Project acronym 3Ps
Project 3Ps
Plastic-Antibodies, Plasmonics and Photovoltaic-Cells: on-site screening of cancer biomarkers made possible
Researcher (PI) Maria Goreti Ferreira Sales
Host Institution (HI) INSTITUTO SUPERIOR DE ENGENHARIA DO PORTO
Call Details Starting Grant (StG), LS7, ERC-2012-StG_20111109
Summary This project presents a new concept for the detection, diagnosis and monitoring of cancer biomarker patterns in point-of-care. The device under development will make use of the selectivity of the plastic antibodies as sensing materials and the interference they will play on the normal operation of a photovoltaic cell.
Plastic antibodies will be designed by surface imprinting procedures. Self-assembled monolayer and molecular imprinting techniques will be merged in this process because they allow the self-assembly of nanostructured materials on a “bottom-up” nanofabrication approach. A dye-sensitized solar cell will be used as photovoltaic cell. It includes a liquid interface in the cell circuit, which allows the introduction of the sample (also in liquid phase) without disturbing the normal cell operation. Furthermore, it works well with rather low cost materials and requires mild and easy processing conditions. The cell will be equipped with plasmonic structures to enhance light absorption and cell efficiency.
The device under development will be easily operated by any clinician or patient. It will require ambient light and a regular multimeter. Eye detection will be also tried out.
Summary
This project presents a new concept for the detection, diagnosis and monitoring of cancer biomarker patterns in point-of-care. The device under development will make use of the selectivity of the plastic antibodies as sensing materials and the interference they will play on the normal operation of a photovoltaic cell.
Plastic antibodies will be designed by surface imprinting procedures. Self-assembled monolayer and molecular imprinting techniques will be merged in this process because they allow the self-assembly of nanostructured materials on a “bottom-up” nanofabrication approach. A dye-sensitized solar cell will be used as photovoltaic cell. It includes a liquid interface in the cell circuit, which allows the introduction of the sample (also in liquid phase) without disturbing the normal cell operation. Furthermore, it works well with rather low cost materials and requires mild and easy processing conditions. The cell will be equipped with plasmonic structures to enhance light absorption and cell efficiency.
The device under development will be easily operated by any clinician or patient. It will require ambient light and a regular multimeter. Eye detection will be also tried out.
Max ERC Funding
998 584 €
Duration
Start date: 2013-02-01, End date: 2018-01-31
Project acronym AGELESS
Project Comparative genomics / ‘wildlife’ transcriptomics uncovers the mechanisms of halted ageing in mammals
Researcher (PI) Emma Teeling
Host Institution (HI) UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN
Call Details Starting Grant (StG), LS2, ERC-2012-StG_20111109
Summary "Ageing is the gradual and irreversible breakdown of living systems associated with the advancement of time, which leads to an increase in vulnerability and eventual mortality. Despite recent advances in ageing research, the intrinsic complexity of the ageing process has prevented a full understanding of this process, therefore, ageing remains a grand challenge in contemporary biology. In AGELESS, we will tackle this challenge by uncovering the molecular mechanisms of halted ageing in a unique model system, the bats. Bats are the longest-lived mammals relative to their body size, and defy the ‘rate-of-living’ theories as they use twice as much the energy as other species of considerable size, but live far longer. This suggests that bats have some underlying mechanisms that may explain their exceptional longevity. In AGELESS, we will identify the molecular mechanisms that enable mammals to achieve extraordinary longevity, using state-of-the-art comparative genomic methodologies focused on bats. We will identify, using population transcriptomics and telomere/mtDNA genomics, the molecular changes that occur in an ageing wild population of bats to uncover how bats ‘age’ so slowly compared with other mammals. In silico whole genome analyses, field based ageing transcriptomic data, mtDNA and telomeric studies will be integrated and analysed using a networks approach, to ascertain how these systems interact to halt ageing. For the first time, we will be able to utilize the diversity seen within nature to identify key molecular targets and regions that regulate and control ageing in mammals. AGELESS will provide a deeper understanding of the causal mechanisms of ageing, potentially uncovering the crucial molecular pathways that can be modified to halt, alleviate and perhaps even reverse this process in man."
Summary
"Ageing is the gradual and irreversible breakdown of living systems associated with the advancement of time, which leads to an increase in vulnerability and eventual mortality. Despite recent advances in ageing research, the intrinsic complexity of the ageing process has prevented a full understanding of this process, therefore, ageing remains a grand challenge in contemporary biology. In AGELESS, we will tackle this challenge by uncovering the molecular mechanisms of halted ageing in a unique model system, the bats. Bats are the longest-lived mammals relative to their body size, and defy the ‘rate-of-living’ theories as they use twice as much the energy as other species of considerable size, but live far longer. This suggests that bats have some underlying mechanisms that may explain their exceptional longevity. In AGELESS, we will identify the molecular mechanisms that enable mammals to achieve extraordinary longevity, using state-of-the-art comparative genomic methodologies focused on bats. We will identify, using population transcriptomics and telomere/mtDNA genomics, the molecular changes that occur in an ageing wild population of bats to uncover how bats ‘age’ so slowly compared with other mammals. In silico whole genome analyses, field based ageing transcriptomic data, mtDNA and telomeric studies will be integrated and analysed using a networks approach, to ascertain how these systems interact to halt ageing. For the first time, we will be able to utilize the diversity seen within nature to identify key molecular targets and regions that regulate and control ageing in mammals. AGELESS will provide a deeper understanding of the causal mechanisms of ageing, potentially uncovering the crucial molecular pathways that can be modified to halt, alleviate and perhaps even reverse this process in man."
Max ERC Funding
1 499 768 €
Duration
Start date: 2013-01-01, End date: 2017-12-31
Project acronym BI-DSC
Project Building Integrated Dye Sensitized Solar Cells
Researcher (PI) Adélio Miguel Magalhaes Mendes
Host Institution (HI) UNIVERSIDADE DO PORTO
Call Details Advanced Grant (AdG), PE8, ERC-2012-ADG_20120216
Summary In the last decade, solar and photovoltaic (PV) technologies have emerged as a potentially major technology for power generation in the world. So far the PV field has been dominated by silicon devices, even though this technology is still expensive.Dye-sensitized solar cells (DSC) are an important type of thin-film photovoltaics due to their potential for low-cost fabrication and versatile applications, and because their aesthetic appearance, semi-transparency and different color possibilities.This advantageous characteristic makes DSC the first choice for building integrated photovoltaics.Despite their great potential, DSCs for building applications are still not available at commercial level. However, to bring DSCs to a marketable product several developments are still needed and the present project targets to give relevant answers to three key limitations: encapsulation, glass substrate enhanced electrical conductivity and more efficient and low-cost raw-materials. Recently, the proponent successfully addressed the hermetic devices sealing by developing a laser-assisted glass sealing procedure.Thus, BI-DSC proposal envisages the development of DSC modules 30x30cm2, containing four individual cells, and their incorporation in a 1m2 double glass sheet arrangement for BIPV with an energy efficiency of at least 9% and a lifetime of 20 years. Additionally, aiming at enhanced efficiency of the final device and decreased total costs of DSCs manufacturing, new materials will be also pursued. The following inner-components were identified as critical: carbon-based counter-electrode; carbon quantum-dots and hierarchically TiO2 photoelectrode. It is then clear that this project is divided into two research though parallel directions: a fundamental research line, contributing to the development of the new generation DSC technology; while a more applied research line targets the development of a DSC functional module that can be used to pave the way for its industrialization.
Summary
In the last decade, solar and photovoltaic (PV) technologies have emerged as a potentially major technology for power generation in the world. So far the PV field has been dominated by silicon devices, even though this technology is still expensive.Dye-sensitized solar cells (DSC) are an important type of thin-film photovoltaics due to their potential for low-cost fabrication and versatile applications, and because their aesthetic appearance, semi-transparency and different color possibilities.This advantageous characteristic makes DSC the first choice for building integrated photovoltaics.Despite their great potential, DSCs for building applications are still not available at commercial level. However, to bring DSCs to a marketable product several developments are still needed and the present project targets to give relevant answers to three key limitations: encapsulation, glass substrate enhanced electrical conductivity and more efficient and low-cost raw-materials. Recently, the proponent successfully addressed the hermetic devices sealing by developing a laser-assisted glass sealing procedure.Thus, BI-DSC proposal envisages the development of DSC modules 30x30cm2, containing four individual cells, and their incorporation in a 1m2 double glass sheet arrangement for BIPV with an energy efficiency of at least 9% and a lifetime of 20 years. Additionally, aiming at enhanced efficiency of the final device and decreased total costs of DSCs manufacturing, new materials will be also pursued. The following inner-components were identified as critical: carbon-based counter-electrode; carbon quantum-dots and hierarchically TiO2 photoelectrode. It is then clear that this project is divided into two research though parallel directions: a fundamental research line, contributing to the development of the new generation DSC technology; while a more applied research line targets the development of a DSC functional module that can be used to pave the way for its industrialization.
Max ERC Funding
1 989 300 €
Duration
Start date: 2013-03-01, End date: 2018-08-31
Project acronym carbenergy
Project Mesoionic carbene complexes for water splitting: Harnessing renewable energy sources
Researcher (PI) Martin ALBRECHT
Host Institution (HI) UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN
Call Details Proof of Concept (PoC), PC1, ERC-2012-PoC
Summary We have recently discovered a series of carbene iridium complexes that are highly active in water oxidation catalysis (Angew. Chem. Int. Ed. 2010, 49, 9765, see also picture). As the water oxidation half-cycle is the demanding (and thus far prohibitive) step when splitting water to oxygen and hydrogen, these iridium complexes hold great potential for the generation of hydrogen as fuel from renewable, non-fossil sources. A key component for the efficient water oxidation appears to be the mesoionic carbene ligand, which is non-innocent and capable of assisting in proton-coupled electron transfer processes.
Within this proof-of-concept project we now aim at evaluating a range of factors that will be pivotal to move this fundamentally interesting reactivity pattern into a prototypical device for energy generation. The principal goal thus consists of establishing the viability and to address technical issues and overall directions for using carbene iridium complexes in energy conversion processes. Clarification of intellectual property rights and deciding on an appropriate patent/licensing strategy constitutes a primary subaim. A specific and critical point to be addressed pertains to the robustness and activity of the catalyst in order to warrant the costs for using a precious metal in energy conversion and storage processes. Optimized catalysts will thus be essential, and will be combined with a photo-absorbing semiconductor as water reduction catalyst to accomplish full water splitting in a single, eventually light-driven device. In parallel, industrial contacts will be sought to identify domains for application of the catalytic device, in which longevity will be among the key criteria.
Summary
We have recently discovered a series of carbene iridium complexes that are highly active in water oxidation catalysis (Angew. Chem. Int. Ed. 2010, 49, 9765, see also picture). As the water oxidation half-cycle is the demanding (and thus far prohibitive) step when splitting water to oxygen and hydrogen, these iridium complexes hold great potential for the generation of hydrogen as fuel from renewable, non-fossil sources. A key component for the efficient water oxidation appears to be the mesoionic carbene ligand, which is non-innocent and capable of assisting in proton-coupled electron transfer processes.
Within this proof-of-concept project we now aim at evaluating a range of factors that will be pivotal to move this fundamentally interesting reactivity pattern into a prototypical device for energy generation. The principal goal thus consists of establishing the viability and to address technical issues and overall directions for using carbene iridium complexes in energy conversion processes. Clarification of intellectual property rights and deciding on an appropriate patent/licensing strategy constitutes a primary subaim. A specific and critical point to be addressed pertains to the robustness and activity of the catalyst in order to warrant the costs for using a precious metal in energy conversion and storage processes. Optimized catalysts will thus be essential, and will be combined with a photo-absorbing semiconductor as water reduction catalyst to accomplish full water splitting in a single, eventually light-driven device. In parallel, industrial contacts will be sought to identify domains for application of the catalytic device, in which longevity will be among the key criteria.
Max ERC Funding
136 076 €
Duration
Start date: 2012-10-01, End date: 2013-09-30
Project acronym COGNET
Project Cognitive Networks for Intelligent Materials and Devices
Researcher (PI) John Boland
Host Institution (HI) THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN
Call Details Advanced Grant (AdG), PE5, ERC-2012-ADG_20120216
Summary "COGnitive NETwork (COGNET) is a new technology platform for materials, sensor and device design that exploits unique and hitherto unrecognised properties of random nanowire (NW) networks. These networks—comprised of metallic or semiconducting NWs connected to each other via junctions with controllably random property distributions—lead to new and unexpected levels of connectivity that are inherently scale dependent, creating opportunities for entirely new kinds of self-organised materials and devices. We propose to establish the ground rules for manipulating connectivity in NW networks. By choosing appropriate NWs and incorporating junctions with the approprate properties COGNET will enable the fabrication of (i) intelligent materials, (ii) neural networks and (iii) memory devices. Sequenced voltage pulse and back-gating techniques will in turn address and manipulate specific junctions or sets of junctions to demonstrate even higher density memory and in the case of neural networks, the possibility synaptic plasticity and self-learning."
Summary
"COGnitive NETwork (COGNET) is a new technology platform for materials, sensor and device design that exploits unique and hitherto unrecognised properties of random nanowire (NW) networks. These networks—comprised of metallic or semiconducting NWs connected to each other via junctions with controllably random property distributions—lead to new and unexpected levels of connectivity that are inherently scale dependent, creating opportunities for entirely new kinds of self-organised materials and devices. We propose to establish the ground rules for manipulating connectivity in NW networks. By choosing appropriate NWs and incorporating junctions with the approprate properties COGNET will enable the fabrication of (i) intelligent materials, (ii) neural networks and (iii) memory devices. Sequenced voltage pulse and back-gating techniques will in turn address and manipulate specific junctions or sets of junctions to demonstrate even higher density memory and in the case of neural networks, the possibility synaptic plasticity and self-learning."
Max ERC Funding
2 497 125 €
Duration
Start date: 2013-06-01, End date: 2018-05-31
Project acronym ComplexiTE
Project An integrated multidisciplinary tissue engineering approach combining novel high-throughput screening and advanced methodologies to create complex biomaterials-stem cells constructs
Researcher (PI) Rui Luis Gonçalves Dos Reis
Host Institution (HI) UNIVERSIDADE DO MINHO
Call Details Advanced Grant (AdG), PE8, ERC-2012-ADG_20120216
Summary New developments on tissue engineering strategies should realize the complexity of tissue remodelling and the inter-dependency of many variables associated to stem cells and biomaterials interactions. ComplexiTE proposes an integrated approach to address such multiple factors in which different innovative methodologies are implemented, aiming at developing tissue-like substitutes with enhanced in vivo functionality. Several ground-breaking advances are expected to be achieved, including: i) improved methodologies for isolation and expansion of sub-populations of stem cells derived from not so explored sources such as adipose tissue and amniotic fluid; ii) radically new methods to monitor human stem cells behaviour in vivo; iii) new macromolecules isolated from renewable resources, especially from marine origin; iv) combinations of liquid volumes mingling biomaterials and distinct stem cells, generating hydrogel beads upon adequate cross-linking reactions; v) optimised culture of the produced beads in adequate 3D bioreactors and a novel selection method to sort the beads that show a (pre-defined) positive biological reading; vi) random 3D arrays validated by identifying the natural polymers and cells composing the positive beads; v) 2D arrays of selected hydrogel spots for brand new in vivo tests, in which each spot of the implanted chip may be evaluated within the living animal using adequate imaging methods; vi) new porous scaffolds of the best combinations formed by particles agglomeration or fiber-based rapid-prototyping. The ultimate goal of this proposal is to develop breakthrough research specifically focused on the above mentioned key issues and radically innovative approaches to produce and scale-up new tissue engineering strategies that are both industrially and clinically relevant, by mastering the inherent complexity associated to the correct selection among a great number of combinations of possible biomaterials, stem cells and culturing conditions.
Summary
New developments on tissue engineering strategies should realize the complexity of tissue remodelling and the inter-dependency of many variables associated to stem cells and biomaterials interactions. ComplexiTE proposes an integrated approach to address such multiple factors in which different innovative methodologies are implemented, aiming at developing tissue-like substitutes with enhanced in vivo functionality. Several ground-breaking advances are expected to be achieved, including: i) improved methodologies for isolation and expansion of sub-populations of stem cells derived from not so explored sources such as adipose tissue and amniotic fluid; ii) radically new methods to monitor human stem cells behaviour in vivo; iii) new macromolecules isolated from renewable resources, especially from marine origin; iv) combinations of liquid volumes mingling biomaterials and distinct stem cells, generating hydrogel beads upon adequate cross-linking reactions; v) optimised culture of the produced beads in adequate 3D bioreactors and a novel selection method to sort the beads that show a (pre-defined) positive biological reading; vi) random 3D arrays validated by identifying the natural polymers and cells composing the positive beads; v) 2D arrays of selected hydrogel spots for brand new in vivo tests, in which each spot of the implanted chip may be evaluated within the living animal using adequate imaging methods; vi) new porous scaffolds of the best combinations formed by particles agglomeration or fiber-based rapid-prototyping. The ultimate goal of this proposal is to develop breakthrough research specifically focused on the above mentioned key issues and radically innovative approaches to produce and scale-up new tissue engineering strategies that are both industrially and clinically relevant, by mastering the inherent complexity associated to the correct selection among a great number of combinations of possible biomaterials, stem cells and culturing conditions.
Max ERC Funding
2 320 000 €
Duration
Start date: 2013-05-01, End date: 2018-04-30
Project acronym dEMORY
Project Dissecting the Role of Dendrites in Memory
Researcher (PI) Panayiota Poirazi
Host Institution (HI) FOUNDATION FOR RESEARCH AND TECHNOLOGY HELLAS
Call Details Starting Grant (StG), LS5, ERC-2012-StG_20111109
Summary Understanding the rules and mechanisms underlying memory formation, storage and retrieval is a grand challenge in neuroscience. In light of cumulating evidence regarding non-linear dendritic events (dendritic-spikes, branch strength potentiation, temporal sequence detection etc) together with activity-dependent rewiring of the connection matrix, the classical notion of information storage via Hebbian-like changes in synaptic connections is inadequate. While more recent plasticity theories consider non-linear dendritic properties, a unifying theory of how dendrites are utilized to achieve memory coding, storing and/or retrieval is cruelly missing. Using computational models, we will simulate memory processes in three key brain regions: the hippocampus, the amygdala and the prefrontal cortex. Models will incorporate biologically constrained dendrites and state-of-the-art plasticity rules and will span different levels of abstraction, ranging from detailed biophysical single neurons and circuits to integrate-and-fire networks and abstract theoretical models. Our main goal is to dissect the role of dendrites in information processing and storage across the three different regions by systematically altering their anatomical, biophysical and plasticity properties. Findings will further our understanding of the fundamental computations supported by these structures and how these computations, reinforced by plasticity mechanisms, sub-serve memory formation and associated dysfunctions, thus opening new avenues for hypothesis driven experimentation and development of novel treatments for memory-related diseases. Identification of dendrites as the key processing units across brain regions and complexity levels will lay the foundations for a new era in computational and experimental neuroscience and serve as the basis for groundbreaking advances in the robotics and artificial intelligence fields while also having a large impact on the machine learning community.
Summary
Understanding the rules and mechanisms underlying memory formation, storage and retrieval is a grand challenge in neuroscience. In light of cumulating evidence regarding non-linear dendritic events (dendritic-spikes, branch strength potentiation, temporal sequence detection etc) together with activity-dependent rewiring of the connection matrix, the classical notion of information storage via Hebbian-like changes in synaptic connections is inadequate. While more recent plasticity theories consider non-linear dendritic properties, a unifying theory of how dendrites are utilized to achieve memory coding, storing and/or retrieval is cruelly missing. Using computational models, we will simulate memory processes in three key brain regions: the hippocampus, the amygdala and the prefrontal cortex. Models will incorporate biologically constrained dendrites and state-of-the-art plasticity rules and will span different levels of abstraction, ranging from detailed biophysical single neurons and circuits to integrate-and-fire networks and abstract theoretical models. Our main goal is to dissect the role of dendrites in information processing and storage across the three different regions by systematically altering their anatomical, biophysical and plasticity properties. Findings will further our understanding of the fundamental computations supported by these structures and how these computations, reinforced by plasticity mechanisms, sub-serve memory formation and associated dysfunctions, thus opening new avenues for hypothesis driven experimentation and development of novel treatments for memory-related diseases. Identification of dendrites as the key processing units across brain regions and complexity levels will lay the foundations for a new era in computational and experimental neuroscience and serve as the basis for groundbreaking advances in the robotics and artificial intelligence fields while also having a large impact on the machine learning community.
Max ERC Funding
1 398 000 €
Duration
Start date: 2012-10-01, End date: 2017-09-30
Project acronym DEPENDABLECLOUD
Project Towards the dependable cloud:
Building the foundations for tomorrow's dependable cloud computing
Researcher (PI) Rodrigo Seromenho Miragaia Rodrigues
Host Institution (HI) INESC ID - INSTITUTO DE ENGENHARIADE SISTEMAS E COMPUTADORES, INVESTIGACAO E DESENVOLVIMENTO EM LISBOA
Call Details Starting Grant (StG), PE6, ERC-2012-StG_20111012
Summary Cloud computing is being increasingly adopted by individuals, organizations, and governments. However, as the computations that are offloaded to the cloud expand to societal-critical services, the dependability requirements of cloud services become much higher, and we need to ensure that the infrastructure that supports these services is ready to meet these requirements. In particular, this proposal tackles the challenges that arise from two distinctive characteristic of the cloud infrastructure.
The first is that non-crash faults, despite being considered highly unlikely by the designers of traditional systems, become commonplace at the scale and complexity of the cloud infrastructure. We argue that the current ad-hoc methods for handling these faults are insufficient, and that the only principled approach of assuming Byzantine faults is too pessimistic. Therefore, we call for a new systematic approach to tolerating non-crash, non-adversarial faults. This requires the definition of a new fault model, and the construction of a series of building blocks and key protocol elements that enable the construction of fault-tolerant cloud services.
The second issue is that to meet their scalability requirements, cloud services spread their state across multiple data centers, and direct users to the closest one. This raises the issue that not all operations can be executed optimistically, without being aware of concurrent operations over the same data, and thus multiple levels of consistency must coexist. However, this puts the onus of reasoning about which behaviors are allowed under such a hybrid consistency model on the programmer of the service. We propose a systematic solution to this problem, which includes a novel consistency model that allows for developing highly scalable services that are fast when possible and consistent when necessary, and a labeling methodology to guide the programmer in deciding which operations can run at each consistency level.
Summary
Cloud computing is being increasingly adopted by individuals, organizations, and governments. However, as the computations that are offloaded to the cloud expand to societal-critical services, the dependability requirements of cloud services become much higher, and we need to ensure that the infrastructure that supports these services is ready to meet these requirements. In particular, this proposal tackles the challenges that arise from two distinctive characteristic of the cloud infrastructure.
The first is that non-crash faults, despite being considered highly unlikely by the designers of traditional systems, become commonplace at the scale and complexity of the cloud infrastructure. We argue that the current ad-hoc methods for handling these faults are insufficient, and that the only principled approach of assuming Byzantine faults is too pessimistic. Therefore, we call for a new systematic approach to tolerating non-crash, non-adversarial faults. This requires the definition of a new fault model, and the construction of a series of building blocks and key protocol elements that enable the construction of fault-tolerant cloud services.
The second issue is that to meet their scalability requirements, cloud services spread their state across multiple data centers, and direct users to the closest one. This raises the issue that not all operations can be executed optimistically, without being aware of concurrent operations over the same data, and thus multiple levels of consistency must coexist. However, this puts the onus of reasoning about which behaviors are allowed under such a hybrid consistency model on the programmer of the service. We propose a systematic solution to this problem, which includes a novel consistency model that allows for developing highly scalable services that are fast when possible and consistent when necessary, and a labeling methodology to guide the programmer in deciding which operations can run at each consistency level.
Max ERC Funding
1 076 084 €
Duration
Start date: 2012-10-01, End date: 2018-01-31
Project acronym DOSE
Project Dosage sensitive genes in evolution and disease
Researcher (PI) Aoife Mclysaght
Host Institution (HI) THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN
Call Details Starting Grant (StG), LS8, ERC-2012-StG_20111109
Summary Evolutionary change of gene copy number through gene duplication is a relatively pervasive phenomenon in eukaryotic genomes. However, for a subset of genes such changes are deleterious because they result in imbalances in the cell. Such dosage-sensitive genes have been increasingly implicated in disease, particularly through the association of copy number variants (CNVs) with pathogenicity.
In my lab we have previously discovered that many genes in the human genome which were retained after whole genome duplication (WGD) are refractory to gene duplication both over evolutionary timescales and within populations. These are expected characteristics of dosage-balanced genes. Many of these genes are implicated in human disease. I now propose to take a computational (dry-lab) approach to examine the evolution of dosage-balanced genes further and to develop a sophisticated model of evolutionary constraint of copy number. These models will enable the identification of dosage-balanced genes and their consideration as novel candidate disease loci.
Recognising and interpreting patterns of constraint is the cornerstone of molecular evolution. Through careful analysis of genome sequences with respect to gene duplication over evolutionary times and within populations, we will develop a formal and generalised model of copy-number evolution and constraint. We will use these models to identify candidate disease loci within pathogenic CNVs. We will also study the characteristics of known disease genes in order to identify novel candidate loci for dosage-dependent disease.
This is an ambitious and high impact project that has the potential to yield major insights into gene copy-number constraint and its relationship to complex disease.
Summary
Evolutionary change of gene copy number through gene duplication is a relatively pervasive phenomenon in eukaryotic genomes. However, for a subset of genes such changes are deleterious because they result in imbalances in the cell. Such dosage-sensitive genes have been increasingly implicated in disease, particularly through the association of copy number variants (CNVs) with pathogenicity.
In my lab we have previously discovered that many genes in the human genome which were retained after whole genome duplication (WGD) are refractory to gene duplication both over evolutionary timescales and within populations. These are expected characteristics of dosage-balanced genes. Many of these genes are implicated in human disease. I now propose to take a computational (dry-lab) approach to examine the evolution of dosage-balanced genes further and to develop a sophisticated model of evolutionary constraint of copy number. These models will enable the identification of dosage-balanced genes and their consideration as novel candidate disease loci.
Recognising and interpreting patterns of constraint is the cornerstone of molecular evolution. Through careful analysis of genome sequences with respect to gene duplication over evolutionary times and within populations, we will develop a formal and generalised model of copy-number evolution and constraint. We will use these models to identify candidate disease loci within pathogenic CNVs. We will also study the characteristics of known disease genes in order to identify novel candidate loci for dosage-dependent disease.
This is an ambitious and high impact project that has the potential to yield major insights into gene copy-number constraint and its relationship to complex disease.
Max ERC Funding
1 358 534 €
Duration
Start date: 2013-01-01, End date: 2018-12-31
Project acronym ELASTIC-TURBULENCE
Project Purely-elastic flow instabilities and transition to elastic turbulence in microscale flows of complex fluids
Researcher (PI) Manuel António Moreira Alves
Host Institution (HI) UNIVERSIDADE DO PORTO
Call Details Starting Grant (StG), PE8, ERC-2012-StG_20111012
Summary Flows of complex fluids, such as many biological fluids and most synthetic fluids, are common in our daily life and are very important from an industrial perspective. Because of their inherent nonlinearity, the flow of complex viscoelastic fluids often leads to counterintuitive and complex behaviour and, above critical conditions, can prompt flow instabilities even under low Reynolds number conditions which are entirely absent in the corresponding Newtonian fluid flows.
The primary goal of this project is to substantially expand the frontiers of our current knowledge regarding the mechanisms that lead to the development of such purely-elastic flow instabilities, and ultimately to understand the transition to so-called “elastic turbulence”, a turbulent-like phenomenon which can arise even under inertialess flow conditions. This is an extremely challenging problem, and to significantly advance our knowledge in such important flows these instabilities will be investigated in a combined manner encompassing experiments, theory and numerical simulations. Such a holistic approach will enable us to understand the underlying mechanisms of those instabilities and to develop accurate criteria for their prediction far in advance of what we could achieve with either approach separately. A deep understanding of the mechanisms generating elastic instabilities and subsequent transition to elastic turbulence is crucial from a fundamental point of view and for many important practical applications involving engineered complex fluids, such as the design of microfluidic mixers for efficient operation under inertialess flow conditions, or the development of highly efficient micron-sized energy management and mass transfer systems.
This research proposal will create a solid basis for the establishment of an internationally-leading research group led by the PI studying flow instabilities and elastic turbulence in complex fluid flows.
Summary
Flows of complex fluids, such as many biological fluids and most synthetic fluids, are common in our daily life and are very important from an industrial perspective. Because of their inherent nonlinearity, the flow of complex viscoelastic fluids often leads to counterintuitive and complex behaviour and, above critical conditions, can prompt flow instabilities even under low Reynolds number conditions which are entirely absent in the corresponding Newtonian fluid flows.
The primary goal of this project is to substantially expand the frontiers of our current knowledge regarding the mechanisms that lead to the development of such purely-elastic flow instabilities, and ultimately to understand the transition to so-called “elastic turbulence”, a turbulent-like phenomenon which can arise even under inertialess flow conditions. This is an extremely challenging problem, and to significantly advance our knowledge in such important flows these instabilities will be investigated in a combined manner encompassing experiments, theory and numerical simulations. Such a holistic approach will enable us to understand the underlying mechanisms of those instabilities and to develop accurate criteria for their prediction far in advance of what we could achieve with either approach separately. A deep understanding of the mechanisms generating elastic instabilities and subsequent transition to elastic turbulence is crucial from a fundamental point of view and for many important practical applications involving engineered complex fluids, such as the design of microfluidic mixers for efficient operation under inertialess flow conditions, or the development of highly efficient micron-sized energy management and mass transfer systems.
This research proposal will create a solid basis for the establishment of an internationally-leading research group led by the PI studying flow instabilities and elastic turbulence in complex fluid flows.
Max ERC Funding
994 110 €
Duration
Start date: 2012-10-01, End date: 2018-01-31
Project acronym ELENA
Project Electrochemical LEctin and glycan biochips integrated with NAnostructures
Researcher (PI) Ján Tkác
Host Institution (HI) CHEMICKY USTAV SLOVENSKEJ AKADEMIEVIED
Call Details Starting Grant (StG), LS9, ERC-2012-StG_20111109
Summary "Glycomics is currently one of the most progressively evolving scientific fields due to ever growing evidence glycans (sugars) are involved in many aspects of cell physiology and pathology. Glycans are information-rich molecules responsible for sophisticated storage and coding “commands” the cell has to perform to stay “fit” and to deal with uninvited pathogens. Thus, it is very important the “glycocode” is correctly deciphered by the cell to stay healthy, but pathogens developed nasty tricks how to crack the “glycocode“ to their benefit by stealing glycan identity of the host to stay unrecognised until it is too late. A better understanding of these processes can help to develop new, potent and nature-based vaccines and drugs.
Glycomics stayed behind advances in genomics and proteomics, but due to advent of high-throughput biochips glycomics is catching up very quickly. Two biochip formats available to study challenging and complex field of glycomics are either based on immobilised glycans (glycan biochips) or glycan recognising molecules – lectins (lectin biochips). Both technologies proved to be a success story to reveal amazing, precisely tuned “glycocode” reading, but so far biochips do not work under conditions resembling natural process of glycan deciphering.
The aim of the project is to develop biochips for fundamental study of the effect of precisely tuned ligand (glycan and lectin) density, presence of mixed glycans and the length of glycans on the glycan biorecognition. This task will be executed with the aid of nanotechnology to control these aspects at the nanoscale. Moreover, novel label-free electrochemical detection strategies will be used to mimic natural glycan recognition performing without any label. Finally, advanced patterning protocols and novel detection platforms will be integrated to develop fully robust biochips for functional assay of samples from people having some disease with a search for a particular biomarker of the disease."
Summary
"Glycomics is currently one of the most progressively evolving scientific fields due to ever growing evidence glycans (sugars) are involved in many aspects of cell physiology and pathology. Glycans are information-rich molecules responsible for sophisticated storage and coding “commands” the cell has to perform to stay “fit” and to deal with uninvited pathogens. Thus, it is very important the “glycocode” is correctly deciphered by the cell to stay healthy, but pathogens developed nasty tricks how to crack the “glycocode“ to their benefit by stealing glycan identity of the host to stay unrecognised until it is too late. A better understanding of these processes can help to develop new, potent and nature-based vaccines and drugs.
Glycomics stayed behind advances in genomics and proteomics, but due to advent of high-throughput biochips glycomics is catching up very quickly. Two biochip formats available to study challenging and complex field of glycomics are either based on immobilised glycans (glycan biochips) or glycan recognising molecules – lectins (lectin biochips). Both technologies proved to be a success story to reveal amazing, precisely tuned “glycocode” reading, but so far biochips do not work under conditions resembling natural process of glycan deciphering.
The aim of the project is to develop biochips for fundamental study of the effect of precisely tuned ligand (glycan and lectin) density, presence of mixed glycans and the length of glycans on the glycan biorecognition. This task will be executed with the aid of nanotechnology to control these aspects at the nanoscale. Moreover, novel label-free electrochemical detection strategies will be used to mimic natural glycan recognition performing without any label. Finally, advanced patterning protocols and novel detection platforms will be integrated to develop fully robust biochips for functional assay of samples from people having some disease with a search for a particular biomarker of the disease."
Max ERC Funding
1 155 970 €
Duration
Start date: 2013-01-01, End date: 2017-12-31
Project acronym NanoTrigger
Project Triggerable nanomaterials to modulate cell activity
Researcher (PI) Lino Da Silva Ferreira
Host Institution (HI) CENTRO DE NEUROCIENCIAS E BIOLOGIACELULAR ASSOCIACAO
Call Details Starting Grant (StG), PE8, ERC-2012-StG_20111012
Summary The advent of molecular reprogramming and the associated opportunities for personalised and therapeutic medicine requires the development of novel systems for on-demand delivery of reprogramming factors into cells in order to modulate their activity/identity. Such triggerable systems should allow precise control of the timing, duration, magnitude and spatial release of the reprogramming factors. Furthermore, the system should allow this control even in vivo, using non-invasive means. The present project aims at developing triggerable systems able to release efficiently reprogramming factors on demand. The potential of this technology will be tested in two settings: (i) in the reprogramming of somatic cells in vitro, and (ii) in the improvement of hematopoietic stem cell engraftment in vivo, at the bone marrow. The proposed research involves a team formed by engineers, chemists, biologists and is highly multidisciplinary in nature encompassing elements of engineering, chemistry, system biology, stem cell technology and nanomedicine.
Summary
The advent of molecular reprogramming and the associated opportunities for personalised and therapeutic medicine requires the development of novel systems for on-demand delivery of reprogramming factors into cells in order to modulate their activity/identity. Such triggerable systems should allow precise control of the timing, duration, magnitude and spatial release of the reprogramming factors. Furthermore, the system should allow this control even in vivo, using non-invasive means. The present project aims at developing triggerable systems able to release efficiently reprogramming factors on demand. The potential of this technology will be tested in two settings: (i) in the reprogramming of somatic cells in vitro, and (ii) in the improvement of hematopoietic stem cell engraftment in vivo, at the bone marrow. The proposed research involves a team formed by engineers, chemists, biologists and is highly multidisciplinary in nature encompassing elements of engineering, chemistry, system biology, stem cell technology and nanomedicine.
Max ERC Funding
1 699 320 €
Duration
Start date: 2012-11-01, End date: 2017-10-31
Project acronym NGHCS
Project NGHCS: Creating the Next-Generation Mobile Human-Centered Systems
Researcher (PI) Vasiliki (Vana) Kalogeraki
Host Institution (HI) ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS - RESEARCH CENTER
Call Details Starting Grant (StG), PE6, ERC-2012-StG_20111012
Summary Advances in sensor networking and the availability of every day, low-cost sensor enabled devices has led to integrating sensors to instrument the physical world in a variety of economically vital sectors of agriculture, transportation, healthcare, critical infrastructures and emergency response. At the same time, social computing is now undergoing a major revolution: social networks, as exemplified by Twitter or Facebook, have significantly changed the way humans interact with one another. We are now entering a new era where people and systems are becoming increasingly integrated and this development is effectively leading us to large-scale mobile human-centered systems. Our goal is to develop a comprehensive framework to simplify the development of mobile human-centered systems, as well as make them predictable and reliable. Our work has the following research thrusts: First, we develop techniques for dealing efficiently with dynamic unpredictable factors that such complex systems face, including dynamic workloads, unpredictable occurrence of events, real-time demands of applications, as well as user changes and urban dynamics. To achieve this, we will investigate the use of mathematical models to control the behavior of the applications in the absence of perfect system models and a priori information on load and human usage patterns. Second, we will develop the foundations needed to meet the end-to-end timeliness and reliability demands for the range of distributed systems that we will consider by developing novel techniques at different layers of the distributed environment and studying the tradeoffs involved. Third, we will develop general techniques to push computation and data storage as much as possible to the mobile devices, and to integrate participatory sensing and crowdsourcing techniques. The outcome of the proposed work is expected to have significant impact on a wide variety of distributed systems application domains.
Summary
Advances in sensor networking and the availability of every day, low-cost sensor enabled devices has led to integrating sensors to instrument the physical world in a variety of economically vital sectors of agriculture, transportation, healthcare, critical infrastructures and emergency response. At the same time, social computing is now undergoing a major revolution: social networks, as exemplified by Twitter or Facebook, have significantly changed the way humans interact with one another. We are now entering a new era where people and systems are becoming increasingly integrated and this development is effectively leading us to large-scale mobile human-centered systems. Our goal is to develop a comprehensive framework to simplify the development of mobile human-centered systems, as well as make them predictable and reliable. Our work has the following research thrusts: First, we develop techniques for dealing efficiently with dynamic unpredictable factors that such complex systems face, including dynamic workloads, unpredictable occurrence of events, real-time demands of applications, as well as user changes and urban dynamics. To achieve this, we will investigate the use of mathematical models to control the behavior of the applications in the absence of perfect system models and a priori information on load and human usage patterns. Second, we will develop the foundations needed to meet the end-to-end timeliness and reliability demands for the range of distributed systems that we will consider by developing novel techniques at different layers of the distributed environment and studying the tradeoffs involved. Third, we will develop general techniques to push computation and data storage as much as possible to the mobile devices, and to integrate participatory sensing and crowdsourcing techniques. The outcome of the proposed work is expected to have significant impact on a wide variety of distributed systems application domains.
Max ERC Funding
960 000 €
Duration
Start date: 2013-03-01, End date: 2019-02-28
Project acronym OCULUS
Project A radical approach for improved glaucoma treatment
Researcher (PI) Peter Humphries
Host Institution (HI) THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN
Call Details Advanced Grant (AdG), LS7, ERC-2012-ADG_20120314
Summary Open angle glaucoma (OAG) is the second leading cause of world blindness. Treatments involving topically applied pressure-reducing medications or surgery targeting ocular drainage channels are effective, although significant complications exist. We propose to address the hypothesis that it is possible to develop a radical approach to management of intraocular pressure employing an AAV-mediated system for increasing the permeability of Schlemm’s canal endothelial cells (SCEC), based on published supportive data from this laboratory showing that RNAi-mediated down regulation of mRNA encoding components of tight junctions of neuronal vascular endothelia induces increased cell permeability, a process which has been used to validate a procedure for acute treatment of neuronal edema. While tight junctions of neuronal vascular endothelial cells have been extensively studied and comprise of a series of up to 30 protein components, less is known of the organization of adherence mechanisms of SCEC, although electron- and immunofluorescence microscopy show the presence of tight junctions. We propose a comprehensive analysis of tight junction protein expression in SCEC in vitro. In vivo studies will involve introduction of AAV vectors into the anterior chamber of the eye in rodent models of elevated IOP. The vectors will be designed to express shRNAs targeting a variety of tight junction transcripts expressed in SCEC using an inducible system. The effect of RNAi-mediated increase in the permeability of SCEC will be assessed using aqueous humour outflow measurement methods and we will also explore the utility of high resolution and diffusion-weighted MRI for this purpose, which may prove to be a simpler, non-invasive and clinically relevant method. This research will provide further fundamental insights into the mechanisms of ocular pressure maintenance and could provide benefit to those patients not responsive to conventional means of therapy.
Summary
Open angle glaucoma (OAG) is the second leading cause of world blindness. Treatments involving topically applied pressure-reducing medications or surgery targeting ocular drainage channels are effective, although significant complications exist. We propose to address the hypothesis that it is possible to develop a radical approach to management of intraocular pressure employing an AAV-mediated system for increasing the permeability of Schlemm’s canal endothelial cells (SCEC), based on published supportive data from this laboratory showing that RNAi-mediated down regulation of mRNA encoding components of tight junctions of neuronal vascular endothelia induces increased cell permeability, a process which has been used to validate a procedure for acute treatment of neuronal edema. While tight junctions of neuronal vascular endothelial cells have been extensively studied and comprise of a series of up to 30 protein components, less is known of the organization of adherence mechanisms of SCEC, although electron- and immunofluorescence microscopy show the presence of tight junctions. We propose a comprehensive analysis of tight junction protein expression in SCEC in vitro. In vivo studies will involve introduction of AAV vectors into the anterior chamber of the eye in rodent models of elevated IOP. The vectors will be designed to express shRNAs targeting a variety of tight junction transcripts expressed in SCEC using an inducible system. The effect of RNAi-mediated increase in the permeability of SCEC will be assessed using aqueous humour outflow measurement methods and we will also explore the utility of high resolution and diffusion-weighted MRI for this purpose, which may prove to be a simpler, non-invasive and clinically relevant method. This research will provide further fundamental insights into the mechanisms of ocular pressure maintenance and could provide benefit to those patients not responsive to conventional means of therapy.
Max ERC Funding
2 499 838 €
Duration
Start date: 2013-04-01, End date: 2018-09-30
Project acronym PARASITENUTRISENSING
Project Nutrient sensing by parasites
Researcher (PI) Maria Manuel Dias Da Mota
Host Institution (HI) INSTITUTO DE MEDICINA MOLECULAR JOAO LOBO ANTUNES
Call Details Starting Grant (StG), LS6, ERC-2012-StG_20111109
Summary As any other obligate parasite, Plasmodium depends on its hosts and on the nutrients they provide to survive and complete its life cycle. Surprisingly, nothing is know about Plasmodium’s capacity to sense nutrients or its host’s nutritional status and thereby reprogram its metabolism. Our preliminary data provides unequivocal evidence that Plasmodium has the ability to sense the host low-nutrient status and adapt to it by decreasing its multiplication rate. Thus, the overall goal of the present proposal is to unveil the molecular mechanisms by which parasites are capable to sense and adapt to environmental signals originated from nutrients and to determine its impact on the course and virulence of infection. To that end we propose to: (i) Identify Plasmodium pathway(s) that sense (host) nutritional changes; (ii) Uncover which molecules are sensed by Plasmodium during its intracellular development; (iii) Study the impact of the parasite’s nutrient sensing pathways activity on the course of infection; and (iv) Evaluate host nutritional status sensing as a common feature in parasites. The present proposal moves towards a change of paradigm on how host-parasite interactions are viewed. By definition, since a parasite requires a host in order to survive, a decrease in the availability of an essential molecule obtained from the host will weaken the parasite and render it incapable of succeeding in its life cycle. The rationale behind this proposal is that parasites monitor host nutritional environment and, prior to any nutrient(s) becoming limiting, are able to respond and adapt to the sensed alteration(s). Multidisciplinary approaches that combine genetic, genomic, cell biological and physiological methodologies will be used. Results arising from the present proposal will provide novel insights into the cell biology of these parasites and will increase our understanding of the interactions that these parasites maintain with their hosts.
Summary
As any other obligate parasite, Plasmodium depends on its hosts and on the nutrients they provide to survive and complete its life cycle. Surprisingly, nothing is know about Plasmodium’s capacity to sense nutrients or its host’s nutritional status and thereby reprogram its metabolism. Our preliminary data provides unequivocal evidence that Plasmodium has the ability to sense the host low-nutrient status and adapt to it by decreasing its multiplication rate. Thus, the overall goal of the present proposal is to unveil the molecular mechanisms by which parasites are capable to sense and adapt to environmental signals originated from nutrients and to determine its impact on the course and virulence of infection. To that end we propose to: (i) Identify Plasmodium pathway(s) that sense (host) nutritional changes; (ii) Uncover which molecules are sensed by Plasmodium during its intracellular development; (iii) Study the impact of the parasite’s nutrient sensing pathways activity on the course of infection; and (iv) Evaluate host nutritional status sensing as a common feature in parasites. The present proposal moves towards a change of paradigm on how host-parasite interactions are viewed. By definition, since a parasite requires a host in order to survive, a decrease in the availability of an essential molecule obtained from the host will weaken the parasite and render it incapable of succeeding in its life cycle. The rationale behind this proposal is that parasites monitor host nutritional environment and, prior to any nutrient(s) becoming limiting, are able to respond and adapt to the sensed alteration(s). Multidisciplinary approaches that combine genetic, genomic, cell biological and physiological methodologies will be used. Results arising from the present proposal will provide novel insights into the cell biology of these parasites and will increase our understanding of the interactions that these parasites maintain with their hosts.
Max ERC Funding
1 500 000 €
Duration
Start date: 2012-12-01, End date: 2017-11-30
Project acronym PHOTOMETA
Project Photonic Metamaterials: From Basic Research to Applications
Researcher (PI) Costas Soukoulis
Host Institution (HI) IDRYMA TECHNOLOGIAS KAI EREVNAS
Call Details Advanced Grant (AdG), PE3, ERC-2012-ADG_20120216
Summary Novel artificial materials (photonic crystals (PCs), negative index materials (NIMs), and plasmonics) enable the realization of innovative EM properties unattainable in naturally existing materials. These materials, called metamaterials (MMs), have been in the foreground of scientific interest in the last ten years. However, many serious obstacles must be overcome before the impressive possibilities of MMs, especially in the optical regime, become real applications.
The present project combines NIMs, PCs, and aspects of plasmonics in a unified way in order to promote the development of functional MMs, and mainly functional optical MMs (OMMs). It identifies the main obstacles, proposes specific approaches to deal with them, and intends to study unexplored capabilities of OMMs. The project objectives are: (a) Design and realization of 3d OMMs, and achieve new metasurface designs applying Babinet’s principle. (b) Understanding and reducing the losses in OMM by incorporating gain and EM induced transparency (EIT). (c) Achieving highly efficient PC nanolasers and surface plasmons (SPs) lasers. (d) Use chiral MMs and SPs to reduce and manipulate Casimir forces, and (e) Using MMs, combined with nonlinear materials, for THz generation, and tunable response.(f)Calculate electron- phonon scattering and edge collisions in graphene and in graphene-based molecules. The unifying link in all these objectives is the endowment of photons with novel properties through imaginative use of EM-field / artificial-matter interactions. Some of these objectives seem almost certainly realizable; others are more risky but with higher reward if accomplished; some are directed towards new specific applications, while others explore new physical reality.
The accomplishment of those objectives requires novel ideas, advanced computational techniques, nanofabrication approaches, and testing. The broad expertise of the PI and his team, and their pioneering contributions to NIMs, PCs, and plasmonics qualifies them for facing the challenges and ensuring the maximum possible success of the project.
Summary
Novel artificial materials (photonic crystals (PCs), negative index materials (NIMs), and plasmonics) enable the realization of innovative EM properties unattainable in naturally existing materials. These materials, called metamaterials (MMs), have been in the foreground of scientific interest in the last ten years. However, many serious obstacles must be overcome before the impressive possibilities of MMs, especially in the optical regime, become real applications.
The present project combines NIMs, PCs, and aspects of plasmonics in a unified way in order to promote the development of functional MMs, and mainly functional optical MMs (OMMs). It identifies the main obstacles, proposes specific approaches to deal with them, and intends to study unexplored capabilities of OMMs. The project objectives are: (a) Design and realization of 3d OMMs, and achieve new metasurface designs applying Babinet’s principle. (b) Understanding and reducing the losses in OMM by incorporating gain and EM induced transparency (EIT). (c) Achieving highly efficient PC nanolasers and surface plasmons (SPs) lasers. (d) Use chiral MMs and SPs to reduce and manipulate Casimir forces, and (e) Using MMs, combined with nonlinear materials, for THz generation, and tunable response.(f)Calculate electron- phonon scattering and edge collisions in graphene and in graphene-based molecules. The unifying link in all these objectives is the endowment of photons with novel properties through imaginative use of EM-field / artificial-matter interactions. Some of these objectives seem almost certainly realizable; others are more risky but with higher reward if accomplished; some are directed towards new specific applications, while others explore new physical reality.
The accomplishment of those objectives requires novel ideas, advanced computational techniques, nanofabrication approaches, and testing. The broad expertise of the PI and his team, and their pioneering contributions to NIMs, PCs, and plasmonics qualifies them for facing the challenges and ensuring the maximum possible success of the project.
Max ERC Funding
2 100 000 €
Duration
Start date: 2013-03-01, End date: 2019-02-28
Project acronym ProteinLocalization
Project Finding New Mechanisms for Protein Localization in Bacteria
Researcher (PI) Mariana Luisa Tomàs Gomes De Pinho
Host Institution (HI) INSTITUTO DE TECNOLOGIA QUIMICA E BIOLOGICA - UNIVERSIDADE NOVA DE LISBOA
Call Details Starting Grant (StG), LS6, ERC-2012-StG_20111109
Summary During infection, the host immune system interacts with the bacterial cell surface, a complex structure made of peptidoglycan, wall teichoic acids, lipoteichoic acids, capsule polysaccharide and peptidoglycan-attached proteins. A lot is known about the metabolic pathways for the synthesis of each individual cell surface component. Almost nothing is known about the coordination between the synthesis of the peptidoglycan, the major structural component of the cell surface and the main inflammatory component of gram-positive bacteria, and the synthesis of the other molecules present at the surface. However, this coordination is essential for the construction of a surface capable not only of performing its biological functions in cell protection and morphology, but also of masking its inflammatory components for evasion from host recognition.
Using the clinical pathogen Staphylococcus aureus as a model organism, we propose to investigate the temporal and spatial regulation of the enzymes responsible for the synthesis of the cell surface components, as well as their dependence on the underlying divisome.
We will (i) use state-of –the art fluorescence microscopy to localize fluorescent derivatives of enzymes required for cell surface synthesis; (ii) use libraries of antibiotics, of antisense RNA expression plasmids, and of transposon mutants to identify the order of assembly and requirements for the localization of cell surface synthesis enzymes; (iii) identify the exact metabolic compound/protein/geometric cue responsible for the localization of key enzymes; (iv) determine if cells with impaired surface synthesis due to protein delocalization are more susceptible to host recognition and therefore less capable of causing infections.
This project will result in the identification of new mechanisms of protein localization, a fundamental question in cell biology, and in a better understanding of the assembly of the bacterial cell surface of successful bacterial pathogens
Summary
During infection, the host immune system interacts with the bacterial cell surface, a complex structure made of peptidoglycan, wall teichoic acids, lipoteichoic acids, capsule polysaccharide and peptidoglycan-attached proteins. A lot is known about the metabolic pathways for the synthesis of each individual cell surface component. Almost nothing is known about the coordination between the synthesis of the peptidoglycan, the major structural component of the cell surface and the main inflammatory component of gram-positive bacteria, and the synthesis of the other molecules present at the surface. However, this coordination is essential for the construction of a surface capable not only of performing its biological functions in cell protection and morphology, but also of masking its inflammatory components for evasion from host recognition.
Using the clinical pathogen Staphylococcus aureus as a model organism, we propose to investigate the temporal and spatial regulation of the enzymes responsible for the synthesis of the cell surface components, as well as their dependence on the underlying divisome.
We will (i) use state-of –the art fluorescence microscopy to localize fluorescent derivatives of enzymes required for cell surface synthesis; (ii) use libraries of antibiotics, of antisense RNA expression plasmids, and of transposon mutants to identify the order of assembly and requirements for the localization of cell surface synthesis enzymes; (iii) identify the exact metabolic compound/protein/geometric cue responsible for the localization of key enzymes; (iv) determine if cells with impaired surface synthesis due to protein delocalization are more susceptible to host recognition and therefore less capable of causing infections.
This project will result in the identification of new mechanisms of protein localization, a fundamental question in cell biology, and in a better understanding of the assembly of the bacterial cell surface of successful bacterial pathogens
Max ERC Funding
1 656 960 €
Duration
Start date: 2013-03-01, End date: 2018-02-28
Project acronym QUEST
Project Quantitative electron and spin transport theory for organic crystals based devices
Researcher (PI) Stefano Sanvito
Host Institution (HI) THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN
Call Details Starting Grant (StG), PE3, ERC-2012-StG_20111012
Summary Predicting the electron and spin transport properties of organic crystals is a formidable theoretical challenge as these are determined both by the electronic structure of the individual molecules and by the morphology of the crystal. Quest's research program seeks at developing a fully quantitative theory for electron and spin transport in organic crystals, which does not rely on external parameters and can be applied to materials underpinning a multitude of applications, ranging from organic electronics, to spintronics, to energy. In particular we aim at combining state of the art density functional theory with advanced quantum transport methods and Monte Carlo simulations. We will then construct a hierarchical computational protocol enabling us to evaluate electron and spin transport across different length scales at finite temperature, including effects originating from external fields (electric and magnetic). Our developed tools will form a software package to be distributed freely to academia.
Summary
Predicting the electron and spin transport properties of organic crystals is a formidable theoretical challenge as these are determined both by the electronic structure of the individual molecules and by the morphology of the crystal. Quest's research program seeks at developing a fully quantitative theory for electron and spin transport in organic crystals, which does not rely on external parameters and can be applied to materials underpinning a multitude of applications, ranging from organic electronics, to spintronics, to energy. In particular we aim at combining state of the art density functional theory with advanced quantum transport methods and Monte Carlo simulations. We will then construct a hierarchical computational protocol enabling us to evaluate electron and spin transport across different length scales at finite temperature, including effects originating from external fields (electric and magnetic). Our developed tools will form a software package to be distributed freely to academia.
Max ERC Funding
1 492 728 €
Duration
Start date: 2012-12-01, End date: 2018-11-30
Project acronym RETURN
Project RETURN – Rethinking Tunnelling in Urban Neighbourhoods
Researcher (PI) Debra Fern Laefer
Host Institution (HI) UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN
Call Details Starting Grant (StG), PE8, ERC-2012-StG_20111012
Summary This project addresses important challenges at the forefront of geotechnical engineering and building conservation by introducing an entirely new workflow and largely unexploited data source for the predic-tion of building damage from tunnel-induced subsidence. The project will also make fundamental and ground-breaking advances in the collection and processing of city-scale, aerial laser scanning by avoiding any reliance on existing data for building location identification, respective data affiliation, or building fea-ture recognition. This will create a set of techniques that are robust, scalable, and widely applicable to a broad range of communities with unreinforced masonry buildings. This will also lay the groundwork to rapidly generate and deploy city-scale, computational models for emergency management and disaster re-sponse, as well as for the growing field of environmental modelling.
Summary
This project addresses important challenges at the forefront of geotechnical engineering and building conservation by introducing an entirely new workflow and largely unexploited data source for the predic-tion of building damage from tunnel-induced subsidence. The project will also make fundamental and ground-breaking advances in the collection and processing of city-scale, aerial laser scanning by avoiding any reliance on existing data for building location identification, respective data affiliation, or building fea-ture recognition. This will create a set of techniques that are robust, scalable, and widely applicable to a broad range of communities with unreinforced masonry buildings. This will also lay the groundwork to rapidly generate and deploy city-scale, computational models for emergency management and disaster re-sponse, as well as for the growing field of environmental modelling.
Max ERC Funding
1 500 000 €
Duration
Start date: 2013-01-01, End date: 2016-12-31
Project acronym Sip-Vol+
Project Stress-Induced Plant Volatiles in Biosphere-Atmosphere System
Researcher (PI) Ülo Niinemets
Host Institution (HI) EESTI MAAULIKOOL
Call Details Advanced Grant (AdG), LS8, ERC-2012-ADG_20120314
Summary Vegetation forms a key interface between Earth surface and atmosphere. The important role of vegetation carbon, water and energy exchanges is well established, but the overall impact of plant trace gas (VOC) emission for large-scale Earth processes is poorly understood. Although it is widely accepted that VOCs play major roles in the formation of ozone, secondary organic aerosols (SOA) and cloud condensation nuclei (CNN) with potentially profound impacts on air quality and Earth radiative balance, the research has so far focused only on constitutive emissions from species considered “emitters”. However, differently from constitutive VOCs emitted only by certain species, all plant species can be triggered to emit induced VOCs under abiotic and biotic stress. So far, induced high-reactivity VOCs are not considered in global VOC budget, and thus, this proposal tests the key assumption that VOC emissions worldwide have been vastly underestimated. As global change is resulting in higher level of stress in Earth ecosystems, the relevance of induced emissions is further expected to gain in importance. The current project has the overall objective to evaluate the effect of plant-generated VOC emissions on air composition and environment under global change, with particular emphasis on the role of VOCs induced in response to environmental stress. The study first quantifies the VOC production vs. stress severity relationships across species with differing stress tolerance and advances and parameterizes the qualitative induced VOC model developed by PI. The novel quantitative model is further verified by flux measurements and scaled up to regional and global scales to assess the contribution of induced emissions to overall VOC budget, and study the feedbacks between stress, ozone, SOA and CNN formation and the Earth climate using an hierarchy of available models. This highly cross-disciplinary project is expected to result in key contributions in two research fields of major significance: plant stress tolerance from molecules to globe and the role of vegetation component in atmospheric reactivity and Earth climate. The first part of the study provides fundamental insight into the stress responsiveness of plants with differing tolerance to environmental limitations, extending “leaf economics spectrum”, a hotspot of current plant ecology research. The second part provides quantitative information on large-scale importance of plant VOCs in globally changing climates with major relevance for understanding the role of plants in the Earth’s large scale processes.
Summary
Vegetation forms a key interface between Earth surface and atmosphere. The important role of vegetation carbon, water and energy exchanges is well established, but the overall impact of plant trace gas (VOC) emission for large-scale Earth processes is poorly understood. Although it is widely accepted that VOCs play major roles in the formation of ozone, secondary organic aerosols (SOA) and cloud condensation nuclei (CNN) with potentially profound impacts on air quality and Earth radiative balance, the research has so far focused only on constitutive emissions from species considered “emitters”. However, differently from constitutive VOCs emitted only by certain species, all plant species can be triggered to emit induced VOCs under abiotic and biotic stress. So far, induced high-reactivity VOCs are not considered in global VOC budget, and thus, this proposal tests the key assumption that VOC emissions worldwide have been vastly underestimated. As global change is resulting in higher level of stress in Earth ecosystems, the relevance of induced emissions is further expected to gain in importance. The current project has the overall objective to evaluate the effect of plant-generated VOC emissions on air composition and environment under global change, with particular emphasis on the role of VOCs induced in response to environmental stress. The study first quantifies the VOC production vs. stress severity relationships across species with differing stress tolerance and advances and parameterizes the qualitative induced VOC model developed by PI. The novel quantitative model is further verified by flux measurements and scaled up to regional and global scales to assess the contribution of induced emissions to overall VOC budget, and study the feedbacks between stress, ozone, SOA and CNN formation and the Earth climate using an hierarchy of available models. This highly cross-disciplinary project is expected to result in key contributions in two research fields of major significance: plant stress tolerance from molecules to globe and the role of vegetation component in atmospheric reactivity and Earth climate. The first part of the study provides fundamental insight into the stress responsiveness of plants with differing tolerance to environmental limitations, extending “leaf economics spectrum”, a hotspot of current plant ecology research. The second part provides quantitative information on large-scale importance of plant VOCs in globally changing climates with major relevance for understanding the role of plants in the Earth’s large scale processes.
Max ERC Funding
2 259 366 €
Duration
Start date: 2013-05-01, End date: 2018-04-30
Project acronym SOFTCITY
Project The Programmable City
Researcher (PI) Robert Michael Kitchin
Host Institution (HI) NATIONAL UNIVERSITY OF IRELAND MAYNOOTH
Call Details Advanced Grant (AdG), SH3, ERC-2012-ADG_20120411
Summary "Software is essential to the functioning of cities; a vital element in the operation and governance of travel, the built environment, consumption, work, home life, services and utilities. To date, analysis has focused on the technologies that software enables, rather than the actual code that renders the city programmable and knowable in new ways. We have thus failed to appreciate and understand a key mediator of urban change and city life. The project will provide a groundbreaking analysis of the emerging programmable city with respect to: (1) how the city is translated into software; (2) how software reshapes the city. It will examine these processes in relation to four key urban practices – how we understand, manage, work and live in the city. With respect to how cities are translated into software, the project will examine how cities and citizens are captured and processed as data; how ideas about city governance are composed into code; the geographies of software production; how software is discursively produced and legitimated by vested interests. With respect to how software reshapes cities, the project will examine: the rise of ‘big data’ and how data infrastructures and information systems are used to inform public policy development; how software is used to regulate and govern city life; how the activities and practices of work are being reshaped by computation; and how software transforms the spatiality and spatial behaviour of individuals. A range of methodologies will be employed, including interviews, ethnographies, audits, surveys, discourse analysis, and the development of a new method, algorithm archaeology. The project will address a serious lacuna in social science research by answering key questions concerning the nature of software and the changing production and management of cities and citizens. It will provide new theoretical tools and rich empirical evidence for thinking through the new era of programmable urbanism."
Summary
"Software is essential to the functioning of cities; a vital element in the operation and governance of travel, the built environment, consumption, work, home life, services and utilities. To date, analysis has focused on the technologies that software enables, rather than the actual code that renders the city programmable and knowable in new ways. We have thus failed to appreciate and understand a key mediator of urban change and city life. The project will provide a groundbreaking analysis of the emerging programmable city with respect to: (1) how the city is translated into software; (2) how software reshapes the city. It will examine these processes in relation to four key urban practices – how we understand, manage, work and live in the city. With respect to how cities are translated into software, the project will examine how cities and citizens are captured and processed as data; how ideas about city governance are composed into code; the geographies of software production; how software is discursively produced and legitimated by vested interests. With respect to how software reshapes cities, the project will examine: the rise of ‘big data’ and how data infrastructures and information systems are used to inform public policy development; how software is used to regulate and govern city life; how the activities and practices of work are being reshaped by computation; and how software transforms the spatiality and spatial behaviour of individuals. A range of methodologies will be employed, including interviews, ethnographies, audits, surveys, discourse analysis, and the development of a new method, algorithm archaeology. The project will address a serious lacuna in social science research by answering key questions concerning the nature of software and the changing production and management of cities and citizens. It will provide new theoretical tools and rich empirical evidence for thinking through the new era of programmable urbanism."
Max ERC Funding
2 309 926 €
Duration
Start date: 2013-06-01, End date: 2018-05-31
Project acronym SPADE
Project Sophisticated Program Analysis, Declaratively
Researcher (PI) Ioannis Smaragdakis
Host Institution (HI) ETHNIKO KAI KAPODISTRIAKO PANEPISTIMIO ATHINON
Call Details Starting Grant (StG), PE6, ERC-2012-StG_20111012
Summary Static program analysis is a fundamental computing challenge. We have recently demonstrated significant advantages from expressing analyses for Java declaratively, in the Datalog language. This means that the algorithm is in a form that resembles a pure logical specification, rather than a step-by-step definition of the execution. The declarative specification does not merely cover the main logic of the algorithm, but its entire implementation, including the handling of complex semantic features (such as native methods, reflection, threads) of the Java language. Surprisingly, the declarative specification can be made to execute up to an order of magnitude faster than the dominant pre-existing implementations of the same algorithms. Armed with this past experience, the SPADE project aims to develop a next-generation approach to the design and declarative implementation of static program analyses. This will include a) a substantially more flexible notion of context-sensitive analysis, which allows context to vary according to introspective observations; b) a flow-sensitive analysis framework that can be used as the basis for dataflow analysis; c) an approach to producing parallel implementations of analyses by exploiting the parallelism inherent in the declarative specification; d) an exploration of adapting analysis logic to multiple languages and paradigms, including C (using the LLVM infrastructure), functional languages (e.g., Scheme), and dynamic languages (notably, Javascript); e) client analyses algorithms (e.g., may-happen-in-parallel, bug finding analyses such as race and atomicity-violation detectors, etc.) expressed modularly over the underlying substrate of points-to analysis.
The work will have applications to multiple languages and a variety of analyses. Concretely, our precise and scalable analysis algorithms will enhance optimizing compilers, program analyzers for error detection, and program understanding tools.
Summary
Static program analysis is a fundamental computing challenge. We have recently demonstrated significant advantages from expressing analyses for Java declaratively, in the Datalog language. This means that the algorithm is in a form that resembles a pure logical specification, rather than a step-by-step definition of the execution. The declarative specification does not merely cover the main logic of the algorithm, but its entire implementation, including the handling of complex semantic features (such as native methods, reflection, threads) of the Java language. Surprisingly, the declarative specification can be made to execute up to an order of magnitude faster than the dominant pre-existing implementations of the same algorithms. Armed with this past experience, the SPADE project aims to develop a next-generation approach to the design and declarative implementation of static program analyses. This will include a) a substantially more flexible notion of context-sensitive analysis, which allows context to vary according to introspective observations; b) a flow-sensitive analysis framework that can be used as the basis for dataflow analysis; c) an approach to producing parallel implementations of analyses by exploiting the parallelism inherent in the declarative specification; d) an exploration of adapting analysis logic to multiple languages and paradigms, including C (using the LLVM infrastructure), functional languages (e.g., Scheme), and dynamic languages (notably, Javascript); e) client analyses algorithms (e.g., may-happen-in-parallel, bug finding analyses such as race and atomicity-violation detectors, etc.) expressed modularly over the underlying substrate of points-to analysis.
The work will have applications to multiple languages and a variety of analyses. Concretely, our precise and scalable analysis algorithms will enhance optimizing compilers, program analyzers for error detection, and program understanding tools.
Max ERC Funding
1 042 616 €
Duration
Start date: 2013-01-01, End date: 2019-03-31
Project acronym Tailor Graphene
Project Tailoring Graphene to Withstand Large Deformations
Researcher (PI) Constantine Galiotis
Host Institution (HI) FOUNDATION FOR RESEARCH AND TECHNOLOGY HELLAS
Call Details Advanced Grant (AdG), PE8, ERC-2012-ADG_20120216
Summary This proposal aims via a comprehensive and interdisciplinary programme of research to determine the full response of monolayer (atomic thickness) graphene to extreme axial tensional deformation up to failure and to measure directly its tensile strength, stiffness, strain-to-failure and, most importantly, the effect of orthogonal buckling to its overall tensile properties. Already our recent results have shown that graphene buckling of any form can be suppressed by embedding the flakes into polymer matrices. We have indeed quantified this effect for any flake geometry and have produced master curves relating geometrical aspects to compression strain-to-failure. In the proposed work, we will make good use of this finding by altering the geometry of the flakes and thus design graphene strips (micro-ribbons) of specific dimensions which when embedded to polymer matrices can be stretched to large deformation and even failure without simultaneous buckling in the other direction. This is indeed the only route possible for the exploitation of the potential of graphene as an efficient reinforcement in composites. Since orthogonal buckling during stretching is expected to alter- among other things- the Dirac spectrum and consequently the electronic properties of graphene, we intend to use the technique of Raman spectroscopy to produce stress/ strain maps in two dimensions in order to quantify fully this effect from the mechanical standpoint. Finally, another option for ironing out the wrinkles is to apply a simultaneous thermal field during tensile loading. This will give rise to a biaxial stretching of graphene which presents another interesting field of study particularly for already envisaged applications of graphene in flexible displays and coatings.
Summary
This proposal aims via a comprehensive and interdisciplinary programme of research to determine the full response of monolayer (atomic thickness) graphene to extreme axial tensional deformation up to failure and to measure directly its tensile strength, stiffness, strain-to-failure and, most importantly, the effect of orthogonal buckling to its overall tensile properties. Already our recent results have shown that graphene buckling of any form can be suppressed by embedding the flakes into polymer matrices. We have indeed quantified this effect for any flake geometry and have produced master curves relating geometrical aspects to compression strain-to-failure. In the proposed work, we will make good use of this finding by altering the geometry of the flakes and thus design graphene strips (micro-ribbons) of specific dimensions which when embedded to polymer matrices can be stretched to large deformation and even failure without simultaneous buckling in the other direction. This is indeed the only route possible for the exploitation of the potential of graphene as an efficient reinforcement in composites. Since orthogonal buckling during stretching is expected to alter- among other things- the Dirac spectrum and consequently the electronic properties of graphene, we intend to use the technique of Raman spectroscopy to produce stress/ strain maps in two dimensions in order to quantify fully this effect from the mechanical standpoint. Finally, another option for ironing out the wrinkles is to apply a simultaneous thermal field during tensile loading. This will give rise to a biaxial stretching of graphene which presents another interesting field of study particularly for already envisaged applications of graphene in flexible displays and coatings.
Max ERC Funding
2 025 600 €
Duration
Start date: 2013-06-01, End date: 2018-05-31
Project acronym TDRFSP
Project Time-Domain RF and Analog Signal Processing
Researcher (PI) Robert Staszewski
Host Institution (HI) UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN
Call Details Starting Grant (StG), PE7, ERC-2012-StG_20111012
Summary "One of the most important developments in the communication microelectronics in the last decade was the invention and popularization of “Digital RF”. It transforms the radio frequency (RF) analog functionality of a wireless transceiver into digitally-intensive implementations that operate in time-domain. They are best realized in mainstream nanometer-scale CMOS technologies and easily integrated with digital processors. As a result, RF transceivers based on this new approach now enjoy significant benefits. Consequently, the RF transceivers based on this architecture are now the majority of the 1.5 billion mobile handsets produced annually.
The invention and development of “Digital RF” was pioneered in the last decade by this applicant at Texas Instruments in Dallas, Texas, USA. Despite having published over 130 scientific papers, that industrial research focus has been mainly limited to the highest volume segment of the wireless communications market: low-cost GSM/EDGE cellular phones and Bluetooth radios. Unfortunately, that low-cost low-data-rate market segment has already reached the saturation. The fastest growing segments of the wireless communications are now: high-data-rate “smart phones”, ultra-low-power wireless sensor network devices, antenna-array and millimeter-wave transceivers, where the original “Digital RF” approach could not be readily exploited.
The goal of this proposal is to revisit and exploit the fundamental theory of the time-domain operation of RF and analog circuits. This way the broad area of the wireless communications, as well as analog and mixed-signal electronics in general, can be transformed for the ready realization in the advanced CMOS technology. This is expected to revolutionize the entire research field to even a larger extent than the “Digital RF” breakthrough in low-cost low-data-rate radios pioneered by this applicant in the last decade."
Summary
"One of the most important developments in the communication microelectronics in the last decade was the invention and popularization of “Digital RF”. It transforms the radio frequency (RF) analog functionality of a wireless transceiver into digitally-intensive implementations that operate in time-domain. They are best realized in mainstream nanometer-scale CMOS technologies and easily integrated with digital processors. As a result, RF transceivers based on this new approach now enjoy significant benefits. Consequently, the RF transceivers based on this architecture are now the majority of the 1.5 billion mobile handsets produced annually.
The invention and development of “Digital RF” was pioneered in the last decade by this applicant at Texas Instruments in Dallas, Texas, USA. Despite having published over 130 scientific papers, that industrial research focus has been mainly limited to the highest volume segment of the wireless communications market: low-cost GSM/EDGE cellular phones and Bluetooth radios. Unfortunately, that low-cost low-data-rate market segment has already reached the saturation. The fastest growing segments of the wireless communications are now: high-data-rate “smart phones”, ultra-low-power wireless sensor network devices, antenna-array and millimeter-wave transceivers, where the original “Digital RF” approach could not be readily exploited.
The goal of this proposal is to revisit and exploit the fundamental theory of the time-domain operation of RF and analog circuits. This way the broad area of the wireless communications, as well as analog and mixed-signal electronics in general, can be transformed for the ready realization in the advanced CMOS technology. This is expected to revolutionize the entire research field to even a larger extent than the “Digital RF” breakthrough in low-cost low-data-rate radios pioneered by this applicant in the last decade."
Max ERC Funding
1 497 000 €
Duration
Start date: 2012-09-01, End date: 2017-08-31
Project acronym TRAMAN21
Project Traffic Management for the 21st Century
Researcher (PI) Markos Papageorgiou
Host Institution (HI) POLYTECHNEIO KRITIS
Call Details Advanced Grant (AdG), PE8, ERC-2012-ADG_20120216
Summary Traffic congestion on motorways is a serious threat for the economic and social life of modern societies and for the environment, which calls for drastic and radical solutions. Conventional traffic management faces limitations. During the last decade, there has been an enormous effort to develop a variety of Vehicle Automation and Communication Systems (VACS) that are expected to revolutionise the features and capabilities of individual vehicles. VACS are typically developed to benefit the individual vehicle, without a clear view for the implications, advantages and disadvantages they may have for the accordingly modified traffic characteristics. Thus, the introduction of VACS brings along the necessity and growing opportunities for adapted or utterly new traffic management.
It is the main objective of TRAMAN21 to develop the foundations and first steps that will pave the way towards a new era of motorway traffic management research and practice, which is indispensable for exploiting the evolving VACS deployment. TRAMAN21 assesses the relevance of VACS for improved traffic flow and develops specific options for a sensible upgrade of the traffic conditions, particularly at the network’s weak points, i.e. at bottlenecks and incident locations. The proposed work comprises the development of new traffic flow modelling and control approaches on the basis of appropriate methods from many-particle Physics, Automatic Control and Optimisation. A field trial is included, aiming at a preliminary testing and demonstration of the developed concepts.
TRAMAN21 risk stems from the uncertainty in the VACS evolution, which is a challenge for the required modelling and control developments. But, if successful, TRAMAN21 will contribute to a substantial reduction of the estimated annual European traffic congestion cost of 120 billion € and related environmental pollution and will trigger further innovative developments and a new era of traffic flow modelling and control research.
Summary
Traffic congestion on motorways is a serious threat for the economic and social life of modern societies and for the environment, which calls for drastic and radical solutions. Conventional traffic management faces limitations. During the last decade, there has been an enormous effort to develop a variety of Vehicle Automation and Communication Systems (VACS) that are expected to revolutionise the features and capabilities of individual vehicles. VACS are typically developed to benefit the individual vehicle, without a clear view for the implications, advantages and disadvantages they may have for the accordingly modified traffic characteristics. Thus, the introduction of VACS brings along the necessity and growing opportunities for adapted or utterly new traffic management.
It is the main objective of TRAMAN21 to develop the foundations and first steps that will pave the way towards a new era of motorway traffic management research and practice, which is indispensable for exploiting the evolving VACS deployment. TRAMAN21 assesses the relevance of VACS for improved traffic flow and develops specific options for a sensible upgrade of the traffic conditions, particularly at the network’s weak points, i.e. at bottlenecks and incident locations. The proposed work comprises the development of new traffic flow modelling and control approaches on the basis of appropriate methods from many-particle Physics, Automatic Control and Optimisation. A field trial is included, aiming at a preliminary testing and demonstration of the developed concepts.
TRAMAN21 risk stems from the uncertainty in the VACS evolution, which is a challenge for the required modelling and control developments. But, if successful, TRAMAN21 will contribute to a substantial reduction of the estimated annual European traffic congestion cost of 120 billion € and related environmental pollution and will trigger further innovative developments and a new era of traffic flow modelling and control research.
Max ERC Funding
1 496 880 €
Duration
Start date: 2013-03-01, End date: 2018-02-28
Project acronym TRANSARREST
Project Keeping gene expression in check: eliciting the role of transcription in the maintenance of genome integrity
Researcher (PI) Maria Fousteri
Host Institution (HI) BIOMEDICAL SCIENCES RESEARCH CENTER ALEXANDER FLEMING
Call Details Starting Grant (StG), LS1, ERC-2012-StG_20111109
Summary Genomic integrity is essential for accurate gene expression and epigenetic inheritance. On the other hand, a prolonged transcriptional arrest can challenge genome stability, contributing to genetic and epigenetic defects and the mechanisms of ageing and disease.
Here we aim to identify the molecular mechanisms that couple transcriptional arrest to chromatin alteration and repair. We wish to explore the idea that transcription suppresses cellular toxicity and preserves genetic and epigenetic inheritance.
Towards these goals our work will be focused on:
1. Deciphering the molecular events impinging on the manner cells respond when the progress of a transcribing RNA polymerase II is blocked.
2. Exploring a novel, so far unanticipated function of key players of the transcription-associated repair pathways, such as the Cockayne Syndrome (CS) proteins, not related to repair.
3. Understanding the role of transcription in chemotherapeutic-driven toxicity.
4. Investigating novel post-translational modifications of CS and determining their function.
These objectives will be addressed using advanced proteomics and genome wide technologies in combination with biochemical and cellular techniques in normal human cells and a large battery of patient-derived cell lines. Our rational is that better understanding of CS function will help reach our ultimate goal, which is to identify the regulatory cascades involved in the interplay between genomic stability and transcription. The novel key idea put forward in this proposal is that active transcription itself directly contributes to genome integrity. While the role of DNA damage-driven transcription blockage in promoting repair is well established, the protective role of active transcription in genome stability is entirely unexplored.
If successful, the proposed studies may help reveal the underlying causes of related disorders and explain their clinical features.
Summary
Genomic integrity is essential for accurate gene expression and epigenetic inheritance. On the other hand, a prolonged transcriptional arrest can challenge genome stability, contributing to genetic and epigenetic defects and the mechanisms of ageing and disease.
Here we aim to identify the molecular mechanisms that couple transcriptional arrest to chromatin alteration and repair. We wish to explore the idea that transcription suppresses cellular toxicity and preserves genetic and epigenetic inheritance.
Towards these goals our work will be focused on:
1. Deciphering the molecular events impinging on the manner cells respond when the progress of a transcribing RNA polymerase II is blocked.
2. Exploring a novel, so far unanticipated function of key players of the transcription-associated repair pathways, such as the Cockayne Syndrome (CS) proteins, not related to repair.
3. Understanding the role of transcription in chemotherapeutic-driven toxicity.
4. Investigating novel post-translational modifications of CS and determining their function.
These objectives will be addressed using advanced proteomics and genome wide technologies in combination with biochemical and cellular techniques in normal human cells and a large battery of patient-derived cell lines. Our rational is that better understanding of CS function will help reach our ultimate goal, which is to identify the regulatory cascades involved in the interplay between genomic stability and transcription. The novel key idea put forward in this proposal is that active transcription itself directly contributes to genome integrity. While the role of DNA damage-driven transcription blockage in promoting repair is well established, the protective role of active transcription in genome stability is entirely unexplored.
If successful, the proposed studies may help reveal the underlying causes of related disorders and explain their clinical features.
Max ERC Funding
1 500 000 €
Duration
Start date: 2012-11-01, End date: 2018-10-31
Project acronym Universal Banking
Project Universal Banking, Corporate Control and Crises
Researcher (PI) Miguel Luis Sousa De Almeida Ferreira
Host Institution (HI) FACULDADE DE ECONOMIA DA UNIVERSIDADE NOVA DE LISBOA
Call Details Starting Grant (StG), SH1, ERC-2012-StG_20111124
Summary Financial intermediaries play a vital role in providing capital to corporations. The 2007-2009 financial crisis had dramatic consequences on the organization of the financial system that led to the rise of universal banking and financial conglomerates. Financial conglomerates have been common in Europe, but the recent developments have eroded the separation of commercial and investment banking elsewhere. Financial conglomerates act as lenders but also underwrite and trade securities, have equity stakes and sit on the board of corporations, and manage mutual and pension funds that invest in corporations. These forms of corporate control by financial conglomerates are distinct in their incentives and costs and therefore can have distinct effects on non-financial corporations. We will study the effect of control by financial conglomerates on corporation’s performance, investment, financing, and corporate governance policies. A particular relevant channel through which financial conglomerates can affect firm’s policies is the credit channel. Firms establish relationships with financial conglomerates that give easier access to credit and potentially at a lower cost due to economies of scale in information collection and monitoring. There may be, however, costs to firms with a close relationship with a financial conglomerate as firms may be locked up due to an information monopoly. We will study the effects of bank-firm relationships on the loan market. In particular, we will examine the importance of these relationships for explaining differences in the cost of bank distress across firms. The hypothesis is that strong ties with banks reduce firms’ ability to substitute relationship bank loans with other sources of external finance, and therefore firms with stronger relationships could experience greater costs during financial crises. We will contribute to the understanding the consequences of shocks to the financial health of banks for nonfinancial firms.
Summary
Financial intermediaries play a vital role in providing capital to corporations. The 2007-2009 financial crisis had dramatic consequences on the organization of the financial system that led to the rise of universal banking and financial conglomerates. Financial conglomerates have been common in Europe, but the recent developments have eroded the separation of commercial and investment banking elsewhere. Financial conglomerates act as lenders but also underwrite and trade securities, have equity stakes and sit on the board of corporations, and manage mutual and pension funds that invest in corporations. These forms of corporate control by financial conglomerates are distinct in their incentives and costs and therefore can have distinct effects on non-financial corporations. We will study the effect of control by financial conglomerates on corporation’s performance, investment, financing, and corporate governance policies. A particular relevant channel through which financial conglomerates can affect firm’s policies is the credit channel. Firms establish relationships with financial conglomerates that give easier access to credit and potentially at a lower cost due to economies of scale in information collection and monitoring. There may be, however, costs to firms with a close relationship with a financial conglomerate as firms may be locked up due to an information monopoly. We will study the effects of bank-firm relationships on the loan market. In particular, we will examine the importance of these relationships for explaining differences in the cost of bank distress across firms. The hypothesis is that strong ties with banks reduce firms’ ability to substitute relationship bank loans with other sources of external finance, and therefore firms with stronger relationships could experience greater costs during financial crises. We will contribute to the understanding the consequences of shocks to the financial health of banks for nonfinancial firms.
Max ERC Funding
1 174 000 €
Duration
Start date: 2013-03-01, End date: 2018-02-28