pulse methods and advanced electron and ion imaging detection. The experiments will both rely on existing apparatus in my laboratories and on new vacuum and laser equipment to be set up during the project.
The ability to control how molecules are turned in space is of fundamental importance because interactions of molecules with other molecules, atoms or radiation depend on their spatial orientation. For isolated molecules in the gas phase laser based methods, developed over the past 12 years, now enable very refined and precise control over the spatial orientation of molecules. By contrast, orientational control of molecules in solution has not been demonstrated despite the potential of being able to do so is enormous, notably because most chemistry occurs in a solvent rather than in a gas of isolated molecules.
Max ERC Funding
2 409 773 €
Duration
Start date: 2013-05-01, End date: 2018-04-30
Project acronym DYNAMINT
Project Dynamics of Probed, Pulsed, Quenched and Driven Integrable Quantum Systems
Researcher (PI) Jean-Sébastien CAUX
Host Institution (HI) UNIVERSITEIT VAN AMSTERDAM
Call Details Advanced Grant (AdG), PE2, ERC-2016-ADG
Summary This proposal intends to develop and apply a new-generation theoretical toolbox for understanding the rich dynamics of strongly-interacting many-body quantum sytems subjected to destabilizing manipulations bringing them very far from equilibrium.
In atomic systems, condensed matter and nanophysics settings, quantum matter is nowadays routinely pushed beyond the traditional low-energy/linear response/thermal equilibrium paradigms. Some experiments even clearly highlight the need to revise basic fundamental quantum statistical mechanics notions such as ergodicity, relaxation and thermalization in order to explain their behaviour. Theory must thus urgently revise its textbooks and develop new interpretations and capabilities for offering concrete, quantitative phenomenology.
This proposal is focused on a set of systems at the very center of this strongly-correlated, experimentally realizable far-from-equilibrium spectacle: integrable models of quantum spin chains, interacting gases confined to one spatial dimension, and quantum dots. Building up on recent theoretical breakthroughs in dynamical correlations and post-quench steady states, this proposal aims to shed a new light on the fundamental principles at the heart of many-body quantum dynamics. It will implement a broad and ambitious research agenda consisting of synergetic projects from mathematically formal thought experiments all the way to phenomenologically applied practical calculations. The types of protocols to be studied include probes creating high-energy excitations, pulses inducing changes beyond linear response, quenches causing sudden global reorganizations, all the way to drivings completely metamorphozing the physical states.
The result will be to provide reliable, experimentally relevant and urgently-needed theoretical `anchoring points' in our general understanding of the physics underlying far-from-equilibrium strongly-interacting quantum matter.
Summary
This proposal intends to develop and apply a new-generation theoretical toolbox for understanding the rich dynamics of strongly-interacting many-body quantum sytems subjected to destabilizing manipulations bringing them very far from equilibrium.
In atomic systems, condensed matter and nanophysics settings, quantum matter is nowadays routinely pushed beyond the traditional low-energy/linear response/thermal equilibrium paradigms. Some experiments even clearly highlight the need to revise basic fundamental quantum statistical mechanics notions such as ergodicity, relaxation and thermalization in order to explain their behaviour. Theory must thus urgently revise its textbooks and develop new interpretations and capabilities for offering concrete, quantitative phenomenology.
This proposal is focused on a set of systems at the very center of this strongly-correlated, experimentally realizable far-from-equilibrium spectacle: integrable models of quantum spin chains, interacting gases confined to one spatial dimension, and quantum dots. Building up on recent theoretical breakthroughs in dynamical correlations and post-quench steady states, this proposal aims to shed a new light on the fundamental principles at the heart of many-body quantum dynamics. It will implement a broad and ambitious research agenda consisting of synergetic projects from mathematically formal thought experiments all the way to phenomenologically applied practical calculations. The types of protocols to be studied include probes creating high-energy excitations, pulses inducing changes beyond linear response, quenches causing sudden global reorganizations, all the way to drivings completely metamorphozing the physical states.
The result will be to provide reliable, experimentally relevant and urgently-needed theoretical `anchoring points' in our general understanding of the physics underlying far-from-equilibrium strongly-interacting quantum matter.
Max ERC Funding
2 444 446 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym eEDM
Project A laser-cooled molecular fountain to measure the electron EDM
Researcher (PI) Edward Allen Hinds
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Call Details Advanced Grant (AdG), PE2, ERC-2012-ADG_20120216
Summary I propose to build an instrument that cools YbF molecules to microK temperature using laser light, and throws them up as a fountain in free fall. This will be used to detect CP-violating elementary particle interactions that caused our universe to evolve an excess of matter over antimatter These interactions cause the charge distribution of the electron to be slightly non-spherical and it is this property, the permanent electric dipole moment (EDM), that the ultracold molecules will sense.
Laser cooling of any molecule is very new, with first results emerging from a few laboratories including mine. Developing a fountain of molecules will be a major advance in the state of the art. As well as being the key to the new EDM instrument, this will be important in its own right because ultracold molecules have major applications in chemistry, quantum information processing and metrology.
In the fountain, the electron spin of each molecule will be polarized. On applying a perpendicular electric field, the spins will precess in proportion to the EDM. At present the (warm) YbF molecules in my lab precess for only 1ms. This gives us world-leading sensitivity, but has not been sufficient to detect the CP-violating forces being sought. The fountain however will achieve precession times of almost a second, giving over 1000x more rotation. The increase in sensitivity should reveal a clear EDM, providing information about the fundamental laws of physics, and the important CP-violating physics of the early universe, which is currently not understood.
By advancing the preparation of ultracold molecules, this project will address a key question in particle physics and cosmology: the nature of CP-violating physics beyond the standard model. The approach is radically different from standard accelerator physics and complements it. The sensitivity is sufficient to detect some proposed new forces that are beyond the reach of any current collider experiment.
Summary
I propose to build an instrument that cools YbF molecules to microK temperature using laser light, and throws them up as a fountain in free fall. This will be used to detect CP-violating elementary particle interactions that caused our universe to evolve an excess of matter over antimatter These interactions cause the charge distribution of the electron to be slightly non-spherical and it is this property, the permanent electric dipole moment (EDM), that the ultracold molecules will sense.
Laser cooling of any molecule is very new, with first results emerging from a few laboratories including mine. Developing a fountain of molecules will be a major advance in the state of the art. As well as being the key to the new EDM instrument, this will be important in its own right because ultracold molecules have major applications in chemistry, quantum information processing and metrology.
In the fountain, the electron spin of each molecule will be polarized. On applying a perpendicular electric field, the spins will precess in proportion to the EDM. At present the (warm) YbF molecules in my lab precess for only 1ms. This gives us world-leading sensitivity, but has not been sufficient to detect the CP-violating forces being sought. The fountain however will achieve precession times of almost a second, giving over 1000x more rotation. The increase in sensitivity should reveal a clear EDM, providing information about the fundamental laws of physics, and the important CP-violating physics of the early universe, which is currently not understood.
By advancing the preparation of ultracold molecules, this project will address a key question in particle physics and cosmology: the nature of CP-violating physics beyond the standard model. The approach is radically different from standard accelerator physics and complements it. The sensitivity is sufficient to detect some proposed new forces that are beyond the reach of any current collider experiment.
Max ERC Funding
2 409 629 €
Duration
Start date: 2013-02-01, End date: 2018-01-31
Project acronym EFT4LHC
Project An Effective Field-Theory Assault on the Zeptometer Scale: Exploring the Origins of Flavour and Electroweak Symmetry Breaking
Researcher (PI) Matthias Neubert
Host Institution (HI) JOHANNES GUTENBERG-UNIVERSITAT MAINZ
Call Details Advanced Grant (AdG), PE2, ERC-2011-ADG_20110209
Summary "Questions about the origins of electroweak symmetry breaking and of the striking hierarchies ob-served in the spectrum of fermion masses and mixing angles are among the most pressing problems in fundamental physics. While the Large Hadron Collider at CERN was built to explore the physics of electroweak symmetry breaking on tiny distance scales of an attometer, the absence of clear hints for new particles in existing high-energy physics experiments suggests that new phenomena might only occur at distances still smaller than this. What if the LHC discovers a Higgs boson and nothing else? It has recently been realized that significantly shorter distances of only a few zeptometer (10^-21 m) can be probed indirectly in precision measurements of rare weak decay processes and of the couplings of the Higgs boson. Exploring nature at these scales never before accessible to mankind requires breakthrough advances in theory.
I propose a broad theoretical approach to precision physics in and beyond the Standard Model based on effective field-theory tools. In the context of warped extra-dimension models, the genuine quantum structure of fundamental physics will be probed in loop-mediated processes, including Higgs-boson production and decay as well as rare flavour-changing neutral current processes. These explorations will be complemented by highest-precision calculations of important collider-physics processes, such as Higgs, top, and electroweak gauge-boson production in association with jets, which for the first time will be performed without recourse to phenomenological models. The multi-loop anomalous dimensions required for these calculations will also provide a deeper understanding of the structure of infrared singularities of scattering amplitudes in non-abelian gauge theories. The results obtained from the research described in this proposal are likely to reveal the deep common origins of the flavour structure and electroweak symmetry breaking."
Summary
"Questions about the origins of electroweak symmetry breaking and of the striking hierarchies ob-served in the spectrum of fermion masses and mixing angles are among the most pressing problems in fundamental physics. While the Large Hadron Collider at CERN was built to explore the physics of electroweak symmetry breaking on tiny distance scales of an attometer, the absence of clear hints for new particles in existing high-energy physics experiments suggests that new phenomena might only occur at distances still smaller than this. What if the LHC discovers a Higgs boson and nothing else? It has recently been realized that significantly shorter distances of only a few zeptometer (10^-21 m) can be probed indirectly in precision measurements of rare weak decay processes and of the couplings of the Higgs boson. Exploring nature at these scales never before accessible to mankind requires breakthrough advances in theory.
I propose a broad theoretical approach to precision physics in and beyond the Standard Model based on effective field-theory tools. In the context of warped extra-dimension models, the genuine quantum structure of fundamental physics will be probed in loop-mediated processes, including Higgs-boson production and decay as well as rare flavour-changing neutral current processes. These explorations will be complemented by highest-precision calculations of important collider-physics processes, such as Higgs, top, and electroweak gauge-boson production in association with jets, which for the first time will be performed without recourse to phenomenological models. The multi-loop anomalous dimensions required for these calculations will also provide a deeper understanding of the structure of infrared singularities of scattering amplitudes in non-abelian gauge theories. The results obtained from the research described in this proposal are likely to reveal the deep common origins of the flavour structure and electroweak symmetry breaking."
Max ERC Funding
2 109 600 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym ELYCHE
Project Electron-scale dynamics in chemistry
Researcher (PI) Mauro Nisoli
Host Institution (HI) POLITECNICO DI MILANO
Call Details Advanced Grant (AdG), PE2, ERC-2008-AdG
Summary The target of the proposal is the first experimental demonstration of attosecond coherent control of electron motion in many-particle systems. The past decade has seen remarkable advances in the field of coherent control of chemical reactions thanks to the application of femtosecond technology; I propose to use the emerging attosecond technology to achieve coherent control of photodissociation reactions on a purely electronic scale. I will mainly concentrate on molecules with biological interest. The success of the project will be based on the possibility to initiate and control the sub-femtosecond electronic motion in large molecules, by using high-intensity isolated attosecond pulses. Such electron motion precedes and determines the subsequent nuclear rearrangement, which ultimately leads to the chemical change. In this way it will be possible to control in a direct way the outcome of a chemical reaction, which is one of the central problems in modern chemistry. A crucial benchmark of the project, substantially beyond the current state-of-the-art in Attosecond Science, will be the experimental demonstration of attosecond pump / attosecond-probe measurements, which for the present are not technically feasible. Electron dynamics will be measured, with attosecond resolution, in many-particle systems, ranging from simple molecules to complex bio-molecules.
The application of attosecond pulses and the development of attochemistry techniques for the investigation of the primary electronic steps of chemical processes, is a completely new and challenging research field, with tremendous prospects for both fundamental research and technology. In particular, the attosecond coherent control of charge localization in bio-molecules can offer unique information on the mechanisms at the basis of biological signal transmission or on the processes leading to damaging of complex biological molecules (from polypeptides to proteins and DNA).
Summary
The target of the proposal is the first experimental demonstration of attosecond coherent control of electron motion in many-particle systems. The past decade has seen remarkable advances in the field of coherent control of chemical reactions thanks to the application of femtosecond technology; I propose to use the emerging attosecond technology to achieve coherent control of photodissociation reactions on a purely electronic scale. I will mainly concentrate on molecules with biological interest. The success of the project will be based on the possibility to initiate and control the sub-femtosecond electronic motion in large molecules, by using high-intensity isolated attosecond pulses. Such electron motion precedes and determines the subsequent nuclear rearrangement, which ultimately leads to the chemical change. In this way it will be possible to control in a direct way the outcome of a chemical reaction, which is one of the central problems in modern chemistry. A crucial benchmark of the project, substantially beyond the current state-of-the-art in Attosecond Science, will be the experimental demonstration of attosecond pump / attosecond-probe measurements, which for the present are not technically feasible. Electron dynamics will be measured, with attosecond resolution, in many-particle systems, ranging from simple molecules to complex bio-molecules.
The application of attosecond pulses and the development of attochemistry techniques for the investigation of the primary electronic steps of chemical processes, is a completely new and challenging research field, with tremendous prospects for both fundamental research and technology. In particular, the attosecond coherent control of charge localization in bio-molecules can offer unique information on the mechanisms at the basis of biological signal transmission or on the processes leading to damaging of complex biological molecules (from polypeptides to proteins and DNA).
Max ERC Funding
2 446 200 €
Duration
Start date: 2009-04-01, End date: 2014-03-31
Project acronym EMERGRAV
Project Emergent Gravity, String Theory and the Holographic Principle
Researcher (PI) Erik Peter Verlinde
Host Institution (HI) UNIVERSITEIT VAN AMSTERDAM
Call Details Advanced Grant (AdG), PE2, ERC-2010-AdG_20100224
Summary The study of black hole physics and string theory are leading to a novel perspective on gravity and space-time. The old frameworks are replaced by a new paradigm in which gravity is understood as an emergent phenomenon. A central role in this revolution is played by the holographic principle put forward by ‘t Hooft. It states that the microscopic information associated with the physical world can be stored on the boundary of space. From this holographic viewpoint I have recently derived the familiar laws of Newton and Einstein using only first principles. Gravity appears as an entropic force caused by changes in information associated with matter. With this ERC proposal I am aiming to build a research group that will further develop this new entropic view on gravity. The powerful string theoretic tools, such as the holographic correspondence between gauge theory and gravity, will be used to illuminate and further clarify gravity’s entropic origin. In addition, I plan to investigate the implications of the emergence of the gravitational force for the areas in which gravity plays a crucial role, in particular cosmology. For instance, the entropic viewpoint is expected to shed new light on the nature of dark energy and possibly dark matter. It may also lead to a new perspective on the other fundamental forces, since the notions of inertia and mass need to be reconsidered as well. The understanding of gravity as an emergent phenomenon will also influence and benefit from the conceptual ideas developed in condensed matter physics, such as the recently discovered connection between quantum critical electron systems and black hole horizons. The university of Amsterdam and the Netherlands provide an excellent environment for a successful completion of these goals.
Summary
The study of black hole physics and string theory are leading to a novel perspective on gravity and space-time. The old frameworks are replaced by a new paradigm in which gravity is understood as an emergent phenomenon. A central role in this revolution is played by the holographic principle put forward by ‘t Hooft. It states that the microscopic information associated with the physical world can be stored on the boundary of space. From this holographic viewpoint I have recently derived the familiar laws of Newton and Einstein using only first principles. Gravity appears as an entropic force caused by changes in information associated with matter. With this ERC proposal I am aiming to build a research group that will further develop this new entropic view on gravity. The powerful string theoretic tools, such as the holographic correspondence between gauge theory and gravity, will be used to illuminate and further clarify gravity’s entropic origin. In addition, I plan to investigate the implications of the emergence of the gravitational force for the areas in which gravity plays a crucial role, in particular cosmology. For instance, the entropic viewpoint is expected to shed new light on the nature of dark energy and possibly dark matter. It may also lead to a new perspective on the other fundamental forces, since the notions of inertia and mass need to be reconsidered as well. The understanding of gravity as an emergent phenomenon will also influence and benefit from the conceptual ideas developed in condensed matter physics, such as the recently discovered connection between quantum critical electron systems and black hole horizons. The university of Amsterdam and the Netherlands provide an excellent environment for a successful completion of these goals.
Max ERC Funding
2 033 983 €
Duration
Start date: 2011-04-01, End date: 2016-03-31
Project acronym EntangleGen
Project Entanglement Generation in Universal Quantum Dynamics
Researcher (PI) Markus OBERTHALER
Host Institution (HI) RUPRECHT-KARLS-UNIVERSITAET HEIDELBERG
Call Details Advanced Grant (AdG), PE2, ERC-2015-AdG
Summary A paradigm example of precise predictions in complex systems is the universal scaling of correlation functions close to phase transitions, with their associated critical exponents. The extension of this concept to time dependent problems has been studied in the classical regime as well as in the quantum regime. A clean experimental confirmation of this prediction in a quantum system as well as of its connection to non-local entanglement generation is the defined goal of this project.
The experimental system builds on atomic Bose-Einstein condensates with precisely controlled internal degrees of freedom. Their physics can be mapped onto extensively studied spin systems in the large-collective-spin limit. While the mean evolution of these large spins is well captured by classical descriptions, the detailed study of the fluctuations can reveal particle entanglement. The technology for such high-precision measurements has been pioneered by the PI, demonstrating entanglement in spin-squeezed as well as non-gaussian entangled states.
In this project one-dimensional gases will be realized allowing for the implementation of a spin system revealing a quantum phase transition. While the spatial spin-spin correlation functions can already be detected, the future experimental development concerns the implementation of non-demolition/weak measurements of the spin degree of freedom. This makes time-time and time-space correlation functions for the first time accessible, as a necessary prerequisite for the envisaged studies of universal dynamics out of equilibrium and the experimental confirmation of non-local entanglement. Observation of scale invariance in the then available full correlation landscape will allow the verification of the presence of a non-thermal fixed point.
The successful demonstration will lead to a paradigm shift in the description of quantum dynamics in complex systems and will also open up new routes for generating quantum resources for quantum metrology.
Summary
A paradigm example of precise predictions in complex systems is the universal scaling of correlation functions close to phase transitions, with their associated critical exponents. The extension of this concept to time dependent problems has been studied in the classical regime as well as in the quantum regime. A clean experimental confirmation of this prediction in a quantum system as well as of its connection to non-local entanglement generation is the defined goal of this project.
The experimental system builds on atomic Bose-Einstein condensates with precisely controlled internal degrees of freedom. Their physics can be mapped onto extensively studied spin systems in the large-collective-spin limit. While the mean evolution of these large spins is well captured by classical descriptions, the detailed study of the fluctuations can reveal particle entanglement. The technology for such high-precision measurements has been pioneered by the PI, demonstrating entanglement in spin-squeezed as well as non-gaussian entangled states.
In this project one-dimensional gases will be realized allowing for the implementation of a spin system revealing a quantum phase transition. While the spatial spin-spin correlation functions can already be detected, the future experimental development concerns the implementation of non-demolition/weak measurements of the spin degree of freedom. This makes time-time and time-space correlation functions for the first time accessible, as a necessary prerequisite for the envisaged studies of universal dynamics out of equilibrium and the experimental confirmation of non-local entanglement. Observation of scale invariance in the then available full correlation landscape will allow the verification of the presence of a non-thermal fixed point.
The successful demonstration will lead to a paradigm shift in the description of quantum dynamics in complex systems and will also open up new routes for generating quantum resources for quantum metrology.
Max ERC Funding
2 390 000 €
Duration
Start date: 2016-10-01, End date: 2021-09-30
Project acronym EPIC
Project Enabling Precision Immuno-oncology in Colorectal cancer
Researcher (PI) Zlatko TRAJANOSKI
Host Institution (HI) MEDIZINISCHE UNIVERSITAT INNSBRUCK
Call Details Advanced Grant (AdG), LS7, ERC-2017-ADG
Summary Immunotherapy with checkpoints blockers is transforming the treatment of advanced cancers. Colorectal cancer (CRC), a cancer with 1.4 million new cases diagnosed annually worldwide, is refractory to immunotherapy (with the exception of a minority of tumors with microsatellite instability). This is somehow paradoxical as CRC is a cancer for which we have shown that it is under immunological control and that tumor infiltrating lymphocytes represent a strong independent predictor of survival. Thus, there is an urgent need to broaden the clinical benefits of immune checkpoint blockers to CRC by combining agents with synergistic mechanisms of action. An attractive approach to sensitize tumors to immunotherapy is to harness immunogenic effects induced by approved conventional or targeted agents.
Here I propose a new paradigm to identify molecular determinants of resistance to immunotherapy and develop personalized in silico and in vitro models for predicting response to combination therapy in CRC. The EPIC concept is based on three pillars: 1) emphasis on antitumor T cell activity; 2) systematic interrogation of tumor-immune cell interactions using data-driven modeling and knowledge-based mechanistic modeling, and 3) generation of key quantitative data to train and validate algorithms using perturbation experiments with patient-derived tumor organoids and cutting-edge technologies for multidimensional profiling. We will investigate three immunomodulatory processes: 1) immunostimulatory effects of chemotherapeutics, 2) rewiring of signaling networks induced by targeted drugs and their interference with immunity, and 3) metabolic reprogramming of T cells to enhance antitumor immunity.
The anticipated outcome of EPIC is a precision immuno-oncology platform that integrates tumor organoids with high-throughput and high-content data for testing drug combinations, and machine learning for making therapeutic recommendations for individual patients.
Summary
Immunotherapy with checkpoints blockers is transforming the treatment of advanced cancers. Colorectal cancer (CRC), a cancer with 1.4 million new cases diagnosed annually worldwide, is refractory to immunotherapy (with the exception of a minority of tumors with microsatellite instability). This is somehow paradoxical as CRC is a cancer for which we have shown that it is under immunological control and that tumor infiltrating lymphocytes represent a strong independent predictor of survival. Thus, there is an urgent need to broaden the clinical benefits of immune checkpoint blockers to CRC by combining agents with synergistic mechanisms of action. An attractive approach to sensitize tumors to immunotherapy is to harness immunogenic effects induced by approved conventional or targeted agents.
Here I propose a new paradigm to identify molecular determinants of resistance to immunotherapy and develop personalized in silico and in vitro models for predicting response to combination therapy in CRC. The EPIC concept is based on three pillars: 1) emphasis on antitumor T cell activity; 2) systematic interrogation of tumor-immune cell interactions using data-driven modeling and knowledge-based mechanistic modeling, and 3) generation of key quantitative data to train and validate algorithms using perturbation experiments with patient-derived tumor organoids and cutting-edge technologies for multidimensional profiling. We will investigate three immunomodulatory processes: 1) immunostimulatory effects of chemotherapeutics, 2) rewiring of signaling networks induced by targeted drugs and their interference with immunity, and 3) metabolic reprogramming of T cells to enhance antitumor immunity.
The anticipated outcome of EPIC is a precision immuno-oncology platform that integrates tumor organoids with high-throughput and high-content data for testing drug combinations, and machine learning for making therapeutic recommendations for individual patients.
Max ERC Funding
2 460 500 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym EPICHEART
Project Interplay of genetic, nutrient and lifestyle factors on incidence of coronary disease: EPIC-Heart
Researcher (PI) John Navid Danesh
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Advanced Grant (AdG), LS7, ERC-2010-AdG_20100317
Summary A major new frontier in biomedicine is to identify interactions of specific components of nature and nurture in determining risk of complex diseases. Coronary heart disease (CHD) - the single leading cause of death in Europe - is jointly determined by genetic and lifestyle factors. It is unknown, however, how diet, nutrients, and lifestyle factors modulate genetic susceptibility. For scientific and public health reasons, there is a strategic need to study such interactions reliably. There is a unique opportunity for a cost-effective and powerful study because we have:
-conducted detailed assessment of diet and other lifestyle factors in 520K participants in a pan-European prospective study
-identified >12K incident CHD cases accrued during >5M person-years at risk
-identified a random sub-cohort of >15K participants without CHD to serve as referents
-commenced assay of lipid and other markers in 12K cases and 15K referents
-prepared DNA for genetic assay.
In 12K CHD cases and 15K referents, we will assay: >217K genetic variants contained in the state-of-the-art metabochip; 37 fatty acids; and vitamin D metabolites. Analyses will focus on: discovery of interactions; causal evaluation of biomarkers; CHD risk scores.
The findings should open new horizons and contribute towards: 1) explaining missing heritability 2) shaping nutritional guidelines 3) personalising preventive medicine 4) defining approaches to modify genetic susceptibility by avoiding deleterious lifestyles 5) identifying biomarkers that are priority therapeutic targets and 6) innovative prognostic tools.
Gene-lifestyle interplay is a major future growth area. This world-leading study will enhance Europes strengths in public health, nutrition and genetic epidemiology, and create a valuable future resource.
Summary
A major new frontier in biomedicine is to identify interactions of specific components of nature and nurture in determining risk of complex diseases. Coronary heart disease (CHD) - the single leading cause of death in Europe - is jointly determined by genetic and lifestyle factors. It is unknown, however, how diet, nutrients, and lifestyle factors modulate genetic susceptibility. For scientific and public health reasons, there is a strategic need to study such interactions reliably. There is a unique opportunity for a cost-effective and powerful study because we have:
-conducted detailed assessment of diet and other lifestyle factors in 520K participants in a pan-European prospective study
-identified >12K incident CHD cases accrued during >5M person-years at risk
-identified a random sub-cohort of >15K participants without CHD to serve as referents
-commenced assay of lipid and other markers in 12K cases and 15K referents
-prepared DNA for genetic assay.
In 12K CHD cases and 15K referents, we will assay: >217K genetic variants contained in the state-of-the-art metabochip; 37 fatty acids; and vitamin D metabolites. Analyses will focus on: discovery of interactions; causal evaluation of biomarkers; CHD risk scores.
The findings should open new horizons and contribute towards: 1) explaining missing heritability 2) shaping nutritional guidelines 3) personalising preventive medicine 4) defining approaches to modify genetic susceptibility by avoiding deleterious lifestyles 5) identifying biomarkers that are priority therapeutic targets and 6) innovative prognostic tools.
Gene-lifestyle interplay is a major future growth area. This world-leading study will enhance Europes strengths in public health, nutrition and genetic epidemiology, and create a valuable future resource.
Max ERC Funding
2 499 154 €
Duration
Start date: 2011-05-01, End date: 2017-04-30
Project acronym EPISUSCEPTIBILITY
Project Epigenome and Cancer Susceptibility
Researcher (PI) Päivi Tuulikki Peltomäki
Host Institution (HI) HELSINGIN YLIOPISTO
Call Details Advanced Grant (AdG), LS7, ERC-2008-AdG
Summary Early detection is crucial for the outcome of most cancers. Prevention of cancer development is even more desirable. To facilitate these ultimate goals we aim to construct a comprehensive view of the stepwise process through which common human cancers, such as colorectal cancer, arise. In particular, we aim to identify novel mechanisms of cancer susceptibility by focusing on the epigenome, whose alterations may underlie several phenomena related to chronic adult-onset disease that are not explained by genetics alone. The stepwise process of carcinogenesis can be accelerated or halted for various reasons, including inherited susceptibility and diet. The human multi-organ cancer syndromes hereditary nonpolyposis colorectal cancer (HNPCC) and familial adenomatous polyposis (FAP) as well as their murine counterparts, the Mlh1+/- mouse and the ApcMin/+ mouse, will be used as shortcuts to study the interplay between the epigenome and genome in tumorigenesis and to identify biomarkers of cancer susceptibility, malignant transformation, and tumor progression. This will be achieved by molecular profiling of normal and tumor tissues, cell line studies, in vitro functional assays, and in silico approaches. Additionally, the role that the epigenome plays to mediate the effects of the Western type diet on colorectal tumorigenesis will be examined in the mouse. Unlike genetic changes, epigenetic alterations are potentially reversible, which makes them promising targets for preventive and therapeutic interventions.
Summary
Early detection is crucial for the outcome of most cancers. Prevention of cancer development is even more desirable. To facilitate these ultimate goals we aim to construct a comprehensive view of the stepwise process through which common human cancers, such as colorectal cancer, arise. In particular, we aim to identify novel mechanisms of cancer susceptibility by focusing on the epigenome, whose alterations may underlie several phenomena related to chronic adult-onset disease that are not explained by genetics alone. The stepwise process of carcinogenesis can be accelerated or halted for various reasons, including inherited susceptibility and diet. The human multi-organ cancer syndromes hereditary nonpolyposis colorectal cancer (HNPCC) and familial adenomatous polyposis (FAP) as well as their murine counterparts, the Mlh1+/- mouse and the ApcMin/+ mouse, will be used as shortcuts to study the interplay between the epigenome and genome in tumorigenesis and to identify biomarkers of cancer susceptibility, malignant transformation, and tumor progression. This will be achieved by molecular profiling of normal and tumor tissues, cell line studies, in vitro functional assays, and in silico approaches. Additionally, the role that the epigenome plays to mediate the effects of the Western type diet on colorectal tumorigenesis will be examined in the mouse. Unlike genetic changes, epigenetic alterations are potentially reversible, which makes them promising targets for preventive and therapeutic interventions.
Max ERC Funding
2 500 000 €
Duration
Start date: 2009-04-01, End date: 2014-09-30
Project acronym EPLORE
Project EPidemiological Left ventriclar Outcomes Research in Europe
Researcher (PI) Jan Albert Hendrik Staessen
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Advanced Grant (AdG), LS7, ERC-2011-ADG_20110310
Summary Heart failure (HF) affects 15 million Europeans and entails higher mortality and health care costs than cancer. EPLORE addresses this issue by prospective epidemiological research in 4 European countries and by a proof-of-concept clinical trial. WP1 will for the first time at the population level document the incidence and progression of subclinical LV dysfunction and clarify whether asymptomatic LV dysfunction, as picked up by the newest echocardiographic techniques, predicts cardiovascular (CV) outcomes, including HF. WP2 will investigate the contribution of ventricular-arterial coupling disease and mechanical LV dyssynchrony to subclinical LV dysfunction. WP3 will identify a set of urinary polypeptides that signify early LV dysfunction and validate these biomarkers by showing that they predict deterioration of LV function, progression to HF and the incidence of CV complications over and beyond established risk factors. WP3 will also search for novel panels of circulating biomarkers, of which combined measurement will add information (accuracy, sensitivity and specificity) to established biomarkers (e.g., NT-proBNP) and identify genetic variants involved in the progression of LV dysfunction, either causally or as biomarker. WP4 consists of a randomised clinical trial to translate in a high-risk high-gain setting the results of WPs 1-3 into clinical practice and to identify a new treatment modality that potentially slows progression of diastolic LV dysfunction. Dissemination in WP5 will contribute to new guidelines for the prevention and treatment of HF. WP6 includes governance, monitoring research strategies and output, and protection of IPR. In conclusion, EPLORE will advance risk stratification and the early diagnosis of subclinical HF. The project will potentially result into specific treatments for diastolic LV dysfunction and inform guidelines for prevention and treatment of HF. It will benefit 20% of Europeans who currently have subclinical LV dysfunction.
Summary
Heart failure (HF) affects 15 million Europeans and entails higher mortality and health care costs than cancer. EPLORE addresses this issue by prospective epidemiological research in 4 European countries and by a proof-of-concept clinical trial. WP1 will for the first time at the population level document the incidence and progression of subclinical LV dysfunction and clarify whether asymptomatic LV dysfunction, as picked up by the newest echocardiographic techniques, predicts cardiovascular (CV) outcomes, including HF. WP2 will investigate the contribution of ventricular-arterial coupling disease and mechanical LV dyssynchrony to subclinical LV dysfunction. WP3 will identify a set of urinary polypeptides that signify early LV dysfunction and validate these biomarkers by showing that they predict deterioration of LV function, progression to HF and the incidence of CV complications over and beyond established risk factors. WP3 will also search for novel panels of circulating biomarkers, of which combined measurement will add information (accuracy, sensitivity and specificity) to established biomarkers (e.g., NT-proBNP) and identify genetic variants involved in the progression of LV dysfunction, either causally or as biomarker. WP4 consists of a randomised clinical trial to translate in a high-risk high-gain setting the results of WPs 1-3 into clinical practice and to identify a new treatment modality that potentially slows progression of diastolic LV dysfunction. Dissemination in WP5 will contribute to new guidelines for the prevention and treatment of HF. WP6 includes governance, monitoring research strategies and output, and protection of IPR. In conclusion, EPLORE will advance risk stratification and the early diagnosis of subclinical HF. The project will potentially result into specific treatments for diastolic LV dysfunction and inform guidelines for prevention and treatment of HF. It will benefit 20% of Europeans who currently have subclinical LV dysfunction.
Max ERC Funding
2 391 440 €
Duration
Start date: 2012-07-01, End date: 2017-06-30
Project acronym eQG
Project Exceptional Quantum Gravity
Researcher (PI) Hermann NICOLAI
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Advanced Grant (AdG), PE2, ERC-2016-ADG
Summary Motivated by the overwhelming success of symmetry concepts in formulating basic laws of physics, the present proposal (eQG) seeks to develop a new symmetry based approach to the problem of reconciling Quantum Mechanics and Einstein’s General Relativity into a consistent theory of Quantum Gravity, regarded by many as the greatest challenge of contemporary theoretical physics. The need for such a theory is most pressing for the resolution of black hole singularities and the Big Bang, but it is equally crucial to the search for a consistent UV completion of the Standard Model of Particle Physics and the unification of the fundamental interactions. eQG aims to tackle this problem from a new perspective, bringing together very different strands of development: on the one hand, by paying particular attention to recent advances in our understanding of cosmological singularities and the evidence for novel infinite-dimensional duality symmetries near the singularity that has emerged in supergravity and string theory, and to recent progress in formulating ‘exceptional geometries’ transcending Riemannian geometry; on the other hand, by exploiting insights from modern canonical quantisation towards a better understanding of the basic degrees of freedom and the dynamics of quantum space-time. The main focus of eQG will be the ‘maximally extended’ exceptional hyperbolic Kac–Moody symmetry E10, whose uniquely distinguished status makes it a prime candidate symmetry for unifying the known dualities of string and M theory, for a conceptually precise scenario of emergent (quantum) space and time near the singularity, and finally, for replacing supersymmetry as a guiding principle for unification. Consequently, the principal goal of eQG will be to explore how this symmetry can define a theory of quantum gravity, how it acts on its fundamental degrees of freedom, what the special features are of the quantised theory, and what physical predictions can be derived from it.
Summary
Motivated by the overwhelming success of symmetry concepts in formulating basic laws of physics, the present proposal (eQG) seeks to develop a new symmetry based approach to the problem of reconciling Quantum Mechanics and Einstein’s General Relativity into a consistent theory of Quantum Gravity, regarded by many as the greatest challenge of contemporary theoretical physics. The need for such a theory is most pressing for the resolution of black hole singularities and the Big Bang, but it is equally crucial to the search for a consistent UV completion of the Standard Model of Particle Physics and the unification of the fundamental interactions. eQG aims to tackle this problem from a new perspective, bringing together very different strands of development: on the one hand, by paying particular attention to recent advances in our understanding of cosmological singularities and the evidence for novel infinite-dimensional duality symmetries near the singularity that has emerged in supergravity and string theory, and to recent progress in formulating ‘exceptional geometries’ transcending Riemannian geometry; on the other hand, by exploiting insights from modern canonical quantisation towards a better understanding of the basic degrees of freedom and the dynamics of quantum space-time. The main focus of eQG will be the ‘maximally extended’ exceptional hyperbolic Kac–Moody symmetry E10, whose uniquely distinguished status makes it a prime candidate symmetry for unifying the known dualities of string and M theory, for a conceptually precise scenario of emergent (quantum) space and time near the singularity, and finally, for replacing supersymmetry as a guiding principle for unification. Consequently, the principal goal of eQG will be to explore how this symmetry can define a theory of quantum gravity, how it acts on its fundamental degrees of freedom, what the special features are of the quantised theory, and what physical predictions can be derived from it.
Max ERC Funding
1 918 750 €
Duration
Start date: 2017-12-01, End date: 2022-11-30
Project acronym EQU
Project Exploring the Quantum Universe
Researcher (PI) Jan Ambjørn
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Advanced Grant (AdG), PE2, ERC-2011-ADG_20110209
Summary "One of the main unsolved problems in theoretical physics today is to reconcile the theories of general relativity and quantum mechanics. The starting point of this proposal is a new background-independent theory of quantum gravity, which has been constructed from first principles as a sum over space-time histories and has already passed its first non-trivial tests. The theory can be investigated analytically as well as by Monte Carlo simulations. The aim is to verify that it is a viable theory of quantum gravity. Thus we want to show that it has the correct long-distance behaviour (classical Einstein gravity) and to investigate its short-distance behaviour in detail. We expect new physics to show up at the shortest distances, physics which might help us understand the origin of our universe and why the universe looks the way we observe today."
Summary
"One of the main unsolved problems in theoretical physics today is to reconcile the theories of general relativity and quantum mechanics. The starting point of this proposal is a new background-independent theory of quantum gravity, which has been constructed from first principles as a sum over space-time histories and has already passed its first non-trivial tests. The theory can be investigated analytically as well as by Monte Carlo simulations. The aim is to verify that it is a viable theory of quantum gravity. Thus we want to show that it has the correct long-distance behaviour (classical Einstein gravity) and to investigate its short-distance behaviour in detail. We expect new physics to show up at the shortest distances, physics which might help us understand the origin of our universe and why the universe looks the way we observe today."
Max ERC Funding
2 187 286 €
Duration
Start date: 2012-07-01, End date: 2017-06-30
Project acronym EQUEMI
Project Entanglement and Quantum Engineering with optical Microcavities
Researcher (PI) Jakob Reichel
Host Institution (HI) SORBONNE UNIVERSITE
Call Details Advanced Grant (AdG), PE2, ERC-2014-ADG
Summary I propose to leverage the unique properties of optical fiber Fabry-Perot (FFP) microcavities pioneered by my group to advance the field of quantum engineering. We will take quantum-enhanced measurement from its current proof-of-principle state to a true metrological level by applying cavity-based spin squeezing to a compact atomic clock, aiming to improve the clock stability beyond one part in 10^-13 in one second. In a new experiment, we will generate multiparticle entangled states with high metrological gain by applying cavity-based entanglement schemes to alkaline earth-like atoms, the atomic species used in today’s most precise atomic clocks. In a second phase, a miniature quantum gas microscope will be added to this experiment, creating a rich new situation at the interface of quantum information, metrology, and cutting-edge quantum gas research. Finally, we will further improve the FFP microcavity technology itself to enable novel atom-light interfaces with a currently unavailable combination of strong coupling, efficient fiber coupling, and open access. This will open new horizons for light-matter interfaces not only in our experiments, but also in our partner groups working with trapped ions, diamond color centers, semiconductor quantum dots, carbon nanotubes and in quantum optomechanics.
Summary
I propose to leverage the unique properties of optical fiber Fabry-Perot (FFP) microcavities pioneered by my group to advance the field of quantum engineering. We will take quantum-enhanced measurement from its current proof-of-principle state to a true metrological level by applying cavity-based spin squeezing to a compact atomic clock, aiming to improve the clock stability beyond one part in 10^-13 in one second. In a new experiment, we will generate multiparticle entangled states with high metrological gain by applying cavity-based entanglement schemes to alkaline earth-like atoms, the atomic species used in today’s most precise atomic clocks. In a second phase, a miniature quantum gas microscope will be added to this experiment, creating a rich new situation at the interface of quantum information, metrology, and cutting-edge quantum gas research. Finally, we will further improve the FFP microcavity technology itself to enable novel atom-light interfaces with a currently unavailable combination of strong coupling, efficient fiber coupling, and open access. This will open new horizons for light-matter interfaces not only in our experiments, but also in our partner groups working with trapped ions, diamond color centers, semiconductor quantum dots, carbon nanotubes and in quantum optomechanics.
Max ERC Funding
2 422 750 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym EU-rhythmy
Project Molecular strategies to treat inherited arrhythmias
Researcher (PI) Silvia Giuliana Priori
Host Institution (HI) UNIVERSITA DEGLI STUDI DI PAVIA
Call Details Advanced Grant (AdG), LS7, ERC-2014-ADG
Summary Sudden cardiac death (SCD) is a leading cause of death in western countries: coronary artery disease is the major cause of SCD in older subjects while inherited arrhythmogenic diseases are the leading cause of SCD in younger individuals. After 25 years dedicated to research of the molecular bases of heritable arrhythmias, the PI of this proposal now intends to pioneer gene therapy for prevention of SCD: a virtually unexplored field. The development of molecular therapies for rhythm disturbances is a high risk effort however, if successful, it will be highly rewarding. The PI has envisioned an ambitious and comprehensive project to target two severe inherited arrhythmogenic diseases: dominant catecholaminergic polymorphic ventricular tachycardia (CPVT) and Long QT syndrome type 8 (LQT8). The availability of a clinically relevant model is critical to ensure clinical translation of results: the team will exploit an existing CPVT model and will engineer a knock-in pig to model LQT8. The PI and her team will investigate innovative strategies of gene-delivery, gene-silencing and gene-editing to the heart comparing efficacy of different constructs and promoters. The team will also carefully engineer novel gene-therapy approaches to avoid the development of regional inhomogeneity in protein expression that may facilitate proarrhythmic events. Such a comprehensive approach will provide a most valuable core of knowledge on the comparative efficacy of a broad range of molecular strategies on the electrical milieu of the heart. It is expected that these results will not only benefit CPVT and LQT8 but rather they will foster development of gene therapy for other inherited and acquired arrhythmias.
Summary
Sudden cardiac death (SCD) is a leading cause of death in western countries: coronary artery disease is the major cause of SCD in older subjects while inherited arrhythmogenic diseases are the leading cause of SCD in younger individuals. After 25 years dedicated to research of the molecular bases of heritable arrhythmias, the PI of this proposal now intends to pioneer gene therapy for prevention of SCD: a virtually unexplored field. The development of molecular therapies for rhythm disturbances is a high risk effort however, if successful, it will be highly rewarding. The PI has envisioned an ambitious and comprehensive project to target two severe inherited arrhythmogenic diseases: dominant catecholaminergic polymorphic ventricular tachycardia (CPVT) and Long QT syndrome type 8 (LQT8). The availability of a clinically relevant model is critical to ensure clinical translation of results: the team will exploit an existing CPVT model and will engineer a knock-in pig to model LQT8. The PI and her team will investigate innovative strategies of gene-delivery, gene-silencing and gene-editing to the heart comparing efficacy of different constructs and promoters. The team will also carefully engineer novel gene-therapy approaches to avoid the development of regional inhomogeneity in protein expression that may facilitate proarrhythmic events. Such a comprehensive approach will provide a most valuable core of knowledge on the comparative efficacy of a broad range of molecular strategies on the electrical milieu of the heart. It is expected that these results will not only benefit CPVT and LQT8 but rather they will foster development of gene therapy for other inherited and acquired arrhythmias.
Max ERC Funding
2 314 029 €
Duration
Start date: 2015-11-01, End date: 2020-10-31
Project acronym ExCoMet
Project CONTROLLING AND MEASURING RELATIVISTIC MOTION OF MATTER WITH ULTRAINTENSE STRUCTURED LIGHT
Researcher (PI) Fabien, Hervé, Jean QUERE
Host Institution (HI) COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
Call Details Advanced Grant (AdG), PE2, ERC-2015-AdG
Summary Femtosecond lasers can now provide intensities such that the light field induces relativistic motion of large ensembles of electrons. The ultimate goal of this Ultra-High Intensity (UHI) Physics is the control of relativistic motion of matter with light, which requires a deep understanding of this extreme regime of laser-matter interaction. Such a control holds the promise of major scientific and societal applications, by providing ultra-compact laser-driven particle accelerators and attosecond X-ray sources. Until now, advances in UHI Physics have relied on a quest for the highest laser intensities, pursued by focusing optimally-compressed laser pulses to their diffraction limit. In contrast, the goal of the ExCoMet project is to establish a new paradigm, by demonstrating the potential of driving UHI laser plasma-interactions with sophisticated structured laser beams–i.e. beams whose amplitude, phase or polarization are shaped in space-time.
Based on this new paradigm, we will show that unprecedented experimental insight can be gained on UHI laser-matter interactions. For instance, by using laser fields whose propagation direction rotates on a femtosecond time scale, we will temporally resolve the synchrotron emission of laser-driven relativistic electrons in plasmas, and thus gather direct information on their dynamics. We will also show that such structured laser fields can be exploited to introduce new physics in UHI experiments, and can provide advanced degrees of control that will be essential for future light and particles sources based on these interactions. Using Laguerre-Gauss beams, we will in particular investigate the transfer of orbital angular momentum from UHI lasers to plasmas, and its consequences on the physics and performances of laser-plasma accelerators. This project thus aims at bringing conceptual breakthroughs in UHI physics, at a time where major projects relying on this physics are being launched, in particular in Europe.
Summary
Femtosecond lasers can now provide intensities such that the light field induces relativistic motion of large ensembles of electrons. The ultimate goal of this Ultra-High Intensity (UHI) Physics is the control of relativistic motion of matter with light, which requires a deep understanding of this extreme regime of laser-matter interaction. Such a control holds the promise of major scientific and societal applications, by providing ultra-compact laser-driven particle accelerators and attosecond X-ray sources. Until now, advances in UHI Physics have relied on a quest for the highest laser intensities, pursued by focusing optimally-compressed laser pulses to their diffraction limit. In contrast, the goal of the ExCoMet project is to establish a new paradigm, by demonstrating the potential of driving UHI laser plasma-interactions with sophisticated structured laser beams–i.e. beams whose amplitude, phase or polarization are shaped in space-time.
Based on this new paradigm, we will show that unprecedented experimental insight can be gained on UHI laser-matter interactions. For instance, by using laser fields whose propagation direction rotates on a femtosecond time scale, we will temporally resolve the synchrotron emission of laser-driven relativistic electrons in plasmas, and thus gather direct information on their dynamics. We will also show that such structured laser fields can be exploited to introduce new physics in UHI experiments, and can provide advanced degrees of control that will be essential for future light and particles sources based on these interactions. Using Laguerre-Gauss beams, we will in particular investigate the transfer of orbital angular momentum from UHI lasers to plasmas, and its consequences on the physics and performances of laser-plasma accelerators. This project thus aims at bringing conceptual breakthroughs in UHI physics, at a time where major projects relying on this physics are being launched, in particular in Europe.
Max ERC Funding
2 250 000 €
Duration
Start date: 2016-10-01, End date: 2021-09-30
Project acronym EYEGET
Project Gene therapy of inherited retinal diseases
Researcher (PI) Alberto AURICCHIO
Host Institution (HI) FONDAZIONE TELETHON
Call Details Advanced Grant (AdG), LS7, ERC-2015-AdG
Summary Inherited retinal degenerations (IRDs) are a major cause of blindness worldwide. IRD patients witness inexorable progressive vision loss as no therapy is currently available. In the last decade my group has significantly contributed to a change of this scenario by developing efficient adeno-associated viral (AAV) vectors for retinal gene therapy that are safe and effective in humans. The objective of EYEGET (EYE GEne Therapy) is to overcome some of the current major limitations in the field of retinal gene therapy to expand initial therapeutic successes to a larger number of IRDs. To achieve this, we propose to use four parallel, highly innovative and complementary approaches: i. expansion of the limited AAV cargo capacity by a novel methodology based on co-administration of multiple AAVs that reassemble in target retinal cells and reconstitute large genes; ii. targeting of frequent dominant gain-of-function mutations that cause RP using state-of-the-art AAV-mediated genome editing technologies; iii. induction of retinal cells clearance of toxic IRD products by AAV-mediated activation of autophagy and lysosomal function; iv. development of methodologies to directly convert fibroblasts to photoreceptors that can be transplanted in retinas from IRD patients with advanced PR loss and for whom in vivo gene therapy is no longer an option. We will use a combination of in vitro and in vivo state-of-the-art technologies including novel AAV vector design, high content screening of drugs that enhance AAV transduction, genome editing, and advanced in vivo retinal phenotyping to obtain proof-of-concept for each of these therapeutic strategies. The results from this study may impact the quality of life of millions of people worldwide by providing a cure based on gene and/or cell therapy for a large group of IRDs.
Summary
Inherited retinal degenerations (IRDs) are a major cause of blindness worldwide. IRD patients witness inexorable progressive vision loss as no therapy is currently available. In the last decade my group has significantly contributed to a change of this scenario by developing efficient adeno-associated viral (AAV) vectors for retinal gene therapy that are safe and effective in humans. The objective of EYEGET (EYE GEne Therapy) is to overcome some of the current major limitations in the field of retinal gene therapy to expand initial therapeutic successes to a larger number of IRDs. To achieve this, we propose to use four parallel, highly innovative and complementary approaches: i. expansion of the limited AAV cargo capacity by a novel methodology based on co-administration of multiple AAVs that reassemble in target retinal cells and reconstitute large genes; ii. targeting of frequent dominant gain-of-function mutations that cause RP using state-of-the-art AAV-mediated genome editing technologies; iii. induction of retinal cells clearance of toxic IRD products by AAV-mediated activation of autophagy and lysosomal function; iv. development of methodologies to directly convert fibroblasts to photoreceptors that can be transplanted in retinas from IRD patients with advanced PR loss and for whom in vivo gene therapy is no longer an option. We will use a combination of in vitro and in vivo state-of-the-art technologies including novel AAV vector design, high content screening of drugs that enhance AAV transduction, genome editing, and advanced in vivo retinal phenotyping to obtain proof-of-concept for each of these therapeutic strategies. The results from this study may impact the quality of life of millions of people worldwide by providing a cure based on gene and/or cell therapy for a large group of IRDs.
Max ERC Funding
2 499 564 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym EYELETS
Project A regenerative medicine approach in diabetes.
Researcher (PI) Per-Olof BERGGREN
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Advanced Grant (AdG), LS7, ERC-2018-ADG
Summary Pancreatic islet transplantation is essential for diabetes treatment. Outcome varies due to transplantation site, quality of islets and the fact that transplanted islets are affected by the same challenges as in situ islets. Tailor-making islets for transplantation by tissue engineering combined with a more favorable transplantation site that allows for both monitoring and local modulation of islet cells is thus instrumental. We have established the anterior chamber of the eye (ACE) as a favorable environment for long term survival of islet grafts and the cornea as a natural body window for non-invasive, longitudinal optical monitoring of islet function. ACE engrafted islets are able to maintain blood glucose homeostasis in diabetic animals. In addition to studies in non-human primates we are performing human clinical trials, the first patient already being transplanted. Tissue engineering of native islets is technically difficult. We will therefore apply genetically engineered islet organoids. This allows us to generate i) standardized material optimized for transplantation, function and survival, as well as ii) islet organoids suitable for monitoring (sensor islet organoids) and treating (metabolic islet organoids) insulin-dependent diabetes. We hypothesize that genetically engineered islet organoids transplanted to the ACE are superior to native pancreatic islets to monitor and treat insulin-dependent diabetes. Our overall aim is to create a platform allowing monitoring and treatment of insulin-dependent diabetes in mice that can be transferred to large animals for validation. The objective is to combine tissue engineering of islet cell organoids, transplantation to the ACE, synthetic biology, local pharmacological treatment strategies and the development of novel micro electronic/micro optical readout systems for islet cells. This regenerative medicine approach will follow our clinical trial programs and be transferred into the clinic to combat diabetes.
Summary
Pancreatic islet transplantation is essential for diabetes treatment. Outcome varies due to transplantation site, quality of islets and the fact that transplanted islets are affected by the same challenges as in situ islets. Tailor-making islets for transplantation by tissue engineering combined with a more favorable transplantation site that allows for both monitoring and local modulation of islet cells is thus instrumental. We have established the anterior chamber of the eye (ACE) as a favorable environment for long term survival of islet grafts and the cornea as a natural body window for non-invasive, longitudinal optical monitoring of islet function. ACE engrafted islets are able to maintain blood glucose homeostasis in diabetic animals. In addition to studies in non-human primates we are performing human clinical trials, the first patient already being transplanted. Tissue engineering of native islets is technically difficult. We will therefore apply genetically engineered islet organoids. This allows us to generate i) standardized material optimized for transplantation, function and survival, as well as ii) islet organoids suitable for monitoring (sensor islet organoids) and treating (metabolic islet organoids) insulin-dependent diabetes. We hypothesize that genetically engineered islet organoids transplanted to the ACE are superior to native pancreatic islets to monitor and treat insulin-dependent diabetes. Our overall aim is to create a platform allowing monitoring and treatment of insulin-dependent diabetes in mice that can be transferred to large animals for validation. The objective is to combine tissue engineering of islet cell organoids, transplantation to the ACE, synthetic biology, local pharmacological treatment strategies and the development of novel micro electronic/micro optical readout systems for islet cells. This regenerative medicine approach will follow our clinical trial programs and be transferred into the clinic to combat diabetes.
Max ERC Funding
2 500 000 €
Duration
Start date: 2020-01-01, End date: 2024-12-31
Project acronym FAST
Project Investigating new therapeutic approaches to Friedreich's Ataxia
Researcher (PI) Roberto Testi
Host Institution (HI) UNIVERSITA DEGLI STUDI DI ROMA TOR VERGATA
Call Details Advanced Grant (AdG), LS7, ERC-2011-ADG_20110310
Summary Friedreich’s Ataxia (FRDA) is a devastating degenerative disease with no specific therapy. It is passed by autosomal recessive inheritance and affects 1:30,000 individuals in Caucasian populations. Symptoms appear in the first decade of life and include progressive and unremitting lack of movement coordination, leading to complete inability, and dilated cardiomyopathy leading to congestive heart failure, the most common cause of premature death. FRDA is due to the insufficient transcription of the gene coding for the mitochondrial protein frataxin. Reduced cellular levels of frataxin cause impaired mitochondrial function and increased sensitivity to oxidative stress, leading to accelerated cell death in critical tissues.
Severity of the disease critically depends on residual frataxin levels. Therapeutic efforts are mostly focused on increasing cellular frataxin . We found that frataxin is normally degraded by the ubiquitin-proteasome system. We identified the lysine responsible for the ubiquitination of frataxin and, by computational screening followed by experimental validation, we identified and validated a series of small molecules, called ubiquitin-competing molecules (UCM), that prevent frataxin ubiquitination and induce frataxin accumulation in cells derived from FRDA patients. Moreover, treatment with UCM partially rescues aconitase and ATP production defects in cells derived from FRDA patients.
Our goal is two fold: 1) submit a set of leads we already identified, as well as their new and more complex derivatives, to preclinical testing in FRDA mice 2) identify the E3 ligase that is responsible for frataxin ubiquitination, and investigate the possibility to use it as a druggable target for small molecules to prevent frataxin degradation.
Summary
Friedreich’s Ataxia (FRDA) is a devastating degenerative disease with no specific therapy. It is passed by autosomal recessive inheritance and affects 1:30,000 individuals in Caucasian populations. Symptoms appear in the first decade of life and include progressive and unremitting lack of movement coordination, leading to complete inability, and dilated cardiomyopathy leading to congestive heart failure, the most common cause of premature death. FRDA is due to the insufficient transcription of the gene coding for the mitochondrial protein frataxin. Reduced cellular levels of frataxin cause impaired mitochondrial function and increased sensitivity to oxidative stress, leading to accelerated cell death in critical tissues.
Severity of the disease critically depends on residual frataxin levels. Therapeutic efforts are mostly focused on increasing cellular frataxin . We found that frataxin is normally degraded by the ubiquitin-proteasome system. We identified the lysine responsible for the ubiquitination of frataxin and, by computational screening followed by experimental validation, we identified and validated a series of small molecules, called ubiquitin-competing molecules (UCM), that prevent frataxin ubiquitination and induce frataxin accumulation in cells derived from FRDA patients. Moreover, treatment with UCM partially rescues aconitase and ATP production defects in cells derived from FRDA patients.
Our goal is two fold: 1) submit a set of leads we already identified, as well as their new and more complex derivatives, to preclinical testing in FRDA mice 2) identify the E3 ligase that is responsible for frataxin ubiquitination, and investigate the possibility to use it as a druggable target for small molecules to prevent frataxin degradation.
Max ERC Funding
1 496 200 €
Duration
Start date: 2012-03-01, End date: 2015-02-28
Project acronym FERLODIM
Project Atomic Fermi Gases in Lower Dimensions
Researcher (PI) Christophe Salomon
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), PE2, ERC-2008-AdG
Summary The complex interplay between Coulomb repulsion and Fermi statistics in two dimensional systems is responsible for some of the most dramatic phenomena encountered in solid state physics (High critical temperature superfluidity, Fractional Quantum Hall Effect,..). However, despite decades of efforts, many questions regarding these systems are still unsolved. In FERLODIM, we plan to take advantage of recent progress in ultracold gases, to simulate several fundamental Hamiltonians describing these many-body systems in 1 and 2 dimensions. We will realize two ultra-cold atom machines allowing for a full characterization of the many-body wave function of an ensemble of interacting fermions in periodic potentials, called optical lattices. Our experiments will rely on a high resolution imaging system allowing both for single atom detection and the possibility of tailoring optical potentials of arbitrary shape and geometry. This unique design will allow us to address a variety of physical situations, depending on the geometry of the light induced potentials. One-dimensional problems will be addressed, from spin chains to Luttinger liquids. In pure two dimensional configurations, we will investigate the link between the repulsive Hubbard model, superfluidity and the Mott insulator transition, as well as frustration effects in periodic potentials. Finally we will explore the physics of interacting fermions under rotation in the lowest Landau level, and the connection with fractional Quantum Hall systems.
Summary
The complex interplay between Coulomb repulsion and Fermi statistics in two dimensional systems is responsible for some of the most dramatic phenomena encountered in solid state physics (High critical temperature superfluidity, Fractional Quantum Hall Effect,..). However, despite decades of efforts, many questions regarding these systems are still unsolved. In FERLODIM, we plan to take advantage of recent progress in ultracold gases, to simulate several fundamental Hamiltonians describing these many-body systems in 1 and 2 dimensions. We will realize two ultra-cold atom machines allowing for a full characterization of the many-body wave function of an ensemble of interacting fermions in periodic potentials, called optical lattices. Our experiments will rely on a high resolution imaging system allowing both for single atom detection and the possibility of tailoring optical potentials of arbitrary shape and geometry. This unique design will allow us to address a variety of physical situations, depending on the geometry of the light induced potentials. One-dimensional problems will be addressed, from spin chains to Luttinger liquids. In pure two dimensional configurations, we will investigate the link between the repulsive Hubbard model, superfluidity and the Mott insulator transition, as well as frustration effects in periodic potentials. Finally we will explore the physics of interacting fermions under rotation in the lowest Landau level, and the connection with fractional Quantum Hall systems.
Max ERC Funding
2 050 000 €
Duration
Start date: 2009-01-01, End date: 2013-12-31
Project acronym FilAtmo
Project Laser Filamentation for Probing and Controlling Atmospheric Processes
Researcher (PI) Jean-Pierre, Louis Wolf
Host Institution (HI) UNIVERSITE DE GENEVE
Call Details Advanced Grant (AdG), PE2, ERC-2011-ADG_20110209
Summary The prevention of damaging weather phenomena like floods, hail and lightning strikes has been a dream for centuries. We propose a highly innovative approach relying on laser filaments for both triggering and guiding lightning and produce water condensation in the atmosphere. Filaments are self-sustained light strings of typ. 100 um diameter and hundreds of meters length in air, bear very high intensities and are electrically conductive through molecular ionization.
The filamentation process in air was considered until recently as resulting from the dynamic balance between the optical Kerr effect and defocusing by the self-generated plasma. Our unexpected discovery, last year, that filaments are governed by negative higher-order Kerr effect (HOKE), opened both basic physical questions about the stabilization mechanism and new opportunities to optimize the envisioned applications to lightning triggering and cloud condensation.
We propose first to study in the laboratory the physical origin of the alternated signs of HOKE in gases, which are suspected to stem from populated bound states. Coherently controlling these bound states in rare gases and air will allow us to tailor the HOKE inversion, and consequently to control the filament process itself. Optimal pulse shapes will then be sought by adaptive (closed loop) techniques to maximize the plasma density and lifetime in filaments for lightning control applications. Similar coherent control approaches will be performed for optimizing the complex photochemistry that leads to water vapor condensation in the atmosphere.
We will then apply the optimal pulse shapes to real scale field experiments. To this end we intend to use the mobile TW laser from the Teramobile consortium, which we are part of, in order to perform two extensive campaigns for real-scale lightning control (in Lugano) and haze/cloud generation (in Geneva). These experiments will constitute the first coherent manipulation of atmospheric process.
Summary
The prevention of damaging weather phenomena like floods, hail and lightning strikes has been a dream for centuries. We propose a highly innovative approach relying on laser filaments for both triggering and guiding lightning and produce water condensation in the atmosphere. Filaments are self-sustained light strings of typ. 100 um diameter and hundreds of meters length in air, bear very high intensities and are electrically conductive through molecular ionization.
The filamentation process in air was considered until recently as resulting from the dynamic balance between the optical Kerr effect and defocusing by the self-generated plasma. Our unexpected discovery, last year, that filaments are governed by negative higher-order Kerr effect (HOKE), opened both basic physical questions about the stabilization mechanism and new opportunities to optimize the envisioned applications to lightning triggering and cloud condensation.
We propose first to study in the laboratory the physical origin of the alternated signs of HOKE in gases, which are suspected to stem from populated bound states. Coherently controlling these bound states in rare gases and air will allow us to tailor the HOKE inversion, and consequently to control the filament process itself. Optimal pulse shapes will then be sought by adaptive (closed loop) techniques to maximize the plasma density and lifetime in filaments for lightning control applications. Similar coherent control approaches will be performed for optimizing the complex photochemistry that leads to water vapor condensation in the atmosphere.
We will then apply the optimal pulse shapes to real scale field experiments. To this end we intend to use the mobile TW laser from the Teramobile consortium, which we are part of, in order to perform two extensive campaigns for real-scale lightning control (in Lugano) and haze/cloud generation (in Geneva). These experiments will constitute the first coherent manipulation of atmospheric process.
Max ERC Funding
2 403 425 €
Duration
Start date: 2012-07-01, End date: 2017-06-30
Project acronym FitteR-CATABOLIC
Project Survival of the Fittest: On how to enhance recovery from critical illness through learning from evolutionary conserved catabolic pathways
Researcher (PI) Greta Herman VAN DEN BERGHE
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Advanced Grant (AdG), LS7, ERC-2017-ADG
Summary Since a few decades, human patients who suffer from severe illnesses or multiple trauma, conditions that were previously lethal, are being treated in intensive care units (ICUs). Modern intensive care medicine bridges patients from life-threatening conditions to recovery with use of mechanical devices, vasoactive drugs and powerful anti-microbial agents. By postponing death, a new unnatural condition, intensive-care-dependent prolonged (>1 week) critical illness, has been created. About 25% of ICU patients today require prolonged intensive care, sometimes for weeks or months, and these patients are at high risk of death while consuming 75% of resources. Although the primary insult was adequately dealt with, many long-stay patients typically suffer from hypercatabolism, ICU-acquired brain dysfunction and polyneuropathy/myopathy leading to severe muscle weakness, further increasing the risk of late death. As hypercatabolism was considered the culprit, several anabolic interventions were tested, but these showed harm instead of benefit. We previously showed that fasting early during illness is superior to forceful feeding, pointing to certain benefits of catabolic responses. In healthy humans, fasting activates catabolism to provide substrates essential to protect and maintain brain and muscle function. This proposal aims to investigate whether evolutionary conserved catabolic fasting pathways, specifically lipolysis and ketogenesis, can be exploited in the search for prevention of brain dysfunction and muscle weakness in long-stay ICU patients, with the goal to identify a new metabolic intervention to enhance their recovery. The project builds further on our experience with bi-directional translational research - using human material whenever possible and a validated mouse model of sepsis-induced critical illness for objectives that cannot be addressed in patients - and aims to close the loop, from a novel concept to a large randomized controlled trial in patients.
Summary
Since a few decades, human patients who suffer from severe illnesses or multiple trauma, conditions that were previously lethal, are being treated in intensive care units (ICUs). Modern intensive care medicine bridges patients from life-threatening conditions to recovery with use of mechanical devices, vasoactive drugs and powerful anti-microbial agents. By postponing death, a new unnatural condition, intensive-care-dependent prolonged (>1 week) critical illness, has been created. About 25% of ICU patients today require prolonged intensive care, sometimes for weeks or months, and these patients are at high risk of death while consuming 75% of resources. Although the primary insult was adequately dealt with, many long-stay patients typically suffer from hypercatabolism, ICU-acquired brain dysfunction and polyneuropathy/myopathy leading to severe muscle weakness, further increasing the risk of late death. As hypercatabolism was considered the culprit, several anabolic interventions were tested, but these showed harm instead of benefit. We previously showed that fasting early during illness is superior to forceful feeding, pointing to certain benefits of catabolic responses. In healthy humans, fasting activates catabolism to provide substrates essential to protect and maintain brain and muscle function. This proposal aims to investigate whether evolutionary conserved catabolic fasting pathways, specifically lipolysis and ketogenesis, can be exploited in the search for prevention of brain dysfunction and muscle weakness in long-stay ICU patients, with the goal to identify a new metabolic intervention to enhance their recovery. The project builds further on our experience with bi-directional translational research - using human material whenever possible and a validated mouse model of sepsis-induced critical illness for objectives that cannot be addressed in patients - and aims to close the loop, from a novel concept to a large randomized controlled trial in patients.
Max ERC Funding
2 500 000 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym FLAVOUR
Project Towards the Construction of the Fundamental Theory of Flavour
Researcher (PI) Andrzej Jerzy Buras
Host Institution (HI) TECHNISCHE UNIVERSITAET MUENCHEN
Call Details Advanced Grant (AdG), PE2, ERC-2010-AdG_20100224
Summary Six quarks and six leptons of different kinds, referred to as flavours, form the modern periodic table of the fundamental building blocks of matter. The Standard Model of particle physics successfully describes these elementary particles and the forces between them. A deeper understanding of the flavour structure of quarks and leptons, of their masses and couplings, is however still missing.
Decisive new experiments are about to start in particle physics (LHC, high-intensity flavour facilities). They will test existing theoretical concepts and inspire new ideas. This should allow us to make substantial steps forwards in the construction of the fundamental Theory of Flavour, which is the main goal of this project. Such a theory should allow us to address the following fundamental questions: what is the underlying dynamics differentiating quarks and leptons of different flavour? Is this dynamics related to a new symmetry? How can this new dynamics be tested at low and high energies? These questions are of utmost importance in the context of our search for a new, more fundamental, theory of elementary interactions. They are also key ingredients to understand the strucutre of our Universe. Reaching this goal requires substantial efforts in model building, precision calculations, and phenomenological studies. These different lines of research will be joined in a novel way by the collaboration of the principal investigator with four younger team members. All team members have made, mostly independently, important and often pioneering contributions to the different aspects of this project. The combination of their different expertise in a joint effort is a unique feature of the present proposal.
Summary
Six quarks and six leptons of different kinds, referred to as flavours, form the modern periodic table of the fundamental building blocks of matter. The Standard Model of particle physics successfully describes these elementary particles and the forces between them. A deeper understanding of the flavour structure of quarks and leptons, of their masses and couplings, is however still missing.
Decisive new experiments are about to start in particle physics (LHC, high-intensity flavour facilities). They will test existing theoretical concepts and inspire new ideas. This should allow us to make substantial steps forwards in the construction of the fundamental Theory of Flavour, which is the main goal of this project. Such a theory should allow us to address the following fundamental questions: what is the underlying dynamics differentiating quarks and leptons of different flavour? Is this dynamics related to a new symmetry? How can this new dynamics be tested at low and high energies? These questions are of utmost importance in the context of our search for a new, more fundamental, theory of elementary interactions. They are also key ingredients to understand the strucutre of our Universe. Reaching this goal requires substantial efforts in model building, precision calculations, and phenomenological studies. These different lines of research will be joined in a novel way by the collaboration of the principal investigator with four younger team members. All team members have made, mostly independently, important and often pioneering contributions to the different aspects of this project. The combination of their different expertise in a joint effort is a unique feature of the present proposal.
Max ERC Funding
1 578 400 €
Duration
Start date: 2011-05-01, End date: 2016-04-30
Project acronym FLAY
Project Flavor Anomalies and the origin of the Yukawa couplings
Researcher (PI) Gino ISIDORI
Host Institution (HI) UNIVERSITAT ZURICH
Call Details Advanced Grant (AdG), PE2, ERC-2018-ADG
Summary Recent experimental results in flavor physics exhibit deviations from the Standard Model predictions that are growing with time, both as far as statistical significance and as far as internal consistency. Understanding the origin of this phenomenon, the so-called “flavor anomalies”, is of paramount importance for a deeper understanding of fundamental interactions. As recently shown by the PI and collaborators, this phenomenon is likely to be intimately related to the long-standing “flavor problem”, or the origin of the hierarchical pattern of quark and lepton mass matrices observed in Nature. The goal of this project is to shed light on both these issues, providing a solution to old and recent puzzles in flavor physics. We propose to address these questions via an original bottom-up approach, based on Effective Field Theory methods and simplified models, combined with new top-down ideas about the ultraviolet completion of the Standard Model. On the phenomenological side, the proposed bottom-up approach will allow us to exploit with the highest accuracy all the available and expected experimental data. It will allow us to take into account both low- and high-energy observables, as well as both quark and lepton sectors. These results will constitute the basis for the theoretical investigation of a new class of Standard Model extensions not considered so far. The latter are based on new ideas, such as flavor non-universal gauge interactions, that imply a change of paradigm in theoretical high-energy physics: the origin of the flavor hierarchies plays a central role in revealing the ultraviolet completion of the Standard Model. Combining a bottom-up approach to flavor-physics data with top-down ideas on the origin of the flavor hierarchies, this project has the potential to lead to a major advancement in fundamental physics.
Summary
Recent experimental results in flavor physics exhibit deviations from the Standard Model predictions that are growing with time, both as far as statistical significance and as far as internal consistency. Understanding the origin of this phenomenon, the so-called “flavor anomalies”, is of paramount importance for a deeper understanding of fundamental interactions. As recently shown by the PI and collaborators, this phenomenon is likely to be intimately related to the long-standing “flavor problem”, or the origin of the hierarchical pattern of quark and lepton mass matrices observed in Nature. The goal of this project is to shed light on both these issues, providing a solution to old and recent puzzles in flavor physics. We propose to address these questions via an original bottom-up approach, based on Effective Field Theory methods and simplified models, combined with new top-down ideas about the ultraviolet completion of the Standard Model. On the phenomenological side, the proposed bottom-up approach will allow us to exploit with the highest accuracy all the available and expected experimental data. It will allow us to take into account both low- and high-energy observables, as well as both quark and lepton sectors. These results will constitute the basis for the theoretical investigation of a new class of Standard Model extensions not considered so far. The latter are based on new ideas, such as flavor non-universal gauge interactions, that imply a change of paradigm in theoretical high-energy physics: the origin of the flavor hierarchies plays a central role in revealing the ultraviolet completion of the Standard Model. Combining a bottom-up approach to flavor-physics data with top-down ideas on the origin of the flavor hierarchies, this project has the potential to lead to a major advancement in fundamental physics.
Max ERC Funding
2 318 750 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym FLEET
Project Flying Electromagnetic Toroids
Researcher (PI) Nikolay ZHELUDEV
Host Institution (HI) UNIVERSITY OF SOUTHAMPTON
Call Details Advanced Grant (AdG), PE2, ERC-2017-ADG
Summary In this project I will study the generation, detection, and interaction with matter of Flying Toroids, a new type of light pulses never experimentally studied before. This represents an exciting opportunity to advance optics and electromagnetism in a radically new direction since Hertz, Marconi, Popov and Tesla developed technology for generating, detecting, and communicating with transverse electromagnetic waves.
Conventional transverse electromagnetic waves propagate in free-space with the electric and magnetic field vectors perpendicular to the wave propagation direction, forming the famous triad. Theoretical analysis of recent years has shown that another, very different type of waves exists, which propagate at the speed of light, but only occur as short bursts of electromagnetic energy in the form of Flying Toroids. Flying Toroids are inseparable solutions of Maxwell equations with a unique, doughnut-like configuration of the electric and magnetic fields. Flying Toroids interact with matter in unique ways, drastically different from that of conventional electromagnetic pulses.
In a broader context, the electrodynamics of Flying Toroids is an exciting emerging field of optical science linked to intriguing recent developments in physics such as toroidal dipoles and anapoles, and, due to their topology, to Majorana fermions and skyrmions.
Building on my recent proof-of-principle demonstration of Flying Toroid generation through conversion of few-cycle conventional transverse light pulses in artificial photonic nanostructures, my goal for this project is to experimentally study and understand the fundamental properties of Flying Toroids and their interaction with matter at optical frequencies, and to assess their potential for developing new technologies. In my vision this project can lead to spectacular new opportunities for spectroscopic and light-enabled applications, and will impact on other branches of science, from astronomy to solid-state physics.
Summary
In this project I will study the generation, detection, and interaction with matter of Flying Toroids, a new type of light pulses never experimentally studied before. This represents an exciting opportunity to advance optics and electromagnetism in a radically new direction since Hertz, Marconi, Popov and Tesla developed technology for generating, detecting, and communicating with transverse electromagnetic waves.
Conventional transverse electromagnetic waves propagate in free-space with the electric and magnetic field vectors perpendicular to the wave propagation direction, forming the famous triad. Theoretical analysis of recent years has shown that another, very different type of waves exists, which propagate at the speed of light, but only occur as short bursts of electromagnetic energy in the form of Flying Toroids. Flying Toroids are inseparable solutions of Maxwell equations with a unique, doughnut-like configuration of the electric and magnetic fields. Flying Toroids interact with matter in unique ways, drastically different from that of conventional electromagnetic pulses.
In a broader context, the electrodynamics of Flying Toroids is an exciting emerging field of optical science linked to intriguing recent developments in physics such as toroidal dipoles and anapoles, and, due to their topology, to Majorana fermions and skyrmions.
Building on my recent proof-of-principle demonstration of Flying Toroid generation through conversion of few-cycle conventional transverse light pulses in artificial photonic nanostructures, my goal for this project is to experimentally study and understand the fundamental properties of Flying Toroids and their interaction with matter at optical frequencies, and to assess their potential for developing new technologies. In my vision this project can lead to spectacular new opportunities for spectroscopic and light-enabled applications, and will impact on other branches of science, from astronomy to solid-state physics.
Max ERC Funding
2 570 198 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym FLUPLAN
Project Novel strategies to combat future influenza pandemics
Researcher (PI) Albertus Dominicus Marcellinus Erasmus Osterhaus
Host Institution (HI) ERASMUS UNIVERSITAIR MEDISCH CENTRUM ROTTERDAM
Call Details Advanced Grant (AdG), LS7, ERC-2009-AdG
Summary The Mexican influenza A virus (H1N1) reminds us that the threat of an influenza pandemic is real. The 1918 Spanish flu virus, also started as a low pathogenic virus that mutated into a highly pathogenic virus within months, causing more than 50 million deaths. The Mexican influenza A virus (H1N1) may follow the same path. FLUPLAN will expand our knowledge of the packaging signals that govern reassortment events between influenza A viruses in general and between the Mexican influenza A virus (H1N1) and circulating human, porcine and highly pathogenic avian influenza A viruses in particular. FLUPLAN will thus lead to fundamental insights in the mechanisms that govern reassortment phenomena, providing a risk assessment concerning the pandemic potential of circulating avian and mammalian influenza A viruses. This will provide us with a panel of possible reassortant viruses of potentially pandemic nature. The MVA vaccine vector system that efficiently induced broad protective immunity against HPAI-H5N1 viruses in macaques, will be used for the preparation of a repository of MVA-H based pandemic vaccine seed viruses.The selection will be based on the reassortant viruses mentioned above, and on a repository of avian influenza viruses of the 16HA subtypes including the Mexican influenza A virus (H1N1) of avian/swine origin. The added value of including a relevant MVA-NP in the immunization schedule to obtain broader and longer protection will be determined in a macaque infection model. Collectively these studies will provide us with a highly versatile system that anticipates on future pandemic events by having seed viruses for vaccine development ready to go on the shelf, for the rapid production of broadly protective pandemic vaccines, which will save time and thus lives.
Summary
The Mexican influenza A virus (H1N1) reminds us that the threat of an influenza pandemic is real. The 1918 Spanish flu virus, also started as a low pathogenic virus that mutated into a highly pathogenic virus within months, causing more than 50 million deaths. The Mexican influenza A virus (H1N1) may follow the same path. FLUPLAN will expand our knowledge of the packaging signals that govern reassortment events between influenza A viruses in general and between the Mexican influenza A virus (H1N1) and circulating human, porcine and highly pathogenic avian influenza A viruses in particular. FLUPLAN will thus lead to fundamental insights in the mechanisms that govern reassortment phenomena, providing a risk assessment concerning the pandemic potential of circulating avian and mammalian influenza A viruses. This will provide us with a panel of possible reassortant viruses of potentially pandemic nature. The MVA vaccine vector system that efficiently induced broad protective immunity against HPAI-H5N1 viruses in macaques, will be used for the preparation of a repository of MVA-H based pandemic vaccine seed viruses.The selection will be based on the reassortant viruses mentioned above, and on a repository of avian influenza viruses of the 16HA subtypes including the Mexican influenza A virus (H1N1) of avian/swine origin. The added value of including a relevant MVA-NP in the immunization schedule to obtain broader and longer protection will be determined in a macaque infection model. Collectively these studies will provide us with a highly versatile system that anticipates on future pandemic events by having seed viruses for vaccine development ready to go on the shelf, for the rapid production of broadly protective pandemic vaccines, which will save time and thus lives.
Max ERC Funding
2 187 758 €
Duration
Start date: 2010-06-01, End date: 2015-05-31
Project acronym FunI
Project Revealing Fundamental Interactions and their Symmetries at the highest Precision and the lowest Energies
Researcher (PI) Klaus BLAUM
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Advanced Grant (AdG), PE2, ERC-2018-ADG
Summary The four fundamental interactions and their symmetries, the fundamental constants as well as the properties of elementary particles like masses and moments, determine the basic structure of the universe and are the basis for our so well tested Standard Model (SM) of physics. Performing stringent tests on these interactions and symmetries in extreme conditions at lowest energies and with highest precision by comparing e.g. the properties of particles and their counterpart, the antiparticles, will allow us to search for physics beyond the SM. Any improvement of these tests beyond their present limits will require novel experimental techniques. To this end, we propose ambitious Penning-trap based single-ion experiments and measurements of magnetic moments and atomic masses to substantially improve the to-date best limits on some of the key SM predictions. While the measurement technique in determining the eigenfrequencies of the stored particles with unprecedented precision will be identical to the technique used in the past ERC grant by the PI (MEFUCO - MEasurements of FUndamental COnstants), the novel ion preparation and cooling techniques to be developed as well as the physics questions to be addressed are completely different. The new findings will enable us to perform stringent tests of fundamental symmetries like charge-parity-time reversal symmetry (CPT theorem) with (anti)protons or of the energy-mass equivalence principle as well as tests of interactions like quantum electrodynamics in strong fields by using highly charged ions. This will enable us to set new limits on SM predictions or even to reveal their failures. To meet these challenges, advanced charge breeding and cooling techniques will make it possible for us to achieve among other advances a ten-fold improved test of E = mc2, and thus of Einstein’s special theory of relativity and the most stringent CPT test in the baryonic sector by comparing the magnetic moments of the proton and the antiproton.
Summary
The four fundamental interactions and their symmetries, the fundamental constants as well as the properties of elementary particles like masses and moments, determine the basic structure of the universe and are the basis for our so well tested Standard Model (SM) of physics. Performing stringent tests on these interactions and symmetries in extreme conditions at lowest energies and with highest precision by comparing e.g. the properties of particles and their counterpart, the antiparticles, will allow us to search for physics beyond the SM. Any improvement of these tests beyond their present limits will require novel experimental techniques. To this end, we propose ambitious Penning-trap based single-ion experiments and measurements of magnetic moments and atomic masses to substantially improve the to-date best limits on some of the key SM predictions. While the measurement technique in determining the eigenfrequencies of the stored particles with unprecedented precision will be identical to the technique used in the past ERC grant by the PI (MEFUCO - MEasurements of FUndamental COnstants), the novel ion preparation and cooling techniques to be developed as well as the physics questions to be addressed are completely different. The new findings will enable us to perform stringent tests of fundamental symmetries like charge-parity-time reversal symmetry (CPT theorem) with (anti)protons or of the energy-mass equivalence principle as well as tests of interactions like quantum electrodynamics in strong fields by using highly charged ions. This will enable us to set new limits on SM predictions or even to reveal their failures. To meet these challenges, advanced charge breeding and cooling techniques will make it possible for us to achieve among other advances a ten-fold improved test of E = mc2, and thus of Einstein’s special theory of relativity and the most stringent CPT test in the baryonic sector by comparing the magnetic moments of the proton and the antiproton.
Max ERC Funding
2 500 000 €
Duration
Start date: 2019-05-01, End date: 2024-04-30
Project acronym FUNMETA
Project Metabolomics of fungal diseases: a systems biology approach for biomarkers discovery and therapy
Researcher (PI) Luigina Romani
Host Institution (HI) UNIVERSITA DEGLI STUDI DI PERUGIA
Call Details Advanced Grant (AdG), LS7, ERC-2011-ADG_20110310
Summary Humans have evolved intimate symbiotic relationships with a consortium of gut microbes (including fungi) and individual variations in the microbiome influence host health and disease. The fact that fungi are capable of colonizing almost every niche within the human body suggests that they must possess particular immune adaptation mechanisms, the breakdown of which may result in fatal fungal infections and severe fungal diseases. Traditional reductionist approaches of the past have not been sufficient to address these new challenges in the pathogenesis of fungal diseases. Here, I propose an integrated, systems biology approach to understand the role of L-tryptophan (trp) metabolic pathways in multilevel host−fungus interactions. Present in mammals as well as in fungi, pathways of trp metabolic pathways are exploited by the host and the fungal biota for survival and immune adaptation. A variety of indole derivatives, generated through conversion from dietary trp by symbiotic bacteria, activate the aryl hydrocarbon receptor/IL-22 pathway that provides antifungal resistance and tissue repair. Harmful inflammatory responses to fungi are instead tamed by kynurenines generated via the enzyme indoleamine 2,3–dioxygenase (IDO) of the trp pathway. Through high-throughput wet-lab ‘omics’ techniques combined with computational techniques, the project aims at defining the molecular basis of mammalian and fungal IDO activity and a metabolic network linking the metabolic phenotype (metabotype) to immune adaptations and its possible breakdown in experimental and human fungal infections. The project will provide ideal post-graduate training focussed on the development of metabolomics for diagnosis of fungal diseases and optimization of current antifungal therapy and diet that are of relevance to public health care solutions.
Summary
Humans have evolved intimate symbiotic relationships with a consortium of gut microbes (including fungi) and individual variations in the microbiome influence host health and disease. The fact that fungi are capable of colonizing almost every niche within the human body suggests that they must possess particular immune adaptation mechanisms, the breakdown of which may result in fatal fungal infections and severe fungal diseases. Traditional reductionist approaches of the past have not been sufficient to address these new challenges in the pathogenesis of fungal diseases. Here, I propose an integrated, systems biology approach to understand the role of L-tryptophan (trp) metabolic pathways in multilevel host−fungus interactions. Present in mammals as well as in fungi, pathways of trp metabolic pathways are exploited by the host and the fungal biota for survival and immune adaptation. A variety of indole derivatives, generated through conversion from dietary trp by symbiotic bacteria, activate the aryl hydrocarbon receptor/IL-22 pathway that provides antifungal resistance and tissue repair. Harmful inflammatory responses to fungi are instead tamed by kynurenines generated via the enzyme indoleamine 2,3–dioxygenase (IDO) of the trp pathway. Through high-throughput wet-lab ‘omics’ techniques combined with computational techniques, the project aims at defining the molecular basis of mammalian and fungal IDO activity and a metabolic network linking the metabolic phenotype (metabotype) to immune adaptations and its possible breakdown in experimental and human fungal infections. The project will provide ideal post-graduate training focussed on the development of metabolomics for diagnosis of fungal diseases and optimization of current antifungal therapy and diet that are of relevance to public health care solutions.
Max ERC Funding
2 299 200 €
Duration
Start date: 2012-04-01, End date: 2018-03-31
Project acronym FUNREN
Project Functional Renormalization - from quantum gravity and dark energy to ultracold atoms and condensed matter
Researcher (PI) Wolfgang Christoph Wetterich
Host Institution (HI) RUPRECHT-KARLS-UNIVERSITAET HEIDELBERG
Call Details Advanced Grant (AdG), PE2, ERC-2011-ADG_20110209
Summary "Functional Renormalization provides a bridge from fundamental
microphysical laws to macroscopic complexity and observations. Acting
like a ""theoretical microscope"" with variable resolution, it includes in
a stepwise procedure the fluctuation effects which are responsible for
the emergence of complexity. It describes macroscopic phenomena that are not
directly visible on the microscopic level as order, phase transitions and
spontaneous symmetry breaking , and is flexible enough to accommodate the
change of effective degrees of freedom and associated effective laws. The
laws of Nature become dependent on the length scale.
We propose to develop non-perturbative flow equations into a precision tool
for the understanding of many body physics, that can be tested by experiments
with ultracold atoms.
Fundamental questions as a formulation of quantum gravity as a
non-perturbatively renormalizable quantum field theory, the emergence of
fundamental length scales or the origin of dark energy will be tackled
with this method.
We also will address specific applications as the non-linear growth of
structure in cosmology or the phase diagram of models for strongly
correlated electrons."
Summary
"Functional Renormalization provides a bridge from fundamental
microphysical laws to macroscopic complexity and observations. Acting
like a ""theoretical microscope"" with variable resolution, it includes in
a stepwise procedure the fluctuation effects which are responsible for
the emergence of complexity. It describes macroscopic phenomena that are not
directly visible on the microscopic level as order, phase transitions and
spontaneous symmetry breaking , and is flexible enough to accommodate the
change of effective degrees of freedom and associated effective laws. The
laws of Nature become dependent on the length scale.
We propose to develop non-perturbative flow equations into a precision tool
for the understanding of many body physics, that can be tested by experiments
with ultracold atoms.
Fundamental questions as a formulation of quantum gravity as a
non-perturbatively renormalizable quantum field theory, the emergence of
fundamental length scales or the origin of dark energy will be tackled
with this method.
We also will address specific applications as the non-linear growth of
structure in cosmology or the phase diagram of models for strongly
correlated electrons."
Max ERC Funding
1 955 400 €
Duration
Start date: 2012-04-01, End date: 2017-03-31
Project acronym FUNSEL
Project Generation of AAV-based, arrayed genetic libraries for in vivo functional selection: an innovative approach to identify secreted factors and microRNAs against degenerative disorders
Researcher (PI) Mauro Giacca
Host Institution (HI) INTERNATIONAL CENTRE FOR GENETIC ENGINEERING AND BIOTECHNOLOGY
Call Details Advanced Grant (AdG), LS7, ERC-2009-AdG
Summary A foremost health problem stems from the burden of degenerative diseases, including heart failure, neurodegeneration, retinal degeneration and diabetes, essentially linked to the aging of the human population and the incapacity of post-mitotic tissues to undergo efficient repair. This is an ambitious, highly innovative project aimed at developing an in vivo selection procedure, based on gene transfer of two genetic libraries cloned into Adeno-Associated Virus (AAV)-based vectors, for the identification of novel secreted factors or microRNAs providing benefit against various degenerative diseases. Two arrayed libraries will be generated, one coding for ~1,300 cDNAs from the mouse secretome, the other for all known microRNAs (~800 genes). Pools of vectors from each library will be obtained with serotypes suitable for in vivo transduction of different organs. The vectors will be injected in a series of mouse models of degenerative disorders involving damage to cardiomyocytes,, neurodegeneration, retinal degeneration and loss of beta-cells in the pancreas. The degenerative conditions will drive the selection for secreted factors or miRNA putatively preventing cell apoptosis, enhancing residual cell function or, in the best possible scenario, promoting tissue regeneration. This in vivo selection approach, which is supported by very encouraging preliminary results, has never been attempted before and is rendered possible by the property of AAV vectors to be produced at high titers, infect tissues at high multiplicity, persist in the transduced cells for prolonged period of times and efficiently express their transgenes in vivo. In addition to its final goal of identifying novel biotherapeutics, the project entails the successful achievement of several intermediate objectives and is expected to extend both technology and knowledge beyond the state-of-the art.
Summary
A foremost health problem stems from the burden of degenerative diseases, including heart failure, neurodegeneration, retinal degeneration and diabetes, essentially linked to the aging of the human population and the incapacity of post-mitotic tissues to undergo efficient repair. This is an ambitious, highly innovative project aimed at developing an in vivo selection procedure, based on gene transfer of two genetic libraries cloned into Adeno-Associated Virus (AAV)-based vectors, for the identification of novel secreted factors or microRNAs providing benefit against various degenerative diseases. Two arrayed libraries will be generated, one coding for ~1,300 cDNAs from the mouse secretome, the other for all known microRNAs (~800 genes). Pools of vectors from each library will be obtained with serotypes suitable for in vivo transduction of different organs. The vectors will be injected in a series of mouse models of degenerative disorders involving damage to cardiomyocytes,, neurodegeneration, retinal degeneration and loss of beta-cells in the pancreas. The degenerative conditions will drive the selection for secreted factors or miRNA putatively preventing cell apoptosis, enhancing residual cell function or, in the best possible scenario, promoting tissue regeneration. This in vivo selection approach, which is supported by very encouraging preliminary results, has never been attempted before and is rendered possible by the property of AAV vectors to be produced at high titers, infect tissues at high multiplicity, persist in the transduced cells for prolonged period of times and efficiently express their transgenes in vivo. In addition to its final goal of identifying novel biotherapeutics, the project entails the successful achievement of several intermediate objectives and is expected to extend both technology and knowledge beyond the state-of-the art.
Max ERC Funding
1 824 000 €
Duration
Start date: 2010-04-01, End date: 2015-03-31
Project acronym FUSIMAGINE
Project A new neuroimaging modality: from bench to bedside
Researcher (PI) Mickaël Tanter
Host Institution (HI) INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
Call Details Advanced Grant (AdG), LS7, ERC-2013-ADG
Summary "NeuroImaging systems are invaluable tools in the understanding of the brain both for fundamental research and clinical diagnosis. However, recent improvements in deep brain imaging technology have been somewhat limited because most of them are based on incremental innovation of mature techniques (EEG, PET and fMRI) instead of breakthrough.
In FUSIMAGINE, a genuinely new functional brain imaging modality will be developed and validated whose performances could have a major impact in neuroscience from fundamental research to clinical applications.
This new modality is based on the use of ultrafast ultrasound scanners able to reach more than 10 000 frames per second (fps) compared to the usual 50 fps in conventional ultrasound scanners. This concept relies on compounded plane wave transmissions introduced by my team and demonstrates up to 100-fold increase in the sensitivity of blood flow measurements. It enables to image the subtle hemodynamic changes in small brain vessels and thus brain activity thanks to neurovascular coupling. Functional Ultrasound (fUS by analogy to fMRI) is a real breakthrough in brain imaging as our project will demonstrate that:
in neuroscience, fUS provides a unique real time, portable and deep brain functional imaging technique for awake and even freely moving small animal imaging, moreover with unprecedented spatiotemporal resolution (~100µm, 50ms).
in clinical diagnosis, fUS provides a unique bedside neuro-imaging system of newborns brain activity through the fontanel window. Such real time system will permit to monitor and better understand neonatal seizures and hemorrhages. On adults, fUS provides a unique functional imaging modality during neurosurgery to predict the cortical mapping remodeling resulting of tumor development (such as low-grade gliomas). Finally, new adaptive skull bone correction techniques implemented on the system will enable us to perform non invasive transcranial fUS imaging on human adults through the temple bone."
Summary
"NeuroImaging systems are invaluable tools in the understanding of the brain both for fundamental research and clinical diagnosis. However, recent improvements in deep brain imaging technology have been somewhat limited because most of them are based on incremental innovation of mature techniques (EEG, PET and fMRI) instead of breakthrough.
In FUSIMAGINE, a genuinely new functional brain imaging modality will be developed and validated whose performances could have a major impact in neuroscience from fundamental research to clinical applications.
This new modality is based on the use of ultrafast ultrasound scanners able to reach more than 10 000 frames per second (fps) compared to the usual 50 fps in conventional ultrasound scanners. This concept relies on compounded plane wave transmissions introduced by my team and demonstrates up to 100-fold increase in the sensitivity of blood flow measurements. It enables to image the subtle hemodynamic changes in small brain vessels and thus brain activity thanks to neurovascular coupling. Functional Ultrasound (fUS by analogy to fMRI) is a real breakthrough in brain imaging as our project will demonstrate that:
in neuroscience, fUS provides a unique real time, portable and deep brain functional imaging technique for awake and even freely moving small animal imaging, moreover with unprecedented spatiotemporal resolution (~100µm, 50ms).
in clinical diagnosis, fUS provides a unique bedside neuro-imaging system of newborns brain activity through the fontanel window. Such real time system will permit to monitor and better understand neonatal seizures and hemorrhages. On adults, fUS provides a unique functional imaging modality during neurosurgery to predict the cortical mapping remodeling resulting of tumor development (such as low-grade gliomas). Finally, new adaptive skull bone correction techniques implemented on the system will enable us to perform non invasive transcranial fUS imaging on human adults through the temple bone."
Max ERC Funding
2 497 603 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym FUTUREGENES
Project Gene transfer techniques in the treatment of cardiovascular diseases and malignant glioma
Researcher (PI) Seppo Yla-Herttuala
Host Institution (HI) ITA-SUOMEN YLIOPISTO
Call Details Advanced Grant (AdG), LS7, ERC-2009-AdG
Summary Background: Poor angiogenesis and collateral vessel formation lead to coronary heart disease, claudication, infarctions and amputations while malignant glioma is one of the most aggressive proangiogenic tumors leading to death in a few months. For these diseases either stimulation or blocking, respectively, of angiogenesis may provide novel treatment options. Advancing State-of-the-Art: Our hypothesis is that in ischemia it will be possible to support natural growth of blood vessels with Therapeutic angiogenesis and lymphangiogenesis by using local gene transfer of the new members of vascular endothelial growth factor (VEGF) family and their receptors. New co-receptors, designer mutants and PCR suffling products of VEGFs will be used. New vector technology will be used to achieve long-lasting effects of VEGFs. We aim to develop novel site-specifically integrating, targeted, regulated vectors to precisely express the new VEGFs, their soluble decoy receptors and single-chain therapeutic antibodies (scFv) for pro- and anti-angiogenic purposes. As novel approaches, we have developed metabolically biotinylated lenti- and adenoviruses suitable for targeting and Epigenetherapy where siRNA/miRNAs and short nuclear RNAs regulate endogenous gene expression at the VEGF promoter level via modification of histone code. scFv library for endothelial cells and lentivirus-siRNA library directed to all human and mouse kinases will be screened to identify new mediators of angiogenesis in order to develop next generation pro- and antiangiogenic therapies. Based on our strong track record in Clinical applications, the best new pro- and antiangiogenic approaches will be taken to phase I clinical studies in myocardial ischemia and malignant glioma. Significance: This work should lead to significant advances and new therapies for severe ischemia and malignant glioma. Epigenetherapy and new site-specifically integrating, regulated vectors should be widely applicable in medicine.
Summary
Background: Poor angiogenesis and collateral vessel formation lead to coronary heart disease, claudication, infarctions and amputations while malignant glioma is one of the most aggressive proangiogenic tumors leading to death in a few months. For these diseases either stimulation or blocking, respectively, of angiogenesis may provide novel treatment options. Advancing State-of-the-Art: Our hypothesis is that in ischemia it will be possible to support natural growth of blood vessels with Therapeutic angiogenesis and lymphangiogenesis by using local gene transfer of the new members of vascular endothelial growth factor (VEGF) family and their receptors. New co-receptors, designer mutants and PCR suffling products of VEGFs will be used. New vector technology will be used to achieve long-lasting effects of VEGFs. We aim to develop novel site-specifically integrating, targeted, regulated vectors to precisely express the new VEGFs, their soluble decoy receptors and single-chain therapeutic antibodies (scFv) for pro- and anti-angiogenic purposes. As novel approaches, we have developed metabolically biotinylated lenti- and adenoviruses suitable for targeting and Epigenetherapy where siRNA/miRNAs and short nuclear RNAs regulate endogenous gene expression at the VEGF promoter level via modification of histone code. scFv library for endothelial cells and lentivirus-siRNA library directed to all human and mouse kinases will be screened to identify new mediators of angiogenesis in order to develop next generation pro- and antiangiogenic therapies. Based on our strong track record in Clinical applications, the best new pro- and antiangiogenic approaches will be taken to phase I clinical studies in myocardial ischemia and malignant glioma. Significance: This work should lead to significant advances and new therapies for severe ischemia and malignant glioma. Epigenetherapy and new site-specifically integrating, regulated vectors should be widely applicable in medicine.
Max ERC Funding
2 200 000 €
Duration
Start date: 2010-06-01, End date: 2015-05-31
Project acronym GAUGE-STRING
Project Gauge theory - String theory duality: maximally symmetric case and beyond
Researcher (PI) Arkadi Alexander Tseitline
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Call Details Advanced Grant (AdG), PE2, ERC-2011-ADG_20110209
Summary Quantum field theories with local gauge symmetry are building blocks of the modern theory of fundamental interactions between elementary particles. The basic example is Quantum Chromo Dynamics. There is strong evidence that QCD is the correct theory of strong interactions, but it has been difficult to use it to account for many hadronic phenomena which is due to large value of gauge coupling at low energies. Theoretical understanding of gauge theory dynamics at large values of coupling when one cannot use the Feynman diagram perturbation theory is a major problem of physics of strong interactions. Goals include analytic computation of mass spectrum of hadrons, etc. The general aim of this proposal is to develop new theoretical tools to describe strongly coupled gauge theories. Research in the last decade brought strong evidence that connection of gauge theories to string theory should be a key to solution of this problem. Gauge-string duality and, in particular, Anti deSitter / conformal field theory (AdS/CFT) correspondence is one of the most active directions of current work in theory of fundamental interactions. A remarkable progress was achieved towards quantitative understanding of this relation in the most symmetric case of maximally supersymmetric gauge theory in flat 4 dimensions dual to superstring theory in curved 10-dimensional AdS5 x S5 space. We propose a detailed study of this duality from the string theory side using world-sheet methods and hidden integrability of the maximally symmetric theory. The goal is to provide a first-principles proof of the duality for the spectrum of states and also to establish its validity at the level of correlation functions of conformal operators. We also plan to extend string-theoretic approach to gauge-string duality to less symmetric cases, corresponding, in particular, to certain non-supersymmetric conformal and n=1 supersymmetric non-conformal planar gauge theories.
Summary
Quantum field theories with local gauge symmetry are building blocks of the modern theory of fundamental interactions between elementary particles. The basic example is Quantum Chromo Dynamics. There is strong evidence that QCD is the correct theory of strong interactions, but it has been difficult to use it to account for many hadronic phenomena which is due to large value of gauge coupling at low energies. Theoretical understanding of gauge theory dynamics at large values of coupling when one cannot use the Feynman diagram perturbation theory is a major problem of physics of strong interactions. Goals include analytic computation of mass spectrum of hadrons, etc. The general aim of this proposal is to develop new theoretical tools to describe strongly coupled gauge theories. Research in the last decade brought strong evidence that connection of gauge theories to string theory should be a key to solution of this problem. Gauge-string duality and, in particular, Anti deSitter / conformal field theory (AdS/CFT) correspondence is one of the most active directions of current work in theory of fundamental interactions. A remarkable progress was achieved towards quantitative understanding of this relation in the most symmetric case of maximally supersymmetric gauge theory in flat 4 dimensions dual to superstring theory in curved 10-dimensional AdS5 x S5 space. We propose a detailed study of this duality from the string theory side using world-sheet methods and hidden integrability of the maximally symmetric theory. The goal is to provide a first-principles proof of the duality for the spectrum of states and also to establish its validity at the level of correlation functions of conformal operators. We also plan to extend string-theoretic approach to gauge-string duality to less symmetric cases, corresponding, in particular, to certain non-supersymmetric conformal and n=1 supersymmetric non-conformal planar gauge theories.
Max ERC Funding
1 679 584 €
Duration
Start date: 2012-02-01, End date: 2017-09-30
Project acronym GemX
Project Towards a ton-scale Ge-76 observatory for neutrinoless double beta decay
Researcher (PI) Stefan SCHÖNERT
Host Institution (HI) TECHNISCHE UNIVERSITAET MUENCHEN
Call Details Advanced Grant (AdG), PE2, ERC-2017-ADG
Summary The observation that matter dominates over anti-matter in the Universe is one of the most critical open questions in physics. A natural explanation of this asymmetry postulates neutrinos as their own anti-particles, usually referred to as Majorana particles. The only practical way to establish the Majorana character of neutrinos is the experimental search for neutrinoless double-beta decay (NDBD). This decay violates lepton-number conservation and would establish new physics beyond the Standard Model of particle physics. The Germanium eXploration (GemX) project will focus on cutting-edge research towards a ton-scale NDBD decay experiment based on germanium detectors enriched in 76Ge, and thereby sustain a European leadership also in the next-generation worldwide experimental competition. With its superior energy resolution and lowest background, a one-ton 76Ge experiment has potentially the highest sensitivity for discovering NDBD decay amongst the next-generation experiments. A discovery would be groundbreaking in the fields of particle physics, astrophysics and cosmology. The goal of GemX is to develop and evaluate novel HPGe detectors enriched in 76Ge, test their performance in LEGEND-200 and inform the design decisions of the future flagship 1000-kg experiment LEGEND-1000, which the PI leads as elected European spokesperson. GemX will (1) investigate new Ge detector designs with increased mass and improved pulse shape discrimination to enhance background reduction; (2) develop a crystal growth process from germanium material enriched in 76Ge for large high-purity Ge crystals with suitable net-impurity concentrations in Europe; (3) develop the production of large Ge detectors enriched in 76Ge with minimal activation by cosmic radiation and with full control of surface contaminations from alpha contaminations; (4) deploy, test and operate the novel detectors in the TUM underground liquid argon test stand and in LEGEND-200 at the LNGS, Italy.
Summary
The observation that matter dominates over anti-matter in the Universe is one of the most critical open questions in physics. A natural explanation of this asymmetry postulates neutrinos as their own anti-particles, usually referred to as Majorana particles. The only practical way to establish the Majorana character of neutrinos is the experimental search for neutrinoless double-beta decay (NDBD). This decay violates lepton-number conservation and would establish new physics beyond the Standard Model of particle physics. The Germanium eXploration (GemX) project will focus on cutting-edge research towards a ton-scale NDBD decay experiment based on germanium detectors enriched in 76Ge, and thereby sustain a European leadership also in the next-generation worldwide experimental competition. With its superior energy resolution and lowest background, a one-ton 76Ge experiment has potentially the highest sensitivity for discovering NDBD decay amongst the next-generation experiments. A discovery would be groundbreaking in the fields of particle physics, astrophysics and cosmology. The goal of GemX is to develop and evaluate novel HPGe detectors enriched in 76Ge, test their performance in LEGEND-200 and inform the design decisions of the future flagship 1000-kg experiment LEGEND-1000, which the PI leads as elected European spokesperson. GemX will (1) investigate new Ge detector designs with increased mass and improved pulse shape discrimination to enhance background reduction; (2) develop a crystal growth process from germanium material enriched in 76Ge for large high-purity Ge crystals with suitable net-impurity concentrations in Europe; (3) develop the production of large Ge detectors enriched in 76Ge with minimal activation by cosmic radiation and with full control of surface contaminations from alpha contaminations; (4) deploy, test and operate the novel detectors in the TUM underground liquid argon test stand and in LEGEND-200 at the LNGS, Italy.
Max ERC Funding
3 355 460 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym GENE FOR CURE
Project Expanding and extending gene therapy of monogenic diseases of the haematopoietic system
Researcher (PI) Marina Cavazzana
Host Institution (HI) INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
Call Details Advanced Grant (AdG), LS7, ERC-2015-AdG
Summary Given that (i) not all patients with a monogenic disease affecting the lymphohaematopoietic system have an HLA-genoidentical sibling donor and (ii) severe immunological complications worsen the outcome in HLA-partially-matched hematopoietic stem cell transplantation (HSCT), the genetic modification of autologous hematopoietic stem cells (HSCs) has become a powerful curative treatment option for these individuals. The present project seeks to further consolidate the rationale for replacing HLA-partially-matched HSCT with a gene therapy approach. Wiskott-Aldrich syndrome is a primary immunodeficiency whose severity is due to impairment of both lymphoid and myeloid cell function. We have reported robust evidence showing that the infusion of gene-corrected autologous HSCs enables the restoration of the T cell function. However, we are still cautious with regard to claiming the stable correction of autoimmunity and thrombocytopenia. Accordingly, we plan to thoroughly monitor long-term B cell functional outcomes and the platelet count in our treated patients. Moreover, we wish to extend the gene therapy approach to the SCID caused by mutations in the DLREIC gene, since the long-term post-HSCT outcomes are particularly poor. The preclinical work has been completed; initiation of a clinical protocol is the next step. Immune-dysregulation polyendocrinopathy enteropathy X-linked (IPEX) and sickle cell anaemia (SCA) are the last two target diseases. IPEX is a devastating disease caused by mutation of FOXP3 transcription factor; it may be possible to correct it by infusing gene-modified CD4+Tcells. We intend to accumulate the data required to prove our working hypothesis. SCA is a worldwide public health issue. We are seeking to improve the conventional gene therapy procedure and to evaluate the efficacy of CrisP/Cas9-mediated disruption of the CIS-regulatory elements required for HbF silencing. This disruption may provide a cure for SCA.
Summary
Given that (i) not all patients with a monogenic disease affecting the lymphohaematopoietic system have an HLA-genoidentical sibling donor and (ii) severe immunological complications worsen the outcome in HLA-partially-matched hematopoietic stem cell transplantation (HSCT), the genetic modification of autologous hematopoietic stem cells (HSCs) has become a powerful curative treatment option for these individuals. The present project seeks to further consolidate the rationale for replacing HLA-partially-matched HSCT with a gene therapy approach. Wiskott-Aldrich syndrome is a primary immunodeficiency whose severity is due to impairment of both lymphoid and myeloid cell function. We have reported robust evidence showing that the infusion of gene-corrected autologous HSCs enables the restoration of the T cell function. However, we are still cautious with regard to claiming the stable correction of autoimmunity and thrombocytopenia. Accordingly, we plan to thoroughly monitor long-term B cell functional outcomes and the platelet count in our treated patients. Moreover, we wish to extend the gene therapy approach to the SCID caused by mutations in the DLREIC gene, since the long-term post-HSCT outcomes are particularly poor. The preclinical work has been completed; initiation of a clinical protocol is the next step. Immune-dysregulation polyendocrinopathy enteropathy X-linked (IPEX) and sickle cell anaemia (SCA) are the last two target diseases. IPEX is a devastating disease caused by mutation of FOXP3 transcription factor; it may be possible to correct it by infusing gene-modified CD4+Tcells. We intend to accumulate the data required to prove our working hypothesis. SCA is a worldwide public health issue. We are seeking to improve the conventional gene therapy procedure and to evaluate the efficacy of CrisP/Cas9-mediated disruption of the CIS-regulatory elements required for HbF silencing. This disruption may provide a cure for SCA.
Max ERC Funding
2 445 268 €
Duration
Start date: 2016-10-01, End date: 2021-09-30
Project acronym GENECADD
Project GEnetic NEtworks as a tool for anti-CAncer Drug Development
Researcher (PI) Ulf Thomas Edvard Helleday
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Advanced Grant (AdG), LS7, ERC-2010-AdG_20100317
Summary Although several therapies target cellular pathways, current small molecules drug discovery is based on identification of inhibitors to single proteins, without knowledge of whether they are the most advantageous target. The objective of this proposal is to develop a novel method for drug discovery, combining phenotypic cell based screens with functional genetic networks to determine the molecular mechanisms of numerous small molecule inhibitors. This method will enable identification of numerous distinct inhibitors of a particular pathway, as well as providing their molecular mechanism.
Cancer cells harbour gene mutations that make them more reliant on other cellular pathways for survival. Such cellular pathways can be targeted to selectively kill the cancer cells using the concept of synthetic lethality. In this project we want to identify inhibitors of homologous recombination to target cancer using synthetic lethality.
To establish a functional genetic network for homologous recombination, we will first identify all recombination proteins using multiple genome-wide RNAi screens. Then the synthetic sick or lethal interaction map between all recombination proteins is determined by co-depletion of these. Such synthetic sick or lethal network will identify numerous putative targets for anti-cancer treatment. Importantly, using this network for chemical-genetic functional interactions will assist in determinating of the molecular mechanisms of inhibitors. Chemical-genetic networks based on synthetic sickness or lethality can potentially change future drug discovery methods as well as providing new mechanistic insights into the field of toxicology.
Summary
Although several therapies target cellular pathways, current small molecules drug discovery is based on identification of inhibitors to single proteins, without knowledge of whether they are the most advantageous target. The objective of this proposal is to develop a novel method for drug discovery, combining phenotypic cell based screens with functional genetic networks to determine the molecular mechanisms of numerous small molecule inhibitors. This method will enable identification of numerous distinct inhibitors of a particular pathway, as well as providing their molecular mechanism.
Cancer cells harbour gene mutations that make them more reliant on other cellular pathways for survival. Such cellular pathways can be targeted to selectively kill the cancer cells using the concept of synthetic lethality. In this project we want to identify inhibitors of homologous recombination to target cancer using synthetic lethality.
To establish a functional genetic network for homologous recombination, we will first identify all recombination proteins using multiple genome-wide RNAi screens. Then the synthetic sick or lethal interaction map between all recombination proteins is determined by co-depletion of these. Such synthetic sick or lethal network will identify numerous putative targets for anti-cancer treatment. Importantly, using this network for chemical-genetic functional interactions will assist in determinating of the molecular mechanisms of inhibitors. Chemical-genetic networks based on synthetic sickness or lethality can potentially change future drug discovery methods as well as providing new mechanistic insights into the field of toxicology.
Max ERC Funding
2 500 000 €
Duration
Start date: 2011-03-01, End date: 2016-02-29
Project acronym GENESIS
Project GEnerating extreme NEutrons for achieving controlled r-process nucleosyntheSIS
Researcher (PI) julien FUCHS
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), PE2, ERC-2017-ADG
Summary The project aim is to perform the first direct measurements of neutron capture and beta-decay rates related to the “r-process” of nucleosynthesis. This process, based on squeezing at once multiple neutrons in a nucleus, is presently thought to be the main mechanism that forms the heaviest elements in our Solar System and in stars.
At present, there are large discrepancies between the observed element abundances in stars and those found from simulations. It is speculated that this problem stems from the uncertainties in nuclear parameters, particularly in the plasma environment. These nuclear parameters have not been experimentally verified due to the too-low flux of current neutron facilities and the lack of means to create on-site hot and dense plasmas.
Lasers are not the first thing that comes to mind as a neutron source, but with the upcoming ultra high-power laser facilities (Apollon in 2018 and ELI-NP in 2019), high-density and high-energy protons can be generated. Through spallation, these can then produce neutrons with the needed flux, a flux comparable to that found in Supernovae. To further emulate the astrophysical scenario, auxiliary lasers can be used to turn the target material into a plasma.
In practice, this project will aim to measure neutron capture and beta-decay rates, as well as yields and abundances of the products of nucleosynthesis obtained by exposing heavy-ion targets to laser-produced extreme neutron fluxes. These targets will be either in a plasma or a solid state. In plasmas, we will investigate the effect of excited nuclear states, created by the plasma photons and electrons, on neutron capture. In solid targets, we will take advantage of the unique possibility of generating on-site unstable nuclei, and then re-expose them to the neutron beam in order to measure double neutron capture.
Summary
The project aim is to perform the first direct measurements of neutron capture and beta-decay rates related to the “r-process” of nucleosynthesis. This process, based on squeezing at once multiple neutrons in a nucleus, is presently thought to be the main mechanism that forms the heaviest elements in our Solar System and in stars.
At present, there are large discrepancies between the observed element abundances in stars and those found from simulations. It is speculated that this problem stems from the uncertainties in nuclear parameters, particularly in the plasma environment. These nuclear parameters have not been experimentally verified due to the too-low flux of current neutron facilities and the lack of means to create on-site hot and dense plasmas.
Lasers are not the first thing that comes to mind as a neutron source, but with the upcoming ultra high-power laser facilities (Apollon in 2018 and ELI-NP in 2019), high-density and high-energy protons can be generated. Through spallation, these can then produce neutrons with the needed flux, a flux comparable to that found in Supernovae. To further emulate the astrophysical scenario, auxiliary lasers can be used to turn the target material into a plasma.
In practice, this project will aim to measure neutron capture and beta-decay rates, as well as yields and abundances of the products of nucleosynthesis obtained by exposing heavy-ion targets to laser-produced extreme neutron fluxes. These targets will be either in a plasma or a solid state. In plasmas, we will investigate the effect of excited nuclear states, created by the plasma photons and electrons, on neutron capture. In solid targets, we will take advantage of the unique possibility of generating on-site unstable nuclei, and then re-expose them to the neutron beam in order to measure double neutron capture.
Max ERC Funding
3 494 784 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym GLYCOTREAT
Project Novel vaccine generation for the treatment of cancer. A glyco-nanomedial approach instructing T cells
Researcher (PI) Yvette Van Kooyk
Host Institution (HI) STICHTING VUMC
Call Details Advanced Grant (AdG), LS7, ERC-2013-ADG
Summary There is an urgent need to develop vaccines for the induction of CD8+ T-cell immunity to treat cancer and infectious diseases. Dendritic Cells (DC) have shown potential to induce antigen specific CD8+ T-cell responses with the help of CD4+ T cells, yet the efficacy by which the induction is achieved still has its limitations. The main challenge is: (a) to increase targeting efficacy to the complete repertoire of DC subsets; (b) to trigger T-cell responses by the DC that is powerful enough to eliminate a tumour (c) to implement novel human read-out systems, that mimic he human body response to evaluate vaccine efficacy.
The aim of this research project is to develop new glycan-based nanomedicines targeted to DC to induce powerful T-cell responses. Within the scope of this research project these new glycan-based nanomedicines will be tested to (i) trigger a strong T-cell response to pathogens, (ii) induce a powerful and adequate T-cell response to self antigen in a tumour induced immune suppressive environment and (iii) render fundamental insights to establish a vaccine platform relevant for the treatment of cancer and infectious diseases.
GlycoTreat employs an unconventional, novel glycan biotechnology approach to target a multitude of DC subsets in the human skin to validate the groundbreaking hypothesis that the local administration and molecular size and glycan valency of the targeting compound affect the efficiency of the T-cell stimulating vaccine. This research project joins the chemical design of glyco-nanomedical vaccines with immunological outcomes in our advanced in-vitro, in-situ human skin and in-vivo mouse DC model systems. While crossing the established disciplinary boundaries between chemistry, biology and medicine, Prof. van Kooyk will generate a new field of expertise in vaccine development applied in the field of cancer treatment.
Summary
There is an urgent need to develop vaccines for the induction of CD8+ T-cell immunity to treat cancer and infectious diseases. Dendritic Cells (DC) have shown potential to induce antigen specific CD8+ T-cell responses with the help of CD4+ T cells, yet the efficacy by which the induction is achieved still has its limitations. The main challenge is: (a) to increase targeting efficacy to the complete repertoire of DC subsets; (b) to trigger T-cell responses by the DC that is powerful enough to eliminate a tumour (c) to implement novel human read-out systems, that mimic he human body response to evaluate vaccine efficacy.
The aim of this research project is to develop new glycan-based nanomedicines targeted to DC to induce powerful T-cell responses. Within the scope of this research project these new glycan-based nanomedicines will be tested to (i) trigger a strong T-cell response to pathogens, (ii) induce a powerful and adequate T-cell response to self antigen in a tumour induced immune suppressive environment and (iii) render fundamental insights to establish a vaccine platform relevant for the treatment of cancer and infectious diseases.
GlycoTreat employs an unconventional, novel glycan biotechnology approach to target a multitude of DC subsets in the human skin to validate the groundbreaking hypothesis that the local administration and molecular size and glycan valency of the targeting compound affect the efficiency of the T-cell stimulating vaccine. This research project joins the chemical design of glyco-nanomedical vaccines with immunological outcomes in our advanced in-vitro, in-situ human skin and in-vivo mouse DC model systems. While crossing the established disciplinary boundaries between chemistry, biology and medicine, Prof. van Kooyk will generate a new field of expertise in vaccine development applied in the field of cancer treatment.
Max ERC Funding
2 498 736 €
Duration
Start date: 2014-02-01, End date: 2019-07-31
Project acronym GravBHs
Project A New Strategy for Gravity and Black Holes
Researcher (PI) ROBERTO ALEJANDRO EMPARAN GARCIA DE SALAZAR
Host Institution (HI) UNIVERSITAT DE BARCELONA
Call Details Advanced Grant (AdG), PE2, ERC-2015-AdG
Summary General Relativity (GR) encompasses a huge variety of physical phenomena, from the collision of astrophysical black holes, to the dynamics (via holography) of strongly-coupled plasmas and the spontaneous symmetry-breaking in superconductors. Black holes play a central role in all this. However, their equations are exceedingly hard to solve. The apparent lack of a generic tunable parameter that allows to solve the theory perturbatively (like the electric coupling constant in electrodynamics, or the rank of the gauge group in large-N Yang-Mills theory) is arguably the single most important obstacle for generic efficient approaches to the physics of strong gravity and black holes. I argue that one natural parameter suggests itself: GR can be defined in an arbitrary number of dimensions D. Recently I have demonstrated that the limit of large D is optimally tailored for the investigation of black holes, classical and potentially also quantum. Explicit preliminary studies have proved that the concept is sound, powerful, and applicable even in four dimensions.
This encourages the pursuit of a full-scale program with two major goals:
(A) Reformulating GR and Black Hole physics around the large-D limit in terms of an effective membrane theory of black holes, coupled (non-perturbatively in 1/D) to an effective theory for gravitational radiation.
(B) Resolution of outstanding problems in gravitational physics, in particular of problems of direct relevance to cosmic censorship (critical collapse, endpoint of black brane instabilities), and of the quantum theory of black holes.
With the new tools of (A), a large number of additional problems in black hole physics and in holographic duality can be solved, which guarantee very substantial fallback objectives. These include black hole collisions, black hole phase diagrams, instabilities, holographic dynamics of finite-temperature systems, and potentially any problem that can be formulated in an arbitrary number of dimensions.
Summary
General Relativity (GR) encompasses a huge variety of physical phenomena, from the collision of astrophysical black holes, to the dynamics (via holography) of strongly-coupled plasmas and the spontaneous symmetry-breaking in superconductors. Black holes play a central role in all this. However, their equations are exceedingly hard to solve. The apparent lack of a generic tunable parameter that allows to solve the theory perturbatively (like the electric coupling constant in electrodynamics, or the rank of the gauge group in large-N Yang-Mills theory) is arguably the single most important obstacle for generic efficient approaches to the physics of strong gravity and black holes. I argue that one natural parameter suggests itself: GR can be defined in an arbitrary number of dimensions D. Recently I have demonstrated that the limit of large D is optimally tailored for the investigation of black holes, classical and potentially also quantum. Explicit preliminary studies have proved that the concept is sound, powerful, and applicable even in four dimensions.
This encourages the pursuit of a full-scale program with two major goals:
(A) Reformulating GR and Black Hole physics around the large-D limit in terms of an effective membrane theory of black holes, coupled (non-perturbatively in 1/D) to an effective theory for gravitational radiation.
(B) Resolution of outstanding problems in gravitational physics, in particular of problems of direct relevance to cosmic censorship (critical collapse, endpoint of black brane instabilities), and of the quantum theory of black holes.
With the new tools of (A), a large number of additional problems in black hole physics and in holographic duality can be solved, which guarantee very substantial fallback objectives. These include black hole collisions, black hole phase diagrams, instabilities, holographic dynamics of finite-temperature systems, and potentially any problem that can be formulated in an arbitrary number of dimensions.
Max ERC Funding
2 138 825 €
Duration
Start date: 2016-10-01, End date: 2021-09-30
Project acronym GravQuantMat
Project Gravity, Black Holes and Strongly Coupled Quantum Matter
Researcher (PI) Jerome Gauntlett
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Call Details Advanced Grant (AdG), PE2, ERC-2013-ADG
Summary States of matter in which the interactions between the microscopic constituents are both strong and quantum mechanical lie at the frontier of our understanding of nature. Such states appear in a wide variety of settings including high temperature superconductors, gases of cold atoms and the quark- gluon plasma created in the high-energy collisions of nuclei. Understanding the properties of such strongly coupled quantum matter poses huge conceptual challenges because standard perturbative techniques break down at strong coupling. In a remarkable development, the mathematical framework of string theory has provided a fundamentally new way to study strongly coupled quantum field theories using a dual, weakly coupled gravitational description. Furthermore, this duality states that the phase structure of the quantum field at finite temperature is precisely described by black hole geometries. The principal thrust of the proposal is to develop our understanding of these gravitational techniques in order to make contact with real world systems, particularly in condensed matter physics.
The proposal focuses on four main topics in this emerging, rapidly developing and interdisciplinary field. The first is to extend our understanding of known strongly coupled quantum critical ground states using gravitational solutions and also to search for new ones. The second is to map out the phase structure of strongly coupled quantum field theories at finite temperature by constructing a wide variety of new black hole solutions. Superconducting and spatially modulated phases will be a particular focus. Thirdly, fermion spectral functions will be calculated to extend our understanding of non-Fermi liquids, which are known to arise in many materials. The fourth topic is to explore the behaviour of strongly coupled systems in situations far from thermal equilibrium by studying the dynamical process of black hole formation.
Summary
States of matter in which the interactions between the microscopic constituents are both strong and quantum mechanical lie at the frontier of our understanding of nature. Such states appear in a wide variety of settings including high temperature superconductors, gases of cold atoms and the quark- gluon plasma created in the high-energy collisions of nuclei. Understanding the properties of such strongly coupled quantum matter poses huge conceptual challenges because standard perturbative techniques break down at strong coupling. In a remarkable development, the mathematical framework of string theory has provided a fundamentally new way to study strongly coupled quantum field theories using a dual, weakly coupled gravitational description. Furthermore, this duality states that the phase structure of the quantum field at finite temperature is precisely described by black hole geometries. The principal thrust of the proposal is to develop our understanding of these gravitational techniques in order to make contact with real world systems, particularly in condensed matter physics.
The proposal focuses on four main topics in this emerging, rapidly developing and interdisciplinary field. The first is to extend our understanding of known strongly coupled quantum critical ground states using gravitational solutions and also to search for new ones. The second is to map out the phase structure of strongly coupled quantum field theories at finite temperature by constructing a wide variety of new black hole solutions. Superconducting and spatially modulated phases will be a particular focus. Thirdly, fermion spectral functions will be calculated to extend our understanding of non-Fermi liquids, which are known to arise in many materials. The fourth topic is to explore the behaviour of strongly coupled systems in situations far from thermal equilibrium by studying the dynamical process of black hole formation.
Max ERC Funding
1 963 542 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym GT-SKIN
Project Gene Therapy for Inherited Skin Adhesion Disorders
Researcher (PI) Fulvio Mavilio
Host Institution (HI) ASSOCIATION GENETHON
Call Details Advanced Grant (AdG), LS7, ERC-2010-AdG_20100317
Summary Epidermolysis bullosa (EB) is a family of severe skin adhesion defects characterized by disfiguring blistering, infections, visual impairment, and a high risk of cancer. We showed through pre-clinical and clinical investigation that transplantation of genetically corrected epithelia leads to long-term functional correction of EB. The current vectors, however, integrate in an uncontrolled fashion in the human genome, a cause of genotoxicity and potentially severe adverse events. The objective of this project is the development and pre-clinical evaluation of new gene targeting and gene correction technology, aimed at integrating therapeutic transgenes at specific loci or at correcting genetic defects by homologous recombination. Epidermal stem cells (EpSCs) and EB are ideal targets for the design and development of such technology, which is expected to have an impact on gene therapy of many other genetic diseases. We will design and test novel viral vectors for homologous recombination based on site-specific integrases and Zn-finger nucleases, and non-viral vectors for integrating large genes and complex regulatory sequences based on vertebrate transposons. All vectors will be tested in repopulating human EpSCs in vitro and in vivo, in a pre-clinical model of xenotransplantation of human skin on immunodeficient mice. A parallel, basic research program will aim at applying existing and novel genomic approaches to the definition of transcription factors, regulatory regions and gene expression programs involved in self renewal, commitment and differentiation of EpSCs. The anticipated output of the project is the development of next-generation technology for gene transfer, and the establishment of a knowledge base for a better utilization of EpSCs in gene therapy.
Summary
Epidermolysis bullosa (EB) is a family of severe skin adhesion defects characterized by disfiguring blistering, infections, visual impairment, and a high risk of cancer. We showed through pre-clinical and clinical investigation that transplantation of genetically corrected epithelia leads to long-term functional correction of EB. The current vectors, however, integrate in an uncontrolled fashion in the human genome, a cause of genotoxicity and potentially severe adverse events. The objective of this project is the development and pre-clinical evaluation of new gene targeting and gene correction technology, aimed at integrating therapeutic transgenes at specific loci or at correcting genetic defects by homologous recombination. Epidermal stem cells (EpSCs) and EB are ideal targets for the design and development of such technology, which is expected to have an impact on gene therapy of many other genetic diseases. We will design and test novel viral vectors for homologous recombination based on site-specific integrases and Zn-finger nucleases, and non-viral vectors for integrating large genes and complex regulatory sequences based on vertebrate transposons. All vectors will be tested in repopulating human EpSCs in vitro and in vivo, in a pre-clinical model of xenotransplantation of human skin on immunodeficient mice. A parallel, basic research program will aim at applying existing and novel genomic approaches to the definition of transcription factors, regulatory regions and gene expression programs involved in self renewal, commitment and differentiation of EpSCs. The anticipated output of the project is the development of next-generation technology for gene transfer, and the establishment of a knowledge base for a better utilization of EpSCs in gene therapy.
Max ERC Funding
2 210 000 €
Duration
Start date: 2011-12-01, End date: 2017-05-31
Project acronym GTNCTV
Project Gene therapy and nanotechnology based CNS targeted vectors
Researcher (PI) Mimoun Azzouz
Host Institution (HI) THE UNIVERSITY OF SHEFFIELD
Call Details Advanced Grant (AdG), LS7, ERC-2011-ADG_20110310
Summary Targeting therapeutic genes selectively into the central nervous system (CNS) is a crucial precondition for translation of gene therapy strategies into human trials. The current multidisciplinary proposal integrates expertise identified as essential in the effective acceleration of research to overcome bottlenecks in the field including: 1) Inefficiency of therapy delivery to the CNS because of factors like the blood-brain barrier (BBB); 2) Poor understanding of disease mechanisms at the molecular and cellular levels. These problems must be overcome to develop fully effective treatments for neurological disorders. Currently the adeno-associated (AAV)-based system is one of the most refined and effective gene delivery systems for neuronal cells. In contrast to all other systems, it has been possible to engineer AAV9 to deliver genes through the BBB to the CNS by intravascular (IV) administration. However, following IV delivery, these vectors also target liver and other tissues, with significant potential for untoward effects. This has prompted us to adopt two major strategies: i) targeting of AAV9 vectors at the level of transcription by insertion of hybrid motor neuron specific promoters into the vector genome; ii) development of a CNS-targeted delivery approach based on state-of-the art nanoparticle-mediated encapsulation of AAV9 vectors. We anticipate that engineering strategies with the ability to restrict transgene expression to CNS tissue will significantly overcome various existing hurdles in CNS gene therapy development. Our objectives are to: 1) explore mechanisms leading to penetration of scAAV9 vectors through BBB since the exact mechanism of AAV9 diffusion through BBB is unknown; 2) design novel targeted strategies with enhanced tropism to CNS; 3) use CNS targeted vectors to investigate mechanisms of motor neuron death linked to mutations in RNA processing genes; 4) utilise CNS-targeted systems to test therapeutic strategies for motor neuron diseases.
Summary
Targeting therapeutic genes selectively into the central nervous system (CNS) is a crucial precondition for translation of gene therapy strategies into human trials. The current multidisciplinary proposal integrates expertise identified as essential in the effective acceleration of research to overcome bottlenecks in the field including: 1) Inefficiency of therapy delivery to the CNS because of factors like the blood-brain barrier (BBB); 2) Poor understanding of disease mechanisms at the molecular and cellular levels. These problems must be overcome to develop fully effective treatments for neurological disorders. Currently the adeno-associated (AAV)-based system is one of the most refined and effective gene delivery systems for neuronal cells. In contrast to all other systems, it has been possible to engineer AAV9 to deliver genes through the BBB to the CNS by intravascular (IV) administration. However, following IV delivery, these vectors also target liver and other tissues, with significant potential for untoward effects. This has prompted us to adopt two major strategies: i) targeting of AAV9 vectors at the level of transcription by insertion of hybrid motor neuron specific promoters into the vector genome; ii) development of a CNS-targeted delivery approach based on state-of-the art nanoparticle-mediated encapsulation of AAV9 vectors. We anticipate that engineering strategies with the ability to restrict transgene expression to CNS tissue will significantly overcome various existing hurdles in CNS gene therapy development. Our objectives are to: 1) explore mechanisms leading to penetration of scAAV9 vectors through BBB since the exact mechanism of AAV9 diffusion through BBB is unknown; 2) design novel targeted strategies with enhanced tropism to CNS; 3) use CNS targeted vectors to investigate mechanisms of motor neuron death linked to mutations in RNA processing genes; 4) utilise CNS-targeted systems to test therapeutic strategies for motor neuron diseases.
Max ERC Funding
2 499 959 €
Duration
Start date: 2012-03-01, End date: 2017-10-31
Project acronym HBAR-HFS
Project Hyperfine structure of antihydrogen
Researcher (PI) Eberhard Widmann
Host Institution (HI) OESTERREICHISCHE AKADEMIE DER WISSENSCHAFTEN
Call Details Advanced Grant (AdG), PE2, ERC-2011-ADG_20110209
Summary Antihydrogen is the simplest atom consisting entirely of antimatter. Since its counterpart hydrogen is one of the best studied atoms in physics, a comparison of antihydrogen and hydrogen offers one of the most sensitive tests of CPT symmetry. CPT, the successive application of charge conjugation, parity and time reversal transformation is a fundamental symmetry conserved in the standard model (SM) of particle physics as a consequence of a mathematical theorem. These conditions for this theorem to be fulfilled are not valid any more in extensions of the SM like string theory or quantum gravity. Furthermore, even a tiny violation of CPT symmetry at the time of the big bang could be a cause of the observed antimatter absence in the universe. Thus the observation of CPT violation might offer a first indication for the validity of string theory, and would have important cosmological consequences.
This project proposes to measure the ground state hyperfine (HFS) splitting of antihydrogen (HBAR), which is known in hydrogen with relative precision of 10^–12. The experimental method pursued within the ASACUSA collaboration at CERN-AD consists in the formation of an antihydrogen beam and a measurement using a spin-flip cavity and a sextupole magnet as spin analyser like it was done initially for hydrogen. A major milestone was achieved in 2010 when antihydrogen was first synthesized by ASACUSA. In the first phase of this proposal, an antihydrogen beam will be produced and the HBAR-HFS will be measured to a precision of around 10^–7 using a single microwave cavity. In a second phase, the Ramsey method of separated oscillatory fields will be used to increase the precision further. In parallel methods will be developed towards trapping and laser cooling the antihydrogen atoms. Letting the cooled antihydrogen escape in a field free region and perform microwave spectroscopy offers the ultimate precision achievable to measure the HBAR-HFS and one of the most sensitive tests of CPT.
Summary
Antihydrogen is the simplest atom consisting entirely of antimatter. Since its counterpart hydrogen is one of the best studied atoms in physics, a comparison of antihydrogen and hydrogen offers one of the most sensitive tests of CPT symmetry. CPT, the successive application of charge conjugation, parity and time reversal transformation is a fundamental symmetry conserved in the standard model (SM) of particle physics as a consequence of a mathematical theorem. These conditions for this theorem to be fulfilled are not valid any more in extensions of the SM like string theory or quantum gravity. Furthermore, even a tiny violation of CPT symmetry at the time of the big bang could be a cause of the observed antimatter absence in the universe. Thus the observation of CPT violation might offer a first indication for the validity of string theory, and would have important cosmological consequences.
This project proposes to measure the ground state hyperfine (HFS) splitting of antihydrogen (HBAR), which is known in hydrogen with relative precision of 10^–12. The experimental method pursued within the ASACUSA collaboration at CERN-AD consists in the formation of an antihydrogen beam and a measurement using a spin-flip cavity and a sextupole magnet as spin analyser like it was done initially for hydrogen. A major milestone was achieved in 2010 when antihydrogen was first synthesized by ASACUSA. In the first phase of this proposal, an antihydrogen beam will be produced and the HBAR-HFS will be measured to a precision of around 10^–7 using a single microwave cavity. In a second phase, the Ramsey method of separated oscillatory fields will be used to increase the precision further. In parallel methods will be developed towards trapping and laser cooling the antihydrogen atoms. Letting the cooled antihydrogen escape in a field free region and perform microwave spectroscopy offers the ultimate precision achievable to measure the HBAR-HFS and one of the most sensitive tests of CPT.
Max ERC Funding
2 599 900 €
Duration
Start date: 2012-03-01, End date: 2017-02-28