Project acronym 20SComplexity
Project An integrative approach to uncover the multilevel regulation of 20S proteasome degradation
Researcher (PI) Michal Sharon
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Starting Grant (StG), LS1, ERC-2014-STG
Summary For many years, the ubiquitin-26S proteasome degradation pathway was considered the primary route for proteasomal degradation. However, it is now becoming clear that proteins can also be targeted for degradation by a ubiquitin-independent mechanism mediated by the core 20S proteasome itself. Although initially believed to be limited to rare exceptions, degradation by the 20S proteasome is now understood to have a wide range of substrates, many of which are key regulatory proteins. Despite its importance, little is known about the mechanisms that control 20S proteasomal degradation, unlike the extensive knowledge acquired over the years concerning degradation by the 26S proteasome. Our overall aim is to reveal the multiple regulatory levels that coordinate the 20S proteasome degradation route.
To achieve this goal we will carry out a comprehensive research program characterizing three distinct levels of 20S proteasome regulation:
Intra-molecular regulation- Revealing the intrinsic molecular switch that activates the latent 20S proteasome.
Inter-molecular regulation- Identifying novel proteins that bind the 20S proteasome to regulate its activity and characterizing their mechanism of function.
Cellular regulatory networks- Unraveling the cellular cues and multiple pathways that influence 20S proteasome activity using a novel systematic and unbiased screening approach.
Our experimental strategy involves the combination of biochemical approaches with native mass spectrometry, cross-linking and fluorescence measurements, complemented by cell biology analyses and high-throughput screening. Such a multidisciplinary approach, integrating in vitro and in vivo findings, will likely provide the much needed knowledge on the 20S proteasome degradation route. When completed, we anticipate that this work will be part of a new paradigm – no longer perceiving the 20S proteasome mediated degradation as a simple and passive event but rather a tightly regulated and coordinated process.
Summary
For many years, the ubiquitin-26S proteasome degradation pathway was considered the primary route for proteasomal degradation. However, it is now becoming clear that proteins can also be targeted for degradation by a ubiquitin-independent mechanism mediated by the core 20S proteasome itself. Although initially believed to be limited to rare exceptions, degradation by the 20S proteasome is now understood to have a wide range of substrates, many of which are key regulatory proteins. Despite its importance, little is known about the mechanisms that control 20S proteasomal degradation, unlike the extensive knowledge acquired over the years concerning degradation by the 26S proteasome. Our overall aim is to reveal the multiple regulatory levels that coordinate the 20S proteasome degradation route.
To achieve this goal we will carry out a comprehensive research program characterizing three distinct levels of 20S proteasome regulation:
Intra-molecular regulation- Revealing the intrinsic molecular switch that activates the latent 20S proteasome.
Inter-molecular regulation- Identifying novel proteins that bind the 20S proteasome to regulate its activity and characterizing their mechanism of function.
Cellular regulatory networks- Unraveling the cellular cues and multiple pathways that influence 20S proteasome activity using a novel systematic and unbiased screening approach.
Our experimental strategy involves the combination of biochemical approaches with native mass spectrometry, cross-linking and fluorescence measurements, complemented by cell biology analyses and high-throughput screening. Such a multidisciplinary approach, integrating in vitro and in vivo findings, will likely provide the much needed knowledge on the 20S proteasome degradation route. When completed, we anticipate that this work will be part of a new paradigm – no longer perceiving the 20S proteasome mediated degradation as a simple and passive event but rather a tightly regulated and coordinated process.
Max ERC Funding
1 500 000 €
Duration
Start date: 2015-04-01, End date: 2020-03-31
Project acronym 20SInhibitor
Project Selective 20S proteasome inhibition for multiple myeloma therapy
Researcher (PI) Michal SHARON
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Proof of Concept (PoC), ERC-2018-PoC
Summary Multiple myeloma (MM) is a cancer of plasma cells, that is incurable, and the second most common form of blood cancer. Proteasome inhibitors (PIs) are considered a mainstay in the treatment of MM and mantle cell lymphoma (MCL). Current drugs, based on PIs however, target the chymotrypsin-like activity of the 20S proteasome, and inhibit the activities of both the 20S and 26S proteasomes. Thus, it is possible that selective drug intervention specifically inhibiting only the 20S proteasomes will reduce toxicity, and minimize the deleterious side effects of the current therapeutic regimens.
Our preliminary work revealed a family of 20S proteasome inhibitors, which we termed Catalytic Core Regulators (CCRs) that selectively target the 20S proteasome rather than the 26S complex. Based on sequence motif and structural elements of the CCRs we have designed an artificial protein that is capable of inhibiting the 20S proteasome. We anticipate that these findings will lead to the design of synthetic proteins, peptides or peptidomimetic compounds targeting cancer cells more specifically. This specificity will pose the compounds in an attractive light for using them in various therapeutic applications.
What is exciting from the commercialization perspective, is that pharmaceutical research has switched to revisit the use of peptides as therapeutics. Pharmaceutical companies have seen the development of peptides as a promising direction to lower their risk position. Overall, peptide therapeutics have a 20% chance of receiving regulatory approval, a probability that is 50% higher than that for the approval of small molecules, which form the basis of so called traditional drugs.
In the project, we will carry out actions, which will equip us with the sufficient IP protection strategy, business strategy, industry networks and initial contacts for taking the innovation out from the laboratory to next phase in developing therapy first for MM and MCL later on.
Summary
Multiple myeloma (MM) is a cancer of plasma cells, that is incurable, and the second most common form of blood cancer. Proteasome inhibitors (PIs) are considered a mainstay in the treatment of MM and mantle cell lymphoma (MCL). Current drugs, based on PIs however, target the chymotrypsin-like activity of the 20S proteasome, and inhibit the activities of both the 20S and 26S proteasomes. Thus, it is possible that selective drug intervention specifically inhibiting only the 20S proteasomes will reduce toxicity, and minimize the deleterious side effects of the current therapeutic regimens.
Our preliminary work revealed a family of 20S proteasome inhibitors, which we termed Catalytic Core Regulators (CCRs) that selectively target the 20S proteasome rather than the 26S complex. Based on sequence motif and structural elements of the CCRs we have designed an artificial protein that is capable of inhibiting the 20S proteasome. We anticipate that these findings will lead to the design of synthetic proteins, peptides or peptidomimetic compounds targeting cancer cells more specifically. This specificity will pose the compounds in an attractive light for using them in various therapeutic applications.
What is exciting from the commercialization perspective, is that pharmaceutical research has switched to revisit the use of peptides as therapeutics. Pharmaceutical companies have seen the development of peptides as a promising direction to lower their risk position. Overall, peptide therapeutics have a 20% chance of receiving regulatory approval, a probability that is 50% higher than that for the approval of small molecules, which form the basis of so called traditional drugs.
In the project, we will carry out actions, which will equip us with the sufficient IP protection strategy, business strategy, industry networks and initial contacts for taking the innovation out from the laboratory to next phase in developing therapy first for MM and MCL later on.
Max ERC Funding
150 000 €
Duration
Start date: 2019-04-01, End date: 2020-09-30
Project acronym 2D-Ink
Project Ink-Jet printed supercapacitors based on 2D nanomaterials.
Researcher (PI) Valeria Nicolosi
Host Institution (HI) THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN
Call Details Proof of Concept (PoC), PC1, ERC-2014-PoC
Summary This proposal will determine the technical-economic viability of scaling-up ultra-thin, ink-jet printed films based on liquid-phase exfoliated single atomic layers of a range of nanomaterials. The PI has developed methods to produce in liquid nanosheets of a range of layered materials such as graphene, transition metal oxides, etc. These 2D-materials have immediate and far-reaching potential in several high-impact technological applications such as microelectronics, composites and energy harvesting and storage. 2DNanoCaps (ERC ref: 278516) has demonstrated that lab-scale ultra-thin graphene-based supercapacitor electrodes result in unusually high-power and extremely long device life-time (100% capacitance retention for 5000 charge-discharge cycles at the high power scan rate of 10,000 mV/s). This performance is an order of magnitude better than similar systems produced with conventional methods which cause materials restacking and aggregation. A following ERC PoC grant (2D-USD, Project-Number 620189) is currently focussed on up-scaling the production of thin-films deposition methods based on ultrasonic spray for the production of large-area electrodes for supercapacitors applications. In this proposal we want to explore the new concept of manufacturing conductive, robust, thin, easily assembled electrode and solid electrolytes to realize highly-flexible and all-solid-state supercapacitors by ink-jet printing. This opportunity is particularly relevant to the electronics and portable-device industry and offers the possibility to solve flammability issues, maintaining light weight, flexibility, transparency and portability. In order to do so it will be imperative to develop ink-jet printing methods and techniques. We believe our combination of unique materials and cost-effective, robust and production-scalable process of ultra- thin ink-jet printing will enable us to compete for significant global market opportunities in the energy-storage space.
Summary
This proposal will determine the technical-economic viability of scaling-up ultra-thin, ink-jet printed films based on liquid-phase exfoliated single atomic layers of a range of nanomaterials. The PI has developed methods to produce in liquid nanosheets of a range of layered materials such as graphene, transition metal oxides, etc. These 2D-materials have immediate and far-reaching potential in several high-impact technological applications such as microelectronics, composites and energy harvesting and storage. 2DNanoCaps (ERC ref: 278516) has demonstrated that lab-scale ultra-thin graphene-based supercapacitor electrodes result in unusually high-power and extremely long device life-time (100% capacitance retention for 5000 charge-discharge cycles at the high power scan rate of 10,000 mV/s). This performance is an order of magnitude better than similar systems produced with conventional methods which cause materials restacking and aggregation. A following ERC PoC grant (2D-USD, Project-Number 620189) is currently focussed on up-scaling the production of thin-films deposition methods based on ultrasonic spray for the production of large-area electrodes for supercapacitors applications. In this proposal we want to explore the new concept of manufacturing conductive, robust, thin, easily assembled electrode and solid electrolytes to realize highly-flexible and all-solid-state supercapacitors by ink-jet printing. This opportunity is particularly relevant to the electronics and portable-device industry and offers the possibility to solve flammability issues, maintaining light weight, flexibility, transparency and portability. In order to do so it will be imperative to develop ink-jet printing methods and techniques. We believe our combination of unique materials and cost-effective, robust and production-scalable process of ultra- thin ink-jet printing will enable us to compete for significant global market opportunities in the energy-storage space.
Max ERC Funding
149 774 €
Duration
Start date: 2015-04-01, End date: 2016-09-30
Project acronym 2D-USD
Project Ultrasonic Spray Deposition: Enabling new 2D based technologies
Researcher (PI) Valeria NICOLOSI
Host Institution (HI) THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN
Call Details Proof of Concept (PoC), PC1, ERC-2013-PoC
Summary This proposal will determine the technical and economic viability of scaling up ultra-thin film deposition processes for exfoliated single atomic layers.
The PI has developed methods to produce exfoliated nanosheets from a range of layered materials such as graphene, transition metal chalcogenides and transition metal oxides. These 2D materials have immediate and far-reaching potential in several high-impact technological applications such as microelectronics, composites and energy harvesting and storage.
2DNanoCaps (ERC ref: 278516) has already demonstrated that lab-scale ultra-thin graphene-based supercapacitor electrodes for energy storage result in unusually high power performance and extremely long device life-time (100% capacitance retention for 5000 charge-discharge cycles at the high power scan rate of 10,000 mV/s). This performance is remarkable- an order of magnitude better than similar systems produced with more conventional methods, which cause materials restacking and aggregation. 2D nanosheets also offer the chance of exploring the unique possibility of manufacturing conductive, robust, thin, easily assembled electrode and solid electrolytes to realize highly flexible and all-solid-state supercapacitors. This opportunity is particularly relevant from the industrial point of view especially in relation to the flammability issues of the electrolytes used for commercial energy storage devices at present.
In order to develop and exploit any of the applications listed above, it will be imperative to develop deposition methods and techniques capable of obtaining industrial-scale “sheet-like” coverage, where flake re-aggregation is avoided.
We believe our combination of unique material properties and cost effective, robust and production-scalable process of ultra-thin deposition will enable us to compete for significant global market opportunities in the energy-storage space
Summary
This proposal will determine the technical and economic viability of scaling up ultra-thin film deposition processes for exfoliated single atomic layers.
The PI has developed methods to produce exfoliated nanosheets from a range of layered materials such as graphene, transition metal chalcogenides and transition metal oxides. These 2D materials have immediate and far-reaching potential in several high-impact technological applications such as microelectronics, composites and energy harvesting and storage.
2DNanoCaps (ERC ref: 278516) has already demonstrated that lab-scale ultra-thin graphene-based supercapacitor electrodes for energy storage result in unusually high power performance and extremely long device life-time (100% capacitance retention for 5000 charge-discharge cycles at the high power scan rate of 10,000 mV/s). This performance is remarkable- an order of magnitude better than similar systems produced with more conventional methods, which cause materials restacking and aggregation. 2D nanosheets also offer the chance of exploring the unique possibility of manufacturing conductive, robust, thin, easily assembled electrode and solid electrolytes to realize highly flexible and all-solid-state supercapacitors. This opportunity is particularly relevant from the industrial point of view especially in relation to the flammability issues of the electrolytes used for commercial energy storage devices at present.
In order to develop and exploit any of the applications listed above, it will be imperative to develop deposition methods and techniques capable of obtaining industrial-scale “sheet-like” coverage, where flake re-aggregation is avoided.
We believe our combination of unique material properties and cost effective, robust and production-scalable process of ultra-thin deposition will enable us to compete for significant global market opportunities in the energy-storage space
Max ERC Funding
148 021 €
Duration
Start date: 2014-01-01, End date: 2014-12-31
Project acronym 2DNANOCAPS
Project Next Generation of 2D-Nanomaterials: Enabling Supercapacitor Development
Researcher (PI) Valeria Nicolosi
Host Institution (HI) THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN
Call Details Starting Grant (StG), PE8, ERC-2011-StG_20101014
Summary Climate change and the decreasing availability of fossil fuels require society to move towards sustainable and renewable resources. 2DNanoCaps will focus on electrochemical energy storage, specifically supercapacitors. In terms of performance supercapacitors fill up the gap between batteries and the classical capacitors. Whereas batteries possess a high energy density but low power density, supercapacitors possess high power density but low energy density. Efforts are currently dedicated to move supercapacitors towards high energy density and high power density performance. Improvements have been achieved in the last few years due to the use of new electrode nanomaterials and the design of new hybrid faradic/capacitive systems. We recognize, however, that we are reaching a newer limit beyond which we will only see small incremental improvements. The main reason for this being the intrinsic difficulty in handling and processing materials at the nano-scale and the lack of communication across different scientific disciplines. I plan to use a multidisciplinary approach, where novel nanomaterials, existing knowledge on nano-scale processing and established expertise in device fabrication and testing will be brought together to focus on creating more efficient supercapacitor technologies. 2DNanoCaps will exploit liquid phase exfoliated two-dimensional nanomaterials such as transition metal oxides, layered metal chalcogenides and graphene as electrode materials. Electrodes will be ultra-thin (capacitance and thickness of the electrodes are inversely proportional), conductive, with high dielectric constants. Intercalation of ions between the assembled 2D flakes will be also achievable, providing pseudo-capacitance. The research here proposed will be initially based on fundamental laboratory studies, recognising that this holds the key to achieving step-change in supercapacitors, but also includes scaling-up and hybridisation as final objectives.
Summary
Climate change and the decreasing availability of fossil fuels require society to move towards sustainable and renewable resources. 2DNanoCaps will focus on electrochemical energy storage, specifically supercapacitors. In terms of performance supercapacitors fill up the gap between batteries and the classical capacitors. Whereas batteries possess a high energy density but low power density, supercapacitors possess high power density but low energy density. Efforts are currently dedicated to move supercapacitors towards high energy density and high power density performance. Improvements have been achieved in the last few years due to the use of new electrode nanomaterials and the design of new hybrid faradic/capacitive systems. We recognize, however, that we are reaching a newer limit beyond which we will only see small incremental improvements. The main reason for this being the intrinsic difficulty in handling and processing materials at the nano-scale and the lack of communication across different scientific disciplines. I plan to use a multidisciplinary approach, where novel nanomaterials, existing knowledge on nano-scale processing and established expertise in device fabrication and testing will be brought together to focus on creating more efficient supercapacitor technologies. 2DNanoCaps will exploit liquid phase exfoliated two-dimensional nanomaterials such as transition metal oxides, layered metal chalcogenides and graphene as electrode materials. Electrodes will be ultra-thin (capacitance and thickness of the electrodes are inversely proportional), conductive, with high dielectric constants. Intercalation of ions between the assembled 2D flakes will be also achievable, providing pseudo-capacitance. The research here proposed will be initially based on fundamental laboratory studies, recognising that this holds the key to achieving step-change in supercapacitors, but also includes scaling-up and hybridisation as final objectives.
Max ERC Funding
1 501 296 €
Duration
Start date: 2011-10-01, End date: 2016-09-30
Project acronym 3CBIOTECH
Project Cold Carbon Catabolism of Microbial Communities underprinning a Sustainable Bioenergy and Biorefinery Economy
Researcher (PI) Gavin James Collins
Host Institution (HI) NATIONAL UNIVERSITY OF IRELAND GALWAY
Call Details Starting Grant (StG), LS9, ERC-2010-StG_20091118
Summary The applicant will collaborate with Irish, European and U.S.-based colleagues to develop a sustainable biorefinery and bioenergy industry in Ireland and Europe. The focus of this ERC Starting Grant will be the application of classical microbiological, physiological and real-time polymerase chain reaction (PCR)-based assays, to qualitatively and quantitatively characterize microbial communities underpinning novel and innovative, low-temperature, anaerobic waste (and other biomass) conversion technologies, including municipal wastewater treatment and, demonstration- and full-scale biorefinery applications.
Anaerobic digestion (AD) is a naturally-occurring process, which is widely applied for the conversion of waste to methane-containing biogas. Low-temperature (<20 degrees C) AD has been applied by the applicant as a cost-effective alternative to mesophilic (c. 35C) AD for the treatment of several waste categories. However, the microbiology of low-temperature AD is poorly understood. The applicant will work with microbial consortia isolated from anaerobic bioreactors, which have been operated for long-term experiments (>3.5 years), and include organic acid-oxidizing, hydrogen-producing syntrophic microbes and hydrogen-consuming methanogens. A major focus of the project will be the ecophysiology of psychrotolerant and psychrophilic methanogens already identified and cultivated by the applicant. The project will also investigate the role(s) of poorly-understood Crenarchaeota populations and homoacetogenic bacteria, in complex consortia. The host organization is a leading player in the microbiology of waste-to-energy applications. The applicant will train a team of scientists in all aspects of the microbiology and bioengineering of biomass conversion systems.
Summary
The applicant will collaborate with Irish, European and U.S.-based colleagues to develop a sustainable biorefinery and bioenergy industry in Ireland and Europe. The focus of this ERC Starting Grant will be the application of classical microbiological, physiological and real-time polymerase chain reaction (PCR)-based assays, to qualitatively and quantitatively characterize microbial communities underpinning novel and innovative, low-temperature, anaerobic waste (and other biomass) conversion technologies, including municipal wastewater treatment and, demonstration- and full-scale biorefinery applications.
Anaerobic digestion (AD) is a naturally-occurring process, which is widely applied for the conversion of waste to methane-containing biogas. Low-temperature (<20 degrees C) AD has been applied by the applicant as a cost-effective alternative to mesophilic (c. 35C) AD for the treatment of several waste categories. However, the microbiology of low-temperature AD is poorly understood. The applicant will work with microbial consortia isolated from anaerobic bioreactors, which have been operated for long-term experiments (>3.5 years), and include organic acid-oxidizing, hydrogen-producing syntrophic microbes and hydrogen-consuming methanogens. A major focus of the project will be the ecophysiology of psychrotolerant and psychrophilic methanogens already identified and cultivated by the applicant. The project will also investigate the role(s) of poorly-understood Crenarchaeota populations and homoacetogenic bacteria, in complex consortia. The host organization is a leading player in the microbiology of waste-to-energy applications. The applicant will train a team of scientists in all aspects of the microbiology and bioengineering of biomass conversion systems.
Max ERC Funding
1 499 797 €
Duration
Start date: 2011-05-01, End date: 2016-04-30
Project acronym 3D2DPrint
Project 3D Printing of Novel 2D Nanomaterials: Adding Advanced 2D Functionalities to Revolutionary Tailored 3D Manufacturing
Researcher (PI) Valeria Nicolosi
Host Institution (HI) THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN
Call Details Consolidator Grant (CoG), PE8, ERC-2015-CoG
Summary My vision is to establish, within the framework of an ERC CoG, a multidisciplinary group which will work in concert towards pioneering the integration of novel 2-Dimensional nanomaterials with novel additive fabrication techniques to develop a unique class of energy storage devices.
Batteries and supercapacitors are two very complementary types of energy storage devices. Batteries store much higher energy densities; supercapacitors, on the other hand, hold one tenth of the electricity per unit of volume or weight as compared to batteries but can achieve much higher power densities. Technology is currently striving to improve the power density of batteries and the energy density of supercapacitors. To do so it is imperative to develop new materials, chemistries and manufacturing strategies.
3D2DPrint aims to develop micro-energy devices (both supercapacitors and batteries), technologies particularly relevant in the context of the emergent industry of micro-electro-mechanical systems and constantly downsized electronics. We plan to use novel two-dimensional (2D) nanomaterials obtained by liquid-phase exfoliation. This method offers a new, economic and easy way to prepare ink of a variety of 2D systems, allowing to produce wide device performance window through elegant and simple constituent control at the point of fabrication. 3D2DPrint will use our expertise and know-how to allow development of advanced AM methods to integrate dissimilar nanomaterial blends and/or “hybrids” into fully embedded 3D printed energy storage devices, with the ultimate objective to realise a range of products that contain the above described nanomaterials subcomponent devices, electrical connections and traditional micro-fabricated subcomponents (if needed) ideally using a single tool.
Summary
My vision is to establish, within the framework of an ERC CoG, a multidisciplinary group which will work in concert towards pioneering the integration of novel 2-Dimensional nanomaterials with novel additive fabrication techniques to develop a unique class of energy storage devices.
Batteries and supercapacitors are two very complementary types of energy storage devices. Batteries store much higher energy densities; supercapacitors, on the other hand, hold one tenth of the electricity per unit of volume or weight as compared to batteries but can achieve much higher power densities. Technology is currently striving to improve the power density of batteries and the energy density of supercapacitors. To do so it is imperative to develop new materials, chemistries and manufacturing strategies.
3D2DPrint aims to develop micro-energy devices (both supercapacitors and batteries), technologies particularly relevant in the context of the emergent industry of micro-electro-mechanical systems and constantly downsized electronics. We plan to use novel two-dimensional (2D) nanomaterials obtained by liquid-phase exfoliation. This method offers a new, economic and easy way to prepare ink of a variety of 2D systems, allowing to produce wide device performance window through elegant and simple constituent control at the point of fabrication. 3D2DPrint will use our expertise and know-how to allow development of advanced AM methods to integrate dissimilar nanomaterial blends and/or “hybrids” into fully embedded 3D printed energy storage devices, with the ultimate objective to realise a range of products that contain the above described nanomaterials subcomponent devices, electrical connections and traditional micro-fabricated subcomponents (if needed) ideally using a single tool.
Max ERC Funding
2 499 942 €
Duration
Start date: 2016-10-01, End date: 2021-09-30
Project acronym 3DBrainStrom
Project Brain metastases: Deciphering tumor-stroma interactions in three dimensions for the rational design of nanomedicines
Researcher (PI) Ronit Satchi Fainaro
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Advanced Grant (AdG), LS7, ERC-2018-ADG
Summary Brain metastases represent a major therapeutic challenge. Despite significant breakthroughs in targeted therapies, survival rates of patients with brain metastases remain poor. Nowadays, discovery, development and evaluation of new therapies are performed on human cancer cells grown in 2D on rigid plastic plates followed by in vivo testing in immunodeficient mice. These experimental settings are lacking and constitute a fundamental hurdle for the translation of preclinical discoveries into clinical practice. We propose to establish 3D-printed models of brain metastases (Aim 1), which include brain extracellular matrix, stroma and serum containing immune cells flowing in functional tumor vessels. Our unique models better capture the clinical physio-mechanical tissue properties, signaling pathways, hemodynamics and drug responsiveness. Using our 3D-printed models, we aim to develop two new fronts for identifying novel clinically-relevant molecular drivers (Aim 2) followed by the development of precision nanomedicines (Aim 3). We will exploit our vast experience in anticancer nanomedicines to design three therapeutic approaches that target various cellular compartments involved in brain metastases: 1) Prevention of brain metastatic colonization using targeted nano-vaccines, which elicit antitumor immune response; 2) Intervention of tumor-brain stroma cells crosstalk when brain micrometastases establish; 3) Regression of macrometastatic disease by selectively targeting tumor cells. These approaches will materialize using our libraries of polymeric nanocarriers that selectively accumulate in tumors.
This project will result in a paradigm shift by generating new preclinical cancer models that will bridge the translational gap in cancer therapeutics. The insights and tumor-stroma-targeted nanomedicines developed here will pave the way for prediction of patient outcome, revolutionizing our perception of tumor modelling and consequently the way we prevent and treat cancer.
Summary
Brain metastases represent a major therapeutic challenge. Despite significant breakthroughs in targeted therapies, survival rates of patients with brain metastases remain poor. Nowadays, discovery, development and evaluation of new therapies are performed on human cancer cells grown in 2D on rigid plastic plates followed by in vivo testing in immunodeficient mice. These experimental settings are lacking and constitute a fundamental hurdle for the translation of preclinical discoveries into clinical practice. We propose to establish 3D-printed models of brain metastases (Aim 1), which include brain extracellular matrix, stroma and serum containing immune cells flowing in functional tumor vessels. Our unique models better capture the clinical physio-mechanical tissue properties, signaling pathways, hemodynamics and drug responsiveness. Using our 3D-printed models, we aim to develop two new fronts for identifying novel clinically-relevant molecular drivers (Aim 2) followed by the development of precision nanomedicines (Aim 3). We will exploit our vast experience in anticancer nanomedicines to design three therapeutic approaches that target various cellular compartments involved in brain metastases: 1) Prevention of brain metastatic colonization using targeted nano-vaccines, which elicit antitumor immune response; 2) Intervention of tumor-brain stroma cells crosstalk when brain micrometastases establish; 3) Regression of macrometastatic disease by selectively targeting tumor cells. These approaches will materialize using our libraries of polymeric nanocarriers that selectively accumulate in tumors.
This project will result in a paradigm shift by generating new preclinical cancer models that will bridge the translational gap in cancer therapeutics. The insights and tumor-stroma-targeted nanomedicines developed here will pave the way for prediction of patient outcome, revolutionizing our perception of tumor modelling and consequently the way we prevent and treat cancer.
Max ERC Funding
2 353 125 €
Duration
Start date: 2019-04-01, End date: 2024-03-31
Project acronym 3Dmaterials4Energy
Project Hierarchical Inorganic Nanomaterials as Next Generation Catalysts and Filters
Researcher (PI) Taleb Mokari
Host Institution (HI) BEN-GURION UNIVERSITY OF THE NEGEV
Call Details Proof of Concept (PoC), PC1, ERC-2016-PoC
Summary In the coming few decades, two major global grand challenges will continue to attract the attention of scientists and engineers in academia and industry: achieving clean water and clean energy. This PoC establishes the development of two prototypes, water oxidation catalyst and water purification filter, by creating inexpensive, abundant and versatile hierarchical structures of inorganic nanomaterials (HSINs).
The formation of HSINs has been one of the major obstacles toward achieving a technological progress in various applications. Presently, fabrication of well-defined 3-D structures can be achieved either by photo/electro lithography, assembly, 3D printing or template-mediated methods. Various structures with high quality/yield can be obtained through those techniques, however, these methods suffer from high cost, difficulty of fabrication of free-standing structures, and sometime the throughput is limited. On the other hand, the templated approaches usually are facile, low cost and offer several and complex structures in particular the ones obtained from nature.
Our invention is based on forming the HSINs using fossil templates from nature. We propose to harness the naturally designed morphologies of the fossil templates to rationally form hierarchical structures of nanomaterials. These structures have many advantageous, compared to the current state-of-the-art catalyst and filter, for example high surface area, high porosity, confined space (nano-reactor) and divers functionalities obtained by controlling the chemical composition of the inorganic material shell. Since these properties are important for achieving high performance, we propose HSINs as next generation water oxidation electrocatalyst and water purification filter.
Summary
In the coming few decades, two major global grand challenges will continue to attract the attention of scientists and engineers in academia and industry: achieving clean water and clean energy. This PoC establishes the development of two prototypes, water oxidation catalyst and water purification filter, by creating inexpensive, abundant and versatile hierarchical structures of inorganic nanomaterials (HSINs).
The formation of HSINs has been one of the major obstacles toward achieving a technological progress in various applications. Presently, fabrication of well-defined 3-D structures can be achieved either by photo/electro lithography, assembly, 3D printing or template-mediated methods. Various structures with high quality/yield can be obtained through those techniques, however, these methods suffer from high cost, difficulty of fabrication of free-standing structures, and sometime the throughput is limited. On the other hand, the templated approaches usually are facile, low cost and offer several and complex structures in particular the ones obtained from nature.
Our invention is based on forming the HSINs using fossil templates from nature. We propose to harness the naturally designed morphologies of the fossil templates to rationally form hierarchical structures of nanomaterials. These structures have many advantageous, compared to the current state-of-the-art catalyst and filter, for example high surface area, high porosity, confined space (nano-reactor) and divers functionalities obtained by controlling the chemical composition of the inorganic material shell. Since these properties are important for achieving high performance, we propose HSINs as next generation water oxidation electrocatalyst and water purification filter.
Max ERC Funding
150 000 €
Duration
Start date: 2017-03-01, End date: 2018-08-31
Project acronym 3Ps
Project 3Ps
Plastic-Antibodies, Plasmonics and Photovoltaic-Cells: on-site screening of cancer biomarkers made possible
Researcher (PI) Maria Goreti Ferreira Sales
Host Institution (HI) INSTITUTO SUPERIOR DE ENGENHARIA DO PORTO
Call Details Starting Grant (StG), LS7, ERC-2012-StG_20111109
Summary This project presents a new concept for the detection, diagnosis and monitoring of cancer biomarker patterns in point-of-care. The device under development will make use of the selectivity of the plastic antibodies as sensing materials and the interference they will play on the normal operation of a photovoltaic cell.
Plastic antibodies will be designed by surface imprinting procedures. Self-assembled monolayer and molecular imprinting techniques will be merged in this process because they allow the self-assembly of nanostructured materials on a “bottom-up” nanofabrication approach. A dye-sensitized solar cell will be used as photovoltaic cell. It includes a liquid interface in the cell circuit, which allows the introduction of the sample (also in liquid phase) without disturbing the normal cell operation. Furthermore, it works well with rather low cost materials and requires mild and easy processing conditions. The cell will be equipped with plasmonic structures to enhance light absorption and cell efficiency.
The device under development will be easily operated by any clinician or patient. It will require ambient light and a regular multimeter. Eye detection will be also tried out.
Summary
This project presents a new concept for the detection, diagnosis and monitoring of cancer biomarker patterns in point-of-care. The device under development will make use of the selectivity of the plastic antibodies as sensing materials and the interference they will play on the normal operation of a photovoltaic cell.
Plastic antibodies will be designed by surface imprinting procedures. Self-assembled monolayer and molecular imprinting techniques will be merged in this process because they allow the self-assembly of nanostructured materials on a “bottom-up” nanofabrication approach. A dye-sensitized solar cell will be used as photovoltaic cell. It includes a liquid interface in the cell circuit, which allows the introduction of the sample (also in liquid phase) without disturbing the normal cell operation. Furthermore, it works well with rather low cost materials and requires mild and easy processing conditions. The cell will be equipped with plasmonic structures to enhance light absorption and cell efficiency.
The device under development will be easily operated by any clinician or patient. It will require ambient light and a regular multimeter. Eye detection will be also tried out.
Max ERC Funding
998 584 €
Duration
Start date: 2013-02-01, End date: 2018-01-31
Project acronym 5D-NanoTrack
Project Five-Dimensional Localization Microscopy for Sub-Cellular Dynamics
Researcher (PI) Yoav SHECHTMAN
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Starting Grant (StG), PE7, ERC-2018-STG
Summary The sub-cellular processes that control the most critical aspects of life occur in three-dimensions (3D), and are intrinsically dynamic. While super-resolution microscopy has revolutionized cellular imaging in recent years, our current capability to observe the dynamics of life on the nanoscale is still extremely limited, due to inherent trade-offs between spatial, temporal and spectral resolution using existing approaches.
We propose to develop and demonstrate an optical microscopy methodology that would enable live sub-cellular observation in unprecedented detail. Making use of multicolor 3D point-spread-function (PSF) engineering, a technique I have recently developed, we will be able to simultaneously track multiple markers inside live cells, at high speed and in five-dimensions (3D, time, and color).
Multicolor 3D PSF engineering holds the potential of being a uniquely powerful method for 5D tracking. However, it is not yet applicable to live-cell imaging, due to significant bottlenecks in optical engineering and signal processing, which we plan to overcome in this project. Importantly, we will also demonstrate the efficacy of our method using a challenging biological application: real-time visualization of chromatin dynamics - the spatiotemporal organization of DNA. This is a highly suitable problem due to its fundamental importance, its role in a variety of cellular processes, and the lack of appropriate tools for studying it.
The project is divided into 3 aims:
1. Technology development: diffractive-element design for multicolor 3D PSFs.
2. System design: volumetric tracking of dense emitters.
3. Live-cell measurements: chromatin dynamics.
Looking ahead, here we create the imaging tools that pave the way towards the holy grail of chromatin visualization: dynamic observation of the 3D positions of the ~3 billion DNA base-pairs in a live human cell. Beyond that, our results will be applicable to numerous 3D micro/nanoscale tracking applications.
Summary
The sub-cellular processes that control the most critical aspects of life occur in three-dimensions (3D), and are intrinsically dynamic. While super-resolution microscopy has revolutionized cellular imaging in recent years, our current capability to observe the dynamics of life on the nanoscale is still extremely limited, due to inherent trade-offs between spatial, temporal and spectral resolution using existing approaches.
We propose to develop and demonstrate an optical microscopy methodology that would enable live sub-cellular observation in unprecedented detail. Making use of multicolor 3D point-spread-function (PSF) engineering, a technique I have recently developed, we will be able to simultaneously track multiple markers inside live cells, at high speed and in five-dimensions (3D, time, and color).
Multicolor 3D PSF engineering holds the potential of being a uniquely powerful method for 5D tracking. However, it is not yet applicable to live-cell imaging, due to significant bottlenecks in optical engineering and signal processing, which we plan to overcome in this project. Importantly, we will also demonstrate the efficacy of our method using a challenging biological application: real-time visualization of chromatin dynamics - the spatiotemporal organization of DNA. This is a highly suitable problem due to its fundamental importance, its role in a variety of cellular processes, and the lack of appropriate tools for studying it.
The project is divided into 3 aims:
1. Technology development: diffractive-element design for multicolor 3D PSFs.
2. System design: volumetric tracking of dense emitters.
3. Live-cell measurements: chromatin dynamics.
Looking ahead, here we create the imaging tools that pave the way towards the holy grail of chromatin visualization: dynamic observation of the 3D positions of the ~3 billion DNA base-pairs in a live human cell. Beyond that, our results will be applicable to numerous 3D micro/nanoscale tracking applications.
Max ERC Funding
1 802 500 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym 5HT-OPTOGENETICS
Project Optogenetic Analysis of Serotonin Function in the Mammalian Brain
Researcher (PI) Zachary Mainen
Host Institution (HI) FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD
Call Details Advanced Grant (AdG), LS5, ERC-2009-AdG
Summary Serotonin (5-HT) is implicated in a wide spectrum of brain functions and disorders. However, its functions remain controversial and enigmatic. We suggest that past work on the 5-HT system have been significantly hampered by technical limitations in the selectivity and temporal resolution of the conventional pharmacological and electrophysiological methods that have been applied. We therefore propose to apply novel optogenetic methods that will allow us to overcome these limitations and thereby gain new insight into the biological functions of this important molecule. In preliminary studies, we have demonstrated that we can deliver exogenous proteins specifically to 5-HT neurons using viral vectors. Our objectives are to (1) record, (2) stimulate and (3) silence the activity of 5-HT neurons with high molecular selectivity and temporal precision by using genetically-encoded sensors, activators and inhibitors of neural function. These tools will allow us to monitor and control the 5-HT system in real-time in freely-behaving animals and thereby to establish causal links between information processing in 5-HT neurons and specific behaviors. In combination with quantitative behavioral assays, we will use this approach to define the role of 5-HT in sensory, motor and cognitive functions. The significance of the work is three-fold. First, we will establish a new arsenal of tools for probing the physiological and behavioral functions of 5-HT neurons. Second, we will make definitive tests of major hypotheses of 5-HT function. Third, we will have possible therapeutic applications. In this way, the proposed work has the potential for a major impact in research on the role of 5-HT in brain function and dysfunction.
Summary
Serotonin (5-HT) is implicated in a wide spectrum of brain functions and disorders. However, its functions remain controversial and enigmatic. We suggest that past work on the 5-HT system have been significantly hampered by technical limitations in the selectivity and temporal resolution of the conventional pharmacological and electrophysiological methods that have been applied. We therefore propose to apply novel optogenetic methods that will allow us to overcome these limitations and thereby gain new insight into the biological functions of this important molecule. In preliminary studies, we have demonstrated that we can deliver exogenous proteins specifically to 5-HT neurons using viral vectors. Our objectives are to (1) record, (2) stimulate and (3) silence the activity of 5-HT neurons with high molecular selectivity and temporal precision by using genetically-encoded sensors, activators and inhibitors of neural function. These tools will allow us to monitor and control the 5-HT system in real-time in freely-behaving animals and thereby to establish causal links between information processing in 5-HT neurons and specific behaviors. In combination with quantitative behavioral assays, we will use this approach to define the role of 5-HT in sensory, motor and cognitive functions. The significance of the work is three-fold. First, we will establish a new arsenal of tools for probing the physiological and behavioral functions of 5-HT neurons. Second, we will make definitive tests of major hypotheses of 5-HT function. Third, we will have possible therapeutic applications. In this way, the proposed work has the potential for a major impact in research on the role of 5-HT in brain function and dysfunction.
Max ERC Funding
2 318 636 €
Duration
Start date: 2010-07-01, End date: 2015-12-31
Project acronym 5HTCircuits
Project Modulation of cortical circuits and predictive neural coding by serotonin
Researcher (PI) Zachary Mainen
Host Institution (HI) FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD
Call Details Advanced Grant (AdG), LS5, ERC-2014-ADG
Summary Serotonin (5-HT) is a central neuromodulator and a major target of therapeutic psychoactive drugs, but relatively little is known about how it modulates information processing in neural circuits. The theory of predictive coding postulates that the brain combines raw bottom-up sensory information with top-down information from internal models to make perceptual inferences about the world. We hypothesize, based on preliminary data and prior literature, that a role of 5-HT in this process is to report prediction errors and promote the suppression and weakening of erroneous internal models. We propose that it does this by inhibiting top-down relative to bottom-up cortical information flow. To test this hypothesis, we propose a set of experiments in mice performing olfactory perceptual tasks. Our specific aims are: (1) We will test whether 5-HT neurons encode sensory prediction errors. (2) We will test their causal role in using predictive cues to guide perceptual decisions. (3) We will characterize how 5-HT influences the encoding of sensory information by neuronal populations in the olfactory cortex and identify the underlying circuitry. (4) Finally, we will map the effects of 5-HT across the whole brain and use this information to target further causal manipulations to specific 5-HT projections. We accomplish these aims using state-of-the-art optogenetic, electrophysiological and imaging techniques (including 9.4T small-animal functional magnetic resonance imaging) as well as psychophysical tasks amenable to quantitative analysis and computational theory. Together, these experiments will tackle multiple facets of an important general computational question, bringing to bear an array of cutting-edge technologies to address with unprecedented mechanistic detail how 5-HT impacts neural coding and perceptual decision-making.
Summary
Serotonin (5-HT) is a central neuromodulator and a major target of therapeutic psychoactive drugs, but relatively little is known about how it modulates information processing in neural circuits. The theory of predictive coding postulates that the brain combines raw bottom-up sensory information with top-down information from internal models to make perceptual inferences about the world. We hypothesize, based on preliminary data and prior literature, that a role of 5-HT in this process is to report prediction errors and promote the suppression and weakening of erroneous internal models. We propose that it does this by inhibiting top-down relative to bottom-up cortical information flow. To test this hypothesis, we propose a set of experiments in mice performing olfactory perceptual tasks. Our specific aims are: (1) We will test whether 5-HT neurons encode sensory prediction errors. (2) We will test their causal role in using predictive cues to guide perceptual decisions. (3) We will characterize how 5-HT influences the encoding of sensory information by neuronal populations in the olfactory cortex and identify the underlying circuitry. (4) Finally, we will map the effects of 5-HT across the whole brain and use this information to target further causal manipulations to specific 5-HT projections. We accomplish these aims using state-of-the-art optogenetic, electrophysiological and imaging techniques (including 9.4T small-animal functional magnetic resonance imaging) as well as psychophysical tasks amenable to quantitative analysis and computational theory. Together, these experiments will tackle multiple facets of an important general computational question, bringing to bear an array of cutting-edge technologies to address with unprecedented mechanistic detail how 5-HT impacts neural coding and perceptual decision-making.
Max ERC Funding
2 486 074 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym A-DIET
Project Metabolomics based biomarkers of dietary intake- new tools for nutrition research
Researcher (PI) Lorraine Brennan
Host Institution (HI) UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN
Call Details Consolidator Grant (CoG), LS7, ERC-2014-CoG
Summary In todays advanced technological world, we can track the exact movement of individuals, analyse their genetic makeup and predict predisposition to certain diseases. However, we are unable to accurately assess an individual’s dietary intake. This is without a doubt one of the main stumbling blocks in assessing the link between diet and disease/health. The present proposal (A-DIET) will address this issue with the overarching objective to develop novel strategies for assessment of dietary intake.
Using approaches to (1) identify biomarkers of specific foods (2) classify people into dietary patterns (nutritypes) and (3) develop a tool for integration of dietary and biomarker data, A-DIET has the potential to dramatically enhance our ability to accurately assess dietary intake. The ultimate output from A-DIET will be a dietary assessment tool which can be used to obtain an accurate assessment of dietary intake by combining dietary and biomarker data which in turn will allow investigations into relationships between diet, health and disease. New biomarkers of specific foods will be identified and validated using intervention studies and metabolomic analyses. Methods will be developed to classify individuals into dietary patterns based on biomarker/metabolomic profiles thus demonstrating the novel concept of nutritypes. Strategies for integration of dietary and biomarker data will be developed and translated into a tool that will be made available to the wider scientific community.
Advances made in A-DIET will enable nutrition epidemiologist’s to properly examine the relationship between diet and disease and develop clear public health messages with regard to diet and health. Additionally results from A-DIET will allow researchers to accurately assess people’s diet and implement health promotion strategies and enable dieticians in a clinical environment to assess compliance to therapeutic diets such as adherence to a high fibre diet or a gluten free diet.
Summary
In todays advanced technological world, we can track the exact movement of individuals, analyse their genetic makeup and predict predisposition to certain diseases. However, we are unable to accurately assess an individual’s dietary intake. This is without a doubt one of the main stumbling blocks in assessing the link between diet and disease/health. The present proposal (A-DIET) will address this issue with the overarching objective to develop novel strategies for assessment of dietary intake.
Using approaches to (1) identify biomarkers of specific foods (2) classify people into dietary patterns (nutritypes) and (3) develop a tool for integration of dietary and biomarker data, A-DIET has the potential to dramatically enhance our ability to accurately assess dietary intake. The ultimate output from A-DIET will be a dietary assessment tool which can be used to obtain an accurate assessment of dietary intake by combining dietary and biomarker data which in turn will allow investigations into relationships between diet, health and disease. New biomarkers of specific foods will be identified and validated using intervention studies and metabolomic analyses. Methods will be developed to classify individuals into dietary patterns based on biomarker/metabolomic profiles thus demonstrating the novel concept of nutritypes. Strategies for integration of dietary and biomarker data will be developed and translated into a tool that will be made available to the wider scientific community.
Advances made in A-DIET will enable nutrition epidemiologist’s to properly examine the relationship between diet and disease and develop clear public health messages with regard to diet and health. Additionally results from A-DIET will allow researchers to accurately assess people’s diet and implement health promotion strategies and enable dieticians in a clinical environment to assess compliance to therapeutic diets such as adherence to a high fibre diet or a gluten free diet.
Max ERC Funding
1 995 548 €
Duration
Start date: 2015-08-01, End date: 2020-07-31
Project acronym A-FRO
Project Actively Frozen - contextual modulation of freezing and its neuronal basis
Researcher (PI) Marta de Aragão Pacheco Moita
Host Institution (HI) FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD
Call Details Consolidator Grant (CoG), LS5, ERC-2018-COG
Summary When faced with a threat, an animal must decide whether to freeze, reducing its chances of being noticed, or to flee to the safety of a refuge. Animals from fish to primates choose between these two alternatives when confronted by an attacking predator, a choice that largely depends on the context in which the threat occurs. Recent work has made strides identifying the pre-motor circuits, and their inputs, which control freezing behavior in rodents, but how contextual information is integrated to guide this choice is still far from understood. We recently found that fruit flies in response to visual looming stimuli, simulating a large object on collision course, make rapid freeze/flee choices that depend on the social and spatial environment, and the fly’s internal state. Further, identification of looming detector neurons was recently reported and we identified the descending command neurons, DNp09, responsible for freezing in the fly. Knowing the sensory input and descending output for looming-evoked freezing, two environmental factors that modulate its expression, and using a genetically tractable system affording the use of large sample sizes, places us in an unique position to understand how a information about a threat is integrated with cues from the environment to guide the choice of whether to freeze (our goal). To assess how social information impinges on the circuit for freezing, we will examine the sensory inputs and neuromodulators that mediate this process, mapping their connections to DNp09 neurons (Aim 1). We ask whether learning is required for the spatial modulation of freezing, which cues flies are using to discriminate different places and which brain circuits mediate this process (Aim 2). Finally, we will study how activity of DNp09 neurons drives freezing (Aim 3). This project will provide a comprehensive understanding of the mechanism of freezing and its modulation by the environment, from single neurons to behaviour.
Summary
When faced with a threat, an animal must decide whether to freeze, reducing its chances of being noticed, or to flee to the safety of a refuge. Animals from fish to primates choose between these two alternatives when confronted by an attacking predator, a choice that largely depends on the context in which the threat occurs. Recent work has made strides identifying the pre-motor circuits, and their inputs, which control freezing behavior in rodents, but how contextual information is integrated to guide this choice is still far from understood. We recently found that fruit flies in response to visual looming stimuli, simulating a large object on collision course, make rapid freeze/flee choices that depend on the social and spatial environment, and the fly’s internal state. Further, identification of looming detector neurons was recently reported and we identified the descending command neurons, DNp09, responsible for freezing in the fly. Knowing the sensory input and descending output for looming-evoked freezing, two environmental factors that modulate its expression, and using a genetically tractable system affording the use of large sample sizes, places us in an unique position to understand how a information about a threat is integrated with cues from the environment to guide the choice of whether to freeze (our goal). To assess how social information impinges on the circuit for freezing, we will examine the sensory inputs and neuromodulators that mediate this process, mapping their connections to DNp09 neurons (Aim 1). We ask whether learning is required for the spatial modulation of freezing, which cues flies are using to discriminate different places and which brain circuits mediate this process (Aim 2). Finally, we will study how activity of DNp09 neurons drives freezing (Aim 3). This project will provide a comprehensive understanding of the mechanism of freezing and its modulation by the environment, from single neurons to behaviour.
Max ERC Funding
1 969 750 €
Duration
Start date: 2019-02-01, End date: 2024-01-31
Project acronym ABATSYNAPSE
Project Evolution of Alzheimer’s Disease: From dynamics of single synapses to memory loss
Researcher (PI) Inna Slutsky
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Starting Grant (StG), LS5, ERC-2011-StG_20101109
Summary A persistent challenge in unravelling mechanisms that regulate memory function is how to bridge the gap between inter-molecular dynamics of single proteins, activity of individual synapses and emerging properties of neuronal circuits. The prototype condition of disintegrating neuronal circuits is Alzheimer’s Disease (AD). Since the early time of Alois Alzheimer at the turn of the 20th century, scientists have been searching for a molecular entity that is in the roots of the cognitive deficits. Although diverse lines of evidence suggest that the amyloid-beta peptide (Abeta) plays a central role in synaptic dysfunctions of AD, several key questions remain unresolved. First, endogenous Abeta peptides are secreted by neurons throughout life, but their physiological functions are largely unknown. Second, experience-dependent physiological mechanisms that initiate the changes in Abeta composition in sporadic, the most frequent form of AD, are unidentified. And finally, molecular mechanisms that trigger Abeta-induced synaptic failure and memory decline remain elusive.
To target these questions, I propose to develop an integrative approach to correlate structure and function at the level of single synapses in hippocampal circuits. State-of-the-art techniques will enable the simultaneous real-time visualization of inter-molecular dynamics within signalling complexes and functional synaptic modifications. Utilizing FRET spectroscopy, high-resolution optical imaging, electrophysiology, molecular biology and biochemistry we will determine the casual relationship between ongoing neuronal activity, temporo-spatial dynamics and molecular composition of Abeta, structural rearrangements within the Abeta signalling complexes and plasticity of single synapses and whole networks. The proposed research will elucidate fundamental principles of neuronal circuits function and identify critical steps that initiate primary synaptic dysfunctions at the very early stages of sporadic AD.
Summary
A persistent challenge in unravelling mechanisms that regulate memory function is how to bridge the gap between inter-molecular dynamics of single proteins, activity of individual synapses and emerging properties of neuronal circuits. The prototype condition of disintegrating neuronal circuits is Alzheimer’s Disease (AD). Since the early time of Alois Alzheimer at the turn of the 20th century, scientists have been searching for a molecular entity that is in the roots of the cognitive deficits. Although diverse lines of evidence suggest that the amyloid-beta peptide (Abeta) plays a central role in synaptic dysfunctions of AD, several key questions remain unresolved. First, endogenous Abeta peptides are secreted by neurons throughout life, but their physiological functions are largely unknown. Second, experience-dependent physiological mechanisms that initiate the changes in Abeta composition in sporadic, the most frequent form of AD, are unidentified. And finally, molecular mechanisms that trigger Abeta-induced synaptic failure and memory decline remain elusive.
To target these questions, I propose to develop an integrative approach to correlate structure and function at the level of single synapses in hippocampal circuits. State-of-the-art techniques will enable the simultaneous real-time visualization of inter-molecular dynamics within signalling complexes and functional synaptic modifications. Utilizing FRET spectroscopy, high-resolution optical imaging, electrophysiology, molecular biology and biochemistry we will determine the casual relationship between ongoing neuronal activity, temporo-spatial dynamics and molecular composition of Abeta, structural rearrangements within the Abeta signalling complexes and plasticity of single synapses and whole networks. The proposed research will elucidate fundamental principles of neuronal circuits function and identify critical steps that initiate primary synaptic dysfunctions at the very early stages of sporadic AD.
Max ERC Funding
2 000 000 €
Duration
Start date: 2011-12-01, End date: 2017-09-30
Project acronym AbCURE_COPD
Project Antibody mediated clearance of senescent cells for treatment of COPD
Researcher (PI) Valery KRIZHANOVSKY
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Proof of Concept (PoC), ERC-2017-PoC
Summary Chronic Obstructive Pulmonary Disease (COPD) is a group of chronic diseases characterized by airflow limitations in the lung. COPD is a critical international health problem. It is estimated to affect up to 600 million people worldwide and by 2020 it will become the third most frequent cause of death. In Europe alone, COPD affects up to 10% of people (i.e. more people than breast cancer and diabetes) and it takes the life of around 300,000 Europeans each year. Up to date, COPD has no cure as current treatments fail to halt the long-term decline in lung function. They are only able to delay its progression. Those treatments however, are associated with a variety of side effects some of which can be acute and even life threatening. Thus, COPD remains a disease with a significant unmet medical need.
In this project (acronymed AbCURE_COPD) we intend to carry out a set of necessary activities for the evaluation of a potentially groundbreaking approach for treating COPD. Our approach is focusing on antibody-mediated clearance of senescent cells which accumulate in tissues with age and contribute to multiple age-related diseases, including COPD. The goal of the PoC project is two-fold. (1) The first goal is to establish the technical feasibility of our idea by testing the effect of senescence-specific antibodies on COPD development and progression by implementing COPD mouse model we developed. (2) The second goal is to establish the business feasibility of our revolutionary approach by taking the necessary steps towards its commercialization, focusing on the creation of strategic alliances with key private sector companies. We firmly believe that with our approach we can significantly extend the health span and improve the quality of life of COPD patients. Equally important, our approach will pave the way for the development of novel treatment strategies applicable to other age-related diseases, such as osteoarthritis, cardiovascular, and neurodegenerative diseases.
Summary
Chronic Obstructive Pulmonary Disease (COPD) is a group of chronic diseases characterized by airflow limitations in the lung. COPD is a critical international health problem. It is estimated to affect up to 600 million people worldwide and by 2020 it will become the third most frequent cause of death. In Europe alone, COPD affects up to 10% of people (i.e. more people than breast cancer and diabetes) and it takes the life of around 300,000 Europeans each year. Up to date, COPD has no cure as current treatments fail to halt the long-term decline in lung function. They are only able to delay its progression. Those treatments however, are associated with a variety of side effects some of which can be acute and even life threatening. Thus, COPD remains a disease with a significant unmet medical need.
In this project (acronymed AbCURE_COPD) we intend to carry out a set of necessary activities for the evaluation of a potentially groundbreaking approach for treating COPD. Our approach is focusing on antibody-mediated clearance of senescent cells which accumulate in tissues with age and contribute to multiple age-related diseases, including COPD. The goal of the PoC project is two-fold. (1) The first goal is to establish the technical feasibility of our idea by testing the effect of senescence-specific antibodies on COPD development and progression by implementing COPD mouse model we developed. (2) The second goal is to establish the business feasibility of our revolutionary approach by taking the necessary steps towards its commercialization, focusing on the creation of strategic alliances with key private sector companies. We firmly believe that with our approach we can significantly extend the health span and improve the quality of life of COPD patients. Equally important, our approach will pave the way for the development of novel treatment strategies applicable to other age-related diseases, such as osteoarthritis, cardiovascular, and neurodegenerative diseases.
Max ERC Funding
150 000 €
Duration
Start date: 2018-11-01, End date: 2020-04-30
Project acronym ABDESIGN
Project Computational design of novel protein function in antibodies
Researcher (PI) Sarel-Jacob Fleishman
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Starting Grant (StG), LS1, ERC-2013-StG
Summary We propose to elucidate the structural design principles of naturally occurring antibody complementarity-determining regions (CDRs) and to computationally design novel antibody functions. Antibodies represent the most versatile known system for molecular recognition. Research has yielded many insights into antibody design principles and promising biotechnological and pharmaceutical applications. Still, our understanding of how CDRs encode specific loop conformations lags far behind our understanding of structure-function relationships in non-immunological scaffolds. Thus, design of antibodies from first principles has not been demonstrated. We propose a computational-experimental strategy to address this challenge. We will: (a) characterize the design principles and sequence elements that rigidify antibody CDRs. Natural antibody loops will be subjected to computational modeling, crystallography, and a combined in vitro evolution and deep-sequencing approach to isolate sequence features that rigidify loop backbones; (b) develop a novel computational-design strategy, which uses the >1000 solved structures of antibodies deposited in structure databases to realistically model CDRs and design them to recognize proteins that have not been co-crystallized with antibodies. For example, we will design novel antibodies targeting insulin, for which clinically useful diagnostics are needed. By accessing much larger sequence/structure spaces than are available to natural immune-system repertoires and experimental methods, computational antibody design could produce higher-specificity and higher-affinity binders, even to challenging targets; and (c) develop new strategies to program conformational change in CDRs, generating, e.g., the first allosteric antibodies. These will allow targeting, in principle, of any molecule, potentially revolutionizing how antibodies are generated for research and medicine, providing new insights on the design principles of protein functional sites.
Summary
We propose to elucidate the structural design principles of naturally occurring antibody complementarity-determining regions (CDRs) and to computationally design novel antibody functions. Antibodies represent the most versatile known system for molecular recognition. Research has yielded many insights into antibody design principles and promising biotechnological and pharmaceutical applications. Still, our understanding of how CDRs encode specific loop conformations lags far behind our understanding of structure-function relationships in non-immunological scaffolds. Thus, design of antibodies from first principles has not been demonstrated. We propose a computational-experimental strategy to address this challenge. We will: (a) characterize the design principles and sequence elements that rigidify antibody CDRs. Natural antibody loops will be subjected to computational modeling, crystallography, and a combined in vitro evolution and deep-sequencing approach to isolate sequence features that rigidify loop backbones; (b) develop a novel computational-design strategy, which uses the >1000 solved structures of antibodies deposited in structure databases to realistically model CDRs and design them to recognize proteins that have not been co-crystallized with antibodies. For example, we will design novel antibodies targeting insulin, for which clinically useful diagnostics are needed. By accessing much larger sequence/structure spaces than are available to natural immune-system repertoires and experimental methods, computational antibody design could produce higher-specificity and higher-affinity binders, even to challenging targets; and (c) develop new strategies to program conformational change in CDRs, generating, e.g., the first allosteric antibodies. These will allow targeting, in principle, of any molecule, potentially revolutionizing how antibodies are generated for research and medicine, providing new insights on the design principles of protein functional sites.
Max ERC Funding
1 499 930 €
Duration
Start date: 2013-09-01, End date: 2018-08-31
Project acronym ACAP
Project Asset Centric Adaptive Protection
Researcher (PI) Bashar NUSEIBEH
Host Institution (HI) UNIVERSITY OF LIMERICK
Call Details Proof of Concept (PoC), PC1, ERC-2015-PoC
Summary The proliferation of mobile and ubiquitous computing technology is radically changing the ways in which we live our lives: from interacting with friends & family, to how we produce & consume services and engage in business. However, this pervasiveness of technologies, and their increasingly seamless integration and inter-operation, are blurring the boundaries between systems. This poses significant challenges for security engineers who aim to design systems that monitor and control the movement of digital or physical assets across those boundaries.
My ERC Advanced Grant on Adaptive Security and Privacy (ASAP) is investigating ways in which security controls can change in response to changes in the context of operation of systems. However, since the monitoring of such elusive and changing boundaries is difficult, we have developed an adaptive security approach that monitors valuable assets that are managed by a system, and changes the means and extent by which those assets are protected in response to changes in assets and their values. This could radically change the way security is designed and implemented in a range of applications because it allows for a choice of appropriate protection, depending on particular requirements.
In ASAP, we developed the modelling and computational capabilities of our approach, including some prototype tool fragments that demonstrate the approach in our lab. However, interest from our industrial collaborators, evidenced by direct funding of follow-on research, and the demonstration of our prototypes to senior management and potential customers, has motivated us to pursue a proof of concept (PoC) assessment of our work in a more systematic and targeted way. To this end, this ERC PoC will:
1) Develop a robust prototype demonstrator, instantiated in two application areas (access control & cloud computing);
2) Conduct a market analysis, aided by the demonstrator;
3) Subject to (2), develop a commercialisation strategy and plan
Summary
The proliferation of mobile and ubiquitous computing technology is radically changing the ways in which we live our lives: from interacting with friends & family, to how we produce & consume services and engage in business. However, this pervasiveness of technologies, and their increasingly seamless integration and inter-operation, are blurring the boundaries between systems. This poses significant challenges for security engineers who aim to design systems that monitor and control the movement of digital or physical assets across those boundaries.
My ERC Advanced Grant on Adaptive Security and Privacy (ASAP) is investigating ways in which security controls can change in response to changes in the context of operation of systems. However, since the monitoring of such elusive and changing boundaries is difficult, we have developed an adaptive security approach that monitors valuable assets that are managed by a system, and changes the means and extent by which those assets are protected in response to changes in assets and their values. This could radically change the way security is designed and implemented in a range of applications because it allows for a choice of appropriate protection, depending on particular requirements.
In ASAP, we developed the modelling and computational capabilities of our approach, including some prototype tool fragments that demonstrate the approach in our lab. However, interest from our industrial collaborators, evidenced by direct funding of follow-on research, and the demonstration of our prototypes to senior management and potential customers, has motivated us to pursue a proof of concept (PoC) assessment of our work in a more systematic and targeted way. To this end, this ERC PoC will:
1) Develop a robust prototype demonstrator, instantiated in two application areas (access control & cloud computing);
2) Conduct a market analysis, aided by the demonstrator;
3) Subject to (2), develop a commercialisation strategy and plan
Max ERC Funding
149 977 €
Duration
Start date: 2016-11-01, End date: 2018-04-30
Project acronym ACCELERATES
Project Acceleration in Extreme Shocks: from the microphysics to laboratory and astrophysics scenarios
Researcher (PI) Luis Miguel De Oliveira E Silva
Host Institution (HI) INSTITUTO SUPERIOR TECNICO
Call Details Advanced Grant (AdG), PE2, ERC-2010-AdG_20100224
Summary What is the origin of cosmic rays, what are the dominant acceleration mechanisms in relativistic shocks, how do cosmic rays self-consistently influence the shock dynamics, how are relativistic collisionless shocks formed are longstanding scientific questions, closely tied to extreme plasma physics processes, and where a close interplay between the micro-instabilities and the global dynamics is critical.
Relativistic shocks are closely connected with the propagation of intense streams of particles pervasive in many astrophysical scenarios. The possibility of exciting shocks in the laboratory will also be available very soon with multi-PW lasers or intense relativistic particle beams.
Computational modeling is now established as a prominent research tool, by enabling the fully kinetic modeling of these systems for the first time. With the fast paced developments in high performance computing, the time is ripe for a focused research programme on simulation-based studies of relativistic shocks. This proposal therefore focuses on using self-consistent ab initio massively parallel simulations to study the physics of relativistic shocks, bridging the gap between the multidimensional microphysics of shock onset, formation, and propagation and the global system dynamics. Particular focus will be given to the shock acceleration mechanisms and the radiation signatures of the various physical processes, with the goal of solving some of the central questions in plasma/relativistic phenomena in astrophysics and in the laboratory, and opening new avenues between theoretical/massive computational studies, laboratory experiments and astrophysical observations.
Summary
What is the origin of cosmic rays, what are the dominant acceleration mechanisms in relativistic shocks, how do cosmic rays self-consistently influence the shock dynamics, how are relativistic collisionless shocks formed are longstanding scientific questions, closely tied to extreme plasma physics processes, and where a close interplay between the micro-instabilities and the global dynamics is critical.
Relativistic shocks are closely connected with the propagation of intense streams of particles pervasive in many astrophysical scenarios. The possibility of exciting shocks in the laboratory will also be available very soon with multi-PW lasers or intense relativistic particle beams.
Computational modeling is now established as a prominent research tool, by enabling the fully kinetic modeling of these systems for the first time. With the fast paced developments in high performance computing, the time is ripe for a focused research programme on simulation-based studies of relativistic shocks. This proposal therefore focuses on using self-consistent ab initio massively parallel simulations to study the physics of relativistic shocks, bridging the gap between the multidimensional microphysics of shock onset, formation, and propagation and the global system dynamics. Particular focus will be given to the shock acceleration mechanisms and the radiation signatures of the various physical processes, with the goal of solving some of the central questions in plasma/relativistic phenomena in astrophysics and in the laboratory, and opening new avenues between theoretical/massive computational studies, laboratory experiments and astrophysical observations.
Max ERC Funding
1 588 800 €
Duration
Start date: 2011-06-01, End date: 2016-07-31
Project acronym AcetyLys
Project Unravelling the role of lysine acetylation in the regulation of glycolysis in cancer cells through the development of synthetic biology-based tools
Researcher (PI) Eyal Arbely
Host Institution (HI) BEN-GURION UNIVERSITY OF THE NEGEV
Call Details Starting Grant (StG), LS9, ERC-2015-STG
Summary Synthetic biology is an emerging discipline that offers powerful tools to control and manipulate fundamental processes in living matter. We propose to develop and apply such tools to modify the genetic code of cultured mammalian cells and bacteria with the aim to study the role of lysine acetylation in the regulation of metabolism and in cancer development. Thousands of lysine acetylation sites were recently discovered on non-histone proteins, suggesting that acetylation is a widespread and evolutionarily conserved post translational modification, similar in scope to phosphorylation and ubiquitination. Specifically, it has been found that most of the enzymes of metabolic processes—including glycolysis—are acetylated, implying that acetylation is key regulator of cellular metabolism in general and in glycolysis in particular. The regulation of metabolic pathways is of particular importance to cancer research, as misregulation of metabolic pathways, especially upregulation of glycolysis, is common to most transformed cells and is now considered a new hallmark of cancer. These data raise an immediate question: what is the role of acetylation in the regulation of glycolysis and in the metabolic reprogramming of cancer cells? While current methods rely on mutational analyses, we will genetically encode the incorporation of acetylated lysine and directly measure the functional role of each acetylation site in cancerous and non-cancerous cell lines. Using this methodology, we will study the structural and functional implications of all the acetylation sites in glycolytic enzymes. We will also decipher the mechanism by which acetylation is regulated by deacetylases and answer a long standing question – how 18 deacetylases recognise their substrates among thousands of acetylated proteins? The developed methodologies can be applied to a wide range of protein families known to be acetylated, thereby making this study relevant to diverse research fields.
Summary
Synthetic biology is an emerging discipline that offers powerful tools to control and manipulate fundamental processes in living matter. We propose to develop and apply such tools to modify the genetic code of cultured mammalian cells and bacteria with the aim to study the role of lysine acetylation in the regulation of metabolism and in cancer development. Thousands of lysine acetylation sites were recently discovered on non-histone proteins, suggesting that acetylation is a widespread and evolutionarily conserved post translational modification, similar in scope to phosphorylation and ubiquitination. Specifically, it has been found that most of the enzymes of metabolic processes—including glycolysis—are acetylated, implying that acetylation is key regulator of cellular metabolism in general and in glycolysis in particular. The regulation of metabolic pathways is of particular importance to cancer research, as misregulation of metabolic pathways, especially upregulation of glycolysis, is common to most transformed cells and is now considered a new hallmark of cancer. These data raise an immediate question: what is the role of acetylation in the regulation of glycolysis and in the metabolic reprogramming of cancer cells? While current methods rely on mutational analyses, we will genetically encode the incorporation of acetylated lysine and directly measure the functional role of each acetylation site in cancerous and non-cancerous cell lines. Using this methodology, we will study the structural and functional implications of all the acetylation sites in glycolytic enzymes. We will also decipher the mechanism by which acetylation is regulated by deacetylases and answer a long standing question – how 18 deacetylases recognise their substrates among thousands of acetylated proteins? The developed methodologies can be applied to a wide range of protein families known to be acetylated, thereby making this study relevant to diverse research fields.
Max ERC Funding
1 499 375 €
Duration
Start date: 2016-07-01, End date: 2021-06-30
Project acronym Active-DNA
Project Computationally Active DNA Nanostructures
Researcher (PI) Damien WOODS
Host Institution (HI) NATIONAL UNIVERSITY OF IRELAND MAYNOOTH
Call Details Consolidator Grant (CoG), PE6, ERC-2017-COG
Summary During the 20th century computer technology evolved from bulky, slow, special purpose mechanical engines to the now ubiquitous silicon chips and software that are one of the pinnacles of human ingenuity. The goal of the field of molecular programming is to take the next leap and build a new generation of matter-based computers using DNA, RNA and proteins. This will be accomplished by computer scientists, physicists and chemists designing molecules to execute ``wet'' nanoscale programs in test tubes. The workflow includes proposing theoretical models, mathematically proving their computational properties, physical modelling and implementation in the wet-lab.
The past decade has seen remarkable progress at building static 2D and 3D DNA nanostructures. However, unlike biological macromolecules and complexes that are built via specified self-assembly pathways, that execute robotic-like movements, and that undergo evolution, the activity of human-engineered nanostructures is severely limited. We will need sophisticated algorithmic ideas to build structures that rival active living systems. Active-DNA, aims to address this challenge by achieving a number of objectives on computation, DNA-based self-assembly and molecular robotics. Active-DNA research work will range from defining models and proving theorems that characterise the computational and expressive capabilities of such active programmable materials to experimental work implementing active DNA nanostructures in the wet-lab.
Summary
During the 20th century computer technology evolved from bulky, slow, special purpose mechanical engines to the now ubiquitous silicon chips and software that are one of the pinnacles of human ingenuity. The goal of the field of molecular programming is to take the next leap and build a new generation of matter-based computers using DNA, RNA and proteins. This will be accomplished by computer scientists, physicists and chemists designing molecules to execute ``wet'' nanoscale programs in test tubes. The workflow includes proposing theoretical models, mathematically proving their computational properties, physical modelling and implementation in the wet-lab.
The past decade has seen remarkable progress at building static 2D and 3D DNA nanostructures. However, unlike biological macromolecules and complexes that are built via specified self-assembly pathways, that execute robotic-like movements, and that undergo evolution, the activity of human-engineered nanostructures is severely limited. We will need sophisticated algorithmic ideas to build structures that rival active living systems. Active-DNA, aims to address this challenge by achieving a number of objectives on computation, DNA-based self-assembly and molecular robotics. Active-DNA research work will range from defining models and proving theorems that characterise the computational and expressive capabilities of such active programmable materials to experimental work implementing active DNA nanostructures in the wet-lab.
Max ERC Funding
2 349 603 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym activeFly
Project Circuit mechanisms of self-movement estimation during walking
Researcher (PI) M Eugenia CHIAPPE
Host Institution (HI) FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD
Call Details Starting Grant (StG), LS5, ERC-2017-STG
Summary The brain evolves, develops, and operates in the context of animal movements. As a consequence, fundamental brain functions such as spatial perception and motor control critically depend on the precise knowledge of the ongoing body motion. An accurate internal estimate of self-movement is thought to emerge from sensorimotor integration; nonetheless, which circuits perform this internal estimation, and exactly how motor-sensory coordination is implemented within these circuits are basic questions that remain to be poorly understood. There is growing evidence suggesting that, during locomotion, motor-related and visual signals interact at early stages of visual processing. In mammals, however, it is not clear what the function of this interaction is. Recently, we have shown that a population of Drosophila optic-flow processing neurons —neurons that are sensitive to self-generated visual flow, receives convergent visual and walking-related signals to form a faithful representation of the fly’s walking movements. Leveraging from these results, and combining quantitative analysis of behavior with physiology, optogenetics, and modelling, we propose to investigate circuit mechanisms of self-movement estimation during walking. We will:1) use cell specific manipulations to identify what cells are necessary to generate the motor-related activity in the population of visual neurons, 2) record from the identified neurons and correlate their activity with specific locomotor parameters, and 3) perturb the activity of different cell-types within the identified circuits to test their role in the dynamics of the visual neurons, and on the fly’s walking behavior. These experiments will establish unprecedented causal relationships among neural activity, the formation of an internal representation, and locomotor control. The identified sensorimotor principles will establish a framework that can be tested in other scenarios or animal systems with implications both in health and disease.
Summary
The brain evolves, develops, and operates in the context of animal movements. As a consequence, fundamental brain functions such as spatial perception and motor control critically depend on the precise knowledge of the ongoing body motion. An accurate internal estimate of self-movement is thought to emerge from sensorimotor integration; nonetheless, which circuits perform this internal estimation, and exactly how motor-sensory coordination is implemented within these circuits are basic questions that remain to be poorly understood. There is growing evidence suggesting that, during locomotion, motor-related and visual signals interact at early stages of visual processing. In mammals, however, it is not clear what the function of this interaction is. Recently, we have shown that a population of Drosophila optic-flow processing neurons —neurons that are sensitive to self-generated visual flow, receives convergent visual and walking-related signals to form a faithful representation of the fly’s walking movements. Leveraging from these results, and combining quantitative analysis of behavior with physiology, optogenetics, and modelling, we propose to investigate circuit mechanisms of self-movement estimation during walking. We will:1) use cell specific manipulations to identify what cells are necessary to generate the motor-related activity in the population of visual neurons, 2) record from the identified neurons and correlate their activity with specific locomotor parameters, and 3) perturb the activity of different cell-types within the identified circuits to test their role in the dynamics of the visual neurons, and on the fly’s walking behavior. These experiments will establish unprecedented causal relationships among neural activity, the formation of an internal representation, and locomotor control. The identified sensorimotor principles will establish a framework that can be tested in other scenarios or animal systems with implications both in health and disease.
Max ERC Funding
1 500 000 €
Duration
Start date: 2017-11-01, End date: 2022-10-31
Project acronym ACTOMYO
Project Mechanisms of actomyosin-based contractility during cytokinesis
Researcher (PI) Ana Costa Xavier de Carvalho
Host Institution (HI) INSTITUTO DE BIOLOGIA MOLECULAR E CELULAR-IBMC
Call Details Starting Grant (StG), LS3, ERC-2014-STG
Summary Cytokinesis completes cell division by partitioning the contents of the mother cell to the two daughter cells. This process is accomplished through the assembly and constriction of a contractile ring, a complex actomyosin network that remains poorly understood on the molecular level. Research in cytokinesis has overwhelmingly focused on signaling mechanisms that dictate when and where the contractile ring is assembled. By contrast, the research I propose here addresses fundamental questions about the structural and functional properties of the contractile ring itself. We will use the nematode C. elegans to exploit the power of quantitative live imaging assays in an experimentally tractable metazoan organism. The early C. elegans embryo is uniquely suited to the study of the contractile ring, as cells dividing perpendicularly to the imaging plane provide a full end-on view of the contractile ring throughout constriction. This greatly facilitates accurate measurements of constriction kinetics, ring width and thickness, and levels as well as dynamics of fluorescently-tagged contractile ring components. Combining image-based assays with powerful molecular replacement technology for structure-function studies, we will 1) determine the contribution of branched and non-branched actin filament populations to contractile ring formation; 2) explore its ultra-structural organization in collaboration with a world expert in electron microcopy; 3) investigate how the contractile ring network is dynamically remodeled during constriction with the help of a novel laser microsurgery assay that has uncovered a remarkably robust ring repair mechanism; and 4) use a targeted RNAi screen and phenotype profiling to identify new components of actomyosin contractile networks. The results from this interdisciplinary project will significantly enhance our mechanistic understanding of cytokinesis and other cellular processes that involve actomyosin-based contractility.
Summary
Cytokinesis completes cell division by partitioning the contents of the mother cell to the two daughter cells. This process is accomplished through the assembly and constriction of a contractile ring, a complex actomyosin network that remains poorly understood on the molecular level. Research in cytokinesis has overwhelmingly focused on signaling mechanisms that dictate when and where the contractile ring is assembled. By contrast, the research I propose here addresses fundamental questions about the structural and functional properties of the contractile ring itself. We will use the nematode C. elegans to exploit the power of quantitative live imaging assays in an experimentally tractable metazoan organism. The early C. elegans embryo is uniquely suited to the study of the contractile ring, as cells dividing perpendicularly to the imaging plane provide a full end-on view of the contractile ring throughout constriction. This greatly facilitates accurate measurements of constriction kinetics, ring width and thickness, and levels as well as dynamics of fluorescently-tagged contractile ring components. Combining image-based assays with powerful molecular replacement technology for structure-function studies, we will 1) determine the contribution of branched and non-branched actin filament populations to contractile ring formation; 2) explore its ultra-structural organization in collaboration with a world expert in electron microcopy; 3) investigate how the contractile ring network is dynamically remodeled during constriction with the help of a novel laser microsurgery assay that has uncovered a remarkably robust ring repair mechanism; and 4) use a targeted RNAi screen and phenotype profiling to identify new components of actomyosin contractile networks. The results from this interdisciplinary project will significantly enhance our mechanistic understanding of cytokinesis and other cellular processes that involve actomyosin-based contractility.
Max ERC Funding
1 499 989 €
Duration
Start date: 2015-07-01, End date: 2020-06-30
Project acronym ADIMMUNE
Project Decoding interactions between adipose tissue immune cells, metabolic function, and the intestinal microbiome in obesity
Researcher (PI) Eran Elinav
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Consolidator Grant (CoG), LS6, ERC-2018-COG
Summary Obesity and its metabolic co-morbidities have given rise to a rapidly expanding ‘metabolic syndrome’ pandemic affecting
hundreds of millions of individuals worldwide. The integrative genetic and environmental causes of the obesity pandemic
remain elusive. White adipose tissue (WAT)-resident immune cells have recently been highlighted as important factors
contributing to metabolic complications. However, a comprehensive understanding of the regulatory circuits governing their
function and the cell type-specific mechanisms by which they contribute to the development of metabolic syndrome is
lacking. Likewise, the gut microbiome has been suggested as a critical regulator of obesity, but the bacterial species and
metabolites that influence WAT inflammation are entirely unknown.
We propose to use our recently developed high-throughput genomic and gnotobiotic tools, integrated with CRISPR-mediated interrogation of gene function, microbial culturomics, and in-vivo metabolic analysis in newly generated mouse models, in order to achieve a new level of molecular understanding of how WAT immune cells integrate environmental cues into their crosstalk with organismal metabolism, and to explore the microbial contributions to the molecular etiology of WAT inflammation in the pathogenesis of diet-induced obesity. Specifically, we aim to (a) decipher the global regulatory landscape and interaction networks of WAT hematopoietic cells at the single-cell level, (b) identify new mediators of WAT immune cell contributions to metabolic homeostasis, and (c) decode how host-microbiome communication shapes the development of WAT inflammation and obesity.
Unraveling the principles of WAT immune cell regulation and their amenability to change by host-microbiota interactions
may lead to a conceptual leap forward in our understanding of metabolic physiology and disease. Concomitantly, it may
generate a platform for microbiome-based personalized therapy against obesity and its complications.
Summary
Obesity and its metabolic co-morbidities have given rise to a rapidly expanding ‘metabolic syndrome’ pandemic affecting
hundreds of millions of individuals worldwide. The integrative genetic and environmental causes of the obesity pandemic
remain elusive. White adipose tissue (WAT)-resident immune cells have recently been highlighted as important factors
contributing to metabolic complications. However, a comprehensive understanding of the regulatory circuits governing their
function and the cell type-specific mechanisms by which they contribute to the development of metabolic syndrome is
lacking. Likewise, the gut microbiome has been suggested as a critical regulator of obesity, but the bacterial species and
metabolites that influence WAT inflammation are entirely unknown.
We propose to use our recently developed high-throughput genomic and gnotobiotic tools, integrated with CRISPR-mediated interrogation of gene function, microbial culturomics, and in-vivo metabolic analysis in newly generated mouse models, in order to achieve a new level of molecular understanding of how WAT immune cells integrate environmental cues into their crosstalk with organismal metabolism, and to explore the microbial contributions to the molecular etiology of WAT inflammation in the pathogenesis of diet-induced obesity. Specifically, we aim to (a) decipher the global regulatory landscape and interaction networks of WAT hematopoietic cells at the single-cell level, (b) identify new mediators of WAT immune cell contributions to metabolic homeostasis, and (c) decode how host-microbiome communication shapes the development of WAT inflammation and obesity.
Unraveling the principles of WAT immune cell regulation and their amenability to change by host-microbiota interactions
may lead to a conceptual leap forward in our understanding of metabolic physiology and disease. Concomitantly, it may
generate a platform for microbiome-based personalized therapy against obesity and its complications.
Max ERC Funding
2 000 000 €
Duration
Start date: 2019-03-01, End date: 2024-02-29
Project acronym ADNABIOARC
Project From the earliest modern humans to the onset of farming (45,000-4,500 BP): the role of climate, life-style, health, migration and selection in shaping European population history
Researcher (PI) Ron Pinhasi
Host Institution (HI) UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN
Call Details Starting Grant (StG), SH6, ERC-2010-StG_20091209
Summary The colonisation of Europe by anatomically modern humans (AMHs) ca. 45,000 years before present (BP) and the transition to farming ca. 8,000 BP are two major events in human prehistory. Both events involved certain cultural and biological adaptations, technological innovations, and behavioural plasticity which are unique to our species. The reconstruction of these processes and the causality between them has so far remained elusive due to technological, methodological and logistical complexities. Major developments in our understanding of the anthropology of the Upper Palaeolithic, Mesolithic and Neolithic, and advances in ancient DNA (aDNA) technology and chronometric methods now allow us to assess in sufficient resolution the interface between these evolutionary processes, and changes in human culture and behaviour.
The proposed research will investigate the complex interface between the morphological, genetic, behavioural, and cultural factors that shaped the population history of European AMHs. The PI s interdisciplinary expertise in these areas, his access to and experience of relevant skeletal collections, and his ongoing European collaborations will allow significant progress in addressing these fundamental questions. The approach taken will include (a) the collection of bioarchaeological, aDNA, stable isotope (for the analysis of ancient diet) and radiometric data on 500 skeletons from key sites/phases in Europe and western Anatolia, and (b) the application of existing and novel aDNA, bioarchaeological and simulation methodologies. This research will yield results that transform our current understanding of major demographic and evolutionary processes and will place Europe at the forefront of anthropological biological and genetic research.
Summary
The colonisation of Europe by anatomically modern humans (AMHs) ca. 45,000 years before present (BP) and the transition to farming ca. 8,000 BP are two major events in human prehistory. Both events involved certain cultural and biological adaptations, technological innovations, and behavioural plasticity which are unique to our species. The reconstruction of these processes and the causality between them has so far remained elusive due to technological, methodological and logistical complexities. Major developments in our understanding of the anthropology of the Upper Palaeolithic, Mesolithic and Neolithic, and advances in ancient DNA (aDNA) technology and chronometric methods now allow us to assess in sufficient resolution the interface between these evolutionary processes, and changes in human culture and behaviour.
The proposed research will investigate the complex interface between the morphological, genetic, behavioural, and cultural factors that shaped the population history of European AMHs. The PI s interdisciplinary expertise in these areas, his access to and experience of relevant skeletal collections, and his ongoing European collaborations will allow significant progress in addressing these fundamental questions. The approach taken will include (a) the collection of bioarchaeological, aDNA, stable isotope (for the analysis of ancient diet) and radiometric data on 500 skeletons from key sites/phases in Europe and western Anatolia, and (b) the application of existing and novel aDNA, bioarchaeological and simulation methodologies. This research will yield results that transform our current understanding of major demographic and evolutionary processes and will place Europe at the forefront of anthropological biological and genetic research.
Max ERC Funding
1 088 386 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym AEROBIC
Project Assessing the Effects of Rising O2 on Biogeochemical Cycles: Integrated Laboratory Experiments and Numerical Simulations
Researcher (PI) Itay Halevy
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Starting Grant (StG), PE10, ERC-2013-StG
Summary The rise of atmospheric O2 ~2,500 million years ago is one of the most profound transitions in Earth's history. Yet, despite its central role in shaping Earth's surface environment, the cause for the rise of O2 remains poorly understood. Tight coupling between the O2 cycle and the biogeochemical cycles of redox-active elements, such as C, Fe and S, implies radical changes in these cycles before, during and after the rise of O2. These changes, too, are incompletely understood, but have left valuable information encoded in the geological record. This information has been qualitatively interpreted, leaving many aspects of the rise of O2, including its causes and constraints on ocean chemistry before and after it, topics of ongoing research and debate. Here, I outline a research program to address this fundamental question in geochemical Earth systems evolution. The inherently interdisciplinary program uniquely integrates laboratory experiments, numerical models, geological observations, and geochemical analyses. Laboratory experiments and geological observations will constrain unknown parameters of the early biogeochemical cycles, and, in combination with field studies, will validate and refine the use of paleoenvironmental proxies. The insight gained will be used to develop detailed models of the coupled biogeochemical cycles, which will themselves be used to quantitatively understand the events surrounding the rise of O2, and to illuminate the dynamics of elemental cycles in the early oceans.
This program is expected to yield novel, quantitative insight into these important events in Earth history and to have a major impact on our understanding of early ocean chemistry and the rise of O2. An ERC Starting Grant will enable me to use the excellent experimental and computational facilities at my disposal, to access the outstanding human resource at the Weizmann Institute of Science, and to address one of the major open questions in modern geochemistry.
Summary
The rise of atmospheric O2 ~2,500 million years ago is one of the most profound transitions in Earth's history. Yet, despite its central role in shaping Earth's surface environment, the cause for the rise of O2 remains poorly understood. Tight coupling between the O2 cycle and the biogeochemical cycles of redox-active elements, such as C, Fe and S, implies radical changes in these cycles before, during and after the rise of O2. These changes, too, are incompletely understood, but have left valuable information encoded in the geological record. This information has been qualitatively interpreted, leaving many aspects of the rise of O2, including its causes and constraints on ocean chemistry before and after it, topics of ongoing research and debate. Here, I outline a research program to address this fundamental question in geochemical Earth systems evolution. The inherently interdisciplinary program uniquely integrates laboratory experiments, numerical models, geological observations, and geochemical analyses. Laboratory experiments and geological observations will constrain unknown parameters of the early biogeochemical cycles, and, in combination with field studies, will validate and refine the use of paleoenvironmental proxies. The insight gained will be used to develop detailed models of the coupled biogeochemical cycles, which will themselves be used to quantitatively understand the events surrounding the rise of O2, and to illuminate the dynamics of elemental cycles in the early oceans.
This program is expected to yield novel, quantitative insight into these important events in Earth history and to have a major impact on our understanding of early ocean chemistry and the rise of O2. An ERC Starting Grant will enable me to use the excellent experimental and computational facilities at my disposal, to access the outstanding human resource at the Weizmann Institute of Science, and to address one of the major open questions in modern geochemistry.
Max ERC Funding
1 472 690 €
Duration
Start date: 2013-09-01, End date: 2018-08-31
Project acronym AFFIRM
Project Analysis of Biofilm Mediated Fouling of Nanofiltration Membranes
Researcher (PI) Eoin Casey
Host Institution (HI) UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN
Call Details Starting Grant (StG), PE8, ERC-2011-StG_20101014
Summary 1.2 billion people worldwide lack access to safe drinking water. Drinking water quality is threatened by newly emerging organic micro-pollutants (pesticides, pharmaceuticals, industrial chemicals) in source waters. Nanofiltration is a technology that is expected to play a key role in future water treatment processes due to its effectiveness in removal of micropollutants. However, the loss of membrane flux due to fouling is one of the main impediments in the development of membrane processes for use in drinking water treatment. Currently there is a wholly inadequate mechanistic understanding of the role of biofilm on the fouling of nanofiltration membranes.
Applying techniques including confocal microscopy, force spectroscopy, and infrared spectroscopy using an experimental programme informed by a technique known as scale-down together with mathematical modelling, it is confidently expected that significant advances will be gained in the mechanistic understanding of nanofiltration biofouling.
The specific objectives are 1. How is the rate of formation and extent of such biofilms influenced by the biological response to the local microenvironment? 2 Elucidate the effect of extracellular polysaccharide substances on physical properties, composition and structure of these biofilms. 3: Investigate mechanisms to enhance biofilm removal by a physical detachment process complemented by techniques that alter biofilm material properties.
A more fundamental insight into the mechanisms of nanofiltration operation will help in further development of this treatment method in future water treatment processes.
Summary
1.2 billion people worldwide lack access to safe drinking water. Drinking water quality is threatened by newly emerging organic micro-pollutants (pesticides, pharmaceuticals, industrial chemicals) in source waters. Nanofiltration is a technology that is expected to play a key role in future water treatment processes due to its effectiveness in removal of micropollutants. However, the loss of membrane flux due to fouling is one of the main impediments in the development of membrane processes for use in drinking water treatment. Currently there is a wholly inadequate mechanistic understanding of the role of biofilm on the fouling of nanofiltration membranes.
Applying techniques including confocal microscopy, force spectroscopy, and infrared spectroscopy using an experimental programme informed by a technique known as scale-down together with mathematical modelling, it is confidently expected that significant advances will be gained in the mechanistic understanding of nanofiltration biofouling.
The specific objectives are 1. How is the rate of formation and extent of such biofilms influenced by the biological response to the local microenvironment? 2 Elucidate the effect of extracellular polysaccharide substances on physical properties, composition and structure of these biofilms. 3: Investigate mechanisms to enhance biofilm removal by a physical detachment process complemented by techniques that alter biofilm material properties.
A more fundamental insight into the mechanisms of nanofiltration operation will help in further development of this treatment method in future water treatment processes.
Max ERC Funding
1 468 987 €
Duration
Start date: 2011-10-01, End date: 2016-09-30
Project acronym AGALT
Project Asymptotic Geometric Analysis and Learning Theory
Researcher (PI) Shahar Mendelson
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Starting Grant (StG), PE1, ERC-2007-StG
Summary In a typical learning problem one tries to approximate an unknown function by a function from a given class using random data, sampled according to an unknown measure. In this project we will be interested in parameters that govern the complexity of a learning problem. It turns out that this complexity is determined by the geometry of certain sets in high dimension that are connected to the given class (random coordinate projections of the class). Thus, one has to understand the structure of these sets as a function of the dimension - which is given by the cardinality of the random sample. The resulting analysis leads to many theoretical questions in Asymptotic Geometric Analysis, Probability (most notably, Empirical Processes Theory) and Combinatorics, which are of independent interest beyond the application to Learning Theory. Our main goal is to describe the role of various complexity parameters involved in a learning problem, to analyze the connections between them and to investigate the way they determine the geometry of the relevant high dimensional sets. Some of the questions we intend to tackle are well known open problems and making progress towards their solution will have a significant theoretical impact. Moreover, this project should lead to a more complete theory of learning and is likely to have some practical impact, for example, in the design of more efficient learning algorithms.
Summary
In a typical learning problem one tries to approximate an unknown function by a function from a given class using random data, sampled according to an unknown measure. In this project we will be interested in parameters that govern the complexity of a learning problem. It turns out that this complexity is determined by the geometry of certain sets in high dimension that are connected to the given class (random coordinate projections of the class). Thus, one has to understand the structure of these sets as a function of the dimension - which is given by the cardinality of the random sample. The resulting analysis leads to many theoretical questions in Asymptotic Geometric Analysis, Probability (most notably, Empirical Processes Theory) and Combinatorics, which are of independent interest beyond the application to Learning Theory. Our main goal is to describe the role of various complexity parameters involved in a learning problem, to analyze the connections between them and to investigate the way they determine the geometry of the relevant high dimensional sets. Some of the questions we intend to tackle are well known open problems and making progress towards their solution will have a significant theoretical impact. Moreover, this project should lead to a more complete theory of learning and is likely to have some practical impact, for example, in the design of more efficient learning algorithms.
Max ERC Funding
750 000 €
Duration
Start date: 2009-03-01, End date: 2014-02-28
Project acronym AGELESS
Project Comparative genomics / ‘wildlife’ transcriptomics uncovers the mechanisms of halted ageing in mammals
Researcher (PI) Emma Teeling
Host Institution (HI) UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN
Call Details Starting Grant (StG), LS2, ERC-2012-StG_20111109
Summary "Ageing is the gradual and irreversible breakdown of living systems associated with the advancement of time, which leads to an increase in vulnerability and eventual mortality. Despite recent advances in ageing research, the intrinsic complexity of the ageing process has prevented a full understanding of this process, therefore, ageing remains a grand challenge in contemporary biology. In AGELESS, we will tackle this challenge by uncovering the molecular mechanisms of halted ageing in a unique model system, the bats. Bats are the longest-lived mammals relative to their body size, and defy the ‘rate-of-living’ theories as they use twice as much the energy as other species of considerable size, but live far longer. This suggests that bats have some underlying mechanisms that may explain their exceptional longevity. In AGELESS, we will identify the molecular mechanisms that enable mammals to achieve extraordinary longevity, using state-of-the-art comparative genomic methodologies focused on bats. We will identify, using population transcriptomics and telomere/mtDNA genomics, the molecular changes that occur in an ageing wild population of bats to uncover how bats ‘age’ so slowly compared with other mammals. In silico whole genome analyses, field based ageing transcriptomic data, mtDNA and telomeric studies will be integrated and analysed using a networks approach, to ascertain how these systems interact to halt ageing. For the first time, we will be able to utilize the diversity seen within nature to identify key molecular targets and regions that regulate and control ageing in mammals. AGELESS will provide a deeper understanding of the causal mechanisms of ageing, potentially uncovering the crucial molecular pathways that can be modified to halt, alleviate and perhaps even reverse this process in man."
Summary
"Ageing is the gradual and irreversible breakdown of living systems associated with the advancement of time, which leads to an increase in vulnerability and eventual mortality. Despite recent advances in ageing research, the intrinsic complexity of the ageing process has prevented a full understanding of this process, therefore, ageing remains a grand challenge in contemporary biology. In AGELESS, we will tackle this challenge by uncovering the molecular mechanisms of halted ageing in a unique model system, the bats. Bats are the longest-lived mammals relative to their body size, and defy the ‘rate-of-living’ theories as they use twice as much the energy as other species of considerable size, but live far longer. This suggests that bats have some underlying mechanisms that may explain their exceptional longevity. In AGELESS, we will identify the molecular mechanisms that enable mammals to achieve extraordinary longevity, using state-of-the-art comparative genomic methodologies focused on bats. We will identify, using population transcriptomics and telomere/mtDNA genomics, the molecular changes that occur in an ageing wild population of bats to uncover how bats ‘age’ so slowly compared with other mammals. In silico whole genome analyses, field based ageing transcriptomic data, mtDNA and telomeric studies will be integrated and analysed using a networks approach, to ascertain how these systems interact to halt ageing. For the first time, we will be able to utilize the diversity seen within nature to identify key molecular targets and regions that regulate and control ageing in mammals. AGELESS will provide a deeper understanding of the causal mechanisms of ageing, potentially uncovering the crucial molecular pathways that can be modified to halt, alleviate and perhaps even reverse this process in man."
Max ERC Funding
1 499 768 €
Duration
Start date: 2013-01-01, End date: 2017-12-31
Project acronym Agglomerates
Project Infinite Protein Self-Assembly in Health and Disease
Researcher (PI) Emmanuel Doram LEVY
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Consolidator Grant (CoG), LS2, ERC-2018-COG
Summary Understanding how proteins respond to mutations is of paramount importance to biology and disease. While protein stability and misfolding have been instrumental in rationalizing the impact of mutations, we recently discovered that an alternative route is also frequent, where mutations at the surface of symmetric proteins trigger novel self-interactions that lead to infinite self-assembly. This mechanism can be involved in disease, as in sickle-cell anemia, but may also serve in adaptation. Importantly, it differs fundamentally from aggregation, because misfolding does not drive it. Thus, we term it “agglomeration”. The ease with which agglomeration can occur, even by single point mutations, shifts the paradigm of how quickly new protein assemblies can emerge, both in health and disease. This prompts us to determine the basic principles of protein agglomeration and explore its implications in cell physiology and human disease.
We propose an interdisciplinary research program bridging atomic and cellular scales to explore agglomeration in three aims: (i) Map the landscape of protein agglomeration in response to mutation in endogenous yeast proteins; (ii) Characterize how yeast physiology impacts agglomeration by changes in gene expression or cell state, and, conversely, how protein agglomerates impact yeast fitness. (iii) Analyze agglomeration in relation to human disease via two approaches. First, by predicting single nucleotide polymorphisms that trigger agglomeration, prioritizing them using knowledge from Aims 1 & 2, and characterizing them experimentally. Second, by providing a proof-of-concept that agglomeration can be exploited in drug design, whereby drugs induce its formation, like mutations can do.
Overall, through this research, we aim to establish agglomeration as a paradigm for protein assembly, with implications for our understanding of evolution, physiology, and disease.
Summary
Understanding how proteins respond to mutations is of paramount importance to biology and disease. While protein stability and misfolding have been instrumental in rationalizing the impact of mutations, we recently discovered that an alternative route is also frequent, where mutations at the surface of symmetric proteins trigger novel self-interactions that lead to infinite self-assembly. This mechanism can be involved in disease, as in sickle-cell anemia, but may also serve in adaptation. Importantly, it differs fundamentally from aggregation, because misfolding does not drive it. Thus, we term it “agglomeration”. The ease with which agglomeration can occur, even by single point mutations, shifts the paradigm of how quickly new protein assemblies can emerge, both in health and disease. This prompts us to determine the basic principles of protein agglomeration and explore its implications in cell physiology and human disease.
We propose an interdisciplinary research program bridging atomic and cellular scales to explore agglomeration in three aims: (i) Map the landscape of protein agglomeration in response to mutation in endogenous yeast proteins; (ii) Characterize how yeast physiology impacts agglomeration by changes in gene expression or cell state, and, conversely, how protein agglomerates impact yeast fitness. (iii) Analyze agglomeration in relation to human disease via two approaches. First, by predicting single nucleotide polymorphisms that trigger agglomeration, prioritizing them using knowledge from Aims 1 & 2, and characterizing them experimentally. Second, by providing a proof-of-concept that agglomeration can be exploited in drug design, whereby drugs induce its formation, like mutations can do.
Overall, through this research, we aim to establish agglomeration as a paradigm for protein assembly, with implications for our understanding of evolution, physiology, and disease.
Max ERC Funding
2 574 819 €
Duration
Start date: 2019-04-01, End date: 2024-03-31
Project acronym ALH
Project Alternative life histories: linking genes to phenotypes to demography
Researcher (PI) Thomas Eric Reed
Host Institution (HI) UNIVERSITY COLLEGE CORK - NATIONAL UNIVERSITY OF IRELAND, CORK
Call Details Starting Grant (StG), LS8, ERC-2014-STG
Summary Understanding how and why individuals develop strikingly different life histories is a major goal in evolutionary biology. It is also a prerequisite for conserving important biodiversity within species and predicting the impacts of environmental change on populations. The aim of my study is to examine a key threshold phenotypic trait (alternative migratory tactics) in a series of large scale laboratory and field experiments, integrating several previously independent perspectives from evolutionary ecology, ecophysiology and genomics, to produce a downstream predictive model. My chosen study species, the brown trout Salmo trutta, has an extensive history of genetic and experimental work and exhibits ‘partial migration’: individuals either migrate to sea (‘sea trout’) or remain in freshwater their whole lives. Recent advances in molecular parentage assignment, quantitative genetics and genomics (next generation sequencing and bioinformatics) will allow unprecedented insight into how alternative life history phenotypes are moulded by the interaction between genes and environment. To provide additional mechanistic understanding of these processes, the balance between metabolic requirements during growth and available extrinsic resources will be investigated as the major physiological driver of migratory behaviour. Together these results will be used to develop a predictive model to explore the consequences of rapid environmental change, accounting for the effects of genetics and environment on phenotype and on population demographics. In addition to their value for conservation and management of an iconic and key species in European freshwaters and coastal seas, these results will generate novel insight into the evolution of migratory behaviour generally, providing a text book example of how alternative life histories are shaped and maintained in wild populations.
Summary
Understanding how and why individuals develop strikingly different life histories is a major goal in evolutionary biology. It is also a prerequisite for conserving important biodiversity within species and predicting the impacts of environmental change on populations. The aim of my study is to examine a key threshold phenotypic trait (alternative migratory tactics) in a series of large scale laboratory and field experiments, integrating several previously independent perspectives from evolutionary ecology, ecophysiology and genomics, to produce a downstream predictive model. My chosen study species, the brown trout Salmo trutta, has an extensive history of genetic and experimental work and exhibits ‘partial migration’: individuals either migrate to sea (‘sea trout’) or remain in freshwater their whole lives. Recent advances in molecular parentage assignment, quantitative genetics and genomics (next generation sequencing and bioinformatics) will allow unprecedented insight into how alternative life history phenotypes are moulded by the interaction between genes and environment. To provide additional mechanistic understanding of these processes, the balance between metabolic requirements during growth and available extrinsic resources will be investigated as the major physiological driver of migratory behaviour. Together these results will be used to develop a predictive model to explore the consequences of rapid environmental change, accounting for the effects of genetics and environment on phenotype and on population demographics. In addition to their value for conservation and management of an iconic and key species in European freshwaters and coastal seas, these results will generate novel insight into the evolution of migratory behaviour generally, providing a text book example of how alternative life histories are shaped and maintained in wild populations.
Max ERC Funding
1 499 202 €
Duration
Start date: 2015-05-01, End date: 2020-04-30
Project acronym ALICE
Project Strange Mirrors, Unsuspected Lessons: Leading Europe to a new way of sharing the world experiences
Researcher (PI) Boaventura De Sousa Santos
Host Institution (HI) CENTRO DE ESTUDOS SOCIAIS
Call Details Advanced Grant (AdG), SH2, ERC-2010-AdG_20100407
Summary Europe sits uncomfortably on the idea that there are no political and cultural alternatives credible enough to respond to the current uneasiness or malaise caused by both a world that is more and more non-European and a Europe that increasingly questions what is European about itself. This project will develop a new grounded theoretical paradigm for contemporary Europe based on two key ideas: the understanding of the world by far exceeds the European understanding of the world; social, political and institutional transformation in Europe may benefit from innovations taking place in regions and countries with which Europe is increasingly interdependent. I will pursue this objective focusing on four main interconnected topics: democratizing democracy, intercultural constitutionalism, the other economy, human rights (right to health in particular).
In a sense that the European challenges are unique but, in one way or another, are being experienced in different corners of the world. The novelty resides in bringing new ideas and experiences into the European conversation, show their relevance to our current uncertainties and aspirations and thereby contribute to face them with new intellectual and political resources. The usefulness and relevance of non-European conceptions and experiences un-thinking the conventional knowledge through two epistemological devices I have developed: the ecology of knowledges and intercultural translation. By resorting to them I will show that there are alternatives but they cannot be made credible and powerful if we go on relying on the modes of theoretical and political thinking that have dominated so far. In other words, the claim put forward by and worked through this project is that in Europe we don’t need alternatives but rather an alternative thinking of alternatives.
Summary
Europe sits uncomfortably on the idea that there are no political and cultural alternatives credible enough to respond to the current uneasiness or malaise caused by both a world that is more and more non-European and a Europe that increasingly questions what is European about itself. This project will develop a new grounded theoretical paradigm for contemporary Europe based on two key ideas: the understanding of the world by far exceeds the European understanding of the world; social, political and institutional transformation in Europe may benefit from innovations taking place in regions and countries with which Europe is increasingly interdependent. I will pursue this objective focusing on four main interconnected topics: democratizing democracy, intercultural constitutionalism, the other economy, human rights (right to health in particular).
In a sense that the European challenges are unique but, in one way or another, are being experienced in different corners of the world. The novelty resides in bringing new ideas and experiences into the European conversation, show their relevance to our current uncertainties and aspirations and thereby contribute to face them with new intellectual and political resources. The usefulness and relevance of non-European conceptions and experiences un-thinking the conventional knowledge through two epistemological devices I have developed: the ecology of knowledges and intercultural translation. By resorting to them I will show that there are alternatives but they cannot be made credible and powerful if we go on relying on the modes of theoretical and political thinking that have dominated so far. In other words, the claim put forward by and worked through this project is that in Europe we don’t need alternatives but rather an alternative thinking of alternatives.
Max ERC Funding
2 423 140 €
Duration
Start date: 2011-07-01, End date: 2016-12-31
Project acronym AllergenDetect
Project Comprehensive allergen detection using synthetic DNA libraries
Researcher (PI) Eran SEGAL
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Proof of Concept (PoC), ERC-2018-PoC
Summary Over the last 50 years, allergies have become a major health issue affecting approximately 20% of adults and more than 30% of children in developed countries. Allergies impair the life quality of affected individuals and diagnosis/treatment is costly for health care systems. In the EU, the avoidable indirect costs of patients insufficiently treated for allergy is estimated to range between 55 and 151 billion Euro per year. A key issue towards fighting this allergy epidemic lies in the diagnosis of allergies, which is still limited by expensive, low throughput methods allowing to test only a few dozens of allergens at once. Yet, several thousands of allergens have been reported in the literature and cost effective methods for testing hundreds or even thousands of allergens are highly sought after.
Here, we propose a novel high throughput method (AllergenDetect) enabling to test more than 3000 protein allergens in parallel within a single test, relying on our ERC-funded technology. Instead of cumbersomely purifying protein allergens from natural sources, we will apply synthetic DNA libraries to produce allergens using expression systems commonly applied in biotechnology. Our method greatly expands the throughput of allergen testing compared to state of the art methods and allows for the first time to systematically test all known protein allergens at a fraction of today’s cost and within a single assay. In the first phase, we plan to market this technology as diagnostic kits to hospitals and analytic laboratories that have the required infrastructure already in place. For patient samples from private practitioners, specialized allergists, and individuals seeking allergy testing on their own, we are planning to launch a spin-off laboratory directly performing these AllergenDetect tests.
Summary
Over the last 50 years, allergies have become a major health issue affecting approximately 20% of adults and more than 30% of children in developed countries. Allergies impair the life quality of affected individuals and diagnosis/treatment is costly for health care systems. In the EU, the avoidable indirect costs of patients insufficiently treated for allergy is estimated to range between 55 and 151 billion Euro per year. A key issue towards fighting this allergy epidemic lies in the diagnosis of allergies, which is still limited by expensive, low throughput methods allowing to test only a few dozens of allergens at once. Yet, several thousands of allergens have been reported in the literature and cost effective methods for testing hundreds or even thousands of allergens are highly sought after.
Here, we propose a novel high throughput method (AllergenDetect) enabling to test more than 3000 protein allergens in parallel within a single test, relying on our ERC-funded technology. Instead of cumbersomely purifying protein allergens from natural sources, we will apply synthetic DNA libraries to produce allergens using expression systems commonly applied in biotechnology. Our method greatly expands the throughput of allergen testing compared to state of the art methods and allows for the first time to systematically test all known protein allergens at a fraction of today’s cost and within a single assay. In the first phase, we plan to market this technology as diagnostic kits to hospitals and analytic laboratories that have the required infrastructure already in place. For patient samples from private practitioners, specialized allergists, and individuals seeking allergy testing on their own, we are planning to launch a spin-off laboratory directly performing these AllergenDetect tests.
Max ERC Funding
150 000 €
Duration
Start date: 2019-05-01, End date: 2020-10-31
Project acronym AMD
Project Algorithmic Mechanism Design: Beyond Truthful Mechanisms
Researcher (PI) Michal Feldman
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Starting Grant (StG), PE6, ERC-2013-StG
Summary "The first decade of Algorithmic Mechanism Design (AMD) concentrated, very successfully, on the design of truthful mechanisms for the allocation of resources among agents with private preferences.
Truthful mechanisms are ones that incentivize rational users to report their preferences truthfully.
Truthfulness, however, for all its theoretical appeal, suffers from several inherent limitations, mainly its high communication and computation complexities.
It is not surprising, therefore, that practical applications forego truthfulness and use simpler mechanisms instead.
Simplicity in itself, however, is not sufficient, as any meaningful mechanism should also have some notion of fairness; otherwise agents will stop using it over time.
In this project I plan to develop an innovative AMD theoretical framework that will go beyond truthfulness and focus instead on the natural themes of simplicity and fairness, in addition to computational tractability.
One of my primary goals will be the design of simple and fair poly-time mechanisms that perform at near optimal levels with respect to important economic objectives such as social welfare and revenue.
To this end, I will work toward providing precise definitions of simplicity and fairness and quantifying the effects of these restrictions on the performance levels that can be obtained.
A major challenge in the evaluation of non-truthful mechanisms is defining a reasonable behavior model that will enable their evaluation.
The success of this project could have a broad impact on Europe and beyond, as it would guide the design of natural mechanisms for markets of tens of billions of dollars in revenue, such as online advertising, or sales of wireless frequencies.
The timing of this project is ideal, as the AMD field is now sufficiently mature to lead to a breakthrough and at the same time young enough to be receptive to new approaches and themes."
Summary
"The first decade of Algorithmic Mechanism Design (AMD) concentrated, very successfully, on the design of truthful mechanisms for the allocation of resources among agents with private preferences.
Truthful mechanisms are ones that incentivize rational users to report their preferences truthfully.
Truthfulness, however, for all its theoretical appeal, suffers from several inherent limitations, mainly its high communication and computation complexities.
It is not surprising, therefore, that practical applications forego truthfulness and use simpler mechanisms instead.
Simplicity in itself, however, is not sufficient, as any meaningful mechanism should also have some notion of fairness; otherwise agents will stop using it over time.
In this project I plan to develop an innovative AMD theoretical framework that will go beyond truthfulness and focus instead on the natural themes of simplicity and fairness, in addition to computational tractability.
One of my primary goals will be the design of simple and fair poly-time mechanisms that perform at near optimal levels with respect to important economic objectives such as social welfare and revenue.
To this end, I will work toward providing precise definitions of simplicity and fairness and quantifying the effects of these restrictions on the performance levels that can be obtained.
A major challenge in the evaluation of non-truthful mechanisms is defining a reasonable behavior model that will enable their evaluation.
The success of this project could have a broad impact on Europe and beyond, as it would guide the design of natural mechanisms for markets of tens of billions of dollars in revenue, such as online advertising, or sales of wireless frequencies.
The timing of this project is ideal, as the AMD field is now sufficiently mature to lead to a breakthrough and at the same time young enough to be receptive to new approaches and themes."
Max ERC Funding
1 394 600 €
Duration
Start date: 2013-11-01, End date: 2018-10-31
Project acronym ANCHOR
Project Articular cartilage regeneration through the recruitment of bone marrow derived mesenchymal stem cells into extracelluar matrix derived scaffolds anchored by 3D printed polymeric supports
Researcher (PI) Daniel KELLY
Host Institution (HI) THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN
Call Details Proof of Concept (PoC), ERC-2017-PoC
Summary Osteoarthritis (OA), the most common form of arthritis, is a serious disease of the joints affecting nearly 10% of the population worldwide. The onset of OA has been associated with defects to articular cartilage that lines the bones of synovial joints. Current strategies to treat articular cartilage defects are ineffective and/or prohibitively expensive. The aim of ANCHOR is to develop and commercialise a new medicinal product for articular cartilage regeneration that recruits endogenous bone marrow derived stem cells into an extracellular matrix derived scaffold anchored to the subchondral bone by 3D printed polymeric supports. By recruiting endogenous cells into a supporting scaffold, ANCHOR will obviate the need for pre-seeding scaffolds with cells prior to implantation into cartilage defects, thereby dramatically reducing the cost and complexity of the repair procedure. It will also overcome the need for suturing of a scaffold into a cartilage defect, which is a very time consuming and technically challenging surgical procedure. Finally, the inherent chondro-inductivity of the cartilage ECM derived scaffolds developed by the applicant will maximise the potential for hyaline cartilage regeneration. The project will leverage the applicants extensive experience in ECM derived biomaterials and 3D printing to develop a new product with significant commercial potential. The impact of ANCHOR will be multi-faceted: it will transform how damaged joints are treated by orthopaedic surgeons, it will create economic value through the commercialization of IP, and most importantly it will improve patient experience and their long-term health and well-being.
Summary
Osteoarthritis (OA), the most common form of arthritis, is a serious disease of the joints affecting nearly 10% of the population worldwide. The onset of OA has been associated with defects to articular cartilage that lines the bones of synovial joints. Current strategies to treat articular cartilage defects are ineffective and/or prohibitively expensive. The aim of ANCHOR is to develop and commercialise a new medicinal product for articular cartilage regeneration that recruits endogenous bone marrow derived stem cells into an extracellular matrix derived scaffold anchored to the subchondral bone by 3D printed polymeric supports. By recruiting endogenous cells into a supporting scaffold, ANCHOR will obviate the need for pre-seeding scaffolds with cells prior to implantation into cartilage defects, thereby dramatically reducing the cost and complexity of the repair procedure. It will also overcome the need for suturing of a scaffold into a cartilage defect, which is a very time consuming and technically challenging surgical procedure. Finally, the inherent chondro-inductivity of the cartilage ECM derived scaffolds developed by the applicant will maximise the potential for hyaline cartilage regeneration. The project will leverage the applicants extensive experience in ECM derived biomaterials and 3D printing to develop a new product with significant commercial potential. The impact of ANCHOR will be multi-faceted: it will transform how damaged joints are treated by orthopaedic surgeons, it will create economic value through the commercialization of IP, and most importantly it will improve patient experience and their long-term health and well-being.
Max ERC Funding
149 945 €
Duration
Start date: 2018-01-01, End date: 2019-06-30
Project acronym Andrea
Project A Novel Detection protocols for REliable prostate cancer Assays
Researcher (PI) Jan TKAC
Host Institution (HI) CHEMICKY USTAV SLOVENSKEJ AKADEMIEVIED
Call Details Proof of Concept (PoC), ERC-2018-PoC
Summary The technology validation was successfully completed indicating a great commercial potential, and the innovative and inventive aspects of the assay platform are now covered by the filed priority European Patent Office (EPO) patent applications. Validated glycoprofiling of the proteins now uses lectins in a format, fully compatible with clinical PSA assay kits. This PoC grant focuses on 1. Pre-clinical retrospective validation of the early stage biomarker of prostate cancer (PCa) and 2. Commercialisation of the PCa diagnostics kit. Pre-clinical (60 human serum samples) is ongoing and retrospective validation study (450 human serum samples) of the assay will be performed by statistical analysis using a receiver operating characteristic (ROC) curve. The PoC describes all steps, which have been developed so far and all necessary steps, which need to be done for retrospective validation study, product development and commercialisation through our newly incorporated start-up Glycanostics Ltd. (www.glycanostics.com). We will provide PCa diagnostic test resulting in a second opinion to guide the right decision if the biopsy is needed. This will avoid the needless and unreliable biopsies and in the future rival an inaccurate PSA testing.
Summary
The technology validation was successfully completed indicating a great commercial potential, and the innovative and inventive aspects of the assay platform are now covered by the filed priority European Patent Office (EPO) patent applications. Validated glycoprofiling of the proteins now uses lectins in a format, fully compatible with clinical PSA assay kits. This PoC grant focuses on 1. Pre-clinical retrospective validation of the early stage biomarker of prostate cancer (PCa) and 2. Commercialisation of the PCa diagnostics kit. Pre-clinical (60 human serum samples) is ongoing and retrospective validation study (450 human serum samples) of the assay will be performed by statistical analysis using a receiver operating characteristic (ROC) curve. The PoC describes all steps, which have been developed so far and all necessary steps, which need to be done for retrospective validation study, product development and commercialisation through our newly incorporated start-up Glycanostics Ltd. (www.glycanostics.com). We will provide PCa diagnostic test resulting in a second opinion to guide the right decision if the biopsy is needed. This will avoid the needless and unreliable biopsies and in the future rival an inaccurate PSA testing.
Max ERC Funding
149 500 €
Duration
Start date: 2018-12-01, End date: 2020-05-31
Project acronym ANEMONE
Project Antibiofouling Nanopatterned Electrospun Membranes for Nanofiltration Applications
Researcher (PI) Eoin CASEY
Host Institution (HI) UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN
Call Details Proof of Concept (PoC), ERC-2017-PoC
Summary Water-stress in an increasing global problem and solutions such as water recycling and seawater desalination are now
becoming a necessary part of the water infrastructure. The technology for the production of safe drinking is increasingly
dependent on these more diverse sources and a key enabling technology is membrane filtration. While membrane system
are effective, the operating costs of such systems are hampered by fouling which increases the energy requirement for
process operation. The unique idea of this Proof of Concept is to develop an electrospun nanostructured membrane which
can be integrated into water filtration technologies. The unique method of fabrication will produce an inherently antibacterial
and antibiofouling surface in a one-step process, cutting the number of manufacturing steps. This concept, when deployed
commercially is expected to dramatically reduce the operating costs of membrane processes for water treatment. The
commercialisation route of the product will be through the patent protection and the licensing of the technology with a view
to rapid commercialisation.
Summary
Water-stress in an increasing global problem and solutions such as water recycling and seawater desalination are now
becoming a necessary part of the water infrastructure. The technology for the production of safe drinking is increasingly
dependent on these more diverse sources and a key enabling technology is membrane filtration. While membrane system
are effective, the operating costs of such systems are hampered by fouling which increases the energy requirement for
process operation. The unique idea of this Proof of Concept is to develop an electrospun nanostructured membrane which
can be integrated into water filtration technologies. The unique method of fabrication will produce an inherently antibacterial
and antibiofouling surface in a one-step process, cutting the number of manufacturing steps. This concept, when deployed
commercially is expected to dramatically reduce the operating costs of membrane processes for water treatment. The
commercialisation route of the product will be through the patent protection and the licensing of the technology with a view
to rapid commercialisation.
Max ERC Funding
148 805 €
Duration
Start date: 2017-10-01, End date: 2019-03-31
Project acronym ANICOLEVO
Project Animal coloration through deep time: evolutionary novelty, homology and taphonomy
Researcher (PI) Maria McNamara
Host Institution (HI) UNIVERSITY COLLEGE CORK - NATIONAL UNIVERSITY OF IRELAND, CORK
Call Details Starting Grant (StG), LS8, ERC-2014-STG
Summary What does the fossil record tell us about the evolution of colour in animals through deep time? Evidence of colour in fossils can inform on the visual signalling strategies used by ancient animals. Research to date often has a narrow focus, lacks a broad phylogenetic and temporal context, and rarely incorporates information on taphonomy. This proposal represents a bold new holistic approach to the study of fossil colour: it will couple powerful imaging- and chemical analytical techniques with a rigorous programme of fossilisation experiments simulating decay, burial, and transport, and analysis of fossils and their sedimentary context, to construct the first robust models for the evolution of colour in animals through deep time. The research will resolve the original integumentary colours of fossil higher vertebrates, and the original colours of fossil hair; the fossil record of non-melanin pigments in feathers and insects; the biological significance of monotonal patterning in fossil insects; and the evolutionary history of scales and 3D photonic crystals in insects. Critically, the research will test, for the first time, whether evidence of fossil colour can solve broader evolutionary questions, e.g. the true affinities of enigmatic Cambrian chordate-like metazoans, and feather-like integumentary filaments in dinosaurs. The proposal entails construction of a dedicated experimental maturation laboratory for simulating the impact of burial on tissues. This laboratory will form the core of the world’s first integrated ‘experimental fossilisation facility’, consolidating the PI’s team as the global hub for fossil colour research. The research team comprises the PI, three postdoctoral researchers, and three PhD students, and will form an extensive research network via collaborations with 13 researchers from Europe and beyond. The project will reach out to diverse scientists and will inspire a positive attitude to science among the general public and policymakers alike.
Summary
What does the fossil record tell us about the evolution of colour in animals through deep time? Evidence of colour in fossils can inform on the visual signalling strategies used by ancient animals. Research to date often has a narrow focus, lacks a broad phylogenetic and temporal context, and rarely incorporates information on taphonomy. This proposal represents a bold new holistic approach to the study of fossil colour: it will couple powerful imaging- and chemical analytical techniques with a rigorous programme of fossilisation experiments simulating decay, burial, and transport, and analysis of fossils and their sedimentary context, to construct the first robust models for the evolution of colour in animals through deep time. The research will resolve the original integumentary colours of fossil higher vertebrates, and the original colours of fossil hair; the fossil record of non-melanin pigments in feathers and insects; the biological significance of monotonal patterning in fossil insects; and the evolutionary history of scales and 3D photonic crystals in insects. Critically, the research will test, for the first time, whether evidence of fossil colour can solve broader evolutionary questions, e.g. the true affinities of enigmatic Cambrian chordate-like metazoans, and feather-like integumentary filaments in dinosaurs. The proposal entails construction of a dedicated experimental maturation laboratory for simulating the impact of burial on tissues. This laboratory will form the core of the world’s first integrated ‘experimental fossilisation facility’, consolidating the PI’s team as the global hub for fossil colour research. The research team comprises the PI, three postdoctoral researchers, and three PhD students, and will form an extensive research network via collaborations with 13 researchers from Europe and beyond. The project will reach out to diverse scientists and will inspire a positive attitude to science among the general public and policymakers alike.
Max ERC Funding
1 562 000 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym aNtHESIS
Project Novel heart regeneration strategies
Researcher (PI) Eldad Tzahor
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Proof of Concept (PoC), PC1, ERC-2014-PoC
Summary Heart disease and particularly myocardial infarction, i.e. heart attack, is the leading cause of death in the Western world today. The diminished regenerative potential of the heart begins shortly after birth, when most CardioMyocytes (CMs) cease to proliferate and make a transition from hyperplastic to hypertrophic growth. The Tzahor lab has been intensively exploring novel molecules, compounds as well as the molecular mechanisms that facilitate CM cell division in the adult heart of mammals as a strategy for eliciting heart regeneration. These efforts, had led to the identification of novel compounds which significantly increased the proliferation of adult CMs. Drawing upon these findings, the aim of the aNtHESIS project is two-fold. First, to (i) validate the pre-clinical application of our two novel compounds by conducting comprehensive in-vitro and in-vivo tests in mice as well as by carrying out experiments using human CMs. The second aim is (ii) to establish the business feasibility of our cardiac regenerative therapy concept by taking the necessary steps towards the commercialization of our novel compounds, focusing on the creation of strategic alliances with key private sector companies.
Summary
Heart disease and particularly myocardial infarction, i.e. heart attack, is the leading cause of death in the Western world today. The diminished regenerative potential of the heart begins shortly after birth, when most CardioMyocytes (CMs) cease to proliferate and make a transition from hyperplastic to hypertrophic growth. The Tzahor lab has been intensively exploring novel molecules, compounds as well as the molecular mechanisms that facilitate CM cell division in the adult heart of mammals as a strategy for eliciting heart regeneration. These efforts, had led to the identification of novel compounds which significantly increased the proliferation of adult CMs. Drawing upon these findings, the aim of the aNtHESIS project is two-fold. First, to (i) validate the pre-clinical application of our two novel compounds by conducting comprehensive in-vitro and in-vivo tests in mice as well as by carrying out experiments using human CMs. The second aim is (ii) to establish the business feasibility of our cardiac regenerative therapy concept by taking the necessary steps towards the commercialization of our novel compounds, focusing on the creation of strategic alliances with key private sector companies.
Max ERC Funding
150 000 €
Duration
Start date: 2016-01-01, End date: 2017-06-30
Project acronym AntiCamp
Project Developing proprietary antibacterial phage-based particles against Campylobacter jejuni for food decontamination
Researcher (PI) Ehud Itzhak (Udi) Qimron
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Proof of Concept (PoC), ERC-2018-PoC
Summary Campylobacter jejuni is the most common foodborne contamination in Europe, affecting millions of people, and costing billions of Euros. Current procedures to treat this contamination do not offer sufficient solutions. Here I present a unique approach to eradicate the pathogen from food by utilizing a cost-effective and safe product that does not alter the taste, texture, or appearance of the food. This innovation involves a spray composed of proprietary phage-based particles, which inject antibacterial genes into C. jejuni, thus killing the pathogen. Current phage-based technologies for decontaminating food encounter a major hurdle, because large-scale phage production in the fastidious and pathogenic C. jejuni strain is highly challenging. However, a major advantage of my product is that it can be prepared in a safe and easy-to-grow Escherichia coli host rather than in C. jejuni. Another significant advantage is that the technology producing the phages enables rapid and efficient modifications to the phage-based particles. This platform thus allows easy isolation and manufacture of cocktails of phage-based particles able to target a variety of pathogenic serotypes of C. jejuni. Furthermore, the proprietary particles all have a common scaffold, thus simplifying the regulation, safety, and route of manufacture. I propose a clear commercialization activity with a highly qualified team that I recruited, from both the scientific and commercialization fields. Developing and commercializing this product will provide a proof-of-concept to demonstrate the strength of this approach and will thus pave the way for additional innovative materials based on this technology.
Summary
Campylobacter jejuni is the most common foodborne contamination in Europe, affecting millions of people, and costing billions of Euros. Current procedures to treat this contamination do not offer sufficient solutions. Here I present a unique approach to eradicate the pathogen from food by utilizing a cost-effective and safe product that does not alter the taste, texture, or appearance of the food. This innovation involves a spray composed of proprietary phage-based particles, which inject antibacterial genes into C. jejuni, thus killing the pathogen. Current phage-based technologies for decontaminating food encounter a major hurdle, because large-scale phage production in the fastidious and pathogenic C. jejuni strain is highly challenging. However, a major advantage of my product is that it can be prepared in a safe and easy-to-grow Escherichia coli host rather than in C. jejuni. Another significant advantage is that the technology producing the phages enables rapid and efficient modifications to the phage-based particles. This platform thus allows easy isolation and manufacture of cocktails of phage-based particles able to target a variety of pathogenic serotypes of C. jejuni. Furthermore, the proprietary particles all have a common scaffold, thus simplifying the regulation, safety, and route of manufacture. I propose a clear commercialization activity with a highly qualified team that I recruited, from both the scientific and commercialization fields. Developing and commercializing this product will provide a proof-of-concept to demonstrate the strength of this approach and will thus pave the way for additional innovative materials based on this technology.
Max ERC Funding
150 000 €
Duration
Start date: 2018-12-01, End date: 2020-05-31
Project acronym Antiseptic-Wax
Project Bioinspired superhydrophbic wax surfaces to eliminate biofilm formation in the food industry
Researcher (PI) Boaz Pokroy
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Proof of Concept (PoC), ERC-2018-PoC
Summary Microbial food spoilage leads to food-borne illnesses and food wastage. It is estimated that food borne disease cause 23 million illnesses and 5,000 deaths only in the European region and around 88 million tonnes of food are wasted annually. Contamination of food by biofilms can occur at any stage of the food production process or consumption. In this PoC we propose to address this problem taking inspiration from nature. We have shown that we can emulate various plant leaf surfaces by synthetic paraffin waxes which exhibit superhydrophobic and pronounced passive anti-microbial properties. These waxes are FDA approved for the use in food products. We plan to develop easy to apply waxed surfaces via spray and dip coating techniques, which can be easily implemented into the food industry at various stages of production. We believe this will allow to significantly reduce food spoilage and waste.
Summary
Microbial food spoilage leads to food-borne illnesses and food wastage. It is estimated that food borne disease cause 23 million illnesses and 5,000 deaths only in the European region and around 88 million tonnes of food are wasted annually. Contamination of food by biofilms can occur at any stage of the food production process or consumption. In this PoC we propose to address this problem taking inspiration from nature. We have shown that we can emulate various plant leaf surfaces by synthetic paraffin waxes which exhibit superhydrophobic and pronounced passive anti-microbial properties. These waxes are FDA approved for the use in food products. We plan to develop easy to apply waxed surfaces via spray and dip coating techniques, which can be easily implemented into the food industry at various stages of production. We believe this will allow to significantly reduce food spoilage and waste.
Max ERC Funding
150 000 €
Duration
Start date: 2018-08-01, End date: 2020-01-31
Project acronym ANTSolve
Project A multi-scale perspective into collective problem solving in ants
Researcher (PI) Ofer Feinerman
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Consolidator Grant (CoG), LS8, ERC-2017-COG
Summary Cognition improves an animal’s ability to tune its responses to environmental conditions. In group living animals, communication works to form a collective cognition that expands the group’s abilities beyond those of individuals. Despite much research, to date, there is little understanding of how collective cognition emerges within biological ensembles. A major obstacle towards such an understanding is the rarity of comprehensive multi-scale empirical data of these complex systems.
We have demonstrated cooperative load transport by ants to be an ideal system to study the emergence of cognition. Similar to other complex cognitive systems, the ants employ high levels of emergence to achieve efficient problem solving over a large range of scenarios. Unique to this system, is its extreme amenability to experimental measurement and manipulation where internal conflicts map to forces, abstract decision making is reflected in direction changes, and future planning manifested in pheromone trails. This allows for an unprecedentedly detailed, multi-scale empirical description of the moment-to-moment unfolding of sophisticated cognitive processes.
This proposal is aimed at materializing this potential to the full. We will examine the ants’ problem solving capabilities under a variety of environmental challenges. We will expose the underpinning rules on the different organizational scales, the flow of information between them, and their relative contributions to collective performance. This will allow for empirical comparisons between the ‘group’ and the ‘sum of its parts’ from which we will quantify the level of emergence in this system. Using the language of information, we will map the boundaries of this group’s collective cognition and relate them to the range of habitable environmental niches. Moreover, we will generalize these insights to formulate a new paradigm of emergence in biological groups opening new horizons in the study of cognitive processes in general.
Summary
Cognition improves an animal’s ability to tune its responses to environmental conditions. In group living animals, communication works to form a collective cognition that expands the group’s abilities beyond those of individuals. Despite much research, to date, there is little understanding of how collective cognition emerges within biological ensembles. A major obstacle towards such an understanding is the rarity of comprehensive multi-scale empirical data of these complex systems.
We have demonstrated cooperative load transport by ants to be an ideal system to study the emergence of cognition. Similar to other complex cognitive systems, the ants employ high levels of emergence to achieve efficient problem solving over a large range of scenarios. Unique to this system, is its extreme amenability to experimental measurement and manipulation where internal conflicts map to forces, abstract decision making is reflected in direction changes, and future planning manifested in pheromone trails. This allows for an unprecedentedly detailed, multi-scale empirical description of the moment-to-moment unfolding of sophisticated cognitive processes.
This proposal is aimed at materializing this potential to the full. We will examine the ants’ problem solving capabilities under a variety of environmental challenges. We will expose the underpinning rules on the different organizational scales, the flow of information between them, and their relative contributions to collective performance. This will allow for empirical comparisons between the ‘group’ and the ‘sum of its parts’ from which we will quantify the level of emergence in this system. Using the language of information, we will map the boundaries of this group’s collective cognition and relate them to the range of habitable environmental niches. Moreover, we will generalize these insights to formulate a new paradigm of emergence in biological groups opening new horizons in the study of cognitive processes in general.
Max ERC Funding
2 000 000 €
Duration
Start date: 2018-06-01, End date: 2023-05-31
Project acronym ANYONIC
Project Statistics of Exotic Fractional Hall States
Researcher (PI) Mordehai HEIBLUM
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Advanced Grant (AdG), PE3, ERC-2018-ADG
Summary Since their discovery, Quantum Hall Effects have unfolded intriguing avenues of research, exhibiting a multitude of unexpected exotic states: accurate quantized conductance states; particle-like and hole-conjugate fractional states; counter-propagating charge and neutral edge modes; and fractionally charged quasiparticles - abelian and (predicted) non-abelian. Since the sought-after anyonic statistics of fractional states is yet to be verified, I propose to launch a thorough search for it employing new means. I believe that our studies will serve the expanding field of the emerging family of topological materials.
Our on-going attempts to observe quasiparticles (qp’s) interference, in order to uncover their exchange statistics (under ERC), taught us that spontaneous, non-topological, ‘neutral edge modes’ are the main culprit responsible for qp’s dephasing. In an effort to quench the neutral modes, we plan to develop a new class of micro-size interferometers, based on synthetically engineered fractional modes. Flowing away from the fixed physical edge, their local environment can be controlled, making it less hospitable for the neutral modes.
Having at hand our synthetized helical-type fractional modes, it is highly tempting to employ them to form localize para-fermions, which will extend the family of exotic states. This can be done by proximitizing them to a superconductor, or gapping them via inter-mode coupling.
The less familiar thermal conductance measurements, which we recently developed (under ERC), will be applied throughout our work to identify ‘topological orders’ of exotic states; namely, distinguishing between abelian and non-abelian fractional states.
The proposal is based on an intensive and continuous MBE effort, aimed at developing extremely high purity, GaAs based, structures. Among them, structures that support our new synthetic modes that are amenable to manipulation, and others that host rare exotic states, such as v=5/2, 12/5, 19/8, and 35/16.
Summary
Since their discovery, Quantum Hall Effects have unfolded intriguing avenues of research, exhibiting a multitude of unexpected exotic states: accurate quantized conductance states; particle-like and hole-conjugate fractional states; counter-propagating charge and neutral edge modes; and fractionally charged quasiparticles - abelian and (predicted) non-abelian. Since the sought-after anyonic statistics of fractional states is yet to be verified, I propose to launch a thorough search for it employing new means. I believe that our studies will serve the expanding field of the emerging family of topological materials.
Our on-going attempts to observe quasiparticles (qp’s) interference, in order to uncover their exchange statistics (under ERC), taught us that spontaneous, non-topological, ‘neutral edge modes’ are the main culprit responsible for qp’s dephasing. In an effort to quench the neutral modes, we plan to develop a new class of micro-size interferometers, based on synthetically engineered fractional modes. Flowing away from the fixed physical edge, their local environment can be controlled, making it less hospitable for the neutral modes.
Having at hand our synthetized helical-type fractional modes, it is highly tempting to employ them to form localize para-fermions, which will extend the family of exotic states. This can be done by proximitizing them to a superconductor, or gapping them via inter-mode coupling.
The less familiar thermal conductance measurements, which we recently developed (under ERC), will be applied throughout our work to identify ‘topological orders’ of exotic states; namely, distinguishing between abelian and non-abelian fractional states.
The proposal is based on an intensive and continuous MBE effort, aimed at developing extremely high purity, GaAs based, structures. Among them, structures that support our new synthetic modes that are amenable to manipulation, and others that host rare exotic states, such as v=5/2, 12/5, 19/8, and 35/16.
Max ERC Funding
1 801 094 €
Duration
Start date: 2019-05-01, End date: 2024-04-30
Project acronym APARTHEID-STOPS
Project Apartheid -- The Global Itinerary: South African Cultural Formations in Transnational Circulation, 1948-1990
Researcher (PI) Louise Bethlehem
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Consolidator Grant (CoG), SH5, ERC-2013-CoG
Summary This proposal proceeds from an anomaly. Apartheid routinely breached the separation that it names. Whereas the South African regime was deeply isolationist in international terms, new research links it to the Cold War and decolonization. Yet this trend does not consider sufficiently that the global contest over the meaning of apartheid and resistance to it occurs on the terrain of culture. My project argues that studying the global circulation of South African cultural formations in the apartheid era provides novel historiographic leverage over Western liberalism during the Cold War. It recasts apartheid as an apparatus of transnational cultural production, turning existing historiography inside out. This study seeks:
• To provide the first systematic account of the deterritorialization of “apartheid”—as political signifier and as apparatus generating circuits of transnational cultural production.
• To analyze these itinerant cultural formations across media and national borders, articulating new intersections.
• To map the itineraries of major South African exiles, where exile is taken to be a system of interlinked circuits of affiliation and cultural production.
• To revise the historiography of states other than South Africa through the lens of deterritorialized apartheid-era formations at their respective destinations.
• To show how apartheid reveals contradictions within Western liberalism during the Cold War, with special reference to racial inequality.
Methodologically, I introduce the model of thick convergence to analyze three periods:
1. Kliptown & Bandung: Novel possibilities, 1948-1960.
2. Sharpeville & Memphis: Drumming up resistance, 1960-1976.
3. From Soweto to Berlin: Spectacle at the barricades, 1976-1990.
Each explores a cultural dominant in the form of texts, soundscapes or photographs. My work stands at the frontier of transnational research, furnishing powerful new insights into why South Africa matters on the stage of global history.
Summary
This proposal proceeds from an anomaly. Apartheid routinely breached the separation that it names. Whereas the South African regime was deeply isolationist in international terms, new research links it to the Cold War and decolonization. Yet this trend does not consider sufficiently that the global contest over the meaning of apartheid and resistance to it occurs on the terrain of culture. My project argues that studying the global circulation of South African cultural formations in the apartheid era provides novel historiographic leverage over Western liberalism during the Cold War. It recasts apartheid as an apparatus of transnational cultural production, turning existing historiography inside out. This study seeks:
• To provide the first systematic account of the deterritorialization of “apartheid”—as political signifier and as apparatus generating circuits of transnational cultural production.
• To analyze these itinerant cultural formations across media and national borders, articulating new intersections.
• To map the itineraries of major South African exiles, where exile is taken to be a system of interlinked circuits of affiliation and cultural production.
• To revise the historiography of states other than South Africa through the lens of deterritorialized apartheid-era formations at their respective destinations.
• To show how apartheid reveals contradictions within Western liberalism during the Cold War, with special reference to racial inequality.
Methodologically, I introduce the model of thick convergence to analyze three periods:
1. Kliptown & Bandung: Novel possibilities, 1948-1960.
2. Sharpeville & Memphis: Drumming up resistance, 1960-1976.
3. From Soweto to Berlin: Spectacle at the barricades, 1976-1990.
Each explores a cultural dominant in the form of texts, soundscapes or photographs. My work stands at the frontier of transnational research, furnishing powerful new insights into why South Africa matters on the stage of global history.
Max ERC Funding
1 861 238 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym ARCHAIC ADAPT
Project Admixture accelerated adaptation: signals from modern, ancient and archaic DNA.
Researcher (PI) Emilia HUERTA-SANCHEZ
Host Institution (HI) THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN
Call Details Starting Grant (StG), LS8, ERC-2018-STG
Summary With the advent of new sequencing technologies, population geneticists now have access to more data than ever before. We have access to thousands of human genomes from a diverse set of populations around the globe, and, thanks to advances in DNA extraction and library preparation, we now are beginning to have access to ancient DNA sequence data. These data have greatly improved our knowledge of human history, human adaptation to different environments and human disease. Genome-wide studies have highlighted many genes or genomic loci that may play a role in adaptive or disease related phenotypes of biological importance.
With these collections of modern and ancient sequence data we want to answer a key evolutionary question: how do human adaptations arise? We strongly believe that the state-of-the-art methodologies for uncovering signatures of adaptation are blind to potential modes of adaptation because they are lacking two critical components – more complete integration of multiple population haplotype data (including archaic, ancient and modern samples), and an account of population interactions that facilitate adaptation.
Therefore I plan to develop new methods to detect shared selective events across populations by creating novel statistical summaries, and to detect admixture-facilitated adaptation which we believe is likely a common mode of natural selection. We will apply these tools to new datasets to characterize the interplay of natural selection, archaic and modern admixture in populations in the Americas and make a comparative analysis of modern and ancient European samples to understand the origin and changing profile of adaptive archaic alleles. As a result our work will reveal evolutionary processes that have played an important role in human evolution and disease.
Summary
With the advent of new sequencing technologies, population geneticists now have access to more data than ever before. We have access to thousands of human genomes from a diverse set of populations around the globe, and, thanks to advances in DNA extraction and library preparation, we now are beginning to have access to ancient DNA sequence data. These data have greatly improved our knowledge of human history, human adaptation to different environments and human disease. Genome-wide studies have highlighted many genes or genomic loci that may play a role in adaptive or disease related phenotypes of biological importance.
With these collections of modern and ancient sequence data we want to answer a key evolutionary question: how do human adaptations arise? We strongly believe that the state-of-the-art methodologies for uncovering signatures of adaptation are blind to potential modes of adaptation because they are lacking two critical components – more complete integration of multiple population haplotype data (including archaic, ancient and modern samples), and an account of population interactions that facilitate adaptation.
Therefore I plan to develop new methods to detect shared selective events across populations by creating novel statistical summaries, and to detect admixture-facilitated adaptation which we believe is likely a common mode of natural selection. We will apply these tools to new datasets to characterize the interplay of natural selection, archaic and modern admixture in populations in the Americas and make a comparative analysis of modern and ancient European samples to understand the origin and changing profile of adaptive archaic alleles. As a result our work will reveal evolutionary processes that have played an important role in human evolution and disease.
Max ERC Funding
1 500 000 €
Duration
Start date: 2020-01-01, End date: 2024-12-31
Project acronym ARISE
Project The Ecology of Antibiotic Resistance
Researcher (PI) Roy Kishony
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Starting Grant (StG), LS8, ERC-2011-StG_20101109
Summary Main goal. We aim to understand the puzzling coexistence of antibiotic-resistant and antibiotic-sensitive species in natural soil environments, using novel quantitative experimental techniques and mathematical analysis. The ecological insights gained will be translated into novel treatment strategies for combating antibiotic resistance.
Background. Microbial soil ecosystems comprise communities of species interacting through copious secretion of antibiotics and other chemicals. Defence mechanisms, i.e. resistance to antibiotics, are ubiquitous in these wild communities. However, in sharp contrast to clinical settings, resistance does not take over the population. Our hypothesis is that the ecological setting provides natural mechanisms that keep antibiotic resistance in check. We are motivated by our recent finding that specific antibiotic combinations can generate selection against resistance and that soil microbial strains produce compounds that directly target antibiotic resistant mechanisms.
Approaches. We will: (1) Isolate natural bacterial species from individual grains of soil, characterize their ability to produce and resist antibiotics and identify the spatial scale for correlations between resistance and production. (2) Systematically measure interactions between species and identify interaction patterns enriched in co-existing communities derived from the same grain of soil. (3) Introducing fluorescently-labelled resistant and sensitive strains into natural soil, we will measure the fitness cost and benefit of antibiotic resistance in situ and identify natural compounds that select against resistance. (4) Test whether such “selection-inverting” compounds can slow evolution of resistance to antibiotics in continuous culture experiments.
Conclusions. These findings will provide insights into the ecological processes that keep antibiotic resistance in check, and will suggest novel antimicrobial treatment strategies.
Summary
Main goal. We aim to understand the puzzling coexistence of antibiotic-resistant and antibiotic-sensitive species in natural soil environments, using novel quantitative experimental techniques and mathematical analysis. The ecological insights gained will be translated into novel treatment strategies for combating antibiotic resistance.
Background. Microbial soil ecosystems comprise communities of species interacting through copious secretion of antibiotics and other chemicals. Defence mechanisms, i.e. resistance to antibiotics, are ubiquitous in these wild communities. However, in sharp contrast to clinical settings, resistance does not take over the population. Our hypothesis is that the ecological setting provides natural mechanisms that keep antibiotic resistance in check. We are motivated by our recent finding that specific antibiotic combinations can generate selection against resistance and that soil microbial strains produce compounds that directly target antibiotic resistant mechanisms.
Approaches. We will: (1) Isolate natural bacterial species from individual grains of soil, characterize their ability to produce and resist antibiotics and identify the spatial scale for correlations between resistance and production. (2) Systematically measure interactions between species and identify interaction patterns enriched in co-existing communities derived from the same grain of soil. (3) Introducing fluorescently-labelled resistant and sensitive strains into natural soil, we will measure the fitness cost and benefit of antibiotic resistance in situ and identify natural compounds that select against resistance. (4) Test whether such “selection-inverting” compounds can slow evolution of resistance to antibiotics in continuous culture experiments.
Conclusions. These findings will provide insights into the ecological processes that keep antibiotic resistance in check, and will suggest novel antimicrobial treatment strategies.
Max ERC Funding
1 900 000 €
Duration
Start date: 2012-09-01, End date: 2018-08-31
Project acronym ARITHQUANTUMCHAOS
Project Arithmetic and Quantum Chaos
Researcher (PI) Zeev Rudnick
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Advanced Grant (AdG), PE1, ERC-2012-ADG_20120216
Summary Quantum Chaos is an emerging discipline which is crossing over from Physics into Pure Mathematics. The recent crossover is driven in part by a connection with Number Theory. This project explores several aspects of this interrelationship and is composed of a number of sub-projects. The sub-projects deal with: statistics of energy levels and wave functions of pseudo-integrable systems, a hitherto unexplored subject in the mathematical community which is not well understood in the physics community; with statistics of zeros of zeta functions over function fields, a purely number theoretic topic which is linked to the subproject on Quantum Chaos through the mysterious connections to Random Matrix Theory and an analogy between energy levels and zeta zeros; and with spatial statistics in arithmetic.
Summary
Quantum Chaos is an emerging discipline which is crossing over from Physics into Pure Mathematics. The recent crossover is driven in part by a connection with Number Theory. This project explores several aspects of this interrelationship and is composed of a number of sub-projects. The sub-projects deal with: statistics of energy levels and wave functions of pseudo-integrable systems, a hitherto unexplored subject in the mathematical community which is not well understood in the physics community; with statistics of zeros of zeta functions over function fields, a purely number theoretic topic which is linked to the subproject on Quantum Chaos through the mysterious connections to Random Matrix Theory and an analogy between energy levels and zeta zeros; and with spatial statistics in arithmetic.
Max ERC Funding
1 714 000 €
Duration
Start date: 2013-02-01, End date: 2019-01-31
Project acronym ARRAY SEQ
Project Array-tagged single cell gene expression by parallel linear RNA amplification and sequencing
Researcher (PI) Itai Yanai
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Proof of Concept (PoC), ERC-2015-PoC, ERC-2015-PoC
Summary In many biomedical research and clinical applications it would be tremendously useful to know the gene expression profile of each and every cell in a sample, be it a blood sample or tumor. At present, the most advanced single-cell technologies are limited to a few thousand cells by a laborious and expensive approach. We have invented a method allowing the determination of the transcriptomes of millions of cells in parallel, using array-based technique for tagging single cells. The protocol combines our previously published protocol for single cell transcriptomics – CEL-Seq – with a new membrane based system for capturing single cells and a DNA microarray for differentially tagging each cell in the membrane. If further developed into a commercial platform, our method could have tremendous impact on clinical and research transcriptomics. Our method requires no expensive equipment, low amounts of reagents and little hands-on, making it unlike any available protocol for single cell analysis. Our method also has great versatility as it can be used for analyzing up to a million cells, but can also be easily scaled down to several hundreds, promising to make it the state of the art protocol for any lab interested in single cell biology. Our method thus represents a game-changer because it completely reinvents the scale under which cells can be examined – affordably and without a need for expensive instruments – by at least three orders of magnitude. The aim of this project is to establish a user-friendly platform for our method that could be commercially available in the coming years. The developed platform will facilitate a large-scale ability to query cells; the breadth of possible research and personal medicine applications is unimaginable at present.
Summary
In many biomedical research and clinical applications it would be tremendously useful to know the gene expression profile of each and every cell in a sample, be it a blood sample or tumor. At present, the most advanced single-cell technologies are limited to a few thousand cells by a laborious and expensive approach. We have invented a method allowing the determination of the transcriptomes of millions of cells in parallel, using array-based technique for tagging single cells. The protocol combines our previously published protocol for single cell transcriptomics – CEL-Seq – with a new membrane based system for capturing single cells and a DNA microarray for differentially tagging each cell in the membrane. If further developed into a commercial platform, our method could have tremendous impact on clinical and research transcriptomics. Our method requires no expensive equipment, low amounts of reagents and little hands-on, making it unlike any available protocol for single cell analysis. Our method also has great versatility as it can be used for analyzing up to a million cells, but can also be easily scaled down to several hundreds, promising to make it the state of the art protocol for any lab interested in single cell biology. Our method thus represents a game-changer because it completely reinvents the scale under which cells can be examined – affordably and without a need for expensive instruments – by at least three orders of magnitude. The aim of this project is to establish a user-friendly platform for our method that could be commercially available in the coming years. The developed platform will facilitate a large-scale ability to query cells; the breadth of possible research and personal medicine applications is unimaginable at present.
Max ERC Funding
150 000 €
Duration
Start date: 2015-09-01, End date: 2017-02-28
Project acronym ASTROFLOW
Project The influence of stellar outflows on exoplanetary mass loss
Researcher (PI) Aline VIDOTTO
Host Institution (HI) THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN
Call Details Consolidator Grant (CoG), PE9, ERC-2018-COG
Summary ASTROFLOW aims to make ground-breaking progress in our physical understanding of exoplanetary mass loss, by quantifying the influence of stellar outflows on atmospheric escape of close-in exoplanets. Escape plays a key role in planetary evolution, population, and potential to develop life. Stellar irradiation and outflows affect planetary mass loss: irradiation heats planetary atmospheres, which inflate and more likely escape; outflows cause pressure confinement around otherwise freely escaping atmospheres. This external pressure can increase, reduce or even suppress escape rates; its effects on exoplanetary mass loss remain largely unexplored due to the complexity of such interactions. I will fill this knowledge gap by developing a novel modelling framework of atmospheric escape that will, for the first time, consider the effects of realistic stellar outflows on exoplanetary mass loss. My expertise in stellar wind theory and 3D magnetohydrodynamic simulations is crucial for producing the next-generation models of planetary escape. My framework will consist of state-of-the-art, time-dependent, 3D simulations of stellar outflows (Method 1), which will be coupled to novel 3D simulations of atmospheric escape (Method 2). My models will account for the major underlying physical processes of mass loss. With this, I will determine the response of planetary mass loss to realistic stellar particle, magnetic and radiation environments and will characterise the physical conditions of the escaping material. I will compute how its extinction varies during transit and compare synthetic line profiles to atmospheric escape observations from, eg, Hubble and our NASA cubesat CUTE. Strong synergy with upcoming observations (JWST, TESS, SPIRou, CARMENES) also exists. Determining the lifetime of planetary atmospheres is essential to understanding populations of exoplanets. ASTROFLOW’s work will be the foundation for future research of how exoplanets evolve under mass-loss processes.
Summary
ASTROFLOW aims to make ground-breaking progress in our physical understanding of exoplanetary mass loss, by quantifying the influence of stellar outflows on atmospheric escape of close-in exoplanets. Escape plays a key role in planetary evolution, population, and potential to develop life. Stellar irradiation and outflows affect planetary mass loss: irradiation heats planetary atmospheres, which inflate and more likely escape; outflows cause pressure confinement around otherwise freely escaping atmospheres. This external pressure can increase, reduce or even suppress escape rates; its effects on exoplanetary mass loss remain largely unexplored due to the complexity of such interactions. I will fill this knowledge gap by developing a novel modelling framework of atmospheric escape that will, for the first time, consider the effects of realistic stellar outflows on exoplanetary mass loss. My expertise in stellar wind theory and 3D magnetohydrodynamic simulations is crucial for producing the next-generation models of planetary escape. My framework will consist of state-of-the-art, time-dependent, 3D simulations of stellar outflows (Method 1), which will be coupled to novel 3D simulations of atmospheric escape (Method 2). My models will account for the major underlying physical processes of mass loss. With this, I will determine the response of planetary mass loss to realistic stellar particle, magnetic and radiation environments and will characterise the physical conditions of the escaping material. I will compute how its extinction varies during transit and compare synthetic line profiles to atmospheric escape observations from, eg, Hubble and our NASA cubesat CUTE. Strong synergy with upcoming observations (JWST, TESS, SPIRou, CARMENES) also exists. Determining the lifetime of planetary atmospheres is essential to understanding populations of exoplanets. ASTROFLOW’s work will be the foundation for future research of how exoplanets evolve under mass-loss processes.
Max ERC Funding
1 999 956 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym ATLAS
Project Bioengineered autonomous cell-biomaterials devices for generating humanised micro-tissues for regenerative medicine
Researcher (PI) João Felipe Colardelle da Luz Mano
Host Institution (HI) UNIVERSIDADE DE AVEIRO
Call Details Advanced Grant (AdG), PE8, ERC-2014-ADG
Summary New generations of devices for tissue engineering (TE) should rationalize better the physical and biochemical cues operating in tandem during native regeneration, in particular at the scale/organizational-level of the stem cell niche. The understanding and the deconstruction of these factors (e.g. multiple cell types exchanging both paracrine and direct signals, structural and chemical arrangement of the extra-cellular matrix, mechanical signals…) should be then incorporated into the design of truly biomimetic biomaterials. ATLAS proposes rather unique toolboxes combining smart biomaterials and cells for the ground-breaking advances of engineering fully time-self-regulated complex 2D and 3D devices, able to adjust the cascade of processes leading to faster high-quality new tissue formation with minimum pre-processing of cells. Versatile biomaterials based on marine-origin macromolecules will be used, namely in the supramolecular assembly of instructive multilayers as nanostratified building-blocks for engineer such structures. The backbone of these biopolymers will be equipped with a variety of (bio)chemical elements permitting: post-processing chemistry and micro-patterning, specific/non-specific cell attachment, and cell-controlled degradation. Aiming at being applied in bone TE, ATLAS will integrate cells from different units of tissue physiology, namely bone and hematopoietic basic elements and consider the interactions between the immune and skeletal systems. These ingredients will permit to architect innovative films with high-level dialogue control with cells, but in particular sophisticated quasi-closed 3D capsules able to compartmentalise such components in a “globe-like” organization, providing local and long-range order for in vitro microtissue development and function. Such hybrid devices could be used in more generalised front-edge applications, including as disease models for drug discovery or test new therapies in vitro.
Summary
New generations of devices for tissue engineering (TE) should rationalize better the physical and biochemical cues operating in tandem during native regeneration, in particular at the scale/organizational-level of the stem cell niche. The understanding and the deconstruction of these factors (e.g. multiple cell types exchanging both paracrine and direct signals, structural and chemical arrangement of the extra-cellular matrix, mechanical signals…) should be then incorporated into the design of truly biomimetic biomaterials. ATLAS proposes rather unique toolboxes combining smart biomaterials and cells for the ground-breaking advances of engineering fully time-self-regulated complex 2D and 3D devices, able to adjust the cascade of processes leading to faster high-quality new tissue formation with minimum pre-processing of cells. Versatile biomaterials based on marine-origin macromolecules will be used, namely in the supramolecular assembly of instructive multilayers as nanostratified building-blocks for engineer such structures. The backbone of these biopolymers will be equipped with a variety of (bio)chemical elements permitting: post-processing chemistry and micro-patterning, specific/non-specific cell attachment, and cell-controlled degradation. Aiming at being applied in bone TE, ATLAS will integrate cells from different units of tissue physiology, namely bone and hematopoietic basic elements and consider the interactions between the immune and skeletal systems. These ingredients will permit to architect innovative films with high-level dialogue control with cells, but in particular sophisticated quasi-closed 3D capsules able to compartmentalise such components in a “globe-like” organization, providing local and long-range order for in vitro microtissue development and function. Such hybrid devices could be used in more generalised front-edge applications, including as disease models for drug discovery or test new therapies in vitro.
Max ERC Funding
2 498 988 €
Duration
Start date: 2015-12-01, End date: 2020-11-30
Project acronym AutoCAb
Project Automated computational design of site-targeted repertoires of camelid antibodies
Researcher (PI) Sarel-Jacob FLEISHMAN
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Consolidator Grant (CoG), LS9, ERC-2018-COG
Summary We propose to develop the first high-throughput strategy to design, synthesize, and screen repertoires comprising millions of single-domain camelid antibodies (VHH) that target desired protein surfaces. Each VHH will be individually designed for high stability and target-site affinity. We will leverage recent methods developed by our lab for designing stable, specific, and accurate backbones at interfaces, the advent of massive and affordable custom-DNA oligo synthesis, and machine learning methods to accomplish the following aims:
Aim 1: Establish a completely automated computational pipeline that uses Rosetta to design millions of VHHs targeting desired protein surfaces. The variable regions in each design will be encoded in DNA oligo pools, which will be assembled to generate the entire site-targeted repertoire. We will then use high-throughput binding screens followed by deep sequencing to characterize the designs’ target-site affinity and isolate high-affinity binders.
Aim 2: Develop an epitope-focusing strategy that designs several variants of a target antigen, each of which encodes dozens of radical surface mutations outside the target site to disrupt potential off-target site binding. The designs will be used to isolate site-targeting binders from repertoires of Aim 1.
Each high-throughput screen will provide unprecedented experimental data on target-site affinity in millions of individually designed VHHs.
Aim 3: Use machine learning methods to infer combinations of molecular features that distinguish high-affinity binders from non binders. These will be encoded in subsequent designed repertoires, leading to a continuous “learning loop” of methods for high-affinity, site-targeted binding.
AutoCAb’s interdisciplinary strategy will thus lead to deeper understanding of and new general methods for designing stable, high-affinity, site-targeted antibodies, potentially revolutionizing binder and inhibitor discovery in basic and applied biomedical research.
Summary
We propose to develop the first high-throughput strategy to design, synthesize, and screen repertoires comprising millions of single-domain camelid antibodies (VHH) that target desired protein surfaces. Each VHH will be individually designed for high stability and target-site affinity. We will leverage recent methods developed by our lab for designing stable, specific, and accurate backbones at interfaces, the advent of massive and affordable custom-DNA oligo synthesis, and machine learning methods to accomplish the following aims:
Aim 1: Establish a completely automated computational pipeline that uses Rosetta to design millions of VHHs targeting desired protein surfaces. The variable regions in each design will be encoded in DNA oligo pools, which will be assembled to generate the entire site-targeted repertoire. We will then use high-throughput binding screens followed by deep sequencing to characterize the designs’ target-site affinity and isolate high-affinity binders.
Aim 2: Develop an epitope-focusing strategy that designs several variants of a target antigen, each of which encodes dozens of radical surface mutations outside the target site to disrupt potential off-target site binding. The designs will be used to isolate site-targeting binders from repertoires of Aim 1.
Each high-throughput screen will provide unprecedented experimental data on target-site affinity in millions of individually designed VHHs.
Aim 3: Use machine learning methods to infer combinations of molecular features that distinguish high-affinity binders from non binders. These will be encoded in subsequent designed repertoires, leading to a continuous “learning loop” of methods for high-affinity, site-targeted binding.
AutoCAb’s interdisciplinary strategy will thus lead to deeper understanding of and new general methods for designing stable, high-affinity, site-targeted antibodies, potentially revolutionizing binder and inhibitor discovery in basic and applied biomedical research.
Max ERC Funding
2 337 500 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym AutoCode
Project Programming with Big Code
Researcher (PI) Eran Yahav
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Proof of Concept (PoC), ERC-2016-PoC, ERC-2016-PoC
Summary Software synthesis aims to automate the creation of software by generating parts of software from a higher-level description. Until recently it was believed to be impossible to practically synthesize software beyond very small fragments. However, synthesis based on learning from existing large code-bases (“Big Code”) is making synthesis into a practical reality . The purpose of this PoC is to develop a platform that would lead to commercialization of our technology to improve programming productivity and code quality. We target two closely related applications: (1) Providing automatic assistance in programming tasks by learning from existing code, and (2) Providing on-line assessment of code quality as it is being developed using learned models. These applications have the potential to dramatically reduce time-to-market of new software, and improve its quality and security.
Summary
Software synthesis aims to automate the creation of software by generating parts of software from a higher-level description. Until recently it was believed to be impossible to practically synthesize software beyond very small fragments. However, synthesis based on learning from existing large code-bases (“Big Code”) is making synthesis into a practical reality . The purpose of this PoC is to develop a platform that would lead to commercialization of our technology to improve programming productivity and code quality. We target two closely related applications: (1) Providing automatic assistance in programming tasks by learning from existing code, and (2) Providing on-line assessment of code quality as it is being developed using learned models. These applications have the potential to dramatically reduce time-to-market of new software, and improve its quality and security.
Max ERC Funding
150 000 €
Duration
Start date: 2017-05-01, End date: 2018-10-31
Project acronym AXIAL.EC
Project PRINCIPLES OF AXIAL POLARITY-DRIVEN VASCULAR PATTERNING
Researcher (PI) Claudio Franco
Host Institution (HI) INSTITUTO DE MEDICINA MOLECULAR JOAO LOBO ANTUNES
Call Details Starting Grant (StG), LS4, ERC-2015-STG
Summary The formation of a functional patterned vascular network is essential for development, tissue growth and organ physiology. Several human vascular disorders arise from the mis-patterning of blood vessels, such as arteriovenous malformations, aneurysms and diabetic retinopathy. Although blood flow is recognised as a stimulus for vascular patterning, very little is known about the molecular mechanisms that regulate endothelial cell behaviour in response to flow and promote vascular patterning.
Recently, we uncovered that endothelial cells migrate extensively in the immature vascular network, and that endothelial cells polarise against the blood flow direction. Here, we put forward the hypothesis that vascular patterning is dependent on the polarisation and migration of endothelial cells against the flow direction, in a continuous flux of cells going from low-shear stress to high-shear stress regions. We will establish new reporter mouse lines to observe and manipulate endothelial polarity in vivo in order to investigate how polarisation and coordination of endothelial cells movements are orchestrated to generate vascular patterning. We will manipulate cell polarity using mouse models to understand the importance of cell polarisation in vascular patterning. Also, using a unique zebrafish line allowing analysis of endothelial cell polarity, we will perform a screen to identify novel regulators of vascular patterning. Finally, we will explore the hypothesis that defective flow-dependent endothelial polarisation underlies arteriovenous malformations using two genetic models.
This integrative approach, based on high-resolution imaging and unique experimental models, will provide a unifying model defining the cellular and molecular principles involved in vascular patterning. Given the physiological relevance of vascular patterning in health and disease, this research plan will set the basis for the development of novel clinical therapies targeting vascular disorders.
Summary
The formation of a functional patterned vascular network is essential for development, tissue growth and organ physiology. Several human vascular disorders arise from the mis-patterning of blood vessels, such as arteriovenous malformations, aneurysms and diabetic retinopathy. Although blood flow is recognised as a stimulus for vascular patterning, very little is known about the molecular mechanisms that regulate endothelial cell behaviour in response to flow and promote vascular patterning.
Recently, we uncovered that endothelial cells migrate extensively in the immature vascular network, and that endothelial cells polarise against the blood flow direction. Here, we put forward the hypothesis that vascular patterning is dependent on the polarisation and migration of endothelial cells against the flow direction, in a continuous flux of cells going from low-shear stress to high-shear stress regions. We will establish new reporter mouse lines to observe and manipulate endothelial polarity in vivo in order to investigate how polarisation and coordination of endothelial cells movements are orchestrated to generate vascular patterning. We will manipulate cell polarity using mouse models to understand the importance of cell polarisation in vascular patterning. Also, using a unique zebrafish line allowing analysis of endothelial cell polarity, we will perform a screen to identify novel regulators of vascular patterning. Finally, we will explore the hypothesis that defective flow-dependent endothelial polarisation underlies arteriovenous malformations using two genetic models.
This integrative approach, based on high-resolution imaging and unique experimental models, will provide a unifying model defining the cellular and molecular principles involved in vascular patterning. Given the physiological relevance of vascular patterning in health and disease, this research plan will set the basis for the development of novel clinical therapies targeting vascular disorders.
Max ERC Funding
1 618 750 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym AXONGROWTH
Project Systematic analysis of the molecular mechanisms underlying axon growth during development and following injury
Researcher (PI) Oren Schuldiner
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Consolidator Grant (CoG), LS5, ERC-2013-CoG
Summary Axon growth potential declines during development, contributing to the lack of effective regeneration in the adult central nervous system. What determines the intrinsic growth potential of neurites, and how such growth is regulated during development, disease and following injury is a fundamental question in neuroscience. Although multiple lines of evidence indicate that intrinsic growth capability is genetically encoded, its nature remains poorly defined. Neuronal remodeling of the Drosophila mushroom body offers a unique opportunity to study the mechanisms of various types of axon degeneration and growth. We have recently demonstrated that regrowth of axons following developmental pruning is not only distinct from initial outgrowth but also shares molecular similarities with regeneration following injury. In this proposal we combine state of the art tools from genomics, functional genetics and microscopy to perform a comprehensive study of the mechanisms underlying axon growth during development and following injury. First, we will combine genetic, biochemical and genomic studies to gain a mechanistic understanding of the developmental regrowth program. Next, we will perform extensive transcriptomic analyses and comparisons aimed at defining the genetic programs involved in initial axon growth, developmental regrowth, and regeneration following injury. Finally, we will harness the genetic power of Drosophila to perform a comprehensive functional analysis of genes and pathways, those previously known and new ones that we will discover, in various neurite growth paradigms. Importantly, these functional assays will be performed in the same organism, allowing us to use identical genetic mutations across our analyses. To this end, our identification of a new genetic program regulating developmental axon regrowth, together with emerging tools in genomics, places us in a unique position to gain a broad understanding of axon growth during development and following injury.
Summary
Axon growth potential declines during development, contributing to the lack of effective regeneration in the adult central nervous system. What determines the intrinsic growth potential of neurites, and how such growth is regulated during development, disease and following injury is a fundamental question in neuroscience. Although multiple lines of evidence indicate that intrinsic growth capability is genetically encoded, its nature remains poorly defined. Neuronal remodeling of the Drosophila mushroom body offers a unique opportunity to study the mechanisms of various types of axon degeneration and growth. We have recently demonstrated that regrowth of axons following developmental pruning is not only distinct from initial outgrowth but also shares molecular similarities with regeneration following injury. In this proposal we combine state of the art tools from genomics, functional genetics and microscopy to perform a comprehensive study of the mechanisms underlying axon growth during development and following injury. First, we will combine genetic, biochemical and genomic studies to gain a mechanistic understanding of the developmental regrowth program. Next, we will perform extensive transcriptomic analyses and comparisons aimed at defining the genetic programs involved in initial axon growth, developmental regrowth, and regeneration following injury. Finally, we will harness the genetic power of Drosophila to perform a comprehensive functional analysis of genes and pathways, those previously known and new ones that we will discover, in various neurite growth paradigms. Importantly, these functional assays will be performed in the same organism, allowing us to use identical genetic mutations across our analyses. To this end, our identification of a new genetic program regulating developmental axon regrowth, together with emerging tools in genomics, places us in a unique position to gain a broad understanding of axon growth during development and following injury.
Max ERC Funding
2 000 000 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym BACNK
Project Recognition of bacteria by NK cells
Researcher (PI) Ofer Mandelboim
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Advanced Grant (AdG), LS6, ERC-2012-ADG_20120314
Summary NK cells that are well known by their ability to recognize and eliminate virus infected and tumor cells were also implicated in the defence against bacteria. However, the recognition of bacteria by NK cells is only poorly understood. we do not know how bacteria are recognized and the functional consequences of such recognition are also weakly understood. In the current proposal we aimed at determining the “NK cell receptor-bacterial interactome”. We will examine the hypothesis that NK inhibitory and activating receptors are directly involved in bacterial recognition. This ground breaking hypothesis is based on our preliminary results in which we show that several NK cell receptors directly recognize various bacterial strains as well as on a few other publications. We will generate various mice knockouts for NCR1 (a major NK killer receptor) and determine their microbiota to understand the physiological function of NCR1 and whether certain bacterial strains affects its activity. We will use different human and mouse NK killer and inhibitory receptors fused to IgG1 to pull-down bacteria from saliva and fecal samples and then use 16S rRNA analysis and next generation sequencing to determine the nature of the bacteria species isolated. We will identify the bacterial ligands that are recognized by the relevant NK cell receptors, using bacterial random transposon insertion mutagenesis approach. We will end this research with functional assays. In the wake of the emerging threat of bacterial drug resistance and the involvement of bacteria in the pathogenesis of many different chronic diseases and in shaping the immune response, the completion of this study will open a new field of research; the direct recognition of bacteria by NK cell receptors.
Summary
NK cells that are well known by their ability to recognize and eliminate virus infected and tumor cells were also implicated in the defence against bacteria. However, the recognition of bacteria by NK cells is only poorly understood. we do not know how bacteria are recognized and the functional consequences of such recognition are also weakly understood. In the current proposal we aimed at determining the “NK cell receptor-bacterial interactome”. We will examine the hypothesis that NK inhibitory and activating receptors are directly involved in bacterial recognition. This ground breaking hypothesis is based on our preliminary results in which we show that several NK cell receptors directly recognize various bacterial strains as well as on a few other publications. We will generate various mice knockouts for NCR1 (a major NK killer receptor) and determine their microbiota to understand the physiological function of NCR1 and whether certain bacterial strains affects its activity. We will use different human and mouse NK killer and inhibitory receptors fused to IgG1 to pull-down bacteria from saliva and fecal samples and then use 16S rRNA analysis and next generation sequencing to determine the nature of the bacteria species isolated. We will identify the bacterial ligands that are recognized by the relevant NK cell receptors, using bacterial random transposon insertion mutagenesis approach. We will end this research with functional assays. In the wake of the emerging threat of bacterial drug resistance and the involvement of bacteria in the pathogenesis of many different chronic diseases and in shaping the immune response, the completion of this study will open a new field of research; the direct recognition of bacteria by NK cell receptors.
Max ERC Funding
2 499 800 €
Duration
Start date: 2013-03-01, End date: 2018-02-28
Project acronym BACTERIAL RESPONSE
Project New Concepts in Bacterial Response to their Surroundings
Researcher (PI) Sigal Ben-Yehuda
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Advanced Grant (AdG), LS6, ERC-2013-ADG
Summary Bacteria in nature exhibit remarkable capacity to sense their surroundings and rapidly adapt to diverse conditions by gaining new beneficial traits. This extraordinary feature facilitates their survival when facing extreme environments. Utilizing Bacillus subtilis as our primary model organism, we propose to study two facets of this vital bacterial attribute: communication via extracellular nanotubes, and persistence as resilient spores while maintaining the potential to revive. Exploring these fascinating aspects of bacterial physiology is likely to change our view as to how bacteria sense, respond, endure and communicate with their extracellular environment.
We have recently discovered a previously uncharacterized mode of bacterial communication, mediated by tubular extensions (nanotubes) that bridge neighboring cells, providing a route for exchange of intracellular molecules. Nanotube-mediated molecular sharing may represent a key form of bacterial communication in nature, allowing for the emergence of new phenotypes and increasing survival in fluctuating environments. Here we propose to develop strategies for observing nanotube formation and molecular exchange in living bacterial cells, and to characterize the molecular composition of nanotubes. We will explore the premise that nanotubes serve as a strategy to expand the cell surface, and will determine whether nanotubes provide a conduit for phage infection and spreading. Furthermore, the formation and functionality of interspecies nanotubes will be explored. An additional mode employed by bacteria to achieve extreme robustness is the ability to reside as long lasting spores. Previously held views considered the spore to be dormant and metabolically inert. However, we have recently shown that at least one week following spore formation, during an adaptive period, the spore senses and responds to environmental cues and undergoes corresponding molecular changes, influencing subsequent emergence from quiescence.
Summary
Bacteria in nature exhibit remarkable capacity to sense their surroundings and rapidly adapt to diverse conditions by gaining new beneficial traits. This extraordinary feature facilitates their survival when facing extreme environments. Utilizing Bacillus subtilis as our primary model organism, we propose to study two facets of this vital bacterial attribute: communication via extracellular nanotubes, and persistence as resilient spores while maintaining the potential to revive. Exploring these fascinating aspects of bacterial physiology is likely to change our view as to how bacteria sense, respond, endure and communicate with their extracellular environment.
We have recently discovered a previously uncharacterized mode of bacterial communication, mediated by tubular extensions (nanotubes) that bridge neighboring cells, providing a route for exchange of intracellular molecules. Nanotube-mediated molecular sharing may represent a key form of bacterial communication in nature, allowing for the emergence of new phenotypes and increasing survival in fluctuating environments. Here we propose to develop strategies for observing nanotube formation and molecular exchange in living bacterial cells, and to characterize the molecular composition of nanotubes. We will explore the premise that nanotubes serve as a strategy to expand the cell surface, and will determine whether nanotubes provide a conduit for phage infection and spreading. Furthermore, the formation and functionality of interspecies nanotubes will be explored. An additional mode employed by bacteria to achieve extreme robustness is the ability to reside as long lasting spores. Previously held views considered the spore to be dormant and metabolically inert. However, we have recently shown that at least one week following spore formation, during an adaptive period, the spore senses and responds to environmental cues and undergoes corresponding molecular changes, influencing subsequent emergence from quiescence.
Max ERC Funding
1 497 800 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym BACTERIAL SPORES
Project Investigating the Nature of Bacterial Spores
Researcher (PI) Sigal Ben-Yehuda
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Starting Grant (StG), LS3, ERC-2007-StG
Summary When triggered by nutrient limitation, the Gram-positive bacterium Bacillus subtilis and its relatives enter a pathway of cellular differentiation culminating in the formation of a dormant cell type called a spore, the most resilient cell type known. Bacterial spores can survive for long periods of time and are able to endure extremes of heat, radiation and chemical assault. Remarkably, dormant spores can rapidly convert back to actively growing cells by a process called germination. Consequently, spore forming bacteria, including dangerous pathogens, (such as C. botulinum and B. anthracis) are highly resistant to antibacterial treatments and difficult to eradicate. Despite significant advances in our understanding of the process of spore formation, little is known about the nature of the mature spore. It is unrevealed how dormancy is maintained within the spore and how it is ceased, as the organization and the dynamics of the spore macromolecules remain obscure. The unusual biochemical and biophysical characteristics of the dormant spore make it a challenging biological system to investigate using conventional methods, and thus set the need to develop innovative approaches to study spore biology. We propose to explore the nature of spores by using B. subtilis as a primary experimental system. We intend to: (1) define the architecture of the spore chromosome, (2) track the complexity and fate of mRNA and protein molecules during sporulation, dormancy and germination, (3) revisit the basic notion of the spore dormancy (is it metabolically inert?), (4) compare the characteristics of bacilli spores from diverse ecophysiological groups, (5) investigate the features of spores belonging to distant bacterial genera, (6) generate an integrative database that categorizes the molecular features of spores. Our study will provide original insights and introduce novel concepts to the field of spore biology and may help devise innovative ways to combat spore forming pathogens.
Summary
When triggered by nutrient limitation, the Gram-positive bacterium Bacillus subtilis and its relatives enter a pathway of cellular differentiation culminating in the formation of a dormant cell type called a spore, the most resilient cell type known. Bacterial spores can survive for long periods of time and are able to endure extremes of heat, radiation and chemical assault. Remarkably, dormant spores can rapidly convert back to actively growing cells by a process called germination. Consequently, spore forming bacteria, including dangerous pathogens, (such as C. botulinum and B. anthracis) are highly resistant to antibacterial treatments and difficult to eradicate. Despite significant advances in our understanding of the process of spore formation, little is known about the nature of the mature spore. It is unrevealed how dormancy is maintained within the spore and how it is ceased, as the organization and the dynamics of the spore macromolecules remain obscure. The unusual biochemical and biophysical characteristics of the dormant spore make it a challenging biological system to investigate using conventional methods, and thus set the need to develop innovative approaches to study spore biology. We propose to explore the nature of spores by using B. subtilis as a primary experimental system. We intend to: (1) define the architecture of the spore chromosome, (2) track the complexity and fate of mRNA and protein molecules during sporulation, dormancy and germination, (3) revisit the basic notion of the spore dormancy (is it metabolically inert?), (4) compare the characteristics of bacilli spores from diverse ecophysiological groups, (5) investigate the features of spores belonging to distant bacterial genera, (6) generate an integrative database that categorizes the molecular features of spores. Our study will provide original insights and introduce novel concepts to the field of spore biology and may help devise innovative ways to combat spore forming pathogens.
Max ERC Funding
1 630 000 €
Duration
Start date: 2008-10-01, End date: 2013-09-30
Project acronym BacterialCORE
Project Widespread Bacterial CORE Complex Executes Intra- and Inter-Kingdom Cytoplasmic Molecular Trade
Researcher (PI) Sigal BEN-YEHUDA
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Synergy Grants (SyG), SyG3LSa, ERC-2018-SyG
Summary The enormous versatility of bacteria enables the formation of multi-species communities that colonize nearly every niche on earth, making them the dominant life form and a major component of the biomass. Exchange of molecular information among neighboring bacteria in such communities, as well as between bacteria and proximal eukaryotic cells, is key for bacterial success. Yet, the principles controlling these multicellular interactions are poorly defined. Here we describe the identification of a bacterial protein complex, herein termed CORE, whose function is to traffic cytoplasmic molecules among different bacterial species, and between pathogenic bacteria and their human host cells. The CORE is composed of five membrane proteins, highly conserved across the entire bacterial kingdom, providing a ubiquitous platform that facilitates both intra- and inter-kingdom crosstalk. Our preliminary data support the idea that the CORE acts as a shared module for the assembly of larger apparatuses, executing this universal molecular flow among organisms. We propose to elucidate components, structure and biogenesis of the CORE machinery, operating during bacteria-bacteria and pathogen-host interactions. We further aim to provide an unbiased-global view of the extent and identity of cytoplasmic molecules traded via CORE including metabolites, proteins and RNA, and to reveal the criteria determining the specificity of the transported cargo. Furthermore, we intend to decipher the impact of CORE-mediated molecular exchange on bacterial physiology and virulence, and devise anti-CORE compounds to combat pathogenic bacteria. This study is expected to transform the way we currently view bacterial communities and host-pathogen interactions. We anticipate these findings to lead to the development of creative strategies to modulate, predict and even design bacterial communities, and lay the foundation for new and innovative approaches to fight bacterial diseases.
Summary
The enormous versatility of bacteria enables the formation of multi-species communities that colonize nearly every niche on earth, making them the dominant life form and a major component of the biomass. Exchange of molecular information among neighboring bacteria in such communities, as well as between bacteria and proximal eukaryotic cells, is key for bacterial success. Yet, the principles controlling these multicellular interactions are poorly defined. Here we describe the identification of a bacterial protein complex, herein termed CORE, whose function is to traffic cytoplasmic molecules among different bacterial species, and between pathogenic bacteria and their human host cells. The CORE is composed of five membrane proteins, highly conserved across the entire bacterial kingdom, providing a ubiquitous platform that facilitates both intra- and inter-kingdom crosstalk. Our preliminary data support the idea that the CORE acts as a shared module for the assembly of larger apparatuses, executing this universal molecular flow among organisms. We propose to elucidate components, structure and biogenesis of the CORE machinery, operating during bacteria-bacteria and pathogen-host interactions. We further aim to provide an unbiased-global view of the extent and identity of cytoplasmic molecules traded via CORE including metabolites, proteins and RNA, and to reveal the criteria determining the specificity of the transported cargo. Furthermore, we intend to decipher the impact of CORE-mediated molecular exchange on bacterial physiology and virulence, and devise anti-CORE compounds to combat pathogenic bacteria. This study is expected to transform the way we currently view bacterial communities and host-pathogen interactions. We anticipate these findings to lead to the development of creative strategies to modulate, predict and even design bacterial communities, and lay the foundation for new and innovative approaches to fight bacterial diseases.
Max ERC Funding
6 930 796 €
Duration
Start date: 2019-04-01, End date: 2025-03-31
Project acronym BANDWIDTH
Project The cost of limited communication bandwidth in distributed computing
Researcher (PI) Keren CENSOR-HILLEL
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Starting Grant (StG), PE6, ERC-2017-STG
Summary Distributed systems underlie many modern technologies, a prime example being the Internet. The ever-increasing abundance of distributed systems necessitates their design and usage to be backed by strong theoretical foundations.
A major challenge that distributed systems face is the lack of a central authority, which brings many aspects of uncertainty into the environment, in the form of unknown network topology or unpredictable dynamic behavior. A practical restriction of distributed systems, which is at the heart of this proposal, is the limited bandwidth available for communication between the network components.
A central family of distributed tasks is that of local tasks, which are informally described as tasks which are possible to solve by sending information through only a relatively small number of hops. A cornerstone example is the need to break symmetry and provide a better utilization of resources, which can be obtained by the task of producing a valid coloring of the nodes given some small number of colors. Amazingly, there are still huge gaps between the known upper and lower bounds for the complexity of many local tasks. This holds even if one allows powerful assumptions of unlimited bandwidth. While some known algorithms indeed use small messages, the complexity gaps are even larger compared to the unlimited bandwidth case. This is not a mere coincidence, and in fact the existing theoretical infrastructure is provably incapable of
giving stronger lower bounds for many local tasks under limited bandwidth.
This proposal zooms in on this crucial blind spot in the current literature on the theory of distributed computing, namely, the study of local tasks under limited bandwidth. The goal of this research is to produce fast algorithms for fundamental distributed local tasks under restricted bandwidth, as well as understand their limitations by providing lower bounds.
Summary
Distributed systems underlie many modern technologies, a prime example being the Internet. The ever-increasing abundance of distributed systems necessitates their design and usage to be backed by strong theoretical foundations.
A major challenge that distributed systems face is the lack of a central authority, which brings many aspects of uncertainty into the environment, in the form of unknown network topology or unpredictable dynamic behavior. A practical restriction of distributed systems, which is at the heart of this proposal, is the limited bandwidth available for communication between the network components.
A central family of distributed tasks is that of local tasks, which are informally described as tasks which are possible to solve by sending information through only a relatively small number of hops. A cornerstone example is the need to break symmetry and provide a better utilization of resources, which can be obtained by the task of producing a valid coloring of the nodes given some small number of colors. Amazingly, there are still huge gaps between the known upper and lower bounds for the complexity of many local tasks. This holds even if one allows powerful assumptions of unlimited bandwidth. While some known algorithms indeed use small messages, the complexity gaps are even larger compared to the unlimited bandwidth case. This is not a mere coincidence, and in fact the existing theoretical infrastructure is provably incapable of
giving stronger lower bounds for many local tasks under limited bandwidth.
This proposal zooms in on this crucial blind spot in the current literature on the theory of distributed computing, namely, the study of local tasks under limited bandwidth. The goal of this research is to produce fast algorithms for fundamental distributed local tasks under restricted bandwidth, as well as understand their limitations by providing lower bounds.
Max ERC Funding
1 486 480 €
Duration
Start date: 2018-06-01, End date: 2023-05-31
Project acronym BARCODE DIAGNOSTICS
Project Next-Generation Personalized Diagnostic Nanotechnologies for Predicting Response to Cancer Medicine
Researcher (PI) Avraham Dror Schroeder
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Starting Grant (StG), LS7, ERC-2015-STG
Summary Cancer is the leading cause of death in the Western world and the second cause of death worldwide. Despite advances in medical research, 30% of cancer patients are prescribed a medication the tumor does not respond to, or, alternatively, drugs that induce adverse side effects patients' cannot tolerate.
Nanotechnologies are becoming impactful therapeutic tools, granting tissue-targeting and cellular precision that cannot be attained using systems of larger scale.
In this proposal, I plan to expand far beyond the state-of-the-art and develop a conceptually new approach in which diagnostic nanoparticles are designed to retrieve drug-sensitivity information from malignant tissue inside the body. The ultimate goal of this program is to be able to predict, ahead of time, which treatment will be best for each cancer patient – an emerging field called personalized medicine. This interdisciplinary research program will expand our understandings and capabilities in nanotechnology, cancer biology and medicine.
To achieve this goal, I will engineer novel nanotechnologies that autonomously maneuver, target and diagnose the various cells that compose the tumor microenvironment and its disseminated metastasis. Each nanometric system will contain a miniscule amount of a biologically-active agent, and will serve as a nano lab for testing the activity of the agents inside the tumor cells.
To distinguish between system to system, and to grant single-cell sensitivity in vivo, nanoparticles will be barcoded with unique DNA fragments.
We will enable nanoparticle' deep tissue penetration into primary tumors and metastatic microenvironments using enzyme-loaded particles, and study how different agents, including small-molecule drugs, proteins and RNA, interact with the malignant and stromal cells that compose the cancerous microenvironments. Finally, we will demonstrate the ability of barcoded nanoparticles to predict adverse, life-threatening, side effects, in a personalized manner.
Summary
Cancer is the leading cause of death in the Western world and the second cause of death worldwide. Despite advances in medical research, 30% of cancer patients are prescribed a medication the tumor does not respond to, or, alternatively, drugs that induce adverse side effects patients' cannot tolerate.
Nanotechnologies are becoming impactful therapeutic tools, granting tissue-targeting and cellular precision that cannot be attained using systems of larger scale.
In this proposal, I plan to expand far beyond the state-of-the-art and develop a conceptually new approach in which diagnostic nanoparticles are designed to retrieve drug-sensitivity information from malignant tissue inside the body. The ultimate goal of this program is to be able to predict, ahead of time, which treatment will be best for each cancer patient – an emerging field called personalized medicine. This interdisciplinary research program will expand our understandings and capabilities in nanotechnology, cancer biology and medicine.
To achieve this goal, I will engineer novel nanotechnologies that autonomously maneuver, target and diagnose the various cells that compose the tumor microenvironment and its disseminated metastasis. Each nanometric system will contain a miniscule amount of a biologically-active agent, and will serve as a nano lab for testing the activity of the agents inside the tumor cells.
To distinguish between system to system, and to grant single-cell sensitivity in vivo, nanoparticles will be barcoded with unique DNA fragments.
We will enable nanoparticle' deep tissue penetration into primary tumors and metastatic microenvironments using enzyme-loaded particles, and study how different agents, including small-molecule drugs, proteins and RNA, interact with the malignant and stromal cells that compose the cancerous microenvironments. Finally, we will demonstrate the ability of barcoded nanoparticles to predict adverse, life-threatening, side effects, in a personalized manner.
Max ERC Funding
1 499 250 €
Duration
Start date: 2016-04-01, End date: 2021-03-31
Project acronym BARINAFLD
Project Using Bariatric Surgery to Discover Weight-Loss Independent Mechanisms Leading to the Reversal of Fatty Liver Disease
Researcher (PI) Danny Ben-Zvi
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Starting Grant (StG), LS4, ERC-2018-STG
Summary Non-Alcoholic Fatty Liver Disease (NAFLD), a disease characterized by accumulation of lipid droplets in the liver, is the major precursor for liver failure and liver cancer, and constitutes a global health challenge. An estimated 25% of the adult population suffers from NAFLD, but no FDA approved drugs are available to treat this condition. Obesity is a major NAFLD risk factor and weight-loss improves disease severity in obese patients. Bariatric surgeries are an effective treatment for obesity when lifestyle modifications fail and often lead to improvement in NAFLD and type 2 diabetes.
The overreaching objective of this proposal is to combine bariatric surgery in mice and humans with advanced molecular and computational analyses to discover novel, weight-loss independent mechanisms that lead to NAFLD alleviation, and harness them to treat NAFLD.
In preliminary studies, I discovered that bariatric surgery clears lipid droplets from the livers of obese db/db mice without inducing weight-loss. Using metabolic and computational analysis, I found that bariatric surgery shifts hepatic gene expression and blood metabolome of post-bariatric patients to a new trajectory, distinct from lean or sick patients. Data analysis revealed the transcription factor Egr1 and one-carbon and choline metabolism to be key drivers of weight-loss independent effects of bariatric surgery.
I will use two NAFLD mouse models that do not lose weight after bariatric surgery to characterize livers of mice post-surgery. Human patients do lose weight following surgery, therefore I will use computational methods to elucidate weight-independent pathways induced by surgery, by comparing livers of lean patients to those of NAFLD patients before and shortly after bariatric surgery. Candidate pathways will be studied by metabolic flux analysis and manipulated genetically, with the ultimate goal of reaching systems-levels understanding of NAFLD and identifying surgery-mimetic therapies for this disease.
Summary
Non-Alcoholic Fatty Liver Disease (NAFLD), a disease characterized by accumulation of lipid droplets in the liver, is the major precursor for liver failure and liver cancer, and constitutes a global health challenge. An estimated 25% of the adult population suffers from NAFLD, but no FDA approved drugs are available to treat this condition. Obesity is a major NAFLD risk factor and weight-loss improves disease severity in obese patients. Bariatric surgeries are an effective treatment for obesity when lifestyle modifications fail and often lead to improvement in NAFLD and type 2 diabetes.
The overreaching objective of this proposal is to combine bariatric surgery in mice and humans with advanced molecular and computational analyses to discover novel, weight-loss independent mechanisms that lead to NAFLD alleviation, and harness them to treat NAFLD.
In preliminary studies, I discovered that bariatric surgery clears lipid droplets from the livers of obese db/db mice without inducing weight-loss. Using metabolic and computational analysis, I found that bariatric surgery shifts hepatic gene expression and blood metabolome of post-bariatric patients to a new trajectory, distinct from lean or sick patients. Data analysis revealed the transcription factor Egr1 and one-carbon and choline metabolism to be key drivers of weight-loss independent effects of bariatric surgery.
I will use two NAFLD mouse models that do not lose weight after bariatric surgery to characterize livers of mice post-surgery. Human patients do lose weight following surgery, therefore I will use computational methods to elucidate weight-independent pathways induced by surgery, by comparing livers of lean patients to those of NAFLD patients before and shortly after bariatric surgery. Candidate pathways will be studied by metabolic flux analysis and manipulated genetically, with the ultimate goal of reaching systems-levels understanding of NAFLD and identifying surgery-mimetic therapies for this disease.
Max ERC Funding
1 499 354 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym BeadsOnString
Project Beads on String Genomics: Experimental Toolbox for Unmasking Genetic / Epigenetic Variation in Genomic DNA and Chromatin
Researcher (PI) Yuval Ebenstein
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Starting Grant (StG), PE4, ERC-2013-StG
Summary Next generation sequencing (NGS) is revolutionizing all fields of biological research but it fails to extract the full range of information associated with genetic material and is lacking in its ability to resolve variations between genomes. The high degree of genome variation exhibited both on the population level as well as between genetically “identical” cells (even in the same organ) makes genetic and epigenetic analysis on the single cell and single genome level a necessity.
Chromosomes may be conceptually represented as a linear one-dimensional barcode. However, in contrast to a traditional binary barcode approach that considers only two possible bits of information (1 & 0), I will use colour and molecular structure to expand the variety of information represented in the barcode. Like colourful beads threaded on a string, where each bead represents a distinct type of observable, I will label each type of genomic information with a different chemical moiety thus expanding the repertoire of information that can be simultaneously measured. A major effort in this proposal is invested in the development of unique chemistries to enable this labelling.
I specifically address three types of genomic variation: Variations in genomic layout (including DNA repeats, structural and copy number variations), variations in the patterns of chemical DNA modifications (such as methylation of cytosine bases) and variations in the chromatin composition (including nucleosome and transcription factor distributions). I will use physical extension of long DNA molecules on surfaces and in nanofluidic channels to reveal this information visually in the form of a linear, fluorescent “barcode” that is read-out by advanced imaging techniques. Similarly, DNA molecules will be threaded through a nanopore where the sequential position of “bulky” molecular groups attached to the DNA may be inferred from temporal modulation of an ionic current measured across the pore.
Summary
Next generation sequencing (NGS) is revolutionizing all fields of biological research but it fails to extract the full range of information associated with genetic material and is lacking in its ability to resolve variations between genomes. The high degree of genome variation exhibited both on the population level as well as between genetically “identical” cells (even in the same organ) makes genetic and epigenetic analysis on the single cell and single genome level a necessity.
Chromosomes may be conceptually represented as a linear one-dimensional barcode. However, in contrast to a traditional binary barcode approach that considers only two possible bits of information (1 & 0), I will use colour and molecular structure to expand the variety of information represented in the barcode. Like colourful beads threaded on a string, where each bead represents a distinct type of observable, I will label each type of genomic information with a different chemical moiety thus expanding the repertoire of information that can be simultaneously measured. A major effort in this proposal is invested in the development of unique chemistries to enable this labelling.
I specifically address three types of genomic variation: Variations in genomic layout (including DNA repeats, structural and copy number variations), variations in the patterns of chemical DNA modifications (such as methylation of cytosine bases) and variations in the chromatin composition (including nucleosome and transcription factor distributions). I will use physical extension of long DNA molecules on surfaces and in nanofluidic channels to reveal this information visually in the form of a linear, fluorescent “barcode” that is read-out by advanced imaging techniques. Similarly, DNA molecules will be threaded through a nanopore where the sequential position of “bulky” molecular groups attached to the DNA may be inferred from temporal modulation of an ionic current measured across the pore.
Max ERC Funding
1 627 600 €
Duration
Start date: 2013-10-01, End date: 2018-09-30
Project acronym BEAMING
Project Detecting massive-planet/brown-dwarf/low-mass-stellar companions with the beaming effect
Researcher (PI) Moshe Zvi Mazeh
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Advanced Grant (AdG), PE9, ERC-2011-ADG_20110209
Summary "I propose to lead an international observational effort to characterize the population of massive planets, brown dwarf and stellar secondaries orbiting their parent stars with short periods, up to 10-30 days. The effort will utilize the superb, accurate, continuous lightcurves of more than hundred thousand stars obtained recently by two space missions – CoRoT and Kepler. I propose to use these lightcurves to detect non-transiting low-mass companions with a new algorithm, BEER, which I developed recently together with Simchon Faigler. BEER searches for the beaming effect, which causes the stellar intensity to increase if the star is moving towards the observer. The combination of the beaming effect with other modulations induced by a low-mass companion produces periodic modulation with a specific signature, which is used to detect small non-transiting companions. The accuracy of the space mission lightcurves is enough to detect massive planets with short periods. The proposed project is equivalent to a radial-velocity survey of tens of thousands of stars, instead of the presently active surveys which observe only hundreds of stars.
We will use an assortment of telescopes to perform radial velocity follow-up observations in order to confirm the existence of the detected companions, and to derive their masses and orbital eccentricities. We will discover many tens, if not hundreds, of new massive planets and brown dwarfs with short periods, and many thousands of new binaries. The findings will enable us to map the mass, period, and eccentricity distributions of planets and stellar companions, determine the upper mass of planets, understand the nature of the brown-dwarf desert, and put strong constrains on the theory of planet and binary formation and evolution."
Summary
"I propose to lead an international observational effort to characterize the population of massive planets, brown dwarf and stellar secondaries orbiting their parent stars with short periods, up to 10-30 days. The effort will utilize the superb, accurate, continuous lightcurves of more than hundred thousand stars obtained recently by two space missions – CoRoT and Kepler. I propose to use these lightcurves to detect non-transiting low-mass companions with a new algorithm, BEER, which I developed recently together with Simchon Faigler. BEER searches for the beaming effect, which causes the stellar intensity to increase if the star is moving towards the observer. The combination of the beaming effect with other modulations induced by a low-mass companion produces periodic modulation with a specific signature, which is used to detect small non-transiting companions. The accuracy of the space mission lightcurves is enough to detect massive planets with short periods. The proposed project is equivalent to a radial-velocity survey of tens of thousands of stars, instead of the presently active surveys which observe only hundreds of stars.
We will use an assortment of telescopes to perform radial velocity follow-up observations in order to confirm the existence of the detected companions, and to derive their masses and orbital eccentricities. We will discover many tens, if not hundreds, of new massive planets and brown dwarfs with short periods, and many thousands of new binaries. The findings will enable us to map the mass, period, and eccentricity distributions of planets and stellar companions, determine the upper mass of planets, understand the nature of the brown-dwarf desert, and put strong constrains on the theory of planet and binary formation and evolution."
Max ERC Funding
1 737 600 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym BETATOBETA
Project The molecular basis of pancreatic beta cell replication
Researcher (PI) Yuval Dor
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Starting Grant (StG), LS4, ERC-2010-StG_20091118
Summary A fundamental challenge of pancreas biology is to understand and manipulate the determinants of beta cell mass. The homeostatic maintenance of adult beta cell mass relies largely on replication of differentiated beta cells, but the triggers and signaling pathways involved remain poorly understood. Here I propose to investigate the physiological and molecular mechanisms that control beta cell replication. First, novel transgenic mouse tools will be used to isolate live replicating beta cells and to examine the genetic program of beta cell replication in vivo. Information gained will provide insights into the molecular biology of cell division in vivo. Additionally, these experiments will address critical unresolved questions in beta cell biology, for example whether duplication involves transient dedifferentiation. Second, genetic and pharmacologic tools will be used to dissect the signaling pathways controlling the entry of beta cells to the cell division cycle, with emphasis on the roles of glucose and insulin, the key physiological input and output of beta cells. The expected outcome of these studies is a detailed molecular understanding of the homeostatic maintenance of beta cell mass, describing how beta cell function is linked to beta cell number in vivo. This may suggest new targets and concepts for pharmacologic intervention, towards the development of regenerative therapy strategies in diabetes. More generally, the experiments will shed light on one of the greatest mysteries of developmental biology, namely how organs achieve and maintain their correct size. A fundamental challenge of pancreas biology is to understand and manipulate the determinants of beta cell mass. The homeostatic maintenance of adult beta cell mass relies largely on replication of differentiated beta cells, but the triggers and signaling pathways involved remain poorly understood. Here I propose to investigate the physiological and molecular mechanisms that control beta cell replication. First, novel transgenic mouse tools will be used to isolate live replicating beta cells and to examine the genetic program of beta cell replication in vivo. Information gained will provide insights into the molecular biology of cell division in vivo. Additionally, these experiments will address critical unresolved questions in beta cell biology, for example whether duplication involves transient dedifferentiation. Second, genetic and pharmacologic tools will be used to dissect the signaling pathways controlling the entry of beta cells to the cell division cycle, with emphasis on the roles of glucose and insulin, the key physiological input and output of beta cells. The expected outcome of these studies is a detailed molecular understanding of the homeostatic maintenance of beta cell mass, describing how beta cell function is linked to beta cell number in vivo. This may suggest new targets and concepts for pharmacologic intervention, towards the development of regenerative therapy strategies in diabetes. More generally, the experiments will shed light on one of the greatest mysteries of developmental biology, namely how organs achieve and maintain their correct size.
Summary
A fundamental challenge of pancreas biology is to understand and manipulate the determinants of beta cell mass. The homeostatic maintenance of adult beta cell mass relies largely on replication of differentiated beta cells, but the triggers and signaling pathways involved remain poorly understood. Here I propose to investigate the physiological and molecular mechanisms that control beta cell replication. First, novel transgenic mouse tools will be used to isolate live replicating beta cells and to examine the genetic program of beta cell replication in vivo. Information gained will provide insights into the molecular biology of cell division in vivo. Additionally, these experiments will address critical unresolved questions in beta cell biology, for example whether duplication involves transient dedifferentiation. Second, genetic and pharmacologic tools will be used to dissect the signaling pathways controlling the entry of beta cells to the cell division cycle, with emphasis on the roles of glucose and insulin, the key physiological input and output of beta cells. The expected outcome of these studies is a detailed molecular understanding of the homeostatic maintenance of beta cell mass, describing how beta cell function is linked to beta cell number in vivo. This may suggest new targets and concepts for pharmacologic intervention, towards the development of regenerative therapy strategies in diabetes. More generally, the experiments will shed light on one of the greatest mysteries of developmental biology, namely how organs achieve and maintain their correct size. A fundamental challenge of pancreas biology is to understand and manipulate the determinants of beta cell mass. The homeostatic maintenance of adult beta cell mass relies largely on replication of differentiated beta cells, but the triggers and signaling pathways involved remain poorly understood. Here I propose to investigate the physiological and molecular mechanisms that control beta cell replication. First, novel transgenic mouse tools will be used to isolate live replicating beta cells and to examine the genetic program of beta cell replication in vivo. Information gained will provide insights into the molecular biology of cell division in vivo. Additionally, these experiments will address critical unresolved questions in beta cell biology, for example whether duplication involves transient dedifferentiation. Second, genetic and pharmacologic tools will be used to dissect the signaling pathways controlling the entry of beta cells to the cell division cycle, with emphasis on the roles of glucose and insulin, the key physiological input and output of beta cells. The expected outcome of these studies is a detailed molecular understanding of the homeostatic maintenance of beta cell mass, describing how beta cell function is linked to beta cell number in vivo. This may suggest new targets and concepts for pharmacologic intervention, towards the development of regenerative therapy strategies in diabetes. More generally, the experiments will shed light on one of the greatest mysteries of developmental biology, namely how organs achieve and maintain their correct size.
Max ERC Funding
1 445 000 €
Duration
Start date: 2010-09-01, End date: 2015-08-31
Project acronym BETWEEN THE TIMES
Project “Between the Times”: Embattled Temporalities and Political Imagination in Interwar Europe
Researcher (PI) Liisi KEEDUS
Host Institution (HI) TALLINN UNIVERSITY
Call Details Starting Grant (StG), SH6, ERC-2017-STG
Summary The proposed project offers a new, pan-European intellectual history of the political imagination in the interwar period that places the demise of historicism and progressivism – and the emerging anti-teleological visions of time – at the center of some of its most innovative ethical, political and methodological pursuits. It argues that only a distinctively cross-disciplinary and European narrative can capture the full ramifications and legacies of a fundamental rupture in thought conventionally, yet inadequately confined to the German cultural space and termed “anti-historicism”. It innovates narratively by exploring politically and theoretically interlaced reinventions of temporality across and between different disciplines (theology, jurisprudence, classical studies, literary theory, linguistics, sociology, philosophy), as well as other creative fields. It experiments methodologically by reconstructing the dynamics of political thought prosopographically, through intellectual groupings at the forefront of the scholarly and political debates of the period. It challenges the sufficiency of the standard focus in interwar intellectual history on one or two, at most three (usually “Western” European) national contexts by following out the interactions of these groupings in France, Britain, Germany, Russia, Czechoslovakia, and Romania – groupings whose members frequently moved across national contexts. What were the political languages encoded in the reinventions of time, and vice versa – how were political aims translated into and advanced through theoretical innovation? How did these differ in different national contexts, and why? What are the fragmented legacies of this rupture, disbursed in and through the philosophical, methodological and political dicta and dogmas that rooted themselves in post-1945 thought? This project provides the first comprehensive answer to these fundamental questions about the intellectual identity of Europe and its historicities.
Summary
The proposed project offers a new, pan-European intellectual history of the political imagination in the interwar period that places the demise of historicism and progressivism – and the emerging anti-teleological visions of time – at the center of some of its most innovative ethical, political and methodological pursuits. It argues that only a distinctively cross-disciplinary and European narrative can capture the full ramifications and legacies of a fundamental rupture in thought conventionally, yet inadequately confined to the German cultural space and termed “anti-historicism”. It innovates narratively by exploring politically and theoretically interlaced reinventions of temporality across and between different disciplines (theology, jurisprudence, classical studies, literary theory, linguistics, sociology, philosophy), as well as other creative fields. It experiments methodologically by reconstructing the dynamics of political thought prosopographically, through intellectual groupings at the forefront of the scholarly and political debates of the period. It challenges the sufficiency of the standard focus in interwar intellectual history on one or two, at most three (usually “Western” European) national contexts by following out the interactions of these groupings in France, Britain, Germany, Russia, Czechoslovakia, and Romania – groupings whose members frequently moved across national contexts. What were the political languages encoded in the reinventions of time, and vice versa – how were political aims translated into and advanced through theoretical innovation? How did these differ in different national contexts, and why? What are the fragmented legacies of this rupture, disbursed in and through the philosophical, methodological and political dicta and dogmas that rooted themselves in post-1945 thought? This project provides the first comprehensive answer to these fundamental questions about the intellectual identity of Europe and its historicities.
Max ERC Funding
1 425 000 €
Duration
Start date: 2018-06-01, End date: 2023-05-31
Project acronym BeyondA1
Project Set theory beyond the first uncountable cardinal
Researcher (PI) Assaf Shmuel Rinot
Host Institution (HI) BAR ILAN UNIVERSITY
Call Details Starting Grant (StG), PE1, ERC-2018-STG
Summary We propose to establish a research group that will unveil the combinatorial nature of the second uncountable cardinal. This includes its Ramsey-theoretic, order-theoretic, graph-theoretic and topological features. Among others, we will be directly addressing fundamental problems due to Erdos, Rado, Galvin, and Shelah.
While some of these problems are old and well-known, an unexpected series of breakthroughs from the last three years suggest that now is a promising point in time to carry out such a project. Indeed, through a short period, four previously unattainable problems concerning the second uncountable cardinal were successfully tackled: Aspero on a club-guessing problem of Shelah, Krueger on the club-isomorphism problem for Aronszajn trees, Neeman on the isomorphism problem for dense sets of reals, and the PI on the Souslin problem. Each of these results was obtained through the development of a completely new technical framework, and these frameworks could now pave the way for the solution of some major open questions.
A goal of the highest risk in this project is the discovery of a consistent (possibly, parameterized) forcing axiom that will (preferably, simultaneously) provide structure theorems for stationary sets, linearly ordered sets, trees, graphs, and partition relations, as well as the refutation of various forms of club-guessing principles, all at the level of the second uncountable cardinal. In comparison, at the level of the first uncountable cardinal, a forcing axiom due to Foreman, Magidor and Shelah achieves exactly that.
To approach our goals, the proposed project is divided into four core areas: Uncountable trees, Ramsey theory on ordinals, Club-guessing principles, and Forcing Axioms. There is a rich bilateral interaction between any pair of the four different cores, but the proposed division will allow an efficient allocation of manpower, and will increase the chances of parallel success.
Summary
We propose to establish a research group that will unveil the combinatorial nature of the second uncountable cardinal. This includes its Ramsey-theoretic, order-theoretic, graph-theoretic and topological features. Among others, we will be directly addressing fundamental problems due to Erdos, Rado, Galvin, and Shelah.
While some of these problems are old and well-known, an unexpected series of breakthroughs from the last three years suggest that now is a promising point in time to carry out such a project. Indeed, through a short period, four previously unattainable problems concerning the second uncountable cardinal were successfully tackled: Aspero on a club-guessing problem of Shelah, Krueger on the club-isomorphism problem for Aronszajn trees, Neeman on the isomorphism problem for dense sets of reals, and the PI on the Souslin problem. Each of these results was obtained through the development of a completely new technical framework, and these frameworks could now pave the way for the solution of some major open questions.
A goal of the highest risk in this project is the discovery of a consistent (possibly, parameterized) forcing axiom that will (preferably, simultaneously) provide structure theorems for stationary sets, linearly ordered sets, trees, graphs, and partition relations, as well as the refutation of various forms of club-guessing principles, all at the level of the second uncountable cardinal. In comparison, at the level of the first uncountable cardinal, a forcing axiom due to Foreman, Magidor and Shelah achieves exactly that.
To approach our goals, the proposed project is divided into four core areas: Uncountable trees, Ramsey theory on ordinals, Club-guessing principles, and Forcing Axioms. There is a rich bilateral interaction between any pair of the four different cores, but the proposed division will allow an efficient allocation of manpower, and will increase the chances of parallel success.
Max ERC Funding
1 362 500 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym BeyondOpposition
Project Opposing Sexual and Gender Rights and Equalities: Transforming Everyday Spaces
Researcher (PI) Katherine Browne
Host Institution (HI) NATIONAL UNIVERSITY OF IRELAND MAYNOOTH
Call Details Consolidator Grant (CoG), SH2, ERC-2018-COG
Summary OPPSEXRIGHTS will be the first large-scale, transnational study to consider the effects of recent Sexual and Gender Rights and Equalities (SGRE) on those who oppose them, by exploring opponents’ experiences of the transformation of everyday spaces. It will work beyond contemporary polarisations, creating new possibilities for social transformation. This cutting-edge research engages with the dramatically altered social and political landscapes in the late 20th and early 21st Century created through the development of lesbian, gay, bisexual, and trans, and women’s rights. Recent reactionary politics highlight the pressing need to understand the position of those who experience these new social orders as a loss. The backlash to SGRE has coalesced into various resistances that are tangibly different to the classic vilification of homosexuality, or those that are anti-woman. Some who oppose SGRE have found themselves the subject of public critique; in the workplace, their jobs threatened, while at home, engagements with schools can cause family conflicts. This is particularly visible in the case studies of Ireland, UK and Canada because of SGRE. A largescale transnational systematic database will be created using low risk (media and organisational discourses; participant observation at oppositional events) and higher risk (online data collection and interviews) methods. Experimenting with social transformation, OPPSEXRIGHTS will work to build bridges between ‘enemies’, including families and communities, through innovative discussion and arts-based workshops. This ambitious project has the potential to create tangible solutions that tackle contemporary societal issues, which are founded in polarisations that are seemingly insurmountable.
Summary
OPPSEXRIGHTS will be the first large-scale, transnational study to consider the effects of recent Sexual and Gender Rights and Equalities (SGRE) on those who oppose them, by exploring opponents’ experiences of the transformation of everyday spaces. It will work beyond contemporary polarisations, creating new possibilities for social transformation. This cutting-edge research engages with the dramatically altered social and political landscapes in the late 20th and early 21st Century created through the development of lesbian, gay, bisexual, and trans, and women’s rights. Recent reactionary politics highlight the pressing need to understand the position of those who experience these new social orders as a loss. The backlash to SGRE has coalesced into various resistances that are tangibly different to the classic vilification of homosexuality, or those that are anti-woman. Some who oppose SGRE have found themselves the subject of public critique; in the workplace, their jobs threatened, while at home, engagements with schools can cause family conflicts. This is particularly visible in the case studies of Ireland, UK and Canada because of SGRE. A largescale transnational systematic database will be created using low risk (media and organisational discourses; participant observation at oppositional events) and higher risk (online data collection and interviews) methods. Experimenting with social transformation, OPPSEXRIGHTS will work to build bridges between ‘enemies’, including families and communities, through innovative discussion and arts-based workshops. This ambitious project has the potential to create tangible solutions that tackle contemporary societal issues, which are founded in polarisations that are seemingly insurmountable.
Max ERC Funding
1 988 652 €
Duration
Start date: 2019-10-01, End date: 2024-09-30
Project acronym BeyondtheElite
Project Beyond the Elite: Jewish Daily Life in Medieval Europe
Researcher (PI) Elisheva Baumgarten
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Consolidator Grant (CoG), SH6, ERC-2015-CoG
Summary The two fundamental challenges of this project are the integration of medieval Jewries and their histories within the framework of European history without undermining their distinct communal status and the creation of a history of everyday medieval Jewish life that includes those who were not part of the learned elite. The study will focus on the Jewish communities of northern Europe (roughly modern Germany, northern France and England) from 1100-1350. From the mid-thirteenth century these medieval Jewish communities were subject to growing persecution. The approaches proposed to access daily praxis seek to highlight tangible dimensions of religious life rather than the more common study of ideologies to date. This task is complex because the extant sources in Hebrew as well as those in Latin and vernacular were written by the learned elite and will require a broad survey of multiple textual and material sources.
Four main strands will be examined and combined:
1. An outline of the strata of Jewish society, better defining the elites and other groups.
2. A study of select communal and familial spaces such as the house, the synagogue, the market place have yet to be examined as social spaces.
3. Ritual and urban rhythms especially the annual cycle, connecting between Jewish and Christian environments.
4. Material culture, as objects were used by Jews and Christians alike.
Aspects of material culture, the physical environment and urban rhythms are often described as “neutral” yet will be mined to demonstrate how they exemplified difference while being simultaneously ubiquitous in local cultures. The deterioration of relations between Jews and Christians will provide a gauge for examining change during this period. The final stage of the project will include comparative case studies of other Jewish communities. I expect my findings will inform scholars of medieval culture at large and promote comparative methodologies for studying other minority ethnic groups
Summary
The two fundamental challenges of this project are the integration of medieval Jewries and their histories within the framework of European history without undermining their distinct communal status and the creation of a history of everyday medieval Jewish life that includes those who were not part of the learned elite. The study will focus on the Jewish communities of northern Europe (roughly modern Germany, northern France and England) from 1100-1350. From the mid-thirteenth century these medieval Jewish communities were subject to growing persecution. The approaches proposed to access daily praxis seek to highlight tangible dimensions of religious life rather than the more common study of ideologies to date. This task is complex because the extant sources in Hebrew as well as those in Latin and vernacular were written by the learned elite and will require a broad survey of multiple textual and material sources.
Four main strands will be examined and combined:
1. An outline of the strata of Jewish society, better defining the elites and other groups.
2. A study of select communal and familial spaces such as the house, the synagogue, the market place have yet to be examined as social spaces.
3. Ritual and urban rhythms especially the annual cycle, connecting between Jewish and Christian environments.
4. Material culture, as objects were used by Jews and Christians alike.
Aspects of material culture, the physical environment and urban rhythms are often described as “neutral” yet will be mined to demonstrate how they exemplified difference while being simultaneously ubiquitous in local cultures. The deterioration of relations between Jews and Christians will provide a gauge for examining change during this period. The final stage of the project will include comparative case studies of other Jewish communities. I expect my findings will inform scholars of medieval culture at large and promote comparative methodologies for studying other minority ethnic groups
Max ERC Funding
1 941 688 €
Duration
Start date: 2016-11-01, End date: 2021-10-31
Project acronym BI-DSC
Project Building Integrated Dye Sensitized Solar Cells
Researcher (PI) Adélio Miguel Magalhaes Mendes
Host Institution (HI) UNIVERSIDADE DO PORTO
Call Details Advanced Grant (AdG), PE8, ERC-2012-ADG_20120216
Summary In the last decade, solar and photovoltaic (PV) technologies have emerged as a potentially major technology for power generation in the world. So far the PV field has been dominated by silicon devices, even though this technology is still expensive.Dye-sensitized solar cells (DSC) are an important type of thin-film photovoltaics due to their potential for low-cost fabrication and versatile applications, and because their aesthetic appearance, semi-transparency and different color possibilities.This advantageous characteristic makes DSC the first choice for building integrated photovoltaics.Despite their great potential, DSCs for building applications are still not available at commercial level. However, to bring DSCs to a marketable product several developments are still needed and the present project targets to give relevant answers to three key limitations: encapsulation, glass substrate enhanced electrical conductivity and more efficient and low-cost raw-materials. Recently, the proponent successfully addressed the hermetic devices sealing by developing a laser-assisted glass sealing procedure.Thus, BI-DSC proposal envisages the development of DSC modules 30x30cm2, containing four individual cells, and their incorporation in a 1m2 double glass sheet arrangement for BIPV with an energy efficiency of at least 9% and a lifetime of 20 years. Additionally, aiming at enhanced efficiency of the final device and decreased total costs of DSCs manufacturing, new materials will be also pursued. The following inner-components were identified as critical: carbon-based counter-electrode; carbon quantum-dots and hierarchically TiO2 photoelectrode. It is then clear that this project is divided into two research though parallel directions: a fundamental research line, contributing to the development of the new generation DSC technology; while a more applied research line targets the development of a DSC functional module that can be used to pave the way for its industrialization.
Summary
In the last decade, solar and photovoltaic (PV) technologies have emerged as a potentially major technology for power generation in the world. So far the PV field has been dominated by silicon devices, even though this technology is still expensive.Dye-sensitized solar cells (DSC) are an important type of thin-film photovoltaics due to their potential for low-cost fabrication and versatile applications, and because their aesthetic appearance, semi-transparency and different color possibilities.This advantageous characteristic makes DSC the first choice for building integrated photovoltaics.Despite their great potential, DSCs for building applications are still not available at commercial level. However, to bring DSCs to a marketable product several developments are still needed and the present project targets to give relevant answers to three key limitations: encapsulation, glass substrate enhanced electrical conductivity and more efficient and low-cost raw-materials. Recently, the proponent successfully addressed the hermetic devices sealing by developing a laser-assisted glass sealing procedure.Thus, BI-DSC proposal envisages the development of DSC modules 30x30cm2, containing four individual cells, and their incorporation in a 1m2 double glass sheet arrangement for BIPV with an energy efficiency of at least 9% and a lifetime of 20 years. Additionally, aiming at enhanced efficiency of the final device and decreased total costs of DSCs manufacturing, new materials will be also pursued. The following inner-components were identified as critical: carbon-based counter-electrode; carbon quantum-dots and hierarchically TiO2 photoelectrode. It is then clear that this project is divided into two research though parallel directions: a fundamental research line, contributing to the development of the new generation DSC technology; while a more applied research line targets the development of a DSC functional module that can be used to pave the way for its industrialization.
Max ERC Funding
1 989 300 €
Duration
Start date: 2013-03-01, End date: 2018-08-31
Project acronym BIOELECPRO
Project Frontier Research on the Dielectric Properties of Biological Tissue
Researcher (PI) Martin James O'Halloran
Host Institution (HI) NATIONAL UNIVERSITY OF IRELAND GALWAY
Call Details Starting Grant (StG), LS7, ERC-2014-STG
Summary The dielectric properties of biological tissues are of fundamental importance to the understanding of the interaction of electromagnetic fields with the human body. These properties are used to determine the safety of electronic devices, and in the design, development and refinement of electromagnetic medical imaging and therapeutic devices. Many historical studies have aimed to establish the dielectric properties of a broad range of tissues. A growing number of recent studies have sought to more accurately estimate these dielectric properties by standardising measurement procedures, and in some cases, measuring the dielectric properties in-vivo. However, these studies have often produced results in direct conflict with historical studies, casting doubt on the accuracy of the currently utilised dielectric properties. At best, this uncertainty could significantly delay the development of electromagnetic imaging or therapeutic medical devices. At worst, the health dangers of electromagnetic radiation could be under-estimated. The applicant will embark upon frontier research to develop improved methods and standards for the measurement of the dielectric properties of biological tissue. The research programme will accelerate the design and development of electromagnetic imaging and therapeutic devices, at a time when the technology is gaining significant momentum. The primary objective of the research is to develop a deep understanding of the fundamental factors which contribute to errors in dielectric property measurement. These factors will include in-vivo/ex-vivo measurements and dielectric measurement method used, amongst many others. Secondly, a new open-access repository of dielectric measurements will be created based on a greatly enhanced understanding of the mechanisms underlying dielectric property measurement. Finally, new electromagnetic-based imaging and therapeutic medical devices will be investigated, based on the solid foundation of dielectric data.
Summary
The dielectric properties of biological tissues are of fundamental importance to the understanding of the interaction of electromagnetic fields with the human body. These properties are used to determine the safety of electronic devices, and in the design, development and refinement of electromagnetic medical imaging and therapeutic devices. Many historical studies have aimed to establish the dielectric properties of a broad range of tissues. A growing number of recent studies have sought to more accurately estimate these dielectric properties by standardising measurement procedures, and in some cases, measuring the dielectric properties in-vivo. However, these studies have often produced results in direct conflict with historical studies, casting doubt on the accuracy of the currently utilised dielectric properties. At best, this uncertainty could significantly delay the development of electromagnetic imaging or therapeutic medical devices. At worst, the health dangers of electromagnetic radiation could be under-estimated. The applicant will embark upon frontier research to develop improved methods and standards for the measurement of the dielectric properties of biological tissue. The research programme will accelerate the design and development of electromagnetic imaging and therapeutic devices, at a time when the technology is gaining significant momentum. The primary objective of the research is to develop a deep understanding of the fundamental factors which contribute to errors in dielectric property measurement. These factors will include in-vivo/ex-vivo measurements and dielectric measurement method used, amongst many others. Secondly, a new open-access repository of dielectric measurements will be created based on a greatly enhanced understanding of the mechanisms underlying dielectric property measurement. Finally, new electromagnetic-based imaging and therapeutic medical devices will be investigated, based on the solid foundation of dielectric data.
Max ERC Funding
1 499 329 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym BiofoulRepel
Project Biofoulant-repelling surfaces for catheters and other biomedical devices
Researcher (PI) Jacob KLEIN
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Proof of Concept (PoC), ERC-2016-PoC, ERC-2016-PoC
Summary The object of this proof of concept project is to modify the surfaces of biomedical devices intended for contact with human tissue, such as catheters, stents or contact lenses, to render them repellent to biofoulants, based on discoveries made in our current ERC project HydrationLube. This will render such surfaces, and the devices, far more resistant to health-threatening infections. Our ERC project demonstrated that boundary layers based on phosphatidylcholine (PC) lipids (in the form of liposomes, bilayers or polymer-lipid complexes) can expose extremely hydrated interfaces, which are not only strongly lubricating but, as we recently showed, are also capable – particularly at hydrogel surfaces - of massively suppressing the adsorption of common biofoulants including proteins and bacteria. We now propose to use this finding to overcome, through suitable surface treatment, the undesirable effects of such fouling and biofilm formation on tissue-contacting devices, which impose a huge health and cost burden. Thus, neutralizing bacteria in biofilm may require a 1000-times higher dose of antibiotic compared to planktonic bacteria. Moreover, such infections are frequent: some 4% of all implanted vascular grafts and medical heart valves become infected, as do 2% of implanted joint prostheses and 5% of the 2x106 fracture fixation devices that are used in the U.S. alone each year. The cost of curing such infections may exceed $50,000 per case, apart from the burden of human suffering and morbidity, and they account for over 50% of all Hospital Associated Infections (HAI). The current project, working through 5 work-packages, will validate the feasibility of such anti-fouling treatments on actual devices, will carry out competitive analysis and market research, explore the commercialization process and the IPR position, and seek contacts with appropriate industrial partners to further develop the commercialization of our technology.
Summary
The object of this proof of concept project is to modify the surfaces of biomedical devices intended for contact with human tissue, such as catheters, stents or contact lenses, to render them repellent to biofoulants, based on discoveries made in our current ERC project HydrationLube. This will render such surfaces, and the devices, far more resistant to health-threatening infections. Our ERC project demonstrated that boundary layers based on phosphatidylcholine (PC) lipids (in the form of liposomes, bilayers or polymer-lipid complexes) can expose extremely hydrated interfaces, which are not only strongly lubricating but, as we recently showed, are also capable – particularly at hydrogel surfaces - of massively suppressing the adsorption of common biofoulants including proteins and bacteria. We now propose to use this finding to overcome, through suitable surface treatment, the undesirable effects of such fouling and biofilm formation on tissue-contacting devices, which impose a huge health and cost burden. Thus, neutralizing bacteria in biofilm may require a 1000-times higher dose of antibiotic compared to planktonic bacteria. Moreover, such infections are frequent: some 4% of all implanted vascular grafts and medical heart valves become infected, as do 2% of implanted joint prostheses and 5% of the 2x106 fracture fixation devices that are used in the U.S. alone each year. The cost of curing such infections may exceed $50,000 per case, apart from the burden of human suffering and morbidity, and they account for over 50% of all Hospital Associated Infections (HAI). The current project, working through 5 work-packages, will validate the feasibility of such anti-fouling treatments on actual devices, will carry out competitive analysis and market research, explore the commercialization process and the IPR position, and seek contacts with appropriate industrial partners to further develop the commercialization of our technology.
Max ERC Funding
150 000 €
Duration
Start date: 2017-01-01, End date: 2018-06-30
Project acronym BiomeRiskFactors
Project Discovering microbiome-based disease risk factors
Researcher (PI) Eran Segal
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Advanced Grant (AdG), LS2, ERC-2017-ADG
Summary Identifying risk factors for diseases that can be prevented or delayed by early intervention is of major importance, and numerous genetic, lifestyle, anthropometric and clinical risk factors were found for many different diseases. Another source of potentially pertinent disease risk factors is the human microbiome - the collective genome of trillions of bacteria, viruses, fungi, and parasites that reside in the human gut. However, very few microbiome disease markers were found to date.
Here, we aim to develop risk prediction tools based on the human microbiome that predict the likelihood of an individual to develop a particular condition or disease within 5-10 years. We will use a cohort of >2200 individuals that my group previously assembled, for whom we have clinical profiles, gut microbiome data, and banked blood and stool samples. We will invite people 5-10 years after their initial recruitment time, profile disease status and blood markers, and develop algorithms for predicting 5-10 year onset of Type 2 diabetes, cardiovascular disease, and obesity, using microbiome data from recruitment time.
To increase the likelihood of finding microbiome markers predictive of disease onset, we will develop novel experimental and computational methods for in-depth characterization of microbial gene function, the metabolites produced by the microbiome, the underexplored fungal microbiome members, and the interactions between the gut microbiota and the host adaptive immune system. We will then apply these methods to >2200 banked samples from cohort recruitment time and use the resulting data in devising our microbiome-based risk prediction tools. In themselves, these novel assays and their application to >2200 samples should greatly advance the microbiome field.
If successful, our proposal will identify new disease risk factors and risk prediction tools based on the microbiome, paving the way towards using the microbiome in early disease detection and prevention.
Summary
Identifying risk factors for diseases that can be prevented or delayed by early intervention is of major importance, and numerous genetic, lifestyle, anthropometric and clinical risk factors were found for many different diseases. Another source of potentially pertinent disease risk factors is the human microbiome - the collective genome of trillions of bacteria, viruses, fungi, and parasites that reside in the human gut. However, very few microbiome disease markers were found to date.
Here, we aim to develop risk prediction tools based on the human microbiome that predict the likelihood of an individual to develop a particular condition or disease within 5-10 years. We will use a cohort of >2200 individuals that my group previously assembled, for whom we have clinical profiles, gut microbiome data, and banked blood and stool samples. We will invite people 5-10 years after their initial recruitment time, profile disease status and blood markers, and develop algorithms for predicting 5-10 year onset of Type 2 diabetes, cardiovascular disease, and obesity, using microbiome data from recruitment time.
To increase the likelihood of finding microbiome markers predictive of disease onset, we will develop novel experimental and computational methods for in-depth characterization of microbial gene function, the metabolites produced by the microbiome, the underexplored fungal microbiome members, and the interactions between the gut microbiota and the host adaptive immune system. We will then apply these methods to >2200 banked samples from cohort recruitment time and use the resulting data in devising our microbiome-based risk prediction tools. In themselves, these novel assays and their application to >2200 samples should greatly advance the microbiome field.
If successful, our proposal will identify new disease risk factors and risk prediction tools based on the microbiome, paving the way towards using the microbiome in early disease detection and prevention.
Max ERC Funding
2 500 000 €
Duration
Start date: 2019-03-01, End date: 2024-02-29
Project acronym BioMet
Project Selective Functionalization of Saturated Hydrocarbons
Researcher (PI) Ilan MAREK
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Advanced Grant (AdG), PE5, ERC-2017-ADG
Summary Despite that C–H functionalization represents a paradigm shift from the standard logic of organic synthesis, the selective activation of non-functionalized alkanes has puzzled chemists for centuries and is always referred to one of the remaining major challenges in chemical sciences. Alkanes are inert compounds representing the major constituents of natural gas and petroleum. Converting these cheap and widely available hydrocarbon feedstocks into added-value intermediates would tremendously affect the field of chemistry. For long saturated hydrocarbons, one must distinguish between non-equivalent but chemically very similar alkane substrate C−H bonds, and for functionalization at the terminus position, one must favor activation of the stronger, primary C−H bonds at the expense of weaker and numerous secondary C-H bonds. The goal of this work is to develop a general principle in organic synthesis for the preparation of a wide variety of more complex molecular architectures from saturated hydrocarbons. In our approach, the alkane will first be transformed into an alkene that will subsequently be engaged in a metal-catalyzed hydrometalation/migration sequence. The first step of the sequence, ideally represented by the removal of two hydrogen atoms, will be performed by the use of a mutated strain of Rhodococcus. The position and geometry of the formed double bond has no effect on the second step of the reaction as the metal-catalyzed hydrometalation/migration will isomerize the double bond along the carbon skeleton to selectively produce the primary organometallic species. Trapping the resulting organometallic derivatives with a large variety of electrophiles will provide the desired functionalized alkane. This work will lead to the invention of new, selective and efficient processes for the utilization of simple hydrocarbons and valorize the synthetic potential of raw hydrocarbon feedstock for the environmentally benign production of new compounds and new materials.
Summary
Despite that C–H functionalization represents a paradigm shift from the standard logic of organic synthesis, the selective activation of non-functionalized alkanes has puzzled chemists for centuries and is always referred to one of the remaining major challenges in chemical sciences. Alkanes are inert compounds representing the major constituents of natural gas and petroleum. Converting these cheap and widely available hydrocarbon feedstocks into added-value intermediates would tremendously affect the field of chemistry. For long saturated hydrocarbons, one must distinguish between non-equivalent but chemically very similar alkane substrate C−H bonds, and for functionalization at the terminus position, one must favor activation of the stronger, primary C−H bonds at the expense of weaker and numerous secondary C-H bonds. The goal of this work is to develop a general principle in organic synthesis for the preparation of a wide variety of more complex molecular architectures from saturated hydrocarbons. In our approach, the alkane will first be transformed into an alkene that will subsequently be engaged in a metal-catalyzed hydrometalation/migration sequence. The first step of the sequence, ideally represented by the removal of two hydrogen atoms, will be performed by the use of a mutated strain of Rhodococcus. The position and geometry of the formed double bond has no effect on the second step of the reaction as the metal-catalyzed hydrometalation/migration will isomerize the double bond along the carbon skeleton to selectively produce the primary organometallic species. Trapping the resulting organometallic derivatives with a large variety of electrophiles will provide the desired functionalized alkane. This work will lead to the invention of new, selective and efficient processes for the utilization of simple hydrocarbons and valorize the synthetic potential of raw hydrocarbon feedstock for the environmentally benign production of new compounds and new materials.
Max ERC Funding
2 499 375 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym BIOMOLECULAR_COMP
Project Biomolecular computers
Researcher (PI) Ehud Shapiro
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Advanced Grant (AdG), LS9, ERC-2008-AdG
Summary Autonomous programmable computing devices made of biological molecules hold the promise of interacting with the biological environment in future biological and medical applications. Our laboratory's long-term objective is to develop a 'Doctor in a cell': molecular-sized device that can roam the body, equipped with medical knowledge. It would diagnose a disease by analyzing the data available in its biochemical environment based on the encoded medical knowledge and treat it by releasing the appropriate drug molecule in situ. This kind of device might, in the future, be delivered to all cells in a specific tissue, organ or the whole organism, and cure or kill only those cells diagnosed with a disease. Our laboratory embarked on the attempt to design and build these molecular computing devices and lay the foundation for their future biomedical applications. Several important milestones have already been accomplished towards the realization of the Doctor in a cell vision. The subject of this proposal is a construction of autonomous biomolecular computers that could be delivered into a living cell, interact with endogenous biomolecules that are known to indicate diseases, logically analyze them, make a diagnostic decision and couple it to the production of an active biomolecule capable of influencing cell fate.
Summary
Autonomous programmable computing devices made of biological molecules hold the promise of interacting with the biological environment in future biological and medical applications. Our laboratory's long-term objective is to develop a 'Doctor in a cell': molecular-sized device that can roam the body, equipped with medical knowledge. It would diagnose a disease by analyzing the data available in its biochemical environment based on the encoded medical knowledge and treat it by releasing the appropriate drug molecule in situ. This kind of device might, in the future, be delivered to all cells in a specific tissue, organ or the whole organism, and cure or kill only those cells diagnosed with a disease. Our laboratory embarked on the attempt to design and build these molecular computing devices and lay the foundation for their future biomedical applications. Several important milestones have already been accomplished towards the realization of the Doctor in a cell vision. The subject of this proposal is a construction of autonomous biomolecular computers that could be delivered into a living cell, interact with endogenous biomolecules that are known to indicate diseases, logically analyze them, make a diagnostic decision and couple it to the production of an active biomolecule capable of influencing cell fate.
Max ERC Funding
2 125 980 €
Duration
Start date: 2009-01-01, End date: 2013-10-31
Project acronym BIONICS
Project Bio-Inspired Routes for Controlling the Structure and Properties of Materials: Reusing proven tricks on new materials
Researcher (PI) Boaz Pokroy
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Starting Grant (StG), PE5, ERC-2013-StG
Summary "In the course of biomineralization, organisms produce a large variety of functional biogenic crystals that exhibit fascinating mechanical, optical, magnetic and other characteristics. More specifically, when living organisms grow crystals they can effectively control polymorph selection as well as the crystal morphology, shape, and even atomic structure. Materials existing in nature have extraordinary and specific functions, yet the materials employed in nature are quite different from those engineers would select.
I propose to emulate specific strategies used by organisms in forming structural biogenic crystals, and to apply these strategies biomimetically so as to form new structural materials with new properties and characteristics. This bio-inspired approach will involve the adoption of three specific biological strategies. We believe that this procedure will open up new ways to control the structure and properties of smart materials.
The three bio-inspired strategies that we will utilize are:
(i) to control the short-range order of amorphous materials, making it possible to predetermine the polymorph obtained when they transform from the amorphous to the succeeding crystalline phase;
(ii) to control the morphology of single crystals of various functional materials so that they can have intricate and curved surfaces and yet maintain their single-crystal nature;
(iii) to entrap organic molecules into single crystals of functional materials so as to tailor and manipulate their electronic structure.
The proposed research has significant potential for opening up new routes for the formation of novel functional materials. Specifically, it will make it possible for us
(1) to produce single, intricately shaped crystals without the need to etch, drill or polish;
(2) to control the short-range order of amorphous materials and hence the polymorph of the successive crystalline phase;
(3) to tune the band gap of semiconductors via incorporation of tailored bio-molecules."
Summary
"In the course of biomineralization, organisms produce a large variety of functional biogenic crystals that exhibit fascinating mechanical, optical, magnetic and other characteristics. More specifically, when living organisms grow crystals they can effectively control polymorph selection as well as the crystal morphology, shape, and even atomic structure. Materials existing in nature have extraordinary and specific functions, yet the materials employed in nature are quite different from those engineers would select.
I propose to emulate specific strategies used by organisms in forming structural biogenic crystals, and to apply these strategies biomimetically so as to form new structural materials with new properties and characteristics. This bio-inspired approach will involve the adoption of three specific biological strategies. We believe that this procedure will open up new ways to control the structure and properties of smart materials.
The three bio-inspired strategies that we will utilize are:
(i) to control the short-range order of amorphous materials, making it possible to predetermine the polymorph obtained when they transform from the amorphous to the succeeding crystalline phase;
(ii) to control the morphology of single crystals of various functional materials so that they can have intricate and curved surfaces and yet maintain their single-crystal nature;
(iii) to entrap organic molecules into single crystals of functional materials so as to tailor and manipulate their electronic structure.
The proposed research has significant potential for opening up new routes for the formation of novel functional materials. Specifically, it will make it possible for us
(1) to produce single, intricately shaped crystals without the need to etch, drill or polish;
(2) to control the short-range order of amorphous materials and hence the polymorph of the successive crystalline phase;
(3) to tune the band gap of semiconductors via incorporation of tailored bio-molecules."
Max ERC Funding
1 500 000 €
Duration
Start date: 2013-09-01, End date: 2018-08-31
Project acronym BIOSELFORGANIZATION
Project Biophysical aspects of self-organization in actin-based cell motility
Researcher (PI) Kinneret Magda Keren
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Starting Grant (StG), PE3, ERC-2007-StG
Summary Cell motility is a fascinating dynamic process crucial for a wide variety of biological phenomena including defense against injury or infection, embryogenesis and cancer metastasis. A spatially extended, self-organized, mechanochemical machine consisting of numerous actin polymers, accessory proteins and molecular motors drives this process. This impressive assembly self-organizes over several orders of magnitude in both the temporal and spatial domains bridging from the fast dynamics of individual molecular-sized building blocks to the persistent motion of whole cells over minutes and hours. The molecular players involved in the process and the basic biochemical mechanisms are largely known. However, the principles governing the assembly of the motility apparatus, which involve an intricate interplay between biophysical processes and biochemical reactions, are still poorly understood. The proposed research is focused on investigating the biophysical aspects of the self-organization processes underlying cell motility and trying to adapt these processes to instill motility in artificial cells. Important biophysical characteristics of moving cells such as the intracellular fluid flow and membrane tension will be measured and their effect on the motility process will be examined, using fish epithelial keratocytes as a model system. The dynamics of the system will be further investigated by quantitatively analyzing the morphological and kinematic variation displayed by a population of cells and by an individual cell through time. Such measurements will feed into and direct the development of quantitative theoretical models. In parallel, I will work toward the development of a synthetic physical model system for cell motility by encapsulating the actin machinery in a cell-sized compartment. This synthetic system will allow cell motility to be studied in a simplified and controlled environment, detached from the complexity of the living cell.
Summary
Cell motility is a fascinating dynamic process crucial for a wide variety of biological phenomena including defense against injury or infection, embryogenesis and cancer metastasis. A spatially extended, self-organized, mechanochemical machine consisting of numerous actin polymers, accessory proteins and molecular motors drives this process. This impressive assembly self-organizes over several orders of magnitude in both the temporal and spatial domains bridging from the fast dynamics of individual molecular-sized building blocks to the persistent motion of whole cells over minutes and hours. The molecular players involved in the process and the basic biochemical mechanisms are largely known. However, the principles governing the assembly of the motility apparatus, which involve an intricate interplay between biophysical processes and biochemical reactions, are still poorly understood. The proposed research is focused on investigating the biophysical aspects of the self-organization processes underlying cell motility and trying to adapt these processes to instill motility in artificial cells. Important biophysical characteristics of moving cells such as the intracellular fluid flow and membrane tension will be measured and their effect on the motility process will be examined, using fish epithelial keratocytes as a model system. The dynamics of the system will be further investigated by quantitatively analyzing the morphological and kinematic variation displayed by a population of cells and by an individual cell through time. Such measurements will feed into and direct the development of quantitative theoretical models. In parallel, I will work toward the development of a synthetic physical model system for cell motility by encapsulating the actin machinery in a cell-sized compartment. This synthetic system will allow cell motility to be studied in a simplified and controlled environment, detached from the complexity of the living cell.
Max ERC Funding
900 000 €
Duration
Start date: 2008-08-01, End date: 2013-07-31
Project acronym BioWater
Project Development of new chemical imaging techniques to understand the function of water in biocompatibility, biodegradation and biofouling
Researcher (PI) Aoife Ann Gowen
Host Institution (HI) UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN
Call Details Starting Grant (StG), PE8, ERC-2013-StG
Summary Water is the first molecule to come into contact with biomaterials in biological systems and thus essential to the processes of biodegradation, biocompatibility and biofouling. Despite this fact, little is currently known about how biomaterials interact with water. This knowledge is crucial for the development and optimisation of novel functional biomaterials for human health (e.g. biosensing devices, erodible biomaterials, drug release carriers, wound dressings). BioWater will develop near and mid infrared chemical imaging (NIR-MIR-CI) techniques to investigate the fundamental interaction between biomaterials and water in order to understand the key processes of biodegradation, biocompatibility and biofouling. This ambitious yet achievable project will focus on two major categories of biomaterials relevant to human health: extracellular collagens and synthetic biopolymers. Initially, interactions between these biomaterials and water will be investigated; subsequently interactions with more complicated matrices (e.g. protein solutions and cellular systems) will be studied. CI data will be correlated with standard surface characterization, biocompatibility and biodegradation measurements. Molecular dynamic simulations will complement this work to identify the most probable molecular structures of water at different biomaterial interfaces.
Advanced understanding of the role of water in biocompatibility, biofouling and biodegradation processes will facilitate the optimization of biomaterials tailored to specific cellular environments with a broad range of therapeutic applications (e.g. drug eluting stents, tissue engineering, wound healing). The new NIR-MIR-CI/chemometric methodologies developed in BioWater will allow for the rapid characterization and monitoring of novel biomaterials at pre-clinical stages, improving process control by overcoming the laborious and time consuming large-scale sampling methods currently required in biomaterials development.
Summary
Water is the first molecule to come into contact with biomaterials in biological systems and thus essential to the processes of biodegradation, biocompatibility and biofouling. Despite this fact, little is currently known about how biomaterials interact with water. This knowledge is crucial for the development and optimisation of novel functional biomaterials for human health (e.g. biosensing devices, erodible biomaterials, drug release carriers, wound dressings). BioWater will develop near and mid infrared chemical imaging (NIR-MIR-CI) techniques to investigate the fundamental interaction between biomaterials and water in order to understand the key processes of biodegradation, biocompatibility and biofouling. This ambitious yet achievable project will focus on two major categories of biomaterials relevant to human health: extracellular collagens and synthetic biopolymers. Initially, interactions between these biomaterials and water will be investigated; subsequently interactions with more complicated matrices (e.g. protein solutions and cellular systems) will be studied. CI data will be correlated with standard surface characterization, biocompatibility and biodegradation measurements. Molecular dynamic simulations will complement this work to identify the most probable molecular structures of water at different biomaterial interfaces.
Advanced understanding of the role of water in biocompatibility, biofouling and biodegradation processes will facilitate the optimization of biomaterials tailored to specific cellular environments with a broad range of therapeutic applications (e.g. drug eluting stents, tissue engineering, wound healing). The new NIR-MIR-CI/chemometric methodologies developed in BioWater will allow for the rapid characterization and monitoring of novel biomaterials at pre-clinical stages, improving process control by overcoming the laborious and time consuming large-scale sampling methods currently required in biomaterials development.
Max ERC Funding
1 487 682 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym BirNonArchGeom
Project Birational and non-archimedean geometries
Researcher (PI) Michael TEMKIN
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Consolidator Grant (CoG), PE1, ERC-2017-COG
Summary Resolution of singularities is one of classical, central and difficult areas of algebraic geometry, with a centennial history of intensive research and contributions of such great names as Zariski, Hironaka and Abhyankar. Nowadays, desingularization of schemes of characteristic zero is very well understood, while semistable reduction of morphisms and desingularization in positive characteristic are still waiting for major breakthroughs. In addition to the classical techniques with their triumph in characteristic zero, modern resolution of singularities includes de Jong's method of alterations, toroidal methods, formal analytic and non-archimedean methods, etc.
The aim of the proposed research is to study nearly all directions in resolution of singularities and semistable reduction, as well as the wild ramification phenomena, which are probably the main obstacle to transfer methods from characteristic zero to positive characteristic.
The methods of algebraic and non-archimedean geometries are intertwined in the proposal, though algebraic geometry is somewhat dominating, especially due to the new stack-theoretic techniques. It seems very probable that increasing the symbiosis between birational and non-archimedean geometries will be one of by-products of this research.
Summary
Resolution of singularities is one of classical, central and difficult areas of algebraic geometry, with a centennial history of intensive research and contributions of such great names as Zariski, Hironaka and Abhyankar. Nowadays, desingularization of schemes of characteristic zero is very well understood, while semistable reduction of morphisms and desingularization in positive characteristic are still waiting for major breakthroughs. In addition to the classical techniques with their triumph in characteristic zero, modern resolution of singularities includes de Jong's method of alterations, toroidal methods, formal analytic and non-archimedean methods, etc.
The aim of the proposed research is to study nearly all directions in resolution of singularities and semistable reduction, as well as the wild ramification phenomena, which are probably the main obstacle to transfer methods from characteristic zero to positive characteristic.
The methods of algebraic and non-archimedean geometries are intertwined in the proposal, though algebraic geometry is somewhat dominating, especially due to the new stack-theoretic techniques. It seems very probable that increasing the symbiosis between birational and non-archimedean geometries will be one of by-products of this research.
Max ERC Funding
1 365 600 €
Duration
Start date: 2018-05-01, End date: 2023-04-30
Project acronym BIRTH
Project Births, mothers and babies: prehistoric fertility in the Balkans between 10000 – 5000 BC
Researcher (PI) Sofija Stefanovic
Host Institution (HI) BIOSENSE INSTITUTE - RESEARCH AND DEVELOPMENT INSTITUTE FOR INFORMATION TECHNOLOGIES IN BIOSYSTEMS
Call Details Starting Grant (StG), SH6, ERC-2014-STG
Summary The BIRTH project will investigate the key biological and cultural mechanisms affecting fertility rates resulting the Neolithic Demogaphic Transition, the major demographic shift in human evolution. We integrate skeletal markers with micro-nutritional and macro-scaled cultural effects on fertility rates during the Early-Middle Holocene (10000-5000 BC) in the Central Balkans. Human, animal and plant remains, will be analysed using methods from bioarchaeological, forensic, chemical sciences in order to: 1) Investigate variability in the pattern of birth rates (number of pregnancies, interval(s) between them and the duration of the reproductive period) through histological analysis of irregularities in tooth cementum of women; 2) Determine paleoobstetric and neonatal body characteristics, health status and nutrition through analysis of skeletal remains; 3) Determine micronutritional changes during the Early-Middle Holocene through trace element (Zn, Ca and Fe) analysis; 4) Investigate the micro and macronutritional value of prehistoric foodstuffs, through an analysis of animal and plant remains and to compare the nutritional intake in relation to health and fertility; 5) Establish a chronology of the NDT in the Balkans by summed radiocarbon probability distributions; 6) Explore the possible role of culture in driving fertility increases, through analysis of community attitudes to birthing trough investigation of neonate graves and artifact connected to the birthing process. Given that the issues of health and fertility are of utmost importance in the present as they were in the past, the BIRTH project offers new understanding of biocultural mechanisms which led to fertility increase and novel approaches to ancient skeletal heritage, and emphasizes their great potential for modern humanity.
Summary
The BIRTH project will investigate the key biological and cultural mechanisms affecting fertility rates resulting the Neolithic Demogaphic Transition, the major demographic shift in human evolution. We integrate skeletal markers with micro-nutritional and macro-scaled cultural effects on fertility rates during the Early-Middle Holocene (10000-5000 BC) in the Central Balkans. Human, animal and plant remains, will be analysed using methods from bioarchaeological, forensic, chemical sciences in order to: 1) Investigate variability in the pattern of birth rates (number of pregnancies, interval(s) between them and the duration of the reproductive period) through histological analysis of irregularities in tooth cementum of women; 2) Determine paleoobstetric and neonatal body characteristics, health status and nutrition through analysis of skeletal remains; 3) Determine micronutritional changes during the Early-Middle Holocene through trace element (Zn, Ca and Fe) analysis; 4) Investigate the micro and macronutritional value of prehistoric foodstuffs, through an analysis of animal and plant remains and to compare the nutritional intake in relation to health and fertility; 5) Establish a chronology of the NDT in the Balkans by summed radiocarbon probability distributions; 6) Explore the possible role of culture in driving fertility increases, through analysis of community attitudes to birthing trough investigation of neonate graves and artifact connected to the birthing process. Given that the issues of health and fertility are of utmost importance in the present as they were in the past, the BIRTH project offers new understanding of biocultural mechanisms which led to fertility increase and novel approaches to ancient skeletal heritage, and emphasizes their great potential for modern humanity.
Max ERC Funding
1 714 880 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym BISON
Project Bio-Inspired Self-Assembled Supramolecular Organic Nanostructures
Researcher (PI) Ehud Gazit
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Advanced Grant (AdG), LS9, ERC-2015-AdG
Summary Peptide building blocks serve as very attractive bio-inspired elements in nanotechnology owing to their controlled self-assembly, inherent biocompatibility, chemical versatility, biological recognition abilities and facile synthesis. We have demonstrated the ability of remarkably simple aromatic peptides to form well-ordered nanostructures of exceptional physical properties. By taking inspiration from the minimal recognition modules used by nature to mediate coordinated processes of self-assembly, we have developed building blocks that form well-ordered nanostructures. The compact design of the building blocks, and therefore, the unique structural organization, resulted in metallic-like Young's modulus, blue luminescence due to quantum confinement, and notable piezoelectric properties. The goal of this proposal is to develop two new fronts for bio-inspired building block repertoire along with co-assembly to provide new avenues for organic nanotechnology. This will combine our vast experience in the assembly of aromatic peptides together with additional structural modules from nature. The new entities will be developed by exploiting the design principles of small aromatic building blocks to arrive at the smallest possible module that form super helical assembly based on the coiled coil motifs and establishing peptide nucleic acids based systems to combine the worlds of peptide and DNA nanotechnologies. The proposed research will combine extensive design and synthesis effort to provide a very diverse collection of novel buildings blocks and determination of their self-assembly process, followed by broad chemical, physical, and biological characterization of the nanostructures. Furthermore, effort will be made to establish supramolecular co-polymer systems to extend the morphological control of the assembly process. The result of the project will be a large and defined collection of novel chemical entities that will help reshape the field of bioorganic nanotechnology.
Summary
Peptide building blocks serve as very attractive bio-inspired elements in nanotechnology owing to their controlled self-assembly, inherent biocompatibility, chemical versatility, biological recognition abilities and facile synthesis. We have demonstrated the ability of remarkably simple aromatic peptides to form well-ordered nanostructures of exceptional physical properties. By taking inspiration from the minimal recognition modules used by nature to mediate coordinated processes of self-assembly, we have developed building blocks that form well-ordered nanostructures. The compact design of the building blocks, and therefore, the unique structural organization, resulted in metallic-like Young's modulus, blue luminescence due to quantum confinement, and notable piezoelectric properties. The goal of this proposal is to develop two new fronts for bio-inspired building block repertoire along with co-assembly to provide new avenues for organic nanotechnology. This will combine our vast experience in the assembly of aromatic peptides together with additional structural modules from nature. The new entities will be developed by exploiting the design principles of small aromatic building blocks to arrive at the smallest possible module that form super helical assembly based on the coiled coil motifs and establishing peptide nucleic acids based systems to combine the worlds of peptide and DNA nanotechnologies. The proposed research will combine extensive design and synthesis effort to provide a very diverse collection of novel buildings blocks and determination of their self-assembly process, followed by broad chemical, physical, and biological characterization of the nanostructures. Furthermore, effort will be made to establish supramolecular co-polymer systems to extend the morphological control of the assembly process. The result of the project will be a large and defined collection of novel chemical entities that will help reshape the field of bioorganic nanotechnology.
Max ERC Funding
3 003 125 €
Duration
Start date: 2016-06-01, End date: 2021-05-31
Project acronym BisProt
Project Developing Multispecific Biological Agents that Target Tumor Neovasculature for Cancer Imaging and Therapy
Researcher (PI) Niv Papo
Host Institution (HI) BEN-GURION UNIVERSITY OF THE NEGEV
Call Details Starting Grant (StG), LS7, ERC-2013-StG
Summary The dysregulation of signaling pathways that mediate cell proliferation, survival and migration is an underlying cause of many cancers. In particular, dysregulation and over-expression of avb3 integrin, membrane-type-1 matrix metalloproteinase (MT1-MMP; also known as matrix metalloproteinase-14, MMP14) and vascular endothelial growth factor receptor-2 (VEGFR2) correlate with poor prognosis in many human tumors, making these proteins attractive targets for therapeutic intervention. Numerous papers have demonstrated the cross-talk between biological processes mediated by αvβ3 integrins, MT1-MMP, VEGFR2, and their ligands, particularly pathways responsible for angiogenesis. Dual-specific proteins that can target and inhibit the activity of the above multiple receptors therefore have superior potential to single-targeted agents due to differential expression of these disease markers in different patients and the ability of this expression to change over time. Most currently available bispecific protein therapeutics comprise antibodies (Abs) or antibody fragments. The new approach proposed here entails rational and combinatorial methods for engineering multispecificity into small peptides and natural protein ligands to function as non-immunoglobulin alternatives to antibodies. In this innovative approach to creating dual-specific proteins, an additional functionality is introduced into a small peptide or into a natural protein ligand to complement its existing biological properties. We predict that this approach will form a major part of a highly effective strategy for creating ligand-based multispecific receptor inhibitors and molecular tools for protein recognition. We envision that protein variants generated from these efforts will promote the next generation of therapeutics including, but not limited to, molecular imaging agents, targeted drug delivery agents, and selective tissue targeting probes.
Summary
The dysregulation of signaling pathways that mediate cell proliferation, survival and migration is an underlying cause of many cancers. In particular, dysregulation and over-expression of avb3 integrin, membrane-type-1 matrix metalloproteinase (MT1-MMP; also known as matrix metalloproteinase-14, MMP14) and vascular endothelial growth factor receptor-2 (VEGFR2) correlate with poor prognosis in many human tumors, making these proteins attractive targets for therapeutic intervention. Numerous papers have demonstrated the cross-talk between biological processes mediated by αvβ3 integrins, MT1-MMP, VEGFR2, and their ligands, particularly pathways responsible for angiogenesis. Dual-specific proteins that can target and inhibit the activity of the above multiple receptors therefore have superior potential to single-targeted agents due to differential expression of these disease markers in different patients and the ability of this expression to change over time. Most currently available bispecific protein therapeutics comprise antibodies (Abs) or antibody fragments. The new approach proposed here entails rational and combinatorial methods for engineering multispecificity into small peptides and natural protein ligands to function as non-immunoglobulin alternatives to antibodies. In this innovative approach to creating dual-specific proteins, an additional functionality is introduced into a small peptide or into a natural protein ligand to complement its existing biological properties. We predict that this approach will form a major part of a highly effective strategy for creating ligand-based multispecific receptor inhibitors and molecular tools for protein recognition. We envision that protein variants generated from these efforts will promote the next generation of therapeutics including, but not limited to, molecular imaging agents, targeted drug delivery agents, and selective tissue targeting probes.
Max ERC Funding
1 625 000 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym BlackBox
Project A collaborative platform to document performance composition: from conceptual structures in the backstage to customizable visualizations in the front-end
Researcher (PI) Carla Maria De Jesus Fernandes
Host Institution (HI) FACULDADE DE CIENCIAS SOCIAIS E HUMANAS DA UNIVERSIDADE NOVA DE LISBOA
Call Details Starting Grant (StG), SH5, ERC-2013-StG
Summary The global performing arts community is requiring innovative systems to: a) document, transmit and preserve the knowledge contained in choreographic-dramaturgic practices; b) assist artists with tools to facilitate their compositional processes, preferably on a collaborative basis. The existing digital archives of performing arts mostly function as conventional e-libraries, not allowing higher degrees of interactivity or active user intervention. They rarely contemplate accessible video annotation tools or provide relational querying functionalities based on artist-driven conceptual principles or idiosyncratic ontologies.
This proposal endeavours to fill that gap and create a new paradigm for the documentation of performance composition. It aims at the analysis of artists’ unique conceptual structures, by combining the empirical insights of contemporary creators with research theories from Multimodal Communication and Digital Media studies. The challenge is to design a model for a web-based collaborative platform enabling both a robust representation of performance composition methods and novel visualization technologies to support it. This can be done by analysing recurring body movement patterns and by fostering online contributions of users (a.o. performers and researchers) to the multimodal annotations stored in the platform. To accomplish this goal, two subjacent components must be developed: 1. the production of a video annotation-tool to allow artists in rehearsal periods to take notes over video in real-time and share them via the collaborative platform; 2. the linguistic analysis of a corpus of invited artists’ multimodal materials as source for the extraction of indicative conceptual structures, which will guide the architectural logics and interface design of the collaborative platform software.The outputs of these two components will generate critical case-studies to help understanding the human mind when engaged in cultural production processes.
Summary
The global performing arts community is requiring innovative systems to: a) document, transmit and preserve the knowledge contained in choreographic-dramaturgic practices; b) assist artists with tools to facilitate their compositional processes, preferably on a collaborative basis. The existing digital archives of performing arts mostly function as conventional e-libraries, not allowing higher degrees of interactivity or active user intervention. They rarely contemplate accessible video annotation tools or provide relational querying functionalities based on artist-driven conceptual principles or idiosyncratic ontologies.
This proposal endeavours to fill that gap and create a new paradigm for the documentation of performance composition. It aims at the analysis of artists’ unique conceptual structures, by combining the empirical insights of contemporary creators with research theories from Multimodal Communication and Digital Media studies. The challenge is to design a model for a web-based collaborative platform enabling both a robust representation of performance composition methods and novel visualization technologies to support it. This can be done by analysing recurring body movement patterns and by fostering online contributions of users (a.o. performers and researchers) to the multimodal annotations stored in the platform. To accomplish this goal, two subjacent components must be developed: 1. the production of a video annotation-tool to allow artists in rehearsal periods to take notes over video in real-time and share them via the collaborative platform; 2. the linguistic analysis of a corpus of invited artists’ multimodal materials as source for the extraction of indicative conceptual structures, which will guide the architectural logics and interface design of the collaborative platform software.The outputs of these two components will generate critical case-studies to help understanding the human mind when engaged in cultural production processes.
Max ERC Funding
1 378 200 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym BNYQ
Project Breaking the Nyquist Barrier: A New Paradigm in Data Conversion and Transmission
Researcher (PI) Yonina Eldar
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Consolidator Grant (CoG), PE7, ERC-2014-CoG
Summary Digital signal processing (DSP) is a revolutionary paradigm shift enabling processing of physical data in the digital domain where design and implementation are considerably simplified. However, state-of-the-art analog-to-digital convertors (ADCs) preclude high-rate wideband sampling and processing with low cost and energy consumption, presenting a major bottleneck. This is mostly due to a traditional assumption that sampling must be performed at the Nyquist rate, that is, twice the signal bandwidth. Modern applications including communications, medical imaging, radar and more use signals with high bandwidth, resulting in prohibitively large Nyquist rates.
Our ambitious goal is to introduce a paradigm shift in ADC design that will enable systems capable of low-rate, wideband sensing and low-rate DSP.
While DSP has a rich history in exploiting structure to reduce dimensionality and perform efficient parameter extraction, current ADCs do not exploit such knowledge.
We challenge current practice that separates the sampling stage from the processing stage and exploit structure in analog signals already in the ADC, to drastically reduce the sampling and processing rates.
Our preliminary data shows that this allows substantial savings in sampling and processing rates --- we show rate reduction of 1/28 in ultrasound imaging, and 1/30 in radar detection.
To achieve our overreaching goal we focus on three interconnected objectives -- developing the 1) theory 2) hardware and 3) applications of sub-Nyquist sampling.
Our methodology ties together two areas on the frontier of signal processing: compressed sensing (CS), focused on finite length vectors, and analog sampling. Our research plan also inherently relies on advances in several other important areas within signal processing and combines multi-disciplinary research at the intersection of signal processing, information theory, optimization, estimation theory and hardware design.
Summary
Digital signal processing (DSP) is a revolutionary paradigm shift enabling processing of physical data in the digital domain where design and implementation are considerably simplified. However, state-of-the-art analog-to-digital convertors (ADCs) preclude high-rate wideband sampling and processing with low cost and energy consumption, presenting a major bottleneck. This is mostly due to a traditional assumption that sampling must be performed at the Nyquist rate, that is, twice the signal bandwidth. Modern applications including communications, medical imaging, radar and more use signals with high bandwidth, resulting in prohibitively large Nyquist rates.
Our ambitious goal is to introduce a paradigm shift in ADC design that will enable systems capable of low-rate, wideband sensing and low-rate DSP.
While DSP has a rich history in exploiting structure to reduce dimensionality and perform efficient parameter extraction, current ADCs do not exploit such knowledge.
We challenge current practice that separates the sampling stage from the processing stage and exploit structure in analog signals already in the ADC, to drastically reduce the sampling and processing rates.
Our preliminary data shows that this allows substantial savings in sampling and processing rates --- we show rate reduction of 1/28 in ultrasound imaging, and 1/30 in radar detection.
To achieve our overreaching goal we focus on three interconnected objectives -- developing the 1) theory 2) hardware and 3) applications of sub-Nyquist sampling.
Our methodology ties together two areas on the frontier of signal processing: compressed sensing (CS), focused on finite length vectors, and analog sampling. Our research plan also inherently relies on advances in several other important areas within signal processing and combines multi-disciplinary research at the intersection of signal processing, information theory, optimization, estimation theory and hardware design.
Max ERC Funding
2 400 000 €
Duration
Start date: 2015-08-01, End date: 2020-07-31
Project acronym BONDS
Project Bilayered ON-Demand Scaffolds: On-Demand Delivery from induced Pluripotent Stem Cell Derived Scaffolds for Diabetic Foot Ulcers
Researcher (PI) Cathal KEARNEY
Host Institution (HI) ROYAL COLLEGE OF SURGEONS IN IRELAND
Call Details Starting Grant (StG), PE8, ERC-2017-STG
Summary This program’s goal is to develop a scaffold using a new biomaterial source that is functionalised with on-demand delivery of genes for coordinated healing of diabetic foot ulcers (DFUs). DFUs are chronic wounds that are often recalcitrant to treatment, which devastatingly results in lower leg amputation. This project builds on the PI’s experience growing matrix from induced-pluripotent stem cell derived (iPS)-fibroblasts and in developing on-demand drug delivery technologies. The aim of this project is to first develop a SiPS: a scaffold from iPS-fibroblast grown matrix, which has never been tested as a source material for scaffolds. iPS-fibroblasts grow a more pro-repair and angiogenic matrix than (non-iPS) adult fibroblasts. The SiPS structure will be bilayered to mimic native skin: dermis made mostly by fibroblasts and epidermis made by keratinocytes. The dermal layer will consist of a porous scaffold with optimised pore size and mechanical properties and the epidermal layer will be film-like, optimised for keratinisation.
Second, the SiPS will be functionalised with delivery of plasmid-DNA (platelet derived growth factor gene, pPDGF) to direct angiogenesis on-demand. As DFUs undergo uncoordinated healing, timed pPDGF delivery will guide them through angiogenesis and healing. To achieve this, alginate microparticles, designed to respond to ultrasound by releasing pPDGF, will be interspersed throughout the SiPS. This BONDS will be tested in an in vivo pre-clinical DFU model to confirm its ability to heal wounds by providing cells with the appropriate biomimetic scaffold environment and timed directions for healing. With >100 million current diabetics expected to get a DFU, the BONDS would have a powerful clinical impact.
This research program combines a disruptive technology, the SiPS, with a new platform for on-demand delivery of pDNA to heal DFUs. The PI will build his lab around these innovative platforms, adapting them for treatment of diverse complex wounds.
Summary
This program’s goal is to develop a scaffold using a new biomaterial source that is functionalised with on-demand delivery of genes for coordinated healing of diabetic foot ulcers (DFUs). DFUs are chronic wounds that are often recalcitrant to treatment, which devastatingly results in lower leg amputation. This project builds on the PI’s experience growing matrix from induced-pluripotent stem cell derived (iPS)-fibroblasts and in developing on-demand drug delivery technologies. The aim of this project is to first develop a SiPS: a scaffold from iPS-fibroblast grown matrix, which has never been tested as a source material for scaffolds. iPS-fibroblasts grow a more pro-repair and angiogenic matrix than (non-iPS) adult fibroblasts. The SiPS structure will be bilayered to mimic native skin: dermis made mostly by fibroblasts and epidermis made by keratinocytes. The dermal layer will consist of a porous scaffold with optimised pore size and mechanical properties and the epidermal layer will be film-like, optimised for keratinisation.
Second, the SiPS will be functionalised with delivery of plasmid-DNA (platelet derived growth factor gene, pPDGF) to direct angiogenesis on-demand. As DFUs undergo uncoordinated healing, timed pPDGF delivery will guide them through angiogenesis and healing. To achieve this, alginate microparticles, designed to respond to ultrasound by releasing pPDGF, will be interspersed throughout the SiPS. This BONDS will be tested in an in vivo pre-clinical DFU model to confirm its ability to heal wounds by providing cells with the appropriate biomimetic scaffold environment and timed directions for healing. With >100 million current diabetics expected to get a DFU, the BONDS would have a powerful clinical impact.
This research program combines a disruptive technology, the SiPS, with a new platform for on-demand delivery of pDNA to heal DFUs. The PI will build his lab around these innovative platforms, adapting them for treatment of diverse complex wounds.
Max ERC Funding
1 372 135 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym BONEMECHBIO
Project Frontier research in bone mechanobiology during normal physiology, disease and for tissue regeneration
Researcher (PI) Laoise Maria Cunningham
Host Institution (HI) NATIONAL UNIVERSITY OF IRELAND GALWAY
Call Details Starting Grant (StG), PE8, ERC-2010-StG_20091028
Summary While previous studies have investigated cell-signalling pathways that facilitate mechanotransduction and have provided a wealth of data, to date, in vivo mechanobiology is not fully understood. In the research study proposed the applicant will embark upon frontier research to delineate these specific aspects of bone mechanotransduction during normal physiology, disease and for tissue regeneration purposes. If these quantities were better understood the proposed research program will deliver significant advances in the understanding of the mechanical regulation of bone remodelling during normal physiology and osteoporosis, and will enhance approaches for regeneration of bone tissue for treatment of bone pathologies. The primary objective is to delineate the normal mechanosensory and signalling mechanisms of bone cells. The secondary objective is to determine whether the regulatory role of bone cells is inhibited or impaired during bone diseases such as osteoporosis. The final objective of this project is to develop an in vitro mechanical loading device that can enhance bone tissue regeneration and thereby advance current treatment approaches for bone pathologies. To address these objectives, five hypotheses have been defined, each of which will underpin the research of five work packages. A combination of experimental studies, using animal models and in vitro cell culture, and computational modelling will be taken to test each of these hypotheses. Answering these hypotheses will bring us closer to an understanding of the origins of bone mechanobiology and diseases such as osteoporosis. Furthermore, the results of these studies will facilitate development of novel approaches to enhance bone regeneration in vitro.
Summary
While previous studies have investigated cell-signalling pathways that facilitate mechanotransduction and have provided a wealth of data, to date, in vivo mechanobiology is not fully understood. In the research study proposed the applicant will embark upon frontier research to delineate these specific aspects of bone mechanotransduction during normal physiology, disease and for tissue regeneration purposes. If these quantities were better understood the proposed research program will deliver significant advances in the understanding of the mechanical regulation of bone remodelling during normal physiology and osteoporosis, and will enhance approaches for regeneration of bone tissue for treatment of bone pathologies. The primary objective is to delineate the normal mechanosensory and signalling mechanisms of bone cells. The secondary objective is to determine whether the regulatory role of bone cells is inhibited or impaired during bone diseases such as osteoporosis. The final objective of this project is to develop an in vitro mechanical loading device that can enhance bone tissue regeneration and thereby advance current treatment approaches for bone pathologies. To address these objectives, five hypotheses have been defined, each of which will underpin the research of five work packages. A combination of experimental studies, using animal models and in vitro cell culture, and computational modelling will be taken to test each of these hypotheses. Answering these hypotheses will bring us closer to an understanding of the origins of bone mechanobiology and diseases such as osteoporosis. Furthermore, the results of these studies will facilitate development of novel approaches to enhance bone regeneration in vitro.
Max ERC Funding
1 499 911 €
Duration
Start date: 2011-02-01, End date: 2016-01-31
Project acronym BOTTOM-UP_SYSCHEM
Project Systems Chemistry from Bottom Up: Switching, Gating and Oscillations in Non Enzymatic Peptide Networks
Researcher (PI) Gonen Ashkenasy
Host Institution (HI) BEN-GURION UNIVERSITY OF THE NEGEV
Call Details Starting Grant (StG), PE5, ERC-2010-StG_20091028
Summary The study of synthetic molecular networks is of fundamental importance for understanding the organizational principles of biological systems and may well be the key to unraveling the origins of life. In addition, such systems may be useful for parallel synthesis of molecules, implementation of catalysis via multi-step pathways, and as media for various applications in nano-medicine and nano-electronics. We have been involved recently in developing peptide-based replicating networks and revealed their dynamic characteristics. We argue here that the structural information embedded in the polypeptide chains is sufficiently rich to allow the construction of peptide 'Systems Chemistry', namely, to facilitate the use of replicating networks as cell-mimetics, featuring complex dynamic behavior. To bring this novel idea to reality, we plan to take a unique holistic approach by studying such networks both experimentally and via simulations, for elucidating basic-principles and towards applications in adjacent fields, such as molecular electronics. Towards realizing these aims, we will study three separate but inter-related objectives: (i) design and characterization of networks that react and rewire in response to external triggers, such as light, (ii) design of networks that operate via new dynamic rules of product formation that lead to oscillations, and (iii) exploitation of the molecular information gathered from the networks as means to control switching and gating in molecular electronic devices. We believe that achieving the project's objectives will be highly significant for the development of the arising field of Systems Chemistry, and in addition will provide valuable tools for studying related scientific fields, such as systems biology and molecular electronics.
Summary
The study of synthetic molecular networks is of fundamental importance for understanding the organizational principles of biological systems and may well be the key to unraveling the origins of life. In addition, such systems may be useful for parallel synthesis of molecules, implementation of catalysis via multi-step pathways, and as media for various applications in nano-medicine and nano-electronics. We have been involved recently in developing peptide-based replicating networks and revealed their dynamic characteristics. We argue here that the structural information embedded in the polypeptide chains is sufficiently rich to allow the construction of peptide 'Systems Chemistry', namely, to facilitate the use of replicating networks as cell-mimetics, featuring complex dynamic behavior. To bring this novel idea to reality, we plan to take a unique holistic approach by studying such networks both experimentally and via simulations, for elucidating basic-principles and towards applications in adjacent fields, such as molecular electronics. Towards realizing these aims, we will study three separate but inter-related objectives: (i) design and characterization of networks that react and rewire in response to external triggers, such as light, (ii) design of networks that operate via new dynamic rules of product formation that lead to oscillations, and (iii) exploitation of the molecular information gathered from the networks as means to control switching and gating in molecular electronic devices. We believe that achieving the project's objectives will be highly significant for the development of the arising field of Systems Chemistry, and in addition will provide valuable tools for studying related scientific fields, such as systems biology and molecular electronics.
Max ERC Funding
1 500 000 €
Duration
Start date: 2010-10-01, End date: 2015-09-30
Project acronym Brain circRNAs
Project Rounding the circle: Unravelling the biogenesis, function and mechanism of action of circRNAs in the Drosophila brain.
Researcher (PI) Sebastian Kadener
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Consolidator Grant (CoG), LS5, ERC-2014-CoG
Summary Tight regulation of RNA metabolism is essential for normal brain function. This includes co and post-transcriptional regulation, which are extremely prevalent in neurons. Recently, circular RNAs (circRNAs), a highly abundant new type of regulatory non-coding RNA have been found across the animal kingdom. Two of these RNAs have been shown to act as miRNA sponges but no function is known for the thousands of other circRNAs, indicating the existence of a widespread layer of previously unknown gene regulation.
The present proposal aims to comprehensively determine the role and mode of actions of circRNAs in gene expression and RNA metabolism in the fly brain. We will do so by studying their biogenesis, transport, and mechanism of action, as well as by determining the roles of circRNAs in neuronal function and behaviour. Briefly, we will: 1) identify factors involved in the biogenesis, localization, and stabilization of circRNAs; 2) determine neuro-developmental, molecular, neural and behavioural phenotypes associated with down or up regulation of specific circRNAs; 3) study the molecular mechanisms of action of circRNAs: identify circRNAs that work as miRNA sponges and determine whether circRNAs can encode proteins or act as signalling molecules and 4) perform mechanistic studies in order to determine cause-effect relationships between circRNA function and brain physiology and behaviour.
The present proposal will reveal the key pathways by which circRNAs control gene expression and influence neuronal function and behaviour. Therefore it will be one of the pioneer works in the study of this new and important area of research, which we predict will fundamentally transform the study of gene expression regulation in the brain
Summary
Tight regulation of RNA metabolism is essential for normal brain function. This includes co and post-transcriptional regulation, which are extremely prevalent in neurons. Recently, circular RNAs (circRNAs), a highly abundant new type of regulatory non-coding RNA have been found across the animal kingdom. Two of these RNAs have been shown to act as miRNA sponges but no function is known for the thousands of other circRNAs, indicating the existence of a widespread layer of previously unknown gene regulation.
The present proposal aims to comprehensively determine the role and mode of actions of circRNAs in gene expression and RNA metabolism in the fly brain. We will do so by studying their biogenesis, transport, and mechanism of action, as well as by determining the roles of circRNAs in neuronal function and behaviour. Briefly, we will: 1) identify factors involved in the biogenesis, localization, and stabilization of circRNAs; 2) determine neuro-developmental, molecular, neural and behavioural phenotypes associated with down or up regulation of specific circRNAs; 3) study the molecular mechanisms of action of circRNAs: identify circRNAs that work as miRNA sponges and determine whether circRNAs can encode proteins or act as signalling molecules and 4) perform mechanistic studies in order to determine cause-effect relationships between circRNA function and brain physiology and behaviour.
The present proposal will reveal the key pathways by which circRNAs control gene expression and influence neuronal function and behaviour. Therefore it will be one of the pioneer works in the study of this new and important area of research, which we predict will fundamentally transform the study of gene expression regulation in the brain
Max ERC Funding
1 971 750 €
Duration
Start date: 2016-02-01, End date: 2021-01-31
Project acronym BrainControl
Project Stable Brain-Machine control via a learnable standalone interface
Researcher (PI) Rui Manuel Marques Fernandes da Costa
Host Institution (HI) FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD
Call Details Proof of Concept (PoC), PC1, ERC-2015-PoC
Summary Non-invasive Brain Machine Interfaces (BMI) bring great promise for neuro-rehabilitation and neuro-prosthesis, as well as for brain control of everyday devices and performance of simple tasks. Over the last 15 years the interest in BMIs has grown substantially, and a variety of interfaces have been developed. The field has been growing dramatically, and market studies reveal an estimated market size of $1.46 billion by 2020. However, non-invasive BMIs have failed to reach the impressive control seen by BMIs implanted in the brain. To date, they require considerable training to reach a moderate level of control, they are susceptible to noise and interference, do not generalize between people and devices, and performance does not show long-term consolidation. Results from our ERC-funded work uncovered a new paradigm that dramatically improves these issues. We propose to develop a prototype for a novel, standalone, non-invasive, noise-resistant BMI, based on an unexplored BMI learning paradigm. In this POC we will 1) refine the brain signal interface (decoder) to be automatically customizable to each individual and produces faster training, 2) implement our BMI technology into a portable hardware-based system, and 3) develop a virtual reality/gaming training platform that will increase learning, performance and consolidation of BMI control. In addition to these technical aims, we propose to explore commercial opportunities and societal benefits, in particular in the health sector. We will conduct market analysis and develop a business case for this product, while expanding industry contacts for production and commercialization.
The work proposed in this PoC grant will permit, for the first time to our knowledge, the development of a portable, stand-alone, noise-resistant, and easy to learn BMI, applicable across a wide set of devices, which will bring a significant social impact in health, entertainment and other applications.
Summary
Non-invasive Brain Machine Interfaces (BMI) bring great promise for neuro-rehabilitation and neuro-prosthesis, as well as for brain control of everyday devices and performance of simple tasks. Over the last 15 years the interest in BMIs has grown substantially, and a variety of interfaces have been developed. The field has been growing dramatically, and market studies reveal an estimated market size of $1.46 billion by 2020. However, non-invasive BMIs have failed to reach the impressive control seen by BMIs implanted in the brain. To date, they require considerable training to reach a moderate level of control, they are susceptible to noise and interference, do not generalize between people and devices, and performance does not show long-term consolidation. Results from our ERC-funded work uncovered a new paradigm that dramatically improves these issues. We propose to develop a prototype for a novel, standalone, non-invasive, noise-resistant BMI, based on an unexplored BMI learning paradigm. In this POC we will 1) refine the brain signal interface (decoder) to be automatically customizable to each individual and produces faster training, 2) implement our BMI technology into a portable hardware-based system, and 3) develop a virtual reality/gaming training platform that will increase learning, performance and consolidation of BMI control. In addition to these technical aims, we propose to explore commercial opportunities and societal benefits, in particular in the health sector. We will conduct market analysis and develop a business case for this product, while expanding industry contacts for production and commercialization.
The work proposed in this PoC grant will permit, for the first time to our knowledge, the development of a portable, stand-alone, noise-resistant, and easy to learn BMI, applicable across a wide set of devices, which will bring a significant social impact in health, entertainment and other applications.
Max ERC Funding
149 625 €
Duration
Start date: 2016-09-01, End date: 2018-02-28
Project acronym BRAINPLASTICITY
Project In vivo imaging of functional plasticity in the mammalian brain
Researcher (PI) Adi Mizrahi
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Starting Grant (StG), LS4, ERC-2007-StG
Summary "The dynamic nature of the brain operates at disparate time scales ranging from milliseconds to months. How do single neurons change over such long time scales? This question remains stubborn to answer in the field of brain plasticity mainly because of limited tools to study the physiology of single neurons over time in the complex environment of the brain. The research aim of this proposal is to reveal the physiological changes of single neurons in the mammalian brain over disparate time scales using time-lapse optical imaging. Specifically, we aim to establish a new team that will develop genetic and optical tools to probe the physiological activity of single neurons, in vivo. As a model system, we will study a unique neuronal population in the mammalian brain; the adult-born local neurons in the olfactory bulb. These neurons have tremendous potential to reveal how neurons develop and maintain in the intact brain because they are accessible both genetically and optically. By following the behavior of adult-born neurons in vivo we will discover how neurons mature and maintain over days and weeks. If our objectives will be met, this study has the potential to significantly ""raise the bar"" on how neuronal plasticity is studied and reveal some basic secrets of the ever changing mammalian brain."
Summary
"The dynamic nature of the brain operates at disparate time scales ranging from milliseconds to months. How do single neurons change over such long time scales? This question remains stubborn to answer in the field of brain plasticity mainly because of limited tools to study the physiology of single neurons over time in the complex environment of the brain. The research aim of this proposal is to reveal the physiological changes of single neurons in the mammalian brain over disparate time scales using time-lapse optical imaging. Specifically, we aim to establish a new team that will develop genetic and optical tools to probe the physiological activity of single neurons, in vivo. As a model system, we will study a unique neuronal population in the mammalian brain; the adult-born local neurons in the olfactory bulb. These neurons have tremendous potential to reveal how neurons develop and maintain in the intact brain because they are accessible both genetically and optically. By following the behavior of adult-born neurons in vivo we will discover how neurons mature and maintain over days and weeks. If our objectives will be met, this study has the potential to significantly ""raise the bar"" on how neuronal plasticity is studied and reveal some basic secrets of the ever changing mammalian brain."
Max ERC Funding
1 750 000 €
Duration
Start date: 2008-08-01, End date: 2013-07-31
Project acronym BRAINVISIONREHAB
Project ‘Seeing’ with the ears, hands and bionic eyes: from theories about brain organization to visual rehabilitation
Researcher (PI) Amir Amedi
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Starting Grant (StG), LS5, ERC-2012-StG_20111109
Summary My lab's work ranges from basic science, querying brain plasticity and sensory integration, to technological developments, allowing the blind to be more independent and even “see” using sounds and touch similar to bats and dolphins (a.k.a. Sensory Substitution Devices, SSDs), and back to applying these devices in research. We propose that, with proper training, any brain area or network can change the type of sensory input it uses to retrieve behaviorally task-relevant information within a matter of days. If this is true, it can have far reaching implications also for clinical rehabilitation. To achieve this, we are developing several innovative SSDs which encode the most crucial aspects of vision and increase their accessibility the blind, along with targeted, structured training protocols both in virtual environments and in real life. For instance, the “EyeMusic”, encodes colored complex images using pleasant musical scales and instruments, and the “EyeCane”, a palm-size cane, which encodes distance and depth in several directions accurately and efficiently. We provide preliminary but compelling evidence that following such training, SSDs can enable almost blind to recognize daily objects, colors, faces and facial expressions, read street signs, and aiding mobility and navigation. SSDs can also be used in conjunction with (any) invasive approach for visual rehabilitation. We are developing a novel hybrid Visual Rehabilitation Device which combines SSD and bionic eyes. In this set up, the SSDs is used in training the brain to “see” prior to surgery, in providing explanatory signal after surgery and in augmenting the capabilities of the bionic-eyes using information arriving from the same image. We will chart the dynamics of the plastic changes in the brain by performing unprecedented longitudinal Neuroimaging, Electrophysiological and Neurodisruptive approaches while individuals learn to ‘see’ using each of the visual rehabilitation approaches suggested here.
Summary
My lab's work ranges from basic science, querying brain plasticity and sensory integration, to technological developments, allowing the blind to be more independent and even “see” using sounds and touch similar to bats and dolphins (a.k.a. Sensory Substitution Devices, SSDs), and back to applying these devices in research. We propose that, with proper training, any brain area or network can change the type of sensory input it uses to retrieve behaviorally task-relevant information within a matter of days. If this is true, it can have far reaching implications also for clinical rehabilitation. To achieve this, we are developing several innovative SSDs which encode the most crucial aspects of vision and increase their accessibility the blind, along with targeted, structured training protocols both in virtual environments and in real life. For instance, the “EyeMusic”, encodes colored complex images using pleasant musical scales and instruments, and the “EyeCane”, a palm-size cane, which encodes distance and depth in several directions accurately and efficiently. We provide preliminary but compelling evidence that following such training, SSDs can enable almost blind to recognize daily objects, colors, faces and facial expressions, read street signs, and aiding mobility and navigation. SSDs can also be used in conjunction with (any) invasive approach for visual rehabilitation. We are developing a novel hybrid Visual Rehabilitation Device which combines SSD and bionic eyes. In this set up, the SSDs is used in training the brain to “see” prior to surgery, in providing explanatory signal after surgery and in augmenting the capabilities of the bionic-eyes using information arriving from the same image. We will chart the dynamics of the plastic changes in the brain by performing unprecedented longitudinal Neuroimaging, Electrophysiological and Neurodisruptive approaches while individuals learn to ‘see’ using each of the visual rehabilitation approaches suggested here.
Max ERC Funding
1 499 900 €
Duration
Start date: 2013-09-01, End date: 2018-08-31
Project acronym BugTheDrug
Project Predicting the effects of gut microbiota and diet on an individual’s drug response and safety
Researcher (PI) Ines THIELE
Host Institution (HI) NATIONAL UNIVERSITY OF IRELAND GALWAY
Call Details Starting Grant (StG), LS7, ERC-2017-STG
Summary Precision medicine is an emerging paradigm that aims at maximizing the benefits and minimizing the harm of drugs. Realistic mechanistic models are needed to understand and limit heterogeneity in drug responses. Consequently, novel approaches are required that explicitly account for individual variations in response to environmental influences, in addition to genetic variation. The human gut microbiota metabolizes drugs and is modulated by diet, and it exhibits significant variation among individuals. However, the influence of the gut microbiota on drug failure or drug side effects is under-researched. In this study, I will combine whole-body, genome-scale molecular resolution modeling of human metabolism and human gut microbial metabolism, which represents a network of genes, proteins, and biochemical reactions, with physiological, clinically relevant modeling of drug responses. I will perform two pilot studies on human subjects to illustrate that this innovative, versatile computational modeling framework can be used to stratify patients prior to drug prescription and to optimize drug bioavailability through personalized dietary intervention. With these studies, BugTheDrug will advance mechanistic understanding of drug-microbiota-diet interactions and their contribution to individual drug responses. I will perform the first integration of cutting-edge approaches and novel insights from four distinct research areas: systems biology, quantitative systems pharmacology, microbiology, and nutrition. BugTheDrug conceptually and technologically addresses the demand for novel approaches to the study of individual variability, thereby providing breakthrough support for progress in precision medicine.
Summary
Precision medicine is an emerging paradigm that aims at maximizing the benefits and minimizing the harm of drugs. Realistic mechanistic models are needed to understand and limit heterogeneity in drug responses. Consequently, novel approaches are required that explicitly account for individual variations in response to environmental influences, in addition to genetic variation. The human gut microbiota metabolizes drugs and is modulated by diet, and it exhibits significant variation among individuals. However, the influence of the gut microbiota on drug failure or drug side effects is under-researched. In this study, I will combine whole-body, genome-scale molecular resolution modeling of human metabolism and human gut microbial metabolism, which represents a network of genes, proteins, and biochemical reactions, with physiological, clinically relevant modeling of drug responses. I will perform two pilot studies on human subjects to illustrate that this innovative, versatile computational modeling framework can be used to stratify patients prior to drug prescription and to optimize drug bioavailability through personalized dietary intervention. With these studies, BugTheDrug will advance mechanistic understanding of drug-microbiota-diet interactions and their contribution to individual drug responses. I will perform the first integration of cutting-edge approaches and novel insights from four distinct research areas: systems biology, quantitative systems pharmacology, microbiology, and nutrition. BugTheDrug conceptually and technologically addresses the demand for novel approaches to the study of individual variability, thereby providing breakthrough support for progress in precision medicine.
Max ERC Funding
1 687 458 €
Duration
Start date: 2018-04-01, End date: 2023-03-31
Project acronym C.o.C.O.
Project Circuits of con-specific observation
Researcher (PI) Marta De Aragao Pacheco Moita
Host Institution (HI) FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD
Call Details Starting Grant (StG), LS5, ERC-2013-StG
Summary A great deal is known about the neural basis of associative fear learning. However, many animal species are able to use social cues to recognize threats, a defence mechanism that may be less costly than learning from self-experience. We have previously shown that rats perceive the cessation of movement-evoked sound as a signal of danger and its resumption as a signal of safety. To study transmission of fear between rats we assessed the behavior of an observer while witnessing a demonstrator rat display fear responses. With this paradigm we will take advantage of the accumulated knowledge on learned fear to investigate the neural mechanisms by which the social environment regulates defense behaviors. We will unravel the neural circuits involved in detecting the transition from movement-evoked sound to silence. Moreover, since observer rats previously exposed to shock display observational freezing, but naive observer rats do not, we will determine the mechanism by which prior experience contribute to observational freezing. To this end, we will focus on the amygdala, crucial for fear learning and expression, and its auditory inputs, combining immunohistochemistry, pharmacology and optogenetics. Finally, as the detection of and responses to threat are often inherently social, we will study these behaviors in the context of large groups of individuals. To circumvent the serious limitations in using large populations of rats, we will resort to a different model system. The fruit fly is the ideal model system, as it is both amenable to the search for the neural mechanism of behavior, while at the same time allowing the study of the behavior of large groups of individuals. We will develop behavioral tasks, where conditioned demonstrator flies signal danger to other naïve ones. These experiments unravel how the brain uses defense behaviors as signals of danger and how it contributes to defense mechanisms at the population level.
Summary
A great deal is known about the neural basis of associative fear learning. However, many animal species are able to use social cues to recognize threats, a defence mechanism that may be less costly than learning from self-experience. We have previously shown that rats perceive the cessation of movement-evoked sound as a signal of danger and its resumption as a signal of safety. To study transmission of fear between rats we assessed the behavior of an observer while witnessing a demonstrator rat display fear responses. With this paradigm we will take advantage of the accumulated knowledge on learned fear to investigate the neural mechanisms by which the social environment regulates defense behaviors. We will unravel the neural circuits involved in detecting the transition from movement-evoked sound to silence. Moreover, since observer rats previously exposed to shock display observational freezing, but naive observer rats do not, we will determine the mechanism by which prior experience contribute to observational freezing. To this end, we will focus on the amygdala, crucial for fear learning and expression, and its auditory inputs, combining immunohistochemistry, pharmacology and optogenetics. Finally, as the detection of and responses to threat are often inherently social, we will study these behaviors in the context of large groups of individuals. To circumvent the serious limitations in using large populations of rats, we will resort to a different model system. The fruit fly is the ideal model system, as it is both amenable to the search for the neural mechanism of behavior, while at the same time allowing the study of the behavior of large groups of individuals. We will develop behavioral tasks, where conditioned demonstrator flies signal danger to other naïve ones. These experiments unravel how the brain uses defense behaviors as signals of danger and how it contributes to defense mechanisms at the population level.
Max ERC Funding
1 412 376 €
Duration
Start date: 2013-12-01, End date: 2018-11-30
Project acronym Ca2Coral
Project Elucidating the molecular and biophysical mechanism of coral calcification in view of the future acidified ocean
Researcher (PI) Tali Mass
Host Institution (HI) UNIVERSITY OF HAIFA
Call Details Starting Grant (StG), LS8, ERC-2017-STG
Summary Although various aspects of biomineralisation in corals have been studied for decades, the basic mechanism of precipitation of the aragonite skeleton remains enigmatic. Two parallel lines of inquiry have emerged: geochemist models of calcification that are directly related to seawater carbonate chemistry at thermodynamic equilibrium. Here, the role of the organisms in the precipitation reaction is largely ignored. The second line is based on biological considerations of the biomineralisation process, which focuses on models of biophysical processes far from thermodynamic equilibrium that concentrate calcium ions, anions and proteins responsible for nucleation in specific compartments. Recently, I identified and cloned a group of highly acidic proteins derived the common stony coral, Stylophora pistillata. All of the cloned proteins precipitate aragonite in seawater at pH 8.2 and 7.6 in-vitro. However, it is not at all clear if the expression of these proteins in-vivo is sufficient for the formation of an aragonite skeleton at seawater pH values below ~7.8. Here using a combination of molecular, biophysical, genomic, and cell biological approaches, we proposed to test the core hypothesis that, unless wounded or otherwise having skeletal material exposed directly to seawater, stony zooxanthellate corals will continue to calcify at pH values projected for the CO2 emissions scenarios for 2100.
Specifically, the objectives of Ca2Coral are to:
1) Use functional genomics to identify the key genes and proteins involved both in the organic matrix and skeleton formation in the adult holobiont and during its larval development.
2) Use a genetics approach to elucidate the roles of specific proteins in the biomineralisation process.
3) Use ultra-high resolution imaging and spectroscopic analysis at different pH levels to elucidate the biomineralisation pathways and mineral precursor in corals in the adult holobiont and during its larval development.
Summary
Although various aspects of biomineralisation in corals have been studied for decades, the basic mechanism of precipitation of the aragonite skeleton remains enigmatic. Two parallel lines of inquiry have emerged: geochemist models of calcification that are directly related to seawater carbonate chemistry at thermodynamic equilibrium. Here, the role of the organisms in the precipitation reaction is largely ignored. The second line is based on biological considerations of the biomineralisation process, which focuses on models of biophysical processes far from thermodynamic equilibrium that concentrate calcium ions, anions and proteins responsible for nucleation in specific compartments. Recently, I identified and cloned a group of highly acidic proteins derived the common stony coral, Stylophora pistillata. All of the cloned proteins precipitate aragonite in seawater at pH 8.2 and 7.6 in-vitro. However, it is not at all clear if the expression of these proteins in-vivo is sufficient for the formation of an aragonite skeleton at seawater pH values below ~7.8. Here using a combination of molecular, biophysical, genomic, and cell biological approaches, we proposed to test the core hypothesis that, unless wounded or otherwise having skeletal material exposed directly to seawater, stony zooxanthellate corals will continue to calcify at pH values projected for the CO2 emissions scenarios for 2100.
Specifically, the objectives of Ca2Coral are to:
1) Use functional genomics to identify the key genes and proteins involved both in the organic matrix and skeleton formation in the adult holobiont and during its larval development.
2) Use a genetics approach to elucidate the roles of specific proteins in the biomineralisation process.
3) Use ultra-high resolution imaging and spectroscopic analysis at different pH levels to elucidate the biomineralisation pathways and mineral precursor in corals in the adult holobiont and during its larval development.
Max ERC Funding
1 499 741 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym CAC
Project Cryptography and Complexity
Researcher (PI) Yuval Ishai
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Starting Grant (StG), PE6, ERC-2010-StG_20091028
Summary Modern cryptography has deeply rooted connections with computational complexity theory and other areas of computer science. This proposal suggests to explore several {\em new connections} between questions in cryptography and questions from other domains, including computational complexity, coding theory, and even the natural sciences. The project is expected to broaden the impact of ideas from cryptography on other domains, and on the other hand to benefit cryptography by applying tools from other domains towards better solutions for central problems in cryptography.
Summary
Modern cryptography has deeply rooted connections with computational complexity theory and other areas of computer science. This proposal suggests to explore several {\em new connections} between questions in cryptography and questions from other domains, including computational complexity, coding theory, and even the natural sciences. The project is expected to broaden the impact of ideas from cryptography on other domains, and on the other hand to benefit cryptography by applying tools from other domains towards better solutions for central problems in cryptography.
Max ERC Funding
1 459 703 €
Duration
Start date: 2010-12-01, End date: 2015-11-30
Project acronym CaNANObinoids
Project From Peripheralized to Cell- and Organelle-Targeted Medicine: The 3rd Generation of Cannabinoid-1 Receptor Antagonists for the Treatment of Chronic Kidney Disease
Researcher (PI) Yossef Tam
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Starting Grant (StG), LS4, ERC-2015-STG
Summary Clinical experience with globally-acting cannabinoid-1 receptor (CB1R) antagonists revealed the benefits of blocking CB1Rs for the treatment of obesity and diabetes. However, their use is hampered by increased CNS-mediated side effects. Recently, I have demonstrated that peripherally-restricted CB1R antagonists have the potential to treat the metabolic syndrome without eliciting these adverse effects. While these results are promising and are currently being developed into the clinic, our ability to rationally design CB1R blockers that would target a diseased organ is limited.
The current proposal aims to develop and test cell- and organelle-specific CB1R antagonists. To establish this paradigm, I will focus our interest on the kidney, since chronic kidney disease (CKD) is the leading cause of increased morbidity and mortality of patients with diabetes. Our first goal will be to characterize the obligatory role of the renal proximal tubular CB1R in the pathogenesis of diabetic renal complications. Next, we will attempt to link renal proximal CB1R with diabetic mitochondrial dysfunction. Finally, we will develop proximal tubular (cell-specific) and mitochondrial (organelle-specific) CB1R blockers and test their effectiveness in treating CKD. To that end, we will encapsulate CB1R blockers into biocompatible polymeric nanoparticles that will serve as targeted drug delivery systems, via their conjugation to targeting ligands.
The implications of this work are far reaching as they will (i) point to renal proximal tubule CB1R as a novel target for CKD; (ii) identify mitochondrial CB1R as a new player in the regulation of proximal tubular cell function, and (iii) eventually become the drug-of-choice in treating diabetic CKD and its comorbidities. Moreover, this work will lead to the development of a novel organ-specific drug delivery system for CB1R blockers, which could be then exploited in other tissues affected by obesity, diabetes and the metabolic syndrome.
Summary
Clinical experience with globally-acting cannabinoid-1 receptor (CB1R) antagonists revealed the benefits of blocking CB1Rs for the treatment of obesity and diabetes. However, their use is hampered by increased CNS-mediated side effects. Recently, I have demonstrated that peripherally-restricted CB1R antagonists have the potential to treat the metabolic syndrome without eliciting these adverse effects. While these results are promising and are currently being developed into the clinic, our ability to rationally design CB1R blockers that would target a diseased organ is limited.
The current proposal aims to develop and test cell- and organelle-specific CB1R antagonists. To establish this paradigm, I will focus our interest on the kidney, since chronic kidney disease (CKD) is the leading cause of increased morbidity and mortality of patients with diabetes. Our first goal will be to characterize the obligatory role of the renal proximal tubular CB1R in the pathogenesis of diabetic renal complications. Next, we will attempt to link renal proximal CB1R with diabetic mitochondrial dysfunction. Finally, we will develop proximal tubular (cell-specific) and mitochondrial (organelle-specific) CB1R blockers and test their effectiveness in treating CKD. To that end, we will encapsulate CB1R blockers into biocompatible polymeric nanoparticles that will serve as targeted drug delivery systems, via their conjugation to targeting ligands.
The implications of this work are far reaching as they will (i) point to renal proximal tubule CB1R as a novel target for CKD; (ii) identify mitochondrial CB1R as a new player in the regulation of proximal tubular cell function, and (iii) eventually become the drug-of-choice in treating diabetic CKD and its comorbidities. Moreover, this work will lead to the development of a novel organ-specific drug delivery system for CB1R blockers, which could be then exploited in other tissues affected by obesity, diabetes and the metabolic syndrome.
Max ERC Funding
1 500 000 €
Duration
Start date: 2016-04-01, End date: 2021-03-31
Project acronym CANCER-DC
Project Dissecting Regulatory Networks That Mediate Dendritic Cell Suppression
Researcher (PI) Oren PARNAS
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Starting Grant (StG), LS6, ERC-2017-STG
Summary Recent advances have shown that therapeutic manipulations of key cell-cell interactions can have dramatic clinical outcomes. Most notable are several early successes in cancer immunotherapy that target the tumor-T cell interface. However, these successes were only partial. This is likely because the few known interactions are just a few pieces of a much larger puzzle, involving additional signaling molecules and cell types. Dendritic cells (DCs), play critical roles in the induction/suppression of T cells. At early cancer stages, DCs capture tumor antigens and present them to T cells. However, in advanced cancers, the tumor microenvironment (TME) disrupts the crosstalk between DCs and T cells.
We will take a multi-step approach to explore how the TME imposes a suppressive effect on DCs and how to reverse this hazardous effect. First, we will use single cell RNA-seq to search for genes in aggressive human and mouse ovarian tumors that are highly expressed in advanced tumors compared to early tumors and that encode molecules that suppress DC activity. Second, we will design a set of CRISPR screens to find genes that are expressed in DCs and regulate the transfer of the suppressive signals. The screens will be performed in the presence of suppressive molecules to mimic the TME and are expected to uncover many key genes in DCs biology. We will develop a new strategy to find synergistic combinations of genes to target (named Perturb-comb), thereby reversing the effect of local tumor immunosuppressive signals. Lastly, we will examine the effect of modified DCs on T cell activation and proliferation in-vivo, and on tumor growth.
We expect to find: (1) Signaling molecules in the TME that affect the immune system. (2) New cytokines and cell surface receptors that are expressed in DCs and signal to T cells. (3) New key regulators in DC biology and their mechanisms. (4) Combinations of genes to target in DCs that reverse the TME’s hazardous effects.
Summary
Recent advances have shown that therapeutic manipulations of key cell-cell interactions can have dramatic clinical outcomes. Most notable are several early successes in cancer immunotherapy that target the tumor-T cell interface. However, these successes were only partial. This is likely because the few known interactions are just a few pieces of a much larger puzzle, involving additional signaling molecules and cell types. Dendritic cells (DCs), play critical roles in the induction/suppression of T cells. At early cancer stages, DCs capture tumor antigens and present them to T cells. However, in advanced cancers, the tumor microenvironment (TME) disrupts the crosstalk between DCs and T cells.
We will take a multi-step approach to explore how the TME imposes a suppressive effect on DCs and how to reverse this hazardous effect. First, we will use single cell RNA-seq to search for genes in aggressive human and mouse ovarian tumors that are highly expressed in advanced tumors compared to early tumors and that encode molecules that suppress DC activity. Second, we will design a set of CRISPR screens to find genes that are expressed in DCs and regulate the transfer of the suppressive signals. The screens will be performed in the presence of suppressive molecules to mimic the TME and are expected to uncover many key genes in DCs biology. We will develop a new strategy to find synergistic combinations of genes to target (named Perturb-comb), thereby reversing the effect of local tumor immunosuppressive signals. Lastly, we will examine the effect of modified DCs on T cell activation and proliferation in-vivo, and on tumor growth.
We expect to find: (1) Signaling molecules in the TME that affect the immune system. (2) New cytokines and cell surface receptors that are expressed in DCs and signal to T cells. (3) New key regulators in DC biology and their mechanisms. (4) Combinations of genes to target in DCs that reverse the TME’s hazardous effects.
Max ERC Funding
1 500 000 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym Cancer-Drug-Screen
Project High-throughput drug screening for identifying personalized cancer treatments tailored to the particular mutations of the patient’s tumor
Researcher (PI) Eran Azriel Segal
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Proof of Concept (PoC), PC1, ERC-2014-PoC
Summary Cancer is caused by a series of genetic alterations that confer an advantage to cancer cells, leading to uncontrolled growth. However, each tumor exhibits distinct molecular changes, making each patient’s malignancy unique. Hence, in the personalized medicine era, cancer treatment aims to tailor the most suitable treatment for each patient according to his/her genetic background, tumor acquired mutations and clinical indications.
The p53 tumor suppressor is the most frequently mutated gene in human cancers, with thousands of different tumor-associated mutations reported. Many such cancer-associated mutations in p53 lead to loss of its tumor suppressive activity and in some cases, to gain of new oncogenic functions, resulting in tumor recurrence and enhanced patient mortality. Importantly, tumors with different p53 mutations exhibit specific cancerous phenotypes and do not respond to particular treatments.
Based on our ERC-funded breakthrough technology, where we made a library of ~10,000 distinct p53 variants, and based on our strong IPR offering and competitive advantages, here we propose to develop three products for determining which treatment (or combination) would be most effective for treating a patient’s tumor according to his specific p53 sequence, reducing excruciating side effects and improving treatment outcomes:
1) Offering patients/physicians a list of treatments ranked by their efficacy in treating cells of similar origin and p53 mutations to those present in the patient’s tumor, allowing them to make more informed treatment decisions.
2) Offering companies in the personalized cancer treatment field access to our existing proprietary data regarding treatment efficacies towards p53 genetic variants.
3) A service to drug developing companies that applies our technology for testing the efficacy of a client-supplied drug of interest over all ~10,000 p53 mutations in our library in a cell-line of choice.
Summary
Cancer is caused by a series of genetic alterations that confer an advantage to cancer cells, leading to uncontrolled growth. However, each tumor exhibits distinct molecular changes, making each patient’s malignancy unique. Hence, in the personalized medicine era, cancer treatment aims to tailor the most suitable treatment for each patient according to his/her genetic background, tumor acquired mutations and clinical indications.
The p53 tumor suppressor is the most frequently mutated gene in human cancers, with thousands of different tumor-associated mutations reported. Many such cancer-associated mutations in p53 lead to loss of its tumor suppressive activity and in some cases, to gain of new oncogenic functions, resulting in tumor recurrence and enhanced patient mortality. Importantly, tumors with different p53 mutations exhibit specific cancerous phenotypes and do not respond to particular treatments.
Based on our ERC-funded breakthrough technology, where we made a library of ~10,000 distinct p53 variants, and based on our strong IPR offering and competitive advantages, here we propose to develop three products for determining which treatment (or combination) would be most effective for treating a patient’s tumor according to his specific p53 sequence, reducing excruciating side effects and improving treatment outcomes:
1) Offering patients/physicians a list of treatments ranked by their efficacy in treating cells of similar origin and p53 mutations to those present in the patient’s tumor, allowing them to make more informed treatment decisions.
2) Offering companies in the personalized cancer treatment field access to our existing proprietary data regarding treatment efficacies towards p53 genetic variants.
3) A service to drug developing companies that applies our technology for testing the efficacy of a client-supplied drug of interest over all ~10,000 p53 mutations in our library in a cell-line of choice.
Max ERC Funding
150 000 €
Duration
Start date: 2015-04-01, End date: 2016-09-30
Project acronym Cancer-Targeted PolyIC
Project Treatment of EGFR over-expressing cancers by targeted non-viral delivery of PolyIC
Researcher (PI) Alexander Levitzki
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Proof of Concept (PoC), PC1, ERC-2014-PoC
Summary We have recently shown that application of EGFR targeted synthetic dsRNA: Poly Iosine/Poly Cytosine (pIC) is highly efficient and selective against deadly cancers overexpressing EGFR, like glioblastoma (U87MGwtEGFR), breast cancer (MDA-MB-468) and adenocarcinoma (A431). Double-stranded RNA, frequently expressed in cells infected with viruses, activates a number of pro-apoptotic processes simultaneously. These dsRNA-induced mechanisms efficiently kill infected cells and induce expression of anti-proliferative cytokines from the interferon (IFN) family, thereby preventing spread of the virus. pIC delivered with Melittin-polyethylenimine-polyethyleneglycol-EGF (MPPE) eliminated orthotropic and subcutaneous tumors of the above cancers. Heterogeneous glioblastoma models where only half of the cells overexpress wtEGFR are also eliminated by local application, most likely due to a bystander antiproliferative effects, at least partially mediated by interferons (Shir et al., 2006). Systemic application of EGFR targeted pIC is also highly effective against breast and adenocarcinoma disseminated cancer models resembling metastatic cancers (Shir et al., 2011). During the last two years we have improved the vectors homing to EGFR to entities that can now be translated into clinical agents (Shaffert, 2011; Shir 2011, Abourbeh 2012). The impressive results with these more simplified vectors, make this project ready for clinical development, which requires fund raising from a Company/Venture capitalist. Commercialization of the therapy will be detailed in the proposal.
Summary
We have recently shown that application of EGFR targeted synthetic dsRNA: Poly Iosine/Poly Cytosine (pIC) is highly efficient and selective against deadly cancers overexpressing EGFR, like glioblastoma (U87MGwtEGFR), breast cancer (MDA-MB-468) and adenocarcinoma (A431). Double-stranded RNA, frequently expressed in cells infected with viruses, activates a number of pro-apoptotic processes simultaneously. These dsRNA-induced mechanisms efficiently kill infected cells and induce expression of anti-proliferative cytokines from the interferon (IFN) family, thereby preventing spread of the virus. pIC delivered with Melittin-polyethylenimine-polyethyleneglycol-EGF (MPPE) eliminated orthotropic and subcutaneous tumors of the above cancers. Heterogeneous glioblastoma models where only half of the cells overexpress wtEGFR are also eliminated by local application, most likely due to a bystander antiproliferative effects, at least partially mediated by interferons (Shir et al., 2006). Systemic application of EGFR targeted pIC is also highly effective against breast and adenocarcinoma disseminated cancer models resembling metastatic cancers (Shir et al., 2011). During the last two years we have improved the vectors homing to EGFR to entities that can now be translated into clinical agents (Shaffert, 2011; Shir 2011, Abourbeh 2012). The impressive results with these more simplified vectors, make this project ready for clinical development, which requires fund raising from a Company/Venture capitalist. Commercialization of the therapy will be detailed in the proposal.
Max ERC Funding
150 000 €
Duration
Start date: 2015-02-01, End date: 2016-07-31
Project acronym CancerFluxome
Project Cancer Cellular Metabolism across Space and Time
Researcher (PI) Tomer Shlomi
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Starting Grant (StG), LS2, ERC-2016-STG
Summary The metabolism of cancer cells is altered to meet cellular requirements for growth, providing novel means to selectively target tumorigenesis. While extensively studied, our current view of cancer cellular metabolism is fundamentally limited by lack of information on variability in metabolic activity between distinct subcellular compartments and cells.
We propose to develop a spatio-temporal fluxomics approach for quantifying metabolic fluxes in the cytoplasm vs. mitochondria as well as their cell-cycle dynamics, combining mass-spectrometry based isotope tracing with cell synchronization, rapid cellular fractionation, and computational metabolic network modelling.
Spatio-temporal fluxomics will be used to revisit and challenge our current understanding of central metabolism and its induced adaptation to oncogenic events – an important endeavour considering that mitochondrial bioenergetics and biosynthesis are required for tumorigenesis and accumulating evidences for metabolic alterations throughout the cell-cycle.
Our preliminary results show intriguing oscillations between oxidative and reductive TCA cycle flux throughout the cell-cycle. We will explore the extent to which cells adapt their metabolism to fulfil the changing energetic and anabolic demands throughout the cell-cycle, how metabolic oscillations are regulated, and their benefit to cells in terms of thermodynamic efficiency. Spatial flux analysis will be instrumental for investigating glutaminolysis - a ‘hallmark’ metabolic adaptation in cancer involving shuttling of metabolic intermediates and cofactors between mitochondria and cytoplasm.
On a clinical front, our spatio-temporal fluxomics analysis will enable to disentangle oncogene-induced flux alterations, having an important tumorigenic role, from artefacts originating from population averaging. A comprehensive view of how cells adapt their metabolism due to oncogenic mutations will reveal novel targets for anti-cancer drugs.
Summary
The metabolism of cancer cells is altered to meet cellular requirements for growth, providing novel means to selectively target tumorigenesis. While extensively studied, our current view of cancer cellular metabolism is fundamentally limited by lack of information on variability in metabolic activity between distinct subcellular compartments and cells.
We propose to develop a spatio-temporal fluxomics approach for quantifying metabolic fluxes in the cytoplasm vs. mitochondria as well as their cell-cycle dynamics, combining mass-spectrometry based isotope tracing with cell synchronization, rapid cellular fractionation, and computational metabolic network modelling.
Spatio-temporal fluxomics will be used to revisit and challenge our current understanding of central metabolism and its induced adaptation to oncogenic events – an important endeavour considering that mitochondrial bioenergetics and biosynthesis are required for tumorigenesis and accumulating evidences for metabolic alterations throughout the cell-cycle.
Our preliminary results show intriguing oscillations between oxidative and reductive TCA cycle flux throughout the cell-cycle. We will explore the extent to which cells adapt their metabolism to fulfil the changing energetic and anabolic demands throughout the cell-cycle, how metabolic oscillations are regulated, and their benefit to cells in terms of thermodynamic efficiency. Spatial flux analysis will be instrumental for investigating glutaminolysis - a ‘hallmark’ metabolic adaptation in cancer involving shuttling of metabolic intermediates and cofactors between mitochondria and cytoplasm.
On a clinical front, our spatio-temporal fluxomics analysis will enable to disentangle oncogene-induced flux alterations, having an important tumorigenic role, from artefacts originating from population averaging. A comprehensive view of how cells adapt their metabolism due to oncogenic mutations will reveal novel targets for anti-cancer drugs.
Max ERC Funding
1 481 250 €
Duration
Start date: 2017-02-01, End date: 2022-01-31