Project acronym A2C2
Project Atmospheric flow Analogues and Climate Change
Researcher (PI) Pascal Yiou
Host Institution (HI) COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
Call Details Advanced Grant (AdG), PE10, ERC-2013-ADG
Summary "The A2C2 project treats two major challenges in climate and atmospheric research: the time dependence of the climate attractor to external forcings (solar, volcanic eruptions and anthropogenic), and the attribution of extreme climate events occurring in the northern extra-tropics. The main difficulties are the limited climate information, the computer cost of model simulations, and mathematical assumptions that are hardly verified and often overlooked in the literature.
A2C2 proposes a practical framework to overcome those three difficulties, linking the theory of dynamical systems and statistics. We will generalize the methodology of flow analogues to multiple databases in order to obtain probabilistic descriptions of analogue decompositions.
The project is divided into three workpackages (WP). WP1 embeds the analogue method in the theory of dynamical systems in order to provide a metric of an attractor deformation in time. The important methodological step is to detect trends or persisting outliers in the dates and scores of analogues when the system yields time-varying forcings. This is done from idealized models and full size climate models in which the forcings (anthropogenic and natural) are known.
A2C2 creates an open source toolkit to compute flow analogues from a wide array of databases (WP2). WP3 treats the two scientific challenges with the analogue method and multiple model ensembles, hence allowing uncertainty estimates under realistic mathematical hypotheses. The flow analogue methodology allows a systematic and quasi real-time analysis of extreme events, which is currently out of the reach of conventional climate modeling approaches.
The major breakthrough of A2C2 is to bridge the gap between operational needs (the immediate analysis of climate events) and the understanding long-term climate changes. A2C2 opens new research horizons for the exploitation of ensembles of simulations and reliable estimates of uncertainty."
Summary
"The A2C2 project treats two major challenges in climate and atmospheric research: the time dependence of the climate attractor to external forcings (solar, volcanic eruptions and anthropogenic), and the attribution of extreme climate events occurring in the northern extra-tropics. The main difficulties are the limited climate information, the computer cost of model simulations, and mathematical assumptions that are hardly verified and often overlooked in the literature.
A2C2 proposes a practical framework to overcome those three difficulties, linking the theory of dynamical systems and statistics. We will generalize the methodology of flow analogues to multiple databases in order to obtain probabilistic descriptions of analogue decompositions.
The project is divided into three workpackages (WP). WP1 embeds the analogue method in the theory of dynamical systems in order to provide a metric of an attractor deformation in time. The important methodological step is to detect trends or persisting outliers in the dates and scores of analogues when the system yields time-varying forcings. This is done from idealized models and full size climate models in which the forcings (anthropogenic and natural) are known.
A2C2 creates an open source toolkit to compute flow analogues from a wide array of databases (WP2). WP3 treats the two scientific challenges with the analogue method and multiple model ensembles, hence allowing uncertainty estimates under realistic mathematical hypotheses. The flow analogue methodology allows a systematic and quasi real-time analysis of extreme events, which is currently out of the reach of conventional climate modeling approaches.
The major breakthrough of A2C2 is to bridge the gap between operational needs (the immediate analysis of climate events) and the understanding long-term climate changes. A2C2 opens new research horizons for the exploitation of ensembles of simulations and reliable estimates of uncertainty."
Max ERC Funding
1 491 457 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym ACCLIMATE
Project Elucidating the Causes and Effects of Atlantic Circulation Changes through Model-Data Integration
Researcher (PI) Claire Waelbroeck
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), PE10, ERC-2013-ADG
Summary Rapid changes in ocean circulation and climate have been observed in marine sediment and ice cores, notably over the last 60 thousand years (ky), highlighting the non-linear character of the climate system and underlining the possibility of rapid climate shifts in response to anthropogenic greenhouse gas forcing.
To date, these rapid changes in climate and ocean circulation are still not fully explained. Two main obstacles prevent going beyond the current state of knowledge:
- Paleoclimatic proxy data are by essence only indirect indicators of the climatic variables, and thus can not be directly compared with model outputs;
- A 4-D (latitude, longitude, water depth, time) reconstruction of Atlantic water masses over the past 40 ky is lacking: previous studies have generated isolated records with disparate timescales which do not allow the causes of circulation changes to be identified.
Overcoming these two major limitations will lead to major breakthroughs in climate research. Concretely, I will create the first database of Atlantic deep-sea records over the last 40 ky, and extract full climatic information from these records through an innovative model-data integration scheme using an isotopic proxy forward modeling approach. The novelty and exceptional potential of this scheme is twofold: (i) it avoids hypotheses on proxy interpretation and hence suppresses or strongly reduces the errors of interpretation of paleoclimatic records; (ii) it produces states of the climate system that best explain the observations over the last 40 ky, while being consistent with the model physics.
Expected results include:
• The elucidation of the mechanisms explaining rapid changes in ocean circulation and climate over the last 40 ky,
• Improved climate model physics and parameterizations,
• The first projections of future climate changes obtained with a model able to reproduce the highly non linear behavior of the climate system observed over the last 40 ky.
Summary
Rapid changes in ocean circulation and climate have been observed in marine sediment and ice cores, notably over the last 60 thousand years (ky), highlighting the non-linear character of the climate system and underlining the possibility of rapid climate shifts in response to anthropogenic greenhouse gas forcing.
To date, these rapid changes in climate and ocean circulation are still not fully explained. Two main obstacles prevent going beyond the current state of knowledge:
- Paleoclimatic proxy data are by essence only indirect indicators of the climatic variables, and thus can not be directly compared with model outputs;
- A 4-D (latitude, longitude, water depth, time) reconstruction of Atlantic water masses over the past 40 ky is lacking: previous studies have generated isolated records with disparate timescales which do not allow the causes of circulation changes to be identified.
Overcoming these two major limitations will lead to major breakthroughs in climate research. Concretely, I will create the first database of Atlantic deep-sea records over the last 40 ky, and extract full climatic information from these records through an innovative model-data integration scheme using an isotopic proxy forward modeling approach. The novelty and exceptional potential of this scheme is twofold: (i) it avoids hypotheses on proxy interpretation and hence suppresses or strongly reduces the errors of interpretation of paleoclimatic records; (ii) it produces states of the climate system that best explain the observations over the last 40 ky, while being consistent with the model physics.
Expected results include:
• The elucidation of the mechanisms explaining rapid changes in ocean circulation and climate over the last 40 ky,
• Improved climate model physics and parameterizations,
• The first projections of future climate changes obtained with a model able to reproduce the highly non linear behavior of the climate system observed over the last 40 ky.
Max ERC Funding
3 000 000 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym AIRSEA
Project Air-Sea Exchanges driven by Light
Researcher (PI) Christian George
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), PE10, ERC-2011-ADG_20110209
Summary The scientific motivation of this project is the significant presence of organic compounds at the surface of the ocean. They form the link between ocean biogeochemistry through the physico-chemical processes near the water-air interface with primary and secondary aerosol formation and evolution in the air aloft and finally to the climate impact of marine boundary layer aerosols. However, their photochemistry and photosensitizer properties have only been suggested and discussed but never fully addressed because they were beyond reach. This project suggests going significantly beyond this matter of fact by a combination of innovative tools and the development of new ideas.
This project is therefore devoted to new laboratory investigations of processes occurring at the air sea interface to predict emission, formation and evolution of halogenated radicals and aerosols from this vast interface between oceans and atmosphere. It progresses from fundamental laboratory measurements, marine science, surface chemistry, photochemistry … and is therefore interdisciplinary in nature.
It will lead to the development of innovative techniques for characterising chemical processing at the air sea interface (e.g., a multiphase atmospheric simulation chamber, a time-resolved fluorescence technique for characterising chemical processing at the air-sea interface). It will allow the assessment of new emerging ideas such as a quantitative description of the importance of photosensitized reactions in the visible at the air/sea interface as a major source of halogenated radicals and aerosols in the marine environment.
This new understanding will impact on our ability to describe atmospheric chemistry in the marine environment which has strong impact on the urban air quality of coastal regions (which by the way represent highly populated regions ) but also on climate change by providing new input for global climate models.
Summary
The scientific motivation of this project is the significant presence of organic compounds at the surface of the ocean. They form the link between ocean biogeochemistry through the physico-chemical processes near the water-air interface with primary and secondary aerosol formation and evolution in the air aloft and finally to the climate impact of marine boundary layer aerosols. However, their photochemistry and photosensitizer properties have only been suggested and discussed but never fully addressed because they were beyond reach. This project suggests going significantly beyond this matter of fact by a combination of innovative tools and the development of new ideas.
This project is therefore devoted to new laboratory investigations of processes occurring at the air sea interface to predict emission, formation and evolution of halogenated radicals and aerosols from this vast interface between oceans and atmosphere. It progresses from fundamental laboratory measurements, marine science, surface chemistry, photochemistry … and is therefore interdisciplinary in nature.
It will lead to the development of innovative techniques for characterising chemical processing at the air sea interface (e.g., a multiphase atmospheric simulation chamber, a time-resolved fluorescence technique for characterising chemical processing at the air-sea interface). It will allow the assessment of new emerging ideas such as a quantitative description of the importance of photosensitized reactions in the visible at the air/sea interface as a major source of halogenated radicals and aerosols in the marine environment.
This new understanding will impact on our ability to describe atmospheric chemistry in the marine environment which has strong impact on the urban air quality of coastal regions (which by the way represent highly populated regions ) but also on climate change by providing new input for global climate models.
Max ERC Funding
2 366 276 €
Duration
Start date: 2012-04-01, End date: 2017-03-31
Project acronym ARCHEIS
Project Understanding the onset and impact of Aquatic Resource Consumption in Human Evolution using novel Isotopic tracerS
Researcher (PI) Klervia Marie Madalen JAOUEN
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE10, ERC-2018-STG
Summary The onset of the systematic consumption of marine resources is thought to mark a turning point for the hominin lineage. To date, this onset cannot be traced, since classic isotope markers are not preserved beyond 50 - 100 ky. Aquatic food products are essential in human nutrition as the main source of polyunsaturated fatty acids in hunter-gatherer diets. The exploitation of marine resources is also thought to have reduced human mobility and enhanced social and technological complexification. Systematic aquatic food consumption could well have been a distinctive feature of Homo sapiens species among his fellow hominins, and has been linked to the astonishing leap in human intelligence and conscience. Yet, this hypothesis is challenged by the existence of mollusk and marine mammal bone remains at Neanderthal archeological sites. Recent work demonstrated the sensitivity of Zn isotope composition in bioapatite, the mineral part of bones and teeth, to dietary Zn. By combining classic (C and C/N isotope analyses) and innovative techniques (compound specific C/N and bulk Zn isotope analyses), I will develop a suite of sensitive tracers for shellfish, fish and marine mammal consumption. Shellfish consumption will be investigated by comparing various South American and European prehistoric populations from the Atlantic coast associated to shell-midden and fish-mounds. Marine mammal consumption will be traced using an Inuit population of Arctic Canada and the Wairau Bar population of New Zealand. C/N/Zn isotope compositions of various aquatic products will also be assessed, as well as isotope fractionation during intestinal absorption. I will then use the fully calibrated isotope tools to detect and characterize the onset of marine food exploitation in human history, which will answer the question of its specificity to our species. Neanderthal, early modern humans and possibly other hominin remains from coastal and inland sites will be compared in that purpose.
Summary
The onset of the systematic consumption of marine resources is thought to mark a turning point for the hominin lineage. To date, this onset cannot be traced, since classic isotope markers are not preserved beyond 50 - 100 ky. Aquatic food products are essential in human nutrition as the main source of polyunsaturated fatty acids in hunter-gatherer diets. The exploitation of marine resources is also thought to have reduced human mobility and enhanced social and technological complexification. Systematic aquatic food consumption could well have been a distinctive feature of Homo sapiens species among his fellow hominins, and has been linked to the astonishing leap in human intelligence and conscience. Yet, this hypothesis is challenged by the existence of mollusk and marine mammal bone remains at Neanderthal archeological sites. Recent work demonstrated the sensitivity of Zn isotope composition in bioapatite, the mineral part of bones and teeth, to dietary Zn. By combining classic (C and C/N isotope analyses) and innovative techniques (compound specific C/N and bulk Zn isotope analyses), I will develop a suite of sensitive tracers for shellfish, fish and marine mammal consumption. Shellfish consumption will be investigated by comparing various South American and European prehistoric populations from the Atlantic coast associated to shell-midden and fish-mounds. Marine mammal consumption will be traced using an Inuit population of Arctic Canada and the Wairau Bar population of New Zealand. C/N/Zn isotope compositions of various aquatic products will also be assessed, as well as isotope fractionation during intestinal absorption. I will then use the fully calibrated isotope tools to detect and characterize the onset of marine food exploitation in human history, which will answer the question of its specificity to our species. Neanderthal, early modern humans and possibly other hominin remains from coastal and inland sites will be compared in that purpose.
Max ERC Funding
1 361 991 €
Duration
Start date: 2019-03-01, End date: 2024-02-29
Project acronym AUGURY
Project Reconstructing Earth’s mantle convection
Researcher (PI) Nicolas Coltice
Host Institution (HI) UNIVERSITE LYON 1 CLAUDE BERNARD
Call Details Consolidator Grant (CoG), PE10, ERC-2013-CoG
Summary Knowledge of the state of the Earth mantle and its temporal evolution is fundamental to a variety of disciplines in Earth Sciences, from the internal dynamics to its many expressions in the geological record (postglacial rebound, sea level change, ore deposit, tectonics or geomagnetic reversals). Mantle convection theory is the centerpiece to unravel the present and past state of the mantle. For the past 40 years considerable efforts have been made to improve the quality of numerical models of mantle convection. However, they are still sparsely used to estimate the convective history of the solid Earth, in comparison to ocean or atmospheric models for weather and climate prediction. The main shortcoming is their inability to successfully produce Earth-like seafloor spreading and continental drift self-consistently. Recent convection models have begun to successfully predict these processes (Coltice et al., Science 336, 335-33, 2012). Such breakthrough opens the opportunity to combine high-level data assimilation methodologies and convection models together with advanced tectonic datasets to retrieve Earth's mantle history. The scope of this project is to produce a new generation of tectonic and convection reconstructions, which are key to improve our understanding and knowledge of the evolution of the solid Earth. The development of sustainable high performance numerical models will set new standards for geodynamic data assimilation. The outcome of the AUGURY project will be a new generation of models crucial to a wide variety of disciplines.
Summary
Knowledge of the state of the Earth mantle and its temporal evolution is fundamental to a variety of disciplines in Earth Sciences, from the internal dynamics to its many expressions in the geological record (postglacial rebound, sea level change, ore deposit, tectonics or geomagnetic reversals). Mantle convection theory is the centerpiece to unravel the present and past state of the mantle. For the past 40 years considerable efforts have been made to improve the quality of numerical models of mantle convection. However, they are still sparsely used to estimate the convective history of the solid Earth, in comparison to ocean or atmospheric models for weather and climate prediction. The main shortcoming is their inability to successfully produce Earth-like seafloor spreading and continental drift self-consistently. Recent convection models have begun to successfully predict these processes (Coltice et al., Science 336, 335-33, 2012). Such breakthrough opens the opportunity to combine high-level data assimilation methodologies and convection models together with advanced tectonic datasets to retrieve Earth's mantle history. The scope of this project is to produce a new generation of tectonic and convection reconstructions, which are key to improve our understanding and knowledge of the evolution of the solid Earth. The development of sustainable high performance numerical models will set new standards for geodynamic data assimilation. The outcome of the AUGURY project will be a new generation of models crucial to a wide variety of disciplines.
Max ERC Funding
1 994 000 €
Duration
Start date: 2014-03-01, End date: 2020-02-29
Project acronym Calcyan
Project A living carbonate factory: how do cyanobacteria make rocks? (Calcification in Cyanobacteria)
Researcher (PI) Karim Benzerara
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE10, ERC-2012-StG_20111012
Summary This interdisciplinary proposal stems from our recent discovery of deep-branching cyanobacteria that form intracellular Ca-Mg-Sr-Ba carbonates. So far, calcification by cyanobacteria was considered as exclusively extracellular, hence dependent on external conditions. The existence of intracellularly calcifying cyanobacteria may thus deeply modify our view on the role of cyanobacteria in the formation of modern and past carbonate deposits and the degree of control they achieve on this geochemically significant process. Moreover, since these cyanobacteria concentrate selectively Sr and Ba over Ca, it suggests the existence of processes that can alter the message conveyed by proxies such as Sr/Ca ratios in carbonates, classically used for paleoenvironmental reconstruction. Finally, such a biomineralization process, if globally significant may impact our view of how an ecosystem responds to external CO2 changes in particular by affecting most likely a key parameter such as the balance between organic carbon fixed by photosynthesis and inorganic carbon fixed by CaCO3 precipitation.
Here, I aim to bring a qualitative jump in the understanding of this process. The core of this project is to provide a detailed picture of intracellular calcification by cyanobacteria. This will be achieved by studying laboratory cultures of cyanobacteria, field samples of modern calcifying biofilms and ancient microbialites. Diverse tools from molecular biology, biochemistry, mineralogy and geochemistry will be used. Altogether these techniques will help unveiling the molecular and mineralogical mechanisms involved in cyanobacterial intracellular calcification, assessing the phylogenetic diversity of these cyanobacteria and the preservability of their traces in ancient rocks. My goal is to establish a unique expertise in the study of calcification by cyanobacteria, the scope of which can be developed and broadened in the future for the study of interactions between life and minerals.
Summary
This interdisciplinary proposal stems from our recent discovery of deep-branching cyanobacteria that form intracellular Ca-Mg-Sr-Ba carbonates. So far, calcification by cyanobacteria was considered as exclusively extracellular, hence dependent on external conditions. The existence of intracellularly calcifying cyanobacteria may thus deeply modify our view on the role of cyanobacteria in the formation of modern and past carbonate deposits and the degree of control they achieve on this geochemically significant process. Moreover, since these cyanobacteria concentrate selectively Sr and Ba over Ca, it suggests the existence of processes that can alter the message conveyed by proxies such as Sr/Ca ratios in carbonates, classically used for paleoenvironmental reconstruction. Finally, such a biomineralization process, if globally significant may impact our view of how an ecosystem responds to external CO2 changes in particular by affecting most likely a key parameter such as the balance between organic carbon fixed by photosynthesis and inorganic carbon fixed by CaCO3 precipitation.
Here, I aim to bring a qualitative jump in the understanding of this process. The core of this project is to provide a detailed picture of intracellular calcification by cyanobacteria. This will be achieved by studying laboratory cultures of cyanobacteria, field samples of modern calcifying biofilms and ancient microbialites. Diverse tools from molecular biology, biochemistry, mineralogy and geochemistry will be used. Altogether these techniques will help unveiling the molecular and mineralogical mechanisms involved in cyanobacterial intracellular calcification, assessing the phylogenetic diversity of these cyanobacteria and the preservability of their traces in ancient rocks. My goal is to establish a unique expertise in the study of calcification by cyanobacteria, the scope of which can be developed and broadened in the future for the study of interactions between life and minerals.
Max ERC Funding
1 659 478 €
Duration
Start date: 2013-02-01, End date: 2018-01-31
Project acronym CARB-City
Project Physico-Chemistry of Carbonaceous Aerosol Pollution in Evolving Cities
Researcher (PI) Alma Hodzic
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Consolidator Grant (CoG), PE10, ERC-2018-COG
Summary Carbonaceous aerosols (organic and black carbon) remain a major unresolved issue in atmospheric science, especially in urban centers, where they are one of the dominant aerosol constituents and among most toxic to human health. The challenge is twofold: first, our understanding of the sources, sinks and physico-chemical properties of the complex mixture of carbonaceous species is still incomplete; and second, the representation of urban heterogeneities in air quality models is inadequate as they are designed for regional applications.
The CARB-City project proposes the development of an innovative modeling framework that will address both issues by combining molecular-level chemical constraints and city-scale modeling to achieve the following objectives: (WP1) to develop and apply new chemical parameterizations, constrained by an explicit chemical model, for carbonaceous aerosol formation from urban precursors, and (WP2) to examine whether urban heterogeneities in sources and mixing can enhance non-linearities in chemistry of carbonaceous compounds and modify their predicted composition. The new modeling framework will then be applied (WP3) to quantify the contribution of traditional and emerging urban aerosol precursor sources to chemistry and toxicity of carbonaceous aerosols; and (WP4) to assess the effectiveness of greener-city strategies in removing aerosol pollutants.
This work will enhance fundamental scientific understanding as to how key physico-chemical processes control the lifecycle of carbonaceous aerosols in cities, and will improve the predictability of air quality models in terms of composition and toxicity of urban aerosols, and their sensitivity to changes in energy and land use that cities are currently experiencing. The modeling framework will have the required chemical and spatial resolution for assessing human exposure to urban aerosols. This will allow policy makers to optimize urban emission reductions and sustainable urban development.
Summary
Carbonaceous aerosols (organic and black carbon) remain a major unresolved issue in atmospheric science, especially in urban centers, where they are one of the dominant aerosol constituents and among most toxic to human health. The challenge is twofold: first, our understanding of the sources, sinks and physico-chemical properties of the complex mixture of carbonaceous species is still incomplete; and second, the representation of urban heterogeneities in air quality models is inadequate as they are designed for regional applications.
The CARB-City project proposes the development of an innovative modeling framework that will address both issues by combining molecular-level chemical constraints and city-scale modeling to achieve the following objectives: (WP1) to develop and apply new chemical parameterizations, constrained by an explicit chemical model, for carbonaceous aerosol formation from urban precursors, and (WP2) to examine whether urban heterogeneities in sources and mixing can enhance non-linearities in chemistry of carbonaceous compounds and modify their predicted composition. The new modeling framework will then be applied (WP3) to quantify the contribution of traditional and emerging urban aerosol precursor sources to chemistry and toxicity of carbonaceous aerosols; and (WP4) to assess the effectiveness of greener-city strategies in removing aerosol pollutants.
This work will enhance fundamental scientific understanding as to how key physico-chemical processes control the lifecycle of carbonaceous aerosols in cities, and will improve the predictability of air quality models in terms of composition and toxicity of urban aerosols, and their sensitivity to changes in energy and land use that cities are currently experiencing. The modeling framework will have the required chemical and spatial resolution for assessing human exposure to urban aerosols. This will allow policy makers to optimize urban emission reductions and sustainable urban development.
Max ERC Funding
1 727 009 €
Duration
Start date: 2020-01-01, End date: 2024-12-31
Project acronym CLUSTER
Project organisation of CLoUdS, and implications for Tropical cyclones and for the Energetics of the tropics, in current and in a waRming climate
Researcher (PI) caroline MULLER
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE10, ERC-2018-STG
Summary Few geophysical phenomena are as spectacular as tropical cyclones, with their eye surrounded by sharp cloudy eyewalls. There are other types of spatially organised convection (convection refers to overturning of air within which clouds are embedded), in fact organised convection is ubiquitous in the tropics. But it is still poorly understood and poorly represented in convective parameterisations of global climate models, despite its strong societal and climatic impact. It is associated with extreme weather, and with dramatic changes of the large scales, including drying of the atmosphere and increased outgoing longwave radiation to space. The latter can have dramatic consequences on tropical energetics, and hence on global climate. Thus, convective organisation could be a key missing ingredient in current estimates of climate sensitivity from climate models.
CLUSTER will lead to improved fundamental understanding of convective organisation to help guide and improve convective parameterisations. It is closely related to the World Climate Research Programme (WCRP) grand challenge: Clouds, circulation and climate sensitivity. Grand challenges identify areas of emphasis in the coming decade, targeting specific barriers preventing progress in critical areas of climate science.
Until recently, progress on this topic was hindered by high numerical cost and lack of fundamental understanding. Advances in computer power combined with new discoveries based on idealised frameworks, theory and observational findings, make this the ideal time to determine the fundamental processes governing convective organisation in nature. Using a synergy of theory, high-resolution cloud-resolving simulations, and in-situ and satellite observations, CLUSTER will specifically target two feedbacks recently identified as being essential to convective aggregation, and assess their impact on tropical cyclones, large-scale properties including precipitation extremes, and energetics of the tropics.
Summary
Few geophysical phenomena are as spectacular as tropical cyclones, with their eye surrounded by sharp cloudy eyewalls. There are other types of spatially organised convection (convection refers to overturning of air within which clouds are embedded), in fact organised convection is ubiquitous in the tropics. But it is still poorly understood and poorly represented in convective parameterisations of global climate models, despite its strong societal and climatic impact. It is associated with extreme weather, and with dramatic changes of the large scales, including drying of the atmosphere and increased outgoing longwave radiation to space. The latter can have dramatic consequences on tropical energetics, and hence on global climate. Thus, convective organisation could be a key missing ingredient in current estimates of climate sensitivity from climate models.
CLUSTER will lead to improved fundamental understanding of convective organisation to help guide and improve convective parameterisations. It is closely related to the World Climate Research Programme (WCRP) grand challenge: Clouds, circulation and climate sensitivity. Grand challenges identify areas of emphasis in the coming decade, targeting specific barriers preventing progress in critical areas of climate science.
Until recently, progress on this topic was hindered by high numerical cost and lack of fundamental understanding. Advances in computer power combined with new discoveries based on idealised frameworks, theory and observational findings, make this the ideal time to determine the fundamental processes governing convective organisation in nature. Using a synergy of theory, high-resolution cloud-resolving simulations, and in-situ and satellite observations, CLUSTER will specifically target two feedbacks recently identified as being essential to convective aggregation, and assess their impact on tropical cyclones, large-scale properties including precipitation extremes, and energetics of the tropics.
Max ERC Funding
1 078 021 €
Duration
Start date: 2019-06-01, End date: 2024-05-31
Project acronym COMBINISO
Project Quantitative picture of interactions between climate, hydrological cycle and stratospheric inputs in Antarctica over the last 100 years via the combined use of all water isotopes
Researcher (PI) Amaelle Israel
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE10, ERC-2012-StG_20111012
Summary Climate change and associated water cycle modifications have a strong impact on polar ice sheets through their influence on the global sea-level. The most promising tool for reconstructing temperature and water cycle evolution in Antarctica is to use water isotopic records in ice cores. Still, interpreting these records is nowadays limited by known biases linked to a too simple description of isotopic fractionations and cloud microphysics. Another key issue in this region is the stratosphere-troposphere flux influencing both the chemistry of ozone and decadal climate change. Data are lacking for constraining such flux even on the recent period (100 years). COMBINISO aims at making use of innovative methods combining measurements of the 5 major water isotopes (H217O, H218O, HTO, HDO, H2O) and global modelling to address the following key points: 1- Provide a strongly improved physical frame for interpretation of water isotopic records in polar regions; 2- Provide a quantitative picture of Antarctica temperature changes and links with the tropospheric water cycle prior to the instrumental period; 3- Quantify recent variability of the stratosphere water vapor input.
The proposed method, based on strong experimental – modelling interaction, includes innovative tools such as (1) the intensive use of the recently developed triple isotopic composition of oxygen in water for constraining water isotopic fractionation, hydrological cycle organisation and potentially stratospheric water input, (2) the development of a laser spectroscopy instrument to accurately measure this parameter in water vapour, (3) modelling development including stratospheric tracers (e.g. HTO and 10Be) in addition to water isotopes in Atmospheric General Circulation Models equipped with a detailed description of the stratosphere, (4) a first documentation of climate, hydrological cycle and stratospheric input in Antarctica through combined measurements of isotopes in ice cores for the last 100 years.
Summary
Climate change and associated water cycle modifications have a strong impact on polar ice sheets through their influence on the global sea-level. The most promising tool for reconstructing temperature and water cycle evolution in Antarctica is to use water isotopic records in ice cores. Still, interpreting these records is nowadays limited by known biases linked to a too simple description of isotopic fractionations and cloud microphysics. Another key issue in this region is the stratosphere-troposphere flux influencing both the chemistry of ozone and decadal climate change. Data are lacking for constraining such flux even on the recent period (100 years). COMBINISO aims at making use of innovative methods combining measurements of the 5 major water isotopes (H217O, H218O, HTO, HDO, H2O) and global modelling to address the following key points: 1- Provide a strongly improved physical frame for interpretation of water isotopic records in polar regions; 2- Provide a quantitative picture of Antarctica temperature changes and links with the tropospheric water cycle prior to the instrumental period; 3- Quantify recent variability of the stratosphere water vapor input.
The proposed method, based on strong experimental – modelling interaction, includes innovative tools such as (1) the intensive use of the recently developed triple isotopic composition of oxygen in water for constraining water isotopic fractionation, hydrological cycle organisation and potentially stratospheric water input, (2) the development of a laser spectroscopy instrument to accurately measure this parameter in water vapour, (3) modelling development including stratospheric tracers (e.g. HTO and 10Be) in addition to water isotopes in Atmospheric General Circulation Models equipped with a detailed description of the stratosphere, (4) a first documentation of climate, hydrological cycle and stratospheric input in Antarctica through combined measurements of isotopes in ice cores for the last 100 years.
Max ERC Funding
1 869 950 €
Duration
Start date: 2013-01-01, End date: 2017-12-31
Project acronym COSMOKEMS
Project EXPERIMENTAL CONSTRAINTS ON THE ISOTOPE SIGNATURES OF THE EARLY SOLAR SYSTEM
Researcher (PI) bernard BOURDON
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), PE10, ERC-2015-AdG
Summary This project aims at simulating the processes that took place in the early Solar System to determine how these processes shaped the chemical and isotope compositions of solids that accreted to ultimately form terrestrial planets. Planetary materials exhibit mass dependent and mass independent isotope signatures and their origin and relationships are not fully understood. This proposal will be based on new experiments reproducing the conditions of the solar nebula in its first few million years and on a newly designed Knudsen Effusion Mass Spectrometer (KEMS) that will be built for the purpose of this project. This project consists of three main subprojects: (1) we will simulate the effect of particle irradiation on solids to examine how isotopes can be fractionated by these processes to identify whether this can explain chemical variations in meteorites. We will examine whether particle irradiation can cause mass independent fractionation, (2) the novel KEMS instrument will be used to determine the equilibrium isotope fractionation associated with reactions between gas and condensed phases at high temperature. It will also be used to determine the kinetic isotope fractionation associated with evaporation and condensation of solids. This will provide new constraints on the thermodynamic conditions, T, P and fO2 during heating events that have modified the chemical composition of planetary materials. These constraints will also help identify the processes that cause the depletion in volatile elements and the fractionation in refractory elements observed in planetesimals and planets, (3) we will examine the effect of UV irradiation on chemical species in the vapour phase as an attempt to reproduce observed isotope compositions found in meteorites or their components. These results may radically change our view on how the protoplanetary disk evolved and how solids were transported and mixed.
Summary
This project aims at simulating the processes that took place in the early Solar System to determine how these processes shaped the chemical and isotope compositions of solids that accreted to ultimately form terrestrial planets. Planetary materials exhibit mass dependent and mass independent isotope signatures and their origin and relationships are not fully understood. This proposal will be based on new experiments reproducing the conditions of the solar nebula in its first few million years and on a newly designed Knudsen Effusion Mass Spectrometer (KEMS) that will be built for the purpose of this project. This project consists of three main subprojects: (1) we will simulate the effect of particle irradiation on solids to examine how isotopes can be fractionated by these processes to identify whether this can explain chemical variations in meteorites. We will examine whether particle irradiation can cause mass independent fractionation, (2) the novel KEMS instrument will be used to determine the equilibrium isotope fractionation associated with reactions between gas and condensed phases at high temperature. It will also be used to determine the kinetic isotope fractionation associated with evaporation and condensation of solids. This will provide new constraints on the thermodynamic conditions, T, P and fO2 during heating events that have modified the chemical composition of planetary materials. These constraints will also help identify the processes that cause the depletion in volatile elements and the fractionation in refractory elements observed in planetesimals and planets, (3) we will examine the effect of UV irradiation on chemical species in the vapour phase as an attempt to reproduce observed isotope compositions found in meteorites or their components. These results may radically change our view on how the protoplanetary disk evolved and how solids were transported and mixed.
Max ERC Funding
3 106 625 €
Duration
Start date: 2016-10-01, End date: 2021-09-30
Project acronym EARTHBLOOM
Project Earth’s first biological bloom: An integrated field, geochemical, and geobiological examination of the origins of photosynthesis and carbonate production 3 billion years ago
Researcher (PI) Stefan Victor LALONDE
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE10, ERC-2016-STG
Summary The origin of oxygenic photosynthesis is one of the most dramatic evolutionary events that the Earth has ever experienced. At some point in Earth’s first two billion years, primitive bacteria acquired the ability to harness sunlight, oxidize water, release O2, and transform CO2 to organic carbon, and all with unprecedented efficiency. Today, oxygenic photosynthesis accounts for nearly all of the biomass on the planet, and exerts significant control over the carbon cycle. Since 2 billion years ago (Ga), it has regulated the climate of our planet, ensuring liquid water at the surface and enough oxygen to support complex life. The biological and geological consequences of oxygenic photosynthesis are so great that they effectively underpin what we think of as a habitable planet. Understanding the origins of photosynthesis is a paramount scientific challenge at the heart of some of humanity’s greatest questions: how did life evolve? how did Earth become a habitable planet? EARTHBLOOM addresses these questions head-on through the first comprehensive scientific study of Earth’s first blooming photosynthetic ecosystem, preserved as Earth’s oldest carbonate platform. This relatively unknown, >450m thick deposit, comprised largely of 2.9 Ga fossil photosynthetic structures (stromatolites), is one of the most important early Earth fossil localities ever identified, and EARTHBLOOM is carefully positioned for major discovery. EARTHBLOOM will push the frontier of field data collection and sample screening using new XRF methods for carbonate analysis. EARTHBLOOM will also push the analytical frontier in the lab by applying the most sensitive metal stable isotope tracers for O2 at ultra-low levels (Mo, U, and Ce) coupled with novel isotopic “age of oxidation” constraints. By providing new constraints on atmospheric CO2, ocean pH, oxygen production, and nutrient availability, EARTHBLOOM is poised to redefine Earth’s surface environment at the dawn of photosynthetic life.
Summary
The origin of oxygenic photosynthesis is one of the most dramatic evolutionary events that the Earth has ever experienced. At some point in Earth’s first two billion years, primitive bacteria acquired the ability to harness sunlight, oxidize water, release O2, and transform CO2 to organic carbon, and all with unprecedented efficiency. Today, oxygenic photosynthesis accounts for nearly all of the biomass on the planet, and exerts significant control over the carbon cycle. Since 2 billion years ago (Ga), it has regulated the climate of our planet, ensuring liquid water at the surface and enough oxygen to support complex life. The biological and geological consequences of oxygenic photosynthesis are so great that they effectively underpin what we think of as a habitable planet. Understanding the origins of photosynthesis is a paramount scientific challenge at the heart of some of humanity’s greatest questions: how did life evolve? how did Earth become a habitable planet? EARTHBLOOM addresses these questions head-on through the first comprehensive scientific study of Earth’s first blooming photosynthetic ecosystem, preserved as Earth’s oldest carbonate platform. This relatively unknown, >450m thick deposit, comprised largely of 2.9 Ga fossil photosynthetic structures (stromatolites), is one of the most important early Earth fossil localities ever identified, and EARTHBLOOM is carefully positioned for major discovery. EARTHBLOOM will push the frontier of field data collection and sample screening using new XRF methods for carbonate analysis. EARTHBLOOM will also push the analytical frontier in the lab by applying the most sensitive metal stable isotope tracers for O2 at ultra-low levels (Mo, U, and Ce) coupled with novel isotopic “age of oxidation” constraints. By providing new constraints on atmospheric CO2, ocean pH, oxygen production, and nutrient availability, EARTHBLOOM is poised to redefine Earth’s surface environment at the dawn of photosynthetic life.
Max ERC Funding
1 848 685 €
Duration
Start date: 2017-02-01, End date: 2022-01-31
Project acronym EDIFICE
Project Changes in the geomagnetic dipole (Earth Dipole Field Intensity from Cosmogenic Elements)
Researcher (PI) Jean-Pierre, Michel Valet
Host Institution (HI) INSTITUT DE PHYSIQUE DU GLOBE DE PARIS
Call Details Advanced Grant (AdG), PE10, ERC-2013-ADG
Summary Ancient records of the geomagnetic field intensity provide the unique source of information on the evolution of the geodynamo. The paleomagnetic data contain a broad spectrum of dipole moment fluctuations with polarity reversals and excursions that typically occur during periods of very low field intensity, but the amplitude and the timing of the variations as well as critical features remain debated. The variability of the dipole with rapid fluctuations combined with long-term changes must be clarified to understand what controls the dipole strength, why it fluctuates and what is the cause of polarity reversals. Much has been learned for the past 30 years from records of paleointensity relying on natural remanent magnetization of sediments and lava flows, but large uncertainties persist and major features of the field remain poorly documented, pointing out the limits of the approach. As an alternative to magnetization, changes in geomagnetic intensity can be reconstructed from the production of cosmogenic 10Be. The 10Be production can be measured with confidence from sedimentary sequences. Our main objective is to build up a worldwide database of the dipole field changes for the past 5 Ma by acquiring high resolution records of 10Be production from a worldwide set of selected sediment cores. The Accelerator mass spectrometry national facility « ASTER» at CEREGE dedicated to 10Be measurements offers this unique opportunity. Accurate time control will be obtained by astronomical calibration of paleoenvironmental records. In parallel, we will focus on the short-term field changes occurring during geomagnetic reversals. This will be addressed by combining detailed paleomagnetic records of reversals from volcanic sequences with high resolution 10Be measurements from marine cores that recorded the same reversals. Predictions of numerical geodynamo simulations will be tested against the data.
Summary
Ancient records of the geomagnetic field intensity provide the unique source of information on the evolution of the geodynamo. The paleomagnetic data contain a broad spectrum of dipole moment fluctuations with polarity reversals and excursions that typically occur during periods of very low field intensity, but the amplitude and the timing of the variations as well as critical features remain debated. The variability of the dipole with rapid fluctuations combined with long-term changes must be clarified to understand what controls the dipole strength, why it fluctuates and what is the cause of polarity reversals. Much has been learned for the past 30 years from records of paleointensity relying on natural remanent magnetization of sediments and lava flows, but large uncertainties persist and major features of the field remain poorly documented, pointing out the limits of the approach. As an alternative to magnetization, changes in geomagnetic intensity can be reconstructed from the production of cosmogenic 10Be. The 10Be production can be measured with confidence from sedimentary sequences. Our main objective is to build up a worldwide database of the dipole field changes for the past 5 Ma by acquiring high resolution records of 10Be production from a worldwide set of selected sediment cores. The Accelerator mass spectrometry national facility « ASTER» at CEREGE dedicated to 10Be measurements offers this unique opportunity. Accurate time control will be obtained by astronomical calibration of paleoenvironmental records. In parallel, we will focus on the short-term field changes occurring during geomagnetic reversals. This will be addressed by combining detailed paleomagnetic records of reversals from volcanic sequences with high resolution 10Be measurements from marine cores that recorded the same reversals. Predictions of numerical geodynamo simulations will be tested against the data.
Max ERC Funding
2 499 600 €
Duration
Start date: 2014-06-01, End date: 2019-05-31
Project acronym ELECTROLITH
Project Electrical Petrology: tracking mantle melting and volatiles cycling using electrical conductivity
Researcher (PI) Fabrice Olivier Gaillard
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE10, ERC-2011-StG_20101014
Summary Melting in the Earth’s mantle rules the deep volatile cycles because it produces liquids that concentrate and redistribute volatile species. Such redistributions trigger volcanic degassing, magma emplacement in the crust and hydrothermal circulation, and other sorts of chemical redistribution within the mantle (metasomatism). Melting also affects mantle viscosities and therefore impacts on global geodynamics. So far, experimental petrology has been the main approach to construct a picture of the mantle structure and identify regions of partial melting.
Magnetotelluric (MT) surveys reveal the electrical properties of the deep Earth and show highly conductive regions within the mantle, most likely related to volatiles and melts. However, melting zones disclosed by electrical conductivity do not always corroborate usual pictures deduced from experimental petrology. In 2008, I proposed that small amount of melts, very rich in volatiles species and with unusual physical properties, could reconcile petrological and geophysical observations. The broadening of this idea is however limited by (i) the incomplete knowledge of both petrological and electrical properties of those melts and (ii) the lack of petrologically based models to fit MT data. ELECTROLITH will fill this gap by treating the following points:
- How volatiles in the H-C-S-Cl-F system trigger the beginning of melting and how it affects mantle conductivity?
- What are the atomic structures and the physical properties of such volatile-rich melts?
- How can such melts migrate in the mantle and what are the relationships with deformation?
- What are the scaling procedures to integrate lab-scale observations into a petrological scheme that could decipher MT data in terms of melt percolation models, strain distributions and chemical redistributions in the mantle
ELECTROLITH milestone is therefore a reconciled perspective of geophysics and petrology that will profoundly enrich our vision of the mantle geodynamics
Summary
Melting in the Earth’s mantle rules the deep volatile cycles because it produces liquids that concentrate and redistribute volatile species. Such redistributions trigger volcanic degassing, magma emplacement in the crust and hydrothermal circulation, and other sorts of chemical redistribution within the mantle (metasomatism). Melting also affects mantle viscosities and therefore impacts on global geodynamics. So far, experimental petrology has been the main approach to construct a picture of the mantle structure and identify regions of partial melting.
Magnetotelluric (MT) surveys reveal the electrical properties of the deep Earth and show highly conductive regions within the mantle, most likely related to volatiles and melts. However, melting zones disclosed by electrical conductivity do not always corroborate usual pictures deduced from experimental petrology. In 2008, I proposed that small amount of melts, very rich in volatiles species and with unusual physical properties, could reconcile petrological and geophysical observations. The broadening of this idea is however limited by (i) the incomplete knowledge of both petrological and electrical properties of those melts and (ii) the lack of petrologically based models to fit MT data. ELECTROLITH will fill this gap by treating the following points:
- How volatiles in the H-C-S-Cl-F system trigger the beginning of melting and how it affects mantle conductivity?
- What are the atomic structures and the physical properties of such volatile-rich melts?
- How can such melts migrate in the mantle and what are the relationships with deformation?
- What are the scaling procedures to integrate lab-scale observations into a petrological scheme that could decipher MT data in terms of melt percolation models, strain distributions and chemical redistributions in the mantle
ELECTROLITH milestone is therefore a reconciled perspective of geophysics and petrology that will profoundly enrich our vision of the mantle geodynamics
Max ERC Funding
1 051 236 €
Duration
Start date: 2011-11-01, End date: 2017-10-31
Project acronym EUREC4A
Project Elucidating the Role of Clouds-Circulation Coupling in Climate
Researcher (PI) Sandrine Bony
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), PE10, ERC-2015-AdG
Summary This proposal focuses on two of climate science’s most fundamental questions: How sensitive is Earth's surface temperature to radiative forcing? and What governs the organization of the atmosphere into rain bands, cloud clusters and storms? These seemingly different questions are central to an ability to assess climate change on regional and global scales, and are in large part tied to a single and critical gap in our knowledge: A poor understanding of how clouds and atmospheric circulations interact.
To fill this gap, my goal is to answer three questions, which are critical to an understanding of cloud-circulation coupling and its role in climate: (i) How strongly is the low-clouds response to global warming controlled by atmospheric circulations within the first few kilometres of the atmosphere? (ii) What controls the propensity of the atmosphere to aggregate into clusters or rain bands, and what role does it play in the large-scale atmospheric circulation and in climate sensitivity? (iii) How much do cloud-radiative effects influence the frequency and strength of extreme events?
I will address these questions by organising the first airborne field campaign focused on elucidating the interplay between low-level clouds and the small-scale and large-scale circulations in which they are embedded, as this is key for questions (i) and (ii), by analysing data from other field campaigns and satellite observations, and by conducting targeted numerical experiments with a hierarchy of models and configurations.
This research stands a very good chance to reduce the primary source of the forty-year uncertainty in climate sensitivity, to demystify long-standing questions of tropical meteorology, and to advance the physical understanding and prediction of extreme events. EUREC4A will also support, motivate and train a team of young scientists to exploit the synergy between observational and modelling approaches to answer pressing questions of atmospheric and climate science.
Summary
This proposal focuses on two of climate science’s most fundamental questions: How sensitive is Earth's surface temperature to radiative forcing? and What governs the organization of the atmosphere into rain bands, cloud clusters and storms? These seemingly different questions are central to an ability to assess climate change on regional and global scales, and are in large part tied to a single and critical gap in our knowledge: A poor understanding of how clouds and atmospheric circulations interact.
To fill this gap, my goal is to answer three questions, which are critical to an understanding of cloud-circulation coupling and its role in climate: (i) How strongly is the low-clouds response to global warming controlled by atmospheric circulations within the first few kilometres of the atmosphere? (ii) What controls the propensity of the atmosphere to aggregate into clusters or rain bands, and what role does it play in the large-scale atmospheric circulation and in climate sensitivity? (iii) How much do cloud-radiative effects influence the frequency and strength of extreme events?
I will address these questions by organising the first airborne field campaign focused on elucidating the interplay between low-level clouds and the small-scale and large-scale circulations in which they are embedded, as this is key for questions (i) and (ii), by analysing data from other field campaigns and satellite observations, and by conducting targeted numerical experiments with a hierarchy of models and configurations.
This research stands a very good chance to reduce the primary source of the forty-year uncertainty in climate sensitivity, to demystify long-standing questions of tropical meteorology, and to advance the physical understanding and prediction of extreme events. EUREC4A will also support, motivate and train a team of young scientists to exploit the synergy between observational and modelling approaches to answer pressing questions of atmospheric and climate science.
Max ERC Funding
3 013 334 €
Duration
Start date: 2016-08-01, End date: 2021-07-31
Project acronym F-IMAGE
Project Seismic Functional Imaging of the Brittle Crust
Researcher (PI) Michel CAMPILLO
Host Institution (HI) UNIVERSITE GRENOBLE ALPES
Call Details Advanced Grant (AdG), PE10, ERC-2016-ADG
Summary Despite the dramatic impact of earthquakes, the physics of their onset and the short-term behavior of fault are still poorly understood. Using existing high quality seismic observations, we propose to develop a novel functional imaging of the brittle crust to clarify not only structural properties but also the dynamics of faults. We will analyze spatio-temporal changes of elastic properties around fault zones to highlight the interplay between changes in the host rocks and fault slip. Imaging the damage structure around faults and its evolution requires new seismological methods. With novel methods to image the highly heterogeneous fault regions, we will provide multi-scale descriptions of fault zones, including their laterally variable thicknesses and depth dependence. In parallel we will image temporal changes of seismic velocities and scattering strength. External natural forcing terms (e.g. tides, seasonal hydrologic loadings) will be modeled to isolate the signals of tectonic origin. This will also allow us to monitor the evolving seismic susceptibility, i.e. a measure of the proximity to a critical state of failure. Improved earthquake detection techniques using ‘deep machine learning’ methods will facilitate tracking the evolution of rock damage. The imaging and monitoring will provide time-lapse images of elastic moduli, susceptibility and seismicity. The observed short-time changes of the materials will be included in slip initiation models coupling the weakening of both the friction and the damaged host rocks. Laboratory experiments will shed light on the transition of behavior from granular (shallow fault core) to cohesive (distant host rock) materials. Our initial data cover two well-studied fault regions of high earthquake probability (Southern California and the Marmara region, Turkey) and an area of induced seismicity (Groningen). The derived results and new versatile imaging and monitoring techniques can have fundamental social and economic impacts.
Summary
Despite the dramatic impact of earthquakes, the physics of their onset and the short-term behavior of fault are still poorly understood. Using existing high quality seismic observations, we propose to develop a novel functional imaging of the brittle crust to clarify not only structural properties but also the dynamics of faults. We will analyze spatio-temporal changes of elastic properties around fault zones to highlight the interplay between changes in the host rocks and fault slip. Imaging the damage structure around faults and its evolution requires new seismological methods. With novel methods to image the highly heterogeneous fault regions, we will provide multi-scale descriptions of fault zones, including their laterally variable thicknesses and depth dependence. In parallel we will image temporal changes of seismic velocities and scattering strength. External natural forcing terms (e.g. tides, seasonal hydrologic loadings) will be modeled to isolate the signals of tectonic origin. This will also allow us to monitor the evolving seismic susceptibility, i.e. a measure of the proximity to a critical state of failure. Improved earthquake detection techniques using ‘deep machine learning’ methods will facilitate tracking the evolution of rock damage. The imaging and monitoring will provide time-lapse images of elastic moduli, susceptibility and seismicity. The observed short-time changes of the materials will be included in slip initiation models coupling the weakening of both the friction and the damaged host rocks. Laboratory experiments will shed light on the transition of behavior from granular (shallow fault core) to cohesive (distant host rock) materials. Our initial data cover two well-studied fault regions of high earthquake probability (Southern California and the Marmara region, Turkey) and an area of induced seismicity (Groningen). The derived results and new versatile imaging and monitoring techniques can have fundamental social and economic impacts.
Max ERC Funding
2 434 743 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym FaultScan
Project Passive seismic scanning of the preparation phase of damaging earthquakes
Researcher (PI) Florent, Billy BRENGUIER
Host Institution (HI) UNIVERSITE GRENOBLE ALPES
Call Details Consolidator Grant (CoG), PE10, ERC-2018-COG
Summary The recent September 2017, magnitude 7.1, central Mexico earthquake that caused 370 casualties reminds us that earthquakes are among the most dramatic natural disasters worldwide. Causal physical processes are not instantaneous and laboratory and numerical experiments predict that earthquakes should be preceded by a detectable slow preparation phase. Despite considerable efforts, however, robust geophysical precursors have not yet been observed before damaging earthquakes.
My FaultScan project will revolutionize our ability to directly observe transient deformation within the core of active faults and provide unprecedented accuracy in the detection of earthquake precursors. My ambition is to develop a new, noise-based, high resolution, seismic monitoring approach. I intend to grasp the opportunity of a recent step change in seismic instrumentation and data processing capabilities to achieve a dream for seismologists: reproduce repeatable, daily, virtual seismic sources that can probe the core of active faults at seismogenic depths using only passive seismic records.
I plan to target the San Jacinto Fault (a branch of the San Andreas Fault system) that is currently believed to pose one of the largest seismic risks in California. It is an ideal fault for this project because it is very active, already extensively studied and easily accessible for the pilot field data acquisition work.
This project is in collaboration with the Univ. of South. California, the Univ. of Cal. San Diego and specialists in earthquake mechanics and will include earthquake preparation processes and seismic modeling that will guide us for our long-term (3 years), breakthrough, passive seismic experiment and further data analysis and interpretation.
I strongly believe that this project has a very high potential for providing fundamental results on the physics of earthquakes and faults and that it will have a major impact on earthquake prediction worldwide in the near future.
Summary
The recent September 2017, magnitude 7.1, central Mexico earthquake that caused 370 casualties reminds us that earthquakes are among the most dramatic natural disasters worldwide. Causal physical processes are not instantaneous and laboratory and numerical experiments predict that earthquakes should be preceded by a detectable slow preparation phase. Despite considerable efforts, however, robust geophysical precursors have not yet been observed before damaging earthquakes.
My FaultScan project will revolutionize our ability to directly observe transient deformation within the core of active faults and provide unprecedented accuracy in the detection of earthquake precursors. My ambition is to develop a new, noise-based, high resolution, seismic monitoring approach. I intend to grasp the opportunity of a recent step change in seismic instrumentation and data processing capabilities to achieve a dream for seismologists: reproduce repeatable, daily, virtual seismic sources that can probe the core of active faults at seismogenic depths using only passive seismic records.
I plan to target the San Jacinto Fault (a branch of the San Andreas Fault system) that is currently believed to pose one of the largest seismic risks in California. It is an ideal fault for this project because it is very active, already extensively studied and easily accessible for the pilot field data acquisition work.
This project is in collaboration with the Univ. of South. California, the Univ. of Cal. San Diego and specialists in earthquake mechanics and will include earthquake preparation processes and seismic modeling that will guide us for our long-term (3 years), breakthrough, passive seismic experiment and further data analysis and interpretation.
I strongly believe that this project has a very high potential for providing fundamental results on the physics of earthquakes and faults and that it will have a major impact on earthquake prediction worldwide in the near future.
Max ERC Funding
2 524 630 €
Duration
Start date: 2019-06-01, End date: 2024-05-31
Project acronym FEASIBLe
Project Finding how Earthquakes And Storms Impact the Building of Landscapes
Researcher (PI) Philippe STEER
Host Institution (HI) UNIVERSITE DE RENNES I
Call Details Starting Grant (StG), PE10, ERC-2018-STG
Summary Unravelling how tectonics, climate and surface processes act and interact to shape the Earth’s surface is one of the most challenging unresolved issue in Earth Sciences. The foundations of modern quantitative geomorphology have been built within the paradigm of steady-state landscapes responding to slow changes in climatic or tectonic conditions, mainly rainfall or uplift rate. Yet, recent results demonstrate that landscapes are rhythmed by (potentially extreme) storms and earthquakes. These perturbations catalyse geomorphological processes by triggering numerous landslides and lead to a prolonged and transient evolution of the landscape that dominate records of modern erosion. The FEASIBLe project therefore calls for a complete re-assessment of the role of short-term climatic and tectonic perturbations in shaping mountain landscapes and for a paradigm shift from steady-state to constantly perturbed landscapes. My ambition is to push forward our understanding of the short- to long-term dynamics of perturbed landscapes and in turn to unlock our ability to read landscapes in terms of earthquake and storm activity. To succeed in this endeavour, the FEASIBLe project will rely on the development of a new generation of landscape evolution model and of novel approaches to intimately monitor landscape heterogeneities and evolution in Taiwan, New-Zealand and Himalayas at high-resolution. The first work packages (WP1-2) will combine field-data analysis and numerical modelling to investigate landslide triggering and the post-perturbation sediment evacuation and landscape dynamics. I will then blend these elementary processes with a statistical description of climatic and tectonic perturbations in a new generation of landscape evolution model (WP3). This new model will be then applied to diagnose the geomorphological signature of fault “seismogenic” rheology (WP4) and to explore the role of post-glacial hot-moments of landscape dynamics on Quaternary landscape evolution (WP5).
Summary
Unravelling how tectonics, climate and surface processes act and interact to shape the Earth’s surface is one of the most challenging unresolved issue in Earth Sciences. The foundations of modern quantitative geomorphology have been built within the paradigm of steady-state landscapes responding to slow changes in climatic or tectonic conditions, mainly rainfall or uplift rate. Yet, recent results demonstrate that landscapes are rhythmed by (potentially extreme) storms and earthquakes. These perturbations catalyse geomorphological processes by triggering numerous landslides and lead to a prolonged and transient evolution of the landscape that dominate records of modern erosion. The FEASIBLe project therefore calls for a complete re-assessment of the role of short-term climatic and tectonic perturbations in shaping mountain landscapes and for a paradigm shift from steady-state to constantly perturbed landscapes. My ambition is to push forward our understanding of the short- to long-term dynamics of perturbed landscapes and in turn to unlock our ability to read landscapes in terms of earthquake and storm activity. To succeed in this endeavour, the FEASIBLe project will rely on the development of a new generation of landscape evolution model and of novel approaches to intimately monitor landscape heterogeneities and evolution in Taiwan, New-Zealand and Himalayas at high-resolution. The first work packages (WP1-2) will combine field-data analysis and numerical modelling to investigate landslide triggering and the post-perturbation sediment evacuation and landscape dynamics. I will then blend these elementary processes with a statistical description of climatic and tectonic perturbations in a new generation of landscape evolution model (WP3). This new model will be then applied to diagnose the geomorphological signature of fault “seismogenic” rheology (WP4) and to explore the role of post-glacial hot-moments of landscape dynamics on Quaternary landscape evolution (WP5).
Max ERC Funding
1 498 829 €
Duration
Start date: 2019-06-01, End date: 2024-05-31
Project acronym FLOODCHANGE
Project Deciphering River Flood Change
Researcher (PI) Guenter Bloeschl
Host Institution (HI) TECHNISCHE UNIVERSITAET WIEN
Call Details Advanced Grant (AdG), PE10, ERC-2011-ADG_20110209
Summary Many major and devastating floods have occurred around the world recently. Their number and magnitude seems to have increased but such changes are not clear. More surprisingly, the exact causes of changes remain a mystery. Although, drivers such as climate and land use change are known to play a critical role, their complex interactions in flood generation have not been disentangled.
The main objectives of this project are to understand how changes in land use and climate translate into changes in river floods, what are the factors controlling this relationship and what are the uncertainties involved. We decipher the relationship between changes in floods and their drivers by analysing the processes separately for different flood types such as flash floods, rain-on-snow floods and large scale synoptic floods. We then use data from catchments in transects across Europe to build a probabilistic flood-change model that explicitly describes the change mechanisms. The model is unconventional as it does not take a reductionist approach but conceptualises the dominant flood change processes at the catchment scale. We test the model on long high-quality flood data series. We use the model as well as the temporal and spatial data variability to quantify the sensitivity of floods to climate and land use change and estimate the uncertainties involved. The data are already available to me or will be made available through my excellent contacts in Europe.
For the first time, it will be possible to systematise the effects of land use and climate on floods which will provide a vital step towards predicting how floods will change in the future.
Summary
Many major and devastating floods have occurred around the world recently. Their number and magnitude seems to have increased but such changes are not clear. More surprisingly, the exact causes of changes remain a mystery. Although, drivers such as climate and land use change are known to play a critical role, their complex interactions in flood generation have not been disentangled.
The main objectives of this project are to understand how changes in land use and climate translate into changes in river floods, what are the factors controlling this relationship and what are the uncertainties involved. We decipher the relationship between changes in floods and their drivers by analysing the processes separately for different flood types such as flash floods, rain-on-snow floods and large scale synoptic floods. We then use data from catchments in transects across Europe to build a probabilistic flood-change model that explicitly describes the change mechanisms. The model is unconventional as it does not take a reductionist approach but conceptualises the dominant flood change processes at the catchment scale. We test the model on long high-quality flood data series. We use the model as well as the temporal and spatial data variability to quantify the sensitivity of floods to climate and land use change and estimate the uncertainties involved. The data are already available to me or will be made available through my excellent contacts in Europe.
For the first time, it will be possible to systematise the effects of land use and climate on floods which will provide a vital step towards predicting how floods will change in the future.
Max ERC Funding
2 263 565 €
Duration
Start date: 2012-04-01, End date: 2017-03-31
Project acronym FOCUS
Project Fiber Optic Cable Use for Seafloor studies of earthquake hazard and deformation
Researcher (PI) Marc-André GUTSCHER
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), PE10, ERC-2017-ADG
Summary Two-thirds of the Earth’s surface is covered by water and thus largely inaccessible to modern networks of seismological instruments. The FOCUS project is poised to revolutionize seismic monitoring of the seafloor through a novel use of fiber optic cables to improve hazard assessment and increase early warning capability. Laser reflectometry using BOTDR, commonly used for structural health monitoring of large-scale engineering structures (e.g. - bridges, dams, pipelines, etc.), can measure very small strains (< 1 mm) at very large distances (10 - 200 km). It has never been used to monitor deformation caused by active faults on the seafloor. The objective of the FOCUS project is to demonstrate that this technique can measure small (1 - 2 cm) displacements on a primary test site offshore Sicily where the 28 km long EMSO Catania cable crosses the recently mapped North Alfeo Fault. BOTDR observations must be calibrated by other independent measurements. Therefore, targeted marine geophysical surveys of the seafloor along the trace of the cable and faults are planned, with micro-bathymetry, high-resolution seismics, seafloor seismic stations and use of seafloor geodetic instruments to quantify fault displacement. Once the BOTDR fault-monitoring technique has been tested and calibrated offshore Sicily, the goal is to expand it to other fiber optic cable networks, either existing research networks in earthquake hazard zones (Japan, Cascadia) or to the Mediterranean region through access to retired telecommunication cables, or through the development of dual-use cables with industry partners, (two of the anticipated outcomes of the FOCUS project). The novel secondary use of fiber optic cables as described by FOCUS represents a potentially tremendous breakthrough in seismology, tectonics and natural hazard early warning capability, one that could turn Earth’s future undersea communication infrastructure into a seismological monitoring network of unprecedented scale.
Summary
Two-thirds of the Earth’s surface is covered by water and thus largely inaccessible to modern networks of seismological instruments. The FOCUS project is poised to revolutionize seismic monitoring of the seafloor through a novel use of fiber optic cables to improve hazard assessment and increase early warning capability. Laser reflectometry using BOTDR, commonly used for structural health monitoring of large-scale engineering structures (e.g. - bridges, dams, pipelines, etc.), can measure very small strains (< 1 mm) at very large distances (10 - 200 km). It has never been used to monitor deformation caused by active faults on the seafloor. The objective of the FOCUS project is to demonstrate that this technique can measure small (1 - 2 cm) displacements on a primary test site offshore Sicily where the 28 km long EMSO Catania cable crosses the recently mapped North Alfeo Fault. BOTDR observations must be calibrated by other independent measurements. Therefore, targeted marine geophysical surveys of the seafloor along the trace of the cable and faults are planned, with micro-bathymetry, high-resolution seismics, seafloor seismic stations and use of seafloor geodetic instruments to quantify fault displacement. Once the BOTDR fault-monitoring technique has been tested and calibrated offshore Sicily, the goal is to expand it to other fiber optic cable networks, either existing research networks in earthquake hazard zones (Japan, Cascadia) or to the Mediterranean region through access to retired telecommunication cables, or through the development of dual-use cables with industry partners, (two of the anticipated outcomes of the FOCUS project). The novel secondary use of fiber optic cables as described by FOCUS represents a potentially tremendous breakthrough in seismology, tectonics and natural hazard early warning capability, one that could turn Earth’s future undersea communication infrastructure into a seismological monitoring network of unprecedented scale.
Max ERC Funding
3 487 911 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym GEO-4D
Project Geodetic data assimilation: Forecasting Deformation with InSAR
Researcher (PI) Romain JOLIVET
Host Institution (HI) ECOLE NORMALE SUPERIEURE
Call Details Starting Grant (StG), PE10, ERC-2017-STG
Summary Recent space-based geodetic measurements of ground deformation suggest a paradigm shift is required in our understanding of the behaviour of active tectonic faults. The classic view of faults classified in two groups – the locked faults prone to generate earthquakes and the creeping faults releasing stress through continuous aseismic slip – is now obscured by more and more studies shedding light on a wide variety of seismic and aseismic slip events of variable duration and size. What physical mechanism controls whether a tectonic fault will generate a dynamic, catastrophic rupture or gently release energy aseismically? Answering such a fundamental question requires a tool for systematic and global detection of all modes of slip along active faults.
The launch of the Sentinel 1 constellation is a game changer as it provides, from now on, systematic Radar mapping of all actively deforming regions in the world with a 6-day return period. Such wealth of data represents an opportunity as well as a challenge we need to meet today. In order to expand the detection and characterization of all slip events to a global scale, I will develop a tool based on machine learning procedures merging the detection capabilities of all data types, including Sentinel 1 data, to build time series of ground motion.
The first step is the development of a geodetic data assimilation method with forecasting ability toward the first re-analysis of active fault motion and tectonic phenomena. The second step is a validation of the method on three faults, including the well-instrumented San Andreas (USA) and Longitudinal Valley faults (Taiwan) and the North Anatolian Fault (NAF, Turkey). I will deploy a specifically designed GPS network along the NAF to compare with outputs of our method. The third step is the intensive use of the algorithm on a global scale to detect slip events of all temporal and spatial scales for a better understanding of the slip behaviour along all active continental faults.
Summary
Recent space-based geodetic measurements of ground deformation suggest a paradigm shift is required in our understanding of the behaviour of active tectonic faults. The classic view of faults classified in two groups – the locked faults prone to generate earthquakes and the creeping faults releasing stress through continuous aseismic slip – is now obscured by more and more studies shedding light on a wide variety of seismic and aseismic slip events of variable duration and size. What physical mechanism controls whether a tectonic fault will generate a dynamic, catastrophic rupture or gently release energy aseismically? Answering such a fundamental question requires a tool for systematic and global detection of all modes of slip along active faults.
The launch of the Sentinel 1 constellation is a game changer as it provides, from now on, systematic Radar mapping of all actively deforming regions in the world with a 6-day return period. Such wealth of data represents an opportunity as well as a challenge we need to meet today. In order to expand the detection and characterization of all slip events to a global scale, I will develop a tool based on machine learning procedures merging the detection capabilities of all data types, including Sentinel 1 data, to build time series of ground motion.
The first step is the development of a geodetic data assimilation method with forecasting ability toward the first re-analysis of active fault motion and tectonic phenomena. The second step is a validation of the method on three faults, including the well-instrumented San Andreas (USA) and Longitudinal Valley faults (Taiwan) and the North Anatolian Fault (NAF, Turkey). I will deploy a specifically designed GPS network along the NAF to compare with outputs of our method. The third step is the intensive use of the algorithm on a global scale to detect slip events of all temporal and spatial scales for a better understanding of the slip behaviour along all active continental faults.
Max ERC Funding
1 499 125 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym GLOBALSEIS
Project NEW GOALS AND DIRECTIONS FOR OBSERVATIONAL GLOBAL SEISMOLOGY
Researcher (PI) Augustinus Nolet
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), PE10, ERC-2008-AdG
Summary One of the major paradoxes in the geosciences is the contrast between the geochemical evidence for limited mass-exchange between lower and upper mantle, and the geophysical arguments for significant mass exchange, needed to prevent the mantle from melting in the geological past. Seismic tomography, when ultimately combined with geodynamical modeling, needs to provide estimates of present-day flux. Indeed, tomography has shown evidence for slabs penetrating into the lower mantle; but no quantitative information on the degree of mass exchange and heat flux can, as yet, reliably be obtained from tomographic images. It is crucial that the boundary between upper- and lower mantle be imaged at greater precision, certainly in the plume-rich southern hemisphere. This requires a combined effort of improvements both experimentally and theoretically. Much progress has recently been obtained by my group in Princeton before I returned to Europe. I propose to build upon those accomplishments, and to (1) Expand the data acquisition to the oceans by developing hydrophone-equipped floats, with the goal to improve data coverage in regions that are important to investigate heat flux: the plume-rich southern hemisphere in particular, (2) Combine different seismological data sets spanning a wide range of frequencies, with the goal to obtain tomographic images that allow for a quantitative estimate of heat flux (both upwards through plumes and downwards through the sinking of slab fragments), with emphasis on the boundary between upper- and lower mantle, (3) Exploit the extra resolution offered by the frequency-dependent sensitivity of body waves (multifrequency tomography), (4) Incorporate wavelet expansions into the tomographic inversion, with the aim to resolve more detail in the model where the data allow a higher resolution, (5) Obtain a multidisciplinary interpretation of new tomographic results through interaction with geodynamicists and geochemists.
Summary
One of the major paradoxes in the geosciences is the contrast between the geochemical evidence for limited mass-exchange between lower and upper mantle, and the geophysical arguments for significant mass exchange, needed to prevent the mantle from melting in the geological past. Seismic tomography, when ultimately combined with geodynamical modeling, needs to provide estimates of present-day flux. Indeed, tomography has shown evidence for slabs penetrating into the lower mantle; but no quantitative information on the degree of mass exchange and heat flux can, as yet, reliably be obtained from tomographic images. It is crucial that the boundary between upper- and lower mantle be imaged at greater precision, certainly in the plume-rich southern hemisphere. This requires a combined effort of improvements both experimentally and theoretically. Much progress has recently been obtained by my group in Princeton before I returned to Europe. I propose to build upon those accomplishments, and to (1) Expand the data acquisition to the oceans by developing hydrophone-equipped floats, with the goal to improve data coverage in regions that are important to investigate heat flux: the plume-rich southern hemisphere in particular, (2) Combine different seismological data sets spanning a wide range of frequencies, with the goal to obtain tomographic images that allow for a quantitative estimate of heat flux (both upwards through plumes and downwards through the sinking of slab fragments), with emphasis on the boundary between upper- and lower mantle, (3) Exploit the extra resolution offered by the frequency-dependent sensitivity of body waves (multifrequency tomography), (4) Incorporate wavelet expansions into the tomographic inversion, with the aim to resolve more detail in the model where the data allow a higher resolution, (5) Obtain a multidisciplinary interpretation of new tomographic results through interaction with geodynamicists and geochemists.
Max ERC Funding
2 500 000 €
Duration
Start date: 2009-02-01, End date: 2015-01-31
Project acronym HYDROMA
Project Origin and evolution of organic matter in carbonaceous chondrites: influence of hydrothermal processes
Researcher (PI) Laurent REMUSAT
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Consolidator Grant (CoG), PE10, ERC-2018-COG
Summary Carbonaceous chondrites (CC) are believed to be fragments of carbonaceous asteroids from the asteroidal belt. They contain up to 4wt% of organic compounds, showing a huge diversity and extremely variable H and N isotope compositions. These isotope compositions can relate to synthesis environments but the exact nature of the processes that influenced the formation of organic compounds in CC remains unresolved. Part of the issue comes from the occurrence of hydrothermal alteration on the chondrites that exhibit the largest content in organic matter. Hydrothermalism may have modified the chemical and isotopic signature of organic molecules, but the extent of these modifications is not yet constrained, leaving a lot of uncertainties on the interpretation of H and N isotope ratios.
The HYDROMA project aims at determining the effects of hydrothermalism on the D/H and 15N/14N ratios of organic molecules in CC. This project will rely on an innovative experimental approach to quantify isotopic exchange of hydrogen and nitrogen between organic compounds and the hydrothermal fluid. HYDROMA will provide a self-consistent determination of the extent and kinetics of the modification of the isotopic signatures recorded in organic molecules. Hence, it will improve the understanding of H and N-isotope systematics of organic matter in CC. HYDROMA will permit using isotope composition of organic compounds to constrain the hydrothermal events (duration, temperature) on carbonaceous asteroids. This multidisciplinary research will shed new light on the origin and reprocessing of organic matter in the early solar system, and its delivery to rocky planets, including the Earth, thus disclosing the origin of prebiotic molecules on our planet.
Summary
Carbonaceous chondrites (CC) are believed to be fragments of carbonaceous asteroids from the asteroidal belt. They contain up to 4wt% of organic compounds, showing a huge diversity and extremely variable H and N isotope compositions. These isotope compositions can relate to synthesis environments but the exact nature of the processes that influenced the formation of organic compounds in CC remains unresolved. Part of the issue comes from the occurrence of hydrothermal alteration on the chondrites that exhibit the largest content in organic matter. Hydrothermalism may have modified the chemical and isotopic signature of organic molecules, but the extent of these modifications is not yet constrained, leaving a lot of uncertainties on the interpretation of H and N isotope ratios.
The HYDROMA project aims at determining the effects of hydrothermalism on the D/H and 15N/14N ratios of organic molecules in CC. This project will rely on an innovative experimental approach to quantify isotopic exchange of hydrogen and nitrogen between organic compounds and the hydrothermal fluid. HYDROMA will provide a self-consistent determination of the extent and kinetics of the modification of the isotopic signatures recorded in organic molecules. Hence, it will improve the understanding of H and N-isotope systematics of organic matter in CC. HYDROMA will permit using isotope composition of organic compounds to constrain the hydrothermal events (duration, temperature) on carbonaceous asteroids. This multidisciplinary research will shed new light on the origin and reprocessing of organic matter in the early solar system, and its delivery to rocky planets, including the Earth, thus disclosing the origin of prebiotic molecules on our planet.
Max ERC Funding
1 994 351 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym HYRAX
Project Rock Hyrax Middens and Climate Change in Southern Africa during the last 50,000 years
Researcher (PI) Brian Mc Kee Chase
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE10, ERC-2010-StG_20091028
Summary In stark contrast to the abundance of high quality palaeoenvironmental records obtained from the temperate regions of the northern hemisphere, terrestrial palaeoenvironmental information from southern Africa's drylands comes from discontinuous deposits with poor absolute age control and ambiguous palaeoclimatic significance. Confronted with the possibility of future environmental and social disruption as a result of climate change, the need for reliable records from southern Africa has never been so acute. This project seeks to develop rock hyrax middens as novel palaeoenvironmental archives to investigate long-term climate change. Hyrax middens (fossilised accumulations of urine and faecal pellets) contain a range of palaeoenvironmental proxies, including fossil pollen and stable isotopes. As part of a pilot study, I have created new collection and sampling methodologies, establishing the proof of principle and showing that middens provide continuous sub-annual to multi-decadal multi-proxy records of environmental change spanning the last 50,000 years. This work has been exceptional in terms of its ability to elucidate long-term climate dynamics at the local scale, and I now intend to apply my techniques to studying environmental change across the whole of southern Africa, a climatically sensitive, but poorly understood region of the globe. Developing new sites, proxies and analytical techniques, HYRAX will provide the first opportunity to study rapid climate change events, the extent and phasing of major climatic phenomena, and the direction and potential impacts of future climate change.
Summary
In stark contrast to the abundance of high quality palaeoenvironmental records obtained from the temperate regions of the northern hemisphere, terrestrial palaeoenvironmental information from southern Africa's drylands comes from discontinuous deposits with poor absolute age control and ambiguous palaeoclimatic significance. Confronted with the possibility of future environmental and social disruption as a result of climate change, the need for reliable records from southern Africa has never been so acute. This project seeks to develop rock hyrax middens as novel palaeoenvironmental archives to investigate long-term climate change. Hyrax middens (fossilised accumulations of urine and faecal pellets) contain a range of palaeoenvironmental proxies, including fossil pollen and stable isotopes. As part of a pilot study, I have created new collection and sampling methodologies, establishing the proof of principle and showing that middens provide continuous sub-annual to multi-decadal multi-proxy records of environmental change spanning the last 50,000 years. This work has been exceptional in terms of its ability to elucidate long-term climate dynamics at the local scale, and I now intend to apply my techniques to studying environmental change across the whole of southern Africa, a climatically sensitive, but poorly understood region of the globe. Developing new sites, proxies and analytical techniques, HYRAX will provide the first opportunity to study rapid climate change events, the extent and phasing of major climatic phenomena, and the direction and potential impacts of future climate change.
Max ERC Funding
1 484 046 €
Duration
Start date: 2010-11-01, End date: 2016-10-31
Project acronym IASI-FT
Project IASI - Flux and temperature
Researcher (PI) Cathy CLERBAUX
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), PE10, ERC-2016-ADG
Summary IASI - Flux and temperature
July 2016 was Earth's warmest month on record. The first six months of 2016 were also the warmest six-month period since modern meteorology observations began. This, along with the recent so-called “hiatus” in the warming trend, and the Paris climate agreement, all attracted scientific and public attention as to how reliable the historical temperature record is, and to the level of confidence in future model climate projections. Although the role of satellites in observing the variability and change of the Earth system has increased in recent decades, remotely-sensed observations are still underexploited to accurately assess climate change fingerprints. The IASI - Flux and Temperature (IASI-FT) project aims at providing new benchmarks for top-of-atmosphere radiative flux and temperature observations using the calibrated radiances measured twice a day at any location by the IASI instrument on the suite of MetOp satellites.
The main challenge is to achieve the stringent accuracy and stability necessary for climate studies, particularly for climate trends. Building upon the expertise accumulated by my group during the last 10 years, I propose the development of innovative algorithms and statistical tools to generate climate data records at the global scale, of (1) spectrally resolved outgoing radiances, (2) land and sea skin surface temperatures, and (3) temperatures at selected altitudes. Time series of these quantities will be compared with in situ and other satellite observations if available, atmospheric reanalyses, and climate model simulations. The observed trends will be analyzed at seasonal and regional scales in order to disentangle natural (weather/dynamical) variability and human-induced climate forcings. This project, while clearly research-oriented, will lead towards an operational integrated observational strategy for the Earth climate system, given that the IASI program started in 2006 and will last until 2040 at least.
Summary
IASI - Flux and temperature
July 2016 was Earth's warmest month on record. The first six months of 2016 were also the warmest six-month period since modern meteorology observations began. This, along with the recent so-called “hiatus” in the warming trend, and the Paris climate agreement, all attracted scientific and public attention as to how reliable the historical temperature record is, and to the level of confidence in future model climate projections. Although the role of satellites in observing the variability and change of the Earth system has increased in recent decades, remotely-sensed observations are still underexploited to accurately assess climate change fingerprints. The IASI - Flux and Temperature (IASI-FT) project aims at providing new benchmarks for top-of-atmosphere radiative flux and temperature observations using the calibrated radiances measured twice a day at any location by the IASI instrument on the suite of MetOp satellites.
The main challenge is to achieve the stringent accuracy and stability necessary for climate studies, particularly for climate trends. Building upon the expertise accumulated by my group during the last 10 years, I propose the development of innovative algorithms and statistical tools to generate climate data records at the global scale, of (1) spectrally resolved outgoing radiances, (2) land and sea skin surface temperatures, and (3) temperatures at selected altitudes. Time series of these quantities will be compared with in situ and other satellite observations if available, atmospheric reanalyses, and climate model simulations. The observed trends will be analyzed at seasonal and regional scales in order to disentangle natural (weather/dynamical) variability and human-induced climate forcings. This project, while clearly research-oriented, will lead towards an operational integrated observational strategy for the Earth climate system, given that the IASI program started in 2006 and will last until 2040 at least.
Max ERC Funding
2 200 000 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym ICE&LASERS
Project Innovative Concepts for Extracting climate and atmospheric composition records from polar ice cores using new LASER Sensors
Researcher (PI) Jerome Chappellaz
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), PE10, ERC-2011-ADG_20110209
Summary ICE&LASERS propose to make a breakthrough in two challenges of paleoclimate science:
(1) Extending the Antarctic ice core records to 1.5 million years ago is critical to understand the unexplained climate shift from 40,000-year periodicities to 100,000-year ones, calling for a different climate sensitivity to orbital forcing. We propose to revolutionize ice core science by building an innovative probe making its own way into the ice sheet within a single field season, to measure in situ the depth profile of H2O isotopes in ice as well as greenhouse gas concentration in trapped gases, down to bedrock. This high gain/high risk project will allow us to rapidly qualify different “oldest ice” sites, and to immediately obtain the main climatic signals of interest;
(2) Why the atmospheric CO2 and CH4 concentrations varied by up to 40 and 100%, respectively, during glacial-interglacial cycles is still highly debated. We will combine revolutionary detectors with new extraction techniques to measure with unsurpassed accuracy and resolution the concentrations of CH4, CO2 and CO (a tracer related to the CH4 cycle), and the isotopic ratios of CO2 and CO in polar ice. We will constrain theories of past changes in the carbon cycle and of climate feedbacks, and will provide more insight into possible natural feedbacks under a warming future.
ICE&LASERS tackles both scientific challenges, thanks to an analytical revolution for measuring trace gases and their stable isotopes: Optical-Feedback Cavity-Enhanced Absorption Spectroscopy (OFCEAS), recently patented by one of the four CNRS research units involved in the project. ICE&LASERS will contribute to maintain European ice core science at its current leading position, and to optimize the transfer of innovative laser physics to important environmental problems.
Summary
ICE&LASERS propose to make a breakthrough in two challenges of paleoclimate science:
(1) Extending the Antarctic ice core records to 1.5 million years ago is critical to understand the unexplained climate shift from 40,000-year periodicities to 100,000-year ones, calling for a different climate sensitivity to orbital forcing. We propose to revolutionize ice core science by building an innovative probe making its own way into the ice sheet within a single field season, to measure in situ the depth profile of H2O isotopes in ice as well as greenhouse gas concentration in trapped gases, down to bedrock. This high gain/high risk project will allow us to rapidly qualify different “oldest ice” sites, and to immediately obtain the main climatic signals of interest;
(2) Why the atmospheric CO2 and CH4 concentrations varied by up to 40 and 100%, respectively, during glacial-interglacial cycles is still highly debated. We will combine revolutionary detectors with new extraction techniques to measure with unsurpassed accuracy and resolution the concentrations of CH4, CO2 and CO (a tracer related to the CH4 cycle), and the isotopic ratios of CO2 and CO in polar ice. We will constrain theories of past changes in the carbon cycle and of climate feedbacks, and will provide more insight into possible natural feedbacks under a warming future.
ICE&LASERS tackles both scientific challenges, thanks to an analytical revolution for measuring trace gases and their stable isotopes: Optical-Feedback Cavity-Enhanced Absorption Spectroscopy (OFCEAS), recently patented by one of the four CNRS research units involved in the project. ICE&LASERS will contribute to maintain European ice core science at its current leading position, and to optimize the transfer of innovative laser physics to important environmental problems.
Max ERC Funding
2 986 718 €
Duration
Start date: 2012-03-01, End date: 2018-02-28
Project acronym ICORDA
Project Ice CORe DAting tools revisited to infer the dynamic of glacial – interglacial transitions over the last 1.5 million years
Researcher (PI) Amaelle Adeline LANDAIS ISRAEL
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Consolidator Grant (CoG), PE10, ERC-2018-COG
Summary The Quaternary period (last 2600 thousands of years, hereafter ka) is the ideal period to evaluate our understanding of climate processes with general circulation models (GCM) used for prediction of future climate. During this period, the largest climate changes are glacial – interglacial transitions, hereafter terminations, the last termination being a classical benchmark for GCM. The rhythm of terminations changed from a world associated with a 40 ka periodicity to a world associated with a 100 ka glacial – interglacial periodicity between 1250 and 700 ka. The cause for this transition is a long debated question highlighting that the causes and mechanisms of terminations are still poorly understood. The timing and amplitudes of terminations indeed result from multiple influences of insolation forcing, ice sheet size, atmospheric greenhouse gases (GHG) concentration as well as shorter (millennial) scale climate variability. The big challenge of ICORDA consists in solving major puzzles on the mechanisms of terminations by deciphering these different influences using two key Antarctic ice core records: EPICA Dome C covering the last 800 ka and an ice core to be drilled in the coming years and covering the last 1500 ka. While ice cores provide unique continuous and high resolution climatic and GHG records, they are still too poorly dated on long timescales to address the aforementioned challenge. ICORDA aims at rethinking the way ice core chronology is built for decreasing drastically the associated uncertainties. This will be done by (1) developing a mechanistic approach for the interpretation of isotopic tracers used for ice core dating and (2) combining numerous low to mid latitude ice core tracers to provide a global picture of climate change during terminations. The strategy involves interdisciplinarity between climate, geochemistry, ecophysiology and innovative instrumental developments as well as field, laboratory experiments and modeling.
Summary
The Quaternary period (last 2600 thousands of years, hereafter ka) is the ideal period to evaluate our understanding of climate processes with general circulation models (GCM) used for prediction of future climate. During this period, the largest climate changes are glacial – interglacial transitions, hereafter terminations, the last termination being a classical benchmark for GCM. The rhythm of terminations changed from a world associated with a 40 ka periodicity to a world associated with a 100 ka glacial – interglacial periodicity between 1250 and 700 ka. The cause for this transition is a long debated question highlighting that the causes and mechanisms of terminations are still poorly understood. The timing and amplitudes of terminations indeed result from multiple influences of insolation forcing, ice sheet size, atmospheric greenhouse gases (GHG) concentration as well as shorter (millennial) scale climate variability. The big challenge of ICORDA consists in solving major puzzles on the mechanisms of terminations by deciphering these different influences using two key Antarctic ice core records: EPICA Dome C covering the last 800 ka and an ice core to be drilled in the coming years and covering the last 1500 ka. While ice cores provide unique continuous and high resolution climatic and GHG records, they are still too poorly dated on long timescales to address the aforementioned challenge. ICORDA aims at rethinking the way ice core chronology is built for decreasing drastically the associated uncertainties. This will be done by (1) developing a mechanistic approach for the interpretation of isotopic tracers used for ice core dating and (2) combining numerous low to mid latitude ice core tracers to provide a global picture of climate change during terminations. The strategy involves interdisciplinarity between climate, geochemistry, ecophysiology and innovative instrumental developments as well as field, laboratory experiments and modeling.
Max ERC Funding
1 994 100 €
Duration
Start date: 2019-12-01, End date: 2024-11-30
Project acronym IMPACT
Project The giant impact and the Earth and Moon formation
Researcher (PI) Razvan Caracas
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Consolidator Grant (CoG), PE10, ERC-2015-CoG
Summary Very little is understood of the physics governing the Giant Impact and the subsequent formation of the Moon. According to this model an impactor hit the proto-Earth; the resulting energy was enough to melt and partially vaporize the two bodies generating a large protolunar disk, from which the Earth-Moon couple formed. Hydrodynamic simulations of the impact and the subsequent evolution of the protolunar disk are currently based on models of equations of state and phase diagrams that are unconstrained by experiments or calculations. Estimates of the positions of critical points, when available at all, vary by one order of magnitude in both temperature and density. Here we propose to compute the thermodynamics of the major rock-forming minerals and rock aggregates, and use it to study the formation and evolution of the protolunar disk. For this we employ a unique combination of atomistic state-of-the-art ab initio simulations. We use large-scale density-functional theory (DFT) molecular dynamics to study bulk fluids, coupled with Green functions (GW) and time-dependent DFT techniques to analyze atomic clusters and molecular species. We compute the vaporization curves, position the supercritical points, and characterize the sub-critical and supercritical regimes. We construct equations of state of the rocks at the conditions of the giant impact that are beyond current experimental capabilities. We employ a multiscale approach to bridge the gap between atomic, geological sample, and planetary scales via thermodynamics; we simulate the thermal profile through the disk, the ratio between liquid and vapor, and the speciation. From speciation we predict elemental and isotopic partitioning during condensation. Plausible impact scenarios, features of the impactor and of the proto-Earth will be constrained with a feedback loop, until convergence between predictions of final Earth-Moon compositions and observations is reached.
Summary
Very little is understood of the physics governing the Giant Impact and the subsequent formation of the Moon. According to this model an impactor hit the proto-Earth; the resulting energy was enough to melt and partially vaporize the two bodies generating a large protolunar disk, from which the Earth-Moon couple formed. Hydrodynamic simulations of the impact and the subsequent evolution of the protolunar disk are currently based on models of equations of state and phase diagrams that are unconstrained by experiments or calculations. Estimates of the positions of critical points, when available at all, vary by one order of magnitude in both temperature and density. Here we propose to compute the thermodynamics of the major rock-forming minerals and rock aggregates, and use it to study the formation and evolution of the protolunar disk. For this we employ a unique combination of atomistic state-of-the-art ab initio simulations. We use large-scale density-functional theory (DFT) molecular dynamics to study bulk fluids, coupled with Green functions (GW) and time-dependent DFT techniques to analyze atomic clusters and molecular species. We compute the vaporization curves, position the supercritical points, and characterize the sub-critical and supercritical regimes. We construct equations of state of the rocks at the conditions of the giant impact that are beyond current experimental capabilities. We employ a multiscale approach to bridge the gap between atomic, geological sample, and planetary scales via thermodynamics; we simulate the thermal profile through the disk, the ratio between liquid and vapor, and the speciation. From speciation we predict elemental and isotopic partitioning during condensation. Plausible impact scenarios, features of the impactor and of the proto-Earth will be constrained with a feedback loop, until convergence between predictions of final Earth-Moon compositions and observations is reached.
Max ERC Funding
1 900 000 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym ISOREE
Project New insight into the origin of the Earth, its bulk composition and its early evolution
Researcher (PI) Maud Boyet
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Consolidator Grant (CoG), PE10, ERC-2015-CoG
Summary The main geochemical features of the mantles of terrestrial planets and asteroids can be attributed to differentiation events that occurred during or shortly after the formation of the Solar System. Numerous questions remain regarding the Earth’s bulk composition and the most likely scenario for its evolution prior to the last major differentiation event caused by a giant impact leading to the formation of the Moon. The aim of this five-year project is to evaluate the state-of-the-art models of the Earth’s early evolution with the following main objectives: (i) Defining precisely the age of the Moon’s formation, (ii) Refining the giant impact model and the Earth-Moon relationship, (iii) Dating the successive magmatic ocean stages on Earth, and (iv) Constraining the Earth mantle’s composition in terms of rare earth element concentrations. These different questions will be addressed using trace elements, radiogenic isotopic systematics (146Sm-142Nd, 147Sm-143Nd, 138La-138Ce) and stable isotopes. ISOREE is a multi-disciplinary project that combines isotope and trace element geochemistry, experimental geochemistry and spectroscopy. A large number of samples will be analysed, including terrestrial rocks with ages up to 3.8 Ga, chondrites, achondrites and lunar samples.
This proposal will provide the tools to tackle a vast topic from various angles, using new methodologies and instrumentation and promoting innovation and creativity in European research. This research program is essential to further constrain the major events that occurred very early on in the Earth’s history, such as the Earth’s cooling, its crustal growth, the surface conditions and development of potential habitats for life.
Summary
The main geochemical features of the mantles of terrestrial planets and asteroids can be attributed to differentiation events that occurred during or shortly after the formation of the Solar System. Numerous questions remain regarding the Earth’s bulk composition and the most likely scenario for its evolution prior to the last major differentiation event caused by a giant impact leading to the formation of the Moon. The aim of this five-year project is to evaluate the state-of-the-art models of the Earth’s early evolution with the following main objectives: (i) Defining precisely the age of the Moon’s formation, (ii) Refining the giant impact model and the Earth-Moon relationship, (iii) Dating the successive magmatic ocean stages on Earth, and (iv) Constraining the Earth mantle’s composition in terms of rare earth element concentrations. These different questions will be addressed using trace elements, radiogenic isotopic systematics (146Sm-142Nd, 147Sm-143Nd, 138La-138Ce) and stable isotopes. ISOREE is a multi-disciplinary project that combines isotope and trace element geochemistry, experimental geochemistry and spectroscopy. A large number of samples will be analysed, including terrestrial rocks with ages up to 3.8 Ga, chondrites, achondrites and lunar samples.
This proposal will provide the tools to tackle a vast topic from various angles, using new methodologies and instrumentation and promoting innovation and creativity in European research. This research program is essential to further constrain the major events that occurred very early on in the Earth’s history, such as the Earth’s cooling, its crustal growth, the surface conditions and development of potential habitats for life.
Max ERC Funding
2 200 000 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym MAD-ESEC
Project Magmas at Depth: an Experimental Study at Extreme Conditions
Researcher (PI) Chrystèle Sanloup
Host Institution (HI) UNIVERSITE PIERRE ET MARIE CURIE - PARIS 6
Call Details Starting Grant (StG), PE10, ERC-2010-StG_20091028
Summary Magmas, i.e. silicate melts, have played a key role in the chemical and thermal evolution of the Earth and other planets. The Earth's interior today is the outcome of mass transfers which occurred primarily in its early history and still occur now via magmatic events. Present day magmatic and volcanic processes are controlled by the properties of molten silicate at high pressure, considering that magmas are produced at depth. However, the physical properties of molten silicates remain largely unexplored across the broad range of relevant P-T conditions, and their chemical properties are very often assumed constant and equal to those known at ambient conditions. This blurs out our understanding of planetary differentiation and current magmatic processes.
The aim of this proposal is to place fundamental constraints on magma generation and transport in planetary interiors by measuring the properties of silicate melts in their natural high pressures (P) and high temperatures (T) conditions using a broad range of in situ key diagnostic probes (X-ray and neutron scattering techniques, X-ray absorption, radiography, Raman spectroscopy). The completion of this proposal will result in a comprehensive key database in the composition-P-T space that will form the foundation for modelling planetary formation and differentiation, and will provide answers to the very fundamental questions on magma formation, ascent or trapping at depth in the current and past Earth.
This experimental program is allowed by the recent advancements in in situ high P-T techniques, and comes in conjunction with a large and fruitful theoretical effort; time has thus come to understand Earth's melts and their keys to Earth's evolution.
Summary
Magmas, i.e. silicate melts, have played a key role in the chemical and thermal evolution of the Earth and other planets. The Earth's interior today is the outcome of mass transfers which occurred primarily in its early history and still occur now via magmatic events. Present day magmatic and volcanic processes are controlled by the properties of molten silicate at high pressure, considering that magmas are produced at depth. However, the physical properties of molten silicates remain largely unexplored across the broad range of relevant P-T conditions, and their chemical properties are very often assumed constant and equal to those known at ambient conditions. This blurs out our understanding of planetary differentiation and current magmatic processes.
The aim of this proposal is to place fundamental constraints on magma generation and transport in planetary interiors by measuring the properties of silicate melts in their natural high pressures (P) and high temperatures (T) conditions using a broad range of in situ key diagnostic probes (X-ray and neutron scattering techniques, X-ray absorption, radiography, Raman spectroscopy). The completion of this proposal will result in a comprehensive key database in the composition-P-T space that will form the foundation for modelling planetary formation and differentiation, and will provide answers to the very fundamental questions on magma formation, ascent or trapping at depth in the current and past Earth.
This experimental program is allowed by the recent advancements in in situ high P-T techniques, and comes in conjunction with a large and fruitful theoretical effort; time has thus come to understand Earth's melts and their keys to Earth's evolution.
Max ERC Funding
1 332 160 €
Duration
Start date: 2011-06-01, End date: 2017-05-31
Project acronym MERCURY ISOTOPES
Project Exploring the isotopic dimension of the global mercury cycle
Researcher (PI) Jeroen Sonke
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE10, ERC-2010-StG_20091028
Summary Mass-independent fractionation (MIF) of isotopes in terrestrial geochemical processes was first observed in 1983 for oxygen and in 2000 for sulfur isotopes. Recently mercury (Hg) was added to this shortlist when isotopic anomalies were observed for Hg s two odd isotopes, 199Hg and 201Hg in biological tissues. The objective of the MERCURY ISOTOPES project is to take Hg MIF beyond the initial discovery, and use it to address major outstanding scientific questions of societal and philosophical interest. Similar to the profound insights that carbon and oxygen isotope systematics have brought to climate research, we propose to use variations in Hg isotopic compositions to fingerprint natural and anthropogenic sources, quantify isotope fractionation processes, and provide new constraints on models of mercury cycling.
The MERCURY ISOTOPES project centres on the use of mercury MIF to understand global Hg dynamics at different time scales, from the Pleistocene to modern times. Three main themes will be investigated: 1. the modern Hg cycle focusing on Asian urban-industrial emissions related to coal burning, 2. recent atmospheric Hg deposition in the Arctic, recent Arctic Ocean Hg records from archived biological tissues, and post-glacial Hg deposition from 10,000 yr old ombrotrophic peat records along a mid-latitude sub-Arctic gradient. 3 Continuous atmospheric Hg speciation and isotopic monitoring at the Pic du Midi Observatory (Pyrenees).
By tapping information from the isotopic dimension of Hg cycling, including revolutionary mass-independent effects, I expect a maximum scientific impact while supporting a socially relevant and urgently needed investigation at the frontier of isotope geosciences.
Summary
Mass-independent fractionation (MIF) of isotopes in terrestrial geochemical processes was first observed in 1983 for oxygen and in 2000 for sulfur isotopes. Recently mercury (Hg) was added to this shortlist when isotopic anomalies were observed for Hg s two odd isotopes, 199Hg and 201Hg in biological tissues. The objective of the MERCURY ISOTOPES project is to take Hg MIF beyond the initial discovery, and use it to address major outstanding scientific questions of societal and philosophical interest. Similar to the profound insights that carbon and oxygen isotope systematics have brought to climate research, we propose to use variations in Hg isotopic compositions to fingerprint natural and anthropogenic sources, quantify isotope fractionation processes, and provide new constraints on models of mercury cycling.
The MERCURY ISOTOPES project centres on the use of mercury MIF to understand global Hg dynamics at different time scales, from the Pleistocene to modern times. Three main themes will be investigated: 1. the modern Hg cycle focusing on Asian urban-industrial emissions related to coal burning, 2. recent atmospheric Hg deposition in the Arctic, recent Arctic Ocean Hg records from archived biological tissues, and post-glacial Hg deposition from 10,000 yr old ombrotrophic peat records along a mid-latitude sub-Arctic gradient. 3 Continuous atmospheric Hg speciation and isotopic monitoring at the Pic du Midi Observatory (Pyrenees).
By tapping information from the isotopic dimension of Hg cycling, including revolutionary mass-independent effects, I expect a maximum scientific impact while supporting a socially relevant and urgently needed investigation at the frontier of isotope geosciences.
Max ERC Funding
1 176 924 €
Duration
Start date: 2010-12-01, End date: 2015-11-30
Project acronym MILESTONE
Project From mineral inclusions in zircon to continents: An in situ isotopic perspective on the evolution of the continental crust, the onset of plate tectonics and the development of a habitable Earth
Researcher (PI) Bruno DHUIME
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Consolidator Grant (CoG), PE10, ERC-2018-COG
Summary The continental crust is the principal record of conditions on Earth during the past 4.4 billion years, yet how it formed and evolved through time remains unresolved. Zircon lies at the core of crustal evolution studies, and yet our knowledge has remained restricted to the geochemical information that can be extracted from this mineral with current techniques. This CoG moves the debate to a different scale analytically, to the scale of mineral inclusions encapsulated within zircons. A key motivation is the recent analytical breakthrough in the microanalysis of minute samples, which was achieved by the PI and the team he led at the University of Bristol, using state-of-the-art instruments similar to those now available at the PI’s host laboratory.
The integrated analysis of Sr and Pb isotopes of mineral inclusions, along with the trace elements, U-Pb, Hf and O isotopes analysis of their host zircons, for over 5000 zircons of different ages and provenance, will provide new and different information to that available from the 'zircon only' record – ultimately to i) probe the inferred transition from intraplate- to subduction-related magmatism associated with the onset of plate tectonics; ii) date this transition and its duration precisely in different places; iii) develop a global model of continental crust evolution from the Hadean (i.e. >4 Ga) to the Present, in which the Earth has progressively, or more suddenly, become a habitable planet. These goals will be achieved through:
1. Building a worldwide collection of inclusion-bearing zircons with a range of ages and provenance (WP1).
2. Evaluating changes in the degree of differentiation of the newly generated continental crust through time, using the Sr isotope record of apatite inclusions (WP2).
3. Addressing changes in the tectonic settings of new crust formation, using the Pb isotope record of feldspar inclusions (WP3).
4. Modelling the variation in the new crust thickness through space and time (WP4).
Summary
The continental crust is the principal record of conditions on Earth during the past 4.4 billion years, yet how it formed and evolved through time remains unresolved. Zircon lies at the core of crustal evolution studies, and yet our knowledge has remained restricted to the geochemical information that can be extracted from this mineral with current techniques. This CoG moves the debate to a different scale analytically, to the scale of mineral inclusions encapsulated within zircons. A key motivation is the recent analytical breakthrough in the microanalysis of minute samples, which was achieved by the PI and the team he led at the University of Bristol, using state-of-the-art instruments similar to those now available at the PI’s host laboratory.
The integrated analysis of Sr and Pb isotopes of mineral inclusions, along with the trace elements, U-Pb, Hf and O isotopes analysis of their host zircons, for over 5000 zircons of different ages and provenance, will provide new and different information to that available from the 'zircon only' record – ultimately to i) probe the inferred transition from intraplate- to subduction-related magmatism associated with the onset of plate tectonics; ii) date this transition and its duration precisely in different places; iii) develop a global model of continental crust evolution from the Hadean (i.e. >4 Ga) to the Present, in which the Earth has progressively, or more suddenly, become a habitable planet. These goals will be achieved through:
1. Building a worldwide collection of inclusion-bearing zircons with a range of ages and provenance (WP1).
2. Evaluating changes in the degree of differentiation of the newly generated continental crust through time, using the Sr isotope record of apatite inclusions (WP2).
3. Addressing changes in the tectonic settings of new crust formation, using the Pb isotope record of feldspar inclusions (WP3).
4. Modelling the variation in the new crust thickness through space and time (WP4).
Max ERC Funding
1 999 500 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym MONIFAULTS
Project Monitoring real faults towards their critical state
Researcher (PI) Piero POLI
Host Institution (HI) UNIVERSITE GRENOBLE ALPES
Call Details Starting Grant (StG), PE10, ERC-2018-STG
Summary The last seismic sequence in Italy, responsible for 298 fatalities and important economic loss, remind us how urgent it is to improve our knowledge about earthquake physics to advance earthquake forecasting. While direct observations during laboratory earthquakes permit us to derive exhaustive physical models describing the behaviour of rocks and to forecast incoming lab-earthquakes, the complex physics governing the nucleation of earthquakes remain poorly understood in real Earth, and so does our ability to forecast earthquakes. I posit that this ‘ignorance’ emerges from our limited ability to unravel information about fault physics from geophysical data.The objective of this proposal is to introduce a new and integrated methodology to monitor the spatiotemporal evolution of elastic properties on real faults using seismological and geodetic data. We will apply machine learning and covariance matrix factorization for improved earthquake detection, and to discover ‘anomalous’ seismological signals, which will reveal unknown physical processes on faults. These novel observations will be integrated with time dependent measurements of rheology and deformation, obtained from cutting-edge techniques applied to continuous seismological and geodetic data. Our integrated monitoring approach will be applied to study how faults respond to known stress perturbations (as Earth tides). In parallel, we will analyse periods preceding significant earthquakes to assess how elastic properties and deformation evolve while a fault is approaching a critical (near rupture) state. Our natural laboratory will be Italy, given its excellent geodetic and seismological instrumentation, deep knowledge about faults geometry and the relevant risk posed by earthquakes. Our research will provide new insights about the complex physics of faults at critical state, necessary to understand how real earthquakes nucleate. This project will also have a major impact on observational earthquake forecast.
Summary
The last seismic sequence in Italy, responsible for 298 fatalities and important economic loss, remind us how urgent it is to improve our knowledge about earthquake physics to advance earthquake forecasting. While direct observations during laboratory earthquakes permit us to derive exhaustive physical models describing the behaviour of rocks and to forecast incoming lab-earthquakes, the complex physics governing the nucleation of earthquakes remain poorly understood in real Earth, and so does our ability to forecast earthquakes. I posit that this ‘ignorance’ emerges from our limited ability to unravel information about fault physics from geophysical data.The objective of this proposal is to introduce a new and integrated methodology to monitor the spatiotemporal evolution of elastic properties on real faults using seismological and geodetic data. We will apply machine learning and covariance matrix factorization for improved earthquake detection, and to discover ‘anomalous’ seismological signals, which will reveal unknown physical processes on faults. These novel observations will be integrated with time dependent measurements of rheology and deformation, obtained from cutting-edge techniques applied to continuous seismological and geodetic data. Our integrated monitoring approach will be applied to study how faults respond to known stress perturbations (as Earth tides). In parallel, we will analyse periods preceding significant earthquakes to assess how elastic properties and deformation evolve while a fault is approaching a critical (near rupture) state. Our natural laboratory will be Italy, given its excellent geodetic and seismological instrumentation, deep knowledge about faults geometry and the relevant risk posed by earthquakes. Our research will provide new insights about the complex physics of faults at critical state, necessary to understand how real earthquakes nucleate. This project will also have a major impact on observational earthquake forecast.
Max ERC Funding
1 393 174 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym NANODYNAMITE
Project Quantifying Aerosol Nanoparticle Dynamics by High Time Resolution Experiments
Researcher (PI) Paul Martin Winkler
Host Institution (HI) UNIVERSITAT WIEN
Call Details Consolidator Grant (CoG), PE10, ERC-2013-CoG
Summary "The formation of aerosol nanoparticles by vapour nucleation and condensational growth is currently considered the dominant source of cloud condensation nuclei on global scale, hence impacting radiative properties of the atmosphere and precipitation patterns of clouds. Despite considerable experimental and theoretical efforts, the mechanisms of the gas-to-particle conversion are still poorly understood, and so are the parameterizations of this process in climate models. Improving the situation critically depends on the continuous development of experimental techniques. For the quantitative characterization of nanoparticle dynamics especially time resolution deserves more attention. I am thus proposing to design instruments that will improve time resolution by up to five orders of magnitude. Specifically, I am planning the design of a fast-scanning electrical mobility based nanoparticle spectrometer delivering size distributions from 1 nm upwards at 1 Hz, for number concentrations as low as 100 cm-3. Secondly, in a new approach to the study of secondary organic aerosol formation I am planning to apply small angle x-ray scattering providing direct information on particle size and number at sub-millisecond time-resolution. Thirdly, the study of fundamental growth kinetics by Mie scattering at short wavelengths will constitute an important part of my research. And finally, an application oriented research task will deal with the design and construction of a nucleation based trace-gas removal system capable of generating liquid water from plain ambient air.
The research on phase transition processes constitutes a vital link between molecular scale interactions and macroscopically relevant outcome. The current proposal aims at identifying and quantifying nanoparticle formation mechanisms by new experimental approaches. Thereby it will be possible to reliably predict and utilize macroscopic effects caused by aerosol mechanisms on the nano-scale."
Summary
"The formation of aerosol nanoparticles by vapour nucleation and condensational growth is currently considered the dominant source of cloud condensation nuclei on global scale, hence impacting radiative properties of the atmosphere and precipitation patterns of clouds. Despite considerable experimental and theoretical efforts, the mechanisms of the gas-to-particle conversion are still poorly understood, and so are the parameterizations of this process in climate models. Improving the situation critically depends on the continuous development of experimental techniques. For the quantitative characterization of nanoparticle dynamics especially time resolution deserves more attention. I am thus proposing to design instruments that will improve time resolution by up to five orders of magnitude. Specifically, I am planning the design of a fast-scanning electrical mobility based nanoparticle spectrometer delivering size distributions from 1 nm upwards at 1 Hz, for number concentrations as low as 100 cm-3. Secondly, in a new approach to the study of secondary organic aerosol formation I am planning to apply small angle x-ray scattering providing direct information on particle size and number at sub-millisecond time-resolution. Thirdly, the study of fundamental growth kinetics by Mie scattering at short wavelengths will constitute an important part of my research. And finally, an application oriented research task will deal with the design and construction of a nucleation based trace-gas removal system capable of generating liquid water from plain ambient air.
The research on phase transition processes constitutes a vital link between molecular scale interactions and macroscopically relevant outcome. The current proposal aims at identifying and quantifying nanoparticle formation mechanisms by new experimental approaches. Thereby it will be possible to reliably predict and utilize macroscopic effects caused by aerosol mechanisms on the nano-scale."
Max ERC Funding
1 810 698 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym NOGAT
Project NOBLE GAS TRACING OF SOURCES AND SINKS OF VOLATILE ELEMENTS IN THE ATMOSPHERE
Researcher (PI) Bernard Marty
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), PE10, ERC-2010-AdG_20100224
Summary This proposal has the objective to greatly enhance our understanding of sources, sinks and processes fixing the composition of the atmosphere at different time periods of time, from 3.8 Gyr ago to Present. For achieving this goal, I shall develop the high precision analysis of noble gases, which are key tracers of atmospheric evolution.
The core of the proposal is : (i) the development of multi-collector mass spectrometry analysis of noble gas isotopes coupled with standard bracketing, aimed at reaching the per mil or better precision level, which will constitute a world premiere, (ii) the analysis of unique cometary samples, of ancient sediments already partly available at my laboratory, and of present-day air sampled at different geographical and altitudinal scales, (iii) the quantification of sources and sinks of atmospheric volatiles through the study of the fluxes of noble gas isotopes.
With this proposal, I develop a new and extremely competitive area of geochemistry, aimed at better understanding the early evolution of our planet habitability, as well as at improving our knowledge of fluxes of volatile elements triggering anthropogenic climate change. This proposal will establish the leadership of Europe in high precision geochemistry of exceptional tracers, the noble gases.
Summary
This proposal has the objective to greatly enhance our understanding of sources, sinks and processes fixing the composition of the atmosphere at different time periods of time, from 3.8 Gyr ago to Present. For achieving this goal, I shall develop the high precision analysis of noble gases, which are key tracers of atmospheric evolution.
The core of the proposal is : (i) the development of multi-collector mass spectrometry analysis of noble gas isotopes coupled with standard bracketing, aimed at reaching the per mil or better precision level, which will constitute a world premiere, (ii) the analysis of unique cometary samples, of ancient sediments already partly available at my laboratory, and of present-day air sampled at different geographical and altitudinal scales, (iii) the quantification of sources and sinks of atmospheric volatiles through the study of the fluxes of noble gas isotopes.
With this proposal, I develop a new and extremely competitive area of geochemistry, aimed at better understanding the early evolution of our planet habitability, as well as at improving our knowledge of fluxes of volatile elements triggering anthropogenic climate change. This proposal will establish the leadership of Europe in high precision geochemistry of exceptional tracers, the noble gases.
Max ERC Funding
2 281 806 €
Duration
Start date: 2011-01-01, End date: 2016-12-31
Project acronym PALEONANOLIFE
Project Responses of precambrian life to environmental changes
Researcher (PI) François Michel Raoul Robert
Host Institution (HI) MUSEUM NATIONAL D'HISTOIRE NATURELLE
Call Details Advanced Grant (AdG), PE10, ERC-2011-ADG_20110209
Summary This multidisciplinary proposal has the objective to enhance our knowledge on the early steps of the evolution of life on Earth by providing a foundation for better deciphering the molecular fossil record as well as the geochemical signals hidden in ancient rocks. Based on the multiscale and multitechnique study of morphologically preserved microorganisms fossilized within ancient siliceous nodules, I propose to chronologically reconcile the evolution of metabolisms of life forms during the Precambrian with the variation of (sea)water paleo-temperatures registered by the silica matrix in which the investigated organic microfossils are embedded.
Spatially-resolved information on fossil organic constituent speciation and their structural relationships with the silica matrix will be obtained at the nanometer scale using a unique combination of spectroscopy and microscopy techniques, notably including STXM and TEM. Crucial information on paleo-metabolisms will be obtained from NanoSIMS experiments by measuring the stable H-C-N-S isotope composition of the investigated fossilized objects at the scale of individual cells. In parallel, laboratory experiments will be conducted to better assess the potential isotopic and molecular evolution of organic molecules during the fossilization process. Estimations of water paleo-temperatures – likely corresponding to oceanic paleo-temperatures – will be achieved based on the distribution of the silicon and oxygen isotopic composition of silica closely associated to the fossil cells, measured at the very high spatial resolution of the NanoSIMS. Furthermore, the study of natural proxies will provide a more profound understanding of the significance of the temperature registered by the isotopic compositions of Precambrian cherts. In addition to radically change scientific ideas about Precambrian Paleontology, the technical and scientific developments resulting from this work will be broadly applicable and serve numerous communities.
Summary
This multidisciplinary proposal has the objective to enhance our knowledge on the early steps of the evolution of life on Earth by providing a foundation for better deciphering the molecular fossil record as well as the geochemical signals hidden in ancient rocks. Based on the multiscale and multitechnique study of morphologically preserved microorganisms fossilized within ancient siliceous nodules, I propose to chronologically reconcile the evolution of metabolisms of life forms during the Precambrian with the variation of (sea)water paleo-temperatures registered by the silica matrix in which the investigated organic microfossils are embedded.
Spatially-resolved information on fossil organic constituent speciation and their structural relationships with the silica matrix will be obtained at the nanometer scale using a unique combination of spectroscopy and microscopy techniques, notably including STXM and TEM. Crucial information on paleo-metabolisms will be obtained from NanoSIMS experiments by measuring the stable H-C-N-S isotope composition of the investigated fossilized objects at the scale of individual cells. In parallel, laboratory experiments will be conducted to better assess the potential isotopic and molecular evolution of organic molecules during the fossilization process. Estimations of water paleo-temperatures – likely corresponding to oceanic paleo-temperatures – will be achieved based on the distribution of the silicon and oxygen isotopic composition of silica closely associated to the fossil cells, measured at the very high spatial resolution of the NanoSIMS. Furthermore, the study of natural proxies will provide a more profound understanding of the significance of the temperature registered by the isotopic compositions of Precambrian cherts. In addition to radically change scientific ideas about Precambrian Paleontology, the technical and scientific developments resulting from this work will be broadly applicable and serve numerous communities.
Max ERC Funding
1 468 852 €
Duration
Start date: 2012-07-01, End date: 2017-12-31
Project acronym Photonis
Project Isotope Fractionation of Light Elements Upon Ionization: Cosmochemical and Geochemical Implications
Researcher (PI) Bernard MARTY
Host Institution (HI) UNIVERSITE DE LORRAINE
Call Details Advanced Grant (AdG), PE10, ERC-2015-AdG
Summary Light elements such as hydrogen and nitrogen present large isotope variations among solar system objects and reservoirs (including planetary atmospheres) that remain unexplained at present. Works based on theoretical approaches are model-dependent and do not reach a consensus. Laboratory experiments are required in order to develop the underlying physical mechanisms. The aim of the project is to investigate the origins of and processes responsible for isotope variations of the light elements and noble gases in the Solar System through an experimental approach involving ionization of gaseous species. We will also investigate mechanisms and processes of isotope fractionation of atmophile elements in planetary atmospheres that have been irradiated by solar UV photons, with particular reference to Mars and the early Earth. Three pathways will be considered: (i) plasma ionisation of gas mixtures (H2-CO-N2-noble gases) in a custom-built reactor; (ii) photo-ionisation and photo-dissociation of the relevant gas species and mixtures using synchrotron light; and (iii) UV irradiation of ices containing the species of interest. The results of this study will shed light on the early Solar System evolution and on processes of planetary formation.
Summary
Light elements such as hydrogen and nitrogen present large isotope variations among solar system objects and reservoirs (including planetary atmospheres) that remain unexplained at present. Works based on theoretical approaches are model-dependent and do not reach a consensus. Laboratory experiments are required in order to develop the underlying physical mechanisms. The aim of the project is to investigate the origins of and processes responsible for isotope variations of the light elements and noble gases in the Solar System through an experimental approach involving ionization of gaseous species. We will also investigate mechanisms and processes of isotope fractionation of atmophile elements in planetary atmospheres that have been irradiated by solar UV photons, with particular reference to Mars and the early Earth. Three pathways will be considered: (i) plasma ionisation of gas mixtures (H2-CO-N2-noble gases) in a custom-built reactor; (ii) photo-ionisation and photo-dissociation of the relevant gas species and mixtures using synchrotron light; and (iii) UV irradiation of ices containing the species of interest. The results of this study will shed light on the early Solar System evolution and on processes of planetary formation.
Max ERC Funding
2 810 229 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym PRESEISMIC
Project Exploring the nucleation of large earthquakes: cascading and unpredictable or slowly driven and forecastable
Researcher (PI) Zacharie DUPUTEL
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE10, ERC-2018-STG
Summary How do earthquakes begin? Answering this question is essential to understand fault mechanics but also to
determine our ability to forecast large earthquakes. Although it is well established that some events are preceded by foreshocks, contrasting views have been proposed on the nucleation of earthquakes. Do these foreshocks belong to a cascade of random failures leading to the mainshock? Are they triggered by an aseismic nucleation phase in which the fault slips slowly before accelerating to a dynamic, catastrophic rupture? Will we ever be able to monitor and predict the slow onset of earthquakes or are we doomed to observe random, unpredictable cascades of events? We are currently missing a robust tool for quantitative estimation of the proportion of seismic versus aseismic slip during the rupture initiation, cluttering our attempts at understanding what physical mechanisms control the relationship between foreshocks and the onset of large earthquakes.
The current explosion of available near-fault ground-motion observations is an unprecedented opportunity to capture the genesis of earthquakes along active faults. I will develop an entirely new method based a novel data assimilation procedure that will produce probabilistic time-dependent slip models assimilating geodetic, seismic and tsunami datasets. While slow and rapid fault processes are usually studied independently, this unified approach will address the relative contribution of seismic and aseismic deformation.
The first step is the development of a novel probabilistic data assimilation method providing reliable uncertainty estimates and combining multiple data types. The second step is a validation of the method and an application to investigate the onset of recent megathrust earthquakes in Chile and Japan. The third step is the extensive, global use of the algorithm to the continuous monitoring of time-dependent slip along active faults providing an automated detector of the nucleation of earthquakes.
Summary
How do earthquakes begin? Answering this question is essential to understand fault mechanics but also to
determine our ability to forecast large earthquakes. Although it is well established that some events are preceded by foreshocks, contrasting views have been proposed on the nucleation of earthquakes. Do these foreshocks belong to a cascade of random failures leading to the mainshock? Are they triggered by an aseismic nucleation phase in which the fault slips slowly before accelerating to a dynamic, catastrophic rupture? Will we ever be able to monitor and predict the slow onset of earthquakes or are we doomed to observe random, unpredictable cascades of events? We are currently missing a robust tool for quantitative estimation of the proportion of seismic versus aseismic slip during the rupture initiation, cluttering our attempts at understanding what physical mechanisms control the relationship between foreshocks and the onset of large earthquakes.
The current explosion of available near-fault ground-motion observations is an unprecedented opportunity to capture the genesis of earthquakes along active faults. I will develop an entirely new method based a novel data assimilation procedure that will produce probabilistic time-dependent slip models assimilating geodetic, seismic and tsunami datasets. While slow and rapid fault processes are usually studied independently, this unified approach will address the relative contribution of seismic and aseismic deformation.
The first step is the development of a novel probabilistic data assimilation method providing reliable uncertainty estimates and combining multiple data types. The second step is a validation of the method and an application to investigate the onset of recent megathrust earthquakes in Chile and Japan. The third step is the extensive, global use of the algorithm to the continuous monitoring of time-dependent slip along active faults providing an automated detector of the nucleation of earthquakes.
Max ERC Funding
1 499 545 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym REALISM
Project Reproducing EArthquakes in the Laboratory: Imaging, Speed and Mineralogy
Researcher (PI) Alexandre Jean-Marie Schubnel
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Consolidator Grant (CoG), PE10, ERC-2015-CoG
Summary We propose a simple idea: to reproduce earthquakes in the laboratory. Because earthquakes are spectacular examples of uncontrollable catastrophes, the opportunity to study them under controlled conditions in the laboratory is unique and is, in fact, the only way to understand the details of the earthquake source physics.
The aim of the project is interdisciplinary, at the frontiers between Rock Fracture Mechanics, Seismology, and Mineralogy. Its ultimate goal is to improve, on the basis of integrated experimental data, our understanding of the earthquake source physics. We have already shown that both deep and shallow laboratory earthquakes are not mere `analogs’ of earthquakes, but are real events – though very small [Passelègue et al. 2013, Schubnel et al. 2013]. During laboratory earthquakes, by measuring all of the physical quantities related to the rupturing process, we will unravel what controls the rupture speed, rupture arrest, the earthquake rupture energy budget, as well as the common role played by mineralogy in both shallow and deep earthquakes. We will also perform some experiments on rock samples drilled from actual active fault zones. Our work will provide insights for earthquake hazard mitigation, constrain ubiquitously observed seismological statistical laws (Omori, Gutenberg-Richter) and produce unprecedented data sets on rock fracture dynamics at in-situ conditions to test seismic slip inversion and dynamic rupture modelling techniques.
The new infrastructure we plan to install will reproduce the temperatures and pressures at depths where earthquakes occur in the crust as well as in the upper mantle of the Earth, with never achieved spatio-temporal imaging resolution to this day. This will be a valuable research asset for the European community, as it will eventually open the door to a better understanding of all the processes happening under stress within the first hundreds of kilometres of the Earth.
Summary
We propose a simple idea: to reproduce earthquakes in the laboratory. Because earthquakes are spectacular examples of uncontrollable catastrophes, the opportunity to study them under controlled conditions in the laboratory is unique and is, in fact, the only way to understand the details of the earthquake source physics.
The aim of the project is interdisciplinary, at the frontiers between Rock Fracture Mechanics, Seismology, and Mineralogy. Its ultimate goal is to improve, on the basis of integrated experimental data, our understanding of the earthquake source physics. We have already shown that both deep and shallow laboratory earthquakes are not mere `analogs’ of earthquakes, but are real events – though very small [Passelègue et al. 2013, Schubnel et al. 2013]. During laboratory earthquakes, by measuring all of the physical quantities related to the rupturing process, we will unravel what controls the rupture speed, rupture arrest, the earthquake rupture energy budget, as well as the common role played by mineralogy in both shallow and deep earthquakes. We will also perform some experiments on rock samples drilled from actual active fault zones. Our work will provide insights for earthquake hazard mitigation, constrain ubiquitously observed seismological statistical laws (Omori, Gutenberg-Richter) and produce unprecedented data sets on rock fracture dynamics at in-situ conditions to test seismic slip inversion and dynamic rupture modelling techniques.
The new infrastructure we plan to install will reproduce the temperatures and pressures at depths where earthquakes occur in the crust as well as in the upper mantle of the Earth, with never achieved spatio-temporal imaging resolution to this day. This will be a valuable research asset for the European community, as it will eventually open the door to a better understanding of all the processes happening under stress within the first hundreds of kilometres of the Earth.
Max ERC Funding
2 748 188 €
Duration
Start date: 2016-10-01, End date: 2021-09-30
Project acronym REFINE
Project Robots Explore plankton-driven Fluxes in the marine twIlight zoNE
Researcher (PI) herve CLAUSTRE
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), PE10, ERC-2018-ADG
Summary The scientific objective of REFINE is to understand and quantify the physical, biological and biogeochemical processes controlling the biological carbon pump, a key component of the oceanic CO2 sequestration. The oceanic twilight zone (TZ), which is located between the depths of 100 and 1000 m and represents 20% of the ocean's volume, is where these processes occur. Yet the TZ is not properly sampled during most ship-based oceanographic cruises and, because of its depths, it escapes satellite remote sensing. Hence the TZ is one of the least known environments on Earth. The functioning of the TZ is highly dependent on the flux of matter and energy coming from the overlying well-lit euphotic zone (EZ). I have developed the REFINE ground-breaking, robotic-based approach to address the physical, biological and biogeochemical linkages between the EZ and the TZ, with special emphasis on the roles of phyto and zooplankton communities. I will implement REFINE through the following four main coordinated actions:
• Development of a new generation of multidisciplinary vertically profiling floats, uniquely able to robotically address phyto and zooplankton community composition.
• Achievement of ~3 years robotic-based process studies in five oceanic zones, representative of the diversity of biogeochemical conditions and responses to climate change in the global ocean, over a continuum of temporal scales ranging from diel to interannual.
• In-depth analysis of the unique REFINE dataset to perform carbon flux budgets within the TZ, and understand the physical and plankton-driven mechanisms involved in the EZ-TZ linkage and their impacts on the resulting fate of organic carbon and fluxes to ocean depths.
• Upscaling of regional processes to the global ocean through the use of artificial intelligence methods, in particular by taking advantage of multisource observations from REFINE robots and earth observation satellites.
Summary
The scientific objective of REFINE is to understand and quantify the physical, biological and biogeochemical processes controlling the biological carbon pump, a key component of the oceanic CO2 sequestration. The oceanic twilight zone (TZ), which is located between the depths of 100 and 1000 m and represents 20% of the ocean's volume, is where these processes occur. Yet the TZ is not properly sampled during most ship-based oceanographic cruises and, because of its depths, it escapes satellite remote sensing. Hence the TZ is one of the least known environments on Earth. The functioning of the TZ is highly dependent on the flux of matter and energy coming from the overlying well-lit euphotic zone (EZ). I have developed the REFINE ground-breaking, robotic-based approach to address the physical, biological and biogeochemical linkages between the EZ and the TZ, with special emphasis on the roles of phyto and zooplankton communities. I will implement REFINE through the following four main coordinated actions:
• Development of a new generation of multidisciplinary vertically profiling floats, uniquely able to robotically address phyto and zooplankton community composition.
• Achievement of ~3 years robotic-based process studies in five oceanic zones, representative of the diversity of biogeochemical conditions and responses to climate change in the global ocean, over a continuum of temporal scales ranging from diel to interannual.
• In-depth analysis of the unique REFINE dataset to perform carbon flux budgets within the TZ, and understand the physical and plankton-driven mechanisms involved in the EZ-TZ linkage and their impacts on the resulting fate of organic carbon and fluxes to ocean depths.
• Upscaling of regional processes to the global ocean through the use of artificial intelligence methods, in particular by taking advantage of multisource observations from REFINE robots and earth observation satellites.
Max ERC Funding
3 500 000 €
Duration
Start date: 2019-10-01, End date: 2024-09-30
Project acronym RHEOLITH
Project Rheology of the continental lithosphere, a geological, experimental and numerical approach
Researcher (PI) Laurent Jolivet
Host Institution (HI) UNIVERSITE D'ORLEANS
Call Details Advanced Grant (AdG), PE10, ERC-2011-ADG_20110209
Summary A better comprehension of the rheology of the lithosphere is required to relate long and short term deformation regimes and describe the succession of events leading to earthquakes. But our vision of the rheology is blurred because gaps exist between visions of geologists, experimentalists and modellers. Geologists describe the evolution of a structure at regional-scale within geological durations. Specialists of experimental rheology control most parameters, but laboratory time constants are short and they often work on simple synthetic rocks. Specialists of modelling can choose any time- and space-scales and introduce in the model any parameter, but the resolution of their models is low compared to natural observations, and mixing short-term and long-term processes is uneasy. It seems now clear that there is not one rheological model applicable to all contexts and that rheological parameters should be adapted to each situation. We will work on exhumed crustal-scale shear zones and describe them in their complexity, focussing on strain localisation and high strain structures that can lead to fast slip events. A number of objects will be studied, starting from geological description (3D geometry, P-T-fluids estimates and dating), experimental studies of rheological properties of natural sampled rocks and numerical modelling. We will set an Argon-dating lab to work on dense sampling for dating along strain gradients in order to overcome local artefacts and quantify rates of strain localisation. We will deform in the lab natural rocks taken from the studied objects to retrieve adapted rheological parameters. We will model processes at various scales, from the lab to the lithosphere in order to ensure a clean transfer of rheological parameters from one scale to another.
Summary
A better comprehension of the rheology of the lithosphere is required to relate long and short term deformation regimes and describe the succession of events leading to earthquakes. But our vision of the rheology is blurred because gaps exist between visions of geologists, experimentalists and modellers. Geologists describe the evolution of a structure at regional-scale within geological durations. Specialists of experimental rheology control most parameters, but laboratory time constants are short and they often work on simple synthetic rocks. Specialists of modelling can choose any time- and space-scales and introduce in the model any parameter, but the resolution of their models is low compared to natural observations, and mixing short-term and long-term processes is uneasy. It seems now clear that there is not one rheological model applicable to all contexts and that rheological parameters should be adapted to each situation. We will work on exhumed crustal-scale shear zones and describe them in their complexity, focussing on strain localisation and high strain structures that can lead to fast slip events. A number of objects will be studied, starting from geological description (3D geometry, P-T-fluids estimates and dating), experimental studies of rheological properties of natural sampled rocks and numerical modelling. We will set an Argon-dating lab to work on dense sampling for dating along strain gradients in order to overcome local artefacts and quantify rates of strain localisation. We will deform in the lab natural rocks taken from the studied objects to retrieve adapted rheological parameters. We will model processes at various scales, from the lab to the lithosphere in order to ensure a clean transfer of rheological parameters from one scale to another.
Max ERC Funding
2 645 000 €
Duration
Start date: 2012-08-01, End date: 2017-07-31
Project acronym RheoMan
Project MULTISCALE MODELLING OF THE RHEOLOGY OF MANTLE MINERALS
Researcher (PI) Patrick Cordier
Host Institution (HI) UNIVERSITE DES SCIENCES ET TECHNOLOGIES DE LILLE - LILLE I
Call Details Advanced Grant (AdG), PE10, ERC-2011-ADG_20110209
Summary Understanding mantle convection is essential to understand the thermal and chemical evolution of the Earth and to constrain the forces driving plate tectonics. The rheological properties of the mantle are traditionally inverted from surface geophysical data. Radial profiles of the viscosity are thus available but a lot of uncertainties remain.
A more detailed model of mantle rheology could be obtained from the knowledge of the constitutive flow laws of mantle phases. A lot of progresses have been achieved to extend the P, T range accessible to rheological studies. However, constitutive flow laws are only available so far for minerals from the upper mantle. More severe is the timescale issue since phenomenological flow laws must be extrapolated over several orders of magnitude to be applied to mantle convection.
Recently, a new field has emerged in materials science called multiscale modelling. It allows to link our understanding of a few elementary mechanisms (usually at the microscopic scale) with a behaviour observed at the macroscopic scale. I consider that this offers a ground-breaking opportunity to set a microphysics-based model of the rheology of mantle phases. Much progress has recently been obtained by my group in this direction. A multiscale model of plastic flow consist in modeling:
a) the defects responsible for plastic shear at the atomic scale (dislocations);
b) their mobility under the influence of stress and temperature;
c) their collective behaviour resulting in plastic flow.
I propose to build upon those accomplishments and to model the plastic flow of some key phases of the Earth’s mantle: wadsleyite, ringwoodite, MgSiO3 perovskite and post-perovskite to constrain:
i) the viscosity contrast between the transition zone and the lower mantle;
ii) the viscosity profile of the lower mantle (and understand the origin of the peak of viscosity at mid-mantle);
iii) the rheology at the thermal boundary with the core.
Summary
Understanding mantle convection is essential to understand the thermal and chemical evolution of the Earth and to constrain the forces driving plate tectonics. The rheological properties of the mantle are traditionally inverted from surface geophysical data. Radial profiles of the viscosity are thus available but a lot of uncertainties remain.
A more detailed model of mantle rheology could be obtained from the knowledge of the constitutive flow laws of mantle phases. A lot of progresses have been achieved to extend the P, T range accessible to rheological studies. However, constitutive flow laws are only available so far for minerals from the upper mantle. More severe is the timescale issue since phenomenological flow laws must be extrapolated over several orders of magnitude to be applied to mantle convection.
Recently, a new field has emerged in materials science called multiscale modelling. It allows to link our understanding of a few elementary mechanisms (usually at the microscopic scale) with a behaviour observed at the macroscopic scale. I consider that this offers a ground-breaking opportunity to set a microphysics-based model of the rheology of mantle phases. Much progress has recently been obtained by my group in this direction. A multiscale model of plastic flow consist in modeling:
a) the defects responsible for plastic shear at the atomic scale (dislocations);
b) their mobility under the influence of stress and temperature;
c) their collective behaviour resulting in plastic flow.
I propose to build upon those accomplishments and to model the plastic flow of some key phases of the Earth’s mantle: wadsleyite, ringwoodite, MgSiO3 perovskite and post-perovskite to constrain:
i) the viscosity contrast between the transition zone and the lower mantle;
ii) the viscosity profile of the lower mantle (and understand the origin of the peak of viscosity at mid-mantle);
iii) the rheology at the thermal boundary with the core.
Max ERC Funding
2 166 407 €
Duration
Start date: 2012-05-01, End date: 2018-04-30
Project acronym Sea2Cloud
Project Are marine living microorganisms influencing clouds?
Researcher (PI) Karine SELLEGRI
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Consolidator Grant (CoG), PE10, ERC-2017-COG
Summary Earth, as a whole, can be considered as a living organism emitting gases and particles in its atmosphere, in order to regulate its own temperature (Lovelock, 1988). In particular oceans, which cover 70% of the Earth, may respond to climate change by emitting different species under different environmental conditions. At the global scale, a large fraction of the aerosol number concentration is formed by nucleation of low-volatility gas-phase compounds, a process that is expected to ultimately determine the concentrations of Cloud Condensation Nuclei (CCN). Nucleation occurrence over open oceans is still debated, due to scarce observational data sets and instrumental limitations, although our recent findings suggest biologically driven nucleation from seawater emissions. Marine aerosol can also be emitted to the atmosphere as primary particles via bubble bursting, among which living microorganisms are suspected to act as excellent ice nuclei (IN) and impact clouds precipitation capacities. The main goal of this proposal is to investigate how marine emissions from living microorganisms can influence CCN, IN and ultimately cloud properties. We will investigate the whole process chain of gas-phase emissions, nucleation and growth through the atmospheric column, and impact on the CCN population. We will also quantify marine primary bioaerosol emissions and evaluate how they impact IN and cloud precipitation capabilities. Experiments will be performed in the Southern Hemisphere, especially sensitive to the natural aerosol concentration variability. We will use an original approach of field mesocosms enclosing the air-sea interface, to link marine emissions to the biogeochemical properties of natural seawater, combined with ambient aerosol measurements simultaneously at low and high altitude sites. At last, a modelling study will help merging process studies and ambient measurements, and assess the role of biologically driven marine emissions on cloud properties.
Summary
Earth, as a whole, can be considered as a living organism emitting gases and particles in its atmosphere, in order to regulate its own temperature (Lovelock, 1988). In particular oceans, which cover 70% of the Earth, may respond to climate change by emitting different species under different environmental conditions. At the global scale, a large fraction of the aerosol number concentration is formed by nucleation of low-volatility gas-phase compounds, a process that is expected to ultimately determine the concentrations of Cloud Condensation Nuclei (CCN). Nucleation occurrence over open oceans is still debated, due to scarce observational data sets and instrumental limitations, although our recent findings suggest biologically driven nucleation from seawater emissions. Marine aerosol can also be emitted to the atmosphere as primary particles via bubble bursting, among which living microorganisms are suspected to act as excellent ice nuclei (IN) and impact clouds precipitation capacities. The main goal of this proposal is to investigate how marine emissions from living microorganisms can influence CCN, IN and ultimately cloud properties. We will investigate the whole process chain of gas-phase emissions, nucleation and growth through the atmospheric column, and impact on the CCN population. We will also quantify marine primary bioaerosol emissions and evaluate how they impact IN and cloud precipitation capabilities. Experiments will be performed in the Southern Hemisphere, especially sensitive to the natural aerosol concentration variability. We will use an original approach of field mesocosms enclosing the air-sea interface, to link marine emissions to the biogeochemical properties of natural seawater, combined with ambient aerosol measurements simultaneously at low and high altitude sites. At last, a modelling study will help merging process studies and ambient measurements, and assess the role of biologically driven marine emissions on cloud properties.
Max ERC Funding
1 999 329 €
Duration
Start date: 2018-07-01, End date: 2023-06-30
Project acronym SEIC
Project Setting Earth's Initial Conditions: A fluid dynamics study of core-mantle differentiation
Researcher (PI) Renaud DEGUEN
Host Institution (HI) UNIVERSITE LYON 1 CLAUDE BERNARD
Call Details Starting Grant (StG), PE10, ERC-2016-STG
Summary The initial conditions of the Earth and other terrestrial planets were set 4.5 Gy ago during their accretion from the solar nebula and their concomitant differentiation into an iron-rich core and a silicate mantle. Accretion in the solar system went through several different dynamical phases involving increasingly energetic and catastrophic impacts and collisions. The last phase of accretion, in which most of the Earth mass was accreted, involved extremely energetic collisions between already differentiated planetary embryos (1000 km size), which resulted in widespread melting and the formation of magma oceans in which metal and silicates segregated to form the core and mantle. Geochemical data provide critical information on the timing of accretion and the prevailing physical conditions, but it is far from a trivial task to interpret the geochemical data in terms of physical conditions and processes.
I propose here a fluid dynamics oriented study of metal-silicate interactions and differentiation following planetary impacts, based in part on fluid dynamics laboratory experiments. The aim is to answer critical questions pertaining to the dynamics of metal-silicate segregation and interactions during each core-formation events, before developing parameterized models of metal-silicate mass and heat exchange, which will then be incorporated in geochemical models of the terrestrial planets formation and differentiation. The expected outcomes are a better understanding of the physics of metal-silicate segregation and core-mantle differentiation, as well as improved geochemical constraints on the timing and physical conditions of the terrestrial planets formation.
Summary
The initial conditions of the Earth and other terrestrial planets were set 4.5 Gy ago during their accretion from the solar nebula and their concomitant differentiation into an iron-rich core and a silicate mantle. Accretion in the solar system went through several different dynamical phases involving increasingly energetic and catastrophic impacts and collisions. The last phase of accretion, in which most of the Earth mass was accreted, involved extremely energetic collisions between already differentiated planetary embryos (1000 km size), which resulted in widespread melting and the formation of magma oceans in which metal and silicates segregated to form the core and mantle. Geochemical data provide critical information on the timing of accretion and the prevailing physical conditions, but it is far from a trivial task to interpret the geochemical data in terms of physical conditions and processes.
I propose here a fluid dynamics oriented study of metal-silicate interactions and differentiation following planetary impacts, based in part on fluid dynamics laboratory experiments. The aim is to answer critical questions pertaining to the dynamics of metal-silicate segregation and interactions during each core-formation events, before developing parameterized models of metal-silicate mass and heat exchange, which will then be incorporated in geochemical models of the terrestrial planets formation and differentiation. The expected outcomes are a better understanding of the physics of metal-silicate segregation and core-mantle differentiation, as well as improved geochemical constraints on the timing and physical conditions of the terrestrial planets formation.
Max ERC Funding
1 258 750 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym SEISMAZE
Project Data-intensive analysis of seismic tremors and long period events: a new paradigm for understanding transient deformation processes in active geological systems
Researcher (PI) NIKOLAI CHAPIRO
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), PE10, ERC-2017-ADG
Summary Seismic tremors form a broad class of signals generated by internal sources that are different from regular earthquakes. Volcanic tremors have been known for a long time, and tectonic tremors associated with seismogenic fault zones have been described more recently. While the physical origin of seismic tremors remains to be fully understood, they are related to slow transient energy release processes that occur in active geological systems during the accumulation of mechanical energy that is then released during catastrophic events, such as strong earthquakes or volcanic eruptions. Therefore, seismic tremors represent a unique source of information that can be used to understand the physics of these ‘preparation’ processes and to design new monitoring and forecasting approaches.
Modern digital seismological networks record huge numbers of tremors in different active regions, and breakthroughs can be achieved with systematic exploration of these observations that includes data analysis and physical modeling. My goal is to undertake such an effort via the development of a new unified framework for the study of seismic tremors. I plan to combine advanced methods for data mining, signal processing, and numerical simulations of the generating processes, to apply these to different large datasets of volcanic and tectonic tremors.
I will develop an innovative and holistic approach based on massive analysis of observations that requires high performance computing and will be combined with advanced physical modeling of the generating dynamical processes. This will produce the new framework that can be used on the one hand for an understanding of the physical tremor-generating mechanisms, and on other hand for the development of new adaptive methods for monitoring volcanoes and seismic faults. The implementation of these will involve machine learning approaches to gain information from continuous fluxes of data from dense seismological networks.
Summary
Seismic tremors form a broad class of signals generated by internal sources that are different from regular earthquakes. Volcanic tremors have been known for a long time, and tectonic tremors associated with seismogenic fault zones have been described more recently. While the physical origin of seismic tremors remains to be fully understood, they are related to slow transient energy release processes that occur in active geological systems during the accumulation of mechanical energy that is then released during catastrophic events, such as strong earthquakes or volcanic eruptions. Therefore, seismic tremors represent a unique source of information that can be used to understand the physics of these ‘preparation’ processes and to design new monitoring and forecasting approaches.
Modern digital seismological networks record huge numbers of tremors in different active regions, and breakthroughs can be achieved with systematic exploration of these observations that includes data analysis and physical modeling. My goal is to undertake such an effort via the development of a new unified framework for the study of seismic tremors. I plan to combine advanced methods for data mining, signal processing, and numerical simulations of the generating processes, to apply these to different large datasets of volcanic and tectonic tremors.
I will develop an innovative and holistic approach based on massive analysis of observations that requires high performance computing and will be combined with advanced physical modeling of the generating dynamical processes. This will produce the new framework that can be used on the one hand for an understanding of the physical tremor-generating mechanisms, and on other hand for the development of new adaptive methods for monitoring volcanoes and seismic faults. The implementation of these will involve machine learning approaches to gain information from continuous fluxes of data from dense seismological networks.
Max ERC Funding
2 490 000 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym SHRED
Project Survival of Hadean REmnants in a Dynamic mantle
Researcher (PI) Catherine CHAUVEL
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), PE10, ERC-2018-ADG
Summary Plate tectonics drives the formation and destruction of crust and introduces surface material into the deep Earth, while mantle convection mixes materials back together, erasing their diversity. Geochemical heterogeneities in modern volcanics indicate the survival of Hadean (≈ 4.5 Ga) remnants, and their mare existence raises first-order questions: What is the nature of the material carrying the odd geochemical signatures? How can Hadean material survive in an actively convecting mantle? What are the physical properties of material that can be preserved for billions of years, and yet that can be entrained in mantle plumes? Can Hadean remnants be stored in the structures seismically imaged in the lowermost mantle? Answering these questions is the challenging aim of SHRED. I will define the location, dimensions, structure, physical nature and composition of the ‘storage site’ of old material and I will constrain the conditions necessary for the material to be sampled in hotspots.
To reach the goal, I will assemble a unique group of scientists that will combine the most innovative geochemical tools with the latest physical modeling of inner Earth. I will characterize the isotopic diversity of modern intraplate volcanism and develop new geochemical tools to determine the age and size of heterogeneities in mantle plumes. These observations represent key constraints for geophysical models that will unravel, in a fluid-dynamically consistent framework, the evolution of mantle heterogeneities. Innovative simulations with particle tracing will determine the geographical origin of upwelling material and evaluate its relationship to deep seismic structures. Simulations focussed on mantle mixing will explore the physical conditions required for the survival of heterogeneities on billion-year-time-scales. This unique combination of expertise will provide answers to decades-old questions raised independently in mantle geochemistry and mantle geophysics.
Summary
Plate tectonics drives the formation and destruction of crust and introduces surface material into the deep Earth, while mantle convection mixes materials back together, erasing their diversity. Geochemical heterogeneities in modern volcanics indicate the survival of Hadean (≈ 4.5 Ga) remnants, and their mare existence raises first-order questions: What is the nature of the material carrying the odd geochemical signatures? How can Hadean material survive in an actively convecting mantle? What are the physical properties of material that can be preserved for billions of years, and yet that can be entrained in mantle plumes? Can Hadean remnants be stored in the structures seismically imaged in the lowermost mantle? Answering these questions is the challenging aim of SHRED. I will define the location, dimensions, structure, physical nature and composition of the ‘storage site’ of old material and I will constrain the conditions necessary for the material to be sampled in hotspots.
To reach the goal, I will assemble a unique group of scientists that will combine the most innovative geochemical tools with the latest physical modeling of inner Earth. I will characterize the isotopic diversity of modern intraplate volcanism and develop new geochemical tools to determine the age and size of heterogeneities in mantle plumes. These observations represent key constraints for geophysical models that will unravel, in a fluid-dynamically consistent framework, the evolution of mantle heterogeneities. Innovative simulations with particle tracing will determine the geographical origin of upwelling material and evaluate its relationship to deep seismic structures. Simulations focussed on mantle mixing will explore the physical conditions required for the survival of heterogeneities on billion-year-time-scales. This unique combination of expertise will provide answers to decades-old questions raised independently in mantle geochemistry and mantle geophysics.
Max ERC Funding
3 468 768 €
Duration
Start date: 2020-01-01, End date: 2024-12-31
Project acronym SILVER
Project Silver Isotopes and the Rise of Money
Researcher (PI) Francis ALBAREDE
Host Institution (HI) ECOLE NORMALE SUPERIEURE DE LYON
Call Details Advanced Grant (AdG), PE10, ERC-2016-ADG
Summary Silver was the primary metal of economic exchange and military finances in ancient Mediterranean and Near-Eastern societies. Silver isotopes will help quantify monetization of these societies by identifying Ag mineral sources, monetary sinks, and its major transfer routes. High-precision stable Ag isotope analysis initiated in Lyon has shed new light on the provenance of silver coinage. This is because Ag isotopes are distinctive of coinage’s intrinsic value in contrast to traditionally-used Pb and Cu isotopes, which may characterize impurities or additives.
The common belief that PbS (galena) ores accounted most of the silver mined in the antique world will be tested. We will extract Ag from ores around the Mediterranean and test PbS prevalence over As and Sb sulfosalts and low-temperature ores with Ag, Cu, and Pb isotopes and trace elements.
Our work will address major questions: (i) understand the sources of unminted silver as a precursor to coinage; (ii) use Ag isotope fingerprinting of the earliest coinages of Athens to identify the contributions of Greek mines to the development of the world’s first democracy; (iii) map the Greek and Persian mines which sourced the treasure captured by Alexander the Great, and investigate the spread of its silver; (iv) study the causes of the monetary reform of the Roman Republic in 211 BC; and (v) model the silver cycle from mines to coinage and artefacts in its economic context.
In the short term this project represents radical scientific innovation, which will pave the way for a global and quantitative understanding of the history of monetary development in the ancient Mediterranean. In the long term, it will contribute to the emergence of a community of analysts, numismatists and economic historians with shared expertise about the monetization of ancient societies and their management of precious metal resources.
Summary
Silver was the primary metal of economic exchange and military finances in ancient Mediterranean and Near-Eastern societies. Silver isotopes will help quantify monetization of these societies by identifying Ag mineral sources, monetary sinks, and its major transfer routes. High-precision stable Ag isotope analysis initiated in Lyon has shed new light on the provenance of silver coinage. This is because Ag isotopes are distinctive of coinage’s intrinsic value in contrast to traditionally-used Pb and Cu isotopes, which may characterize impurities or additives.
The common belief that PbS (galena) ores accounted most of the silver mined in the antique world will be tested. We will extract Ag from ores around the Mediterranean and test PbS prevalence over As and Sb sulfosalts and low-temperature ores with Ag, Cu, and Pb isotopes and trace elements.
Our work will address major questions: (i) understand the sources of unminted silver as a precursor to coinage; (ii) use Ag isotope fingerprinting of the earliest coinages of Athens to identify the contributions of Greek mines to the development of the world’s first democracy; (iii) map the Greek and Persian mines which sourced the treasure captured by Alexander the Great, and investigate the spread of its silver; (iv) study the causes of the monetary reform of the Roman Republic in 211 BC; and (v) model the silver cycle from mines to coinage and artefacts in its economic context.
In the short term this project represents radical scientific innovation, which will pave the way for a global and quantitative understanding of the history of monetary development in the ancient Mediterranean. In the long term, it will contribute to the emergence of a community of analysts, numismatists and economic historians with shared expertise about the monetization of ancient societies and their management of precious metal resources.
Max ERC Funding
2 496 243 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym SIREAL
Project Seismology in the ionosphere? This is REAL!
Ionosphere as a natural indicator of numerous geophysical events
Researcher (PI) Elvira Astafyeva
Host Institution (HI) INSTITUT DE PHYSIQUE DU GLOBE DE PARIS
Call Details Starting Grant (StG), PE10, ERC-2012-StG_20111012
Summary We propose to perform a wide spectrum of ionosphere-related research, from ionosphere seismology to ionospheric storms and GNSS/GPS performance during extreme ionospheric and space weather events. The main focus will be made on such rare subject as ionosphere seismology that aims to study ionosphere response to large earthquakes, to investigate the main properties of different kinds of ionospheric disturbances occurred due to seismic and seismic-like events, including tsunamis, volcano eruptions and explosions. The 11/03/2011 Tohoku megaquake has opened new challenges for modeling of co-seismic effects and has indicated new directions for further research. In particular, we found that the ionosphere is able of showing images of a seismic fault slip rupturing about ~8 minutes after an earthquake, which opens new opportunities for short-time tsunami warnings.
In addition to the ionosphere seismology, the project includes fundamental multi-instrumental studies of the global dynamics of the ionosphere under geomagnetically disturbed and quiet conditions. Great attention will be paid on investigation of features of traveling ionospheric disturbances and on the ionosphere behavior during variations of interplanetary parameters such as magnetic field (IMF) and electric field (IEF). The latter is directly connected to the last subject of our proposal - solar- and ionosphere-induced GPS -failures.
The main advantages for Europe coming with this project are: 1) a highly interdisciplinary project on a sufficiently new branch of the science and with rare applications; 2) extension of the fundamental ionosphere studies in Europe that will increase the competitiveness of Europe among other world-famous research schools on the Earth’s ionosphere; 3) the results of our work on GNSS operation quality will be useful for the future Galileo mission as well, and would help to improve the system.
Summary
We propose to perform a wide spectrum of ionosphere-related research, from ionosphere seismology to ionospheric storms and GNSS/GPS performance during extreme ionospheric and space weather events. The main focus will be made on such rare subject as ionosphere seismology that aims to study ionosphere response to large earthquakes, to investigate the main properties of different kinds of ionospheric disturbances occurred due to seismic and seismic-like events, including tsunamis, volcano eruptions and explosions. The 11/03/2011 Tohoku megaquake has opened new challenges for modeling of co-seismic effects and has indicated new directions for further research. In particular, we found that the ionosphere is able of showing images of a seismic fault slip rupturing about ~8 minutes after an earthquake, which opens new opportunities for short-time tsunami warnings.
In addition to the ionosphere seismology, the project includes fundamental multi-instrumental studies of the global dynamics of the ionosphere under geomagnetically disturbed and quiet conditions. Great attention will be paid on investigation of features of traveling ionospheric disturbances and on the ionosphere behavior during variations of interplanetary parameters such as magnetic field (IMF) and electric field (IEF). The latter is directly connected to the last subject of our proposal - solar- and ionosphere-induced GPS -failures.
The main advantages for Europe coming with this project are: 1) a highly interdisciplinary project on a sufficiently new branch of the science and with rare applications; 2) extension of the fundamental ionosphere studies in Europe that will increase the competitiveness of Europe among other world-famous research schools on the Earth’s ionosphere; 3) the results of our work on GNSS operation quality will be useful for the future Galileo mission as well, and would help to improve the system.
Max ERC Funding
858 000 €
Duration
Start date: 2012-10-01, End date: 2018-06-30
Project acronym SLIDEQUAKE
Project Detection and understanding of landslides by observing and modelling gravitational flows and generated earthquakes
Researcher (PI) Anne Mangeney
Host Institution (HI) INSTITUT DE PHYSIQUE DU GLOBE DE PARIS
Call Details Consolidator Grant (CoG), PE10, ERC-2013-CoG
Summary The goal of the project is to take a major step in improving the detection and understanding of landslides and their modelling at the field scale through the analysis of generated seismic waves. The seismic signal generated by landslides (i. e. landquakes) provides a unique tool to estimate the properties of the flow and its dynamics. Indeed, the stress applied by the landslide to the ground, which generates seismic waves, is highly sensitive to the flow history and therefore to the physical properties during mass emplacement. The strategy will be to combine a very accurate description of the landslide source, and the simulation and measurements of landquakes from the laboratory to the natural scale, by leading an ambitious interdisciplinary project involving numerical modelling, laboratory experiments and observation. The methodology will be to (1) develop thin layer models for granular flows over a complex 3D topography to alleviate the high computational costs related to the description of the real topography, taking into account the static/flowing transition and the fluid/grains mixture, both playing a key role in natural flows; (2) simulate the generated seismic waves by coupling landslide models to state-of-the-art wave propagation models. An ambitious objective will be to develop efficient coupling methods; (3) develop laboratory experiments of seismic emissions generated by granular flows to test the models and understand the physical processes at work; (4) analyse, simulate and invert natural landquakes making use of underexploited high-quality seismic and geomorphological data, in particular on volcanoes.
An ultimate objective will be to design a new generation of landslides models, reliable methods and operational tools for detection of gravitational flows, and interpretation of seismic data in terms of landslide properties. This tools will be transferred to the scientific community and to the observatories in charge of monitoring landslide activity.
Summary
The goal of the project is to take a major step in improving the detection and understanding of landslides and their modelling at the field scale through the analysis of generated seismic waves. The seismic signal generated by landslides (i. e. landquakes) provides a unique tool to estimate the properties of the flow and its dynamics. Indeed, the stress applied by the landslide to the ground, which generates seismic waves, is highly sensitive to the flow history and therefore to the physical properties during mass emplacement. The strategy will be to combine a very accurate description of the landslide source, and the simulation and measurements of landquakes from the laboratory to the natural scale, by leading an ambitious interdisciplinary project involving numerical modelling, laboratory experiments and observation. The methodology will be to (1) develop thin layer models for granular flows over a complex 3D topography to alleviate the high computational costs related to the description of the real topography, taking into account the static/flowing transition and the fluid/grains mixture, both playing a key role in natural flows; (2) simulate the generated seismic waves by coupling landslide models to state-of-the-art wave propagation models. An ambitious objective will be to develop efficient coupling methods; (3) develop laboratory experiments of seismic emissions generated by granular flows to test the models and understand the physical processes at work; (4) analyse, simulate and invert natural landquakes making use of underexploited high-quality seismic and geomorphological data, in particular on volcanoes.
An ultimate objective will be to design a new generation of landslides models, reliable methods and operational tools for detection of gravitational flows, and interpretation of seismic data in terms of landslide properties. This tools will be transferred to the scientific community and to the observatories in charge of monitoring landslide activity.
Max ERC Funding
1 999 241 €
Duration
Start date: 2014-05-01, End date: 2020-04-30
Project acronym SOLCA
Project "Carbonic anhydrase: where the CO2, COS and H2O cycles meet"
Researcher (PI) Lisa Wingate
Host Institution (HI) INSTITUT NATIONAL DE LA RECHERCHE AGRONOMIQUE
Call Details Starting Grant (StG), PE10, ERC-2013-StG
Summary "Quantifying the carbon storage potential of terrestrial ecosystems and its sensitivity to climate change relies on our ability to obtain observational constraints on photosynthesis and respiration at large scales. Photosynthesis (GPP), the largest CO2 flux from the land surface, is currently estimated with considerable uncertainty. A recent estimate of global GPP was based on an atmospheric budget of the oxygen isotope composition (d18O) of atmospheric CO2 that strongly relies on the oxygen isotope exchange rates with leaf and soil water pools. This isotopic exchange is rapidly catalysed by carbonic anhydrase (CA) in leaves and to a lesser extent in soils. Soil CA activity was neglected in global CO18O studies until the project PI showed recently that CA activity in soils played an important role for determining the magnitude of global GPP using CO18O. The overall goal of SOLCA is to understand better the environmental and ecological causes behind the variability in CA activity observed in soils. A first hypothesis is that soil CA activity responds to thermal and osmotic stresses. This will be tested by probing CA activity of soil monoliths from around the world using a non-invasive gas exchange technique developed by the PI. Because probing soil CA activity from CO18O gas exchange data requires a knowledge of the d18O of soil water and CO2 diffusion processes, we will utilise additional tracers of CA activity: CO17O and carbonyl sulphide (COS) that will also be measured as they follow the same diffusional pathway as CO2 and are also taken up by CA. A second hypothesis is that soil CA activity can be predicted knowing only global indices of the soil microbial community. This will be tested using state-of-the-art molecular techniques to explain changes in CA activity levels. This project will construct novel algorithms for using additional tracers of the global CO2 budget and will lead to a revised estimate of terrestrial GPP."
Summary
"Quantifying the carbon storage potential of terrestrial ecosystems and its sensitivity to climate change relies on our ability to obtain observational constraints on photosynthesis and respiration at large scales. Photosynthesis (GPP), the largest CO2 flux from the land surface, is currently estimated with considerable uncertainty. A recent estimate of global GPP was based on an atmospheric budget of the oxygen isotope composition (d18O) of atmospheric CO2 that strongly relies on the oxygen isotope exchange rates with leaf and soil water pools. This isotopic exchange is rapidly catalysed by carbonic anhydrase (CA) in leaves and to a lesser extent in soils. Soil CA activity was neglected in global CO18O studies until the project PI showed recently that CA activity in soils played an important role for determining the magnitude of global GPP using CO18O. The overall goal of SOLCA is to understand better the environmental and ecological causes behind the variability in CA activity observed in soils. A first hypothesis is that soil CA activity responds to thermal and osmotic stresses. This will be tested by probing CA activity of soil monoliths from around the world using a non-invasive gas exchange technique developed by the PI. Because probing soil CA activity from CO18O gas exchange data requires a knowledge of the d18O of soil water and CO2 diffusion processes, we will utilise additional tracers of CA activity: CO17O and carbonyl sulphide (COS) that will also be measured as they follow the same diffusional pathway as CO2 and are also taken up by CA. A second hypothesis is that soil CA activity can be predicted knowing only global indices of the soil microbial community. This will be tested using state-of-the-art molecular techniques to explain changes in CA activity levels. This project will construct novel algorithms for using additional tracers of the global CO2 budget and will lead to a revised estimate of terrestrial GPP."
Max ERC Funding
1 701 882 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym STROMATA
Project Micro-pyrites associated with organic material in ancient stromatolites: a new proxy attesting for their biogenicity
Researcher (PI) Johanna MARIN-CARBONNE
Host Institution (HI) UNIVERSITE JEAN MONNET SAINT-ETIENNE
Call Details Starting Grant (StG), PE10, ERC-2017-STG
Summary Identifying Archean fossil remains from the Earth’s early biosphere is ambitious and determining the biological origin and the associated metabolic pathways present in these fossils is one outstanding question in the bigger quest of how life evolved on Earth. Stromatolites and Microbially Induced Sedimentary Structures (MISS) are considered as one of the earliest evidence of Life in Earth’s history, and can be found from the Archean to the present time. Stromatolites are “attached laminated, sedimentary growth structure accretionary away from a point of initiation”, and their morphological comparison with actual structure prevail for assessing the microbial origin of ancient stromatolite in the geological record. However, experimental studies have shown that abiotic precipitation can also form structures with a similar morphology. Therefore stable isotope proxies have been used to identify past microbial metabolisms even if abiotic processes can also produce similar isotope composition. Therefore new biogenicity criteria are needed to be determined by studying modern and ancient stromatolites and by comparing them to abiotic experiment. Stromatolites and MISS contain submicrometer sulfides (pyrite) that can have recorded large isotopic variations, interpreted as reflecting the influence of various microbial metabolisms like microbial sulfate reduction and iron respiration. STROMATA proposes to define new criteria based on actual stromatolite and to test the earliest traces of life by studying in situ these nano-pyrites in various emblematic and well-characterized samples from the Archean. STROMATA will be the first far-reaching scientific in situ study of nano-pyrite in ancient (3.4 to 1.9 Ga) and modern microbial mats and stromatolites and will compare the results with experimentally produced abiotic pyrite. Due to the small scale of the pyrite, STROMATA will develop an original in situ approach by combining state of art techniques, SIMS, NanoSIMS, FEG-TEM, XANES.
Summary
Identifying Archean fossil remains from the Earth’s early biosphere is ambitious and determining the biological origin and the associated metabolic pathways present in these fossils is one outstanding question in the bigger quest of how life evolved on Earth. Stromatolites and Microbially Induced Sedimentary Structures (MISS) are considered as one of the earliest evidence of Life in Earth’s history, and can be found from the Archean to the present time. Stromatolites are “attached laminated, sedimentary growth structure accretionary away from a point of initiation”, and their morphological comparison with actual structure prevail for assessing the microbial origin of ancient stromatolite in the geological record. However, experimental studies have shown that abiotic precipitation can also form structures with a similar morphology. Therefore stable isotope proxies have been used to identify past microbial metabolisms even if abiotic processes can also produce similar isotope composition. Therefore new biogenicity criteria are needed to be determined by studying modern and ancient stromatolites and by comparing them to abiotic experiment. Stromatolites and MISS contain submicrometer sulfides (pyrite) that can have recorded large isotopic variations, interpreted as reflecting the influence of various microbial metabolisms like microbial sulfate reduction and iron respiration. STROMATA proposes to define new criteria based on actual stromatolite and to test the earliest traces of life by studying in situ these nano-pyrites in various emblematic and well-characterized samples from the Archean. STROMATA will be the first far-reaching scientific in situ study of nano-pyrite in ancient (3.4 to 1.9 Ga) and modern microbial mats and stromatolites and will compare the results with experimentally produced abiotic pyrite. Due to the small scale of the pyrite, STROMATA will develop an original in situ approach by combining state of art techniques, SIMS, NanoSIMS, FEG-TEM, XANES.
Max ERC Funding
1 060 250 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym TimeMan
Project RHEOLOGY OF EARTH MATERIALS: CLOSING THE GAP BETWEEN TIMESCALES IN THE LABORATORY AND IN THE MANTLE
Researcher (PI) Patrick CORDIER
Host Institution (HI) UNIVERSITE DE LILLE
Call Details Advanced Grant (AdG), PE10, ERC-2017-ADG
Summary Most large-scale geological process such as plate tectonics or mantle convection involve plastic deformation of rocks. With most recent developments, constraining their rheological properties at natural strain-rates is something we can really achieve in the decade to come.
Presently, these theological properties are described with empirical equations which are fitted on macroscopic, average properties, obtained in laboratory experiments performed at human timescales. Their extrapolation to Earth’s conditions over several orders of magnitude is highly questionable as demonstrated by recent comparison with surface geophysical observables.
Strain rates couple space and time. We cannot expand time, but we can now reduce length scales. By using the new generation of nanomechanical testing machines in transmission electron microscopes, we can have access to elementary deformation mechanisms and, more importantly, we can measure the key physical parameters which control their dynamics. At this scale, we can have access to very slow mechanisms which were previously out of reach. This approach can be complemented by numerical modelling. By using the recent developments in modelling the so-called “rare events”, we will be able to model mechanisms in the same timescales as nanomechanical testing.
By combining, nanomechanical testing and advanced numerical modelling of elementary processes I propose to elaborate a new generation of rheological laws, based on the physics of deformation, which will explicitly involve time (i.e. strain rate) and will require no extrapolation to be applied to natural processes.
Applied to olivine, the main constituent of the upper mantle, this will provide the first robust, physics-based rheological laws for the lithospheric and asthenospheric mantle to be compared with surface observables and incorporated in geophysical convection models.
Summary
Most large-scale geological process such as plate tectonics or mantle convection involve plastic deformation of rocks. With most recent developments, constraining their rheological properties at natural strain-rates is something we can really achieve in the decade to come.
Presently, these theological properties are described with empirical equations which are fitted on macroscopic, average properties, obtained in laboratory experiments performed at human timescales. Their extrapolation to Earth’s conditions over several orders of magnitude is highly questionable as demonstrated by recent comparison with surface geophysical observables.
Strain rates couple space and time. We cannot expand time, but we can now reduce length scales. By using the new generation of nanomechanical testing machines in transmission electron microscopes, we can have access to elementary deformation mechanisms and, more importantly, we can measure the key physical parameters which control their dynamics. At this scale, we can have access to very slow mechanisms which were previously out of reach. This approach can be complemented by numerical modelling. By using the recent developments in modelling the so-called “rare events”, we will be able to model mechanisms in the same timescales as nanomechanical testing.
By combining, nanomechanical testing and advanced numerical modelling of elementary processes I propose to elaborate a new generation of rheological laws, based on the physics of deformation, which will explicitly involve time (i.e. strain rate) and will require no extrapolation to be applied to natural processes.
Applied to olivine, the main constituent of the upper mantle, this will provide the first robust, physics-based rheological laws for the lithospheric and asthenospheric mantle to be compared with surface observables and incorporated in geophysical convection models.
Max ERC Funding
2 499 400 €
Duration
Start date: 2019-03-01, End date: 2024-02-29
Project acronym TRANSATLANTICILAB
Project Trans-Atlantic Imaging of Lithosphere Asthenosphere Boundary
Researcher (PI) Satish Chandra Singh
Host Institution (HI) INSTITUT DE PHYSIQUE DU GLOBE DE PARIS
Call Details Advanced Grant (AdG), PE10, ERC-2013-ADG
Summary The Plate Tectonics Theory is the most important discovery in all of earth sciences. It is based on the concept of plates (lithosphere) that float over the asthenosphere. Although the lithosphere is a basic building block of the plate tectonics theory, its nature, its thickness, its boundary with the asthenosphere (LAB) are still matter of heated debates. Here we propose to image the LAB and internal structure of the lithosphere at a very high-resolution using a combination of different geophysical methods in a systematic manner across the Atlantic Ocean (Trans-Atlantic) for a lithosphere of 0-100 Ma age. Along with using seismological and magnetotelluric methods, we propose to use a technology newly developed for the oil and gas exploration that is capable of providing a seismic reflection image down to 120 km depth with a few hundred metres resolution, resolving the controversy on the formation and evolution of the oceanic lithosphere once and for all, filling the gap between seismological and seismic reflection methods, opening up a new frontier of research, and creating synergy between academic and industrial research to address fundamental scientific problems. These new seismic data should also provide images of melt lenses in the mantle beneath the spreading centre axis, if present, which will help us to build a new model of melt generation and migration from the mantle. We should also be able to image deep penetrating faults that might have been generated due to the cooling of the lithosphere as it moved away from the spreading centre, allowing the development of a new model of hydration of the oceanic lithosphere, which would be extremely valuable for the understanding of the earthquake process at subduction zones. The imaging of the structure down to 120 km in an oceanic environment would be a major breakthrough, and likely to open up new horizons for deep seismic imaging.
Summary
The Plate Tectonics Theory is the most important discovery in all of earth sciences. It is based on the concept of plates (lithosphere) that float over the asthenosphere. Although the lithosphere is a basic building block of the plate tectonics theory, its nature, its thickness, its boundary with the asthenosphere (LAB) are still matter of heated debates. Here we propose to image the LAB and internal structure of the lithosphere at a very high-resolution using a combination of different geophysical methods in a systematic manner across the Atlantic Ocean (Trans-Atlantic) for a lithosphere of 0-100 Ma age. Along with using seismological and magnetotelluric methods, we propose to use a technology newly developed for the oil and gas exploration that is capable of providing a seismic reflection image down to 120 km depth with a few hundred metres resolution, resolving the controversy on the formation and evolution of the oceanic lithosphere once and for all, filling the gap between seismological and seismic reflection methods, opening up a new frontier of research, and creating synergy between academic and industrial research to address fundamental scientific problems. These new seismic data should also provide images of melt lenses in the mantle beneath the spreading centre axis, if present, which will help us to build a new model of melt generation and migration from the mantle. We should also be able to image deep penetrating faults that might have been generated due to the cooling of the lithosphere as it moved away from the spreading centre, allowing the development of a new model of hydration of the oceanic lithosphere, which would be extremely valuable for the understanding of the earthquake process at subduction zones. The imaging of the structure down to 120 km in an oceanic environment would be a major breakthrough, and likely to open up new horizons for deep seismic imaging.
Max ERC Funding
3 499 900 €
Duration
Start date: 2014-11-01, End date: 2019-10-31
Project acronym TRANSCALE
Project Reconciling Scales in Global Seimology
Researcher (PI) Thomas BODIN
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE10, ERC-2016-STG
Summary For more than 30 years, seismologists have used seismic waves to produce 3D images of the structure of the Earth. Despite many successes, a number of key questions still remain, which are of the uttermost importance to understand plate tectonics. What is the nature of the Lithosphere-Asthenosphere Boundary? What is the structure and history of the continental lithosphere?
The problem is that different seismic observables sample the Earth at different scales; they have different sensitivity to structure, and are usually interpreted separately. Images obtained from short period converted and reflected body waves see sharp discontinuities, and are interpreted in terms of thermo-chemical stratification, whereas seismic models constructed from long period seismograms depict a smooth and anisotropic upper mantle, and are usually interpreted in terms of mantle flow. However, sharp discontinuities may also produce effective anisotropy at large scales, and only a joint interpretation of different frequency bands can allow to fully localizing the patterns of deformation in the mantle.
The proposed work consists in developing and applying an entirely new approach to geophysical data interpretation, where different data types sampling the Earth at different scales are jointly embraced into a single Bayesian procedure. This proposal focuses on theoretical, algorithmic and computational advances needed for a new generation of tomographic models. We will use the large amount of data available in North-America (surface wave measurements, scattered body waves, SKS splitting measurements) to produce a multiscale model under North-America, depicting both discontinuities and anisotropy. This will allow us to answer some crucial questions about the structure and evolution of Earth. We will also produce a first fully Bayesian global Earth model by jointly inverting normal modes, surface and body wave observations.
Summary
For more than 30 years, seismologists have used seismic waves to produce 3D images of the structure of the Earth. Despite many successes, a number of key questions still remain, which are of the uttermost importance to understand plate tectonics. What is the nature of the Lithosphere-Asthenosphere Boundary? What is the structure and history of the continental lithosphere?
The problem is that different seismic observables sample the Earth at different scales; they have different sensitivity to structure, and are usually interpreted separately. Images obtained from short period converted and reflected body waves see sharp discontinuities, and are interpreted in terms of thermo-chemical stratification, whereas seismic models constructed from long period seismograms depict a smooth and anisotropic upper mantle, and are usually interpreted in terms of mantle flow. However, sharp discontinuities may also produce effective anisotropy at large scales, and only a joint interpretation of different frequency bands can allow to fully localizing the patterns of deformation in the mantle.
The proposed work consists in developing and applying an entirely new approach to geophysical data interpretation, where different data types sampling the Earth at different scales are jointly embraced into a single Bayesian procedure. This proposal focuses on theoretical, algorithmic and computational advances needed for a new generation of tomographic models. We will use the large amount of data available in North-America (surface wave measurements, scattered body waves, SKS splitting measurements) to produce a multiscale model under North-America, depicting both discontinuities and anisotropy. This will allow us to answer some crucial questions about the structure and evolution of Earth. We will also produce a first fully Bayesian global Earth model by jointly inverting normal modes, surface and body wave observations.
Max ERC Funding
1 498 750 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym VOLATILIS
Project Origin of volatile elements in the inner Solar System
Researcher (PI) Evelyn FÜRI
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE10, ERC-2016-STG
Summary The objective of project VOLATILIS is to investigate the origin(s) of volatile elements on Earth and other planetary bodies in the inner Solar System. Since primitive and differentiated asteroids, planetary embryos, and the Earth-Moon system represent different stages of planet formation, studies of chondritic meteorites and samples from Vesta, Mars, the Moon, and Earth can provide constraints on the evolution of planetary volatiles from primordial to present-day compositions. However, indigenous volatiles in extraterrestrial samples are often masked by solar and cosmogenic contributions. Only combined analyses of noble gases and other volatiles (N, H) allow the observed volatile signatures to be resolved into constituent components (atmospheric, solar, cosmogenic, indigenous). The Centre de Recherches Pétrographiques et Géochimiques (Nancy, France), the PI’s host institute, is the only laboratory that is equipped with static noble gas mass spectrometers for coupled N-noble analyses of small-sized samples, and with two secondary ionization mass spectrometers for non-destructive volatile element measurements. By coupling these high-precision analytical techniques, we will be able to reliably characterize indigenous planetary volatiles, and to assess the importance of volatile storage during primary accretion or late addition via comets and meteorites. Furthermore, we aim to develop the protocols for N isotope analysis by ion microprobe and by static mass spectrometry in multi-collection mode; these methods will allow us to target micron-sized samples (such as melt inclusions) for N analyses and to improve the analytical precision for coupled N-noble gas studies, respectively. The new data obtained here can be integrated as critical parameters into geochemical and astrophysical models of volatile accretion and fluxes in the inner Solar System, and they are expected to be of great interest to the geo-/cosmochemistry, astrophysics, and astrobiology communities.
Summary
The objective of project VOLATILIS is to investigate the origin(s) of volatile elements on Earth and other planetary bodies in the inner Solar System. Since primitive and differentiated asteroids, planetary embryos, and the Earth-Moon system represent different stages of planet formation, studies of chondritic meteorites and samples from Vesta, Mars, the Moon, and Earth can provide constraints on the evolution of planetary volatiles from primordial to present-day compositions. However, indigenous volatiles in extraterrestrial samples are often masked by solar and cosmogenic contributions. Only combined analyses of noble gases and other volatiles (N, H) allow the observed volatile signatures to be resolved into constituent components (atmospheric, solar, cosmogenic, indigenous). The Centre de Recherches Pétrographiques et Géochimiques (Nancy, France), the PI’s host institute, is the only laboratory that is equipped with static noble gas mass spectrometers for coupled N-noble analyses of small-sized samples, and with two secondary ionization mass spectrometers for non-destructive volatile element measurements. By coupling these high-precision analytical techniques, we will be able to reliably characterize indigenous planetary volatiles, and to assess the importance of volatile storage during primary accretion or late addition via comets and meteorites. Furthermore, we aim to develop the protocols for N isotope analysis by ion microprobe and by static mass spectrometry in multi-collection mode; these methods will allow us to target micron-sized samples (such as melt inclusions) for N analyses and to improve the analytical precision for coupled N-noble gas studies, respectively. The new data obtained here can be integrated as critical parameters into geochemical and astrophysical models of volatile accretion and fluxes in the inner Solar System, and they are expected to be of great interest to the geo-/cosmochemistry, astrophysics, and astrobiology communities.
Max ERC Funding
1 396 300 €
Duration
Start date: 2017-02-01, End date: 2022-01-31
Project acronym WAAXT
Project Wave-modulated Arctic Air-sea eXchanges and Turbulence
Researcher (PI) Peter SUTHERLAND
Host Institution (HI) INSTITUT FRANCAIS DE RECHERCHE POUR L'EXPLOITATION DE LA MER
Call Details Starting Grant (StG), PE10, ERC-2018-STG
Summary Wave-modulated Arctic Air-sea eXchanges and Turbulence (WAAXT) is a project designed to improve our understanding of ocean boundary layer processes in a changing Arctic Ocean. Sea ice extent in the Arctic Ocean has been decreasing since the beginning of the satellite era, meaning that open-water, as opposed to under-ice, oceanographic processes are becoming increasingly important for Arctic dynamics. One of the most fundamental differences between the open and ice-covered oceans is the presence of surface waves. Surface waves and wave-driven processes drastically alter air-sea fluxes, upper-ocean turbulence, and the dominant dynamical balance in the upper ocean.
WAAXT will be based on a series of field experiments to study the small-scale processes associated with this emerging wave climate, with a particular focus on near-surface turbulence. Three major effects of wave processes will be targeted: 1) Modification and suppression of ice formation by wave motions and the associated elevated near-surface turbulence. 2) Physical breakup of sea ice by wave motions, and the associated contributions to the modification of air-sea fluxes, upper-ocean structure, and melt rates. 3) Interactions between wave-driven turbulence, especially breaking and Langmuir circulations, with the unique salinity-based stratification in the Arctic basin. A key aspect of these processes is their horizontal variability, which will be captured using a multi-platform approach. Experimental work will begin in a natural laboratory in the Saint Lawrence Estuary and move to the Arctic as scientific and technical capacity is developed.
The long-term goal for WAAXT is to produce the data and parameterizations needed to understand climate-scale feedbacks associated with the emerging wave climate in the Arctic basin.
Summary
Wave-modulated Arctic Air-sea eXchanges and Turbulence (WAAXT) is a project designed to improve our understanding of ocean boundary layer processes in a changing Arctic Ocean. Sea ice extent in the Arctic Ocean has been decreasing since the beginning of the satellite era, meaning that open-water, as opposed to under-ice, oceanographic processes are becoming increasingly important for Arctic dynamics. One of the most fundamental differences between the open and ice-covered oceans is the presence of surface waves. Surface waves and wave-driven processes drastically alter air-sea fluxes, upper-ocean turbulence, and the dominant dynamical balance in the upper ocean.
WAAXT will be based on a series of field experiments to study the small-scale processes associated with this emerging wave climate, with a particular focus on near-surface turbulence. Three major effects of wave processes will be targeted: 1) Modification and suppression of ice formation by wave motions and the associated elevated near-surface turbulence. 2) Physical breakup of sea ice by wave motions, and the associated contributions to the modification of air-sea fluxes, upper-ocean structure, and melt rates. 3) Interactions between wave-driven turbulence, especially breaking and Langmuir circulations, with the unique salinity-based stratification in the Arctic basin. A key aspect of these processes is their horizontal variability, which will be captured using a multi-platform approach. Experimental work will begin in a natural laboratory in the Saint Lawrence Estuary and move to the Arctic as scientific and technical capacity is developed.
The long-term goal for WAAXT is to produce the data and parameterizations needed to understand climate-scale feedbacks associated with the emerging wave climate in the Arctic basin.
Max ERC Funding
2 000 000 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym WAVETOMO
Project Imaging earth's internal structure using full waveform tomography
Researcher (PI) Barbara Romanowicz
Host Institution (HI) INSTITUT DE PHYSIQUE DU GLOBE DE PARIS
Call Details Advanced Grant (AdG), PE10, ERC-2010-AdG_20100224
Summary Since January 2011, the PI holds a faculty position at the Collège de France, this proposal will facilitate transferring and re-establishing her research program at IPG in Paris. The goal of the proposed research program is to investigate earth’s deep structure and dynamics using advanced seismological forward and inverse modeling techniques. The primary focus is on global and continental scale mantle structure, with a secondary focus on the earth’s core. The primary objective is to develop high resolution three-dimensional models of the present day thermal and compositional structure of the mantle through the development of forward and inverse seismic waveform modeling approaches. This will be pursued along two directions that will eventually be combined: (a) Using a spectral-element-based seismic waveform modeling approach, develop high resolution seismic models of 3D elastic, isotropic and anisotropic , and anelastic structure of the earth’s mantle, with particular emphasis at the global scale on the lower mantle and, at the tectonic plate scale, on lithosphere-asthenosphere structure; (b) Develop an approach to invert full seismic waveforms, combined with other seismic constraints (such as travel times and normal mode eigenfrequencies) directly for 3D thermal and compositional structure of the mantle, using the best available constraints from mineral physics and geodynamics. A secondary objective is to constrain inner core structure and anisotropy using a combination of free oscillation splitting measurements and travel times and amplitudes of inner core sensitive body waves, with the goal of better characterizing the mantle versus inner core origin of observed anomalies currently attributed to inner core anisotropy.
Summary
Since January 2011, the PI holds a faculty position at the Collège de France, this proposal will facilitate transferring and re-establishing her research program at IPG in Paris. The goal of the proposed research program is to investigate earth’s deep structure and dynamics using advanced seismological forward and inverse modeling techniques. The primary focus is on global and continental scale mantle structure, with a secondary focus on the earth’s core. The primary objective is to develop high resolution three-dimensional models of the present day thermal and compositional structure of the mantle through the development of forward and inverse seismic waveform modeling approaches. This will be pursued along two directions that will eventually be combined: (a) Using a spectral-element-based seismic waveform modeling approach, develop high resolution seismic models of 3D elastic, isotropic and anisotropic , and anelastic structure of the earth’s mantle, with particular emphasis at the global scale on the lower mantle and, at the tectonic plate scale, on lithosphere-asthenosphere structure; (b) Develop an approach to invert full seismic waveforms, combined with other seismic constraints (such as travel times and normal mode eigenfrequencies) directly for 3D thermal and compositional structure of the mantle, using the best available constraints from mineral physics and geodynamics. A secondary objective is to constrain inner core structure and anisotropy using a combination of free oscillation splitting measurements and travel times and amplitudes of inner core sensitive body waves, with the goal of better characterizing the mantle versus inner core origin of observed anomalies currently attributed to inner core anisotropy.
Max ERC Funding
2 499 198 €
Duration
Start date: 2011-06-01, End date: 2017-05-31
Project acronym WHISPER
Project Towards continuous monitoring of the continuously changing Earth
Researcher (PI) Michel Campillo
Host Institution (HI) UNIVERSITE JOSEPH FOURIER GRENOBLE 1
Call Details Advanced Grant (AdG), PE10, ERC-2008-AdG
Summary This project is focused on the use of the seismic ambient noise to monitor slight changes of properties in the solid Earth. Processing of noise records allow s to mimic a situation in which a perfectly repeatable source is activated at the location of a passive recorder. The implication is the detection of changes of strain at depth with applications in different contexts. A major field of application is the monitoring of potentially dangerous structures like volcanoes or active fault zones prone to damaging earthquakes. The project includes new methodological developments and field experiments. Applications in regions where changes are induced by human activity are important both for the quantitative refinement of the method and for the important economic and social implications of these problems.
Summary
This project is focused on the use of the seismic ambient noise to monitor slight changes of properties in the solid Earth. Processing of noise records allow s to mimic a situation in which a perfectly repeatable source is activated at the location of a passive recorder. The implication is the detection of changes of strain at depth with applications in different contexts. A major field of application is the monitoring of potentially dangerous structures like volcanoes or active fault zones prone to damaging earthquakes. The project includes new methodological developments and field experiments. Applications in regions where changes are induced by human activity are important both for the quantitative refinement of the method and for the important economic and social implications of these problems.
Max ERC Funding
1 700 736 €
Duration
Start date: 2009-07-01, End date: 2015-06-30