Project acronym 100 Archaic Genomes
Project Genome sequences from extinct hominins
Researcher (PI) Svante PÄÄBO
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Advanced Grant (AdG), LS2, ERC-2015-AdG
Summary Neandertals and Denisovans, an Asian group distantly related to Neandertals, are the closest evolutionary relatives of present-day humans. They are thus of direct relevance for understanding the origin of modern humans and how modern humans differ from their closest relatives. We will generate genome-wide data from a large number of Neandertal and Denisovan individuals from across their geographical and temporal range as well as from other extinct hominin groups which we may discover. This will be possible by automating highly sensitive approaches to ancient DNA extraction and DNA libraries construction that we have developed so that they can be applied to many specimens from many sites in order to identify those that contain retrievable DNA. Whenever possible we will sequence whole genomes and in other cases use DNA capture methods to generate high-quality data from representative parts of the genome. This will allow us to study the population history of Neandertals and Denisovans, elucidate how many times and where these extinct hominins contributed genes to present-day people, and the extent to which modern humans and archaic groups contributed genetically to Neandertals and Denisovans. By retrieving DNA from specimens that go back to the Middle Pleistocene we will furthermore shed light on the early history and origins of Neandertals and Denisovans.
Summary
Neandertals and Denisovans, an Asian group distantly related to Neandertals, are the closest evolutionary relatives of present-day humans. They are thus of direct relevance for understanding the origin of modern humans and how modern humans differ from their closest relatives. We will generate genome-wide data from a large number of Neandertal and Denisovan individuals from across their geographical and temporal range as well as from other extinct hominin groups which we may discover. This will be possible by automating highly sensitive approaches to ancient DNA extraction and DNA libraries construction that we have developed so that they can be applied to many specimens from many sites in order to identify those that contain retrievable DNA. Whenever possible we will sequence whole genomes and in other cases use DNA capture methods to generate high-quality data from representative parts of the genome. This will allow us to study the population history of Neandertals and Denisovans, elucidate how many times and where these extinct hominins contributed genes to present-day people, and the extent to which modern humans and archaic groups contributed genetically to Neandertals and Denisovans. By retrieving DNA from specimens that go back to the Middle Pleistocene we will furthermore shed light on the early history and origins of Neandertals and Denisovans.
Max ERC Funding
2 350 000 €
Duration
Start date: 2016-11-01, End date: 2021-10-31
Project acronym 15CBOOKTRADE
Project The 15th-century Book Trade: An Evidence-based Assessment and Visualization of the Distribution, Sale, and Reception of Books in the Renaissance
Researcher (PI) Cristina Dondi
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Consolidator Grant (CoG), SH6, ERC-2013-CoG
Summary The idea that underpins this project is to use the material evidence from thousands of surviving 15th-c. books, as well as unique documentary evidence — the unpublished ledger of a Venetian bookseller in the 1480s which records the sale of 25,000 printed books with their prices — to address four fundamental questions relating to the introduction of printing in the West which have so far eluded scholarship, partly because of lack of evidence, partly because of the lack of effective tools to deal with existing evidence. The book trade differs from other trades operating in the medieval and early modern periods in that the goods traded survive in considerable numbers. Not only do they survive, but many of them bear stratified evidence of their history in the form of marks of ownership, prices, manuscript annotations, binding and decoration styles. A British Academy pilot project conceived by the PI produced a now internationally-used database which gathers together this kind of evidence for thousands of surviving 15th-c. printed books. For the first time, this makes it possible to track the circulation of books, their trade routes and later collecting, across Europe and the USA, and throughout the centuries. The objectives of this project are to examine (1) the distribution and trade-routes, national and international, of 15th-c. printed books, along with the identity of the buyers and users (private, institutional, religious, lay, female, male, and by profession) and their reading practices; (2) the books' contemporary market value; (3) the transmission and dissemination of the texts they contain, their survival and their loss (rebalancing potentially skewed scholarship); and (4) the circulation and re-use of the illustrations they contain. Finally, the project will experiment with the application of scientific visualization techniques to represent, geographically and chronologically, the movement of 15th-c. printed books and of the texts they contain.
Summary
The idea that underpins this project is to use the material evidence from thousands of surviving 15th-c. books, as well as unique documentary evidence — the unpublished ledger of a Venetian bookseller in the 1480s which records the sale of 25,000 printed books with their prices — to address four fundamental questions relating to the introduction of printing in the West which have so far eluded scholarship, partly because of lack of evidence, partly because of the lack of effective tools to deal with existing evidence. The book trade differs from other trades operating in the medieval and early modern periods in that the goods traded survive in considerable numbers. Not only do they survive, but many of them bear stratified evidence of their history in the form of marks of ownership, prices, manuscript annotations, binding and decoration styles. A British Academy pilot project conceived by the PI produced a now internationally-used database which gathers together this kind of evidence for thousands of surviving 15th-c. printed books. For the first time, this makes it possible to track the circulation of books, their trade routes and later collecting, across Europe and the USA, and throughout the centuries. The objectives of this project are to examine (1) the distribution and trade-routes, national and international, of 15th-c. printed books, along with the identity of the buyers and users (private, institutional, religious, lay, female, male, and by profession) and their reading practices; (2) the books' contemporary market value; (3) the transmission and dissemination of the texts they contain, their survival and their loss (rebalancing potentially skewed scholarship); and (4) the circulation and re-use of the illustrations they contain. Finally, the project will experiment with the application of scientific visualization techniques to represent, geographically and chronologically, the movement of 15th-c. printed books and of the texts they contain.
Max ERC Funding
1 999 172 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym 1st-principles-discs
Project A First Principles Approach to Accretion Discs
Researcher (PI) Martin Elias Pessah
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), PE9, ERC-2012-StG_20111012
Summary Most celestial bodies, from planets, to stars, to black holes; gain mass during their lives by means of an accretion disc. Understanding the physical processes that determine the rate at which matter accretes and energy is radiated in these discs is vital for unraveling the formation, evolution, and fate of almost every type of object in the Universe. Despite the fact that magnetic fields have been known to be crucial in accretion discs since the early 90’s, the majority of astrophysical questions that depend on the details of how disc accretion proceeds are still being addressed using the “standard” accretion disc model (developed in the early 70’s), where magnetic fields do not play an explicit role. This has prevented us from fully exploring the astrophysical consequences and observational signatures of realistic accretion disc models, leading to a profound disconnect between observations (usually interpreted with the standard paradigm) and modern accretion disc theory and numerical simulations (where magnetic turbulence is crucial). The goal of this proposal is to use several complementary approaches in order to finally move beyond the standard paradigm. This program has two main objectives: 1) Develop the theoretical framework to incorporate magnetic fields, and the ensuing turbulence, into self-consistent accretion disc models, and investigate their observational implications. 2) Investigate transport and radiative processes in collision-less disc regions, where non-thermal radiation originates, by employing a kinetic particle description of the plasma. In order to achieve these goals, we will use, and build upon, state-of-the-art magnetohydrodynamic and particle-in-cell codes in conjunction with theoretical modeling. This framework will make it possible to address fundamental questions on stellar and planet formation, binary systems with a compact object, and supermassive black hole feedback in a way that has no counterpart within the standard paradigm.
Summary
Most celestial bodies, from planets, to stars, to black holes; gain mass during their lives by means of an accretion disc. Understanding the physical processes that determine the rate at which matter accretes and energy is radiated in these discs is vital for unraveling the formation, evolution, and fate of almost every type of object in the Universe. Despite the fact that magnetic fields have been known to be crucial in accretion discs since the early 90’s, the majority of astrophysical questions that depend on the details of how disc accretion proceeds are still being addressed using the “standard” accretion disc model (developed in the early 70’s), where magnetic fields do not play an explicit role. This has prevented us from fully exploring the astrophysical consequences and observational signatures of realistic accretion disc models, leading to a profound disconnect between observations (usually interpreted with the standard paradigm) and modern accretion disc theory and numerical simulations (where magnetic turbulence is crucial). The goal of this proposal is to use several complementary approaches in order to finally move beyond the standard paradigm. This program has two main objectives: 1) Develop the theoretical framework to incorporate magnetic fields, and the ensuing turbulence, into self-consistent accretion disc models, and investigate their observational implications. 2) Investigate transport and radiative processes in collision-less disc regions, where non-thermal radiation originates, by employing a kinetic particle description of the plasma. In order to achieve these goals, we will use, and build upon, state-of-the-art magnetohydrodynamic and particle-in-cell codes in conjunction with theoretical modeling. This framework will make it possible to address fundamental questions on stellar and planet formation, binary systems with a compact object, and supermassive black hole feedback in a way that has no counterpart within the standard paradigm.
Max ERC Funding
1 793 697 €
Duration
Start date: 2013-02-01, End date: 2018-01-31
Project acronym 1stProposal
Project An alternative development of analytic number theory and applications
Researcher (PI) ANDREW Granville
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Advanced Grant (AdG), PE1, ERC-2014-ADG
Summary The traditional (Riemann) approach to analytic number theory uses the zeros of zeta functions. This requires the associated multiplicative function, say f(n), to have special enough properties that the associated Dirichlet series may be analytically continued. In this proposal we continue to develop an approach which requires less of the multiplicative function, linking the original question with the mean value of f. Such techniques have been around for a long time but have generally been regarded as “ad hoc”. In this project we aim to show that one can develop a coherent approach to the whole subject, not only reproving all of the old results, but also many new ones that appear inaccessible to traditional methods.
Our first goal is to complete a monograph yielding a reworking of all the classical theory using these new methods and then to push forward in new directions. The most important is to extend these techniques to GL(n) L-functions, which we hope will now be feasible having found the correct framework in which to proceed. Since we rarely know how to analytically continue such L-functions this could be of great benefit to the subject.
We are developing the large sieve so that it can be used for individual moduli, and will determine a strong form of that. Also a new method to give asymptotics for mean values, when they are not too small.
We wish to incorporate techniques of analytic number theory into our theory, for example recent advances on mean values of Dirichlet polynomials. Also the recent breakthroughs on the sieve suggest strong links that need further exploration.
Additive combinatorics yields important results in many areas. There are strong analogies between its results, and those for multiplicative functions, especially in large value spectrum theory, and its applications. We hope to develop these further.
Much of this is joint work with K Soundararajan of Stanford University.
Summary
The traditional (Riemann) approach to analytic number theory uses the zeros of zeta functions. This requires the associated multiplicative function, say f(n), to have special enough properties that the associated Dirichlet series may be analytically continued. In this proposal we continue to develop an approach which requires less of the multiplicative function, linking the original question with the mean value of f. Such techniques have been around for a long time but have generally been regarded as “ad hoc”. In this project we aim to show that one can develop a coherent approach to the whole subject, not only reproving all of the old results, but also many new ones that appear inaccessible to traditional methods.
Our first goal is to complete a monograph yielding a reworking of all the classical theory using these new methods and then to push forward in new directions. The most important is to extend these techniques to GL(n) L-functions, which we hope will now be feasible having found the correct framework in which to proceed. Since we rarely know how to analytically continue such L-functions this could be of great benefit to the subject.
We are developing the large sieve so that it can be used for individual moduli, and will determine a strong form of that. Also a new method to give asymptotics for mean values, when they are not too small.
We wish to incorporate techniques of analytic number theory into our theory, for example recent advances on mean values of Dirichlet polynomials. Also the recent breakthroughs on the sieve suggest strong links that need further exploration.
Additive combinatorics yields important results in many areas. There are strong analogies between its results, and those for multiplicative functions, especially in large value spectrum theory, and its applications. We hope to develop these further.
Much of this is joint work with K Soundararajan of Stanford University.
Max ERC Funding
2 011 742 €
Duration
Start date: 2015-08-01, End date: 2020-07-31
Project acronym 2-3-AUT
Project Surfaces, 3-manifolds and automorphism groups
Researcher (PI) Nathalie Wahl
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), PE1, ERC-2009-StG
Summary The scientific goal of the proposal is to answer central questions related to diffeomorphism groups of manifolds of dimension 2 and 3, and to their deformation invariant analogs, the mapping class groups. While the classification of surfaces has been known for more than a century, their automorphism groups have yet to be fully understood. Even less is known about diffeomorphisms of 3-manifolds despite much interest, and the objects here have only been classified recently, by the breakthrough work of Perelman on the Poincar\'e and geometrization conjectures. In dimension 2, I will focus on the relationship between mapping class groups and topological conformal field theories, with applications to Hochschild homology. In dimension 3, I propose to compute the stable homology of classifying spaces of diffeomorphism groups and mapping class groups, as well as study the homotopy type of the space of diffeomorphisms. I propose moreover to establish homological stability theorems in the wider context of automorphism groups and more general families of groups. The project combines breakthrough methods from homotopy theory with methods from differential and geometric topology. The research team will consist of 3 PhD students, and 4 postdocs, which I will lead.
Summary
The scientific goal of the proposal is to answer central questions related to diffeomorphism groups of manifolds of dimension 2 and 3, and to their deformation invariant analogs, the mapping class groups. While the classification of surfaces has been known for more than a century, their automorphism groups have yet to be fully understood. Even less is known about diffeomorphisms of 3-manifolds despite much interest, and the objects here have only been classified recently, by the breakthrough work of Perelman on the Poincar\'e and geometrization conjectures. In dimension 2, I will focus on the relationship between mapping class groups and topological conformal field theories, with applications to Hochschild homology. In dimension 3, I propose to compute the stable homology of classifying spaces of diffeomorphism groups and mapping class groups, as well as study the homotopy type of the space of diffeomorphisms. I propose moreover to establish homological stability theorems in the wider context of automorphism groups and more general families of groups. The project combines breakthrough methods from homotopy theory with methods from differential and geometric topology. The research team will consist of 3 PhD students, and 4 postdocs, which I will lead.
Max ERC Funding
724 992 €
Duration
Start date: 2009-11-01, End date: 2014-10-31
Project acronym 2-HIT
Project Genetic interaction networks: From C. elegans to human disease
Researcher (PI) Ben Lehner
Host Institution (HI) FUNDACIO CENTRE DE REGULACIO GENOMICA
Call Details Starting Grant (StG), LS2, ERC-2007-StG
Summary Most hereditary diseases in humans are genetically complex, resulting from combinations of mutations in multiple genes. However synthetic interactions between genes are very difficult to identify in population studies because of a lack of statistical power and we fundamentally do not understand how mutations interact to produce phenotypes. C. elegans is a unique animal in which genetic interactions can be rapidly identified in vivo using RNA interference, and we recently used this system to construct the first genetic interaction network for any animal, focused on signal transduction genes. The first objective of this proposal is to extend this work and map a comprehensive genetic interaction network for this model metazoan. This project will provide the first insights into the global properties of animal genetic interaction networks, and a comprehensive view of the functional relationships between genes in an animal. The second objective of the proposal is to use C. elegans to develop and validate experimentally integrated gene networks that connect genes to phenotypes and predict genetic interactions on a genome-wide scale. The methods that we develop and validate in C. elegans will then be applied to predict phenotypes and interactions for human genes. The final objective is to dissect the molecular mechanisms underlying genetic interactions, and to understand how these interactions evolve. The combined aim of these three objectives is to generate a framework for understanding and predicting how mutations interact to produce phenotypes, including in human disease.
Summary
Most hereditary diseases in humans are genetically complex, resulting from combinations of mutations in multiple genes. However synthetic interactions between genes are very difficult to identify in population studies because of a lack of statistical power and we fundamentally do not understand how mutations interact to produce phenotypes. C. elegans is a unique animal in which genetic interactions can be rapidly identified in vivo using RNA interference, and we recently used this system to construct the first genetic interaction network for any animal, focused on signal transduction genes. The first objective of this proposal is to extend this work and map a comprehensive genetic interaction network for this model metazoan. This project will provide the first insights into the global properties of animal genetic interaction networks, and a comprehensive view of the functional relationships between genes in an animal. The second objective of the proposal is to use C. elegans to develop and validate experimentally integrated gene networks that connect genes to phenotypes and predict genetic interactions on a genome-wide scale. The methods that we develop and validate in C. elegans will then be applied to predict phenotypes and interactions for human genes. The final objective is to dissect the molecular mechanisms underlying genetic interactions, and to understand how these interactions evolve. The combined aim of these three objectives is to generate a framework for understanding and predicting how mutations interact to produce phenotypes, including in human disease.
Max ERC Funding
1 100 000 €
Duration
Start date: 2008-09-01, End date: 2014-04-30
Project acronym 3D-REPAIR
Project Spatial organization of DNA repair within the nucleus
Researcher (PI) Evanthia Soutoglou
Host Institution (HI) CENTRE EUROPEEN DE RECHERCHE EN BIOLOGIE ET MEDECINE
Call Details Consolidator Grant (CoG), LS2, ERC-2015-CoG
Summary Faithful repair of double stranded DNA breaks (DSBs) is essential, as they are at the origin of genome instability, chromosomal translocations and cancer. Cells repair DSBs through different pathways, which can be faithful or mutagenic, and the balance between them at a given locus must be tightly regulated to preserve genome integrity. Although, much is known about DSB repair factors, how the choice between pathways is controlled within the nuclear environment is not understood. We have shown that nuclear architecture and non-random genome organization determine the frequency of chromosomal translocations and that pathway choice is dictated by the spatial organization of DNA in the nucleus. Nevertheless, what determines which pathway is activated in response to DSBs at specific genomic locations is not understood. Furthermore, the impact of 3D-genome folding on the kinetics and efficiency of DSB repair is completely unknown.
Here we aim to understand how nuclear compartmentalization, chromatin structure and genome organization impact on the efficiency of detection, signaling and repair of DSBs. We will unravel what determines the DNA repair specificity within distinct nuclear compartments using protein tethering, promiscuous biotinylation and quantitative proteomics. We will determine how DNA repair is orchestrated at different heterochromatin structures using a CRISPR/Cas9-based system that allows, for the first time robust induction of DSBs at specific heterochromatin compartments. Finally, we will investigate the role of 3D-genome folding in the kinetics of DNA repair and pathway choice using single nucleotide resolution DSB-mapping coupled to 3D-topological maps.
This proposal has significant implications for understanding the mechanisms controlling DNA repair within the nuclear environment and will reveal the regions of the genome that are susceptible to genomic instability and help us understand why certain mutations and translocations are recurrent in cancer
Summary
Faithful repair of double stranded DNA breaks (DSBs) is essential, as they are at the origin of genome instability, chromosomal translocations and cancer. Cells repair DSBs through different pathways, which can be faithful or mutagenic, and the balance between them at a given locus must be tightly regulated to preserve genome integrity. Although, much is known about DSB repair factors, how the choice between pathways is controlled within the nuclear environment is not understood. We have shown that nuclear architecture and non-random genome organization determine the frequency of chromosomal translocations and that pathway choice is dictated by the spatial organization of DNA in the nucleus. Nevertheless, what determines which pathway is activated in response to DSBs at specific genomic locations is not understood. Furthermore, the impact of 3D-genome folding on the kinetics and efficiency of DSB repair is completely unknown.
Here we aim to understand how nuclear compartmentalization, chromatin structure and genome organization impact on the efficiency of detection, signaling and repair of DSBs. We will unravel what determines the DNA repair specificity within distinct nuclear compartments using protein tethering, promiscuous biotinylation and quantitative proteomics. We will determine how DNA repair is orchestrated at different heterochromatin structures using a CRISPR/Cas9-based system that allows, for the first time robust induction of DSBs at specific heterochromatin compartments. Finally, we will investigate the role of 3D-genome folding in the kinetics of DNA repair and pathway choice using single nucleotide resolution DSB-mapping coupled to 3D-topological maps.
This proposal has significant implications for understanding the mechanisms controlling DNA repair within the nuclear environment and will reveal the regions of the genome that are susceptible to genomic instability and help us understand why certain mutations and translocations are recurrent in cancer
Max ERC Funding
1 999 750 €
Duration
Start date: 2017-03-01, End date: 2022-02-28
Project acronym 3D_Tryps
Project The role of three-dimensional genome architecture in antigenic variation
Researcher (PI) Tim Nicolai SIEGEL
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Call Details Starting Grant (StG), LS6, ERC-2016-STG
Summary Antigenic variation is a widely employed strategy to evade the host immune response. It has similar functional requirements even in evolutionarily divergent pathogens. These include the mutually exclusive expression of antigens and the periodic, nonrandom switching in the expression of different antigens during the course of an infection. Despite decades of research the mechanisms of antigenic variation are not fully understood in any organism.
The recent development of high-throughput sequencing-based assays to probe the 3D genome architecture (Hi-C) has revealed the importance of the spatial organization of DNA inside the nucleus. 3D genome architecture plays a critical role in the regulation of mutually exclusive gene expression and the frequency of translocation between different genomic loci in many eukaryotes. Thus, genome architecture may also be a key regulator of antigenic variation, yet the causal links between genome architecture and the expression of antigens have not been studied systematically. In addition, the development of CRISPR-Cas9-based approaches to perform nucleotide-specific genome editing has opened unprecedented opportunities to study the influence of DNA sequence elements on the spatial organization of DNA and how this impacts antigen expression.
I have adapted both Hi-C and CRISPR-Cas9 technology to the protozoan parasite Trypanosoma brucei, one of the most important model organisms to study antigenic variation. These techniques will enable me to bridge the field of antigenic variation research with that of genome architecture. I will perform the first systematic analysis of the role of genome architecture in the mutually exclusive and hierarchical expression of antigens in any pathogen.
The experiments outlined in this proposal will provide new insight, facilitating a new view of antigenic variation and may eventually help medical intervention in T. brucei and in other pathogens relying on antigenic variation for their survival.
Summary
Antigenic variation is a widely employed strategy to evade the host immune response. It has similar functional requirements even in evolutionarily divergent pathogens. These include the mutually exclusive expression of antigens and the periodic, nonrandom switching in the expression of different antigens during the course of an infection. Despite decades of research the mechanisms of antigenic variation are not fully understood in any organism.
The recent development of high-throughput sequencing-based assays to probe the 3D genome architecture (Hi-C) has revealed the importance of the spatial organization of DNA inside the nucleus. 3D genome architecture plays a critical role in the regulation of mutually exclusive gene expression and the frequency of translocation between different genomic loci in many eukaryotes. Thus, genome architecture may also be a key regulator of antigenic variation, yet the causal links between genome architecture and the expression of antigens have not been studied systematically. In addition, the development of CRISPR-Cas9-based approaches to perform nucleotide-specific genome editing has opened unprecedented opportunities to study the influence of DNA sequence elements on the spatial organization of DNA and how this impacts antigen expression.
I have adapted both Hi-C and CRISPR-Cas9 technology to the protozoan parasite Trypanosoma brucei, one of the most important model organisms to study antigenic variation. These techniques will enable me to bridge the field of antigenic variation research with that of genome architecture. I will perform the first systematic analysis of the role of genome architecture in the mutually exclusive and hierarchical expression of antigens in any pathogen.
The experiments outlined in this proposal will provide new insight, facilitating a new view of antigenic variation and may eventually help medical intervention in T. brucei and in other pathogens relying on antigenic variation for their survival.
Max ERC Funding
1 498 175 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym 3DEpi
Project Transgenerational epigenetic inheritance of chromatin states : the role of Polycomb and 3D chromosome architecture
Researcher (PI) Giacomo CAVALLI
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), LS2, ERC-2017-ADG
Summary Epigenetic inheritance entails transmission of phenotypic traits not encoded in the DNA sequence and, in the most extreme case, Transgenerational Epigenetic Inheritance (TEI) involves transmission of memory through multiple generations. Very little is known on the mechanisms governing TEI and this is the subject of the present proposal. By transiently enhancing long-range chromatin interactions, we recently established isogenic Drosophila epilines that carry stable alternative epialleles, defined by differential levels of the Polycomb-dependent H3K27me3 mark. Furthermore, we extended our paradigm to natural phenotypes. These are ideal systems to study the role of Polycomb group (PcG) proteins and other components in regulating nuclear organization and epigenetic inheritance of chromatin states. The present project conjugates genetics, epigenomics, imaging and molecular biology to reach three critical aims.
Aim 1: Analysis of the molecular mechanisms regulating Polycomb-mediated TEI. We will identify the DNA, protein and RNA components that trigger and maintain transgenerational chromatin inheritance as well as their mechanisms of action.
Aim 2: Role of 3D genome organization in the regulation of TEI. We will analyze the developmental dynamics of TEI-inducing long-range chromatin interactions, identify chromatin components mediating 3D chromatin contacts and characterize their function in the TEI process.
Aim 3: Identification of a broader role of TEI during development. TEI might reflect a normal role of PcG components in the transmission of parental chromatin onto the next embryonic generation. We will explore this possibility by establishing other TEI paradigms and by relating TEI to the normal PcG function in these systems and in normal development.
This research program will unravel the biological significance and the molecular underpinnings of TEI and lead the way towards establishing this area of research into a consolidated scientific discipline.
Summary
Epigenetic inheritance entails transmission of phenotypic traits not encoded in the DNA sequence and, in the most extreme case, Transgenerational Epigenetic Inheritance (TEI) involves transmission of memory through multiple generations. Very little is known on the mechanisms governing TEI and this is the subject of the present proposal. By transiently enhancing long-range chromatin interactions, we recently established isogenic Drosophila epilines that carry stable alternative epialleles, defined by differential levels of the Polycomb-dependent H3K27me3 mark. Furthermore, we extended our paradigm to natural phenotypes. These are ideal systems to study the role of Polycomb group (PcG) proteins and other components in regulating nuclear organization and epigenetic inheritance of chromatin states. The present project conjugates genetics, epigenomics, imaging and molecular biology to reach three critical aims.
Aim 1: Analysis of the molecular mechanisms regulating Polycomb-mediated TEI. We will identify the DNA, protein and RNA components that trigger and maintain transgenerational chromatin inheritance as well as their mechanisms of action.
Aim 2: Role of 3D genome organization in the regulation of TEI. We will analyze the developmental dynamics of TEI-inducing long-range chromatin interactions, identify chromatin components mediating 3D chromatin contacts and characterize their function in the TEI process.
Aim 3: Identification of a broader role of TEI during development. TEI might reflect a normal role of PcG components in the transmission of parental chromatin onto the next embryonic generation. We will explore this possibility by establishing other TEI paradigms and by relating TEI to the normal PcG function in these systems and in normal development.
This research program will unravel the biological significance and the molecular underpinnings of TEI and lead the way towards establishing this area of research into a consolidated scientific discipline.
Max ERC Funding
2 500 000 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym 3DICE
Project 3D Interstellar Chemo-physical Evolution
Researcher (PI) Valentine Wakelam
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE9, ERC-2013-StG
Summary At the end of their life, stars spread their inner material into the diffuse interstellar medium. This diffuse medium gets locally denser and form dark clouds (also called dense or molecular clouds) whose innermost part is shielded from the external UV field by the dust, allowing for molecules to grow and get more complex. Gravitational collapse occurs inside these dense clouds, forming protostars and their surrounding disks, and eventually planetary systems like (or unlike) our solar system. The formation and evolution of molecules, minerals, ices and organics from the diffuse medium to planetary bodies, their alteration or preservation throughout this cosmic chemical history set the initial conditions for building planets, atmospheres and possibly the first bricks of life. The current view of interstellar chemistry is based on fragmental works on key steps of the sequence that are observed. The objective of this proposal is to follow the fractionation of the elements between the gas-phase and the interstellar grains, from the most diffuse medium to protoplanetary disks, in order to constrain the chemical composition of the material in which planets are formed. The potential outcome of this project is to get a consistent and more accurate description of the chemical evolution of interstellar matter. To achieve this objective, I will improve our chemical model by adding new processes on grain surfaces relevant under the diffuse medium conditions. This upgraded gas-grain model will be coupled to 3D dynamical models of the formation of dense clouds from diffuse medium and of protoplanetary disks from dense clouds. The computed chemical composition will also be used with 3D radiative transfer codes to study the chemical tracers of the physics of protoplanetary disk formation. The robustness of the model predictions will be studied with sensitivity analyses. Finally, model results will be confronted to observations to address some of the current challenges.
Summary
At the end of their life, stars spread their inner material into the diffuse interstellar medium. This diffuse medium gets locally denser and form dark clouds (also called dense or molecular clouds) whose innermost part is shielded from the external UV field by the dust, allowing for molecules to grow and get more complex. Gravitational collapse occurs inside these dense clouds, forming protostars and their surrounding disks, and eventually planetary systems like (or unlike) our solar system. The formation and evolution of molecules, minerals, ices and organics from the diffuse medium to planetary bodies, their alteration or preservation throughout this cosmic chemical history set the initial conditions for building planets, atmospheres and possibly the first bricks of life. The current view of interstellar chemistry is based on fragmental works on key steps of the sequence that are observed. The objective of this proposal is to follow the fractionation of the elements between the gas-phase and the interstellar grains, from the most diffuse medium to protoplanetary disks, in order to constrain the chemical composition of the material in which planets are formed. The potential outcome of this project is to get a consistent and more accurate description of the chemical evolution of interstellar matter. To achieve this objective, I will improve our chemical model by adding new processes on grain surfaces relevant under the diffuse medium conditions. This upgraded gas-grain model will be coupled to 3D dynamical models of the formation of dense clouds from diffuse medium and of protoplanetary disks from dense clouds. The computed chemical composition will also be used with 3D radiative transfer codes to study the chemical tracers of the physics of protoplanetary disk formation. The robustness of the model predictions will be studied with sensitivity analyses. Finally, model results will be confronted to observations to address some of the current challenges.
Max ERC Funding
1 166 231 €
Duration
Start date: 2013-09-01, End date: 2018-08-31
Project acronym 3DWATERWAVES
Project Mathematical aspects of three-dimensional water waves with vorticity
Researcher (PI) Erik Torsten Wahlén
Host Institution (HI) LUNDS UNIVERSITET
Call Details Starting Grant (StG), PE1, ERC-2015-STG
Summary The goal of this project is to develop a mathematical theory for steady three-dimensional water waves with vorticity. The mathematical model consists of the incompressible Euler equations with a free surface, and vorticity is important for modelling the interaction of surface waves with non-uniform currents. In the two-dimensional case, there has been a lot of progress on water waves with vorticity in the last decade. This progress has mainly been based on the stream function formulation, in which the problem is reformulated as a nonlinear elliptic free boundary problem. An analogue of this formulation is not available in three dimensions, and the theory has therefore so far been restricted to irrotational flow. In this project we seek to go beyond this restriction using two different approaches. In the first approach we will adapt methods which have been used to construct three-dimensional ideal flows with vorticity in domains with a fixed boundary to the free boundary context (for example Beltrami flows). In the second approach we will develop methods which are new even in the case of a fixed boundary, by performing a detailed study of the structure of the equations close to a given shear flow using ideas from infinite-dimensional bifurcation theory. This involves handling infinitely many resonances.
Summary
The goal of this project is to develop a mathematical theory for steady three-dimensional water waves with vorticity. The mathematical model consists of the incompressible Euler equations with a free surface, and vorticity is important for modelling the interaction of surface waves with non-uniform currents. In the two-dimensional case, there has been a lot of progress on water waves with vorticity in the last decade. This progress has mainly been based on the stream function formulation, in which the problem is reformulated as a nonlinear elliptic free boundary problem. An analogue of this formulation is not available in three dimensions, and the theory has therefore so far been restricted to irrotational flow. In this project we seek to go beyond this restriction using two different approaches. In the first approach we will adapt methods which have been used to construct three-dimensional ideal flows with vorticity in domains with a fixed boundary to the free boundary context (for example Beltrami flows). In the second approach we will develop methods which are new even in the case of a fixed boundary, by performing a detailed study of the structure of the equations close to a given shear flow using ideas from infinite-dimensional bifurcation theory. This involves handling infinitely many resonances.
Max ERC Funding
1 203 627 €
Duration
Start date: 2016-03-01, End date: 2021-02-28
Project acronym 4C
Project 4C technology: uncovering the multi-dimensional structure of the genome
Researcher (PI) Wouter Leonard De Laat
Host Institution (HI) KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN - KNAW
Call Details Starting Grant (StG), LS2, ERC-2007-StG
Summary The architecture of DNA in the cell nucleus is an emerging epigenetic key contributor to genome function. We recently developed 4C technology, a high-throughput technique that combines state-of-the-art 3C technology with tailored micro-arrays to uniquely allow for an unbiased genome-wide search for DNA loci that interact in the nuclear space. Based on 4C technology, we were the first to provide a comprehensive overview of long-range DNA contacts of selected loci. The data showed that active and inactive chromatin domains contact many distinct regions within and between chromosomes and genes switch long-range DNA contacts in relation to their expression status. 4C technology not only allows investigating the three-dimensional structure of DNA in the nucleus, it also accurately reconstructs at least 10 megabases of the one-dimensional chromosome sequence map around the target sequence. Changes in this physical map as a result of genomic rearrangements are therefore identified by 4C technology. We recently demonstrated that 4C detects deletions, balanced inversions and translocations in patient samples at a resolution (~7kb) that allowed immediate sequencing of the breakpoints. Excitingly, 4C technology therefore offers the first high-resolution genomic approach that can identify both balanced and unbalanced genomic rearrangements. 4C is expected to become an important tool in clinical diagnosis and prognosis. Key objectives of this proposal are: 1. Explore the functional significance of DNA folding in the nucleus by systematically applying 4C technology to differentially expressed gene loci. 2. Adapt 4C technology such that it allows for massive parallel analysis of DNA interactions between regulatory elements and gene promoters. This method would greatly facilitate the identification of functionally relevant DNA elements in the genome. 3. Develop 4C technology into a clinical diagnostic tool for the accurate detection of balanced and unbalanced rearrangements.
Summary
The architecture of DNA in the cell nucleus is an emerging epigenetic key contributor to genome function. We recently developed 4C technology, a high-throughput technique that combines state-of-the-art 3C technology with tailored micro-arrays to uniquely allow for an unbiased genome-wide search for DNA loci that interact in the nuclear space. Based on 4C technology, we were the first to provide a comprehensive overview of long-range DNA contacts of selected loci. The data showed that active and inactive chromatin domains contact many distinct regions within and between chromosomes and genes switch long-range DNA contacts in relation to their expression status. 4C technology not only allows investigating the three-dimensional structure of DNA in the nucleus, it also accurately reconstructs at least 10 megabases of the one-dimensional chromosome sequence map around the target sequence. Changes in this physical map as a result of genomic rearrangements are therefore identified by 4C technology. We recently demonstrated that 4C detects deletions, balanced inversions and translocations in patient samples at a resolution (~7kb) that allowed immediate sequencing of the breakpoints. Excitingly, 4C technology therefore offers the first high-resolution genomic approach that can identify both balanced and unbalanced genomic rearrangements. 4C is expected to become an important tool in clinical diagnosis and prognosis. Key objectives of this proposal are: 1. Explore the functional significance of DNA folding in the nucleus by systematically applying 4C technology to differentially expressed gene loci. 2. Adapt 4C technology such that it allows for massive parallel analysis of DNA interactions between regulatory elements and gene promoters. This method would greatly facilitate the identification of functionally relevant DNA elements in the genome. 3. Develop 4C technology into a clinical diagnostic tool for the accurate detection of balanced and unbalanced rearrangements.
Max ERC Funding
1 225 000 €
Duration
Start date: 2008-09-01, End date: 2013-08-31
Project acronym 4D-GenEx
Project Spatio-temporal Organization and Expression of the Genome
Researcher (PI) Antoine COULON
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), LS2, ERC-2017-STG
Summary This project investigates the two-way relationship between spatio-temporal genome organization and coordinated gene regulation, through an approach at the interface between physics, computer science and biology.
In the nucleus, preferred positions are observed from chromosomes to single genes, in relation to normal and pathological cellular states. Evidence indicates a complex spatio-temporal coupling between co-regulated genes: e.g. certain genes cluster spatially when responding to similar factors and transcriptional noise patterns suggest domain-wide mechanisms. Yet, no individual experiment allows probing transcriptional coordination in 4 dimensions (FISH, live locus tracking, Hi-C...). Interpreting such data also critically requires theory (stochastic processes, statistical physics…). A lack of appropriate experimental/analytical approaches is impairing our understanding of the 4D genome.
Our proposal combines cutting-edge single-molecule imaging, signal-theory data analysis and physical modeling to study how genes coordinate in space and time in a single nucleus. Our objectives are to understand (a) competition/recycling of shared resources between genes within subnuclear compartments, (b) how enhancers communicate with genes domain-wide, and (c) the role of local conformational dynamics and supercoiling in gene co-regulation. Our organizing hypothesis is that, by acting on their microenvironment, genes shape their co-expression with other genes.
Building upon my expertise, we will use dual-color MS2/PP7 RNA labeling to visualize for the first time transcription and motion of pairs of hormone-responsive genes in real time. With our innovative signal analysis tools, we will extract spatio-temporal signatures of underlying processes, which we will investigate with stochastic modeling and validate through experimental perturbations. We expect to uncover how the functional organization of the linear genome relates to its physical properties and dynamics in 4D.
Summary
This project investigates the two-way relationship between spatio-temporal genome organization and coordinated gene regulation, through an approach at the interface between physics, computer science and biology.
In the nucleus, preferred positions are observed from chromosomes to single genes, in relation to normal and pathological cellular states. Evidence indicates a complex spatio-temporal coupling between co-regulated genes: e.g. certain genes cluster spatially when responding to similar factors and transcriptional noise patterns suggest domain-wide mechanisms. Yet, no individual experiment allows probing transcriptional coordination in 4 dimensions (FISH, live locus tracking, Hi-C...). Interpreting such data also critically requires theory (stochastic processes, statistical physics…). A lack of appropriate experimental/analytical approaches is impairing our understanding of the 4D genome.
Our proposal combines cutting-edge single-molecule imaging, signal-theory data analysis and physical modeling to study how genes coordinate in space and time in a single nucleus. Our objectives are to understand (a) competition/recycling of shared resources between genes within subnuclear compartments, (b) how enhancers communicate with genes domain-wide, and (c) the role of local conformational dynamics and supercoiling in gene co-regulation. Our organizing hypothesis is that, by acting on their microenvironment, genes shape their co-expression with other genes.
Building upon my expertise, we will use dual-color MS2/PP7 RNA labeling to visualize for the first time transcription and motion of pairs of hormone-responsive genes in real time. With our innovative signal analysis tools, we will extract spatio-temporal signatures of underlying processes, which we will investigate with stochastic modeling and validate through experimental perturbations. We expect to uncover how the functional organization of the linear genome relates to its physical properties and dynamics in 4D.
Max ERC Funding
1 499 750 €
Duration
Start date: 2018-04-01, End date: 2023-03-31
Project acronym 4PI-SKY
Project 4 pi sky: Extreme Astrophysics with Revolutionary Radio Telescopes
Researcher (PI) Robert Philip Fender
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Advanced Grant (AdG), PE9, ERC-2010-AdG_20100224
Summary Extreme astrophysical events such as relativistic flows, cataclysmic explosions and black hole accretion are one of the key areas for astrophysics in the 21st century. The extremes of physics experienced in these environments are beyond anything achievable in any laboratory on Earth, and provide a unique glimpse at the laws of physics operating in extraordinary regimes. All of these events are associated with transient radio emission, a tracer both of the acceleration of particles to relativistic energies, and coherent emitting regions with huge effective temperatures. By studying radio bursts from these phenomena we can pinpoint the sources of explosive events, understand the budget of kinetic feedback by explosive events in the ambient medium, and probe the physical state of the universe back to the epoch of reionisation, less than a billion years after the big bang. In seeking to push back the frontiers of extreme astrophysics, I will use a trio of revolutionary new radio telescopes, LOFAR, ASKAP and MeerKAT, pathfinders for the Square Kilometre Array, and all facilities in which I have a major role in the search for transients. I will build an infrastructure which transforms their combined operations for the discovery, classification and reporting of transient astrophysical events, over the whole sky, making them much more than the sum of their parts. This will include development of environments for the coordinated handling of extreme astrophysical events, in real time, via automated systems, as well as novel techniques for the detection of these events in a sea of noise. I will furthermore augment this program by buying in as a major partner to a rapid-response robotic optical telescope, and by cementing my relationship with an orbiting X-ray facility. This multiwavelength dimension will secure the astrophysical interpretation of our observational results and help to revolutionise high-energy astrophysics via a strong scientific exploitation program.
Summary
Extreme astrophysical events such as relativistic flows, cataclysmic explosions and black hole accretion are one of the key areas for astrophysics in the 21st century. The extremes of physics experienced in these environments are beyond anything achievable in any laboratory on Earth, and provide a unique glimpse at the laws of physics operating in extraordinary regimes. All of these events are associated with transient radio emission, a tracer both of the acceleration of particles to relativistic energies, and coherent emitting regions with huge effective temperatures. By studying radio bursts from these phenomena we can pinpoint the sources of explosive events, understand the budget of kinetic feedback by explosive events in the ambient medium, and probe the physical state of the universe back to the epoch of reionisation, less than a billion years after the big bang. In seeking to push back the frontiers of extreme astrophysics, I will use a trio of revolutionary new radio telescopes, LOFAR, ASKAP and MeerKAT, pathfinders for the Square Kilometre Array, and all facilities in which I have a major role in the search for transients. I will build an infrastructure which transforms their combined operations for the discovery, classification and reporting of transient astrophysical events, over the whole sky, making them much more than the sum of their parts. This will include development of environments for the coordinated handling of extreme astrophysical events, in real time, via automated systems, as well as novel techniques for the detection of these events in a sea of noise. I will furthermore augment this program by buying in as a major partner to a rapid-response robotic optical telescope, and by cementing my relationship with an orbiting X-ray facility. This multiwavelength dimension will secure the astrophysical interpretation of our observational results and help to revolutionise high-energy astrophysics via a strong scientific exploitation program.
Max ERC Funding
2 999 847 €
Duration
Start date: 2011-07-01, End date: 2017-06-30
Project acronym 5COFM
Project Five Centuries of Marriages
Researcher (PI) Anna Cabré
Host Institution (HI) UNIVERSITAT AUTONOMA DE BARCELONA
Call Details Advanced Grant (AdG), SH6, ERC-2010-AdG_20100407
Summary This long-term research project is based on the data-mining of the Llibres d'Esposalles conserved at the Archives of the Barcelona Cathedral, an extraordinary data source comprising 244 books of marriage licenses records. It covers about 550.000 unions from over 250 parishes of the Diocese between 1451 and 1905. Its impeccable conservation is a miracle in a region where parish archives have undergone massive destruction. The books include data on the tax posed on each couple depending on their social class, on an eight-tiered scale. These data allow for research on multiple aspects of demographic research, especially on the very long run, such as: population estimates, marriage dynamics, cycles, and indirect estimations for fertility, migration and survival, as well as socio-economic studies related to social homogamy, social mobility, and transmission of social and occupational position. Being continuous over five centuries, the source constitutes a unique instrument to study the dynamics of population distribution, the expansion of the city of Barcelona and the constitution of its metropolitan area, as well as the chronology and the geography in the constitution of new social classes.
To this end, a digital library and a database, the Barcelona Historical Marriages Database (BHiMaD), are to be created and completed. An ERC-AG will help doing so while undertaking the research analysis of the database in parallel.
The research team, at the U. Autònoma de Barcelona, involves researchers from the Center for Demo-graphic Studies and the Computer Vision Center experts in historical databases and computer-aided recognition of ancient manuscripts. 5CofM will serve the preservation of the original “Llibres d’Esposalles” and unlock the full potential embedded in the collection.
Summary
This long-term research project is based on the data-mining of the Llibres d'Esposalles conserved at the Archives of the Barcelona Cathedral, an extraordinary data source comprising 244 books of marriage licenses records. It covers about 550.000 unions from over 250 parishes of the Diocese between 1451 and 1905. Its impeccable conservation is a miracle in a region where parish archives have undergone massive destruction. The books include data on the tax posed on each couple depending on their social class, on an eight-tiered scale. These data allow for research on multiple aspects of demographic research, especially on the very long run, such as: population estimates, marriage dynamics, cycles, and indirect estimations for fertility, migration and survival, as well as socio-economic studies related to social homogamy, social mobility, and transmission of social and occupational position. Being continuous over five centuries, the source constitutes a unique instrument to study the dynamics of population distribution, the expansion of the city of Barcelona and the constitution of its metropolitan area, as well as the chronology and the geography in the constitution of new social classes.
To this end, a digital library and a database, the Barcelona Historical Marriages Database (BHiMaD), are to be created and completed. An ERC-AG will help doing so while undertaking the research analysis of the database in parallel.
The research team, at the U. Autònoma de Barcelona, involves researchers from the Center for Demo-graphic Studies and the Computer Vision Center experts in historical databases and computer-aided recognition of ancient manuscripts. 5CofM will serve the preservation of the original “Llibres d’Esposalles” and unlock the full potential embedded in the collection.
Max ERC Funding
1 847 400 €
Duration
Start date: 2011-05-01, End date: 2016-04-30
Project acronym A-BINGOS
Project Accreting binary populations in Nearby Galaxies: Observations and Simulations
Researcher (PI) Andreas Zezas
Host Institution (HI) IDRYMA TECHNOLOGIAS KAI EREVNAS
Call Details Consolidator Grant (CoG), PE9, ERC-2013-CoG
Summary "High-energy observations of our Galaxy offer a good, albeit not complete, picture of the X-ray source populations, in particular the accreting binary sources. Recent ability to study accreting binaries in nearby galaxies has shown that we would be short-sighted if we restricted ourselves to our Galaxy or to a few nearby ones. I propose an ambitious project that involves a comprehensive study of all the galaxies within 10 Mpc for which we can study in detail their X-ray sources and stellar populations. The study will combine data from a unique suite of observatories (Chandra, XMM-Newton, HST, Spitzer) with state-of-the-art theoretical modelling of binary systems. I propose a novel approach that links the accreting binary populations to their parent stellar populations and surpasses any current studies of X-ray binary populations, both in scale and in scope, by: (a) combining methods and results from several different areas of astrophysics (compact objects, binary systems, stellar populations, galaxy evolution); (b) using data from almost the whole electromagnetic spectrum (infrared to X-ray bands); (c) identifying and studying the different sub-populations of accreting binaries; and (d) performing direct comparison between observations and theoretical predictions, over a broad parameter space. The project: (a) will answer the long-standing question of the formation efficiency of accreting binaries in different environments; and (b) will constrain their evolutionary paths. As by-products the project will provide eagerly awaited input to the fields of gravitational-wave sources, γ-ray bursts, and X-ray emitting galaxies at cosmological distances and it will produce a heritage multi-wavelength dataset and library of models for future studies of galaxies and accreting binaries."
Summary
"High-energy observations of our Galaxy offer a good, albeit not complete, picture of the X-ray source populations, in particular the accreting binary sources. Recent ability to study accreting binaries in nearby galaxies has shown that we would be short-sighted if we restricted ourselves to our Galaxy or to a few nearby ones. I propose an ambitious project that involves a comprehensive study of all the galaxies within 10 Mpc for which we can study in detail their X-ray sources and stellar populations. The study will combine data from a unique suite of observatories (Chandra, XMM-Newton, HST, Spitzer) with state-of-the-art theoretical modelling of binary systems. I propose a novel approach that links the accreting binary populations to their parent stellar populations and surpasses any current studies of X-ray binary populations, both in scale and in scope, by: (a) combining methods and results from several different areas of astrophysics (compact objects, binary systems, stellar populations, galaxy evolution); (b) using data from almost the whole electromagnetic spectrum (infrared to X-ray bands); (c) identifying and studying the different sub-populations of accreting binaries; and (d) performing direct comparison between observations and theoretical predictions, over a broad parameter space. The project: (a) will answer the long-standing question of the formation efficiency of accreting binaries in different environments; and (b) will constrain their evolutionary paths. As by-products the project will provide eagerly awaited input to the fields of gravitational-wave sources, γ-ray bursts, and X-ray emitting galaxies at cosmological distances and it will produce a heritage multi-wavelength dataset and library of models for future studies of galaxies and accreting binaries."
Max ERC Funding
1 242 000 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym AAA
Project Adaptive Actin Architectures
Researcher (PI) Laurent Blanchoin
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), LS3, ERC-2016-ADG
Summary Although we have extensive knowledge of many important processes in cell biology, including information on many of the molecules involved and the physical interactions among them, we still do not understand most of the dynamical features that are the essence of living systems. This is particularly true for the actin cytoskeleton, a major component of the internal architecture of eukaryotic cells. In living cells, actin networks constantly assemble and disassemble filaments while maintaining an apparent stable structure, suggesting a perfect balance between the two processes. Such behaviors are called “dynamic steady states”. They confer upon actin networks a high degree of plasticity allowing them to adapt in response to external changes and enable cells to adjust to their environments. Despite their fundamental importance in the regulation of cell physiology, the basic mechanisms that control the coordinated dynamics of co-existing actin networks are poorly understood. In the AAA project, first, we will characterize the parameters that allow the coupling among co-existing actin networks at steady state. In vitro reconstituted systems will be used to control the actin nucleation patterns, the closed volume of the reaction chamber and the physical interaction of the networks. We hope to unravel the mechanism allowing the global coherence of a dynamic actin cytoskeleton. Second, we will use our unique capacity to perform dynamic micropatterning, to add or remove actin nucleation sites in real time, in order to investigate the ability of dynamic networks to adapt to changes and the role of coupled network dynamics in this emergent property. In this part, in vitro experiments will be complemented by the analysis of actin network remodeling in living cells. In the end, our project will provide a comprehensive understanding of how the adaptive response of the cytoskeleton derives from the complex interplay between its biochemical, structural and mechanical properties.
Summary
Although we have extensive knowledge of many important processes in cell biology, including information on many of the molecules involved and the physical interactions among them, we still do not understand most of the dynamical features that are the essence of living systems. This is particularly true for the actin cytoskeleton, a major component of the internal architecture of eukaryotic cells. In living cells, actin networks constantly assemble and disassemble filaments while maintaining an apparent stable structure, suggesting a perfect balance between the two processes. Such behaviors are called “dynamic steady states”. They confer upon actin networks a high degree of plasticity allowing them to adapt in response to external changes and enable cells to adjust to their environments. Despite their fundamental importance in the regulation of cell physiology, the basic mechanisms that control the coordinated dynamics of co-existing actin networks are poorly understood. In the AAA project, first, we will characterize the parameters that allow the coupling among co-existing actin networks at steady state. In vitro reconstituted systems will be used to control the actin nucleation patterns, the closed volume of the reaction chamber and the physical interaction of the networks. We hope to unravel the mechanism allowing the global coherence of a dynamic actin cytoskeleton. Second, we will use our unique capacity to perform dynamic micropatterning, to add or remove actin nucleation sites in real time, in order to investigate the ability of dynamic networks to adapt to changes and the role of coupled network dynamics in this emergent property. In this part, in vitro experiments will be complemented by the analysis of actin network remodeling in living cells. In the end, our project will provide a comprehensive understanding of how the adaptive response of the cytoskeleton derives from the complex interplay between its biochemical, structural and mechanical properties.
Max ERC Funding
2 349 898 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym AAMOT
Project Arithmetic of automorphic motives
Researcher (PI) Michael Harris
Host Institution (HI) INSTITUT DES HAUTES ETUDES SCIENTIFIQUES
Call Details Advanced Grant (AdG), PE1, ERC-2011-ADG_20110209
Summary The primary purpose of this project is to build on recent spectacular progress in the Langlands program to study the arithmetic properties of automorphic motives constructed in the cohomology of Shimura varieties. Because automorphic methods are available to study the L-functions of these motives, which include elliptic curves and certain families of Calabi-Yau varieties over totally real fields (possibly after base change), they represent the most accessible class of varieties for which one can hope to verify fundamental conjectures on special values of L-functions, including Deligne's conjecture and the Main Conjecture of Iwasawa theory. Immediate goals include the proof of irreducibility of automorphic Galois representations; the establishment of period relations for automorphic and potentially automorphic realizations of motives in the cohomology of distinct Shimura varieties; the construction of p-adic L-functions for these and related motives, notably adjoint and tensor product L-functions in p-adic families; and the geometrization of the p-adic and mod p Langlands program. All four goals, as well as the others mentioned in the body of the proposal, are interconnected; the final goal provides a bridge to related work in geometric representation theory, algebraic geometry, and mathematical physics.
Summary
The primary purpose of this project is to build on recent spectacular progress in the Langlands program to study the arithmetic properties of automorphic motives constructed in the cohomology of Shimura varieties. Because automorphic methods are available to study the L-functions of these motives, which include elliptic curves and certain families of Calabi-Yau varieties over totally real fields (possibly after base change), they represent the most accessible class of varieties for which one can hope to verify fundamental conjectures on special values of L-functions, including Deligne's conjecture and the Main Conjecture of Iwasawa theory. Immediate goals include the proof of irreducibility of automorphic Galois representations; the establishment of period relations for automorphic and potentially automorphic realizations of motives in the cohomology of distinct Shimura varieties; the construction of p-adic L-functions for these and related motives, notably adjoint and tensor product L-functions in p-adic families; and the geometrization of the p-adic and mod p Langlands program. All four goals, as well as the others mentioned in the body of the proposal, are interconnected; the final goal provides a bridge to related work in geometric representation theory, algebraic geometry, and mathematical physics.
Max ERC Funding
1 491 348 €
Duration
Start date: 2012-06-01, End date: 2018-05-31
Project acronym AAREA
Project The Archaeology of Agricultural Resilience in Eastern Africa
Researcher (PI) Daryl Stump
Host Institution (HI) UNIVERSITY OF YORK
Call Details Starting Grant (StG), SH6, ERC-2013-StG
Summary "The twin concepts of sustainability and conservation that are so pivotal within current debates regarding economic development and biodiversity protection both contain an inherent temporal dimension, since both refer to the need to balance short-term gains with long-term resource maintenance. Proponents of resilience theory and of development based on ‘indigenous knowledge’ have thus argued for the necessity of including archaeological, historical and palaeoenvironmental components within development project design. Indeed, some have argued that archaeology should lead these interdisciplinary projects on the grounds that it provides the necessary time depth and bridges the social and natural sciences. The project proposed here accepts this logic and endorses this renewed contemporary relevance of archaeological research. However, it also needs to be admitted that moving beyond critiques of the misuse of historical data presents significant hurdles. When presenting results outside the discipline, for example, archaeological projects tend to downplay the poor archaeological visibility of certain agricultural practices, and computer models designed to test sustainability struggle to adequately account for local cultural preferences. This field will therefore not progress unless there is a frank appraisal of archaeology’s strengths and weaknesses. This project will provide this assessment by employing a range of established and groundbreaking archaeological and modelling techniques to examine the development of two east Africa agricultural systems: one at the abandoned site of Engaruka in Tanzania, commonly seen as an example of resource mismanagement and ecological collapse; and another at the current agricultural landscape in Konso, Ethiopia, described by the UN FAO as one of a select few African “lessons from the past”. The project thus aims to assess the sustainability of these systems, but will also assess the role archaeology can play in such debates worldwide."
Summary
"The twin concepts of sustainability and conservation that are so pivotal within current debates regarding economic development and biodiversity protection both contain an inherent temporal dimension, since both refer to the need to balance short-term gains with long-term resource maintenance. Proponents of resilience theory and of development based on ‘indigenous knowledge’ have thus argued for the necessity of including archaeological, historical and palaeoenvironmental components within development project design. Indeed, some have argued that archaeology should lead these interdisciplinary projects on the grounds that it provides the necessary time depth and bridges the social and natural sciences. The project proposed here accepts this logic and endorses this renewed contemporary relevance of archaeological research. However, it also needs to be admitted that moving beyond critiques of the misuse of historical data presents significant hurdles. When presenting results outside the discipline, for example, archaeological projects tend to downplay the poor archaeological visibility of certain agricultural practices, and computer models designed to test sustainability struggle to adequately account for local cultural preferences. This field will therefore not progress unless there is a frank appraisal of archaeology’s strengths and weaknesses. This project will provide this assessment by employing a range of established and groundbreaking archaeological and modelling techniques to examine the development of two east Africa agricultural systems: one at the abandoned site of Engaruka in Tanzania, commonly seen as an example of resource mismanagement and ecological collapse; and another at the current agricultural landscape in Konso, Ethiopia, described by the UN FAO as one of a select few African “lessons from the past”. The project thus aims to assess the sustainability of these systems, but will also assess the role archaeology can play in such debates worldwide."
Max ERC Funding
1 196 701 €
Duration
Start date: 2014-02-01, End date: 2018-01-31
Project acronym AARTFAAC
Project Amsterdam-ASTRON Radio Transient Facility And Analysis Centre: Probing the Extremes of Astrophysics
Researcher (PI) Ralph Antoine Marie Joseph Wijers
Host Institution (HI) UNIVERSITEIT VAN AMSTERDAM
Call Details Advanced Grant (AdG), PE9, ERC-2009-AdG
Summary Some of the most extreme tests of physical law come from its manifestations in the behaviour of black holes and neutron stars, and as such these objects should be used as fundamental physics labs. Due to advances in both theoretical work and observational techniques, I have a major opportunity now to significantly push this agenda forward and get better answers to questions like: How are black holes born? How can energy be extracted from black holes? What is the origin of magnetic fields and cosmic rays in jets and shocks? Is their primary energy stream hadronic or magnetic? I propose to do this by exploiting the advent of wide-field radio astronomy: extreme objects are very rare and usually transient, so not only must one survey large areas of sky, but also must one do this often. I propose to form and shape a group that will use the LOFAR wide-field radio telescope to hunt for these extreme transients and systematically collect enough well-documented examples of the behaviour of each type of transient. Furthermore, I propose to expand LOFAR with a true 24/7 all-sky monitor to catch and study even the rarest of events. Next, I will use my experience in gamma-ray burst followup to conduct a vigorous multi-wavelength programme of study of these objects, to constrain their physics from as many angles as possible. This will eventually include results from multi-messenger astrophysics, in which we use neutrinos, gravity waves, and other non-electromagnetic messengers as extra diagnostics of the physics of these sources. Finally, I will build on my experience in modelling accretion phenomena and relativistic explosions to develop a theoretical framework for these phenomena and constrain the resulting models with the rich data sets we obtain.
Summary
Some of the most extreme tests of physical law come from its manifestations in the behaviour of black holes and neutron stars, and as such these objects should be used as fundamental physics labs. Due to advances in both theoretical work and observational techniques, I have a major opportunity now to significantly push this agenda forward and get better answers to questions like: How are black holes born? How can energy be extracted from black holes? What is the origin of magnetic fields and cosmic rays in jets and shocks? Is their primary energy stream hadronic or magnetic? I propose to do this by exploiting the advent of wide-field radio astronomy: extreme objects are very rare and usually transient, so not only must one survey large areas of sky, but also must one do this often. I propose to form and shape a group that will use the LOFAR wide-field radio telescope to hunt for these extreme transients and systematically collect enough well-documented examples of the behaviour of each type of transient. Furthermore, I propose to expand LOFAR with a true 24/7 all-sky monitor to catch and study even the rarest of events. Next, I will use my experience in gamma-ray burst followup to conduct a vigorous multi-wavelength programme of study of these objects, to constrain their physics from as many angles as possible. This will eventually include results from multi-messenger astrophysics, in which we use neutrinos, gravity waves, and other non-electromagnetic messengers as extra diagnostics of the physics of these sources. Finally, I will build on my experience in modelling accretion phenomena and relativistic explosions to develop a theoretical framework for these phenomena and constrain the resulting models with the rich data sets we obtain.
Max ERC Funding
3 499 128 €
Duration
Start date: 2010-10-01, End date: 2016-09-30
Project acronym AAS
Project Approximate algebraic structure and applications
Researcher (PI) Ben Green
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Starting Grant (StG), PE1, ERC-2011-StG_20101014
Summary This project studies several mathematical topics with a related theme, all of them part of the relatively new discipline known as additive combinatorics.
We look at approximate, or rough, variants of familiar mathematical notions such as group, polynomial or homomorphism. In each case we seek to describe the structure of these approximate objects, and then to give applications of the resulting theorems. This endeavour has already lead to groundbreaking results in the theory of prime numbers, group theory and combinatorial number theory.
Summary
This project studies several mathematical topics with a related theme, all of them part of the relatively new discipline known as additive combinatorics.
We look at approximate, or rough, variants of familiar mathematical notions such as group, polynomial or homomorphism. In each case we seek to describe the structure of these approximate objects, and then to give applications of the resulting theorems. This endeavour has already lead to groundbreaking results in the theory of prime numbers, group theory and combinatorial number theory.
Max ERC Funding
1 000 000 €
Duration
Start date: 2011-10-01, End date: 2016-09-30
Project acronym ACCOMPLI
Project Assembly and maintenance of a co-regulated chromosomal compartment
Researcher (PI) Peter Burkhard Becker
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Call Details Advanced Grant (AdG), LS2, ERC-2011-ADG_20110310
Summary "Eukaryotic nuclei are organised into functional compartments, – local microenvironments that are enriched in certain molecules or biochemical activities and therefore specify localised functional outputs. Our study seeks to unveil fundamental principles of co-regulation of genes in a chromo¬somal compartment and the preconditions for homeostasis of such a compartment in the dynamic nuclear environment.
The dosage-compensated X chromosome of male Drosophila flies satisfies the criteria for a functional com¬partment. It is rendered structurally distinct from all other chromosomes by association of a regulatory ribonucleoprotein ‘Dosage Compensation Complex’ (DCC), enrichment of histone modifications and global decondensation. As a result, most genes on the X chromosome are co-ordinately activated. Autosomal genes inserted into the X acquire X-chromosomal features and are subject to the X-specific regulation.
We seek to uncover the molecular principles that initiate, establish and maintain the dosage-compensated chromosome. We will follow the kinetics of DCC assembly and the timing of association with different types of chromosomal targets in nuclei with high spatial resolution afforded by sub-wavelength microscopy and deep sequencing of DNA binding sites. We will characterise DCC sub-complexes with respect to their roles as kinetic assembly intermediates or as representations of local, functional heterogeneity. We will evaluate the roles of a DCC- novel ubiquitin ligase activity for homeostasis.
Crucial to the recruitment of the DCC and its distribution to target genes are non-coding roX RNAs that are transcribed from the X. We will determine the secondary structure ‘signatures’ of roX RNAs in vitro and determine the binding sites of the protein subunits in vivo. By biochemical and cellular reconstitution will test the hypothesis that roX-encoded RNA aptamers orchestrate the assembly of the DCC and contribute to the exquisite targeting of the complex."
Summary
"Eukaryotic nuclei are organised into functional compartments, – local microenvironments that are enriched in certain molecules or biochemical activities and therefore specify localised functional outputs. Our study seeks to unveil fundamental principles of co-regulation of genes in a chromo¬somal compartment and the preconditions for homeostasis of such a compartment in the dynamic nuclear environment.
The dosage-compensated X chromosome of male Drosophila flies satisfies the criteria for a functional com¬partment. It is rendered structurally distinct from all other chromosomes by association of a regulatory ribonucleoprotein ‘Dosage Compensation Complex’ (DCC), enrichment of histone modifications and global decondensation. As a result, most genes on the X chromosome are co-ordinately activated. Autosomal genes inserted into the X acquire X-chromosomal features and are subject to the X-specific regulation.
We seek to uncover the molecular principles that initiate, establish and maintain the dosage-compensated chromosome. We will follow the kinetics of DCC assembly and the timing of association with different types of chromosomal targets in nuclei with high spatial resolution afforded by sub-wavelength microscopy and deep sequencing of DNA binding sites. We will characterise DCC sub-complexes with respect to their roles as kinetic assembly intermediates or as representations of local, functional heterogeneity. We will evaluate the roles of a DCC- novel ubiquitin ligase activity for homeostasis.
Crucial to the recruitment of the DCC and its distribution to target genes are non-coding roX RNAs that are transcribed from the X. We will determine the secondary structure ‘signatures’ of roX RNAs in vitro and determine the binding sites of the protein subunits in vivo. By biochemical and cellular reconstitution will test the hypothesis that roX-encoded RNA aptamers orchestrate the assembly of the DCC and contribute to the exquisite targeting of the complex."
Max ERC Funding
2 482 770 €
Duration
Start date: 2012-02-01, End date: 2017-01-31
Project acronym ACCOPT
Project ACelerated COnvex OPTimization
Researcher (PI) Yurii NESTEROV
Host Institution (HI) UNIVERSITE CATHOLIQUE DE LOUVAIN
Call Details Advanced Grant (AdG), PE1, ERC-2017-ADG
Summary The amazing rate of progress in the computer technologies and telecommunications presents many new challenges for Optimization Theory. New problems are usually very big in size, very special in structure and possibly have a distributed data support. This makes them unsolvable by the standard optimization methods. In these situations, old theoretical models, based on the hidden Black-Box information, cannot work. New theoretical and algorithmic solutions are urgently needed. In this project we will concentrate on development of fast optimization methods for problems of big and very big size. All the new methods will be endowed with provable efficiency guarantees for large classes of optimization problems, arising in practical applications. Our main tool is the acceleration technique developed for the standard Black-Box methods as applied to smooth convex functions. However, we will have to adapt it to deal with different situations.
The first line of development will be based on the smoothing technique as applied to a non-smooth functions. We propose to substantially extend this approach to generate approximate solutions in relative scale. The second line of research will be related to applying acceleration techniques to the second-order methods minimizing functions with sparse Hessians. Finally, we aim to develop fast gradient methods for huge-scale problems. The size of these problems is so big that even the usual vector operations are extremely expensive. Thus, we propose to develop new methods with sublinear iteration costs. In our approach, the main source for achieving improvements will be the proper use of problem structure.
Our overall aim is to be able to solve in a routine way many important problems, which currently look unsolvable. Moreover, the theoretical development of Convex Optimization will reach the state, when there is no gap between theory and practice: the theoretically most efficient methods will definitely outperform any homebred heuristics.
Summary
The amazing rate of progress in the computer technologies and telecommunications presents many new challenges for Optimization Theory. New problems are usually very big in size, very special in structure and possibly have a distributed data support. This makes them unsolvable by the standard optimization methods. In these situations, old theoretical models, based on the hidden Black-Box information, cannot work. New theoretical and algorithmic solutions are urgently needed. In this project we will concentrate on development of fast optimization methods for problems of big and very big size. All the new methods will be endowed with provable efficiency guarantees for large classes of optimization problems, arising in practical applications. Our main tool is the acceleration technique developed for the standard Black-Box methods as applied to smooth convex functions. However, we will have to adapt it to deal with different situations.
The first line of development will be based on the smoothing technique as applied to a non-smooth functions. We propose to substantially extend this approach to generate approximate solutions in relative scale. The second line of research will be related to applying acceleration techniques to the second-order methods minimizing functions with sparse Hessians. Finally, we aim to develop fast gradient methods for huge-scale problems. The size of these problems is so big that even the usual vector operations are extremely expensive. Thus, we propose to develop new methods with sublinear iteration costs. In our approach, the main source for achieving improvements will be the proper use of problem structure.
Our overall aim is to be able to solve in a routine way many important problems, which currently look unsolvable. Moreover, the theoretical development of Convex Optimization will reach the state, when there is no gap between theory and practice: the theoretically most efficient methods will definitely outperform any homebred heuristics.
Max ERC Funding
2 090 038 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym ACROSS
Project Australasian Colonization Research: Origins of Seafaring to Sahul
Researcher (PI) Rosemary Helen FARR
Host Institution (HI) UNIVERSITY OF SOUTHAMPTON
Call Details Starting Grant (StG), SH6, ERC-2017-STG
Summary One of the most exciting research questions within archaeology is that of the peopling of Australasia by at least c.50,000 years ago. This represents some of the earliest evidence of modern human colonization outside Africa, yet, even at the greatest sea-level lowstand, this migration would have involved seafaring. It is the maritime nature of this dispersal which makes it so important to questions of technological, cognitive and social human development. These issues have traditionally been the preserve of archaeologists, but with a multidisciplinary approach that embraces cutting-edge marine geophysical, hydrodynamic and archaeogenetic analyses, we now have the opportunity to examine the When, Where, Who and How of the earliest seafaring in world history.
The voyage from Sunda (South East Asia) to Sahul (Australasia) provides evidence for the earliest ‘open water’ crossing in the world. A combination of the sparse number of early archaeological finds and the significant changes in the palaeolandscape and submergence of the broad north western Australian continental shelf, mean that little is known about the routes taken and what these crossings may have entailed.
This project will combine research of the submerged palaeolandscape of the continental shelf to refine our knowledge of the onshore/offshore environment, identify potential submerged prehistoric sites and enhance our understanding of the palaeoshoreline and tidal regime. This will be combined with archaeogenetic research targeting mtDNA and Y-chromosome data to resolve questions of demography and dating.
For the first time this project takes a truly multidisciplinary approach to address the colonization of Sahul, providing an unique opportunity to tackle some of the most important questions about human origins, the relationship between humans and the changing environment, population dynamics and migration, seafaring technology, social organisation and cognition.
Summary
One of the most exciting research questions within archaeology is that of the peopling of Australasia by at least c.50,000 years ago. This represents some of the earliest evidence of modern human colonization outside Africa, yet, even at the greatest sea-level lowstand, this migration would have involved seafaring. It is the maritime nature of this dispersal which makes it so important to questions of technological, cognitive and social human development. These issues have traditionally been the preserve of archaeologists, but with a multidisciplinary approach that embraces cutting-edge marine geophysical, hydrodynamic and archaeogenetic analyses, we now have the opportunity to examine the When, Where, Who and How of the earliest seafaring in world history.
The voyage from Sunda (South East Asia) to Sahul (Australasia) provides evidence for the earliest ‘open water’ crossing in the world. A combination of the sparse number of early archaeological finds and the significant changes in the palaeolandscape and submergence of the broad north western Australian continental shelf, mean that little is known about the routes taken and what these crossings may have entailed.
This project will combine research of the submerged palaeolandscape of the continental shelf to refine our knowledge of the onshore/offshore environment, identify potential submerged prehistoric sites and enhance our understanding of the palaeoshoreline and tidal regime. This will be combined with archaeogenetic research targeting mtDNA and Y-chromosome data to resolve questions of demography and dating.
For the first time this project takes a truly multidisciplinary approach to address the colonization of Sahul, providing an unique opportunity to tackle some of the most important questions about human origins, the relationship between humans and the changing environment, population dynamics and migration, seafaring technology, social organisation and cognition.
Max ERC Funding
1 134 928 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym ACROSSBORDERS
Project Across ancient borders and cultures: An Egyptian microcosm in Sudan during the 2nd millennium BC
Researcher (PI) Julia Budka
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Call Details Starting Grant (StG), SH6, ERC-2012-StG_20111124
Summary Pharaonic Egypt is commonly known for its pyramids and tomb treasures. The present knowledge of Egyptian everyday life and social structures derives mostly from mortuary records associated with the upper classes, whereas traces of ordinary life from domestic sites are generally disregarded. Settlement archaeology in Egypt and Nubia (Ancient North Sudan) is still in its infancy; it is timely to strenghten this field. Responsible for the pottery at three major settlement sites (Abydos and Elephantine in Egypt; Sai Island in Sudan), the PI is in a unique position to co-ordinate a research project on settlement patterns in Northeast Africa of the 2nd millennium BC based on the detailed analysis of material remains. The selected case studies situated across ancient and modern borders and of diverse environmental and cultural preconditions, show very similar archaeological remains. Up to now, no attempt has been made to explain this situation in detail.
The focus of the project is the well-preserved, only partially explored site of Sai Island, seemingly an Egyptian microcosm in New Kingdom Upper Nubia. Little time is left to conduct the requisite large-scale archaeology as Sai is endangered by the planned high dam of Dal. With the application of microarchaeology we will introduce an approach that is new in Egyptian settlement archaeology. Our interdisciplinary research will result in novel insights into (a) multifaceted lives on Sai at a micro-spatial level and (b) domestic life in 2nd millennium BC Egypt and Nubia from a macroscopic view. The present understanding of the political situation in Upper Nubia during the New Kingdom as based on written records will be significantly enlarged by the envisaged approach. Furthermore, in reconstructing Sai Island as “home away from home”, the project presents a showcase study of what we can learn about acculturation and adaptation from ancient cultures, in this case from the coexistence of Egyptians and Nubians
Summary
Pharaonic Egypt is commonly known for its pyramids and tomb treasures. The present knowledge of Egyptian everyday life and social structures derives mostly from mortuary records associated with the upper classes, whereas traces of ordinary life from domestic sites are generally disregarded. Settlement archaeology in Egypt and Nubia (Ancient North Sudan) is still in its infancy; it is timely to strenghten this field. Responsible for the pottery at three major settlement sites (Abydos and Elephantine in Egypt; Sai Island in Sudan), the PI is in a unique position to co-ordinate a research project on settlement patterns in Northeast Africa of the 2nd millennium BC based on the detailed analysis of material remains. The selected case studies situated across ancient and modern borders and of diverse environmental and cultural preconditions, show very similar archaeological remains. Up to now, no attempt has been made to explain this situation in detail.
The focus of the project is the well-preserved, only partially explored site of Sai Island, seemingly an Egyptian microcosm in New Kingdom Upper Nubia. Little time is left to conduct the requisite large-scale archaeology as Sai is endangered by the planned high dam of Dal. With the application of microarchaeology we will introduce an approach that is new in Egyptian settlement archaeology. Our interdisciplinary research will result in novel insights into (a) multifaceted lives on Sai at a micro-spatial level and (b) domestic life in 2nd millennium BC Egypt and Nubia from a macroscopic view. The present understanding of the political situation in Upper Nubia during the New Kingdom as based on written records will be significantly enlarged by the envisaged approach. Furthermore, in reconstructing Sai Island as “home away from home”, the project presents a showcase study of what we can learn about acculturation and adaptation from ancient cultures, in this case from the coexistence of Egyptians and Nubians
Max ERC Funding
1 497 460 €
Duration
Start date: 2012-12-01, End date: 2018-04-30
Project acronym ACTIVATION OF XCI
Project Molecular mechanisms controlling X chromosome inactivation
Researcher (PI) Joost Henk Gribnau
Host Institution (HI) ERASMUS UNIVERSITAIR MEDISCH CENTRUM ROTTERDAM
Call Details Starting Grant (StG), LS2, ERC-2010-StG_20091118
Summary In mammals, gene dosage of X-chromosomal genes is equalized between sexes by random inactivation of either one of the two X chromosomes in female cells. In the initial phase of X chromosome inactivation (XCI), a counting and initiation process determines the number of X chromosomes per nucleus, and elects the future inactive X chromosome (Xi). Xist is an X-encoded gene that plays a crucial role in the XCI process. At the start of XCI Xist expression is up-regulated and Xist RNA accumulates on the future Xi thereby initiating silencing in cis. Recent work performed in my laboratory indicates that the counting and initiation process is directed by a stochastic mechanism, in which each X chromosome has an independent probability to be inactivated. We also found that this probability is determined by the X:ploïdy ratio. These results indicated the presence of at least one X-linked activator of XCI. With a BAC screen we recently identified X-encoded RNF12 to be a dose-dependent activator of XCI. Expression of RNF12 correlates with Xist expression, and a heterozygous deletion of Rnf12 results in a marked loss of XCI in female cells. The presence of a small proportion of cells that still initiate XCI, in Rnf12+/- cells, also indicated that more XCI-activators are involved in XCI. Here, we propose to investigate the molecular mechanism by which RNF12 activates XCI in mouse and human, and to search for additional XCI-activators. We will also attempt to establish the role of different inhibitors of XCI, including CTCF and the pluripotency factors OCT4, SOX2 and NANOG. We anticipate that these studies will significantly advance our understanding of XCI mechanisms, which is highly relevant for a better insight in the manifestation of X-linked diseases that are affected by XCI.
Summary
In mammals, gene dosage of X-chromosomal genes is equalized between sexes by random inactivation of either one of the two X chromosomes in female cells. In the initial phase of X chromosome inactivation (XCI), a counting and initiation process determines the number of X chromosomes per nucleus, and elects the future inactive X chromosome (Xi). Xist is an X-encoded gene that plays a crucial role in the XCI process. At the start of XCI Xist expression is up-regulated and Xist RNA accumulates on the future Xi thereby initiating silencing in cis. Recent work performed in my laboratory indicates that the counting and initiation process is directed by a stochastic mechanism, in which each X chromosome has an independent probability to be inactivated. We also found that this probability is determined by the X:ploïdy ratio. These results indicated the presence of at least one X-linked activator of XCI. With a BAC screen we recently identified X-encoded RNF12 to be a dose-dependent activator of XCI. Expression of RNF12 correlates with Xist expression, and a heterozygous deletion of Rnf12 results in a marked loss of XCI in female cells. The presence of a small proportion of cells that still initiate XCI, in Rnf12+/- cells, also indicated that more XCI-activators are involved in XCI. Here, we propose to investigate the molecular mechanism by which RNF12 activates XCI in mouse and human, and to search for additional XCI-activators. We will also attempt to establish the role of different inhibitors of XCI, including CTCF and the pluripotency factors OCT4, SOX2 and NANOG. We anticipate that these studies will significantly advance our understanding of XCI mechanisms, which is highly relevant for a better insight in the manifestation of X-linked diseases that are affected by XCI.
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-04-01, End date: 2016-03-31
Project acronym ACTMECH
Project Emergent Active Mechanical Behaviour of the Actomyosin Cell Cortex
Researcher (PI) Stephan Wolfgang Grill
Host Institution (HI) TECHNISCHE UNIVERSITAET DRESDEN
Call Details Starting Grant (StG), LS3, ERC-2011-StG_20101109
Summary The cell cortex is a highly dynamic layer of crosslinked actin filaments and myosin molecular motors beneath the cell membrane. It plays a central role in large scale rearrangements that occur inside cells. Many molecular mechanisms contribute to cortex structure and dynamics. However, cell scale physical properties of the cortex are difficult to grasp. This is problematic because for large scale rearrangements inside a cell, such as coherent flow of the cell cortex, it is the cell scale emergent properties that are important for the realization of such events. I will investigate how the actomyosin cytoskeleton behaves at a coarse grained and cellular scale, and will study how this emergent active behaviour is influenced by molecular mechanisms. We will study the cell cortex in the one cell stage C. elegans embryo, which undergoes large scale cortical flow during polarization and cytokinesis. We will combine theory and experiment. We will characterize cortex structure and dynamics with biophysical techniques such as cortical laser ablation and quantitative photobleaching experiments. We will develop and employ novel theoretical approaches to describe the cell scale mechanical behaviour in terms of an active complex fluid. We will utilize genetic approaches to understand how these emergent mechanical properties are influenced by molecular activities. A central goal is to arrive at a coarse grained description of the cortex that can predict future dynamic behaviour from the past structure, which is conceptually similar to how weather forecasting is accomplished. To date, systematic approaches to link molecular scale physical mechanisms to those on cellular scales are missing. This work will open new opportunities for cell biological and cell biophysical research, by providing a methodological approach for bridging scales, for studying emergent and large-scale active mechanical behaviours and linking them to molecular mechanisms.
Summary
The cell cortex is a highly dynamic layer of crosslinked actin filaments and myosin molecular motors beneath the cell membrane. It plays a central role in large scale rearrangements that occur inside cells. Many molecular mechanisms contribute to cortex structure and dynamics. However, cell scale physical properties of the cortex are difficult to grasp. This is problematic because for large scale rearrangements inside a cell, such as coherent flow of the cell cortex, it is the cell scale emergent properties that are important for the realization of such events. I will investigate how the actomyosin cytoskeleton behaves at a coarse grained and cellular scale, and will study how this emergent active behaviour is influenced by molecular mechanisms. We will study the cell cortex in the one cell stage C. elegans embryo, which undergoes large scale cortical flow during polarization and cytokinesis. We will combine theory and experiment. We will characterize cortex structure and dynamics with biophysical techniques such as cortical laser ablation and quantitative photobleaching experiments. We will develop and employ novel theoretical approaches to describe the cell scale mechanical behaviour in terms of an active complex fluid. We will utilize genetic approaches to understand how these emergent mechanical properties are influenced by molecular activities. A central goal is to arrive at a coarse grained description of the cortex that can predict future dynamic behaviour from the past structure, which is conceptually similar to how weather forecasting is accomplished. To date, systematic approaches to link molecular scale physical mechanisms to those on cellular scales are missing. This work will open new opportunities for cell biological and cell biophysical research, by providing a methodological approach for bridging scales, for studying emergent and large-scale active mechanical behaviours and linking them to molecular mechanisms.
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-12-01, End date: 2017-08-31
Project acronym ACTOMYO
Project Mechanisms of actomyosin-based contractility during cytokinesis
Researcher (PI) Ana Costa Xavier de Carvalho
Host Institution (HI) INSTITUTO DE BIOLOGIA MOLECULAR E CELULAR-IBMC
Call Details Starting Grant (StG), LS3, ERC-2014-STG
Summary Cytokinesis completes cell division by partitioning the contents of the mother cell to the two daughter cells. This process is accomplished through the assembly and constriction of a contractile ring, a complex actomyosin network that remains poorly understood on the molecular level. Research in cytokinesis has overwhelmingly focused on signaling mechanisms that dictate when and where the contractile ring is assembled. By contrast, the research I propose here addresses fundamental questions about the structural and functional properties of the contractile ring itself. We will use the nematode C. elegans to exploit the power of quantitative live imaging assays in an experimentally tractable metazoan organism. The early C. elegans embryo is uniquely suited to the study of the contractile ring, as cells dividing perpendicularly to the imaging plane provide a full end-on view of the contractile ring throughout constriction. This greatly facilitates accurate measurements of constriction kinetics, ring width and thickness, and levels as well as dynamics of fluorescently-tagged contractile ring components. Combining image-based assays with powerful molecular replacement technology for structure-function studies, we will 1) determine the contribution of branched and non-branched actin filament populations to contractile ring formation; 2) explore its ultra-structural organization in collaboration with a world expert in electron microcopy; 3) investigate how the contractile ring network is dynamically remodeled during constriction with the help of a novel laser microsurgery assay that has uncovered a remarkably robust ring repair mechanism; and 4) use a targeted RNAi screen and phenotype profiling to identify new components of actomyosin contractile networks. The results from this interdisciplinary project will significantly enhance our mechanistic understanding of cytokinesis and other cellular processes that involve actomyosin-based contractility.
Summary
Cytokinesis completes cell division by partitioning the contents of the mother cell to the two daughter cells. This process is accomplished through the assembly and constriction of a contractile ring, a complex actomyosin network that remains poorly understood on the molecular level. Research in cytokinesis has overwhelmingly focused on signaling mechanisms that dictate when and where the contractile ring is assembled. By contrast, the research I propose here addresses fundamental questions about the structural and functional properties of the contractile ring itself. We will use the nematode C. elegans to exploit the power of quantitative live imaging assays in an experimentally tractable metazoan organism. The early C. elegans embryo is uniquely suited to the study of the contractile ring, as cells dividing perpendicularly to the imaging plane provide a full end-on view of the contractile ring throughout constriction. This greatly facilitates accurate measurements of constriction kinetics, ring width and thickness, and levels as well as dynamics of fluorescently-tagged contractile ring components. Combining image-based assays with powerful molecular replacement technology for structure-function studies, we will 1) determine the contribution of branched and non-branched actin filament populations to contractile ring formation; 2) explore its ultra-structural organization in collaboration with a world expert in electron microcopy; 3) investigate how the contractile ring network is dynamically remodeled during constriction with the help of a novel laser microsurgery assay that has uncovered a remarkably robust ring repair mechanism; and 4) use a targeted RNAi screen and phenotype profiling to identify new components of actomyosin contractile networks. The results from this interdisciplinary project will significantly enhance our mechanistic understanding of cytokinesis and other cellular processes that involve actomyosin-based contractility.
Max ERC Funding
1 499 989 €
Duration
Start date: 2015-07-01, End date: 2020-06-30
Project acronym ACTOMYOSIN RING
Project Understanding Cytokinetic Actomyosin Ring Assembly Through Genetic Code Expansion, Click Chemistry, DNA origami, and in vitro Reconstitution
Researcher (PI) Mohan Balasubramanian
Host Institution (HI) THE UNIVERSITY OF WARWICK
Call Details Advanced Grant (AdG), LS3, ERC-2014-ADG
Summary The mechanism of cell division is conserved in many eukaryotes, from yeast to man. A contractile ring of filamentous actin and myosin II motors generates the force to bisect a mother cell into two daughters. The actomyosin ring is among the most complex cellular machines, comprising over 150 proteins. Understanding how these proteins organize themselves into a functional ring with appropriate contractile properties remains one of the great challenges in cell biology. Efforts to generate a comprehensive understanding of the mechanism of actomyosin ring assembly have been hampered by the lack of structural information on the arrangement of actin, myosin II, and actin modulators in the ring in its native state. Fundamental questions such as how actin filaments are assembled and organized into a ring remain actively debated. This project will investigate key issues pertaining to cytokinesis in the fission yeast Schizosaccharomyces pombe, which divides employing an actomyosin based contractile ring, using the methods of genetics, biochemistry, cellular imaging, DNA origami, genetic code expansion, and click chemistry. Specifically, we will (1) attempt to visualize actin filament assembly in live cells expressing fluorescent actin generated through synthetic biological approaches, including genetic code expansion and click chemistry (2) decipher actin filament polarity in the actomyosin ring using total internal reflection fluorescence microscopy of labelled dimeric and multimeric myosins V and VI generated through DNA origami approaches (3) address when, where, and how actin filaments for cytokinesis are assembled and organized into a ring and (4) reconstitute actin filament and functional actomyosin ring assembly in permeabilized spheroplasts and in supported bilayers. Success in the project will provide major insight into the mechanism of actomyosin ring assembly and illuminate principles behind cytoskeletal self-organization.
Summary
The mechanism of cell division is conserved in many eukaryotes, from yeast to man. A contractile ring of filamentous actin and myosin II motors generates the force to bisect a mother cell into two daughters. The actomyosin ring is among the most complex cellular machines, comprising over 150 proteins. Understanding how these proteins organize themselves into a functional ring with appropriate contractile properties remains one of the great challenges in cell biology. Efforts to generate a comprehensive understanding of the mechanism of actomyosin ring assembly have been hampered by the lack of structural information on the arrangement of actin, myosin II, and actin modulators in the ring in its native state. Fundamental questions such as how actin filaments are assembled and organized into a ring remain actively debated. This project will investigate key issues pertaining to cytokinesis in the fission yeast Schizosaccharomyces pombe, which divides employing an actomyosin based contractile ring, using the methods of genetics, biochemistry, cellular imaging, DNA origami, genetic code expansion, and click chemistry. Specifically, we will (1) attempt to visualize actin filament assembly in live cells expressing fluorescent actin generated through synthetic biological approaches, including genetic code expansion and click chemistry (2) decipher actin filament polarity in the actomyosin ring using total internal reflection fluorescence microscopy of labelled dimeric and multimeric myosins V and VI generated through DNA origami approaches (3) address when, where, and how actin filaments for cytokinesis are assembled and organized into a ring and (4) reconstitute actin filament and functional actomyosin ring assembly in permeabilized spheroplasts and in supported bilayers. Success in the project will provide major insight into the mechanism of actomyosin ring assembly and illuminate principles behind cytoskeletal self-organization.
Max ERC Funding
2 863 705 €
Duration
Start date: 2015-11-01, End date: 2020-10-31
Project acronym ADAPT
Project Life in a cold climate: the adaptation of cereals to new environments and the establishment of agriculture in Europe
Researcher (PI) Terence Austen Brown
Host Institution (HI) THE UNIVERSITY OF MANCHESTER
Call Details Advanced Grant (AdG), SH6, ERC-2013-ADG
Summary "This project explores the concept of agricultural spread as analogous to enforced climate change and asks how cereals adapted to new environments when agriculture was introduced into Europe. Archaeologists have long recognized that the ecological pressures placed on crops would have had an impact on the spread and subsequent development of agriculture, but previously there has been no means of directly assessing the scale and nature of this impact. Recent work that I have directed has shown how such a study could be carried out, and the purpose of this project is to exploit these breakthroughs with the goal of assessing the influence of environmental adaptation on the spread of agriculture, its adoption as the primary subsistence strategy, and the subsequent establishment of farming in different parts of Europe. This will correct the current imbalance between our understanding of the human and environmental dimensions to the domestication of Europe. I will use methods from population genomics to identify loci within the barley and wheat genomes that have undergone selection since the beginning of cereal cultivation in Europe. I will then use ecological modelling to identify those loci whose patterns of selection are associated with ecogeographical variables and hence represent adaptations to local environmental conditions. I will assign dates to the periods when adaptations occurred by sequencing ancient DNA from archaeobotanical assemblages and by computer methods that enable the temporal order of adaptations to be deduced. I will then synthesise the information on environmental adaptations with dating evidence for the spread of agriculture in Europe, which reveals pauses that might be linked to environmental adaptation, with demographic data that indicate regions where Neolithic populations declined, possibly due to inadequate crop productivity, and with an archaeobotanical database showing changes in the prevalence of individual cereals in different regions."
Summary
"This project explores the concept of agricultural spread as analogous to enforced climate change and asks how cereals adapted to new environments when agriculture was introduced into Europe. Archaeologists have long recognized that the ecological pressures placed on crops would have had an impact on the spread and subsequent development of agriculture, but previously there has been no means of directly assessing the scale and nature of this impact. Recent work that I have directed has shown how such a study could be carried out, and the purpose of this project is to exploit these breakthroughs with the goal of assessing the influence of environmental adaptation on the spread of agriculture, its adoption as the primary subsistence strategy, and the subsequent establishment of farming in different parts of Europe. This will correct the current imbalance between our understanding of the human and environmental dimensions to the domestication of Europe. I will use methods from population genomics to identify loci within the barley and wheat genomes that have undergone selection since the beginning of cereal cultivation in Europe. I will then use ecological modelling to identify those loci whose patterns of selection are associated with ecogeographical variables and hence represent adaptations to local environmental conditions. I will assign dates to the periods when adaptations occurred by sequencing ancient DNA from archaeobotanical assemblages and by computer methods that enable the temporal order of adaptations to be deduced. I will then synthesise the information on environmental adaptations with dating evidence for the spread of agriculture in Europe, which reveals pauses that might be linked to environmental adaptation, with demographic data that indicate regions where Neolithic populations declined, possibly due to inadequate crop productivity, and with an archaeobotanical database showing changes in the prevalence of individual cereals in different regions."
Max ERC Funding
2 492 964 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym ADaPt
Project Adaptation, Dispersals and Phenotype: understanding the roles of climate,
natural selection and energetics in shaping global hunter-gatherer adaptability
Researcher (PI) Jay Stock
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Consolidator Grant (CoG), SH6, ERC-2013-CoG
Summary Relative to other species, humans are characterised by considerable biological diversity despite genetic homogeneity. This diversity is reflected in skeletal variation, but we lack sufficient understanding of the underlying mechanisms to adequately interpret the archaeological record. The proposed research will address problems in our current understanding of the origins of human variation in the past by: 1) documenting and interpreting the pattern of global hunter-gatherer variation relative to genetic phylogenies and climatic variation; 2) testing the relationship between environmental and skeletal variation among genetically related hunter-gatherers from different environments; 3) examining the adaptability of living humans to different environments, through the study of energetic expenditure and life history trade-offs associated with locomotion; and 4) investigating the relationship between muscle and skeletal variation associated with locomotion in diverse environments. This will be achieved by linking: a) detailed study of the global pattern of hunter-gatherer variation in the Late Pleistocene and Holocene with; b) ground-breaking experimental research which tests the relationship between energetic stress, muscle function, and bone variation in living humans. The first component tests the correspondence between skeletal variation and both genetic and climatic history, to infer mechanisms driving variation. The second component integrates this skeletal variation with experimental studies of living humans to, for the first time, directly test adaptive implications of skeletal variation observed in the past. ADaPt will provide the first links between prehistoric hunter-gatherer variation and the evolutionary parameters of life history and energetics that may have shaped our success as a species. It will lead to breakthroughs necessary to interpret variation in the archaeological record, relative to human dispersals and adaptation in the past.
Summary
Relative to other species, humans are characterised by considerable biological diversity despite genetic homogeneity. This diversity is reflected in skeletal variation, but we lack sufficient understanding of the underlying mechanisms to adequately interpret the archaeological record. The proposed research will address problems in our current understanding of the origins of human variation in the past by: 1) documenting and interpreting the pattern of global hunter-gatherer variation relative to genetic phylogenies and climatic variation; 2) testing the relationship between environmental and skeletal variation among genetically related hunter-gatherers from different environments; 3) examining the adaptability of living humans to different environments, through the study of energetic expenditure and life history trade-offs associated with locomotion; and 4) investigating the relationship between muscle and skeletal variation associated with locomotion in diverse environments. This will be achieved by linking: a) detailed study of the global pattern of hunter-gatherer variation in the Late Pleistocene and Holocene with; b) ground-breaking experimental research which tests the relationship between energetic stress, muscle function, and bone variation in living humans. The first component tests the correspondence between skeletal variation and both genetic and climatic history, to infer mechanisms driving variation. The second component integrates this skeletal variation with experimental studies of living humans to, for the first time, directly test adaptive implications of skeletal variation observed in the past. ADaPt will provide the first links between prehistoric hunter-gatherer variation and the evolutionary parameters of life history and energetics that may have shaped our success as a species. It will lead to breakthroughs necessary to interpret variation in the archaeological record, relative to human dispersals and adaptation in the past.
Max ERC Funding
1 911 485 €
Duration
Start date: 2014-07-01, End date: 2019-06-30
Project acronym ADAPTIVES
Project Algorithmic Development and Analysis of Pioneer Techniques for Imaging with waVES
Researcher (PI) Chrysoula Tsogka
Host Institution (HI) IDRYMA TECHNOLOGIAS KAI EREVNAS
Call Details Starting Grant (StG), PE1, ERC-2009-StG
Summary The proposed work concerns the theoretical and numerical development of robust and adaptive methodologies for broadband imaging in clutter. The word clutter expresses our uncertainty on the wave speed of the propagation medium. Our results are expected to have a strong impact in a wide range of applications, including underwater acoustics, exploration geophysics and ultrasound non-destructive testing. Our machinery is coherent interferometry (CINT), a state-of-the-art statistically stable imaging methodology, highly suitable for the development of imaging methods in clutter. We aim to extend CINT along two complementary directions: novel types of applications, and further mathematical and numerical development so as to assess and extend its range of applicability. CINT is designed for imaging with partially coherent array data recorded in richly scattering media. It uses statistical smoothing techniques to obtain results that are independent of the clutter realization. Quantifying the amount of smoothing needed is difficult, especially when there is no a priori knowledge about the propagation medium. We intend to address this question by coupling the imaging process with the estimation of the medium's large scale features. Our algorithms rely on the residual coherence in the data. When the coherent signal is too weak, the CINT results are unsatisfactory. We propose two ways for enhancing the resolution of CINT: filter the data prior to imaging (noise reduction) and waveform design (optimize the source distribution). Finally, we propose to extend the applicability of our imaging-in-clutter methodologies by investigating the possibility of utilizing ambient noise sources to perform passive sensor imaging, as well as by studying the imaging problem in random waveguides.
Summary
The proposed work concerns the theoretical and numerical development of robust and adaptive methodologies for broadband imaging in clutter. The word clutter expresses our uncertainty on the wave speed of the propagation medium. Our results are expected to have a strong impact in a wide range of applications, including underwater acoustics, exploration geophysics and ultrasound non-destructive testing. Our machinery is coherent interferometry (CINT), a state-of-the-art statistically stable imaging methodology, highly suitable for the development of imaging methods in clutter. We aim to extend CINT along two complementary directions: novel types of applications, and further mathematical and numerical development so as to assess and extend its range of applicability. CINT is designed for imaging with partially coherent array data recorded in richly scattering media. It uses statistical smoothing techniques to obtain results that are independent of the clutter realization. Quantifying the amount of smoothing needed is difficult, especially when there is no a priori knowledge about the propagation medium. We intend to address this question by coupling the imaging process with the estimation of the medium's large scale features. Our algorithms rely on the residual coherence in the data. When the coherent signal is too weak, the CINT results are unsatisfactory. We propose two ways for enhancing the resolution of CINT: filter the data prior to imaging (noise reduction) and waveform design (optimize the source distribution). Finally, we propose to extend the applicability of our imaging-in-clutter methodologies by investigating the possibility of utilizing ambient noise sources to perform passive sensor imaging, as well as by studying the imaging problem in random waveguides.
Max ERC Funding
690 000 €
Duration
Start date: 2010-06-01, End date: 2015-11-30
Project acronym ADDECCO
Project Adaptive Schemes for Deterministic and Stochastic Flow Problems
Researcher (PI) Remi Abgrall
Host Institution (HI) INSTITUT NATIONAL DE RECHERCHE ENINFORMATIQUE ET AUTOMATIQUE
Call Details Advanced Grant (AdG), PE1, ERC-2008-AdG
Summary The numerical simulation of complex compressible flow problem is still a challenge nowaday even for simple models. In our opinion, the most important hard points that need currently to be tackled and solved is how to obtain stable, scalable, very accurate, easy to code and to maintain schemes on complex geometries. The method should easily handle mesh refinement, even near the boundary where the most interesting engineering quantities have to be evaluated. Unsteady uncertainties in the model, for example in the geometry or the boundary conditions should represented efficiently.This proposal goal is to design, develop and evaluate solutions to each of the above problems. Our work program will lead to significant breakthroughs for flow simulations. More specifically, we propose to work on 3 connected problems: 1-A class of very high order numerical schemes able to easily deal with the geometry of boundaries and still can solve steep problems. The geometry is generally defined by CAD tools. The output is used to generate a mesh which is then used by the scheme. Hence, any mesh refinement process is disconnected from the CAD, a situation that prevents the spread of mesh adaptation techniques in industry! 2-A class of very high order numerical schemes which can utilize possibly solution dependant basis functions in order to lower the number of degrees of freedom, for example to compute accurately boundary layers with low resolutions. 3-A general non intrusive technique for handling uncertainties in order to deal with irregular probability density functions (pdf) and also to handle pdf that may evolve in time, for example thanks to an optimisation loop. The curse of dimensionality will be dealt thanks Harten's multiresolution method combined with sparse grid methods. Currently, and up to our knowledge, no scheme has each of these properties. This research program will have an impact on numerical schemes and industrial applications.
Summary
The numerical simulation of complex compressible flow problem is still a challenge nowaday even for simple models. In our opinion, the most important hard points that need currently to be tackled and solved is how to obtain stable, scalable, very accurate, easy to code and to maintain schemes on complex geometries. The method should easily handle mesh refinement, even near the boundary where the most interesting engineering quantities have to be evaluated. Unsteady uncertainties in the model, for example in the geometry or the boundary conditions should represented efficiently.This proposal goal is to design, develop and evaluate solutions to each of the above problems. Our work program will lead to significant breakthroughs for flow simulations. More specifically, we propose to work on 3 connected problems: 1-A class of very high order numerical schemes able to easily deal with the geometry of boundaries and still can solve steep problems. The geometry is generally defined by CAD tools. The output is used to generate a mesh which is then used by the scheme. Hence, any mesh refinement process is disconnected from the CAD, a situation that prevents the spread of mesh adaptation techniques in industry! 2-A class of very high order numerical schemes which can utilize possibly solution dependant basis functions in order to lower the number of degrees of freedom, for example to compute accurately boundary layers with low resolutions. 3-A general non intrusive technique for handling uncertainties in order to deal with irregular probability density functions (pdf) and also to handle pdf that may evolve in time, for example thanks to an optimisation loop. The curse of dimensionality will be dealt thanks Harten's multiresolution method combined with sparse grid methods. Currently, and up to our knowledge, no scheme has each of these properties. This research program will have an impact on numerical schemes and industrial applications.
Max ERC Funding
1 432 769 €
Duration
Start date: 2008-12-01, End date: 2013-11-30
Project acronym ADHESWITCHES
Project Adhesion switches in cancer and development: from in vivo to synthetic biology
Researcher (PI) Mari Johanna Ivaska
Host Institution (HI) TURUN YLIOPISTO
Call Details Consolidator Grant (CoG), LS3, ERC-2013-CoG
Summary Integrins are transmembrane cell adhesion receptors controlling cell proliferation and migration. Our objective is to gain fundamentally novel mechanistic insight into the emerging new roles of integrins in cancer and to generate a road map of integrin dependent pathways critical in mammary gland development and integrin signalling thus opening new targets for therapeutic interventions. We will combine an in vivo based translational approach with cell and molecular biological studies aiming to identify entirely novel concepts in integrin function using cutting edge techniques and synthetic-biology tools.
The specific objectives are:
1) Integrin inactivation in branching morphogenesis and cancer invasion. Integrins regulate mammary gland development and cancer invasion but the role of integrin inactivating proteins in these processes is currently completely unknown. We will investigate this using genetically modified mice, ex-vivo organoid models and human tissues with the aim to identify beneficial combinational treatments against cancer invasion.
2) Endosomal adhesomes – cross-talk between integrin activity and integrin “inside-in signaling”. We hypothesize that endocytosed active integrins engage in specialized endosomal signaling that governs cell survival especially in cancer. RNAi cell arrays, super-resolution STED imaging and endosomal proteomics will be used to investigate integrin signaling in endosomes.
3) Spatio-temporal co-ordination of adhesion and endocytosis. Several cytosolic proteins compete for integrin binding to regulate activation, endocytosis and recycling. Photoactivatable protein-traps and predefined matrix micropatterns will be employed to mechanistically dissect the spatio-temporal dynamics and hierarchy of their recruitment.
We will employ innovative and unconventional techniques to address three major unanswered questions in the field and significantly advance our understanding of integrin function in development and cancer.
Summary
Integrins are transmembrane cell adhesion receptors controlling cell proliferation and migration. Our objective is to gain fundamentally novel mechanistic insight into the emerging new roles of integrins in cancer and to generate a road map of integrin dependent pathways critical in mammary gland development and integrin signalling thus opening new targets for therapeutic interventions. We will combine an in vivo based translational approach with cell and molecular biological studies aiming to identify entirely novel concepts in integrin function using cutting edge techniques and synthetic-biology tools.
The specific objectives are:
1) Integrin inactivation in branching morphogenesis and cancer invasion. Integrins regulate mammary gland development and cancer invasion but the role of integrin inactivating proteins in these processes is currently completely unknown. We will investigate this using genetically modified mice, ex-vivo organoid models and human tissues with the aim to identify beneficial combinational treatments against cancer invasion.
2) Endosomal adhesomes – cross-talk between integrin activity and integrin “inside-in signaling”. We hypothesize that endocytosed active integrins engage in specialized endosomal signaling that governs cell survival especially in cancer. RNAi cell arrays, super-resolution STED imaging and endosomal proteomics will be used to investigate integrin signaling in endosomes.
3) Spatio-temporal co-ordination of adhesion and endocytosis. Several cytosolic proteins compete for integrin binding to regulate activation, endocytosis and recycling. Photoactivatable protein-traps and predefined matrix micropatterns will be employed to mechanistically dissect the spatio-temporal dynamics and hierarchy of their recruitment.
We will employ innovative and unconventional techniques to address three major unanswered questions in the field and significantly advance our understanding of integrin function in development and cancer.
Max ERC Funding
1 887 910 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym ADIMMUNE
Project Decoding interactions between adipose tissue immune cells, metabolic function, and the intestinal microbiome in obesity
Researcher (PI) Eran Elinav
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Consolidator Grant (CoG), LS6, ERC-2018-COG
Summary Obesity and its metabolic co-morbidities have given rise to a rapidly expanding ‘metabolic syndrome’ pandemic affecting
hundreds of millions of individuals worldwide. The integrative genetic and environmental causes of the obesity pandemic
remain elusive. White adipose tissue (WAT)-resident immune cells have recently been highlighted as important factors
contributing to metabolic complications. However, a comprehensive understanding of the regulatory circuits governing their
function and the cell type-specific mechanisms by which they contribute to the development of metabolic syndrome is
lacking. Likewise, the gut microbiome has been suggested as a critical regulator of obesity, but the bacterial species and
metabolites that influence WAT inflammation are entirely unknown.
We propose to use our recently developed high-throughput genomic and gnotobiotic tools, integrated with CRISPR-mediated interrogation of gene function, microbial culturomics, and in-vivo metabolic analysis in newly generated mouse models, in order to achieve a new level of molecular understanding of how WAT immune cells integrate environmental cues into their crosstalk with organismal metabolism, and to explore the microbial contributions to the molecular etiology of WAT inflammation in the pathogenesis of diet-induced obesity. Specifically, we aim to (a) decipher the global regulatory landscape and interaction networks of WAT hematopoietic cells at the single-cell level, (b) identify new mediators of WAT immune cell contributions to metabolic homeostasis, and (c) decode how host-microbiome communication shapes the development of WAT inflammation and obesity.
Unraveling the principles of WAT immune cell regulation and their amenability to change by host-microbiota interactions
may lead to a conceptual leap forward in our understanding of metabolic physiology and disease. Concomitantly, it may
generate a platform for microbiome-based personalized therapy against obesity and its complications.
Summary
Obesity and its metabolic co-morbidities have given rise to a rapidly expanding ‘metabolic syndrome’ pandemic affecting
hundreds of millions of individuals worldwide. The integrative genetic and environmental causes of the obesity pandemic
remain elusive. White adipose tissue (WAT)-resident immune cells have recently been highlighted as important factors
contributing to metabolic complications. However, a comprehensive understanding of the regulatory circuits governing their
function and the cell type-specific mechanisms by which they contribute to the development of metabolic syndrome is
lacking. Likewise, the gut microbiome has been suggested as a critical regulator of obesity, but the bacterial species and
metabolites that influence WAT inflammation are entirely unknown.
We propose to use our recently developed high-throughput genomic and gnotobiotic tools, integrated with CRISPR-mediated interrogation of gene function, microbial culturomics, and in-vivo metabolic analysis in newly generated mouse models, in order to achieve a new level of molecular understanding of how WAT immune cells integrate environmental cues into their crosstalk with organismal metabolism, and to explore the microbial contributions to the molecular etiology of WAT inflammation in the pathogenesis of diet-induced obesity. Specifically, we aim to (a) decipher the global regulatory landscape and interaction networks of WAT hematopoietic cells at the single-cell level, (b) identify new mediators of WAT immune cell contributions to metabolic homeostasis, and (c) decode how host-microbiome communication shapes the development of WAT inflammation and obesity.
Unraveling the principles of WAT immune cell regulation and their amenability to change by host-microbiota interactions
may lead to a conceptual leap forward in our understanding of metabolic physiology and disease. Concomitantly, it may
generate a platform for microbiome-based personalized therapy against obesity and its complications.
Max ERC Funding
2 000 000 €
Duration
Start date: 2019-03-01, End date: 2024-02-29
Project acronym ADIPODIF
Project Adipocyte Differentiation and Metabolic Functions in Obesity and Type 2 Diabetes
Researcher (PI) Christian Wolfrum
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Starting Grant (StG), LS6, ERC-2007-StG
Summary Obesity associated disorders such as T2D, hypertension and CVD, commonly referred to as the “metabolic syndrome”, are prevalent diseases of industrialized societies. Deranged adipose tissue proliferation and differentiation contribute significantly to the development of these metabolic disorders. Comparatively little however is known, about how these processes influence the development of metabolic disorders. Using a multidisciplinary approach, I plan to elucidate molecular mechanisms underlying the altered adipocyte differentiation and maturation in different models of obesity associated metabolic disorders. Special emphasis will be given to the analysis of gene expression, postranslational modifications and lipid molecular species composition. To achieve this goal, I am establishing several novel methods to isolate pure primary preadipocytes including a new animal model that will allow me to monitor preadipocytes, in vivo and track their cellular fate in the context of a complete organism. These systems will allow, for the first time to study preadipocyte biology, in an in vivo setting. By monitoring preadipocyte differentiation in vivo, I will also be able to answer the key questions regarding the development of preadipocytes and examine signals that induce or inhibit their differentiation. Using transplantation techniques, I will elucidate the genetic and environmental contributions to the progression of obesity and its associated metabolic disorders. Furthermore, these studies will integrate a lipidomics approach to systematically analyze lipid molecular species composition in different models of metabolic disorders. My studies will provide new insights into the mechanisms and dynamics underlying adipocyte differentiation and maturation, and relate them to metabolic disorders. Detailed knowledge of these mechanisms will facilitate development of novel therapeutic approaches for the treatment of obesity and associated metabolic disorders.
Summary
Obesity associated disorders such as T2D, hypertension and CVD, commonly referred to as the “metabolic syndrome”, are prevalent diseases of industrialized societies. Deranged adipose tissue proliferation and differentiation contribute significantly to the development of these metabolic disorders. Comparatively little however is known, about how these processes influence the development of metabolic disorders. Using a multidisciplinary approach, I plan to elucidate molecular mechanisms underlying the altered adipocyte differentiation and maturation in different models of obesity associated metabolic disorders. Special emphasis will be given to the analysis of gene expression, postranslational modifications and lipid molecular species composition. To achieve this goal, I am establishing several novel methods to isolate pure primary preadipocytes including a new animal model that will allow me to monitor preadipocytes, in vivo and track their cellular fate in the context of a complete organism. These systems will allow, for the first time to study preadipocyte biology, in an in vivo setting. By monitoring preadipocyte differentiation in vivo, I will also be able to answer the key questions regarding the development of preadipocytes and examine signals that induce or inhibit their differentiation. Using transplantation techniques, I will elucidate the genetic and environmental contributions to the progression of obesity and its associated metabolic disorders. Furthermore, these studies will integrate a lipidomics approach to systematically analyze lipid molecular species composition in different models of metabolic disorders. My studies will provide new insights into the mechanisms and dynamics underlying adipocyte differentiation and maturation, and relate them to metabolic disorders. Detailed knowledge of these mechanisms will facilitate development of novel therapeutic approaches for the treatment of obesity and associated metabolic disorders.
Max ERC Funding
1 607 105 €
Duration
Start date: 2008-07-01, End date: 2013-06-30
Project acronym ADNABIOARC
Project From the earliest modern humans to the onset of farming (45,000-4,500 BP): the role of climate, life-style, health, migration and selection in shaping European population history
Researcher (PI) Ron Pinhasi
Host Institution (HI) UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN
Call Details Starting Grant (StG), SH6, ERC-2010-StG_20091209
Summary The colonisation of Europe by anatomically modern humans (AMHs) ca. 45,000 years before present (BP) and the transition to farming ca. 8,000 BP are two major events in human prehistory. Both events involved certain cultural and biological adaptations, technological innovations, and behavioural plasticity which are unique to our species. The reconstruction of these processes and the causality between them has so far remained elusive due to technological, methodological and logistical complexities. Major developments in our understanding of the anthropology of the Upper Palaeolithic, Mesolithic and Neolithic, and advances in ancient DNA (aDNA) technology and chronometric methods now allow us to assess in sufficient resolution the interface between these evolutionary processes, and changes in human culture and behaviour.
The proposed research will investigate the complex interface between the morphological, genetic, behavioural, and cultural factors that shaped the population history of European AMHs. The PI s interdisciplinary expertise in these areas, his access to and experience of relevant skeletal collections, and his ongoing European collaborations will allow significant progress in addressing these fundamental questions. The approach taken will include (a) the collection of bioarchaeological, aDNA, stable isotope (for the analysis of ancient diet) and radiometric data on 500 skeletons from key sites/phases in Europe and western Anatolia, and (b) the application of existing and novel aDNA, bioarchaeological and simulation methodologies. This research will yield results that transform our current understanding of major demographic and evolutionary processes and will place Europe at the forefront of anthropological biological and genetic research.
Summary
The colonisation of Europe by anatomically modern humans (AMHs) ca. 45,000 years before present (BP) and the transition to farming ca. 8,000 BP are two major events in human prehistory. Both events involved certain cultural and biological adaptations, technological innovations, and behavioural plasticity which are unique to our species. The reconstruction of these processes and the causality between them has so far remained elusive due to technological, methodological and logistical complexities. Major developments in our understanding of the anthropology of the Upper Palaeolithic, Mesolithic and Neolithic, and advances in ancient DNA (aDNA) technology and chronometric methods now allow us to assess in sufficient resolution the interface between these evolutionary processes, and changes in human culture and behaviour.
The proposed research will investigate the complex interface between the morphological, genetic, behavioural, and cultural factors that shaped the population history of European AMHs. The PI s interdisciplinary expertise in these areas, his access to and experience of relevant skeletal collections, and his ongoing European collaborations will allow significant progress in addressing these fundamental questions. The approach taken will include (a) the collection of bioarchaeological, aDNA, stable isotope (for the analysis of ancient diet) and radiometric data on 500 skeletons from key sites/phases in Europe and western Anatolia, and (b) the application of existing and novel aDNA, bioarchaeological and simulation methodologies. This research will yield results that transform our current understanding of major demographic and evolutionary processes and will place Europe at the forefront of anthropological biological and genetic research.
Max ERC Funding
1 088 386 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym ADORA
Project Asymptotic approach to spatial and dynamical organizations
Researcher (PI) Benoit PERTHAME
Host Institution (HI) SORBONNE UNIVERSITE
Call Details Advanced Grant (AdG), PE1, ERC-2016-ADG
Summary The understanding of spatial, social and dynamical organization of large numbers of agents is presently a fundamental issue in modern science. ADORA focuses on problems motivated by biology because, more than anywhere else, access to precise and many data has opened the route to novel and complex biomathematical models. The problems we address are written in terms of nonlinear partial differential equations. The flux-limited Keller-Segel system, the integrate-and-fire Fokker-Planck equation, kinetic equations with internal state, nonlocal parabolic equations and constrained Hamilton-Jacobi equations are among examples of the equations under investigation.
The role of mathematics is not only to understand the analytical structure of these new problems, but it is also to explain the qualitative behavior of solutions and to quantify their properties. The challenge arises here because these goals should be achieved through a hierarchy of scales. Indeed, the problems under consideration share the common feature that the large scale behavior cannot be understood precisely without access to a hierarchy of finer scales, down to the individual behavior and sometimes its molecular determinants.
Major difficulties arise because the numerous scales present in these equations have to be discovered and singularities appear in the asymptotic process which yields deep compactness obstructions. Our vision is that the complexity inherent to models of biology can be enlightened by mathematical analysis and a classification of the possible asymptotic regimes.
However an enormous effort is needed to uncover the equations intimate mathematical structures, and bring them at the level of conceptual understanding they deserve being given the applications motivating these questions which range from medical science or neuroscience to cell biology.
Summary
The understanding of spatial, social and dynamical organization of large numbers of agents is presently a fundamental issue in modern science. ADORA focuses on problems motivated by biology because, more than anywhere else, access to precise and many data has opened the route to novel and complex biomathematical models. The problems we address are written in terms of nonlinear partial differential equations. The flux-limited Keller-Segel system, the integrate-and-fire Fokker-Planck equation, kinetic equations with internal state, nonlocal parabolic equations and constrained Hamilton-Jacobi equations are among examples of the equations under investigation.
The role of mathematics is not only to understand the analytical structure of these new problems, but it is also to explain the qualitative behavior of solutions and to quantify their properties. The challenge arises here because these goals should be achieved through a hierarchy of scales. Indeed, the problems under consideration share the common feature that the large scale behavior cannot be understood precisely without access to a hierarchy of finer scales, down to the individual behavior and sometimes its molecular determinants.
Major difficulties arise because the numerous scales present in these equations have to be discovered and singularities appear in the asymptotic process which yields deep compactness obstructions. Our vision is that the complexity inherent to models of biology can be enlightened by mathematical analysis and a classification of the possible asymptotic regimes.
However an enormous effort is needed to uncover the equations intimate mathematical structures, and bring them at the level of conceptual understanding they deserve being given the applications motivating these questions which range from medical science or neuroscience to cell biology.
Max ERC Funding
2 192 500 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym ADULT
Project Analysis of the Dark Universe through Lensing Tomography
Researcher (PI) Hendrik Hoekstra
Host Institution (HI) UNIVERSITEIT LEIDEN
Call Details Starting Grant (StG), PE9, ERC-2011-StG_20101014
Summary The discoveries that the expansion of the universe is accelerating due to an unknown “dark energy”
and that most of the matter is invisible, highlight our lack of understanding of the major constituents
of the universe. These surprising findings set the stage for research in cosmology at the start of the
21st century. The objective of this proposal is to advance observational constraints to a level where we can distinguish between physical mechanisms that aim to explain the properties of dark energy and the observed distribution of dark matter throughout the universe. We use a relatively new technique called weak gravitational lensing: the accurate measurement of correlations in the orientations of distant galaxies enables us to map the dark matter distribution directly and to extract the cosmological information that is encoded by the large-scale structure.
To study the dark universe we will analyse data from a new state-of-the-art imaging survey: the Kilo-
Degree Survey (KiDS) will cover 1500 square degrees in 9 filters. The combination of its large survey
area and the availability of exquisite photometric redshifts for the sources makes KiDS the first
project that can place interesting constraints on the dark energy equation-of-state using lensing data
alone. Combined with complementary results from Planck, our measurements will provide one of the
best views of the dark side of the universe before much larger space-based projects commence.
To reach the desired accuracy we need to carefully measure the shapes of distant background galaxies. We also need to account for any intrinsic alignments that arise due to tidal interactions, rather than through lensing. Reducing these observational and physical biases to negligible levels is a necessarystep to ensure the success of KiDS and an important part of our preparation for more challenging projects such as the European-led space mission Euclid.
Summary
The discoveries that the expansion of the universe is accelerating due to an unknown “dark energy”
and that most of the matter is invisible, highlight our lack of understanding of the major constituents
of the universe. These surprising findings set the stage for research in cosmology at the start of the
21st century. The objective of this proposal is to advance observational constraints to a level where we can distinguish between physical mechanisms that aim to explain the properties of dark energy and the observed distribution of dark matter throughout the universe. We use a relatively new technique called weak gravitational lensing: the accurate measurement of correlations in the orientations of distant galaxies enables us to map the dark matter distribution directly and to extract the cosmological information that is encoded by the large-scale structure.
To study the dark universe we will analyse data from a new state-of-the-art imaging survey: the Kilo-
Degree Survey (KiDS) will cover 1500 square degrees in 9 filters. The combination of its large survey
area and the availability of exquisite photometric redshifts for the sources makes KiDS the first
project that can place interesting constraints on the dark energy equation-of-state using lensing data
alone. Combined with complementary results from Planck, our measurements will provide one of the
best views of the dark side of the universe before much larger space-based projects commence.
To reach the desired accuracy we need to carefully measure the shapes of distant background galaxies. We also need to account for any intrinsic alignments that arise due to tidal interactions, rather than through lensing. Reducing these observational and physical biases to negligible levels is a necessarystep to ensure the success of KiDS and an important part of our preparation for more challenging projects such as the European-led space mission Euclid.
Max ERC Funding
1 316 880 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym AEROSOL
Project Astrochemistry of old stars:direct probing of unique chemical laboratories
Researcher (PI) Leen Katrien Els Decin
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Consolidator Grant (CoG), PE9, ERC-2014-CoG
Summary The gas and dust in the interstellar medium (ISM) drive the chemical evolution of galaxies, the formation of stars and planets, and the synthesis of complex prebiotic molecules. The prime birth places for this interstellar material are the winds of evolved (super)giant stars. These winds are unique chemical laboratories, in which a large variety of gas and dust species radially expand away from the star.
Recent progress on the observations of these winds has been impressive thanks to Herschel and ALMA. The next challenge is to unravel the wealth of chemical information contained in these data. This is an ambitious task since (1) a plethora of physical and chemical processes interact in a complex way, (2) laboratory data to interpret these interactions are lacking, and (3) theoretical tools to analyse the data do not meet current needs.
To boost the knowledge of the physics and chemistry characterizing these winds, I propose a world-leading multi-disciplinary project combining (1) high-quality data, (2) novel theoretical wind models, and (3) targeted laboratory experiments. The aim is to pinpoint the dominant chemical pathways, unravel the transition from gas-phase to dust species, elucidate the role of clumps on the overall wind structure, and study the reciprocal effect between various dynamical and chemical phenomena.
Now is the right time for this ambitious project thanks to the availability of (1) high-quality multi-wavelength data, including ALMA and Herschel data of the PI, (2) supercomputers enabling a homogeneous analysis of the data using sophisticated theoretical wind models, and (3) novel laboratory equipment to measure the gas-phase reaction rates of key species.
This project will have far-reaching impact on (1) the field of evolved stars, (2) the understanding of the chemical lifecycle of the ISM, (3) chemical studies of dynamically more complex systems, such as exoplanets, protostars, supernovae etc., and (4) it will guide new instrument development.
Summary
The gas and dust in the interstellar medium (ISM) drive the chemical evolution of galaxies, the formation of stars and planets, and the synthesis of complex prebiotic molecules. The prime birth places for this interstellar material are the winds of evolved (super)giant stars. These winds are unique chemical laboratories, in which a large variety of gas and dust species radially expand away from the star.
Recent progress on the observations of these winds has been impressive thanks to Herschel and ALMA. The next challenge is to unravel the wealth of chemical information contained in these data. This is an ambitious task since (1) a plethora of physical and chemical processes interact in a complex way, (2) laboratory data to interpret these interactions are lacking, and (3) theoretical tools to analyse the data do not meet current needs.
To boost the knowledge of the physics and chemistry characterizing these winds, I propose a world-leading multi-disciplinary project combining (1) high-quality data, (2) novel theoretical wind models, and (3) targeted laboratory experiments. The aim is to pinpoint the dominant chemical pathways, unravel the transition from gas-phase to dust species, elucidate the role of clumps on the overall wind structure, and study the reciprocal effect between various dynamical and chemical phenomena.
Now is the right time for this ambitious project thanks to the availability of (1) high-quality multi-wavelength data, including ALMA and Herschel data of the PI, (2) supercomputers enabling a homogeneous analysis of the data using sophisticated theoretical wind models, and (3) novel laboratory equipment to measure the gas-phase reaction rates of key species.
This project will have far-reaching impact on (1) the field of evolved stars, (2) the understanding of the chemical lifecycle of the ISM, (3) chemical studies of dynamically more complex systems, such as exoplanets, protostars, supernovae etc., and (4) it will guide new instrument development.
Max ERC Funding
2 605 897 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym AF and MSOGR
Project Automorphic Forms and Moduli Spaces of Galois Representations
Researcher (PI) Toby Gee
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Call Details Starting Grant (StG), PE1, ERC-2012-StG_20111012
Summary I propose to establish a research group to develop completely new tools in order to solve three important problems on the relationships between automorphic forms and Galois representations, which lie at the heart of the Langlands program. The first is to prove Serre’s conjecture for real quadratic fields. I will use automorphic induction to transfer the problem to U(4) over the rational numbers, where I will use automorphy lifting theorems and results on the weight part of Serre's conjecture that I established in my earlier work to reduce the problem to proving results in small weight and level. I will prove these base cases via integral p-adic Hodge theory and discriminant bounds.
The second is to develop a geometric theory of moduli spaces of mod p and p-adic Galois representations, and to use it to establish the Breuil–Mézard conjecture in arbitrary dimension, by reinterpreting the conjecture in geometric terms. This will transform the subject by building the first connections between the p-adic Langlands program and the geometric Langlands program, providing an entirely new world of techniques for number theorists. As a consequence of the Breuil-Mézard conjecture, I will be able to deduce far stronger automorphy lifting theorems (in arbitrary dimension) than those currently available.
The third is to completely determine the reduction mod p of certain two-dimensional crystalline representations, and as an application prove a strengthened version of the Gouvêa–Mazur conjecture. I will do this by means of explicit computations with the p-adic local Langlands correspondence for GL_2(Q_p), as well as by improving existing arguments which prove multiplicity one theorems via automorphy lifting theorems. This work will show that the existence of counterexamples to the Gouvêa-Mazur conjecture is due to a purely local phenomenon, and that when this local obstruction vanishes, far stronger conjectures of Buzzard on the slopes of the U_p operator hold.
Summary
I propose to establish a research group to develop completely new tools in order to solve three important problems on the relationships between automorphic forms and Galois representations, which lie at the heart of the Langlands program. The first is to prove Serre’s conjecture for real quadratic fields. I will use automorphic induction to transfer the problem to U(4) over the rational numbers, where I will use automorphy lifting theorems and results on the weight part of Serre's conjecture that I established in my earlier work to reduce the problem to proving results in small weight and level. I will prove these base cases via integral p-adic Hodge theory and discriminant bounds.
The second is to develop a geometric theory of moduli spaces of mod p and p-adic Galois representations, and to use it to establish the Breuil–Mézard conjecture in arbitrary dimension, by reinterpreting the conjecture in geometric terms. This will transform the subject by building the first connections between the p-adic Langlands program and the geometric Langlands program, providing an entirely new world of techniques for number theorists. As a consequence of the Breuil-Mézard conjecture, I will be able to deduce far stronger automorphy lifting theorems (in arbitrary dimension) than those currently available.
The third is to completely determine the reduction mod p of certain two-dimensional crystalline representations, and as an application prove a strengthened version of the Gouvêa–Mazur conjecture. I will do this by means of explicit computations with the p-adic local Langlands correspondence for GL_2(Q_p), as well as by improving existing arguments which prove multiplicity one theorems via automorphy lifting theorems. This work will show that the existence of counterexamples to the Gouvêa-Mazur conjecture is due to a purely local phenomenon, and that when this local obstruction vanishes, far stronger conjectures of Buzzard on the slopes of the U_p operator hold.
Max ERC Funding
1 131 339 €
Duration
Start date: 2012-10-01, End date: 2017-09-30
Project acronym AFMIDMOA
Project "Applying Fundamental Mathematics in Discrete Mathematics, Optimization, and Algorithmics"
Researcher (PI) Alexander Schrijver
Host Institution (HI) UNIVERSITEIT VAN AMSTERDAM
Call Details Advanced Grant (AdG), PE1, ERC-2013-ADG
Summary "This proposal aims at strengthening the connections between more fundamentally oriented areas of mathematics like algebra, geometry, analysis, and topology, and the more applied oriented and more recently emerging disciplines of discrete mathematics, optimization, and algorithmics.
The overall goal of the project is to obtain, with methods from fundamental mathematics, new effective tools to unravel the complexity of structures like graphs, networks, codes, knots, polynomials, and tensors, and to get a grip on such complex structures by new efficient characterizations, sharper bounds, and faster algorithms.
In the last few years, there have been several new developments where methods from representation theory, invariant theory, algebraic geometry, measure theory, functional analysis, and topology found new applications in discrete mathematics and optimization, both theoretically and algorithmically. Among the typical application areas are networks, coding, routing, timetabling, statistical and quantum physics, and computer science.
The project focuses in particular on:
A. Understanding partition functions with invariant theory and algebraic geometry
B. Graph limits, regularity, Hilbert spaces, and low rank approximation of polynomials
C. Reducing complexity in optimization by exploiting symmetry with representation theory
D. Reducing complexity in discrete optimization by homotopy and cohomology
These research modules are interconnected by themes like symmetry, regularity, and complexity, and by common methods from algebra, analysis, geometry, and topology."
Summary
"This proposal aims at strengthening the connections between more fundamentally oriented areas of mathematics like algebra, geometry, analysis, and topology, and the more applied oriented and more recently emerging disciplines of discrete mathematics, optimization, and algorithmics.
The overall goal of the project is to obtain, with methods from fundamental mathematics, new effective tools to unravel the complexity of structures like graphs, networks, codes, knots, polynomials, and tensors, and to get a grip on such complex structures by new efficient characterizations, sharper bounds, and faster algorithms.
In the last few years, there have been several new developments where methods from representation theory, invariant theory, algebraic geometry, measure theory, functional analysis, and topology found new applications in discrete mathematics and optimization, both theoretically and algorithmically. Among the typical application areas are networks, coding, routing, timetabling, statistical and quantum physics, and computer science.
The project focuses in particular on:
A. Understanding partition functions with invariant theory and algebraic geometry
B. Graph limits, regularity, Hilbert spaces, and low rank approximation of polynomials
C. Reducing complexity in optimization by exploiting symmetry with representation theory
D. Reducing complexity in discrete optimization by homotopy and cohomology
These research modules are interconnected by themes like symmetry, regularity, and complexity, and by common methods from algebra, analysis, geometry, and topology."
Max ERC Funding
2 001 598 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym AfricanNeo
Project The African Neolithic: A genetic perspective
Researcher (PI) Carina SCHLEBUSCH
Host Institution (HI) UPPSALA UNIVERSITET
Call Details Starting Grant (StG), SH6, ERC-2017-STG
Summary The spread of farming practices in various parts of the world had a marked influence on how humans live today and how we are distributed around the globe. Around 10,000 years ago, warmer conditions lead to population increases, coinciding with the invention of farming in several places around the world. Archaeological evidence attest to the spread of these practices to neighboring regions. In many cases this lead to whole continents being converted from hunter-gatherer to farming societies. It is however difficult to see from archaeological records if only the farming culture spread to other places or whether the farming people themselves migrated. Investigating patterns of genetic variation for farming populations and for remaining hunter-gatherer groups can help to resolve questions on population movements co-occurring with the spread of farming practices. It can further shed light on the routes of migration and dates when migrants arrived.
The spread of farming to Europe has been thoroughly investigated in the fields of archaeology, linguistics and genetics, while on other continents these events have been less investigated. In Africa, mainly linguistic and archaeological studies have attempted to elucidate the spread of farming and herding practices. I propose to investigate the movement of farmer and pastoral groups in Africa, by typing densely spaced genome-wide variant positions in a large number of African populations. The data will be used to infer how farming and pastoralism was introduced to various regions, where the incoming people originated from and when these (potential) population movements occurred. Through this study, the Holocene history of Africa will be revealed and placed into a global context of migration, mobility and cultural transitions. Additionally the study will give due credence to one of the largest Neolithic expansion events, the Bantu-expansion, which caused a pronounced change in the demographic landscape of the African continent
Summary
The spread of farming practices in various parts of the world had a marked influence on how humans live today and how we are distributed around the globe. Around 10,000 years ago, warmer conditions lead to population increases, coinciding with the invention of farming in several places around the world. Archaeological evidence attest to the spread of these practices to neighboring regions. In many cases this lead to whole continents being converted from hunter-gatherer to farming societies. It is however difficult to see from archaeological records if only the farming culture spread to other places or whether the farming people themselves migrated. Investigating patterns of genetic variation for farming populations and for remaining hunter-gatherer groups can help to resolve questions on population movements co-occurring with the spread of farming practices. It can further shed light on the routes of migration and dates when migrants arrived.
The spread of farming to Europe has been thoroughly investigated in the fields of archaeology, linguistics and genetics, while on other continents these events have been less investigated. In Africa, mainly linguistic and archaeological studies have attempted to elucidate the spread of farming and herding practices. I propose to investigate the movement of farmer and pastoral groups in Africa, by typing densely spaced genome-wide variant positions in a large number of African populations. The data will be used to infer how farming and pastoralism was introduced to various regions, where the incoming people originated from and when these (potential) population movements occurred. Through this study, the Holocene history of Africa will be revealed and placed into a global context of migration, mobility and cultural transitions. Additionally the study will give due credence to one of the largest Neolithic expansion events, the Bantu-expansion, which caused a pronounced change in the demographic landscape of the African continent
Max ERC Funding
1 500 000 €
Duration
Start date: 2017-11-01, End date: 2022-10-31
Project acronym Aftermath
Project THE AFTERMATH OF THE EAST ASIAN WAR OF 1592-1598.
Researcher (PI) Rebekah CLEMENTS
Host Institution (HI) UNIVERSITAT AUTONOMA DE BARCELONA
Call Details Starting Grant (StG), SH6, ERC-2017-STG
Summary Aftermath seeks to understand the legacy of the East Asian War of 1592-1598. This conflict involved over 500,000 combatants from Japan, China, and Korea; up to 100,000 Korean civilians were abducted to Japan. The war caused momentous demographic upheaval and widespread destruction, but also had long-lasting cultural impact as a result of the removal to Japan of Korean technology and skilled labourers. The conflict and its aftermath bear striking parallels to events in East Asia during World War 2, and memories of the 16th century war remain deeply resonant in the region. However, the war and its immediate aftermath are also significant because they occurred at the juncture of periods often characterized as “medieval” and “early modern” in the East Asian case. What were the implications for the social, economic, and cultural contours of early modern East Asia? What can this conflict tell us about war “aftermath” across historical periods and about such periodization itself? There is little Western scholarship on the war and few studies in any language cross linguistic, disciplinary, and national boundaries to achieve a regional perspective that reflects the interconnected history of East Asia. Aftermath will radically alter our understanding of the region’s history by providing the first analysis of the state of East Asia as a result of the war. The focus will be on the period up to the middle of the 17th century, but not precluding ongoing effects. The team, with expertise covering Japan, Korea, and China, will investigate three themes: the movement of people and demographic change, the impact on the natural environment, and technological diffusion. The project will be the first large scale investigation to use Japanese, Korean, and Chinese sources to understand the war’s aftermath. It will broaden understandings of the early modern world, and push the boundaries of war legacy studies by exploring the meanings of “aftermath” in the early modern East Asian context.
Summary
Aftermath seeks to understand the legacy of the East Asian War of 1592-1598. This conflict involved over 500,000 combatants from Japan, China, and Korea; up to 100,000 Korean civilians were abducted to Japan. The war caused momentous demographic upheaval and widespread destruction, but also had long-lasting cultural impact as a result of the removal to Japan of Korean technology and skilled labourers. The conflict and its aftermath bear striking parallels to events in East Asia during World War 2, and memories of the 16th century war remain deeply resonant in the region. However, the war and its immediate aftermath are also significant because they occurred at the juncture of periods often characterized as “medieval” and “early modern” in the East Asian case. What were the implications for the social, economic, and cultural contours of early modern East Asia? What can this conflict tell us about war “aftermath” across historical periods and about such periodization itself? There is little Western scholarship on the war and few studies in any language cross linguistic, disciplinary, and national boundaries to achieve a regional perspective that reflects the interconnected history of East Asia. Aftermath will radically alter our understanding of the region’s history by providing the first analysis of the state of East Asia as a result of the war. The focus will be on the period up to the middle of the 17th century, but not precluding ongoing effects. The team, with expertise covering Japan, Korea, and China, will investigate three themes: the movement of people and demographic change, the impact on the natural environment, and technological diffusion. The project will be the first large scale investigation to use Japanese, Korean, and Chinese sources to understand the war’s aftermath. It will broaden understandings of the early modern world, and push the boundaries of war legacy studies by exploring the meanings of “aftermath” in the early modern East Asian context.
Max ERC Funding
1 444 980 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym AGALT
Project Asymptotic Geometric Analysis and Learning Theory
Researcher (PI) Shahar Mendelson
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Starting Grant (StG), PE1, ERC-2007-StG
Summary In a typical learning problem one tries to approximate an unknown function by a function from a given class using random data, sampled according to an unknown measure. In this project we will be interested in parameters that govern the complexity of a learning problem. It turns out that this complexity is determined by the geometry of certain sets in high dimension that are connected to the given class (random coordinate projections of the class). Thus, one has to understand the structure of these sets as a function of the dimension - which is given by the cardinality of the random sample. The resulting analysis leads to many theoretical questions in Asymptotic Geometric Analysis, Probability (most notably, Empirical Processes Theory) and Combinatorics, which are of independent interest beyond the application to Learning Theory. Our main goal is to describe the role of various complexity parameters involved in a learning problem, to analyze the connections between them and to investigate the way they determine the geometry of the relevant high dimensional sets. Some of the questions we intend to tackle are well known open problems and making progress towards their solution will have a significant theoretical impact. Moreover, this project should lead to a more complete theory of learning and is likely to have some practical impact, for example, in the design of more efficient learning algorithms.
Summary
In a typical learning problem one tries to approximate an unknown function by a function from a given class using random data, sampled according to an unknown measure. In this project we will be interested in parameters that govern the complexity of a learning problem. It turns out that this complexity is determined by the geometry of certain sets in high dimension that are connected to the given class (random coordinate projections of the class). Thus, one has to understand the structure of these sets as a function of the dimension - which is given by the cardinality of the random sample. The resulting analysis leads to many theoretical questions in Asymptotic Geometric Analysis, Probability (most notably, Empirical Processes Theory) and Combinatorics, which are of independent interest beyond the application to Learning Theory. Our main goal is to describe the role of various complexity parameters involved in a learning problem, to analyze the connections between them and to investigate the way they determine the geometry of the relevant high dimensional sets. Some of the questions we intend to tackle are well known open problems and making progress towards their solution will have a significant theoretical impact. Moreover, this project should lead to a more complete theory of learning and is likely to have some practical impact, for example, in the design of more efficient learning algorithms.
Max ERC Funding
750 000 €
Duration
Start date: 2009-03-01, End date: 2014-02-28
Project acronym Age Asymmetry
Project Age-Selective Segregation of Organelles
Researcher (PI) Pekka Aleksi Katajisto
Host Institution (HI) HELSINGIN YLIOPISTO
Call Details Starting Grant (StG), LS3, ERC-2015-STG
Summary Our tissues are constantly renewed by stem cells. Over time, stem cells accumulate cellular damage that will compromise renewal and results in aging. As stem cells can divide asymmetrically, segregation of harmful factors to the differentiating daughter cell could be one possible mechanism for slowing damage accumulation in the stem cell. However, current evidence for such mechanisms comes mainly from analogous findings in yeast, and studies have concentrated only on few types of cellular damage.
I hypothesize that the chronological age of a subcellular component is a proxy for all the damage it has sustained. In order to secure regeneration, mammalian stem cells may therefore specifically sort old cellular material asymmetrically. To study this, I have developed a novel strategy and tools to address the age-selective segregation of any protein in stem cell division. Using this approach, I have already discovered that stem-like cells of the human mammary epithelium indeed apportion chronologically old mitochondria asymmetrically in cell division, and enrich old mitochondria to the differentiating daughter cell. We will investigate the mechanisms underlying this novel phenomenon, and its relevance for mammalian aging.
We will first identify how old and young mitochondria differ, and how stem cells recognize them to facilitate the asymmetric segregation. Next, we will analyze the extent of asymmetric age-selective segregation by targeting several other subcellular compartments in a stem cell division. Finally, we will determine whether the discovered age-selective segregation is a general property of stem cell in vivo, and it's functional relevance for maintenance of stem cells and tissue regeneration. Our discoveries may open new possibilities to target aging associated functional decline by induction of asymmetric age-selective organelle segregation.
Summary
Our tissues are constantly renewed by stem cells. Over time, stem cells accumulate cellular damage that will compromise renewal and results in aging. As stem cells can divide asymmetrically, segregation of harmful factors to the differentiating daughter cell could be one possible mechanism for slowing damage accumulation in the stem cell. However, current evidence for such mechanisms comes mainly from analogous findings in yeast, and studies have concentrated only on few types of cellular damage.
I hypothesize that the chronological age of a subcellular component is a proxy for all the damage it has sustained. In order to secure regeneration, mammalian stem cells may therefore specifically sort old cellular material asymmetrically. To study this, I have developed a novel strategy and tools to address the age-selective segregation of any protein in stem cell division. Using this approach, I have already discovered that stem-like cells of the human mammary epithelium indeed apportion chronologically old mitochondria asymmetrically in cell division, and enrich old mitochondria to the differentiating daughter cell. We will investigate the mechanisms underlying this novel phenomenon, and its relevance for mammalian aging.
We will first identify how old and young mitochondria differ, and how stem cells recognize them to facilitate the asymmetric segregation. Next, we will analyze the extent of asymmetric age-selective segregation by targeting several other subcellular compartments in a stem cell division. Finally, we will determine whether the discovered age-selective segregation is a general property of stem cell in vivo, and it's functional relevance for maintenance of stem cells and tissue regeneration. Our discoveries may open new possibilities to target aging associated functional decline by induction of asymmetric age-selective organelle segregation.
Max ERC Funding
1 500 000 €
Duration
Start date: 2016-05-01, End date: 2021-04-30
Project acronym AGELESS
Project Comparative genomics / ‘wildlife’ transcriptomics uncovers the mechanisms of halted ageing in mammals
Researcher (PI) Emma Teeling
Host Institution (HI) UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN
Call Details Starting Grant (StG), LS2, ERC-2012-StG_20111109
Summary "Ageing is the gradual and irreversible breakdown of living systems associated with the advancement of time, which leads to an increase in vulnerability and eventual mortality. Despite recent advances in ageing research, the intrinsic complexity of the ageing process has prevented a full understanding of this process, therefore, ageing remains a grand challenge in contemporary biology. In AGELESS, we will tackle this challenge by uncovering the molecular mechanisms of halted ageing in a unique model system, the bats. Bats are the longest-lived mammals relative to their body size, and defy the ‘rate-of-living’ theories as they use twice as much the energy as other species of considerable size, but live far longer. This suggests that bats have some underlying mechanisms that may explain their exceptional longevity. In AGELESS, we will identify the molecular mechanisms that enable mammals to achieve extraordinary longevity, using state-of-the-art comparative genomic methodologies focused on bats. We will identify, using population transcriptomics and telomere/mtDNA genomics, the molecular changes that occur in an ageing wild population of bats to uncover how bats ‘age’ so slowly compared with other mammals. In silico whole genome analyses, field based ageing transcriptomic data, mtDNA and telomeric studies will be integrated and analysed using a networks approach, to ascertain how these systems interact to halt ageing. For the first time, we will be able to utilize the diversity seen within nature to identify key molecular targets and regions that regulate and control ageing in mammals. AGELESS will provide a deeper understanding of the causal mechanisms of ageing, potentially uncovering the crucial molecular pathways that can be modified to halt, alleviate and perhaps even reverse this process in man."
Summary
"Ageing is the gradual and irreversible breakdown of living systems associated with the advancement of time, which leads to an increase in vulnerability and eventual mortality. Despite recent advances in ageing research, the intrinsic complexity of the ageing process has prevented a full understanding of this process, therefore, ageing remains a grand challenge in contemporary biology. In AGELESS, we will tackle this challenge by uncovering the molecular mechanisms of halted ageing in a unique model system, the bats. Bats are the longest-lived mammals relative to their body size, and defy the ‘rate-of-living’ theories as they use twice as much the energy as other species of considerable size, but live far longer. This suggests that bats have some underlying mechanisms that may explain their exceptional longevity. In AGELESS, we will identify the molecular mechanisms that enable mammals to achieve extraordinary longevity, using state-of-the-art comparative genomic methodologies focused on bats. We will identify, using population transcriptomics and telomere/mtDNA genomics, the molecular changes that occur in an ageing wild population of bats to uncover how bats ‘age’ so slowly compared with other mammals. In silico whole genome analyses, field based ageing transcriptomic data, mtDNA and telomeric studies will be integrated and analysed using a networks approach, to ascertain how these systems interact to halt ageing. For the first time, we will be able to utilize the diversity seen within nature to identify key molecular targets and regions that regulate and control ageing in mammals. AGELESS will provide a deeper understanding of the causal mechanisms of ageing, potentially uncovering the crucial molecular pathways that can be modified to halt, alleviate and perhaps even reverse this process in man."
Max ERC Funding
1 499 768 €
Duration
Start date: 2013-01-01, End date: 2017-12-31
Project acronym Agglomerates
Project Infinite Protein Self-Assembly in Health and Disease
Researcher (PI) Emmanuel Doram LEVY
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Consolidator Grant (CoG), LS2, ERC-2018-COG
Summary Understanding how proteins respond to mutations is of paramount importance to biology and disease. While protein stability and misfolding have been instrumental in rationalizing the impact of mutations, we recently discovered that an alternative route is also frequent, where mutations at the surface of symmetric proteins trigger novel self-interactions that lead to infinite self-assembly. This mechanism can be involved in disease, as in sickle-cell anemia, but may also serve in adaptation. Importantly, it differs fundamentally from aggregation, because misfolding does not drive it. Thus, we term it “agglomeration”. The ease with which agglomeration can occur, even by single point mutations, shifts the paradigm of how quickly new protein assemblies can emerge, both in health and disease. This prompts us to determine the basic principles of protein agglomeration and explore its implications in cell physiology and human disease.
We propose an interdisciplinary research program bridging atomic and cellular scales to explore agglomeration in three aims: (i) Map the landscape of protein agglomeration in response to mutation in endogenous yeast proteins; (ii) Characterize how yeast physiology impacts agglomeration by changes in gene expression or cell state, and, conversely, how protein agglomerates impact yeast fitness. (iii) Analyze agglomeration in relation to human disease via two approaches. First, by predicting single nucleotide polymorphisms that trigger agglomeration, prioritizing them using knowledge from Aims 1 & 2, and characterizing them experimentally. Second, by providing a proof-of-concept that agglomeration can be exploited in drug design, whereby drugs induce its formation, like mutations can do.
Overall, through this research, we aim to establish agglomeration as a paradigm for protein assembly, with implications for our understanding of evolution, physiology, and disease.
Summary
Understanding how proteins respond to mutations is of paramount importance to biology and disease. While protein stability and misfolding have been instrumental in rationalizing the impact of mutations, we recently discovered that an alternative route is also frequent, where mutations at the surface of symmetric proteins trigger novel self-interactions that lead to infinite self-assembly. This mechanism can be involved in disease, as in sickle-cell anemia, but may also serve in adaptation. Importantly, it differs fundamentally from aggregation, because misfolding does not drive it. Thus, we term it “agglomeration”. The ease with which agglomeration can occur, even by single point mutations, shifts the paradigm of how quickly new protein assemblies can emerge, both in health and disease. This prompts us to determine the basic principles of protein agglomeration and explore its implications in cell physiology and human disease.
We propose an interdisciplinary research program bridging atomic and cellular scales to explore agglomeration in three aims: (i) Map the landscape of protein agglomeration in response to mutation in endogenous yeast proteins; (ii) Characterize how yeast physiology impacts agglomeration by changes in gene expression or cell state, and, conversely, how protein agglomerates impact yeast fitness. (iii) Analyze agglomeration in relation to human disease via two approaches. First, by predicting single nucleotide polymorphisms that trigger agglomeration, prioritizing them using knowledge from Aims 1 & 2, and characterizing them experimentally. Second, by providing a proof-of-concept that agglomeration can be exploited in drug design, whereby drugs induce its formation, like mutations can do.
Overall, through this research, we aim to establish agglomeration as a paradigm for protein assembly, with implications for our understanding of evolution, physiology, and disease.
Max ERC Funding
2 574 819 €
Duration
Start date: 2019-04-01, End date: 2024-03-31
Project acronym AgricUrb
Project The Agricultural Origins of Urban Civilization
Researcher (PI) Amy Marie Bogaard
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Starting Grant (StG), SH6, ERC-2012-StG_20111124
Summary The establishment of farming is a pivotal moment in human history, setting the stage for the emergence of class-based society and urbanization. Monolithic views of the nature and development of early agriculture, however, have prevented clear understanding of how exactly farming fuelled, shaped and sustained the emergence of complex societies. A breakthrough in archaeological approach is needed to determine the actual roles of farming in the emergence of social complexity. The methodology required must push beyond conventional interpretation of the most direct farming evidence – archaeobotanical remains of crops and associated arable weeds – to reconstruct not only what crops were grown, but also how, where and why farming was practised. Addressing these related aspects, in contexts ranging from early agricultural villages to some of the world’s earliest cities, would provide the key to unraveling the contribution of farming to the development of lasting social inequalities. The research proposed here takes a new interdisciplinary approach combining archaeobotany, plant stable isotope chemistry and functional plant ecology, building on groundwork laid in previous research by the applicant. These approaches will be applied to two relatively well researched areas, western Asia and Europe, where a series of sites that chart multiple pathways to early complex societies offer rich plant and other bioarchaeological assemblages. The proposed project will set a wholly new standard of insight into early farming and its relationship with early civilization, facilitating similar approaches in other parts of the world and the construction of comparative perspectives on the global significance of early agriculture in social development.
Summary
The establishment of farming is a pivotal moment in human history, setting the stage for the emergence of class-based society and urbanization. Monolithic views of the nature and development of early agriculture, however, have prevented clear understanding of how exactly farming fuelled, shaped and sustained the emergence of complex societies. A breakthrough in archaeological approach is needed to determine the actual roles of farming in the emergence of social complexity. The methodology required must push beyond conventional interpretation of the most direct farming evidence – archaeobotanical remains of crops and associated arable weeds – to reconstruct not only what crops were grown, but also how, where and why farming was practised. Addressing these related aspects, in contexts ranging from early agricultural villages to some of the world’s earliest cities, would provide the key to unraveling the contribution of farming to the development of lasting social inequalities. The research proposed here takes a new interdisciplinary approach combining archaeobotany, plant stable isotope chemistry and functional plant ecology, building on groundwork laid in previous research by the applicant. These approaches will be applied to two relatively well researched areas, western Asia and Europe, where a series of sites that chart multiple pathways to early complex societies offer rich plant and other bioarchaeological assemblages. The proposed project will set a wholly new standard of insight into early farming and its relationship with early civilization, facilitating similar approaches in other parts of the world and the construction of comparative perspectives on the global significance of early agriculture in social development.
Max ERC Funding
1 199 647 €
Duration
Start date: 2013-02-01, End date: 2017-01-31
Project acronym AGRIWESTMED
Project Origins and spread of agriculture in the south-western Mediterranean region
Researcher (PI) Maria Leonor Peña Chocarro
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Advanced Grant (AdG), SH6, ERC-2008-AdG
Summary This project focuses on one of the most fascinating events of the long history of the human species: the origins and spread of agriculture. Research over the past 40 years has provided an invaluable dataset on crop domestication and the spread of agriculture into Europe. However, despite the enormous advances in research there are important areas that remain almost unexplored, some of immense interest. This is the case of the western Mediterranean region from where our knowledge is still limited (Iberian Peninsula) or almost inexistent (northern Morocco). The last few years have witnessed a considerable increase in archaeobotany and the effort of a group of Spanish researchers working together in different aspects of agriculture has started to produce the first results. My proposal will approach the study of the arrival of agriculture to the western Mediterranean by exploring different interrelated research areas. The project involves the
application of different techniques (analysis of charred plant remains, pollen and non-pollen microfossils, phytoliths, micro-wear analyses, isotopes, soil micromorphology, genetics, and ethnoarchaeology) which will help to define the emergence and spread of agriculture in the area, its likely place of origin, its main technological attributes as well as the range crop husbandry practices carried out. The interaction between the different approaches and the methodologies involved will allow achieving a greater understanding of the type of agriculture that characterized the first farming communities in the most south-western part of Europe.
Summary
This project focuses on one of the most fascinating events of the long history of the human species: the origins and spread of agriculture. Research over the past 40 years has provided an invaluable dataset on crop domestication and the spread of agriculture into Europe. However, despite the enormous advances in research there are important areas that remain almost unexplored, some of immense interest. This is the case of the western Mediterranean region from where our knowledge is still limited (Iberian Peninsula) or almost inexistent (northern Morocco). The last few years have witnessed a considerable increase in archaeobotany and the effort of a group of Spanish researchers working together in different aspects of agriculture has started to produce the first results. My proposal will approach the study of the arrival of agriculture to the western Mediterranean by exploring different interrelated research areas. The project involves the
application of different techniques (analysis of charred plant remains, pollen and non-pollen microfossils, phytoliths, micro-wear analyses, isotopes, soil micromorphology, genetics, and ethnoarchaeology) which will help to define the emergence and spread of agriculture in the area, its likely place of origin, its main technological attributes as well as the range crop husbandry practices carried out. The interaction between the different approaches and the methodologies involved will allow achieving a greater understanding of the type of agriculture that characterized the first farming communities in the most south-western part of Europe.
Max ERC Funding
1 545 169 €
Duration
Start date: 2009-04-01, End date: 2013-03-31
Project acronym AHRIMMUNITY
Project The influence of Aryl hydrocarbon receptor ligands on protective and pathological immune responses
Researcher (PI) Brigitta Stockinger
Host Institution (HI) MEDICAL RESEARCH COUNCIL
Call Details Advanced Grant (AdG), LS6, ERC-2008-AdG
Summary The Aryl hydrocarbon receptor is an evolutionary conserved widely expressed transcription factor that mediates the toxicity of a substantial variety of exogenous toxins, but is also stimulated by endogenous physiological ligands. While it is known that this receptor mediates the toxicity of dioxin, this is unlikely to be its physiological function. We have recently identified selective expression of AhR in the Th17 subset of effector CD4 T cells. Ligation of AhR by a candidate endogenous ligand (FICZ) which is a UV metabolite of tryptophan causes expansion of Th17 cells and the induction of IL-22 production. As a consequence, AhR ligation will exacerbate autoimmune diseases such as experimental autoimmune encephalomyelitis. Little is known so far about the impact of AhR ligands on IL-17/IL-22 mediated immune defense functions. IL-22 is considered a pro-inflammatory Th17 cytokine, which is involved in the etiology of psoriasis, but it has also been shown to be a survival factor for epithelial cells. AhR is polymorphic and defined as high or low affinity receptor for dioxin leading to the classification of high and low responder mouse strains based on defined mutations. In humans similar polymorphisms exist and although on the whole human AhR is thought to be of low affinity in humans, there are identified mutations that confer high responder status. No correlations have been made with Th17 mediated immune responses in mice and humans. This study aims to investigate the role of AhR ligands and polymorphisms in autoimmunity as well as protective immune responses using both mouse models and human samples from normal controls as well as psoriasis patients.
Summary
The Aryl hydrocarbon receptor is an evolutionary conserved widely expressed transcription factor that mediates the toxicity of a substantial variety of exogenous toxins, but is also stimulated by endogenous physiological ligands. While it is known that this receptor mediates the toxicity of dioxin, this is unlikely to be its physiological function. We have recently identified selective expression of AhR in the Th17 subset of effector CD4 T cells. Ligation of AhR by a candidate endogenous ligand (FICZ) which is a UV metabolite of tryptophan causes expansion of Th17 cells and the induction of IL-22 production. As a consequence, AhR ligation will exacerbate autoimmune diseases such as experimental autoimmune encephalomyelitis. Little is known so far about the impact of AhR ligands on IL-17/IL-22 mediated immune defense functions. IL-22 is considered a pro-inflammatory Th17 cytokine, which is involved in the etiology of psoriasis, but it has also been shown to be a survival factor for epithelial cells. AhR is polymorphic and defined as high or low affinity receptor for dioxin leading to the classification of high and low responder mouse strains based on defined mutations. In humans similar polymorphisms exist and although on the whole human AhR is thought to be of low affinity in humans, there are identified mutations that confer high responder status. No correlations have been made with Th17 mediated immune responses in mice and humans. This study aims to investigate the role of AhR ligands and polymorphisms in autoimmunity as well as protective immune responses using both mouse models and human samples from normal controls as well as psoriasis patients.
Max ERC Funding
1 242 352 €
Duration
Start date: 2009-02-01, End date: 2014-01-31
Project acronym AIDA
Project An Illumination of the Dark Ages: modeling reionization and interpreting observations
Researcher (PI) Andrei Albert Mesinger
Host Institution (HI) SCUOLA NORMALE SUPERIORE
Call Details Starting Grant (StG), PE9, ERC-2014-STG
Summary "Understanding the dawn of the first galaxies and how their light permeated the early Universe is at the very frontier of modern astrophysical cosmology. Generous resources, including ambitions observational programs, are being devoted to studying these epochs of Cosmic Dawn (CD) and Reionization (EoR). In order to interpret these observations, we propose to build on our widely-used, semi-numeric simulation tool, 21cmFAST, and apply it to observations. Using sub-grid, semi-analytic models, we will incorporate additional physical processes governing the evolution of sources and sinks of ionizing photons. The resulting state-of-the-art simulations will be well poised to interpret topical observations of quasar spectra and the cosmic 21cm signal. They would be both physically-motivated and fast, allowing us to rapidly explore astrophysical parameter space. We will statistically quantify the resulting degeneracies and constraints, providing a robust answer to the question, ""What can we learn from EoR/CD observations?"" As an end goal, these investigations will help us understand when the first generations of galaxies formed, how they drove the EoR, and what are the associated large-scale observational signatures."
Summary
"Understanding the dawn of the first galaxies and how their light permeated the early Universe is at the very frontier of modern astrophysical cosmology. Generous resources, including ambitions observational programs, are being devoted to studying these epochs of Cosmic Dawn (CD) and Reionization (EoR). In order to interpret these observations, we propose to build on our widely-used, semi-numeric simulation tool, 21cmFAST, and apply it to observations. Using sub-grid, semi-analytic models, we will incorporate additional physical processes governing the evolution of sources and sinks of ionizing photons. The resulting state-of-the-art simulations will be well poised to interpret topical observations of quasar spectra and the cosmic 21cm signal. They would be both physically-motivated and fast, allowing us to rapidly explore astrophysical parameter space. We will statistically quantify the resulting degeneracies and constraints, providing a robust answer to the question, ""What can we learn from EoR/CD observations?"" As an end goal, these investigations will help us understand when the first generations of galaxies formed, how they drove the EoR, and what are the associated large-scale observational signatures."
Max ERC Funding
1 468 750 €
Duration
Start date: 2015-05-01, End date: 2021-01-31
Project acronym AIM2 INFLAMMASOME
Project Cytosolic recognition of foreign nucleic acids: Molecular and functional characterization of AIM2, a central player in DNA-triggered inflammasome activation
Researcher (PI) Veit Hornung
Host Institution (HI) UNIVERSITAETSKLINIKUM BONN
Call Details Starting Grant (StG), LS6, ERC-2009-StG
Summary Host cytokines, chemokines and type I IFNs are critical effectors of the innate immune response to viral and bacterial pathogens. Several classes of germ-line encoded pattern recognition receptors have been identified, which sense non-self nucleic acids and trigger these responses. Recently NLRP-3, a member of the NOD-like receptor (NLR) family, has been shown to sense endogenous danger signals, environmental insults and the DNA viruses adenovirus and HSV. Activation of NLRP-3 induces the formation of a large multiprotein complex in cells termed inflammasome , which controls the activity of pro-caspase-1 and the maturation of pro-IL-1² and pro-IL18 into their active forms. NLRP-3, however, does not regulate these responses to double stranded cytosolic DNA. We identified the cytosolic protein AIM2 as the missing receptor for cytosolic DNA. AIM2 contains a HIN200 domain, which binds to DNA and a pyrin domain, which associates with the adapter molecule ASC to activate both NF-ºB and caspase-1. Knock down of AIM2 down-regulates caspase-1-mediated IL-1² responses following DNA stimulation or vaccinia virus infection. Collectively, these observations demonstrate that AIM2 forms an inflammasome with the DNA ligand and ASC to activate caspase-1. Our underlying hypothesis for this proposal is that AIM2 plays a central role in host-defence to cytosolic microbial pathogens and also in DNA-triggered autoimmunity. The goals of this research proposal are to further characterize the DNA ligand for AIM2, to explore the molecular mechanisms of AIM2 activation, to define the contribution of AIM2 to host-defence against viral and bacterial pathogens and to assess its function in nucleic acid triggered autoimmune disease. The characterization of AIM2 and its role in innate immunity could open new avenues in the advancement of immunotherapy and treatment of autoimmune disease.
Summary
Host cytokines, chemokines and type I IFNs are critical effectors of the innate immune response to viral and bacterial pathogens. Several classes of germ-line encoded pattern recognition receptors have been identified, which sense non-self nucleic acids and trigger these responses. Recently NLRP-3, a member of the NOD-like receptor (NLR) family, has been shown to sense endogenous danger signals, environmental insults and the DNA viruses adenovirus and HSV. Activation of NLRP-3 induces the formation of a large multiprotein complex in cells termed inflammasome , which controls the activity of pro-caspase-1 and the maturation of pro-IL-1² and pro-IL18 into their active forms. NLRP-3, however, does not regulate these responses to double stranded cytosolic DNA. We identified the cytosolic protein AIM2 as the missing receptor for cytosolic DNA. AIM2 contains a HIN200 domain, which binds to DNA and a pyrin domain, which associates with the adapter molecule ASC to activate both NF-ºB and caspase-1. Knock down of AIM2 down-regulates caspase-1-mediated IL-1² responses following DNA stimulation or vaccinia virus infection. Collectively, these observations demonstrate that AIM2 forms an inflammasome with the DNA ligand and ASC to activate caspase-1. Our underlying hypothesis for this proposal is that AIM2 plays a central role in host-defence to cytosolic microbial pathogens and also in DNA-triggered autoimmunity. The goals of this research proposal are to further characterize the DNA ligand for AIM2, to explore the molecular mechanisms of AIM2 activation, to define the contribution of AIM2 to host-defence against viral and bacterial pathogens and to assess its function in nucleic acid triggered autoimmune disease. The characterization of AIM2 and its role in innate immunity could open new avenues in the advancement of immunotherapy and treatment of autoimmune disease.
Max ERC Funding
1 727 920 €
Duration
Start date: 2009-12-01, End date: 2014-11-30
Project acronym ALBUGON
Project Genomics and effectoromics to understand defence suppression and disease resistance in Arabidopsis-Albugo candida interactions
Researcher (PI) Jonathan Jones
Host Institution (HI) THE SAINSBURY LABORATORY
Call Details Advanced Grant (AdG), LS6, ERC-2008-AdG
Summary This project focuses on two questions about host/parasite interactions: how do biotrophic plant pathogens suppress host defence? and, what is the basis for pathogen specialization on specific host species? A broadly accepted model explains resistance and susceptibility to plant pathogens. First, pathogens make conserved molecules ( PAMPS ) such as flagellin, that plants detect via cell surface receptors, leading to PAMP-Triggered Immunity (PTI). Second, pathogens make effectors that suppress PTI. Third, plants carry 100s of Resistance (R) genes that detect an effector, and activate Effector-Triggered Immunity (ETI). One effector is sufficient to trigger resistance. Albugo candida (Ac) (white rust) strongly suppresses host defence; Ac-infected Arabidopsis are susceptible to pathogen races to which they are otherwise resistant. Ac is an oomycete, not a fungus. Arabidopsis is resistant to races of Ac that infect brassicas. The proposed project involves three programs. First ( genomics, transcriptomics and bioinformatics ), we will use next-generation sequencing (NGS) methods (Solexa and GS-Flex), and novel transcriptomics methods to define the genome sequence and effector set of three Ac strains, as well as carrying out >40- deep resequencing of 7 additional Ac strains. Second, ( effectoromics ), we will carry out functional assays using Effector Detector Vectors (Sohn Plant Cell 19:4077 [2007]), with the set of Ac effectors, screening for enhanced virulence, for suppression of defence, for effectors that are recognized by R genes in disease resistant Arabidopsis and for host effector targets. Third, ( resistance diversity ), we will characterize Arabidopsis germplasm for R genes to Ac, both for recognition of Arabidopsis strains of Ac, and for recognition in Arabidopsis of effectors from Ac strains that infect brassica. This proposal focuses on Ac, but will establish methods that could discover new R genes in non-hosts against many plant diseases.
Summary
This project focuses on two questions about host/parasite interactions: how do biotrophic plant pathogens suppress host defence? and, what is the basis for pathogen specialization on specific host species? A broadly accepted model explains resistance and susceptibility to plant pathogens. First, pathogens make conserved molecules ( PAMPS ) such as flagellin, that plants detect via cell surface receptors, leading to PAMP-Triggered Immunity (PTI). Second, pathogens make effectors that suppress PTI. Third, plants carry 100s of Resistance (R) genes that detect an effector, and activate Effector-Triggered Immunity (ETI). One effector is sufficient to trigger resistance. Albugo candida (Ac) (white rust) strongly suppresses host defence; Ac-infected Arabidopsis are susceptible to pathogen races to which they are otherwise resistant. Ac is an oomycete, not a fungus. Arabidopsis is resistant to races of Ac that infect brassicas. The proposed project involves three programs. First ( genomics, transcriptomics and bioinformatics ), we will use next-generation sequencing (NGS) methods (Solexa and GS-Flex), and novel transcriptomics methods to define the genome sequence and effector set of three Ac strains, as well as carrying out >40- deep resequencing of 7 additional Ac strains. Second, ( effectoromics ), we will carry out functional assays using Effector Detector Vectors (Sohn Plant Cell 19:4077 [2007]), with the set of Ac effectors, screening for enhanced virulence, for suppression of defence, for effectors that are recognized by R genes in disease resistant Arabidopsis and for host effector targets. Third, ( resistance diversity ), we will characterize Arabidopsis germplasm for R genes to Ac, both for recognition of Arabidopsis strains of Ac, and for recognition in Arabidopsis of effectors from Ac strains that infect brassica. This proposal focuses on Ac, but will establish methods that could discover new R genes in non-hosts against many plant diseases.
Max ERC Funding
2 498 923 €
Duration
Start date: 2009-01-01, End date: 2014-06-30
Project acronym ALERT
Project ALERT - The Apertif-LOFAR Exploration of the Radio Transient Sky
Researcher (PI) Albert Van Leeuwen
Host Institution (HI) STICHTING ASTRON, NETHERLANDS INSTITUTE FOR RADIO ASTRONOMY
Call Details Consolidator Grant (CoG), PE9, ERC-2013-CoG
Summary "In our largely unchanging radio Universe, a highly dynamic component was recently discovered: flashes of bright radio emission that last only milliseconds but appear all over the sky. Some of these radio bursts can be traced to intermittently pulsating neutron stars. Other bursts however, apparently originate far outside our Galaxy. Due to great observational challenges, the evolution of the neutron stars is not understood, while more importantly, the nature of the extragalactic bursts remains an outright mystery.
My overall aim is to understand the physics that drives both kinds of brief and luminous bursts.
My primary goal is to identify the highly compact astrophysical explosions powering the extragalactic bursts. My previous surveys are the state of the art in fast-transient detection; I will now increase by a factor of 10 this exploration volume. In real-time I will provide arcsec positions, 10,000-fold more accurate than currently possible, to localize such extragalactic bursts for the first time and understand their origin.
My secondary goal is to unravel the unexplained evolution of intermittently pulsating neutron stars (building on e.g., my recent papers in Science, 2013), by doubling their number and modeling their population.
To achieve these goals, I will carry out a highly innovative survey: the Apertif-LOFAR Exploration of the Radio Transient Sky. ALERT is over an order of magnitude more sensitive than all current state-of-the art fast-transient surveys.
Through its novel, extremely wide field-of-view, Westerbork/Apertif will detect many tens of extragalactic bursts. Through real-time triggers to LOFAR I will next provide the precise localisation that is essential for radio, optical and high-energy follow-up to, for the first time, shed light on the physics and objects driving these bursts – evaporating primordial black holes; explosions in host galaxies; or, the unknown?"
Summary
"In our largely unchanging radio Universe, a highly dynamic component was recently discovered: flashes of bright radio emission that last only milliseconds but appear all over the sky. Some of these radio bursts can be traced to intermittently pulsating neutron stars. Other bursts however, apparently originate far outside our Galaxy. Due to great observational challenges, the evolution of the neutron stars is not understood, while more importantly, the nature of the extragalactic bursts remains an outright mystery.
My overall aim is to understand the physics that drives both kinds of brief and luminous bursts.
My primary goal is to identify the highly compact astrophysical explosions powering the extragalactic bursts. My previous surveys are the state of the art in fast-transient detection; I will now increase by a factor of 10 this exploration volume. In real-time I will provide arcsec positions, 10,000-fold more accurate than currently possible, to localize such extragalactic bursts for the first time and understand their origin.
My secondary goal is to unravel the unexplained evolution of intermittently pulsating neutron stars (building on e.g., my recent papers in Science, 2013), by doubling their number and modeling their population.
To achieve these goals, I will carry out a highly innovative survey: the Apertif-LOFAR Exploration of the Radio Transient Sky. ALERT is over an order of magnitude more sensitive than all current state-of-the art fast-transient surveys.
Through its novel, extremely wide field-of-view, Westerbork/Apertif will detect many tens of extragalactic bursts. Through real-time triggers to LOFAR I will next provide the precise localisation that is essential for radio, optical and high-energy follow-up to, for the first time, shed light on the physics and objects driving these bursts – evaporating primordial black holes; explosions in host galaxies; or, the unknown?"
Max ERC Funding
1 999 823 €
Duration
Start date: 2014-12-01, End date: 2019-11-30
Project acronym ALFA
Project Shaping a European Scientific Scene : Alfonsine Astronomy
Researcher (PI) Matthieu Husson
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Consolidator Grant (CoG), SH6, ERC-2016-COG
Summary Alfonsine astronomy is arguably among the first European scientific achievements. It shaped a scene for actors like Regiomontanus or Copernicus. There is however little detailed historical analysis encompassing its development in its full breadth. ALFA addresses this issue by studying tables, instruments, mathematical and theoretical texts in a methodologically innovative way relying on approaches from the history of manuscript cultures, history of mathematics, and history of astronomy.
ALFA integrates these approaches not only to benefit from different perspectives but also to build new questions from their interactions. For instance the analysis of mathematical practices in astral sciences manuscripts induces new ways to analyse the documents and to think about astronomical questions.
Relying on these approaches the main objectives of ALFA are thus to:
- Retrace the development of the corpus of Alfonsine texts from its origin in the second half of the 13th century to the end of the 15th century by following, on the manuscript level, the milieus fostering it;
- Analyse the Alfonsine astronomers’ practices, their relations to mathematics, to the natural world, to proofs and justification, their intellectual context and audiences;
- Build a meaningful narrative showing how astronomers in different milieus with diverse practices shaped, also from Arabic materials, an original scientific scene in Europe.
ALFA will shed new light on the intellectual history of the late medieval period as a whole and produce a better understanding of its relations to related scientific periods in Europe and beyond. It will also produce methodological breakthroughs impacting the ways history of knowledge is practiced outside the field of ancient and medieval sciences. Efforts will be devoted to bring these results not only to the relevant scholarly communities but also to a wider audience as a resource in the public debates around science, knowledge and culture.
Summary
Alfonsine astronomy is arguably among the first European scientific achievements. It shaped a scene for actors like Regiomontanus or Copernicus. There is however little detailed historical analysis encompassing its development in its full breadth. ALFA addresses this issue by studying tables, instruments, mathematical and theoretical texts in a methodologically innovative way relying on approaches from the history of manuscript cultures, history of mathematics, and history of astronomy.
ALFA integrates these approaches not only to benefit from different perspectives but also to build new questions from their interactions. For instance the analysis of mathematical practices in astral sciences manuscripts induces new ways to analyse the documents and to think about astronomical questions.
Relying on these approaches the main objectives of ALFA are thus to:
- Retrace the development of the corpus of Alfonsine texts from its origin in the second half of the 13th century to the end of the 15th century by following, on the manuscript level, the milieus fostering it;
- Analyse the Alfonsine astronomers’ practices, their relations to mathematics, to the natural world, to proofs and justification, their intellectual context and audiences;
- Build a meaningful narrative showing how astronomers in different milieus with diverse practices shaped, also from Arabic materials, an original scientific scene in Europe.
ALFA will shed new light on the intellectual history of the late medieval period as a whole and produce a better understanding of its relations to related scientific periods in Europe and beyond. It will also produce methodological breakthroughs impacting the ways history of knowledge is practiced outside the field of ancient and medieval sciences. Efforts will be devoted to bring these results not only to the relevant scholarly communities but also to a wider audience as a resource in the public debates around science, knowledge and culture.
Max ERC Funding
1 871 250 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym AlgTateGro
Project Constructing line bundles on algebraic varieties --around conjectures of Tate and Grothendieck
Researcher (PI) François CHARLES
Host Institution (HI) UNIVERSITE PARIS-SUD
Call Details Starting Grant (StG), PE1, ERC-2016-STG
Summary The goal of this project is to investigate two conjectures in arithmetic geometry pertaining to the geometry of projective varieties over finite and number fields. These two conjectures, formulated by Tate and Grothendieck in the 1960s, predict which cohomology classes are chern classes of line bundles. They both form an arithmetic counterpart of a theorem of Lefschetz, proved in the 1940s, which itself is the only known case of the Hodge conjecture. These two long-standing conjectures are one of the aspects of a more general web of questions regarding the topology of algebraic varieties which have been emphasized by Grothendieck and have since had a central role in modern arithmetic geometry. Special cases of these conjectures, appearing for instance in the work of Tate, Deligne, Faltings, Schneider-Lang, Masser-Wüstholz, have all had important consequences.
My goal is to investigate different lines of attack towards these conjectures, building on recent work on myself and Jean-Benoît Bost on related problems. The two main directions of the proposal are as follows. Over finite fields, the Tate conjecture is related to finiteness results for certain cohomological objects. I want to understand how to relate these to hidden boundedness properties of algebraic varieties that have appeared in my recent geometric proof of the Tate conjecture for K3 surfaces. The existence and relevance of a theory of Donaldson invariants for moduli spaces of twisted sheaves over finite fields seems to be a promising and novel direction. Over number fields, I want to combine the geometric insight above with algebraization techniques developed by Bost. In a joint project, we want to investigate how these can be used to first understand geometrically major results in transcendence theory and then attack the Grothendieck period conjecture for divisors via a number-theoretic and complex-analytic understanding of universal vector extensions of abelian schemes over curves.
Summary
The goal of this project is to investigate two conjectures in arithmetic geometry pertaining to the geometry of projective varieties over finite and number fields. These two conjectures, formulated by Tate and Grothendieck in the 1960s, predict which cohomology classes are chern classes of line bundles. They both form an arithmetic counterpart of a theorem of Lefschetz, proved in the 1940s, which itself is the only known case of the Hodge conjecture. These two long-standing conjectures are one of the aspects of a more general web of questions regarding the topology of algebraic varieties which have been emphasized by Grothendieck and have since had a central role in modern arithmetic geometry. Special cases of these conjectures, appearing for instance in the work of Tate, Deligne, Faltings, Schneider-Lang, Masser-Wüstholz, have all had important consequences.
My goal is to investigate different lines of attack towards these conjectures, building on recent work on myself and Jean-Benoît Bost on related problems. The two main directions of the proposal are as follows. Over finite fields, the Tate conjecture is related to finiteness results for certain cohomological objects. I want to understand how to relate these to hidden boundedness properties of algebraic varieties that have appeared in my recent geometric proof of the Tate conjecture for K3 surfaces. The existence and relevance of a theory of Donaldson invariants for moduli spaces of twisted sheaves over finite fields seems to be a promising and novel direction. Over number fields, I want to combine the geometric insight above with algebraization techniques developed by Bost. In a joint project, we want to investigate how these can be used to first understand geometrically major results in transcendence theory and then attack the Grothendieck period conjecture for divisors via a number-theoretic and complex-analytic understanding of universal vector extensions of abelian schemes over curves.
Max ERC Funding
1 222 329 €
Duration
Start date: 2016-12-01, End date: 2021-11-30
Project acronym ALKAGE
Project Algebraic and Kähler geometry
Researcher (PI) Jean-Pierre, Raymond, Philippe Demailly
Host Institution (HI) UNIVERSITE GRENOBLE ALPES
Call Details Advanced Grant (AdG), PE1, ERC-2014-ADG
Summary The purpose of this project is to study basic questions in algebraic and Kähler geometry. It is well known that the structure of projective or Kähler manifolds is governed by positivity or negativity properties of the curvature tensor. However, many fundamental problems are still wide open. Since the mid 1980's, I have developed a large number of key concepts and results that have led to important progress in transcendental algebraic geometry. Let me mention the discovery of holomorphic Morse inequalities, systematic applications of L² estimates with singular hermitian metrics, and a much improved understanding of Monge-Ampère equations and of singularities of plurisuharmonic functions. My first goal will be to investigate the Green-Griffiths-Lang conjecture asserting that an entire curve drawn in a variety of general type is algebraically degenerate. The subject is intimately related to important questions concerning Diophantine equations, especially higher dimensional generalizations of Faltings' theorem - the so-called Vojta program. One can rely here on a breakthrough I made in 2010, showing that all such entire curves must satisfy algebraic differential equations. A second closely related area of research of this project is the analysis of the structure of projective or compact Kähler manifolds. It can be seen as a generalization of the classification theory of surfaces by Kodaira, and of the more recent results for dimension 3 (Kawamata, Kollár, Mori, Shokurov, ...) to other dimensions. My plan is to combine powerful recent results obtained on the duality of positive cohomology cones with an analysis of the instability of the tangent bundle, i.e. of the Harder-Narasimhan filtration. On these ground-breaking questions, I intend to go much further and to enhance my national and international collaborations. These subjects already attract many young researchers and postdocs throughout the world, and the grant could be used to create even stronger interactions.
Summary
The purpose of this project is to study basic questions in algebraic and Kähler geometry. It is well known that the structure of projective or Kähler manifolds is governed by positivity or negativity properties of the curvature tensor. However, many fundamental problems are still wide open. Since the mid 1980's, I have developed a large number of key concepts and results that have led to important progress in transcendental algebraic geometry. Let me mention the discovery of holomorphic Morse inequalities, systematic applications of L² estimates with singular hermitian metrics, and a much improved understanding of Monge-Ampère equations and of singularities of plurisuharmonic functions. My first goal will be to investigate the Green-Griffiths-Lang conjecture asserting that an entire curve drawn in a variety of general type is algebraically degenerate. The subject is intimately related to important questions concerning Diophantine equations, especially higher dimensional generalizations of Faltings' theorem - the so-called Vojta program. One can rely here on a breakthrough I made in 2010, showing that all such entire curves must satisfy algebraic differential equations. A second closely related area of research of this project is the analysis of the structure of projective or compact Kähler manifolds. It can be seen as a generalization of the classification theory of surfaces by Kodaira, and of the more recent results for dimension 3 (Kawamata, Kollár, Mori, Shokurov, ...) to other dimensions. My plan is to combine powerful recent results obtained on the duality of positive cohomology cones with an analysis of the instability of the tangent bundle, i.e. of the Harder-Narasimhan filtration. On these ground-breaking questions, I intend to go much further and to enhance my national and international collaborations. These subjects already attract many young researchers and postdocs throughout the world, and the grant could be used to create even stronger interactions.
Max ERC Funding
1 809 345 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym Allelic Regulation
Project Revealing Allele-level Regulation and Dynamics using Single-cell Gene Expression Analyses
Researcher (PI) Thore Rickard Hakan Sandberg
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Consolidator Grant (CoG), LS2, ERC-2014-CoG
Summary As diploid organisms inherit one gene copy from each parent, a gene can be expressed from both alleles (biallelic) or from only one allele (monoallelic). Although transcription from both alleles is detected for most genes in cell population experiments, little is known about allele-specific expression in single cells and its phenotypic consequences. To answer fundamental questions about allelic transcription heterogeneity in single cells, this research program will focus on single-cell transcriptome analyses with allelic-origin resolution. To this end, we will investigate both clonally stable and dynamic random monoallelic expression across a large number of cell types, including cells from embryonic and adult stages. This research program will be accomplished with the novel single-cell RNA-seq method developed within my lab to obtain quantitative, genome-wide gene expression measurement. To distinguish between mitotically stable and dynamic patterns of allelic expression, we will analyze large numbers a clonally related cells per cell type, from both primary cultures (in vitro) and using transgenic models to obtain clonally related cells in vivo.
The biological significance of the research program is first an understanding of allelic transcription, including the nature and extent of random monoallelic expression across in vivo tissues and cell types. These novel insights into allelic transcription will be important for an improved understanding of how variable phenotypes (e.g. incomplete penetrance and variable expressivity) can arise in genetically identical individuals. Additionally, the single-cell transcriptome analyses of clonally related cells in vivo will provide unique insights into the clonality of gene expression per se.
Summary
As diploid organisms inherit one gene copy from each parent, a gene can be expressed from both alleles (biallelic) or from only one allele (monoallelic). Although transcription from both alleles is detected for most genes in cell population experiments, little is known about allele-specific expression in single cells and its phenotypic consequences. To answer fundamental questions about allelic transcription heterogeneity in single cells, this research program will focus on single-cell transcriptome analyses with allelic-origin resolution. To this end, we will investigate both clonally stable and dynamic random monoallelic expression across a large number of cell types, including cells from embryonic and adult stages. This research program will be accomplished with the novel single-cell RNA-seq method developed within my lab to obtain quantitative, genome-wide gene expression measurement. To distinguish between mitotically stable and dynamic patterns of allelic expression, we will analyze large numbers a clonally related cells per cell type, from both primary cultures (in vitro) and using transgenic models to obtain clonally related cells in vivo.
The biological significance of the research program is first an understanding of allelic transcription, including the nature and extent of random monoallelic expression across in vivo tissues and cell types. These novel insights into allelic transcription will be important for an improved understanding of how variable phenotypes (e.g. incomplete penetrance and variable expressivity) can arise in genetically identical individuals. Additionally, the single-cell transcriptome analyses of clonally related cells in vivo will provide unique insights into the clonality of gene expression per se.
Max ERC Funding
1 923 060 €
Duration
Start date: 2015-07-01, End date: 2020-06-30
Project acronym ALLERGUT
Project Mucosal Tolerance and Allergic Predisposition: Does it all start in the gut?
Researcher (PI) Caspar OHNMACHT
Host Institution (HI) HELMHOLTZ ZENTRUM MUENCHEN DEUTSCHES FORSCHUNGSZENTRUM FUER GESUNDHEIT UND UMWELT GMBH
Call Details Starting Grant (StG), LS6, ERC-2016-STG
Summary Currently, more than 30% of all Europeans suffer from one or more allergic disorder but treatment is still mostly symptomatic due to a lack of understanding the underlying causality. Allergies are caused by type 2 immune responses triggered by recognition of harmless antigens. Both genetic and environmental factors have been proposed to favour allergic predisposition and both factors have a huge impact on the symbiotic microbiota and the intestinal immune system. Recently we and others showed that the transcription factor ROR(γt) seems to play a key role in mucosal tolerance in the gut and also regulates intestinal type 2 immune responses.
Based on these results I postulate two major events in the gut for the development of an allergy in the lifetime of an individual: First, a failure to establish mucosal tolerance or anergy constitutes a necessity for the outbreak of allergic symptoms and allergic disease. Second, a certain ‘core’ microbiome or pathway of the intestinal microbiota predispose certain individuals for the later development of allergic disorders. Therefore, I will address the following aims:
1) Influence of ROR(γt) on mucosal tolerance induction and allergic disorders
2) Elucidate the T cell receptor repertoire of intestinal Th2 and ROR(γt)+ Tregs and assess the role of alternative NFκB pathway for induction of mucosal tolerance
3) Identification of ‘core’ microbiome signatures or metabolic pathways that favour allergic predisposition
ALLERGUT will provide ground-breaking knowledge on molecular mechanisms of the failure of mucosal tolerance in the gut and will prove if the resident ROR(γt)+ T(reg) cells can function as a mechanistic starting point for molecular intervention strategies on the background of the hygiene hypothesis. The vision of ALLERGUT is to diagnose mucosal disbalance, prevent and treat allergic disorders even before outbreak and thereby promote Public Health initiative for better living.
Summary
Currently, more than 30% of all Europeans suffer from one or more allergic disorder but treatment is still mostly symptomatic due to a lack of understanding the underlying causality. Allergies are caused by type 2 immune responses triggered by recognition of harmless antigens. Both genetic and environmental factors have been proposed to favour allergic predisposition and both factors have a huge impact on the symbiotic microbiota and the intestinal immune system. Recently we and others showed that the transcription factor ROR(γt) seems to play a key role in mucosal tolerance in the gut and also regulates intestinal type 2 immune responses.
Based on these results I postulate two major events in the gut for the development of an allergy in the lifetime of an individual: First, a failure to establish mucosal tolerance or anergy constitutes a necessity for the outbreak of allergic symptoms and allergic disease. Second, a certain ‘core’ microbiome or pathway of the intestinal microbiota predispose certain individuals for the later development of allergic disorders. Therefore, I will address the following aims:
1) Influence of ROR(γt) on mucosal tolerance induction and allergic disorders
2) Elucidate the T cell receptor repertoire of intestinal Th2 and ROR(γt)+ Tregs and assess the role of alternative NFκB pathway for induction of mucosal tolerance
3) Identification of ‘core’ microbiome signatures or metabolic pathways that favour allergic predisposition
ALLERGUT will provide ground-breaking knowledge on molecular mechanisms of the failure of mucosal tolerance in the gut and will prove if the resident ROR(γt)+ T(reg) cells can function as a mechanistic starting point for molecular intervention strategies on the background of the hygiene hypothesis. The vision of ALLERGUT is to diagnose mucosal disbalance, prevent and treat allergic disorders even before outbreak and thereby promote Public Health initiative for better living.
Max ERC Funding
1 498 175 €
Duration
Start date: 2017-07-01, End date: 2022-06-30
Project acronym AMAREC
Project Amenability, Approximation and Reconstruction
Researcher (PI) Wilhelm WINTER
Host Institution (HI) WESTFAELISCHE WILHELMS-UNIVERSITAET MUENSTER
Call Details Advanced Grant (AdG), PE1, ERC-2018-ADG
Summary Algebras of operators on Hilbert spaces were originally introduced as the right framework for the mathematical description of quantum mechanics. In modern mathematics the scope has much broadened due to the highly versatile nature of operator algebras. They are particularly useful in the analysis of groups and their actions. Amenability is a finiteness property which occurs in many different contexts and which can be characterised in many different ways. We will analyse amenability in terms of approximation properties, in the frameworks of abstract C*-algebras, of topological dynamical systems, and of discrete groups. Such approximation properties will serve as bridging devices between these setups, and they will be used to systematically recover geometric information about the underlying structures. When passing from groups, and more generally from dynamical systems, to operator algebras, one loses information, but one gains new tools to isolate and analyse pertinent properties of the underlying structure. We will mostly be interested in the topological setting, and in the associated C*-algebras. Amenability of groups or of dynamical systems then translates into the completely positive approximation property. Systems of completely positive approximations store all the essential data about a C*-algebra, and sometimes one can arrange the systems so that one can directly read of such information. For transformation group C*-algebras, one can achieve this by using approximation properties of the underlying dynamics. To some extent one can even go back, and extract dynamical approximation properties from completely positive approximations of the C*-algebra. This interplay between approximation properties in topological dynamics and in noncommutative topology carries a surprisingly rich structure. It connects directly to the heart of the classification problem for nuclear C*-algebras on the one hand, and to central open questions on amenable dynamics on the other.
Summary
Algebras of operators on Hilbert spaces were originally introduced as the right framework for the mathematical description of quantum mechanics. In modern mathematics the scope has much broadened due to the highly versatile nature of operator algebras. They are particularly useful in the analysis of groups and their actions. Amenability is a finiteness property which occurs in many different contexts and which can be characterised in many different ways. We will analyse amenability in terms of approximation properties, in the frameworks of abstract C*-algebras, of topological dynamical systems, and of discrete groups. Such approximation properties will serve as bridging devices between these setups, and they will be used to systematically recover geometric information about the underlying structures. When passing from groups, and more generally from dynamical systems, to operator algebras, one loses information, but one gains new tools to isolate and analyse pertinent properties of the underlying structure. We will mostly be interested in the topological setting, and in the associated C*-algebras. Amenability of groups or of dynamical systems then translates into the completely positive approximation property. Systems of completely positive approximations store all the essential data about a C*-algebra, and sometimes one can arrange the systems so that one can directly read of such information. For transformation group C*-algebras, one can achieve this by using approximation properties of the underlying dynamics. To some extent one can even go back, and extract dynamical approximation properties from completely positive approximations of the C*-algebra. This interplay between approximation properties in topological dynamics and in noncommutative topology carries a surprisingly rich structure. It connects directly to the heart of the classification problem for nuclear C*-algebras on the one hand, and to central open questions on amenable dynamics on the other.
Max ERC Funding
1 596 017 €
Duration
Start date: 2019-10-01, End date: 2024-09-30
Project acronym AMSTAT
Project Problems at the Applied Mathematics-Statistics Interface
Researcher (PI) Andrew Stuart
Host Institution (HI) THE UNIVERSITY OF WARWICK
Call Details Advanced Grant (AdG), PE1, ERC-2008-AdG
Summary Applied mathematics is concerned with developing models with predictive capability, and with probing those models to obtain qualitative and quantitative insight into the phenomena being modelled. Statistics is data-driven and is aimed at the development of methodologies to optimize the information derived from data. The increasing complexity of phenomena that scientists and engineers wish to model, together with our increased ability to gather, store and interrogate data, mean that the subjects of applied mathematics and statistics are increasingly required to work in conjunction. This research proposal is concerned with a research program at the interface between these two disciplines, aimed at problems in differential equations where profusion of data and the sophisticated model combine to produce the mathematical problem of obtaining information from a probability measure on function space. Applications are far-reaching and include the atmospheric sciences, geophysics, chemistry, econometrics and signal processing. The objectives of the research are: (i) to create the systematic foundations for a range of problems at the applied mathematics and statistics interface which share the common mathematical structure underpinning the range of applications described above; (ii) to exploit this common mathematical structure to design effecient algorithms to sample probability measures on function space; (iii) to apply these algorithms to attack a range of significant problems arising in molecular dynamics and in the atmospheric sciences.
Summary
Applied mathematics is concerned with developing models with predictive capability, and with probing those models to obtain qualitative and quantitative insight into the phenomena being modelled. Statistics is data-driven and is aimed at the development of methodologies to optimize the information derived from data. The increasing complexity of phenomena that scientists and engineers wish to model, together with our increased ability to gather, store and interrogate data, mean that the subjects of applied mathematics and statistics are increasingly required to work in conjunction. This research proposal is concerned with a research program at the interface between these two disciplines, aimed at problems in differential equations where profusion of data and the sophisticated model combine to produce the mathematical problem of obtaining information from a probability measure on function space. Applications are far-reaching and include the atmospheric sciences, geophysics, chemistry, econometrics and signal processing. The objectives of the research are: (i) to create the systematic foundations for a range of problems at the applied mathematics and statistics interface which share the common mathematical structure underpinning the range of applications described above; (ii) to exploit this common mathematical structure to design effecient algorithms to sample probability measures on function space; (iii) to apply these algorithms to attack a range of significant problems arising in molecular dynamics and in the atmospheric sciences.
Max ERC Funding
1 693 501 €
Duration
Start date: 2008-12-01, End date: 2014-11-30
Project acronym ANADEL
Project Analysis of Geometrical Effects on Dispersive Equations
Researcher (PI) Danela Oana IVANOVICI
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE1, ERC-2017-STG
Summary We are concerned with localization properties of solutions to hyperbolic PDEs, especially problems with a geometric component: how do boundaries and heterogeneous media influence spreading and concentration of solutions. While our first focus is on wave and Schrödinger equations on manifolds with boundary, strong connections exist with phase space localization for (clusters of) eigenfunctions, which are of independent interest. Motivations come from nonlinear dispersive models (in physically relevant settings), properties of eigenfunctions in quantum chaos (related to both physics of optic fiber design as well as number theoretic questions), or harmonic analysis on manifolds.
Waves propagation in real life physics occur in media which are neither homogeneous or spatially infinity. The birth of radar/sonar technologies (and the raise of computed tomography) greatly motivated numerous developments in microlocal analysis and the linear theory. Only recently toy nonlinear models have been studied on a curved background, sometimes compact or rough. Understanding how to extend such tools, dealing with wave dispersion or focusing, will allow us to significantly progress in our mathematical understanding of physically relevant models. There, boundaries appear naturally and most earlier developments related to propagation of singularities in this context have limited scope with respect to crucial dispersive effects. Despite great progress over the last decade, driven by the study of quasilinear equations, our knowledge is still very limited. Going beyond this recent activity requires new tools whose development is at the heart of this proposal, including good approximate solutions (parametrices) going over arbitrarily large numbers of caustics, sharp pointwise bounds on Green functions, development of efficient wave packets methods, quantitative refinements of propagation of singularities (with direct applications in control theory), only to name a few important ones.
Summary
We are concerned with localization properties of solutions to hyperbolic PDEs, especially problems with a geometric component: how do boundaries and heterogeneous media influence spreading and concentration of solutions. While our first focus is on wave and Schrödinger equations on manifolds with boundary, strong connections exist with phase space localization for (clusters of) eigenfunctions, which are of independent interest. Motivations come from nonlinear dispersive models (in physically relevant settings), properties of eigenfunctions in quantum chaos (related to both physics of optic fiber design as well as number theoretic questions), or harmonic analysis on manifolds.
Waves propagation in real life physics occur in media which are neither homogeneous or spatially infinity. The birth of radar/sonar technologies (and the raise of computed tomography) greatly motivated numerous developments in microlocal analysis and the linear theory. Only recently toy nonlinear models have been studied on a curved background, sometimes compact or rough. Understanding how to extend such tools, dealing with wave dispersion or focusing, will allow us to significantly progress in our mathematical understanding of physically relevant models. There, boundaries appear naturally and most earlier developments related to propagation of singularities in this context have limited scope with respect to crucial dispersive effects. Despite great progress over the last decade, driven by the study of quasilinear equations, our knowledge is still very limited. Going beyond this recent activity requires new tools whose development is at the heart of this proposal, including good approximate solutions (parametrices) going over arbitrarily large numbers of caustics, sharp pointwise bounds on Green functions, development of efficient wave packets methods, quantitative refinements of propagation of singularities (with direct applications in control theory), only to name a few important ones.
Max ERC Funding
1 293 763 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym analysisdirac
Project The analysis of the Dirac operator: the hypoelliptic Laplacian and its applications
Researcher (PI) Jean-Michel Philippe Marie-José Bismut
Host Institution (HI) UNIVERSITE PARIS-SUD
Call Details Advanced Grant (AdG), PE1, ERC-2011-ADG_20110209
Summary This proposal is devoted to the applications of a new hypoelliptic Dirac operator,
whose analytic properties have been studied by Lebeau and myself. Its construction connects classical Hodge theory with the geodesic flow, and more generally any geometrically defined Hodge Laplacian with a dynamical system on the cotangent bundle. The proper description of this object can be given in analytic, index theoretic and probabilistic terms, which explains both its potential many applications, and also its complexity.
Summary
This proposal is devoted to the applications of a new hypoelliptic Dirac operator,
whose analytic properties have been studied by Lebeau and myself. Its construction connects classical Hodge theory with the geodesic flow, and more generally any geometrically defined Hodge Laplacian with a dynamical system on the cotangent bundle. The proper description of this object can be given in analytic, index theoretic and probabilistic terms, which explains both its potential many applications, and also its complexity.
Max ERC Funding
1 112 400 €
Duration
Start date: 2012-02-01, End date: 2017-01-31
Project acronym ANALYTIC
Project ANALYTIC PROPERTIES OF INFINITE GROUPS:
limits, curvature, and randomness
Researcher (PI) Gulnara Arzhantseva
Host Institution (HI) UNIVERSITAT WIEN
Call Details Starting Grant (StG), PE1, ERC-2010-StG_20091028
Summary The overall goal of this project is to develop new concepts and techniques in geometric and asymptotic group theory for a systematic study of the analytic properties of discrete groups. These are properties depending on the unitary representation theory of the group. The fundamental examples are amenability, discovered by von Neumann in 1929, and property (T), introduced by Kazhdan in 1967.
My main objective is to establish the precise relations between groups recently appeared in K-theory and topology such as C*-exact groups and groups coarsely embeddable into a Hilbert space, versus those discovered in ergodic theory and operator algebra, for example, sofic and hyperlinear groups. This is a first ever attempt to confront the analytic behavior of so different nature. I plan to work on crucial open questions: Is every coarsely embeddable group C*-exact? Is every group sofic? Is every hyperlinear group sofic?
My motivation is two-fold:
- Many outstanding conjectures were recently solved for these groups, e.g. the Novikov conjecture (1965) for coarsely embeddable groups by Yu in 2000 and the Gottschalk surjunctivity conjecture (1973) for sofic groups by Gromov in 1999. However, their group-theoretical structure remains mysterious.
- In recent years, geometric group theory has undergone significant changes, mainly due to the growing impact of this theory on other branches of mathematics. However, the interplay between geometric, asymptotic, and analytic group properties has not yet been fully understood.
The main innovative contribution of this proposal lies in the interaction between 3 axes: (i) limits of groups, in the space of marked groups or metric ultralimits; (ii) analytic properties of groups with curvature, of lacunary or relatively hyperbolic groups; (iii) random groups, in a topological or statistical meaning. As a result, I will describe the above apparently unrelated classes of groups in a unified way and will detail their algebraic behavior.
Summary
The overall goal of this project is to develop new concepts and techniques in geometric and asymptotic group theory for a systematic study of the analytic properties of discrete groups. These are properties depending on the unitary representation theory of the group. The fundamental examples are amenability, discovered by von Neumann in 1929, and property (T), introduced by Kazhdan in 1967.
My main objective is to establish the precise relations between groups recently appeared in K-theory and topology such as C*-exact groups and groups coarsely embeddable into a Hilbert space, versus those discovered in ergodic theory and operator algebra, for example, sofic and hyperlinear groups. This is a first ever attempt to confront the analytic behavior of so different nature. I plan to work on crucial open questions: Is every coarsely embeddable group C*-exact? Is every group sofic? Is every hyperlinear group sofic?
My motivation is two-fold:
- Many outstanding conjectures were recently solved for these groups, e.g. the Novikov conjecture (1965) for coarsely embeddable groups by Yu in 2000 and the Gottschalk surjunctivity conjecture (1973) for sofic groups by Gromov in 1999. However, their group-theoretical structure remains mysterious.
- In recent years, geometric group theory has undergone significant changes, mainly due to the growing impact of this theory on other branches of mathematics. However, the interplay between geometric, asymptotic, and analytic group properties has not yet been fully understood.
The main innovative contribution of this proposal lies in the interaction between 3 axes: (i) limits of groups, in the space of marked groups or metric ultralimits; (ii) analytic properties of groups with curvature, of lacunary or relatively hyperbolic groups; (iii) random groups, in a topological or statistical meaning. As a result, I will describe the above apparently unrelated classes of groups in a unified way and will detail their algebraic behavior.
Max ERC Funding
1 065 500 €
Duration
Start date: 2011-04-01, End date: 2016-03-31
Project acronym ANAMULTISCALE
Project Analysis of Multiscale Systems Driven by Functionals
Researcher (PI) Alexander Mielke
Host Institution (HI) FORSCHUNGSVERBUND BERLIN EV
Call Details Advanced Grant (AdG), PE1, ERC-2010-AdG_20100224
Summary Many complex phenomena in the sciences are described by nonlinear partial differential equations, the solutions of which exhibit oscillations and concentration effects on multiple temporal or spatial scales. Our aim is to use methods from applied analysis to contribute to the understanding of the interplay of effects on different scales. The central question is to determine those quantities on the microscale which are needed to for the correct description of the macroscopic evolution.
We aim to develop a mathematical framework for analyzing and modeling coupled systems with multiple scales. This will include Hamiltonian dynamics as well as different types of dissipation like gradient flows or rate-independent dynamics. The choice of models will be guided by specific applications in material modeling (e.g., thermoplasticity, pattern formation, porous media) and optoelectronics (pulse interaction, Maxwell-Bloch systems, semiconductors, quantum mechanics). The research will address mathematically fundamental issues like existence and stability of solutions but will mainly be devoted to the modeling of multiscale phenomena in evolution systems. We will focus on systems with geometric structures, where the dynamics is driven by functionals. Thus, we can go much beyond the classical theory of homogenization and singular perturbations. The novel features of our approach are
- the combination of different dynamical effects in one framework,
- the use of geometric and metric structures for coupled partial differential equations,
- the exploitation of Gamma-convergence for evolution systems driven by functionals.
Summary
Many complex phenomena in the sciences are described by nonlinear partial differential equations, the solutions of which exhibit oscillations and concentration effects on multiple temporal or spatial scales. Our aim is to use methods from applied analysis to contribute to the understanding of the interplay of effects on different scales. The central question is to determine those quantities on the microscale which are needed to for the correct description of the macroscopic evolution.
We aim to develop a mathematical framework for analyzing and modeling coupled systems with multiple scales. This will include Hamiltonian dynamics as well as different types of dissipation like gradient flows or rate-independent dynamics. The choice of models will be guided by specific applications in material modeling (e.g., thermoplasticity, pattern formation, porous media) and optoelectronics (pulse interaction, Maxwell-Bloch systems, semiconductors, quantum mechanics). The research will address mathematically fundamental issues like existence and stability of solutions but will mainly be devoted to the modeling of multiscale phenomena in evolution systems. We will focus on systems with geometric structures, where the dynamics is driven by functionals. Thus, we can go much beyond the classical theory of homogenization and singular perturbations. The novel features of our approach are
- the combination of different dynamical effects in one framework,
- the use of geometric and metric structures for coupled partial differential equations,
- the exploitation of Gamma-convergence for evolution systems driven by functionals.
Max ERC Funding
1 390 000 €
Duration
Start date: 2011-04-01, End date: 2017-03-31
Project acronym AncientAdhesives
Project Ancient Adhesives - A window on prehistoric technological complexity
Researcher (PI) Geeske LANGEJANS
Host Institution (HI) TECHNISCHE UNIVERSITEIT DELFT
Call Details Starting Grant (StG), SH6, ERC-2018-STG
Summary AncientAdhesives addresses the most crucial problem in Palaeolithic archaeology: How to reliably infer cognitively complex behaviour in the deep past. To study the evolution of Neandertal and modern human cognitive capacities, certain find categories are taken to reflect behavioural and thus cognitive complexitye.g. Among these are art objects, personal ornaments and complex technology. Of these technology is best-suited to trace changing behavioural complexity, because 1) it is the least vulnerable to differential preservation, and 2) technological behaviours are present throughout the history of our genus. Adhesives are the oldest examples of highly complex technology. They are also known earlier from Neandertal than from modern human contexts. Understanding their technological complexity is thus essential to resolve debates on differences in cognitive complexity of both species. However, currently, there is no agreed-upon method to measure technological complexity.
The aim of AncientAdhesives is to create the first reliable method to compare the complexity of Neandertal and modern human technologies. This is achieved through three main objectives:
1. Collate the first comprehensive body of knowledge on adhesives, including ethnography, archaeology and (experimental) material properties (e.g. preservation, production).
2. Develop a new archaeological methodology by modifying industrial process modelling for archaeological applications.
3. Evaluate the development of adhesive technological complexity through time and across species using a range of explicit complexity measures.
By analysing adhesives, it is possible to measure technological complexity, to identify idiosyncratic behaviours and to track adoption and loss of complex technological know-how. This represents a step-change in debates about the development of behavioural complexity and differences/similarities between Neanderthals and modern humans.
Summary
AncientAdhesives addresses the most crucial problem in Palaeolithic archaeology: How to reliably infer cognitively complex behaviour in the deep past. To study the evolution of Neandertal and modern human cognitive capacities, certain find categories are taken to reflect behavioural and thus cognitive complexitye.g. Among these are art objects, personal ornaments and complex technology. Of these technology is best-suited to trace changing behavioural complexity, because 1) it is the least vulnerable to differential preservation, and 2) technological behaviours are present throughout the history of our genus. Adhesives are the oldest examples of highly complex technology. They are also known earlier from Neandertal than from modern human contexts. Understanding their technological complexity is thus essential to resolve debates on differences in cognitive complexity of both species. However, currently, there is no agreed-upon method to measure technological complexity.
The aim of AncientAdhesives is to create the first reliable method to compare the complexity of Neandertal and modern human technologies. This is achieved through three main objectives:
1. Collate the first comprehensive body of knowledge on adhesives, including ethnography, archaeology and (experimental) material properties (e.g. preservation, production).
2. Develop a new archaeological methodology by modifying industrial process modelling for archaeological applications.
3. Evaluate the development of adhesive technological complexity through time and across species using a range of explicit complexity measures.
By analysing adhesives, it is possible to measure technological complexity, to identify idiosyncratic behaviours and to track adoption and loss of complex technological know-how. This represents a step-change in debates about the development of behavioural complexity and differences/similarities between Neanderthals and modern humans.
Max ERC Funding
1 499 926 €
Duration
Start date: 2019-02-01, End date: 2024-01-31
Project acronym ANGEOM
Project Geometric analysis in the Euclidean space
Researcher (PI) Xavier Tolsa Domenech
Host Institution (HI) UNIVERSITAT AUTONOMA DE BARCELONA
Call Details Advanced Grant (AdG), PE1, ERC-2012-ADG_20120216
Summary "We propose to study different questions in the area of the so called geometric analysis. Most of the topics we are interested in deal with the connection between the behavior of singular integrals and the geometry of sets and measures. The study of this connection has been shown to be extremely helpful in the solution of certain long standing problems in the last years, such as the solution of the Painlev\'e problem or the obtaining of the optimal distortion bounds for quasiconformal mappings by Astala.
More specifically, we would like to study the relationship between the L^2 boundedness of singular integrals associated with Riesz and other related kernels, and rectifiability and other geometric notions. The so called David-Semmes problem is probably the main open problem in this area. Up to now, the techniques used to deal with this problem come from multiscale analysis and involve ideas from Littlewood-Paley theory and quantitative techniques of rectifiability. We propose to apply new ideas that combine variational arguments with other techniques which have connections with mass transportation. Further, we think that it is worth to explore in more detail the connection among mass transportation, singular integrals, and uniform rectifiability.
We are also interested in the field of quasiconformal mappings. We plan to study a problem regarding the quasiconformal distortion of quasicircles. This problem consists in proving that the bounds obtained recently by S. Smirnov on the dimension of K-quasicircles are optimal. We want to apply techniques from quantitative geometric measure theory to deal with this question.
Another question that we intend to explore lies in the interplay of harmonic analysis, geometric measure theory and partial differential equations. This concerns an old problem on the unique continuation of harmonic functions at the boundary open C^1 or Lipschitz domain. All the results known by now deal with smoother Dini domains."
Summary
"We propose to study different questions in the area of the so called geometric analysis. Most of the topics we are interested in deal with the connection between the behavior of singular integrals and the geometry of sets and measures. The study of this connection has been shown to be extremely helpful in the solution of certain long standing problems in the last years, such as the solution of the Painlev\'e problem or the obtaining of the optimal distortion bounds for quasiconformal mappings by Astala.
More specifically, we would like to study the relationship between the L^2 boundedness of singular integrals associated with Riesz and other related kernels, and rectifiability and other geometric notions. The so called David-Semmes problem is probably the main open problem in this area. Up to now, the techniques used to deal with this problem come from multiscale analysis and involve ideas from Littlewood-Paley theory and quantitative techniques of rectifiability. We propose to apply new ideas that combine variational arguments with other techniques which have connections with mass transportation. Further, we think that it is worth to explore in more detail the connection among mass transportation, singular integrals, and uniform rectifiability.
We are also interested in the field of quasiconformal mappings. We plan to study a problem regarding the quasiconformal distortion of quasicircles. This problem consists in proving that the bounds obtained recently by S. Smirnov on the dimension of K-quasicircles are optimal. We want to apply techniques from quantitative geometric measure theory to deal with this question.
Another question that we intend to explore lies in the interplay of harmonic analysis, geometric measure theory and partial differential equations. This concerns an old problem on the unique continuation of harmonic functions at the boundary open C^1 or Lipschitz domain. All the results known by now deal with smoother Dini domains."
Max ERC Funding
1 105 930 €
Duration
Start date: 2013-05-01, End date: 2018-04-30
Project acronym AngioBone
Project Angiogenic growth, specialization, ageing and regeneration
of bone vessels
Researcher (PI) Ralf Heinrich Adams
Host Institution (HI) WESTFAELISCHE WILHELMS-UNIVERSITAET MUENSTER
Call Details Advanced Grant (AdG), LS3, ERC-2013-ADG
Summary The skeleton and the sinusoidal vasculature form a functional unit with great relevance in health, regeneration, and disease. Currently, fundamental aspects of sinusoidal vessel growth, specialization, arteriovenous organization and the consequences for tissue perfusion, or the changes occurring during ageing remain unknown. Our preliminary data indicate that key principles of bone vascularization and the role of molecular regulators are highly distinct from other organs. I therefore propose to use powerful combination of mouse genetics, fate mapping, transcriptional profiling, computational biology, confocal and two-photon microscopy, micro-CT and PET imaging, biochemistry and cell biology to characterize the growth, differentiation, dynamics, and ageing of the bone vasculature. In addition to established angiogenic pathways, the role of highly promising novel candidate regulators will be investigated in endothelial cells and perivascular osteoprogenitors with sophisticated inducible and cell type-specific genetic methods in the mouse. Complementing these powerful in vivo approaches, 3D co-cultures generated by cell printing technologies will provide insight into the communication between different cell types. The dynamics of sinusoidal vessel growth and regeneration will be monitored by two-photon imaging in the skull. Finally, I will explore the architectural, cellular and molecular changes and the role of capillary endothelial subpopulations in the sinusoidal vasculature of ageing and osteoporotic mice.
Technological advancements, such as new transgenic strains, mutant models or cell printing approaches, are important aspects of this proposal. AngioBone will provide a first conceptual framework for normal and deregulated function of the bone sinusoidal vasculature. It will also break new ground by analyzing the role of blood vessels in ageing and identifying novel strategies for tissue engineering and, potentially, the prevention/treatment of osteoporosis.
Summary
The skeleton and the sinusoidal vasculature form a functional unit with great relevance in health, regeneration, and disease. Currently, fundamental aspects of sinusoidal vessel growth, specialization, arteriovenous organization and the consequences for tissue perfusion, or the changes occurring during ageing remain unknown. Our preliminary data indicate that key principles of bone vascularization and the role of molecular regulators are highly distinct from other organs. I therefore propose to use powerful combination of mouse genetics, fate mapping, transcriptional profiling, computational biology, confocal and two-photon microscopy, micro-CT and PET imaging, biochemistry and cell biology to characterize the growth, differentiation, dynamics, and ageing of the bone vasculature. In addition to established angiogenic pathways, the role of highly promising novel candidate regulators will be investigated in endothelial cells and perivascular osteoprogenitors with sophisticated inducible and cell type-specific genetic methods in the mouse. Complementing these powerful in vivo approaches, 3D co-cultures generated by cell printing technologies will provide insight into the communication between different cell types. The dynamics of sinusoidal vessel growth and regeneration will be monitored by two-photon imaging in the skull. Finally, I will explore the architectural, cellular and molecular changes and the role of capillary endothelial subpopulations in the sinusoidal vasculature of ageing and osteoporotic mice.
Technological advancements, such as new transgenic strains, mutant models or cell printing approaches, are important aspects of this proposal. AngioBone will provide a first conceptual framework for normal and deregulated function of the bone sinusoidal vasculature. It will also break new ground by analyzing the role of blood vessels in ageing and identifying novel strategies for tissue engineering and, potentially, the prevention/treatment of osteoporosis.
Max ERC Funding
2 478 750 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym ANISOTROPIC UNIVERSE
Project The anisotropic universe -- a reality or fluke?
Researcher (PI) Hans Kristian Kamfjord Eriksen
Host Institution (HI) UNIVERSITETET I OSLO
Call Details Starting Grant (StG), PE9, ERC-2010-StG_20091028
Summary "During the last decade, a strikingly successful cosmological concordance model has been established. With only six free parameters, nearly all observables, comprising millions of data points, may be fitted with outstanding precision. However, in this beautiful picture a few ""blemishes"" have turned up, apparently not consistent with the standard model: While the model predicts that the universe is isotropic (i.e., looks the same in all directions) and homogeneous (i.e., the statistical properties are the same everywhere), subtle hints of the contrary are now seen. For instance, peculiar preferred directions and correlations are observed in the cosmic microwave background; some studies considering nearby galaxies suggest the existence of anomalous large-scale cosmic flows; a study of distant quasars hints towards unexpected large-scale correlations. All of these reports are individually highly intriguing, and together they hint toward a more complicated and interesting universe than previously imagined -- but none of the reports can be considered decisive. One major obstacle in many cases has been the relatively poor data quality.
This is currently about to change, as the next generation of new and far more powerful experiments are coming online. Of special interest to me are Planck, an ESA-funded CMB satellite currently taking data; QUIET, a ground-based CMB polarization experiment located in Chile; and various large-scale structure (LSS) data sets, such as the SDSS and 2dF surveys, and in the future Euclid, a proposed galaxy survey satellite also funded by ESA. By combining the world s best data from both CMB and LSS measurements, I will in the proposed project attempt to settle this question: Is our universe really anisotropic? Or are these recent claims only the results of systematic errors or statistical flukes? If the claims turn out to hold against this tide of new and high-quality data, then cosmology as a whole may need to be re-written."
Summary
"During the last decade, a strikingly successful cosmological concordance model has been established. With only six free parameters, nearly all observables, comprising millions of data points, may be fitted with outstanding precision. However, in this beautiful picture a few ""blemishes"" have turned up, apparently not consistent with the standard model: While the model predicts that the universe is isotropic (i.e., looks the same in all directions) and homogeneous (i.e., the statistical properties are the same everywhere), subtle hints of the contrary are now seen. For instance, peculiar preferred directions and correlations are observed in the cosmic microwave background; some studies considering nearby galaxies suggest the existence of anomalous large-scale cosmic flows; a study of distant quasars hints towards unexpected large-scale correlations. All of these reports are individually highly intriguing, and together they hint toward a more complicated and interesting universe than previously imagined -- but none of the reports can be considered decisive. One major obstacle in many cases has been the relatively poor data quality.
This is currently about to change, as the next generation of new and far more powerful experiments are coming online. Of special interest to me are Planck, an ESA-funded CMB satellite currently taking data; QUIET, a ground-based CMB polarization experiment located in Chile; and various large-scale structure (LSS) data sets, such as the SDSS and 2dF surveys, and in the future Euclid, a proposed galaxy survey satellite also funded by ESA. By combining the world s best data from both CMB and LSS measurements, I will in the proposed project attempt to settle this question: Is our universe really anisotropic? Or are these recent claims only the results of systematic errors or statistical flukes? If the claims turn out to hold against this tide of new and high-quality data, then cosmology as a whole may need to be re-written."
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym AnoPath
Project Genetics of mosquito resistance to pathogens
Researcher (PI) Kenneth Du Souchet Vernick
Host Institution (HI) INSTITUT PASTEUR
Call Details Advanced Grant (AdG), LS2, ERC-2012-ADG_20120314
Summary Malaria parasite infection in humans has been called “the strongest known force for evolutionary selection in the recent history of the human genome”, and I hypothesize that a similar statement may apply to the mosquito vector, which is the definitive host of the malaria parasite. We previously discovered efficient malaria-resistance mechanisms in natural populations of the African malaria vector, Anopheles gambiae. Aim 1 of the proposed project will implement a novel genetic mapping design to systematically survey the mosquito population for common and rare genetic variants of strong effect against the human malaria parasite, Plasmodium falciparum. A product of the mapping design will be living mosquito families carrying the resistance loci. Aim 2 will use the segregating families to functionally dissect the underlying molecular mechanisms controlled by the loci, including determination of the pathogen specificity spectra of the host-defense traits. Aim 3 targets arbovirus transmission, where Anopheles mosquitoes transmit human malaria but not arboviruses such as Dengue and Chikungunya, even though the two mosquitoes bite the same people and are exposed to the same pathogens, often in malaria-arbovirus co-infections. We will use deep-sequencing to detect processing of the arbovirus dsRNA intermediates of replication produced by the RNAi pathway of the mosquitoes. The results will reveal important new information about differences in the efficiency and quality of the RNAi response between mosquitoes, which is likely to underlie at least part of the host specificity of arbovirus transmission. The 3 Aims will make significant contributions to understanding malaria and arbovirus transmission, major global public health problems, will aid the development of a next generation of vector surveillance and control tools, and will produce a definitive description of the major genetic factors influencing host-pathogen interactions in mosquito immunity.
Summary
Malaria parasite infection in humans has been called “the strongest known force for evolutionary selection in the recent history of the human genome”, and I hypothesize that a similar statement may apply to the mosquito vector, which is the definitive host of the malaria parasite. We previously discovered efficient malaria-resistance mechanisms in natural populations of the African malaria vector, Anopheles gambiae. Aim 1 of the proposed project will implement a novel genetic mapping design to systematically survey the mosquito population for common and rare genetic variants of strong effect against the human malaria parasite, Plasmodium falciparum. A product of the mapping design will be living mosquito families carrying the resistance loci. Aim 2 will use the segregating families to functionally dissect the underlying molecular mechanisms controlled by the loci, including determination of the pathogen specificity spectra of the host-defense traits. Aim 3 targets arbovirus transmission, where Anopheles mosquitoes transmit human malaria but not arboviruses such as Dengue and Chikungunya, even though the two mosquitoes bite the same people and are exposed to the same pathogens, often in malaria-arbovirus co-infections. We will use deep-sequencing to detect processing of the arbovirus dsRNA intermediates of replication produced by the RNAi pathway of the mosquitoes. The results will reveal important new information about differences in the efficiency and quality of the RNAi response between mosquitoes, which is likely to underlie at least part of the host specificity of arbovirus transmission. The 3 Aims will make significant contributions to understanding malaria and arbovirus transmission, major global public health problems, will aid the development of a next generation of vector surveillance and control tools, and will produce a definitive description of the major genetic factors influencing host-pathogen interactions in mosquito immunity.
Max ERC Funding
2 307 800 €
Duration
Start date: 2013-03-01, End date: 2018-02-28
Project acronym ANOPTSETCON
Project Analysis of optimal sets and optimal constants: old questions and new results
Researcher (PI) Aldo Pratelli
Host Institution (HI) FRIEDRICH-ALEXANDER-UNIVERSITAET ERLANGEN NUERNBERG
Call Details Starting Grant (StG), PE1, ERC-2010-StG_20091028
Summary The analysis of geometric and functional inequalities naturally leads to consider the extremal cases, thus
looking for optimal sets, or optimal functions, or optimal constants. The most classical examples are the (different versions of the) isoperimetric inequality and the Sobolev-like inequalities. Much is known about equality cases and best constants, but there are still many questions which seem quite natural but yet have no answer. For instance, it is not known, even in the 2-dimensional space, the answer of a question by Brezis: which set,
among those with a given volume, has the biggest Sobolev-Poincaré constant for p=1? This is a very natural problem, and it appears reasonable that the optimal set should be the ball, but this has never been proved. The interest in problems like this relies not only in the extreme simplicity of the questions and in their classical flavour, but also in the new ideas and techniques which are needed to provide the answers.
The main techniques that we aim to use are fine arguments of symmetrization, geometric constructions and tools from mass transportation (which is well known to be deeply connected with functional inequalities). These are the basic tools that we already used to reach, in last years, many results in a specific direction, namely the search of sharp quantitative inequalities. Our first result, together with Fusco and Maggi, showed what follows. Everybody knows that the set which minimizes the perimeter with given volume is the ball.
But is it true that a set which almost minimizes the perimeter must be close to a ball? The question had been posed in the 1920's and many partial result appeared in the years. In our paper (Ann. of Math., 2007) we proved the sharp result. Many other results of this kind were obtained in last two years.
Summary
The analysis of geometric and functional inequalities naturally leads to consider the extremal cases, thus
looking for optimal sets, or optimal functions, or optimal constants. The most classical examples are the (different versions of the) isoperimetric inequality and the Sobolev-like inequalities. Much is known about equality cases and best constants, but there are still many questions which seem quite natural but yet have no answer. For instance, it is not known, even in the 2-dimensional space, the answer of a question by Brezis: which set,
among those with a given volume, has the biggest Sobolev-Poincaré constant for p=1? This is a very natural problem, and it appears reasonable that the optimal set should be the ball, but this has never been proved. The interest in problems like this relies not only in the extreme simplicity of the questions and in their classical flavour, but also in the new ideas and techniques which are needed to provide the answers.
The main techniques that we aim to use are fine arguments of symmetrization, geometric constructions and tools from mass transportation (which is well known to be deeply connected with functional inequalities). These are the basic tools that we already used to reach, in last years, many results in a specific direction, namely the search of sharp quantitative inequalities. Our first result, together with Fusco and Maggi, showed what follows. Everybody knows that the set which minimizes the perimeter with given volume is the ball.
But is it true that a set which almost minimizes the perimeter must be close to a ball? The question had been posed in the 1920's and many partial result appeared in the years. In our paper (Ann. of Math., 2007) we proved the sharp result. Many other results of this kind were obtained in last two years.
Max ERC Funding
540 000 €
Duration
Start date: 2010-08-01, End date: 2015-07-31
Project acronym ANOREP
Project Targeting the reproductive biology of the malaria mosquito Anopheles gambiae: from laboratory studies to field applications
Researcher (PI) Flaminia Catteruccia
Host Institution (HI) UNIVERSITA DEGLI STUDI DI PERUGIA
Call Details Starting Grant (StG), LS2, ERC-2010-StG_20091118
Summary Anopheles gambiae mosquitoes are the major vectors of malaria, a disease with devastating consequences for
human health. Novel methods for controlling the natural vector populations are urgently needed, given the
evolution of insecticide resistance in mosquitoes and the lack of novel insecticidals. Understanding the
processes at the bases of mosquito biology may help to roll back malaria. In this proposal, we will target
mosquito reproduction, a major determinant of the An. gambiae vectorial capacity. This will be achieved at
two levels: (i) fundamental research, to provide a deeper knowledge of the processes regulating reproduction
in this species, and (ii) applied research, to identify novel targets and to develop innovative approaches for
the control of natural populations. We will focus our analysis on three major players of mosquito
reproduction: male accessory glands (MAGs), sperm, and spermatheca, in both laboratory and field settings.
We will then translate this information into the identification of inhibitors of mosquito fertility. The
experimental activities will be divided across three objectives. In Objective 1, we will unravel the role of the
MAGs in shaping mosquito fertility and behaviour, by performing a combination of transcriptional and
functional studies that will reveal the multifaceted activities of these tissues. In Objective 2 we will instead
focus on the identification of the male and female factors responsible for sperm viability and function.
Results obtained in both objectives will be validated in field mosquitoes. In Objective 3, we will perform
screens aimed at the identification of inhibitors of mosquito reproductive success. This study will reveal as
yet unknown molecular mechanisms underlying reproductive success in mosquitoes, considerably increasing
our knowledge beyond the state-of-the-art and critically contributing with innovative tools and ideas to the
fight against malaria.
Summary
Anopheles gambiae mosquitoes are the major vectors of malaria, a disease with devastating consequences for
human health. Novel methods for controlling the natural vector populations are urgently needed, given the
evolution of insecticide resistance in mosquitoes and the lack of novel insecticidals. Understanding the
processes at the bases of mosquito biology may help to roll back malaria. In this proposal, we will target
mosquito reproduction, a major determinant of the An. gambiae vectorial capacity. This will be achieved at
two levels: (i) fundamental research, to provide a deeper knowledge of the processes regulating reproduction
in this species, and (ii) applied research, to identify novel targets and to develop innovative approaches for
the control of natural populations. We will focus our analysis on three major players of mosquito
reproduction: male accessory glands (MAGs), sperm, and spermatheca, in both laboratory and field settings.
We will then translate this information into the identification of inhibitors of mosquito fertility. The
experimental activities will be divided across three objectives. In Objective 1, we will unravel the role of the
MAGs in shaping mosquito fertility and behaviour, by performing a combination of transcriptional and
functional studies that will reveal the multifaceted activities of these tissues. In Objective 2 we will instead
focus on the identification of the male and female factors responsible for sperm viability and function.
Results obtained in both objectives will be validated in field mosquitoes. In Objective 3, we will perform
screens aimed at the identification of inhibitors of mosquito reproductive success. This study will reveal as
yet unknown molecular mechanisms underlying reproductive success in mosquitoes, considerably increasing
our knowledge beyond the state-of-the-art and critically contributing with innovative tools and ideas to the
fight against malaria.
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym ANPROB
Project Analytic-probabilistic methods for borderline singular integrals
Researcher (PI) Tuomas Pentinpoika Hytönen
Host Institution (HI) HELSINGIN YLIOPISTO
Call Details Starting Grant (StG), PE1, ERC-2011-StG_20101014
Summary The proposal consists of an extensive research program to advance the understanding of singular integral operators of Harmonic Analysis in various situations on the borderline of the existing theory. This is to be achieved by a creative combination of techniques from Analysis and Probability. On top of the standard arsenal of modern Harmonic Analysis, the main probabilistic tools are the martingale transform inequalities of Burkholder, and random geometric constructions in the spirit of the random dyadic cubes introduced to Nonhomogeneous Analysis by Nazarov, Treil and Volberg.
The problems to be addressed fall under the following subtitles, with many interconnections and overlap: (i) sharp weighted inequalities; (ii) nonhomogeneous singular integrals on metric spaces; (iii) local Tb theorems with borderline assumptions; (iv) functional calculus of rough differential operators; and (v) vector-valued singular integrals.
Topic (i) is a part of Classical Analysis, where new methods have led to substantial recent progress, culminating in my solution in July 2010 of a celebrated problem on the linear dependence of the weighted operator norm on the Muckenhoupt norm of the weight. The proof should be extendible to several related questions, and the aim is to also address some outstanding open problems in the area.
Topics (ii) and (v) deal with extensions of the theory of singular integrals to functions with more general domain and range spaces, allowing them to be abstract metric and Banach spaces, respectively. In case (ii), I have recently been able to relax the requirements on the space compared to the established theories, opening a new research direction here. Topics (iii) and (iv) are concerned with weakening the assumptions on singular integrals in the usual Euclidean space, to allow certain applications in the theory of Partial Differential Equations. The goal is to maintain a close contact and exchange of ideas between such abstract and concrete questions.
Summary
The proposal consists of an extensive research program to advance the understanding of singular integral operators of Harmonic Analysis in various situations on the borderline of the existing theory. This is to be achieved by a creative combination of techniques from Analysis and Probability. On top of the standard arsenal of modern Harmonic Analysis, the main probabilistic tools are the martingale transform inequalities of Burkholder, and random geometric constructions in the spirit of the random dyadic cubes introduced to Nonhomogeneous Analysis by Nazarov, Treil and Volberg.
The problems to be addressed fall under the following subtitles, with many interconnections and overlap: (i) sharp weighted inequalities; (ii) nonhomogeneous singular integrals on metric spaces; (iii) local Tb theorems with borderline assumptions; (iv) functional calculus of rough differential operators; and (v) vector-valued singular integrals.
Topic (i) is a part of Classical Analysis, where new methods have led to substantial recent progress, culminating in my solution in July 2010 of a celebrated problem on the linear dependence of the weighted operator norm on the Muckenhoupt norm of the weight. The proof should be extendible to several related questions, and the aim is to also address some outstanding open problems in the area.
Topics (ii) and (v) deal with extensions of the theory of singular integrals to functions with more general domain and range spaces, allowing them to be abstract metric and Banach spaces, respectively. In case (ii), I have recently been able to relax the requirements on the space compared to the established theories, opening a new research direction here. Topics (iii) and (iv) are concerned with weakening the assumptions on singular integrals in the usual Euclidean space, to allow certain applications in the theory of Partial Differential Equations. The goal is to maintain a close contact and exchange of ideas between such abstract and concrete questions.
Max ERC Funding
1 100 000 €
Duration
Start date: 2011-11-01, End date: 2016-10-31
Project acronym ANT
Project Automata in Number Theory
Researcher (PI) Boris Adamczewski
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Consolidator Grant (CoG), PE1, ERC-2014-CoG
Summary Finite automata are fundamental objects in Computer Science, of great importance on one hand for theoretical aspects (formal language theory, decidability, complexity) and on the other for practical applications (parsing). In number theory, finite automata are mainly used as simple devices for generating sequences of symbols over a finite set (e.g., digital representations of real numbers), and for recognizing some sets of integers or more generally of finitely generated abelian groups or monoids. One of the main features of these automatic structures comes from the fact that they are highly ordered without necessarily being trivial (i.e., periodic). With their rich fractal nature, they lie somewhere between order and chaos, even if, in most respects, their rigidity prevails. Over the last few years, several ground-breaking results have lead to a great renewed interest in the study of automatic structures in arithmetics.
A primary objective of the ANT project is to exploit this opportunity by developing new directions and interactions between automata and number theory. In this proposal, we outline three lines of research concerning fundamental number theoretical problems that have baffled mathematicians for decades. They include the study of integer base expansions of classical constants, of arithmetical linear differential equations and their link with enumerative combinatorics, and of arithmetics in positive characteristic. At first glance, these topics may seem unrelated, but, surprisingly enough, the theory of finite automata will serve as a natural guideline. We stress that this new point of view on classical questions is a key part of our methodology: we aim at creating a powerful synergy between the different approaches we propose to develop, placing automata theory and related methods at the heart of the subject. This project provides a unique opportunity to create the first international team focusing on these different problems as a whole.
Summary
Finite automata are fundamental objects in Computer Science, of great importance on one hand for theoretical aspects (formal language theory, decidability, complexity) and on the other for practical applications (parsing). In number theory, finite automata are mainly used as simple devices for generating sequences of symbols over a finite set (e.g., digital representations of real numbers), and for recognizing some sets of integers or more generally of finitely generated abelian groups or monoids. One of the main features of these automatic structures comes from the fact that they are highly ordered without necessarily being trivial (i.e., periodic). With their rich fractal nature, they lie somewhere between order and chaos, even if, in most respects, their rigidity prevails. Over the last few years, several ground-breaking results have lead to a great renewed interest in the study of automatic structures in arithmetics.
A primary objective of the ANT project is to exploit this opportunity by developing new directions and interactions between automata and number theory. In this proposal, we outline three lines of research concerning fundamental number theoretical problems that have baffled mathematicians for decades. They include the study of integer base expansions of classical constants, of arithmetical linear differential equations and their link with enumerative combinatorics, and of arithmetics in positive characteristic. At first glance, these topics may seem unrelated, but, surprisingly enough, the theory of finite automata will serve as a natural guideline. We stress that this new point of view on classical questions is a key part of our methodology: we aim at creating a powerful synergy between the different approaches we propose to develop, placing automata theory and related methods at the heart of the subject. This project provides a unique opportunity to create the first international team focusing on these different problems as a whole.
Max ERC Funding
1 438 745 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym ANTEGEFI
Project Analytic Techniques for Geometric and Functional Inequalities
Researcher (PI) Nicola Fusco
Host Institution (HI) UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II
Call Details Advanced Grant (AdG), PE1, ERC-2008-AdG
Summary Isoperimetric and Sobolev inequalities are the best known examples of geometric-functional inequalities. In recent years the PI and collaborators have obtained new and sharp quantitative versions of these and other important related inequalities. These results have been obtained by the combined use of classical symmetrization methods, new tools coming from mass transportation theory, deep geometric measure tools and ad hoc symmetrizations. The objective of this project is to further develop thes techniques in order to get: sharp quantitative versions of Faber-Krahn inequality, Gaussian isoperimetric inequality, Brunn-Minkowski inequality, Poincaré and Sobolev logarithm inequalities; sharp decay rates for the quantitative Sobolev inequalities and Polya-Szegö inequality.
Summary
Isoperimetric and Sobolev inequalities are the best known examples of geometric-functional inequalities. In recent years the PI and collaborators have obtained new and sharp quantitative versions of these and other important related inequalities. These results have been obtained by the combined use of classical symmetrization methods, new tools coming from mass transportation theory, deep geometric measure tools and ad hoc symmetrizations. The objective of this project is to further develop thes techniques in order to get: sharp quantitative versions of Faber-Krahn inequality, Gaussian isoperimetric inequality, Brunn-Minkowski inequality, Poincaré and Sobolev logarithm inequalities; sharp decay rates for the quantitative Sobolev inequalities and Polya-Szegö inequality.
Max ERC Funding
600 000 €
Duration
Start date: 2009-01-01, End date: 2013-12-31
Project acronym ANTHOS
Project Analytic Number Theory: Higher Order Structures
Researcher (PI) Valentin Blomer
Host Institution (HI) GEORG-AUGUST-UNIVERSITAT GOTTINGENSTIFTUNG OFFENTLICHEN RECHTS
Call Details Starting Grant (StG), PE1, ERC-2010-StG_20091028
Summary This is a proposal for research at the interface of analytic number theory, automorphic forms and algebraic geometry. Motivated by fundamental conjectures in number theory, classical problems will be investigated in higher order situations: general number fields, automorphic forms on higher rank groups, the arithmetic of algebraic varieties of higher degree. In particular, I want to focus on
- computation of moments of L-function of degree 3 and higher with applications to subconvexity and/or non-vanishing, as well as subconvexity for multiple L-functions;
- bounds for sup-norms of cusp forms on various spaces and equidistribution of Hecke correspondences;
- automorphic forms on higher rank groups and general number fields, in particular new bounds towards the Ramanujan conjecture;
- a proof of Manin's conjecture for a certain class of singular algebraic varieties.
The underlying methods are closely related; for example, rational points on algebraic varieties
will be counted by a multiple L-series technique.
Summary
This is a proposal for research at the interface of analytic number theory, automorphic forms and algebraic geometry. Motivated by fundamental conjectures in number theory, classical problems will be investigated in higher order situations: general number fields, automorphic forms on higher rank groups, the arithmetic of algebraic varieties of higher degree. In particular, I want to focus on
- computation of moments of L-function of degree 3 and higher with applications to subconvexity and/or non-vanishing, as well as subconvexity for multiple L-functions;
- bounds for sup-norms of cusp forms on various spaces and equidistribution of Hecke correspondences;
- automorphic forms on higher rank groups and general number fields, in particular new bounds towards the Ramanujan conjecture;
- a proof of Manin's conjecture for a certain class of singular algebraic varieties.
The underlying methods are closely related; for example, rational points on algebraic varieties
will be counted by a multiple L-series technique.
Max ERC Funding
1 004 000 €
Duration
Start date: 2010-10-01, End date: 2015-09-30
Project acronym ANTHROPOID
Project Great ape organoids to reconstruct uniquely human development
Researcher (PI) Jarrett CAMP
Host Institution (HI) INSTITUT FUR MOLEKULARE UND KLINISCHE OPHTHALMOLOGIE BASEL
Call Details Starting Grant (StG), LS2, ERC-2018-STG
Summary Humans diverged from our closest living relatives, chimpanzees and other great apes, 6-10 million years ago. Since this divergence, our ancestors acquired genetic changes that enhanced cognition, altered metabolism, and endowed our species with an adaptive capacity to colonize the entire planet and reshape the biosphere. Through genome comparisons between modern humans, Neandertals, chimpanzees and other apes we have identified genetic changes that likely contribute to innovations in human metabolic and cognitive physiology. However, it has been difficult to assess the functional effects of these genetic changes due to the lack of cell culture systems that recapitulate great ape organ complexity. Human and chimpanzee pluripotent stem cells (PSCs) can self-organize into three-dimensional (3D) tissues that recapitulate the morphology, function, and genetic programs controlling organ development. Our vision is to use organoids to study the changes that set modern humans apart from our closest evolutionary relatives as well as all other organisms on the planet. In ANTHROPOID we will generate a great ape developmental cell atlas using cortex, liver, and small intestine organoids. We will use single-cell transcriptomics and chromatin accessibility to identify cell type-specific features of transcriptome divergence at cellular resolution. We will dissect enhancer evolution using single-cell genomic screens and ancestralize human cells to resurrect pre-human cellular phenotypes. ANTHROPOID utilizes quantitative and state-of-the-art methods to explore exciting high-risk questions at multiple branches of the modern human lineage. This project is a ground breaking starting point to replay evolution and tackle the ancient question of what makes us uniquely human?
Summary
Humans diverged from our closest living relatives, chimpanzees and other great apes, 6-10 million years ago. Since this divergence, our ancestors acquired genetic changes that enhanced cognition, altered metabolism, and endowed our species with an adaptive capacity to colonize the entire planet and reshape the biosphere. Through genome comparisons between modern humans, Neandertals, chimpanzees and other apes we have identified genetic changes that likely contribute to innovations in human metabolic and cognitive physiology. However, it has been difficult to assess the functional effects of these genetic changes due to the lack of cell culture systems that recapitulate great ape organ complexity. Human and chimpanzee pluripotent stem cells (PSCs) can self-organize into three-dimensional (3D) tissues that recapitulate the morphology, function, and genetic programs controlling organ development. Our vision is to use organoids to study the changes that set modern humans apart from our closest evolutionary relatives as well as all other organisms on the planet. In ANTHROPOID we will generate a great ape developmental cell atlas using cortex, liver, and small intestine organoids. We will use single-cell transcriptomics and chromatin accessibility to identify cell type-specific features of transcriptome divergence at cellular resolution. We will dissect enhancer evolution using single-cell genomic screens and ancestralize human cells to resurrect pre-human cellular phenotypes. ANTHROPOID utilizes quantitative and state-of-the-art methods to explore exciting high-risk questions at multiple branches of the modern human lineage. This project is a ground breaking starting point to replay evolution and tackle the ancient question of what makes us uniquely human?
Max ERC Funding
1 500 000 €
Duration
Start date: 2019-06-01, End date: 2024-05-31
Project acronym Anti-Virome
Project A combined evolutionary and proteomics approach to the discovery, induction and application of antiviral immunity factors
Researcher (PI) Frank Kirchhoff
Host Institution (HI) UNIVERSITAET ULM
Call Details Advanced Grant (AdG), LS6, ERC-2012-ADG_20120314
Summary "Humans are equipped with a variety of intrinsic immunity or host restriction factors. These evolved under positive selection pressure for diversification and represent a first line of defence against invading viruses. Unfortunately, however, many pathogens have evolved effective antagonists against our defences. For example, the capability of HIV-1 to counteract human restriction factors that interfere with reverse transcription, uncoating and virion release has been a prerequisite for the global spread of AIDS. We are just beginning to understand the diversity and induction of antiretroviral factors and how pandemic HIV-1 group M (major) strains evolved to counteract all of them. Here, I propose to use a genetics, proteomics and evolutionary approach to discover and define as-yet-unknown antiviral effectors and their inducers. To identify novel antiviral factors, we will examine the capability of all primate genes that are under strong positive selection pressure to inhibit HIV and its simian (SIV) precursors. This examination from the evolutionary perspective of the invading pathogen will also reveal which adaptations allowed HIV-1 to cause the AIDS pandemic. Furthermore, complex peptide-protein libraries representing essentially the entire human peptidome, will be utilized to identify novel specific inducers of antiviral restriction factors. My ultimate aim is to unravel the network of inducers and effectors of antiviral immunity - the ""Anti-Virome"" - and to use this knowledge to develop novel effective preventive and therapeutic approaches based on the induction of combinations of antiviral factors targeting different steps of the viral life cycle. The results of this innovative and interdisciplinary program will provide fundamental new insights into intrinsic immunity and may offer alternatives to conventional vaccine and therapeutic approaches because most restriction factors have broad antiviral activity and are thus effective against various pathogens."
Summary
"Humans are equipped with a variety of intrinsic immunity or host restriction factors. These evolved under positive selection pressure for diversification and represent a first line of defence against invading viruses. Unfortunately, however, many pathogens have evolved effective antagonists against our defences. For example, the capability of HIV-1 to counteract human restriction factors that interfere with reverse transcription, uncoating and virion release has been a prerequisite for the global spread of AIDS. We are just beginning to understand the diversity and induction of antiretroviral factors and how pandemic HIV-1 group M (major) strains evolved to counteract all of them. Here, I propose to use a genetics, proteomics and evolutionary approach to discover and define as-yet-unknown antiviral effectors and their inducers. To identify novel antiviral factors, we will examine the capability of all primate genes that are under strong positive selection pressure to inhibit HIV and its simian (SIV) precursors. This examination from the evolutionary perspective of the invading pathogen will also reveal which adaptations allowed HIV-1 to cause the AIDS pandemic. Furthermore, complex peptide-protein libraries representing essentially the entire human peptidome, will be utilized to identify novel specific inducers of antiviral restriction factors. My ultimate aim is to unravel the network of inducers and effectors of antiviral immunity - the ""Anti-Virome"" - and to use this knowledge to develop novel effective preventive and therapeutic approaches based on the induction of combinations of antiviral factors targeting different steps of the viral life cycle. The results of this innovative and interdisciplinary program will provide fundamental new insights into intrinsic immunity and may offer alternatives to conventional vaccine and therapeutic approaches because most restriction factors have broad antiviral activity and are thus effective against various pathogens."
Max ERC Funding
1 915 200 €
Duration
Start date: 2013-04-01, End date: 2018-03-31
Project acronym ANTIViR
Project Molecular mechanisms of interferon-induced antiviral restriction and signalling
Researcher (PI) Caroline GOUJON
Host Institution (HI) INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
Call Details Starting Grant (StG), LS6, ERC-2017-STG
Summary Interferons (IFNs), which are signalling proteins produced by infected cells, are the first line of defence against viral infections. IFNs induce, in infected and neighbouring cells, the expression of hundreds of IFN-stimulated genes (ISGs). The ISGs in turn induce in cells a potent antiviral state, capable of preventing replication of most viruses, including Human Immunodeficiency Virus type 1 (HIV-1) and influenza A virus (FLUAV). Identifying the antiviral ISGs and understanding their mechanisms of action is therefore crucial to progress in the fight against viruses.
ISGs playing a role in the antiviral state have been identified, such as human MX1, a well-known antiviral factor able to restrict numerous viruses including FLUAV, and MX2, an HIV-1 inhibitor. Both proteins bind to viral components but their detailed mechanisms of action, as well as the consequences of restriction on the activation of the innate immune system, remain unclear. Moreover, our preliminary work shows that additional anti-HIV-1 and anti-FLUAV ISGs remain to identify.
In this context, this proposal seeks an ERC StG funding to explore 3 major aims: 1) unravelling the mechanisms of antiviral action of MX proteins, by taking advantage of their similar structure and engineered chimeric proteins, and by using functional genetic screens to identify their cofactors; 2) investigating the consequences of incoming virus recognition by MX proteins on innate immune signalling, by altering their expression in target cells and measuring the cell response in terms of gene induction and cytokine production; 3) identifying and characterizing new ISGs able to inhibit viral replication with a combination of powerful approaches, including a whole-genome CRISPR/Cas9 knock-out screen.
Overall, this proposal will provide a better understanding of the molecular mechanisms involved in the antiviral effect of IFN, and may guide future efforts to identify novel therapeutic targets against major pathogenic viruses.
Summary
Interferons (IFNs), which are signalling proteins produced by infected cells, are the first line of defence against viral infections. IFNs induce, in infected and neighbouring cells, the expression of hundreds of IFN-stimulated genes (ISGs). The ISGs in turn induce in cells a potent antiviral state, capable of preventing replication of most viruses, including Human Immunodeficiency Virus type 1 (HIV-1) and influenza A virus (FLUAV). Identifying the antiviral ISGs and understanding their mechanisms of action is therefore crucial to progress in the fight against viruses.
ISGs playing a role in the antiviral state have been identified, such as human MX1, a well-known antiviral factor able to restrict numerous viruses including FLUAV, and MX2, an HIV-1 inhibitor. Both proteins bind to viral components but their detailed mechanisms of action, as well as the consequences of restriction on the activation of the innate immune system, remain unclear. Moreover, our preliminary work shows that additional anti-HIV-1 and anti-FLUAV ISGs remain to identify.
In this context, this proposal seeks an ERC StG funding to explore 3 major aims: 1) unravelling the mechanisms of antiviral action of MX proteins, by taking advantage of their similar structure and engineered chimeric proteins, and by using functional genetic screens to identify their cofactors; 2) investigating the consequences of incoming virus recognition by MX proteins on innate immune signalling, by altering their expression in target cells and measuring the cell response in terms of gene induction and cytokine production; 3) identifying and characterizing new ISGs able to inhibit viral replication with a combination of powerful approaches, including a whole-genome CRISPR/Cas9 knock-out screen.
Overall, this proposal will provide a better understanding of the molecular mechanisms involved in the antiviral effect of IFN, and may guide future efforts to identify novel therapeutic targets against major pathogenic viruses.
Max ERC Funding
1 499 794 €
Duration
Start date: 2017-12-01, End date: 2022-11-30
Project acronym ANTIVIRALRNAI
Project RNAi-mediated viral immunity in insects
Researcher (PI) Maria-Carla Saleh
Host Institution (HI) INSTITUT PASTEUR
Call Details Starting Grant (StG), LS6, ERC-2009-StG
Summary RNA interference (RNAi) is a conserved sequence-specific, gene-silencing mechanism that is induced by double-stranded RNA (dsRNA). One of the functions of this pathway is the defense against parasitic nucleic acids: transposons and viruses. Previous results demonstrated that viral infections in Drosophila melanogaster are fought by an antiviral RNAi response and that components of the endocytic pathway are required for dsRNA entry to initiate the RNAi response. Recently we have shown that infected insect cells spread a systemic silencing signal that elicits a protective RNAi-dependent immunity throughout the organism. This suggests that the cell-autonomous RNAi response is insufficient to control a viral infection and that flies also rely on systemic immune response to fight against such infections. As a junior group leader, I will study the mechanisms that mediate the RNAi-based antiviral response in insects. By combining biochemical, cellular, molecular and genomic approaches, both in vivo and in cell culture, I will analyze the mechanisms underlying viral tropism, systemic propagation of the antiviral signal and the basis of the persistence of the antiviral state. Furthermore, I will examine whether the dsRNA-uptake pathway is conserved in mosquitoes and its relationship with viral immunity in that host. This comprehensive approach will tackle how this nucleic acid-based immunity works in insects to generate an anti-viral stage. A better understanding of the role of RNA silencing in insects during virus infection will allow the exploitation of this pathway for improvement of public health related problems such as arbovirus infection and disease.
Summary
RNA interference (RNAi) is a conserved sequence-specific, gene-silencing mechanism that is induced by double-stranded RNA (dsRNA). One of the functions of this pathway is the defense against parasitic nucleic acids: transposons and viruses. Previous results demonstrated that viral infections in Drosophila melanogaster are fought by an antiviral RNAi response and that components of the endocytic pathway are required for dsRNA entry to initiate the RNAi response. Recently we have shown that infected insect cells spread a systemic silencing signal that elicits a protective RNAi-dependent immunity throughout the organism. This suggests that the cell-autonomous RNAi response is insufficient to control a viral infection and that flies also rely on systemic immune response to fight against such infections. As a junior group leader, I will study the mechanisms that mediate the RNAi-based antiviral response in insects. By combining biochemical, cellular, molecular and genomic approaches, both in vivo and in cell culture, I will analyze the mechanisms underlying viral tropism, systemic propagation of the antiviral signal and the basis of the persistence of the antiviral state. Furthermore, I will examine whether the dsRNA-uptake pathway is conserved in mosquitoes and its relationship with viral immunity in that host. This comprehensive approach will tackle how this nucleic acid-based immunity works in insects to generate an anti-viral stage. A better understanding of the role of RNA silencing in insects during virus infection will allow the exploitation of this pathway for improvement of public health related problems such as arbovirus infection and disease.
Max ERC Funding
1 900 000 €
Duration
Start date: 2009-10-01, End date: 2014-12-31
Project acronym APGRAPH
Project Asymptotic Graph Properties
Researcher (PI) Deryk Osthus
Host Institution (HI) THE UNIVERSITY OF BIRMINGHAM
Call Details Starting Grant (StG), PE1, ERC-2012-StG_20111012
Summary Many parts of Graph Theory have witnessed a huge growth over the last years, partly because of their relation to Theoretical Computer Science and Statistical Physics. These connections arise because graphs can be used to model many diverse structures.
The focus of this proposal is on asymptotic results, i.e. the graphs under consideration are large. This often unveils patterns and connections which remain obscure when considering only small graphs.
It also allows for the use of powerful techniques such as probabilistic arguments, which have led to spectacular new developments. In particular, my aim is to make decisive progress on central problems in the following 4 areas:
(1) Factorizations: Factorizations of graphs can be viewed as partitions of the edges of a graph into simple regular structures. They have a rich history and arise in many different settings, such as edge-colouring problems, decomposition problems and in information theory. They also have applications to finding good tours for the famous Travelling salesman problem.
(2) Hamilton cycles: A Hamilton cycle is a cycle which contains all the vertices of the graph. One of the most fundamental problems in Graph Theory/Theoretical Computer Science is to find conditions which guarantee the existence of a Hamilton cycle in a graph.
(3) Embeddings of graphs: This is a natural (but difficult) continuation of the previous question where the aim is to embed more general structures than Hamilton cycles - there has been exciting progress here in recent years which has opened up new avenues.
(4) Resilience of graphs: In many cases, it is important to know whether a graph `strongly’ possesses some property, i.e. one cannot destroy the property by changing a few edges. The systematic study of this notion is a new and rapidly growing area.
I have developed new methods for deep and long-standing problems in these areas which will certainly lead to further applications elsewhere.
Summary
Many parts of Graph Theory have witnessed a huge growth over the last years, partly because of their relation to Theoretical Computer Science and Statistical Physics. These connections arise because graphs can be used to model many diverse structures.
The focus of this proposal is on asymptotic results, i.e. the graphs under consideration are large. This often unveils patterns and connections which remain obscure when considering only small graphs.
It also allows for the use of powerful techniques such as probabilistic arguments, which have led to spectacular new developments. In particular, my aim is to make decisive progress on central problems in the following 4 areas:
(1) Factorizations: Factorizations of graphs can be viewed as partitions of the edges of a graph into simple regular structures. They have a rich history and arise in many different settings, such as edge-colouring problems, decomposition problems and in information theory. They also have applications to finding good tours for the famous Travelling salesman problem.
(2) Hamilton cycles: A Hamilton cycle is a cycle which contains all the vertices of the graph. One of the most fundamental problems in Graph Theory/Theoretical Computer Science is to find conditions which guarantee the existence of a Hamilton cycle in a graph.
(3) Embeddings of graphs: This is a natural (but difficult) continuation of the previous question where the aim is to embed more general structures than Hamilton cycles - there has been exciting progress here in recent years which has opened up new avenues.
(4) Resilience of graphs: In many cases, it is important to know whether a graph `strongly’ possesses some property, i.e. one cannot destroy the property by changing a few edges. The systematic study of this notion is a new and rapidly growing area.
I have developed new methods for deep and long-standing problems in these areas which will certainly lead to further applications elsewhere.
Max ERC Funding
818 414 €
Duration
Start date: 2012-12-01, End date: 2018-11-30
Project acronym APOLs
Project Role of Apolipoproteins L in immunity and disease
Researcher (PI) Etienne Pays
Host Institution (HI) UNIVERSITE LIBRE DE BRUXELLES
Call Details Advanced Grant (AdG), LS6, ERC-2014-ADG
Summary Work conducted in my laboratory on the trypanosome killing factor of human serum led to the identification
of the primate-specific Apolipoprotein L1 (APOL1) as a novel pore-forming protein with striking similarities
with proteins of the apoptotic BCL2 family. APOL1 belongs to a family of proteins induced under
inflammatory conditions in myeloid and endothelial cells. APOL1 is efficiently neutralized by the SRA
protein of Trypanosoma rhodesiense, accounting for the ability of this trypanosome subspecies to infect
humans and cause sleeping sickness. We found that natural APOL1 variants escaping SRA neutralization and
therefore conferring human resistance to T. rhodesiense are associated with chronic kidney disease.
Moreover, transgenic mice expressing these APOL1 variants exhibit an obese phenotype. Our unpublished
results also indicate that APOLs control the lifespan of dendritic cells and podocytes activated by viral
stimuli. Therefore, we propose that the pathology of APOL variants is due to their deregulated activity on the
control of the cellular lifespan in myeloid/endothelial cells activated by pathogen detection.
This project aims at characterizing (i) the molecular mechanism by which APOLs control the lifespan of
activated dendritic cells and podocytes, which has direct impact on innate immunity and inflammation, and
(ii) the mechanism by which APOL1 variants cause pathology. In addition, we plan to detail the
physiological function of APOLs by studying the phenotype of transgenic mice either expressing human
APOL1 (wild-type and variants) or devoid of APOL genes, which we have recently generated. Finally, we
propose to exploit the extraordinary potential of trypanosomes for antigenic variation in order to produce
SRA variants able to neutralize the pathogenic APOL1 variants. Preliminary experiments suggest that in
podocytes SRA antagonizes APOL1 induction by viral stimulus and subsequent cell death, opening new
perspectives to treat kidney disease.
Summary
Work conducted in my laboratory on the trypanosome killing factor of human serum led to the identification
of the primate-specific Apolipoprotein L1 (APOL1) as a novel pore-forming protein with striking similarities
with proteins of the apoptotic BCL2 family. APOL1 belongs to a family of proteins induced under
inflammatory conditions in myeloid and endothelial cells. APOL1 is efficiently neutralized by the SRA
protein of Trypanosoma rhodesiense, accounting for the ability of this trypanosome subspecies to infect
humans and cause sleeping sickness. We found that natural APOL1 variants escaping SRA neutralization and
therefore conferring human resistance to T. rhodesiense are associated with chronic kidney disease.
Moreover, transgenic mice expressing these APOL1 variants exhibit an obese phenotype. Our unpublished
results also indicate that APOLs control the lifespan of dendritic cells and podocytes activated by viral
stimuli. Therefore, we propose that the pathology of APOL variants is due to their deregulated activity on the
control of the cellular lifespan in myeloid/endothelial cells activated by pathogen detection.
This project aims at characterizing (i) the molecular mechanism by which APOLs control the lifespan of
activated dendritic cells and podocytes, which has direct impact on innate immunity and inflammation, and
(ii) the mechanism by which APOL1 variants cause pathology. In addition, we plan to detail the
physiological function of APOLs by studying the phenotype of transgenic mice either expressing human
APOL1 (wild-type and variants) or devoid of APOL genes, which we have recently generated. Finally, we
propose to exploit the extraordinary potential of trypanosomes for antigenic variation in order to produce
SRA variants able to neutralize the pathogenic APOL1 variants. Preliminary experiments suggest that in
podocytes SRA antagonizes APOL1 induction by viral stimulus and subsequent cell death, opening new
perspectives to treat kidney disease.
Max ERC Funding
2 250 000 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym APOQUANT
Project The quantitative Bcl-2 interactome in apoptosis: decoding how cancer cells escape death
Researcher (PI) Ana Jesús García Sáez
Host Institution (HI) EBERHARD KARLS UNIVERSITAET TUEBINGEN
Call Details Starting Grant (StG), LS3, ERC-2012-StG_20111109
Summary The proteins of the Bcl-2 family function as key regulators of apoptosis by controlling the permeabilization of the mitochondrial outer membrane. They form an intricate, fine-tuned interaction network which is altered in cancer cells to avoid cell death. Currently, we do not understand how signaling within this network, which combines events in cytosol and membranes, is orchestrated to decide the cell fate. The main goal of this proposal is to unravel how apoptosis signaling is integrated by the Bcl-2 network by determining the quantitative Bcl-2 interactome and building with it a mathematical model that identifies which interactions determine the overall outcome. To this aim, we have established a reconstituted system for the quantification of the interactions between Bcl-2 proteins not only in solution but also in membranes at the single molecule level by fluorescence correlation spectroscopy (FCS).
(1) This project aims to quantify the relative affinities between an reconstituted Bcl-2 network by FCS.
(2) This will be combined with quantitative studies in living cells, which include the signaling pathway in its entirety. To this aim, we will develop new FCS methods for mitochondria.
(3) The structural and dynamic aspects of the Bcl-2 network will be studied by super resolution and live cell microscopy.
(4) The acquired knowledge will be used to build a mathematical model that uncovers how the multiple interactions within the Bcl-2 network are integrated and identifies critical steps in apoptosis regulation.
These studies are expected to broaden the general knowledge about the design principles of cellular signaling as well as how cancer cells alter the Bcl-2 network to escape cell death. This systems analysis will allow us to predict which perturbations in the Bcl-2 network of cancer cells can switch signaling towards cell death. Ultimately it could be translated into clinical applications for anticancer therapy.
Summary
The proteins of the Bcl-2 family function as key regulators of apoptosis by controlling the permeabilization of the mitochondrial outer membrane. They form an intricate, fine-tuned interaction network which is altered in cancer cells to avoid cell death. Currently, we do not understand how signaling within this network, which combines events in cytosol and membranes, is orchestrated to decide the cell fate. The main goal of this proposal is to unravel how apoptosis signaling is integrated by the Bcl-2 network by determining the quantitative Bcl-2 interactome and building with it a mathematical model that identifies which interactions determine the overall outcome. To this aim, we have established a reconstituted system for the quantification of the interactions between Bcl-2 proteins not only in solution but also in membranes at the single molecule level by fluorescence correlation spectroscopy (FCS).
(1) This project aims to quantify the relative affinities between an reconstituted Bcl-2 network by FCS.
(2) This will be combined with quantitative studies in living cells, which include the signaling pathway in its entirety. To this aim, we will develop new FCS methods for mitochondria.
(3) The structural and dynamic aspects of the Bcl-2 network will be studied by super resolution and live cell microscopy.
(4) The acquired knowledge will be used to build a mathematical model that uncovers how the multiple interactions within the Bcl-2 network are integrated and identifies critical steps in apoptosis regulation.
These studies are expected to broaden the general knowledge about the design principles of cellular signaling as well as how cancer cells alter the Bcl-2 network to escape cell death. This systems analysis will allow us to predict which perturbations in the Bcl-2 network of cancer cells can switch signaling towards cell death. Ultimately it could be translated into clinical applications for anticancer therapy.
Max ERC Funding
1 462 900 €
Duration
Start date: 2013-04-01, End date: 2019-03-31
Project acronym APOSITE
Project Apoptotic foci: composition, structure and dynamics
Researcher (PI) Ana GARCIA SAEZ
Host Institution (HI) EBERHARD KARLS UNIVERSITAET TUEBINGEN
Call Details Consolidator Grant (CoG), LS3, ERC-2018-COG
Summary Apoptotic cell death is essential for development, immune function or tissue homeostasis, and it is often deregulated in disease. Mitochondrial outer membrane permeabilization (MOMP) is central for apoptosis execution and plays a key role in its inflammatory outcome. Knowing the architecture of the macromolecular machineries mediating MOMP is crucial for understanding their function and for the clinical use of apoptosis.
Our recent work reveals that Bax and Bak dimers form distinct line, arc and ring assemblies at specific apoptotic foci to mediate MOMP. However, the molecular structure and mechanisms controlling the spatiotemporal formation and range of action of the apoptotic foci are missing. To address this fundamental gap in our knowledge, we aim to unravel the composition, dynamics and structure of apoptotic foci and to understand how they are integrated to orchestrate function. We will reach this goal by building on our expertise in cell death and cutting-edge imaging and by developing a new analytical pipeline to:
1) Identify the composition of apoptotic foci using in situ proximity-dependent labeling and extraction of near-native Bax/Bak membrane complexes coupled to mass spectrometry.
2) Define their contribution to apoptosis and its immunogenicity and establish their assembly dynamics to correlate it with apoptosis progression by live cell imaging.
3) Determine the stoichiometry and structural organization of the apoptotic foci by combining single molecule fluorescence and advanced electron microscopies.
This multidisciplinary approach offers high chances to solve the long-standing question of how Bax and Bak mediate MOMP. APOSITE will provide textbook knowledge of the mitochondrial contribution to cell death and inflammation. The implementation of this new analytical framework will open novel research avenues in membrane and organelle biology. Ultimately, understanding of Bax and Bak structure/function will help develop apoptosis modulators for medicine.
Summary
Apoptotic cell death is essential for development, immune function or tissue homeostasis, and it is often deregulated in disease. Mitochondrial outer membrane permeabilization (MOMP) is central for apoptosis execution and plays a key role in its inflammatory outcome. Knowing the architecture of the macromolecular machineries mediating MOMP is crucial for understanding their function and for the clinical use of apoptosis.
Our recent work reveals that Bax and Bak dimers form distinct line, arc and ring assemblies at specific apoptotic foci to mediate MOMP. However, the molecular structure and mechanisms controlling the spatiotemporal formation and range of action of the apoptotic foci are missing. To address this fundamental gap in our knowledge, we aim to unravel the composition, dynamics and structure of apoptotic foci and to understand how they are integrated to orchestrate function. We will reach this goal by building on our expertise in cell death and cutting-edge imaging and by developing a new analytical pipeline to:
1) Identify the composition of apoptotic foci using in situ proximity-dependent labeling and extraction of near-native Bax/Bak membrane complexes coupled to mass spectrometry.
2) Define their contribution to apoptosis and its immunogenicity and establish their assembly dynamics to correlate it with apoptosis progression by live cell imaging.
3) Determine the stoichiometry and structural organization of the apoptotic foci by combining single molecule fluorescence and advanced electron microscopies.
This multidisciplinary approach offers high chances to solve the long-standing question of how Bax and Bak mediate MOMP. APOSITE will provide textbook knowledge of the mitochondrial contribution to cell death and inflammation. The implementation of this new analytical framework will open novel research avenues in membrane and organelle biology. Ultimately, understanding of Bax and Bak structure/function will help develop apoptosis modulators for medicine.
Max ERC Funding
2 000 000 €
Duration
Start date: 2019-04-01, End date: 2024-03-31
Project acronym APPL
Project Anionic PhosPhoLipids in plant receptor kinase signaling
Researcher (PI) Yvon Jaillais
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), LS3, ERC-2013-StG
Summary "In plants, receptor kinases form the largest family of plasma membrane (PM) receptors and they are involved in virtually all aspects of the plant life, including development, immunity and reproduction. In animals, key molecules that orchestrate the recruitment of signaling proteins to membranes are anionic phospholipids (e.g. phosphatidylinositol phosphate or PIPs). Besides, recent reports in animal and yeast cells suggest the existence of PM nanodomains that are independent of cholesterol and lipid phase and rely on anionic phospholipids as well as electrostatic protein/lipid interactions. Strikingly, we know very little on the role of anionic phospholipids in plant signaling. However, our preliminary data suggest that BKI1, an inhibitory protein of the steroid receptor kinase BRI1, interacts with various PIPs in vitro and is likely targeted to the PM by electrostatic interactions with these anionic lipids. These results open the possibility that BRI1, but also other receptor kinases, might be regulated by anionic phospholipids in plants. Here, we propose to analyze the function of anionic phospholipids in BRI1 signaling, using the root epidermis as a model system. First, we will ask what are the lipids that control membrane surface charge in this tissue and recruit BR-signaling component to the PM. Second, we will probe the presence of PIP-enriched nanodomains at the plant PM using super-resolution microscopy techniques and investigate the roles of these domains in BRI1 signaling. Finally, we will analyze the function of the BKI1-related plant-specific family of anionic phospholipid effectors in plant development. In summary, using a transversal approach ranging from in vitro studies to in vivo validation and whole organism physiology, this work will unravel the interplay between anionic phospholipids and receptor signaling in plants."
Summary
"In plants, receptor kinases form the largest family of plasma membrane (PM) receptors and they are involved in virtually all aspects of the plant life, including development, immunity and reproduction. In animals, key molecules that orchestrate the recruitment of signaling proteins to membranes are anionic phospholipids (e.g. phosphatidylinositol phosphate or PIPs). Besides, recent reports in animal and yeast cells suggest the existence of PM nanodomains that are independent of cholesterol and lipid phase and rely on anionic phospholipids as well as electrostatic protein/lipid interactions. Strikingly, we know very little on the role of anionic phospholipids in plant signaling. However, our preliminary data suggest that BKI1, an inhibitory protein of the steroid receptor kinase BRI1, interacts with various PIPs in vitro and is likely targeted to the PM by electrostatic interactions with these anionic lipids. These results open the possibility that BRI1, but also other receptor kinases, might be regulated by anionic phospholipids in plants. Here, we propose to analyze the function of anionic phospholipids in BRI1 signaling, using the root epidermis as a model system. First, we will ask what are the lipids that control membrane surface charge in this tissue and recruit BR-signaling component to the PM. Second, we will probe the presence of PIP-enriched nanodomains at the plant PM using super-resolution microscopy techniques and investigate the roles of these domains in BRI1 signaling. Finally, we will analyze the function of the BKI1-related plant-specific family of anionic phospholipid effectors in plant development. In summary, using a transversal approach ranging from in vitro studies to in vivo validation and whole organism physiology, this work will unravel the interplay between anionic phospholipids and receptor signaling in plants."
Max ERC Funding
1 797 840 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym AQSER
Project Automorphic q-series and their application
Researcher (PI) Kathrin Bringmann
Host Institution (HI) UNIVERSITAET ZU KOELN
Call Details Starting Grant (StG), PE1, ERC-2013-StG
Summary This proposal aims to unravel mysteries at the frontier of number theory and other areas of mathematics and physics. The main focus will be to understand and exploit “modularity” of q-hypergeometric series. “Modular forms are functions on the complex plane that are inordinately symmetric.” (Mazur) The motivation comes from the wide-reaching applications of modularity in combinatorics, percolation, Lie theory, and physics (black holes).
The interplay between automorphic forms, q-series, and other areas of mathematics and physics is often two-sided. On the one hand, the other areas provide interesting examples of automorphic objects and predict their behavior. Sometimes these even motivate new classes of automorphic objects which have not been previously studied. On the other hand, knowing that certain generating functions are modular gives one access to deep theoretical tools to prove results in other areas. “Mathematics is a language, and we need that language to understand the physics of our universe.”(Ooguri) Understanding this interplay has attracted attention of researchers from a variety of areas. However, proofs of modularity of q-hypergeometric series currently fall far short of a comprehensive theory to describe the interplay between them and automorphic forms. A recent conjecture of W. Nahm relates the modularity of such series to K-theory. In this proposal I aim to fill this gap and provide a better understanding of this interplay by building a general structural framework enveloping these q-series. For this I will employ new kinds of automorphic objects and embed the functions of interest into bigger families
A successful outcome of the proposed research will open further horizons and also answer open questions, even those in other areas which were not addressed in this proposal; for example the new theory could be applied to better understand Donaldson invariants.
Summary
This proposal aims to unravel mysteries at the frontier of number theory and other areas of mathematics and physics. The main focus will be to understand and exploit “modularity” of q-hypergeometric series. “Modular forms are functions on the complex plane that are inordinately symmetric.” (Mazur) The motivation comes from the wide-reaching applications of modularity in combinatorics, percolation, Lie theory, and physics (black holes).
The interplay between automorphic forms, q-series, and other areas of mathematics and physics is often two-sided. On the one hand, the other areas provide interesting examples of automorphic objects and predict their behavior. Sometimes these even motivate new classes of automorphic objects which have not been previously studied. On the other hand, knowing that certain generating functions are modular gives one access to deep theoretical tools to prove results in other areas. “Mathematics is a language, and we need that language to understand the physics of our universe.”(Ooguri) Understanding this interplay has attracted attention of researchers from a variety of areas. However, proofs of modularity of q-hypergeometric series currently fall far short of a comprehensive theory to describe the interplay between them and automorphic forms. A recent conjecture of W. Nahm relates the modularity of such series to K-theory. In this proposal I aim to fill this gap and provide a better understanding of this interplay by building a general structural framework enveloping these q-series. For this I will employ new kinds of automorphic objects and embed the functions of interest into bigger families
A successful outcome of the proposed research will open further horizons and also answer open questions, even those in other areas which were not addressed in this proposal; for example the new theory could be applied to better understand Donaldson invariants.
Max ERC Funding
1 240 500 €
Duration
Start date: 2014-01-01, End date: 2019-04-30
Project acronym AQUAMS
Project Analysis of quantum many-body systems
Researcher (PI) Robert Seiringer
Host Institution (HI) INSTITUTE OF SCIENCE AND TECHNOLOGYAUSTRIA
Call Details Advanced Grant (AdG), PE1, ERC-2015-AdG
Summary The main focus of this project is the mathematical analysis of many-body quantum systems, in particular, interacting quantum gases at low temperature. The recent experimental advances in studying ultra-cold atomic gases have led to renewed interest in these systems. They display a rich variety of quantum phenomena, including, e.g., Bose–Einstein condensation and superfluidity, which makes them interesting both from a physical and a mathematical point of view.
The goal of this project is the development of new mathematical tools for dealing with complex problems in many-body quantum systems. New mathematical methods lead to different points of view and thus increase our understanding of physical systems. From the point of view of mathematical physics, there has been significant progress in the last few years in understanding the interesting phenomena occurring in quantum gases, and the goal of this project is to investigate some of the key issues that remain unsolved. Due to the complex nature of the problems, new mathematical ideas
and methods will have to be developed for this purpose. One of the main question addressed in this proposal is the validity of the Bogoliubov approximation for the excitation spectrum of many-body quantum systems. While its accuracy has been
successfully shown for the ground state energy of various models, its predictions concerning the excitation spectrum have so far only been verified in the Hartree limit, an extreme form of a mean-field limit where the interaction among the particles is very weak and ranges over the whole system. The central part of this project is concerned with the extension of these results to the case of short-range interactions. Apart from being mathematically much more challenging, the short-range case is the
one most relevant for the description of actual physical systems. Hence progress along these lines can be expected to yield valuable insight into the complex behavior of these many-body quantum systems.
Summary
The main focus of this project is the mathematical analysis of many-body quantum systems, in particular, interacting quantum gases at low temperature. The recent experimental advances in studying ultra-cold atomic gases have led to renewed interest in these systems. They display a rich variety of quantum phenomena, including, e.g., Bose–Einstein condensation and superfluidity, which makes them interesting both from a physical and a mathematical point of view.
The goal of this project is the development of new mathematical tools for dealing with complex problems in many-body quantum systems. New mathematical methods lead to different points of view and thus increase our understanding of physical systems. From the point of view of mathematical physics, there has been significant progress in the last few years in understanding the interesting phenomena occurring in quantum gases, and the goal of this project is to investigate some of the key issues that remain unsolved. Due to the complex nature of the problems, new mathematical ideas
and methods will have to be developed for this purpose. One of the main question addressed in this proposal is the validity of the Bogoliubov approximation for the excitation spectrum of many-body quantum systems. While its accuracy has been
successfully shown for the ground state energy of various models, its predictions concerning the excitation spectrum have so far only been verified in the Hartree limit, an extreme form of a mean-field limit where the interaction among the particles is very weak and ranges over the whole system. The central part of this project is concerned with the extension of these results to the case of short-range interactions. Apart from being mathematically much more challenging, the short-range case is the
one most relevant for the description of actual physical systems. Hence progress along these lines can be expected to yield valuable insight into the complex behavior of these many-body quantum systems.
Max ERC Funding
1 497 755 €
Duration
Start date: 2016-10-01, End date: 2021-09-30
Project acronym AR.C.H.I.VES
Project A comparative history of archives in late medieval and early modern Italy
Researcher (PI) Filippo Luciano Carlo De Vivo
Host Institution (HI) BIRKBECK COLLEGE - UNIVERSITY OF LONDON
Call Details Starting Grant (StG), SH6, ERC-2011-StG_20101124
Summary Most historians work in archives, but generally have not made archives into their primary object of research. While we tend to be preoccupied by documentary loss, what is striking is the sheer amount of paperwork preserved over the centuries. We need to study the reasons for this preservation.
This project wishes to study the history of the archives and of the chanceries that oversaw their production storage and organization in late medieval and early modern Italy: essentially from the creation of the first chanceries in city-states in the late twelfth century to the opening of the Archivi di Stato that, after the ancient states’ dissolution, preserved documents as tools for scholarship rather than administration. Because of its fragmented political history, concentrating on Italy means having access to the archives of a wide variety of regimes; in turn, as institutions pursuing similar functions, archives lend themselves to comparison and therefore such research may help us overcome the traditional disconnectedness in the study of Italy’s past.
The project proposes to break significantly new ground, first, by adopting a comparative approach through the in-depth analysis of seven case studies and, second, by contextualising the study of archives away from institutional history in a wider social and cultural context, by focusing on six themes researched in six successive phases: 1) the political role of archives, and the efforts devoted by governments to their development; 2) their organization, subdivisions, referencing systems; 3) the material culture of documents and physical repositories as well as spatial locations; 4) the social characteristiscs of the staff; 5) the archives’ place in society, including their access and misuse; 6) their use by historians. As implied in the choice of these themes, the project is deliberately interdisciplinary, and aims at the mutually beneficial exchange between archivists, social, political cultural and art historians.
Summary
Most historians work in archives, but generally have not made archives into their primary object of research. While we tend to be preoccupied by documentary loss, what is striking is the sheer amount of paperwork preserved over the centuries. We need to study the reasons for this preservation.
This project wishes to study the history of the archives and of the chanceries that oversaw their production storage and organization in late medieval and early modern Italy: essentially from the creation of the first chanceries in city-states in the late twelfth century to the opening of the Archivi di Stato that, after the ancient states’ dissolution, preserved documents as tools for scholarship rather than administration. Because of its fragmented political history, concentrating on Italy means having access to the archives of a wide variety of regimes; in turn, as institutions pursuing similar functions, archives lend themselves to comparison and therefore such research may help us overcome the traditional disconnectedness in the study of Italy’s past.
The project proposes to break significantly new ground, first, by adopting a comparative approach through the in-depth analysis of seven case studies and, second, by contextualising the study of archives away from institutional history in a wider social and cultural context, by focusing on six themes researched in six successive phases: 1) the political role of archives, and the efforts devoted by governments to their development; 2) their organization, subdivisions, referencing systems; 3) the material culture of documents and physical repositories as well as spatial locations; 4) the social characteristiscs of the staff; 5) the archives’ place in society, including their access and misuse; 6) their use by historians. As implied in the choice of these themes, the project is deliberately interdisciplinary, and aims at the mutually beneficial exchange between archivists, social, political cultural and art historians.
Max ERC Funding
1 107 070 €
Duration
Start date: 2012-02-01, End date: 2016-07-31
Project acronym ARABCOMMAPH
Project Arabic Commentaries on the Hippocratic Aphorisms
Researcher (PI) Peter Ernst Pormann
Host Institution (HI) THE UNIVERSITY OF MANCHESTER
Call Details Starting Grant (StG), SH6, ERC-2011-StG_20101124
Summary The Hippocratic Aphorisms have exerted a singular influence over generations of physicians both in the East and in the West. Galen (d. c. 216) produced an extensive commentary on this text, as did other medical authors writing in Greek, Latin, Arabic, and Hebrew. The Arabic tradition is particularly rich, with more than a dozen commentaries extant in over a hundred manuscripts. These Arabic commentaries did not merely contain scholastic debates, but constituted important venues for innovation and change. Moreover, they impacted on medical practice, as the Aphorisms were so popular that both doctors and their patients knew them by heart. Despite their importance for medical theory and practice, previous scholarship on them has barely scratched the surface. Put succinctly, the present project breaks new ground by conducting an in-depth study of this tradition through a highly innovative methodology: it approaches the available evidence as a corpus, to be constituted electronically, and to be analysed in an interdisciplinary way.
We propose to survey the manuscript tradition of the Arabic commentaries on the Hippocratic Aphorisms, beginning with Ḥunayn ibn ʾIsḥāq’s Arabic translation of Galen’s commentary. On the basis of this philological survey that will employ a new approach to stemmatics, we shall produce provisional electronic XML editions of the commentaries. These texts will constitute the corpus, some 600,000 words long, that we shall investigate through the latest IT tools to address a set of interdisciplinary problems: textual criticism of the Greek sources; Graeco-Arabic translation technique; methods of quotation; hermeneutic procedures; development of medical theory; medical practice; and social history of medicine. Both in approach and scope, the project will bring about a paradigm shift in our study of exegetical cultures in Arabic, and the role that commentaries played in the transmission and transformation of scientific knowledge.
Summary
The Hippocratic Aphorisms have exerted a singular influence over generations of physicians both in the East and in the West. Galen (d. c. 216) produced an extensive commentary on this text, as did other medical authors writing in Greek, Latin, Arabic, and Hebrew. The Arabic tradition is particularly rich, with more than a dozen commentaries extant in over a hundred manuscripts. These Arabic commentaries did not merely contain scholastic debates, but constituted important venues for innovation and change. Moreover, they impacted on medical practice, as the Aphorisms were so popular that both doctors and their patients knew them by heart. Despite their importance for medical theory and practice, previous scholarship on them has barely scratched the surface. Put succinctly, the present project breaks new ground by conducting an in-depth study of this tradition through a highly innovative methodology: it approaches the available evidence as a corpus, to be constituted electronically, and to be analysed in an interdisciplinary way.
We propose to survey the manuscript tradition of the Arabic commentaries on the Hippocratic Aphorisms, beginning with Ḥunayn ibn ʾIsḥāq’s Arabic translation of Galen’s commentary. On the basis of this philological survey that will employ a new approach to stemmatics, we shall produce provisional electronic XML editions of the commentaries. These texts will constitute the corpus, some 600,000 words long, that we shall investigate through the latest IT tools to address a set of interdisciplinary problems: textual criticism of the Greek sources; Graeco-Arabic translation technique; methods of quotation; hermeneutic procedures; development of medical theory; medical practice; and social history of medicine. Both in approach and scope, the project will bring about a paradigm shift in our study of exegetical cultures in Arabic, and the role that commentaries played in the transmission and transformation of scientific knowledge.
Max ERC Funding
1 499 968 €
Duration
Start date: 2012-02-01, End date: 2017-07-31
Project acronym ARCHAELLUM
Project Assembly and function of the crenarchaeal flagellum
Researcher (PI) Sonja-Verena Albers
Host Institution (HI) ALBERT-LUDWIGS-UNIVERSITAET FREIBURG
Call Details Starting Grant (StG), LS6, ERC-2012-StG_20111109
Summary "Archaea constitute the third domain of life and are believed to be close to the origin of life. They comprise a diverse group of micro-organisms that combine bacterial and eukaryotic features, but also employ many novel mechanisms. They possess a unique cell envelope with a cytoplasmic membrane of ether lipids surrounded by a proteinaceous S-layer and various cell appendages such as flagella, pili and more unusual structures. Studies have shown that the archaeal flagellum is an unique structure as it functionally resembles the bacterial flagellum, but structurally it is a simple type IV pilus. Moreover, we have shown that this type IV pilus can rotate. Therefore I propose to name the archaeal flagellum, the archaellum, as it is fundamentally different from the bacterial flagellum.
In this proposal I aim to understand the assembly and mechanism of rotation of the archaellum of the thermocacidophilic crenarchaen Sulfolobus acidocaldarius by using biochemical, genetic and biophysical methods. The main milestons are:
- Biochemical and structural characterization of all archaellum subunits
- To understand the assembly pathway of the archaellum and the interactions of its different
subunits
- To understand how rotation of the filament is achieved and which subunits are important
for this movement
This work will identify a new, relatively simple motor complex that has evolved from primordial type IV pili assembly machineries and therefore uncover general principles of macromolecular assemblies at cellular surfaces and a novel mechanism to generate mechanical force that can be translated into movement."
Summary
"Archaea constitute the third domain of life and are believed to be close to the origin of life. They comprise a diverse group of micro-organisms that combine bacterial and eukaryotic features, but also employ many novel mechanisms. They possess a unique cell envelope with a cytoplasmic membrane of ether lipids surrounded by a proteinaceous S-layer and various cell appendages such as flagella, pili and more unusual structures. Studies have shown that the archaeal flagellum is an unique structure as it functionally resembles the bacterial flagellum, but structurally it is a simple type IV pilus. Moreover, we have shown that this type IV pilus can rotate. Therefore I propose to name the archaeal flagellum, the archaellum, as it is fundamentally different from the bacterial flagellum.
In this proposal I aim to understand the assembly and mechanism of rotation of the archaellum of the thermocacidophilic crenarchaen Sulfolobus acidocaldarius by using biochemical, genetic and biophysical methods. The main milestons are:
- Biochemical and structural characterization of all archaellum subunits
- To understand the assembly pathway of the archaellum and the interactions of its different
subunits
- To understand how rotation of the filament is achieved and which subunits are important
for this movement
This work will identify a new, relatively simple motor complex that has evolved from primordial type IV pili assembly machineries and therefore uncover general principles of macromolecular assemblies at cellular surfaces and a novel mechanism to generate mechanical force that can be translated into movement."
Max ERC Funding
1 464 317 €
Duration
Start date: 2013-02-01, End date: 2018-01-31
Project acronym ARCHCAUCASUS
Project Technical and Social Innovations in the Caucasus: between the Eurasian Steppe and the Earliest Cities in the 4th and 3rd millennia BC
Researcher (PI) Svend HANSEN
Host Institution (HI) DEUTSCHES ARCHAOLOGISCHES INSTITUT
Call Details Advanced Grant (AdG), SH6, ERC-2018-ADG
Summary This project leads to one of the most dynamic regions in prehistory: the Caucasus of the 4th and early 3rd mill. BC. During this vibrant time, basic innovations emerged, which were crucial until the 19th century: wheel and wagon, copper alloys, the potter’s wheel, new breeds of woolly sheep, domestication of the horse, and others. At the same time, massive migrations from the East European steppe during the early 3rd mill. BC changed the European gene pool.
The project challenges the still predominant narrative that all technical achievements stemmed from urban centres in Mesopotamia. New studies have created space for alternative hypotheses: possibly it was not the development of new techniques, but instead their adaptation from different ‘peripheries’ and their re-combination and re-configuration that formed the basis for the success of these ‘civilisations’.
The Caucasus, linking Mesopotamia to the Eurasia and Europe, is for the first time in the focus of a study on innovation transfer. The study will make a major contribution by investigation of four axial innovations: wheel and wagon, metal alloys, silver metallurgy and woolly sheep. 40 wheels will be analysed by computer tomography and strontium isotopes. Some 300 copper alloys artefacts and 200 silver objects will be examined using mass spectrometry with laser ablation. 400 aDNA genom-wide analyses of humans from burials in the North Caucasus will offer the unique chance of elucidating the role of migrations for the spread of innovations. The pottery in the region, often linked to Mesopotamia, will be studied under technical aspects and is a complementary path to shed light on migration and the transfer of knowledge. Excavations in settlements will allow building up a chronology using 400 AMS 14C analyses. The project is multidisciplinary, making use of the most up-to-date analytical methods. Our long experience and reputation on both sides of the Caucasus is the ideal background for cutting-edge research.
Summary
This project leads to one of the most dynamic regions in prehistory: the Caucasus of the 4th and early 3rd mill. BC. During this vibrant time, basic innovations emerged, which were crucial until the 19th century: wheel and wagon, copper alloys, the potter’s wheel, new breeds of woolly sheep, domestication of the horse, and others. At the same time, massive migrations from the East European steppe during the early 3rd mill. BC changed the European gene pool.
The project challenges the still predominant narrative that all technical achievements stemmed from urban centres in Mesopotamia. New studies have created space for alternative hypotheses: possibly it was not the development of new techniques, but instead their adaptation from different ‘peripheries’ and their re-combination and re-configuration that formed the basis for the success of these ‘civilisations’.
The Caucasus, linking Mesopotamia to the Eurasia and Europe, is for the first time in the focus of a study on innovation transfer. The study will make a major contribution by investigation of four axial innovations: wheel and wagon, metal alloys, silver metallurgy and woolly sheep. 40 wheels will be analysed by computer tomography and strontium isotopes. Some 300 copper alloys artefacts and 200 silver objects will be examined using mass spectrometry with laser ablation. 400 aDNA genom-wide analyses of humans from burials in the North Caucasus will offer the unique chance of elucidating the role of migrations for the spread of innovations. The pottery in the region, often linked to Mesopotamia, will be studied under technical aspects and is a complementary path to shed light on migration and the transfer of knowledge. Excavations in settlements will allow building up a chronology using 400 AMS 14C analyses. The project is multidisciplinary, making use of the most up-to-date analytical methods. Our long experience and reputation on both sides of the Caucasus is the ideal background for cutting-edge research.
Max ERC Funding
2 487 875 €
Duration
Start date: 2019-07-01, End date: 2024-06-30
Project acronym ArcheoDyn
Project Globular clusters as living fossils of the past of galaxies
Researcher (PI) Petrus VAN DE VEN
Host Institution (HI) UNIVERSITAT WIEN
Call Details Consolidator Grant (CoG), PE9, ERC-2016-COG
Summary Globular clusters (GCs) are enigmatic objects that hide a wealth of information. They are the living fossils of the history of their native galaxies and the record keepers of the violent events that made them change their domicile. This proposal aims to mine GCs as living fossils of galaxy evolution to address fundamental questions in astrophysics: (1) Do satellite galaxies merge as predicted by the hierarchical build-up of galaxies? (2) Which are the seeds of supermassive black holes in the centres of galaxies? (3) How did star formation originate in the earliest phases of galaxy formation? To answer these questions, novel population-dependent dynamical modelling techniques are required, whose development the PI has led over the past years. This uniquely positions him to take full advantage of the emerging wealth of chemical and kinematical data on GCs.
Following the tidal disruption of satellite galaxies, their dense GCs, and maybe even their nuclei, are left as the most visible remnants in the main galaxy. The hierarchical build-up of their new host galaxy can thus be unearthed by recovering the GCs’ orbits. However, currently it is unclear which of the GCs are accretion survivors. Actually, the existence of a central intermediate mass black hole (IMBH) or of multiple stellar populations in GCs might tell which ones are accreted. At the same time, detection of IMBHs is important as they are predicted seeds for supermassive black holes in galaxies; while the multiple stellar populations in GCs are vital witnesses to the extreme modes of star formation in the early Universe. However, for every putative dynamical IMBH detection so far there is a corresponding non-detection; also the origin of multiple stellar populations in GCs still lacks any uncontrived explanation. The synergy of novel techniques and exquisite data proposed here promises a breakthrough in this emerging field of dynamical archeology with GCs as living fossils of the past of galaxies.
Summary
Globular clusters (GCs) are enigmatic objects that hide a wealth of information. They are the living fossils of the history of their native galaxies and the record keepers of the violent events that made them change their domicile. This proposal aims to mine GCs as living fossils of galaxy evolution to address fundamental questions in astrophysics: (1) Do satellite galaxies merge as predicted by the hierarchical build-up of galaxies? (2) Which are the seeds of supermassive black holes in the centres of galaxies? (3) How did star formation originate in the earliest phases of galaxy formation? To answer these questions, novel population-dependent dynamical modelling techniques are required, whose development the PI has led over the past years. This uniquely positions him to take full advantage of the emerging wealth of chemical and kinematical data on GCs.
Following the tidal disruption of satellite galaxies, their dense GCs, and maybe even their nuclei, are left as the most visible remnants in the main galaxy. The hierarchical build-up of their new host galaxy can thus be unearthed by recovering the GCs’ orbits. However, currently it is unclear which of the GCs are accretion survivors. Actually, the existence of a central intermediate mass black hole (IMBH) or of multiple stellar populations in GCs might tell which ones are accreted. At the same time, detection of IMBHs is important as they are predicted seeds for supermassive black holes in galaxies; while the multiple stellar populations in GCs are vital witnesses to the extreme modes of star formation in the early Universe. However, for every putative dynamical IMBH detection so far there is a corresponding non-detection; also the origin of multiple stellar populations in GCs still lacks any uncontrived explanation. The synergy of novel techniques and exquisite data proposed here promises a breakthrough in this emerging field of dynamical archeology with GCs as living fossils of the past of galaxies.
Max ERC Funding
1 999 250 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym ARCHGLASS
Project Archaeometry and Archaeology of Ancient Glass Production as a Source for Ancient Technology and Trade of Raw Materials
Researcher (PI) Patrick Degryse
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Starting Grant (StG), SH6, ERC-2009-StG
Summary In this project, innovative techniques to reconstruct ancient economies are developed and new insights in the trade and processing of mineral raw materials are gained based on interdisciplinary archaeological and archaeometrical research. An innovative methodology for and a practical provenance database of the primary origin of natron glass from the Hellenistic-Roman world will be established. The project investigates both production and consumer sites of glass raw materials using both typo-chronological and archaeometrical (isotope geochemical) study of finished glass artefacts at consumer sites as well as mineralogical and chemical characterisation of raw glass and mineral resources at primary production sites. Suitable sand resources in the locations described by ancient authors will be identified through geological prospecting on the basis of literature review and field work. Sand and flux (natron) deposits will be mineralogically and geochemically characterised and compared to the results of the archaeological and geochemical investigations of the glass. Through integrated typo-chronological and archaeometrical analysis, the possible occurrence of primary production centres of raw glass outside the known locations in Syro-Palestine and Egypt, particularly in North-Africa, Italy, Spain and Gaul will be critically studied. In this way, historical, archaeological and archaeometrical data are combined, developing new interdisciplinary techniques for innovative archaeological interpretation of glass trade in the Hellenistic-Roman world.
Summary
In this project, innovative techniques to reconstruct ancient economies are developed and new insights in the trade and processing of mineral raw materials are gained based on interdisciplinary archaeological and archaeometrical research. An innovative methodology for and a practical provenance database of the primary origin of natron glass from the Hellenistic-Roman world will be established. The project investigates both production and consumer sites of glass raw materials using both typo-chronological and archaeometrical (isotope geochemical) study of finished glass artefacts at consumer sites as well as mineralogical and chemical characterisation of raw glass and mineral resources at primary production sites. Suitable sand resources in the locations described by ancient authors will be identified through geological prospecting on the basis of literature review and field work. Sand and flux (natron) deposits will be mineralogically and geochemically characterised and compared to the results of the archaeological and geochemical investigations of the glass. Through integrated typo-chronological and archaeometrical analysis, the possible occurrence of primary production centres of raw glass outside the known locations in Syro-Palestine and Egypt, particularly in North-Africa, Italy, Spain and Gaul will be critically studied. In this way, historical, archaeological and archaeometrical data are combined, developing new interdisciplinary techniques for innovative archaeological interpretation of glass trade in the Hellenistic-Roman world.
Max ERC Funding
954 960 €
Duration
Start date: 2009-11-01, End date: 2014-10-31
Project acronym ARFMEMBRANESENSORS
Project Membrane sensors in the Arf orbit
Researcher (PI) Bruno Antonny
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), LS3, ERC-2010-AdG_20100317
Summary Cellular organelles are continuously remodelled by numerous cytosolic proteins that associate transiently with their lipid membrane. Some distort the bilayer, others change its composition, extract lipids or bridge membranes at distance. Previous works from my laboratory have underlined the importance of membrane sensors, i.e. elements within proteins that help to organize membrane-remodelling events by sensing the physical and chemical state of the underlying membrane. A membrane sensor is not necessarily of well-folded domain that interacts with a specific lipid polar head: some intrinsically unfolded motifs harboring deceptively simple sequences can display remarkable membrane adhesive properties. Among these are some amphipathic helices: the ALPS motif with a polar face made mostly by small uncharged polar residues, the Spo20 helix with several histidines in its polar face and, like a mirror image of the ALPS motif, the alpha-synuclein helix with very small hydrophobic residues. Using biochemistry and molecular dynamics, we will compare the membrane binding properties of these sequences (effect of curvature, charge, lipid unsaturation); using bioinformatics we will look for new motifs, using cell biology we will assess the adaptation of these motifs to the physical and chemical features of organelle membranes. Concurrently, we will use reconstitution approaches on artificial membranes to dissect how membrane sensors contribute to the organization of vesicle tethering by golgins and sterol transport by ORP proteins. We surmise that the combination of a molecular ¿switch¿, a small G protein of the Arf family, and of membrane sensors permit to organize these complex reactions in time and in space.
Summary
Cellular organelles are continuously remodelled by numerous cytosolic proteins that associate transiently with their lipid membrane. Some distort the bilayer, others change its composition, extract lipids or bridge membranes at distance. Previous works from my laboratory have underlined the importance of membrane sensors, i.e. elements within proteins that help to organize membrane-remodelling events by sensing the physical and chemical state of the underlying membrane. A membrane sensor is not necessarily of well-folded domain that interacts with a specific lipid polar head: some intrinsically unfolded motifs harboring deceptively simple sequences can display remarkable membrane adhesive properties. Among these are some amphipathic helices: the ALPS motif with a polar face made mostly by small uncharged polar residues, the Spo20 helix with several histidines in its polar face and, like a mirror image of the ALPS motif, the alpha-synuclein helix with very small hydrophobic residues. Using biochemistry and molecular dynamics, we will compare the membrane binding properties of these sequences (effect of curvature, charge, lipid unsaturation); using bioinformatics we will look for new motifs, using cell biology we will assess the adaptation of these motifs to the physical and chemical features of organelle membranes. Concurrently, we will use reconstitution approaches on artificial membranes to dissect how membrane sensors contribute to the organization of vesicle tethering by golgins and sterol transport by ORP proteins. We surmise that the combination of a molecular ¿switch¿, a small G protein of the Arf family, and of membrane sensors permit to organize these complex reactions in time and in space.
Max ERC Funding
1 997 321 €
Duration
Start date: 2011-05-01, End date: 2015-04-30
Project acronym ARIPHYHIMO
Project Arithmetic and physics of Higgs moduli spaces
Researcher (PI) Tamas Hausel
Host Institution (HI) INSTITUTE OF SCIENCE AND TECHNOLOGYAUSTRIA
Call Details Advanced Grant (AdG), PE1, ERC-2012-ADG_20120216
Summary The proposal studies problems concerning the geometry and topology of moduli spaces of Higgs bundles on a Riemann surface motivated by parallel considerations in number theory and mathematical physics. In this way the proposal bridges various duality theories in string theory with the Langlands program in number theory.
The heart of the proposal is a circle of precise conjectures relating to the topology of the moduli space of Higgs bundles. The formulation and motivations of the conjectures make direct contact with the Langlands program in number theory, various duality conjectures in string theory, algebraic combinatorics, knot theory and low dimensional topology and representation theory of quivers, finite groups and algebras of Lie type and Cherednik algebras.
Summary
The proposal studies problems concerning the geometry and topology of moduli spaces of Higgs bundles on a Riemann surface motivated by parallel considerations in number theory and mathematical physics. In this way the proposal bridges various duality theories in string theory with the Langlands program in number theory.
The heart of the proposal is a circle of precise conjectures relating to the topology of the moduli space of Higgs bundles. The formulation and motivations of the conjectures make direct contact with the Langlands program in number theory, various duality conjectures in string theory, algebraic combinatorics, knot theory and low dimensional topology and representation theory of quivers, finite groups and algebras of Lie type and Cherednik algebras.
Max ERC Funding
1 304 945 €
Duration
Start date: 2013-04-01, End date: 2018-08-31
Project acronym ARITHQUANTUMCHAOS
Project Arithmetic and Quantum Chaos
Researcher (PI) Zeev Rudnick
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Advanced Grant (AdG), PE1, ERC-2012-ADG_20120216
Summary Quantum Chaos is an emerging discipline which is crossing over from Physics into Pure Mathematics. The recent crossover is driven in part by a connection with Number Theory. This project explores several aspects of this interrelationship and is composed of a number of sub-projects. The sub-projects deal with: statistics of energy levels and wave functions of pseudo-integrable systems, a hitherto unexplored subject in the mathematical community which is not well understood in the physics community; with statistics of zeros of zeta functions over function fields, a purely number theoretic topic which is linked to the subproject on Quantum Chaos through the mysterious connections to Random Matrix Theory and an analogy between energy levels and zeta zeros; and with spatial statistics in arithmetic.
Summary
Quantum Chaos is an emerging discipline which is crossing over from Physics into Pure Mathematics. The recent crossover is driven in part by a connection with Number Theory. This project explores several aspects of this interrelationship and is composed of a number of sub-projects. The sub-projects deal with: statistics of energy levels and wave functions of pseudo-integrable systems, a hitherto unexplored subject in the mathematical community which is not well understood in the physics community; with statistics of zeros of zeta functions over function fields, a purely number theoretic topic which is linked to the subproject on Quantum Chaos through the mysterious connections to Random Matrix Theory and an analogy between energy levels and zeta zeros; and with spatial statistics in arithmetic.
Max ERC Funding
1 714 000 €
Duration
Start date: 2013-02-01, End date: 2019-01-31
Project acronym AROMA-CFD
Project Advanced Reduced Order Methods with Applications in Computational Fluid Dynamics
Researcher (PI) Gianluigi Rozza
Host Institution (HI) SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI DI TRIESTE
Call Details Consolidator Grant (CoG), PE1, ERC-2015-CoG
Summary The aim of AROMA-CFD is to create a team of scientists at SISSA for the development of Advanced Reduced Order Modelling techniques with a focus in Computational Fluid Dynamics (CFD), in order to face and overcome many current limitations of the state of the art and improve the capabilities of reduced order methodologies for more demanding applications in industrial, medical and applied sciences contexts. AROMA-CFD deals with strong methodological developments in numerical analysis, with a special emphasis on mathematical modelling and extensive exploitation of computational science and engineering. Several tasks have been identified to tackle important problems and open questions in reduced order modelling: study of bifurcations and instabilities in flows, increasing Reynolds number and guaranteeing stability, moving towards turbulent flows, considering complex geometrical parametrizations of shapes as computational domains into extended networks. A reduced computational and geometrical framework will be developed for nonlinear inverse problems, focusing on optimal flow control, shape optimization and uncertainty quantification. Further, all the advanced developments in reduced order modelling for CFD will be delivered for applications in multiphysics, such as fluid-structure interaction problems and general coupled phenomena involving inviscid, viscous and thermal flows, solids and porous media. The advanced developed framework within AROMA-CFD will provide attractive capabilities for several industrial and medical applications (e.g. aeronautical, mechanical, naval, off-shore, wind, sport, biomedical engineering, and cardiovascular surgery as well), combining high performance computing (in dedicated supercomputing centers) and advanced reduced order modelling (in common devices) to guarantee real time computing and visualization. A new open source software library for AROMA-CFD will be created: ITHACA, In real Time Highly Advanced Computational Applications.
Summary
The aim of AROMA-CFD is to create a team of scientists at SISSA for the development of Advanced Reduced Order Modelling techniques with a focus in Computational Fluid Dynamics (CFD), in order to face and overcome many current limitations of the state of the art and improve the capabilities of reduced order methodologies for more demanding applications in industrial, medical and applied sciences contexts. AROMA-CFD deals with strong methodological developments in numerical analysis, with a special emphasis on mathematical modelling and extensive exploitation of computational science and engineering. Several tasks have been identified to tackle important problems and open questions in reduced order modelling: study of bifurcations and instabilities in flows, increasing Reynolds number and guaranteeing stability, moving towards turbulent flows, considering complex geometrical parametrizations of shapes as computational domains into extended networks. A reduced computational and geometrical framework will be developed for nonlinear inverse problems, focusing on optimal flow control, shape optimization and uncertainty quantification. Further, all the advanced developments in reduced order modelling for CFD will be delivered for applications in multiphysics, such as fluid-structure interaction problems and general coupled phenomena involving inviscid, viscous and thermal flows, solids and porous media. The advanced developed framework within AROMA-CFD will provide attractive capabilities for several industrial and medical applications (e.g. aeronautical, mechanical, naval, off-shore, wind, sport, biomedical engineering, and cardiovascular surgery as well), combining high performance computing (in dedicated supercomputing centers) and advanced reduced order modelling (in common devices) to guarantee real time computing and visualization. A new open source software library for AROMA-CFD will be created: ITHACA, In real Time Highly Advanced Computational Applications.
Max ERC Funding
1 656 579 €
Duration
Start date: 2016-05-01, End date: 2021-04-30
Project acronym ArtEmpire
Project An ARTery of EMPIRE. Conquest, Commerce, Crisis, Culture and the Panamanian Junction (1513-1671)
Researcher (PI) Bethany Aram Worzella
Host Institution (HI) UNIVERSIDAD PABLO DE OLAVIDE
Call Details Consolidator Grant (CoG), SH6, ERC-2014-CoG
Summary European incursions onto the narrow isthmian pass that divided and connected the Atlantic and Pacific oceans made it a strategic node of the Spanish Empire and a crucial site for early modern globalization. On the front lines of the convergence of four continents, Old Panama offers an unusual opportunity for examining the diverse, often asymmetrical impacts of cultural and commercial contacts. The role of Italian, Portuguese, British, Dutch, and French interests in the area, as well as an influx of African slaves and Asian merchandise, have left a unique material legacy that requires an integrated, interdisciplinary approach to its varied sources. Bones, teeth and artifacts on this artery of Empire offer the possibility of new insights into the cultural and biological impact of early globalization. They also invite an interdisciplinary approach to different groups’ tactics for survival, including possible dietary changes, and the pursuit of profit. Such strategies may have led the diverse peoples inhabiting this junction, from indigenous allies to African and Asian bandits to European corsairs, to develop and to favor local production and Pacific trade networks at the expense of commerce with the metropolis.
This project applies historical, archaeological and archaeometric methodologies to evidence of encounters between peoples and goods from Europe, America, Africa and Asia that took place on the Isthmus of Panama during the sixteenth and seventeenth centuries. Forging an interdisciplinary approach to early globalization, it challenges both Euro-centric and Hispano-phobic interpretations of the impact of the conquest of America, traditionally seen as a demographic catastrophe that reached its nadir in the so-called seventeenth-century crisis. Rather than applying quantitative methods to incomplete source material, researchers will adopt a contextualized, inter-disciplinary, qualitative approach to diverse agents involved in cultural and commercial exchange.
Summary
European incursions onto the narrow isthmian pass that divided and connected the Atlantic and Pacific oceans made it a strategic node of the Spanish Empire and a crucial site for early modern globalization. On the front lines of the convergence of four continents, Old Panama offers an unusual opportunity for examining the diverse, often asymmetrical impacts of cultural and commercial contacts. The role of Italian, Portuguese, British, Dutch, and French interests in the area, as well as an influx of African slaves and Asian merchandise, have left a unique material legacy that requires an integrated, interdisciplinary approach to its varied sources. Bones, teeth and artifacts on this artery of Empire offer the possibility of new insights into the cultural and biological impact of early globalization. They also invite an interdisciplinary approach to different groups’ tactics for survival, including possible dietary changes, and the pursuit of profit. Such strategies may have led the diverse peoples inhabiting this junction, from indigenous allies to African and Asian bandits to European corsairs, to develop and to favor local production and Pacific trade networks at the expense of commerce with the metropolis.
This project applies historical, archaeological and archaeometric methodologies to evidence of encounters between peoples and goods from Europe, America, Africa and Asia that took place on the Isthmus of Panama during the sixteenth and seventeenth centuries. Forging an interdisciplinary approach to early globalization, it challenges both Euro-centric and Hispano-phobic interpretations of the impact of the conquest of America, traditionally seen as a demographic catastrophe that reached its nadir in the so-called seventeenth-century crisis. Rather than applying quantitative methods to incomplete source material, researchers will adopt a contextualized, inter-disciplinary, qualitative approach to diverse agents involved in cultural and commercial exchange.
Max ERC Funding
1 998 875 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym ARTHUS
Project Advances in Research on Theories of the Dark Universe - Inhomogeneity Effects in Relativistic Cosmology
Researcher (PI) Thomas BUCHERT
Host Institution (HI) UNIVERSITE LYON 1 CLAUDE BERNARD
Call Details Advanced Grant (AdG), PE9, ERC-2016-ADG
Summary The project ARTHUS aims at determining the physical origin of Dark Energy: in addition to the energy sources of the standard model of cosmology, effective terms arise through spatially averaging inhomogeneous cosmological models in General Relativity. It has been demonstrated that these additional terms can play the role of Dark Energy on large scales (but they can also mimic Dark Matter on scales of mass accumulations). The underlying rationale is that fluctuations in the Universe generically couple to spatially averaged intrinsic properties of space, such as its averaged scalar curvature, thus changing the global evolution of the effective (spatially averaged) cosmological model. At present, we understand these so- called backreaction effects only qualitatively. The project ARTHUS is directed towards a conclusive quantitative evaluation of these effects by developing generic and non-perturbative relativistic models of structure formation, by statistically measuring the key-variables of the models in observations and in simulation data, and by reinterpreting observational results in light of the new models. It is to be emphasized that there is no doubt about the existence of backreaction effects; the question is whether they are even capable of getting rid of the dark sources (as some models discussed in the literature suggest), or whether their impact is substantially smaller. The project thus addresses an essential issue of current cosmological research: to find pertinent answers concerning the quantitative impact of inhomogeneity effects, a necessary, worldwide recognized step toward high-precision cosmology. If the project objectives are attained, the results will have a far-reaching impact on theoretical and observational cosmology, on the interpretation of astronomical experiments such as Planck and Euclid, as well as on a wide spectrum of particle physics theories and experiments.
Summary
The project ARTHUS aims at determining the physical origin of Dark Energy: in addition to the energy sources of the standard model of cosmology, effective terms arise through spatially averaging inhomogeneous cosmological models in General Relativity. It has been demonstrated that these additional terms can play the role of Dark Energy on large scales (but they can also mimic Dark Matter on scales of mass accumulations). The underlying rationale is that fluctuations in the Universe generically couple to spatially averaged intrinsic properties of space, such as its averaged scalar curvature, thus changing the global evolution of the effective (spatially averaged) cosmological model. At present, we understand these so- called backreaction effects only qualitatively. The project ARTHUS is directed towards a conclusive quantitative evaluation of these effects by developing generic and non-perturbative relativistic models of structure formation, by statistically measuring the key-variables of the models in observations and in simulation data, and by reinterpreting observational results in light of the new models. It is to be emphasized that there is no doubt about the existence of backreaction effects; the question is whether they are even capable of getting rid of the dark sources (as some models discussed in the literature suggest), or whether their impact is substantially smaller. The project thus addresses an essential issue of current cosmological research: to find pertinent answers concerning the quantitative impact of inhomogeneity effects, a necessary, worldwide recognized step toward high-precision cosmology. If the project objectives are attained, the results will have a far-reaching impact on theoretical and observational cosmology, on the interpretation of astronomical experiments such as Planck and Euclid, as well as on a wide spectrum of particle physics theories and experiments.
Max ERC Funding
2 091 000 €
Duration
Start date: 2017-09-01, End date: 2022-08-31