Project acronym 100 Archaic Genomes
Project Genome sequences from extinct hominins
Researcher (PI) Svante PÄÄBO
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Advanced Grant (AdG), LS2, ERC-2015-AdG
Summary Neandertals and Denisovans, an Asian group distantly related to Neandertals, are the closest evolutionary relatives of present-day humans. They are thus of direct relevance for understanding the origin of modern humans and how modern humans differ from their closest relatives. We will generate genome-wide data from a large number of Neandertal and Denisovan individuals from across their geographical and temporal range as well as from other extinct hominin groups which we may discover. This will be possible by automating highly sensitive approaches to ancient DNA extraction and DNA libraries construction that we have developed so that they can be applied to many specimens from many sites in order to identify those that contain retrievable DNA. Whenever possible we will sequence whole genomes and in other cases use DNA capture methods to generate high-quality data from representative parts of the genome. This will allow us to study the population history of Neandertals and Denisovans, elucidate how many times and where these extinct hominins contributed genes to present-day people, and the extent to which modern humans and archaic groups contributed genetically to Neandertals and Denisovans. By retrieving DNA from specimens that go back to the Middle Pleistocene we will furthermore shed light on the early history and origins of Neandertals and Denisovans.
Summary
Neandertals and Denisovans, an Asian group distantly related to Neandertals, are the closest evolutionary relatives of present-day humans. They are thus of direct relevance for understanding the origin of modern humans and how modern humans differ from their closest relatives. We will generate genome-wide data from a large number of Neandertal and Denisovan individuals from across their geographical and temporal range as well as from other extinct hominin groups which we may discover. This will be possible by automating highly sensitive approaches to ancient DNA extraction and DNA libraries construction that we have developed so that they can be applied to many specimens from many sites in order to identify those that contain retrievable DNA. Whenever possible we will sequence whole genomes and in other cases use DNA capture methods to generate high-quality data from representative parts of the genome. This will allow us to study the population history of Neandertals and Denisovans, elucidate how many times and where these extinct hominins contributed genes to present-day people, and the extent to which modern humans and archaic groups contributed genetically to Neandertals and Denisovans. By retrieving DNA from specimens that go back to the Middle Pleistocene we will furthermore shed light on the early history and origins of Neandertals and Denisovans.
Max ERC Funding
2 350 000 €
Duration
Start date: 2016-11-01, End date: 2021-10-31
Project acronym 14Constraint
Project Radiocarbon constraints for models of C cycling in terrestrial ecosystems: from process understanding to global benchmarking
Researcher (PI) Susan Trumbore
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Advanced Grant (AdG), PE10, ERC-2015-AdG
Summary The overall goal of 14Constraint is to enhance the availability and use of radiocarbon data as constraints for process-based understanding of the age distribution of carbon in and respired by soils and ecosystems. Carbon enters ecosystems by a single process, photosynthesis. It returns by a range of processes that depend on plant allocation and turnover, the efficiency and rate of litter decomposition and the mechanisms stabilizing C in soils. Thus the age distribution of respired CO2 and the age of C residing in plants, litter and soils are diagnostic properties of ecosystems that provide key constraints for testing carbon cycle models. Radiocarbon, especially the transit of ‘bomb’ 14C created in the 1960s, is a powerful tool for tracing C exchange on decadal to centennial timescales. 14Constraint will assemble a global database of existing radiocarbon data (WP1) and demonstrate how they can constrain and test ecosystem carbon cycle models. WP2 will fill data gaps and add new data from sites in key biomes that have ancillary data sufficient to construct belowground C and 14C budgets. These detailed investigations will focus on the role of time lags caused in necromass and fine roots, as well as the dynamics of deep soil C. Spatial extrapolation beyond the WP2 sites will require sampling along global gradients designed to explore the relative roles of mineralogy, vegetation and climate on the age of C in and respired from soil (WP3). Products of this 14Constraint will include the first publicly available global synthesis of terrestrial 14C data, and will add over 5000 new measurements. This project is urgently needed before atmospheric 14C levels decline to below 1950 levels as expected in the next decade.
Summary
The overall goal of 14Constraint is to enhance the availability and use of radiocarbon data as constraints for process-based understanding of the age distribution of carbon in and respired by soils and ecosystems. Carbon enters ecosystems by a single process, photosynthesis. It returns by a range of processes that depend on plant allocation and turnover, the efficiency and rate of litter decomposition and the mechanisms stabilizing C in soils. Thus the age distribution of respired CO2 and the age of C residing in plants, litter and soils are diagnostic properties of ecosystems that provide key constraints for testing carbon cycle models. Radiocarbon, especially the transit of ‘bomb’ 14C created in the 1960s, is a powerful tool for tracing C exchange on decadal to centennial timescales. 14Constraint will assemble a global database of existing radiocarbon data (WP1) and demonstrate how they can constrain and test ecosystem carbon cycle models. WP2 will fill data gaps and add new data from sites in key biomes that have ancillary data sufficient to construct belowground C and 14C budgets. These detailed investigations will focus on the role of time lags caused in necromass and fine roots, as well as the dynamics of deep soil C. Spatial extrapolation beyond the WP2 sites will require sampling along global gradients designed to explore the relative roles of mineralogy, vegetation and climate on the age of C in and respired from soil (WP3). Products of this 14Constraint will include the first publicly available global synthesis of terrestrial 14C data, and will add over 5000 new measurements. This project is urgently needed before atmospheric 14C levels decline to below 1950 levels as expected in the next decade.
Max ERC Funding
2 283 747 €
Duration
Start date: 2016-12-01, End date: 2021-11-30
Project acronym 19TH-CENTURY_EUCLID
Project Nineteenth-Century Euclid: Geometry and the Literary Imagination from Wordsworth to Wells
Researcher (PI) Alice Jenkins
Host Institution (HI) UNIVERSITY OF GLASGOW
Call Details Starting Grant (StG), SH4, ERC-2007-StG
Summary This radically interdisciplinary project aims to bring a substantially new field of research – literature and mathematics studies – to prominence as a tool for investigating the culture of nineteenth-century Britain. It will result in three kinds of outcome: a monograph, two interdisciplinary and international colloquia, and a collection of essays. The project focuses on Euclidean geometry as a key element of nineteenth-century literary and scientific culture, showing that it was part of the shared knowledge flowing through elite and popular Romantic and Victorian writing, and figuring notably in the work of very many of the century’s best-known writers. Despite its traditional cultural prestige and educational centrality, geometry has been almost wholly neglected by literary history. This project shows how literature and mathematics studies can draw a new map of nineteenth-century British culture, revitalising our understanding of the Romantic and Victorian imagination through its writing about geometry.
Summary
This radically interdisciplinary project aims to bring a substantially new field of research – literature and mathematics studies – to prominence as a tool for investigating the culture of nineteenth-century Britain. It will result in three kinds of outcome: a monograph, two interdisciplinary and international colloquia, and a collection of essays. The project focuses on Euclidean geometry as a key element of nineteenth-century literary and scientific culture, showing that it was part of the shared knowledge flowing through elite and popular Romantic and Victorian writing, and figuring notably in the work of very many of the century’s best-known writers. Despite its traditional cultural prestige and educational centrality, geometry has been almost wholly neglected by literary history. This project shows how literature and mathematics studies can draw a new map of nineteenth-century British culture, revitalising our understanding of the Romantic and Victorian imagination through its writing about geometry.
Max ERC Funding
323 118 €
Duration
Start date: 2009-01-01, End date: 2011-10-31
Project acronym 1toStopVax
Project RNA virus attenuation by altering mutational robustness
Researcher (PI) Marco VIGNUZZI
Host Institution (HI) INSTITUT PASTEUR
Call Details Proof of Concept (PoC), ERC-2016-PoC, ERC-2016-PoC
Summary RNA viruses have extreme mutation frequencies. When a RNA virus replicates, nucleotide mutations are generated resulting in a population of variants. This genetic diversity creates a cloud of mutations that are potentially beneficial to viral survival, but the majority of mutations are detrimental to the virus. By increasing the mutation rate of a RNA virus, viral fitness is reduced because it generates more errors, and attenuates the virus during in vivo infection. Another feature that affects RNA virus fitness is mutational robustness. Mutational robustness is the ability to buffer the negative effects of mutation.
The attenuation of RNA viruses for vaccine production faces problems of genetic instability and reversion to a pathogenic phenotype. The conventional method for attenuation is mostly empirical and specific to the particular RNA virus species.
Hence, it cannot be universally applied to a variety of virus types. We've developed a non-empirical, rational means of attenuating RNA viruses, targeting mutational robustness as modifiable trait.
We demonstrate that mutational robustness of RNA viruses can be modified without changing a virus' physical and biological properties for vaccine production; yet the virus is attenuated as it becomes victim of its naturally high mutation rate. Specifically, the genome of RNA viruses are modified so that a larger proportion of mutations become lethal Stop mutations. Our technology places the virus one step away from these Stop mutations (1-to-Stop). We succeeded in attenuating two RNA viruses from very different viral families, confirming the broad applicability of this approach. These viruses were attenuated in vivo, generated high levels of neutralizing antibody and protected mice from lethal challenge infection.
The proposal now seeks to complete proof of concept studies and develop commercialization strategies to scale up this new technology to preclinical testing with industrial partners.
Summary
RNA viruses have extreme mutation frequencies. When a RNA virus replicates, nucleotide mutations are generated resulting in a population of variants. This genetic diversity creates a cloud of mutations that are potentially beneficial to viral survival, but the majority of mutations are detrimental to the virus. By increasing the mutation rate of a RNA virus, viral fitness is reduced because it generates more errors, and attenuates the virus during in vivo infection. Another feature that affects RNA virus fitness is mutational robustness. Mutational robustness is the ability to buffer the negative effects of mutation.
The attenuation of RNA viruses for vaccine production faces problems of genetic instability and reversion to a pathogenic phenotype. The conventional method for attenuation is mostly empirical and specific to the particular RNA virus species.
Hence, it cannot be universally applied to a variety of virus types. We've developed a non-empirical, rational means of attenuating RNA viruses, targeting mutational robustness as modifiable trait.
We demonstrate that mutational robustness of RNA viruses can be modified without changing a virus' physical and biological properties for vaccine production; yet the virus is attenuated as it becomes victim of its naturally high mutation rate. Specifically, the genome of RNA viruses are modified so that a larger proportion of mutations become lethal Stop mutations. Our technology places the virus one step away from these Stop mutations (1-to-Stop). We succeeded in attenuating two RNA viruses from very different viral families, confirming the broad applicability of this approach. These viruses were attenuated in vivo, generated high levels of neutralizing antibody and protected mice from lethal challenge infection.
The proposal now seeks to complete proof of concept studies and develop commercialization strategies to scale up this new technology to preclinical testing with industrial partners.
Max ERC Funding
150 000 €
Duration
Start date: 2016-09-01, End date: 2018-02-28
Project acronym 2-HIT
Project Genetic interaction networks: From C. elegans to human disease
Researcher (PI) Ben Lehner
Host Institution (HI) FUNDACIO CENTRE DE REGULACIO GENOMICA
Call Details Starting Grant (StG), LS2, ERC-2007-StG
Summary Most hereditary diseases in humans are genetically complex, resulting from combinations of mutations in multiple genes. However synthetic interactions between genes are very difficult to identify in population studies because of a lack of statistical power and we fundamentally do not understand how mutations interact to produce phenotypes. C. elegans is a unique animal in which genetic interactions can be rapidly identified in vivo using RNA interference, and we recently used this system to construct the first genetic interaction network for any animal, focused on signal transduction genes. The first objective of this proposal is to extend this work and map a comprehensive genetic interaction network for this model metazoan. This project will provide the first insights into the global properties of animal genetic interaction networks, and a comprehensive view of the functional relationships between genes in an animal. The second objective of the proposal is to use C. elegans to develop and validate experimentally integrated gene networks that connect genes to phenotypes and predict genetic interactions on a genome-wide scale. The methods that we develop and validate in C. elegans will then be applied to predict phenotypes and interactions for human genes. The final objective is to dissect the molecular mechanisms underlying genetic interactions, and to understand how these interactions evolve. The combined aim of these three objectives is to generate a framework for understanding and predicting how mutations interact to produce phenotypes, including in human disease.
Summary
Most hereditary diseases in humans are genetically complex, resulting from combinations of mutations in multiple genes. However synthetic interactions between genes are very difficult to identify in population studies because of a lack of statistical power and we fundamentally do not understand how mutations interact to produce phenotypes. C. elegans is a unique animal in which genetic interactions can be rapidly identified in vivo using RNA interference, and we recently used this system to construct the first genetic interaction network for any animal, focused on signal transduction genes. The first objective of this proposal is to extend this work and map a comprehensive genetic interaction network for this model metazoan. This project will provide the first insights into the global properties of animal genetic interaction networks, and a comprehensive view of the functional relationships between genes in an animal. The second objective of the proposal is to use C. elegans to develop and validate experimentally integrated gene networks that connect genes to phenotypes and predict genetic interactions on a genome-wide scale. The methods that we develop and validate in C. elegans will then be applied to predict phenotypes and interactions for human genes. The final objective is to dissect the molecular mechanisms underlying genetic interactions, and to understand how these interactions evolve. The combined aim of these three objectives is to generate a framework for understanding and predicting how mutations interact to produce phenotypes, including in human disease.
Max ERC Funding
1 100 000 €
Duration
Start date: 2008-09-01, End date: 2014-04-30
Project acronym 2D-CHEM
Project Two-Dimensional Chemistry towards New Graphene Derivatives
Researcher (PI) Michal Otyepka
Host Institution (HI) UNIVERZITA PALACKEHO V OLOMOUCI
Call Details Consolidator Grant (CoG), PE5, ERC-2015-CoG
Summary The suite of graphene’s unique properties and applications can be enormously enhanced by its functionalization. As non-covalently functionalized graphenes do not target all graphene’s properties and may suffer from limited stability, covalent functionalization represents a promising way for controlling graphene’s properties. To date, only a few well-defined graphene derivatives have been introduced. Among them, fluorographene (FG) stands out as a prominent member because of its easy synthesis and high stability. Being a perfluorinated hydrocarbon, FG was believed to be as unreactive as the two-dimensional counterpart perfluoropolyethylene (Teflon®). However, our recent experiments showed that FG is not chemically inert and can be used as a viable precursor for synthesizing graphene derivatives. This surprising behavior indicates that common textbook grade knowledge cannot blindly be applied to the chemistry of 2D materials. Further, there might be specific rules behind the chemistry of 2D materials, forming a new chemical discipline we tentatively call 2D chemistry. The main aim of the project is to explore, identify and apply the rules of 2D chemistry starting from FG. Using the knowledge gained of 2D chemistry, we will attempt to control the chemistry of various 2D materials aimed at preparing stable graphene derivatives with designed properties, e.g., 1-3 eV band gap, fluorescent properties, sustainable magnetic ordering and dispersability in polar media. The new graphene derivatives will be applied in sensing, imaging, magnetic delivery and catalysis and new emerging applications arising from the synergistic phenomena are expected. We envisage that new applications will be opened up that benefit from the 2D scaffold and tailored properties of the synthesized derivatives. The derivatives will be used for the synthesis of 3D hybrid materials by covalent linking of the 2D sheets joined with other organic and inorganic molecules, nanomaterials or biomacromolecules.
Summary
The suite of graphene’s unique properties and applications can be enormously enhanced by its functionalization. As non-covalently functionalized graphenes do not target all graphene’s properties and may suffer from limited stability, covalent functionalization represents a promising way for controlling graphene’s properties. To date, only a few well-defined graphene derivatives have been introduced. Among them, fluorographene (FG) stands out as a prominent member because of its easy synthesis and high stability. Being a perfluorinated hydrocarbon, FG was believed to be as unreactive as the two-dimensional counterpart perfluoropolyethylene (Teflon®). However, our recent experiments showed that FG is not chemically inert and can be used as a viable precursor for synthesizing graphene derivatives. This surprising behavior indicates that common textbook grade knowledge cannot blindly be applied to the chemistry of 2D materials. Further, there might be specific rules behind the chemistry of 2D materials, forming a new chemical discipline we tentatively call 2D chemistry. The main aim of the project is to explore, identify and apply the rules of 2D chemistry starting from FG. Using the knowledge gained of 2D chemistry, we will attempt to control the chemistry of various 2D materials aimed at preparing stable graphene derivatives with designed properties, e.g., 1-3 eV band gap, fluorescent properties, sustainable magnetic ordering and dispersability in polar media. The new graphene derivatives will be applied in sensing, imaging, magnetic delivery and catalysis and new emerging applications arising from the synergistic phenomena are expected. We envisage that new applications will be opened up that benefit from the 2D scaffold and tailored properties of the synthesized derivatives. The derivatives will be used for the synthesis of 3D hybrid materials by covalent linking of the 2D sheets joined with other organic and inorganic molecules, nanomaterials or biomacromolecules.
Max ERC Funding
1 831 103 €
Duration
Start date: 2016-06-01, End date: 2021-05-31
Project acronym 2DNANOPTICA
Project Nano-optics on flatland: from quantum nanotechnology to nano-bio-photonics
Researcher (PI) Pablo Alonso-González
Host Institution (HI) UNIVERSIDAD DE OVIEDO
Call Details Starting Grant (StG), PE3, ERC-2016-STG
Summary Ubiquitous in nature, light-matter interactions are of fundamental importance in science and all optical technologies. Understanding and controlling them has been a long-pursued objective in modern physics. However, so far, related experiments have relied on traditional optical schemes where, owing to the classical diffraction limit, control of optical fields to length scales below the wavelength of light is prevented. Importantly, this limitation impedes to exploit the extraordinary fundamental and scaling potentials of nanoscience and nanotechnology. A solution to concentrate optical fields into sub-diffracting volumes is the excitation of surface polaritons –coupled excitations of photons and mobile/bound charges in metals/polar materials (plasmons/phonons)-. However, their initial promises have been hindered by either strong optical losses or lack of electrical control in metals, and difficulties to fabricate high optical quality nanostructures in polar materials.
With the advent of two-dimensional (2D) materials and their extraordinary optical properties, during the last 2-3 years the visualization of both low-loss and electrically tunable (active) plasmons in graphene and high optical quality phonons in monolayer and multilayer h-BN nanostructures have been demonstrated in the mid-infrared spectral range, thus introducing a very encouraging arena for scientifically ground-breaking discoveries in nano-optics. Inspired by these extraordinary prospects, this ERC project aims to make use of our knowledge and unique expertise in 2D nanoplasmonics, and the recent advances in nanophononics, to establish a technological platform that, including coherent sources, waveguides, routers, and efficient detectors, permits an unprecedented active control and manipulation (at room temperature) of light and light-matter interactions on the nanoscale, thus laying experimentally the foundations of a 2D nano-optics field.
Summary
Ubiquitous in nature, light-matter interactions are of fundamental importance in science and all optical technologies. Understanding and controlling them has been a long-pursued objective in modern physics. However, so far, related experiments have relied on traditional optical schemes where, owing to the classical diffraction limit, control of optical fields to length scales below the wavelength of light is prevented. Importantly, this limitation impedes to exploit the extraordinary fundamental and scaling potentials of nanoscience and nanotechnology. A solution to concentrate optical fields into sub-diffracting volumes is the excitation of surface polaritons –coupled excitations of photons and mobile/bound charges in metals/polar materials (plasmons/phonons)-. However, their initial promises have been hindered by either strong optical losses or lack of electrical control in metals, and difficulties to fabricate high optical quality nanostructures in polar materials.
With the advent of two-dimensional (2D) materials and their extraordinary optical properties, during the last 2-3 years the visualization of both low-loss and electrically tunable (active) plasmons in graphene and high optical quality phonons in monolayer and multilayer h-BN nanostructures have been demonstrated in the mid-infrared spectral range, thus introducing a very encouraging arena for scientifically ground-breaking discoveries in nano-optics. Inspired by these extraordinary prospects, this ERC project aims to make use of our knowledge and unique expertise in 2D nanoplasmonics, and the recent advances in nanophononics, to establish a technological platform that, including coherent sources, waveguides, routers, and efficient detectors, permits an unprecedented active control and manipulation (at room temperature) of light and light-matter interactions on the nanoscale, thus laying experimentally the foundations of a 2D nano-optics field.
Max ERC Funding
1 459 219 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym 2DNanoSpec
Project Nanoscale Vibrational Spectroscopy of Sensitive 2D Molecular Materials
Researcher (PI) Renato ZENOBI
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Advanced Grant (AdG), PE4, ERC-2016-ADG
Summary I propose to investigate the nanometer scale organization of delicate 2-dimensional molecular materials using nanoscale vibrational spectroscopy. 2D structures are of great scientific and technological importance, for example as novel materials (graphene, MoS2, WS2, etc.), and in the form of biological membranes and synthetic 2D-polymers. Powerful methods for their analysis and imaging with molecular selectivity and sufficient spatial resolution, however, are lacking. Tip-enhanced Raman spectroscopy (TERS) allows label-free spectroscopic identification of molecular species, with ≈10 nm spatial resolution, and with single molecule sensitivity for strong Raman scatterers. So far, however, TERS is not being carried out in liquids, which is the natural environment for membranes, and its application to poor Raman scatterers such as components of 2D polymers, lipids, or other membrane compounds (proteins, sugars) is difficult. TERS has the potential to overcome the restrictions of other optical/spectroscopic methods to study 2D materials, namely (i) insufficient spatial resolution of diffraction-limited optical methods; (ii) the need for labelling for all methods relying on fluorescence; and (iii) the inability of some methods to work in liquids. I propose to address a number of scientific questions associated with the spatial organization, and the occurrence of defects in sensitive 2D molecular materials. The success of these studies will also rely critically on technical innovations of TERS that notably address the problem of energy dissipation. This will for the first time allow its application to study of complex, delicate 2D molecular systems without photochemical damage.
Summary
I propose to investigate the nanometer scale organization of delicate 2-dimensional molecular materials using nanoscale vibrational spectroscopy. 2D structures are of great scientific and technological importance, for example as novel materials (graphene, MoS2, WS2, etc.), and in the form of biological membranes and synthetic 2D-polymers. Powerful methods for their analysis and imaging with molecular selectivity and sufficient spatial resolution, however, are lacking. Tip-enhanced Raman spectroscopy (TERS) allows label-free spectroscopic identification of molecular species, with ≈10 nm spatial resolution, and with single molecule sensitivity for strong Raman scatterers. So far, however, TERS is not being carried out in liquids, which is the natural environment for membranes, and its application to poor Raman scatterers such as components of 2D polymers, lipids, or other membrane compounds (proteins, sugars) is difficult. TERS has the potential to overcome the restrictions of other optical/spectroscopic methods to study 2D materials, namely (i) insufficient spatial resolution of diffraction-limited optical methods; (ii) the need for labelling for all methods relying on fluorescence; and (iii) the inability of some methods to work in liquids. I propose to address a number of scientific questions associated with the spatial organization, and the occurrence of defects in sensitive 2D molecular materials. The success of these studies will also rely critically on technical innovations of TERS that notably address the problem of energy dissipation. This will for the first time allow its application to study of complex, delicate 2D molecular systems without photochemical damage.
Max ERC Funding
2 311 696 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym 2DQP
Project Two-dimensional quantum photonics
Researcher (PI) Brian David GERARDOT
Host Institution (HI) HERIOT-WATT UNIVERSITY
Call Details Consolidator Grant (CoG), PE3, ERC-2016-COG
Summary Quantum optics, the study of how discrete packets of light (photons) and matter interact, has led to the development of remarkable new technologies which exploit the bizarre properties of quantum mechanics. These quantum technologies are primed to revolutionize the fields of communication, information processing, and metrology in the coming years. Similar to contemporary technologies, the future quantum machinery will likely consist of a semiconductor platform to create and process the quantum information. However, to date the demanding requirements on a quantum photonic platform have yet to be satisfied with conventional bulk (three-dimensional) semiconductors.
To surmount these well-known obstacles, a new paradigm in quantum photonics is required. Initiated by the recent discovery of single photon emitters in atomically flat (two-dimensional) semiconducting materials, 2DQP aims to be at the nucleus of a new approach by realizing quantum optics with ultra-stable (coherent) quantum states integrated into devices with electronic and photonic functionality. We will characterize, identify, engineer, and coherently manipulate localized quantum states in this two-dimensional quantum photonic platform. A vital component of 2DQP’s vision is to go beyond the fundamental science and achieve the ideal solid-state single photon device yielding perfect extraction - 100% efficiency - of on-demand indistinguishable single photons. Finally, we will exploit this ideal device to implement the critical building block for a photonic quantum computer.
Summary
Quantum optics, the study of how discrete packets of light (photons) and matter interact, has led to the development of remarkable new technologies which exploit the bizarre properties of quantum mechanics. These quantum technologies are primed to revolutionize the fields of communication, information processing, and metrology in the coming years. Similar to contemporary technologies, the future quantum machinery will likely consist of a semiconductor platform to create and process the quantum information. However, to date the demanding requirements on a quantum photonic platform have yet to be satisfied with conventional bulk (three-dimensional) semiconductors.
To surmount these well-known obstacles, a new paradigm in quantum photonics is required. Initiated by the recent discovery of single photon emitters in atomically flat (two-dimensional) semiconducting materials, 2DQP aims to be at the nucleus of a new approach by realizing quantum optics with ultra-stable (coherent) quantum states integrated into devices with electronic and photonic functionality. We will characterize, identify, engineer, and coherently manipulate localized quantum states in this two-dimensional quantum photonic platform. A vital component of 2DQP’s vision is to go beyond the fundamental science and achieve the ideal solid-state single photon device yielding perfect extraction - 100% efficiency - of on-demand indistinguishable single photons. Finally, we will exploit this ideal device to implement the critical building block for a photonic quantum computer.
Max ERC Funding
1 999 135 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym 2MoveMate4Melanoma
Project A treatment for BRAF inhibitor resistant melanoma
Researcher (PI) René BERNARDS
Host Institution (HI) STICHTING HET NEDERLANDS KANKER INSTITUUT-ANTONI VAN LEEUWENHOEK ZIEKENHUIS
Call Details Proof of Concept (PoC), PC1, ERC-2015-PoC
Summary Some 50% of human melanoma tumors have activating mutations in the BRAF gene. BRAF inhibitor drugs given either alone or in combination with MEK inhibitors have improved progression-free and overall survival in patients with BRAF mutant metastatic melanoma. However, drug resistance invariably limits the duration of clinical benefit of such treatments and is almost always associated with re-activation of signaling through the MAP kinase pathway in the presence of drug due to secondary mutations in the pathway. This highlights the urgent need to develop strategies to treat melanomas that have developed resistance to BRAF and/or MEK inhibitors.
As part of an ERC advanced grant, my laboratory has shown that BRAF inhibitor withdrawal in melanomas that have developed resistance to BRAF inhibitors leads to a transient growth arrest that is the consequence of temporary hyperactivation of signaling through the MAP kinase pathway, explaining the so called “drug holiday effect”. We have also found that subsequent treatment of such BRAF inhibitor resistant melanomas with Histone DeACetylase inhibitor drugs (HDACi) leads to persistent hyperactivation of MAP kinase signaling, causing both chronic proliferation arrest and cell death, ultimately leading to complete regression of BRAF-inhibitor resistant melanomas in mice.
We propose here to perform a proof of concept study in at least 10 evaluable melanoma patients that, after proven initial tumor response, have developed resistance to BRAF inhibitors to validate that subsequent treatment of such patients with an HDACi drug will result in durable responses. Translational studies on tumor biopsies taken before, during and after HDACi treatment will be performed to study the cellular effects of HDACi treatment. Our goal is to provide initial proof of concept in patients for use of this sequential BRAFi-HDACi therapy as the treatment of choice for the some 40,000 BRAF mutant melanomas that are diagnosed in the EU annually.
Summary
Some 50% of human melanoma tumors have activating mutations in the BRAF gene. BRAF inhibitor drugs given either alone or in combination with MEK inhibitors have improved progression-free and overall survival in patients with BRAF mutant metastatic melanoma. However, drug resistance invariably limits the duration of clinical benefit of such treatments and is almost always associated with re-activation of signaling through the MAP kinase pathway in the presence of drug due to secondary mutations in the pathway. This highlights the urgent need to develop strategies to treat melanomas that have developed resistance to BRAF and/or MEK inhibitors.
As part of an ERC advanced grant, my laboratory has shown that BRAF inhibitor withdrawal in melanomas that have developed resistance to BRAF inhibitors leads to a transient growth arrest that is the consequence of temporary hyperactivation of signaling through the MAP kinase pathway, explaining the so called “drug holiday effect”. We have also found that subsequent treatment of such BRAF inhibitor resistant melanomas with Histone DeACetylase inhibitor drugs (HDACi) leads to persistent hyperactivation of MAP kinase signaling, causing both chronic proliferation arrest and cell death, ultimately leading to complete regression of BRAF-inhibitor resistant melanomas in mice.
We propose here to perform a proof of concept study in at least 10 evaluable melanoma patients that, after proven initial tumor response, have developed resistance to BRAF inhibitors to validate that subsequent treatment of such patients with an HDACi drug will result in durable responses. Translational studies on tumor biopsies taken before, during and after HDACi treatment will be performed to study the cellular effects of HDACi treatment. Our goal is to provide initial proof of concept in patients for use of this sequential BRAFi-HDACi therapy as the treatment of choice for the some 40,000 BRAF mutant melanomas that are diagnosed in the EU annually.
Max ERC Funding
149 750 €
Duration
Start date: 2016-05-01, End date: 2017-10-31
Project acronym 2O2ACTIVATION
Project Development of Direct Dehydrogenative Couplings mediated by Dioxygen
Researcher (PI) Frederic William Patureau
Host Institution (HI) RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN
Call Details Starting Grant (StG), PE5, ERC-2016-STG
Summary The field of C-H bond activation has evolved at an exponential pace in the last 15 years. What appeals most in those novel synthetic techniques is clear: they bypass the pre-activation steps usually required in traditional cross-coupling chemistry by directly metalating C-H bonds. Many C-H bond functionalizations today however, rely on poorly atom and step efficient oxidants, leading to significant and costly chemical waste, thereby seriously undermining the overall sustainability of those methods. As restrictions in sustainability regulations will further increase, and the cost of certain chemical commodities will rise, atom efficiency in organic synthesis remains a top priority for research.
The aim of 2O2ACTIVATION is to develop novel technologies utilizing O2 as sole terminal oxidant in order to allow useful, extremely sustainable, thermodynamically challenging, dehydrogenative C-N and C-O bond forming coupling reactions. However, the moderate reactivity of O2 towards many catalysts constitutes a major challenge. 2O2ACTIVATION will pioneer the design of new catalysts based on the ultra-simple propene motive, capable of direct activation of O2 for C-H activation based cross-couplings. The project is divided into 3 major lines: O2 activation using propene and its analogues (propenoids), 1) without metal or halide, 2) with hypervalent halide catalysis, 3) with metal catalyzed C-H activation.
The philosophy of 2O2ACTIVATION is to focus C-H functionalization method development on the oxidative event.
Consequently, 2O2ACTIVATION breakthroughs will dramatically shortcut synthetic routes through the use of inactivated, unprotected, and readily available building blocks; and thus should be easily scalable. This will lead to a strong decrease in the costs related to the production of many essential chemicals, while preserving the environment (water as terminal by-product). The resulting novels coupling methods will thus have a lasting impact on the chemical industry.
Summary
The field of C-H bond activation has evolved at an exponential pace in the last 15 years. What appeals most in those novel synthetic techniques is clear: they bypass the pre-activation steps usually required in traditional cross-coupling chemistry by directly metalating C-H bonds. Many C-H bond functionalizations today however, rely on poorly atom and step efficient oxidants, leading to significant and costly chemical waste, thereby seriously undermining the overall sustainability of those methods. As restrictions in sustainability regulations will further increase, and the cost of certain chemical commodities will rise, atom efficiency in organic synthesis remains a top priority for research.
The aim of 2O2ACTIVATION is to develop novel technologies utilizing O2 as sole terminal oxidant in order to allow useful, extremely sustainable, thermodynamically challenging, dehydrogenative C-N and C-O bond forming coupling reactions. However, the moderate reactivity of O2 towards many catalysts constitutes a major challenge. 2O2ACTIVATION will pioneer the design of new catalysts based on the ultra-simple propene motive, capable of direct activation of O2 for C-H activation based cross-couplings. The project is divided into 3 major lines: O2 activation using propene and its analogues (propenoids), 1) without metal or halide, 2) with hypervalent halide catalysis, 3) with metal catalyzed C-H activation.
The philosophy of 2O2ACTIVATION is to focus C-H functionalization method development on the oxidative event.
Consequently, 2O2ACTIVATION breakthroughs will dramatically shortcut synthetic routes through the use of inactivated, unprotected, and readily available building blocks; and thus should be easily scalable. This will lead to a strong decrease in the costs related to the production of many essential chemicals, while preserving the environment (water as terminal by-product). The resulting novels coupling methods will thus have a lasting impact on the chemical industry.
Max ERC Funding
1 489 823 €
Duration
Start date: 2017-03-01, End date: 2022-02-28
Project acronym 321
Project from Cubic To Linear complexity in computational electromagnetics
Researcher (PI) Francesco Paolo ANDRIULLI
Host Institution (HI) POLITECNICO DI TORINO
Call Details Consolidator Grant (CoG), PE7, ERC-2016-COG
Summary Computational Electromagnetics (CEM) is the scientific field at the origin of all new modeling and simulation tools required by the constantly arising design challenges of emerging and future technologies in applied electromagnetics. As in many other technological fields, however, the trend in all emerging technologies in electromagnetic engineering is going towards miniaturized, higher density and multi-scale scenarios. Computationally speaking this translates in the steep increase of the number of degrees of freedom. Given that the design cost (the cost of a multi-right-hand side problem dominated by matrix inversion) can scale as badly as cubically with these degrees of freedom, this fact, as pointed out by many, will sensibly compromise the practical impact of CEM on future and emerging technologies.
For this reason, the CEM scientific community has been looking for years for a FFT-like paradigm shift: a dynamic fast direct solver providing a design cost that would scale only linearly with the degrees of freedom. Such a fast solver is considered today a Holy Grail of the discipline.
The Grand Challenge of 321 will be to tackle this Holy Grail in Computational Electromagnetics by investigating a dynamic Fast Direct Solver for Maxwell Problems that would run in a linear-instead-of-cubic complexity for an arbitrary number and configuration of degrees of freedom.
The failure of all previous attempts will be overcome by a game-changing transformation of the CEM classical problem that will leverage on a recent breakthrough of the PI. Starting from this, the project will investigate an entire new paradigm for impacting algorithms to achieve this grand challenge.
The impact of the FFT’s quadratic-to-linear paradigm shift shows how computational complexity reductions can be groundbreaking on applications. The cubic-to-linear paradigm shift, which the 321 project will aim for, will have such a rupturing impact on electromagnetic science and technology.
Summary
Computational Electromagnetics (CEM) is the scientific field at the origin of all new modeling and simulation tools required by the constantly arising design challenges of emerging and future technologies in applied electromagnetics. As in many other technological fields, however, the trend in all emerging technologies in electromagnetic engineering is going towards miniaturized, higher density and multi-scale scenarios. Computationally speaking this translates in the steep increase of the number of degrees of freedom. Given that the design cost (the cost of a multi-right-hand side problem dominated by matrix inversion) can scale as badly as cubically with these degrees of freedom, this fact, as pointed out by many, will sensibly compromise the practical impact of CEM on future and emerging technologies.
For this reason, the CEM scientific community has been looking for years for a FFT-like paradigm shift: a dynamic fast direct solver providing a design cost that would scale only linearly with the degrees of freedom. Such a fast solver is considered today a Holy Grail of the discipline.
The Grand Challenge of 321 will be to tackle this Holy Grail in Computational Electromagnetics by investigating a dynamic Fast Direct Solver for Maxwell Problems that would run in a linear-instead-of-cubic complexity for an arbitrary number and configuration of degrees of freedom.
The failure of all previous attempts will be overcome by a game-changing transformation of the CEM classical problem that will leverage on a recent breakthrough of the PI. Starting from this, the project will investigate an entire new paradigm for impacting algorithms to achieve this grand challenge.
The impact of the FFT’s quadratic-to-linear paradigm shift shows how computational complexity reductions can be groundbreaking on applications. The cubic-to-linear paradigm shift, which the 321 project will aim for, will have such a rupturing impact on electromagnetic science and technology.
Max ERC Funding
2 000 000 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym 3D-BioMat
Project Deciphering biomineralization mechanisms through 3D explorations of mesoscale crystalline structure in calcareous biomaterials
Researcher (PI) VIRGINIE CHAMARD
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Consolidator Grant (CoG), PE3, ERC-2016-COG
Summary The fundamental 3D-BioMat project aims at providing a biomineralization model to explain the formation of microscopic calcareous single-crystals produced by living organisms. Although these crystals present a wide variety of shapes, associated to various organic materials, the observation of a nanoscale granular structure common to almost all calcareous crystallizing organisms, associated to an extended crystalline coherence, underlies a generic biomineralization and assembly process. A key to building realistic scenarios of biomineralization is to reveal the crystalline architecture, at the mesoscale, (i. e., over a few granules), which none of the existing nano-characterization tools is able to provide.
3D-BioMat is based on the recognized PI’s expertise in the field of synchrotron coherent x-ray diffraction microscopy. It will extend the PI’s disruptive pioneering microscopy formalism, towards an innovative high-throughput approach able at giving access to the 3D mesoscale image of the crystalline properties (crystal-line coherence, crystal plane tilts and strains) with the required flexibility, nanoscale resolution, and non-invasiveness.
This achievement will be used to timely reveal the generics of the mesoscale crystalline structure through the pioneering explorations of a vast variety of crystalline biominerals produced by the famous Pinctada mar-garitifera oyster shell, and thereby build a realistic biomineralization scenario.
The inferred biomineralization pathways, including both physico-chemical pathways and biological controls, will ultimately be validated by comparing the mesoscale structures produced by biomimetic samples with the biogenic ones. Beyond deciphering one of the most intriguing questions of material nanosciences, 3D-BioMat may contribute to new climate models, pave the way for new routes in material synthesis and supply answers to the pearl-culture calcification problems.
Summary
The fundamental 3D-BioMat project aims at providing a biomineralization model to explain the formation of microscopic calcareous single-crystals produced by living organisms. Although these crystals present a wide variety of shapes, associated to various organic materials, the observation of a nanoscale granular structure common to almost all calcareous crystallizing organisms, associated to an extended crystalline coherence, underlies a generic biomineralization and assembly process. A key to building realistic scenarios of biomineralization is to reveal the crystalline architecture, at the mesoscale, (i. e., over a few granules), which none of the existing nano-characterization tools is able to provide.
3D-BioMat is based on the recognized PI’s expertise in the field of synchrotron coherent x-ray diffraction microscopy. It will extend the PI’s disruptive pioneering microscopy formalism, towards an innovative high-throughput approach able at giving access to the 3D mesoscale image of the crystalline properties (crystal-line coherence, crystal plane tilts and strains) with the required flexibility, nanoscale resolution, and non-invasiveness.
This achievement will be used to timely reveal the generics of the mesoscale crystalline structure through the pioneering explorations of a vast variety of crystalline biominerals produced by the famous Pinctada mar-garitifera oyster shell, and thereby build a realistic biomineralization scenario.
The inferred biomineralization pathways, including both physico-chemical pathways and biological controls, will ultimately be validated by comparing the mesoscale structures produced by biomimetic samples with the biogenic ones. Beyond deciphering one of the most intriguing questions of material nanosciences, 3D-BioMat may contribute to new climate models, pave the way for new routes in material synthesis and supply answers to the pearl-culture calcification problems.
Max ERC Funding
1 966 429 €
Duration
Start date: 2017-03-01, End date: 2022-02-28
Project acronym 3D-COUNT
Project 3D-Integrated single photon detector
Researcher (PI) Fabio SCIARRINO
Host Institution (HI) UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA
Call Details Proof of Concept (PoC), PC1, ERC-2015-PoC
Summary Photonics, in recognition of its strategic significance and pervasiveness throughout many industrial sectors, has been identified as one of the Key Enabling Technologies for Europe. Photonics in combination with quantum information science has great potential to facilitate, transform and innovate future technologies for the better. The Proof of Concept (PoC) project intends to contribute to this by developing and testing a communication platform prototype, comprised of single photon detectors, which are efficiently coupled to single mode fibers using an innovative laser written device. This enables the integration of single photon detectors on innovative glass waveguides. These glass integrated photonic circuits offer excellent specifics for on-chip quantum optics implementations in terms of scattering losses, offering flexibility of the waveguide geometry and ensuring high coupling efficiency with optical fibers.
The device developed and tested in the PoC, directly addresses a market need for an integrated and efficient on-chip communication systems. Current available systems have limitations involving high costs, complex production, and inefficient coupling of detectors to optical fibers. The proposed platform will offer 1.) a simplified production process, 2.) high optical fiber coupling efficiency 3.) improved performance levels, 4.) high cost efficiency, and 5.) compactness. Such systems can be applied in a wide range of communication and non-communication applications, such as free-space optical communication, quantum communication, quantum cryptography, DNA sequencing, single molecule detection and material analysis. Moreover, the future commercialisation of quantum computing is expected to create a vast demand for these communication systems.
In addition to the technology PoC, the project carries out IPR strategy considerations through patenting actions, determines the market potential, seeks market feedback, and plans for post-PoC commercialisation paths.
Summary
Photonics, in recognition of its strategic significance and pervasiveness throughout many industrial sectors, has been identified as one of the Key Enabling Technologies for Europe. Photonics in combination with quantum information science has great potential to facilitate, transform and innovate future technologies for the better. The Proof of Concept (PoC) project intends to contribute to this by developing and testing a communication platform prototype, comprised of single photon detectors, which are efficiently coupled to single mode fibers using an innovative laser written device. This enables the integration of single photon detectors on innovative glass waveguides. These glass integrated photonic circuits offer excellent specifics for on-chip quantum optics implementations in terms of scattering losses, offering flexibility of the waveguide geometry and ensuring high coupling efficiency with optical fibers.
The device developed and tested in the PoC, directly addresses a market need for an integrated and efficient on-chip communication systems. Current available systems have limitations involving high costs, complex production, and inefficient coupling of detectors to optical fibers. The proposed platform will offer 1.) a simplified production process, 2.) high optical fiber coupling efficiency 3.) improved performance levels, 4.) high cost efficiency, and 5.) compactness. Such systems can be applied in a wide range of communication and non-communication applications, such as free-space optical communication, quantum communication, quantum cryptography, DNA sequencing, single molecule detection and material analysis. Moreover, the future commercialisation of quantum computing is expected to create a vast demand for these communication systems.
In addition to the technology PoC, the project carries out IPR strategy considerations through patenting actions, determines the market potential, seeks market feedback, and plans for post-PoC commercialisation paths.
Max ERC Funding
150 000 €
Duration
Start date: 2016-02-01, End date: 2017-07-31
Project acronym 3D-FM
Project Taking Force Microscopy into the Third Dimension
Researcher (PI) Tjerk Hendrik Oosterkamp
Host Institution (HI) UNIVERSITEIT LEIDEN
Call Details Starting Grant (StG), PE3, ERC-2007-StG
Summary I propose to pursue two emerging Force Microscopy techniques that allow measuring structural properties below the surface of the specimen. Whereas Force Microscopy (most commonly known under the name AFM) is usually limited to measuring the surface topography and surface properties of a specimen, I will demonstrate that Force Microscopy can achieve true 3D images of the structure of the cell nucleus. In Ultrasound Force Microscopy, an ultrasound wave is launched from below towards the surface of the specimen. After the sound waves interact with structures beneath the surface of the specimen, the local variations in the amplitude and phase shift of the ultrasonic surface motion is collected by the Force Microscopy tip. Previously, measured 2D maps of the surface response have shown that the surface response is sensitive to structures below the surface. In this project I will employ miniature AFM cantilevers and nanotube tips that I have already developed in my lab. This will allow me to quickly acquire many such 2D maps at a much wider range of ultrasound frequencies and from these 2D maps calculate the full 3D structure below the surface. I expect this technique to have a resolving power better than 10 nm in three dimensions as far as 2 microns below the surface. In parallel I will introduce a major improvement to a technique based on Nuclear Magnetic Resonance (NMR). Magnetic Resonance Force Microscopy measures the interaction of a rotating nuclear spin in the field gradient of a magnetic Force Microscopy tip. However, these forces are so small that they pose an enormous challenge. Miniature cantilevers and nanotube tips, in combination with additional innovations in the detection of the cantilever motion, can overcome this problem. I expect to be able to measure the combined signal of 100 proton spins or fewer, which will allow me to measure proton densities with a resolution of 5 nm, but possibly even with atomic resolution.
Summary
I propose to pursue two emerging Force Microscopy techniques that allow measuring structural properties below the surface of the specimen. Whereas Force Microscopy (most commonly known under the name AFM) is usually limited to measuring the surface topography and surface properties of a specimen, I will demonstrate that Force Microscopy can achieve true 3D images of the structure of the cell nucleus. In Ultrasound Force Microscopy, an ultrasound wave is launched from below towards the surface of the specimen. After the sound waves interact with structures beneath the surface of the specimen, the local variations in the amplitude and phase shift of the ultrasonic surface motion is collected by the Force Microscopy tip. Previously, measured 2D maps of the surface response have shown that the surface response is sensitive to structures below the surface. In this project I will employ miniature AFM cantilevers and nanotube tips that I have already developed in my lab. This will allow me to quickly acquire many such 2D maps at a much wider range of ultrasound frequencies and from these 2D maps calculate the full 3D structure below the surface. I expect this technique to have a resolving power better than 10 nm in three dimensions as far as 2 microns below the surface. In parallel I will introduce a major improvement to a technique based on Nuclear Magnetic Resonance (NMR). Magnetic Resonance Force Microscopy measures the interaction of a rotating nuclear spin in the field gradient of a magnetic Force Microscopy tip. However, these forces are so small that they pose an enormous challenge. Miniature cantilevers and nanotube tips, in combination with additional innovations in the detection of the cantilever motion, can overcome this problem. I expect to be able to measure the combined signal of 100 proton spins or fewer, which will allow me to measure proton densities with a resolution of 5 nm, but possibly even with atomic resolution.
Max ERC Funding
1 794 960 €
Duration
Start date: 2008-08-01, End date: 2013-07-31
Project acronym 3D-REPAIR
Project Spatial organization of DNA repair within the nucleus
Researcher (PI) Evanthia Soutoglou
Host Institution (HI) CENTRE EUROPEEN DE RECHERCHE EN BIOLOGIE ET MEDECINE
Call Details Consolidator Grant (CoG), LS2, ERC-2015-CoG
Summary Faithful repair of double stranded DNA breaks (DSBs) is essential, as they are at the origin of genome instability, chromosomal translocations and cancer. Cells repair DSBs through different pathways, which can be faithful or mutagenic, and the balance between them at a given locus must be tightly regulated to preserve genome integrity. Although, much is known about DSB repair factors, how the choice between pathways is controlled within the nuclear environment is not understood. We have shown that nuclear architecture and non-random genome organization determine the frequency of chromosomal translocations and that pathway choice is dictated by the spatial organization of DNA in the nucleus. Nevertheless, what determines which pathway is activated in response to DSBs at specific genomic locations is not understood. Furthermore, the impact of 3D-genome folding on the kinetics and efficiency of DSB repair is completely unknown.
Here we aim to understand how nuclear compartmentalization, chromatin structure and genome organization impact on the efficiency of detection, signaling and repair of DSBs. We will unravel what determines the DNA repair specificity within distinct nuclear compartments using protein tethering, promiscuous biotinylation and quantitative proteomics. We will determine how DNA repair is orchestrated at different heterochromatin structures using a CRISPR/Cas9-based system that allows, for the first time robust induction of DSBs at specific heterochromatin compartments. Finally, we will investigate the role of 3D-genome folding in the kinetics of DNA repair and pathway choice using single nucleotide resolution DSB-mapping coupled to 3D-topological maps.
This proposal has significant implications for understanding the mechanisms controlling DNA repair within the nuclear environment and will reveal the regions of the genome that are susceptible to genomic instability and help us understand why certain mutations and translocations are recurrent in cancer
Summary
Faithful repair of double stranded DNA breaks (DSBs) is essential, as they are at the origin of genome instability, chromosomal translocations and cancer. Cells repair DSBs through different pathways, which can be faithful or mutagenic, and the balance between them at a given locus must be tightly regulated to preserve genome integrity. Although, much is known about DSB repair factors, how the choice between pathways is controlled within the nuclear environment is not understood. We have shown that nuclear architecture and non-random genome organization determine the frequency of chromosomal translocations and that pathway choice is dictated by the spatial organization of DNA in the nucleus. Nevertheless, what determines which pathway is activated in response to DSBs at specific genomic locations is not understood. Furthermore, the impact of 3D-genome folding on the kinetics and efficiency of DSB repair is completely unknown.
Here we aim to understand how nuclear compartmentalization, chromatin structure and genome organization impact on the efficiency of detection, signaling and repair of DSBs. We will unravel what determines the DNA repair specificity within distinct nuclear compartments using protein tethering, promiscuous biotinylation and quantitative proteomics. We will determine how DNA repair is orchestrated at different heterochromatin structures using a CRISPR/Cas9-based system that allows, for the first time robust induction of DSBs at specific heterochromatin compartments. Finally, we will investigate the role of 3D-genome folding in the kinetics of DNA repair and pathway choice using single nucleotide resolution DSB-mapping coupled to 3D-topological maps.
This proposal has significant implications for understanding the mechanisms controlling DNA repair within the nuclear environment and will reveal the regions of the genome that are susceptible to genomic instability and help us understand why certain mutations and translocations are recurrent in cancer
Max ERC Funding
1 999 750 €
Duration
Start date: 2017-03-01, End date: 2022-02-28
Project acronym 3D2DPrint
Project 3D Printing of Novel 2D Nanomaterials: Adding Advanced 2D Functionalities to Revolutionary Tailored 3D Manufacturing
Researcher (PI) Valeria Nicolosi
Host Institution (HI) THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN
Call Details Consolidator Grant (CoG), PE8, ERC-2015-CoG
Summary My vision is to establish, within the framework of an ERC CoG, a multidisciplinary group which will work in concert towards pioneering the integration of novel 2-Dimensional nanomaterials with novel additive fabrication techniques to develop a unique class of energy storage devices.
Batteries and supercapacitors are two very complementary types of energy storage devices. Batteries store much higher energy densities; supercapacitors, on the other hand, hold one tenth of the electricity per unit of volume or weight as compared to batteries but can achieve much higher power densities. Technology is currently striving to improve the power density of batteries and the energy density of supercapacitors. To do so it is imperative to develop new materials, chemistries and manufacturing strategies.
3D2DPrint aims to develop micro-energy devices (both supercapacitors and batteries), technologies particularly relevant in the context of the emergent industry of micro-electro-mechanical systems and constantly downsized electronics. We plan to use novel two-dimensional (2D) nanomaterials obtained by liquid-phase exfoliation. This method offers a new, economic and easy way to prepare ink of a variety of 2D systems, allowing to produce wide device performance window through elegant and simple constituent control at the point of fabrication. 3D2DPrint will use our expertise and know-how to allow development of advanced AM methods to integrate dissimilar nanomaterial blends and/or “hybrids” into fully embedded 3D printed energy storage devices, with the ultimate objective to realise a range of products that contain the above described nanomaterials subcomponent devices, electrical connections and traditional micro-fabricated subcomponents (if needed) ideally using a single tool.
Summary
My vision is to establish, within the framework of an ERC CoG, a multidisciplinary group which will work in concert towards pioneering the integration of novel 2-Dimensional nanomaterials with novel additive fabrication techniques to develop a unique class of energy storage devices.
Batteries and supercapacitors are two very complementary types of energy storage devices. Batteries store much higher energy densities; supercapacitors, on the other hand, hold one tenth of the electricity per unit of volume or weight as compared to batteries but can achieve much higher power densities. Technology is currently striving to improve the power density of batteries and the energy density of supercapacitors. To do so it is imperative to develop new materials, chemistries and manufacturing strategies.
3D2DPrint aims to develop micro-energy devices (both supercapacitors and batteries), technologies particularly relevant in the context of the emergent industry of micro-electro-mechanical systems and constantly downsized electronics. We plan to use novel two-dimensional (2D) nanomaterials obtained by liquid-phase exfoliation. This method offers a new, economic and easy way to prepare ink of a variety of 2D systems, allowing to produce wide device performance window through elegant and simple constituent control at the point of fabrication. 3D2DPrint will use our expertise and know-how to allow development of advanced AM methods to integrate dissimilar nanomaterial blends and/or “hybrids” into fully embedded 3D printed energy storage devices, with the ultimate objective to realise a range of products that contain the above described nanomaterials subcomponent devices, electrical connections and traditional micro-fabricated subcomponents (if needed) ideally using a single tool.
Max ERC Funding
2 499 942 €
Duration
Start date: 2016-10-01, End date: 2021-09-30
Project acronym 3D_Tryps
Project The role of three-dimensional genome architecture in antigenic variation
Researcher (PI) Tim Nicolai SIEGEL
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Call Details Starting Grant (StG), LS6, ERC-2016-STG
Summary Antigenic variation is a widely employed strategy to evade the host immune response. It has similar functional requirements even in evolutionarily divergent pathogens. These include the mutually exclusive expression of antigens and the periodic, nonrandom switching in the expression of different antigens during the course of an infection. Despite decades of research the mechanisms of antigenic variation are not fully understood in any organism.
The recent development of high-throughput sequencing-based assays to probe the 3D genome architecture (Hi-C) has revealed the importance of the spatial organization of DNA inside the nucleus. 3D genome architecture plays a critical role in the regulation of mutually exclusive gene expression and the frequency of translocation between different genomic loci in many eukaryotes. Thus, genome architecture may also be a key regulator of antigenic variation, yet the causal links between genome architecture and the expression of antigens have not been studied systematically. In addition, the development of CRISPR-Cas9-based approaches to perform nucleotide-specific genome editing has opened unprecedented opportunities to study the influence of DNA sequence elements on the spatial organization of DNA and how this impacts antigen expression.
I have adapted both Hi-C and CRISPR-Cas9 technology to the protozoan parasite Trypanosoma brucei, one of the most important model organisms to study antigenic variation. These techniques will enable me to bridge the field of antigenic variation research with that of genome architecture. I will perform the first systematic analysis of the role of genome architecture in the mutually exclusive and hierarchical expression of antigens in any pathogen.
The experiments outlined in this proposal will provide new insight, facilitating a new view of antigenic variation and may eventually help medical intervention in T. brucei and in other pathogens relying on antigenic variation for their survival.
Summary
Antigenic variation is a widely employed strategy to evade the host immune response. It has similar functional requirements even in evolutionarily divergent pathogens. These include the mutually exclusive expression of antigens and the periodic, nonrandom switching in the expression of different antigens during the course of an infection. Despite decades of research the mechanisms of antigenic variation are not fully understood in any organism.
The recent development of high-throughput sequencing-based assays to probe the 3D genome architecture (Hi-C) has revealed the importance of the spatial organization of DNA inside the nucleus. 3D genome architecture plays a critical role in the regulation of mutually exclusive gene expression and the frequency of translocation between different genomic loci in many eukaryotes. Thus, genome architecture may also be a key regulator of antigenic variation, yet the causal links between genome architecture and the expression of antigens have not been studied systematically. In addition, the development of CRISPR-Cas9-based approaches to perform nucleotide-specific genome editing has opened unprecedented opportunities to study the influence of DNA sequence elements on the spatial organization of DNA and how this impacts antigen expression.
I have adapted both Hi-C and CRISPR-Cas9 technology to the protozoan parasite Trypanosoma brucei, one of the most important model organisms to study antigenic variation. These techniques will enable me to bridge the field of antigenic variation research with that of genome architecture. I will perform the first systematic analysis of the role of genome architecture in the mutually exclusive and hierarchical expression of antigens in any pathogen.
The experiments outlined in this proposal will provide new insight, facilitating a new view of antigenic variation and may eventually help medical intervention in T. brucei and in other pathogens relying on antigenic variation for their survival.
Max ERC Funding
1 498 175 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym 3Dmaterials4Energy
Project Hierarchical Inorganic Nanomaterials as Next Generation Catalysts and Filters
Researcher (PI) Taleb Mokari
Host Institution (HI) BEN-GURION UNIVERSITY OF THE NEGEV
Call Details Proof of Concept (PoC), PC1, ERC-2016-PoC
Summary In the coming few decades, two major global grand challenges will continue to attract the attention of scientists and engineers in academia and industry: achieving clean water and clean energy. This PoC establishes the development of two prototypes, water oxidation catalyst and water purification filter, by creating inexpensive, abundant and versatile hierarchical structures of inorganic nanomaterials (HSINs).
The formation of HSINs has been one of the major obstacles toward achieving a technological progress in various applications. Presently, fabrication of well-defined 3-D structures can be achieved either by photo/electro lithography, assembly, 3D printing or template-mediated methods. Various structures with high quality/yield can be obtained through those techniques, however, these methods suffer from high cost, difficulty of fabrication of free-standing structures, and sometime the throughput is limited. On the other hand, the templated approaches usually are facile, low cost and offer several and complex structures in particular the ones obtained from nature.
Our invention is based on forming the HSINs using fossil templates from nature. We propose to harness the naturally designed morphologies of the fossil templates to rationally form hierarchical structures of nanomaterials. These structures have many advantageous, compared to the current state-of-the-art catalyst and filter, for example high surface area, high porosity, confined space (nano-reactor) and divers functionalities obtained by controlling the chemical composition of the inorganic material shell. Since these properties are important for achieving high performance, we propose HSINs as next generation water oxidation electrocatalyst and water purification filter.
Summary
In the coming few decades, two major global grand challenges will continue to attract the attention of scientists and engineers in academia and industry: achieving clean water and clean energy. This PoC establishes the development of two prototypes, water oxidation catalyst and water purification filter, by creating inexpensive, abundant and versatile hierarchical structures of inorganic nanomaterials (HSINs).
The formation of HSINs has been one of the major obstacles toward achieving a technological progress in various applications. Presently, fabrication of well-defined 3-D structures can be achieved either by photo/electro lithography, assembly, 3D printing or template-mediated methods. Various structures with high quality/yield can be obtained through those techniques, however, these methods suffer from high cost, difficulty of fabrication of free-standing structures, and sometime the throughput is limited. On the other hand, the templated approaches usually are facile, low cost and offer several and complex structures in particular the ones obtained from nature.
Our invention is based on forming the HSINs using fossil templates from nature. We propose to harness the naturally designed morphologies of the fossil templates to rationally form hierarchical structures of nanomaterials. These structures have many advantageous, compared to the current state-of-the-art catalyst and filter, for example high surface area, high porosity, confined space (nano-reactor) and divers functionalities obtained by controlling the chemical composition of the inorganic material shell. Since these properties are important for achieving high performance, we propose HSINs as next generation water oxidation electrocatalyst and water purification filter.
Max ERC Funding
150 000 €
Duration
Start date: 2017-03-01, End date: 2018-08-31
Project acronym 3DWATERWAVES
Project Mathematical aspects of three-dimensional water waves with vorticity
Researcher (PI) Erik Torsten Wahlén
Host Institution (HI) LUNDS UNIVERSITET
Call Details Starting Grant (StG), PE1, ERC-2015-STG
Summary The goal of this project is to develop a mathematical theory for steady three-dimensional water waves with vorticity. The mathematical model consists of the incompressible Euler equations with a free surface, and vorticity is important for modelling the interaction of surface waves with non-uniform currents. In the two-dimensional case, there has been a lot of progress on water waves with vorticity in the last decade. This progress has mainly been based on the stream function formulation, in which the problem is reformulated as a nonlinear elliptic free boundary problem. An analogue of this formulation is not available in three dimensions, and the theory has therefore so far been restricted to irrotational flow. In this project we seek to go beyond this restriction using two different approaches. In the first approach we will adapt methods which have been used to construct three-dimensional ideal flows with vorticity in domains with a fixed boundary to the free boundary context (for example Beltrami flows). In the second approach we will develop methods which are new even in the case of a fixed boundary, by performing a detailed study of the structure of the equations close to a given shear flow using ideas from infinite-dimensional bifurcation theory. This involves handling infinitely many resonances.
Summary
The goal of this project is to develop a mathematical theory for steady three-dimensional water waves with vorticity. The mathematical model consists of the incompressible Euler equations with a free surface, and vorticity is important for modelling the interaction of surface waves with non-uniform currents. In the two-dimensional case, there has been a lot of progress on water waves with vorticity in the last decade. This progress has mainly been based on the stream function formulation, in which the problem is reformulated as a nonlinear elliptic free boundary problem. An analogue of this formulation is not available in three dimensions, and the theory has therefore so far been restricted to irrotational flow. In this project we seek to go beyond this restriction using two different approaches. In the first approach we will adapt methods which have been used to construct three-dimensional ideal flows with vorticity in domains with a fixed boundary to the free boundary context (for example Beltrami flows). In the second approach we will develop methods which are new even in the case of a fixed boundary, by performing a detailed study of the structure of the equations close to a given shear flow using ideas from infinite-dimensional bifurcation theory. This involves handling infinitely many resonances.
Max ERC Funding
1 203 627 €
Duration
Start date: 2016-03-01, End date: 2021-02-28
Project acronym 4-TOPS
Project Four experiments in Topological Superconductivity.
Researcher (PI) Laurens Molenkamp
Host Institution (HI) JULIUS-MAXIMILIANS-UNIVERSITAT WURZBURG
Call Details Advanced Grant (AdG), PE3, ERC-2016-ADG
Summary Topological materials have developed rapidly in recent years, with my previous ERC-AG project 3-TOP playing a major role in this development. While so far no bulk topological superconductor has been unambiguously demonstrated, their properties can be studied in a very flexible manner by inducing superconductivity through the proximity effect into the surface or edge states of a topological insulator. In 4-TOPS we will explore the possibilities of this approach in full, and conduct a thorough study of induced superconductivity in both two and three dimensional HgTe based topological insulators. The 4 avenues we will follow are:
-SQUID based devices to investigate full phase dependent spectroscopy of the gapless Andreev bound state by studying their Josephson radiation and current-phase relationships.
-Experiments aimed at providing unambiguous proof of localized Majorana states in TI junctions by studying tunnelling transport into such states.
-Attempts to induce superconductivity in Quantum Hall states with the aim of creating a chiral topological superconductor. These chiral superconductors host Majorana fermions at their edges, which, at least in the case of a single QH edge mode, follow non-Abelian statistics and are therefore promising for explorations in topological quantum computing.
-Studies of induced superconductivity in Weyl semimetals, a completely unexplored state of matter.
Taken together, these four sets of experiments will greatly enhance our understanding of topological superconductivity, which is not only a subject of great academic interest as it constitutes the study of new phases of matter, but also has potential application in the field of quantum information processing.
Summary
Topological materials have developed rapidly in recent years, with my previous ERC-AG project 3-TOP playing a major role in this development. While so far no bulk topological superconductor has been unambiguously demonstrated, their properties can be studied in a very flexible manner by inducing superconductivity through the proximity effect into the surface or edge states of a topological insulator. In 4-TOPS we will explore the possibilities of this approach in full, and conduct a thorough study of induced superconductivity in both two and three dimensional HgTe based topological insulators. The 4 avenues we will follow are:
-SQUID based devices to investigate full phase dependent spectroscopy of the gapless Andreev bound state by studying their Josephson radiation and current-phase relationships.
-Experiments aimed at providing unambiguous proof of localized Majorana states in TI junctions by studying tunnelling transport into such states.
-Attempts to induce superconductivity in Quantum Hall states with the aim of creating a chiral topological superconductor. These chiral superconductors host Majorana fermions at their edges, which, at least in the case of a single QH edge mode, follow non-Abelian statistics and are therefore promising for explorations in topological quantum computing.
-Studies of induced superconductivity in Weyl semimetals, a completely unexplored state of matter.
Taken together, these four sets of experiments will greatly enhance our understanding of topological superconductivity, which is not only a subject of great academic interest as it constitutes the study of new phases of matter, but also has potential application in the field of quantum information processing.
Max ERC Funding
2 497 567 €
Duration
Start date: 2017-06-01, End date: 2022-05-31
Project acronym 4C
Project 4C technology: uncovering the multi-dimensional structure of the genome
Researcher (PI) Wouter Leonard De Laat
Host Institution (HI) KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN - KNAW
Call Details Starting Grant (StG), LS2, ERC-2007-StG
Summary The architecture of DNA in the cell nucleus is an emerging epigenetic key contributor to genome function. We recently developed 4C technology, a high-throughput technique that combines state-of-the-art 3C technology with tailored micro-arrays to uniquely allow for an unbiased genome-wide search for DNA loci that interact in the nuclear space. Based on 4C technology, we were the first to provide a comprehensive overview of long-range DNA contacts of selected loci. The data showed that active and inactive chromatin domains contact many distinct regions within and between chromosomes and genes switch long-range DNA contacts in relation to their expression status. 4C technology not only allows investigating the three-dimensional structure of DNA in the nucleus, it also accurately reconstructs at least 10 megabases of the one-dimensional chromosome sequence map around the target sequence. Changes in this physical map as a result of genomic rearrangements are therefore identified by 4C technology. We recently demonstrated that 4C detects deletions, balanced inversions and translocations in patient samples at a resolution (~7kb) that allowed immediate sequencing of the breakpoints. Excitingly, 4C technology therefore offers the first high-resolution genomic approach that can identify both balanced and unbalanced genomic rearrangements. 4C is expected to become an important tool in clinical diagnosis and prognosis. Key objectives of this proposal are: 1. Explore the functional significance of DNA folding in the nucleus by systematically applying 4C technology to differentially expressed gene loci. 2. Adapt 4C technology such that it allows for massive parallel analysis of DNA interactions between regulatory elements and gene promoters. This method would greatly facilitate the identification of functionally relevant DNA elements in the genome. 3. Develop 4C technology into a clinical diagnostic tool for the accurate detection of balanced and unbalanced rearrangements.
Summary
The architecture of DNA in the cell nucleus is an emerging epigenetic key contributor to genome function. We recently developed 4C technology, a high-throughput technique that combines state-of-the-art 3C technology with tailored micro-arrays to uniquely allow for an unbiased genome-wide search for DNA loci that interact in the nuclear space. Based on 4C technology, we were the first to provide a comprehensive overview of long-range DNA contacts of selected loci. The data showed that active and inactive chromatin domains contact many distinct regions within and between chromosomes and genes switch long-range DNA contacts in relation to their expression status. 4C technology not only allows investigating the three-dimensional structure of DNA in the nucleus, it also accurately reconstructs at least 10 megabases of the one-dimensional chromosome sequence map around the target sequence. Changes in this physical map as a result of genomic rearrangements are therefore identified by 4C technology. We recently demonstrated that 4C detects deletions, balanced inversions and translocations in patient samples at a resolution (~7kb) that allowed immediate sequencing of the breakpoints. Excitingly, 4C technology therefore offers the first high-resolution genomic approach that can identify both balanced and unbalanced genomic rearrangements. 4C is expected to become an important tool in clinical diagnosis and prognosis. Key objectives of this proposal are: 1. Explore the functional significance of DNA folding in the nucleus by systematically applying 4C technology to differentially expressed gene loci. 2. Adapt 4C technology such that it allows for massive parallel analysis of DNA interactions between regulatory elements and gene promoters. This method would greatly facilitate the identification of functionally relevant DNA elements in the genome. 3. Develop 4C technology into a clinical diagnostic tool for the accurate detection of balanced and unbalanced rearrangements.
Max ERC Funding
1 225 000 €
Duration
Start date: 2008-09-01, End date: 2013-08-31
Project acronym 4D-PET
Project Innovative PET scanner for dynamic imaging
Researcher (PI) José María BENLLOCH BAVIERA
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Advanced Grant (AdG), LS7, ERC-2015-AdG
Summary The main objective of 4D-PET is to develop an innovative whole-body PET scanner based in a new detector concept that stores 3D position and time of every single gamma interaction with unprecedented resolution. The combination of scanner geometrical design and high timing resolution will enable developing a full sequence of all gamma-ray interactions inside the scanner, including Compton interactions, like in a 3D movie. 4D-PET fully exploits Time Of Flight (TOF) information to obtain a better image quality and to increase scanner sensitivity, through the inclusion in the image formation of all Compton events occurring inside the detector, which are always rejected in state-of-the-art PET scanners. The new PET design will radically improve state-of-the-art PET performance features, overcoming limitations of current PET technology and opening up new diagnostic venues and very valuable physiological information
Summary
The main objective of 4D-PET is to develop an innovative whole-body PET scanner based in a new detector concept that stores 3D position and time of every single gamma interaction with unprecedented resolution. The combination of scanner geometrical design and high timing resolution will enable developing a full sequence of all gamma-ray interactions inside the scanner, including Compton interactions, like in a 3D movie. 4D-PET fully exploits Time Of Flight (TOF) information to obtain a better image quality and to increase scanner sensitivity, through the inclusion in the image formation of all Compton events occurring inside the detector, which are always rejected in state-of-the-art PET scanners. The new PET design will radically improve state-of-the-art PET performance features, overcoming limitations of current PET technology and opening up new diagnostic venues and very valuable physiological information
Max ERC Funding
2 048 386 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym 4DVIDEO
Project 4DVideo: 4D spatio-temporal modeling of real-world events from video streams
Researcher (PI) Marc Pollefeys
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Starting Grant (StG), PE5, ERC-2007-StG
Summary The focus of this project is the development of algorithms that allow one to capture and analyse dynamic events taking place in the real world. For this, we intend to develop smart camera networks that can perform a multitude of observation tasks, ranging from surveillance and tracking to high-fidelity, immersive reconstructions of important dynamic events (i.e. 4D videos). There are many fundamental questions in computer vision associated with these problems. Can the geometric, topologic and photometric properties of the camera network be obtained from live images? What is changing about the environment in which the network is embedded? How much information can be obtained from dynamic events that are observed by the network? What if the camera network consists of a random collection of sensors that happened to observe a particular event (think hand-held cell phone cameras)? Do we need synchronization? Those questions become even more challenging if one considers active camera networks that can adapt to the vision task at hand. How should resources be prioritized for different tasks? Can we derive optimal strategies to control camera parameters such as pan, tilt and zoom, trade-off resolution, frame-rate and bandwidth? More fundamentally, seeing cameras as points that sample incoming light rays and camera networks as a distributed sensor, how does one decide which rays should be sampled? Many of those issues are particularly interesting when we consider time-varying events. Both spatial and temporal resolution are important and heterogeneous frame-rates and resolution can offer advantages. Prior knowledge or information obtained from earlier samples can be used to restrict the possible range of solutions (e.g. smoothness assumption and motion prediction). My goal is to obtain fundamental answers to many of those question based on thorough theoretical analysis combined with practical algorithms that are proven on real applications.
Summary
The focus of this project is the development of algorithms that allow one to capture and analyse dynamic events taking place in the real world. For this, we intend to develop smart camera networks that can perform a multitude of observation tasks, ranging from surveillance and tracking to high-fidelity, immersive reconstructions of important dynamic events (i.e. 4D videos). There are many fundamental questions in computer vision associated with these problems. Can the geometric, topologic and photometric properties of the camera network be obtained from live images? What is changing about the environment in which the network is embedded? How much information can be obtained from dynamic events that are observed by the network? What if the camera network consists of a random collection of sensors that happened to observe a particular event (think hand-held cell phone cameras)? Do we need synchronization? Those questions become even more challenging if one considers active camera networks that can adapt to the vision task at hand. How should resources be prioritized for different tasks? Can we derive optimal strategies to control camera parameters such as pan, tilt and zoom, trade-off resolution, frame-rate and bandwidth? More fundamentally, seeing cameras as points that sample incoming light rays and camera networks as a distributed sensor, how does one decide which rays should be sampled? Many of those issues are particularly interesting when we consider time-varying events. Both spatial and temporal resolution are important and heterogeneous frame-rates and resolution can offer advantages. Prior knowledge or information obtained from earlier samples can be used to restrict the possible range of solutions (e.g. smoothness assumption and motion prediction). My goal is to obtain fundamental answers to many of those question based on thorough theoretical analysis combined with practical algorithms that are proven on real applications.
Max ERC Funding
1 757 422 €
Duration
Start date: 2008-08-01, End date: 2013-11-30
Project acronym 5D Heart Patch
Project A Functional, Mature In vivo Human Ventricular Muscle Patch for Cardiomyopathy
Researcher (PI) Kenneth Randall Chien
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Advanced Grant (AdG), LS7, ERC-2016-ADG
Summary Developing new therapeutic strategies for heart regeneration is a major goal for cardiac biology and medicine. While cardiomyocytes can be generated from human pluripotent stem (hPSC) cells in vitro, it has proven difficult to use these cells to generate a large scale, mature human heart ventricular muscle graft on the injured heart in vivo. The central objective of this proposal is to optimize the generation of a large-scale pure, fully functional human ventricular muscle patch in vivo through the self-assembly of purified human ventricular progenitors and the localized expression of defined paracrine factors that drive their expansion, differentiation, vascularization, matrix formation, and maturation. Recently, we have found that purified hPSC-derived ventricular progenitors (HVPs) can self-assemble in vivo on the epicardial surface into a 3D vascularized, and functional ventricular patch with its own extracellular matrix via a cell autonomous pathway. A two-step protocol and FACS purification of HVP receptors can generate billions of pure HVPs- The current proposal will lead to the identification of defined paracrine pathways to enhance the survival, grafting/implantation, expansion, differentiation, matrix formation, vascularization and maturation of the graft in vivo. We will captalize on our unique HVP system and our novel modRNA technology to deliver therapeutic strategies by using the in vivo human ventricular muscle to model in vivo arrhythmogenic cardiomyopathy, and optimize the ability of the graft to compensate for the massive loss of functional muscle during ischemic cardiomyopathy and post-myocardial infarction. The studies will lead to new in vivo chimeric models of human cardiac disease and an experimental paradigm to optimize organ-on-organ cardiac tissue engineers of an in vivo, functional mature ventricular patch for cardiomyopathy
Summary
Developing new therapeutic strategies for heart regeneration is a major goal for cardiac biology and medicine. While cardiomyocytes can be generated from human pluripotent stem (hPSC) cells in vitro, it has proven difficult to use these cells to generate a large scale, mature human heart ventricular muscle graft on the injured heart in vivo. The central objective of this proposal is to optimize the generation of a large-scale pure, fully functional human ventricular muscle patch in vivo through the self-assembly of purified human ventricular progenitors and the localized expression of defined paracrine factors that drive their expansion, differentiation, vascularization, matrix formation, and maturation. Recently, we have found that purified hPSC-derived ventricular progenitors (HVPs) can self-assemble in vivo on the epicardial surface into a 3D vascularized, and functional ventricular patch with its own extracellular matrix via a cell autonomous pathway. A two-step protocol and FACS purification of HVP receptors can generate billions of pure HVPs- The current proposal will lead to the identification of defined paracrine pathways to enhance the survival, grafting/implantation, expansion, differentiation, matrix formation, vascularization and maturation of the graft in vivo. We will captalize on our unique HVP system and our novel modRNA technology to deliver therapeutic strategies by using the in vivo human ventricular muscle to model in vivo arrhythmogenic cardiomyopathy, and optimize the ability of the graft to compensate for the massive loss of functional muscle during ischemic cardiomyopathy and post-myocardial infarction. The studies will lead to new in vivo chimeric models of human cardiac disease and an experimental paradigm to optimize organ-on-organ cardiac tissue engineers of an in vivo, functional mature ventricular patch for cardiomyopathy
Max ERC Funding
2 149 228 €
Duration
Start date: 2017-12-01, End date: 2022-11-30
Project acronym AAA
Project Adaptive Actin Architectures
Researcher (PI) Laurent Blanchoin
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), LS3, ERC-2016-ADG
Summary Although we have extensive knowledge of many important processes in cell biology, including information on many of the molecules involved and the physical interactions among them, we still do not understand most of the dynamical features that are the essence of living systems. This is particularly true for the actin cytoskeleton, a major component of the internal architecture of eukaryotic cells. In living cells, actin networks constantly assemble and disassemble filaments while maintaining an apparent stable structure, suggesting a perfect balance between the two processes. Such behaviors are called “dynamic steady states”. They confer upon actin networks a high degree of plasticity allowing them to adapt in response to external changes and enable cells to adjust to their environments. Despite their fundamental importance in the regulation of cell physiology, the basic mechanisms that control the coordinated dynamics of co-existing actin networks are poorly understood. In the AAA project, first, we will characterize the parameters that allow the coupling among co-existing actin networks at steady state. In vitro reconstituted systems will be used to control the actin nucleation patterns, the closed volume of the reaction chamber and the physical interaction of the networks. We hope to unravel the mechanism allowing the global coherence of a dynamic actin cytoskeleton. Second, we will use our unique capacity to perform dynamic micropatterning, to add or remove actin nucleation sites in real time, in order to investigate the ability of dynamic networks to adapt to changes and the role of coupled network dynamics in this emergent property. In this part, in vitro experiments will be complemented by the analysis of actin network remodeling in living cells. In the end, our project will provide a comprehensive understanding of how the adaptive response of the cytoskeleton derives from the complex interplay between its biochemical, structural and mechanical properties.
Summary
Although we have extensive knowledge of many important processes in cell biology, including information on many of the molecules involved and the physical interactions among them, we still do not understand most of the dynamical features that are the essence of living systems. This is particularly true for the actin cytoskeleton, a major component of the internal architecture of eukaryotic cells. In living cells, actin networks constantly assemble and disassemble filaments while maintaining an apparent stable structure, suggesting a perfect balance between the two processes. Such behaviors are called “dynamic steady states”. They confer upon actin networks a high degree of plasticity allowing them to adapt in response to external changes and enable cells to adjust to their environments. Despite their fundamental importance in the regulation of cell physiology, the basic mechanisms that control the coordinated dynamics of co-existing actin networks are poorly understood. In the AAA project, first, we will characterize the parameters that allow the coupling among co-existing actin networks at steady state. In vitro reconstituted systems will be used to control the actin nucleation patterns, the closed volume of the reaction chamber and the physical interaction of the networks. We hope to unravel the mechanism allowing the global coherence of a dynamic actin cytoskeleton. Second, we will use our unique capacity to perform dynamic micropatterning, to add or remove actin nucleation sites in real time, in order to investigate the ability of dynamic networks to adapt to changes and the role of coupled network dynamics in this emergent property. In this part, in vitro experiments will be complemented by the analysis of actin network remodeling in living cells. In the end, our project will provide a comprehensive understanding of how the adaptive response of the cytoskeleton derives from the complex interplay between its biochemical, structural and mechanical properties.
Max ERC Funding
2 349 898 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym AAMDDR
Project DNA damage response and genome stability: The role of ATM, ATR and the Mre11 complex
Researcher (PI) Vincenzo Costanzo
Host Institution (HI) CANCER RESEARCH UK LBG
Call Details Starting Grant (StG), LS1, ERC-2007-StG
Summary Chromosomal DNA is continuously subjected to exogenous and endogenous damaging insults. In the presence of DNA damage cells activate a multi-faceted checkpoint response that delays cell cycle progression and promotes DNA repair. Failures in this response lead to genomic instability, the main feature of cancer cells. Several cancer-prone human syndromes including the Ataxia teleangiectasia (A-T), the A-T Like Disorder (ATLD) and the Seckel Syndrome reflect defects in the specific genes of the DNA damage response such as ATM, MRE11 and ATR. DNA damage response pathways are poorly understood at biochemical level in vertebrate organisms. We have established a cell-free system based on Xenopus laevis egg extract to study molecular events underlying DNA damage response. This is the first in vitro system that recapitulates different aspects of the DNA damage response in vertebrates. Using this system we propose to study the biochemistry of the ATM, ATR and the Mre11 complex dependent DNA damage response. In particular we will: 1) Dissect the signal transduction pathway that senses DNA damage and promotes cell cycle arrest and DNA damage repair; 2) Analyze at molecular level the role of ATM, ATR, Mre11 in chromosomal DNA replication and mitosis during normal and stressful conditions; 3) Identify substrates of the ATM and ATR dependent DNA damage response using an innovative screening procedure.
Summary
Chromosomal DNA is continuously subjected to exogenous and endogenous damaging insults. In the presence of DNA damage cells activate a multi-faceted checkpoint response that delays cell cycle progression and promotes DNA repair. Failures in this response lead to genomic instability, the main feature of cancer cells. Several cancer-prone human syndromes including the Ataxia teleangiectasia (A-T), the A-T Like Disorder (ATLD) and the Seckel Syndrome reflect defects in the specific genes of the DNA damage response such as ATM, MRE11 and ATR. DNA damage response pathways are poorly understood at biochemical level in vertebrate organisms. We have established a cell-free system based on Xenopus laevis egg extract to study molecular events underlying DNA damage response. This is the first in vitro system that recapitulates different aspects of the DNA damage response in vertebrates. Using this system we propose to study the biochemistry of the ATM, ATR and the Mre11 complex dependent DNA damage response. In particular we will: 1) Dissect the signal transduction pathway that senses DNA damage and promotes cell cycle arrest and DNA damage repair; 2) Analyze at molecular level the role of ATM, ATR, Mre11 in chromosomal DNA replication and mitosis during normal and stressful conditions; 3) Identify substrates of the ATM and ATR dependent DNA damage response using an innovative screening procedure.
Max ERC Funding
1 000 000 €
Duration
Start date: 2008-07-01, End date: 2013-06-30
Project acronym AB-SWITCH
Project Evaluation of commercial potential of a low-cost kit based on DNA-nanoswitches for the single-step measurement of diagnostic antibodies
Researcher (PI) Francesco RICCI
Host Institution (HI) UNIVERSITA DEGLI STUDI DI ROMA TOR VERGATA
Call Details Proof of Concept (PoC), ERC-2016-PoC, ERC-2016-PoC
Summary "Antibodies are among the most widely monitored class of diagnostic biomarkers. Immunoassays market now covers about 1/3 of the global market of in-vitro diagnostics (about $50 billion). However, current methods for the detection of diagnostic antibodies are either qualitative or require cumbersome, resource-intensive laboratory procedures that need hours to provide clinicians with diagnostic information. A new method for fast and low-cost detection of antibodies will have a strong economic impact in the market of in-vitro diagnostics and Immunoassays.
During our ERC Starting Grant project ""Nature Nanodevices"" we have developed a novel diagnostic technology for the detection of clinically relevant antibodies in serum and other body fluids. The platform (here named Ab-switch) supports the fluorescent detection of diagnostic antibodies (for example, HIV diagnostic antibodies) in a rapid (<3 minutes), single-step and low-cost fashion.
The goal of this Proof of Concept project is to bring our promising platform to the proof of diagnostic market and exploit its innovative features for commercial purposes. We will focus our initial efforts in the development of rapid kits for the detection of antibodies diagnostic of HIV. We will 1) Fully characterize the Ab-switch product in terms of analytical performances (i.e. sensitivity, specificity, stability etc.) with direct comparison with other commercial kits; 2) Prepare a Manufacturing Plan for producing/testing the Ab-switch; 3) Establish an IP strategy for patent filing and maintenance; 4) Determine a business and commercialization planning."
Summary
"Antibodies are among the most widely monitored class of diagnostic biomarkers. Immunoassays market now covers about 1/3 of the global market of in-vitro diagnostics (about $50 billion). However, current methods for the detection of diagnostic antibodies are either qualitative or require cumbersome, resource-intensive laboratory procedures that need hours to provide clinicians with diagnostic information. A new method for fast and low-cost detection of antibodies will have a strong economic impact in the market of in-vitro diagnostics and Immunoassays.
During our ERC Starting Grant project ""Nature Nanodevices"" we have developed a novel diagnostic technology for the detection of clinically relevant antibodies in serum and other body fluids. The platform (here named Ab-switch) supports the fluorescent detection of diagnostic antibodies (for example, HIV diagnostic antibodies) in a rapid (<3 minutes), single-step and low-cost fashion.
The goal of this Proof of Concept project is to bring our promising platform to the proof of diagnostic market and exploit its innovative features for commercial purposes. We will focus our initial efforts in the development of rapid kits for the detection of antibodies diagnostic of HIV. We will 1) Fully characterize the Ab-switch product in terms of analytical performances (i.e. sensitivity, specificity, stability etc.) with direct comparison with other commercial kits; 2) Prepare a Manufacturing Plan for producing/testing the Ab-switch; 3) Establish an IP strategy for patent filing and maintenance; 4) Determine a business and commercialization planning."
Max ERC Funding
150 000 €
Duration
Start date: 2017-02-01, End date: 2018-07-31
Project acronym ABSOLUTESPIN
Project Absolute Spin Dynamics in Quantum Materials
Researcher (PI) Christian Reinhard Ast
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Consolidator Grant (CoG), PE3, ERC-2015-CoG
Summary One of the greatest challenges in exploiting the electron spin for information processing is that it is not a conserved quantity like the electron charge. In addition, spin lifetimes are rather short and correspondingly coherence is quickly lost. This challenge culminates in the coherent manipulation and detection of information from a single spin. Except in a few special systems, so far, single spins cannot be manipulated coherently on the atomic scale, while spin coherence times can only be measured on spin ensembles. A new concept is needed for coherence measurements on arbitrary single spins. Here, the principal investigator (PI) will combine a novel time- and spin-resolved low-temperature scanning tunneling microscope (STM) with the concept of pulsed electron paramagnetic resonance. With this unique and innovative setup, he will be able to address long-standing problems, such as relaxation and coherence times of arbitrary single spin systems on the atomic scale as well as individual spin interactions with the immediate surroundings. Spin readout will be realized through the detection of the absolute spin polarization in the tunneling current by a superconducting tip based on the Meservey-Tedrow-Fulde effect, which the PI has recently demonstrated for the first time in STM. For the coherent excitation, a specially designed pulsed GHz light source will be implemented. The goal is to better understand the spin dynamics and coherence times of single spin systems as well as the spin interactions involved in the decay mechanisms. This will have direct impact on the feasibility of quantum spin information processing with single spin systems on different decoupling surfaces and their scalability at the atomic level. A successful demonstration will enhance the detection limit of spins by several orders of magnitude and fill important missing links in the understanding of spin dynamics and quantum computing with single spins.
Summary
One of the greatest challenges in exploiting the electron spin for information processing is that it is not a conserved quantity like the electron charge. In addition, spin lifetimes are rather short and correspondingly coherence is quickly lost. This challenge culminates in the coherent manipulation and detection of information from a single spin. Except in a few special systems, so far, single spins cannot be manipulated coherently on the atomic scale, while spin coherence times can only be measured on spin ensembles. A new concept is needed for coherence measurements on arbitrary single spins. Here, the principal investigator (PI) will combine a novel time- and spin-resolved low-temperature scanning tunneling microscope (STM) with the concept of pulsed electron paramagnetic resonance. With this unique and innovative setup, he will be able to address long-standing problems, such as relaxation and coherence times of arbitrary single spin systems on the atomic scale as well as individual spin interactions with the immediate surroundings. Spin readout will be realized through the detection of the absolute spin polarization in the tunneling current by a superconducting tip based on the Meservey-Tedrow-Fulde effect, which the PI has recently demonstrated for the first time in STM. For the coherent excitation, a specially designed pulsed GHz light source will be implemented. The goal is to better understand the spin dynamics and coherence times of single spin systems as well as the spin interactions involved in the decay mechanisms. This will have direct impact on the feasibility of quantum spin information processing with single spin systems on different decoupling surfaces and their scalability at the atomic level. A successful demonstration will enhance the detection limit of spins by several orders of magnitude and fill important missing links in the understanding of spin dynamics and quantum computing with single spins.
Max ERC Funding
2 469 136 €
Duration
Start date: 2016-07-01, End date: 2021-06-30
Project acronym ACAP
Project Acency Costs and Asset Pricing
Researcher (PI) Thomas Mariotti
Host Institution (HI) FONDATION JEAN-JACQUES LAFFONT,TOULOUSE SCIENCES ECONOMIQUES
Call Details Starting Grant (StG), SH1, ERC-2007-StG
Summary The main objective of this research project is to contribute at bridging the gap between the two main branches of financial theory, namely corporate finance and asset pricing. It is motivated by the conviction that these two aspects of financial activity should and can be analyzed within a unified framework. This research will borrow from these two approaches in order to construct theoretical models that allow one to analyze the design and issuance of financial securities, as well as the dynamics of their valuations. Unlike asset pricing, which takes as given the price of the fundamentals, the goal is to derive security price processes from a precise description of firm’s operations and internal frictions. Regarding the latter, and in line with traditional corporate finance theory, the analysis will emphasize the role of agency costs within the firm for the design of its securities. But the analysis will be pushed one step further by studying the impact of these agency costs on key financial variables such as stock and bond prices, leverage, book-to-market ratios, default risk, or the holding of liquidities by firms. One of the contributions of this research project is to show how these variables are interrelated when firms and investors agree upon optimal financial arrangements. The final objective is to derive a rich set of testable asset pricing implications that would eventually be brought to the data.
Summary
The main objective of this research project is to contribute at bridging the gap between the two main branches of financial theory, namely corporate finance and asset pricing. It is motivated by the conviction that these two aspects of financial activity should and can be analyzed within a unified framework. This research will borrow from these two approaches in order to construct theoretical models that allow one to analyze the design and issuance of financial securities, as well as the dynamics of their valuations. Unlike asset pricing, which takes as given the price of the fundamentals, the goal is to derive security price processes from a precise description of firm’s operations and internal frictions. Regarding the latter, and in line with traditional corporate finance theory, the analysis will emphasize the role of agency costs within the firm for the design of its securities. But the analysis will be pushed one step further by studying the impact of these agency costs on key financial variables such as stock and bond prices, leverage, book-to-market ratios, default risk, or the holding of liquidities by firms. One of the contributions of this research project is to show how these variables are interrelated when firms and investors agree upon optimal financial arrangements. The final objective is to derive a rich set of testable asset pricing implications that would eventually be brought to the data.
Max ERC Funding
1 000 000 €
Duration
Start date: 2008-11-01, End date: 2014-10-31
Project acronym ACAP
Project Asset Centric Adaptive Protection
Researcher (PI) Bashar NUSEIBEH
Host Institution (HI) UNIVERSITY OF LIMERICK
Call Details Proof of Concept (PoC), PC1, ERC-2015-PoC
Summary The proliferation of mobile and ubiquitous computing technology is radically changing the ways in which we live our lives: from interacting with friends & family, to how we produce & consume services and engage in business. However, this pervasiveness of technologies, and their increasingly seamless integration and inter-operation, are blurring the boundaries between systems. This poses significant challenges for security engineers who aim to design systems that monitor and control the movement of digital or physical assets across those boundaries.
My ERC Advanced Grant on Adaptive Security and Privacy (ASAP) is investigating ways in which security controls can change in response to changes in the context of operation of systems. However, since the monitoring of such elusive and changing boundaries is difficult, we have developed an adaptive security approach that monitors valuable assets that are managed by a system, and changes the means and extent by which those assets are protected in response to changes in assets and their values. This could radically change the way security is designed and implemented in a range of applications because it allows for a choice of appropriate protection, depending on particular requirements.
In ASAP, we developed the modelling and computational capabilities of our approach, including some prototype tool fragments that demonstrate the approach in our lab. However, interest from our industrial collaborators, evidenced by direct funding of follow-on research, and the demonstration of our prototypes to senior management and potential customers, has motivated us to pursue a proof of concept (PoC) assessment of our work in a more systematic and targeted way. To this end, this ERC PoC will:
1) Develop a robust prototype demonstrator, instantiated in two application areas (access control & cloud computing);
2) Conduct a market analysis, aided by the demonstrator;
3) Subject to (2), develop a commercialisation strategy and plan
Summary
The proliferation of mobile and ubiquitous computing technology is radically changing the ways in which we live our lives: from interacting with friends & family, to how we produce & consume services and engage in business. However, this pervasiveness of technologies, and their increasingly seamless integration and inter-operation, are blurring the boundaries between systems. This poses significant challenges for security engineers who aim to design systems that monitor and control the movement of digital or physical assets across those boundaries.
My ERC Advanced Grant on Adaptive Security and Privacy (ASAP) is investigating ways in which security controls can change in response to changes in the context of operation of systems. However, since the monitoring of such elusive and changing boundaries is difficult, we have developed an adaptive security approach that monitors valuable assets that are managed by a system, and changes the means and extent by which those assets are protected in response to changes in assets and their values. This could radically change the way security is designed and implemented in a range of applications because it allows for a choice of appropriate protection, depending on particular requirements.
In ASAP, we developed the modelling and computational capabilities of our approach, including some prototype tool fragments that demonstrate the approach in our lab. However, interest from our industrial collaborators, evidenced by direct funding of follow-on research, and the demonstration of our prototypes to senior management and potential customers, has motivated us to pursue a proof of concept (PoC) assessment of our work in a more systematic and targeted way. To this end, this ERC PoC will:
1) Develop a robust prototype demonstrator, instantiated in two application areas (access control & cloud computing);
2) Conduct a market analysis, aided by the demonstrator;
3) Subject to (2), develop a commercialisation strategy and plan
Max ERC Funding
149 977 €
Duration
Start date: 2016-11-01, End date: 2018-04-30
Project acronym ACCENT
Project Unravelling the architecture and the cartography of the human centriole
Researcher (PI) Paul, Philippe, Desiré GUICHARD
Host Institution (HI) UNIVERSITE DE GENEVE
Call Details Starting Grant (StG), LS1, ERC-2016-STG
Summary The centriole is the largest evolutionary conserved macromolecular structure responsible for building centrosomes and cilia or flagella in many eukaryotes. Centrioles are critical for the proper execution of important biological processes ranging from cell division to cell signaling. Moreover, centriolar defects have been associated to several human pathologies including ciliopathies and cancer. This state of facts emphasizes the importance of understanding centriole biogenesis. The study of centriole formation is a deep-rooted question, however our current knowledge on its molecular organization at high resolution remains fragmented and limited. In particular, exquisite details of the overall molecular architecture of the human centriole and in particular of its central core region are lacking to understand the basis of centriole organization and function. Resolving this important question represents a challenge that needs to be undertaken and will undoubtedly lead to groundbreaking advances. Another important question to tackle next is to develop innovative methods to enable the nanometric molecular mapping of centriolar proteins within distinct architectural elements of the centriole. This missing information will be key to unravel the molecular mechanisms behind centriolar organization.
This research proposal aims at building a cartography of the human centriole by elucidating its molecular composition and architecture. To this end, we will combine the use of innovative and multidisciplinary techniques encompassing spatial proteomics, cryo-electron tomography, state-of-the-art microscopy and in vitro assays and to achieve a comprehensive molecular and structural view of the human centriole. All together, we expect that these advances will help understand basic principles underlying centriole and cilia formation as well as might have further relevance for human health.
Summary
The centriole is the largest evolutionary conserved macromolecular structure responsible for building centrosomes and cilia or flagella in many eukaryotes. Centrioles are critical for the proper execution of important biological processes ranging from cell division to cell signaling. Moreover, centriolar defects have been associated to several human pathologies including ciliopathies and cancer. This state of facts emphasizes the importance of understanding centriole biogenesis. The study of centriole formation is a deep-rooted question, however our current knowledge on its molecular organization at high resolution remains fragmented and limited. In particular, exquisite details of the overall molecular architecture of the human centriole and in particular of its central core region are lacking to understand the basis of centriole organization and function. Resolving this important question represents a challenge that needs to be undertaken and will undoubtedly lead to groundbreaking advances. Another important question to tackle next is to develop innovative methods to enable the nanometric molecular mapping of centriolar proteins within distinct architectural elements of the centriole. This missing information will be key to unravel the molecular mechanisms behind centriolar organization.
This research proposal aims at building a cartography of the human centriole by elucidating its molecular composition and architecture. To this end, we will combine the use of innovative and multidisciplinary techniques encompassing spatial proteomics, cryo-electron tomography, state-of-the-art microscopy and in vitro assays and to achieve a comprehensive molecular and structural view of the human centriole. All together, we expect that these advances will help understand basic principles underlying centriole and cilia formation as well as might have further relevance for human health.
Max ERC Funding
1 498 965 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym ACETOGENS
Project Acetogenic bacteria: from basic physiology via gene regulation to application in industrial biotechnology
Researcher (PI) Volker MÜLLER
Host Institution (HI) JOHANN WOLFGANG GOETHE-UNIVERSITATFRANKFURT AM MAIN
Call Details Advanced Grant (AdG), LS9, ERC-2016-ADG
Summary Demand for biofuels and other biologically derived commodities is growing worldwide as efforts increase to reduce reliance on fossil fuels and to limit climate change. Most commercial approaches rely on fermentations of organic matter with its inherent problems in producing CO2 and being in conflict with the food supply of humans. These problems are avoided if CO2 can be used as feedstock. Autotrophic organisms can fix CO2 by producing chemicals that are used as building blocks for the synthesis of cellular components (Biomass). Acetate-forming bacteria (acetogens) do neither require light nor oxygen for this and they can be used in bioreactors to reduce CO2 with hydrogen gas, carbon monoxide or an organic substrate. Gas fermentation using these bacteria has already been realized on an industrial level in two pre-commercial 100,000 gal/yr demonstration facilities to produce fuel ethanol from abundant waste gas resources (by LanzaTech). Acetogens can metabolise a wide variety of substrates that could be used for the production of biocommodities. However, their broad use to produce biofuels and platform chemicals from substrates other than gases or together with gases is hampered by our very limited knowledge about their metabolism and ability to use different substrates simultaneously. Nearly nothing is known about regulatory processes involved in substrate utilization or product formation but this is an absolute requirement for metabolic engineering approaches. The aim of this project is to provide this basic knowledge about metabolic routes in the acetogenic model strain Acetobacterium woodii and their regulation. We will unravel the function of “organelles” found in this bacterium and explore their potential as bio-nanoreactors for the production of biocommodities and pave the road for the industrial use of A. woodii in energy (hydrogen) storage. Thus, this project creates cutting-edge opportunities for the development of biosustainable technologies in Europe.
Summary
Demand for biofuels and other biologically derived commodities is growing worldwide as efforts increase to reduce reliance on fossil fuels and to limit climate change. Most commercial approaches rely on fermentations of organic matter with its inherent problems in producing CO2 and being in conflict with the food supply of humans. These problems are avoided if CO2 can be used as feedstock. Autotrophic organisms can fix CO2 by producing chemicals that are used as building blocks for the synthesis of cellular components (Biomass). Acetate-forming bacteria (acetogens) do neither require light nor oxygen for this and they can be used in bioreactors to reduce CO2 with hydrogen gas, carbon monoxide or an organic substrate. Gas fermentation using these bacteria has already been realized on an industrial level in two pre-commercial 100,000 gal/yr demonstration facilities to produce fuel ethanol from abundant waste gas resources (by LanzaTech). Acetogens can metabolise a wide variety of substrates that could be used for the production of biocommodities. However, their broad use to produce biofuels and platform chemicals from substrates other than gases or together with gases is hampered by our very limited knowledge about their metabolism and ability to use different substrates simultaneously. Nearly nothing is known about regulatory processes involved in substrate utilization or product formation but this is an absolute requirement for metabolic engineering approaches. The aim of this project is to provide this basic knowledge about metabolic routes in the acetogenic model strain Acetobacterium woodii and their regulation. We will unravel the function of “organelles” found in this bacterium and explore their potential as bio-nanoreactors for the production of biocommodities and pave the road for the industrial use of A. woodii in energy (hydrogen) storage. Thus, this project creates cutting-edge opportunities for the development of biosustainable technologies in Europe.
Max ERC Funding
2 497 140 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym AcetyLys
Project Unravelling the role of lysine acetylation in the regulation of glycolysis in cancer cells through the development of synthetic biology-based tools
Researcher (PI) Eyal Arbely
Host Institution (HI) BEN-GURION UNIVERSITY OF THE NEGEV
Call Details Starting Grant (StG), LS9, ERC-2015-STG
Summary Synthetic biology is an emerging discipline that offers powerful tools to control and manipulate fundamental processes in living matter. We propose to develop and apply such tools to modify the genetic code of cultured mammalian cells and bacteria with the aim to study the role of lysine acetylation in the regulation of metabolism and in cancer development. Thousands of lysine acetylation sites were recently discovered on non-histone proteins, suggesting that acetylation is a widespread and evolutionarily conserved post translational modification, similar in scope to phosphorylation and ubiquitination. Specifically, it has been found that most of the enzymes of metabolic processes—including glycolysis—are acetylated, implying that acetylation is key regulator of cellular metabolism in general and in glycolysis in particular. The regulation of metabolic pathways is of particular importance to cancer research, as misregulation of metabolic pathways, especially upregulation of glycolysis, is common to most transformed cells and is now considered a new hallmark of cancer. These data raise an immediate question: what is the role of acetylation in the regulation of glycolysis and in the metabolic reprogramming of cancer cells? While current methods rely on mutational analyses, we will genetically encode the incorporation of acetylated lysine and directly measure the functional role of each acetylation site in cancerous and non-cancerous cell lines. Using this methodology, we will study the structural and functional implications of all the acetylation sites in glycolytic enzymes. We will also decipher the mechanism by which acetylation is regulated by deacetylases and answer a long standing question – how 18 deacetylases recognise their substrates among thousands of acetylated proteins? The developed methodologies can be applied to a wide range of protein families known to be acetylated, thereby making this study relevant to diverse research fields.
Summary
Synthetic biology is an emerging discipline that offers powerful tools to control and manipulate fundamental processes in living matter. We propose to develop and apply such tools to modify the genetic code of cultured mammalian cells and bacteria with the aim to study the role of lysine acetylation in the regulation of metabolism and in cancer development. Thousands of lysine acetylation sites were recently discovered on non-histone proteins, suggesting that acetylation is a widespread and evolutionarily conserved post translational modification, similar in scope to phosphorylation and ubiquitination. Specifically, it has been found that most of the enzymes of metabolic processes—including glycolysis—are acetylated, implying that acetylation is key regulator of cellular metabolism in general and in glycolysis in particular. The regulation of metabolic pathways is of particular importance to cancer research, as misregulation of metabolic pathways, especially upregulation of glycolysis, is common to most transformed cells and is now considered a new hallmark of cancer. These data raise an immediate question: what is the role of acetylation in the regulation of glycolysis and in the metabolic reprogramming of cancer cells? While current methods rely on mutational analyses, we will genetically encode the incorporation of acetylated lysine and directly measure the functional role of each acetylation site in cancerous and non-cancerous cell lines. Using this methodology, we will study the structural and functional implications of all the acetylation sites in glycolytic enzymes. We will also decipher the mechanism by which acetylation is regulated by deacetylases and answer a long standing question – how 18 deacetylases recognise their substrates among thousands of acetylated proteins? The developed methodologies can be applied to a wide range of protein families known to be acetylated, thereby making this study relevant to diverse research fields.
Max ERC Funding
1 499 375 €
Duration
Start date: 2016-07-01, End date: 2021-06-30
Project acronym ACO
Project The Proceedings of the Ecumenical Councils from Oral Utterance to Manuscript Edition as Evidence for Late Antique Persuasion and Self-Representation Techniques
Researcher (PI) Peter Alfred Riedlberger
Host Institution (HI) OTTO-FRIEDRICH-UNIVERSITAET BAMBERG
Call Details Starting Grant (StG), SH5, ERC-2015-STG
Summary The Acts of the Ecumenical Councils of Late Antiquity include (purportedly) verbatim minutes of the proceedings, a formal framework and copies of relevant documents which were either (allegedly) read out during the proceedings or which were later attached to the Acts proper. Despite this unusual wealth of documentary evidence, the daunting nature of the Acts demanding multidisciplinary competency, their complex structure with a matryoshka-like nesting of proceedings from different dates, and the stereotype that their contents bear only on Christological niceties have deterred generations of historians from studying them. Only in recent years have their fortunes begun to improve, but this recent research has not always been based on sound principles: the recorded proceedings of the sessions are still often accepted as verbatim minutes. Yet even a superficial reading quickly reveals widespread editorial interference. We must accept that in many cases the Acts will teach us less about the actual debates than about the editors who shaped their presentation. This does not depreciate the Acts’ evidence: on the contrary, they are first-rate material for the rhetoric of persuasion and self-representation. It is possible, in fact, to take the investigation to a deeper level and examine in what manner the oral proceedings were put into writing: several passages in the Acts comment upon the process of note-taking and the work of the shorthand writers. Thus, the main objective of the proposed research project could be described as an attempt to trace the destinies of the Acts’ texts, from the oral utterance to the manuscript texts we have today. This will include the fullest study on ancient transcript techniques to date; a structural analysis of the Acts’ texts with the aim of highlighting edited passages; and a careful comparison of the various editions of the Acts, which survive in Greek, Latin, Syriac and Coptic, in order to detect traces of editorial interference.
Summary
The Acts of the Ecumenical Councils of Late Antiquity include (purportedly) verbatim minutes of the proceedings, a formal framework and copies of relevant documents which were either (allegedly) read out during the proceedings or which were later attached to the Acts proper. Despite this unusual wealth of documentary evidence, the daunting nature of the Acts demanding multidisciplinary competency, their complex structure with a matryoshka-like nesting of proceedings from different dates, and the stereotype that their contents bear only on Christological niceties have deterred generations of historians from studying them. Only in recent years have their fortunes begun to improve, but this recent research has not always been based on sound principles: the recorded proceedings of the sessions are still often accepted as verbatim minutes. Yet even a superficial reading quickly reveals widespread editorial interference. We must accept that in many cases the Acts will teach us less about the actual debates than about the editors who shaped their presentation. This does not depreciate the Acts’ evidence: on the contrary, they are first-rate material for the rhetoric of persuasion and self-representation. It is possible, in fact, to take the investigation to a deeper level and examine in what manner the oral proceedings were put into writing: several passages in the Acts comment upon the process of note-taking and the work of the shorthand writers. Thus, the main objective of the proposed research project could be described as an attempt to trace the destinies of the Acts’ texts, from the oral utterance to the manuscript texts we have today. This will include the fullest study on ancient transcript techniques to date; a structural analysis of the Acts’ texts with the aim of highlighting edited passages; and a careful comparison of the various editions of the Acts, which survive in Greek, Latin, Syriac and Coptic, in order to detect traces of editorial interference.
Max ERC Funding
1 497 250 €
Duration
Start date: 2016-05-01, End date: 2021-04-30
Project acronym ACoolTouch
Project Neural mechanisms of multisensory perceptual binding
Researcher (PI) James Francis Alexander Poulet
Host Institution (HI) MAX DELBRUECK CENTRUM FUER MOLEKULARE MEDIZIN IN DER HELMHOLTZ-GEMEINSCHAFT (MDC)
Call Details Consolidator Grant (CoG), LS5, ERC-2015-CoG
Summary Sensory perception involves the discrimination and binding of multiple modalities of sensory input. This is especially evident in the somatosensory system where different modalities of sensory input, including thermal and mechanosensory, are combined to generate a unified percept. The neural mechanisms of multisensory binding are unknown, in part because sensory perception is typically studied within a single modality in a single brain region. I propose a multi-level approach to investigate thermo-tactile processing in the mouse forepaw system from the primary sensory afferent neurons to thalamo-cortical circuits and behaviour.
The mouse forepaw system is the ideal system to investigate multisensory binding as the sensory afferent neurons are well investigated, cell type-specific lines are available, in vivo optogenetic manipulation is possible both in sensory afferent neurons and central circuits and we have developed high-resolution somatosensory perception behaviours. We have previously shown that mouse primary somatosensory forepaw cortical neurons respond to both tactile and thermal stimuli and are required for non-noxious cooling perception. With multimodal neurons how, then, is it possible to both discriminate and bind thermal and tactile stimuli?
I propose 3 objectives to address this question. We will first, perform functional mapping of the thermal and tactile pathways to cortex; second, investigate the neural mechanisms of thermo-tactile discrimination in behaving mice; and third, compare neural processing during two thermo-tactile binding tasks, the first using passively applied stimuli, and the second, active manipulation of thermal objects.
At each stage we will perform cell type-specific neural recordings and causal optogenetic manipulations in awake and behaving mice. Our multi-level approach will provide a comprehensive investigation into how the brain performs multisensory perceptual binding: a fundamental yet unsolved problem in neuroscience.
Summary
Sensory perception involves the discrimination and binding of multiple modalities of sensory input. This is especially evident in the somatosensory system where different modalities of sensory input, including thermal and mechanosensory, are combined to generate a unified percept. The neural mechanisms of multisensory binding are unknown, in part because sensory perception is typically studied within a single modality in a single brain region. I propose a multi-level approach to investigate thermo-tactile processing in the mouse forepaw system from the primary sensory afferent neurons to thalamo-cortical circuits and behaviour.
The mouse forepaw system is the ideal system to investigate multisensory binding as the sensory afferent neurons are well investigated, cell type-specific lines are available, in vivo optogenetic manipulation is possible both in sensory afferent neurons and central circuits and we have developed high-resolution somatosensory perception behaviours. We have previously shown that mouse primary somatosensory forepaw cortical neurons respond to both tactile and thermal stimuli and are required for non-noxious cooling perception. With multimodal neurons how, then, is it possible to both discriminate and bind thermal and tactile stimuli?
I propose 3 objectives to address this question. We will first, perform functional mapping of the thermal and tactile pathways to cortex; second, investigate the neural mechanisms of thermo-tactile discrimination in behaving mice; and third, compare neural processing during two thermo-tactile binding tasks, the first using passively applied stimuli, and the second, active manipulation of thermal objects.
At each stage we will perform cell type-specific neural recordings and causal optogenetic manipulations in awake and behaving mice. Our multi-level approach will provide a comprehensive investigation into how the brain performs multisensory perceptual binding: a fundamental yet unsolved problem in neuroscience.
Max ERC Funding
1 999 877 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym ACOUSEQ
Project Acoustics for Next Generation Sequencing
Researcher (PI) Jonathan Mark Cooper
Host Institution (HI) UNIVERSITY OF GLASGOW
Call Details Proof of Concept (PoC), PC1, ERC-2016-PoC
Summary Since completion of the first human genome sequence, the demand for cheaper and faster sequencing methods has increased enormously. This need has driven the development of second-generation sequencing methods, or next-generation sequencing (also known as NGS or high throughput sequencing). The creation of these platforms has made sequencing accessible to more laboratories, rapidly increasing the volume of research, including clinical diagnostics and its use in directing treatment (precision medicine). The applications of NGS are also allowing rapid advances in clinically related fields such as public health and epidemiology. Such developments illustrate why sequencing is now the fastest-growing area in genomics (+23% p.a.). The activity is said to be worth $2.5B this year, and poised to reach ~$9B by 2020. In any workflow, prior to the sequencing reactions, a number of pre-sequencing steps are required, including the fragmentation of the DNA into smaller sizes for processing, size selection, library preparation and target enrichment. This proposal is specifically concerned with this latter area, namely DNA fragmentation – now widely acknowledged across the industry as being the most important technological bottleneck in the pre-sequencing workflow. Our new method for DNA fragmentation – involving using surface acoustic waves will enable sample preparation from lower sample volumes using lower powers. It also has the potential to allow the seamless integration of fragmentation into sequencing instrumentation, opening up the possibility of “sample to answer” diagnostics. In the near term this will enable the implementation of sample preparation pre-sequencing steps within the NGS instruments. In the longer term, our techniques will also enable us to develop methods for field-based DNA sequencing – as may be required for determining “microbial resistance” and informing the treatment of infectious disease in the face of the emergence of drug resistance.
Summary
Since completion of the first human genome sequence, the demand for cheaper and faster sequencing methods has increased enormously. This need has driven the development of second-generation sequencing methods, or next-generation sequencing (also known as NGS or high throughput sequencing). The creation of these platforms has made sequencing accessible to more laboratories, rapidly increasing the volume of research, including clinical diagnostics and its use in directing treatment (precision medicine). The applications of NGS are also allowing rapid advances in clinically related fields such as public health and epidemiology. Such developments illustrate why sequencing is now the fastest-growing area in genomics (+23% p.a.). The activity is said to be worth $2.5B this year, and poised to reach ~$9B by 2020. In any workflow, prior to the sequencing reactions, a number of pre-sequencing steps are required, including the fragmentation of the DNA into smaller sizes for processing, size selection, library preparation and target enrichment. This proposal is specifically concerned with this latter area, namely DNA fragmentation – now widely acknowledged across the industry as being the most important technological bottleneck in the pre-sequencing workflow. Our new method for DNA fragmentation – involving using surface acoustic waves will enable sample preparation from lower sample volumes using lower powers. It also has the potential to allow the seamless integration of fragmentation into sequencing instrumentation, opening up the possibility of “sample to answer” diagnostics. In the near term this will enable the implementation of sample preparation pre-sequencing steps within the NGS instruments. In the longer term, our techniques will also enable us to develop methods for field-based DNA sequencing – as may be required for determining “microbial resistance” and informing the treatment of infectious disease in the face of the emergence of drug resistance.
Max ERC Funding
149 995 €
Duration
Start date: 2017-05-01, End date: 2018-10-31
Project acronym ACrossWire
Project A Cross-Correlated Approach to Engineering Nitride Nanowires
Researcher (PI) Hannah Jane JOYCE
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Starting Grant (StG), PE7, ERC-2016-STG
Summary Nanowires based on group III–nitride semiconductors exhibit outstanding potential for emerging applications in energy-efficient lighting, optoelectronics and solar energy harvesting. Nitride nanowires, tailored at the nanoscale, should overcome many of the challenges facing conventional planar nitride materials, and also add extraordinary new functionality to these materials. However, progress towards III–nitride nanowire devices has been hampered by the challenges in quantifying nanowire electrical properties using conventional contact-based measurements. Without reliable electrical transport data, it is extremely difficult to optimise nanowire growth and device design. This project aims to overcome this problem through an unconventional approach: advanced contact-free electrical measurements. Contact-free measurements, growth studies, and device studies will be cross-correlated to provide unprecedented insight into the growth mechanisms that govern nanowire electronic properties and ultimately dictate device performance. A key contact-free technique at the heart of this proposal is ultrafast terahertz conductivity spectroscopy: an advanced technique ideal for probing nanowire electrical properties. We will develop new methods to enable the full suite of contact-free (including terahertz, photoluminescence and cathodoluminescence measurements) and contact-based measurements to be performed with high spatial resolution on the same nanowires. This will provide accurate, comprehensive and cross-correlated feedback to guide growth studies and expedite the targeted development of nanowires with specified functionality. We will apply this powerful approach to tailor nanowires as photoelectrodes for solar photoelectrochemical water splitting. This is an application for which nitride nanowires have outstanding, yet unfulfilled, potential. This project will thus harness the true potential of nitride nanowires and bring them to the forefront of 21st century technology.
Summary
Nanowires based on group III–nitride semiconductors exhibit outstanding potential for emerging applications in energy-efficient lighting, optoelectronics and solar energy harvesting. Nitride nanowires, tailored at the nanoscale, should overcome many of the challenges facing conventional planar nitride materials, and also add extraordinary new functionality to these materials. However, progress towards III–nitride nanowire devices has been hampered by the challenges in quantifying nanowire electrical properties using conventional contact-based measurements. Without reliable electrical transport data, it is extremely difficult to optimise nanowire growth and device design. This project aims to overcome this problem through an unconventional approach: advanced contact-free electrical measurements. Contact-free measurements, growth studies, and device studies will be cross-correlated to provide unprecedented insight into the growth mechanisms that govern nanowire electronic properties and ultimately dictate device performance. A key contact-free technique at the heart of this proposal is ultrafast terahertz conductivity spectroscopy: an advanced technique ideal for probing nanowire electrical properties. We will develop new methods to enable the full suite of contact-free (including terahertz, photoluminescence and cathodoluminescence measurements) and contact-based measurements to be performed with high spatial resolution on the same nanowires. This will provide accurate, comprehensive and cross-correlated feedback to guide growth studies and expedite the targeted development of nanowires with specified functionality. We will apply this powerful approach to tailor nanowires as photoelectrodes for solar photoelectrochemical water splitting. This is an application for which nitride nanowires have outstanding, yet unfulfilled, potential. This project will thus harness the true potential of nitride nanowires and bring them to the forefront of 21st century technology.
Max ERC Funding
1 499 195 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym AcTafactors
Project AcTafactors: Tumor Necrosis Factor-based immuno-cytokines with superior therapeutic indexes
Researcher (PI) Jan Honoré L Tavernier
Host Institution (HI) VIB
Call Details Proof of Concept (PoC), ERC-2015-PoC, ERC-2015-PoC
Summary Tumor Necrosis Factor (TNF) is a homotrimeric pro-inflammatory cytokine that was originally discovered based on its extraordinary antitumor activity. However, its shock-inducing properties, causing hypotension, leukopenia and multiple organ failure, prevented its systemic use in cancer treatment. With this proof-of-concept study we want to evaluate a novel class of cell-targeted TNFs with strongly reduced systemic toxicities (AcTafactors). In these engineered immuno-cytokines, single-chain TNFs that harbor mutations to reduce the affinity for its receptor(s) are fused to a cell- specific targeting domain. Whilst almost no biological activity is observed on non-targeted cells, thus preventing systemic toxicity, avidity effects at the targeted cell membrane lead to recovery of over 90% of the TNF signaling activity. In this project we propose a lead optimization program to further improve the lead AcTafactors identified in the context of the ERC Advanced Grant project and to evaluate the resulting molecules for their ability to target the tumor (neo)vasculature in clinically relevant murine tumor models. The pre-clinical proof-of-concept we aim for represents a first step towards clinical development and ultimately potential market approval of an effective AcTafactor anti-cancer therapy.
Summary
Tumor Necrosis Factor (TNF) is a homotrimeric pro-inflammatory cytokine that was originally discovered based on its extraordinary antitumor activity. However, its shock-inducing properties, causing hypotension, leukopenia and multiple organ failure, prevented its systemic use in cancer treatment. With this proof-of-concept study we want to evaluate a novel class of cell-targeted TNFs with strongly reduced systemic toxicities (AcTafactors). In these engineered immuno-cytokines, single-chain TNFs that harbor mutations to reduce the affinity for its receptor(s) are fused to a cell- specific targeting domain. Whilst almost no biological activity is observed on non-targeted cells, thus preventing systemic toxicity, avidity effects at the targeted cell membrane lead to recovery of over 90% of the TNF signaling activity. In this project we propose a lead optimization program to further improve the lead AcTafactors identified in the context of the ERC Advanced Grant project and to evaluate the resulting molecules for their ability to target the tumor (neo)vasculature in clinically relevant murine tumor models. The pre-clinical proof-of-concept we aim for represents a first step towards clinical development and ultimately potential market approval of an effective AcTafactor anti-cancer therapy.
Max ERC Funding
149 320 €
Duration
Start date: 2015-11-01, End date: 2017-04-30
Project acronym ACTICELL
Project Precision confiner for mechanical cell activation
Researcher (PI) Matthieu PIEL
Host Institution (HI) INSTITUT CURIE
Call Details Proof of Concept (PoC), PC1, ERC-2016-PoC
Summary In tissues, cells have their physical space constrained by neighbouring cells and extracellular matrix. In the PROMICO ERC project, our team proposed to specifically address the effect of physical confinement on normal and cancer cells that are dividing and migrating, using new pathophysiologically relevant in vitro approaches based on innovative micro-fabrication techniques. One of the devices we developed was meant to quantitatively control two key parameters of the cell environment: its geometry and its surface chemical properties. The main technical breakthrough was achieved using micro-fabricated elastomeric structures bound to a hard substrate (Le Berre Integrative Biology, 2012). The method led to important fundamental discoveries in cell biology (Lancaster Dev Cell 2013, Le Berre PRL 2013, Liu Cell 2015, Raab Science 2016). In part based on our findings, the notion that confinement is a crucial parameter for cell physiology has spread through the cell biology. Based on this, our idea is that cell confinement could be used as a powerfull cell conditioning technology, to change the cell state and offer new opportunities for fundamental research in cell biology, but also in cell therapies and drug screening. However, our current method to confine cells is not adapted to large scale cell conditioning applications, because the throughput and reliability of the device is still too low and because the recovery of cells after confinement remain poorly controlled. It is thus now timely to develop a robust and versatile cell confiner adapted to use in any cell biology lab, in academy and in industry, with no prior experience in micro-fabrication. Achieving this goal involves a complete change of technology compared to the ‘homemade’ PDMS device we have been using so far. We will also perform proofs of concept of its use for its application in cell based therapies, such as cancer immunotherapy, by testing the possibility to mechanically activate dendritic cells.
Summary
In tissues, cells have their physical space constrained by neighbouring cells and extracellular matrix. In the PROMICO ERC project, our team proposed to specifically address the effect of physical confinement on normal and cancer cells that are dividing and migrating, using new pathophysiologically relevant in vitro approaches based on innovative micro-fabrication techniques. One of the devices we developed was meant to quantitatively control two key parameters of the cell environment: its geometry and its surface chemical properties. The main technical breakthrough was achieved using micro-fabricated elastomeric structures bound to a hard substrate (Le Berre Integrative Biology, 2012). The method led to important fundamental discoveries in cell biology (Lancaster Dev Cell 2013, Le Berre PRL 2013, Liu Cell 2015, Raab Science 2016). In part based on our findings, the notion that confinement is a crucial parameter for cell physiology has spread through the cell biology. Based on this, our idea is that cell confinement could be used as a powerfull cell conditioning technology, to change the cell state and offer new opportunities for fundamental research in cell biology, but also in cell therapies and drug screening. However, our current method to confine cells is not adapted to large scale cell conditioning applications, because the throughput and reliability of the device is still too low and because the recovery of cells after confinement remain poorly controlled. It is thus now timely to develop a robust and versatile cell confiner adapted to use in any cell biology lab, in academy and in industry, with no prior experience in micro-fabrication. Achieving this goal involves a complete change of technology compared to the ‘homemade’ PDMS device we have been using so far. We will also perform proofs of concept of its use for its application in cell based therapies, such as cancer immunotherapy, by testing the possibility to mechanically activate dendritic cells.
Max ERC Funding
150 000 €
Duration
Start date: 2017-06-01, End date: 2018-11-30
Project acronym ActiveBioFluids
Project Origins of Collective Motion in Active Biofluids
Researcher (PI) Daniel TAM
Host Institution (HI) TECHNISCHE UNIVERSITEIT DELFT
Call Details Starting Grant (StG), PE3, ERC-2016-STG
Summary The emergence of coherent behaviour is ubiquitous in the natural world and has long captivated biologists and physicists alike. One area of growing interest is the collective motion and synchronization arising within and between simple motile organisms. My goal is to develop and use a novel experimental approach to unravel the origins of spontaneous coherent motion in three model systems of biofluids: (1) the synchronization of the two flagella of green algae Chlamydomonas Rheinhardtii, (2) the metachronal wave in the cilia of protist Paramecium and (3) the collective motion of swimming microorganisms in active suspensions. Understanding the mechanisms leading to collective motion is of tremendous importance because it is crucial to many biological processes such as mechanical signal transduction, embryonic development and biofilm formation.
Up till now, most of the work has been theoretical and has led to the dominant view that hydrodynamic interactions are the main driving force for synchronization and collective motion. Recent experiments have challenged this view and highlighted the importance of direct mechanical contact. New experimental studies are now crucially needed. The state-of-the-art of experimental approaches consists of observations of unperturbed cells. The key innovation in our approach is to dynamically interact with microorganisms in real-time, at the relevant time and length scales. I will investigate the origins of coherent motion by reproducing synthetically the mechanical signatures of physiological flows and direct mechanical interactions and track precisely the response of the organism to the perturbations. Our new approach will incorporate optical tweezers to interact with motile cells, and a unique μ-Tomographic PIV setup to track their 3D micron-scale motion.
This proposal tackles a timely question in biophysics and will yield new insight into the fundamental principles underlying collective motion in active biological matter.
Summary
The emergence of coherent behaviour is ubiquitous in the natural world and has long captivated biologists and physicists alike. One area of growing interest is the collective motion and synchronization arising within and between simple motile organisms. My goal is to develop and use a novel experimental approach to unravel the origins of spontaneous coherent motion in three model systems of biofluids: (1) the synchronization of the two flagella of green algae Chlamydomonas Rheinhardtii, (2) the metachronal wave in the cilia of protist Paramecium and (3) the collective motion of swimming microorganisms in active suspensions. Understanding the mechanisms leading to collective motion is of tremendous importance because it is crucial to many biological processes such as mechanical signal transduction, embryonic development and biofilm formation.
Up till now, most of the work has been theoretical and has led to the dominant view that hydrodynamic interactions are the main driving force for synchronization and collective motion. Recent experiments have challenged this view and highlighted the importance of direct mechanical contact. New experimental studies are now crucially needed. The state-of-the-art of experimental approaches consists of observations of unperturbed cells. The key innovation in our approach is to dynamically interact with microorganisms in real-time, at the relevant time and length scales. I will investigate the origins of coherent motion by reproducing synthetically the mechanical signatures of physiological flows and direct mechanical interactions and track precisely the response of the organism to the perturbations. Our new approach will incorporate optical tweezers to interact with motile cells, and a unique μ-Tomographic PIV setup to track their 3D micron-scale motion.
This proposal tackles a timely question in biophysics and will yield new insight into the fundamental principles underlying collective motion in active biological matter.
Max ERC Funding
1 500 000 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym ACTIVEPHANTOM
Project Active Organ Phantoms for Medical Robotics
Researcher (PI) Peer FISCHER
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Proof of Concept (PoC), PC1, ERC-2016-PoC
Summary Robot-assisted and minimally invasive medical procedures are impacting medical care by increasing accuracy, reducing cost, and minimizing patient discomfort and recovery times after interventions. Developers of commercial robotic surgical systems and medical device manufacturers look for realistic phantoms that can be used in place of animal experiments or cadavers to test procedures and to train medical personnel. Existing phantoms are either made from hard materials, or they lack anatomical detail, and they are mainly passive and thus unrealistic.
Here, we use recently developed fabrication know-how and expertise within our ERC-funded research to develop the first active artificial urinary tract model that includes a kidney, a bladder, and a prostate. Rapid prototyping is combined with a fabrication step that we have developed to permit the incorporation of active elements, such as a peristaltic system and fluidic valves in the phantom. We have developed smart material composites that reproduce the mechanical and haptic properties, and that give ultrasound contrast indistinguishable from real organs, while permitting anatomical details to be reproduced with a mean error of as little as 500 microns.
Feedback from a major medical device company indicates that ours is a unique phantom with unprecedented accuracy for which there is a market. Within this POC grant we want to develop a complete prototype, and to demonstrate a series of medical interventions on the phantom, including endoscopic diagnostic procedures (cystoscopy and ureterorenoscopy) and endoscopic treatment procedures (laser lithotripsy). The grant will allow us to protect our know-how, identify further markets, and develop a commercialization strategy.
Overall, this project will generate the first active phantom system that permits the testing of surgical instruments and procedures, with a sizeable market potential.
Summary
Robot-assisted and minimally invasive medical procedures are impacting medical care by increasing accuracy, reducing cost, and minimizing patient discomfort and recovery times after interventions. Developers of commercial robotic surgical systems and medical device manufacturers look for realistic phantoms that can be used in place of animal experiments or cadavers to test procedures and to train medical personnel. Existing phantoms are either made from hard materials, or they lack anatomical detail, and they are mainly passive and thus unrealistic.
Here, we use recently developed fabrication know-how and expertise within our ERC-funded research to develop the first active artificial urinary tract model that includes a kidney, a bladder, and a prostate. Rapid prototyping is combined with a fabrication step that we have developed to permit the incorporation of active elements, such as a peristaltic system and fluidic valves in the phantom. We have developed smart material composites that reproduce the mechanical and haptic properties, and that give ultrasound contrast indistinguishable from real organs, while permitting anatomical details to be reproduced with a mean error of as little as 500 microns.
Feedback from a major medical device company indicates that ours is a unique phantom with unprecedented accuracy for which there is a market. Within this POC grant we want to develop a complete prototype, and to demonstrate a series of medical interventions on the phantom, including endoscopic diagnostic procedures (cystoscopy and ureterorenoscopy) and endoscopic treatment procedures (laser lithotripsy). The grant will allow us to protect our know-how, identify further markets, and develop a commercialization strategy.
Overall, this project will generate the first active phantom system that permits the testing of surgical instruments and procedures, with a sizeable market potential.
Max ERC Funding
150 000 €
Duration
Start date: 2017-03-01, End date: 2018-08-31
Project acronym AD-HOC
Project Artificial Dielectrics for High-frequency On-Chip antennas
Researcher (PI) Andrea Neto
Host Institution (HI) TECHNISCHE UNIVERSITEIT DELFT
Call Details Proof of Concept (PoC), PC1, ERC-2015-PoC
Summary High-speed wireless communication and automotive radars are two applications with huge social and market potentials that can be revolutionized by the development of high-frequency (sub-terahertz) technology. Despite the recent advances in low-cost integrated circuits, the poor performance of on-chip antennas is nowadays the major bottleneck in converting the electrical signals (on-chip) into radiated ones (off-chip). For decades the problem of “surface waves” has prevented the efficient use of radiators on chip.
The AD-HOC project aims at exploiting the breakthrough technology of Artificial Dielectric (AD) layers as the solution to the surface-wave problem of High-frequency On-Chip antennas. The processes necessary to micro-fabricate AD layers will be optimized with the goal of achieving reliable manufacturing, while offering design flexibility at low costs. This will allow the wide exploitation of the AD layers, as they can be used by industrial technology providers as add-on components to at least double the efficiency of their integrated circuit front ends.
By overcoming the fundamental limitation of integrated antennas, AD layers have high potential to become a “standard” component in all future car-safety and wireless-communication devices. The AD-HOC project will bring this innovative technology to a pre-demonstration stage to strengthen commercialization and scaling-up opportunities.
Summary
High-speed wireless communication and automotive radars are two applications with huge social and market potentials that can be revolutionized by the development of high-frequency (sub-terahertz) technology. Despite the recent advances in low-cost integrated circuits, the poor performance of on-chip antennas is nowadays the major bottleneck in converting the electrical signals (on-chip) into radiated ones (off-chip). For decades the problem of “surface waves” has prevented the efficient use of radiators on chip.
The AD-HOC project aims at exploiting the breakthrough technology of Artificial Dielectric (AD) layers as the solution to the surface-wave problem of High-frequency On-Chip antennas. The processes necessary to micro-fabricate AD layers will be optimized with the goal of achieving reliable manufacturing, while offering design flexibility at low costs. This will allow the wide exploitation of the AD layers, as they can be used by industrial technology providers as add-on components to at least double the efficiency of their integrated circuit front ends.
By overcoming the fundamental limitation of integrated antennas, AD layers have high potential to become a “standard” component in all future car-safety and wireless-communication devices. The AD-HOC project will bring this innovative technology to a pre-demonstration stage to strengthen commercialization and scaling-up opportunities.
Max ERC Funding
150 000 €
Duration
Start date: 2016-09-01, End date: 2018-02-28
Project acronym AD-VIP
Project Alzheimer’s disease and AAV9: Use of a virus-based delivery system for vectored immunoprophylaxis in dementia.
Researcher (PI) MATTHEW GUY HOLT
Host Institution (HI) VIB
Call Details Proof of Concept (PoC), PC1, ERC-2015-PoC
Summary Alzheimer’s disease (AD) is the most common form of dementia in the Western World, representing an economic and social cost of billions of euros a year. Given the changing demographics of society, these costs will only increase over the coming decades.
Amyloid plaques, composed of amyloid beta peptide (Abeta), are a defining characteristic of AD. Evidence now suggests that Abeta is central to disease pathogenesis due to its toxicity, which leads to cell loss and eventual cognitive decline. Abeta is generated by proteolytic cleavage of amyloid precursor protein, a process that involves the protein BACE1.
Knock-down of BACE1 is sufficient to prevent amyloid pathology and cognitive deficits in transgenic mouse models of AD, so BACE1 is an attractive target for therapeutic intervention. Although many small molecule inhibitors of BACE1 have been developed, many have problems with imperfect selectivity, posing a substantial risk for off-target toxicity in vivo. In contrast, antibody-based therapeutics provide an attractive alternative given their excellent molecular selectivity. However, the success of antibody therapies in AD is limited by the blood brain barrier, which limits antibody entry into the brain from the systemic circulation.
Recent studies have shown that adeno-associated virus serotype 9 (AAV9) effectively crosses the blood brain barrier. Here, we propose evaluating the use of AAV9 as a delivery system for a highly specific and potent inhibitory nanobody targeted against BACE1 as a treatment for AD.
Summary
Alzheimer’s disease (AD) is the most common form of dementia in the Western World, representing an economic and social cost of billions of euros a year. Given the changing demographics of society, these costs will only increase over the coming decades.
Amyloid plaques, composed of amyloid beta peptide (Abeta), are a defining characteristic of AD. Evidence now suggests that Abeta is central to disease pathogenesis due to its toxicity, which leads to cell loss and eventual cognitive decline. Abeta is generated by proteolytic cleavage of amyloid precursor protein, a process that involves the protein BACE1.
Knock-down of BACE1 is sufficient to prevent amyloid pathology and cognitive deficits in transgenic mouse models of AD, so BACE1 is an attractive target for therapeutic intervention. Although many small molecule inhibitors of BACE1 have been developed, many have problems with imperfect selectivity, posing a substantial risk for off-target toxicity in vivo. In contrast, antibody-based therapeutics provide an attractive alternative given their excellent molecular selectivity. However, the success of antibody therapies in AD is limited by the blood brain barrier, which limits antibody entry into the brain from the systemic circulation.
Recent studies have shown that adeno-associated virus serotype 9 (AAV9) effectively crosses the blood brain barrier. Here, we propose evaluating the use of AAV9 as a delivery system for a highly specific and potent inhibitory nanobody targeted against BACE1 as a treatment for AD.
Max ERC Funding
150 000 €
Duration
Start date: 2016-12-01, End date: 2018-05-31
Project acronym AdaSmartRes
Project Adapter for a commercial grade camera or a smart phone to perform depth resolved imaging
Researcher (PI) Adrian PODOLEANU
Host Institution (HI) UNIVERSITY OF KENT
Call Details Proof of Concept (PoC), PC1, ERC-2016-PoC
Summary The proposal refers to a patented adapter that can transform a commercial grade digital camera or the camera in a smart phone into a depth resolved imaging instrument. Several adapters will be assembled, making use of optical coherence tomography (OCT) technology protected by some other of PI’s patents. The activity takes advantage of recent progress in commercial grade cameras in terms of their modes of operation as well as in terms of parameters of their devices, such as sensitivity and speed of their photodetector arrays.
Three versions of low cost functional OCT systems will be assembled as proof of concepts responding to needs of three possible markets that can be addressed by such an adapter: 1. En-face depth resolved, high transversal resolution microscope; 2. Fast cross sectioning imager. 3. Swept source volumetric analyser.
Industrial input comes from a company involved in professional eye imaging systems, a company already selling adapters for smart phones to perform medical imaging, a company specialised in digital photographic equipment and a company efficient in prototyping photonics equipment and handling medical images. Clinical input is provided by two specialists in the two highest potential medical imaging markets of the adapter serving ophthalmology and ear, nose and throat speciality.
Summary
The proposal refers to a patented adapter that can transform a commercial grade digital camera or the camera in a smart phone into a depth resolved imaging instrument. Several adapters will be assembled, making use of optical coherence tomography (OCT) technology protected by some other of PI’s patents. The activity takes advantage of recent progress in commercial grade cameras in terms of their modes of operation as well as in terms of parameters of their devices, such as sensitivity and speed of their photodetector arrays.
Three versions of low cost functional OCT systems will be assembled as proof of concepts responding to needs of three possible markets that can be addressed by such an adapter: 1. En-face depth resolved, high transversal resolution microscope; 2. Fast cross sectioning imager. 3. Swept source volumetric analyser.
Industrial input comes from a company involved in professional eye imaging systems, a company already selling adapters for smart phones to perform medical imaging, a company specialised in digital photographic equipment and a company efficient in prototyping photonics equipment and handling medical images. Clinical input is provided by two specialists in the two highest potential medical imaging markets of the adapter serving ophthalmology and ear, nose and throat speciality.
Max ERC Funding
149 300 €
Duration
Start date: 2017-06-01, End date: 2018-11-30
Project acronym ADIPODIF
Project Adipocyte Differentiation and Metabolic Functions in Obesity and Type 2 Diabetes
Researcher (PI) Christian Wolfrum
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Starting Grant (StG), LS6, ERC-2007-StG
Summary Obesity associated disorders such as T2D, hypertension and CVD, commonly referred to as the “metabolic syndrome”, are prevalent diseases of industrialized societies. Deranged adipose tissue proliferation and differentiation contribute significantly to the development of these metabolic disorders. Comparatively little however is known, about how these processes influence the development of metabolic disorders. Using a multidisciplinary approach, I plan to elucidate molecular mechanisms underlying the altered adipocyte differentiation and maturation in different models of obesity associated metabolic disorders. Special emphasis will be given to the analysis of gene expression, postranslational modifications and lipid molecular species composition. To achieve this goal, I am establishing several novel methods to isolate pure primary preadipocytes including a new animal model that will allow me to monitor preadipocytes, in vivo and track their cellular fate in the context of a complete organism. These systems will allow, for the first time to study preadipocyte biology, in an in vivo setting. By monitoring preadipocyte differentiation in vivo, I will also be able to answer the key questions regarding the development of preadipocytes and examine signals that induce or inhibit their differentiation. Using transplantation techniques, I will elucidate the genetic and environmental contributions to the progression of obesity and its associated metabolic disorders. Furthermore, these studies will integrate a lipidomics approach to systematically analyze lipid molecular species composition in different models of metabolic disorders. My studies will provide new insights into the mechanisms and dynamics underlying adipocyte differentiation and maturation, and relate them to metabolic disorders. Detailed knowledge of these mechanisms will facilitate development of novel therapeutic approaches for the treatment of obesity and associated metabolic disorders.
Summary
Obesity associated disorders such as T2D, hypertension and CVD, commonly referred to as the “metabolic syndrome”, are prevalent diseases of industrialized societies. Deranged adipose tissue proliferation and differentiation contribute significantly to the development of these metabolic disorders. Comparatively little however is known, about how these processes influence the development of metabolic disorders. Using a multidisciplinary approach, I plan to elucidate molecular mechanisms underlying the altered adipocyte differentiation and maturation in different models of obesity associated metabolic disorders. Special emphasis will be given to the analysis of gene expression, postranslational modifications and lipid molecular species composition. To achieve this goal, I am establishing several novel methods to isolate pure primary preadipocytes including a new animal model that will allow me to monitor preadipocytes, in vivo and track their cellular fate in the context of a complete organism. These systems will allow, for the first time to study preadipocyte biology, in an in vivo setting. By monitoring preadipocyte differentiation in vivo, I will also be able to answer the key questions regarding the development of preadipocytes and examine signals that induce or inhibit their differentiation. Using transplantation techniques, I will elucidate the genetic and environmental contributions to the progression of obesity and its associated metabolic disorders. Furthermore, these studies will integrate a lipidomics approach to systematically analyze lipid molecular species composition in different models of metabolic disorders. My studies will provide new insights into the mechanisms and dynamics underlying adipocyte differentiation and maturation, and relate them to metabolic disorders. Detailed knowledge of these mechanisms will facilitate development of novel therapeutic approaches for the treatment of obesity and associated metabolic disorders.
Max ERC Funding
1 607 105 €
Duration
Start date: 2008-07-01, End date: 2013-06-30
Project acronym ADJUV-ANT VACCINES
Project Elucidating the Molecular Mechanisms of Synthetic Saponin Adjuvants and Development of Novel Self-Adjuvanting Vaccines
Researcher (PI) Alberto FERNANDEZ TEJADA
Host Institution (HI) ASOCIACION CENTRO DE INVESTIGACION COOPERATIVA EN BIOCIENCIAS
Call Details Starting Grant (StG), PE5, ERC-2016-STG
Summary The clinical success of anticancer and antiviral vaccines often requires the use of an adjuvant, a substance that helps stimulate the body’s immune response to the vaccine, making it work better. However, few adjuvants are sufficiently potent and non-toxic for clinical use; moreover, it is not really known how they work. Current vaccine approaches based on weak carbohydrate and glycopeptide antigens are not being particularly effective to induce the human immune system to mount an effective fight against cancer. Despite intensive research and several clinical trials, no such carbohydrate-based antitumor vaccine has yet been approved for public use. In this context, the proposed project has a double, ultimate goal based on applying chemistry to address the above clear gaps in the adjuvant-vaccine field. First, I will develop new improved adjuvants and novel chemical strategies towards more effective, self-adjuvanting synthetic vaccines. Second, I will probe deeply into the molecular mechanisms of the synthetic constructs by combining extensive immunological evaluations with molecular target identification and detailed conformational studies. Thus, the singularity of this multidisciplinary proposal stems from the integration of its main objectives and approaches connecting chemical synthesis and chemical/structural biology with cellular and molecular immunology. This ground-breaking project at the chemistry-biology frontier will allow me to establish my own independent research group and explore key unresolved mechanistic questions in the adjuvant/vaccine arena with extraordinary chemical precision. Therefore, with this transformative and timely research program I aim to (a) develop novel synthetic antitumor and antiviral vaccines with improved properties and efficacy for their prospective translation into the clinic and (b) gain new critical insights into the molecular basis and three-dimensional structure underlying the biological activity of these constructs.
Summary
The clinical success of anticancer and antiviral vaccines often requires the use of an adjuvant, a substance that helps stimulate the body’s immune response to the vaccine, making it work better. However, few adjuvants are sufficiently potent and non-toxic for clinical use; moreover, it is not really known how they work. Current vaccine approaches based on weak carbohydrate and glycopeptide antigens are not being particularly effective to induce the human immune system to mount an effective fight against cancer. Despite intensive research and several clinical trials, no such carbohydrate-based antitumor vaccine has yet been approved for public use. In this context, the proposed project has a double, ultimate goal based on applying chemistry to address the above clear gaps in the adjuvant-vaccine field. First, I will develop new improved adjuvants and novel chemical strategies towards more effective, self-adjuvanting synthetic vaccines. Second, I will probe deeply into the molecular mechanisms of the synthetic constructs by combining extensive immunological evaluations with molecular target identification and detailed conformational studies. Thus, the singularity of this multidisciplinary proposal stems from the integration of its main objectives and approaches connecting chemical synthesis and chemical/structural biology with cellular and molecular immunology. This ground-breaking project at the chemistry-biology frontier will allow me to establish my own independent research group and explore key unresolved mechanistic questions in the adjuvant/vaccine arena with extraordinary chemical precision. Therefore, with this transformative and timely research program I aim to (a) develop novel synthetic antitumor and antiviral vaccines with improved properties and efficacy for their prospective translation into the clinic and (b) gain new critical insights into the molecular basis and three-dimensional structure underlying the biological activity of these constructs.
Max ERC Funding
1 499 219 €
Duration
Start date: 2017-03-01, End date: 2022-02-28
Project acronym AdOMiS
Project Adaptive Optical Microscopy Systems: Unifying theory, practice and applications
Researcher (PI) Martin BOOTH
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Advanced Grant (AdG), PE7, ERC-2015-AdG
Summary Recent technological advances in optical microscopy have vastly broadened the possibilities for applications in the biomedical sciences. Fluorescence microscopy is the central tool for investigation of molecular structures and dynamics that take place in the cellular and tissue environment. Coupled with progress in labeling methods, these microscopes permit observation of biological structures and processes with unprecedented sensitivity and resolution. This work has been enabled by the engineering development of diverse optical systems that provide different capabilities for the imaging toolkit. All such methods rely upon high fidelity optics to provide optimal resolution and efficiency, but they all suffer from aberrations caused by refractive index variations within the specimen. It is widely accepted that in many applications this fundamental problem prevents optimum operation and limits capability. Adaptive optics (AO) has been introduced to overcome these limitations by correcting aberrations and a range of demonstrations has shown clearly its potential. Indeed, it shows great promise to improve virtually all types of research or commercial microscopes, but significant challenges must still be met before AO can be widely implemented in routine imaging. Current advances are being made through development of bespoke AO solutions to individual imaging tasks. However, the diversity of microscopy methods means that individual solutions are often not translatable to other systems. This proposal is directed towards the creation of theoretical and practical frameworks that tie together AO concepts and provide a suite of scientific tools with broad application. This will be achieved through a systems approach that encompasses theoretical modelling, optical engineering and the requirements of biological applications. Additional outputs will include practical designs, operating protocols and software algorithms that will support next generation AO microscope systems.
Summary
Recent technological advances in optical microscopy have vastly broadened the possibilities for applications in the biomedical sciences. Fluorescence microscopy is the central tool for investigation of molecular structures and dynamics that take place in the cellular and tissue environment. Coupled with progress in labeling methods, these microscopes permit observation of biological structures and processes with unprecedented sensitivity and resolution. This work has been enabled by the engineering development of diverse optical systems that provide different capabilities for the imaging toolkit. All such methods rely upon high fidelity optics to provide optimal resolution and efficiency, but they all suffer from aberrations caused by refractive index variations within the specimen. It is widely accepted that in many applications this fundamental problem prevents optimum operation and limits capability. Adaptive optics (AO) has been introduced to overcome these limitations by correcting aberrations and a range of demonstrations has shown clearly its potential. Indeed, it shows great promise to improve virtually all types of research or commercial microscopes, but significant challenges must still be met before AO can be widely implemented in routine imaging. Current advances are being made through development of bespoke AO solutions to individual imaging tasks. However, the diversity of microscopy methods means that individual solutions are often not translatable to other systems. This proposal is directed towards the creation of theoretical and practical frameworks that tie together AO concepts and provide a suite of scientific tools with broad application. This will be achieved through a systems approach that encompasses theoretical modelling, optical engineering and the requirements of biological applications. Additional outputs will include practical designs, operating protocols and software algorithms that will support next generation AO microscope systems.
Max ERC Funding
3 234 789 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym ADONIS
Project Attosecond Dynamics On Interfaces and Solids
Researcher (PI) Reinhard Kienberger
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), PE2, ERC-2007-StG
Summary New insight into ever smaller microscopic units of matter as well as in ever faster evolving chemical, physical or atomic processes pushes the frontiers in many fields in science. Pump/probe experiments turned out to be the most direct approach to time-domain investigations of fast-evolving microscopic processes. Accessing atomic and molecular inner-shell processes directly in the time-domain requires a combination of short wavelengths in the few hundred eV range and sub-femtosecond pulse duration. The concept of light-field-controlled XUV photoemission employs an XUV pulse achieved by High-order Harmonic Generation (HHG) as a pump and the light pulse as a probe or vice versa. The basic prerequisite, namely the generation and measurement of isolated sub-femtosecond XUV pulses synchronized to a strong few-cycle light pulse with attosecond precision, opens up a route to time-resolved inner-shell atomic and molecular spectroscopy with present day sources. Studies of attosecond electronic motion (1 as = 10-18 s) in solids and on surfaces and interfaces have until now remained out of reach. The unprecedented time resolution of the aforementioned technique will enable for the first time monitoring of sub-fs dynamics of such systems in the time domain. These dynamics – of electronic excitation, relaxation, and wave packet motion – are of broad scientific interest and pertinent to the development of many modern technologies including semiconductor and molecular electronics, optoelectronics, information processing, photovoltaics, and optical nano-structuring. The purpose of this project is to investigate phenomena like the temporal evolution of direct photoemission, interference effects in resonant photoemission, fast adsorbate-substrate charge transfer, and electronic dynamics in supramolecular assemblies, in a series of experiments in order to overcome the temporal limits of measurements in solid state physics and to better understand processes in microcosm.
Summary
New insight into ever smaller microscopic units of matter as well as in ever faster evolving chemical, physical or atomic processes pushes the frontiers in many fields in science. Pump/probe experiments turned out to be the most direct approach to time-domain investigations of fast-evolving microscopic processes. Accessing atomic and molecular inner-shell processes directly in the time-domain requires a combination of short wavelengths in the few hundred eV range and sub-femtosecond pulse duration. The concept of light-field-controlled XUV photoemission employs an XUV pulse achieved by High-order Harmonic Generation (HHG) as a pump and the light pulse as a probe or vice versa. The basic prerequisite, namely the generation and measurement of isolated sub-femtosecond XUV pulses synchronized to a strong few-cycle light pulse with attosecond precision, opens up a route to time-resolved inner-shell atomic and molecular spectroscopy with present day sources. Studies of attosecond electronic motion (1 as = 10-18 s) in solids and on surfaces and interfaces have until now remained out of reach. The unprecedented time resolution of the aforementioned technique will enable for the first time monitoring of sub-fs dynamics of such systems in the time domain. These dynamics – of electronic excitation, relaxation, and wave packet motion – are of broad scientific interest and pertinent to the development of many modern technologies including semiconductor and molecular electronics, optoelectronics, information processing, photovoltaics, and optical nano-structuring. The purpose of this project is to investigate phenomena like the temporal evolution of direct photoemission, interference effects in resonant photoemission, fast adsorbate-substrate charge transfer, and electronic dynamics in supramolecular assemblies, in a series of experiments in order to overcome the temporal limits of measurements in solid state physics and to better understand processes in microcosm.
Max ERC Funding
1 296 000 €
Duration
Start date: 2008-10-01, End date: 2013-09-30
Project acronym ADORA
Project Asymptotic approach to spatial and dynamical organizations
Researcher (PI) Benoit PERTHAME
Host Institution (HI) SORBONNE UNIVERSITE
Call Details Advanced Grant (AdG), PE1, ERC-2016-ADG
Summary The understanding of spatial, social and dynamical organization of large numbers of agents is presently a fundamental issue in modern science. ADORA focuses on problems motivated by biology because, more than anywhere else, access to precise and many data has opened the route to novel and complex biomathematical models. The problems we address are written in terms of nonlinear partial differential equations. The flux-limited Keller-Segel system, the integrate-and-fire Fokker-Planck equation, kinetic equations with internal state, nonlocal parabolic equations and constrained Hamilton-Jacobi equations are among examples of the equations under investigation.
The role of mathematics is not only to understand the analytical structure of these new problems, but it is also to explain the qualitative behavior of solutions and to quantify their properties. The challenge arises here because these goals should be achieved through a hierarchy of scales. Indeed, the problems under consideration share the common feature that the large scale behavior cannot be understood precisely without access to a hierarchy of finer scales, down to the individual behavior and sometimes its molecular determinants.
Major difficulties arise because the numerous scales present in these equations have to be discovered and singularities appear in the asymptotic process which yields deep compactness obstructions. Our vision is that the complexity inherent to models of biology can be enlightened by mathematical analysis and a classification of the possible asymptotic regimes.
However an enormous effort is needed to uncover the equations intimate mathematical structures, and bring them at the level of conceptual understanding they deserve being given the applications motivating these questions which range from medical science or neuroscience to cell biology.
Summary
The understanding of spatial, social and dynamical organization of large numbers of agents is presently a fundamental issue in modern science. ADORA focuses on problems motivated by biology because, more than anywhere else, access to precise and many data has opened the route to novel and complex biomathematical models. The problems we address are written in terms of nonlinear partial differential equations. The flux-limited Keller-Segel system, the integrate-and-fire Fokker-Planck equation, kinetic equations with internal state, nonlocal parabolic equations and constrained Hamilton-Jacobi equations are among examples of the equations under investigation.
The role of mathematics is not only to understand the analytical structure of these new problems, but it is also to explain the qualitative behavior of solutions and to quantify their properties. The challenge arises here because these goals should be achieved through a hierarchy of scales. Indeed, the problems under consideration share the common feature that the large scale behavior cannot be understood precisely without access to a hierarchy of finer scales, down to the individual behavior and sometimes its molecular determinants.
Major difficulties arise because the numerous scales present in these equations have to be discovered and singularities appear in the asymptotic process which yields deep compactness obstructions. Our vision is that the complexity inherent to models of biology can be enlightened by mathematical analysis and a classification of the possible asymptotic regimes.
However an enormous effort is needed to uncover the equations intimate mathematical structures, and bring them at the level of conceptual understanding they deserve being given the applications motivating these questions which range from medical science or neuroscience to cell biology.
Max ERC Funding
2 192 500 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym ADSNeSP
Project Active and Driven Systems: Nonequilibrium Statistical Physics
Researcher (PI) Michael Elmhirst CATES
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Advanced Grant (AdG), PE3, ERC-2016-ADG
Summary Active Matter systems, such as self-propelled colloids, violate time-reversal symmetry by producing entropy locally, typically converting fuel into mechanical motion at the particle scale. Other driven systems instead produce entropy because of global forcing by external fields, or boundary conditions that impose macroscopic fluxes (such as the momentum flux across a fluid sheared between moving parallel walls).
Nonequilibrium statistical physics (NeSP) is the basic toolbox for both classes of system. In recent years, much progress in NeSP has stemmed from bottom-up work on driven systems. This has provided a number of exactly solved benchmark models, and extended approximation techniques to address driven non-ergodic systems, such as sheared glasses. Meanwhile, work on fluctuation theorems and stochastic thermodynamics have created profound, model-independent insights into dynamics far from equilibrium.
More recently, the field of Active Matter has moved forward rapidly, leaving in its wake a series of generic and profound NeSP questions that now need answers: When is time-reversal symmetry, broken at the microscale, restored by coarse-graining? If it is restored, is an effective thermodynamic description is possible? How different is an active system's behaviour from a globally forced one?
ADSNeSP aims to distil from recent Active Matter research such fundamental questions; answer them first in the context of specific models and second in more general terms; and then, using the tools and insights gained, shed new light on longstanding problems in the wider class of driven systems.
I believe these new tools and insights will be substantial, because local activity takes systems far from equilibrium in a conceptually distinct direction from most types of global driving. By focusing on general principles and on simple models of activity, I seek to create a new vantage point that can inform, and potentially transform, wider areas of statistical physics.
Summary
Active Matter systems, such as self-propelled colloids, violate time-reversal symmetry by producing entropy locally, typically converting fuel into mechanical motion at the particle scale. Other driven systems instead produce entropy because of global forcing by external fields, or boundary conditions that impose macroscopic fluxes (such as the momentum flux across a fluid sheared between moving parallel walls).
Nonequilibrium statistical physics (NeSP) is the basic toolbox for both classes of system. In recent years, much progress in NeSP has stemmed from bottom-up work on driven systems. This has provided a number of exactly solved benchmark models, and extended approximation techniques to address driven non-ergodic systems, such as sheared glasses. Meanwhile, work on fluctuation theorems and stochastic thermodynamics have created profound, model-independent insights into dynamics far from equilibrium.
More recently, the field of Active Matter has moved forward rapidly, leaving in its wake a series of generic and profound NeSP questions that now need answers: When is time-reversal symmetry, broken at the microscale, restored by coarse-graining? If it is restored, is an effective thermodynamic description is possible? How different is an active system's behaviour from a globally forced one?
ADSNeSP aims to distil from recent Active Matter research such fundamental questions; answer them first in the context of specific models and second in more general terms; and then, using the tools and insights gained, shed new light on longstanding problems in the wider class of driven systems.
I believe these new tools and insights will be substantial, because local activity takes systems far from equilibrium in a conceptually distinct direction from most types of global driving. By focusing on general principles and on simple models of activity, I seek to create a new vantage point that can inform, and potentially transform, wider areas of statistical physics.
Max ERC Funding
2 043 630 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym AEDNA
Project Amorphous and Evolutionary DNA Nanotechnology
Researcher (PI) Friedrich SIMMEL
Host Institution (HI) TECHNISCHE UNIVERSITAET MUENCHEN
Call Details Advanced Grant (AdG), PE5, ERC-2015-AdG
Summary Amorphous and evolutionary DNA nanotechnology (AEDNA) explores novel conceptual directions and applications for DNA nanotechnology, which are based on intelligent, DNA-programmed soft hybrid materials, and the utilization of evolutionary principles for the optimization of nucleic acid nanocomponents.
Amorphous DNA nanotechnology first aims at the creation of cell-sized, DNA-programmed microgels – DNA cells – with sensor, computation, communication, and actuator functions. Interacting DNA cells will be arranged into chemical cell consortia and artificial tissues using microfluidics, micromanipulation and 3D bioprinting techniques. Spatially distributed chemical circuits will then be utilized to establish collective behaviors such as quorum sensing, pattern formation, and self-differentiation within these consortia and tissues. The approach will be further scaled up to produce multicomponent DNA gel compositions that become active and differentiate upon mixing.
In evolutionary nanotechnology, techniques derived from directed molecular evolution experiments will be applied to optimize the arrangement of functional nucleic acids on DNA and RNA nanoscaffolds. Compartmentalization and microfluidics will be utilized to screen for nucleic acid nanostructures capable of superstructure formation, and also for the development of ligand-sensitive components for molecular programming. An evolutionary approach will then be applied to amorphous DNA cells, resulting in DNA cell populations which contain individuals with different molecular identities.
The proposal will pave the way for the creation of macroscopic materials with DNA-programmed intelligence, resulting in novel applications for DNA nanotechnology and molecular programming in diverse fields such as environmental and biological sensing, biocatalysis, smart adaptive materials, and soft robotics.
Summary
Amorphous and evolutionary DNA nanotechnology (AEDNA) explores novel conceptual directions and applications for DNA nanotechnology, which are based on intelligent, DNA-programmed soft hybrid materials, and the utilization of evolutionary principles for the optimization of nucleic acid nanocomponents.
Amorphous DNA nanotechnology first aims at the creation of cell-sized, DNA-programmed microgels – DNA cells – with sensor, computation, communication, and actuator functions. Interacting DNA cells will be arranged into chemical cell consortia and artificial tissues using microfluidics, micromanipulation and 3D bioprinting techniques. Spatially distributed chemical circuits will then be utilized to establish collective behaviors such as quorum sensing, pattern formation, and self-differentiation within these consortia and tissues. The approach will be further scaled up to produce multicomponent DNA gel compositions that become active and differentiate upon mixing.
In evolutionary nanotechnology, techniques derived from directed molecular evolution experiments will be applied to optimize the arrangement of functional nucleic acids on DNA and RNA nanoscaffolds. Compartmentalization and microfluidics will be utilized to screen for nucleic acid nanostructures capable of superstructure formation, and also for the development of ligand-sensitive components for molecular programming. An evolutionary approach will then be applied to amorphous DNA cells, resulting in DNA cell populations which contain individuals with different molecular identities.
The proposal will pave the way for the creation of macroscopic materials with DNA-programmed intelligence, resulting in novel applications for DNA nanotechnology and molecular programming in diverse fields such as environmental and biological sensing, biocatalysis, smart adaptive materials, and soft robotics.
Max ERC Funding
2 157 698 €
Duration
Start date: 2016-06-01, End date: 2021-05-31
Project acronym AFDMATS
Project Anton Francesco Doni – Multimedia Archive Texts and Sources
Researcher (PI) Giovanna Rizzarelli
Host Institution (HI) SCUOLA NORMALE SUPERIORE
Call Details Starting Grant (StG), SH4, ERC-2007-StG
Summary This project aims at creating a multimedia archive of the printed works of Anton Francesco Doni, who was not only an author but also a typographer, a publisher and a member of the Giolito and Marcolini’s editorial staff. The analysis of Doni’s work may be a good way to investigate appropriation, text rewriting and image reusing practices which are typical of several authors of the 16th Century, as clearly shown by the critics in the last decades. This project intends to bring to light the wide range of impulses from which Doni’s texts are generated, with a great emphasis on the figurative aspect. The encoding of these texts will be carried out using the TEI (Text Encoding Initiative) guidelines, which will enable any single text to interact with a range of intertextual references both at a local level (inside the same text) and at a macrostructural level (references to other texts by Doni or to other authors). The elements that will emerge from the textual encoding concern: A) The use of images Real images: the complex relation between Doni’s writing and the xylographies available in Marcolini’s printing-house or belonging to other collections. Mental images: the remarkable presence of verbal images, as descriptions, ekphràseis, figurative visions, dreams and iconographic allusions not accompanied by illustrations, but related to a recognizable visual repertoire or to real images that will be reproduced. B) The use of sources A parallel archive of the texts most used by Doni will be created. Digital anastatic reproductions of the 16th-Century editions known by Doni will be provided whenever available. The various forms of intertextuality will be divided into the following typologies: allusions; citations; rewritings; plagiarisms; self-quotations. Finally, the different forms of narrative (tales, short stories, anecdotes, lyrics) and the different idiomatic expressions (proverbial forms and wellerisms) will also be encoded.
Summary
This project aims at creating a multimedia archive of the printed works of Anton Francesco Doni, who was not only an author but also a typographer, a publisher and a member of the Giolito and Marcolini’s editorial staff. The analysis of Doni’s work may be a good way to investigate appropriation, text rewriting and image reusing practices which are typical of several authors of the 16th Century, as clearly shown by the critics in the last decades. This project intends to bring to light the wide range of impulses from which Doni’s texts are generated, with a great emphasis on the figurative aspect. The encoding of these texts will be carried out using the TEI (Text Encoding Initiative) guidelines, which will enable any single text to interact with a range of intertextual references both at a local level (inside the same text) and at a macrostructural level (references to other texts by Doni or to other authors). The elements that will emerge from the textual encoding concern: A) The use of images Real images: the complex relation between Doni’s writing and the xylographies available in Marcolini’s printing-house or belonging to other collections. Mental images: the remarkable presence of verbal images, as descriptions, ekphràseis, figurative visions, dreams and iconographic allusions not accompanied by illustrations, but related to a recognizable visual repertoire or to real images that will be reproduced. B) The use of sources A parallel archive of the texts most used by Doni will be created. Digital anastatic reproductions of the 16th-Century editions known by Doni will be provided whenever available. The various forms of intertextuality will be divided into the following typologies: allusions; citations; rewritings; plagiarisms; self-quotations. Finally, the different forms of narrative (tales, short stories, anecdotes, lyrics) and the different idiomatic expressions (proverbial forms and wellerisms) will also be encoded.
Max ERC Funding
559 200 €
Duration
Start date: 2008-08-01, End date: 2012-07-31
Project acronym AFFORDS-HIGHER
Project Skilled Intentionality for 'Higher' Embodied Cognition: Joining forces with a field of affordances in flux
Researcher (PI) Dirk Willem Rietveld
Host Institution (HI) ACADEMISCH MEDISCH CENTRUM BIJ DE UNIVERSITEIT VAN AMSTERDAM
Call Details Starting Grant (StG), SH4, ERC-2015-STG
Summary In many situations experts act adequately, yet without deliberation. Architects e.g, immediately sense opportunities offered by the site of a new project. One could label these manifestations of expert intuition as ‘higher-level’ cognition, but still these experts act unreflectively. The aim of my project is to develop the Skilled Intentionality Framework (SIF), a new conceptual framework for the field of embodied/enactive cognitive science (Chemero, 2009; Thompson, 2007). I argue that affordances - possibilities for action provided by our surroundings - are highly significant in cases of unreflective and reflective ‘higher’ cognition. Skilled Intentionality is skilled coordination with multiple affordances simultaneously.
The two central ideas behind this proposal are (a) that episodes of skilled ‘higher’ cognition can be understood as responsiveness to affordances for ‘higher’ cognition and (b) that our surroundings are highly resourceful and contribute to skillful action and cognition in a far more fundamental way than is generally acknowledged. I use embedded philosophical research in a particular practice of architecture to shed new light on the ways in which affordances for ‘higher’ cognition support creative imagination, anticipation, explicit planning and self-reflection.
The Skilled Intentionality Framework is groundbreaking in relating findings established at several complementary levels of analysis: philosophy/phenomenology, ecological psychology, affective science and neurodynamics.
Empirical findings thought to be exclusively valid for everyday unreflective action can now be used to explain skilled ‘higher’ cognition as well. Moreover, SIF brings both the context and the social back into cognitive science. I will show SIF’s relevance for Friston’s work on the anticipating brain, and apply it in the domain of architecture and public health. SIF will radically widen the scope of the increasingly influential field of embodied cognitive science.
Summary
In many situations experts act adequately, yet without deliberation. Architects e.g, immediately sense opportunities offered by the site of a new project. One could label these manifestations of expert intuition as ‘higher-level’ cognition, but still these experts act unreflectively. The aim of my project is to develop the Skilled Intentionality Framework (SIF), a new conceptual framework for the field of embodied/enactive cognitive science (Chemero, 2009; Thompson, 2007). I argue that affordances - possibilities for action provided by our surroundings - are highly significant in cases of unreflective and reflective ‘higher’ cognition. Skilled Intentionality is skilled coordination with multiple affordances simultaneously.
The two central ideas behind this proposal are (a) that episodes of skilled ‘higher’ cognition can be understood as responsiveness to affordances for ‘higher’ cognition and (b) that our surroundings are highly resourceful and contribute to skillful action and cognition in a far more fundamental way than is generally acknowledged. I use embedded philosophical research in a particular practice of architecture to shed new light on the ways in which affordances for ‘higher’ cognition support creative imagination, anticipation, explicit planning and self-reflection.
The Skilled Intentionality Framework is groundbreaking in relating findings established at several complementary levels of analysis: philosophy/phenomenology, ecological psychology, affective science and neurodynamics.
Empirical findings thought to be exclusively valid for everyday unreflective action can now be used to explain skilled ‘higher’ cognition as well. Moreover, SIF brings both the context and the social back into cognitive science. I will show SIF’s relevance for Friston’s work on the anticipating brain, and apply it in the domain of architecture and public health. SIF will radically widen the scope of the increasingly influential field of embodied cognitive science.
Max ERC Funding
1 499 850 €
Duration
Start date: 2016-05-01, End date: 2021-04-30
Project acronym AGALT
Project Asymptotic Geometric Analysis and Learning Theory
Researcher (PI) Shahar Mendelson
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Starting Grant (StG), PE1, ERC-2007-StG
Summary In a typical learning problem one tries to approximate an unknown function by a function from a given class using random data, sampled according to an unknown measure. In this project we will be interested in parameters that govern the complexity of a learning problem. It turns out that this complexity is determined by the geometry of certain sets in high dimension that are connected to the given class (random coordinate projections of the class). Thus, one has to understand the structure of these sets as a function of the dimension - which is given by the cardinality of the random sample. The resulting analysis leads to many theoretical questions in Asymptotic Geometric Analysis, Probability (most notably, Empirical Processes Theory) and Combinatorics, which are of independent interest beyond the application to Learning Theory. Our main goal is to describe the role of various complexity parameters involved in a learning problem, to analyze the connections between them and to investigate the way they determine the geometry of the relevant high dimensional sets. Some of the questions we intend to tackle are well known open problems and making progress towards their solution will have a significant theoretical impact. Moreover, this project should lead to a more complete theory of learning and is likely to have some practical impact, for example, in the design of more efficient learning algorithms.
Summary
In a typical learning problem one tries to approximate an unknown function by a function from a given class using random data, sampled according to an unknown measure. In this project we will be interested in parameters that govern the complexity of a learning problem. It turns out that this complexity is determined by the geometry of certain sets in high dimension that are connected to the given class (random coordinate projections of the class). Thus, one has to understand the structure of these sets as a function of the dimension - which is given by the cardinality of the random sample. The resulting analysis leads to many theoretical questions in Asymptotic Geometric Analysis, Probability (most notably, Empirical Processes Theory) and Combinatorics, which are of independent interest beyond the application to Learning Theory. Our main goal is to describe the role of various complexity parameters involved in a learning problem, to analyze the connections between them and to investigate the way they determine the geometry of the relevant high dimensional sets. Some of the questions we intend to tackle are well known open problems and making progress towards their solution will have a significant theoretical impact. Moreover, this project should lead to a more complete theory of learning and is likely to have some practical impact, for example, in the design of more efficient learning algorithms.
Max ERC Funding
750 000 €
Duration
Start date: 2009-03-01, End date: 2014-02-28
Project acronym AGATM
Project A Global Anthropology of Transforming Marriage
Researcher (PI) Janet CARSTEN
Host Institution (HI) THE UNIVERSITY OF EDINBURGH
Call Details Advanced Grant (AdG), SH5, ERC-2015-AdG
Summary This research will create a new theoretical vision of the importance of marriage as an agent of transformation in human sociality. Marriage globally is undergoing profound change, provoking intense debate and anxiety. These concerns refract wider instabilities in political, economic, and familial institutions. They signal the critical role of marriage in bringing together - and separating - intimate, personal, and familial life with wider state institutions. But we have little up to date comparative research or general theory of how marriage changes or the long-term significance of such change. Paradoxically, social scientific and public discourse emphasise the conservative and normative aspects of marriage. This underlines the need for a new theoretical frame that takes account of cultural and historical specificity to grasp the importance of marriage as both vehicle of and engine for transformation. AGATM overturns conventional understandings by viewing marriage as inherently transformative, indeed at the heart of social and cultural change. The research will investigate current transformations of marriage in two distinct senses. First, it will undertake an ethnographic investigation of new forms of marriage in selected sites in Europe, N. America, Asia, and Africa. Second, it will subject ‘marriage’ to a rigorous theoretical critique that will denaturalise marriage and reintegrate it into the new anthropology of kinship. Research on five complementary and contrastive sub-projects examining emerging forms of marriage in different locations will be structured through the themes of care, property, and ritual forms. The overarching analytic of temporality will frame the theoretical vision of the research and connect the themes. The resulting six monographs, journal articles, and exhibition will together revitalise the study of kinship by placing the moral, practical, political, and imaginative significance of marriage over time at its centre.
Summary
This research will create a new theoretical vision of the importance of marriage as an agent of transformation in human sociality. Marriage globally is undergoing profound change, provoking intense debate and anxiety. These concerns refract wider instabilities in political, economic, and familial institutions. They signal the critical role of marriage in bringing together - and separating - intimate, personal, and familial life with wider state institutions. But we have little up to date comparative research or general theory of how marriage changes or the long-term significance of such change. Paradoxically, social scientific and public discourse emphasise the conservative and normative aspects of marriage. This underlines the need for a new theoretical frame that takes account of cultural and historical specificity to grasp the importance of marriage as both vehicle of and engine for transformation. AGATM overturns conventional understandings by viewing marriage as inherently transformative, indeed at the heart of social and cultural change. The research will investigate current transformations of marriage in two distinct senses. First, it will undertake an ethnographic investigation of new forms of marriage in selected sites in Europe, N. America, Asia, and Africa. Second, it will subject ‘marriage’ to a rigorous theoretical critique that will denaturalise marriage and reintegrate it into the new anthropology of kinship. Research on five complementary and contrastive sub-projects examining emerging forms of marriage in different locations will be structured through the themes of care, property, and ritual forms. The overarching analytic of temporality will frame the theoretical vision of the research and connect the themes. The resulting six monographs, journal articles, and exhibition will together revitalise the study of kinship by placing the moral, practical, political, and imaginative significance of marriage over time at its centre.
Max ERC Funding
2 297 584 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym Age Asymmetry
Project Age-Selective Segregation of Organelles
Researcher (PI) Pekka Aleksi Katajisto
Host Institution (HI) HELSINGIN YLIOPISTO
Call Details Starting Grant (StG), LS3, ERC-2015-STG
Summary Our tissues are constantly renewed by stem cells. Over time, stem cells accumulate cellular damage that will compromise renewal and results in aging. As stem cells can divide asymmetrically, segregation of harmful factors to the differentiating daughter cell could be one possible mechanism for slowing damage accumulation in the stem cell. However, current evidence for such mechanisms comes mainly from analogous findings in yeast, and studies have concentrated only on few types of cellular damage.
I hypothesize that the chronological age of a subcellular component is a proxy for all the damage it has sustained. In order to secure regeneration, mammalian stem cells may therefore specifically sort old cellular material asymmetrically. To study this, I have developed a novel strategy and tools to address the age-selective segregation of any protein in stem cell division. Using this approach, I have already discovered that stem-like cells of the human mammary epithelium indeed apportion chronologically old mitochondria asymmetrically in cell division, and enrich old mitochondria to the differentiating daughter cell. We will investigate the mechanisms underlying this novel phenomenon, and its relevance for mammalian aging.
We will first identify how old and young mitochondria differ, and how stem cells recognize them to facilitate the asymmetric segregation. Next, we will analyze the extent of asymmetric age-selective segregation by targeting several other subcellular compartments in a stem cell division. Finally, we will determine whether the discovered age-selective segregation is a general property of stem cell in vivo, and it's functional relevance for maintenance of stem cells and tissue regeneration. Our discoveries may open new possibilities to target aging associated functional decline by induction of asymmetric age-selective organelle segregation.
Summary
Our tissues are constantly renewed by stem cells. Over time, stem cells accumulate cellular damage that will compromise renewal and results in aging. As stem cells can divide asymmetrically, segregation of harmful factors to the differentiating daughter cell could be one possible mechanism for slowing damage accumulation in the stem cell. However, current evidence for such mechanisms comes mainly from analogous findings in yeast, and studies have concentrated only on few types of cellular damage.
I hypothesize that the chronological age of a subcellular component is a proxy for all the damage it has sustained. In order to secure regeneration, mammalian stem cells may therefore specifically sort old cellular material asymmetrically. To study this, I have developed a novel strategy and tools to address the age-selective segregation of any protein in stem cell division. Using this approach, I have already discovered that stem-like cells of the human mammary epithelium indeed apportion chronologically old mitochondria asymmetrically in cell division, and enrich old mitochondria to the differentiating daughter cell. We will investigate the mechanisms underlying this novel phenomenon, and its relevance for mammalian aging.
We will first identify how old and young mitochondria differ, and how stem cells recognize them to facilitate the asymmetric segregation. Next, we will analyze the extent of asymmetric age-selective segregation by targeting several other subcellular compartments in a stem cell division. Finally, we will determine whether the discovered age-selective segregation is a general property of stem cell in vivo, and it's functional relevance for maintenance of stem cells and tissue regeneration. Our discoveries may open new possibilities to target aging associated functional decline by induction of asymmetric age-selective organelle segregation.
Max ERC Funding
1 500 000 €
Duration
Start date: 2016-05-01, End date: 2021-04-30
Project acronym AgeConsolidate
Project The Missing Link of Episodic Memory Decline in Aging: The Role of Inefficient Systems Consolidation
Researcher (PI) Anders Martin FJELL
Host Institution (HI) UNIVERSITETET I OSLO
Call Details Consolidator Grant (CoG), SH4, ERC-2016-COG
Summary Which brain mechanisms are responsible for the faith of the memories we make with age, whether they wither or stay, and in what form? Episodic memory function does decline with age. While this decline can have multiple causes, research has focused almost entirely on encoding and retrieval processes, largely ignoring a third critical process– consolidation. The objective of AgeConsolidate is to provide this missing link, by combining novel experimental cognitive paradigms with neuroimaging in a longitudinal large-scale attempt to directly test how age-related changes in consolidation processes in the brain impact episodic memory decline. The ambitious aims of the present proposal are two-fold:
(1) Use recent advances in memory consolidation theory to achieve an elaborate model of episodic memory deficits in aging
(2) Use aging as a model to uncover how structural and functional brain changes affect episodic memory consolidation in general
The novelty of the project lies in the synthesis of recent methodological advances and theoretical models for episodic memory consolidation to explain age-related decline, by employing a unique combination of a range of different techniques and approaches. This is ground-breaking, in that it aims at taking our understanding of the brain processes underlying episodic memory decline in aging to a new level, while at the same time advancing our theoretical understanding of how episodic memories are consolidated in the human brain. To obtain this outcome, I will test the main hypothesis of the project: Brain processes of episodic memory consolidation are less effective in older adults, and this can account for a significant portion of the episodic memory decline in aging. This will be answered by six secondary hypotheses, with 1-3 experiments or tasks designated to address each hypothesis, focusing on functional and structural MRI, positron emission tomography data and sleep experiments to target consolidation from different angles.
Summary
Which brain mechanisms are responsible for the faith of the memories we make with age, whether they wither or stay, and in what form? Episodic memory function does decline with age. While this decline can have multiple causes, research has focused almost entirely on encoding and retrieval processes, largely ignoring a third critical process– consolidation. The objective of AgeConsolidate is to provide this missing link, by combining novel experimental cognitive paradigms with neuroimaging in a longitudinal large-scale attempt to directly test how age-related changes in consolidation processes in the brain impact episodic memory decline. The ambitious aims of the present proposal are two-fold:
(1) Use recent advances in memory consolidation theory to achieve an elaborate model of episodic memory deficits in aging
(2) Use aging as a model to uncover how structural and functional brain changes affect episodic memory consolidation in general
The novelty of the project lies in the synthesis of recent methodological advances and theoretical models for episodic memory consolidation to explain age-related decline, by employing a unique combination of a range of different techniques and approaches. This is ground-breaking, in that it aims at taking our understanding of the brain processes underlying episodic memory decline in aging to a new level, while at the same time advancing our theoretical understanding of how episodic memories are consolidated in the human brain. To obtain this outcome, I will test the main hypothesis of the project: Brain processes of episodic memory consolidation are less effective in older adults, and this can account for a significant portion of the episodic memory decline in aging. This will be answered by six secondary hypotheses, with 1-3 experiments or tasks designated to address each hypothesis, focusing on functional and structural MRI, positron emission tomography data and sleep experiments to target consolidation from different angles.
Max ERC Funding
1 999 482 €
Duration
Start date: 2017-05-01, End date: 2022-04-30
Project acronym AGNES
Project ACTIVE AGEING – RESILIENCE AND EXTERNAL SUPPORT AS MODIFIERS OF THE DISABLEMENT OUTCOME
Researcher (PI) Taina Tuulikki RANTANEN
Host Institution (HI) JYVASKYLAN YLIOPISTO
Call Details Advanced Grant (AdG), SH3, ERC-2015-AdG
Summary The goals are 1. To develop a scale assessing the diversity of active ageing with four dimensions that are ability (what people can do), activity (what people do do), ambition (what are the valued activities that people want to do), and autonomy (how satisfied people are with the opportunity to do valued activities); 2. To examine health and physical and psychological functioning as the determinants and social and build environment, resilience and personal skills as modifiers of active ageing; 3. To develop a multicomponent sustainable intervention aiming to promote active ageing (methods: counselling, information technology, help from volunteers); 4. To test the feasibility and effectiveness on the intervention; and 5. To study cohort effects on the phenotypes on the pathway to active ageing.
“If You Can Measure It, You Can Change It.” Active ageing assessment needs conceptual progress, which I propose to do. A quantifiable scale will be developed that captures the diversity of active ageing stemming from the WHO definition of active ageing as the process of optimizing opportunities for health and participation in the society for all people in line with their needs, goals and capacities as they age. I will collect cross-sectional data (N=1000, ages 75, 80 and 85 years) and model the pathway to active ageing with state-of-the art statistical methods. By doing this I will create novel knowledge on preconditions for active ageing. The collected cohort data will be compared to a pre-existing cohort data that was collected 25 years ago to obtain knowledge about changes over time in functioning of older people. A randomized controlled trial (N=200) will be conducted to assess the effectiveness of the envisioned intervention promoting active ageing through participation. The project will regenerate ageing research by launching a novel scale, by training young scientists, by creating new concepts and theory development and by producing evidence for active ageing promotion
Summary
The goals are 1. To develop a scale assessing the diversity of active ageing with four dimensions that are ability (what people can do), activity (what people do do), ambition (what are the valued activities that people want to do), and autonomy (how satisfied people are with the opportunity to do valued activities); 2. To examine health and physical and psychological functioning as the determinants and social and build environment, resilience and personal skills as modifiers of active ageing; 3. To develop a multicomponent sustainable intervention aiming to promote active ageing (methods: counselling, information technology, help from volunteers); 4. To test the feasibility and effectiveness on the intervention; and 5. To study cohort effects on the phenotypes on the pathway to active ageing.
“If You Can Measure It, You Can Change It.” Active ageing assessment needs conceptual progress, which I propose to do. A quantifiable scale will be developed that captures the diversity of active ageing stemming from the WHO definition of active ageing as the process of optimizing opportunities for health and participation in the society for all people in line with their needs, goals and capacities as they age. I will collect cross-sectional data (N=1000, ages 75, 80 and 85 years) and model the pathway to active ageing with state-of-the art statistical methods. By doing this I will create novel knowledge on preconditions for active ageing. The collected cohort data will be compared to a pre-existing cohort data that was collected 25 years ago to obtain knowledge about changes over time in functioning of older people. A randomized controlled trial (N=200) will be conducted to assess the effectiveness of the envisioned intervention promoting active ageing through participation. The project will regenerate ageing research by launching a novel scale, by training young scientists, by creating new concepts and theory development and by producing evidence for active ageing promotion
Max ERC Funding
2 044 364 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym AGNOSTIC
Project Actively Enhanced Cognition based Framework for Design of Complex Systems
Researcher (PI) Björn Ottersten
Host Institution (HI) UNIVERSITE DU LUXEMBOURG
Call Details Advanced Grant (AdG), PE7, ERC-2016-ADG
Summary Parameterized mathematical models have been central to the understanding and design of communication, networking, and radar systems. However, they often lack the ability to model intricate interactions innate in complex systems. On the other hand, data-driven approaches do not need explicit mathematical models for data generation and have a wider applicability at the cost of flexibility. These approaches need labelled data, representing all the facets of the system interaction with the environment. With the aforementioned systems becoming increasingly complex with intricate interactions and operating in dynamic environments, the number of system configurations can be rather large leading to paucity of labelled data. Thus there are emerging networks of systems of critical importance whose cognition is not effectively covered by traditional approaches. AGNOSTIC uses the process of exploration through system probing and exploitation of observed data in an iterative manner drawing upon traditional model-based approaches and data-driven discriminative learning to enhance functionality, performance, and robustness through the notion of active cognition. AGNOSTIC clearly departs from a passive assimilation of data and aims to formalize the exploitation/exploration framework in dynamic environments. The development of this framework in three applications areas is central to AGNOSTIC. The project aims to provide active cognition in radar to learn the environment and other active systems to ensure situational awareness and coexistence; to apply active probing in radio access networks to infer network behaviour towards spectrum sharing and self-configuration; and to learn and adapt to user demand for content distribution in caching networks, drastically improving network efficiency. Although these cognitive systems interact with the environment in very different ways, sufficient abstraction allows cross-fertilization of insights and approaches motivating their joint treatment.
Summary
Parameterized mathematical models have been central to the understanding and design of communication, networking, and radar systems. However, they often lack the ability to model intricate interactions innate in complex systems. On the other hand, data-driven approaches do not need explicit mathematical models for data generation and have a wider applicability at the cost of flexibility. These approaches need labelled data, representing all the facets of the system interaction with the environment. With the aforementioned systems becoming increasingly complex with intricate interactions and operating in dynamic environments, the number of system configurations can be rather large leading to paucity of labelled data. Thus there are emerging networks of systems of critical importance whose cognition is not effectively covered by traditional approaches. AGNOSTIC uses the process of exploration through system probing and exploitation of observed data in an iterative manner drawing upon traditional model-based approaches and data-driven discriminative learning to enhance functionality, performance, and robustness through the notion of active cognition. AGNOSTIC clearly departs from a passive assimilation of data and aims to formalize the exploitation/exploration framework in dynamic environments. The development of this framework in three applications areas is central to AGNOSTIC. The project aims to provide active cognition in radar to learn the environment and other active systems to ensure situational awareness and coexistence; to apply active probing in radio access networks to infer network behaviour towards spectrum sharing and self-configuration; and to learn and adapt to user demand for content distribution in caching networks, drastically improving network efficiency. Although these cognitive systems interact with the environment in very different ways, sufficient abstraction allows cross-fertilization of insights and approaches motivating their joint treatment.
Max ERC Funding
2 499 595 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym AIDA
Project Architectural design In Dialogue with dis-Ability Theoretical and methodological exploration of a multi-sensorial design approach in architecture
Researcher (PI) Ann Heylighen
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Starting Grant (StG), SH2, ERC-2007-StG
Summary This research project is based on the notion that, because of their specific interaction with space, people with particular dis-abilities are able to appreciate spatial qualities or detect misfits in the environment that most architects—or other designers—are not even aware of. This notion holds for sensory dis-abilities such as blindness or visual impairment, but also for mental dis-abilities like autism or Alzheimer’s dementia. The experiences and subsequent insights of these dis-abled people, so it is argued, represent a considerable knowledge resource that would complement and enrich the professional expertise of architects and designers in general. This argument forms the basis for a methodological and theoretical exploration of a multi-sensorial design approach in architecture. On the one hand, a series of retrospective case studies will be conducted to identify and describe the motives and elements that trigger or stimulate architects’ attention for the multi-sensorial spatial experiences of people with dis-abilities when designing spaces. On the other hand, the research project will investigate experimentally in real time to what extent design processes and products in architecture can be enriched by establishing a dialogue between the multi-sensorial ‘knowing-in-action’ of people with dis-abilities and the expertise of professional architects/designers. In this way, the research project aims to develop a more profound understanding of how the concept of Design for All can be realised in architectural practice. At least as important, however, is its contribution to innovation in architecture tout court. The research results are expected to give a powerful impulse to quality improvement of the built environment by stimulating and supporting the development of innovative design concepts.
Summary
This research project is based on the notion that, because of their specific interaction with space, people with particular dis-abilities are able to appreciate spatial qualities or detect misfits in the environment that most architects—or other designers—are not even aware of. This notion holds for sensory dis-abilities such as blindness or visual impairment, but also for mental dis-abilities like autism or Alzheimer’s dementia. The experiences and subsequent insights of these dis-abled people, so it is argued, represent a considerable knowledge resource that would complement and enrich the professional expertise of architects and designers in general. This argument forms the basis for a methodological and theoretical exploration of a multi-sensorial design approach in architecture. On the one hand, a series of retrospective case studies will be conducted to identify and describe the motives and elements that trigger or stimulate architects’ attention for the multi-sensorial spatial experiences of people with dis-abilities when designing spaces. On the other hand, the research project will investigate experimentally in real time to what extent design processes and products in architecture can be enriched by establishing a dialogue between the multi-sensorial ‘knowing-in-action’ of people with dis-abilities and the expertise of professional architects/designers. In this way, the research project aims to develop a more profound understanding of how the concept of Design for All can be realised in architectural practice. At least as important, however, is its contribution to innovation in architecture tout court. The research results are expected to give a powerful impulse to quality improvement of the built environment by stimulating and supporting the development of innovative design concepts.
Max ERC Funding
1 195 385 €
Duration
Start date: 2008-05-01, End date: 2013-10-31
Project acronym AIDViC
Project Antibiotic intracellular delivery via virus-like carriers
Researcher (PI) Giuseppe BATTAGLIA
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Proof of Concept (PoC), PC1, ERC-2016-PoC
Summary Taking inspiration from natural carriers, such as viruses, a new technology has been developed in
our laboratories part of an ongoing ERC starting grant project, Molecular Engineering of Virus-like
Carriers (MEViC). We created synthetic viruses using polymers and thus safer materials. They are
able of delivering high payload of specific drugs into cells with no detrimental effect. While testing for
anticancer therapies, we identified a synthetic virus capable of targeting almost exclusively
macrophages. We performed preliminary work showing that this can be successfully applied to
deliver antibiotics to rid of intracellular pathogens. This has now open a completely new possibility
whereas we can expand our technology for the treatment of several infections as well as to contribute
to the ongoing efforts in tackling antibiotic resistance.
Summary
Taking inspiration from natural carriers, such as viruses, a new technology has been developed in
our laboratories part of an ongoing ERC starting grant project, Molecular Engineering of Virus-like
Carriers (MEViC). We created synthetic viruses using polymers and thus safer materials. They are
able of delivering high payload of specific drugs into cells with no detrimental effect. While testing for
anticancer therapies, we identified a synthetic virus capable of targeting almost exclusively
macrophages. We performed preliminary work showing that this can be successfully applied to
deliver antibiotics to rid of intracellular pathogens. This has now open a completely new possibility
whereas we can expand our technology for the treatment of several infections as well as to contribute
to the ongoing efforts in tackling antibiotic resistance.
Max ERC Funding
149 062 €
Duration
Start date: 2017-07-01, End date: 2018-12-31
Project acronym AIM
Project Adaptive Imaging Microscopy
Researcher (PI) Michel Verhaegen
Host Institution (HI) TECHNISCHE UNIVERSITEIT DELFT
Call Details Proof of Concept (PoC), PC1, ERC-2016-PoC
Summary The project has a goal of starting up a small business producing highly special customizable microscope systems for biomedical research. Microscopic imaging is one of the major drivers of the progress in biomedical and life sciences. The development of novel concepts, addressing the challenges of advanced optical microscopy, represents the front line of scientific research. Modern microscopes are not purely optical devices anymore. They have developed into complex integrated systems, combining optics, mechanics, electronics, feedback control systems, and image processing Many novel concepts of modern microscopy, while very interesting for research, still have to prove the commercial profitability. Such developments can be effectively addressed by start-up companies with a goal of either custom development, production and service of these advanced systems, or development and selling the IP to a larger player.
The major goal of this proposal is the creation of the first commercial optical microscope, the performance of which depends completely on the adaptive optics feedback controls. To prove the feasibility of this approach, we select a highly attractive technical concept of adaptive light sheet microscope, developed in our group in the framework of the ERC project. In this aspect, our development relates to ordinary microscope system in the same way as “fly by wire” airplane relates to an old-fashioned one.
Our contribution in the development of instrumentation for biomedical research will bring a positive impact on our knowledge about the nature and ourselves, the quality of life and life expectation of the population. Our proposal addresses the largest societal challenge of Europe: the healthcare. Our instrument will contribute to the understanding of complex diseases and support the greying population to stay healthy and self-supportive for extended period of time.
Summary
The project has a goal of starting up a small business producing highly special customizable microscope systems for biomedical research. Microscopic imaging is one of the major drivers of the progress in biomedical and life sciences. The development of novel concepts, addressing the challenges of advanced optical microscopy, represents the front line of scientific research. Modern microscopes are not purely optical devices anymore. They have developed into complex integrated systems, combining optics, mechanics, electronics, feedback control systems, and image processing Many novel concepts of modern microscopy, while very interesting for research, still have to prove the commercial profitability. Such developments can be effectively addressed by start-up companies with a goal of either custom development, production and service of these advanced systems, or development and selling the IP to a larger player.
The major goal of this proposal is the creation of the first commercial optical microscope, the performance of which depends completely on the adaptive optics feedback controls. To prove the feasibility of this approach, we select a highly attractive technical concept of adaptive light sheet microscope, developed in our group in the framework of the ERC project. In this aspect, our development relates to ordinary microscope system in the same way as “fly by wire” airplane relates to an old-fashioned one.
Our contribution in the development of instrumentation for biomedical research will bring a positive impact on our knowledge about the nature and ourselves, the quality of life and life expectation of the population. Our proposal addresses the largest societal challenge of Europe: the healthcare. Our instrument will contribute to the understanding of complex diseases and support the greying population to stay healthy and self-supportive for extended period of time.
Max ERC Funding
149 998 €
Duration
Start date: 2017-05-01, End date: 2018-10-31
Project acronym AlCat
Project Bond activation and catalysis with low-valent aluminium
Researcher (PI) Michael James COWLEY
Host Institution (HI) THE UNIVERSITY OF EDINBURGH
Call Details Starting Grant (StG), PE5, ERC-2016-STG
Summary This project will develop the principles required to enable bond-modifying redox catalysis based on aluminium by preparing and studying new Al(I) compounds capable of reversible oxidative addition.
Catalytic processes are involved in the synthesis of 75 % of all industrially produced chemicals, but most catalysts involved are based on precious metals such as rhodium, palladium or platinum. These metals are expensive and their supply limited and unstable; there is a significant need to develop the chemistry of non-precious metals as alternatives. On toxicity and abundance alone, aluminium is an attractive candidate. Furthermore, recent work, including in our group, has demonstrated that Al(I) compounds can perform a key step in catalytic cycles - the oxidative addition of E-H bonds.
In order to realise the significant potential of Al(I) for transition-metal style catalysis we urgently need to:
- establish the principles governing oxidative addition and reductive elimination reactivity in aluminium systems.
- know how the reactivity of Al(I) compounds can be controlled by varying properties of ligand frameworks.
- understand the onward reactivity of oxidative addition products of Al(I) to enable applications in catalysis.
In this project we will:
- Study mechanisms of oxidative addition and reductive elimination of a range of synthetically relevant bonds at Al(I) centres, establishing the principles governing this fundamental reactivity.
- Develop new ligand frameworks to support of Al(I) centres and evaluate the effect of the ligand on oxidative addition/reductive elimination at Al centres.
- Investigate methods for Al-mediated functionalisation of organic compounds by exploring the reactivity of E-H oxidative addition products with unsaturated organic compounds.
Summary
This project will develop the principles required to enable bond-modifying redox catalysis based on aluminium by preparing and studying new Al(I) compounds capable of reversible oxidative addition.
Catalytic processes are involved in the synthesis of 75 % of all industrially produced chemicals, but most catalysts involved are based on precious metals such as rhodium, palladium or platinum. These metals are expensive and their supply limited and unstable; there is a significant need to develop the chemistry of non-precious metals as alternatives. On toxicity and abundance alone, aluminium is an attractive candidate. Furthermore, recent work, including in our group, has demonstrated that Al(I) compounds can perform a key step in catalytic cycles - the oxidative addition of E-H bonds.
In order to realise the significant potential of Al(I) for transition-metal style catalysis we urgently need to:
- establish the principles governing oxidative addition and reductive elimination reactivity in aluminium systems.
- know how the reactivity of Al(I) compounds can be controlled by varying properties of ligand frameworks.
- understand the onward reactivity of oxidative addition products of Al(I) to enable applications in catalysis.
In this project we will:
- Study mechanisms of oxidative addition and reductive elimination of a range of synthetically relevant bonds at Al(I) centres, establishing the principles governing this fundamental reactivity.
- Develop new ligand frameworks to support of Al(I) centres and evaluate the effect of the ligand on oxidative addition/reductive elimination at Al centres.
- Investigate methods for Al-mediated functionalisation of organic compounds by exploring the reactivity of E-H oxidative addition products with unsaturated organic compounds.
Max ERC Funding
1 493 679 €
Duration
Start date: 2017-03-01, End date: 2022-02-28
Project acronym AlchemEast
Project Alchemy in the Making: From ancient Babylonia via Graeco-Roman Egypt into the Byzantine, Syriac and Arabic traditions (1500 BCE - 1000 AD)
Researcher (PI) Matteo MARTELLI
Host Institution (HI) ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA
Call Details Consolidator Grant (CoG), SH5, ERC-2016-COG
Summary The AlchemEast project is devoted to the study of alchemical theory and practice as it appeared and developed in distinct, albeit contiguous (both chronologically and geographically) areas: Graeco-Roman Egypt, Byzantium, and the Near East, from Ancient Babylonian times to the early Islamic Period. This project combines innovative textual investigations with experimental replications of ancient alchemical procedures. It uses sets of historically and philologically informed laboratory replications in order to reconstruct the actual practice of ancient alchemists, and it studies the texts and literary forms in which this practice was conceptualized and transmitted. It proposes new models for textual criticism in order to capture the fluidity of the transmission of ancient alchemical writings. AlchemEast is designed to carry out a comparative investigation of cuneiform tablets as well as a vast corpus of Greek, Syriac and Arabic writings. It will overcome the old, pejorative paradigm that dismissed ancient alchemy as a "pseudo-science", by proposing a new theoretical framework for comprehending the entirety of ancient alchemical practices and theories. Alongside established forms of scholarly output, such as critical editions of key texts, AlchemEast will provide an integrative, longue durée perspective on the many different phases of ancient alchemy. It will thus offer a radically new vision of this discipline as a dynamic and diversified art that developed across different technical and scholastic traditions. This new representation will allow us to connect ancient alchemy with medieval and early modern alchemy and thus fully reintegrate ancient alchemy in the history of pre-modern alchemy as well as in the history of ancient science more broadly.
Summary
The AlchemEast project is devoted to the study of alchemical theory and practice as it appeared and developed in distinct, albeit contiguous (both chronologically and geographically) areas: Graeco-Roman Egypt, Byzantium, and the Near East, from Ancient Babylonian times to the early Islamic Period. This project combines innovative textual investigations with experimental replications of ancient alchemical procedures. It uses sets of historically and philologically informed laboratory replications in order to reconstruct the actual practice of ancient alchemists, and it studies the texts and literary forms in which this practice was conceptualized and transmitted. It proposes new models for textual criticism in order to capture the fluidity of the transmission of ancient alchemical writings. AlchemEast is designed to carry out a comparative investigation of cuneiform tablets as well as a vast corpus of Greek, Syriac and Arabic writings. It will overcome the old, pejorative paradigm that dismissed ancient alchemy as a "pseudo-science", by proposing a new theoretical framework for comprehending the entirety of ancient alchemical practices and theories. Alongside established forms of scholarly output, such as critical editions of key texts, AlchemEast will provide an integrative, longue durée perspective on the many different phases of ancient alchemy. It will thus offer a radically new vision of this discipline as a dynamic and diversified art that developed across different technical and scholastic traditions. This new representation will allow us to connect ancient alchemy with medieval and early modern alchemy and thus fully reintegrate ancient alchemy in the history of pre-modern alchemy as well as in the history of ancient science more broadly.
Max ERC Funding
1 997 000 €
Duration
Start date: 2017-12-01, End date: 2022-11-30
Project acronym ALEXANDRIA
Project Large-Scale Formal Proof for the Working Mathematician
Researcher (PI) Lawrence PAULSON
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Advanced Grant (AdG), PE6, ERC-2016-ADG
Summary Mathematical proofs have always been prone to error. Today, proofs can be hundreds of pages long and combine results from many specialisms, making them almost impossible to check. One solution is to deploy modern verification technology. Interactive theorem provers have demonstrated their potential as vehicles for formalising mathematics through achievements such as the verification of the Kepler Conjecture. Proofs done using such tools reach a high standard of correctness.
However, existing theorem provers are unsuitable for mathematics. Their formal proofs are unreadable. They struggle to do simple tasks, such as evaluating limits. They lack much basic mathematics, and the material they do have is difficult to locate and apply.
ALEXANDRIA will create a proof development environment attractive to working mathematicians, utilising the best technology available across computer science. Its focus will be the management and use of large-scale mathematical knowledge, both theorems and algorithms. The project will employ mathematicians to investigate the formalisation of mathematics in practice. Our already substantial formalised libraries will serve as the starting point. They will be extended and annotated to support sophisticated searches. Techniques will be borrowed from machine learning, information retrieval and natural language processing. Algorithms will be treated similarly: ALEXANDRIA will help users find and invoke the proof methods and algorithms appropriate for the task.
ALEXANDRIA will provide (1) comprehensive formal mathematical libraries; (2) search within libraries, and the mining of libraries for proof patterns; (3) automated support for the construction of large formal proofs; (4) sound and practical computer algebra tools.
ALEXANDRIA will be based on legible structured proofs. Formal proofs should be not mere code, but a machine-checkable form of communication between mathematicians.
Summary
Mathematical proofs have always been prone to error. Today, proofs can be hundreds of pages long and combine results from many specialisms, making them almost impossible to check. One solution is to deploy modern verification technology. Interactive theorem provers have demonstrated their potential as vehicles for formalising mathematics through achievements such as the verification of the Kepler Conjecture. Proofs done using such tools reach a high standard of correctness.
However, existing theorem provers are unsuitable for mathematics. Their formal proofs are unreadable. They struggle to do simple tasks, such as evaluating limits. They lack much basic mathematics, and the material they do have is difficult to locate and apply.
ALEXANDRIA will create a proof development environment attractive to working mathematicians, utilising the best technology available across computer science. Its focus will be the management and use of large-scale mathematical knowledge, both theorems and algorithms. The project will employ mathematicians to investigate the formalisation of mathematics in practice. Our already substantial formalised libraries will serve as the starting point. They will be extended and annotated to support sophisticated searches. Techniques will be borrowed from machine learning, information retrieval and natural language processing. Algorithms will be treated similarly: ALEXANDRIA will help users find and invoke the proof methods and algorithms appropriate for the task.
ALEXANDRIA will provide (1) comprehensive formal mathematical libraries; (2) search within libraries, and the mining of libraries for proof patterns; (3) automated support for the construction of large formal proofs; (4) sound and practical computer algebra tools.
ALEXANDRIA will be based on legible structured proofs. Formal proofs should be not mere code, but a machine-checkable form of communication between mathematicians.
Max ERC Funding
2 430 140 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym ALFA
Project Shaping a European Scientific Scene : Alfonsine Astronomy
Researcher (PI) Matthieu Husson
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Consolidator Grant (CoG), SH6, ERC-2016-COG
Summary Alfonsine astronomy is arguably among the first European scientific achievements. It shaped a scene for actors like Regiomontanus or Copernicus. There is however little detailed historical analysis encompassing its development in its full breadth. ALFA addresses this issue by studying tables, instruments, mathematical and theoretical texts in a methodologically innovative way relying on approaches from the history of manuscript cultures, history of mathematics, and history of astronomy.
ALFA integrates these approaches not only to benefit from different perspectives but also to build new questions from their interactions. For instance the analysis of mathematical practices in astral sciences manuscripts induces new ways to analyse the documents and to think about astronomical questions.
Relying on these approaches the main objectives of ALFA are thus to:
- Retrace the development of the corpus of Alfonsine texts from its origin in the second half of the 13th century to the end of the 15th century by following, on the manuscript level, the milieus fostering it;
- Analyse the Alfonsine astronomers’ practices, their relations to mathematics, to the natural world, to proofs and justification, their intellectual context and audiences;
- Build a meaningful narrative showing how astronomers in different milieus with diverse practices shaped, also from Arabic materials, an original scientific scene in Europe.
ALFA will shed new light on the intellectual history of the late medieval period as a whole and produce a better understanding of its relations to related scientific periods in Europe and beyond. It will also produce methodological breakthroughs impacting the ways history of knowledge is practiced outside the field of ancient and medieval sciences. Efforts will be devoted to bring these results not only to the relevant scholarly communities but also to a wider audience as a resource in the public debates around science, knowledge and culture.
Summary
Alfonsine astronomy is arguably among the first European scientific achievements. It shaped a scene for actors like Regiomontanus or Copernicus. There is however little detailed historical analysis encompassing its development in its full breadth. ALFA addresses this issue by studying tables, instruments, mathematical and theoretical texts in a methodologically innovative way relying on approaches from the history of manuscript cultures, history of mathematics, and history of astronomy.
ALFA integrates these approaches not only to benefit from different perspectives but also to build new questions from their interactions. For instance the analysis of mathematical practices in astral sciences manuscripts induces new ways to analyse the documents and to think about astronomical questions.
Relying on these approaches the main objectives of ALFA are thus to:
- Retrace the development of the corpus of Alfonsine texts from its origin in the second half of the 13th century to the end of the 15th century by following, on the manuscript level, the milieus fostering it;
- Analyse the Alfonsine astronomers’ practices, their relations to mathematics, to the natural world, to proofs and justification, their intellectual context and audiences;
- Build a meaningful narrative showing how astronomers in different milieus with diverse practices shaped, also from Arabic materials, an original scientific scene in Europe.
ALFA will shed new light on the intellectual history of the late medieval period as a whole and produce a better understanding of its relations to related scientific periods in Europe and beyond. It will also produce methodological breakthroughs impacting the ways history of knowledge is practiced outside the field of ancient and medieval sciences. Efforts will be devoted to bring these results not only to the relevant scholarly communities but also to a wider audience as a resource in the public debates around science, knowledge and culture.
Max ERC Funding
1 871 250 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym ALGOA
Project Novel algorithm for treatment planning of patients with osteoarthritis
Researcher (PI) Rami Kristian KORHONEN
Host Institution (HI) ITA-SUOMEN YLIOPISTO
Call Details Proof of Concept (PoC), PC1, ERC-2016-PoC
Summary Osteoarthritis (OA) is a common joint disease affecting over 40 million Europeans. Most common consequences of OA are pain, disability and social isolation. What is alarming, the number of patients will increase 50% in developed countries during the next 20 years. Moreover, the economic costs of OA are considerable since 1) direct healthcare (hospital admissions, medical examinations, drug therapy, etc.) and 2) productivity costs due to reduced performance while at work and absence from work have been estimated to be between 1% and 2.5% of the gross domestic product (GDP) in Western countries.
We have developed an algorithm that is able to predict the progression of OA for overweight subjects while healthy subjects do not develop OA. When employed in clinical use, preventive and personalised treatments can be started before clinically significant symptoms are observed. This marks a major breakthrough in improving the life quality of OA patients and patients prone to OA. Our discovery will directly lead to longer working careers and lesser absence from work, and will result subsequently increased productivity. Moreover, the patients are expected to live longer due to reduced disability and social isolation.
Moreover, the discovery provides economic long-term relief for the health care system, which is burdened by increasing geriatric population and stringent economic environment. With our tool, as an example, by eliminating 25% of medical examinations annually due to overweight or obesity in Finland (150.000 patients), we estimate to decrease annual direct costs by 140M€ and indirect costs by 185M€.
In the PoC project we will carry out technical proof-of-concept and perform pre-commercialisation actions to shorten the time to market. The ultimate goal after the project is to develop our innovation towards a software product, aiding the OA diagnostics in hospitals and having commercialisation potential amongst medical device companies.
Summary
Osteoarthritis (OA) is a common joint disease affecting over 40 million Europeans. Most common consequences of OA are pain, disability and social isolation. What is alarming, the number of patients will increase 50% in developed countries during the next 20 years. Moreover, the economic costs of OA are considerable since 1) direct healthcare (hospital admissions, medical examinations, drug therapy, etc.) and 2) productivity costs due to reduced performance while at work and absence from work have been estimated to be between 1% and 2.5% of the gross domestic product (GDP) in Western countries.
We have developed an algorithm that is able to predict the progression of OA for overweight subjects while healthy subjects do not develop OA. When employed in clinical use, preventive and personalised treatments can be started before clinically significant symptoms are observed. This marks a major breakthrough in improving the life quality of OA patients and patients prone to OA. Our discovery will directly lead to longer working careers and lesser absence from work, and will result subsequently increased productivity. Moreover, the patients are expected to live longer due to reduced disability and social isolation.
Moreover, the discovery provides economic long-term relief for the health care system, which is burdened by increasing geriatric population and stringent economic environment. With our tool, as an example, by eliminating 25% of medical examinations annually due to overweight or obesity in Finland (150.000 patients), we estimate to decrease annual direct costs by 140M€ and indirect costs by 185M€.
In the PoC project we will carry out technical proof-of-concept and perform pre-commercialisation actions to shorten the time to market. The ultimate goal after the project is to develop our innovation towards a software product, aiding the OA diagnostics in hospitals and having commercialisation potential amongst medical device companies.
Max ERC Funding
150 000 €
Duration
Start date: 2018-01-01, End date: 2019-06-30
Project acronym AlgoFinance
Project Algorithmic Finance: Inquiring into the Reshaping of Financial Markets
Researcher (PI) Christian BORCH
Host Institution (HI) COPENHAGEN BUSINESS SCHOOL
Call Details Consolidator Grant (CoG), SH3, ERC-2016-COG
Summary Present-day financial markets are turning algorithmic, as market orders are increasingly being executed by fully automated computer algorithms, without any direct human intervention. Although algorithmic finance seems to fundamentally reshape the central dynamics in financial markets, and even though it prompts core sociological questions, it has not yet received any systematic attention. In a pioneering contribution to economic sociology and social studies of finance, ALGOFINANCE aims to understand how and with what consequences the turn to algorithms is changing financial markets. The overall concept and central contributions of ALGOFINANCE are the following: (1) on an intra-firm level, the project examines how the shift to algorithmic finance reshapes the ways in which trading firms operate, and does so by systematically and empirically investigating the reconfiguration of organizational structures and employee subjectivity; (2) on an inter-algorithmic level, it offers a ground-breaking methodology (agent-based modelling informed by qualitative data) to grasp how trading algorithms interact with one another in a fully digital space; and (3) on the level of market sociality, it proposes a novel theorization of how intra-firm and inter-algorithmic dynamics can be conceived of as introducing a particular form of sociality that is characteristic to algorithmic finance: a form of sociality-as-association heuristically analyzed as imitation. None of these three levels have received systematic attention in the state-of-the-art literature. Addressing them will significantly advance the understanding of present-day algorithmic finance in economic sociology. By contributing novel empirical, methodological, and theoretical understandings of the functioning and consequences of algorithms, ALGOFINANCE will pave the way for other research into digital sociology and the broader algorithmization of society.
Summary
Present-day financial markets are turning algorithmic, as market orders are increasingly being executed by fully automated computer algorithms, without any direct human intervention. Although algorithmic finance seems to fundamentally reshape the central dynamics in financial markets, and even though it prompts core sociological questions, it has not yet received any systematic attention. In a pioneering contribution to economic sociology and social studies of finance, ALGOFINANCE aims to understand how and with what consequences the turn to algorithms is changing financial markets. The overall concept and central contributions of ALGOFINANCE are the following: (1) on an intra-firm level, the project examines how the shift to algorithmic finance reshapes the ways in which trading firms operate, and does so by systematically and empirically investigating the reconfiguration of organizational structures and employee subjectivity; (2) on an inter-algorithmic level, it offers a ground-breaking methodology (agent-based modelling informed by qualitative data) to grasp how trading algorithms interact with one another in a fully digital space; and (3) on the level of market sociality, it proposes a novel theorization of how intra-firm and inter-algorithmic dynamics can be conceived of as introducing a particular form of sociality that is characteristic to algorithmic finance: a form of sociality-as-association heuristically analyzed as imitation. None of these three levels have received systematic attention in the state-of-the-art literature. Addressing them will significantly advance the understanding of present-day algorithmic finance in economic sociology. By contributing novel empirical, methodological, and theoretical understandings of the functioning and consequences of algorithms, ALGOFINANCE will pave the way for other research into digital sociology and the broader algorithmization of society.
Max ERC Funding
1 590 036 €
Duration
Start date: 2017-05-01, End date: 2021-04-30
Project acronym AlgoRNN
Project Recurrent Neural Networks and Related Machines That Learn Algorithms
Researcher (PI) Juergen Schmidhuber
Host Institution (HI) UNIVERSITA DELLA SVIZZERA ITALIANA
Call Details Advanced Grant (AdG), PE6, ERC-2016-ADG
Summary Recurrent neural networks (RNNs) are general parallel-sequential computers. Some learn their programs or weights. Our supervised Long Short-Term Memory (LSTM) RNNs were the first to win pattern recognition contests, and recently enabled best known results in speech and handwriting recognition, machine translation, etc. They are now available to billions of users through the world's most valuable public companies including Google and Apple. Nevertheless, in lots of real-world tasks RNNs do not yet live up to their full potential. Although universal in theory, in practice they fail to learn important types of algorithms. This ERC project will go far beyond today's best RNNs through novel RNN-like systems that address some of the biggest open RNN problems and hottest RNN research topics: (1) How can RNNs learn to control (through internal spotlights of attention) separate large short-memory structures such as sub-networks with fast weights, to improve performance on many natural short-term memory-intensive tasks which are currently hard to learn by RNNs, such as answering detailed questions on recently observed videos? (2) How can such RNN-like systems metalearn entire learning algorithms that outperform the original learning algorithms? (3) How to achieve efficient transfer learning from one RNN-learned set of problem-solving programs to new RNN programs solving new tasks? In other words, how can one RNN-like system actively learn to exploit algorithmic information contained in the programs running on another? We will test our systems existing benchmarks, and create new, more challenging multi-task benchmarks. This will be supported by a rather cheap, GPU-based mini-brain for implementing large RNNs.
Summary
Recurrent neural networks (RNNs) are general parallel-sequential computers. Some learn their programs or weights. Our supervised Long Short-Term Memory (LSTM) RNNs were the first to win pattern recognition contests, and recently enabled best known results in speech and handwriting recognition, machine translation, etc. They are now available to billions of users through the world's most valuable public companies including Google and Apple. Nevertheless, in lots of real-world tasks RNNs do not yet live up to their full potential. Although universal in theory, in practice they fail to learn important types of algorithms. This ERC project will go far beyond today's best RNNs through novel RNN-like systems that address some of the biggest open RNN problems and hottest RNN research topics: (1) How can RNNs learn to control (through internal spotlights of attention) separate large short-memory structures such as sub-networks with fast weights, to improve performance on many natural short-term memory-intensive tasks which are currently hard to learn by RNNs, such as answering detailed questions on recently observed videos? (2) How can such RNN-like systems metalearn entire learning algorithms that outperform the original learning algorithms? (3) How to achieve efficient transfer learning from one RNN-learned set of problem-solving programs to new RNN programs solving new tasks? In other words, how can one RNN-like system actively learn to exploit algorithmic information contained in the programs running on another? We will test our systems existing benchmarks, and create new, more challenging multi-task benchmarks. This will be supported by a rather cheap, GPU-based mini-brain for implementing large RNNs.
Max ERC Funding
2 500 000 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym ALGSTRONGCRYPTO
Project Algebraic Methods for Stronger Crypto
Researcher (PI) Ronald John Fitzgerald CRAMER
Host Institution (HI) STICHTING NEDERLANDSE WETENSCHAPPELIJK ONDERZOEK INSTITUTEN
Call Details Advanced Grant (AdG), PE6, ERC-2016-ADG
Summary Our field is cryptology. Our overarching objective is to advance significantly the frontiers in
design and analysis of high-security cryptography for the future generation.
Particularly, we wish to enhance the efficiency, functionality, and, last-but-not-least, fundamental understanding of cryptographic security against very powerful adversaries.
Our approach here is to develop completely novel methods by
deepening, strengthening and broadening the
algebraic foundations of the field.
Concretely, our lens builds on
the arithmetic codex. This is a general, abstract cryptographic primitive whose basic theory we recently developed and whose asymptotic part, which relies on algebraic geometry, enjoys crucial applications in surprising foundational results on constant communication-rate two-party cryptography. A codex is a linear (error correcting) code that, when endowing its ambient vector space just with coordinate-wise multiplication, can be viewed as simulating, up to some degree, richer arithmetical structures such as finite fields (or products thereof), or generally, finite-dimensional algebras over finite fields. Besides this degree, coordinate-localities for which simulation holds and for which it does not at all are also captured.
Our method is based on novel perspectives on codices which significantly
widen their scope and strengthen their utility. Particularly, we bring
symmetries, computational- and complexity theoretic aspects, and connections with algebraic number theory, -geometry, and -combinatorics into play in novel ways. Our applications range from public-key cryptography to secure multi-party computation.
Our proposal is subdivided into 3 interconnected modules:
(1) Algebraic- and Number Theoretical Cryptanalysis
(2) Construction of Algebraic Crypto Primitives
(3) Advanced Theory of Arithmetic Codices
Summary
Our field is cryptology. Our overarching objective is to advance significantly the frontiers in
design and analysis of high-security cryptography for the future generation.
Particularly, we wish to enhance the efficiency, functionality, and, last-but-not-least, fundamental understanding of cryptographic security against very powerful adversaries.
Our approach here is to develop completely novel methods by
deepening, strengthening and broadening the
algebraic foundations of the field.
Concretely, our lens builds on
the arithmetic codex. This is a general, abstract cryptographic primitive whose basic theory we recently developed and whose asymptotic part, which relies on algebraic geometry, enjoys crucial applications in surprising foundational results on constant communication-rate two-party cryptography. A codex is a linear (error correcting) code that, when endowing its ambient vector space just with coordinate-wise multiplication, can be viewed as simulating, up to some degree, richer arithmetical structures such as finite fields (or products thereof), or generally, finite-dimensional algebras over finite fields. Besides this degree, coordinate-localities for which simulation holds and for which it does not at all are also captured.
Our method is based on novel perspectives on codices which significantly
widen their scope and strengthen their utility. Particularly, we bring
symmetries, computational- and complexity theoretic aspects, and connections with algebraic number theory, -geometry, and -combinatorics into play in novel ways. Our applications range from public-key cryptography to secure multi-party computation.
Our proposal is subdivided into 3 interconnected modules:
(1) Algebraic- and Number Theoretical Cryptanalysis
(2) Construction of Algebraic Crypto Primitives
(3) Advanced Theory of Arithmetic Codices
Max ERC Funding
2 447 439 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym AlgTateGro
Project Constructing line bundles on algebraic varieties --around conjectures of Tate and Grothendieck
Researcher (PI) François CHARLES
Host Institution (HI) UNIVERSITE PARIS-SUD
Call Details Starting Grant (StG), PE1, ERC-2016-STG
Summary The goal of this project is to investigate two conjectures in arithmetic geometry pertaining to the geometry of projective varieties over finite and number fields. These two conjectures, formulated by Tate and Grothendieck in the 1960s, predict which cohomology classes are chern classes of line bundles. They both form an arithmetic counterpart of a theorem of Lefschetz, proved in the 1940s, which itself is the only known case of the Hodge conjecture. These two long-standing conjectures are one of the aspects of a more general web of questions regarding the topology of algebraic varieties which have been emphasized by Grothendieck and have since had a central role in modern arithmetic geometry. Special cases of these conjectures, appearing for instance in the work of Tate, Deligne, Faltings, Schneider-Lang, Masser-Wüstholz, have all had important consequences.
My goal is to investigate different lines of attack towards these conjectures, building on recent work on myself and Jean-Benoît Bost on related problems. The two main directions of the proposal are as follows. Over finite fields, the Tate conjecture is related to finiteness results for certain cohomological objects. I want to understand how to relate these to hidden boundedness properties of algebraic varieties that have appeared in my recent geometric proof of the Tate conjecture for K3 surfaces. The existence and relevance of a theory of Donaldson invariants for moduli spaces of twisted sheaves over finite fields seems to be a promising and novel direction. Over number fields, I want to combine the geometric insight above with algebraization techniques developed by Bost. In a joint project, we want to investigate how these can be used to first understand geometrically major results in transcendence theory and then attack the Grothendieck period conjecture for divisors via a number-theoretic and complex-analytic understanding of universal vector extensions of abelian schemes over curves.
Summary
The goal of this project is to investigate two conjectures in arithmetic geometry pertaining to the geometry of projective varieties over finite and number fields. These two conjectures, formulated by Tate and Grothendieck in the 1960s, predict which cohomology classes are chern classes of line bundles. They both form an arithmetic counterpart of a theorem of Lefschetz, proved in the 1940s, which itself is the only known case of the Hodge conjecture. These two long-standing conjectures are one of the aspects of a more general web of questions regarding the topology of algebraic varieties which have been emphasized by Grothendieck and have since had a central role in modern arithmetic geometry. Special cases of these conjectures, appearing for instance in the work of Tate, Deligne, Faltings, Schneider-Lang, Masser-Wüstholz, have all had important consequences.
My goal is to investigate different lines of attack towards these conjectures, building on recent work on myself and Jean-Benoît Bost on related problems. The two main directions of the proposal are as follows. Over finite fields, the Tate conjecture is related to finiteness results for certain cohomological objects. I want to understand how to relate these to hidden boundedness properties of algebraic varieties that have appeared in my recent geometric proof of the Tate conjecture for K3 surfaces. The existence and relevance of a theory of Donaldson invariants for moduli spaces of twisted sheaves over finite fields seems to be a promising and novel direction. Over number fields, I want to combine the geometric insight above with algebraization techniques developed by Bost. In a joint project, we want to investigate how these can be used to first understand geometrically major results in transcendence theory and then attack the Grothendieck period conjecture for divisors via a number-theoretic and complex-analytic understanding of universal vector extensions of abelian schemes over curves.
Max ERC Funding
1 222 329 €
Duration
Start date: 2016-12-01, End date: 2021-11-30
Project acronym ALLERGUT
Project Mucosal Tolerance and Allergic Predisposition: Does it all start in the gut?
Researcher (PI) Caspar OHNMACHT
Host Institution (HI) HELMHOLTZ ZENTRUM MUENCHEN DEUTSCHES FORSCHUNGSZENTRUM FUER GESUNDHEIT UND UMWELT GMBH
Call Details Starting Grant (StG), LS6, ERC-2016-STG
Summary Currently, more than 30% of all Europeans suffer from one or more allergic disorder but treatment is still mostly symptomatic due to a lack of understanding the underlying causality. Allergies are caused by type 2 immune responses triggered by recognition of harmless antigens. Both genetic and environmental factors have been proposed to favour allergic predisposition and both factors have a huge impact on the symbiotic microbiota and the intestinal immune system. Recently we and others showed that the transcription factor ROR(γt) seems to play a key role in mucosal tolerance in the gut and also regulates intestinal type 2 immune responses.
Based on these results I postulate two major events in the gut for the development of an allergy in the lifetime of an individual: First, a failure to establish mucosal tolerance or anergy constitutes a necessity for the outbreak of allergic symptoms and allergic disease. Second, a certain ‘core’ microbiome or pathway of the intestinal microbiota predispose certain individuals for the later development of allergic disorders. Therefore, I will address the following aims:
1) Influence of ROR(γt) on mucosal tolerance induction and allergic disorders
2) Elucidate the T cell receptor repertoire of intestinal Th2 and ROR(γt)+ Tregs and assess the role of alternative NFκB pathway for induction of mucosal tolerance
3) Identification of ‘core’ microbiome signatures or metabolic pathways that favour allergic predisposition
ALLERGUT will provide ground-breaking knowledge on molecular mechanisms of the failure of mucosal tolerance in the gut and will prove if the resident ROR(γt)+ T(reg) cells can function as a mechanistic starting point for molecular intervention strategies on the background of the hygiene hypothesis. The vision of ALLERGUT is to diagnose mucosal disbalance, prevent and treat allergic disorders even before outbreak and thereby promote Public Health initiative for better living.
Summary
Currently, more than 30% of all Europeans suffer from one or more allergic disorder but treatment is still mostly symptomatic due to a lack of understanding the underlying causality. Allergies are caused by type 2 immune responses triggered by recognition of harmless antigens. Both genetic and environmental factors have been proposed to favour allergic predisposition and both factors have a huge impact on the symbiotic microbiota and the intestinal immune system. Recently we and others showed that the transcription factor ROR(γt) seems to play a key role in mucosal tolerance in the gut and also regulates intestinal type 2 immune responses.
Based on these results I postulate two major events in the gut for the development of an allergy in the lifetime of an individual: First, a failure to establish mucosal tolerance or anergy constitutes a necessity for the outbreak of allergic symptoms and allergic disease. Second, a certain ‘core’ microbiome or pathway of the intestinal microbiota predispose certain individuals for the later development of allergic disorders. Therefore, I will address the following aims:
1) Influence of ROR(γt) on mucosal tolerance induction and allergic disorders
2) Elucidate the T cell receptor repertoire of intestinal Th2 and ROR(γt)+ Tregs and assess the role of alternative NFκB pathway for induction of mucosal tolerance
3) Identification of ‘core’ microbiome signatures or metabolic pathways that favour allergic predisposition
ALLERGUT will provide ground-breaking knowledge on molecular mechanisms of the failure of mucosal tolerance in the gut and will prove if the resident ROR(γt)+ T(reg) cells can function as a mechanistic starting point for molecular intervention strategies on the background of the hygiene hypothesis. The vision of ALLERGUT is to diagnose mucosal disbalance, prevent and treat allergic disorders even before outbreak and thereby promote Public Health initiative for better living.
Max ERC Funding
1 498 175 €
Duration
Start date: 2017-07-01, End date: 2022-06-30
Project acronym ALMP_ECON
Project Effective evaluation of active labour market policies in social insurance programs - improving the interaction between econometric evaluation estimators and economic theory
Researcher (PI) Bas Van Der Klaauw
Host Institution (HI) STICHTING VU
Call Details Starting Grant (StG), SH1, ERC-2007-StG
Summary In most European countries social insurance programs, like welfare, unemployment insurance and disability insurance are characterized by low reemployment rates. Therefore, governments spend huge amounts of money on active labour market programs, which should help individuals in finding work. Recent surveys indicate that programs which aim at intensifying job search behaviour are much more effective than schooling programs for improving human capital. A second conclusion from these surveys is that despite the size of the spendings on these programs, evidence on its effectiveness is limited. This research proposal aims at developing an economic framework that will be used to evaluate the effectiveness of popular programs like offering reemployment bonuses, fraud detection, workfare and job search monitoring. The main innovation is that I will combine economic theory with recently developed econometric techniques and detailed administrative data sets, which have not been explored before. While most of the literature only focuses on short-term outcomes, the available data allow me to also consider the long-term effectiveness of programs. The key advantage of an economic model is that I can compare the effectiveness of the different programs, consider modifications of programs and combinations of programs. Furthermore, using an economic model I can construct profiling measures to improve the targeting of programs to subsamples of the population. This is particularly relevant if the effectiveness of programs differs between individuals or depends on the moment in time the program is offered. Therefore, the results from this research will not only be of scientific interest, but will also be of great value to policymakers.
Summary
In most European countries social insurance programs, like welfare, unemployment insurance and disability insurance are characterized by low reemployment rates. Therefore, governments spend huge amounts of money on active labour market programs, which should help individuals in finding work. Recent surveys indicate that programs which aim at intensifying job search behaviour are much more effective than schooling programs for improving human capital. A second conclusion from these surveys is that despite the size of the spendings on these programs, evidence on its effectiveness is limited. This research proposal aims at developing an economic framework that will be used to evaluate the effectiveness of popular programs like offering reemployment bonuses, fraud detection, workfare and job search monitoring. The main innovation is that I will combine economic theory with recently developed econometric techniques and detailed administrative data sets, which have not been explored before. While most of the literature only focuses on short-term outcomes, the available data allow me to also consider the long-term effectiveness of programs. The key advantage of an economic model is that I can compare the effectiveness of the different programs, consider modifications of programs and combinations of programs. Furthermore, using an economic model I can construct profiling measures to improve the targeting of programs to subsamples of the population. This is particularly relevant if the effectiveness of programs differs between individuals or depends on the moment in time the program is offered. Therefore, the results from this research will not only be of scientific interest, but will also be of great value to policymakers.
Max ERC Funding
550 000 €
Duration
Start date: 2008-07-01, End date: 2013-06-30
Project acronym ALS-Networks
Project Defining functional networks of genetic causes for ALS and related neurodegenerative disorders
Researcher (PI) Edor Kabashi
Host Institution (HI) INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
Call Details Consolidator Grant (CoG), LS5, ERC-2015-CoG
Summary Brain and spinal cord diseases affect 38% of the European population and cost over 800 billion € annually; representing by far the largest health challenge. ALS is a prevalent neurological disease caused by motor neuron death with an invariably fatal outcome. I contributed to ALS research with the groundbreaking discovery of TDP-43 mutations, functionally characterized these mutations in the first vertebrate model and demonstrated a genetic interaction with another major ALS gene FUS. Emerging evidence indicates that four major causative factors in ALS, C9orf72, TDP-43, FUS & SQSTM1, genetically interact and could function in common cellular mechanisms. Here, I will develop zebrafish transgenic lines for all four genes, using state of the art genomic editing tools to combine simultaneous gene knockout and expression of the mutant alleles. Using these innovative disease models I will study the functional interactions amongst these four genes and their converging effect on key ALS pathogenic mechanisms: autophagy degradation, stress granule formation and RNA regulation. These studies will permit to pinpoint the molecular cascades that underlie ALS-related neurodegeneration. We will further expand the current ALS network by proposing and validating novel genetic interactors, which will be further screened for disease-causing variants and as pathological markers in patient samples. The power of zebrafish as a vertebrate model amenable to high-content phenotype-based screens will enable discovery of bioactive compounds that are neuroprotective in multiple animal models of disease. This project will increase the fundamental understanding of the relevance of C9orf72, TDP-43, FUS and SQSTM1 by developing animal models to characterize common pathophysiological mechanisms. Furthermore, I will uncover novel genetic, disease-related and pharmacological modifiers to extend the ALS network that will facilitate development of therapeutic strategies for neurodegenerative disorders
Summary
Brain and spinal cord diseases affect 38% of the European population and cost over 800 billion € annually; representing by far the largest health challenge. ALS is a prevalent neurological disease caused by motor neuron death with an invariably fatal outcome. I contributed to ALS research with the groundbreaking discovery of TDP-43 mutations, functionally characterized these mutations in the first vertebrate model and demonstrated a genetic interaction with another major ALS gene FUS. Emerging evidence indicates that four major causative factors in ALS, C9orf72, TDP-43, FUS & SQSTM1, genetically interact and could function in common cellular mechanisms. Here, I will develop zebrafish transgenic lines for all four genes, using state of the art genomic editing tools to combine simultaneous gene knockout and expression of the mutant alleles. Using these innovative disease models I will study the functional interactions amongst these four genes and their converging effect on key ALS pathogenic mechanisms: autophagy degradation, stress granule formation and RNA regulation. These studies will permit to pinpoint the molecular cascades that underlie ALS-related neurodegeneration. We will further expand the current ALS network by proposing and validating novel genetic interactors, which will be further screened for disease-causing variants and as pathological markers in patient samples. The power of zebrafish as a vertebrate model amenable to high-content phenotype-based screens will enable discovery of bioactive compounds that are neuroprotective in multiple animal models of disease. This project will increase the fundamental understanding of the relevance of C9orf72, TDP-43, FUS and SQSTM1 by developing animal models to characterize common pathophysiological mechanisms. Furthermore, I will uncover novel genetic, disease-related and pharmacological modifiers to extend the ALS network that will facilitate development of therapeutic strategies for neurodegenerative disorders
Max ERC Funding
2 000 000 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym altEJrepair
Project Characterisation of DNA Double-Strand Break Repair by Alternative End-Joining: Potential Targets for Cancer Therapy
Researcher (PI) Raphael CECCALDI
Host Institution (HI) INSTITUT CURIE
Call Details Starting Grant (StG), LS1, ERC-2016-STG
Summary DNA repair pathways evolved as an intricate network that senses DNA damage and resolves it in order to minimise genetic lesions and thus preventing tumour formation. Gaining in recognition the last few years, the alternative end-joining (alt-EJ) DNA repair pathway was recently shown to be up-regulated and required for cancer cell viability in the absence of homologous recombination-mediated repair (HR). Despite this integral role, the alt-EJ repair pathway remains poorly characterised in humans. As such, its molecular composition, regulation and crosstalk with HR and other repair pathways remain elusive. Additionally, the contribution of the alt-EJ pathway to tumour progression as well as the identification of a mutational signature associated with the use of alt-EJ has not yet been investigated. Moreover, the clinical relevance of developing small-molecule inhibitors targeting players in the alt-EJ pathway, such as the polymerase Pol Theta (Polθ), is of importance as current anticancer drug treatments have shown limited effectiveness in achieving cancer remission in patients with HR-deficient (HRD) tumours.
Here, we propose a novel, multidisciplinary approach that aims to characterise the players and mechanisms of action involved in the utilisation of alt-EJ in cancer. This understanding will better elucidate the changing interplay between different DNA repair pathways, thus shedding light on whether and how the use of alt-EJ contributes to the pathogenic history and survival of HRD tumours, eventually paving the way for the development of novel anticancer therapeutics.
For all the abovementioned reasons, we are convinced this project will have important implications in: 1) elucidating critical interconnections between DNA repair pathways, 2) improving the basic understanding of the composition, regulation and function of the alt-EJ pathway, and 3) facilitating the development of new synthetic lethality-based chemotherapeutics for the treatment of HRD tumours.
Summary
DNA repair pathways evolved as an intricate network that senses DNA damage and resolves it in order to minimise genetic lesions and thus preventing tumour formation. Gaining in recognition the last few years, the alternative end-joining (alt-EJ) DNA repair pathway was recently shown to be up-regulated and required for cancer cell viability in the absence of homologous recombination-mediated repair (HR). Despite this integral role, the alt-EJ repair pathway remains poorly characterised in humans. As such, its molecular composition, regulation and crosstalk with HR and other repair pathways remain elusive. Additionally, the contribution of the alt-EJ pathway to tumour progression as well as the identification of a mutational signature associated with the use of alt-EJ has not yet been investigated. Moreover, the clinical relevance of developing small-molecule inhibitors targeting players in the alt-EJ pathway, such as the polymerase Pol Theta (Polθ), is of importance as current anticancer drug treatments have shown limited effectiveness in achieving cancer remission in patients with HR-deficient (HRD) tumours.
Here, we propose a novel, multidisciplinary approach that aims to characterise the players and mechanisms of action involved in the utilisation of alt-EJ in cancer. This understanding will better elucidate the changing interplay between different DNA repair pathways, thus shedding light on whether and how the use of alt-EJ contributes to the pathogenic history and survival of HRD tumours, eventually paving the way for the development of novel anticancer therapeutics.
For all the abovementioned reasons, we are convinced this project will have important implications in: 1) elucidating critical interconnections between DNA repair pathways, 2) improving the basic understanding of the composition, regulation and function of the alt-EJ pathway, and 3) facilitating the development of new synthetic lethality-based chemotherapeutics for the treatment of HRD tumours.
Max ERC Funding
1 498 750 €
Duration
Start date: 2017-07-01, End date: 2022-06-30
Project acronym AlterMateria
Project Designer Quantum Materials Out of Equilibrium
Researcher (PI) Andrea Caviglia
Host Institution (HI) TECHNISCHE UNIVERSITEIT DELFT
Call Details Starting Grant (StG), PE3, ERC-2015-STG
Summary Recently, ‘designer’ quantum materials, synthesised layer by layer, have been realised, sparking ground-breaking new scientific insights. These artificial materials, such as oxide heterostructures, are interesting building blocks for a new generation of technologies, provided that one is able to access, study and ultimately control their quantum phases in practical conditions such as at room temperature and high speeds.
On the other hand, an independent research area is emerging that uses ultra-short bursts of light to stimulate changes in the macroscopic electronic properties of solids at unprecedented speeds.
Here I propose to bridge the gap between material design and ultrafast control of solids. This new synergy will allow us to explore fundamental research questions on the non-equilibrium dynamics of quantum materials with competing ground states. Specifically, I will utilize intense THz and mid-infrared electromagnetic fields to manipulate the electronic properties of artificial quantum materials on pico- to femto-second time scales. Beyond the development of novel techniques to generate THz electric fields of unprecedented intensity, I will investigate metal-insulator and magnetic transitions in oxide heterostructures as they unfold in time. This research programme takes oxide electronics in a new direction and establishes a new methodology for the control of quantum phases at high temperature and high speed.
Summary
Recently, ‘designer’ quantum materials, synthesised layer by layer, have been realised, sparking ground-breaking new scientific insights. These artificial materials, such as oxide heterostructures, are interesting building blocks for a new generation of technologies, provided that one is able to access, study and ultimately control their quantum phases in practical conditions such as at room temperature and high speeds.
On the other hand, an independent research area is emerging that uses ultra-short bursts of light to stimulate changes in the macroscopic electronic properties of solids at unprecedented speeds.
Here I propose to bridge the gap between material design and ultrafast control of solids. This new synergy will allow us to explore fundamental research questions on the non-equilibrium dynamics of quantum materials with competing ground states. Specifically, I will utilize intense THz and mid-infrared electromagnetic fields to manipulate the electronic properties of artificial quantum materials on pico- to femto-second time scales. Beyond the development of novel techniques to generate THz electric fields of unprecedented intensity, I will investigate metal-insulator and magnetic transitions in oxide heterostructures as they unfold in time. This research programme takes oxide electronics in a new direction and establishes a new methodology for the control of quantum phases at high temperature and high speed.
Max ERC Funding
1 499 982 €
Duration
Start date: 2016-06-01, End date: 2021-05-31
Project acronym ALTERUMMA
Project Creating an Alternative umma: Clerical Authority and Religio-political Mobilisation in Transnational Shii Islam
Researcher (PI) Oliver Paul SCHARBRODT
Host Institution (HI) THE UNIVERSITY OF BIRMINGHAM
Call Details Consolidator Grant (CoG), SH5, ERC-2016-COG
Summary This interdisciplinary project investigates the transformation of Shii Islam in the Middle East and Europe since the 1950s. The project examines the formation of modern Shii communal identities and the role Shii clerical authorities and their transnational networks have played in their religio-political mobilisation. The volatile situation post-Arab Spring, the rise of militant movements such as ISIS and the sectarianisation of geopolitical conflicts in the Middle East have intensified efforts to forge distinct Shii communal identities and to conceive Shii Muslims as part of an alternative umma (Islamic community). The project focusses on Iran, Iraq and significant but unexplored diasporic links to Syria, Kuwait and Britain. In response to the rise of modern nation-states in the Middle East, Shii clerical authorities resorted to a wide range of activities: (a) articulating intellectual responses to the ideologies underpinning modern Middle Eastern nation-states, (b) forming political parties and other platforms of socio-political activism and (c) using various forms of cultural production by systematising and promoting Shii ritual practices and utilising visual art, poetry and new media.
The project yields a perspectival shift on the factors that led to Shii communal mobilisation by:
- Analysing unacknowledged intellectual responses of Shii clerical authorities to the secular or sectarian ideologies of post-colonial nation-states and to the current sectarianisation of geopolitics in the Middle East.
- Emphasising the central role of diasporic networks in the Middle East and Europe in mobilising Shii communities and in influencing discourses and agendas of clerical authorities based in Iraq and Iran.
- Exploring new modes of cultural production in the form of a modern Shii aesthetics articulated in ritual practices, visual art, poetry and new media and thus creating a more holistic narrative on Shii religio-political mobilisation.
Summary
This interdisciplinary project investigates the transformation of Shii Islam in the Middle East and Europe since the 1950s. The project examines the formation of modern Shii communal identities and the role Shii clerical authorities and their transnational networks have played in their religio-political mobilisation. The volatile situation post-Arab Spring, the rise of militant movements such as ISIS and the sectarianisation of geopolitical conflicts in the Middle East have intensified efforts to forge distinct Shii communal identities and to conceive Shii Muslims as part of an alternative umma (Islamic community). The project focusses on Iran, Iraq and significant but unexplored diasporic links to Syria, Kuwait and Britain. In response to the rise of modern nation-states in the Middle East, Shii clerical authorities resorted to a wide range of activities: (a) articulating intellectual responses to the ideologies underpinning modern Middle Eastern nation-states, (b) forming political parties and other platforms of socio-political activism and (c) using various forms of cultural production by systematising and promoting Shii ritual practices and utilising visual art, poetry and new media.
The project yields a perspectival shift on the factors that led to Shii communal mobilisation by:
- Analysing unacknowledged intellectual responses of Shii clerical authorities to the secular or sectarian ideologies of post-colonial nation-states and to the current sectarianisation of geopolitics in the Middle East.
- Emphasising the central role of diasporic networks in the Middle East and Europe in mobilising Shii communities and in influencing discourses and agendas of clerical authorities based in Iraq and Iran.
- Exploring new modes of cultural production in the form of a modern Shii aesthetics articulated in ritual practices, visual art, poetry and new media and thus creating a more holistic narrative on Shii religio-political mobilisation.
Max ERC Funding
1 952 374 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym ALUFIX
Project Friction stir processing based local damage mitigation and healing in aluminium alloys
Researcher (PI) Aude SIMAR
Host Institution (HI) UNIVERSITE CATHOLIQUE DE LOUVAIN
Call Details Starting Grant (StG), PE8, ERC-2016-STG
Summary ALUFIX proposes an original strategy for the development of aluminium-based materials involving damage mitigation and extrinsic self-healing concepts exploiting the new opportunities of the solid-state friction stir process. Friction stir processing locally extrudes and drags material from the front to the back and around the tool pin. It involves short duration at moderate temperatures (typically 80% of the melting temperature), fast cooling rates and large plastic deformations leading to far out-of-equilibrium microstructures. The idea is that commercial aluminium alloys can be locally improved and healed in regions of stress concentration where damage is likely to occur. Self-healing in metal-based materials is still in its infancy and existing strategies can hardly be extended to applications. Friction stir processing can enhance the damage and fatigue resistance of aluminium alloys by microstructure homogenisation and refinement. In parallel, friction stir processing can be used to integrate secondary phases in an aluminium matrix. In the ALUFIX project, healing phases will thus be integrated in aluminium in addition to refining and homogenising the microstructure. The “local stress management strategy” favours crack closure and crack deviation at the sub-millimetre scale thanks to a controlled residual stress field. The “transient liquid healing agent” strategy involves the in-situ generation of an out-of-equilibrium compositionally graded microstructure at the aluminium/healing agent interface capable of liquid-phase healing after a thermal treatment. Along the road, a variety of new scientific questions concerning the damage mechanisms will have to be addressed.
Summary
ALUFIX proposes an original strategy for the development of aluminium-based materials involving damage mitigation and extrinsic self-healing concepts exploiting the new opportunities of the solid-state friction stir process. Friction stir processing locally extrudes and drags material from the front to the back and around the tool pin. It involves short duration at moderate temperatures (typically 80% of the melting temperature), fast cooling rates and large plastic deformations leading to far out-of-equilibrium microstructures. The idea is that commercial aluminium alloys can be locally improved and healed in regions of stress concentration where damage is likely to occur. Self-healing in metal-based materials is still in its infancy and existing strategies can hardly be extended to applications. Friction stir processing can enhance the damage and fatigue resistance of aluminium alloys by microstructure homogenisation and refinement. In parallel, friction stir processing can be used to integrate secondary phases in an aluminium matrix. In the ALUFIX project, healing phases will thus be integrated in aluminium in addition to refining and homogenising the microstructure. The “local stress management strategy” favours crack closure and crack deviation at the sub-millimetre scale thanks to a controlled residual stress field. The “transient liquid healing agent” strategy involves the in-situ generation of an out-of-equilibrium compositionally graded microstructure at the aluminium/healing agent interface capable of liquid-phase healing after a thermal treatment. Along the road, a variety of new scientific questions concerning the damage mechanisms will have to be addressed.
Max ERC Funding
1 497 447 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym ALZSYN
Project Imaging synaptic contributors to dementia
Researcher (PI) Tara Spires-Jones
Host Institution (HI) THE UNIVERSITY OF EDINBURGH
Call Details Consolidator Grant (CoG), LS5, ERC-2015-CoG
Summary Alzheimer's disease, the most common cause of dementia in older people, is a devastating condition that is becoming a public health crisis as our population ages. Despite great progress recently in Alzheimer’s disease research, we have no disease modifying drugs and a decade with a 99.6% failure rate of clinical trials attempting to treat the disease. This project aims to develop relevant therapeutic targets to restore brain function in Alzheimer’s disease by integrating human and model studies of synapses. It is widely accepted in the field that alterations in amyloid beta initiate the disease process. However the cascade leading from changes in amyloid to widespread tau pathology and neurodegeneration remain unclear. Synapse loss is the strongest pathological correlate of dementia in Alzheimer’s, and mounting evidence suggests that synapse degeneration plays a key role in causing cognitive decline. Here I propose to test the hypothesis that the amyloid cascade begins at the synapse leading to tau pathology, synapse dysfunction and loss, and ultimately neural circuit collapse causing cognitive impairment. The team will use cutting-edge multiphoton and array tomography imaging techniques to test mechanisms downstream of amyloid beta at synapses, and determine whether intervening in the cascade allows recovery of synapse structure and function. Importantly, I will combine studies in robust models of familial Alzheimer’s disease with studies in postmortem human brain to confirm relevance of our mechanistic studies to human disease. Finally, human stem cell derived neurons will be used to test mechanisms and potential therapeutics in neurons expressing the human proteome. Together, these experiments are ground-breaking since they have the potential to further our understanding of how synapses are lost in Alzheimer’s disease and to identify targets for effective therapeutic intervention, which is a critical unmet need in today’s health care system.
Summary
Alzheimer's disease, the most common cause of dementia in older people, is a devastating condition that is becoming a public health crisis as our population ages. Despite great progress recently in Alzheimer’s disease research, we have no disease modifying drugs and a decade with a 99.6% failure rate of clinical trials attempting to treat the disease. This project aims to develop relevant therapeutic targets to restore brain function in Alzheimer’s disease by integrating human and model studies of synapses. It is widely accepted in the field that alterations in amyloid beta initiate the disease process. However the cascade leading from changes in amyloid to widespread tau pathology and neurodegeneration remain unclear. Synapse loss is the strongest pathological correlate of dementia in Alzheimer’s, and mounting evidence suggests that synapse degeneration plays a key role in causing cognitive decline. Here I propose to test the hypothesis that the amyloid cascade begins at the synapse leading to tau pathology, synapse dysfunction and loss, and ultimately neural circuit collapse causing cognitive impairment. The team will use cutting-edge multiphoton and array tomography imaging techniques to test mechanisms downstream of amyloid beta at synapses, and determine whether intervening in the cascade allows recovery of synapse structure and function. Importantly, I will combine studies in robust models of familial Alzheimer’s disease with studies in postmortem human brain to confirm relevance of our mechanistic studies to human disease. Finally, human stem cell derived neurons will be used to test mechanisms and potential therapeutics in neurons expressing the human proteome. Together, these experiments are ground-breaking since they have the potential to further our understanding of how synapses are lost in Alzheimer’s disease and to identify targets for effective therapeutic intervention, which is a critical unmet need in today’s health care system.
Max ERC Funding
2 000 000 €
Duration
Start date: 2016-11-01, End date: 2021-10-31
Project acronym AMEFOCT
Project Add-on module for optical coherence tomography with en-face view option
Researcher (PI) Adrian Podoleanu
Host Institution (HI) UNIVERSITY OF KENT
Call Details Proof of Concept (PoC), ERC-2015-PoC, ERC-2015-PoC
Summary By the end of the 4th year of the ERC Advanced grant, the PI has set up the basis of a unique procedure to perform optical coherence tomography (OCT) that is similar in outcome to time domain interferometry but has all advantages of spectral domain interferometry in terms of speed and sensitivity. The new method of OCT, termed as Master/Slave (MS), is characterised by several advantages: direct production of an en-face OCT image, tolerance to dispersion that allows MS-OCT to achieve the theoretical limit of axial resolution and sensitivity that can be tailored for no hardware and time cost, with the axial resolution. By excellence, the Master/Slave OCT method delivers en-face views direct, allowing lower cost hardware and faster provision of en-face slicing and visualisation. An essential advantage is that of parallel processing, that makes MS-OCT, ideally suited to novel parallel optical configurations and graphic processing units (GPU). These advantages can substantially increase the speed in providing volumes of the tissue, making the new OCT method superior to all other methods on the market. The POC support will help advance the MS-OCT closer to commercialisation. Four market strategies are identified with immediate products for the first two. OCT add-on modules, equipped with MS software, for: A. OCT developers, to accelerate their research and B. OCT developers that can modify existing commercial OCT systems, by making them accomplish the MS protocol. The module to be assembled and assessed for commercialisation will also pave the way to two more strategies: C. Companies already selling OCT systems on dedicated markets, where specialised agreements will widen the market and even D. A full OCT system created by the new company, an ultimate outcome that requires investment, based on revenue acquired by selling the add-on modules.
Summary
By the end of the 4th year of the ERC Advanced grant, the PI has set up the basis of a unique procedure to perform optical coherence tomography (OCT) that is similar in outcome to time domain interferometry but has all advantages of spectral domain interferometry in terms of speed and sensitivity. The new method of OCT, termed as Master/Slave (MS), is characterised by several advantages: direct production of an en-face OCT image, tolerance to dispersion that allows MS-OCT to achieve the theoretical limit of axial resolution and sensitivity that can be tailored for no hardware and time cost, with the axial resolution. By excellence, the Master/Slave OCT method delivers en-face views direct, allowing lower cost hardware and faster provision of en-face slicing and visualisation. An essential advantage is that of parallel processing, that makes MS-OCT, ideally suited to novel parallel optical configurations and graphic processing units (GPU). These advantages can substantially increase the speed in providing volumes of the tissue, making the new OCT method superior to all other methods on the market. The POC support will help advance the MS-OCT closer to commercialisation. Four market strategies are identified with immediate products for the first two. OCT add-on modules, equipped with MS software, for: A. OCT developers, to accelerate their research and B. OCT developers that can modify existing commercial OCT systems, by making them accomplish the MS protocol. The module to be assembled and assessed for commercialisation will also pave the way to two more strategies: C. Companies already selling OCT systems on dedicated markets, where specialised agreements will widen the market and even D. A full OCT system created by the new company, an ultimate outcome that requires investment, based on revenue acquired by selling the add-on modules.
Max ERC Funding
149 917 €
Duration
Start date: 2015-11-01, End date: 2017-04-30
Project acronym AMETIST
Project Advanced III-V Materials and Processes Enabling Ultrahigh-efficiency ( 50%) Photovoltaics
Researcher (PI) Mircea Dorel GUINA
Host Institution (HI) TAMPEREEN KORKEAKOULUSAATIO SR
Call Details Advanced Grant (AdG), PE8, ERC-2015-AdG
Summary Compound semiconductor solar cells are providing the highest photovoltaic conversion efficiency, yet their performance lacks far behind the theoretical potential. This is a position we will challenge by engineering advanced III-V optoelectronics materials and heterostructures for better utilization of the solar spectrum, enabling efficiencies approaching practical limits. The work is strongly motivated by the global need for renewable energy sources. To this end, AMETIST framework is based on three vectors of excellence in: i) material science and epitaxial processes, ii) advanced solar cells exploiting nanophotonics concepts, and iii) new device fabrication technologies.
Novel heterostructures (e.g. GaInNAsSb, GaNAsBi), providing absorption in a broad spectral range from 0.7 eV to 1.4 eV, will be synthesized and monolithically integrated in tandem cells with up to 8-junctions. Nanophotonic methods for light-trapping, spectral and spatial control of solar radiation will be developed to further enhance the absorption. To ensure a high long-term impact, the project will validate the use of state-of-the-art molecular-beam-epitaxy processes for fabrication of economically viable ultra-high efficiency solar cells. The ultimate efficiency target is to reach a level of 55%. This would enable to generate renewable/ecological/sustainable energy at a levelized production cost below ~7 ¢/kWh, comparable or cheaper than fossil fuels. The work will also bring a new breath of developments for more efficient space photovoltaic systems.
AMETIST will leverage the leading position of the applicant in topical technology areas relevant for the project (i.e. epitaxy of III-N/Bi-V alloys and key achievements concerning GaInNAsSb-based tandem solar cells). Thus it renders a unique opportunity to capitalize on the group expertize and position Europe at the forefront in the global competition for demonstrating more efficient and economically viable photovoltaic technologies.
Summary
Compound semiconductor solar cells are providing the highest photovoltaic conversion efficiency, yet their performance lacks far behind the theoretical potential. This is a position we will challenge by engineering advanced III-V optoelectronics materials and heterostructures for better utilization of the solar spectrum, enabling efficiencies approaching practical limits. The work is strongly motivated by the global need for renewable energy sources. To this end, AMETIST framework is based on three vectors of excellence in: i) material science and epitaxial processes, ii) advanced solar cells exploiting nanophotonics concepts, and iii) new device fabrication technologies.
Novel heterostructures (e.g. GaInNAsSb, GaNAsBi), providing absorption in a broad spectral range from 0.7 eV to 1.4 eV, will be synthesized and monolithically integrated in tandem cells with up to 8-junctions. Nanophotonic methods for light-trapping, spectral and spatial control of solar radiation will be developed to further enhance the absorption. To ensure a high long-term impact, the project will validate the use of state-of-the-art molecular-beam-epitaxy processes for fabrication of economically viable ultra-high efficiency solar cells. The ultimate efficiency target is to reach a level of 55%. This would enable to generate renewable/ecological/sustainable energy at a levelized production cost below ~7 ¢/kWh, comparable or cheaper than fossil fuels. The work will also bring a new breath of developments for more efficient space photovoltaic systems.
AMETIST will leverage the leading position of the applicant in topical technology areas relevant for the project (i.e. epitaxy of III-N/Bi-V alloys and key achievements concerning GaInNAsSb-based tandem solar cells). Thus it renders a unique opportunity to capitalize on the group expertize and position Europe at the forefront in the global competition for demonstrating more efficient and economically viable photovoltaic technologies.
Max ERC Funding
2 492 719 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym AMORE
Project A distributional MOdel of Reference to Entities
Researcher (PI) Gemma BOLEDA TORRENT
Host Institution (HI) UNIVERSIDAD POMPEU FABRA
Call Details Starting Grant (StG), SH4, ERC-2016-STG
Summary "When I asked my seven-year-old daughter ""Who is the boy in your class who was also new in school last year, like you?"", she instantly replied ""Daniel"", using the descriptive content in my utterance to identify an entity in the real world and refer to it. The ability to use language to refer to reality is crucial for humans, and yet it is very difficult to model. AMORE breaks new ground in Computational Linguistics, Linguistics, and Artificial Intelligence by developing a model of linguistic reference to entities implemented as a computational system that can learn its own representations from data.
This interdisciplinary project builds on two complementary semantic traditions: 1) Formal semantics, a symbolic approach that can delimit and track linguistic referents, but does not adequately match them with the descriptive content of linguistic expressions; 2) Distributional semantics, which can handle descriptive content but does not associate it to individuated referents. AMORE synthesizes the two approaches into a unified, scalable model of reference that operates with individuated referents and links them to referential expressions characterized by rich descriptive content. The model is a distributed (neural network) version of a formal semantic framework that is furthermore able to integrate perceptual (visual) and linguistic information about entities. We test it extensively in referential tasks that require matching noun phrases (“the Medicine student”, “the white cat”) with entity representations extracted from text and images.
AMORE advances our scientific understanding of language and its computational modeling, and contributes to the far-reaching debate between symbolic and distributed approaches to cognition with an integrative proposal. I am in a privileged position to carry out this integration, since I have contributed top research in both distributional and formal semantics.
"
Summary
"When I asked my seven-year-old daughter ""Who is the boy in your class who was also new in school last year, like you?"", she instantly replied ""Daniel"", using the descriptive content in my utterance to identify an entity in the real world and refer to it. The ability to use language to refer to reality is crucial for humans, and yet it is very difficult to model. AMORE breaks new ground in Computational Linguistics, Linguistics, and Artificial Intelligence by developing a model of linguistic reference to entities implemented as a computational system that can learn its own representations from data.
This interdisciplinary project builds on two complementary semantic traditions: 1) Formal semantics, a symbolic approach that can delimit and track linguistic referents, but does not adequately match them with the descriptive content of linguistic expressions; 2) Distributional semantics, which can handle descriptive content but does not associate it to individuated referents. AMORE synthesizes the two approaches into a unified, scalable model of reference that operates with individuated referents and links them to referential expressions characterized by rich descriptive content. The model is a distributed (neural network) version of a formal semantic framework that is furthermore able to integrate perceptual (visual) and linguistic information about entities. We test it extensively in referential tasks that require matching noun phrases (“the Medicine student”, “the white cat”) with entity representations extracted from text and images.
AMORE advances our scientific understanding of language and its computational modeling, and contributes to the far-reaching debate between symbolic and distributed approaches to cognition with an integrative proposal. I am in a privileged position to carry out this integration, since I have contributed top research in both distributional and formal semantics.
"
Max ERC Funding
1 499 805 €
Duration
Start date: 2017-02-01, End date: 2022-01-31
Project acronym AMPLIFY
Project Amplifying Human Perception Through Interactive Digital Technologies
Researcher (PI) Albrecht Schmidt
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Call Details Consolidator Grant (CoG), PE6, ERC-2015-CoG
Summary Current technical sensor systems offer capabilities that are superior to human perception. Cameras can capture a spectrum that is wider than visible light, high-speed cameras can show movements that are invisible to the human eye, and directional microphones can pick up sounds at long distances. The vision of this project is to lay a foundation for the creation of digital technologies that provide novel sensory experiences and new perceptual capabilities for humans that are natural and intuitive to use. In a first step, the project will assess the feasibility of creating artificial human senses that provide new perceptual channels to the human mind, without increasing the experienced cognitive load. A particular focus is on creating intuitive and natural control mechanisms for amplified senses using eye gaze, muscle activity, and brain signals. Through the creation of a prototype that provides mildly unpleasant stimulations in response to perceived information, the feasibility of implementing an artificial reflex will be experimentally explored. The project will quantify the effectiveness of new senses and artificial perceptual aids compared to the baseline of unaugmented perception. The overall objective is to systematically research, explore, and model new means for increasing the human intake of information in order to lay the foundation for new and improved human senses enabled through digital technologies and to enable artificial reflexes. The ground-breaking contributions of this project are (1) to demonstrate the feasibility of reliably implementing amplified senses and new perceptual capabilities, (2) to prove the possibility of creating an artificial reflex, (3) to provide an example implementation of amplified cognition that is empirically validated, and (4) to develop models, concepts, components, and platforms that will enable and ease the creation of interactive systems that measurably increase human perceptual capabilities.
Summary
Current technical sensor systems offer capabilities that are superior to human perception. Cameras can capture a spectrum that is wider than visible light, high-speed cameras can show movements that are invisible to the human eye, and directional microphones can pick up sounds at long distances. The vision of this project is to lay a foundation for the creation of digital technologies that provide novel sensory experiences and new perceptual capabilities for humans that are natural and intuitive to use. In a first step, the project will assess the feasibility of creating artificial human senses that provide new perceptual channels to the human mind, without increasing the experienced cognitive load. A particular focus is on creating intuitive and natural control mechanisms for amplified senses using eye gaze, muscle activity, and brain signals. Through the creation of a prototype that provides mildly unpleasant stimulations in response to perceived information, the feasibility of implementing an artificial reflex will be experimentally explored. The project will quantify the effectiveness of new senses and artificial perceptual aids compared to the baseline of unaugmented perception. The overall objective is to systematically research, explore, and model new means for increasing the human intake of information in order to lay the foundation for new and improved human senses enabled through digital technologies and to enable artificial reflexes. The ground-breaking contributions of this project are (1) to demonstrate the feasibility of reliably implementing amplified senses and new perceptual capabilities, (2) to prove the possibility of creating an artificial reflex, (3) to provide an example implementation of amplified cognition that is empirically validated, and (4) to develop models, concepts, components, and platforms that will enable and ease the creation of interactive systems that measurably increase human perceptual capabilities.
Max ERC Funding
1 925 250 €
Duration
Start date: 2016-07-01, End date: 2021-06-30
Project acronym AMPLIPORE
Project Understanding negative gas adsorption in highly porous networks for the design of pressure amplifying materials
Researcher (PI) Stefan Kaskel
Host Institution (HI) TECHNISCHE UNIVERSITAET DRESDEN
Call Details Advanced Grant (AdG), PE5, ERC-2016-ADG
Summary Negative gas adsorption (NGA) is a new, counterintuitive and paradoxical phenomenon, for the first time
reported by my group in 2016: Normal solid materials with significant outer or inner surface area always
take up gas when the pressure in the surrounding reservoir is increased (adsorption). NGA networks instead
react at a certain point in the opposite direction: They release gas upon external pressure increase, leading to
an overall pressure amplification in a closed system. Comparable phenomena have never been reported
before. What is so exciting about NGA? We have a unique material in hand, that counteracts to an external
force by force amplification.
So far NGA has solely been observed in one of our new coordination polymers, featuring a colossal selfcompression
associated with a mesopore-to-micropore transformation. Gas pressure amplifying materials
could lead to important innovations in gas releasing rescue systems, pneumatic control systems (production,
transportation), micropumps, microfluidic devices, pneumatic actuators, and artificial lungs. A fundamental
understanding of the physical mechanisms, structures, and thermodynamic boundary conditions is an
essential prerequisite for any industrial application of this counterintuitive phenomenon.
Combining strong synthetic methodologies with advanced analytical techniques, AMPLIPORE will elucidate
the characteristic molecular and mesoscopic materials signatures as well as thermodynamic boundary
conditions of NGA phenomena. We will elaborate a generic NGA-materials concept to tailor the pressure
amplification and explore temperature and pressure ranges at which NGA can be applied. Developing tailormade
instrumentation for kinetic investigations of NGA will give fundamental insights into the intrinsic and
macroscopic dynamics of crystal-to-crystal transformations for applications in micropneumatic systems.
Summary
Negative gas adsorption (NGA) is a new, counterintuitive and paradoxical phenomenon, for the first time
reported by my group in 2016: Normal solid materials with significant outer or inner surface area always
take up gas when the pressure in the surrounding reservoir is increased (adsorption). NGA networks instead
react at a certain point in the opposite direction: They release gas upon external pressure increase, leading to
an overall pressure amplification in a closed system. Comparable phenomena have never been reported
before. What is so exciting about NGA? We have a unique material in hand, that counteracts to an external
force by force amplification.
So far NGA has solely been observed in one of our new coordination polymers, featuring a colossal selfcompression
associated with a mesopore-to-micropore transformation. Gas pressure amplifying materials
could lead to important innovations in gas releasing rescue systems, pneumatic control systems (production,
transportation), micropumps, microfluidic devices, pneumatic actuators, and artificial lungs. A fundamental
understanding of the physical mechanisms, structures, and thermodynamic boundary conditions is an
essential prerequisite for any industrial application of this counterintuitive phenomenon.
Combining strong synthetic methodologies with advanced analytical techniques, AMPLIPORE will elucidate
the characteristic molecular and mesoscopic materials signatures as well as thermodynamic boundary
conditions of NGA phenomena. We will elaborate a generic NGA-materials concept to tailor the pressure
amplification and explore temperature and pressure ranges at which NGA can be applied. Developing tailormade
instrumentation for kinetic investigations of NGA will give fundamental insights into the intrinsic and
macroscopic dynamics of crystal-to-crystal transformations for applications in micropneumatic systems.
Max ERC Funding
2 363 125 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym AMPLITUDES
Project Novel structures in scattering amplitudes
Researcher (PI) Johannes Martin HENN
Host Institution (HI) JOHANNES GUTENBERG-UNIVERSITAT MAINZ
Call Details Consolidator Grant (CoG), PE2, ERC-2016-COG
Summary This project focuses on developing quantum field theory methods and applying them to the phenomenology of elementary particles. At the Large Hadron Collider (LHC) our current best theoretical understanding of particle physics is being tested against experiment by measuring e.g. properties of the recently discovered Higgs boson. With run two of the LHC, currently underway, the experimental accuracy will further increase. Theoretical predictions matching the latter are urgently needed. Obtaining these requires extremely difficult calculations of scattering amplitudes and cross sections in quantum field theory, including calculations to correctly describe large contributions due to long-distance physics in the latter. Major obstacles in such computations are the large number of Feynman diagrams that are difficult to handle, even with the help of modern computers, and the computation of Feynman loop integrals. To address these issues, we will develop innovative methods that are inspired by new structures found in supersymmetric field theories. We will extend the scope of the differential equations method for computing Feynman integrals, and apply it to scattering processes that are needed for phenomenology, but too complicated to analyze using current methods. Our results will help measure fundamental parameters of Nature, such as, for example, couplings of the Higgs boson, with unprecedented precision. Moreover, by accurately predicting backgrounds from known physics, our results will also be invaluable for searches of new particles.
Summary
This project focuses on developing quantum field theory methods and applying them to the phenomenology of elementary particles. At the Large Hadron Collider (LHC) our current best theoretical understanding of particle physics is being tested against experiment by measuring e.g. properties of the recently discovered Higgs boson. With run two of the LHC, currently underway, the experimental accuracy will further increase. Theoretical predictions matching the latter are urgently needed. Obtaining these requires extremely difficult calculations of scattering amplitudes and cross sections in quantum field theory, including calculations to correctly describe large contributions due to long-distance physics in the latter. Major obstacles in such computations are the large number of Feynman diagrams that are difficult to handle, even with the help of modern computers, and the computation of Feynman loop integrals. To address these issues, we will develop innovative methods that are inspired by new structures found in supersymmetric field theories. We will extend the scope of the differential equations method for computing Feynman integrals, and apply it to scattering processes that are needed for phenomenology, but too complicated to analyze using current methods. Our results will help measure fundamental parameters of Nature, such as, for example, couplings of the Higgs boson, with unprecedented precision. Moreover, by accurately predicting backgrounds from known physics, our results will also be invaluable for searches of new particles.
Max ERC Funding
2 000 000 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym AMSEL
Project Atomic Force Microscopy for Molecular Structure Elucidation
Researcher (PI) Leo Gross
Host Institution (HI) IBM RESEARCH GMBH
Call Details Consolidator Grant (CoG), PE4, ERC-2015-CoG
Summary Molecular structure elucidation is of great importance in synthetic chemistry, pharmacy, life sciences, energy and environmental sciences, and technology applications. To date structure elucidation by atomic force microscopy (AFM) has been demonstrated for a few, small and mainly planar molecules. In this project high-risk, high-impact scientific questions will be solved using structure elucidation with the AFM employing a novel tool and novel methodologies.
A combined low-temperature scanning tunneling microscope/atomic force microscope (LT-STM/AFM) with high throughput and in situ electrospray deposition method will be developed. Chemical resolution will be achieved by novel measurement techniques, in particular the usage of different and novel tip functionalizations and combination with Kelvin probe force microscopy. Elements will be identified using substructure recognition provided by a database that will be erected and by refined theory and simulations.
The developed tools and techniques will be applied to molecules of increasing fragility, complexity, size, and three-dimensionality. In particular samples that are challenging to characterize with conventional methods will be studied. Complex molecular mixtures will be investigated molecule-by-molecule taking advantage of the single-molecule sensitivity. The absolute stereochemistry of molecules will be determined, resolving molecules with multiple stereocenters. The operation of single molecular machines as nanocars and molecular gears will be investigated. Reactive intermediates generated with atomic manipulation will be characterized and their on-surface reactivity will be studied by AFM.
Summary
Molecular structure elucidation is of great importance in synthetic chemistry, pharmacy, life sciences, energy and environmental sciences, and technology applications. To date structure elucidation by atomic force microscopy (AFM) has been demonstrated for a few, small and mainly planar molecules. In this project high-risk, high-impact scientific questions will be solved using structure elucidation with the AFM employing a novel tool and novel methodologies.
A combined low-temperature scanning tunneling microscope/atomic force microscope (LT-STM/AFM) with high throughput and in situ electrospray deposition method will be developed. Chemical resolution will be achieved by novel measurement techniques, in particular the usage of different and novel tip functionalizations and combination with Kelvin probe force microscopy. Elements will be identified using substructure recognition provided by a database that will be erected and by refined theory and simulations.
The developed tools and techniques will be applied to molecules of increasing fragility, complexity, size, and three-dimensionality. In particular samples that are challenging to characterize with conventional methods will be studied. Complex molecular mixtures will be investigated molecule-by-molecule taking advantage of the single-molecule sensitivity. The absolute stereochemistry of molecules will be determined, resolving molecules with multiple stereocenters. The operation of single molecular machines as nanocars and molecular gears will be investigated. Reactive intermediates generated with atomic manipulation will be characterized and their on-surface reactivity will be studied by AFM.
Max ERC Funding
2 000 000 €
Duration
Start date: 2016-06-01, End date: 2021-05-31
Project acronym AN07AT
Project Understanding computational roles of new neurons generated in the adult hippocampus
Researcher (PI) Ayumu Tashiro
Host Institution (HI) NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET NTNU
Call Details Starting Grant (StG), LS4, ERC-2007-StG
Summary New neurons are continuously generated in certain regions of adult mammalian brain. One of those regions is the dentate gyrus, a subregion of hippocampus, which is essential for memory formation. Although these new neurons in the adult dentate gyrus are thought to have an important role in learning and memory, it is largely unclear how new neurons are involved in information processing and storage underlying memory. Because new neurons constitute a minor portion of intermingled local neuronal population, simple application of conventional techniques such as multi-unit extracellular recording and pharmacological lesion are not suitable for the functional analysis of new neurons. In this proposed research program, I will combine multi-unit recording and behavioral analysis with virus mediated, cell-type-specific genetic manipulation of neuronal activity, to investigate computational roles of new neurons in learning and memory. Specifically, I will determine: 1) specific memory processes that require new neurons, 2) dynamic patterns of activity that new neurons express during memory-related behavior, 3) influence of new neurons on their downstream structure. Further, based on the information obtained by these three lines of studies, we will establish causal relationship between specific memory-related behavior and specific pattern of activity in new neurons. Solving these issues will cooperatively provide important insight into the understanding of computational roles performed by adult neurogenesis. The information on the function of new neurons in normal brain could contribute to future development of efficient therapeutic strategy for a variety of brain disorders.
Summary
New neurons are continuously generated in certain regions of adult mammalian brain. One of those regions is the dentate gyrus, a subregion of hippocampus, which is essential for memory formation. Although these new neurons in the adult dentate gyrus are thought to have an important role in learning and memory, it is largely unclear how new neurons are involved in information processing and storage underlying memory. Because new neurons constitute a minor portion of intermingled local neuronal population, simple application of conventional techniques such as multi-unit extracellular recording and pharmacological lesion are not suitable for the functional analysis of new neurons. In this proposed research program, I will combine multi-unit recording and behavioral analysis with virus mediated, cell-type-specific genetic manipulation of neuronal activity, to investigate computational roles of new neurons in learning and memory. Specifically, I will determine: 1) specific memory processes that require new neurons, 2) dynamic patterns of activity that new neurons express during memory-related behavior, 3) influence of new neurons on their downstream structure. Further, based on the information obtained by these three lines of studies, we will establish causal relationship between specific memory-related behavior and specific pattern of activity in new neurons. Solving these issues will cooperatively provide important insight into the understanding of computational roles performed by adult neurogenesis. The information on the function of new neurons in normal brain could contribute to future development of efficient therapeutic strategy for a variety of brain disorders.
Max ERC Funding
1 991 743 €
Duration
Start date: 2009-01-01, End date: 2013-12-31
Project acronym ANaPSyS
Project Artificial Natural Products System Synthesis
Researcher (PI) Tanja Gaich
Host Institution (HI) UNIVERSITAT KONSTANZ
Call Details Starting Grant (StG), PE5, ERC-2015-STG
Summary "Traditionally, natural products are classified into ""natural product families"". Within a family all congeners display specific structure elements, owing to their common biosynthetic pathway. This suggests a bio-inspired or ""collective synthesis"", as has been devised by D: W. MacMillan. However, a biosynthetic pathway is confined to these structure elements, thus limiting synthesis with regard to structure diversification. In this research proposal the applicant exemplarily devises a strategic concept to overcome these limitations, by replacing the dogma of ""retrosynthetic analysis"" with ""structure pattern recognition"". This concept is termed ""Artificial Natural Product Systems Synthesis — ANaPSyS"", and aims to supersede the current ""logic of chemical synthesis"" as a standard practice in this field.
ANaPSyS exclusively categorizes natural products based on structural relationships — regardless of biogenetic origin. The structure pattern analysis groups natural products according to their shared core structure, and thereof creates a common precursor called ""privileged intermediate (PI)"". This intermediate is resembled in each of these natural products and is architecturally less complex. As a result every member of this natural product group can originate from a different natural product family and is obtained via this ""privileged intermediate"", which serves as basis for the artificial synthetic network.
With ANaPSyS a synthetic route is not restricted to a single target structure anymore (as in conventional synthesis). In comparison with bio-inspired synthesis, which is limited to a single natural product family, ANaPSyS enables the synthesis of a whole set of natural product families. With every synthesis accomplished, the network is upgraded — hence diversification leads to a rise in revenue. As a consequence, synthetic efficiency is drastically enhanced, therefore profoundly boosting and facilitating lead structure development.
"
Summary
"Traditionally, natural products are classified into ""natural product families"". Within a family all congeners display specific structure elements, owing to their common biosynthetic pathway. This suggests a bio-inspired or ""collective synthesis"", as has been devised by D: W. MacMillan. However, a biosynthetic pathway is confined to these structure elements, thus limiting synthesis with regard to structure diversification. In this research proposal the applicant exemplarily devises a strategic concept to overcome these limitations, by replacing the dogma of ""retrosynthetic analysis"" with ""structure pattern recognition"". This concept is termed ""Artificial Natural Product Systems Synthesis — ANaPSyS"", and aims to supersede the current ""logic of chemical synthesis"" as a standard practice in this field.
ANaPSyS exclusively categorizes natural products based on structural relationships — regardless of biogenetic origin. The structure pattern analysis groups natural products according to their shared core structure, and thereof creates a common precursor called ""privileged intermediate (PI)"". This intermediate is resembled in each of these natural products and is architecturally less complex. As a result every member of this natural product group can originate from a different natural product family and is obtained via this ""privileged intermediate"", which serves as basis for the artificial synthetic network.
With ANaPSyS a synthetic route is not restricted to a single target structure anymore (as in conventional synthesis). In comparison with bio-inspired synthesis, which is limited to a single natural product family, ANaPSyS enables the synthesis of a whole set of natural product families. With every synthesis accomplished, the network is upgraded — hence diversification leads to a rise in revenue. As a consequence, synthetic efficiency is drastically enhanced, therefore profoundly boosting and facilitating lead structure development.
"
Max ERC Funding
1 497 000 €
Duration
Start date: 2016-04-01, End date: 2021-03-31
Project acronym ANGI
Project Adaptive significance of Non Genetic Inheritance
Researcher (PI) Benoit François Pujol
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Consolidator Grant (CoG), LS8, ERC-2015-CoG
Summary Our ability to predict adaptation and the response of populations to selection is limited. Solving this issue is a fundamental challenge of evolutionary ecology with implications for applied sciences such as conservation, and agronomy. Non genetic inheritance (NGI; e.g., ecological niche transmission) is suspected to play a foremost role in adaptive evolution but such hypothesis remains untested. Using quantitative genetics in wild plant populations, experimental evolution, and epigenetics, we will assess the role of NGI in the adaptive response to selection of plant populations. The ANGI project will follow the subsequent research program: (1) Using long-term survey data, we will measure natural selection in wild populations of Antirrhinum majus within its heterogeneous array of micro-habitats. We will calculate the fitness gain provided by multiple traits and stem elongation to plants growing in bushes where they compete for light. Stem elongation is known to depend on epigenetic variation. (2) Using a statistical approach that we developed, we will estimate the quantitative genetic and non genetic heritability of traits. (3) We will identify phenotypic changes caused by fitness that are based on genetic variation and NGI and assess their respective roles in adaptive evolution. (4) In controlled conditions, we will artificially select for increased stem elongation in clonal lineages, thereby excluding DNA variation. We will quantify the non genetic response to selection and test for a quantitative epigenetic signature of selection. (5) We will build on our results to generate an inclusive theory of genetic and non genetic natural selection. ANGI builds on a confirmed expertise in selection experiments, quantitative genetics and NGI. In addition, the availability of survey data provides a solid foundation for the achievement of this project. Our ambition is to shed light on original mechanisms underlying adaptation that are an alternative to genetic selection.
Summary
Our ability to predict adaptation and the response of populations to selection is limited. Solving this issue is a fundamental challenge of evolutionary ecology with implications for applied sciences such as conservation, and agronomy. Non genetic inheritance (NGI; e.g., ecological niche transmission) is suspected to play a foremost role in adaptive evolution but such hypothesis remains untested. Using quantitative genetics in wild plant populations, experimental evolution, and epigenetics, we will assess the role of NGI in the adaptive response to selection of plant populations. The ANGI project will follow the subsequent research program: (1) Using long-term survey data, we will measure natural selection in wild populations of Antirrhinum majus within its heterogeneous array of micro-habitats. We will calculate the fitness gain provided by multiple traits and stem elongation to plants growing in bushes where they compete for light. Stem elongation is known to depend on epigenetic variation. (2) Using a statistical approach that we developed, we will estimate the quantitative genetic and non genetic heritability of traits. (3) We will identify phenotypic changes caused by fitness that are based on genetic variation and NGI and assess their respective roles in adaptive evolution. (4) In controlled conditions, we will artificially select for increased stem elongation in clonal lineages, thereby excluding DNA variation. We will quantify the non genetic response to selection and test for a quantitative epigenetic signature of selection. (5) We will build on our results to generate an inclusive theory of genetic and non genetic natural selection. ANGI builds on a confirmed expertise in selection experiments, quantitative genetics and NGI. In addition, the availability of survey data provides a solid foundation for the achievement of this project. Our ambition is to shed light on original mechanisms underlying adaptation that are an alternative to genetic selection.
Max ERC Funding
1 999 970 €
Duration
Start date: 2016-03-01, End date: 2021-02-28
Project acronym ANGIOPLACE
Project Expression and Methylation Status of Genes Regulating Placental Angiogenesis in Normal, Cloned, IVF and Monoparental Sheep Foetuses
Researcher (PI) Grazyna Ewa Ptak
Host Institution (HI) UNIVERSITA DEGLI STUDI DI TERAMO
Call Details Starting Grant (StG), LS7, ERC-2007-StG
Summary Normal placental angiogenesis is critical for embryonic survival and development. Epigenetic modifications, such as methylation of CpG islands, regulate the expression and imprinting of genes. Epigenetic abnormalities have been observed in embryos from assisted reproductive technologies (ART), which could explain the poor placental vascularisation, embryonic/fetal death, and altered fetal growth in these pregnancies. Both cloned (somatic cell nuclear transfer, or SNCT) and monoparental (parthogenotes, only maternal genes; androgenotes, only paternal genes) embryos provide important models for studying defects in expression and methylation status/imprinting of genes regulating placental function. Our hypothesis is that placental vascular development is compromised during early pregnancy in embryos from ART, in part due to altered expression or imprinting/methylation status of specific genes regulating placental angiogenesis. We will evaluate fetal growth, placental vascular growth, and expression and epigenetic status of genes regulating placental angiogenesis during early pregnancy in 3 Specific Aims: (1) after natural mating; (2) after transfer of biparental embryos from in vitro fertilization, and SCNT; and (3) after transfer of parthenogenetic or androgenetic embryos. These studies will therefore contribute substantially to our understanding of the regulation of placental development and vascularisation during early pregnancy, and could pinpoint the mechanism contributing to embryonic loss and developmental abnormalities in foetuses from ART. Any or all of these observations will contribute to our understanding of and also our ability to successfully employ ART, which are becoming very wide spread and important in human medicine as well as in animal production.
Summary
Normal placental angiogenesis is critical for embryonic survival and development. Epigenetic modifications, such as methylation of CpG islands, regulate the expression and imprinting of genes. Epigenetic abnormalities have been observed in embryos from assisted reproductive technologies (ART), which could explain the poor placental vascularisation, embryonic/fetal death, and altered fetal growth in these pregnancies. Both cloned (somatic cell nuclear transfer, or SNCT) and monoparental (parthogenotes, only maternal genes; androgenotes, only paternal genes) embryos provide important models for studying defects in expression and methylation status/imprinting of genes regulating placental function. Our hypothesis is that placental vascular development is compromised during early pregnancy in embryos from ART, in part due to altered expression or imprinting/methylation status of specific genes regulating placental angiogenesis. We will evaluate fetal growth, placental vascular growth, and expression and epigenetic status of genes regulating placental angiogenesis during early pregnancy in 3 Specific Aims: (1) after natural mating; (2) after transfer of biparental embryos from in vitro fertilization, and SCNT; and (3) after transfer of parthenogenetic or androgenetic embryos. These studies will therefore contribute substantially to our understanding of the regulation of placental development and vascularisation during early pregnancy, and could pinpoint the mechanism contributing to embryonic loss and developmental abnormalities in foetuses from ART. Any or all of these observations will contribute to our understanding of and also our ability to successfully employ ART, which are becoming very wide spread and important in human medicine as well as in animal production.
Max ERC Funding
363 600 €
Duration
Start date: 2008-10-01, End date: 2012-06-30
Project acronym AngioResist
Project Coordinated Development of Inhibitors and Biomarkers for Resistance to Antiangiogenics in Cancer - AngioResist
Researcher (PI) Oriol CASANOVAS CASANOVAS
Host Institution (HI) INSTITUT CATALA D'ONCOLOGIA
Call Details Proof of Concept (PoC), PC1, ERC-2015-PoC
Summary Many anti-angiogenic drugs are clinically used in several types of cancer to block angiogenesis, impair tumor growth, progression and dissemination. Nevertheless, clinical trials report emergence of resistance to treatment and a failure in long-lasting effects of these therapies. To date, resistant patients do not currently have any established, proven alternative therapeutic possibility and the medical field is moving towards a careful selection of subgroups or subtypes of patients that have to be treated with each one of the available second-line targeted drugs. For this relevant unmet medical need, many laboratories and pharmaceutical companies have focused on developing new biomarkers and new drugs to fight anti-angiogenic resistance, but up to date, there is no proven established biomarker or method to predict which patient’s tumor is resistant to antiangiogenic therapies and which drug is capable of blocking this resistance to therapy.
AngioResist PoC aims at solving the existing patient selection gap in the treatment of cancer that is therapeutically resistant to antiangiogenic drugs. Based on data generated from our ERC project and two filed European Patent applications, AngioResist PoC will transform the acquired basic knowledge into an Innovation project, to validate a novel biomarker of response/resistance to antiangiogenics together with a new inhibitor for the treatment of these selected patients. The project will coordinately perform the preclinical phases of development of the drug compound and the biomarker, with the final aim of licensing them both to a selected partner during the clinical phases. Together with our licensee, we aim at the final distribution of a therapeutic drug that will be delivered with a biomarker kit for the selection and treatment of cancer patients resistant to antiangiogenic drugs.
Summary
Many anti-angiogenic drugs are clinically used in several types of cancer to block angiogenesis, impair tumor growth, progression and dissemination. Nevertheless, clinical trials report emergence of resistance to treatment and a failure in long-lasting effects of these therapies. To date, resistant patients do not currently have any established, proven alternative therapeutic possibility and the medical field is moving towards a careful selection of subgroups or subtypes of patients that have to be treated with each one of the available second-line targeted drugs. For this relevant unmet medical need, many laboratories and pharmaceutical companies have focused on developing new biomarkers and new drugs to fight anti-angiogenic resistance, but up to date, there is no proven established biomarker or method to predict which patient’s tumor is resistant to antiangiogenic therapies and which drug is capable of blocking this resistance to therapy.
AngioResist PoC aims at solving the existing patient selection gap in the treatment of cancer that is therapeutically resistant to antiangiogenic drugs. Based on data generated from our ERC project and two filed European Patent applications, AngioResist PoC will transform the acquired basic knowledge into an Innovation project, to validate a novel biomarker of response/resistance to antiangiogenics together with a new inhibitor for the treatment of these selected patients. The project will coordinately perform the preclinical phases of development of the drug compound and the biomarker, with the final aim of licensing them both to a selected partner during the clinical phases. Together with our licensee, we aim at the final distribution of a therapeutic drug that will be delivered with a biomarker kit for the selection and treatment of cancer patients resistant to antiangiogenic drugs.
Max ERC Funding
149 932 €
Duration
Start date: 2016-09-01, End date: 2018-02-28
Project acronym AnonymClassic
Project The Arabic Anonymous in a World Classic
Researcher (PI) Beatrice GRUENDLER
Host Institution (HI) FREIE UNIVERSITAET BERLIN
Call Details Advanced Grant (AdG), SH5, ERC-2016-ADG
Summary AnonymClassic is the first ever comprehensive study of Kalila and Dimna (a book of wisdom in fable form), a text of premodern world literature. Its spread is comparable to that of the Bible, except that it passed from Hinduism and Buddhism via Islam to Christianity. Its Arabic version, produced in the 8th century, when this was the lingua franca of the Near East, became the source of all further translations up to the 19th century. The work’s multilingual history involving circa forty languages has never been systematically studied. The absence of available research has made world literature ignore it, while scholars of Arabic avoided it because of its widely diverging manuscripts, so that the actual shape of the Arabic key version is still in need of investigation. AnonymClassic tests a number of ‘high-risk’ propositions, including three key hypotheses: 1) The anonymous Arabic copyists of Kalila and Dimna are de facto co-authors, 2) their agency is comparable to that of the named medieval translators, and 3) the fluctuation of the Arabic versions is conditioned by the work’s fictional status. AnonymClassic’s methodology relies on a cross-lingual narratological analysis of the Arabic versions and all medieval translations (supported by a synoptic digital edition), which takes precisely the interventions at each stage of transmission (redaction, translation) as its subject. Considering the work’s paths of dissemination from India to Europe, AnonymClassic will challenge the prevalent Western theoretical lens on world literature conceived ‘from above’ with the view ‘from below,’ based on the attested cross-cultural network constituted by its versions. AnonymClassic will introduce a new paradigm of an East-Western literary continuum with Arabic as a cultural bridge. Against the current background of Europe’s diversifying and multicultural society, AnonymClassic purposes to integrate pre-modern Near Eastern literature and culture into our understanding of Global Culture.
Summary
AnonymClassic is the first ever comprehensive study of Kalila and Dimna (a book of wisdom in fable form), a text of premodern world literature. Its spread is comparable to that of the Bible, except that it passed from Hinduism and Buddhism via Islam to Christianity. Its Arabic version, produced in the 8th century, when this was the lingua franca of the Near East, became the source of all further translations up to the 19th century. The work’s multilingual history involving circa forty languages has never been systematically studied. The absence of available research has made world literature ignore it, while scholars of Arabic avoided it because of its widely diverging manuscripts, so that the actual shape of the Arabic key version is still in need of investigation. AnonymClassic tests a number of ‘high-risk’ propositions, including three key hypotheses: 1) The anonymous Arabic copyists of Kalila and Dimna are de facto co-authors, 2) their agency is comparable to that of the named medieval translators, and 3) the fluctuation of the Arabic versions is conditioned by the work’s fictional status. AnonymClassic’s methodology relies on a cross-lingual narratological analysis of the Arabic versions and all medieval translations (supported by a synoptic digital edition), which takes precisely the interventions at each stage of transmission (redaction, translation) as its subject. Considering the work’s paths of dissemination from India to Europe, AnonymClassic will challenge the prevalent Western theoretical lens on world literature conceived ‘from above’ with the view ‘from below,’ based on the attested cross-cultural network constituted by its versions. AnonymClassic will introduce a new paradigm of an East-Western literary continuum with Arabic as a cultural bridge. Against the current background of Europe’s diversifying and multicultural society, AnonymClassic purposes to integrate pre-modern Near Eastern literature and culture into our understanding of Global Culture.
Max ERC Funding
2 435 113 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym Antibodyomics
Project Vaccine profiling and immunodiagnostic discovery by high-throughput antibody repertoire analysis
Researcher (PI) Sai Tota Reddy
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Starting Grant (StG), LS7, ERC-2015-STG
Summary Vaccines and immunodiagnostics have been vital for public health and medicine, however a quantitative molecular understanding of vaccine-induced antibody responses is lacking. Antibody research is currently going through a big-data driven revolution, largely due to progress in next-generation sequencing (NGS) and bioinformatic analysis of antibody repertoires. A main advantage of high-throughput antibody repertoire analysis is that it provides a wealth of quantitative information not possible with other classical methods of antibody analysis (i.e., serum titers); this information includes: clonal distribution and diversity, somatic hypermutation patterns, and lineage tracing. In preliminary work my group has established standardized methods for antibody repertoire NGS, including an experimental-bioinformatic pipeline for error and bias correction that enables highly accurate repertoire sequencing and analysis. The overall goal of this proposal will be to apply high-throughput antibody repertoire analysis for quantitative vaccine profiling and discovery of next-generation immunodiagnostics. Using mouse subunit vaccination as our model system, we will answer for the first time, a fundamental biological question within the context of antibody responses - what is the link between genotype (antibody repertoire) and phenotype (serum antibodies)? We will expand upon this approach for improved rational vaccine design by quantitatively determining the impact of a comprehensive set of subunit vaccination parameters on complete antibody landscapes. Finally, we will develop advanced bioinformatic methods to discover immunodiagnostics based on antibody repertoire sequences. In summary, this proposal lays the foundation for fundamentally new approaches in the quantitative analysis of antibody responses, which long-term will promote the development of next-generation vaccines and immunodiagnostics.
Summary
Vaccines and immunodiagnostics have been vital for public health and medicine, however a quantitative molecular understanding of vaccine-induced antibody responses is lacking. Antibody research is currently going through a big-data driven revolution, largely due to progress in next-generation sequencing (NGS) and bioinformatic analysis of antibody repertoires. A main advantage of high-throughput antibody repertoire analysis is that it provides a wealth of quantitative information not possible with other classical methods of antibody analysis (i.e., serum titers); this information includes: clonal distribution and diversity, somatic hypermutation patterns, and lineage tracing. In preliminary work my group has established standardized methods for antibody repertoire NGS, including an experimental-bioinformatic pipeline for error and bias correction that enables highly accurate repertoire sequencing and analysis. The overall goal of this proposal will be to apply high-throughput antibody repertoire analysis for quantitative vaccine profiling and discovery of next-generation immunodiagnostics. Using mouse subunit vaccination as our model system, we will answer for the first time, a fundamental biological question within the context of antibody responses - what is the link between genotype (antibody repertoire) and phenotype (serum antibodies)? We will expand upon this approach for improved rational vaccine design by quantitatively determining the impact of a comprehensive set of subunit vaccination parameters on complete antibody landscapes. Finally, we will develop advanced bioinformatic methods to discover immunodiagnostics based on antibody repertoire sequences. In summary, this proposal lays the foundation for fundamentally new approaches in the quantitative analysis of antibody responses, which long-term will promote the development of next-generation vaccines and immunodiagnostics.
Max ERC Funding
1 492 586 €
Duration
Start date: 2016-06-01, End date: 2021-05-31
Project acronym ANTS
Project A new technology of microthermal sensing for application in microcalorimetry
Researcher (PI) Rivadulla Fernandez Jose Francisco
Host Institution (HI) UNIVERSIDAD DE SANTIAGO DE COMPOSTELA
Call Details Proof of Concept (PoC), ERC-2016-PoC, ERC-2016-PoC
Summary ANTS aims to prove the viability of a novel thermal microsensor, with highly improved thermal, temporal and spatial resolution, to be the basis of a breakthrough micro/nano-calorimeter. The resulting device shall quantify binding rates and enthalpy/entropy changes in interactions of biological interest in a much more accurate and straightforward manner than available techniques. Consequently, ANTS-microcalorimeter will facilitate enormously drug discovery and development of biomedical products and technologies. We propose to exploit the large Nernst effect in ferromagnetic conductors for electrical sensing of temperature gradients with exceptional sensitivity. The active sensing elements are composed of a single material, thus offering important advantages for miniaturization over conventional micro-calorimetry, based on diverse Peltier modules, whereas easy to fabricate by standard, scalable deposition and photolithographic methods. Standard microcalorimeter configuration can also be maintained in the novel device, which is convenient to ensure compatibility and foster adoption by users and manufacturers.
Summary
ANTS aims to prove the viability of a novel thermal microsensor, with highly improved thermal, temporal and spatial resolution, to be the basis of a breakthrough micro/nano-calorimeter. The resulting device shall quantify binding rates and enthalpy/entropy changes in interactions of biological interest in a much more accurate and straightforward manner than available techniques. Consequently, ANTS-microcalorimeter will facilitate enormously drug discovery and development of biomedical products and technologies. We propose to exploit the large Nernst effect in ferromagnetic conductors for electrical sensing of temperature gradients with exceptional sensitivity. The active sensing elements are composed of a single material, thus offering important advantages for miniaturization over conventional micro-calorimetry, based on diverse Peltier modules, whereas easy to fabricate by standard, scalable deposition and photolithographic methods. Standard microcalorimeter configuration can also be maintained in the novel device, which is convenient to ensure compatibility and foster adoption by users and manufacturers.
Max ERC Funding
149 250 €
Duration
Start date: 2017-01-01, End date: 2018-06-30
Project acronym ANXIETY & COGNITION
Project How anxiety transforms human cognition: an Affective Neuroscience perspective
Researcher (PI) Gilles Roger Charles Pourtois
Host Institution (HI) UNIVERSITEIT GENT
Call Details Starting Grant (StG), SH3, ERC-2007-StG
Summary Anxiety, a state of apprehension or fear, may provoke cognitive or behavioural disorders and eventually lead to serious medical illnesses. The high prevalence of anxiety disorders in our society sharply contrasts with the lack of clear factual knowledge about the corresponding brain mechanisms at the origin of this profound change in the appraisal of the environment. Little is known about how the psychopathological state of anxiety ultimately turns to a medical condition. The core of this proposal is to gain insight in the neural underpinnings of anxiety and disorders related to anxiety using modern human brain-imaging such as scalp EEG and fMRI. I propose to enlighten how anxiety transforms and shapes human cognition and what the neural correlates and time-course of this modulatory effect are. The primary innovation of this project is the systematic use scalp EEG and fMRI in human participants to better understand the neural mechanisms by which anxiety profoundly influences specific cognitive functions, in particular selective attention and decision-making. The goal of this proposal is to precisely determine the exact timing (using scalp EEG), location, size and extent (using fMRI) of anxiety-related modulations on selective attention and decision-making in the human brain. Here I propose to focus on these two specific processes, because they are likely to reveal selective effects of anxiety on human cognition and can thus serve as powerful models to better figure out how anxiety operates in the human brain. Another important aspect of this project is the fact I envision to help bridge the gap in Health Psychology between fundamental research and clinical practice by proposing alternative revalidation strategies for human adult subjects affected by anxiety-related disorders, which could directly exploit the neuro-scientific discoveries generated in this scientific project.
Summary
Anxiety, a state of apprehension or fear, may provoke cognitive or behavioural disorders and eventually lead to serious medical illnesses. The high prevalence of anxiety disorders in our society sharply contrasts with the lack of clear factual knowledge about the corresponding brain mechanisms at the origin of this profound change in the appraisal of the environment. Little is known about how the psychopathological state of anxiety ultimately turns to a medical condition. The core of this proposal is to gain insight in the neural underpinnings of anxiety and disorders related to anxiety using modern human brain-imaging such as scalp EEG and fMRI. I propose to enlighten how anxiety transforms and shapes human cognition and what the neural correlates and time-course of this modulatory effect are. The primary innovation of this project is the systematic use scalp EEG and fMRI in human participants to better understand the neural mechanisms by which anxiety profoundly influences specific cognitive functions, in particular selective attention and decision-making. The goal of this proposal is to precisely determine the exact timing (using scalp EEG), location, size and extent (using fMRI) of anxiety-related modulations on selective attention and decision-making in the human brain. Here I propose to focus on these two specific processes, because they are likely to reveal selective effects of anxiety on human cognition and can thus serve as powerful models to better figure out how anxiety operates in the human brain. Another important aspect of this project is the fact I envision to help bridge the gap in Health Psychology between fundamental research and clinical practice by proposing alternative revalidation strategies for human adult subjects affected by anxiety-related disorders, which could directly exploit the neuro-scientific discoveries generated in this scientific project.
Max ERC Funding
812 986 €
Duration
Start date: 2008-11-01, End date: 2013-10-31
Project acronym AORVM
Project The Effects of Aging on Object Representation in Visual Working Memory
Researcher (PI) James Robert Brockmole
Host Institution (HI) THE UNIVERSITY OF EDINBURGH
Call Details Starting Grant (StG), SH3, ERC-2007-StG
Summary One’s ability to remember visual material such as objects, faces, and spatial locations over a short period of time declines with age. The proposed research will examine whether these deficits are explained by a reduction in visual working memory (VWM) capacity, or an impairment in one’s ability to maintain, or ‘bind’ appropriate associations among pieces of related information. In this project successful binding is operationally defined as the proper recall or recognition of objects that are defined by the conjunction of multiple visual features. While tests of long-term memory have demonstrated that, despite preserved memory for isolated features, older adults have more difficulty remembering conjunctions of features, no research has yet investigated analogous age related binding deficits in VWM. This is a critical oversight because, given the current state of the science, it is unknown whether these deficits are specific to the long-term memory system, or if they originate in VWM. The project interweaves three strands of research that each investigate whether older adults have more difficulty creating, maintaining, and updating bound multi-feature object representations than younger adults. This theoretical program of enquiry will provide insight into the cognitive architecture of VWM and how this system changes with age, and its outcomes will have wide ranging multi-disciplinary applications in applied theory and intervention techniques that may reduce the adverse consequences of aging on memory.
Summary
One’s ability to remember visual material such as objects, faces, and spatial locations over a short period of time declines with age. The proposed research will examine whether these deficits are explained by a reduction in visual working memory (VWM) capacity, or an impairment in one’s ability to maintain, or ‘bind’ appropriate associations among pieces of related information. In this project successful binding is operationally defined as the proper recall or recognition of objects that are defined by the conjunction of multiple visual features. While tests of long-term memory have demonstrated that, despite preserved memory for isolated features, older adults have more difficulty remembering conjunctions of features, no research has yet investigated analogous age related binding deficits in VWM. This is a critical oversight because, given the current state of the science, it is unknown whether these deficits are specific to the long-term memory system, or if they originate in VWM. The project interweaves three strands of research that each investigate whether older adults have more difficulty creating, maintaining, and updating bound multi-feature object representations than younger adults. This theoretical program of enquiry will provide insight into the cognitive architecture of VWM and how this system changes with age, and its outcomes will have wide ranging multi-disciplinary applications in applied theory and intervention techniques that may reduce the adverse consequences of aging on memory.
Max ERC Funding
500 000 €
Duration
Start date: 2008-09-01, End date: 2011-08-31
Project acronym APACHE
Project Atmospheric Pressure plAsma meets biomaterials for bone Cancer HEaling
Researcher (PI) Cristina CANAL BARNILS
Host Institution (HI) UNIVERSITAT POLITECNICA DE CATALUNYA
Call Details Starting Grant (StG), PE8, ERC-2016-STG
Summary Cold atmospheric pressure plasmas (APP) have been reported to selectively kill cancer cells without damaging the surrounding tissues. Studies have been conducted on a variety of cancer types but to the best of our knowledge not on any kind of bone cancer. Treatment options for bone cancer include surgery, chemotherapy, etc. and may involve the use of bone grafting biomaterials to replace the surgically removed bone.
APACHE brings a totally different and ground-breaking approach in the design of a novel therapy for bone cancer by taking advantage of the active species generated by APP in combination with biomaterials to deliver the active species locally in the diseased site. The feasibility of this approach is rooted in the evidence that the cellular effects of APP appear to strongly involve the suite of reactive species created by plasmas, which can be derived from a) direct treatment of the malignant cells by APP or b) indirect treatment of the liquid media by APP which is then put in contact with the cancer cells.
In APACHE we aim to investigate the fundamentals involved in the lethal effects of cold plasmas on bone cancer cells, and to develop improved bone cancer therapies. To achieve this we will take advantage of the highly reactive species generated by APP in the liquid media, which we will use in an incremental strategy: i) to investigate the effects of APP treated liquid on bone cancer cells, ii) to evaluate the potential of combining APP treated liquid in a hydrogel vehicle with/wo CaP biomaterials and iii) to ascertain the potential three directional interactions between APP reactive species in liquid medium with biomaterials and with chemotherapeutic drugs.
The methodological approach will involve an interdisciplinary team, dealing with plasma diagnostics in gas and liquid media; with cell biology and the effects of APP treated with bone tumor cells and its combination with biomaterials and/or with anticancer drugs.
Summary
Cold atmospheric pressure plasmas (APP) have been reported to selectively kill cancer cells without damaging the surrounding tissues. Studies have been conducted on a variety of cancer types but to the best of our knowledge not on any kind of bone cancer. Treatment options for bone cancer include surgery, chemotherapy, etc. and may involve the use of bone grafting biomaterials to replace the surgically removed bone.
APACHE brings a totally different and ground-breaking approach in the design of a novel therapy for bone cancer by taking advantage of the active species generated by APP in combination with biomaterials to deliver the active species locally in the diseased site. The feasibility of this approach is rooted in the evidence that the cellular effects of APP appear to strongly involve the suite of reactive species created by plasmas, which can be derived from a) direct treatment of the malignant cells by APP or b) indirect treatment of the liquid media by APP which is then put in contact with the cancer cells.
In APACHE we aim to investigate the fundamentals involved in the lethal effects of cold plasmas on bone cancer cells, and to develop improved bone cancer therapies. To achieve this we will take advantage of the highly reactive species generated by APP in the liquid media, which we will use in an incremental strategy: i) to investigate the effects of APP treated liquid on bone cancer cells, ii) to evaluate the potential of combining APP treated liquid in a hydrogel vehicle with/wo CaP biomaterials and iii) to ascertain the potential three directional interactions between APP reactive species in liquid medium with biomaterials and with chemotherapeutic drugs.
The methodological approach will involve an interdisciplinary team, dealing with plasma diagnostics in gas and liquid media; with cell biology and the effects of APP treated with bone tumor cells and its combination with biomaterials and/or with anticancer drugs.
Max ERC Funding
1 499 887 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym ApeAttachment
Project Are social skills determined by early live experiences?
Researcher (PI) Catherine Delia Crockford
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), SH4, ERC-2015-STG
Summary Social bonding success in life impacts on health, survival and fitness. It is proposed that early and later social experience as well as heritable factors determine social bonding abilities in adulthood, although the relative influence of each is unclear. In humans, the resulting uncertainty likely impedes psychological and psychiatric assessment and therapy. One problem hampering progress for human studies is that social bonding success is hard to objectively quantify, particularly in adults. I propose to directly address this problem by determining the key influences on social bonding abilities in chimpanzees, our closest living relative, where social bonding success can be objectively quantified, and is defined as number of affiliative relationships maintained over time with high rates of affiliation.
Objectives. This project will quantify the relative impact of early and later social experience as well as heritable factors on social hormone levels, social cognition and social bonding success in 270 wild and captive chimpanzees, using both cohort and longitudinal data. This will reveal the degree of plasticity in social cognition and bonding behaviour throughout life. Finally, it will evaluate the potential for using endogenous hormone levels as non-invasive biomarkers of social bonding success, as well as identifying social contexts that act as strong natural social hormone releasers.
Outcomes. This project will expose what makes some better at social bonding than others. Specifically, it will show the extent to which later social experience can compensate for early social experience or heritable factors in terms of adult social bonding success, the latter being a key factor in determining health and happiness in life. This project also offers the potential for using hormonal biomarkers in clincial settings, as objective assessment of changes in relationships over time, and in therapy by engaging in social behaviours that act as strong social hormone releasers.
Summary
Social bonding success in life impacts on health, survival and fitness. It is proposed that early and later social experience as well as heritable factors determine social bonding abilities in adulthood, although the relative influence of each is unclear. In humans, the resulting uncertainty likely impedes psychological and psychiatric assessment and therapy. One problem hampering progress for human studies is that social bonding success is hard to objectively quantify, particularly in adults. I propose to directly address this problem by determining the key influences on social bonding abilities in chimpanzees, our closest living relative, where social bonding success can be objectively quantified, and is defined as number of affiliative relationships maintained over time with high rates of affiliation.
Objectives. This project will quantify the relative impact of early and later social experience as well as heritable factors on social hormone levels, social cognition and social bonding success in 270 wild and captive chimpanzees, using both cohort and longitudinal data. This will reveal the degree of plasticity in social cognition and bonding behaviour throughout life. Finally, it will evaluate the potential for using endogenous hormone levels as non-invasive biomarkers of social bonding success, as well as identifying social contexts that act as strong natural social hormone releasers.
Outcomes. This project will expose what makes some better at social bonding than others. Specifically, it will show the extent to which later social experience can compensate for early social experience or heritable factors in terms of adult social bonding success, the latter being a key factor in determining health and happiness in life. This project also offers the potential for using hormonal biomarkers in clincial settings, as objective assessment of changes in relationships over time, and in therapy by engaging in social behaviours that act as strong social hormone releasers.
Max ERC Funding
1 495 000 €
Duration
Start date: 2016-04-01, End date: 2021-03-31
Project acronym APEG
Project Algorithmic Performance Guarantees: Foundations and Applications
Researcher (PI) Susanne ALBERS
Host Institution (HI) TECHNISCHE UNIVERSITAET MUENCHEN
Call Details Advanced Grant (AdG), PE6, ERC-2015-AdG
Summary Optimization problems are ubiquitous in computer science. Almost every problem involves the optimization of some objective function. However a major part of these problems cannot be solved to optimality. Therefore, algorithms that achieve provably good performance guarantees are of immense importance. Considerable progress has already been made, but great challenges remain: Some fundamental problems are not well understood. Moreover, for central problems arising in new applications, no solutions are known at all.
The goal of APEG is to significantly advance the state of the art on algorithmic performance guarantees. Specifically, the project has two missions: First, it will develop new algorithmic techniques, breaking new ground in the areas of online algorithms, approximations algorithms and algorithmic game theory. Second, it will apply these techniques to solve fundamental problems that are central in these algorithmic disciplines. APEG will attack long-standing open problems, some of which have been unresolved for several decades. Furthermore, it will formulate and investigate new algorithmic problems that arise in modern applications. The research agenda encompasses a broad spectrum of classical and timely topics including (a) resource allocation in computer systems, (b) data structuring, (c) graph problems, with relations to Internet advertising, (d) complex networks and (e) massively parallel systems. In addition to basic optimization objectives, the project will also study the new performance metric of energy minimization in computer systems.
Overall, APEG pursues cutting-edge algorithms research, focusing on both foundational problems and applications. Any progress promises to be a breakthrough or significant contribution.
Summary
Optimization problems are ubiquitous in computer science. Almost every problem involves the optimization of some objective function. However a major part of these problems cannot be solved to optimality. Therefore, algorithms that achieve provably good performance guarantees are of immense importance. Considerable progress has already been made, but great challenges remain: Some fundamental problems are not well understood. Moreover, for central problems arising in new applications, no solutions are known at all.
The goal of APEG is to significantly advance the state of the art on algorithmic performance guarantees. Specifically, the project has two missions: First, it will develop new algorithmic techniques, breaking new ground in the areas of online algorithms, approximations algorithms and algorithmic game theory. Second, it will apply these techniques to solve fundamental problems that are central in these algorithmic disciplines. APEG will attack long-standing open problems, some of which have been unresolved for several decades. Furthermore, it will formulate and investigate new algorithmic problems that arise in modern applications. The research agenda encompasses a broad spectrum of classical and timely topics including (a) resource allocation in computer systems, (b) data structuring, (c) graph problems, with relations to Internet advertising, (d) complex networks and (e) massively parallel systems. In addition to basic optimization objectives, the project will also study the new performance metric of energy minimization in computer systems.
Overall, APEG pursues cutting-edge algorithms research, focusing on both foundational problems and applications. Any progress promises to be a breakthrough or significant contribution.
Max ERC Funding
2 404 250 €
Duration
Start date: 2016-10-01, End date: 2021-09-30