Project acronym 100 Archaic Genomes
Project Genome sequences from extinct hominins
Researcher (PI) Svante PÄÄBO
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Advanced Grant (AdG), LS2, ERC-2015-AdG
Summary Neandertals and Denisovans, an Asian group distantly related to Neandertals, are the closest evolutionary relatives of present-day humans. They are thus of direct relevance for understanding the origin of modern humans and how modern humans differ from their closest relatives. We will generate genome-wide data from a large number of Neandertal and Denisovan individuals from across their geographical and temporal range as well as from other extinct hominin groups which we may discover. This will be possible by automating highly sensitive approaches to ancient DNA extraction and DNA libraries construction that we have developed so that they can be applied to many specimens from many sites in order to identify those that contain retrievable DNA. Whenever possible we will sequence whole genomes and in other cases use DNA capture methods to generate high-quality data from representative parts of the genome. This will allow us to study the population history of Neandertals and Denisovans, elucidate how many times and where these extinct hominins contributed genes to present-day people, and the extent to which modern humans and archaic groups contributed genetically to Neandertals and Denisovans. By retrieving DNA from specimens that go back to the Middle Pleistocene we will furthermore shed light on the early history and origins of Neandertals and Denisovans.
Summary
Neandertals and Denisovans, an Asian group distantly related to Neandertals, are the closest evolutionary relatives of present-day humans. They are thus of direct relevance for understanding the origin of modern humans and how modern humans differ from their closest relatives. We will generate genome-wide data from a large number of Neandertal and Denisovan individuals from across their geographical and temporal range as well as from other extinct hominin groups which we may discover. This will be possible by automating highly sensitive approaches to ancient DNA extraction and DNA libraries construction that we have developed so that they can be applied to many specimens from many sites in order to identify those that contain retrievable DNA. Whenever possible we will sequence whole genomes and in other cases use DNA capture methods to generate high-quality data from representative parts of the genome. This will allow us to study the population history of Neandertals and Denisovans, elucidate how many times and where these extinct hominins contributed genes to present-day people, and the extent to which modern humans and archaic groups contributed genetically to Neandertals and Denisovans. By retrieving DNA from specimens that go back to the Middle Pleistocene we will furthermore shed light on the early history and origins of Neandertals and Denisovans.
Max ERC Funding
2 350 000 €
Duration
Start date: 2016-11-01, End date: 2021-10-31
Project acronym 14Constraint
Project Radiocarbon constraints for models of C cycling in terrestrial ecosystems: from process understanding to global benchmarking
Researcher (PI) Susan Trumbore
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Advanced Grant (AdG), PE10, ERC-2015-AdG
Summary The overall goal of 14Constraint is to enhance the availability and use of radiocarbon data as constraints for process-based understanding of the age distribution of carbon in and respired by soils and ecosystems. Carbon enters ecosystems by a single process, photosynthesis. It returns by a range of processes that depend on plant allocation and turnover, the efficiency and rate of litter decomposition and the mechanisms stabilizing C in soils. Thus the age distribution of respired CO2 and the age of C residing in plants, litter and soils are diagnostic properties of ecosystems that provide key constraints for testing carbon cycle models. Radiocarbon, especially the transit of ‘bomb’ 14C created in the 1960s, is a powerful tool for tracing C exchange on decadal to centennial timescales. 14Constraint will assemble a global database of existing radiocarbon data (WP1) and demonstrate how they can constrain and test ecosystem carbon cycle models. WP2 will fill data gaps and add new data from sites in key biomes that have ancillary data sufficient to construct belowground C and 14C budgets. These detailed investigations will focus on the role of time lags caused in necromass and fine roots, as well as the dynamics of deep soil C. Spatial extrapolation beyond the WP2 sites will require sampling along global gradients designed to explore the relative roles of mineralogy, vegetation and climate on the age of C in and respired from soil (WP3). Products of this 14Constraint will include the first publicly available global synthesis of terrestrial 14C data, and will add over 5000 new measurements. This project is urgently needed before atmospheric 14C levels decline to below 1950 levels as expected in the next decade.
Summary
The overall goal of 14Constraint is to enhance the availability and use of radiocarbon data as constraints for process-based understanding of the age distribution of carbon in and respired by soils and ecosystems. Carbon enters ecosystems by a single process, photosynthesis. It returns by a range of processes that depend on plant allocation and turnover, the efficiency and rate of litter decomposition and the mechanisms stabilizing C in soils. Thus the age distribution of respired CO2 and the age of C residing in plants, litter and soils are diagnostic properties of ecosystems that provide key constraints for testing carbon cycle models. Radiocarbon, especially the transit of ‘bomb’ 14C created in the 1960s, is a powerful tool for tracing C exchange on decadal to centennial timescales. 14Constraint will assemble a global database of existing radiocarbon data (WP1) and demonstrate how they can constrain and test ecosystem carbon cycle models. WP2 will fill data gaps and add new data from sites in key biomes that have ancillary data sufficient to construct belowground C and 14C budgets. These detailed investigations will focus on the role of time lags caused in necromass and fine roots, as well as the dynamics of deep soil C. Spatial extrapolation beyond the WP2 sites will require sampling along global gradients designed to explore the relative roles of mineralogy, vegetation and climate on the age of C in and respired from soil (WP3). Products of this 14Constraint will include the first publicly available global synthesis of terrestrial 14C data, and will add over 5000 new measurements. This project is urgently needed before atmospheric 14C levels decline to below 1950 levels as expected in the next decade.
Max ERC Funding
2 283 747 €
Duration
Start date: 2016-12-01, End date: 2021-11-30
Project acronym 20SInhibitor
Project Selective 20S proteasome inhibition for multiple myeloma therapy
Researcher (PI) Michal SHARON
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Proof of Concept (PoC), ERC-2018-PoC
Summary Multiple myeloma (MM) is a cancer of plasma cells, that is incurable, and the second most common form of blood cancer. Proteasome inhibitors (PIs) are considered a mainstay in the treatment of MM and mantle cell lymphoma (MCL). Current drugs, based on PIs however, target the chymotrypsin-like activity of the 20S proteasome, and inhibit the activities of both the 20S and 26S proteasomes. Thus, it is possible that selective drug intervention specifically inhibiting only the 20S proteasomes will reduce toxicity, and minimize the deleterious side effects of the current therapeutic regimens.
Our preliminary work revealed a family of 20S proteasome inhibitors, which we termed Catalytic Core Regulators (CCRs) that selectively target the 20S proteasome rather than the 26S complex. Based on sequence motif and structural elements of the CCRs we have designed an artificial protein that is capable of inhibiting the 20S proteasome. We anticipate that these findings will lead to the design of synthetic proteins, peptides or peptidomimetic compounds targeting cancer cells more specifically. This specificity will pose the compounds in an attractive light for using them in various therapeutic applications.
What is exciting from the commercialization perspective, is that pharmaceutical research has switched to revisit the use of peptides as therapeutics. Pharmaceutical companies have seen the development of peptides as a promising direction to lower their risk position. Overall, peptide therapeutics have a 20% chance of receiving regulatory approval, a probability that is 50% higher than that for the approval of small molecules, which form the basis of so called traditional drugs.
In the project, we will carry out actions, which will equip us with the sufficient IP protection strategy, business strategy, industry networks and initial contacts for taking the innovation out from the laboratory to next phase in developing therapy first for MM and MCL later on.
Summary
Multiple myeloma (MM) is a cancer of plasma cells, that is incurable, and the second most common form of blood cancer. Proteasome inhibitors (PIs) are considered a mainstay in the treatment of MM and mantle cell lymphoma (MCL). Current drugs, based on PIs however, target the chymotrypsin-like activity of the 20S proteasome, and inhibit the activities of both the 20S and 26S proteasomes. Thus, it is possible that selective drug intervention specifically inhibiting only the 20S proteasomes will reduce toxicity, and minimize the deleterious side effects of the current therapeutic regimens.
Our preliminary work revealed a family of 20S proteasome inhibitors, which we termed Catalytic Core Regulators (CCRs) that selectively target the 20S proteasome rather than the 26S complex. Based on sequence motif and structural elements of the CCRs we have designed an artificial protein that is capable of inhibiting the 20S proteasome. We anticipate that these findings will lead to the design of synthetic proteins, peptides or peptidomimetic compounds targeting cancer cells more specifically. This specificity will pose the compounds in an attractive light for using them in various therapeutic applications.
What is exciting from the commercialization perspective, is that pharmaceutical research has switched to revisit the use of peptides as therapeutics. Pharmaceutical companies have seen the development of peptides as a promising direction to lower their risk position. Overall, peptide therapeutics have a 20% chance of receiving regulatory approval, a probability that is 50% higher than that for the approval of small molecules, which form the basis of so called traditional drugs.
In the project, we will carry out actions, which will equip us with the sufficient IP protection strategy, business strategy, industry networks and initial contacts for taking the innovation out from the laboratory to next phase in developing therapy first for MM and MCL later on.
Max ERC Funding
150 000 €
Duration
Start date: 2019-04-01, End date: 2020-09-30
Project acronym 2D-USD
Project Ultrasonic Spray Deposition: Enabling new 2D based technologies
Researcher (PI) Valeria NICOLOSI
Host Institution (HI) THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN
Call Details Proof of Concept (PoC), PC1, ERC-2013-PoC
Summary This proposal will determine the technical and economic viability of scaling up ultra-thin film deposition processes for exfoliated single atomic layers.
The PI has developed methods to produce exfoliated nanosheets from a range of layered materials such as graphene, transition metal chalcogenides and transition metal oxides. These 2D materials have immediate and far-reaching potential in several high-impact technological applications such as microelectronics, composites and energy harvesting and storage.
2DNanoCaps (ERC ref: 278516) has already demonstrated that lab-scale ultra-thin graphene-based supercapacitor electrodes for energy storage result in unusually high power performance and extremely long device life-time (100% capacitance retention for 5000 charge-discharge cycles at the high power scan rate of 10,000 mV/s). This performance is remarkable- an order of magnitude better than similar systems produced with more conventional methods, which cause materials restacking and aggregation. 2D nanosheets also offer the chance of exploring the unique possibility of manufacturing conductive, robust, thin, easily assembled electrode and solid electrolytes to realize highly flexible and all-solid-state supercapacitors. This opportunity is particularly relevant from the industrial point of view especially in relation to the flammability issues of the electrolytes used for commercial energy storage devices at present.
In order to develop and exploit any of the applications listed above, it will be imperative to develop deposition methods and techniques capable of obtaining industrial-scale “sheet-like” coverage, where flake re-aggregation is avoided.
We believe our combination of unique material properties and cost effective, robust and production-scalable process of ultra-thin deposition will enable us to compete for significant global market opportunities in the energy-storage space
Summary
This proposal will determine the technical and economic viability of scaling up ultra-thin film deposition processes for exfoliated single atomic layers.
The PI has developed methods to produce exfoliated nanosheets from a range of layered materials such as graphene, transition metal chalcogenides and transition metal oxides. These 2D materials have immediate and far-reaching potential in several high-impact technological applications such as microelectronics, composites and energy harvesting and storage.
2DNanoCaps (ERC ref: 278516) has already demonstrated that lab-scale ultra-thin graphene-based supercapacitor electrodes for energy storage result in unusually high power performance and extremely long device life-time (100% capacitance retention for 5000 charge-discharge cycles at the high power scan rate of 10,000 mV/s). This performance is remarkable- an order of magnitude better than similar systems produced with more conventional methods, which cause materials restacking and aggregation. 2D nanosheets also offer the chance of exploring the unique possibility of manufacturing conductive, robust, thin, easily assembled electrode and solid electrolytes to realize highly flexible and all-solid-state supercapacitors. This opportunity is particularly relevant from the industrial point of view especially in relation to the flammability issues of the electrolytes used for commercial energy storage devices at present.
In order to develop and exploit any of the applications listed above, it will be imperative to develop deposition methods and techniques capable of obtaining industrial-scale “sheet-like” coverage, where flake re-aggregation is avoided.
We believe our combination of unique material properties and cost effective, robust and production-scalable process of ultra-thin deposition will enable us to compete for significant global market opportunities in the energy-storage space
Max ERC Funding
148 021 €
Duration
Start date: 2014-01-01, End date: 2014-12-31
Project acronym 2D4QT
Project 2D Materials for Quantum Technology
Researcher (PI) Christoph STAMPFER
Host Institution (HI) RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN
Call Details Consolidator Grant (CoG), PE3, ERC-2018-COG
Summary Since its discovery, graphene has been indicated as a promising platform for quantum technologies (QT). The number of theoretical proposal dedicated to this vision has grown steadily, exploring a wide range of directions, ranging from spin and valley qubits, to topologically-protected states. The experimental confirmation of these ideas lagged so far significantly behind, mostly because of material quality problems. The quality of graphene-based devices has however improved dramatically in the past five years, thanks to the advent of the so-called van der Waals (vdW) heteostructures - artificial solids formed by mechanically stacking layers of different two dimensional (2D) materials, such as graphene, hexagonal boron nitride and transition metal dichalcogenides. These new advances open now finally the door to put several of those theoretical proposals to test.
The goal of this project is to assess experimentally the potential of graphene-based heterostructures for QT applications. Specifically, I will push the development of an advanced technological platform for vdW heterostructures, which will allow to give quantitative answers to the following open questions: i) what are the relaxation and coherence times of spin and valley qubits in isotopically purified bilayer graphene (BLG); ii) what is the efficiency of a Cooper-pair splitter based on BLG; and iii) what are the characteristic energy scales of topologically protected quantum states engineered in graphene-based heterostructures.
At the end of this project, I aim at being in the position of saying whether graphene is the horse-worth-betting-on predicted by theory, or whether it still hides surprises in terms of fundamental physics. The technological advancements developed in this project for integrating nanostructured layers into vdW heterostructures will reach even beyond this goal, opening the door to new research directions and possible applications.
Summary
Since its discovery, graphene has been indicated as a promising platform for quantum technologies (QT). The number of theoretical proposal dedicated to this vision has grown steadily, exploring a wide range of directions, ranging from spin and valley qubits, to topologically-protected states. The experimental confirmation of these ideas lagged so far significantly behind, mostly because of material quality problems. The quality of graphene-based devices has however improved dramatically in the past five years, thanks to the advent of the so-called van der Waals (vdW) heteostructures - artificial solids formed by mechanically stacking layers of different two dimensional (2D) materials, such as graphene, hexagonal boron nitride and transition metal dichalcogenides. These new advances open now finally the door to put several of those theoretical proposals to test.
The goal of this project is to assess experimentally the potential of graphene-based heterostructures for QT applications. Specifically, I will push the development of an advanced technological platform for vdW heterostructures, which will allow to give quantitative answers to the following open questions: i) what are the relaxation and coherence times of spin and valley qubits in isotopically purified bilayer graphene (BLG); ii) what is the efficiency of a Cooper-pair splitter based on BLG; and iii) what are the characteristic energy scales of topologically protected quantum states engineered in graphene-based heterostructures.
At the end of this project, I aim at being in the position of saying whether graphene is the horse-worth-betting-on predicted by theory, or whether it still hides surprises in terms of fundamental physics. The technological advancements developed in this project for integrating nanostructured layers into vdW heterostructures will reach even beyond this goal, opening the door to new research directions and possible applications.
Max ERC Funding
1 806 250 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym 2DMATER
Project Controlled Synthesis of Two-Dimensional Nanomaterials for Energy Storage and Conversion
Researcher (PI) Xinliang Feng
Host Institution (HI) TECHNISCHE UNIVERSITAET DRESDEN
Call Details Starting Grant (StG), PE5, ERC-2012-StG_20111012
Summary "Two-dimensional (2D) nanosheets, which possess a high degree of anisotropy with nanoscale thickness and infinite length in other dimensions, hold enormous promise as a novel class of ultrathin 2D nanomaterials with various unique functionalities and properties, and exhibit great potential in energy storage and conversion systems that are substantially different from their respective 3D bulk forms. Here I propose a strategy for the synthesis and processing of various 2D nanosheets across a broad range of inorganic, organic and polymeric materials with molecular-level or thin thickness through both the top-down exfoliation of layered materials and the bottom-up assembly of available molecular building blocks. Further, I aim to develop the synthesis of various 2D-nanosheet based composite materials with thickness of less than 100 nm and the assembly of 2D nanosheets into novel hierarchal superstrucutures (like aerogels, spheres, porous particles, nanotubes, multi-layer films). The structural features of these 2D nanomaterials will be controllably tailored by both the used layered precursors and processing methodologies. The consequence is that I will apply and combine defined functional components as well as assembly protocols to create novel 2D nanomaterials for specific purposes in energy storage and conversion systems. Their unique characters will include the good electrical conductivity, excellent mechanical flexibility, high surface area, high chemical stability, fast electron transport and ion diffusion etc. Applications will be mainly demonstrated for the construction of lithium ion batteries (anode and cathode), supercapacitors (symmetric and asymmetric) and fuel cells. As the key achievements, I expect to establish the delineation of reliable structure-property relationships and improved device performance of 2D nanomaterials."
Summary
"Two-dimensional (2D) nanosheets, which possess a high degree of anisotropy with nanoscale thickness and infinite length in other dimensions, hold enormous promise as a novel class of ultrathin 2D nanomaterials with various unique functionalities and properties, and exhibit great potential in energy storage and conversion systems that are substantially different from their respective 3D bulk forms. Here I propose a strategy for the synthesis and processing of various 2D nanosheets across a broad range of inorganic, organic and polymeric materials with molecular-level or thin thickness through both the top-down exfoliation of layered materials and the bottom-up assembly of available molecular building blocks. Further, I aim to develop the synthesis of various 2D-nanosheet based composite materials with thickness of less than 100 nm and the assembly of 2D nanosheets into novel hierarchal superstrucutures (like aerogels, spheres, porous particles, nanotubes, multi-layer films). The structural features of these 2D nanomaterials will be controllably tailored by both the used layered precursors and processing methodologies. The consequence is that I will apply and combine defined functional components as well as assembly protocols to create novel 2D nanomaterials for specific purposes in energy storage and conversion systems. Their unique characters will include the good electrical conductivity, excellent mechanical flexibility, high surface area, high chemical stability, fast electron transport and ion diffusion etc. Applications will be mainly demonstrated for the construction of lithium ion batteries (anode and cathode), supercapacitors (symmetric and asymmetric) and fuel cells. As the key achievements, I expect to establish the delineation of reliable structure-property relationships and improved device performance of 2D nanomaterials."
Max ERC Funding
1 500 000 €
Duration
Start date: 2012-09-01, End date: 2017-08-31
Project acronym 2DNANOCAPS
Project Next Generation of 2D-Nanomaterials: Enabling Supercapacitor Development
Researcher (PI) Valeria Nicolosi
Host Institution (HI) THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN
Call Details Starting Grant (StG), PE8, ERC-2011-StG_20101014
Summary Climate change and the decreasing availability of fossil fuels require society to move towards sustainable and renewable resources. 2DNanoCaps will focus on electrochemical energy storage, specifically supercapacitors. In terms of performance supercapacitors fill up the gap between batteries and the classical capacitors. Whereas batteries possess a high energy density but low power density, supercapacitors possess high power density but low energy density. Efforts are currently dedicated to move supercapacitors towards high energy density and high power density performance. Improvements have been achieved in the last few years due to the use of new electrode nanomaterials and the design of new hybrid faradic/capacitive systems. We recognize, however, that we are reaching a newer limit beyond which we will only see small incremental improvements. The main reason for this being the intrinsic difficulty in handling and processing materials at the nano-scale and the lack of communication across different scientific disciplines. I plan to use a multidisciplinary approach, where novel nanomaterials, existing knowledge on nano-scale processing and established expertise in device fabrication and testing will be brought together to focus on creating more efficient supercapacitor technologies. 2DNanoCaps will exploit liquid phase exfoliated two-dimensional nanomaterials such as transition metal oxides, layered metal chalcogenides and graphene as electrode materials. Electrodes will be ultra-thin (capacitance and thickness of the electrodes are inversely proportional), conductive, with high dielectric constants. Intercalation of ions between the assembled 2D flakes will be also achievable, providing pseudo-capacitance. The research here proposed will be initially based on fundamental laboratory studies, recognising that this holds the key to achieving step-change in supercapacitors, but also includes scaling-up and hybridisation as final objectives.
Summary
Climate change and the decreasing availability of fossil fuels require society to move towards sustainable and renewable resources. 2DNanoCaps will focus on electrochemical energy storage, specifically supercapacitors. In terms of performance supercapacitors fill up the gap between batteries and the classical capacitors. Whereas batteries possess a high energy density but low power density, supercapacitors possess high power density but low energy density. Efforts are currently dedicated to move supercapacitors towards high energy density and high power density performance. Improvements have been achieved in the last few years due to the use of new electrode nanomaterials and the design of new hybrid faradic/capacitive systems. We recognize, however, that we are reaching a newer limit beyond which we will only see small incremental improvements. The main reason for this being the intrinsic difficulty in handling and processing materials at the nano-scale and the lack of communication across different scientific disciplines. I plan to use a multidisciplinary approach, where novel nanomaterials, existing knowledge on nano-scale processing and established expertise in device fabrication and testing will be brought together to focus on creating more efficient supercapacitor technologies. 2DNanoCaps will exploit liquid phase exfoliated two-dimensional nanomaterials such as transition metal oxides, layered metal chalcogenides and graphene as electrode materials. Electrodes will be ultra-thin (capacitance and thickness of the electrodes are inversely proportional), conductive, with high dielectric constants. Intercalation of ions between the assembled 2D flakes will be also achievable, providing pseudo-capacitance. The research here proposed will be initially based on fundamental laboratory studies, recognising that this holds the key to achieving step-change in supercapacitors, but also includes scaling-up and hybridisation as final objectives.
Max ERC Funding
1 501 296 €
Duration
Start date: 2011-10-01, End date: 2016-09-30
Project acronym 2D–SYNETRA
Project Two-dimensional colloidal nanostructures - Synthesis and electrical transport
Researcher (PI) Christian Klinke
Host Institution (HI) UNIVERSITAET HAMBURG
Call Details Starting Grant (StG), PE4, ERC-2012-StG_20111012
Summary We propose to develop truly two-dimensional continuous materials and two-dimensional monolayer films composed of individual nanocrystals by the comparatively fast, inexpensive, and scalable colloidal synthesis method. The materials’ properties will be studied in detail, especially regarding their (photo-) electrical transport. This will allow developing new types of device structures, such as Coulomb blockade and field enhancement based transistors.
Recently, we demonstrated the possibility to synthesize in a controlled manner truly two-dimensional colloidal nanostructures. We will investigate their formation mechanism, synthesize further materials as “nanosheets”, develop methodologies to tune their geometrical properties, and study their (photo-) electrical properties.
Furthermore, we will use the Langmuir-Blodgett method to deposit highly ordered monolayers of monodisperse nanoparticles. Such structures show interesting transport properties governed by Coulomb blockade effects known from individual nanoparticles. This leads to semiconductor-like behavior in metal nanoparticle films. The understanding of the electric transport in such “multi-tunnel devices” is still very limited. Thus, we will investigate this concept in detail and take it to its limits. Beside improvement of quality and exchange of material we will tune the nanoparticles’ size and shape in order to gain a deeper understanding of the electrical properties of supercrystallographic assemblies. Furthermore, we will develop device concepts for diode and transistor structures which take into account the novel properties of the low-dimensional assemblies.
Nanosheets and monolayers of nanoparticles truly follow the principle of building devices by the bottom-up approach and allow electric transport measurements in a 2D regime. Highly ordered nanomaterial systems possess easy and reliably to manipulate electronic properties what make them interesting for future (inexpensive) electronic devices.
Summary
We propose to develop truly two-dimensional continuous materials and two-dimensional monolayer films composed of individual nanocrystals by the comparatively fast, inexpensive, and scalable colloidal synthesis method. The materials’ properties will be studied in detail, especially regarding their (photo-) electrical transport. This will allow developing new types of device structures, such as Coulomb blockade and field enhancement based transistors.
Recently, we demonstrated the possibility to synthesize in a controlled manner truly two-dimensional colloidal nanostructures. We will investigate their formation mechanism, synthesize further materials as “nanosheets”, develop methodologies to tune their geometrical properties, and study their (photo-) electrical properties.
Furthermore, we will use the Langmuir-Blodgett method to deposit highly ordered monolayers of monodisperse nanoparticles. Such structures show interesting transport properties governed by Coulomb blockade effects known from individual nanoparticles. This leads to semiconductor-like behavior in metal nanoparticle films. The understanding of the electric transport in such “multi-tunnel devices” is still very limited. Thus, we will investigate this concept in detail and take it to its limits. Beside improvement of quality and exchange of material we will tune the nanoparticles’ size and shape in order to gain a deeper understanding of the electrical properties of supercrystallographic assemblies. Furthermore, we will develop device concepts for diode and transistor structures which take into account the novel properties of the low-dimensional assemblies.
Nanosheets and monolayers of nanoparticles truly follow the principle of building devices by the bottom-up approach and allow electric transport measurements in a 2D regime. Highly ordered nanomaterial systems possess easy and reliably to manipulate electronic properties what make them interesting for future (inexpensive) electronic devices.
Max ERC Funding
1 497 200 €
Duration
Start date: 2013-02-01, End date: 2019-01-31
Project acronym 2O2ACTIVATION
Project Development of Direct Dehydrogenative Couplings mediated by Dioxygen
Researcher (PI) Frederic William Patureau
Host Institution (HI) RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN
Call Details Starting Grant (StG), PE5, ERC-2016-STG
Summary The field of C-H bond activation has evolved at an exponential pace in the last 15 years. What appeals most in those novel synthetic techniques is clear: they bypass the pre-activation steps usually required in traditional cross-coupling chemistry by directly metalating C-H bonds. Many C-H bond functionalizations today however, rely on poorly atom and step efficient oxidants, leading to significant and costly chemical waste, thereby seriously undermining the overall sustainability of those methods. As restrictions in sustainability regulations will further increase, and the cost of certain chemical commodities will rise, atom efficiency in organic synthesis remains a top priority for research.
The aim of 2O2ACTIVATION is to develop novel technologies utilizing O2 as sole terminal oxidant in order to allow useful, extremely sustainable, thermodynamically challenging, dehydrogenative C-N and C-O bond forming coupling reactions. However, the moderate reactivity of O2 towards many catalysts constitutes a major challenge. 2O2ACTIVATION will pioneer the design of new catalysts based on the ultra-simple propene motive, capable of direct activation of O2 for C-H activation based cross-couplings. The project is divided into 3 major lines: O2 activation using propene and its analogues (propenoids), 1) without metal or halide, 2) with hypervalent halide catalysis, 3) with metal catalyzed C-H activation.
The philosophy of 2O2ACTIVATION is to focus C-H functionalization method development on the oxidative event.
Consequently, 2O2ACTIVATION breakthroughs will dramatically shortcut synthetic routes through the use of inactivated, unprotected, and readily available building blocks; and thus should be easily scalable. This will lead to a strong decrease in the costs related to the production of many essential chemicals, while preserving the environment (water as terminal by-product). The resulting novels coupling methods will thus have a lasting impact on the chemical industry.
Summary
The field of C-H bond activation has evolved at an exponential pace in the last 15 years. What appeals most in those novel synthetic techniques is clear: they bypass the pre-activation steps usually required in traditional cross-coupling chemistry by directly metalating C-H bonds. Many C-H bond functionalizations today however, rely on poorly atom and step efficient oxidants, leading to significant and costly chemical waste, thereby seriously undermining the overall sustainability of those methods. As restrictions in sustainability regulations will further increase, and the cost of certain chemical commodities will rise, atom efficiency in organic synthesis remains a top priority for research.
The aim of 2O2ACTIVATION is to develop novel technologies utilizing O2 as sole terminal oxidant in order to allow useful, extremely sustainable, thermodynamically challenging, dehydrogenative C-N and C-O bond forming coupling reactions. However, the moderate reactivity of O2 towards many catalysts constitutes a major challenge. 2O2ACTIVATION will pioneer the design of new catalysts based on the ultra-simple propene motive, capable of direct activation of O2 for C-H activation based cross-couplings. The project is divided into 3 major lines: O2 activation using propene and its analogues (propenoids), 1) without metal or halide, 2) with hypervalent halide catalysis, 3) with metal catalyzed C-H activation.
The philosophy of 2O2ACTIVATION is to focus C-H functionalization method development on the oxidative event.
Consequently, 2O2ACTIVATION breakthroughs will dramatically shortcut synthetic routes through the use of inactivated, unprotected, and readily available building blocks; and thus should be easily scalable. This will lead to a strong decrease in the costs related to the production of many essential chemicals, while preserving the environment (water as terminal by-product). The resulting novels coupling methods will thus have a lasting impact on the chemical industry.
Max ERC Funding
1 489 823 €
Duration
Start date: 2017-03-01, End date: 2022-02-28
Project acronym 3-TOP
Project Exploring the physics of 3-dimensional topological insulators
Researcher (PI) Laurens Wigbolt Molenkamp
Host Institution (HI) JULIUS-MAXIMILIANS-UNIVERSITAT WURZBURG
Call Details Advanced Grant (AdG), PE3, ERC-2010-AdG_20100224
Summary Topological insulators constitute a novel class of materials where the topological details of the bulk band structure induce a robust surface state on the edges of the material. While transport data for 2-dimensional topological insulators have recently become available, experiments on their 3-dimensional counterparts are mainly limited to photoelectron spectroscopy. At the same time, a plethora of interesting novel physical phenomena have been predicted to occur in such systems.
In this proposal, we sketch an approach to tackle the transport and magnetic properties of the surface states in these materials. This starts with high quality layer growth, using molecular beam epitaxy, of bulk layers of HgTe, Bi2Se3 and Bi2Te3, which are the prime candidates to show the novel physics expected in this field. The existence of the relevant surface states will be assessed spectroscopically, but from there on research will focus on fabricating and characterizing nanostructures designed to elucidate the transport and magnetic properties of the topological surfaces using electrical, optical and scanning probe techniques. Apart from a general characterization of the Dirac band structure of the surface states, research will focus on the predicted magnetic monopole-like response of the system to an electrical test charge. In addition, much effort will be devoted to contacting the surface state with superconducting and magnetic top layers, with the final aim of demonstrating Majorana fermion behavior. As a final benefit, growth of thin high quality thin Bi2Se3 or Bi2Te3 layers could allow for a demonstration of the (2-dimensional) quantum spin Hall effect at room temperature - offering a road map to dissipation-less transport for the semiconductor industry.
Summary
Topological insulators constitute a novel class of materials where the topological details of the bulk band structure induce a robust surface state on the edges of the material. While transport data for 2-dimensional topological insulators have recently become available, experiments on their 3-dimensional counterparts are mainly limited to photoelectron spectroscopy. At the same time, a plethora of interesting novel physical phenomena have been predicted to occur in such systems.
In this proposal, we sketch an approach to tackle the transport and magnetic properties of the surface states in these materials. This starts with high quality layer growth, using molecular beam epitaxy, of bulk layers of HgTe, Bi2Se3 and Bi2Te3, which are the prime candidates to show the novel physics expected in this field. The existence of the relevant surface states will be assessed spectroscopically, but from there on research will focus on fabricating and characterizing nanostructures designed to elucidate the transport and magnetic properties of the topological surfaces using electrical, optical and scanning probe techniques. Apart from a general characterization of the Dirac band structure of the surface states, research will focus on the predicted magnetic monopole-like response of the system to an electrical test charge. In addition, much effort will be devoted to contacting the surface state with superconducting and magnetic top layers, with the final aim of demonstrating Majorana fermion behavior. As a final benefit, growth of thin high quality thin Bi2Se3 or Bi2Te3 layers could allow for a demonstration of the (2-dimensional) quantum spin Hall effect at room temperature - offering a road map to dissipation-less transport for the semiconductor industry.
Max ERC Funding
2 419 590 €
Duration
Start date: 2011-04-01, End date: 2016-03-31
Project acronym 3CBIOTECH
Project Cold Carbon Catabolism of Microbial Communities underprinning a Sustainable Bioenergy and Biorefinery Economy
Researcher (PI) Gavin James Collins
Host Institution (HI) NATIONAL UNIVERSITY OF IRELAND GALWAY
Call Details Starting Grant (StG), LS9, ERC-2010-StG_20091118
Summary The applicant will collaborate with Irish, European and U.S.-based colleagues to develop a sustainable biorefinery and bioenergy industry in Ireland and Europe. The focus of this ERC Starting Grant will be the application of classical microbiological, physiological and real-time polymerase chain reaction (PCR)-based assays, to qualitatively and quantitatively characterize microbial communities underpinning novel and innovative, low-temperature, anaerobic waste (and other biomass) conversion technologies, including municipal wastewater treatment and, demonstration- and full-scale biorefinery applications.
Anaerobic digestion (AD) is a naturally-occurring process, which is widely applied for the conversion of waste to methane-containing biogas. Low-temperature (<20 degrees C) AD has been applied by the applicant as a cost-effective alternative to mesophilic (c. 35C) AD for the treatment of several waste categories. However, the microbiology of low-temperature AD is poorly understood. The applicant will work with microbial consortia isolated from anaerobic bioreactors, which have been operated for long-term experiments (>3.5 years), and include organic acid-oxidizing, hydrogen-producing syntrophic microbes and hydrogen-consuming methanogens. A major focus of the project will be the ecophysiology of psychrotolerant and psychrophilic methanogens already identified and cultivated by the applicant. The project will also investigate the role(s) of poorly-understood Crenarchaeota populations and homoacetogenic bacteria, in complex consortia. The host organization is a leading player in the microbiology of waste-to-energy applications. The applicant will train a team of scientists in all aspects of the microbiology and bioengineering of biomass conversion systems.
Summary
The applicant will collaborate with Irish, European and U.S.-based colleagues to develop a sustainable biorefinery and bioenergy industry in Ireland and Europe. The focus of this ERC Starting Grant will be the application of classical microbiological, physiological and real-time polymerase chain reaction (PCR)-based assays, to qualitatively and quantitatively characterize microbial communities underpinning novel and innovative, low-temperature, anaerobic waste (and other biomass) conversion technologies, including municipal wastewater treatment and, demonstration- and full-scale biorefinery applications.
Anaerobic digestion (AD) is a naturally-occurring process, which is widely applied for the conversion of waste to methane-containing biogas. Low-temperature (<20 degrees C) AD has been applied by the applicant as a cost-effective alternative to mesophilic (c. 35C) AD for the treatment of several waste categories. However, the microbiology of low-temperature AD is poorly understood. The applicant will work with microbial consortia isolated from anaerobic bioreactors, which have been operated for long-term experiments (>3.5 years), and include organic acid-oxidizing, hydrogen-producing syntrophic microbes and hydrogen-consuming methanogens. A major focus of the project will be the ecophysiology of psychrotolerant and psychrophilic methanogens already identified and cultivated by the applicant. The project will also investigate the role(s) of poorly-understood Crenarchaeota populations and homoacetogenic bacteria, in complex consortia. The host organization is a leading player in the microbiology of waste-to-energy applications. The applicant will train a team of scientists in all aspects of the microbiology and bioengineering of biomass conversion systems.
Max ERC Funding
1 499 797 €
Duration
Start date: 2011-05-01, End date: 2016-04-30
Project acronym 3D-FNPWriting
Project Unprecedented spatial control of porosity and functionality in nanoporous membranes through 3D printing and microscopy for polymer writing
Researcher (PI) Annette ANDRIEU-BRUNSEN
Host Institution (HI) TECHNISCHE UNIVERSITAT DARMSTADT
Call Details Starting Grant (StG), PE5, ERC-2018-STG
Summary Membranes are key materials in our life. Nature offers high performance membranes relying on a parallel local regulation of nanopore structure, functional placement, membrane composition and architecture. Existing technological membranes are key materials in separation, recycling, sensing, energy conversion, being essential components for a sustainable future. But their performance is far away from their natural counterparts. One reason for this performance gap is the lack of 3D nanolocal control in membrane design. This applies to each individual nanopore but as well to the membrane architecture. This proposal aims to implement 3D printing (additive manufacturing, top down) and complex near-field and total internal reflection (TIR) high resolution microscopy induced polymer writing (bottom up) to nanolocally control in hierarchical nanoporous membranes spatially and independent of each other: porosity, pore functionalization, membrane architecture, composition. This disruptive technology platform will make accessible to date unachieved, highly accurate asymmetric nanopores and multifunctional, hierarchical membrane architecture/ composition and thus highly selective, directed, transport with tuneable rates. 3D-FNPWriting will demonstrate this for the increasing class of metal nanoparticle/ salt pollutants aiming for tuneable, selective, directed transport based monitoring and recycling instead of size-based filtration, accumulation into sewerage and distribution into nature. Specifically, the potential of this disruptive technology with respect to transport design will be demonstrated for a) a 3D-printed in-situ functionalized nanoporous fiber architecture and b) a printed, nanolocally near-field and TIR-microscopy polymer functionalized membrane representing a thin separation layer. This will open systematic understanding of nanolocal functional control on transport and new perspectives in water/ energy management for future smart industry/ homes.
Summary
Membranes are key materials in our life. Nature offers high performance membranes relying on a parallel local regulation of nanopore structure, functional placement, membrane composition and architecture. Existing technological membranes are key materials in separation, recycling, sensing, energy conversion, being essential components for a sustainable future. But their performance is far away from their natural counterparts. One reason for this performance gap is the lack of 3D nanolocal control in membrane design. This applies to each individual nanopore but as well to the membrane architecture. This proposal aims to implement 3D printing (additive manufacturing, top down) and complex near-field and total internal reflection (TIR) high resolution microscopy induced polymer writing (bottom up) to nanolocally control in hierarchical nanoporous membranes spatially and independent of each other: porosity, pore functionalization, membrane architecture, composition. This disruptive technology platform will make accessible to date unachieved, highly accurate asymmetric nanopores and multifunctional, hierarchical membrane architecture/ composition and thus highly selective, directed, transport with tuneable rates. 3D-FNPWriting will demonstrate this for the increasing class of metal nanoparticle/ salt pollutants aiming for tuneable, selective, directed transport based monitoring and recycling instead of size-based filtration, accumulation into sewerage and distribution into nature. Specifically, the potential of this disruptive technology with respect to transport design will be demonstrated for a) a 3D-printed in-situ functionalized nanoporous fiber architecture and b) a printed, nanolocally near-field and TIR-microscopy polymer functionalized membrane representing a thin separation layer. This will open systematic understanding of nanolocal functional control on transport and new perspectives in water/ energy management for future smart industry/ homes.
Max ERC Funding
1 499 844 €
Duration
Start date: 2019-04-01, End date: 2024-03-31
Project acronym 3D2DPrint
Project 3D Printing of Novel 2D Nanomaterials: Adding Advanced 2D Functionalities to Revolutionary Tailored 3D Manufacturing
Researcher (PI) Valeria Nicolosi
Host Institution (HI) THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN
Call Details Consolidator Grant (CoG), PE8, ERC-2015-CoG
Summary My vision is to establish, within the framework of an ERC CoG, a multidisciplinary group which will work in concert towards pioneering the integration of novel 2-Dimensional nanomaterials with novel additive fabrication techniques to develop a unique class of energy storage devices.
Batteries and supercapacitors are two very complementary types of energy storage devices. Batteries store much higher energy densities; supercapacitors, on the other hand, hold one tenth of the electricity per unit of volume or weight as compared to batteries but can achieve much higher power densities. Technology is currently striving to improve the power density of batteries and the energy density of supercapacitors. To do so it is imperative to develop new materials, chemistries and manufacturing strategies.
3D2DPrint aims to develop micro-energy devices (both supercapacitors and batteries), technologies particularly relevant in the context of the emergent industry of micro-electro-mechanical systems and constantly downsized electronics. We plan to use novel two-dimensional (2D) nanomaterials obtained by liquid-phase exfoliation. This method offers a new, economic and easy way to prepare ink of a variety of 2D systems, allowing to produce wide device performance window through elegant and simple constituent control at the point of fabrication. 3D2DPrint will use our expertise and know-how to allow development of advanced AM methods to integrate dissimilar nanomaterial blends and/or “hybrids” into fully embedded 3D printed energy storage devices, with the ultimate objective to realise a range of products that contain the above described nanomaterials subcomponent devices, electrical connections and traditional micro-fabricated subcomponents (if needed) ideally using a single tool.
Summary
My vision is to establish, within the framework of an ERC CoG, a multidisciplinary group which will work in concert towards pioneering the integration of novel 2-Dimensional nanomaterials with novel additive fabrication techniques to develop a unique class of energy storage devices.
Batteries and supercapacitors are two very complementary types of energy storage devices. Batteries store much higher energy densities; supercapacitors, on the other hand, hold one tenth of the electricity per unit of volume or weight as compared to batteries but can achieve much higher power densities. Technology is currently striving to improve the power density of batteries and the energy density of supercapacitors. To do so it is imperative to develop new materials, chemistries and manufacturing strategies.
3D2DPrint aims to develop micro-energy devices (both supercapacitors and batteries), technologies particularly relevant in the context of the emergent industry of micro-electro-mechanical systems and constantly downsized electronics. We plan to use novel two-dimensional (2D) nanomaterials obtained by liquid-phase exfoliation. This method offers a new, economic and easy way to prepare ink of a variety of 2D systems, allowing to produce wide device performance window through elegant and simple constituent control at the point of fabrication. 3D2DPrint will use our expertise and know-how to allow development of advanced AM methods to integrate dissimilar nanomaterial blends and/or “hybrids” into fully embedded 3D printed energy storage devices, with the ultimate objective to realise a range of products that contain the above described nanomaterials subcomponent devices, electrical connections and traditional micro-fabricated subcomponents (if needed) ideally using a single tool.
Max ERC Funding
2 499 942 €
Duration
Start date: 2016-10-01, End date: 2021-09-30
Project acronym 3D_Tryps
Project The role of three-dimensional genome architecture in antigenic variation
Researcher (PI) Tim Nicolai SIEGEL
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Call Details Starting Grant (StG), LS6, ERC-2016-STG
Summary Antigenic variation is a widely employed strategy to evade the host immune response. It has similar functional requirements even in evolutionarily divergent pathogens. These include the mutually exclusive expression of antigens and the periodic, nonrandom switching in the expression of different antigens during the course of an infection. Despite decades of research the mechanisms of antigenic variation are not fully understood in any organism.
The recent development of high-throughput sequencing-based assays to probe the 3D genome architecture (Hi-C) has revealed the importance of the spatial organization of DNA inside the nucleus. 3D genome architecture plays a critical role in the regulation of mutually exclusive gene expression and the frequency of translocation between different genomic loci in many eukaryotes. Thus, genome architecture may also be a key regulator of antigenic variation, yet the causal links between genome architecture and the expression of antigens have not been studied systematically. In addition, the development of CRISPR-Cas9-based approaches to perform nucleotide-specific genome editing has opened unprecedented opportunities to study the influence of DNA sequence elements on the spatial organization of DNA and how this impacts antigen expression.
I have adapted both Hi-C and CRISPR-Cas9 technology to the protozoan parasite Trypanosoma brucei, one of the most important model organisms to study antigenic variation. These techniques will enable me to bridge the field of antigenic variation research with that of genome architecture. I will perform the first systematic analysis of the role of genome architecture in the mutually exclusive and hierarchical expression of antigens in any pathogen.
The experiments outlined in this proposal will provide new insight, facilitating a new view of antigenic variation and may eventually help medical intervention in T. brucei and in other pathogens relying on antigenic variation for their survival.
Summary
Antigenic variation is a widely employed strategy to evade the host immune response. It has similar functional requirements even in evolutionarily divergent pathogens. These include the mutually exclusive expression of antigens and the periodic, nonrandom switching in the expression of different antigens during the course of an infection. Despite decades of research the mechanisms of antigenic variation are not fully understood in any organism.
The recent development of high-throughput sequencing-based assays to probe the 3D genome architecture (Hi-C) has revealed the importance of the spatial organization of DNA inside the nucleus. 3D genome architecture plays a critical role in the regulation of mutually exclusive gene expression and the frequency of translocation between different genomic loci in many eukaryotes. Thus, genome architecture may also be a key regulator of antigenic variation, yet the causal links between genome architecture and the expression of antigens have not been studied systematically. In addition, the development of CRISPR-Cas9-based approaches to perform nucleotide-specific genome editing has opened unprecedented opportunities to study the influence of DNA sequence elements on the spatial organization of DNA and how this impacts antigen expression.
I have adapted both Hi-C and CRISPR-Cas9 technology to the protozoan parasite Trypanosoma brucei, one of the most important model organisms to study antigenic variation. These techniques will enable me to bridge the field of antigenic variation research with that of genome architecture. I will perform the first systematic analysis of the role of genome architecture in the mutually exclusive and hierarchical expression of antigens in any pathogen.
The experiments outlined in this proposal will provide new insight, facilitating a new view of antigenic variation and may eventually help medical intervention in T. brucei and in other pathogens relying on antigenic variation for their survival.
Max ERC Funding
1 498 175 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym 3DBrainStrom
Project Brain metastases: Deciphering tumor-stroma interactions in three dimensions for the rational design of nanomedicines
Researcher (PI) Ronit Satchi Fainaro
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Advanced Grant (AdG), LS7, ERC-2018-ADG
Summary Brain metastases represent a major therapeutic challenge. Despite significant breakthroughs in targeted therapies, survival rates of patients with brain metastases remain poor. Nowadays, discovery, development and evaluation of new therapies are performed on human cancer cells grown in 2D on rigid plastic plates followed by in vivo testing in immunodeficient mice. These experimental settings are lacking and constitute a fundamental hurdle for the translation of preclinical discoveries into clinical practice. We propose to establish 3D-printed models of brain metastases (Aim 1), which include brain extracellular matrix, stroma and serum containing immune cells flowing in functional tumor vessels. Our unique models better capture the clinical physio-mechanical tissue properties, signaling pathways, hemodynamics and drug responsiveness. Using our 3D-printed models, we aim to develop two new fronts for identifying novel clinically-relevant molecular drivers (Aim 2) followed by the development of precision nanomedicines (Aim 3). We will exploit our vast experience in anticancer nanomedicines to design three therapeutic approaches that target various cellular compartments involved in brain metastases: 1) Prevention of brain metastatic colonization using targeted nano-vaccines, which elicit antitumor immune response; 2) Intervention of tumor-brain stroma cells crosstalk when brain micrometastases establish; 3) Regression of macrometastatic disease by selectively targeting tumor cells. These approaches will materialize using our libraries of polymeric nanocarriers that selectively accumulate in tumors.
This project will result in a paradigm shift by generating new preclinical cancer models that will bridge the translational gap in cancer therapeutics. The insights and tumor-stroma-targeted nanomedicines developed here will pave the way for prediction of patient outcome, revolutionizing our perception of tumor modelling and consequently the way we prevent and treat cancer.
Summary
Brain metastases represent a major therapeutic challenge. Despite significant breakthroughs in targeted therapies, survival rates of patients with brain metastases remain poor. Nowadays, discovery, development and evaluation of new therapies are performed on human cancer cells grown in 2D on rigid plastic plates followed by in vivo testing in immunodeficient mice. These experimental settings are lacking and constitute a fundamental hurdle for the translation of preclinical discoveries into clinical practice. We propose to establish 3D-printed models of brain metastases (Aim 1), which include brain extracellular matrix, stroma and serum containing immune cells flowing in functional tumor vessels. Our unique models better capture the clinical physio-mechanical tissue properties, signaling pathways, hemodynamics and drug responsiveness. Using our 3D-printed models, we aim to develop two new fronts for identifying novel clinically-relevant molecular drivers (Aim 2) followed by the development of precision nanomedicines (Aim 3). We will exploit our vast experience in anticancer nanomedicines to design three therapeutic approaches that target various cellular compartments involved in brain metastases: 1) Prevention of brain metastatic colonization using targeted nano-vaccines, which elicit antitumor immune response; 2) Intervention of tumor-brain stroma cells crosstalk when brain micrometastases establish; 3) Regression of macrometastatic disease by selectively targeting tumor cells. These approaches will materialize using our libraries of polymeric nanocarriers that selectively accumulate in tumors.
This project will result in a paradigm shift by generating new preclinical cancer models that will bridge the translational gap in cancer therapeutics. The insights and tumor-stroma-targeted nanomedicines developed here will pave the way for prediction of patient outcome, revolutionizing our perception of tumor modelling and consequently the way we prevent and treat cancer.
Max ERC Funding
2 353 125 €
Duration
Start date: 2019-04-01, End date: 2024-03-31
Project acronym 3DCellPhase-
Project In situ Structural Analysis of Molecular Crowding and Phase Separation
Researcher (PI) Julia MAHAMID
Host Institution (HI) EUROPEAN MOLECULAR BIOLOGY LABORATORY
Call Details Starting Grant (StG), LS1, ERC-2017-STG
Summary This proposal brings together two fields in biology, namely the emerging field of phase-separated assemblies in cell biology and state-of-the-art cellular cryo-electron tomography, to advance our understanding on a fundamental, yet illusive, question: the molecular organization of the cytoplasm.
Eukaryotes organize their biochemical reactions into functionally distinct compartments. Intriguingly, many, if not most, cellular compartments are not membrane enclosed. Rather, they assemble dynamically by phase separation, typically triggered upon a specific event. Despite significant progress on reconstituting such liquid-like assemblies in vitro, we lack information as to whether these compartments in vivo are indeed amorphous liquids, or whether they exhibit structural features such as gels or fibers. My recent work on sample preparation of cells for cryo-electron tomography, including cryo-focused ion beam thinning, guided by 3D correlative fluorescence microscopy, shows that we can now prepare site-specific ‘electron-transparent windows’ in suitable eukaryotic systems, which allow direct examination of structural features of cellular compartments in their cellular context. Here, we will use these techniques to elucidate the structural principles and cytoplasmic environment driving the dynamic assembly of two phase-separated compartments: Stress granules, which are RNA bodies that form rapidly in the cytoplasm upon cellular stress, and centrosomes, which are sites of microtubule nucleation. We will combine these studies with a quantitative description of the crowded nature of cytoplasm and of its local variations, to provide a direct readout of the impact of excluded volume on molecular assembly in living cells. Taken together, these studies will provide fundamental insights into the structural basis by which cells form biochemical compartments.
Summary
This proposal brings together two fields in biology, namely the emerging field of phase-separated assemblies in cell biology and state-of-the-art cellular cryo-electron tomography, to advance our understanding on a fundamental, yet illusive, question: the molecular organization of the cytoplasm.
Eukaryotes organize their biochemical reactions into functionally distinct compartments. Intriguingly, many, if not most, cellular compartments are not membrane enclosed. Rather, they assemble dynamically by phase separation, typically triggered upon a specific event. Despite significant progress on reconstituting such liquid-like assemblies in vitro, we lack information as to whether these compartments in vivo are indeed amorphous liquids, or whether they exhibit structural features such as gels or fibers. My recent work on sample preparation of cells for cryo-electron tomography, including cryo-focused ion beam thinning, guided by 3D correlative fluorescence microscopy, shows that we can now prepare site-specific ‘electron-transparent windows’ in suitable eukaryotic systems, which allow direct examination of structural features of cellular compartments in their cellular context. Here, we will use these techniques to elucidate the structural principles and cytoplasmic environment driving the dynamic assembly of two phase-separated compartments: Stress granules, which are RNA bodies that form rapidly in the cytoplasm upon cellular stress, and centrosomes, which are sites of microtubule nucleation. We will combine these studies with a quantitative description of the crowded nature of cytoplasm and of its local variations, to provide a direct readout of the impact of excluded volume on molecular assembly in living cells. Taken together, these studies will provide fundamental insights into the structural basis by which cells form biochemical compartments.
Max ERC Funding
1 228 125 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym 3Dmaterials4Energy
Project Hierarchical Inorganic Nanomaterials as Next Generation Catalysts and Filters
Researcher (PI) Taleb Mokari
Host Institution (HI) BEN-GURION UNIVERSITY OF THE NEGEV
Call Details Proof of Concept (PoC), PC1, ERC-2016-PoC
Summary In the coming few decades, two major global grand challenges will continue to attract the attention of scientists and engineers in academia and industry: achieving clean water and clean energy. This PoC establishes the development of two prototypes, water oxidation catalyst and water purification filter, by creating inexpensive, abundant and versatile hierarchical structures of inorganic nanomaterials (HSINs).
The formation of HSINs has been one of the major obstacles toward achieving a technological progress in various applications. Presently, fabrication of well-defined 3-D structures can be achieved either by photo/electro lithography, assembly, 3D printing or template-mediated methods. Various structures with high quality/yield can be obtained through those techniques, however, these methods suffer from high cost, difficulty of fabrication of free-standing structures, and sometime the throughput is limited. On the other hand, the templated approaches usually are facile, low cost and offer several and complex structures in particular the ones obtained from nature.
Our invention is based on forming the HSINs using fossil templates from nature. We propose to harness the naturally designed morphologies of the fossil templates to rationally form hierarchical structures of nanomaterials. These structures have many advantageous, compared to the current state-of-the-art catalyst and filter, for example high surface area, high porosity, confined space (nano-reactor) and divers functionalities obtained by controlling the chemical composition of the inorganic material shell. Since these properties are important for achieving high performance, we propose HSINs as next generation water oxidation electrocatalyst and water purification filter.
Summary
In the coming few decades, two major global grand challenges will continue to attract the attention of scientists and engineers in academia and industry: achieving clean water and clean energy. This PoC establishes the development of two prototypes, water oxidation catalyst and water purification filter, by creating inexpensive, abundant and versatile hierarchical structures of inorganic nanomaterials (HSINs).
The formation of HSINs has been one of the major obstacles toward achieving a technological progress in various applications. Presently, fabrication of well-defined 3-D structures can be achieved either by photo/electro lithography, assembly, 3D printing or template-mediated methods. Various structures with high quality/yield can be obtained through those techniques, however, these methods suffer from high cost, difficulty of fabrication of free-standing structures, and sometime the throughput is limited. On the other hand, the templated approaches usually are facile, low cost and offer several and complex structures in particular the ones obtained from nature.
Our invention is based on forming the HSINs using fossil templates from nature. We propose to harness the naturally designed morphologies of the fossil templates to rationally form hierarchical structures of nanomaterials. These structures have many advantageous, compared to the current state-of-the-art catalyst and filter, for example high surface area, high porosity, confined space (nano-reactor) and divers functionalities obtained by controlling the chemical composition of the inorganic material shell. Since these properties are important for achieving high performance, we propose HSINs as next generation water oxidation electrocatalyst and water purification filter.
Max ERC Funding
150 000 €
Duration
Start date: 2017-03-01, End date: 2018-08-31
Project acronym 3DPRINTEDOPTICS
Project 3D printed micro- and nano-optics for future integrated vision and endoscopy systems
Researcher (PI) Harald Giessen
Host Institution (HI) UNIVERSITAET STUTTGART
Call Details Proof of Concept (PoC), ERC-2019-PoC
Summary Optics is abundant in today’s world. Smartphone cameras, optical sensors for autonomous driving, virtual and augmented reality, medical imaging technology, and many more areas all require tailored optical sensors. In most cases, the optical sensors are still based on classical optical systems. For instance, high-end cameras or high-quality endoscopes still utilize classical glass optics. The related markets have sizes of several tens of billion USD and grow with double digit rates.
For all applications, size is the limiting factor. There is a tremendous demand for imaging capabilities using optics at sizes below 1 mm, with the quality of classical optics, i.e., correction of aberrations, extremely high transmission, and broadband operation. Key features include also zooming, focusing, and f-number variation, as well as customized fields of view to realize foveated imaging and multi-aperture, multi-lens systems. Ideally, such optical systems provide 180° field of view with simultaneous zooming capabilities.
Here, we propose a novel type of micro-optics that is extremely flexible, can be created at demand, possesses unprecedented functionality, and delivers solutions to problems that could not be solved before.
The basic building block at the heart of our problem solution is the use of 3D printed microoptics by femtosecond direct laser writing. This method has all features to fulfil the above-mentioned requirements: It takes only a day from the idea to concept, optical design and simulation, and to manufacturing and testing, i.e., to generate a working prototype.
Our method will create a new class of optical elements, which enable the smallest microscope objective in the world on the tip of an optical fiber with unprecedented imaging accuracy and functionality, such as focusing and zooming capability.
Summary
Optics is abundant in today’s world. Smartphone cameras, optical sensors for autonomous driving, virtual and augmented reality, medical imaging technology, and many more areas all require tailored optical sensors. In most cases, the optical sensors are still based on classical optical systems. For instance, high-end cameras or high-quality endoscopes still utilize classical glass optics. The related markets have sizes of several tens of billion USD and grow with double digit rates.
For all applications, size is the limiting factor. There is a tremendous demand for imaging capabilities using optics at sizes below 1 mm, with the quality of classical optics, i.e., correction of aberrations, extremely high transmission, and broadband operation. Key features include also zooming, focusing, and f-number variation, as well as customized fields of view to realize foveated imaging and multi-aperture, multi-lens systems. Ideally, such optical systems provide 180° field of view with simultaneous zooming capabilities.
Here, we propose a novel type of micro-optics that is extremely flexible, can be created at demand, possesses unprecedented functionality, and delivers solutions to problems that could not be solved before.
The basic building block at the heart of our problem solution is the use of 3D printed microoptics by femtosecond direct laser writing. This method has all features to fulfil the above-mentioned requirements: It takes only a day from the idea to concept, optical design and simulation, and to manufacturing and testing, i.e., to generate a working prototype.
Our method will create a new class of optical elements, which enable the smallest microscope objective in the world on the tip of an optical fiber with unprecedented imaging accuracy and functionality, such as focusing and zooming capability.
Max ERC Funding
150 000 €
Duration
Start date: 2019-06-01, End date: 2020-11-30
Project acronym 3FLEX
Project Three-Component Fermi Gas Lattice Experiment
Researcher (PI) Selim Jochim
Host Institution (HI) RUPRECHT-KARLS-UNIVERSITAET HEIDELBERG
Call Details Starting Grant (StG), PE2, ERC-2011-StG_20101014
Summary Understanding the many-body physics of strongly correlated systems has always been a major challenge for theoretical and experimental physics. The recent advances in the field of ultracold quantum gases have opened a completely new way to study such strongly correlated systems. It is now feasible to use ultracold gases as quantum simulators for such diverse systems such as the Hubbard model or the BCS-BEC crossover. The objective of this project is to study a three-component Fermi gas in an optical lattice, a system with rich many-body physics. With our experiments we aim to contribute to the understanding of exotic phases which are discussed in the context of QCD and condensed matter physics.
Summary
Understanding the many-body physics of strongly correlated systems has always been a major challenge for theoretical and experimental physics. The recent advances in the field of ultracold quantum gases have opened a completely new way to study such strongly correlated systems. It is now feasible to use ultracold gases as quantum simulators for such diverse systems such as the Hubbard model or the BCS-BEC crossover. The objective of this project is to study a three-component Fermi gas in an optical lattice, a system with rich many-body physics. With our experiments we aim to contribute to the understanding of exotic phases which are discussed in the context of QCD and condensed matter physics.
Max ERC Funding
1 469 040 €
Duration
Start date: 2011-08-01, End date: 2016-07-31
Project acronym 4-D nanoSCOPE
Project Advancing osteoporosis medicine by observing bone microstructure and remodelling using a four-dimensional nanoscope
Researcher (PI) Georg Schett
Host Institution (HI) UNIVERSITATSKLINIKUM ERLANGEN
Call Details Synergy Grants (SyG), SyG3PEb, ERC-2018-SyG
Summary Due to Europe's ageing society, there has been a dramatic increase in the occurrence of osteoporosis (OP) and related diseases. Sufferers have an impaired quality of life, and there is a considerable cost to society associated with the consequent loss of productivity and injuries. The current understanding of this disease needs to be revolutionized, but study has been hampered by a lack of means to properly characterize bone structure, remodeling dynamics and vascular activity. This project, 4D nanoSCOPE, will develop tools and techniques to permit time-resolved imaging and characterization of bone in three spatial dimensions (both in vitro and in vivo), thereby permitting monitoring of bone remodeling and revolutionizing the understanding of bone morphology and its function.
To advance the field, in vivo high-resolution studies of living bone are essential, but existing techniques are not capable of this. By combining state-of-the art image processing software with innovative 'precision learning' software methods to compensate for artefacts (due e.g. to the subject breathing or twitching), and innovative X-ray microscope hardware which together will greatly speed up image acquisition (aim is a factor of 100), the project will enable in vivo X-ray microscopy studies of small animals (mice) for the first time. The time series of three-dimensional X-ray images will be complemented by correlative microscopy and spectroscopy techniques (with new software) to thoroughly characterize (serial) bone sections ex vivo.
The resulting three-dimensional datasets combining structure, chemical composition, transport velocities and local strength will be used by the PIs and international collaborators to study the dynamics of bone microstructure. This will be the first time that this has been possible in living creatures, enabling an assessment of the effects on bone of age, hormones, inflammation and treatment.
Summary
Due to Europe's ageing society, there has been a dramatic increase in the occurrence of osteoporosis (OP) and related diseases. Sufferers have an impaired quality of life, and there is a considerable cost to society associated with the consequent loss of productivity and injuries. The current understanding of this disease needs to be revolutionized, but study has been hampered by a lack of means to properly characterize bone structure, remodeling dynamics and vascular activity. This project, 4D nanoSCOPE, will develop tools and techniques to permit time-resolved imaging and characterization of bone in three spatial dimensions (both in vitro and in vivo), thereby permitting monitoring of bone remodeling and revolutionizing the understanding of bone morphology and its function.
To advance the field, in vivo high-resolution studies of living bone are essential, but existing techniques are not capable of this. By combining state-of-the art image processing software with innovative 'precision learning' software methods to compensate for artefacts (due e.g. to the subject breathing or twitching), and innovative X-ray microscope hardware which together will greatly speed up image acquisition (aim is a factor of 100), the project will enable in vivo X-ray microscopy studies of small animals (mice) for the first time. The time series of three-dimensional X-ray images will be complemented by correlative microscopy and spectroscopy techniques (with new software) to thoroughly characterize (serial) bone sections ex vivo.
The resulting three-dimensional datasets combining structure, chemical composition, transport velocities and local strength will be used by the PIs and international collaborators to study the dynamics of bone microstructure. This will be the first time that this has been possible in living creatures, enabling an assessment of the effects on bone of age, hormones, inflammation and treatment.
Max ERC Funding
12 366 635 €
Duration
Start date: 2019-04-01, End date: 2025-03-31
Project acronym 4-TOPS
Project Four experiments in Topological Superconductivity.
Researcher (PI) Laurens Molenkamp
Host Institution (HI) JULIUS-MAXIMILIANS-UNIVERSITAT WURZBURG
Call Details Advanced Grant (AdG), PE3, ERC-2016-ADG
Summary Topological materials have developed rapidly in recent years, with my previous ERC-AG project 3-TOP playing a major role in this development. While so far no bulk topological superconductor has been unambiguously demonstrated, their properties can be studied in a very flexible manner by inducing superconductivity through the proximity effect into the surface or edge states of a topological insulator. In 4-TOPS we will explore the possibilities of this approach in full, and conduct a thorough study of induced superconductivity in both two and three dimensional HgTe based topological insulators. The 4 avenues we will follow are:
-SQUID based devices to investigate full phase dependent spectroscopy of the gapless Andreev bound state by studying their Josephson radiation and current-phase relationships.
-Experiments aimed at providing unambiguous proof of localized Majorana states in TI junctions by studying tunnelling transport into such states.
-Attempts to induce superconductivity in Quantum Hall states with the aim of creating a chiral topological superconductor. These chiral superconductors host Majorana fermions at their edges, which, at least in the case of a single QH edge mode, follow non-Abelian statistics and are therefore promising for explorations in topological quantum computing.
-Studies of induced superconductivity in Weyl semimetals, a completely unexplored state of matter.
Taken together, these four sets of experiments will greatly enhance our understanding of topological superconductivity, which is not only a subject of great academic interest as it constitutes the study of new phases of matter, but also has potential application in the field of quantum information processing.
Summary
Topological materials have developed rapidly in recent years, with my previous ERC-AG project 3-TOP playing a major role in this development. While so far no bulk topological superconductor has been unambiguously demonstrated, their properties can be studied in a very flexible manner by inducing superconductivity through the proximity effect into the surface or edge states of a topological insulator. In 4-TOPS we will explore the possibilities of this approach in full, and conduct a thorough study of induced superconductivity in both two and three dimensional HgTe based topological insulators. The 4 avenues we will follow are:
-SQUID based devices to investigate full phase dependent spectroscopy of the gapless Andreev bound state by studying their Josephson radiation and current-phase relationships.
-Experiments aimed at providing unambiguous proof of localized Majorana states in TI junctions by studying tunnelling transport into such states.
-Attempts to induce superconductivity in Quantum Hall states with the aim of creating a chiral topological superconductor. These chiral superconductors host Majorana fermions at their edges, which, at least in the case of a single QH edge mode, follow non-Abelian statistics and are therefore promising for explorations in topological quantum computing.
-Studies of induced superconductivity in Weyl semimetals, a completely unexplored state of matter.
Taken together, these four sets of experiments will greatly enhance our understanding of topological superconductivity, which is not only a subject of great academic interest as it constitutes the study of new phases of matter, but also has potential application in the field of quantum information processing.
Max ERC Funding
2 497 567 €
Duration
Start date: 2017-06-01, End date: 2022-05-31
Project acronym 4D IMAGING
Project Towards 4D Imaging of Fundamental Processes on the Atomic and Sub-Atomic Scale
Researcher (PI) Ferenc Krausz
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Call Details Advanced Grant (AdG), PE2, ERC-2009-AdG
Summary State-of-the-art microscopy and diffraction imaging provides insight into the atomic and sub-atomic structure of matter. They permit determination of the positions of atoms in a crystal lattice or in a molecule as well as the distribution of electrons inside atoms. State-of-the-art time-resolved spectroscopy with femtosecond and attosecond resolution provides access to dynamic changes in the atomic and electronic structure of matter. Our proposal aims at combining these two frontier techniques of XXI century science to make a long-standing dream of scientist come true: the direct observation of atoms and electrons in their natural state: in motion. Shifts in the atoms positions by tens to hundreds of picometers can make chemical bonds break apart or newly form, changing the structure and/or chemical composition of matter. Electronic motion on similar scales may result in the emission of light, or the initiation of processes that lead to a change in physical or chemical properties, or biological function. These motions happen within femtoseconds and attoseconds, respectively. To make them observable, we need a 4-dimensional (4D) imaging technique capable of recording freeze-frame snapshots of microscopic systems with picometer spatial resolution and femtosecond to attosecond exposure time. The motion can then be visualized by slow-motion replay of the freeze-frame shots. The goal of this project is to develop a 4D imaging technique that will ultimately offer picometer resolution is space and attosecond resolution in time.
Summary
State-of-the-art microscopy and diffraction imaging provides insight into the atomic and sub-atomic structure of matter. They permit determination of the positions of atoms in a crystal lattice or in a molecule as well as the distribution of electrons inside atoms. State-of-the-art time-resolved spectroscopy with femtosecond and attosecond resolution provides access to dynamic changes in the atomic and electronic structure of matter. Our proposal aims at combining these two frontier techniques of XXI century science to make a long-standing dream of scientist come true: the direct observation of atoms and electrons in their natural state: in motion. Shifts in the atoms positions by tens to hundreds of picometers can make chemical bonds break apart or newly form, changing the structure and/or chemical composition of matter. Electronic motion on similar scales may result in the emission of light, or the initiation of processes that lead to a change in physical or chemical properties, or biological function. These motions happen within femtoseconds and attoseconds, respectively. To make them observable, we need a 4-dimensional (4D) imaging technique capable of recording freeze-frame snapshots of microscopic systems with picometer spatial resolution and femtosecond to attosecond exposure time. The motion can then be visualized by slow-motion replay of the freeze-frame shots. The goal of this project is to develop a 4D imaging technique that will ultimately offer picometer resolution is space and attosecond resolution in time.
Max ERC Funding
2 500 000 €
Duration
Start date: 2010-03-01, End date: 2015-02-28
Project acronym 4DRepLy
Project Closing the 4D Real World Reconstruction Loop
Researcher (PI) Christian THEOBALT
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Consolidator Grant (CoG), PE6, ERC-2017-COG
Summary 4D reconstruction, the camera-based dense dynamic scene reconstruction, is a grand challenge in computer graphics and computer vision. Despite great progress, 4D capturing the complex, diverse real world outside a studio is still far from feasible. 4DRepLy builds a new generation of high-fidelity 4D reconstruction (4DRecon) methods. They will be the first to efficiently capture all types of deformable objects (humans and other types) in crowded real world scenes with a single color or depth camera. They capture space-time coherent deforming geometry, motion, high-frequency reflectance and illumination at unprecedented detail, and will be the first to handle difficult occlusions, topology changes and large groups of interacting objects. They automatically adapt to new scene types, yet deliver models with meaningful, interpretable parameters. This requires far reaching contributions: First, we develop groundbreaking new plasticity-enhanced model-based 4D reconstruction methods that automatically adapt to new scenes. Second, we develop radically new machine learning-based dense 4D reconstruction methods. Third, these model- and learning-based methods are combined in two revolutionary new classes of 4DRecon methods: 1) advanced fusion-based methods and 2) methods with deep architectural integration. Both, 1) and 2), are automatically designed in the 4D Real World Reconstruction Loop, a revolutionary new design paradigm in which 4DRecon methods refine and adapt themselves while continuously processing unlabeled real world input. This overcomes the previously unbreakable scalability barrier to real world scene diversity, complexity and generality. This paradigm shift opens up a new research direction in graphics and vision and has far reaching relevance across many scientific fields. It enables new applications of profound social pervasion and significant economic impact, e.g., for visual media and virtual/augmented reality, and for future autonomous and robotic systems.
Summary
4D reconstruction, the camera-based dense dynamic scene reconstruction, is a grand challenge in computer graphics and computer vision. Despite great progress, 4D capturing the complex, diverse real world outside a studio is still far from feasible. 4DRepLy builds a new generation of high-fidelity 4D reconstruction (4DRecon) methods. They will be the first to efficiently capture all types of deformable objects (humans and other types) in crowded real world scenes with a single color or depth camera. They capture space-time coherent deforming geometry, motion, high-frequency reflectance and illumination at unprecedented detail, and will be the first to handle difficult occlusions, topology changes and large groups of interacting objects. They automatically adapt to new scene types, yet deliver models with meaningful, interpretable parameters. This requires far reaching contributions: First, we develop groundbreaking new plasticity-enhanced model-based 4D reconstruction methods that automatically adapt to new scenes. Second, we develop radically new machine learning-based dense 4D reconstruction methods. Third, these model- and learning-based methods are combined in two revolutionary new classes of 4DRecon methods: 1) advanced fusion-based methods and 2) methods with deep architectural integration. Both, 1) and 2), are automatically designed in the 4D Real World Reconstruction Loop, a revolutionary new design paradigm in which 4DRecon methods refine and adapt themselves while continuously processing unlabeled real world input. This overcomes the previously unbreakable scalability barrier to real world scene diversity, complexity and generality. This paradigm shift opens up a new research direction in graphics and vision and has far reaching relevance across many scientific fields. It enables new applications of profound social pervasion and significant economic impact, e.g., for visual media and virtual/augmented reality, and for future autonomous and robotic systems.
Max ERC Funding
1 977 000 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym 5D-NanoTrack
Project Five-Dimensional Localization Microscopy for Sub-Cellular Dynamics
Researcher (PI) Yoav SHECHTMAN
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Starting Grant (StG), PE7, ERC-2018-STG
Summary The sub-cellular processes that control the most critical aspects of life occur in three-dimensions (3D), and are intrinsically dynamic. While super-resolution microscopy has revolutionized cellular imaging in recent years, our current capability to observe the dynamics of life on the nanoscale is still extremely limited, due to inherent trade-offs between spatial, temporal and spectral resolution using existing approaches.
We propose to develop and demonstrate an optical microscopy methodology that would enable live sub-cellular observation in unprecedented detail. Making use of multicolor 3D point-spread-function (PSF) engineering, a technique I have recently developed, we will be able to simultaneously track multiple markers inside live cells, at high speed and in five-dimensions (3D, time, and color).
Multicolor 3D PSF engineering holds the potential of being a uniquely powerful method for 5D tracking. However, it is not yet applicable to live-cell imaging, due to significant bottlenecks in optical engineering and signal processing, which we plan to overcome in this project. Importantly, we will also demonstrate the efficacy of our method using a challenging biological application: real-time visualization of chromatin dynamics - the spatiotemporal organization of DNA. This is a highly suitable problem due to its fundamental importance, its role in a variety of cellular processes, and the lack of appropriate tools for studying it.
The project is divided into 3 aims:
1. Technology development: diffractive-element design for multicolor 3D PSFs.
2. System design: volumetric tracking of dense emitters.
3. Live-cell measurements: chromatin dynamics.
Looking ahead, here we create the imaging tools that pave the way towards the holy grail of chromatin visualization: dynamic observation of the 3D positions of the ~3 billion DNA base-pairs in a live human cell. Beyond that, our results will be applicable to numerous 3D micro/nanoscale tracking applications.
Summary
The sub-cellular processes that control the most critical aspects of life occur in three-dimensions (3D), and are intrinsically dynamic. While super-resolution microscopy has revolutionized cellular imaging in recent years, our current capability to observe the dynamics of life on the nanoscale is still extremely limited, due to inherent trade-offs between spatial, temporal and spectral resolution using existing approaches.
We propose to develop and demonstrate an optical microscopy methodology that would enable live sub-cellular observation in unprecedented detail. Making use of multicolor 3D point-spread-function (PSF) engineering, a technique I have recently developed, we will be able to simultaneously track multiple markers inside live cells, at high speed and in five-dimensions (3D, time, and color).
Multicolor 3D PSF engineering holds the potential of being a uniquely powerful method for 5D tracking. However, it is not yet applicable to live-cell imaging, due to significant bottlenecks in optical engineering and signal processing, which we plan to overcome in this project. Importantly, we will also demonstrate the efficacy of our method using a challenging biological application: real-time visualization of chromatin dynamics - the spatiotemporal organization of DNA. This is a highly suitable problem due to its fundamental importance, its role in a variety of cellular processes, and the lack of appropriate tools for studying it.
The project is divided into 3 aims:
1. Technology development: diffractive-element design for multicolor 3D PSFs.
2. System design: volumetric tracking of dense emitters.
3. Live-cell measurements: chromatin dynamics.
Looking ahead, here we create the imaging tools that pave the way towards the holy grail of chromatin visualization: dynamic observation of the 3D positions of the ~3 billion DNA base-pairs in a live human cell. Beyond that, our results will be applicable to numerous 3D micro/nanoscale tracking applications.
Max ERC Funding
1 802 500 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym a SMILE
Project analyse Soluble + Membrane complexes with Improved LILBID Experiments
Researcher (PI) Nina Morgner
Host Institution (HI) JOHANN WOLFGANG GOETHE-UNIVERSITATFRANKFURT AM MAIN
Call Details Starting Grant (StG), PE4, ERC-2013-StG
Summary Crucial processes within cells depend on specific non-covalent interactions which mediate the assembly of proteins and other biomolecules. Deriving structural information to understand the function of these complex systems is the primary goal of Structural Biology.
In this application, the recently developed LILBID method (Laser Induced Liquid Bead Ion Desorption) will be optimized for investigation of macromolecular complexes with a mass accuracy two orders of magnitude better than in 1st generation spectrometers.
Controlled disassembly of the multiprotein complexes in the mass spectrometric analysis while keeping the 3D structure intact, will allow for the determination of complex stoichiometry and connectivity of the constituting proteins. Methods for such controlled disassembly will be developed in two separate units of the proposed LILBID spectrometer, in a collision chamber and in a laser dissociation chamber, enabling gas phase dissociation of protein complexes and removal of excess water/buffer molecules. As a third unit, a chamber allowing determination of ion mobility (IM) will be integrated to determine collisional cross sections (CCS). From CCS, unique information regarding the spatial arrangement of proteins in complexes or subcomplexes will then be obtainable from LILBID.
The proposed design of the new spectrometer will offer fundamentally new possibilities for the investigation of non-covalent RNA, soluble and membrane protein complexes, as well as broadening the applicability of non-covalent MS towards supercomplexes.
Summary
Crucial processes within cells depend on specific non-covalent interactions which mediate the assembly of proteins and other biomolecules. Deriving structural information to understand the function of these complex systems is the primary goal of Structural Biology.
In this application, the recently developed LILBID method (Laser Induced Liquid Bead Ion Desorption) will be optimized for investigation of macromolecular complexes with a mass accuracy two orders of magnitude better than in 1st generation spectrometers.
Controlled disassembly of the multiprotein complexes in the mass spectrometric analysis while keeping the 3D structure intact, will allow for the determination of complex stoichiometry and connectivity of the constituting proteins. Methods for such controlled disassembly will be developed in two separate units of the proposed LILBID spectrometer, in a collision chamber and in a laser dissociation chamber, enabling gas phase dissociation of protein complexes and removal of excess water/buffer molecules. As a third unit, a chamber allowing determination of ion mobility (IM) will be integrated to determine collisional cross sections (CCS). From CCS, unique information regarding the spatial arrangement of proteins in complexes or subcomplexes will then be obtainable from LILBID.
The proposed design of the new spectrometer will offer fundamentally new possibilities for the investigation of non-covalent RNA, soluble and membrane protein complexes, as well as broadening the applicability of non-covalent MS towards supercomplexes.
Max ERC Funding
1 264 477 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym A2F2
Project Beyond Biopolymers: Protein-Sized Aromatic Amide Functional Foldamers
Researcher (PI) Ivan Huc
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Call Details Advanced Grant (AdG), PE5, ERC-2012-ADG_20120216
Summary Nature has evolved ultimate chemical functions based on controlling and altering conformation of its molecular machinery. Prominent examples include enzyme catalysis and information storage/duplication in nucleic acids. These achievements are based on large and complex yet remarkably defined structures obtained through folding of polymeric chains and a subtle interplay of non-covalent forces. Nature uses a limited set of building blocks – e.g. twenty amino-acids and four nucleobases – with specific abilities to impart well-defined folds. In the last decade, chemists have discovered foldamers: non-natural oligomers and polymers also prone to adopt folded structures. The emergence of foldamers has far reaching implications. A new major long term prospect is open to chemistry: the de novo synthesis of artificial objects resembling biopolymers in terms of their size, complexity, and efficiency at achieving defined functions, yet having chemical structures beyond the reach of biopolymers amenable to new properties and functions. The PI of this project has shown internationally recognized leadership in the development of a class of foldamers, aromatic oligoamides, whose features arguably make them the most suitable candidates to systematically explore what folded structures beyond biopolymers give access to. This project aims at developing methods to allow the routine fabrication of 20-40 units long aromatic oligoamide foldamers (6-15 kDa) designed to fold into artificial molecular containers having engineerable cavities and surfaces for molecular recognition of organic substrates, in particular large peptides and saccharides, polymers, and proteins. The methodology rests on modelling based design, multistep organic synthesis of heterocyclic monomers and their assembly into long sequences, structural elucidation using, among other techniques, x-ray crystallography, and the physico-chemical characterization of molecular recognition events.
Summary
Nature has evolved ultimate chemical functions based on controlling and altering conformation of its molecular machinery. Prominent examples include enzyme catalysis and information storage/duplication in nucleic acids. These achievements are based on large and complex yet remarkably defined structures obtained through folding of polymeric chains and a subtle interplay of non-covalent forces. Nature uses a limited set of building blocks – e.g. twenty amino-acids and four nucleobases – with specific abilities to impart well-defined folds. In the last decade, chemists have discovered foldamers: non-natural oligomers and polymers also prone to adopt folded structures. The emergence of foldamers has far reaching implications. A new major long term prospect is open to chemistry: the de novo synthesis of artificial objects resembling biopolymers in terms of their size, complexity, and efficiency at achieving defined functions, yet having chemical structures beyond the reach of biopolymers amenable to new properties and functions. The PI of this project has shown internationally recognized leadership in the development of a class of foldamers, aromatic oligoamides, whose features arguably make them the most suitable candidates to systematically explore what folded structures beyond biopolymers give access to. This project aims at developing methods to allow the routine fabrication of 20-40 units long aromatic oligoamide foldamers (6-15 kDa) designed to fold into artificial molecular containers having engineerable cavities and surfaces for molecular recognition of organic substrates, in particular large peptides and saccharides, polymers, and proteins. The methodology rests on modelling based design, multistep organic synthesis of heterocyclic monomers and their assembly into long sequences, structural elucidation using, among other techniques, x-ray crystallography, and the physico-chemical characterization of molecular recognition events.
Max ERC Funding
2 496 216 €
Duration
Start date: 2013-06-01, End date: 2018-05-31
Project acronym ABATSYNAPSE
Project Evolution of Alzheimer’s Disease: From dynamics of single synapses to memory loss
Researcher (PI) Inna Slutsky
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Starting Grant (StG), LS5, ERC-2011-StG_20101109
Summary A persistent challenge in unravelling mechanisms that regulate memory function is how to bridge the gap between inter-molecular dynamics of single proteins, activity of individual synapses and emerging properties of neuronal circuits. The prototype condition of disintegrating neuronal circuits is Alzheimer’s Disease (AD). Since the early time of Alois Alzheimer at the turn of the 20th century, scientists have been searching for a molecular entity that is in the roots of the cognitive deficits. Although diverse lines of evidence suggest that the amyloid-beta peptide (Abeta) plays a central role in synaptic dysfunctions of AD, several key questions remain unresolved. First, endogenous Abeta peptides are secreted by neurons throughout life, but their physiological functions are largely unknown. Second, experience-dependent physiological mechanisms that initiate the changes in Abeta composition in sporadic, the most frequent form of AD, are unidentified. And finally, molecular mechanisms that trigger Abeta-induced synaptic failure and memory decline remain elusive.
To target these questions, I propose to develop an integrative approach to correlate structure and function at the level of single synapses in hippocampal circuits. State-of-the-art techniques will enable the simultaneous real-time visualization of inter-molecular dynamics within signalling complexes and functional synaptic modifications. Utilizing FRET spectroscopy, high-resolution optical imaging, electrophysiology, molecular biology and biochemistry we will determine the casual relationship between ongoing neuronal activity, temporo-spatial dynamics and molecular composition of Abeta, structural rearrangements within the Abeta signalling complexes and plasticity of single synapses and whole networks. The proposed research will elucidate fundamental principles of neuronal circuits function and identify critical steps that initiate primary synaptic dysfunctions at the very early stages of sporadic AD.
Summary
A persistent challenge in unravelling mechanisms that regulate memory function is how to bridge the gap between inter-molecular dynamics of single proteins, activity of individual synapses and emerging properties of neuronal circuits. The prototype condition of disintegrating neuronal circuits is Alzheimer’s Disease (AD). Since the early time of Alois Alzheimer at the turn of the 20th century, scientists have been searching for a molecular entity that is in the roots of the cognitive deficits. Although diverse lines of evidence suggest that the amyloid-beta peptide (Abeta) plays a central role in synaptic dysfunctions of AD, several key questions remain unresolved. First, endogenous Abeta peptides are secreted by neurons throughout life, but their physiological functions are largely unknown. Second, experience-dependent physiological mechanisms that initiate the changes in Abeta composition in sporadic, the most frequent form of AD, are unidentified. And finally, molecular mechanisms that trigger Abeta-induced synaptic failure and memory decline remain elusive.
To target these questions, I propose to develop an integrative approach to correlate structure and function at the level of single synapses in hippocampal circuits. State-of-the-art techniques will enable the simultaneous real-time visualization of inter-molecular dynamics within signalling complexes and functional synaptic modifications. Utilizing FRET spectroscopy, high-resolution optical imaging, electrophysiology, molecular biology and biochemistry we will determine the casual relationship between ongoing neuronal activity, temporo-spatial dynamics and molecular composition of Abeta, structural rearrangements within the Abeta signalling complexes and plasticity of single synapses and whole networks. The proposed research will elucidate fundamental principles of neuronal circuits function and identify critical steps that initiate primary synaptic dysfunctions at the very early stages of sporadic AD.
Max ERC Funding
2 000 000 €
Duration
Start date: 2011-12-01, End date: 2017-09-30
Project acronym AbCURE_COPD
Project Antibody mediated clearance of senescent cells for treatment of COPD
Researcher (PI) Valery KRIZHANOVSKY
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Proof of Concept (PoC), ERC-2017-PoC
Summary Chronic Obstructive Pulmonary Disease (COPD) is a group of chronic diseases characterized by airflow limitations in the lung. COPD is a critical international health problem. It is estimated to affect up to 600 million people worldwide and by 2020 it will become the third most frequent cause of death. In Europe alone, COPD affects up to 10% of people (i.e. more people than breast cancer and diabetes) and it takes the life of around 300,000 Europeans each year. Up to date, COPD has no cure as current treatments fail to halt the long-term decline in lung function. They are only able to delay its progression. Those treatments however, are associated with a variety of side effects some of which can be acute and even life threatening. Thus, COPD remains a disease with a significant unmet medical need.
In this project (acronymed AbCURE_COPD) we intend to carry out a set of necessary activities for the evaluation of a potentially groundbreaking approach for treating COPD. Our approach is focusing on antibody-mediated clearance of senescent cells which accumulate in tissues with age and contribute to multiple age-related diseases, including COPD. The goal of the PoC project is two-fold. (1) The first goal is to establish the technical feasibility of our idea by testing the effect of senescence-specific antibodies on COPD development and progression by implementing COPD mouse model we developed. (2) The second goal is to establish the business feasibility of our revolutionary approach by taking the necessary steps towards its commercialization, focusing on the creation of strategic alliances with key private sector companies. We firmly believe that with our approach we can significantly extend the health span and improve the quality of life of COPD patients. Equally important, our approach will pave the way for the development of novel treatment strategies applicable to other age-related diseases, such as osteoarthritis, cardiovascular, and neurodegenerative diseases.
Summary
Chronic Obstructive Pulmonary Disease (COPD) is a group of chronic diseases characterized by airflow limitations in the lung. COPD is a critical international health problem. It is estimated to affect up to 600 million people worldwide and by 2020 it will become the third most frequent cause of death. In Europe alone, COPD affects up to 10% of people (i.e. more people than breast cancer and diabetes) and it takes the life of around 300,000 Europeans each year. Up to date, COPD has no cure as current treatments fail to halt the long-term decline in lung function. They are only able to delay its progression. Those treatments however, are associated with a variety of side effects some of which can be acute and even life threatening. Thus, COPD remains a disease with a significant unmet medical need.
In this project (acronymed AbCURE_COPD) we intend to carry out a set of necessary activities for the evaluation of a potentially groundbreaking approach for treating COPD. Our approach is focusing on antibody-mediated clearance of senescent cells which accumulate in tissues with age and contribute to multiple age-related diseases, including COPD. The goal of the PoC project is two-fold. (1) The first goal is to establish the technical feasibility of our idea by testing the effect of senescence-specific antibodies on COPD development and progression by implementing COPD mouse model we developed. (2) The second goal is to establish the business feasibility of our revolutionary approach by taking the necessary steps towards its commercialization, focusing on the creation of strategic alliances with key private sector companies. We firmly believe that with our approach we can significantly extend the health span and improve the quality of life of COPD patients. Equally important, our approach will pave the way for the development of novel treatment strategies applicable to other age-related diseases, such as osteoarthritis, cardiovascular, and neurodegenerative diseases.
Max ERC Funding
150 000 €
Duration
Start date: 2018-11-01, End date: 2020-04-30
Project acronym ABDESIGN
Project Computational design of novel protein function in antibodies
Researcher (PI) Sarel-Jacob Fleishman
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Starting Grant (StG), LS1, ERC-2013-StG
Summary We propose to elucidate the structural design principles of naturally occurring antibody complementarity-determining regions (CDRs) and to computationally design novel antibody functions. Antibodies represent the most versatile known system for molecular recognition. Research has yielded many insights into antibody design principles and promising biotechnological and pharmaceutical applications. Still, our understanding of how CDRs encode specific loop conformations lags far behind our understanding of structure-function relationships in non-immunological scaffolds. Thus, design of antibodies from first principles has not been demonstrated. We propose a computational-experimental strategy to address this challenge. We will: (a) characterize the design principles and sequence elements that rigidify antibody CDRs. Natural antibody loops will be subjected to computational modeling, crystallography, and a combined in vitro evolution and deep-sequencing approach to isolate sequence features that rigidify loop backbones; (b) develop a novel computational-design strategy, which uses the >1000 solved structures of antibodies deposited in structure databases to realistically model CDRs and design them to recognize proteins that have not been co-crystallized with antibodies. For example, we will design novel antibodies targeting insulin, for which clinically useful diagnostics are needed. By accessing much larger sequence/structure spaces than are available to natural immune-system repertoires and experimental methods, computational antibody design could produce higher-specificity and higher-affinity binders, even to challenging targets; and (c) develop new strategies to program conformational change in CDRs, generating, e.g., the first allosteric antibodies. These will allow targeting, in principle, of any molecule, potentially revolutionizing how antibodies are generated for research and medicine, providing new insights on the design principles of protein functional sites.
Summary
We propose to elucidate the structural design principles of naturally occurring antibody complementarity-determining regions (CDRs) and to computationally design novel antibody functions. Antibodies represent the most versatile known system for molecular recognition. Research has yielded many insights into antibody design principles and promising biotechnological and pharmaceutical applications. Still, our understanding of how CDRs encode specific loop conformations lags far behind our understanding of structure-function relationships in non-immunological scaffolds. Thus, design of antibodies from first principles has not been demonstrated. We propose a computational-experimental strategy to address this challenge. We will: (a) characterize the design principles and sequence elements that rigidify antibody CDRs. Natural antibody loops will be subjected to computational modeling, crystallography, and a combined in vitro evolution and deep-sequencing approach to isolate sequence features that rigidify loop backbones; (b) develop a novel computational-design strategy, which uses the >1000 solved structures of antibodies deposited in structure databases to realistically model CDRs and design them to recognize proteins that have not been co-crystallized with antibodies. For example, we will design novel antibodies targeting insulin, for which clinically useful diagnostics are needed. By accessing much larger sequence/structure spaces than are available to natural immune-system repertoires and experimental methods, computational antibody design could produce higher-specificity and higher-affinity binders, even to challenging targets; and (c) develop new strategies to program conformational change in CDRs, generating, e.g., the first allosteric antibodies. These will allow targeting, in principle, of any molecule, potentially revolutionizing how antibodies are generated for research and medicine, providing new insights on the design principles of protein functional sites.
Max ERC Funding
1 499 930 €
Duration
Start date: 2013-09-01, End date: 2018-08-31
Project acronym ABRSEIST
Project Antibiotic Resistance: Socio-Economic Determinants and the Role of Information and Salience in Treatment Choice
Researcher (PI) Hannes ULLRICH
Host Institution (HI) DEUTSCHES INSTITUT FUR WIRTSCHAFTSFORSCHUNG DIW (INSTITUT FUR KONJUNKTURFORSCHUNG) EV
Call Details Starting Grant (StG), SH1, ERC-2018-STG
Summary Antibiotics have contributed to a tremendous increase in human well-being, saving many millions of lives. However, antibiotics become obsolete the more they are used as selection pressure promotes the development of resistant bacteria. The World Health Organization has proclaimed antibiotic resistance as a major global threat to public health. Today, 700,000 deaths per year are due to untreatable infections. To win the battle against antibiotic resistance, new policies affecting the supply and demand of existing and new drugs must be designed. I propose new research to identify and evaluate feasible and effective demand-side policy interventions targeting the relevant decision makers: physicians and patients. ABRSEIST will make use of a broad econometric toolset to identify mechanisms linking antibiotic resistance and consumption exploiting a unique combination of physician-patient-level antibiotic resistance, treatment, and socio-economic data. Using machine learning methods adapted for causal inference, theory-driven structural econometric analysis, and randomization in the field it will provide rigorous evidence on effective intervention designs. This research will improve our understanding of how prescribing, resistance, and the effect of antibiotic use on resistance, are distributed in the general population which has important implications for the design of targeted interventions. It will then estimate a structural model of general practitioners’ acquisition and use of information under uncertainty about resistance in prescription choice, allowing counterfactual analysis of information-improving policies such as mandatory diagnostic testing. The large-scale and structural econometric analyses allow flexible identification of physician heterogeneity, which ABRSEIST will exploit to design and evaluate targeted, randomized information nudges in the field. The result will be improved rational use and a toolset applicable in contexts of antibiotic prescribing.
Summary
Antibiotics have contributed to a tremendous increase in human well-being, saving many millions of lives. However, antibiotics become obsolete the more they are used as selection pressure promotes the development of resistant bacteria. The World Health Organization has proclaimed antibiotic resistance as a major global threat to public health. Today, 700,000 deaths per year are due to untreatable infections. To win the battle against antibiotic resistance, new policies affecting the supply and demand of existing and new drugs must be designed. I propose new research to identify and evaluate feasible and effective demand-side policy interventions targeting the relevant decision makers: physicians and patients. ABRSEIST will make use of a broad econometric toolset to identify mechanisms linking antibiotic resistance and consumption exploiting a unique combination of physician-patient-level antibiotic resistance, treatment, and socio-economic data. Using machine learning methods adapted for causal inference, theory-driven structural econometric analysis, and randomization in the field it will provide rigorous evidence on effective intervention designs. This research will improve our understanding of how prescribing, resistance, and the effect of antibiotic use on resistance, are distributed in the general population which has important implications for the design of targeted interventions. It will then estimate a structural model of general practitioners’ acquisition and use of information under uncertainty about resistance in prescription choice, allowing counterfactual analysis of information-improving policies such as mandatory diagnostic testing. The large-scale and structural econometric analyses allow flexible identification of physician heterogeneity, which ABRSEIST will exploit to design and evaluate targeted, randomized information nudges in the field. The result will be improved rational use and a toolset applicable in contexts of antibiotic prescribing.
Max ERC Funding
1 498 920 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym ABSOLUTESPIN
Project Absolute Spin Dynamics in Quantum Materials
Researcher (PI) Christian Reinhard Ast
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Consolidator Grant (CoG), PE3, ERC-2015-CoG
Summary One of the greatest challenges in exploiting the electron spin for information processing is that it is not a conserved quantity like the electron charge. In addition, spin lifetimes are rather short and correspondingly coherence is quickly lost. This challenge culminates in the coherent manipulation and detection of information from a single spin. Except in a few special systems, so far, single spins cannot be manipulated coherently on the atomic scale, while spin coherence times can only be measured on spin ensembles. A new concept is needed for coherence measurements on arbitrary single spins. Here, the principal investigator (PI) will combine a novel time- and spin-resolved low-temperature scanning tunneling microscope (STM) with the concept of pulsed electron paramagnetic resonance. With this unique and innovative setup, he will be able to address long-standing problems, such as relaxation and coherence times of arbitrary single spin systems on the atomic scale as well as individual spin interactions with the immediate surroundings. Spin readout will be realized through the detection of the absolute spin polarization in the tunneling current by a superconducting tip based on the Meservey-Tedrow-Fulde effect, which the PI has recently demonstrated for the first time in STM. For the coherent excitation, a specially designed pulsed GHz light source will be implemented. The goal is to better understand the spin dynamics and coherence times of single spin systems as well as the spin interactions involved in the decay mechanisms. This will have direct impact on the feasibility of quantum spin information processing with single spin systems on different decoupling surfaces and their scalability at the atomic level. A successful demonstration will enhance the detection limit of spins by several orders of magnitude and fill important missing links in the understanding of spin dynamics and quantum computing with single spins.
Summary
One of the greatest challenges in exploiting the electron spin for information processing is that it is not a conserved quantity like the electron charge. In addition, spin lifetimes are rather short and correspondingly coherence is quickly lost. This challenge culminates in the coherent manipulation and detection of information from a single spin. Except in a few special systems, so far, single spins cannot be manipulated coherently on the atomic scale, while spin coherence times can only be measured on spin ensembles. A new concept is needed for coherence measurements on arbitrary single spins. Here, the principal investigator (PI) will combine a novel time- and spin-resolved low-temperature scanning tunneling microscope (STM) with the concept of pulsed electron paramagnetic resonance. With this unique and innovative setup, he will be able to address long-standing problems, such as relaxation and coherence times of arbitrary single spin systems on the atomic scale as well as individual spin interactions with the immediate surroundings. Spin readout will be realized through the detection of the absolute spin polarization in the tunneling current by a superconducting tip based on the Meservey-Tedrow-Fulde effect, which the PI has recently demonstrated for the first time in STM. For the coherent excitation, a specially designed pulsed GHz light source will be implemented. The goal is to better understand the spin dynamics and coherence times of single spin systems as well as the spin interactions involved in the decay mechanisms. This will have direct impact on the feasibility of quantum spin information processing with single spin systems on different decoupling surfaces and their scalability at the atomic level. A successful demonstration will enhance the detection limit of spins by several orders of magnitude and fill important missing links in the understanding of spin dynamics and quantum computing with single spins.
Max ERC Funding
2 469 136 €
Duration
Start date: 2016-07-01, End date: 2021-06-30
Project acronym ABYSS
Project ABYSS - Assessment of bacterial life and matter cycling in deep-sea surface sediments
Researcher (PI) Antje Boetius
Host Institution (HI) ALFRED-WEGENER-INSTITUT HELMHOLTZ-ZENTRUM FUR POLAR- UND MEERESFORSCHUNG
Call Details Advanced Grant (AdG), LS8, ERC-2011-ADG_20110310
Summary The deep-sea floor hosts a distinct microbial biome covering 67% of the Earth’s surface, characterized by cold temperatures, permanent darkness, high pressure and food limitation. The surface sediments are dominated by bacteria, with on average a billion cells per ml. Benthic bacteria are highly relevant to the Earth’s element cycles as they remineralize most of the organic matter sinking from the productive surface ocean, and return nutrients, thereby promoting ocean primary production. What passes the bacterial filter is a relevant sink for carbon on geological time scales, influencing global oxygen and carbon budgets, and fueling the deep subsurface biosphere. Despite the relevance of deep-sea sediment bacteria to climate, geochemical cycles and ecology of the seafloor, their genetic and functional diversity, niche differentiation and biological interactions remain unknown. Our preliminary work in a global survey of deep-sea sediments enables us now to target specific genes for the quantification of abyssal bacteria. We can trace isotope-labeled elements into communities and single cells, and analyze the molecular alteration of organic matter during microbial degradation, all in context with environmental dynamics recorded at the only long-term deep-sea ecosystem observatory in the Arctic that we maintain. I propose to bridge biogeochemistry, ecology, microbiology and marine biology to develop a systematic understanding of abyssal sediment bacterial community distribution, diversity, function and interactions, by combining in situ flux studies and different visualization techniques with a wide range of molecular tools. Substantial progress is expected in understanding I) identity and function of the dominant types of indigenous benthic bacteria, II) dynamics in bacterial activity and diversity caused by variations in particle flux, III) interactions with different types and ages of organic matter, and other biological factors.
Summary
The deep-sea floor hosts a distinct microbial biome covering 67% of the Earth’s surface, characterized by cold temperatures, permanent darkness, high pressure and food limitation. The surface sediments are dominated by bacteria, with on average a billion cells per ml. Benthic bacteria are highly relevant to the Earth’s element cycles as they remineralize most of the organic matter sinking from the productive surface ocean, and return nutrients, thereby promoting ocean primary production. What passes the bacterial filter is a relevant sink for carbon on geological time scales, influencing global oxygen and carbon budgets, and fueling the deep subsurface biosphere. Despite the relevance of deep-sea sediment bacteria to climate, geochemical cycles and ecology of the seafloor, their genetic and functional diversity, niche differentiation and biological interactions remain unknown. Our preliminary work in a global survey of deep-sea sediments enables us now to target specific genes for the quantification of abyssal bacteria. We can trace isotope-labeled elements into communities and single cells, and analyze the molecular alteration of organic matter during microbial degradation, all in context with environmental dynamics recorded at the only long-term deep-sea ecosystem observatory in the Arctic that we maintain. I propose to bridge biogeochemistry, ecology, microbiology and marine biology to develop a systematic understanding of abyssal sediment bacterial community distribution, diversity, function and interactions, by combining in situ flux studies and different visualization techniques with a wide range of molecular tools. Substantial progress is expected in understanding I) identity and function of the dominant types of indigenous benthic bacteria, II) dynamics in bacterial activity and diversity caused by variations in particle flux, III) interactions with different types and ages of organic matter, and other biological factors.
Max ERC Funding
3 375 693 €
Duration
Start date: 2012-06-01, End date: 2018-05-31
Project acronym ACAP
Project Asset Centric Adaptive Protection
Researcher (PI) Bashar NUSEIBEH
Host Institution (HI) UNIVERSITY OF LIMERICK
Call Details Proof of Concept (PoC), PC1, ERC-2015-PoC
Summary The proliferation of mobile and ubiquitous computing technology is radically changing the ways in which we live our lives: from interacting with friends & family, to how we produce & consume services and engage in business. However, this pervasiveness of technologies, and their increasingly seamless integration and inter-operation, are blurring the boundaries between systems. This poses significant challenges for security engineers who aim to design systems that monitor and control the movement of digital or physical assets across those boundaries.
My ERC Advanced Grant on Adaptive Security and Privacy (ASAP) is investigating ways in which security controls can change in response to changes in the context of operation of systems. However, since the monitoring of such elusive and changing boundaries is difficult, we have developed an adaptive security approach that monitors valuable assets that are managed by a system, and changes the means and extent by which those assets are protected in response to changes in assets and their values. This could radically change the way security is designed and implemented in a range of applications because it allows for a choice of appropriate protection, depending on particular requirements.
In ASAP, we developed the modelling and computational capabilities of our approach, including some prototype tool fragments that demonstrate the approach in our lab. However, interest from our industrial collaborators, evidenced by direct funding of follow-on research, and the demonstration of our prototypes to senior management and potential customers, has motivated us to pursue a proof of concept (PoC) assessment of our work in a more systematic and targeted way. To this end, this ERC PoC will:
1) Develop a robust prototype demonstrator, instantiated in two application areas (access control & cloud computing);
2) Conduct a market analysis, aided by the demonstrator;
3) Subject to (2), develop a commercialisation strategy and plan
Summary
The proliferation of mobile and ubiquitous computing technology is radically changing the ways in which we live our lives: from interacting with friends & family, to how we produce & consume services and engage in business. However, this pervasiveness of technologies, and their increasingly seamless integration and inter-operation, are blurring the boundaries between systems. This poses significant challenges for security engineers who aim to design systems that monitor and control the movement of digital or physical assets across those boundaries.
My ERC Advanced Grant on Adaptive Security and Privacy (ASAP) is investigating ways in which security controls can change in response to changes in the context of operation of systems. However, since the monitoring of such elusive and changing boundaries is difficult, we have developed an adaptive security approach that monitors valuable assets that are managed by a system, and changes the means and extent by which those assets are protected in response to changes in assets and their values. This could radically change the way security is designed and implemented in a range of applications because it allows for a choice of appropriate protection, depending on particular requirements.
In ASAP, we developed the modelling and computational capabilities of our approach, including some prototype tool fragments that demonstrate the approach in our lab. However, interest from our industrial collaborators, evidenced by direct funding of follow-on research, and the demonstration of our prototypes to senior management and potential customers, has motivated us to pursue a proof of concept (PoC) assessment of our work in a more systematic and targeted way. To this end, this ERC PoC will:
1) Develop a robust prototype demonstrator, instantiated in two application areas (access control & cloud computing);
2) Conduct a market analysis, aided by the demonstrator;
3) Subject to (2), develop a commercialisation strategy and plan
Max ERC Funding
149 977 €
Duration
Start date: 2016-11-01, End date: 2018-04-30
Project acronym Acclimatize
Project Hypothalamic mechanisms of thermal homeostasis and adaptation
Researcher (PI) Jan SIEMENS
Host Institution (HI) UNIVERSITATSKLINIKUM HEIDELBERG
Call Details Consolidator Grant (CoG), LS5, ERC-2017-COG
Summary Mammalian organisms possess the remarkable ability to maintain internal body temperature (Tcore) within a narrow range close to 37°C despite wide environmental temperature variations. The brain’s neural “thermostat” is made up by central circuits in the hypothalamic preoptic area (POA), which orchestrate peripheral thermoregulatory responses to maintain Tcore. Thermogenesis requires metabolic fuel, suggesting intricate connections between the thermoregulatory centre and hypothalamic circuits controlling energy balance. How the POA detects and integrates temperature and metabolic information to achieve thermal balance is largely unknown. A major question is whether this circuitry could be harnessed therapeutically to treat obesity.
We have recently identified the first known molecular temperature sensor in thermoregulatory neurons of the POA, transient receptor potential melastatin 2 (TRPM2), a thermo-sensitive ion channel. I aim to use TRPM2 as a molecular marker to gain access to and probe the function of thermoregulatory neurons in vivo. I propose a multidisciplinary approach, combining local, in vivo POA temperature stimulation with optogenetic circuit-mapping to uncover the molecular and cellular logic of the hypothalamic thermoregulatory centre and to assess its medical potential to counteract metabolic syndrome.
Acclimation is a beneficial adaptive process that fortifies thermal responses upon environmental temperature challenges. Thermoregulatory neuron plasticity is thought to mediate acclimation. Conversely, maladaptive thermoregulatory changes affect obesity. The cell-type-specific neuronal plasticity mechanisms underlying these changes within the POA, however, are unknown.
Using ex-vivo slice electrophysiology and in vivo imaging, I propose to characterize acclimation- and obesity-induced plasticity of thermoregulatory neurons. Ultimately, I aim to manipulate thermoregulatory neuron plasticity to test its potential counter-balancing effect on obesity.
Summary
Mammalian organisms possess the remarkable ability to maintain internal body temperature (Tcore) within a narrow range close to 37°C despite wide environmental temperature variations. The brain’s neural “thermostat” is made up by central circuits in the hypothalamic preoptic area (POA), which orchestrate peripheral thermoregulatory responses to maintain Tcore. Thermogenesis requires metabolic fuel, suggesting intricate connections between the thermoregulatory centre and hypothalamic circuits controlling energy balance. How the POA detects and integrates temperature and metabolic information to achieve thermal balance is largely unknown. A major question is whether this circuitry could be harnessed therapeutically to treat obesity.
We have recently identified the first known molecular temperature sensor in thermoregulatory neurons of the POA, transient receptor potential melastatin 2 (TRPM2), a thermo-sensitive ion channel. I aim to use TRPM2 as a molecular marker to gain access to and probe the function of thermoregulatory neurons in vivo. I propose a multidisciplinary approach, combining local, in vivo POA temperature stimulation with optogenetic circuit-mapping to uncover the molecular and cellular logic of the hypothalamic thermoregulatory centre and to assess its medical potential to counteract metabolic syndrome.
Acclimation is a beneficial adaptive process that fortifies thermal responses upon environmental temperature challenges. Thermoregulatory neuron plasticity is thought to mediate acclimation. Conversely, maladaptive thermoregulatory changes affect obesity. The cell-type-specific neuronal plasticity mechanisms underlying these changes within the POA, however, are unknown.
Using ex-vivo slice electrophysiology and in vivo imaging, I propose to characterize acclimation- and obesity-induced plasticity of thermoregulatory neurons. Ultimately, I aim to manipulate thermoregulatory neuron plasticity to test its potential counter-balancing effect on obesity.
Max ERC Funding
1 902 500 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym ACCOMPLI
Project Assembly and maintenance of a co-regulated chromosomal compartment
Researcher (PI) Peter Burkhard Becker
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Call Details Advanced Grant (AdG), LS2, ERC-2011-ADG_20110310
Summary "Eukaryotic nuclei are organised into functional compartments, – local microenvironments that are enriched in certain molecules or biochemical activities and therefore specify localised functional outputs. Our study seeks to unveil fundamental principles of co-regulation of genes in a chromo¬somal compartment and the preconditions for homeostasis of such a compartment in the dynamic nuclear environment.
The dosage-compensated X chromosome of male Drosophila flies satisfies the criteria for a functional com¬partment. It is rendered structurally distinct from all other chromosomes by association of a regulatory ribonucleoprotein ‘Dosage Compensation Complex’ (DCC), enrichment of histone modifications and global decondensation. As a result, most genes on the X chromosome are co-ordinately activated. Autosomal genes inserted into the X acquire X-chromosomal features and are subject to the X-specific regulation.
We seek to uncover the molecular principles that initiate, establish and maintain the dosage-compensated chromosome. We will follow the kinetics of DCC assembly and the timing of association with different types of chromosomal targets in nuclei with high spatial resolution afforded by sub-wavelength microscopy and deep sequencing of DNA binding sites. We will characterise DCC sub-complexes with respect to their roles as kinetic assembly intermediates or as representations of local, functional heterogeneity. We will evaluate the roles of a DCC- novel ubiquitin ligase activity for homeostasis.
Crucial to the recruitment of the DCC and its distribution to target genes are non-coding roX RNAs that are transcribed from the X. We will determine the secondary structure ‘signatures’ of roX RNAs in vitro and determine the binding sites of the protein subunits in vivo. By biochemical and cellular reconstitution will test the hypothesis that roX-encoded RNA aptamers orchestrate the assembly of the DCC and contribute to the exquisite targeting of the complex."
Summary
"Eukaryotic nuclei are organised into functional compartments, – local microenvironments that are enriched in certain molecules or biochemical activities and therefore specify localised functional outputs. Our study seeks to unveil fundamental principles of co-regulation of genes in a chromo¬somal compartment and the preconditions for homeostasis of such a compartment in the dynamic nuclear environment.
The dosage-compensated X chromosome of male Drosophila flies satisfies the criteria for a functional com¬partment. It is rendered structurally distinct from all other chromosomes by association of a regulatory ribonucleoprotein ‘Dosage Compensation Complex’ (DCC), enrichment of histone modifications and global decondensation. As a result, most genes on the X chromosome are co-ordinately activated. Autosomal genes inserted into the X acquire X-chromosomal features and are subject to the X-specific regulation.
We seek to uncover the molecular principles that initiate, establish and maintain the dosage-compensated chromosome. We will follow the kinetics of DCC assembly and the timing of association with different types of chromosomal targets in nuclei with high spatial resolution afforded by sub-wavelength microscopy and deep sequencing of DNA binding sites. We will characterise DCC sub-complexes with respect to their roles as kinetic assembly intermediates or as representations of local, functional heterogeneity. We will evaluate the roles of a DCC- novel ubiquitin ligase activity for homeostasis.
Crucial to the recruitment of the DCC and its distribution to target genes are non-coding roX RNAs that are transcribed from the X. We will determine the secondary structure ‘signatures’ of roX RNAs in vitro and determine the binding sites of the protein subunits in vivo. By biochemical and cellular reconstitution will test the hypothesis that roX-encoded RNA aptamers orchestrate the assembly of the DCC and contribute to the exquisite targeting of the complex."
Max ERC Funding
2 482 770 €
Duration
Start date: 2012-02-01, End date: 2017-01-31
Project acronym ACCRETE
Project Accretion and Early Differentiation of the Earth and Terrestrial Planets
Researcher (PI) David Crowhurst Rubie
Host Institution (HI) UNIVERSITAET BAYREUTH
Call Details Advanced Grant (AdG), PE10, ERC-2011-ADG_20110209
Summary Formation of the Earth and the other terrestrial planets of our Solar System (Mercury, Venus and Mars) commenced 4.568 billion years ago and occurred on a time scale of about 100 million years. These planets grew by the process of accretion, which involved numerous collisions with smaller (Moon- to Mars-size) bodies. Impacts with such bodies released sufficient energy to cause large-scale melting and the formation of deep “magma oceans”. Such magma oceans enabled liquid metal to separate from liquid silicate, sink and accumulate to form the metallic cores of the planets. Thus core formation in terrestrial planets was a multistage process, intimately related to the major impacts during accretion, that determined the chemistry of planetary mantles. However, until now, accretion, as modelled by astrophysicists, and core formation, as modelled by geochemists, have been treated as completely independent processes. The fundamental and crucial aim of this ambitious interdisciplinary proposal is to integrate astrophysical models of planetary accretion with geochemical models of planetary differentiation together with cosmochemical constraints obtained from meteorites. The research will involve integrating new models of planetary accretion with core formation models based on the partitioning of a large number of elements between liquid metal and liquid silicate that we will determine experimentally at pressures up to about 100 gigapascals (equivalent to 2400 km deep in the Earth). By comparing our results with the known physical and chemical characteristics of the terrestrial planets, we will obtain a comprehensive understanding of how these planets formed, grew and evolved, both physically and chemically, with time. The integration of chemistry and planetary differentiation with accretion models is a new ground-breaking concept that will lead, through synergies and feedback, to major new advances in the Earth and planetary sciences.
Summary
Formation of the Earth and the other terrestrial planets of our Solar System (Mercury, Venus and Mars) commenced 4.568 billion years ago and occurred on a time scale of about 100 million years. These planets grew by the process of accretion, which involved numerous collisions with smaller (Moon- to Mars-size) bodies. Impacts with such bodies released sufficient energy to cause large-scale melting and the formation of deep “magma oceans”. Such magma oceans enabled liquid metal to separate from liquid silicate, sink and accumulate to form the metallic cores of the planets. Thus core formation in terrestrial planets was a multistage process, intimately related to the major impacts during accretion, that determined the chemistry of planetary mantles. However, until now, accretion, as modelled by astrophysicists, and core formation, as modelled by geochemists, have been treated as completely independent processes. The fundamental and crucial aim of this ambitious interdisciplinary proposal is to integrate astrophysical models of planetary accretion with geochemical models of planetary differentiation together with cosmochemical constraints obtained from meteorites. The research will involve integrating new models of planetary accretion with core formation models based on the partitioning of a large number of elements between liquid metal and liquid silicate that we will determine experimentally at pressures up to about 100 gigapascals (equivalent to 2400 km deep in the Earth). By comparing our results with the known physical and chemical characteristics of the terrestrial planets, we will obtain a comprehensive understanding of how these planets formed, grew and evolved, both physically and chemically, with time. The integration of chemistry and planetary differentiation with accretion models is a new ground-breaking concept that will lead, through synergies and feedback, to major new advances in the Earth and planetary sciences.
Max ERC Funding
1 826 200 €
Duration
Start date: 2012-05-01, End date: 2018-04-30
Project acronym ACCUPOL
Project Unlimited Growth? A Comparative Analysis of Causes and Consequences of Policy Accumulation
Researcher (PI) Christoph KNILL
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Call Details Advanced Grant (AdG), SH2, ERC-2017-ADG
Summary ACCUPOL systematically analyzes an intuitively well-known, but curiously under-researched phenomenon: policy accumulation. Societal modernization and progress bring about a continuously growing pile of policies in most political systems. At the same time, however, the administrative capacities for implementation are largely stagnant. While being societally desirable in principle, ever-more policies hence may potentially imply less in terms of policy achievements. Whether or not policy accumulation remains at a ‘sustainable’ rate thus crucially affects the long-term output legitimacy of modern democracies.
Given this development, the central focus of ACCUPOL lies on three questions: Do accumulation rates vary across countries and policy sectors? Which factors mitigate policy accumulation? And to what extent is policy accumulation really associated with an increasing prevalence of implementation deficits? In answering these questions, ACCUPOL radically departs from established research traditions in public policy.
First, the project develops new analytical concepts: Rather than relying on individual policy change as the unit of analysis, we consider policy accumulation to assess the growth of policy portfolios over time. In terms of implementation, ACCUPOL takes into account the overall prevalence of implementation deficits in a given sector instead of analyzing the effectiveness of individual implementation processes.
Second, this analytical innovation also implies a paradigmatic theoretical shift. Because existing theories focus on the analysis of individual policies, they are of limited help to understand causes and consequences of policy accumulation. ACCUPOL develops a novel theoretical approach to fill this theoretical gap.
Third, the project provides new empirical evidence on the prevalence of policy accumulation and implementation deficits focusing on 25 OECD countries and two key policy areas (social and environmental policy).
Summary
ACCUPOL systematically analyzes an intuitively well-known, but curiously under-researched phenomenon: policy accumulation. Societal modernization and progress bring about a continuously growing pile of policies in most political systems. At the same time, however, the administrative capacities for implementation are largely stagnant. While being societally desirable in principle, ever-more policies hence may potentially imply less in terms of policy achievements. Whether or not policy accumulation remains at a ‘sustainable’ rate thus crucially affects the long-term output legitimacy of modern democracies.
Given this development, the central focus of ACCUPOL lies on three questions: Do accumulation rates vary across countries and policy sectors? Which factors mitigate policy accumulation? And to what extent is policy accumulation really associated with an increasing prevalence of implementation deficits? In answering these questions, ACCUPOL radically departs from established research traditions in public policy.
First, the project develops new analytical concepts: Rather than relying on individual policy change as the unit of analysis, we consider policy accumulation to assess the growth of policy portfolios over time. In terms of implementation, ACCUPOL takes into account the overall prevalence of implementation deficits in a given sector instead of analyzing the effectiveness of individual implementation processes.
Second, this analytical innovation also implies a paradigmatic theoretical shift. Because existing theories focus on the analysis of individual policies, they are of limited help to understand causes and consequences of policy accumulation. ACCUPOL develops a novel theoretical approach to fill this theoretical gap.
Third, the project provides new empirical evidence on the prevalence of policy accumulation and implementation deficits focusing on 25 OECD countries and two key policy areas (social and environmental policy).
Max ERC Funding
2 359 000 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym ACDC
Project Algorithms and Complexity of Highly Decentralized Computations
Researcher (PI) Fabian Daniel Kuhn
Host Institution (HI) ALBERT-LUDWIGS-UNIVERSITAET FREIBURG
Call Details Starting Grant (StG), PE6, ERC-2013-StG
Summary "Many of today's and tomorrow's computer systems are built on top of large-scale networks such as, e.g., the Internet, the world wide web, wireless ad hoc and sensor networks, or peer-to-peer networks. Driven by technological advances, new kinds of networks and applications have become possible and we can safely assume that this trend is going to continue. Often modern systems are envisioned to consist of a potentially large number of individual components that are organized in a completely decentralized way. There is no central authority that controls the topology of the network, how nodes join or leave the system, or in which way nodes communicate with each other. Also, many future distributed applications will be built using wireless devices that communicate via radio.
The general objective of the proposed project is to improve our understanding of the algorithmic and theoretical foundations of decentralized distributed systems. From an algorithmic point of view, decentralized networks and computations pose a number of fascinating and unique challenges that are not present in sequential or more standard distributed systems. As communication is limited and mostly between nearby nodes, each node of a large network can only maintain a very restricted view of the global state of the system. This is particularly true if the network can change dynamically, either by nodes joining or leaving the system or if the topology changes over time, e.g., because of the mobility of the devices in case of a wireless network. Nevertheless, the nodes of a network need to coordinate in order to achieve some global goal.
In particular, we plan to study algorithms and lower bounds for basic computation and information dissemination tasks in such systems. In addition, we are particularly interested in the complexity of distributed computations in dynamic and wireless networks."
Summary
"Many of today's and tomorrow's computer systems are built on top of large-scale networks such as, e.g., the Internet, the world wide web, wireless ad hoc and sensor networks, or peer-to-peer networks. Driven by technological advances, new kinds of networks and applications have become possible and we can safely assume that this trend is going to continue. Often modern systems are envisioned to consist of a potentially large number of individual components that are organized in a completely decentralized way. There is no central authority that controls the topology of the network, how nodes join or leave the system, or in which way nodes communicate with each other. Also, many future distributed applications will be built using wireless devices that communicate via radio.
The general objective of the proposed project is to improve our understanding of the algorithmic and theoretical foundations of decentralized distributed systems. From an algorithmic point of view, decentralized networks and computations pose a number of fascinating and unique challenges that are not present in sequential or more standard distributed systems. As communication is limited and mostly between nearby nodes, each node of a large network can only maintain a very restricted view of the global state of the system. This is particularly true if the network can change dynamically, either by nodes joining or leaving the system or if the topology changes over time, e.g., because of the mobility of the devices in case of a wireless network. Nevertheless, the nodes of a network need to coordinate in order to achieve some global goal.
In particular, we plan to study algorithms and lower bounds for basic computation and information dissemination tasks in such systems. In addition, we are particularly interested in the complexity of distributed computations in dynamic and wireless networks."
Max ERC Funding
1 148 000 €
Duration
Start date: 2013-11-01, End date: 2018-10-31
Project acronym ACETOGENS
Project Acetogenic bacteria: from basic physiology via gene regulation to application in industrial biotechnology
Researcher (PI) Volker MÜLLER
Host Institution (HI) JOHANN WOLFGANG GOETHE-UNIVERSITATFRANKFURT AM MAIN
Call Details Advanced Grant (AdG), LS9, ERC-2016-ADG
Summary Demand for biofuels and other biologically derived commodities is growing worldwide as efforts increase to reduce reliance on fossil fuels and to limit climate change. Most commercial approaches rely on fermentations of organic matter with its inherent problems in producing CO2 and being in conflict with the food supply of humans. These problems are avoided if CO2 can be used as feedstock. Autotrophic organisms can fix CO2 by producing chemicals that are used as building blocks for the synthesis of cellular components (Biomass). Acetate-forming bacteria (acetogens) do neither require light nor oxygen for this and they can be used in bioreactors to reduce CO2 with hydrogen gas, carbon monoxide or an organic substrate. Gas fermentation using these bacteria has already been realized on an industrial level in two pre-commercial 100,000 gal/yr demonstration facilities to produce fuel ethanol from abundant waste gas resources (by LanzaTech). Acetogens can metabolise a wide variety of substrates that could be used for the production of biocommodities. However, their broad use to produce biofuels and platform chemicals from substrates other than gases or together with gases is hampered by our very limited knowledge about their metabolism and ability to use different substrates simultaneously. Nearly nothing is known about regulatory processes involved in substrate utilization or product formation but this is an absolute requirement for metabolic engineering approaches. The aim of this project is to provide this basic knowledge about metabolic routes in the acetogenic model strain Acetobacterium woodii and their regulation. We will unravel the function of “organelles” found in this bacterium and explore their potential as bio-nanoreactors for the production of biocommodities and pave the road for the industrial use of A. woodii in energy (hydrogen) storage. Thus, this project creates cutting-edge opportunities for the development of biosustainable technologies in Europe.
Summary
Demand for biofuels and other biologically derived commodities is growing worldwide as efforts increase to reduce reliance on fossil fuels and to limit climate change. Most commercial approaches rely on fermentations of organic matter with its inherent problems in producing CO2 and being in conflict with the food supply of humans. These problems are avoided if CO2 can be used as feedstock. Autotrophic organisms can fix CO2 by producing chemicals that are used as building blocks for the synthesis of cellular components (Biomass). Acetate-forming bacteria (acetogens) do neither require light nor oxygen for this and they can be used in bioreactors to reduce CO2 with hydrogen gas, carbon monoxide or an organic substrate. Gas fermentation using these bacteria has already been realized on an industrial level in two pre-commercial 100,000 gal/yr demonstration facilities to produce fuel ethanol from abundant waste gas resources (by LanzaTech). Acetogens can metabolise a wide variety of substrates that could be used for the production of biocommodities. However, their broad use to produce biofuels and platform chemicals from substrates other than gases or together with gases is hampered by our very limited knowledge about their metabolism and ability to use different substrates simultaneously. Nearly nothing is known about regulatory processes involved in substrate utilization or product formation but this is an absolute requirement for metabolic engineering approaches. The aim of this project is to provide this basic knowledge about metabolic routes in the acetogenic model strain Acetobacterium woodii and their regulation. We will unravel the function of “organelles” found in this bacterium and explore their potential as bio-nanoreactors for the production of biocommodities and pave the road for the industrial use of A. woodii in energy (hydrogen) storage. Thus, this project creates cutting-edge opportunities for the development of biosustainable technologies in Europe.
Max ERC Funding
2 497 140 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym AcetyLys
Project Unravelling the role of lysine acetylation in the regulation of glycolysis in cancer cells through the development of synthetic biology-based tools
Researcher (PI) Eyal Arbely
Host Institution (HI) BEN-GURION UNIVERSITY OF THE NEGEV
Call Details Starting Grant (StG), LS9, ERC-2015-STG
Summary Synthetic biology is an emerging discipline that offers powerful tools to control and manipulate fundamental processes in living matter. We propose to develop and apply such tools to modify the genetic code of cultured mammalian cells and bacteria with the aim to study the role of lysine acetylation in the regulation of metabolism and in cancer development. Thousands of lysine acetylation sites were recently discovered on non-histone proteins, suggesting that acetylation is a widespread and evolutionarily conserved post translational modification, similar in scope to phosphorylation and ubiquitination. Specifically, it has been found that most of the enzymes of metabolic processes—including glycolysis—are acetylated, implying that acetylation is key regulator of cellular metabolism in general and in glycolysis in particular. The regulation of metabolic pathways is of particular importance to cancer research, as misregulation of metabolic pathways, especially upregulation of glycolysis, is common to most transformed cells and is now considered a new hallmark of cancer. These data raise an immediate question: what is the role of acetylation in the regulation of glycolysis and in the metabolic reprogramming of cancer cells? While current methods rely on mutational analyses, we will genetically encode the incorporation of acetylated lysine and directly measure the functional role of each acetylation site in cancerous and non-cancerous cell lines. Using this methodology, we will study the structural and functional implications of all the acetylation sites in glycolytic enzymes. We will also decipher the mechanism by which acetylation is regulated by deacetylases and answer a long standing question – how 18 deacetylases recognise their substrates among thousands of acetylated proteins? The developed methodologies can be applied to a wide range of protein families known to be acetylated, thereby making this study relevant to diverse research fields.
Summary
Synthetic biology is an emerging discipline that offers powerful tools to control and manipulate fundamental processes in living matter. We propose to develop and apply such tools to modify the genetic code of cultured mammalian cells and bacteria with the aim to study the role of lysine acetylation in the regulation of metabolism and in cancer development. Thousands of lysine acetylation sites were recently discovered on non-histone proteins, suggesting that acetylation is a widespread and evolutionarily conserved post translational modification, similar in scope to phosphorylation and ubiquitination. Specifically, it has been found that most of the enzymes of metabolic processes—including glycolysis—are acetylated, implying that acetylation is key regulator of cellular metabolism in general and in glycolysis in particular. The regulation of metabolic pathways is of particular importance to cancer research, as misregulation of metabolic pathways, especially upregulation of glycolysis, is common to most transformed cells and is now considered a new hallmark of cancer. These data raise an immediate question: what is the role of acetylation in the regulation of glycolysis and in the metabolic reprogramming of cancer cells? While current methods rely on mutational analyses, we will genetically encode the incorporation of acetylated lysine and directly measure the functional role of each acetylation site in cancerous and non-cancerous cell lines. Using this methodology, we will study the structural and functional implications of all the acetylation sites in glycolytic enzymes. We will also decipher the mechanism by which acetylation is regulated by deacetylases and answer a long standing question – how 18 deacetylases recognise their substrates among thousands of acetylated proteins? The developed methodologies can be applied to a wide range of protein families known to be acetylated, thereby making this study relevant to diverse research fields.
Max ERC Funding
1 499 375 €
Duration
Start date: 2016-07-01, End date: 2021-06-30
Project acronym ACO
Project The Proceedings of the Ecumenical Councils from Oral Utterance to Manuscript Edition as Evidence for Late Antique Persuasion and Self-Representation Techniques
Researcher (PI) Peter Alfred Riedlberger
Host Institution (HI) OTTO-FRIEDRICH-UNIVERSITAET BAMBERG
Call Details Starting Grant (StG), SH5, ERC-2015-STG
Summary The Acts of the Ecumenical Councils of Late Antiquity include (purportedly) verbatim minutes of the proceedings, a formal framework and copies of relevant documents which were either (allegedly) read out during the proceedings or which were later attached to the Acts proper. Despite this unusual wealth of documentary evidence, the daunting nature of the Acts demanding multidisciplinary competency, their complex structure with a matryoshka-like nesting of proceedings from different dates, and the stereotype that their contents bear only on Christological niceties have deterred generations of historians from studying them. Only in recent years have their fortunes begun to improve, but this recent research has not always been based on sound principles: the recorded proceedings of the sessions are still often accepted as verbatim minutes. Yet even a superficial reading quickly reveals widespread editorial interference. We must accept that in many cases the Acts will teach us less about the actual debates than about the editors who shaped their presentation. This does not depreciate the Acts’ evidence: on the contrary, they are first-rate material for the rhetoric of persuasion and self-representation. It is possible, in fact, to take the investigation to a deeper level and examine in what manner the oral proceedings were put into writing: several passages in the Acts comment upon the process of note-taking and the work of the shorthand writers. Thus, the main objective of the proposed research project could be described as an attempt to trace the destinies of the Acts’ texts, from the oral utterance to the manuscript texts we have today. This will include the fullest study on ancient transcript techniques to date; a structural analysis of the Acts’ texts with the aim of highlighting edited passages; and a careful comparison of the various editions of the Acts, which survive in Greek, Latin, Syriac and Coptic, in order to detect traces of editorial interference.
Summary
The Acts of the Ecumenical Councils of Late Antiquity include (purportedly) verbatim minutes of the proceedings, a formal framework and copies of relevant documents which were either (allegedly) read out during the proceedings or which were later attached to the Acts proper. Despite this unusual wealth of documentary evidence, the daunting nature of the Acts demanding multidisciplinary competency, their complex structure with a matryoshka-like nesting of proceedings from different dates, and the stereotype that their contents bear only on Christological niceties have deterred generations of historians from studying them. Only in recent years have their fortunes begun to improve, but this recent research has not always been based on sound principles: the recorded proceedings of the sessions are still often accepted as verbatim minutes. Yet even a superficial reading quickly reveals widespread editorial interference. We must accept that in many cases the Acts will teach us less about the actual debates than about the editors who shaped their presentation. This does not depreciate the Acts’ evidence: on the contrary, they are first-rate material for the rhetoric of persuasion and self-representation. It is possible, in fact, to take the investigation to a deeper level and examine in what manner the oral proceedings were put into writing: several passages in the Acts comment upon the process of note-taking and the work of the shorthand writers. Thus, the main objective of the proposed research project could be described as an attempt to trace the destinies of the Acts’ texts, from the oral utterance to the manuscript texts we have today. This will include the fullest study on ancient transcript techniques to date; a structural analysis of the Acts’ texts with the aim of highlighting edited passages; and a careful comparison of the various editions of the Acts, which survive in Greek, Latin, Syriac and Coptic, in order to detect traces of editorial interference.
Max ERC Funding
1 497 250 €
Duration
Start date: 2016-05-01, End date: 2021-04-30
Project acronym ACoolTouch
Project Neural mechanisms of multisensory perceptual binding
Researcher (PI) James Francis Alexander Poulet
Host Institution (HI) MAX DELBRUECK CENTRUM FUER MOLEKULARE MEDIZIN IN DER HELMHOLTZ-GEMEINSCHAFT (MDC)
Call Details Consolidator Grant (CoG), LS5, ERC-2015-CoG
Summary Sensory perception involves the discrimination and binding of multiple modalities of sensory input. This is especially evident in the somatosensory system where different modalities of sensory input, including thermal and mechanosensory, are combined to generate a unified percept. The neural mechanisms of multisensory binding are unknown, in part because sensory perception is typically studied within a single modality in a single brain region. I propose a multi-level approach to investigate thermo-tactile processing in the mouse forepaw system from the primary sensory afferent neurons to thalamo-cortical circuits and behaviour.
The mouse forepaw system is the ideal system to investigate multisensory binding as the sensory afferent neurons are well investigated, cell type-specific lines are available, in vivo optogenetic manipulation is possible both in sensory afferent neurons and central circuits and we have developed high-resolution somatosensory perception behaviours. We have previously shown that mouse primary somatosensory forepaw cortical neurons respond to both tactile and thermal stimuli and are required for non-noxious cooling perception. With multimodal neurons how, then, is it possible to both discriminate and bind thermal and tactile stimuli?
I propose 3 objectives to address this question. We will first, perform functional mapping of the thermal and tactile pathways to cortex; second, investigate the neural mechanisms of thermo-tactile discrimination in behaving mice; and third, compare neural processing during two thermo-tactile binding tasks, the first using passively applied stimuli, and the second, active manipulation of thermal objects.
At each stage we will perform cell type-specific neural recordings and causal optogenetic manipulations in awake and behaving mice. Our multi-level approach will provide a comprehensive investigation into how the brain performs multisensory perceptual binding: a fundamental yet unsolved problem in neuroscience.
Summary
Sensory perception involves the discrimination and binding of multiple modalities of sensory input. This is especially evident in the somatosensory system where different modalities of sensory input, including thermal and mechanosensory, are combined to generate a unified percept. The neural mechanisms of multisensory binding are unknown, in part because sensory perception is typically studied within a single modality in a single brain region. I propose a multi-level approach to investigate thermo-tactile processing in the mouse forepaw system from the primary sensory afferent neurons to thalamo-cortical circuits and behaviour.
The mouse forepaw system is the ideal system to investigate multisensory binding as the sensory afferent neurons are well investigated, cell type-specific lines are available, in vivo optogenetic manipulation is possible both in sensory afferent neurons and central circuits and we have developed high-resolution somatosensory perception behaviours. We have previously shown that mouse primary somatosensory forepaw cortical neurons respond to both tactile and thermal stimuli and are required for non-noxious cooling perception. With multimodal neurons how, then, is it possible to both discriminate and bind thermal and tactile stimuli?
I propose 3 objectives to address this question. We will first, perform functional mapping of the thermal and tactile pathways to cortex; second, investigate the neural mechanisms of thermo-tactile discrimination in behaving mice; and third, compare neural processing during two thermo-tactile binding tasks, the first using passively applied stimuli, and the second, active manipulation of thermal objects.
At each stage we will perform cell type-specific neural recordings and causal optogenetic manipulations in awake and behaving mice. Our multi-level approach will provide a comprehensive investigation into how the brain performs multisensory perceptual binding: a fundamental yet unsolved problem in neuroscience.
Max ERC Funding
1 999 877 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym ACOPS
Project Advanced Coherent Ultrafast Laser Pulse Stacking
Researcher (PI) Jens Limpert
Host Institution (HI) FRIEDRICH-SCHILLER-UNIVERSITAT JENA
Call Details Consolidator Grant (CoG), PE2, ERC-2013-CoG
Summary "An important driver of scientific progress has always been the envisioning of applications far beyond existing technological capabilities. Such thinking creates new challenges for physicists, driven by the groundbreaking nature of the anticipated application. In the case of laser physics, one of these applications is laser wake-field particle acceleration and possible future uses thereof, such as in collider experiments, or for medical applications such as cancer treatment. To accelerate electrons and positrons to TeV-energies, a laser architecture is required that allows for the combination of high efficiency, Petawatt peak powers, and Megawatt average powers. Developing such a laser system would be a challenging task that might take decades of aggressive research, development, and, most important, revolutionary approaches and innovative ideas.
The goal of the ACOPS project is to develop a compact, efficient, scalable, and cost-effective high-average and high-peak power ultra-short pulse laser concept.
The proposed approach to this goal relies on the spatially and temporally separated amplification of ultrashort laser pulses in waveguide structures, followed by coherent combination into a single train of pulses with increased average power and pulse energy. This combination can be realized through the coherent addition of the output beams of spatially separated amplifiers, combined with the pulse stacking of temporally separated pulses in passive enhancement cavities, employing a fast-switching element as cavity dumper.
Therefore, the three main tasks are the development of kW-class high-repetition-rate driving lasers, the investigation of non-steady state pulse enhancement in passive cavities, and the development of a suitable dumping element.
If successful, the proposed concept would undoubtedly provide a tool that would allow researchers to surpass the current limits in high-field physics and accelerator science."
Summary
"An important driver of scientific progress has always been the envisioning of applications far beyond existing technological capabilities. Such thinking creates new challenges for physicists, driven by the groundbreaking nature of the anticipated application. In the case of laser physics, one of these applications is laser wake-field particle acceleration and possible future uses thereof, such as in collider experiments, or for medical applications such as cancer treatment. To accelerate electrons and positrons to TeV-energies, a laser architecture is required that allows for the combination of high efficiency, Petawatt peak powers, and Megawatt average powers. Developing such a laser system would be a challenging task that might take decades of aggressive research, development, and, most important, revolutionary approaches and innovative ideas.
The goal of the ACOPS project is to develop a compact, efficient, scalable, and cost-effective high-average and high-peak power ultra-short pulse laser concept.
The proposed approach to this goal relies on the spatially and temporally separated amplification of ultrashort laser pulses in waveguide structures, followed by coherent combination into a single train of pulses with increased average power and pulse energy. This combination can be realized through the coherent addition of the output beams of spatially separated amplifiers, combined with the pulse stacking of temporally separated pulses in passive enhancement cavities, employing a fast-switching element as cavity dumper.
Therefore, the three main tasks are the development of kW-class high-repetition-rate driving lasers, the investigation of non-steady state pulse enhancement in passive cavities, and the development of a suitable dumping element.
If successful, the proposed concept would undoubtedly provide a tool that would allow researchers to surpass the current limits in high-field physics and accelerator science."
Max ERC Funding
1 881 040 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym ACROSS
Project 3D Reconstruction and Modeling across Different Levels of Abstraction
Researcher (PI) Leif Kobbelt
Host Institution (HI) RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN
Call Details Advanced Grant (AdG), PE6, ERC-2013-ADG
Summary "Digital 3D models are gaining more and more importance in diverse application fields ranging from computer graphics, multimedia and simulation sciences to engineering, architecture, and medicine. Powerful technologies to digitize the 3D shape of real objects and scenes are becoming available even to consumers. However, the raw geometric data emerging from, e.g., 3D scanning or multi-view stereo often lacks a consistent structure and meta-information which are necessary for the effective deployment of such models in sophisticated down-stream applications like animation, simulation, or CAD/CAM that go beyond mere visualization. Our goal is to develop new fundamental algorithms which transform raw geometric input data into augmented 3D models that are equipped with structural meta information such as feature aligned meshes, patch segmentations, local and global geometric constraints, statistical shape variation data, or even procedural descriptions. Our methodological approach is inspired by the human perceptual system that integrates bottom-up (data-driven) and top-down (model-driven) mechanisms in its hierarchical processing. Similarly we combine algorithms operating on different levels of abstraction into reconstruction and modeling networks. Instead of developing an individual solution for each specific application scenario, we create an eco-system of algorithms for automatic processing and interactive design of highly complex 3D models. A key concept is the information flow across all levels of abstraction in a bottom-up as well as top-down fashion. We not only aim at optimizing geometric representations but in fact at bridging the gap between reconstruction and recognition of geometric objects. The results from this project will make it possible to bring 3D models of real world objects into many highly relevant applications in science, industry, and entertainment, greatly reducing the excessive manual effort that is still necessary today."
Summary
"Digital 3D models are gaining more and more importance in diverse application fields ranging from computer graphics, multimedia and simulation sciences to engineering, architecture, and medicine. Powerful technologies to digitize the 3D shape of real objects and scenes are becoming available even to consumers. However, the raw geometric data emerging from, e.g., 3D scanning or multi-view stereo often lacks a consistent structure and meta-information which are necessary for the effective deployment of such models in sophisticated down-stream applications like animation, simulation, or CAD/CAM that go beyond mere visualization. Our goal is to develop new fundamental algorithms which transform raw geometric input data into augmented 3D models that are equipped with structural meta information such as feature aligned meshes, patch segmentations, local and global geometric constraints, statistical shape variation data, or even procedural descriptions. Our methodological approach is inspired by the human perceptual system that integrates bottom-up (data-driven) and top-down (model-driven) mechanisms in its hierarchical processing. Similarly we combine algorithms operating on different levels of abstraction into reconstruction and modeling networks. Instead of developing an individual solution for each specific application scenario, we create an eco-system of algorithms for automatic processing and interactive design of highly complex 3D models. A key concept is the information flow across all levels of abstraction in a bottom-up as well as top-down fashion. We not only aim at optimizing geometric representations but in fact at bridging the gap between reconstruction and recognition of geometric objects. The results from this project will make it possible to bring 3D models of real world objects into many highly relevant applications in science, industry, and entertainment, greatly reducing the excessive manual effort that is still necessary today."
Max ERC Funding
2 482 000 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym ACROSSBORDERS
Project Across ancient borders and cultures: An Egyptian microcosm in Sudan during the 2nd millennium BC
Researcher (PI) Julia Budka
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Call Details Starting Grant (StG), SH6, ERC-2012-StG_20111124
Summary Pharaonic Egypt is commonly known for its pyramids and tomb treasures. The present knowledge of Egyptian everyday life and social structures derives mostly from mortuary records associated with the upper classes, whereas traces of ordinary life from domestic sites are generally disregarded. Settlement archaeology in Egypt and Nubia (Ancient North Sudan) is still in its infancy; it is timely to strenghten this field. Responsible for the pottery at three major settlement sites (Abydos and Elephantine in Egypt; Sai Island in Sudan), the PI is in a unique position to co-ordinate a research project on settlement patterns in Northeast Africa of the 2nd millennium BC based on the detailed analysis of material remains. The selected case studies situated across ancient and modern borders and of diverse environmental and cultural preconditions, show very similar archaeological remains. Up to now, no attempt has been made to explain this situation in detail.
The focus of the project is the well-preserved, only partially explored site of Sai Island, seemingly an Egyptian microcosm in New Kingdom Upper Nubia. Little time is left to conduct the requisite large-scale archaeology as Sai is endangered by the planned high dam of Dal. With the application of microarchaeology we will introduce an approach that is new in Egyptian settlement archaeology. Our interdisciplinary research will result in novel insights into (a) multifaceted lives on Sai at a micro-spatial level and (b) domestic life in 2nd millennium BC Egypt and Nubia from a macroscopic view. The present understanding of the political situation in Upper Nubia during the New Kingdom as based on written records will be significantly enlarged by the envisaged approach. Furthermore, in reconstructing Sai Island as “home away from home”, the project presents a showcase study of what we can learn about acculturation and adaptation from ancient cultures, in this case from the coexistence of Egyptians and Nubians
Summary
Pharaonic Egypt is commonly known for its pyramids and tomb treasures. The present knowledge of Egyptian everyday life and social structures derives mostly from mortuary records associated with the upper classes, whereas traces of ordinary life from domestic sites are generally disregarded. Settlement archaeology in Egypt and Nubia (Ancient North Sudan) is still in its infancy; it is timely to strenghten this field. Responsible for the pottery at three major settlement sites (Abydos and Elephantine in Egypt; Sai Island in Sudan), the PI is in a unique position to co-ordinate a research project on settlement patterns in Northeast Africa of the 2nd millennium BC based on the detailed analysis of material remains. The selected case studies situated across ancient and modern borders and of diverse environmental and cultural preconditions, show very similar archaeological remains. Up to now, no attempt has been made to explain this situation in detail.
The focus of the project is the well-preserved, only partially explored site of Sai Island, seemingly an Egyptian microcosm in New Kingdom Upper Nubia. Little time is left to conduct the requisite large-scale archaeology as Sai is endangered by the planned high dam of Dal. With the application of microarchaeology we will introduce an approach that is new in Egyptian settlement archaeology. Our interdisciplinary research will result in novel insights into (a) multifaceted lives on Sai at a micro-spatial level and (b) domestic life in 2nd millennium BC Egypt and Nubia from a macroscopic view. The present understanding of the political situation in Upper Nubia during the New Kingdom as based on written records will be significantly enlarged by the envisaged approach. Furthermore, in reconstructing Sai Island as “home away from home”, the project presents a showcase study of what we can learn about acculturation and adaptation from ancient cultures, in this case from the coexistence of Egyptians and Nubians
Max ERC Funding
1 497 460 €
Duration
Start date: 2012-12-01, End date: 2018-04-30
Project acronym Active-DNA
Project Computationally Active DNA Nanostructures
Researcher (PI) Damien WOODS
Host Institution (HI) NATIONAL UNIVERSITY OF IRELAND MAYNOOTH
Call Details Consolidator Grant (CoG), PE6, ERC-2017-COG
Summary During the 20th century computer technology evolved from bulky, slow, special purpose mechanical engines to the now ubiquitous silicon chips and software that are one of the pinnacles of human ingenuity. The goal of the field of molecular programming is to take the next leap and build a new generation of matter-based computers using DNA, RNA and proteins. This will be accomplished by computer scientists, physicists and chemists designing molecules to execute ``wet'' nanoscale programs in test tubes. The workflow includes proposing theoretical models, mathematically proving their computational properties, physical modelling and implementation in the wet-lab.
The past decade has seen remarkable progress at building static 2D and 3D DNA nanostructures. However, unlike biological macromolecules and complexes that are built via specified self-assembly pathways, that execute robotic-like movements, and that undergo evolution, the activity of human-engineered nanostructures is severely limited. We will need sophisticated algorithmic ideas to build structures that rival active living systems. Active-DNA, aims to address this challenge by achieving a number of objectives on computation, DNA-based self-assembly and molecular robotics. Active-DNA research work will range from defining models and proving theorems that characterise the computational and expressive capabilities of such active programmable materials to experimental work implementing active DNA nanostructures in the wet-lab.
Summary
During the 20th century computer technology evolved from bulky, slow, special purpose mechanical engines to the now ubiquitous silicon chips and software that are one of the pinnacles of human ingenuity. The goal of the field of molecular programming is to take the next leap and build a new generation of matter-based computers using DNA, RNA and proteins. This will be accomplished by computer scientists, physicists and chemists designing molecules to execute ``wet'' nanoscale programs in test tubes. The workflow includes proposing theoretical models, mathematically proving their computational properties, physical modelling and implementation in the wet-lab.
The past decade has seen remarkable progress at building static 2D and 3D DNA nanostructures. However, unlike biological macromolecules and complexes that are built via specified self-assembly pathways, that execute robotic-like movements, and that undergo evolution, the activity of human-engineered nanostructures is severely limited. We will need sophisticated algorithmic ideas to build structures that rival active living systems. Active-DNA, aims to address this challenge by achieving a number of objectives on computation, DNA-based self-assembly and molecular robotics. Active-DNA research work will range from defining models and proving theorems that characterise the computational and expressive capabilities of such active programmable materials to experimental work implementing active DNA nanostructures in the wet-lab.
Max ERC Funding
2 349 603 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym ACTIVEPHANTOM
Project Active Organ Phantoms for Medical Robotics
Researcher (PI) Peer FISCHER
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Proof of Concept (PoC), PC1, ERC-2016-PoC
Summary Robot-assisted and minimally invasive medical procedures are impacting medical care by increasing accuracy, reducing cost, and minimizing patient discomfort and recovery times after interventions. Developers of commercial robotic surgical systems and medical device manufacturers look for realistic phantoms that can be used in place of animal experiments or cadavers to test procedures and to train medical personnel. Existing phantoms are either made from hard materials, or they lack anatomical detail, and they are mainly passive and thus unrealistic.
Here, we use recently developed fabrication know-how and expertise within our ERC-funded research to develop the first active artificial urinary tract model that includes a kidney, a bladder, and a prostate. Rapid prototyping is combined with a fabrication step that we have developed to permit the incorporation of active elements, such as a peristaltic system and fluidic valves in the phantom. We have developed smart material composites that reproduce the mechanical and haptic properties, and that give ultrasound contrast indistinguishable from real organs, while permitting anatomical details to be reproduced with a mean error of as little as 500 microns.
Feedback from a major medical device company indicates that ours is a unique phantom with unprecedented accuracy for which there is a market. Within this POC grant we want to develop a complete prototype, and to demonstrate a series of medical interventions on the phantom, including endoscopic diagnostic procedures (cystoscopy and ureterorenoscopy) and endoscopic treatment procedures (laser lithotripsy). The grant will allow us to protect our know-how, identify further markets, and develop a commercialization strategy.
Overall, this project will generate the first active phantom system that permits the testing of surgical instruments and procedures, with a sizeable market potential.
Summary
Robot-assisted and minimally invasive medical procedures are impacting medical care by increasing accuracy, reducing cost, and minimizing patient discomfort and recovery times after interventions. Developers of commercial robotic surgical systems and medical device manufacturers look for realistic phantoms that can be used in place of animal experiments or cadavers to test procedures and to train medical personnel. Existing phantoms are either made from hard materials, or they lack anatomical detail, and they are mainly passive and thus unrealistic.
Here, we use recently developed fabrication know-how and expertise within our ERC-funded research to develop the first active artificial urinary tract model that includes a kidney, a bladder, and a prostate. Rapid prototyping is combined with a fabrication step that we have developed to permit the incorporation of active elements, such as a peristaltic system and fluidic valves in the phantom. We have developed smart material composites that reproduce the mechanical and haptic properties, and that give ultrasound contrast indistinguishable from real organs, while permitting anatomical details to be reproduced with a mean error of as little as 500 microns.
Feedback from a major medical device company indicates that ours is a unique phantom with unprecedented accuracy for which there is a market. Within this POC grant we want to develop a complete prototype, and to demonstrate a series of medical interventions on the phantom, including endoscopic diagnostic procedures (cystoscopy and ureterorenoscopy) and endoscopic treatment procedures (laser lithotripsy). The grant will allow us to protect our know-how, identify further markets, and develop a commercialization strategy.
Overall, this project will generate the first active phantom system that permits the testing of surgical instruments and procedures, with a sizeable market potential.
Max ERC Funding
150 000 €
Duration
Start date: 2017-03-01, End date: 2018-08-31
Project acronym ACTMECH
Project Emergent Active Mechanical Behaviour of the Actomyosin Cell Cortex
Researcher (PI) Stephan Wolfgang Grill
Host Institution (HI) TECHNISCHE UNIVERSITAET DRESDEN
Call Details Starting Grant (StG), LS3, ERC-2011-StG_20101109
Summary The cell cortex is a highly dynamic layer of crosslinked actin filaments and myosin molecular motors beneath the cell membrane. It plays a central role in large scale rearrangements that occur inside cells. Many molecular mechanisms contribute to cortex structure and dynamics. However, cell scale physical properties of the cortex are difficult to grasp. This is problematic because for large scale rearrangements inside a cell, such as coherent flow of the cell cortex, it is the cell scale emergent properties that are important for the realization of such events. I will investigate how the actomyosin cytoskeleton behaves at a coarse grained and cellular scale, and will study how this emergent active behaviour is influenced by molecular mechanisms. We will study the cell cortex in the one cell stage C. elegans embryo, which undergoes large scale cortical flow during polarization and cytokinesis. We will combine theory and experiment. We will characterize cortex structure and dynamics with biophysical techniques such as cortical laser ablation and quantitative photobleaching experiments. We will develop and employ novel theoretical approaches to describe the cell scale mechanical behaviour in terms of an active complex fluid. We will utilize genetic approaches to understand how these emergent mechanical properties are influenced by molecular activities. A central goal is to arrive at a coarse grained description of the cortex that can predict future dynamic behaviour from the past structure, which is conceptually similar to how weather forecasting is accomplished. To date, systematic approaches to link molecular scale physical mechanisms to those on cellular scales are missing. This work will open new opportunities for cell biological and cell biophysical research, by providing a methodological approach for bridging scales, for studying emergent and large-scale active mechanical behaviours and linking them to molecular mechanisms.
Summary
The cell cortex is a highly dynamic layer of crosslinked actin filaments and myosin molecular motors beneath the cell membrane. It plays a central role in large scale rearrangements that occur inside cells. Many molecular mechanisms contribute to cortex structure and dynamics. However, cell scale physical properties of the cortex are difficult to grasp. This is problematic because for large scale rearrangements inside a cell, such as coherent flow of the cell cortex, it is the cell scale emergent properties that are important for the realization of such events. I will investigate how the actomyosin cytoskeleton behaves at a coarse grained and cellular scale, and will study how this emergent active behaviour is influenced by molecular mechanisms. We will study the cell cortex in the one cell stage C. elegans embryo, which undergoes large scale cortical flow during polarization and cytokinesis. We will combine theory and experiment. We will characterize cortex structure and dynamics with biophysical techniques such as cortical laser ablation and quantitative photobleaching experiments. We will develop and employ novel theoretical approaches to describe the cell scale mechanical behaviour in terms of an active complex fluid. We will utilize genetic approaches to understand how these emergent mechanical properties are influenced by molecular activities. A central goal is to arrive at a coarse grained description of the cortex that can predict future dynamic behaviour from the past structure, which is conceptually similar to how weather forecasting is accomplished. To date, systematic approaches to link molecular scale physical mechanisms to those on cellular scales are missing. This work will open new opportunities for cell biological and cell biophysical research, by providing a methodological approach for bridging scales, for studying emergent and large-scale active mechanical behaviours and linking them to molecular mechanisms.
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-12-01, End date: 2017-08-31
Project acronym ACUSLABS
Project A new tool in drug development: mapping of compound-protein interaction using forward genetics
Researcher (PI) Martin DENZEL
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Proof of Concept (PoC), ERC-2017-PoC
Summary Development of new medicines such as chemotherapeutic drugs requires a detailed understanding of their biological mechanism of action. What are the desired and undesired interactions with biological molecules? It is our goal to found a start-up company that will provide a solution to this challenge. Using novel and ground-breaking approaches we can identify target structures and interaction partners of small bioactive molecules at an unmatched and unprecedented resolution. ERC PoC funding will be essential to support our activities to identify optimal strategies and initial customers for our service.
Summary
Development of new medicines such as chemotherapeutic drugs requires a detailed understanding of their biological mechanism of action. What are the desired and undesired interactions with biological molecules? It is our goal to found a start-up company that will provide a solution to this challenge. Using novel and ground-breaking approaches we can identify target structures and interaction partners of small bioactive molecules at an unmatched and unprecedented resolution. ERC PoC funding will be essential to support our activities to identify optimal strategies and initial customers for our service.
Max ERC Funding
149 563 €
Duration
Start date: 2017-07-01, End date: 2018-12-31
Project acronym ADIMMUNE
Project Decoding interactions between adipose tissue immune cells, metabolic function, and the intestinal microbiome in obesity
Researcher (PI) Eran Elinav
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Consolidator Grant (CoG), LS6, ERC-2018-COG
Summary Obesity and its metabolic co-morbidities have given rise to a rapidly expanding ‘metabolic syndrome’ pandemic affecting
hundreds of millions of individuals worldwide. The integrative genetic and environmental causes of the obesity pandemic
remain elusive. White adipose tissue (WAT)-resident immune cells have recently been highlighted as important factors
contributing to metabolic complications. However, a comprehensive understanding of the regulatory circuits governing their
function and the cell type-specific mechanisms by which they contribute to the development of metabolic syndrome is
lacking. Likewise, the gut microbiome has been suggested as a critical regulator of obesity, but the bacterial species and
metabolites that influence WAT inflammation are entirely unknown.
We propose to use our recently developed high-throughput genomic and gnotobiotic tools, integrated with CRISPR-mediated interrogation of gene function, microbial culturomics, and in-vivo metabolic analysis in newly generated mouse models, in order to achieve a new level of molecular understanding of how WAT immune cells integrate environmental cues into their crosstalk with organismal metabolism, and to explore the microbial contributions to the molecular etiology of WAT inflammation in the pathogenesis of diet-induced obesity. Specifically, we aim to (a) decipher the global regulatory landscape and interaction networks of WAT hematopoietic cells at the single-cell level, (b) identify new mediators of WAT immune cell contributions to metabolic homeostasis, and (c) decode how host-microbiome communication shapes the development of WAT inflammation and obesity.
Unraveling the principles of WAT immune cell regulation and their amenability to change by host-microbiota interactions
may lead to a conceptual leap forward in our understanding of metabolic physiology and disease. Concomitantly, it may
generate a platform for microbiome-based personalized therapy against obesity and its complications.
Summary
Obesity and its metabolic co-morbidities have given rise to a rapidly expanding ‘metabolic syndrome’ pandemic affecting
hundreds of millions of individuals worldwide. The integrative genetic and environmental causes of the obesity pandemic
remain elusive. White adipose tissue (WAT)-resident immune cells have recently been highlighted as important factors
contributing to metabolic complications. However, a comprehensive understanding of the regulatory circuits governing their
function and the cell type-specific mechanisms by which they contribute to the development of metabolic syndrome is
lacking. Likewise, the gut microbiome has been suggested as a critical regulator of obesity, but the bacterial species and
metabolites that influence WAT inflammation are entirely unknown.
We propose to use our recently developed high-throughput genomic and gnotobiotic tools, integrated with CRISPR-mediated interrogation of gene function, microbial culturomics, and in-vivo metabolic analysis in newly generated mouse models, in order to achieve a new level of molecular understanding of how WAT immune cells integrate environmental cues into their crosstalk with organismal metabolism, and to explore the microbial contributions to the molecular etiology of WAT inflammation in the pathogenesis of diet-induced obesity. Specifically, we aim to (a) decipher the global regulatory landscape and interaction networks of WAT hematopoietic cells at the single-cell level, (b) identify new mediators of WAT immune cell contributions to metabolic homeostasis, and (c) decode how host-microbiome communication shapes the development of WAT inflammation and obesity.
Unraveling the principles of WAT immune cell regulation and their amenability to change by host-microbiota interactions
may lead to a conceptual leap forward in our understanding of metabolic physiology and disease. Concomitantly, it may
generate a platform for microbiome-based personalized therapy against obesity and its complications.
Max ERC Funding
2 000 000 €
Duration
Start date: 2019-03-01, End date: 2024-02-29
Project acronym ADMIRE
Project Atomic-scale Design of Majorana states and their Innovative Real-space Exploration
Researcher (PI) Roland WIESENDANGER
Host Institution (HI) UNIVERSITAET HAMBURG
Call Details Advanced Grant (AdG), PE3, ERC-2017-ADG
Summary Fault-tolerant topological quantum computation has become one of the most exciting research directions in modern condensed matter physics. As a key operation the braiding of non-Abelian anyons has been proposed theoretically. Such exotic quasiparticles can be realized as zero-energy Majorana bound states at the ends of one-dimensional magnetic nanowires in proximity to s-wave superconductors in the presence of high spin-orbit coupling. In contrast to previous attempts to realize such systems experimentally, based on the growth of semiconducting nanowires or the self-assembly of ferromagnetic nanowires on s-wave superconductors, we propose to design Majorana bound states in artificially constructed single-atom chains with non-collinear spin-textures on elemental superconducting substrates using scanning tunnelling microscope (STM)-based atom manipulation techniques. We would like to study at the atomic level the formation of Shiba bands as a result of hybridization of individual Shiba impurity states as well as the emergence of zero-energy Majorana bound states as a function of chain structure, length, and composition. Moreover, we will construct model-type platforms, such as T-junctions, rings, and more complex network structures with atomic-scale precision as a basis for demonstrating the manipulation and braiding of Majorana bound states. We will make use of sophisticated experimental techniques, such as spin-resolved scanning tunnelling spectroscopy (STS) at micro-eV energy resolution, scanning Josephson tunnelling spectroscopy, and multi-probe STS under well-defined ultra-high vacuum conditions, in order to directly probe the nature of the magnetic state of the atomic wires, the spin-polarization of the emergent Majorana states, as well as the spatial nature of the superconducting order parameter in real space. Finally, we will try to directly probe the quantum exchange statistics of non-Abelian anyons in these atomically precise fabricated model-type systems.
Summary
Fault-tolerant topological quantum computation has become one of the most exciting research directions in modern condensed matter physics. As a key operation the braiding of non-Abelian anyons has been proposed theoretically. Such exotic quasiparticles can be realized as zero-energy Majorana bound states at the ends of one-dimensional magnetic nanowires in proximity to s-wave superconductors in the presence of high spin-orbit coupling. In contrast to previous attempts to realize such systems experimentally, based on the growth of semiconducting nanowires or the self-assembly of ferromagnetic nanowires on s-wave superconductors, we propose to design Majorana bound states in artificially constructed single-atom chains with non-collinear spin-textures on elemental superconducting substrates using scanning tunnelling microscope (STM)-based atom manipulation techniques. We would like to study at the atomic level the formation of Shiba bands as a result of hybridization of individual Shiba impurity states as well as the emergence of zero-energy Majorana bound states as a function of chain structure, length, and composition. Moreover, we will construct model-type platforms, such as T-junctions, rings, and more complex network structures with atomic-scale precision as a basis for demonstrating the manipulation and braiding of Majorana bound states. We will make use of sophisticated experimental techniques, such as spin-resolved scanning tunnelling spectroscopy (STS) at micro-eV energy resolution, scanning Josephson tunnelling spectroscopy, and multi-probe STS under well-defined ultra-high vacuum conditions, in order to directly probe the nature of the magnetic state of the atomic wires, the spin-polarization of the emergent Majorana states, as well as the spatial nature of the superconducting order parameter in real space. Finally, we will try to directly probe the quantum exchange statistics of non-Abelian anyons in these atomically precise fabricated model-type systems.
Max ERC Funding
2 499 750 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym ADNABIOARC
Project From the earliest modern humans to the onset of farming (45,000-4,500 BP): the role of climate, life-style, health, migration and selection in shaping European population history
Researcher (PI) Ron Pinhasi
Host Institution (HI) UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN
Call Details Starting Grant (StG), SH6, ERC-2010-StG_20091209
Summary The colonisation of Europe by anatomically modern humans (AMHs) ca. 45,000 years before present (BP) and the transition to farming ca. 8,000 BP are two major events in human prehistory. Both events involved certain cultural and biological adaptations, technological innovations, and behavioural plasticity which are unique to our species. The reconstruction of these processes and the causality between them has so far remained elusive due to technological, methodological and logistical complexities. Major developments in our understanding of the anthropology of the Upper Palaeolithic, Mesolithic and Neolithic, and advances in ancient DNA (aDNA) technology and chronometric methods now allow us to assess in sufficient resolution the interface between these evolutionary processes, and changes in human culture and behaviour.
The proposed research will investigate the complex interface between the morphological, genetic, behavioural, and cultural factors that shaped the population history of European AMHs. The PI s interdisciplinary expertise in these areas, his access to and experience of relevant skeletal collections, and his ongoing European collaborations will allow significant progress in addressing these fundamental questions. The approach taken will include (a) the collection of bioarchaeological, aDNA, stable isotope (for the analysis of ancient diet) and radiometric data on 500 skeletons from key sites/phases in Europe and western Anatolia, and (b) the application of existing and novel aDNA, bioarchaeological and simulation methodologies. This research will yield results that transform our current understanding of major demographic and evolutionary processes and will place Europe at the forefront of anthropological biological and genetic research.
Summary
The colonisation of Europe by anatomically modern humans (AMHs) ca. 45,000 years before present (BP) and the transition to farming ca. 8,000 BP are two major events in human prehistory. Both events involved certain cultural and biological adaptations, technological innovations, and behavioural plasticity which are unique to our species. The reconstruction of these processes and the causality between them has so far remained elusive due to technological, methodological and logistical complexities. Major developments in our understanding of the anthropology of the Upper Palaeolithic, Mesolithic and Neolithic, and advances in ancient DNA (aDNA) technology and chronometric methods now allow us to assess in sufficient resolution the interface between these evolutionary processes, and changes in human culture and behaviour.
The proposed research will investigate the complex interface between the morphological, genetic, behavioural, and cultural factors that shaped the population history of European AMHs. The PI s interdisciplinary expertise in these areas, his access to and experience of relevant skeletal collections, and his ongoing European collaborations will allow significant progress in addressing these fundamental questions. The approach taken will include (a) the collection of bioarchaeological, aDNA, stable isotope (for the analysis of ancient diet) and radiometric data on 500 skeletons from key sites/phases in Europe and western Anatolia, and (b) the application of existing and novel aDNA, bioarchaeological and simulation methodologies. This research will yield results that transform our current understanding of major demographic and evolutionary processes and will place Europe at the forefront of anthropological biological and genetic research.
Max ERC Funding
1 088 386 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym ADONIS
Project Attosecond Dynamics On Interfaces and Solids
Researcher (PI) Reinhard Kienberger
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), PE2, ERC-2007-StG
Summary New insight into ever smaller microscopic units of matter as well as in ever faster evolving chemical, physical or atomic processes pushes the frontiers in many fields in science. Pump/probe experiments turned out to be the most direct approach to time-domain investigations of fast-evolving microscopic processes. Accessing atomic and molecular inner-shell processes directly in the time-domain requires a combination of short wavelengths in the few hundred eV range and sub-femtosecond pulse duration. The concept of light-field-controlled XUV photoemission employs an XUV pulse achieved by High-order Harmonic Generation (HHG) as a pump and the light pulse as a probe or vice versa. The basic prerequisite, namely the generation and measurement of isolated sub-femtosecond XUV pulses synchronized to a strong few-cycle light pulse with attosecond precision, opens up a route to time-resolved inner-shell atomic and molecular spectroscopy with present day sources. Studies of attosecond electronic motion (1 as = 10-18 s) in solids and on surfaces and interfaces have until now remained out of reach. The unprecedented time resolution of the aforementioned technique will enable for the first time monitoring of sub-fs dynamics of such systems in the time domain. These dynamics – of electronic excitation, relaxation, and wave packet motion – are of broad scientific interest and pertinent to the development of many modern technologies including semiconductor and molecular electronics, optoelectronics, information processing, photovoltaics, and optical nano-structuring. The purpose of this project is to investigate phenomena like the temporal evolution of direct photoemission, interference effects in resonant photoemission, fast adsorbate-substrate charge transfer, and electronic dynamics in supramolecular assemblies, in a series of experiments in order to overcome the temporal limits of measurements in solid state physics and to better understand processes in microcosm.
Summary
New insight into ever smaller microscopic units of matter as well as in ever faster evolving chemical, physical or atomic processes pushes the frontiers in many fields in science. Pump/probe experiments turned out to be the most direct approach to time-domain investigations of fast-evolving microscopic processes. Accessing atomic and molecular inner-shell processes directly in the time-domain requires a combination of short wavelengths in the few hundred eV range and sub-femtosecond pulse duration. The concept of light-field-controlled XUV photoemission employs an XUV pulse achieved by High-order Harmonic Generation (HHG) as a pump and the light pulse as a probe or vice versa. The basic prerequisite, namely the generation and measurement of isolated sub-femtosecond XUV pulses synchronized to a strong few-cycle light pulse with attosecond precision, opens up a route to time-resolved inner-shell atomic and molecular spectroscopy with present day sources. Studies of attosecond electronic motion (1 as = 10-18 s) in solids and on surfaces and interfaces have until now remained out of reach. The unprecedented time resolution of the aforementioned technique will enable for the first time monitoring of sub-fs dynamics of such systems in the time domain. These dynamics – of electronic excitation, relaxation, and wave packet motion – are of broad scientific interest and pertinent to the development of many modern technologies including semiconductor and molecular electronics, optoelectronics, information processing, photovoltaics, and optical nano-structuring. The purpose of this project is to investigate phenomena like the temporal evolution of direct photoemission, interference effects in resonant photoemission, fast adsorbate-substrate charge transfer, and electronic dynamics in supramolecular assemblies, in a series of experiments in order to overcome the temporal limits of measurements in solid state physics and to better understand processes in microcosm.
Max ERC Funding
1 296 000 €
Duration
Start date: 2008-10-01, End date: 2013-09-30
Project acronym AEDNA
Project Amorphous and Evolutionary DNA Nanotechnology
Researcher (PI) Friedrich SIMMEL
Host Institution (HI) TECHNISCHE UNIVERSITAET MUENCHEN
Call Details Advanced Grant (AdG), PE5, ERC-2015-AdG
Summary Amorphous and evolutionary DNA nanotechnology (AEDNA) explores novel conceptual directions and applications for DNA nanotechnology, which are based on intelligent, DNA-programmed soft hybrid materials, and the utilization of evolutionary principles for the optimization of nucleic acid nanocomponents.
Amorphous DNA nanotechnology first aims at the creation of cell-sized, DNA-programmed microgels – DNA cells – with sensor, computation, communication, and actuator functions. Interacting DNA cells will be arranged into chemical cell consortia and artificial tissues using microfluidics, micromanipulation and 3D bioprinting techniques. Spatially distributed chemical circuits will then be utilized to establish collective behaviors such as quorum sensing, pattern formation, and self-differentiation within these consortia and tissues. The approach will be further scaled up to produce multicomponent DNA gel compositions that become active and differentiate upon mixing.
In evolutionary nanotechnology, techniques derived from directed molecular evolution experiments will be applied to optimize the arrangement of functional nucleic acids on DNA and RNA nanoscaffolds. Compartmentalization and microfluidics will be utilized to screen for nucleic acid nanostructures capable of superstructure formation, and also for the development of ligand-sensitive components for molecular programming. An evolutionary approach will then be applied to amorphous DNA cells, resulting in DNA cell populations which contain individuals with different molecular identities.
The proposal will pave the way for the creation of macroscopic materials with DNA-programmed intelligence, resulting in novel applications for DNA nanotechnology and molecular programming in diverse fields such as environmental and biological sensing, biocatalysis, smart adaptive materials, and soft robotics.
Summary
Amorphous and evolutionary DNA nanotechnology (AEDNA) explores novel conceptual directions and applications for DNA nanotechnology, which are based on intelligent, DNA-programmed soft hybrid materials, and the utilization of evolutionary principles for the optimization of nucleic acid nanocomponents.
Amorphous DNA nanotechnology first aims at the creation of cell-sized, DNA-programmed microgels – DNA cells – with sensor, computation, communication, and actuator functions. Interacting DNA cells will be arranged into chemical cell consortia and artificial tissues using microfluidics, micromanipulation and 3D bioprinting techniques. Spatially distributed chemical circuits will then be utilized to establish collective behaviors such as quorum sensing, pattern formation, and self-differentiation within these consortia and tissues. The approach will be further scaled up to produce multicomponent DNA gel compositions that become active and differentiate upon mixing.
In evolutionary nanotechnology, techniques derived from directed molecular evolution experiments will be applied to optimize the arrangement of functional nucleic acids on DNA and RNA nanoscaffolds. Compartmentalization and microfluidics will be utilized to screen for nucleic acid nanostructures capable of superstructure formation, and also for the development of ligand-sensitive components for molecular programming. An evolutionary approach will then be applied to amorphous DNA cells, resulting in DNA cell populations which contain individuals with different molecular identities.
The proposal will pave the way for the creation of macroscopic materials with DNA-programmed intelligence, resulting in novel applications for DNA nanotechnology and molecular programming in diverse fields such as environmental and biological sensing, biocatalysis, smart adaptive materials, and soft robotics.
Max ERC Funding
2 157 698 €
Duration
Start date: 2016-06-01, End date: 2021-05-31
Project acronym AEROBIC
Project Assessing the Effects of Rising O2 on Biogeochemical Cycles: Integrated Laboratory Experiments and Numerical Simulations
Researcher (PI) Itay Halevy
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Starting Grant (StG), PE10, ERC-2013-StG
Summary The rise of atmospheric O2 ~2,500 million years ago is one of the most profound transitions in Earth's history. Yet, despite its central role in shaping Earth's surface environment, the cause for the rise of O2 remains poorly understood. Tight coupling between the O2 cycle and the biogeochemical cycles of redox-active elements, such as C, Fe and S, implies radical changes in these cycles before, during and after the rise of O2. These changes, too, are incompletely understood, but have left valuable information encoded in the geological record. This information has been qualitatively interpreted, leaving many aspects of the rise of O2, including its causes and constraints on ocean chemistry before and after it, topics of ongoing research and debate. Here, I outline a research program to address this fundamental question in geochemical Earth systems evolution. The inherently interdisciplinary program uniquely integrates laboratory experiments, numerical models, geological observations, and geochemical analyses. Laboratory experiments and geological observations will constrain unknown parameters of the early biogeochemical cycles, and, in combination with field studies, will validate and refine the use of paleoenvironmental proxies. The insight gained will be used to develop detailed models of the coupled biogeochemical cycles, which will themselves be used to quantitatively understand the events surrounding the rise of O2, and to illuminate the dynamics of elemental cycles in the early oceans.
This program is expected to yield novel, quantitative insight into these important events in Earth history and to have a major impact on our understanding of early ocean chemistry and the rise of O2. An ERC Starting Grant will enable me to use the excellent experimental and computational facilities at my disposal, to access the outstanding human resource at the Weizmann Institute of Science, and to address one of the major open questions in modern geochemistry.
Summary
The rise of atmospheric O2 ~2,500 million years ago is one of the most profound transitions in Earth's history. Yet, despite its central role in shaping Earth's surface environment, the cause for the rise of O2 remains poorly understood. Tight coupling between the O2 cycle and the biogeochemical cycles of redox-active elements, such as C, Fe and S, implies radical changes in these cycles before, during and after the rise of O2. These changes, too, are incompletely understood, but have left valuable information encoded in the geological record. This information has been qualitatively interpreted, leaving many aspects of the rise of O2, including its causes and constraints on ocean chemistry before and after it, topics of ongoing research and debate. Here, I outline a research program to address this fundamental question in geochemical Earth systems evolution. The inherently interdisciplinary program uniquely integrates laboratory experiments, numerical models, geological observations, and geochemical analyses. Laboratory experiments and geological observations will constrain unknown parameters of the early biogeochemical cycles, and, in combination with field studies, will validate and refine the use of paleoenvironmental proxies. The insight gained will be used to develop detailed models of the coupled biogeochemical cycles, which will themselves be used to quantitatively understand the events surrounding the rise of O2, and to illuminate the dynamics of elemental cycles in the early oceans.
This program is expected to yield novel, quantitative insight into these important events in Earth history and to have a major impact on our understanding of early ocean chemistry and the rise of O2. An ERC Starting Grant will enable me to use the excellent experimental and computational facilities at my disposal, to access the outstanding human resource at the Weizmann Institute of Science, and to address one of the major open questions in modern geochemistry.
Max ERC Funding
1 472 690 €
Duration
Start date: 2013-09-01, End date: 2018-08-31
Project acronym AEROCAT
Project Non-ordered nanoparticle superstructures – aerogels as efficient (electro-)catalysts
Researcher (PI) Alexander Eychmüller
Host Institution (HI) TECHNISCHE UNIVERSITAET DRESDEN
Call Details Advanced Grant (AdG), PE5, ERC-2013-ADG
Summary "AEROCAT aims at the elucidation of the potential of nanoparticle derived aerogels in catalytic applications. The materials will be produced from a variety of nanoparticles available in colloidal solutions, amongst which are metals and metal oxides. The evolving aerogels are extremely light, highly porous solids and have been demonstrated to exhibit in many cases the important properties of the nanosized objects they consist of instead of simply those of the respective bulk solids. The resulting aerogel materials will be characterized with respect to their morphology and composition and their resulting (electro-)catalytic properties examined in the light of the inherent electronic nature of the nanosized constituents. Using the knowledge gained within the project the aerogel materials will be further re-processed in order to exploit their full potential relevant to catalysis and electrocatalysis.
From the vast variety of possible applications of nanoparticle-based hydro- and aerogels like thermoelectrics, LEDs, pollutant clearance, sensorics and others we choose our strictly focused approach
(i) due to the paramount importance of catalysis for the Chemical Industry,
(ii) because we have successfully studied the Ethanol electrooxidation on a Pd-nanoparticle aerogel,
(iii) we have patented on the oxygen reduction reaction in fuel cells with bimetallic aerogels,
(iv) and we gained first and extremely promising results on the semi-hydrogenation of Acetylene on a mixed Pd/ZnO-nanoparticle aerogel.
With this we are on the forefront of a research field which impact might not be overestimated. We should quickly explore its potentials and transfer on a short track the knowledge gained into pre-industrial testing."
Summary
"AEROCAT aims at the elucidation of the potential of nanoparticle derived aerogels in catalytic applications. The materials will be produced from a variety of nanoparticles available in colloidal solutions, amongst which are metals and metal oxides. The evolving aerogels are extremely light, highly porous solids and have been demonstrated to exhibit in many cases the important properties of the nanosized objects they consist of instead of simply those of the respective bulk solids. The resulting aerogel materials will be characterized with respect to their morphology and composition and their resulting (electro-)catalytic properties examined in the light of the inherent electronic nature of the nanosized constituents. Using the knowledge gained within the project the aerogel materials will be further re-processed in order to exploit their full potential relevant to catalysis and electrocatalysis.
From the vast variety of possible applications of nanoparticle-based hydro- and aerogels like thermoelectrics, LEDs, pollutant clearance, sensorics and others we choose our strictly focused approach
(i) due to the paramount importance of catalysis for the Chemical Industry,
(ii) because we have successfully studied the Ethanol electrooxidation on a Pd-nanoparticle aerogel,
(iii) we have patented on the oxygen reduction reaction in fuel cells with bimetallic aerogels,
(iv) and we gained first and extremely promising results on the semi-hydrogenation of Acetylene on a mixed Pd/ZnO-nanoparticle aerogel.
With this we are on the forefront of a research field which impact might not be overestimated. We should quickly explore its potentials and transfer on a short track the knowledge gained into pre-industrial testing."
Max ERC Funding
2 194 000 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym AestApp
Project The Aesthetics of Applied Theatre
Researcher (PI) Matthias Warstat
Host Institution (HI) FREIE UNIVERSITAET BERLIN
Call Details Advanced Grant (AdG), SH5, ERC-2011-ADG_20110406
Summary The project aims to systematically explore an entire field of current forms of theatre, which despite its outstanding cultural and political significance has so far largely been ignored by theatre studies. Over the past two decades, notwithstanding intense competition from television and electronic media, theatre has been able to reassert and even reinforce its relevance in many different parts of the world and in widely diverse cultural fields (politics, business, social work, development aid, health care, and education). This renewed relevance originates not in traditional, experimental, or commercial theatre but rather among the many different types of applied theatre, which set in motion constructive social processes while upholding theatre’s aesthetic claim. Theatre with clear social, political, or economic aims is experiencing an unprecedented boom. The study will analyse this cross-cultural trend against the background of new theories of the aesthetics of performances and rehearsal processes. This theatre studies approach promises precise insights into the aesthetic forms of applied theatre, which constitute the (hitherto barely researched) foundation of its political effects. It will furthermore bring to light the ethical issues of applied theatre: intense aesthetic experiences – often linked with risks when it comes to performances – do not readily fit in with the claim to restore children, youngsters, patients, and other target groups to health, integrity, and self-confidence through theatrical practice. The project aims to show how aesthetic, political, and ethical aspects interact in the practice of applied theatre. Investigations will focus on carefully selected case studies in Africa, Europe, the Middle East, and Latin America, whose comparison will make it possible for the first time to capture the worldwide landscape of applied theatre in its full diversity, but also in its overarching structures and interrelations.
Summary
The project aims to systematically explore an entire field of current forms of theatre, which despite its outstanding cultural and political significance has so far largely been ignored by theatre studies. Over the past two decades, notwithstanding intense competition from television and electronic media, theatre has been able to reassert and even reinforce its relevance in many different parts of the world and in widely diverse cultural fields (politics, business, social work, development aid, health care, and education). This renewed relevance originates not in traditional, experimental, or commercial theatre but rather among the many different types of applied theatre, which set in motion constructive social processes while upholding theatre’s aesthetic claim. Theatre with clear social, political, or economic aims is experiencing an unprecedented boom. The study will analyse this cross-cultural trend against the background of new theories of the aesthetics of performances and rehearsal processes. This theatre studies approach promises precise insights into the aesthetic forms of applied theatre, which constitute the (hitherto barely researched) foundation of its political effects. It will furthermore bring to light the ethical issues of applied theatre: intense aesthetic experiences – often linked with risks when it comes to performances – do not readily fit in with the claim to restore children, youngsters, patients, and other target groups to health, integrity, and self-confidence through theatrical practice. The project aims to show how aesthetic, political, and ethical aspects interact in the practice of applied theatre. Investigations will focus on carefully selected case studies in Africa, Europe, the Middle East, and Latin America, whose comparison will make it possible for the first time to capture the worldwide landscape of applied theatre in its full diversity, but also in its overarching structures and interrelations.
Max ERC Funding
2 285 295 €
Duration
Start date: 2012-12-01, End date: 2017-11-30
Project acronym AFFIRM
Project Analysis of Biofilm Mediated Fouling of Nanofiltration Membranes
Researcher (PI) Eoin Casey
Host Institution (HI) UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN
Call Details Starting Grant (StG), PE8, ERC-2011-StG_20101014
Summary 1.2 billion people worldwide lack access to safe drinking water. Drinking water quality is threatened by newly emerging organic micro-pollutants (pesticides, pharmaceuticals, industrial chemicals) in source waters. Nanofiltration is a technology that is expected to play a key role in future water treatment processes due to its effectiveness in removal of micropollutants. However, the loss of membrane flux due to fouling is one of the main impediments in the development of membrane processes for use in drinking water treatment. Currently there is a wholly inadequate mechanistic understanding of the role of biofilm on the fouling of nanofiltration membranes.
Applying techniques including confocal microscopy, force spectroscopy, and infrared spectroscopy using an experimental programme informed by a technique known as scale-down together with mathematical modelling, it is confidently expected that significant advances will be gained in the mechanistic understanding of nanofiltration biofouling.
The specific objectives are 1. How is the rate of formation and extent of such biofilms influenced by the biological response to the local microenvironment? 2 Elucidate the effect of extracellular polysaccharide substances on physical properties, composition and structure of these biofilms. 3: Investigate mechanisms to enhance biofilm removal by a physical detachment process complemented by techniques that alter biofilm material properties.
A more fundamental insight into the mechanisms of nanofiltration operation will help in further development of this treatment method in future water treatment processes.
Summary
1.2 billion people worldwide lack access to safe drinking water. Drinking water quality is threatened by newly emerging organic micro-pollutants (pesticides, pharmaceuticals, industrial chemicals) in source waters. Nanofiltration is a technology that is expected to play a key role in future water treatment processes due to its effectiveness in removal of micropollutants. However, the loss of membrane flux due to fouling is one of the main impediments in the development of membrane processes for use in drinking water treatment. Currently there is a wholly inadequate mechanistic understanding of the role of biofilm on the fouling of nanofiltration membranes.
Applying techniques including confocal microscopy, force spectroscopy, and infrared spectroscopy using an experimental programme informed by a technique known as scale-down together with mathematical modelling, it is confidently expected that significant advances will be gained in the mechanistic understanding of nanofiltration biofouling.
The specific objectives are 1. How is the rate of formation and extent of such biofilms influenced by the biological response to the local microenvironment? 2 Elucidate the effect of extracellular polysaccharide substances on physical properties, composition and structure of these biofilms. 3: Investigate mechanisms to enhance biofilm removal by a physical detachment process complemented by techniques that alter biofilm material properties.
A more fundamental insight into the mechanisms of nanofiltration operation will help in further development of this treatment method in future water treatment processes.
Max ERC Funding
1 468 987 €
Duration
Start date: 2011-10-01, End date: 2016-09-30
Project acronym AGALT
Project Asymptotic Geometric Analysis and Learning Theory
Researcher (PI) Shahar Mendelson
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Starting Grant (StG), PE1, ERC-2007-StG
Summary In a typical learning problem one tries to approximate an unknown function by a function from a given class using random data, sampled according to an unknown measure. In this project we will be interested in parameters that govern the complexity of a learning problem. It turns out that this complexity is determined by the geometry of certain sets in high dimension that are connected to the given class (random coordinate projections of the class). Thus, one has to understand the structure of these sets as a function of the dimension - which is given by the cardinality of the random sample. The resulting analysis leads to many theoretical questions in Asymptotic Geometric Analysis, Probability (most notably, Empirical Processes Theory) and Combinatorics, which are of independent interest beyond the application to Learning Theory. Our main goal is to describe the role of various complexity parameters involved in a learning problem, to analyze the connections between them and to investigate the way they determine the geometry of the relevant high dimensional sets. Some of the questions we intend to tackle are well known open problems and making progress towards their solution will have a significant theoretical impact. Moreover, this project should lead to a more complete theory of learning and is likely to have some practical impact, for example, in the design of more efficient learning algorithms.
Summary
In a typical learning problem one tries to approximate an unknown function by a function from a given class using random data, sampled according to an unknown measure. In this project we will be interested in parameters that govern the complexity of a learning problem. It turns out that this complexity is determined by the geometry of certain sets in high dimension that are connected to the given class (random coordinate projections of the class). Thus, one has to understand the structure of these sets as a function of the dimension - which is given by the cardinality of the random sample. The resulting analysis leads to many theoretical questions in Asymptotic Geometric Analysis, Probability (most notably, Empirical Processes Theory) and Combinatorics, which are of independent interest beyond the application to Learning Theory. Our main goal is to describe the role of various complexity parameters involved in a learning problem, to analyze the connections between them and to investigate the way they determine the geometry of the relevant high dimensional sets. Some of the questions we intend to tackle are well known open problems and making progress towards their solution will have a significant theoretical impact. Moreover, this project should lead to a more complete theory of learning and is likely to have some practical impact, for example, in the design of more efficient learning algorithms.
Max ERC Funding
750 000 €
Duration
Start date: 2009-03-01, End date: 2014-02-28
Project acronym AgeingStemCellFate
Project The Role of Ectopic Adipocyte Progenitors in Age-related Stem Cell Dysfunction, Systemic Inflammation, and Metabolic Disease
Researcher (PI) Tim Julius Schulz
Host Institution (HI) DEUTSCHES INSTITUT FUER ERNAEHRUNGSFORSCHUNG POTSDAM REHBRUECKE
Call Details Starting Grant (StG), LS4, ERC-2012-StG_20111109
Summary Ageing is accompanied by ectopic white adipose tissue depositions in skeletal muscle and other anatomical locations, such as brown adipose tissue and the bone marrow. Ectopic fat accrual contributes to organ dysfunction, systemic insulin resistance, and other perturbations that have been implicated in metabolic diseases.
This research proposal aims to identify the regulatory cues that control the development of ectopic progenitor cells that give rise to this type of fat. It is hypothesized that an age-related dysfunction of the stem cell niche leads to an imbalance between (1) tissue-specific stem cells and (2) fibroblast-like, primarily adipogenic progenitors that reside within many tissues. Novel methodologies that assess stem/progenitor cell characteristics on the single cell level will be combined with animal models of lineage tracing to determine the developmental origin of these adipogenic progenitors and processes that regulate their function.
Notch signalling is a key signalling pathway that relies on direct physical interaction to control stem cell fate. It is proposed that impaired Notch activity contributes to the phenotypical shift of precursor cell distribution in aged tissues.
Lastly, the role of the stem cell niche in ectopic adipocyte progenitor formation will be analyzed. External signals originating from the surrounding niche cells regulate the developmental fate of stem cells. Secreted factors and their role in the formation of ectopic adipocyte precursors during senescence will be identified using a combination of biochemical and systems biology approaches.
Accomplishment of these studies will help to understand the basic processes of stem cell ageing and identify mechanisms of age-related functional decline in tissue regeneration. By targeting the population of tissue-resident adipogenic progenitor cells, therapeutic strategies could be developed to counteract metabolic complications associated with the ageing process.
Summary
Ageing is accompanied by ectopic white adipose tissue depositions in skeletal muscle and other anatomical locations, such as brown adipose tissue and the bone marrow. Ectopic fat accrual contributes to organ dysfunction, systemic insulin resistance, and other perturbations that have been implicated in metabolic diseases.
This research proposal aims to identify the regulatory cues that control the development of ectopic progenitor cells that give rise to this type of fat. It is hypothesized that an age-related dysfunction of the stem cell niche leads to an imbalance between (1) tissue-specific stem cells and (2) fibroblast-like, primarily adipogenic progenitors that reside within many tissues. Novel methodologies that assess stem/progenitor cell characteristics on the single cell level will be combined with animal models of lineage tracing to determine the developmental origin of these adipogenic progenitors and processes that regulate their function.
Notch signalling is a key signalling pathway that relies on direct physical interaction to control stem cell fate. It is proposed that impaired Notch activity contributes to the phenotypical shift of precursor cell distribution in aged tissues.
Lastly, the role of the stem cell niche in ectopic adipocyte progenitor formation will be analyzed. External signals originating from the surrounding niche cells regulate the developmental fate of stem cells. Secreted factors and their role in the formation of ectopic adipocyte precursors during senescence will be identified using a combination of biochemical and systems biology approaches.
Accomplishment of these studies will help to understand the basic processes of stem cell ageing and identify mechanisms of age-related functional decline in tissue regeneration. By targeting the population of tissue-resident adipogenic progenitor cells, therapeutic strategies could be developed to counteract metabolic complications associated with the ageing process.
Max ERC Funding
1 496 444 €
Duration
Start date: 2013-03-01, End date: 2018-02-28
Project acronym AGELESS
Project Comparative genomics / ‘wildlife’ transcriptomics uncovers the mechanisms of halted ageing in mammals
Researcher (PI) Emma Teeling
Host Institution (HI) UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN
Call Details Starting Grant (StG), LS2, ERC-2012-StG_20111109
Summary "Ageing is the gradual and irreversible breakdown of living systems associated with the advancement of time, which leads to an increase in vulnerability and eventual mortality. Despite recent advances in ageing research, the intrinsic complexity of the ageing process has prevented a full understanding of this process, therefore, ageing remains a grand challenge in contemporary biology. In AGELESS, we will tackle this challenge by uncovering the molecular mechanisms of halted ageing in a unique model system, the bats. Bats are the longest-lived mammals relative to their body size, and defy the ‘rate-of-living’ theories as they use twice as much the energy as other species of considerable size, but live far longer. This suggests that bats have some underlying mechanisms that may explain their exceptional longevity. In AGELESS, we will identify the molecular mechanisms that enable mammals to achieve extraordinary longevity, using state-of-the-art comparative genomic methodologies focused on bats. We will identify, using population transcriptomics and telomere/mtDNA genomics, the molecular changes that occur in an ageing wild population of bats to uncover how bats ‘age’ so slowly compared with other mammals. In silico whole genome analyses, field based ageing transcriptomic data, mtDNA and telomeric studies will be integrated and analysed using a networks approach, to ascertain how these systems interact to halt ageing. For the first time, we will be able to utilize the diversity seen within nature to identify key molecular targets and regions that regulate and control ageing in mammals. AGELESS will provide a deeper understanding of the causal mechanisms of ageing, potentially uncovering the crucial molecular pathways that can be modified to halt, alleviate and perhaps even reverse this process in man."
Summary
"Ageing is the gradual and irreversible breakdown of living systems associated with the advancement of time, which leads to an increase in vulnerability and eventual mortality. Despite recent advances in ageing research, the intrinsic complexity of the ageing process has prevented a full understanding of this process, therefore, ageing remains a grand challenge in contemporary biology. In AGELESS, we will tackle this challenge by uncovering the molecular mechanisms of halted ageing in a unique model system, the bats. Bats are the longest-lived mammals relative to their body size, and defy the ‘rate-of-living’ theories as they use twice as much the energy as other species of considerable size, but live far longer. This suggests that bats have some underlying mechanisms that may explain their exceptional longevity. In AGELESS, we will identify the molecular mechanisms that enable mammals to achieve extraordinary longevity, using state-of-the-art comparative genomic methodologies focused on bats. We will identify, using population transcriptomics and telomere/mtDNA genomics, the molecular changes that occur in an ageing wild population of bats to uncover how bats ‘age’ so slowly compared with other mammals. In silico whole genome analyses, field based ageing transcriptomic data, mtDNA and telomeric studies will be integrated and analysed using a networks approach, to ascertain how these systems interact to halt ageing. For the first time, we will be able to utilize the diversity seen within nature to identify key molecular targets and regions that regulate and control ageing in mammals. AGELESS will provide a deeper understanding of the causal mechanisms of ageing, potentially uncovering the crucial molecular pathways that can be modified to halt, alleviate and perhaps even reverse this process in man."
Max ERC Funding
1 499 768 €
Duration
Start date: 2013-01-01, End date: 2017-12-31
Project acronym AGESPACE
Project SPATIAL NAVIGATION – A UNIQUE WINDOW INTO MECHANISMS OF COGNITIVE AGEING
Researcher (PI) Thomas Wolbers
Host Institution (HI) DEUTSCHES ZENTRUM FUR NEURODEGENERATIVE ERKRANKUNGEN EV
Call Details Starting Grant (StG), SH4, ERC-2013-StG
Summary "By 2040, the European population aged over 60 will rise to 290 million, with those estimated to have dementia to 15.9 million. These dramatic demographic changes will pose huge challenges to health care systems, hence a detailed understanding of age-related cognitive and neurobiological changes is essential for helping elderly populations maintain independence. However, while existing research into cognitive ageing has carefully characterised developmental trajectories of functions such as memory and processing speed, one key cognitive ability that is particularly relevant to everyday functioning has received very little attention: In surveys, elderly people often report substantial declines in navigational abilities such as problems with finding one’s way in a novel environment. Such deficits severely restrict the mobility of elderly people and affect physical activity and social participation, but the underlying behavioural and neuronal mechanisms are poorly understood.
In this proposal, I will take a new approach to cognitive ageing that will bridge the gap between animal neurobiology and human cognitive neuroscience. With support from the ERC, I will create a team that will characterise the mechanisms mediating age-related changes in navigational processing in humans. The project will focus on three structures that perform key computations for spatial navigation, form a closely interconnected triadic network, and are particularly sensitive to the ageing process. Crucially, the team will employ an interdisciplinary methodological approach that combines mathematical modelling, brain imaging and innovative data analysis techniques with novel virtual environment technology, which allows for rigorous testing of predictions derived from animal findings. Finally, the proposal also incorporates a translational project aimed at improving spatial mnemonic functioning with a behavioural intervention, which provides a direct test of functional relevance and societal impact."
Summary
"By 2040, the European population aged over 60 will rise to 290 million, with those estimated to have dementia to 15.9 million. These dramatic demographic changes will pose huge challenges to health care systems, hence a detailed understanding of age-related cognitive and neurobiological changes is essential for helping elderly populations maintain independence. However, while existing research into cognitive ageing has carefully characterised developmental trajectories of functions such as memory and processing speed, one key cognitive ability that is particularly relevant to everyday functioning has received very little attention: In surveys, elderly people often report substantial declines in navigational abilities such as problems with finding one’s way in a novel environment. Such deficits severely restrict the mobility of elderly people and affect physical activity and social participation, but the underlying behavioural and neuronal mechanisms are poorly understood.
In this proposal, I will take a new approach to cognitive ageing that will bridge the gap between animal neurobiology and human cognitive neuroscience. With support from the ERC, I will create a team that will characterise the mechanisms mediating age-related changes in navigational processing in humans. The project will focus on three structures that perform key computations for spatial navigation, form a closely interconnected triadic network, and are particularly sensitive to the ageing process. Crucially, the team will employ an interdisciplinary methodological approach that combines mathematical modelling, brain imaging and innovative data analysis techniques with novel virtual environment technology, which allows for rigorous testing of predictions derived from animal findings. Finally, the proposal also incorporates a translational project aimed at improving spatial mnemonic functioning with a behavioural intervention, which provides a direct test of functional relevance and societal impact."
Max ERC Funding
1 318 990 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym Agglomerates
Project Infinite Protein Self-Assembly in Health and Disease
Researcher (PI) Emmanuel Doram LEVY
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Consolidator Grant (CoG), LS2, ERC-2018-COG
Summary Understanding how proteins respond to mutations is of paramount importance to biology and disease. While protein stability and misfolding have been instrumental in rationalizing the impact of mutations, we recently discovered that an alternative route is also frequent, where mutations at the surface of symmetric proteins trigger novel self-interactions that lead to infinite self-assembly. This mechanism can be involved in disease, as in sickle-cell anemia, but may also serve in adaptation. Importantly, it differs fundamentally from aggregation, because misfolding does not drive it. Thus, we term it “agglomeration”. The ease with which agglomeration can occur, even by single point mutations, shifts the paradigm of how quickly new protein assemblies can emerge, both in health and disease. This prompts us to determine the basic principles of protein agglomeration and explore its implications in cell physiology and human disease.
We propose an interdisciplinary research program bridging atomic and cellular scales to explore agglomeration in three aims: (i) Map the landscape of protein agglomeration in response to mutation in endogenous yeast proteins; (ii) Characterize how yeast physiology impacts agglomeration by changes in gene expression or cell state, and, conversely, how protein agglomerates impact yeast fitness. (iii) Analyze agglomeration in relation to human disease via two approaches. First, by predicting single nucleotide polymorphisms that trigger agglomeration, prioritizing them using knowledge from Aims 1 & 2, and characterizing them experimentally. Second, by providing a proof-of-concept that agglomeration can be exploited in drug design, whereby drugs induce its formation, like mutations can do.
Overall, through this research, we aim to establish agglomeration as a paradigm for protein assembly, with implications for our understanding of evolution, physiology, and disease.
Summary
Understanding how proteins respond to mutations is of paramount importance to biology and disease. While protein stability and misfolding have been instrumental in rationalizing the impact of mutations, we recently discovered that an alternative route is also frequent, where mutations at the surface of symmetric proteins trigger novel self-interactions that lead to infinite self-assembly. This mechanism can be involved in disease, as in sickle-cell anemia, but may also serve in adaptation. Importantly, it differs fundamentally from aggregation, because misfolding does not drive it. Thus, we term it “agglomeration”. The ease with which agglomeration can occur, even by single point mutations, shifts the paradigm of how quickly new protein assemblies can emerge, both in health and disease. This prompts us to determine the basic principles of protein agglomeration and explore its implications in cell physiology and human disease.
We propose an interdisciplinary research program bridging atomic and cellular scales to explore agglomeration in three aims: (i) Map the landscape of protein agglomeration in response to mutation in endogenous yeast proteins; (ii) Characterize how yeast physiology impacts agglomeration by changes in gene expression or cell state, and, conversely, how protein agglomerates impact yeast fitness. (iii) Analyze agglomeration in relation to human disease via two approaches. First, by predicting single nucleotide polymorphisms that trigger agglomeration, prioritizing them using knowledge from Aims 1 & 2, and characterizing them experimentally. Second, by providing a proof-of-concept that agglomeration can be exploited in drug design, whereby drugs induce its formation, like mutations can do.
Overall, through this research, we aim to establish agglomeration as a paradigm for protein assembly, with implications for our understanding of evolution, physiology, and disease.
Max ERC Funding
2 574 819 €
Duration
Start date: 2019-04-01, End date: 2024-03-31
Project acronym AIM2 INFLAMMASOME
Project Cytosolic recognition of foreign nucleic acids: Molecular and functional characterization of AIM2, a central player in DNA-triggered inflammasome activation
Researcher (PI) Veit Hornung
Host Institution (HI) UNIVERSITAETSKLINIKUM BONN
Call Details Starting Grant (StG), LS6, ERC-2009-StG
Summary Host cytokines, chemokines and type I IFNs are critical effectors of the innate immune response to viral and bacterial pathogens. Several classes of germ-line encoded pattern recognition receptors have been identified, which sense non-self nucleic acids and trigger these responses. Recently NLRP-3, a member of the NOD-like receptor (NLR) family, has been shown to sense endogenous danger signals, environmental insults and the DNA viruses adenovirus and HSV. Activation of NLRP-3 induces the formation of a large multiprotein complex in cells termed inflammasome , which controls the activity of pro-caspase-1 and the maturation of pro-IL-1² and pro-IL18 into their active forms. NLRP-3, however, does not regulate these responses to double stranded cytosolic DNA. We identified the cytosolic protein AIM2 as the missing receptor for cytosolic DNA. AIM2 contains a HIN200 domain, which binds to DNA and a pyrin domain, which associates with the adapter molecule ASC to activate both NF-ºB and caspase-1. Knock down of AIM2 down-regulates caspase-1-mediated IL-1² responses following DNA stimulation or vaccinia virus infection. Collectively, these observations demonstrate that AIM2 forms an inflammasome with the DNA ligand and ASC to activate caspase-1. Our underlying hypothesis for this proposal is that AIM2 plays a central role in host-defence to cytosolic microbial pathogens and also in DNA-triggered autoimmunity. The goals of this research proposal are to further characterize the DNA ligand for AIM2, to explore the molecular mechanisms of AIM2 activation, to define the contribution of AIM2 to host-defence against viral and bacterial pathogens and to assess its function in nucleic acid triggered autoimmune disease. The characterization of AIM2 and its role in innate immunity could open new avenues in the advancement of immunotherapy and treatment of autoimmune disease.
Summary
Host cytokines, chemokines and type I IFNs are critical effectors of the innate immune response to viral and bacterial pathogens. Several classes of germ-line encoded pattern recognition receptors have been identified, which sense non-self nucleic acids and trigger these responses. Recently NLRP-3, a member of the NOD-like receptor (NLR) family, has been shown to sense endogenous danger signals, environmental insults and the DNA viruses adenovirus and HSV. Activation of NLRP-3 induces the formation of a large multiprotein complex in cells termed inflammasome , which controls the activity of pro-caspase-1 and the maturation of pro-IL-1² and pro-IL18 into their active forms. NLRP-3, however, does not regulate these responses to double stranded cytosolic DNA. We identified the cytosolic protein AIM2 as the missing receptor for cytosolic DNA. AIM2 contains a HIN200 domain, which binds to DNA and a pyrin domain, which associates with the adapter molecule ASC to activate both NF-ºB and caspase-1. Knock down of AIM2 down-regulates caspase-1-mediated IL-1² responses following DNA stimulation or vaccinia virus infection. Collectively, these observations demonstrate that AIM2 forms an inflammasome with the DNA ligand and ASC to activate caspase-1. Our underlying hypothesis for this proposal is that AIM2 plays a central role in host-defence to cytosolic microbial pathogens and also in DNA-triggered autoimmunity. The goals of this research proposal are to further characterize the DNA ligand for AIM2, to explore the molecular mechanisms of AIM2 activation, to define the contribution of AIM2 to host-defence against viral and bacterial pathogens and to assess its function in nucleic acid triggered autoimmune disease. The characterization of AIM2 and its role in innate immunity could open new avenues in the advancement of immunotherapy and treatment of autoimmune disease.
Max ERC Funding
1 727 920 €
Duration
Start date: 2009-12-01, End date: 2014-11-30
Project acronym AIRWAVES
Project Automated high resolution water sampler for environmental monitoring
Researcher (PI) Dirk Sachse
Host Institution (HI) HELMHOLTZ ZENTRUM POTSDAM DEUTSCHESGEOFORSCHUNGSZENTRUM GFZ
Call Details Proof of Concept (PoC), ERC-2018-PoC
Summary A new automated water sampling technology was developed under the ERC Consolidator Grant STEEPclim with the potential to revolutionize environmental monitoring worldwide. A changing climate and growing scarcity of water strongly increase the need of reliable standardized and highly automated environmental monitoring, thus creating a growing market for our innovative solution. Our first prototype successfully operated under field conditions. Now we seek funding to further develop this device and explore commercialization pathways. Today, rain water, river discharge and climate are monitored routinely with high temporal resolution using quality sensors, but no adequate automated technology for obtaining representative samples for laboratory grade analysis is available for weather services, hydromet offices, chemical industry or research institutions. So far taking, preserving and analyzing samples from natural waters is meticulous, labor intensive and expensive. Isotope signatures in water are ideal tracers of processes in the water cycle. Stable isotope analysis of precipitation can identify changing atmospheric circulation patterns and the origin of groundwater. They can also be used for the reconstruction of paleoclimate from ancient waters locked in geological archives. The analysis of fruits, food and drink products, of drugs, explosives and human remains is used to identify their regional provenance. For this purpose a robust understanding of the modern distribution of isotopes in space and time is indispensable. The autonomous and robust sampler introduced here is designed to fulfill the high demands on sampling and storage for isotope analysis. It is portable, has low power consumption and can be accessed remotely for maintenance and to adapt the sampling protocol strategy. The obtained water samples are not restricted to isotope analysis but can be used for any type of environmental water analysis.
Summary
A new automated water sampling technology was developed under the ERC Consolidator Grant STEEPclim with the potential to revolutionize environmental monitoring worldwide. A changing climate and growing scarcity of water strongly increase the need of reliable standardized and highly automated environmental monitoring, thus creating a growing market for our innovative solution. Our first prototype successfully operated under field conditions. Now we seek funding to further develop this device and explore commercialization pathways. Today, rain water, river discharge and climate are monitored routinely with high temporal resolution using quality sensors, but no adequate automated technology for obtaining representative samples for laboratory grade analysis is available for weather services, hydromet offices, chemical industry or research institutions. So far taking, preserving and analyzing samples from natural waters is meticulous, labor intensive and expensive. Isotope signatures in water are ideal tracers of processes in the water cycle. Stable isotope analysis of precipitation can identify changing atmospheric circulation patterns and the origin of groundwater. They can also be used for the reconstruction of paleoclimate from ancient waters locked in geological archives. The analysis of fruits, food and drink products, of drugs, explosives and human remains is used to identify their regional provenance. For this purpose a robust understanding of the modern distribution of isotopes in space and time is indispensable. The autonomous and robust sampler introduced here is designed to fulfill the high demands on sampling and storage for isotope analysis. It is portable, has low power consumption and can be accessed remotely for maintenance and to adapt the sampling protocol strategy. The obtained water samples are not restricted to isotope analysis but can be used for any type of environmental water analysis.
Max ERC Funding
149 711 €
Duration
Start date: 2019-01-01, End date: 2020-06-30
Project acronym ALEXANDRIA
Project "Foundations for Temporal Retrieval, Exploration and Analytics in Web Archives"
Researcher (PI) Wolfgang Nejdl
Host Institution (HI) GOTTFRIED WILHELM LEIBNIZ UNIVERSITAET HANNOVER
Call Details Advanced Grant (AdG), PE6, ERC-2013-ADG
Summary "Significant parts of our cultural heritage are produced on the Web, yet only insufficient opportunities exist for accessing and exploring the past of the Web. The ALEXANDRIA project aims to develop models, tools and techniques necessary to archive and index relevant parts of the Web, and to retrieve and explore this information in a meaningful way. While the easy accessibility to the current Web is a good baseline, optimal access to Web archives requires new models and algorithms for retrieval, exploration, and analytics which go far beyond what is needed to access the current state of the Web. This includes taking into account the unique temporal dimension of Web archives, structured semantic information already available on the Web, as well as social media and network information.
Within ALEXANDRIA, we will significantly advance semantic and time-based indexing for Web archives using human-compiled knowledge available on the Web, to efficiently index, retrieve and explore information about entities and events from the past. In doing so, we will focus on the concurrent evolution of this knowledge and the Web content to be indexed, and take into account diversity and incompleteness of this knowledge. We will further investigate mixed crowd- and machine-based Web analytics to support long- running and collaborative retrieval and analysis processes on Web archives. Usage of implicit human feedback will be essential to provide better indexing through insights during the analysis process and to better focus harvesting of content.
The ALEXANDRIA Testbed will provide an important context for research, exploration and evaluation of the concepts, methods and algorithms developed in this project, and will provide both relevant collections and algorithms that enable further research on and practical application of our research results to existing archives like the Internet Archive, the Internet Memory Foundation and Web archives maintained by European national libraries."
Summary
"Significant parts of our cultural heritage are produced on the Web, yet only insufficient opportunities exist for accessing and exploring the past of the Web. The ALEXANDRIA project aims to develop models, tools and techniques necessary to archive and index relevant parts of the Web, and to retrieve and explore this information in a meaningful way. While the easy accessibility to the current Web is a good baseline, optimal access to Web archives requires new models and algorithms for retrieval, exploration, and analytics which go far beyond what is needed to access the current state of the Web. This includes taking into account the unique temporal dimension of Web archives, structured semantic information already available on the Web, as well as social media and network information.
Within ALEXANDRIA, we will significantly advance semantic and time-based indexing for Web archives using human-compiled knowledge available on the Web, to efficiently index, retrieve and explore information about entities and events from the past. In doing so, we will focus on the concurrent evolution of this knowledge and the Web content to be indexed, and take into account diversity and incompleteness of this knowledge. We will further investigate mixed crowd- and machine-based Web analytics to support long- running and collaborative retrieval and analysis processes on Web archives. Usage of implicit human feedback will be essential to provide better indexing through insights during the analysis process and to better focus harvesting of content.
The ALEXANDRIA Testbed will provide an important context for research, exploration and evaluation of the concepts, methods and algorithms developed in this project, and will provide both relevant collections and algorithms that enable further research on and practical application of our research results to existing archives like the Internet Archive, the Internet Memory Foundation and Web archives maintained by European national libraries."
Max ERC Funding
2 493 600 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym AllergenDetect
Project Comprehensive allergen detection using synthetic DNA libraries
Researcher (PI) Eran SEGAL
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Proof of Concept (PoC), ERC-2018-PoC
Summary Over the last 50 years, allergies have become a major health issue affecting approximately 20% of adults and more than 30% of children in developed countries. Allergies impair the life quality of affected individuals and diagnosis/treatment is costly for health care systems. In the EU, the avoidable indirect costs of patients insufficiently treated for allergy is estimated to range between 55 and 151 billion Euro per year. A key issue towards fighting this allergy epidemic lies in the diagnosis of allergies, which is still limited by expensive, low throughput methods allowing to test only a few dozens of allergens at once. Yet, several thousands of allergens have been reported in the literature and cost effective methods for testing hundreds or even thousands of allergens are highly sought after.
Here, we propose a novel high throughput method (AllergenDetect) enabling to test more than 3000 protein allergens in parallel within a single test, relying on our ERC-funded technology. Instead of cumbersomely purifying protein allergens from natural sources, we will apply synthetic DNA libraries to produce allergens using expression systems commonly applied in biotechnology. Our method greatly expands the throughput of allergen testing compared to state of the art methods and allows for the first time to systematically test all known protein allergens at a fraction of today’s cost and within a single assay. In the first phase, we plan to market this technology as diagnostic kits to hospitals and analytic laboratories that have the required infrastructure already in place. For patient samples from private practitioners, specialized allergists, and individuals seeking allergy testing on their own, we are planning to launch a spin-off laboratory directly performing these AllergenDetect tests.
Summary
Over the last 50 years, allergies have become a major health issue affecting approximately 20% of adults and more than 30% of children in developed countries. Allergies impair the life quality of affected individuals and diagnosis/treatment is costly for health care systems. In the EU, the avoidable indirect costs of patients insufficiently treated for allergy is estimated to range between 55 and 151 billion Euro per year. A key issue towards fighting this allergy epidemic lies in the diagnosis of allergies, which is still limited by expensive, low throughput methods allowing to test only a few dozens of allergens at once. Yet, several thousands of allergens have been reported in the literature and cost effective methods for testing hundreds or even thousands of allergens are highly sought after.
Here, we propose a novel high throughput method (AllergenDetect) enabling to test more than 3000 protein allergens in parallel within a single test, relying on our ERC-funded technology. Instead of cumbersomely purifying protein allergens from natural sources, we will apply synthetic DNA libraries to produce allergens using expression systems commonly applied in biotechnology. Our method greatly expands the throughput of allergen testing compared to state of the art methods and allows for the first time to systematically test all known protein allergens at a fraction of today’s cost and within a single assay. In the first phase, we plan to market this technology as diagnostic kits to hospitals and analytic laboratories that have the required infrastructure already in place. For patient samples from private practitioners, specialized allergists, and individuals seeking allergy testing on their own, we are planning to launch a spin-off laboratory directly performing these AllergenDetect tests.
Max ERC Funding
150 000 €
Duration
Start date: 2019-05-01, End date: 2020-10-31
Project acronym ALLERGUT
Project Mucosal Tolerance and Allergic Predisposition: Does it all start in the gut?
Researcher (PI) Caspar OHNMACHT
Host Institution (HI) HELMHOLTZ ZENTRUM MUENCHEN DEUTSCHES FORSCHUNGSZENTRUM FUER GESUNDHEIT UND UMWELT GMBH
Call Details Starting Grant (StG), LS6, ERC-2016-STG
Summary Currently, more than 30% of all Europeans suffer from one or more allergic disorder but treatment is still mostly symptomatic due to a lack of understanding the underlying causality. Allergies are caused by type 2 immune responses triggered by recognition of harmless antigens. Both genetic and environmental factors have been proposed to favour allergic predisposition and both factors have a huge impact on the symbiotic microbiota and the intestinal immune system. Recently we and others showed that the transcription factor ROR(γt) seems to play a key role in mucosal tolerance in the gut and also regulates intestinal type 2 immune responses.
Based on these results I postulate two major events in the gut for the development of an allergy in the lifetime of an individual: First, a failure to establish mucosal tolerance or anergy constitutes a necessity for the outbreak of allergic symptoms and allergic disease. Second, a certain ‘core’ microbiome or pathway of the intestinal microbiota predispose certain individuals for the later development of allergic disorders. Therefore, I will address the following aims:
1) Influence of ROR(γt) on mucosal tolerance induction and allergic disorders
2) Elucidate the T cell receptor repertoire of intestinal Th2 and ROR(γt)+ Tregs and assess the role of alternative NFκB pathway for induction of mucosal tolerance
3) Identification of ‘core’ microbiome signatures or metabolic pathways that favour allergic predisposition
ALLERGUT will provide ground-breaking knowledge on molecular mechanisms of the failure of mucosal tolerance in the gut and will prove if the resident ROR(γt)+ T(reg) cells can function as a mechanistic starting point for molecular intervention strategies on the background of the hygiene hypothesis. The vision of ALLERGUT is to diagnose mucosal disbalance, prevent and treat allergic disorders even before outbreak and thereby promote Public Health initiative for better living.
Summary
Currently, more than 30% of all Europeans suffer from one or more allergic disorder but treatment is still mostly symptomatic due to a lack of understanding the underlying causality. Allergies are caused by type 2 immune responses triggered by recognition of harmless antigens. Both genetic and environmental factors have been proposed to favour allergic predisposition and both factors have a huge impact on the symbiotic microbiota and the intestinal immune system. Recently we and others showed that the transcription factor ROR(γt) seems to play a key role in mucosal tolerance in the gut and also regulates intestinal type 2 immune responses.
Based on these results I postulate two major events in the gut for the development of an allergy in the lifetime of an individual: First, a failure to establish mucosal tolerance or anergy constitutes a necessity for the outbreak of allergic symptoms and allergic disease. Second, a certain ‘core’ microbiome or pathway of the intestinal microbiota predispose certain individuals for the later development of allergic disorders. Therefore, I will address the following aims:
1) Influence of ROR(γt) on mucosal tolerance induction and allergic disorders
2) Elucidate the T cell receptor repertoire of intestinal Th2 and ROR(γt)+ Tregs and assess the role of alternative NFκB pathway for induction of mucosal tolerance
3) Identification of ‘core’ microbiome signatures or metabolic pathways that favour allergic predisposition
ALLERGUT will provide ground-breaking knowledge on molecular mechanisms of the failure of mucosal tolerance in the gut and will prove if the resident ROR(γt)+ T(reg) cells can function as a mechanistic starting point for molecular intervention strategies on the background of the hygiene hypothesis. The vision of ALLERGUT is to diagnose mucosal disbalance, prevent and treat allergic disorders even before outbreak and thereby promote Public Health initiative for better living.
Max ERC Funding
1 498 175 €
Duration
Start date: 2017-07-01, End date: 2022-06-30
Project acronym AMAREC
Project Amenability, Approximation and Reconstruction
Researcher (PI) Wilhelm WINTER
Host Institution (HI) WESTFAELISCHE WILHELMS-UNIVERSITAET MUENSTER
Call Details Advanced Grant (AdG), PE1, ERC-2018-ADG
Summary Algebras of operators on Hilbert spaces were originally introduced as the right framework for the mathematical description of quantum mechanics. In modern mathematics the scope has much broadened due to the highly versatile nature of operator algebras. They are particularly useful in the analysis of groups and their actions. Amenability is a finiteness property which occurs in many different contexts and which can be characterised in many different ways. We will analyse amenability in terms of approximation properties, in the frameworks of abstract C*-algebras, of topological dynamical systems, and of discrete groups. Such approximation properties will serve as bridging devices between these setups, and they will be used to systematically recover geometric information about the underlying structures. When passing from groups, and more generally from dynamical systems, to operator algebras, one loses information, but one gains new tools to isolate and analyse pertinent properties of the underlying structure. We will mostly be interested in the topological setting, and in the associated C*-algebras. Amenability of groups or of dynamical systems then translates into the completely positive approximation property. Systems of completely positive approximations store all the essential data about a C*-algebra, and sometimes one can arrange the systems so that one can directly read of such information. For transformation group C*-algebras, one can achieve this by using approximation properties of the underlying dynamics. To some extent one can even go back, and extract dynamical approximation properties from completely positive approximations of the C*-algebra. This interplay between approximation properties in topological dynamics and in noncommutative topology carries a surprisingly rich structure. It connects directly to the heart of the classification problem for nuclear C*-algebras on the one hand, and to central open questions on amenable dynamics on the other.
Summary
Algebras of operators on Hilbert spaces were originally introduced as the right framework for the mathematical description of quantum mechanics. In modern mathematics the scope has much broadened due to the highly versatile nature of operator algebras. They are particularly useful in the analysis of groups and their actions. Amenability is a finiteness property which occurs in many different contexts and which can be characterised in many different ways. We will analyse amenability in terms of approximation properties, in the frameworks of abstract C*-algebras, of topological dynamical systems, and of discrete groups. Such approximation properties will serve as bridging devices between these setups, and they will be used to systematically recover geometric information about the underlying structures. When passing from groups, and more generally from dynamical systems, to operator algebras, one loses information, but one gains new tools to isolate and analyse pertinent properties of the underlying structure. We will mostly be interested in the topological setting, and in the associated C*-algebras. Amenability of groups or of dynamical systems then translates into the completely positive approximation property. Systems of completely positive approximations store all the essential data about a C*-algebra, and sometimes one can arrange the systems so that one can directly read of such information. For transformation group C*-algebras, one can achieve this by using approximation properties of the underlying dynamics. To some extent one can even go back, and extract dynamical approximation properties from completely positive approximations of the C*-algebra. This interplay between approximation properties in topological dynamics and in noncommutative topology carries a surprisingly rich structure. It connects directly to the heart of the classification problem for nuclear C*-algebras on the one hand, and to central open questions on amenable dynamics on the other.
Max ERC Funding
1 596 017 €
Duration
Start date: 2019-10-01, End date: 2024-09-30
Project acronym AMD
Project Algorithmic Mechanism Design: Beyond Truthful Mechanisms
Researcher (PI) Michal Feldman
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Starting Grant (StG), PE6, ERC-2013-StG
Summary "The first decade of Algorithmic Mechanism Design (AMD) concentrated, very successfully, on the design of truthful mechanisms for the allocation of resources among agents with private preferences.
Truthful mechanisms are ones that incentivize rational users to report their preferences truthfully.
Truthfulness, however, for all its theoretical appeal, suffers from several inherent limitations, mainly its high communication and computation complexities.
It is not surprising, therefore, that practical applications forego truthfulness and use simpler mechanisms instead.
Simplicity in itself, however, is not sufficient, as any meaningful mechanism should also have some notion of fairness; otherwise agents will stop using it over time.
In this project I plan to develop an innovative AMD theoretical framework that will go beyond truthfulness and focus instead on the natural themes of simplicity and fairness, in addition to computational tractability.
One of my primary goals will be the design of simple and fair poly-time mechanisms that perform at near optimal levels with respect to important economic objectives such as social welfare and revenue.
To this end, I will work toward providing precise definitions of simplicity and fairness and quantifying the effects of these restrictions on the performance levels that can be obtained.
A major challenge in the evaluation of non-truthful mechanisms is defining a reasonable behavior model that will enable their evaluation.
The success of this project could have a broad impact on Europe and beyond, as it would guide the design of natural mechanisms for markets of tens of billions of dollars in revenue, such as online advertising, or sales of wireless frequencies.
The timing of this project is ideal, as the AMD field is now sufficiently mature to lead to a breakthrough and at the same time young enough to be receptive to new approaches and themes."
Summary
"The first decade of Algorithmic Mechanism Design (AMD) concentrated, very successfully, on the design of truthful mechanisms for the allocation of resources among agents with private preferences.
Truthful mechanisms are ones that incentivize rational users to report their preferences truthfully.
Truthfulness, however, for all its theoretical appeal, suffers from several inherent limitations, mainly its high communication and computation complexities.
It is not surprising, therefore, that practical applications forego truthfulness and use simpler mechanisms instead.
Simplicity in itself, however, is not sufficient, as any meaningful mechanism should also have some notion of fairness; otherwise agents will stop using it over time.
In this project I plan to develop an innovative AMD theoretical framework that will go beyond truthfulness and focus instead on the natural themes of simplicity and fairness, in addition to computational tractability.
One of my primary goals will be the design of simple and fair poly-time mechanisms that perform at near optimal levels with respect to important economic objectives such as social welfare and revenue.
To this end, I will work toward providing precise definitions of simplicity and fairness and quantifying the effects of these restrictions on the performance levels that can be obtained.
A major challenge in the evaluation of non-truthful mechanisms is defining a reasonable behavior model that will enable their evaluation.
The success of this project could have a broad impact on Europe and beyond, as it would guide the design of natural mechanisms for markets of tens of billions of dollars in revenue, such as online advertising, or sales of wireless frequencies.
The timing of this project is ideal, as the AMD field is now sufficiently mature to lead to a breakthrough and at the same time young enough to be receptive to new approaches and themes."
Max ERC Funding
1 394 600 €
Duration
Start date: 2013-11-01, End date: 2018-10-31
Project acronym AMPCAT
Project Self-Amplifying Stereodynamic Catalysts in Enantioselective Catalysis
Researcher (PI) Oliver Trapp
Host Institution (HI) RUPRECHT-KARLS-UNIVERSITAET HEIDELBERG
Call Details Starting Grant (StG), PE5, ERC-2010-StG_20091028
Summary Think about an enantioselective catalyst, which can switch its enantioselectivity and which can be imprinted and provides self-amplification by its own chiral reaction product. Think about a catalyst, which can be fine-tuned for efficient stereoselective synthesis of drugs and other materials, e.g. polymers.
Highly promising reactions such as enantioselective autocatalysis (Soai reaction) and chiral catalysts undergoing dynamic interconversions, e.g. BIPHEP ligands, are still not understood. Their application is very limited to a few compounds, which opens the field for novel investigations.
I propose the development of a smart or switchable chiral ligand undergoing dynamic interconversions. These catalysts will be tuned by their reaction product, and this leads to self-amplification of one of the stereoisomers. I propose a novel fundamental mechanism which has the potential to overcome the limitations of the Soai reaction, exploiting the full potential of enantioselective catalysis.
As representatives of enantioselective self-amplifying stereodynamic catalysts a novel class of diazirine based ligands will be developed, their interconversion barrier is tuneable between 80 and 130 kJ/mol. Specifically, following areas will be explored:
1. Investigation of the kinetics and thermodynamics of the Soai reaction as a model reaction by analysis of large sets of kinetic data.
2. Ligands with diaziridine moieties with flexible structure will be designed and investigated, to control the enantioselectivity.
3. Design of a ligand receptor group for product interaction to switch the chirality. Study of self-amplification in enantioselective processes.
4. Enantioselective hydrogenations, Diels-Alder reactions, epoxidations and reactions generating multiple stereocenters will be targeted.
Summary
Think about an enantioselective catalyst, which can switch its enantioselectivity and which can be imprinted and provides self-amplification by its own chiral reaction product. Think about a catalyst, which can be fine-tuned for efficient stereoselective synthesis of drugs and other materials, e.g. polymers.
Highly promising reactions such as enantioselective autocatalysis (Soai reaction) and chiral catalysts undergoing dynamic interconversions, e.g. BIPHEP ligands, are still not understood. Their application is very limited to a few compounds, which opens the field for novel investigations.
I propose the development of a smart or switchable chiral ligand undergoing dynamic interconversions. These catalysts will be tuned by their reaction product, and this leads to self-amplification of one of the stereoisomers. I propose a novel fundamental mechanism which has the potential to overcome the limitations of the Soai reaction, exploiting the full potential of enantioselective catalysis.
As representatives of enantioselective self-amplifying stereodynamic catalysts a novel class of diazirine based ligands will be developed, their interconversion barrier is tuneable between 80 and 130 kJ/mol. Specifically, following areas will be explored:
1. Investigation of the kinetics and thermodynamics of the Soai reaction as a model reaction by analysis of large sets of kinetic data.
2. Ligands with diaziridine moieties with flexible structure will be designed and investigated, to control the enantioselectivity.
3. Design of a ligand receptor group for product interaction to switch the chirality. Study of self-amplification in enantioselective processes.
4. Enantioselective hydrogenations, Diels-Alder reactions, epoxidations and reactions generating multiple stereocenters will be targeted.
Max ERC Funding
1 452 000 €
Duration
Start date: 2010-12-01, End date: 2016-05-31
Project acronym AMPLIFY
Project Amplifying Human Perception Through Interactive Digital Technologies
Researcher (PI) Albrecht Schmidt
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Call Details Consolidator Grant (CoG), PE6, ERC-2015-CoG
Summary Current technical sensor systems offer capabilities that are superior to human perception. Cameras can capture a spectrum that is wider than visible light, high-speed cameras can show movements that are invisible to the human eye, and directional microphones can pick up sounds at long distances. The vision of this project is to lay a foundation for the creation of digital technologies that provide novel sensory experiences and new perceptual capabilities for humans that are natural and intuitive to use. In a first step, the project will assess the feasibility of creating artificial human senses that provide new perceptual channels to the human mind, without increasing the experienced cognitive load. A particular focus is on creating intuitive and natural control mechanisms for amplified senses using eye gaze, muscle activity, and brain signals. Through the creation of a prototype that provides mildly unpleasant stimulations in response to perceived information, the feasibility of implementing an artificial reflex will be experimentally explored. The project will quantify the effectiveness of new senses and artificial perceptual aids compared to the baseline of unaugmented perception. The overall objective is to systematically research, explore, and model new means for increasing the human intake of information in order to lay the foundation for new and improved human senses enabled through digital technologies and to enable artificial reflexes. The ground-breaking contributions of this project are (1) to demonstrate the feasibility of reliably implementing amplified senses and new perceptual capabilities, (2) to prove the possibility of creating an artificial reflex, (3) to provide an example implementation of amplified cognition that is empirically validated, and (4) to develop models, concepts, components, and platforms that will enable and ease the creation of interactive systems that measurably increase human perceptual capabilities.
Summary
Current technical sensor systems offer capabilities that are superior to human perception. Cameras can capture a spectrum that is wider than visible light, high-speed cameras can show movements that are invisible to the human eye, and directional microphones can pick up sounds at long distances. The vision of this project is to lay a foundation for the creation of digital technologies that provide novel sensory experiences and new perceptual capabilities for humans that are natural and intuitive to use. In a first step, the project will assess the feasibility of creating artificial human senses that provide new perceptual channels to the human mind, without increasing the experienced cognitive load. A particular focus is on creating intuitive and natural control mechanisms for amplified senses using eye gaze, muscle activity, and brain signals. Through the creation of a prototype that provides mildly unpleasant stimulations in response to perceived information, the feasibility of implementing an artificial reflex will be experimentally explored. The project will quantify the effectiveness of new senses and artificial perceptual aids compared to the baseline of unaugmented perception. The overall objective is to systematically research, explore, and model new means for increasing the human intake of information in order to lay the foundation for new and improved human senses enabled through digital technologies and to enable artificial reflexes. The ground-breaking contributions of this project are (1) to demonstrate the feasibility of reliably implementing amplified senses and new perceptual capabilities, (2) to prove the possibility of creating an artificial reflex, (3) to provide an example implementation of amplified cognition that is empirically validated, and (4) to develop models, concepts, components, and platforms that will enable and ease the creation of interactive systems that measurably increase human perceptual capabilities.
Max ERC Funding
1 925 250 €
Duration
Start date: 2016-07-01, End date: 2021-06-30
Project acronym AMPLIPORE
Project Understanding negative gas adsorption in highly porous networks for the design of pressure amplifying materials
Researcher (PI) Stefan Kaskel
Host Institution (HI) TECHNISCHE UNIVERSITAET DRESDEN
Call Details Advanced Grant (AdG), PE5, ERC-2016-ADG
Summary Negative gas adsorption (NGA) is a new, counterintuitive and paradoxical phenomenon, for the first time
reported by my group in 2016: Normal solid materials with significant outer or inner surface area always
take up gas when the pressure in the surrounding reservoir is increased (adsorption). NGA networks instead
react at a certain point in the opposite direction: They release gas upon external pressure increase, leading to
an overall pressure amplification in a closed system. Comparable phenomena have never been reported
before. What is so exciting about NGA? We have a unique material in hand, that counteracts to an external
force by force amplification.
So far NGA has solely been observed in one of our new coordination polymers, featuring a colossal selfcompression
associated with a mesopore-to-micropore transformation. Gas pressure amplifying materials
could lead to important innovations in gas releasing rescue systems, pneumatic control systems (production,
transportation), micropumps, microfluidic devices, pneumatic actuators, and artificial lungs. A fundamental
understanding of the physical mechanisms, structures, and thermodynamic boundary conditions is an
essential prerequisite for any industrial application of this counterintuitive phenomenon.
Combining strong synthetic methodologies with advanced analytical techniques, AMPLIPORE will elucidate
the characteristic molecular and mesoscopic materials signatures as well as thermodynamic boundary
conditions of NGA phenomena. We will elaborate a generic NGA-materials concept to tailor the pressure
amplification and explore temperature and pressure ranges at which NGA can be applied. Developing tailormade
instrumentation for kinetic investigations of NGA will give fundamental insights into the intrinsic and
macroscopic dynamics of crystal-to-crystal transformations for applications in micropneumatic systems.
Summary
Negative gas adsorption (NGA) is a new, counterintuitive and paradoxical phenomenon, for the first time
reported by my group in 2016: Normal solid materials with significant outer or inner surface area always
take up gas when the pressure in the surrounding reservoir is increased (adsorption). NGA networks instead
react at a certain point in the opposite direction: They release gas upon external pressure increase, leading to
an overall pressure amplification in a closed system. Comparable phenomena have never been reported
before. What is so exciting about NGA? We have a unique material in hand, that counteracts to an external
force by force amplification.
So far NGA has solely been observed in one of our new coordination polymers, featuring a colossal selfcompression
associated with a mesopore-to-micropore transformation. Gas pressure amplifying materials
could lead to important innovations in gas releasing rescue systems, pneumatic control systems (production,
transportation), micropumps, microfluidic devices, pneumatic actuators, and artificial lungs. A fundamental
understanding of the physical mechanisms, structures, and thermodynamic boundary conditions is an
essential prerequisite for any industrial application of this counterintuitive phenomenon.
Combining strong synthetic methodologies with advanced analytical techniques, AMPLIPORE will elucidate
the characteristic molecular and mesoscopic materials signatures as well as thermodynamic boundary
conditions of NGA phenomena. We will elaborate a generic NGA-materials concept to tailor the pressure
amplification and explore temperature and pressure ranges at which NGA can be applied. Developing tailormade
instrumentation for kinetic investigations of NGA will give fundamental insights into the intrinsic and
macroscopic dynamics of crystal-to-crystal transformations for applications in micropneumatic systems.
Max ERC Funding
2 363 125 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym AMPLITUDES
Project Novel structures in scattering amplitudes
Researcher (PI) Johannes Martin HENN
Host Institution (HI) JOHANNES GUTENBERG-UNIVERSITAT MAINZ
Call Details Consolidator Grant (CoG), PE2, ERC-2016-COG
Summary This project focuses on developing quantum field theory methods and applying them to the phenomenology of elementary particles. At the Large Hadron Collider (LHC) our current best theoretical understanding of particle physics is being tested against experiment by measuring e.g. properties of the recently discovered Higgs boson. With run two of the LHC, currently underway, the experimental accuracy will further increase. Theoretical predictions matching the latter are urgently needed. Obtaining these requires extremely difficult calculations of scattering amplitudes and cross sections in quantum field theory, including calculations to correctly describe large contributions due to long-distance physics in the latter. Major obstacles in such computations are the large number of Feynman diagrams that are difficult to handle, even with the help of modern computers, and the computation of Feynman loop integrals. To address these issues, we will develop innovative methods that are inspired by new structures found in supersymmetric field theories. We will extend the scope of the differential equations method for computing Feynman integrals, and apply it to scattering processes that are needed for phenomenology, but too complicated to analyze using current methods. Our results will help measure fundamental parameters of Nature, such as, for example, couplings of the Higgs boson, with unprecedented precision. Moreover, by accurately predicting backgrounds from known physics, our results will also be invaluable for searches of new particles.
Summary
This project focuses on developing quantum field theory methods and applying them to the phenomenology of elementary particles. At the Large Hadron Collider (LHC) our current best theoretical understanding of particle physics is being tested against experiment by measuring e.g. properties of the recently discovered Higgs boson. With run two of the LHC, currently underway, the experimental accuracy will further increase. Theoretical predictions matching the latter are urgently needed. Obtaining these requires extremely difficult calculations of scattering amplitudes and cross sections in quantum field theory, including calculations to correctly describe large contributions due to long-distance physics in the latter. Major obstacles in such computations are the large number of Feynman diagrams that are difficult to handle, even with the help of modern computers, and the computation of Feynman loop integrals. To address these issues, we will develop innovative methods that are inspired by new structures found in supersymmetric field theories. We will extend the scope of the differential equations method for computing Feynman integrals, and apply it to scattering processes that are needed for phenomenology, but too complicated to analyze using current methods. Our results will help measure fundamental parameters of Nature, such as, for example, couplings of the Higgs boson, with unprecedented precision. Moreover, by accurately predicting backgrounds from known physics, our results will also be invaluable for searches of new particles.
Max ERC Funding
2 000 000 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym AMYLOID
Project Identification and modulation of pathogenic Amyloid beta-peptide species
Researcher (PI) Christian Haass
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Call Details Advanced Grant (AdG), LS5, ERC-2012-ADG_20120314
Summary The frequency of Alzheimer's disease (AD) will dramatically increase in the ageing western society during the next decades. Currently, about 18 million people suffer worldwide from AD. Since no cure is available, this devastating disorder represents one of the most challenging socio-economical problems of our future. As onset and progression of AD is triggered by the amyloid cascade, I will put particular attention on amyloid ß-peptide (Aß). The reason for this approach is, that even though 20 years ago the Aß generating processing pathway was identified (Haass et al., Nature 1992a & b), the identity of the Aß species, which initiate the deadly cascade is still unknown. I will first tackle this challenge by investigating if a novel and so far completely overlooked proteolytic processing pathway is involved in the generation of Aß species capable to initiate spreading of pathology and neurotoxicity. I will then search for modulating proteins, which could affect generation of pathological Aß species. This includes a genome-wide screen for modifiers of gamma-secretase, one of the proteases involved in Aß generation as well as a targeted search for RNA binding proteins capable to posttranscriptionally regulate beta- and alpha-secretase. In a disease-crossing approach, RNA binding proteins, which were recently found not only to be deposited in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis but also in many AD cases, will be investigated for their potential to modulate Aß aggregation and AD pathology. Modifiers and novel antibodies specifically recognizing neurotoxic Aß assemblies will be validated for their potential not only to prevent amyloid plaque formation, but also spreading of pathology as well as neurotoxicity. In vivo validations include studies in innovative zebrafish models, which allow life imaging of neuronal cell death, as well as the establishment of microPET amyloid imaging for longitudinal studies in individual animals.
Summary
The frequency of Alzheimer's disease (AD) will dramatically increase in the ageing western society during the next decades. Currently, about 18 million people suffer worldwide from AD. Since no cure is available, this devastating disorder represents one of the most challenging socio-economical problems of our future. As onset and progression of AD is triggered by the amyloid cascade, I will put particular attention on amyloid ß-peptide (Aß). The reason for this approach is, that even though 20 years ago the Aß generating processing pathway was identified (Haass et al., Nature 1992a & b), the identity of the Aß species, which initiate the deadly cascade is still unknown. I will first tackle this challenge by investigating if a novel and so far completely overlooked proteolytic processing pathway is involved in the generation of Aß species capable to initiate spreading of pathology and neurotoxicity. I will then search for modulating proteins, which could affect generation of pathological Aß species. This includes a genome-wide screen for modifiers of gamma-secretase, one of the proteases involved in Aß generation as well as a targeted search for RNA binding proteins capable to posttranscriptionally regulate beta- and alpha-secretase. In a disease-crossing approach, RNA binding proteins, which were recently found not only to be deposited in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis but also in many AD cases, will be investigated for their potential to modulate Aß aggregation and AD pathology. Modifiers and novel antibodies specifically recognizing neurotoxic Aß assemblies will be validated for their potential not only to prevent amyloid plaque formation, but also spreading of pathology as well as neurotoxicity. In vivo validations include studies in innovative zebrafish models, which allow life imaging of neuronal cell death, as well as the establishment of microPET amyloid imaging for longitudinal studies in individual animals.
Max ERC Funding
2 497 020 €
Duration
Start date: 2013-03-01, End date: 2018-02-28
Project acronym ANALYTICS
Project All-electrical analytic platform for digital fluidics
Researcher (PI) Denys MAKAROV
Host Institution (HI) HELMHOLTZ-ZENTRUM DRESDEN-ROSSENDORF EV
Call Details Proof of Concept (PoC), ERC-2017-PoC
Summary Prospective biosensing technologies will need to tackle the grand challenges arising from the global demographic changes. Among the most crucial tasks is the monitoring of food and environmental quality as well as the medical diagnosis. Digital fluidics offers vast advantages in performing these tasks relying on tiny containers with reacting biochemical species and allowing massively parallelized assays and high throughput screening using optical detection approaches.
I envision that adding not-optical detectors, which electrically probe the analyte responses, will provide a source of new but complementary information, obtained in a label-free and contactless manner. Hence, these all-electric platforms enable monitoring the kinetics of chemical reactions in lab-on-chip format, as well as take over auxiliary tasks, e.g. indexing, counting of droplets, flow monitoring.
In frame of the ERC project SMaRT, my team developed a unique detection platform -millifluidic resonance detector- that inductively couples to an analyte and assesses its physico-chemical properties. The unique selling points are (i) non-invasiveness to analyte, (ii) unnecessity of a transparent fluidic channel, (iii) cost efficiency and (iv) portability.
Implementing the input from the partner companies, here I aim to reach the commercialization stage pursuing a number of key milestones, i.e. enhance the screening throughput, realize a platform independent of external electronic devices, provide a temperature stabilization of the response, and develop the app.
Societal benefits: We demonstrated that the device provides an access to the metabolic activity of living organisms in droplets. This is way beyond the capabilities of the state-of-the-art optical detection. With this feature, the device can address the issue of increasing antibiotic resistance of bacteria and thus help to optimize the antibiotic policy in hospitals and households and to test new drugs in a time- and cost-efficient way.
Summary
Prospective biosensing technologies will need to tackle the grand challenges arising from the global demographic changes. Among the most crucial tasks is the monitoring of food and environmental quality as well as the medical diagnosis. Digital fluidics offers vast advantages in performing these tasks relying on tiny containers with reacting biochemical species and allowing massively parallelized assays and high throughput screening using optical detection approaches.
I envision that adding not-optical detectors, which electrically probe the analyte responses, will provide a source of new but complementary information, obtained in a label-free and contactless manner. Hence, these all-electric platforms enable monitoring the kinetics of chemical reactions in lab-on-chip format, as well as take over auxiliary tasks, e.g. indexing, counting of droplets, flow monitoring.
In frame of the ERC project SMaRT, my team developed a unique detection platform -millifluidic resonance detector- that inductively couples to an analyte and assesses its physico-chemical properties. The unique selling points are (i) non-invasiveness to analyte, (ii) unnecessity of a transparent fluidic channel, (iii) cost efficiency and (iv) portability.
Implementing the input from the partner companies, here I aim to reach the commercialization stage pursuing a number of key milestones, i.e. enhance the screening throughput, realize a platform independent of external electronic devices, provide a temperature stabilization of the response, and develop the app.
Societal benefits: We demonstrated that the device provides an access to the metabolic activity of living organisms in droplets. This is way beyond the capabilities of the state-of-the-art optical detection. With this feature, the device can address the issue of increasing antibiotic resistance of bacteria and thus help to optimize the antibiotic policy in hospitals and households and to test new drugs in a time- and cost-efficient way.
Max ERC Funding
150 000 €
Duration
Start date: 2017-09-01, End date: 2019-02-28
Project acronym ANAMULTISCALE
Project Analysis of Multiscale Systems Driven by Functionals
Researcher (PI) Alexander Mielke
Host Institution (HI) FORSCHUNGSVERBUND BERLIN EV
Call Details Advanced Grant (AdG), PE1, ERC-2010-AdG_20100224
Summary Many complex phenomena in the sciences are described by nonlinear partial differential equations, the solutions of which exhibit oscillations and concentration effects on multiple temporal or spatial scales. Our aim is to use methods from applied analysis to contribute to the understanding of the interplay of effects on different scales. The central question is to determine those quantities on the microscale which are needed to for the correct description of the macroscopic evolution.
We aim to develop a mathematical framework for analyzing and modeling coupled systems with multiple scales. This will include Hamiltonian dynamics as well as different types of dissipation like gradient flows or rate-independent dynamics. The choice of models will be guided by specific applications in material modeling (e.g., thermoplasticity, pattern formation, porous media) and optoelectronics (pulse interaction, Maxwell-Bloch systems, semiconductors, quantum mechanics). The research will address mathematically fundamental issues like existence and stability of solutions but will mainly be devoted to the modeling of multiscale phenomena in evolution systems. We will focus on systems with geometric structures, where the dynamics is driven by functionals. Thus, we can go much beyond the classical theory of homogenization and singular perturbations. The novel features of our approach are
- the combination of different dynamical effects in one framework,
- the use of geometric and metric structures for coupled partial differential equations,
- the exploitation of Gamma-convergence for evolution systems driven by functionals.
Summary
Many complex phenomena in the sciences are described by nonlinear partial differential equations, the solutions of which exhibit oscillations and concentration effects on multiple temporal or spatial scales. Our aim is to use methods from applied analysis to contribute to the understanding of the interplay of effects on different scales. The central question is to determine those quantities on the microscale which are needed to for the correct description of the macroscopic evolution.
We aim to develop a mathematical framework for analyzing and modeling coupled systems with multiple scales. This will include Hamiltonian dynamics as well as different types of dissipation like gradient flows or rate-independent dynamics. The choice of models will be guided by specific applications in material modeling (e.g., thermoplasticity, pattern formation, porous media) and optoelectronics (pulse interaction, Maxwell-Bloch systems, semiconductors, quantum mechanics). The research will address mathematically fundamental issues like existence and stability of solutions but will mainly be devoted to the modeling of multiscale phenomena in evolution systems. We will focus on systems with geometric structures, where the dynamics is driven by functionals. Thus, we can go much beyond the classical theory of homogenization and singular perturbations. The novel features of our approach are
- the combination of different dynamical effects in one framework,
- the use of geometric and metric structures for coupled partial differential equations,
- the exploitation of Gamma-convergence for evolution systems driven by functionals.
Max ERC Funding
1 390 000 €
Duration
Start date: 2011-04-01, End date: 2017-03-31
Project acronym ANaPSyS
Project Artificial Natural Products System Synthesis
Researcher (PI) Tanja Gaich
Host Institution (HI) UNIVERSITAT KONSTANZ
Call Details Starting Grant (StG), PE5, ERC-2015-STG
Summary "Traditionally, natural products are classified into ""natural product families"". Within a family all congeners display specific structure elements, owing to their common biosynthetic pathway. This suggests a bio-inspired or ""collective synthesis"", as has been devised by D: W. MacMillan. However, a biosynthetic pathway is confined to these structure elements, thus limiting synthesis with regard to structure diversification. In this research proposal the applicant exemplarily devises a strategic concept to overcome these limitations, by replacing the dogma of ""retrosynthetic analysis"" with ""structure pattern recognition"". This concept is termed ""Artificial Natural Product Systems Synthesis — ANaPSyS"", and aims to supersede the current ""logic of chemical synthesis"" as a standard practice in this field.
ANaPSyS exclusively categorizes natural products based on structural relationships — regardless of biogenetic origin. The structure pattern analysis groups natural products according to their shared core structure, and thereof creates a common precursor called ""privileged intermediate (PI)"". This intermediate is resembled in each of these natural products and is architecturally less complex. As a result every member of this natural product group can originate from a different natural product family and is obtained via this ""privileged intermediate"", which serves as basis for the artificial synthetic network.
With ANaPSyS a synthetic route is not restricted to a single target structure anymore (as in conventional synthesis). In comparison with bio-inspired synthesis, which is limited to a single natural product family, ANaPSyS enables the synthesis of a whole set of natural product families. With every synthesis accomplished, the network is upgraded — hence diversification leads to a rise in revenue. As a consequence, synthetic efficiency is drastically enhanced, therefore profoundly boosting and facilitating lead structure development.
"
Summary
"Traditionally, natural products are classified into ""natural product families"". Within a family all congeners display specific structure elements, owing to their common biosynthetic pathway. This suggests a bio-inspired or ""collective synthesis"", as has been devised by D: W. MacMillan. However, a biosynthetic pathway is confined to these structure elements, thus limiting synthesis with regard to structure diversification. In this research proposal the applicant exemplarily devises a strategic concept to overcome these limitations, by replacing the dogma of ""retrosynthetic analysis"" with ""structure pattern recognition"". This concept is termed ""Artificial Natural Product Systems Synthesis — ANaPSyS"", and aims to supersede the current ""logic of chemical synthesis"" as a standard practice in this field.
ANaPSyS exclusively categorizes natural products based on structural relationships — regardless of biogenetic origin. The structure pattern analysis groups natural products according to their shared core structure, and thereof creates a common precursor called ""privileged intermediate (PI)"". This intermediate is resembled in each of these natural products and is architecturally less complex. As a result every member of this natural product group can originate from a different natural product family and is obtained via this ""privileged intermediate"", which serves as basis for the artificial synthetic network.
With ANaPSyS a synthetic route is not restricted to a single target structure anymore (as in conventional synthesis). In comparison with bio-inspired synthesis, which is limited to a single natural product family, ANaPSyS enables the synthesis of a whole set of natural product families. With every synthesis accomplished, the network is upgraded — hence diversification leads to a rise in revenue. As a consequence, synthetic efficiency is drastically enhanced, therefore profoundly boosting and facilitating lead structure development.
"
Max ERC Funding
1 497 000 €
Duration
Start date: 2016-04-01, End date: 2021-03-31
Project acronym ANCHOR
Project Articular cartilage regeneration through the recruitment of bone marrow derived mesenchymal stem cells into extracelluar matrix derived scaffolds anchored by 3D printed polymeric supports
Researcher (PI) Daniel KELLY
Host Institution (HI) THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN
Call Details Proof of Concept (PoC), ERC-2017-PoC
Summary Osteoarthritis (OA), the most common form of arthritis, is a serious disease of the joints affecting nearly 10% of the population worldwide. The onset of OA has been associated with defects to articular cartilage that lines the bones of synovial joints. Current strategies to treat articular cartilage defects are ineffective and/or prohibitively expensive. The aim of ANCHOR is to develop and commercialise a new medicinal product for articular cartilage regeneration that recruits endogenous bone marrow derived stem cells into an extracellular matrix derived scaffold anchored to the subchondral bone by 3D printed polymeric supports. By recruiting endogenous cells into a supporting scaffold, ANCHOR will obviate the need for pre-seeding scaffolds with cells prior to implantation into cartilage defects, thereby dramatically reducing the cost and complexity of the repair procedure. It will also overcome the need for suturing of a scaffold into a cartilage defect, which is a very time consuming and technically challenging surgical procedure. Finally, the inherent chondro-inductivity of the cartilage ECM derived scaffolds developed by the applicant will maximise the potential for hyaline cartilage regeneration. The project will leverage the applicants extensive experience in ECM derived biomaterials and 3D printing to develop a new product with significant commercial potential. The impact of ANCHOR will be multi-faceted: it will transform how damaged joints are treated by orthopaedic surgeons, it will create economic value through the commercialization of IP, and most importantly it will improve patient experience and their long-term health and well-being.
Summary
Osteoarthritis (OA), the most common form of arthritis, is a serious disease of the joints affecting nearly 10% of the population worldwide. The onset of OA has been associated with defects to articular cartilage that lines the bones of synovial joints. Current strategies to treat articular cartilage defects are ineffective and/or prohibitively expensive. The aim of ANCHOR is to develop and commercialise a new medicinal product for articular cartilage regeneration that recruits endogenous bone marrow derived stem cells into an extracellular matrix derived scaffold anchored to the subchondral bone by 3D printed polymeric supports. By recruiting endogenous cells into a supporting scaffold, ANCHOR will obviate the need for pre-seeding scaffolds with cells prior to implantation into cartilage defects, thereby dramatically reducing the cost and complexity of the repair procedure. It will also overcome the need for suturing of a scaffold into a cartilage defect, which is a very time consuming and technically challenging surgical procedure. Finally, the inherent chondro-inductivity of the cartilage ECM derived scaffolds developed by the applicant will maximise the potential for hyaline cartilage regeneration. The project will leverage the applicants extensive experience in ECM derived biomaterials and 3D printing to develop a new product with significant commercial potential. The impact of ANCHOR will be multi-faceted: it will transform how damaged joints are treated by orthopaedic surgeons, it will create economic value through the commercialization of IP, and most importantly it will improve patient experience and their long-term health and well-being.
Max ERC Funding
149 945 €
Duration
Start date: 2018-01-01, End date: 2019-06-30
Project acronym AncNar
Project Experience and Teleology in Ancient Narrative
Researcher (PI) Jonas Grethlein
Host Institution (HI) RUPRECHT-KARLS-UNIVERSITAET HEIDELBERG
Call Details Starting Grant (StG), SH5, ERC-2012-StG_20111124
Summary The last two decades have seen fascinating attempts to establish new narratologies, basing narratology on cognitive science or coupling it with other approaches such as postcolonial studies. While appreciating that these attempts have raised questions beyond the limits of structuralist narratology, critics have noted that by doing so they tend to abandon narratology’s strength, that is its analytical tools. In many cases, narratology has become a label that is as empty as it is fashionable. The project as outlined here, on the other hand, develops a new approach that combines the analytical arsenal of structuralist narratology with a phenomenological take on time in order to provide new answers as to the question of narrative’s function. By exploring the tension between experience and teleology in ancient literature, it sets out to demonstrate how narrative serves as a mode of coming to grips with time. Besides offering a new narratology that cross-fertilizes the strengths of different disciplines and pioneering a new approach to ancient literature, the project will steer the current debate on experience and presence into a new direction across disciplines in the humanities.
Summary
The last two decades have seen fascinating attempts to establish new narratologies, basing narratology on cognitive science or coupling it with other approaches such as postcolonial studies. While appreciating that these attempts have raised questions beyond the limits of structuralist narratology, critics have noted that by doing so they tend to abandon narratology’s strength, that is its analytical tools. In many cases, narratology has become a label that is as empty as it is fashionable. The project as outlined here, on the other hand, develops a new approach that combines the analytical arsenal of structuralist narratology with a phenomenological take on time in order to provide new answers as to the question of narrative’s function. By exploring the tension between experience and teleology in ancient literature, it sets out to demonstrate how narrative serves as a mode of coming to grips with time. Besides offering a new narratology that cross-fertilizes the strengths of different disciplines and pioneering a new approach to ancient literature, the project will steer the current debate on experience and presence into a new direction across disciplines in the humanities.
Max ERC Funding
1 383 840 €
Duration
Start date: 2013-02-01, End date: 2018-01-31
Project acronym ANEMONE
Project Antibiofouling Nanopatterned Electrospun Membranes for Nanofiltration Applications
Researcher (PI) Eoin CASEY
Host Institution (HI) UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN
Call Details Proof of Concept (PoC), ERC-2017-PoC
Summary Water-stress in an increasing global problem and solutions such as water recycling and seawater desalination are now
becoming a necessary part of the water infrastructure. The technology for the production of safe drinking is increasingly
dependent on these more diverse sources and a key enabling technology is membrane filtration. While membrane system
are effective, the operating costs of such systems are hampered by fouling which increases the energy requirement for
process operation. The unique idea of this Proof of Concept is to develop an electrospun nanostructured membrane which
can be integrated into water filtration technologies. The unique method of fabrication will produce an inherently antibacterial
and antibiofouling surface in a one-step process, cutting the number of manufacturing steps. This concept, when deployed
commercially is expected to dramatically reduce the operating costs of membrane processes for water treatment. The
commercialisation route of the product will be through the patent protection and the licensing of the technology with a view
to rapid commercialisation.
Summary
Water-stress in an increasing global problem and solutions such as water recycling and seawater desalination are now
becoming a necessary part of the water infrastructure. The technology for the production of safe drinking is increasingly
dependent on these more diverse sources and a key enabling technology is membrane filtration. While membrane system
are effective, the operating costs of such systems are hampered by fouling which increases the energy requirement for
process operation. The unique idea of this Proof of Concept is to develop an electrospun nanostructured membrane which
can be integrated into water filtration technologies. The unique method of fabrication will produce an inherently antibacterial
and antibiofouling surface in a one-step process, cutting the number of manufacturing steps. This concept, when deployed
commercially is expected to dramatically reduce the operating costs of membrane processes for water treatment. The
commercialisation route of the product will be through the patent protection and the licensing of the technology with a view
to rapid commercialisation.
Max ERC Funding
148 805 €
Duration
Start date: 2017-10-01, End date: 2019-03-31
Project acronym AngioBone
Project Angiogenic growth, specialization, ageing and regeneration
of bone vessels
Researcher (PI) Ralf Heinrich Adams
Host Institution (HI) WESTFAELISCHE WILHELMS-UNIVERSITAET MUENSTER
Call Details Advanced Grant (AdG), LS3, ERC-2013-ADG
Summary The skeleton and the sinusoidal vasculature form a functional unit with great relevance in health, regeneration, and disease. Currently, fundamental aspects of sinusoidal vessel growth, specialization, arteriovenous organization and the consequences for tissue perfusion, or the changes occurring during ageing remain unknown. Our preliminary data indicate that key principles of bone vascularization and the role of molecular regulators are highly distinct from other organs. I therefore propose to use powerful combination of mouse genetics, fate mapping, transcriptional profiling, computational biology, confocal and two-photon microscopy, micro-CT and PET imaging, biochemistry and cell biology to characterize the growth, differentiation, dynamics, and ageing of the bone vasculature. In addition to established angiogenic pathways, the role of highly promising novel candidate regulators will be investigated in endothelial cells and perivascular osteoprogenitors with sophisticated inducible and cell type-specific genetic methods in the mouse. Complementing these powerful in vivo approaches, 3D co-cultures generated by cell printing technologies will provide insight into the communication between different cell types. The dynamics of sinusoidal vessel growth and regeneration will be monitored by two-photon imaging in the skull. Finally, I will explore the architectural, cellular and molecular changes and the role of capillary endothelial subpopulations in the sinusoidal vasculature of ageing and osteoporotic mice.
Technological advancements, such as new transgenic strains, mutant models or cell printing approaches, are important aspects of this proposal. AngioBone will provide a first conceptual framework for normal and deregulated function of the bone sinusoidal vasculature. It will also break new ground by analyzing the role of blood vessels in ageing and identifying novel strategies for tissue engineering and, potentially, the prevention/treatment of osteoporosis.
Summary
The skeleton and the sinusoidal vasculature form a functional unit with great relevance in health, regeneration, and disease. Currently, fundamental aspects of sinusoidal vessel growth, specialization, arteriovenous organization and the consequences for tissue perfusion, or the changes occurring during ageing remain unknown. Our preliminary data indicate that key principles of bone vascularization and the role of molecular regulators are highly distinct from other organs. I therefore propose to use powerful combination of mouse genetics, fate mapping, transcriptional profiling, computational biology, confocal and two-photon microscopy, micro-CT and PET imaging, biochemistry and cell biology to characterize the growth, differentiation, dynamics, and ageing of the bone vasculature. In addition to established angiogenic pathways, the role of highly promising novel candidate regulators will be investigated in endothelial cells and perivascular osteoprogenitors with sophisticated inducible and cell type-specific genetic methods in the mouse. Complementing these powerful in vivo approaches, 3D co-cultures generated by cell printing technologies will provide insight into the communication between different cell types. The dynamics of sinusoidal vessel growth and regeneration will be monitored by two-photon imaging in the skull. Finally, I will explore the architectural, cellular and molecular changes and the role of capillary endothelial subpopulations in the sinusoidal vasculature of ageing and osteoporotic mice.
Technological advancements, such as new transgenic strains, mutant models or cell printing approaches, are important aspects of this proposal. AngioBone will provide a first conceptual framework for normal and deregulated function of the bone sinusoidal vasculature. It will also break new ground by analyzing the role of blood vessels in ageing and identifying novel strategies for tissue engineering and, potentially, the prevention/treatment of osteoporosis.
Max ERC Funding
2 478 750 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym AngioMature
Project Mechanisms of vascular maturation and quiescence during development, homeostasis and aging
Researcher (PI) Hellmut AUGUSTIN
Host Institution (HI) RUPRECHT-KARLS-UNIVERSITAET HEIDELBERG
Call Details Advanced Grant (AdG), LS4, ERC-2017-ADG
Summary Angiogenesis research has focused on the sprouting of new capillaries. The mechanisms of vessel maturation are much less well understood. Yet, the maintenance of a mature, quiescent, and organotypically-differentiated layer of endothelial cells (ECs) lining the inside of all blood vessels is vital for human health. The goal of ANGIOMATURE is to identify, validate, and implement novel mechanisms of vascular maturation and organotypic EC differentiation that are active during development, maintenance of vascular stability in adults, and undergo changes in aging. We recently identified previously unrecognized gene expression signatures of vascular maturation in a genome-wide screen of ECs isolated from newborn and adult mice. Epigenetic mechanisms were identified that control the EC transcriptome through gain and loss of DNA methylation as well as EC differentiation and signaling specification. These findings pave the way for groundbreaking novel opportunities to study vascular maturation. By characterizing functionally diverse types of blood vessels, including continuous ECs in lung and brain and sinusoidal ECs in liver and bone marrow, the ANGIOMATURE project will (1) determine up to single cell resolution the transcriptional and epigenetic program(s) of vascular maturation and organotypic differentiation during adolescence, (2) analyze the functional consequences of such program(s) in differentiated ECs and their adaptation to challenge, and (3) study changes of maturation and differentiation program(s) and vascular responses during aging. We will towards this end employ an interdisciplinary matrix of approaches involving omics, systems biology, conditional gene targeting, organoid cell culture, and experimental pathology to create a high-resolution structural and functional organotypic angioarchitectural map. The project will thereby yield transformative mechanistic insights into vital biological processes that are most important for human health and healthy aging.
Summary
Angiogenesis research has focused on the sprouting of new capillaries. The mechanisms of vessel maturation are much less well understood. Yet, the maintenance of a mature, quiescent, and organotypically-differentiated layer of endothelial cells (ECs) lining the inside of all blood vessels is vital for human health. The goal of ANGIOMATURE is to identify, validate, and implement novel mechanisms of vascular maturation and organotypic EC differentiation that are active during development, maintenance of vascular stability in adults, and undergo changes in aging. We recently identified previously unrecognized gene expression signatures of vascular maturation in a genome-wide screen of ECs isolated from newborn and adult mice. Epigenetic mechanisms were identified that control the EC transcriptome through gain and loss of DNA methylation as well as EC differentiation and signaling specification. These findings pave the way for groundbreaking novel opportunities to study vascular maturation. By characterizing functionally diverse types of blood vessels, including continuous ECs in lung and brain and sinusoidal ECs in liver and bone marrow, the ANGIOMATURE project will (1) determine up to single cell resolution the transcriptional and epigenetic program(s) of vascular maturation and organotypic differentiation during adolescence, (2) analyze the functional consequences of such program(s) in differentiated ECs and their adaptation to challenge, and (3) study changes of maturation and differentiation program(s) and vascular responses during aging. We will towards this end employ an interdisciplinary matrix of approaches involving omics, systems biology, conditional gene targeting, organoid cell culture, and experimental pathology to create a high-resolution structural and functional organotypic angioarchitectural map. The project will thereby yield transformative mechanistic insights into vital biological processes that are most important for human health and healthy aging.
Max ERC Funding
2 338 918 €
Duration
Start date: 2018-08-01, End date: 2023-07-31
Project acronym ANGIOMET
Project Angiogenesis-metabolism crosstalk in vascular homeostasis and disease
Researcher (PI) Michael Potente
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), LS4, ERC-2012-StG_20111109
Summary "Blood vessels pervade all tissues in the body to supply nutrients and oxygen. Aberrant vessel growth and function are hallmarks of cancer and cardiovascular diseases and they contribute to disease pathogenesis. Antiangiogenic therapeutics have reached the clinic, but limited efficacy and resistance raise unresolved challenges. The current limitations of angiogenic medicine call for a more integrated understanding of the angiogenic process that focuses not only on the instigators of vessel branching but also on mechanisms that sustain vessel growth. Recent insights into fundamental aspects of cell growth move metabolism into spotlight and establish how proliferating cells reprogram their metabolism to provide energy and building blocks for cell replication. During angiogenesis, endothelial cells (ECs) also convert between growth states: although mostly quiescent in adult tissues, ECs divide and migrate rapidly upon angiogenic stimulation. To allow growth of new vessel branches, ECs therefore need to adjust their metabolism to increase energy production and biosynthetic activity. However, the molecular mechanisms that coordinate EC metabolism with angiogenic signalling are not known to date. In this proposal, we put forth the hypothesis that metabolic regulation is a key component of the endothelial angiogenic machinery that is required to sustain vessel growth. Thus, this proposal aims (I) to define transcriptional circuits that link EC growth with metabolism, (II) to explore the regulation of these transcriptional networks by lysine acetylation, a nutrient-regulated protein modification with key functions in metabolism, and (III) to assess the role of sirtuin deacetylases for sensing endothelial energetics during vascular growth. Understanding the principles of angiogenesis-metabolism crosstalk will not only yield novel insights into the basic mechanisms of vessel formation but will also provide unprecedented opportunities for future drug development."
Summary
"Blood vessels pervade all tissues in the body to supply nutrients and oxygen. Aberrant vessel growth and function are hallmarks of cancer and cardiovascular diseases and they contribute to disease pathogenesis. Antiangiogenic therapeutics have reached the clinic, but limited efficacy and resistance raise unresolved challenges. The current limitations of angiogenic medicine call for a more integrated understanding of the angiogenic process that focuses not only on the instigators of vessel branching but also on mechanisms that sustain vessel growth. Recent insights into fundamental aspects of cell growth move metabolism into spotlight and establish how proliferating cells reprogram their metabolism to provide energy and building blocks for cell replication. During angiogenesis, endothelial cells (ECs) also convert between growth states: although mostly quiescent in adult tissues, ECs divide and migrate rapidly upon angiogenic stimulation. To allow growth of new vessel branches, ECs therefore need to adjust their metabolism to increase energy production and biosynthetic activity. However, the molecular mechanisms that coordinate EC metabolism with angiogenic signalling are not known to date. In this proposal, we put forth the hypothesis that metabolic regulation is a key component of the endothelial angiogenic machinery that is required to sustain vessel growth. Thus, this proposal aims (I) to define transcriptional circuits that link EC growth with metabolism, (II) to explore the regulation of these transcriptional networks by lysine acetylation, a nutrient-regulated protein modification with key functions in metabolism, and (III) to assess the role of sirtuin deacetylases for sensing endothelial energetics during vascular growth. Understanding the principles of angiogenesis-metabolism crosstalk will not only yield novel insights into the basic mechanisms of vessel formation but will also provide unprecedented opportunities for future drug development."
Max ERC Funding
1 487 920 €
Duration
Start date: 2012-09-01, End date: 2017-08-31
Project acronym ANGIOMIRS
Project microRNAs in vascular homeostasis
Researcher (PI) Stefanie Dimmeler
Host Institution (HI) JOHANN WOLFGANG GOETHE-UNIVERSITATFRANKFURT AM MAIN
Call Details Advanced Grant (AdG), LS4, ERC-2008-AdG
Summary Despite improved therapy, cardiovascular diseases remain the most prevalent diseases in the European Union and the incidence is rising due to increased obesity and ageing. The fine-tuned regulation of vascular functions is essential not only for preventing atherosclerotic diseases, but also after tissue injury, where the coordinated growth and maturation of new blood vessels provides oxygen and nutrient supply. On the other hand, excessive vessel growth or the generation of immature, leaky vessels contributes to pathological angiogenesis. Thus, the regulation of the complex processes governing vessel growth and maturation has broad impacts for several diseases ranging from tumor angiogenesis, diabetic retinopathy, to ischemic cardiovascular diseases. MicroRNAs (miRs) are small noncoding RNAs, which play a crucial role in embryonic development and tissue homeostasis. However, only limited information is available regarding the role of miRs in the vasculature. MiRs regulate gene expression by binding to the target mRNA leading either to degradation or to translational repression. Because miRs control patterns of target genes, miRs represent an attractive and promising therapeutic target to interfere with complex processes such as neovascularization and repair of ischemic tissues. Therefore, the present application aims to identify miRs in the vasculature, which regulate vessel growth and vessel remodelling and may, thus, serve as therapeutic targets in ischemic diseases. Since ageing critically impairs endothelial function, neovascularization and vascular repair, we will specifically identify miRs, which are dysregulated during ageing in endothelial cells and pro-angiogenic progenitor cells, in order to develop novel strategies to rescue age-induced impairment of neovascularization. Beyond the specific scope of the present application, the principle findings may have impact for other diseases, where deregulated vessel growth causes or accelerates disease states.
Summary
Despite improved therapy, cardiovascular diseases remain the most prevalent diseases in the European Union and the incidence is rising due to increased obesity and ageing. The fine-tuned regulation of vascular functions is essential not only for preventing atherosclerotic diseases, but also after tissue injury, where the coordinated growth and maturation of new blood vessels provides oxygen and nutrient supply. On the other hand, excessive vessel growth or the generation of immature, leaky vessels contributes to pathological angiogenesis. Thus, the regulation of the complex processes governing vessel growth and maturation has broad impacts for several diseases ranging from tumor angiogenesis, diabetic retinopathy, to ischemic cardiovascular diseases. MicroRNAs (miRs) are small noncoding RNAs, which play a crucial role in embryonic development and tissue homeostasis. However, only limited information is available regarding the role of miRs in the vasculature. MiRs regulate gene expression by binding to the target mRNA leading either to degradation or to translational repression. Because miRs control patterns of target genes, miRs represent an attractive and promising therapeutic target to interfere with complex processes such as neovascularization and repair of ischemic tissues. Therefore, the present application aims to identify miRs in the vasculature, which regulate vessel growth and vessel remodelling and may, thus, serve as therapeutic targets in ischemic diseases. Since ageing critically impairs endothelial function, neovascularization and vascular repair, we will specifically identify miRs, which are dysregulated during ageing in endothelial cells and pro-angiogenic progenitor cells, in order to develop novel strategies to rescue age-induced impairment of neovascularization. Beyond the specific scope of the present application, the principle findings may have impact for other diseases, where deregulated vessel growth causes or accelerates disease states.
Max ERC Funding
2 375 394 €
Duration
Start date: 2009-03-01, End date: 2014-02-28
Project acronym AnonymClassic
Project The Arabic Anonymous in a World Classic
Researcher (PI) Beatrice GRUENDLER
Host Institution (HI) FREIE UNIVERSITAET BERLIN
Call Details Advanced Grant (AdG), SH5, ERC-2016-ADG
Summary AnonymClassic is the first ever comprehensive study of Kalila and Dimna (a book of wisdom in fable form), a text of premodern world literature. Its spread is comparable to that of the Bible, except that it passed from Hinduism and Buddhism via Islam to Christianity. Its Arabic version, produced in the 8th century, when this was the lingua franca of the Near East, became the source of all further translations up to the 19th century. The work’s multilingual history involving circa forty languages has never been systematically studied. The absence of available research has made world literature ignore it, while scholars of Arabic avoided it because of its widely diverging manuscripts, so that the actual shape of the Arabic key version is still in need of investigation. AnonymClassic tests a number of ‘high-risk’ propositions, including three key hypotheses: 1) The anonymous Arabic copyists of Kalila and Dimna are de facto co-authors, 2) their agency is comparable to that of the named medieval translators, and 3) the fluctuation of the Arabic versions is conditioned by the work’s fictional status. AnonymClassic’s methodology relies on a cross-lingual narratological analysis of the Arabic versions and all medieval translations (supported by a synoptic digital edition), which takes precisely the interventions at each stage of transmission (redaction, translation) as its subject. Considering the work’s paths of dissemination from India to Europe, AnonymClassic will challenge the prevalent Western theoretical lens on world literature conceived ‘from above’ with the view ‘from below,’ based on the attested cross-cultural network constituted by its versions. AnonymClassic will introduce a new paradigm of an East-Western literary continuum with Arabic as a cultural bridge. Against the current background of Europe’s diversifying and multicultural society, AnonymClassic purposes to integrate pre-modern Near Eastern literature and culture into our understanding of Global Culture.
Summary
AnonymClassic is the first ever comprehensive study of Kalila and Dimna (a book of wisdom in fable form), a text of premodern world literature. Its spread is comparable to that of the Bible, except that it passed from Hinduism and Buddhism via Islam to Christianity. Its Arabic version, produced in the 8th century, when this was the lingua franca of the Near East, became the source of all further translations up to the 19th century. The work’s multilingual history involving circa forty languages has never been systematically studied. The absence of available research has made world literature ignore it, while scholars of Arabic avoided it because of its widely diverging manuscripts, so that the actual shape of the Arabic key version is still in need of investigation. AnonymClassic tests a number of ‘high-risk’ propositions, including three key hypotheses: 1) The anonymous Arabic copyists of Kalila and Dimna are de facto co-authors, 2) their agency is comparable to that of the named medieval translators, and 3) the fluctuation of the Arabic versions is conditioned by the work’s fictional status. AnonymClassic’s methodology relies on a cross-lingual narratological analysis of the Arabic versions and all medieval translations (supported by a synoptic digital edition), which takes precisely the interventions at each stage of transmission (redaction, translation) as its subject. Considering the work’s paths of dissemination from India to Europe, AnonymClassic will challenge the prevalent Western theoretical lens on world literature conceived ‘from above’ with the view ‘from below,’ based on the attested cross-cultural network constituted by its versions. AnonymClassic will introduce a new paradigm of an East-Western literary continuum with Arabic as a cultural bridge. Against the current background of Europe’s diversifying and multicultural society, AnonymClassic purposes to integrate pre-modern Near Eastern literature and culture into our understanding of Global Culture.
Max ERC Funding
2 435 113 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym ANOPTSETCON
Project Analysis of optimal sets and optimal constants: old questions and new results
Researcher (PI) Aldo Pratelli
Host Institution (HI) FRIEDRICH-ALEXANDER-UNIVERSITAET ERLANGEN NUERNBERG
Call Details Starting Grant (StG), PE1, ERC-2010-StG_20091028
Summary The analysis of geometric and functional inequalities naturally leads to consider the extremal cases, thus
looking for optimal sets, or optimal functions, or optimal constants. The most classical examples are the (different versions of the) isoperimetric inequality and the Sobolev-like inequalities. Much is known about equality cases and best constants, but there are still many questions which seem quite natural but yet have no answer. For instance, it is not known, even in the 2-dimensional space, the answer of a question by Brezis: which set,
among those with a given volume, has the biggest Sobolev-Poincaré constant for p=1? This is a very natural problem, and it appears reasonable that the optimal set should be the ball, but this has never been proved. The interest in problems like this relies not only in the extreme simplicity of the questions and in their classical flavour, but also in the new ideas and techniques which are needed to provide the answers.
The main techniques that we aim to use are fine arguments of symmetrization, geometric constructions and tools from mass transportation (which is well known to be deeply connected with functional inequalities). These are the basic tools that we already used to reach, in last years, many results in a specific direction, namely the search of sharp quantitative inequalities. Our first result, together with Fusco and Maggi, showed what follows. Everybody knows that the set which minimizes the perimeter with given volume is the ball.
But is it true that a set which almost minimizes the perimeter must be close to a ball? The question had been posed in the 1920's and many partial result appeared in the years. In our paper (Ann. of Math., 2007) we proved the sharp result. Many other results of this kind were obtained in last two years.
Summary
The analysis of geometric and functional inequalities naturally leads to consider the extremal cases, thus
looking for optimal sets, or optimal functions, or optimal constants. The most classical examples are the (different versions of the) isoperimetric inequality and the Sobolev-like inequalities. Much is known about equality cases and best constants, but there are still many questions which seem quite natural but yet have no answer. For instance, it is not known, even in the 2-dimensional space, the answer of a question by Brezis: which set,
among those with a given volume, has the biggest Sobolev-Poincaré constant for p=1? This is a very natural problem, and it appears reasonable that the optimal set should be the ball, but this has never been proved. The interest in problems like this relies not only in the extreme simplicity of the questions and in their classical flavour, but also in the new ideas and techniques which are needed to provide the answers.
The main techniques that we aim to use are fine arguments of symmetrization, geometric constructions and tools from mass transportation (which is well known to be deeply connected with functional inequalities). These are the basic tools that we already used to reach, in last years, many results in a specific direction, namely the search of sharp quantitative inequalities. Our first result, together with Fusco and Maggi, showed what follows. Everybody knows that the set which minimizes the perimeter with given volume is the ball.
But is it true that a set which almost minimizes the perimeter must be close to a ball? The question had been posed in the 1920's and many partial result appeared in the years. In our paper (Ann. of Math., 2007) we proved the sharp result. Many other results of this kind were obtained in last two years.
Max ERC Funding
540 000 €
Duration
Start date: 2010-08-01, End date: 2015-07-31
Project acronym ANTHOS
Project Analytic Number Theory: Higher Order Structures
Researcher (PI) Valentin Blomer
Host Institution (HI) GEORG-AUGUST-UNIVERSITAT GOTTINGENSTIFTUNG OFFENTLICHEN RECHTS
Call Details Starting Grant (StG), PE1, ERC-2010-StG_20091028
Summary This is a proposal for research at the interface of analytic number theory, automorphic forms and algebraic geometry. Motivated by fundamental conjectures in number theory, classical problems will be investigated in higher order situations: general number fields, automorphic forms on higher rank groups, the arithmetic of algebraic varieties of higher degree. In particular, I want to focus on
- computation of moments of L-function of degree 3 and higher with applications to subconvexity and/or non-vanishing, as well as subconvexity for multiple L-functions;
- bounds for sup-norms of cusp forms on various spaces and equidistribution of Hecke correspondences;
- automorphic forms on higher rank groups and general number fields, in particular new bounds towards the Ramanujan conjecture;
- a proof of Manin's conjecture for a certain class of singular algebraic varieties.
The underlying methods are closely related; for example, rational points on algebraic varieties
will be counted by a multiple L-series technique.
Summary
This is a proposal for research at the interface of analytic number theory, automorphic forms and algebraic geometry. Motivated by fundamental conjectures in number theory, classical problems will be investigated in higher order situations: general number fields, automorphic forms on higher rank groups, the arithmetic of algebraic varieties of higher degree. In particular, I want to focus on
- computation of moments of L-function of degree 3 and higher with applications to subconvexity and/or non-vanishing, as well as subconvexity for multiple L-functions;
- bounds for sup-norms of cusp forms on various spaces and equidistribution of Hecke correspondences;
- automorphic forms on higher rank groups and general number fields, in particular new bounds towards the Ramanujan conjecture;
- a proof of Manin's conjecture for a certain class of singular algebraic varieties.
The underlying methods are closely related; for example, rational points on algebraic varieties
will be counted by a multiple L-series technique.
Max ERC Funding
1 004 000 €
Duration
Start date: 2010-10-01, End date: 2015-09-30
Project acronym Anti-Virome
Project A combined evolutionary and proteomics approach to the discovery, induction and application of antiviral immunity factors
Researcher (PI) Frank Kirchhoff
Host Institution (HI) UNIVERSITAET ULM
Call Details Advanced Grant (AdG), LS6, ERC-2012-ADG_20120314
Summary "Humans are equipped with a variety of intrinsic immunity or host restriction factors. These evolved under positive selection pressure for diversification and represent a first line of defence against invading viruses. Unfortunately, however, many pathogens have evolved effective antagonists against our defences. For example, the capability of HIV-1 to counteract human restriction factors that interfere with reverse transcription, uncoating and virion release has been a prerequisite for the global spread of AIDS. We are just beginning to understand the diversity and induction of antiretroviral factors and how pandemic HIV-1 group M (major) strains evolved to counteract all of them. Here, I propose to use a genetics, proteomics and evolutionary approach to discover and define as-yet-unknown antiviral effectors and their inducers. To identify novel antiviral factors, we will examine the capability of all primate genes that are under strong positive selection pressure to inhibit HIV and its simian (SIV) precursors. This examination from the evolutionary perspective of the invading pathogen will also reveal which adaptations allowed HIV-1 to cause the AIDS pandemic. Furthermore, complex peptide-protein libraries representing essentially the entire human peptidome, will be utilized to identify novel specific inducers of antiviral restriction factors. My ultimate aim is to unravel the network of inducers and effectors of antiviral immunity - the ""Anti-Virome"" - and to use this knowledge to develop novel effective preventive and therapeutic approaches based on the induction of combinations of antiviral factors targeting different steps of the viral life cycle. The results of this innovative and interdisciplinary program will provide fundamental new insights into intrinsic immunity and may offer alternatives to conventional vaccine and therapeutic approaches because most restriction factors have broad antiviral activity and are thus effective against various pathogens."
Summary
"Humans are equipped with a variety of intrinsic immunity or host restriction factors. These evolved under positive selection pressure for diversification and represent a first line of defence against invading viruses. Unfortunately, however, many pathogens have evolved effective antagonists against our defences. For example, the capability of HIV-1 to counteract human restriction factors that interfere with reverse transcription, uncoating and virion release has been a prerequisite for the global spread of AIDS. We are just beginning to understand the diversity and induction of antiretroviral factors and how pandemic HIV-1 group M (major) strains evolved to counteract all of them. Here, I propose to use a genetics, proteomics and evolutionary approach to discover and define as-yet-unknown antiviral effectors and their inducers. To identify novel antiviral factors, we will examine the capability of all primate genes that are under strong positive selection pressure to inhibit HIV and its simian (SIV) precursors. This examination from the evolutionary perspective of the invading pathogen will also reveal which adaptations allowed HIV-1 to cause the AIDS pandemic. Furthermore, complex peptide-protein libraries representing essentially the entire human peptidome, will be utilized to identify novel specific inducers of antiviral restriction factors. My ultimate aim is to unravel the network of inducers and effectors of antiviral immunity - the ""Anti-Virome"" - and to use this knowledge to develop novel effective preventive and therapeutic approaches based on the induction of combinations of antiviral factors targeting different steps of the viral life cycle. The results of this innovative and interdisciplinary program will provide fundamental new insights into intrinsic immunity and may offer alternatives to conventional vaccine and therapeutic approaches because most restriction factors have broad antiviral activity and are thus effective against various pathogens."
Max ERC Funding
1 915 200 €
Duration
Start date: 2013-04-01, End date: 2018-03-31
Project acronym ANTIBACTERIALS
Project Natural products and their cellular targets: A multidisciplinary strategy for antibacterial drug discovery
Researcher (PI) Stephan Axel Sieber
Host Institution (HI) TECHNISCHE UNIVERSITAET MUENCHEN
Call Details Starting Grant (StG), PE5, ERC-2010-StG_20091028
Summary After decades of successful treatment of bacterial infections with antibiotics, formerly treatable bacteria have developed drug resistance and consequently pose a major threat to public health. To address the urgent need for effective antibacterial drugs we will develop a streamlined chemical-biology platform that facilitates the consolidated identification and structural elucidation of natural products together with their dedicated cellular targets. This innovative concept overcomes several limitations of classical drug discovery processes by a chemical strategy that focuses on a directed isolation, enrichment and identification procedure for certain privileged natural product subclasses. This proposal consists of four specific aims: 1) synthesizing enzyme active site mimetics that capture protein reactive natural products out of complex natural sources, 2) designing natural product based probes to identify their cellular targets by a method called activity based protein profiling , 3) developing a traceless photocrosslinking strategy for the target identification of selected non-reactive natural products, and 4) application of all probes to identify novel enzyme activities linked to viability, resistance and pathogenesis. Moreover, the compounds will be used to monitor the infection process during invasion into eukaryotic cells and will reveal host specific targets that promote and support bacterial pathogenesis. Inhibition of these targets is a novel and so far neglected approach in the treatment of infectious diseases. We anticipate that these studies will provide a powerful pharmacological platform for the development of potent natural product derived antibacterial agents directed toward novel therapeutic targets.
Summary
After decades of successful treatment of bacterial infections with antibiotics, formerly treatable bacteria have developed drug resistance and consequently pose a major threat to public health. To address the urgent need for effective antibacterial drugs we will develop a streamlined chemical-biology platform that facilitates the consolidated identification and structural elucidation of natural products together with their dedicated cellular targets. This innovative concept overcomes several limitations of classical drug discovery processes by a chemical strategy that focuses on a directed isolation, enrichment and identification procedure for certain privileged natural product subclasses. This proposal consists of four specific aims: 1) synthesizing enzyme active site mimetics that capture protein reactive natural products out of complex natural sources, 2) designing natural product based probes to identify their cellular targets by a method called activity based protein profiling , 3) developing a traceless photocrosslinking strategy for the target identification of selected non-reactive natural products, and 4) application of all probes to identify novel enzyme activities linked to viability, resistance and pathogenesis. Moreover, the compounds will be used to monitor the infection process during invasion into eukaryotic cells and will reveal host specific targets that promote and support bacterial pathogenesis. Inhibition of these targets is a novel and so far neglected approach in the treatment of infectious diseases. We anticipate that these studies will provide a powerful pharmacological platform for the development of potent natural product derived antibacterial agents directed toward novel therapeutic targets.
Max ERC Funding
1 500 000 €
Duration
Start date: 2010-11-01, End date: 2015-10-31
Project acronym AntiCamp
Project Developing proprietary antibacterial phage-based particles against Campylobacter jejuni for food decontamination
Researcher (PI) Ehud Itzhak (Udi) Qimron
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Proof of Concept (PoC), ERC-2018-PoC
Summary Campylobacter jejuni is the most common foodborne contamination in Europe, affecting millions of people, and costing billions of Euros. Current procedures to treat this contamination do not offer sufficient solutions. Here I present a unique approach to eradicate the pathogen from food by utilizing a cost-effective and safe product that does not alter the taste, texture, or appearance of the food. This innovation involves a spray composed of proprietary phage-based particles, which inject antibacterial genes into C. jejuni, thus killing the pathogen. Current phage-based technologies for decontaminating food encounter a major hurdle, because large-scale phage production in the fastidious and pathogenic C. jejuni strain is highly challenging. However, a major advantage of my product is that it can be prepared in a safe and easy-to-grow Escherichia coli host rather than in C. jejuni. Another significant advantage is that the technology producing the phages enables rapid and efficient modifications to the phage-based particles. This platform thus allows easy isolation and manufacture of cocktails of phage-based particles able to target a variety of pathogenic serotypes of C. jejuni. Furthermore, the proprietary particles all have a common scaffold, thus simplifying the regulation, safety, and route of manufacture. I propose a clear commercialization activity with a highly qualified team that I recruited, from both the scientific and commercialization fields. Developing and commercializing this product will provide a proof-of-concept to demonstrate the strength of this approach and will thus pave the way for additional innovative materials based on this technology.
Summary
Campylobacter jejuni is the most common foodborne contamination in Europe, affecting millions of people, and costing billions of Euros. Current procedures to treat this contamination do not offer sufficient solutions. Here I present a unique approach to eradicate the pathogen from food by utilizing a cost-effective and safe product that does not alter the taste, texture, or appearance of the food. This innovation involves a spray composed of proprietary phage-based particles, which inject antibacterial genes into C. jejuni, thus killing the pathogen. Current phage-based technologies for decontaminating food encounter a major hurdle, because large-scale phage production in the fastidious and pathogenic C. jejuni strain is highly challenging. However, a major advantage of my product is that it can be prepared in a safe and easy-to-grow Escherichia coli host rather than in C. jejuni. Another significant advantage is that the technology producing the phages enables rapid and efficient modifications to the phage-based particles. This platform thus allows easy isolation and manufacture of cocktails of phage-based particles able to target a variety of pathogenic serotypes of C. jejuni. Furthermore, the proprietary particles all have a common scaffold, thus simplifying the regulation, safety, and route of manufacture. I propose a clear commercialization activity with a highly qualified team that I recruited, from both the scientific and commercialization fields. Developing and commercializing this product will provide a proof-of-concept to demonstrate the strength of this approach and will thus pave the way for additional innovative materials based on this technology.
Max ERC Funding
150 000 €
Duration
Start date: 2018-12-01, End date: 2020-05-31
Project acronym ANTICIPATE
Project Anticipatory Human-Computer Interaction
Researcher (PI) Andreas BULLING
Host Institution (HI) UNIVERSITAET STUTTGART
Call Details Starting Grant (StG), PE6, ERC-2018-STG
Summary Even after three decades of research on human-computer interaction (HCI), current general-purpose user interfaces (UI) still lack the ability to attribute mental states to their users, i.e. they fail to understand users' intentions and needs and to anticipate their actions. This drastically restricts their interactive capabilities.
ANTICIPATE aims to establish the scientific foundations for a new generation of user interfaces that pro-actively adapt to users' future input actions by monitoring their attention and predicting their interaction intentions - thereby significantly improving the naturalness, efficiency, and user experience of the interactions. Realising this vision of anticipatory human-computer interaction requires groundbreaking advances in everyday sensing of user attention from eye and brain activity. We will further pioneer methods to predict entangled user intentions and forecast interactive behaviour with fine temporal granularity during interactions in everyday stationary and mobile settings. Finally, we will develop fundamental interaction paradigms that enable anticipatory UIs to pro-actively adapt to users' attention and intentions in a mindful way. The new capabilities will be demonstrated in four challenging cases: 1) mobile information retrieval, 2) intelligent notification management, 3) Autism diagnosis and monitoring, and 4) computer-based training.
Anticipatory human-computer interaction offers a strong complement to existing UI paradigms that only react to user input post-hoc. If successful, ANTICIPATE will deliver the first important building blocks for implementing Theory of Mind in general-purpose UIs. As such, the project has the potential to drastically improve the billions of interactions we perform with computers every day, to trigger a wide range of follow-up research in HCI as well as adjacent areas within and outside computer science, and to act as a key technical enabler for new applications, e.g. in healthcare and education.
Summary
Even after three decades of research on human-computer interaction (HCI), current general-purpose user interfaces (UI) still lack the ability to attribute mental states to their users, i.e. they fail to understand users' intentions and needs and to anticipate their actions. This drastically restricts their interactive capabilities.
ANTICIPATE aims to establish the scientific foundations for a new generation of user interfaces that pro-actively adapt to users' future input actions by monitoring their attention and predicting their interaction intentions - thereby significantly improving the naturalness, efficiency, and user experience of the interactions. Realising this vision of anticipatory human-computer interaction requires groundbreaking advances in everyday sensing of user attention from eye and brain activity. We will further pioneer methods to predict entangled user intentions and forecast interactive behaviour with fine temporal granularity during interactions in everyday stationary and mobile settings. Finally, we will develop fundamental interaction paradigms that enable anticipatory UIs to pro-actively adapt to users' attention and intentions in a mindful way. The new capabilities will be demonstrated in four challenging cases: 1) mobile information retrieval, 2) intelligent notification management, 3) Autism diagnosis and monitoring, and 4) computer-based training.
Anticipatory human-computer interaction offers a strong complement to existing UI paradigms that only react to user input post-hoc. If successful, ANTICIPATE will deliver the first important building blocks for implementing Theory of Mind in general-purpose UIs. As such, the project has the potential to drastically improve the billions of interactions we perform with computers every day, to trigger a wide range of follow-up research in HCI as well as adjacent areas within and outside computer science, and to act as a key technical enabler for new applications, e.g. in healthcare and education.
Max ERC Funding
1 499 625 €
Duration
Start date: 2019-02-01, End date: 2024-01-31
Project acronym Antiseptic-Wax
Project Bioinspired superhydrophbic wax surfaces to eliminate biofilm formation in the food industry
Researcher (PI) Boaz Pokroy
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Proof of Concept (PoC), ERC-2018-PoC
Summary Microbial food spoilage leads to food-borne illnesses and food wastage. It is estimated that food borne disease cause 23 million illnesses and 5,000 deaths only in the European region and around 88 million tonnes of food are wasted annually. Contamination of food by biofilms can occur at any stage of the food production process or consumption. In this PoC we propose to address this problem taking inspiration from nature. We have shown that we can emulate various plant leaf surfaces by synthetic paraffin waxes which exhibit superhydrophobic and pronounced passive anti-microbial properties. These waxes are FDA approved for the use in food products. We plan to develop easy to apply waxed surfaces via spray and dip coating techniques, which can be easily implemented into the food industry at various stages of production. We believe this will allow to significantly reduce food spoilage and waste.
Summary
Microbial food spoilage leads to food-borne illnesses and food wastage. It is estimated that food borne disease cause 23 million illnesses and 5,000 deaths only in the European region and around 88 million tonnes of food are wasted annually. Contamination of food by biofilms can occur at any stage of the food production process or consumption. In this PoC we propose to address this problem taking inspiration from nature. We have shown that we can emulate various plant leaf surfaces by synthetic paraffin waxes which exhibit superhydrophobic and pronounced passive anti-microbial properties. These waxes are FDA approved for the use in food products. We plan to develop easy to apply waxed surfaces via spray and dip coating techniques, which can be easily implemented into the food industry at various stages of production. We believe this will allow to significantly reduce food spoilage and waste.
Max ERC Funding
150 000 €
Duration
Start date: 2018-08-01, End date: 2020-01-31
Project acronym ANTSolve
Project A multi-scale perspective into collective problem solving in ants
Researcher (PI) Ofer Feinerman
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Consolidator Grant (CoG), LS8, ERC-2017-COG
Summary Cognition improves an animal’s ability to tune its responses to environmental conditions. In group living animals, communication works to form a collective cognition that expands the group’s abilities beyond those of individuals. Despite much research, to date, there is little understanding of how collective cognition emerges within biological ensembles. A major obstacle towards such an understanding is the rarity of comprehensive multi-scale empirical data of these complex systems.
We have demonstrated cooperative load transport by ants to be an ideal system to study the emergence of cognition. Similar to other complex cognitive systems, the ants employ high levels of emergence to achieve efficient problem solving over a large range of scenarios. Unique to this system, is its extreme amenability to experimental measurement and manipulation where internal conflicts map to forces, abstract decision making is reflected in direction changes, and future planning manifested in pheromone trails. This allows for an unprecedentedly detailed, multi-scale empirical description of the moment-to-moment unfolding of sophisticated cognitive processes.
This proposal is aimed at materializing this potential to the full. We will examine the ants’ problem solving capabilities under a variety of environmental challenges. We will expose the underpinning rules on the different organizational scales, the flow of information between them, and their relative contributions to collective performance. This will allow for empirical comparisons between the ‘group’ and the ‘sum of its parts’ from which we will quantify the level of emergence in this system. Using the language of information, we will map the boundaries of this group’s collective cognition and relate them to the range of habitable environmental niches. Moreover, we will generalize these insights to formulate a new paradigm of emergence in biological groups opening new horizons in the study of cognitive processes in general.
Summary
Cognition improves an animal’s ability to tune its responses to environmental conditions. In group living animals, communication works to form a collective cognition that expands the group’s abilities beyond those of individuals. Despite much research, to date, there is little understanding of how collective cognition emerges within biological ensembles. A major obstacle towards such an understanding is the rarity of comprehensive multi-scale empirical data of these complex systems.
We have demonstrated cooperative load transport by ants to be an ideal system to study the emergence of cognition. Similar to other complex cognitive systems, the ants employ high levels of emergence to achieve efficient problem solving over a large range of scenarios. Unique to this system, is its extreme amenability to experimental measurement and manipulation where internal conflicts map to forces, abstract decision making is reflected in direction changes, and future planning manifested in pheromone trails. This allows for an unprecedentedly detailed, multi-scale empirical description of the moment-to-moment unfolding of sophisticated cognitive processes.
This proposal is aimed at materializing this potential to the full. We will examine the ants’ problem solving capabilities under a variety of environmental challenges. We will expose the underpinning rules on the different organizational scales, the flow of information between them, and their relative contributions to collective performance. This will allow for empirical comparisons between the ‘group’ and the ‘sum of its parts’ from which we will quantify the level of emergence in this system. Using the language of information, we will map the boundaries of this group’s collective cognition and relate them to the range of habitable environmental niches. Moreover, we will generalize these insights to formulate a new paradigm of emergence in biological groups opening new horizons in the study of cognitive processes in general.
Max ERC Funding
2 000 000 €
Duration
Start date: 2018-06-01, End date: 2023-05-31
Project acronym ANYON
Project Engineering and exploring anyonic quantum gases
Researcher (PI) Christof WEITENBERG
Host Institution (HI) UNIVERSITAET HAMBURG
Call Details Starting Grant (StG), PE2, ERC-2018-STG
Summary This project enters the experimental investigation of anyonic quantum gases. We will study anyons – conjectured particles with a statistical exchange phase anywhere between 0 and π – in different many-body systems. This progress will be enabled by a unique approach of bringing together artificial gauge fields and quantum gas microscopes for ultracold atoms.
Specifically, we will implement the 1D anyon Hubbard model via a lattice shaking protocol that imprints density-dependent Peierls phases. By engineering the statistical exchange phase, we can continuously tune between bosons and fermions and explore a statistically-induced quantum phase transition. We will monitor the continuous fermionization via the build-up of Friedel oscillations. Using state-of-the-art cold atom technology, we will thus open the physics of anyons to experimental research and address open questions related to their fractional exclusion statistics.
Secondly, we will create fractional quantum Hall systems in rapidly rotating microtraps. Using the quantum gas microscope, we will i) control the optical potentials at a level which allows approaching the centrifugal limit and ii) use small atom numbers equal to the inserted angular momentum quantum number. The strongly-correlated ground states such as the Laughlin state can be identified via their characteristic density correlations. Of particular interest are the quasihole excitations, whose predicted anyonic exchange statistics have not been directly observed to date. We will probe and test their statistics via the characteristic counting sequence in the excitation spectrum. Furthermore, we will test ideas to transfer anyonic properties of the excitations to a second tracer species. This approach will enable us to both probe the fractional exclusion statistics of the excitations and to create a 2D anyonic quantum gas.
In the long run, these techniques open a path to also study non-Abelian anyons with ultracold atoms.
Summary
This project enters the experimental investigation of anyonic quantum gases. We will study anyons – conjectured particles with a statistical exchange phase anywhere between 0 and π – in different many-body systems. This progress will be enabled by a unique approach of bringing together artificial gauge fields and quantum gas microscopes for ultracold atoms.
Specifically, we will implement the 1D anyon Hubbard model via a lattice shaking protocol that imprints density-dependent Peierls phases. By engineering the statistical exchange phase, we can continuously tune between bosons and fermions and explore a statistically-induced quantum phase transition. We will monitor the continuous fermionization via the build-up of Friedel oscillations. Using state-of-the-art cold atom technology, we will thus open the physics of anyons to experimental research and address open questions related to their fractional exclusion statistics.
Secondly, we will create fractional quantum Hall systems in rapidly rotating microtraps. Using the quantum gas microscope, we will i) control the optical potentials at a level which allows approaching the centrifugal limit and ii) use small atom numbers equal to the inserted angular momentum quantum number. The strongly-correlated ground states such as the Laughlin state can be identified via their characteristic density correlations. Of particular interest are the quasihole excitations, whose predicted anyonic exchange statistics have not been directly observed to date. We will probe and test their statistics via the characteristic counting sequence in the excitation spectrum. Furthermore, we will test ideas to transfer anyonic properties of the excitations to a second tracer species. This approach will enable us to both probe the fractional exclusion statistics of the excitations and to create a 2D anyonic quantum gas.
In the long run, these techniques open a path to also study non-Abelian anyons with ultracold atoms.
Max ERC Funding
1 497 500 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym ANYONIC
Project Statistics of Exotic Fractional Hall States
Researcher (PI) Mordehai HEIBLUM
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Advanced Grant (AdG), PE3, ERC-2018-ADG
Summary Since their discovery, Quantum Hall Effects have unfolded intriguing avenues of research, exhibiting a multitude of unexpected exotic states: accurate quantized conductance states; particle-like and hole-conjugate fractional states; counter-propagating charge and neutral edge modes; and fractionally charged quasiparticles - abelian and (predicted) non-abelian. Since the sought-after anyonic statistics of fractional states is yet to be verified, I propose to launch a thorough search for it employing new means. I believe that our studies will serve the expanding field of the emerging family of topological materials.
Our on-going attempts to observe quasiparticles (qp’s) interference, in order to uncover their exchange statistics (under ERC), taught us that spontaneous, non-topological, ‘neutral edge modes’ are the main culprit responsible for qp’s dephasing. In an effort to quench the neutral modes, we plan to develop a new class of micro-size interferometers, based on synthetically engineered fractional modes. Flowing away from the fixed physical edge, their local environment can be controlled, making it less hospitable for the neutral modes.
Having at hand our synthetized helical-type fractional modes, it is highly tempting to employ them to form localize para-fermions, which will extend the family of exotic states. This can be done by proximitizing them to a superconductor, or gapping them via inter-mode coupling.
The less familiar thermal conductance measurements, which we recently developed (under ERC), will be applied throughout our work to identify ‘topological orders’ of exotic states; namely, distinguishing between abelian and non-abelian fractional states.
The proposal is based on an intensive and continuous MBE effort, aimed at developing extremely high purity, GaAs based, structures. Among them, structures that support our new synthetic modes that are amenable to manipulation, and others that host rare exotic states, such as v=5/2, 12/5, 19/8, and 35/16.
Summary
Since their discovery, Quantum Hall Effects have unfolded intriguing avenues of research, exhibiting a multitude of unexpected exotic states: accurate quantized conductance states; particle-like and hole-conjugate fractional states; counter-propagating charge and neutral edge modes; and fractionally charged quasiparticles - abelian and (predicted) non-abelian. Since the sought-after anyonic statistics of fractional states is yet to be verified, I propose to launch a thorough search for it employing new means. I believe that our studies will serve the expanding field of the emerging family of topological materials.
Our on-going attempts to observe quasiparticles (qp’s) interference, in order to uncover their exchange statistics (under ERC), taught us that spontaneous, non-topological, ‘neutral edge modes’ are the main culprit responsible for qp’s dephasing. In an effort to quench the neutral modes, we plan to develop a new class of micro-size interferometers, based on synthetically engineered fractional modes. Flowing away from the fixed physical edge, their local environment can be controlled, making it less hospitable for the neutral modes.
Having at hand our synthetized helical-type fractional modes, it is highly tempting to employ them to form localize para-fermions, which will extend the family of exotic states. This can be done by proximitizing them to a superconductor, or gapping them via inter-mode coupling.
The less familiar thermal conductance measurements, which we recently developed (under ERC), will be applied throughout our work to identify ‘topological orders’ of exotic states; namely, distinguishing between abelian and non-abelian fractional states.
The proposal is based on an intensive and continuous MBE effort, aimed at developing extremely high purity, GaAs based, structures. Among them, structures that support our new synthetic modes that are amenable to manipulation, and others that host rare exotic states, such as v=5/2, 12/5, 19/8, and 35/16.
Max ERC Funding
1 801 094 €
Duration
Start date: 2019-05-01, End date: 2024-04-30
Project acronym APARTHEID-STOPS
Project Apartheid -- The Global Itinerary: South African Cultural Formations in Transnational Circulation, 1948-1990
Researcher (PI) Louise Bethlehem
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Consolidator Grant (CoG), SH5, ERC-2013-CoG
Summary This proposal proceeds from an anomaly. Apartheid routinely breached the separation that it names. Whereas the South African regime was deeply isolationist in international terms, new research links it to the Cold War and decolonization. Yet this trend does not consider sufficiently that the global contest over the meaning of apartheid and resistance to it occurs on the terrain of culture. My project argues that studying the global circulation of South African cultural formations in the apartheid era provides novel historiographic leverage over Western liberalism during the Cold War. It recasts apartheid as an apparatus of transnational cultural production, turning existing historiography inside out. This study seeks:
• To provide the first systematic account of the deterritorialization of “apartheid”—as political signifier and as apparatus generating circuits of transnational cultural production.
• To analyze these itinerant cultural formations across media and national borders, articulating new intersections.
• To map the itineraries of major South African exiles, where exile is taken to be a system of interlinked circuits of affiliation and cultural production.
• To revise the historiography of states other than South Africa through the lens of deterritorialized apartheid-era formations at their respective destinations.
• To show how apartheid reveals contradictions within Western liberalism during the Cold War, with special reference to racial inequality.
Methodologically, I introduce the model of thick convergence to analyze three periods:
1. Kliptown & Bandung: Novel possibilities, 1948-1960.
2. Sharpeville & Memphis: Drumming up resistance, 1960-1976.
3. From Soweto to Berlin: Spectacle at the barricades, 1976-1990.
Each explores a cultural dominant in the form of texts, soundscapes or photographs. My work stands at the frontier of transnational research, furnishing powerful new insights into why South Africa matters on the stage of global history.
Summary
This proposal proceeds from an anomaly. Apartheid routinely breached the separation that it names. Whereas the South African regime was deeply isolationist in international terms, new research links it to the Cold War and decolonization. Yet this trend does not consider sufficiently that the global contest over the meaning of apartheid and resistance to it occurs on the terrain of culture. My project argues that studying the global circulation of South African cultural formations in the apartheid era provides novel historiographic leverage over Western liberalism during the Cold War. It recasts apartheid as an apparatus of transnational cultural production, turning existing historiography inside out. This study seeks:
• To provide the first systematic account of the deterritorialization of “apartheid”—as political signifier and as apparatus generating circuits of transnational cultural production.
• To analyze these itinerant cultural formations across media and national borders, articulating new intersections.
• To map the itineraries of major South African exiles, where exile is taken to be a system of interlinked circuits of affiliation and cultural production.
• To revise the historiography of states other than South Africa through the lens of deterritorialized apartheid-era formations at their respective destinations.
• To show how apartheid reveals contradictions within Western liberalism during the Cold War, with special reference to racial inequality.
Methodologically, I introduce the model of thick convergence to analyze three periods:
1. Kliptown & Bandung: Novel possibilities, 1948-1960.
2. Sharpeville & Memphis: Drumming up resistance, 1960-1976.
3. From Soweto to Berlin: Spectacle at the barricades, 1976-1990.
Each explores a cultural dominant in the form of texts, soundscapes or photographs. My work stands at the frontier of transnational research, furnishing powerful new insights into why South Africa matters on the stage of global history.
Max ERC Funding
1 861 238 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym ApeAttachment
Project Are social skills determined by early live experiences?
Researcher (PI) Catherine Delia Crockford
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), SH4, ERC-2015-STG
Summary Social bonding success in life impacts on health, survival and fitness. It is proposed that early and later social experience as well as heritable factors determine social bonding abilities in adulthood, although the relative influence of each is unclear. In humans, the resulting uncertainty likely impedes psychological and psychiatric assessment and therapy. One problem hampering progress for human studies is that social bonding success is hard to objectively quantify, particularly in adults. I propose to directly address this problem by determining the key influences on social bonding abilities in chimpanzees, our closest living relative, where social bonding success can be objectively quantified, and is defined as number of affiliative relationships maintained over time with high rates of affiliation.
Objectives. This project will quantify the relative impact of early and later social experience as well as heritable factors on social hormone levels, social cognition and social bonding success in 270 wild and captive chimpanzees, using both cohort and longitudinal data. This will reveal the degree of plasticity in social cognition and bonding behaviour throughout life. Finally, it will evaluate the potential for using endogenous hormone levels as non-invasive biomarkers of social bonding success, as well as identifying social contexts that act as strong natural social hormone releasers.
Outcomes. This project will expose what makes some better at social bonding than others. Specifically, it will show the extent to which later social experience can compensate for early social experience or heritable factors in terms of adult social bonding success, the latter being a key factor in determining health and happiness in life. This project also offers the potential for using hormonal biomarkers in clincial settings, as objective assessment of changes in relationships over time, and in therapy by engaging in social behaviours that act as strong social hormone releasers.
Summary
Social bonding success in life impacts on health, survival and fitness. It is proposed that early and later social experience as well as heritable factors determine social bonding abilities in adulthood, although the relative influence of each is unclear. In humans, the resulting uncertainty likely impedes psychological and psychiatric assessment and therapy. One problem hampering progress for human studies is that social bonding success is hard to objectively quantify, particularly in adults. I propose to directly address this problem by determining the key influences on social bonding abilities in chimpanzees, our closest living relative, where social bonding success can be objectively quantified, and is defined as number of affiliative relationships maintained over time with high rates of affiliation.
Objectives. This project will quantify the relative impact of early and later social experience as well as heritable factors on social hormone levels, social cognition and social bonding success in 270 wild and captive chimpanzees, using both cohort and longitudinal data. This will reveal the degree of plasticity in social cognition and bonding behaviour throughout life. Finally, it will evaluate the potential for using endogenous hormone levels as non-invasive biomarkers of social bonding success, as well as identifying social contexts that act as strong natural social hormone releasers.
Outcomes. This project will expose what makes some better at social bonding than others. Specifically, it will show the extent to which later social experience can compensate for early social experience or heritable factors in terms of adult social bonding success, the latter being a key factor in determining health and happiness in life. This project also offers the potential for using hormonal biomarkers in clincial settings, as objective assessment of changes in relationships over time, and in therapy by engaging in social behaviours that act as strong social hormone releasers.
Max ERC Funding
1 495 000 €
Duration
Start date: 2016-04-01, End date: 2021-03-31
Project acronym APEG
Project Algorithmic Performance Guarantees: Foundations and Applications
Researcher (PI) Susanne ALBERS
Host Institution (HI) TECHNISCHE UNIVERSITAET MUENCHEN
Call Details Advanced Grant (AdG), PE6, ERC-2015-AdG
Summary Optimization problems are ubiquitous in computer science. Almost every problem involves the optimization of some objective function. However a major part of these problems cannot be solved to optimality. Therefore, algorithms that achieve provably good performance guarantees are of immense importance. Considerable progress has already been made, but great challenges remain: Some fundamental problems are not well understood. Moreover, for central problems arising in new applications, no solutions are known at all.
The goal of APEG is to significantly advance the state of the art on algorithmic performance guarantees. Specifically, the project has two missions: First, it will develop new algorithmic techniques, breaking new ground in the areas of online algorithms, approximations algorithms and algorithmic game theory. Second, it will apply these techniques to solve fundamental problems that are central in these algorithmic disciplines. APEG will attack long-standing open problems, some of which have been unresolved for several decades. Furthermore, it will formulate and investigate new algorithmic problems that arise in modern applications. The research agenda encompasses a broad spectrum of classical and timely topics including (a) resource allocation in computer systems, (b) data structuring, (c) graph problems, with relations to Internet advertising, (d) complex networks and (e) massively parallel systems. In addition to basic optimization objectives, the project will also study the new performance metric of energy minimization in computer systems.
Overall, APEG pursues cutting-edge algorithms research, focusing on both foundational problems and applications. Any progress promises to be a breakthrough or significant contribution.
Summary
Optimization problems are ubiquitous in computer science. Almost every problem involves the optimization of some objective function. However a major part of these problems cannot be solved to optimality. Therefore, algorithms that achieve provably good performance guarantees are of immense importance. Considerable progress has already been made, but great challenges remain: Some fundamental problems are not well understood. Moreover, for central problems arising in new applications, no solutions are known at all.
The goal of APEG is to significantly advance the state of the art on algorithmic performance guarantees. Specifically, the project has two missions: First, it will develop new algorithmic techniques, breaking new ground in the areas of online algorithms, approximations algorithms and algorithmic game theory. Second, it will apply these techniques to solve fundamental problems that are central in these algorithmic disciplines. APEG will attack long-standing open problems, some of which have been unresolved for several decades. Furthermore, it will formulate and investigate new algorithmic problems that arise in modern applications. The research agenda encompasses a broad spectrum of classical and timely topics including (a) resource allocation in computer systems, (b) data structuring, (c) graph problems, with relations to Internet advertising, (d) complex networks and (e) massively parallel systems. In addition to basic optimization objectives, the project will also study the new performance metric of energy minimization in computer systems.
Overall, APEG pursues cutting-edge algorithms research, focusing on both foundational problems and applications. Any progress promises to be a breakthrough or significant contribution.
Max ERC Funding
2 404 250 €
Duration
Start date: 2016-10-01, End date: 2021-09-30
Project acronym APGREID
Project Ancient Pathogen Genomics of Re-Emerging Infectious Disease
Researcher (PI) Johannes Krause
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), LS8, ERC-2012-StG_20111109
Summary Here we propose a first step toward a direct reconstruction of the evolutionary history of human infectious disease agents by obtaining genome wide data of historic pathogens. Through an extensive screening of skeletal collections from well-characterized catastrophe, or emergency, mass burials we plan to detect and sequence pathogen DNA from various historic pandemics spanning at least 2,500 years using a general purpose molecular capture method that will screen for hundreds of pathogens in a single assay. Subsequent experiments will attempt to reconstruct full genomes from all pathogenic species identified. The molecular fossil record of human pathogens will provide insights into host adaptation and evolutionary rates of infectious disease. In addition, human genomic regions relating to disease susceptibility and immunity will be characterized in the skeletal material in order to observe the direct effect that pathogens have made on the genetic makeup of human populations over time. The results of this project will allow a multidisciplinary interpretation of historical pandemics that have influenced the course of human history. It will provide priceless information for the field of history, evolutionary biology, anthropology as well as medicine and will have direct consequences on how we manage emerging and re-emerging infectious disease in the future.
Summary
Here we propose a first step toward a direct reconstruction of the evolutionary history of human infectious disease agents by obtaining genome wide data of historic pathogens. Through an extensive screening of skeletal collections from well-characterized catastrophe, or emergency, mass burials we plan to detect and sequence pathogen DNA from various historic pandemics spanning at least 2,500 years using a general purpose molecular capture method that will screen for hundreds of pathogens in a single assay. Subsequent experiments will attempt to reconstruct full genomes from all pathogenic species identified. The molecular fossil record of human pathogens will provide insights into host adaptation and evolutionary rates of infectious disease. In addition, human genomic regions relating to disease susceptibility and immunity will be characterized in the skeletal material in order to observe the direct effect that pathogens have made on the genetic makeup of human populations over time. The results of this project will allow a multidisciplinary interpretation of historical pandemics that have influenced the course of human history. It will provide priceless information for the field of history, evolutionary biology, anthropology as well as medicine and will have direct consequences on how we manage emerging and re-emerging infectious disease in the future.
Max ERC Funding
1 474 560 €
Duration
Start date: 2013-01-01, End date: 2017-12-31