Project acronym 19TH-CENTURY_EUCLID
Project Nineteenth-Century Euclid: Geometry and the Literary Imagination from Wordsworth to Wells
Researcher (PI) Alice Jenkins
Host Institution (HI) UNIVERSITY OF GLASGOW
Call Details Starting Grant (StG), SH4, ERC-2007-StG
Summary This radically interdisciplinary project aims to bring a substantially new field of research – literature and mathematics studies – to prominence as a tool for investigating the culture of nineteenth-century Britain. It will result in three kinds of outcome: a monograph, two interdisciplinary and international colloquia, and a collection of essays. The project focuses on Euclidean geometry as a key element of nineteenth-century literary and scientific culture, showing that it was part of the shared knowledge flowing through elite and popular Romantic and Victorian writing, and figuring notably in the work of very many of the century’s best-known writers. Despite its traditional cultural prestige and educational centrality, geometry has been almost wholly neglected by literary history. This project shows how literature and mathematics studies can draw a new map of nineteenth-century British culture, revitalising our understanding of the Romantic and Victorian imagination through its writing about geometry.
Summary
This radically interdisciplinary project aims to bring a substantially new field of research – literature and mathematics studies – to prominence as a tool for investigating the culture of nineteenth-century Britain. It will result in three kinds of outcome: a monograph, two interdisciplinary and international colloquia, and a collection of essays. The project focuses on Euclidean geometry as a key element of nineteenth-century literary and scientific culture, showing that it was part of the shared knowledge flowing through elite and popular Romantic and Victorian writing, and figuring notably in the work of very many of the century’s best-known writers. Despite its traditional cultural prestige and educational centrality, geometry has been almost wholly neglected by literary history. This project shows how literature and mathematics studies can draw a new map of nineteenth-century British culture, revitalising our understanding of the Romantic and Victorian imagination through its writing about geometry.
Max ERC Funding
323 118 €
Duration
Start date: 2009-01-01, End date: 2011-10-31
Project acronym AAMDDR
Project DNA damage response and genome stability: The role of ATM, ATR and the Mre11 complex
Researcher (PI) Vincenzo Costanzo
Host Institution (HI) CANCER RESEARCH UK LBG
Call Details Starting Grant (StG), LS1, ERC-2007-StG
Summary Chromosomal DNA is continuously subjected to exogenous and endogenous damaging insults. In the presence of DNA damage cells activate a multi-faceted checkpoint response that delays cell cycle progression and promotes DNA repair. Failures in this response lead to genomic instability, the main feature of cancer cells. Several cancer-prone human syndromes including the Ataxia teleangiectasia (A-T), the A-T Like Disorder (ATLD) and the Seckel Syndrome reflect defects in the specific genes of the DNA damage response such as ATM, MRE11 and ATR. DNA damage response pathways are poorly understood at biochemical level in vertebrate organisms. We have established a cell-free system based on Xenopus laevis egg extract to study molecular events underlying DNA damage response. This is the first in vitro system that recapitulates different aspects of the DNA damage response in vertebrates. Using this system we propose to study the biochemistry of the ATM, ATR and the Mre11 complex dependent DNA damage response. In particular we will: 1) Dissect the signal transduction pathway that senses DNA damage and promotes cell cycle arrest and DNA damage repair; 2) Analyze at molecular level the role of ATM, ATR, Mre11 in chromosomal DNA replication and mitosis during normal and stressful conditions; 3) Identify substrates of the ATM and ATR dependent DNA damage response using an innovative screening procedure.
Summary
Chromosomal DNA is continuously subjected to exogenous and endogenous damaging insults. In the presence of DNA damage cells activate a multi-faceted checkpoint response that delays cell cycle progression and promotes DNA repair. Failures in this response lead to genomic instability, the main feature of cancer cells. Several cancer-prone human syndromes including the Ataxia teleangiectasia (A-T), the A-T Like Disorder (ATLD) and the Seckel Syndrome reflect defects in the specific genes of the DNA damage response such as ATM, MRE11 and ATR. DNA damage response pathways are poorly understood at biochemical level in vertebrate organisms. We have established a cell-free system based on Xenopus laevis egg extract to study molecular events underlying DNA damage response. This is the first in vitro system that recapitulates different aspects of the DNA damage response in vertebrates. Using this system we propose to study the biochemistry of the ATM, ATR and the Mre11 complex dependent DNA damage response. In particular we will: 1) Dissect the signal transduction pathway that senses DNA damage and promotes cell cycle arrest and DNA damage repair; 2) Analyze at molecular level the role of ATM, ATR, Mre11 in chromosomal DNA replication and mitosis during normal and stressful conditions; 3) Identify substrates of the ATM and ATR dependent DNA damage response using an innovative screening procedure.
Max ERC Funding
1 000 000 €
Duration
Start date: 2008-07-01, End date: 2013-06-30
Project acronym AAREA
Project The Archaeology of Agricultural Resilience in Eastern Africa
Researcher (PI) Daryl Stump
Host Institution (HI) UNIVERSITY OF YORK
Call Details Starting Grant (StG), SH6, ERC-2013-StG
Summary "The twin concepts of sustainability and conservation that are so pivotal within current debates regarding economic development and biodiversity protection both contain an inherent temporal dimension, since both refer to the need to balance short-term gains with long-term resource maintenance. Proponents of resilience theory and of development based on ‘indigenous knowledge’ have thus argued for the necessity of including archaeological, historical and palaeoenvironmental components within development project design. Indeed, some have argued that archaeology should lead these interdisciplinary projects on the grounds that it provides the necessary time depth and bridges the social and natural sciences. The project proposed here accepts this logic and endorses this renewed contemporary relevance of archaeological research. However, it also needs to be admitted that moving beyond critiques of the misuse of historical data presents significant hurdles. When presenting results outside the discipline, for example, archaeological projects tend to downplay the poor archaeological visibility of certain agricultural practices, and computer models designed to test sustainability struggle to adequately account for local cultural preferences. This field will therefore not progress unless there is a frank appraisal of archaeology’s strengths and weaknesses. This project will provide this assessment by employing a range of established and groundbreaking archaeological and modelling techniques to examine the development of two east Africa agricultural systems: one at the abandoned site of Engaruka in Tanzania, commonly seen as an example of resource mismanagement and ecological collapse; and another at the current agricultural landscape in Konso, Ethiopia, described by the UN FAO as one of a select few African “lessons from the past”. The project thus aims to assess the sustainability of these systems, but will also assess the role archaeology can play in such debates worldwide."
Summary
"The twin concepts of sustainability and conservation that are so pivotal within current debates regarding economic development and biodiversity protection both contain an inherent temporal dimension, since both refer to the need to balance short-term gains with long-term resource maintenance. Proponents of resilience theory and of development based on ‘indigenous knowledge’ have thus argued for the necessity of including archaeological, historical and palaeoenvironmental components within development project design. Indeed, some have argued that archaeology should lead these interdisciplinary projects on the grounds that it provides the necessary time depth and bridges the social and natural sciences. The project proposed here accepts this logic and endorses this renewed contemporary relevance of archaeological research. However, it also needs to be admitted that moving beyond critiques of the misuse of historical data presents significant hurdles. When presenting results outside the discipline, for example, archaeological projects tend to downplay the poor archaeological visibility of certain agricultural practices, and computer models designed to test sustainability struggle to adequately account for local cultural preferences. This field will therefore not progress unless there is a frank appraisal of archaeology’s strengths and weaknesses. This project will provide this assessment by employing a range of established and groundbreaking archaeological and modelling techniques to examine the development of two east Africa agricultural systems: one at the abandoned site of Engaruka in Tanzania, commonly seen as an example of resource mismanagement and ecological collapse; and another at the current agricultural landscape in Konso, Ethiopia, described by the UN FAO as one of a select few African “lessons from the past”. The project thus aims to assess the sustainability of these systems, but will also assess the role archaeology can play in such debates worldwide."
Max ERC Funding
1 196 701 €
Duration
Start date: 2014-02-01, End date: 2018-01-31
Project acronym AN07AT
Project Understanding computational roles of new neurons generated in the adult hippocampus
Researcher (PI) Ayumu Tashiro
Host Institution (HI) NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET NTNU
Call Details Starting Grant (StG), LS4, ERC-2007-StG
Summary New neurons are continuously generated in certain regions of adult mammalian brain. One of those regions is the dentate gyrus, a subregion of hippocampus, which is essential for memory formation. Although these new neurons in the adult dentate gyrus are thought to have an important role in learning and memory, it is largely unclear how new neurons are involved in information processing and storage underlying memory. Because new neurons constitute a minor portion of intermingled local neuronal population, simple application of conventional techniques such as multi-unit extracellular recording and pharmacological lesion are not suitable for the functional analysis of new neurons. In this proposed research program, I will combine multi-unit recording and behavioral analysis with virus mediated, cell-type-specific genetic manipulation of neuronal activity, to investigate computational roles of new neurons in learning and memory. Specifically, I will determine: 1) specific memory processes that require new neurons, 2) dynamic patterns of activity that new neurons express during memory-related behavior, 3) influence of new neurons on their downstream structure. Further, based on the information obtained by these three lines of studies, we will establish causal relationship between specific memory-related behavior and specific pattern of activity in new neurons. Solving these issues will cooperatively provide important insight into the understanding of computational roles performed by adult neurogenesis. The information on the function of new neurons in normal brain could contribute to future development of efficient therapeutic strategy for a variety of brain disorders.
Summary
New neurons are continuously generated in certain regions of adult mammalian brain. One of those regions is the dentate gyrus, a subregion of hippocampus, which is essential for memory formation. Although these new neurons in the adult dentate gyrus are thought to have an important role in learning and memory, it is largely unclear how new neurons are involved in information processing and storage underlying memory. Because new neurons constitute a minor portion of intermingled local neuronal population, simple application of conventional techniques such as multi-unit extracellular recording and pharmacological lesion are not suitable for the functional analysis of new neurons. In this proposed research program, I will combine multi-unit recording and behavioral analysis with virus mediated, cell-type-specific genetic manipulation of neuronal activity, to investigate computational roles of new neurons in learning and memory. Specifically, I will determine: 1) specific memory processes that require new neurons, 2) dynamic patterns of activity that new neurons express during memory-related behavior, 3) influence of new neurons on their downstream structure. Further, based on the information obtained by these three lines of studies, we will establish causal relationship between specific memory-related behavior and specific pattern of activity in new neurons. Solving these issues will cooperatively provide important insight into the understanding of computational roles performed by adult neurogenesis. The information on the function of new neurons in normal brain could contribute to future development of efficient therapeutic strategy for a variety of brain disorders.
Max ERC Funding
1 991 743 €
Duration
Start date: 2009-01-01, End date: 2013-12-31
Project acronym AORVM
Project The Effects of Aging on Object Representation in Visual Working Memory
Researcher (PI) James Robert Brockmole
Host Institution (HI) THE UNIVERSITY OF EDINBURGH
Call Details Starting Grant (StG), SH3, ERC-2007-StG
Summary One’s ability to remember visual material such as objects, faces, and spatial locations over a short period of time declines with age. The proposed research will examine whether these deficits are explained by a reduction in visual working memory (VWM) capacity, or an impairment in one’s ability to maintain, or ‘bind’ appropriate associations among pieces of related information. In this project successful binding is operationally defined as the proper recall or recognition of objects that are defined by the conjunction of multiple visual features. While tests of long-term memory have demonstrated that, despite preserved memory for isolated features, older adults have more difficulty remembering conjunctions of features, no research has yet investigated analogous age related binding deficits in VWM. This is a critical oversight because, given the current state of the science, it is unknown whether these deficits are specific to the long-term memory system, or if they originate in VWM. The project interweaves three strands of research that each investigate whether older adults have more difficulty creating, maintaining, and updating bound multi-feature object representations than younger adults. This theoretical program of enquiry will provide insight into the cognitive architecture of VWM and how this system changes with age, and its outcomes will have wide ranging multi-disciplinary applications in applied theory and intervention techniques that may reduce the adverse consequences of aging on memory.
Summary
One’s ability to remember visual material such as objects, faces, and spatial locations over a short period of time declines with age. The proposed research will examine whether these deficits are explained by a reduction in visual working memory (VWM) capacity, or an impairment in one’s ability to maintain, or ‘bind’ appropriate associations among pieces of related information. In this project successful binding is operationally defined as the proper recall or recognition of objects that are defined by the conjunction of multiple visual features. While tests of long-term memory have demonstrated that, despite preserved memory for isolated features, older adults have more difficulty remembering conjunctions of features, no research has yet investigated analogous age related binding deficits in VWM. This is a critical oversight because, given the current state of the science, it is unknown whether these deficits are specific to the long-term memory system, or if they originate in VWM. The project interweaves three strands of research that each investigate whether older adults have more difficulty creating, maintaining, and updating bound multi-feature object representations than younger adults. This theoretical program of enquiry will provide insight into the cognitive architecture of VWM and how this system changes with age, and its outcomes will have wide ranging multi-disciplinary applications in applied theory and intervention techniques that may reduce the adverse consequences of aging on memory.
Max ERC Funding
500 000 €
Duration
Start date: 2008-09-01, End date: 2011-08-31
Project acronym APPLAUSE
Project Adolescent Precursors to Psychiatric Disorders – Learing from Analysis of User-Service Engagement
Researcher (PI) Sara Evans
Host Institution (HI) LONDON SCHOOL OF ECONOMICS AND POLITICAL SCIENCE
Call Details Starting Grant (StG), LS7, ERC-2013-StG
Summary APPLAUSE’s aim is to produce a body of evidence that illustrates how young people with mental health problems currently interact with both formal mental health services and informal social and familial support structures. Careful analysis of data gathered in the UK and Brazil will allow formulation of globally relevant insights into mental health care delivery for young people, which will be presented internationally as a resource for future health care service design.
APPLAUSE will allow the collection of an important data set that does not currently exist in this field, and will look to other disciplines for innovative approaches to data analysis. Whist standard analysis may allow for snapshots of health service use, using innovative life course methods will allow us to to characterise patterns of complete service use of each individual participant’s experience of accessing mental health care and social support.
Adolescence is a critical period in mental health development, which has been largely neglected by public health efforts. Psychiatric disorders rank as the primary cause of disability among individuals aged 10-24 years, worldwide. Moreover, many health risk behaviours emerge during adolescence and 70% of adult psychiatric disorders are preceded by mental health problems during adolescent years. However, delays to receiving care for psychiatric disorders, following disorder onset, avreage more than ten years and little is known about factors which impede access to and continuity of care among young people with mental health problems. APPLAUSE will analyse current access models, reports of individual experiences of positive and negative interactions with health care services and the culturally embedded social factors that impact on such access. Addressing this complex problem from a global perspective will advance the development of a more diverse and innovative set of strategies for improving earlier access to care.
Summary
APPLAUSE’s aim is to produce a body of evidence that illustrates how young people with mental health problems currently interact with both formal mental health services and informal social and familial support structures. Careful analysis of data gathered in the UK and Brazil will allow formulation of globally relevant insights into mental health care delivery for young people, which will be presented internationally as a resource for future health care service design.
APPLAUSE will allow the collection of an important data set that does not currently exist in this field, and will look to other disciplines for innovative approaches to data analysis. Whist standard analysis may allow for snapshots of health service use, using innovative life course methods will allow us to to characterise patterns of complete service use of each individual participant’s experience of accessing mental health care and social support.
Adolescence is a critical period in mental health development, which has been largely neglected by public health efforts. Psychiatric disorders rank as the primary cause of disability among individuals aged 10-24 years, worldwide. Moreover, many health risk behaviours emerge during adolescence and 70% of adult psychiatric disorders are preceded by mental health problems during adolescent years. However, delays to receiving care for psychiatric disorders, following disorder onset, avreage more than ten years and little is known about factors which impede access to and continuity of care among young people with mental health problems. APPLAUSE will analyse current access models, reports of individual experiences of positive and negative interactions with health care services and the culturally embedded social factors that impact on such access. Addressing this complex problem from a global perspective will advance the development of a more diverse and innovative set of strategies for improving earlier access to care.
Max ERC Funding
1 499 948 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym AVIANEGG
Project Evolutionary genetics in a ‘classical’ avian study system by high throughput transcriptome sequencing and SNP genotyping
Researcher (PI) Jon Slate
Host Institution (HI) THE UNIVERSITY OF SHEFFIELD
Call Details Starting Grant (StG), LS5, ERC-2007-StG
Summary Long-term studies of free-living vertebrate populations have proved a rich resource for understanding evolutionary and ecological processes, because individuals’ life histories can be measured by tracking them from birth/hatching through to death. In recent years the ‘animal model’ has been applied to pedigreed long-term study populations with great success, dramatically advancing our understanding of quantitative genetic parameters such as heritabilities, genetic correlations and plasticities of traits that are relevant to microevolutionary responses to environmental change. Unfortunately, quantitative genetic approaches have one major drawback – they cannot identify the actual genes responsible for genetic variation. Therefore, it is impossible to link evolutionary responses to a changing environment to molecular genetic variation, making our picture of the process incomplete. Many of the best long-term studies have been conducted in passerine birds. Unfortunately genomics resources are only available for two model avian species, and are absent for bird species that are studied in the wild. I will fill this gap by exploiting recent advances in genomics technology to sequence the entire transcriptome of the longest running study of wild birds – the great tit population in Wytham Woods, Oxford. Having identified most of the sequence variation in the great tit transcriptome, I will then genotype all birds for whom phenotype records and blood samples are available This will be, by far, the largest phenotype-genotype dataset of any free-living vertebrate population. I will then use gene mapping techniques to identify genes and genomic regions responsible for variation in a number of key traits such as lifetime recruitment, clutch size and breeding/laying date. This will result in a greater understanding, at the molecular level, how microevolutionary change can arise (or be constrained).
Summary
Long-term studies of free-living vertebrate populations have proved a rich resource for understanding evolutionary and ecological processes, because individuals’ life histories can be measured by tracking them from birth/hatching through to death. In recent years the ‘animal model’ has been applied to pedigreed long-term study populations with great success, dramatically advancing our understanding of quantitative genetic parameters such as heritabilities, genetic correlations and plasticities of traits that are relevant to microevolutionary responses to environmental change. Unfortunately, quantitative genetic approaches have one major drawback – they cannot identify the actual genes responsible for genetic variation. Therefore, it is impossible to link evolutionary responses to a changing environment to molecular genetic variation, making our picture of the process incomplete. Many of the best long-term studies have been conducted in passerine birds. Unfortunately genomics resources are only available for two model avian species, and are absent for bird species that are studied in the wild. I will fill this gap by exploiting recent advances in genomics technology to sequence the entire transcriptome of the longest running study of wild birds – the great tit population in Wytham Woods, Oxford. Having identified most of the sequence variation in the great tit transcriptome, I will then genotype all birds for whom phenotype records and blood samples are available This will be, by far, the largest phenotype-genotype dataset of any free-living vertebrate population. I will then use gene mapping techniques to identify genes and genomic regions responsible for variation in a number of key traits such as lifetime recruitment, clutch size and breeding/laying date. This will result in a greater understanding, at the molecular level, how microevolutionary change can arise (or be constrained).
Max ERC Funding
1 560 770 €
Duration
Start date: 2008-10-01, End date: 2014-06-30
Project acronym BENELEX
Project Benefit-sharing for an equitable transition to the green economy - the role of law
Researcher (PI) Elisa Morgera
Host Institution (HI) UNIVERSITY OF STRATHCLYDE
Call Details Starting Grant (StG), SH2, ERC-2013-StG
Summary Can benefit-sharing address the equity deficit within the green economy? This project aims to investigate benefit-sharing as an under-theorised and little-implemented regulatory approach to the equity concerns (disregard for the special circumstances of developing countries and of indigenous peoples and local communities) in transitioning to the green economy.
Although benefit-sharing is increasingly deployed in a variety of international environmental agreements and also in human rights and corporate accountability instruments, no comprehensive account exists of its conceptual and practical relevance to equitably address global environmental challenges. This project will be the first systematic evaluation of the conceptualisations and operationalisations of benefit-sharing as a tool for equitable change through the allocation among different stakeholders of economic and also socio-cultural and environmental advantages arising from natural resource use.
The project will combine a comparative study of international law with empirical legal research, and include an inter-disciplinary study integrating political sociology in a legal enquiry on the role of “biocultural community protocols” that articulate and implement benefit-sharing at the intersection of international, transnational, national and indigenous communities’ customary law (global environmental law).
The project aims to: 1. develop a comprehensive understanding of benefit-sharing in international law; 2. clarify whether and how benefit-sharing supports equity and the protection of human rights across key sectors of international environmental regulation (biodiversity, climate change, oceans, food and agriculture) that are seen as inter-related in the transition to the green economy; 3. understand the development of benefit-sharing in the context of global environmental law; and
4. clarify the role of transnational legal advisors (NGOs and bilateral cooperation partners) in the green economy.
Summary
Can benefit-sharing address the equity deficit within the green economy? This project aims to investigate benefit-sharing as an under-theorised and little-implemented regulatory approach to the equity concerns (disregard for the special circumstances of developing countries and of indigenous peoples and local communities) in transitioning to the green economy.
Although benefit-sharing is increasingly deployed in a variety of international environmental agreements and also in human rights and corporate accountability instruments, no comprehensive account exists of its conceptual and practical relevance to equitably address global environmental challenges. This project will be the first systematic evaluation of the conceptualisations and operationalisations of benefit-sharing as a tool for equitable change through the allocation among different stakeholders of economic and also socio-cultural and environmental advantages arising from natural resource use.
The project will combine a comparative study of international law with empirical legal research, and include an inter-disciplinary study integrating political sociology in a legal enquiry on the role of “biocultural community protocols” that articulate and implement benefit-sharing at the intersection of international, transnational, national and indigenous communities’ customary law (global environmental law).
The project aims to: 1. develop a comprehensive understanding of benefit-sharing in international law; 2. clarify whether and how benefit-sharing supports equity and the protection of human rights across key sectors of international environmental regulation (biodiversity, climate change, oceans, food and agriculture) that are seen as inter-related in the transition to the green economy; 3. understand the development of benefit-sharing in the context of global environmental law; and
4. clarify the role of transnational legal advisors (NGOs and bilateral cooperation partners) in the green economy.
Max ERC Funding
1 481 708 €
Duration
Start date: 2013-11-01, End date: 2018-10-31
Project acronym BEYONDENEMYLINES
Project Beyond Enemy Lines: Literature and Film in the British and American Zones of Occupied Germany, 1945-1949
Researcher (PI) Lara Feigel
Host Institution (HI) KING'S COLLEGE LONDON
Call Details Starting Grant (StG), SH5, ERC-2013-StG
Summary This project investigates the cross-fertilisation of Anglo/American and German literature and film during the Allied Occupation of Germany. It will be the first study to survey the cultural landscape of the British and American zones of Occupied Germany in any detail. By doing so it will offer a new interpretative framework for postwar culture, in particular in three areas: the history of the Allied Occupation of Germany; the history of postwar Anglophone and Germanophone literature (arguing the two were more intertwined than has previously been suggested); and the history of the relationship between postwar and Cold War. Combining Anglo-American and German literature and film history with critical analysis, cultural history and life-writing, this is a necessarily ambitious, multidisciplinary study which will open up a major new field of research.
Summary
This project investigates the cross-fertilisation of Anglo/American and German literature and film during the Allied Occupation of Germany. It will be the first study to survey the cultural landscape of the British and American zones of Occupied Germany in any detail. By doing so it will offer a new interpretative framework for postwar culture, in particular in three areas: the history of the Allied Occupation of Germany; the history of postwar Anglophone and Germanophone literature (arguing the two were more intertwined than has previously been suggested); and the history of the relationship between postwar and Cold War. Combining Anglo-American and German literature and film history with critical analysis, cultural history and life-writing, this is a necessarily ambitious, multidisciplinary study which will open up a major new field of research.
Max ERC Funding
1 414 601 €
Duration
Start date: 2013-09-01, End date: 2019-02-28
Project acronym BIOIONS
Project Biological ions in the gas-phase: New techniques for structural characterization of isolated biomolecular ions
Researcher (PI) Caroline Dessent
Host Institution (HI) UNIVERSITY OF YORK
Call Details Starting Grant (StG), PE4, ERC-2007-StG
Summary Recent intensive research on the laser spectroscopy of neutral gas-phase biomolecules has yielded a detailed picture of their structures and conformational preferences away from the complications of the bulk environment. In contrast, work on ionic systems has been sparse despite the fact that many important molecular groups are charged under physiological conditions. To address this probelm, we have developed a custom-built laser spectrometer, which incorporates a distincitive electrospray ionisation (ESI) cluster ion source, dedicated to producing biological anions (ATP,oligonucleotides) and their microsolvated clusters for structural characterization. Many previous laser spectrometers with ESI sources have suffered from producing "hot" congested spectra as the ions were produced at ambient temperatures. This is a particularly serious limitation for spectroscopic studies of biomolecules, since these systems can possess high internal energies due tothe presence of numerous low frequency modes. Our spectrometer overcomes this problem by exploiting the newly developed physics technique of "buffer gas cooling" to produce cold ESI molecular ions. In this proposal, we now seek to exploit the new laser-spectrometer to perform detailed spectroscopic interrogations of ESI generated biomolecular anions and clusters. In addition to traditional ion-dissociation spectroscopies, we propose to develop two new laser spectroscopy techniques (Two-color tuneable IR spectroscopy and Dipole-bound excited state spectroscopy) to give the broadest possible structural characterizations of the systems of interest. Studies will focus on ATP/GTP-anions, olignonucleotides, and sulphated and carboxylated sugars. These methodologies will provide a general approach for performing temperature-controlled spectroscopic characterizations of isolated biological ions, with measurements on the corresponding micro-solvated clusters providing details of how the molecules are perturbed by solvent.
Summary
Recent intensive research on the laser spectroscopy of neutral gas-phase biomolecules has yielded a detailed picture of their structures and conformational preferences away from the complications of the bulk environment. In contrast, work on ionic systems has been sparse despite the fact that many important molecular groups are charged under physiological conditions. To address this probelm, we have developed a custom-built laser spectrometer, which incorporates a distincitive electrospray ionisation (ESI) cluster ion source, dedicated to producing biological anions (ATP,oligonucleotides) and their microsolvated clusters for structural characterization. Many previous laser spectrometers with ESI sources have suffered from producing "hot" congested spectra as the ions were produced at ambient temperatures. This is a particularly serious limitation for spectroscopic studies of biomolecules, since these systems can possess high internal energies due tothe presence of numerous low frequency modes. Our spectrometer overcomes this problem by exploiting the newly developed physics technique of "buffer gas cooling" to produce cold ESI molecular ions. In this proposal, we now seek to exploit the new laser-spectrometer to perform detailed spectroscopic interrogations of ESI generated biomolecular anions and clusters. In addition to traditional ion-dissociation spectroscopies, we propose to develop two new laser spectroscopy techniques (Two-color tuneable IR spectroscopy and Dipole-bound excited state spectroscopy) to give the broadest possible structural characterizations of the systems of interest. Studies will focus on ATP/GTP-anions, olignonucleotides, and sulphated and carboxylated sugars. These methodologies will provide a general approach for performing temperature-controlled spectroscopic characterizations of isolated biological ions, with measurements on the corresponding micro-solvated clusters providing details of how the molecules are perturbed by solvent.
Max ERC Funding
1 250 000 €
Duration
Start date: 2008-10-01, End date: 2015-06-30
Project acronym BODY-OWNERSHIP
Project Neural mechanisms of body ownership and the projection of ownership onto artificial bodies
Researcher (PI) H. Henrik Ehrsson
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Starting Grant (StG), LS4, ERC-2007-StG
Summary How do we recognize that our limbs are part of our own body, and why do we feel that one’s self is located inside the body? These fundamental questions have been discussed in theology, philosophy and psychology for millennia. The aim of my ground-breaking research programme is to identify the neuronal mechanisms that produce the sense of ownership of the body, and the processes responsible for the feeling that the self is located inside the physical body. To solve these questions I will adopt an inter-disciplinary approach using state-of-the-art methods from the fields of imaging neuroscience, experimental psychology, computer science and robotics. My first hypothesis is that the mechanism for body ownership is the integration of information from different sensory modalities (vision, touch and muscle sense) in multi-sensory brain areas (ventral premotor and intraparietal cortex). My second hypothesis is that the sense of where you are located in the environment is mediated by allocentric spatial representations in medial temporal lobes. To test this, I will use perceptual illusions and virtual-reality techniques that allow me to manipulate body ownership and the perceived location of the self, in conjunction with non-invasive recordings of brain activity in healthy humans. Functional magnetic resonance imaging and electroencephalography will be used to identify the neuronal correlates of ownership and ‘in-body experiences’, while transcranial magnetic stimulation will be used to examine the causal relationship between neural activity and ownership. It is no overstatement to say that my pioneering work could define a new sub-field in cognitive neuroscience dealing with how the brain represents the self. These basic scientific discoveries will be used in new frontier applications. For example, the development of a prosthetic limb that feels just like a real limb, and a method of controlling humanoid robots by the illusion of ‘becoming the robot’.
Summary
How do we recognize that our limbs are part of our own body, and why do we feel that one’s self is located inside the body? These fundamental questions have been discussed in theology, philosophy and psychology for millennia. The aim of my ground-breaking research programme is to identify the neuronal mechanisms that produce the sense of ownership of the body, and the processes responsible for the feeling that the self is located inside the physical body. To solve these questions I will adopt an inter-disciplinary approach using state-of-the-art methods from the fields of imaging neuroscience, experimental psychology, computer science and robotics. My first hypothesis is that the mechanism for body ownership is the integration of information from different sensory modalities (vision, touch and muscle sense) in multi-sensory brain areas (ventral premotor and intraparietal cortex). My second hypothesis is that the sense of where you are located in the environment is mediated by allocentric spatial representations in medial temporal lobes. To test this, I will use perceptual illusions and virtual-reality techniques that allow me to manipulate body ownership and the perceived location of the self, in conjunction with non-invasive recordings of brain activity in healthy humans. Functional magnetic resonance imaging and electroencephalography will be used to identify the neuronal correlates of ownership and ‘in-body experiences’, while transcranial magnetic stimulation will be used to examine the causal relationship between neural activity and ownership. It is no overstatement to say that my pioneering work could define a new sub-field in cognitive neuroscience dealing with how the brain represents the self. These basic scientific discoveries will be used in new frontier applications. For example, the development of a prosthetic limb that feels just like a real limb, and a method of controlling humanoid robots by the illusion of ‘becoming the robot’.
Max ERC Funding
909 850 €
Duration
Start date: 2008-12-01, End date: 2013-11-30
Project acronym BODYBUILDING
Project Building body representations: An investigation of the formation and maintenance of body representations
Researcher (PI) Matthew Ryan Longo
Host Institution (HI) BIRKBECK COLLEGE - UNIVERSITY OF LONDON
Call Details Starting Grant (StG), SH4, ERC-2013-StG
Summary "The body is ubiquitous in perceptual experience and is central to our sense of self and personal identity. Disordered body representations are central to several serious psychiatric and neurological disorders. Thus, identifying factors which contribute to the formation and maintenance of body representations is crucial for understanding how body representation goes awry in disease, and how it might be corrected by potential novel therapeutic interventions. Several types of sensory signals provide information about the body, making the body the multisensory object, par excellence. Little is known, however, about how information from somatosensation and from vision is integrated to construct the rich body representations we all experience. This project fills this gap in current understanding by determining how the brain builds body representations (BODYBUILDING). A hierarchical model of body representation is proposed, providing a novel theoretical framework for understanding the diversity of body representations and how they interact. The key motivating hypothesis is that body representation is determined by the dialectic between two major cognitive processes. First, from the bottom-up, somatosensation represents the body surface as a mosaic of discrete receptive fields, which become progressively agglomerated into larger and larger units of organisation, a process I call fusion. Second, from the top-down, vision starts out depicting the body as an undifferentiated whole, which is progressively broken into smaller parts, a process I call segmentation. Thus, body representation operates from the bottom-up as a process of fusion of primitive elements into larger complexes, as well as from the top-down as a process of segmentation of an initially undifferentiated whole into more basic parts. This project uses a combination of psychophysical, electrophysiological, and neuroimaging methods to provide fundamental insight into how we come to represent our body."
Summary
"The body is ubiquitous in perceptual experience and is central to our sense of self and personal identity. Disordered body representations are central to several serious psychiatric and neurological disorders. Thus, identifying factors which contribute to the formation and maintenance of body representations is crucial for understanding how body representation goes awry in disease, and how it might be corrected by potential novel therapeutic interventions. Several types of sensory signals provide information about the body, making the body the multisensory object, par excellence. Little is known, however, about how information from somatosensation and from vision is integrated to construct the rich body representations we all experience. This project fills this gap in current understanding by determining how the brain builds body representations (BODYBUILDING). A hierarchical model of body representation is proposed, providing a novel theoretical framework for understanding the diversity of body representations and how they interact. The key motivating hypothesis is that body representation is determined by the dialectic between two major cognitive processes. First, from the bottom-up, somatosensation represents the body surface as a mosaic of discrete receptive fields, which become progressively agglomerated into larger and larger units of organisation, a process I call fusion. Second, from the top-down, vision starts out depicting the body as an undifferentiated whole, which is progressively broken into smaller parts, a process I call segmentation. Thus, body representation operates from the bottom-up as a process of fusion of primitive elements into larger complexes, as well as from the top-down as a process of segmentation of an initially undifferentiated whole into more basic parts. This project uses a combination of psychophysical, electrophysiological, and neuroimaging methods to provide fundamental insight into how we come to represent our body."
Max ERC Funding
1 497 715 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym BRAINIMAGES
Project "How do we keep apart internally generated mental images from externally induced percepts? Dissociating mental imagery, working memory and conscious perception."
Researcher (PI) Juha Tapani Silvanto
Host Institution (HI) THE UNIVERSITY OF WESTMINSTER LBG
Call Details Starting Grant (StG), SH4, ERC-2013-StG
Summary "Conscious experiences normally result from the flow of external input into our sensory systems. However, our minds are also able to create conscious percepts in the absence of any sensory stimulation; these internally generated percepts are referred to as mental images, and they have many similarities with real visual percepts; consequently, mental imagery is often referred to as “seeing in the mind’s eye”. Mental imagery is also believed to be closely related to working memory, a mechanism which can maintain “offline” representations of visual stimuli no longer in the observer’s view, as both involve internal representations of previously seen visual attributes. Indeed, visual imagery is often thought of as a conscious window into the content of memory representations. Imagery, working memory, and conscious perception are thus thought to rely on very similar mechanisms. However, in everyday life we are generally able to keep apart the constructs of our imagination from real physical events; this begs the question of how the brain distinguishes internal mental images from externally induced visual percepts. To answer this question, the proposed work aims to isolate the cortical mechanisms associated uniquely with WM and imagery independently of each other and independently of the influence of external conscious percepts. Furthermore, by the use of neuroimaging and brain stimulation, we aim to determine the cortical mechanisms which keep apart internally generated and externally induced percepts, in both health and disease. This is a question of great clinical interest, as the ability to distinguish the perceived from the imagined is impoverished in psychotic disorders. In addition to revealing the mechanisms underlying this confusion, the present project aims to alleviate it in psychotic patients by the use of brain stimulation. The project will thus significantly improve our understanding of these cognitive processes and will also have clinical implications."
Summary
"Conscious experiences normally result from the flow of external input into our sensory systems. However, our minds are also able to create conscious percepts in the absence of any sensory stimulation; these internally generated percepts are referred to as mental images, and they have many similarities with real visual percepts; consequently, mental imagery is often referred to as “seeing in the mind’s eye”. Mental imagery is also believed to be closely related to working memory, a mechanism which can maintain “offline” representations of visual stimuli no longer in the observer’s view, as both involve internal representations of previously seen visual attributes. Indeed, visual imagery is often thought of as a conscious window into the content of memory representations. Imagery, working memory, and conscious perception are thus thought to rely on very similar mechanisms. However, in everyday life we are generally able to keep apart the constructs of our imagination from real physical events; this begs the question of how the brain distinguishes internal mental images from externally induced visual percepts. To answer this question, the proposed work aims to isolate the cortical mechanisms associated uniquely with WM and imagery independently of each other and independently of the influence of external conscious percepts. Furthermore, by the use of neuroimaging and brain stimulation, we aim to determine the cortical mechanisms which keep apart internally generated and externally induced percepts, in both health and disease. This is a question of great clinical interest, as the ability to distinguish the perceived from the imagined is impoverished in psychotic disorders. In addition to revealing the mechanisms underlying this confusion, the present project aims to alleviate it in psychotic patients by the use of brain stimulation. The project will thus significantly improve our understanding of these cognitive processes and will also have clinical implications."
Max ERC Funding
1 280 680 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym CAAXPROCESSINGHUMDIS
Project CAAX Protein Processing in Human DIsease: From Cancer to Progeria
Researcher (PI) Martin Olof Bergö
Host Institution (HI) GOETEBORGS UNIVERSITET
Call Details Starting Grant (StG), LS6, ERC-2007-StG
Summary My objective is to understand the physiologic and medical importance of the posttranslational processing of CAAX proteins (e.g., K-RAS and prelamin A) and to define the suitability of the CAAX protein processing enzymes as therapeutic targets for the treatment of cancer and progeria. CAAX proteins undergo three posttranslational processing steps at a carboxyl-terminal CAAX motif. These processing steps, which are mediated by four different enzymes (FTase, GGTase-I, RCE1, and ICMT), increase the hydrophobicity of the carboxyl terminus of the protein and thereby facilitate interactions with membrane surfaces. Somatic mutations in K-RAS deregulate cell growth and are etiologically involved in the pathogenesis of many forms of cancer. A mutation in prelamin A causes Hutchinson-Gilford progeria syndrome—a pediatric progeroid syndrome associated with misshaped cell nuclei and a host of aging-like disease phenotypes. One strategy to render the mutant K-RAS and prelamin A less harmful is to interfere with their ability to bind to membrane surfaces (e.g., the plasma membrane and the nuclear envelope). This could be accomplished by inhibiting the enzymes that modify the CAAX motif. My Specific Aims are: (1) To define the suitability of the CAAX processing enzymes as therapeutic targets in the treatment of K-RAS-induced lung cancer and leukemia; and (2) To test the hypothesis that inactivation of FTase or ICMT will ameliorate disease phenotypes of progeria. I have developed genetic strategies to produce lung cancer or leukemia in mice by activating an oncogenic K-RAS and simultaneously inactivating different CAAX processing enzymes. I will also inactivate several CAAX processing enzymes in mice with progeria—both before the emergence of phenotypes and after the development of advanced disease phenotypes. These experiments should reveal whether the absence of the different CAAX processing enzymes affects the onset, progression, or regression of cancer and progeria.
Summary
My objective is to understand the physiologic and medical importance of the posttranslational processing of CAAX proteins (e.g., K-RAS and prelamin A) and to define the suitability of the CAAX protein processing enzymes as therapeutic targets for the treatment of cancer and progeria. CAAX proteins undergo three posttranslational processing steps at a carboxyl-terminal CAAX motif. These processing steps, which are mediated by four different enzymes (FTase, GGTase-I, RCE1, and ICMT), increase the hydrophobicity of the carboxyl terminus of the protein and thereby facilitate interactions with membrane surfaces. Somatic mutations in K-RAS deregulate cell growth and are etiologically involved in the pathogenesis of many forms of cancer. A mutation in prelamin A causes Hutchinson-Gilford progeria syndrome—a pediatric progeroid syndrome associated with misshaped cell nuclei and a host of aging-like disease phenotypes. One strategy to render the mutant K-RAS and prelamin A less harmful is to interfere with their ability to bind to membrane surfaces (e.g., the plasma membrane and the nuclear envelope). This could be accomplished by inhibiting the enzymes that modify the CAAX motif. My Specific Aims are: (1) To define the suitability of the CAAX processing enzymes as therapeutic targets in the treatment of K-RAS-induced lung cancer and leukemia; and (2) To test the hypothesis that inactivation of FTase or ICMT will ameliorate disease phenotypes of progeria. I have developed genetic strategies to produce lung cancer or leukemia in mice by activating an oncogenic K-RAS and simultaneously inactivating different CAAX processing enzymes. I will also inactivate several CAAX processing enzymes in mice with progeria—both before the emergence of phenotypes and after the development of advanced disease phenotypes. These experiments should reveal whether the absence of the different CAAX processing enzymes affects the onset, progression, or regression of cancer and progeria.
Max ERC Funding
1 689 600 €
Duration
Start date: 2008-06-01, End date: 2013-05-31
Project acronym CancerExomesInPlasma
Project Non-invasive genomic analysis of cancer using circulating tumour DNA
Researcher (PI) Nitzan Rosenfeld
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Starting Grant (StG), LS7, ERC-2013-StG
Summary Non-invasive genomic analysis of cancer can revolutionize the study of tumour evolution, heterogeneity, and drug resistance. Clinically applied, this can transform current practice in cancer diagnosis and management. Cell-free DNA in plasma contains tumour-specific sequences. This circulating tumour DNA (ctDNA) is a promising source of genomic and diagnostic information, readily accessible non-invasively. The study of ctDNA is therefore timely and of great importance. But it is also very challenging. Measurement can be complex, and high-quality samples are not easily obtained. Though progress has been made, much remains to be discovered.
My lab pioneered the use of targeted sequencing to analyse mutations in ctDNA. We recently developed a ground-breaking paradigm for analysing evolving cancer genomes in plasma DNA, combining ctDNA quantification with exome-sequencing of serial plasma samples. Applied to extensive sets of clinical samples my lab has characterized, this will enable large-scale exploration of acquired drug resistance with unprecedented resolution. CancerExomesInPlasma aims to use ctDNA for genome-wide analysis of tumour evolution, as a means for non-invasive, unbiased discovery of genes and pathways involved in resistance to cancer therapy.
Summary
Non-invasive genomic analysis of cancer can revolutionize the study of tumour evolution, heterogeneity, and drug resistance. Clinically applied, this can transform current practice in cancer diagnosis and management. Cell-free DNA in plasma contains tumour-specific sequences. This circulating tumour DNA (ctDNA) is a promising source of genomic and diagnostic information, readily accessible non-invasively. The study of ctDNA is therefore timely and of great importance. But it is also very challenging. Measurement can be complex, and high-quality samples are not easily obtained. Though progress has been made, much remains to be discovered.
My lab pioneered the use of targeted sequencing to analyse mutations in ctDNA. We recently developed a ground-breaking paradigm for analysing evolving cancer genomes in plasma DNA, combining ctDNA quantification with exome-sequencing of serial plasma samples. Applied to extensive sets of clinical samples my lab has characterized, this will enable large-scale exploration of acquired drug resistance with unprecedented resolution. CancerExomesInPlasma aims to use ctDNA for genome-wide analysis of tumour evolution, as a means for non-invasive, unbiased discovery of genes and pathways involved in resistance to cancer therapy.
Max ERC Funding
1 769 380 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym CARDIOMICS
Project Cardiomics: Use of -omics methods in large populations for identification of novel drug targets and clinical biomarkers for coronary heart disease
Researcher (PI) Erik Ingelsson
Host Institution (HI) UPPSALA UNIVERSITET
Call Details Starting Grant (StG), LS7, ERC-2013-StG
Summary There is a large need for revitalization of the research on coronary heart disease (CHD) including: a) improved risk prediction and more adequate individually-tailored treatment; and b) new targets for drug development based on pathways previously unknown to be involved in CHD pathophysiology.
The overall goal of this proposal is to improve prevention and treatment of CHD through better understanding of the biology underlying disease development, identification of new biomarkers for improved risk prediction, and discovery of novel targets for drug development.
The specific aims are to:
1) Establish and characterize causal genes in known CHD loci (gene regions) through: a) resequencing of known CHD loci; b) expression profiling in liver, arteries, myocardium and skeletal muscle; c) high-throughput protein profiling; and d) experimental follow-up in zebrafish (Danio rerio) models.
2) Discover new proteins, metabolites and pathways involved in CHD pathophysiology using global proteomic and metabolomic profiling to provide new biomarkers and drug targets.
We will integrate genomic, transcriptomic, metabolomic and proteomic data from five longitudinal, population-based cohort studies with detailed phenotyping and one study with tissue collections for expression studies. The cohort studies include 36,907 individuals; there are 3,093 prevalent CHD cases at baseline and the estimated number of incident (new) events in previously healthy by 2016 is 2,202. In addition, we work with zebrafish model systems to establish causal CHD genes and characterize their mechanisms of action.
We have access to unique study materials, state-of-the art methods, and a strong track record of successful projects in this field. To our knowledge, there are no other groups combining -omics methods to elucidate the whole chain from DNA variation to overt CHD in such large and well-characterized study samples. Further, we are unaware of other groups using zebrafish models to screen for and characterize causal CHD genes. Our work is anticipated to lead to new important insights into the pathophysiology of CHD, identification of new biomarkers for improved risk prediction, and discovery of novel targets for drug development.
Summary
There is a large need for revitalization of the research on coronary heart disease (CHD) including: a) improved risk prediction and more adequate individually-tailored treatment; and b) new targets for drug development based on pathways previously unknown to be involved in CHD pathophysiology.
The overall goal of this proposal is to improve prevention and treatment of CHD through better understanding of the biology underlying disease development, identification of new biomarkers for improved risk prediction, and discovery of novel targets for drug development.
The specific aims are to:
1) Establish and characterize causal genes in known CHD loci (gene regions) through: a) resequencing of known CHD loci; b) expression profiling in liver, arteries, myocardium and skeletal muscle; c) high-throughput protein profiling; and d) experimental follow-up in zebrafish (Danio rerio) models.
2) Discover new proteins, metabolites and pathways involved in CHD pathophysiology using global proteomic and metabolomic profiling to provide new biomarkers and drug targets.
We will integrate genomic, transcriptomic, metabolomic and proteomic data from five longitudinal, population-based cohort studies with detailed phenotyping and one study with tissue collections for expression studies. The cohort studies include 36,907 individuals; there are 3,093 prevalent CHD cases at baseline and the estimated number of incident (new) events in previously healthy by 2016 is 2,202. In addition, we work with zebrafish model systems to establish causal CHD genes and characterize their mechanisms of action.
We have access to unique study materials, state-of-the art methods, and a strong track record of successful projects in this field. To our knowledge, there are no other groups combining -omics methods to elucidate the whole chain from DNA variation to overt CHD in such large and well-characterized study samples. Further, we are unaware of other groups using zebrafish models to screen for and characterize causal CHD genes. Our work is anticipated to lead to new important insights into the pathophysiology of CHD, identification of new biomarkers for improved risk prediction, and discovery of novel targets for drug development.
Max ERC Funding
1 498 224 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym CASPI
Project Low-carbon Lifestyles and Behavioural Spillover
Researcher (PI) Lorraine Elisabeth Whitmarsh
Host Institution (HI) CARDIFF UNIVERSITY
Call Details Starting Grant (StG), SH3, ERC-2013-StG
Summary Responding to climate change has profound implications for behaviour; yet policies to achieve this change have met with limited success. A key challenge for environmental social scientists is the need to move forward in understanding how to bring about change in consumption, community and political behaviours, which is commensurate to the scale of the climate change challenge. One promising area is ‘behavioural spillover’, the notion that taking up a new behaviour (e.g., recycling) may lead to adoption of other, more environmentally beneficial, behaviours. Such a notion appears to hold the promise of changing a suite of behaviours in a cost-effective way. Yet despite robust theoretical principles (e.g., self-perception theory) underpinning behavioural spillover, there is little empirical research. The proposed research intends to produce a step-change in behavioural and sustainability science by undertaking a mixed-method, cross-cultural study of pro-environmental behavioural spillover in order to open up new ways of promoting sustainable lifestyle change and significantly broadening our understanding of behaviour within individuals and cultures. There are three objectives for the research:
1. To examine ways in which pro-environmental behaviour, lifestyles and spillover are understood and develop within different cultures;
2. To understand drivers of behavioural consistency and spillover effects across contexts, including home and work, and cultures; and
3. To develop a theoretical framework for behavioural spillover and test interventions to promote spillover across different contexts and cultures.
Three Work Packages will address these objectives:
1. Defining and understanding spillover: Focus groups with biographical questions and card sorts [Years 1-2]
2. Examining drivers of spillover: Cross-national survey with factor, correlation and regression analyses [Years 2-3]
3. Developing theory and testing interventions: Laboratory and field experiments [Years 3-5]
Summary
Responding to climate change has profound implications for behaviour; yet policies to achieve this change have met with limited success. A key challenge for environmental social scientists is the need to move forward in understanding how to bring about change in consumption, community and political behaviours, which is commensurate to the scale of the climate change challenge. One promising area is ‘behavioural spillover’, the notion that taking up a new behaviour (e.g., recycling) may lead to adoption of other, more environmentally beneficial, behaviours. Such a notion appears to hold the promise of changing a suite of behaviours in a cost-effective way. Yet despite robust theoretical principles (e.g., self-perception theory) underpinning behavioural spillover, there is little empirical research. The proposed research intends to produce a step-change in behavioural and sustainability science by undertaking a mixed-method, cross-cultural study of pro-environmental behavioural spillover in order to open up new ways of promoting sustainable lifestyle change and significantly broadening our understanding of behaviour within individuals and cultures. There are three objectives for the research:
1. To examine ways in which pro-environmental behaviour, lifestyles and spillover are understood and develop within different cultures;
2. To understand drivers of behavioural consistency and spillover effects across contexts, including home and work, and cultures; and
3. To develop a theoretical framework for behavioural spillover and test interventions to promote spillover across different contexts and cultures.
Three Work Packages will address these objectives:
1. Defining and understanding spillover: Focus groups with biographical questions and card sorts [Years 1-2]
2. Examining drivers of spillover: Cross-national survey with factor, correlation and regression analyses [Years 2-3]
3. Developing theory and testing interventions: Laboratory and field experiments [Years 3-5]
Max ERC Funding
1 486 563 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym CHAPARDYN
Project Chaos in Parabolic Dynamics: Mixing, Rigidity, Spectra
Researcher (PI) Corinna Ulcigrai
Host Institution (HI) UNIVERSITY OF BRISTOL
Call Details Starting Grant (StG), PE1, ERC-2013-StG
Summary "The theme of the proposal is the mathematical investigation of chaos (in particular ergodic and spectral properties) in parabolic dynamics, via analytic, geometric and probabilistic techniques. Parabolic dynamical systems are mathematical models of the many phenomena which display a ""slow"" form of chaotic evolution, in the sense that nearby trajectories diverge polynomially in time. In contrast with the hyperbolic case and with the elliptic case, there is no general theory which describes parabolic dynamical systems. Only few classical examples are well understood.
The research plan aims at bridging this gap, by studying new classes of parabolic systems and unexplored properties of classical ones. More precisely, I propose to study parabolic flows beyond the algebraic set-up and infinite measure-preserving parabolic systems, both of which are very virgin fields of research, and to attack open conjectures and questions on fine chaotic properties, such as spectra and rigidity, for area-preserving flows. Moreover, connections between parabolic dynamics and respectively number theory, mathematical physics and probability will be explored. g New techniques, stemming from some recent breakthroughs in Teichmueller dynamics, spectral theory and infinite ergodic theory, will be developed.
The proposed research will bring our knowledge significantly beyond the current state-of-the art, both in breadth and depth and will identify common features and mechanisms for chaos in parabolic systems. Understanding similar features and common geometric mechanisms responsible for mixing, rigidity and spectral properties of parabolic systems will provide important insight towards an universal theory of parabolic dynamics."
Summary
"The theme of the proposal is the mathematical investigation of chaos (in particular ergodic and spectral properties) in parabolic dynamics, via analytic, geometric and probabilistic techniques. Parabolic dynamical systems are mathematical models of the many phenomena which display a ""slow"" form of chaotic evolution, in the sense that nearby trajectories diverge polynomially in time. In contrast with the hyperbolic case and with the elliptic case, there is no general theory which describes parabolic dynamical systems. Only few classical examples are well understood.
The research plan aims at bridging this gap, by studying new classes of parabolic systems and unexplored properties of classical ones. More precisely, I propose to study parabolic flows beyond the algebraic set-up and infinite measure-preserving parabolic systems, both of which are very virgin fields of research, and to attack open conjectures and questions on fine chaotic properties, such as spectra and rigidity, for area-preserving flows. Moreover, connections between parabolic dynamics and respectively number theory, mathematical physics and probability will be explored. g New techniques, stemming from some recent breakthroughs in Teichmueller dynamics, spectral theory and infinite ergodic theory, will be developed.
The proposed research will bring our knowledge significantly beyond the current state-of-the art, both in breadth and depth and will identify common features and mechanisms for chaos in parabolic systems. Understanding similar features and common geometric mechanisms responsible for mixing, rigidity and spectral properties of parabolic systems will provide important insight towards an universal theory of parabolic dynamics."
Max ERC Funding
1 193 534 €
Duration
Start date: 2014-01-01, End date: 2019-08-31
Project acronym CHASM
Project Convective Heat Transport and Stellar Magnetism
Researcher (PI) Matthew Keith Morris Browning
Host Institution (HI) THE UNIVERSITY OF EXETER
Call Details Starting Grant (StG), PE9, ERC-2013-StG
Summary "Magnetism plays a profound role in stars and planets. In the Sun, magnetic fields are ultimately responsible for solar flares and coronal mass ejections that can impact our technological society. Earth's own magnetic field partly shields us from these events, but solar storms can still interrupt satellite communications, disrupt power grids, and pose a danger to astronauts on spacewalks. More generally, magnetic fields partly control the rotational evolution of stars, likely impact the habitability of extrasolar planets, and may modify the sizes and internal structures of
low-mass stars and gaseous planets. In all cases, the magnetism is generally thought to arise from a convective dynamo -- but a detailed theoretical understanding of this process, and its influence on the overall evolution of stars and planets, has remained elusive. Particularly fascinating observational puzzles have recently come from the study of low-mass M-dwarf stars: the most numerous type of stars in our galaxy and perhaps the most likely to host habitable planets.
We therefore propose to study how stars and sub-stellar objects build magnetic fields using 3-D magnetohydrodynamic simulations, and to quantify the effects of those fields on stellar structure and evolution. Using the Anelastic Spherical Harmonic (ASH) and Compressible Spherical Segment (CSS) codes, we will examine (a) how global magnetic field generation in these stars depends upon parameters like stellar mass, rotation rate, and the presence of a stable core, and (b) how the deep convection and magnetism imprints through (and is shaped by) the near-surface layers of these objects. We will (c) determine the impact of the resulting fields on the convective transport of heat and angular momentum, incorporate our results into state of the art 1-D evolutionary models of stars, and explore the consequences for stellar evolution. Separately, we will (d) develop and maintain a public database of 3-D convective dynamo models."
Summary
"Magnetism plays a profound role in stars and planets. In the Sun, magnetic fields are ultimately responsible for solar flares and coronal mass ejections that can impact our technological society. Earth's own magnetic field partly shields us from these events, but solar storms can still interrupt satellite communications, disrupt power grids, and pose a danger to astronauts on spacewalks. More generally, magnetic fields partly control the rotational evolution of stars, likely impact the habitability of extrasolar planets, and may modify the sizes and internal structures of
low-mass stars and gaseous planets. In all cases, the magnetism is generally thought to arise from a convective dynamo -- but a detailed theoretical understanding of this process, and its influence on the overall evolution of stars and planets, has remained elusive. Particularly fascinating observational puzzles have recently come from the study of low-mass M-dwarf stars: the most numerous type of stars in our galaxy and perhaps the most likely to host habitable planets.
We therefore propose to study how stars and sub-stellar objects build magnetic fields using 3-D magnetohydrodynamic simulations, and to quantify the effects of those fields on stellar structure and evolution. Using the Anelastic Spherical Harmonic (ASH) and Compressible Spherical Segment (CSS) codes, we will examine (a) how global magnetic field generation in these stars depends upon parameters like stellar mass, rotation rate, and the presence of a stable core, and (b) how the deep convection and magnetism imprints through (and is shaped by) the near-surface layers of these objects. We will (c) determine the impact of the resulting fields on the convective transport of heat and angular momentum, incorporate our results into state of the art 1-D evolutionary models of stars, and explore the consequences for stellar evolution. Separately, we will (d) develop and maintain a public database of 3-D convective dynamo models."
Max ERC Funding
1 469 070 €
Duration
Start date: 2013-12-01, End date: 2018-11-30
Project acronym CHEMBIOMECH
Project Exploring mechanism in chemical biology by high-throughput approaches
Researcher (PI) Florian Hollfelder
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Starting Grant (StG), PE4, ERC-2007-StG
Summary In the biomedical sciences, where endless combinatorial diversity of genes, proteins and synthetic molecules is involved, miniaturisation has not simply allowed an increase in the speed at which experiment can be performed: it has given birth to new areas such as combinatorial chemistry and biology, proteomics, genomics, and more recently, systems and synthetic biology. In all these areas, the synthesis, assay and analysis of large molecular ensembles has become the essence of experimental progress. However, it is the systematic analysis of the enormous amounts of data generated that will ultimately lead to an understanding of fundamental chemical and biological problems. This proposal deals with approaches in which libraries of molecules are employed to give such mechanistic insight – into how enzyme catalysis is brought about in proteins and polymeric enzyme models and into the molecular recognition and cell biology of drug delivery reagents. In each case considerable technical challenges are involved in the way diversity is brought about and probed: ranging from either using the tools of synthetic chemistry to using gene repertoires in emulsion microdroplet reactors with femtolitre volumes, handled in microfluidic devices.
Summary
In the biomedical sciences, where endless combinatorial diversity of genes, proteins and synthetic molecules is involved, miniaturisation has not simply allowed an increase in the speed at which experiment can be performed: it has given birth to new areas such as combinatorial chemistry and biology, proteomics, genomics, and more recently, systems and synthetic biology. In all these areas, the synthesis, assay and analysis of large molecular ensembles has become the essence of experimental progress. However, it is the systematic analysis of the enormous amounts of data generated that will ultimately lead to an understanding of fundamental chemical and biological problems. This proposal deals with approaches in which libraries of molecules are employed to give such mechanistic insight – into how enzyme catalysis is brought about in proteins and polymeric enzyme models and into the molecular recognition and cell biology of drug delivery reagents. In each case considerable technical challenges are involved in the way diversity is brought about and probed: ranging from either using the tools of synthetic chemistry to using gene repertoires in emulsion microdroplet reactors with femtolitre volumes, handled in microfluidic devices.
Max ERC Funding
563 848 €
Duration
Start date: 2008-09-01, End date: 2013-08-31
Project acronym CHEMOSENSORYCIRCUITS
Project Function of Chemosensory Circuits
Researcher (PI) Emre Yaksi
Host Institution (HI) NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET NTNU
Call Details Starting Grant (StG), LS5, ERC-2013-StG
Summary Smell and taste are the least studied of all senses. Very little is known about chemosensory information processing beyond the level of receptor neurons. Every morning we enjoy our coffee thanks to our brains ability to combine and process multiple sensory modalities. Meanwhile, we can still review a document on our desk by adjusting the weights of numerous sensory inputs that constantly bombard our brains. Yet, the smell of our coffee may remind us that pleasant weekend breakfast through associative learning and memory. In the proposed project we will explore the function and the architecture of neural circuits that are involved in olfactory and gustatory information processing, namely habenula and brainstem. Moreover we will investigate the fundamental principles underlying multimodal sensory integration and the neural basis of behavior in these highly conserved brain areas.
To achieve these goals we will take an innovative approach by combining two-photon calcium imaging, optogenetics and electrophysiology with the expanding genetic toolbox of a small vertebrate, the zebrafish. This pioneering approach will enable us to design new types of experiments that were unthinkable only a few years ago. Using this unique combination of methods, we will monitor and perturb the activity of functionally distinct elements of habenular and brainstem circuits, in vivo. The habenula and brainstem are important in mediating stress/anxiety and eating habits respectively. Therefore, understanding the neural computations in these brain regions is important for comprehending the neural mechanisms underlying psychological conditions related to anxiety and eating disorders. We anticipate that our results will go beyond chemical senses and contribute new insights to the understanding of how brain circuits work and interact with the sensory world to shape neural activity and behavioral outputs of animals.
Summary
Smell and taste are the least studied of all senses. Very little is known about chemosensory information processing beyond the level of receptor neurons. Every morning we enjoy our coffee thanks to our brains ability to combine and process multiple sensory modalities. Meanwhile, we can still review a document on our desk by adjusting the weights of numerous sensory inputs that constantly bombard our brains. Yet, the smell of our coffee may remind us that pleasant weekend breakfast through associative learning and memory. In the proposed project we will explore the function and the architecture of neural circuits that are involved in olfactory and gustatory information processing, namely habenula and brainstem. Moreover we will investigate the fundamental principles underlying multimodal sensory integration and the neural basis of behavior in these highly conserved brain areas.
To achieve these goals we will take an innovative approach by combining two-photon calcium imaging, optogenetics and electrophysiology with the expanding genetic toolbox of a small vertebrate, the zebrafish. This pioneering approach will enable us to design new types of experiments that were unthinkable only a few years ago. Using this unique combination of methods, we will monitor and perturb the activity of functionally distinct elements of habenular and brainstem circuits, in vivo. The habenula and brainstem are important in mediating stress/anxiety and eating habits respectively. Therefore, understanding the neural computations in these brain regions is important for comprehending the neural mechanisms underlying psychological conditions related to anxiety and eating disorders. We anticipate that our results will go beyond chemical senses and contribute new insights to the understanding of how brain circuits work and interact with the sensory world to shape neural activity and behavioral outputs of animals.
Max ERC Funding
1 499 471 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym CHOBOTIX
Project Chemical Processing by Swarm Robotics
Researcher (PI) Frantisek Stepanek
Host Institution (HI) VYSOKA SKOLA CHEMICKO-TECHNOLOGICKA V PRAZE
Call Details Starting Grant (StG), PE6, ERC-2007-StG
Summary The aim of the project is to develop chemical processing systems based on the principle of swarm robotics. The inspiration for swarm robotics comes from the behaviour of collective organisms – such as bees or ants – that can perform complex tasks by the combined actions of a large number of relatively simple, identical agents. The main scientific challenge of the project will be the design and synthesis of chemical swarm robots (“chobots”), which we envisage as internally structured particulate entities in the 10-100 µm size range that can move in their environment, selectively exchange molecules with their surrounding in response to a local change in temperature or concentration, chemically process those molecules and either accumulate or release the product. Such chemically active autonomous entities can be viewed as very simple pre-biotic life forms, although without the ability to self-replicate or evolve. In the course of the project, the following topics will be explored in detail: (i) the synthesis of suitable shells for chemically active swarm robots, both soft (with a flexible membrane) and hard (porous solid shells); (ii) the mechanisms of molecular transport into and out of such shells and means of its active control; (iii) chemical reaction kinetics in spatially complex compartmental structures within the shells; (iv) collective behaviour of chemical swarm robots and their response to external stimuli. The project will be carried out by a multi-disciplinary team of enthusiastic young researchers and the concepts and technologies developed in course of the project, as well as the advancements in the fundamental understanding of the behaviour of “chemical robots” and their functional sub-systems, will open up new opportunities in diverse areas including next-generation distributed chemical processing, synthesis and delivery of personalised medicines, recovery of valuable chemicals from dilute resources, environmental clean-up, and others.
Summary
The aim of the project is to develop chemical processing systems based on the principle of swarm robotics. The inspiration for swarm robotics comes from the behaviour of collective organisms – such as bees or ants – that can perform complex tasks by the combined actions of a large number of relatively simple, identical agents. The main scientific challenge of the project will be the design and synthesis of chemical swarm robots (“chobots”), which we envisage as internally structured particulate entities in the 10-100 µm size range that can move in their environment, selectively exchange molecules with their surrounding in response to a local change in temperature or concentration, chemically process those molecules and either accumulate or release the product. Such chemically active autonomous entities can be viewed as very simple pre-biotic life forms, although without the ability to self-replicate or evolve. In the course of the project, the following topics will be explored in detail: (i) the synthesis of suitable shells for chemically active swarm robots, both soft (with a flexible membrane) and hard (porous solid shells); (ii) the mechanisms of molecular transport into and out of such shells and means of its active control; (iii) chemical reaction kinetics in spatially complex compartmental structures within the shells; (iv) collective behaviour of chemical swarm robots and their response to external stimuli. The project will be carried out by a multi-disciplinary team of enthusiastic young researchers and the concepts and technologies developed in course of the project, as well as the advancements in the fundamental understanding of the behaviour of “chemical robots” and their functional sub-systems, will open up new opportunities in diverse areas including next-generation distributed chemical processing, synthesis and delivery of personalised medicines, recovery of valuable chemicals from dilute resources, environmental clean-up, and others.
Max ERC Funding
1 644 000 €
Duration
Start date: 2008-06-01, End date: 2013-05-31
Project acronym CHROMOSOME STABILITY
Project Coordination of DNA replication and DNA repair at single-forks: the role of the Smc5-Smc6 complex in replication fork stalling and resumption
Researcher (PI) Luis Fernando Aragon Alcaide
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Call Details Starting Grant (StG), LS1, ERC-2007-StG
Summary DNA replication represents a dangerous moment in the life of the cell as endogenous and exogenous events challenge genome integrity by interfering with the progression, stability and restart of the replication fork. Failure to protect stalled forks or to process the replication fork appropriately contribute to the pathological mechanisms giving rise to cancer, therefore an understanding of the intricate mechanisms that ensure fork integrity can provide targets for new chemotherapeutic assays. Smc5-Smc6 is a multi-subunit complex with a poorly understood function in DNA replication and repair. One of its subunits, Nse2, is able to promote the addition of a small ubiquitin-like protein modifier (SUMO) to specific target proteins. Recent work has revealed that the Smc5-Smc6 complex is required for the progression of replication forks through damaged DNA and is recruited de novo to forks that undergo collapse. In addition, Smc5-Smc6 mediate repair of DNA breaks by homologous recombination between sister-chromatids. Thus, Smc5-Smc6 is anticipated to promote recombinational repair at stalled/collapsed replication forks. My laboratory proposes to develop molecular techniques to study replication at the level of single replication forks. We will employ these assays to identify and dissect the function of factors involved in replication fork stability and repair. We will place an emphasis on the study of the Smc5-Smc6 complex in these processes because of its potential roles in recombination-dependent fork repair and restart. We also propose to identify novel Nse2 substrates involved in DNA repair using yeast model systems. Specifically, we will address the following points: (1) Development of assays for analysis of factors involved in stabilisation, collapse and re-start of single-forks, (2) Analysis of the roles of Smc5-Smc6 in fork biology using developed techniques, (3) Isolation and functional analysis of novel Nse2 substrates.
Summary
DNA replication represents a dangerous moment in the life of the cell as endogenous and exogenous events challenge genome integrity by interfering with the progression, stability and restart of the replication fork. Failure to protect stalled forks or to process the replication fork appropriately contribute to the pathological mechanisms giving rise to cancer, therefore an understanding of the intricate mechanisms that ensure fork integrity can provide targets for new chemotherapeutic assays. Smc5-Smc6 is a multi-subunit complex with a poorly understood function in DNA replication and repair. One of its subunits, Nse2, is able to promote the addition of a small ubiquitin-like protein modifier (SUMO) to specific target proteins. Recent work has revealed that the Smc5-Smc6 complex is required for the progression of replication forks through damaged DNA and is recruited de novo to forks that undergo collapse. In addition, Smc5-Smc6 mediate repair of DNA breaks by homologous recombination between sister-chromatids. Thus, Smc5-Smc6 is anticipated to promote recombinational repair at stalled/collapsed replication forks. My laboratory proposes to develop molecular techniques to study replication at the level of single replication forks. We will employ these assays to identify and dissect the function of factors involved in replication fork stability and repair. We will place an emphasis on the study of the Smc5-Smc6 complex in these processes because of its potential roles in recombination-dependent fork repair and restart. We also propose to identify novel Nse2 substrates involved in DNA repair using yeast model systems. Specifically, we will address the following points: (1) Development of assays for analysis of factors involved in stabilisation, collapse and re-start of single-forks, (2) Analysis of the roles of Smc5-Smc6 in fork biology using developed techniques, (3) Isolation and functional analysis of novel Nse2 substrates.
Max ERC Funding
893 396 €
Duration
Start date: 2008-09-01, End date: 2013-08-31
Project acronym CLAPO
Project The Coevolution of Life and Arsenic in Precambrian Oceans
Researcher (PI) Ernest Chi Fru
Host Institution (HI) CARDIFF UNIVERSITY
Call Details Starting Grant (StG), PE10, ERC-2013-StG
Summary The ubiquity of arsenic resistant genes across all of life’s variety suggests a close intimacy between arsenic biogeochemistry and evolution, over geological time scales. However, the behaviour of arsenic in past environments where life originated and its impact on our evolution is essentially unknown. Arsenic is of particular importance because of its toxic properties, prevalence in tight association with ubiquitous iron and sulfide minerals and as a major component of sulfide-rich waters, all common features of Precambrian oceans. Arsenic obstructs the synthesis of the building blocks of life, exhibiting both chronic and acute toxicity at very low concentrations. These properties make arsenic an agent capable of exerting strong selective pressure on the distribution, success and diversity of life. This is exemplified by when the release of arsenic into groundwater following rock-weathering processes results in widespread poisoning. Using the state of the art stable isotopes tools, coupled to biomass production, bacterial iron, arsenic and sulfur cycling under ancient oceanic conditions, this project will open a new discussion on the much debated relationship between ocean chemistry and evolution, by introducing a new arsenic framework. This will be achieved under three majors themes: 1) Does there exist a biogeochemical connection between arsenic and the timing and transition from the iron-rich to the hypothesized sulfide-rich oceans that are linked to the rise of atmospheric oxygen? 2) Does arsenic and sulfide show concomitant cyclicity during the Precambrian? 3) Could arsenic thus serve as a proxy for the calibration of key transitional steps in the timing of biological innovation?
Summary
The ubiquity of arsenic resistant genes across all of life’s variety suggests a close intimacy between arsenic biogeochemistry and evolution, over geological time scales. However, the behaviour of arsenic in past environments where life originated and its impact on our evolution is essentially unknown. Arsenic is of particular importance because of its toxic properties, prevalence in tight association with ubiquitous iron and sulfide minerals and as a major component of sulfide-rich waters, all common features of Precambrian oceans. Arsenic obstructs the synthesis of the building blocks of life, exhibiting both chronic and acute toxicity at very low concentrations. These properties make arsenic an agent capable of exerting strong selective pressure on the distribution, success and diversity of life. This is exemplified by when the release of arsenic into groundwater following rock-weathering processes results in widespread poisoning. Using the state of the art stable isotopes tools, coupled to biomass production, bacterial iron, arsenic and sulfur cycling under ancient oceanic conditions, this project will open a new discussion on the much debated relationship between ocean chemistry and evolution, by introducing a new arsenic framework. This will be achieved under three majors themes: 1) Does there exist a biogeochemical connection between arsenic and the timing and transition from the iron-rich to the hypothesized sulfide-rich oceans that are linked to the rise of atmospheric oxygen? 2) Does arsenic and sulfide show concomitant cyclicity during the Precambrian? 3) Could arsenic thus serve as a proxy for the calibration of key transitional steps in the timing of biological innovation?
Max ERC Funding
1 486 374 €
Duration
Start date: 2013-09-01, End date: 2018-08-31
Project acronym CLIP
Project Mapping functional protein-RNA interactions to identify new targets for oligonucleotide-based therapy
Researcher (PI) Jernej Ule
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Starting Grant (StG), LS1, ERC-2007-StG
Summary An important question of modern neurobiology is how neurons regulate synaptic function in response to excitation. In particular, the roles of alternative pre-mRNA splicing and mRNA translation regulation in this response are poorly understood. We will study the RNA-binding proteins (RBPs) that control these post-transcriptional changes using a UV crosslinking-based purification method (CLIP) and ultra-high throughput sequencing. Computational analysis of the resulting data will define the sequence and structural features of RNA motifs recognized by each RBP. Splicing microarrays and translation reporter assays will then allow us to examine the regulatory functions of RBPs and RNA motifs. By integrating the biochemical and functional datasets, we will relate the position of RNA motifs to the activity of bound RBPs, and predict the interactions that act as central nodes in the regulatory network. The physiological role of these core RBP-RNA interactions will then be tested using antisense RNAs. Together, these projects will provide insights to the regulatory mechanisms underlying neuronal activity-dependent changes, and provide new opportunities for future treatments of neurodegenerative disorders.
Summary
An important question of modern neurobiology is how neurons regulate synaptic function in response to excitation. In particular, the roles of alternative pre-mRNA splicing and mRNA translation regulation in this response are poorly understood. We will study the RNA-binding proteins (RBPs) that control these post-transcriptional changes using a UV crosslinking-based purification method (CLIP) and ultra-high throughput sequencing. Computational analysis of the resulting data will define the sequence and structural features of RNA motifs recognized by each RBP. Splicing microarrays and translation reporter assays will then allow us to examine the regulatory functions of RBPs and RNA motifs. By integrating the biochemical and functional datasets, we will relate the position of RNA motifs to the activity of bound RBPs, and predict the interactions that act as central nodes in the regulatory network. The physiological role of these core RBP-RNA interactions will then be tested using antisense RNAs. Together, these projects will provide insights to the regulatory mechanisms underlying neuronal activity-dependent changes, and provide new opportunities for future treatments of neurodegenerative disorders.
Max ERC Funding
900 000 €
Duration
Start date: 2008-09-01, End date: 2013-08-31
Project acronym CLOC
Project Cultured Liver Organoids for Investigation and Treatment of Inherited Cholestatic Diseases
Researcher (PI) Paul Gissen
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Starting Grant (StG), LS7, ERC-2013-StG
Summary "Bile synthesis and secretion are crucial to liver function and involve multiple proteins. Disorders due to defects in this process (Inherited Cholestatic Disorders, ICDs) lead to progressive liver disease. Many ICD patients do not respond to medical treatment and need liver transplantation (LT). Although ICDs are rare, multifactorial cholestatic diseases are common and many patients will benefit from ICD research.
There is acute shortage of liver donors. 10% of patients die while waiting on the liver transplant list. Therefore alternatives to LT are urgently needed. Bioengineered tissues may reduce the need for donor organs but complexity of it's organisation makes generation of functional liver challenging.
The OBJECTIVE of this project is to generate Cultured Liver Organoids (CLOs) using hepatocytes cultured on 3-D scaffolds as novel models for study of liver development and disease and potential treatment of ICDs.
3-D extracellular matrix (ECM) scaffolds derived from decellularised livers and polymeric matrices (PM) have been used to mimic liver architecture but further work is needed to establish functional bile flow.
Human Induced Pluripotent Stem Cells (hIPSCs) derived from reprogrammed skin fibroblasts by overexpression of pluripotency factors can proliferate and be differentiated into various cell types including hepatocytes. hIPSCs enable production of patient specific cells, which are fully immuno-compatible. Genetically corrected mutant hIPSCs differentiated into hepatocytes have been used as cell therapy in animal models of inherited metabolic disorders but direct infusion of hepatocytes into the liver is unlikely to achieve polarised bile flow and correct ICDs.
Therefore hIPSCs developed from ICD patients will be used to culture hepatocytes on decellularised mouse liver ECM to generate in vitro models of ICDs. CLOs containing hepatocytes from genetically corrected hIPSC will be tested in mouse models of ICDs as potential treatment."
Summary
"Bile synthesis and secretion are crucial to liver function and involve multiple proteins. Disorders due to defects in this process (Inherited Cholestatic Disorders, ICDs) lead to progressive liver disease. Many ICD patients do not respond to medical treatment and need liver transplantation (LT). Although ICDs are rare, multifactorial cholestatic diseases are common and many patients will benefit from ICD research.
There is acute shortage of liver donors. 10% of patients die while waiting on the liver transplant list. Therefore alternatives to LT are urgently needed. Bioengineered tissues may reduce the need for donor organs but complexity of it's organisation makes generation of functional liver challenging.
The OBJECTIVE of this project is to generate Cultured Liver Organoids (CLOs) using hepatocytes cultured on 3-D scaffolds as novel models for study of liver development and disease and potential treatment of ICDs.
3-D extracellular matrix (ECM) scaffolds derived from decellularised livers and polymeric matrices (PM) have been used to mimic liver architecture but further work is needed to establish functional bile flow.
Human Induced Pluripotent Stem Cells (hIPSCs) derived from reprogrammed skin fibroblasts by overexpression of pluripotency factors can proliferate and be differentiated into various cell types including hepatocytes. hIPSCs enable production of patient specific cells, which are fully immuno-compatible. Genetically corrected mutant hIPSCs differentiated into hepatocytes have been used as cell therapy in animal models of inherited metabolic disorders but direct infusion of hepatocytes into the liver is unlikely to achieve polarised bile flow and correct ICDs.
Therefore hIPSCs developed from ICD patients will be used to culture hepatocytes on decellularised mouse liver ECM to generate in vitro models of ICDs. CLOs containing hepatocytes from genetically corrected hIPSC will be tested in mouse models of ICDs as potential treatment."
Max ERC Funding
1 500 000 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym CLUSTERS
Project Galaxy formation through the eyes of globular clusters
Researcher (PI) Mark Gieles
Host Institution (HI) UNIVERSITY OF SURREY
Call Details Starting Grant (StG), PE9, ERC-2013-StG
Summary "Globular clusters (GCs) are among the first baryonic structures to form at a redshift of 10 and they witnessed the earliest phases of galaxy formation. Despite their ubiquity and importance for our understanding of the stellar initial mass function, star formation and chemical evolution in the early Universe, their origin is shrouded in mystery. They could have formed in gas rich discs, similarly to young massive clusters (YMCs) that we see forming today in starburst environments; or they could require a more exotic environment such as the centre of dark matter ``mini-haloes"".
The Milky Way GCs are resolved into their constituent stellar population making them the obvious place to look for clues. Their pristine properties are, however, affected by a Hubble time of dynamical evolution within an evolving Milky Way. In this proposal I present three projects to determine the initial properties of GCs, allowing them to be used as robust probes of early star formation, stellar evolution and cosmology. Specifically, I will: (1) dynamically evolve YMCs on a star-by-star basis and achieve a complete census of the fate of the clusters and their debris (``cold"" streams) within the framework of the hierarchical assembly of the Milky Way; (2) I will develop an extremely fast cluster evolution algorithm to do population synthesis of (globular) star clusters which will uniquely establish their initial masses, densities and the corresponding distributions; and (3) I will break the degeneracy of a dark matter halo, tidal heating and alternative gravity laws on the kinematics of GCs and determine whether Milky Way GCs contain dark matter, or not.
Galactic archaeology is entering a Golden Age. ALMA is operational and already putting constraints on the formation of YMCs and Gaia is due to fly next year. The three novel projects presented here will pave the way and prepare for the wealth of unprecedented data."
Summary
"Globular clusters (GCs) are among the first baryonic structures to form at a redshift of 10 and they witnessed the earliest phases of galaxy formation. Despite their ubiquity and importance for our understanding of the stellar initial mass function, star formation and chemical evolution in the early Universe, their origin is shrouded in mystery. They could have formed in gas rich discs, similarly to young massive clusters (YMCs) that we see forming today in starburst environments; or they could require a more exotic environment such as the centre of dark matter ``mini-haloes"".
The Milky Way GCs are resolved into their constituent stellar population making them the obvious place to look for clues. Their pristine properties are, however, affected by a Hubble time of dynamical evolution within an evolving Milky Way. In this proposal I present three projects to determine the initial properties of GCs, allowing them to be used as robust probes of early star formation, stellar evolution and cosmology. Specifically, I will: (1) dynamically evolve YMCs on a star-by-star basis and achieve a complete census of the fate of the clusters and their debris (``cold"" streams) within the framework of the hierarchical assembly of the Milky Way; (2) I will develop an extremely fast cluster evolution algorithm to do population synthesis of (globular) star clusters which will uniquely establish their initial masses, densities and the corresponding distributions; and (3) I will break the degeneracy of a dark matter halo, tidal heating and alternative gravity laws on the kinematics of GCs and determine whether Milky Way GCs contain dark matter, or not.
Galactic archaeology is entering a Golden Age. ALMA is operational and already putting constraints on the formation of YMCs and Gaia is due to fly next year. The three novel projects presented here will pave the way and prepare for the wealth of unprecedented data."
Max ERC Funding
1 499 863 €
Duration
Start date: 2013-11-01, End date: 2018-10-31
Project acronym CODING_IN_V1
Project How visual information is represented by neuronal networks in the primary visual cortex
Researcher (PI) Thomas D. Mrsic-Flogel
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Starting Grant (StG), LS4, ERC-2007-StG
Summary The vast majority of our knowledge about how the brain encodes information has been obtained from recordings of one or few neurons at a time or from global mapping methods such as fMRI. These approaches have left unexplored how neuronal activity is distributed in space and time within a cortical column and how hundreds of neurons interact to process sensory information. By taking advantage of the most recent advances in two-photon microscopy, the proposed project addresses two broad aims, with a particular focus on the function and development of primary visual cortex: 1) to understand how cortical neuronal networks encode visual information, and 2) to understand how they become specialised for sensory processing during postnatal development. For the first aim, we will use in vivo two-photon calcium imaging to record activity simultaneously from hundreds of neurons in visual cortex while showing different visual stimuli to anaesthetised mice. This approach enables us for the first time to characterise in detail how individual neurons and neuronal subsets interact within a large cortical network in response to artificial and natural stimuli. Genetically-encoded fluorescent proteins expressed in distinct cell-types will inform us how excitatory and inhibitory neurons interact to shape population responses during vision. For the second aim, the same approach will be used to describe the maturation of cortical network function after the onset of vision and to assess the role of visual experience in this process. We will additionally use Channelrhodopsin-2, a genetic tool for remote control of action potential firing, to examine the role of correlated neuronal activity on establishment of functional cortical circuits. Together, this work will bring us closer to unravelling how sensory coding emerges on the level of neuronal networks.
Summary
The vast majority of our knowledge about how the brain encodes information has been obtained from recordings of one or few neurons at a time or from global mapping methods such as fMRI. These approaches have left unexplored how neuronal activity is distributed in space and time within a cortical column and how hundreds of neurons interact to process sensory information. By taking advantage of the most recent advances in two-photon microscopy, the proposed project addresses two broad aims, with a particular focus on the function and development of primary visual cortex: 1) to understand how cortical neuronal networks encode visual information, and 2) to understand how they become specialised for sensory processing during postnatal development. For the first aim, we will use in vivo two-photon calcium imaging to record activity simultaneously from hundreds of neurons in visual cortex while showing different visual stimuli to anaesthetised mice. This approach enables us for the first time to characterise in detail how individual neurons and neuronal subsets interact within a large cortical network in response to artificial and natural stimuli. Genetically-encoded fluorescent proteins expressed in distinct cell-types will inform us how excitatory and inhibitory neurons interact to shape population responses during vision. For the second aim, the same approach will be used to describe the maturation of cortical network function after the onset of vision and to assess the role of visual experience in this process. We will additionally use Channelrhodopsin-2, a genetic tool for remote control of action potential firing, to examine the role of correlated neuronal activity on establishment of functional cortical circuits. Together, this work will bring us closer to unravelling how sensory coding emerges on the level of neuronal networks.
Max ERC Funding
1 080 000 €
Duration
Start date: 2008-07-01, End date: 2013-06-30
Project acronym COGOPTO
Project The role of parvalbumin interneurons in cognition and behavior
Researcher (PI) Eva Marie Carlen
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Starting Grant (StG), LS5, ERC-2013-StG
Summary Cognition is a collective term for complex but sophisticated mental processes such as attention, learning, social interaction, language production, decision making and other executive functions. For normal brain function, these higher-order functions need to be aptly regulated and controlled, and the physiology and cellular substrates for cognitive functions are under intense investigation. The loss of cognitive control is intricately related to pathological states such as schizophrenia, depression, attention deficit hyperactive disorder and addiction.
Synchronized neural activity can be observed when the brain performs several important functions, including cognitive processes. As an example, gamma activity (30-80 Hz) predicts the allocation of attention and theta activity (4-12 Hz) is tightly linked to memory processes. A large body of work indicates that the integrity of local and global neural synchrony is mediated by interneuron networks and actuated by the balance of different neuromodulators.
However, much knowledge is still needed on the functional role interneurons play in cognitive processes, i.e. how the interneurons contribute to local and global network processes subserving cognition, and ultimately play a role in behavior. In addition, we need to understand how neuro-modulators, such as dopamine, regulate interneuron function.
The proposed project aims to functionally determine the specific role the parvalbumin interneurons and the neuromodulator dopamine in aspects of cognition, and in behavior. In addition, we ask the question if cognition can be enhanced.
We are employing a true multidisciplinary approach where brain activity is recorded in conjunctions with optogenetic manipulations of parvalbumin interneurons in animals performing cognitive tasks. In one set of experiments knock-down of dopamine receptors specifically in parvalbumin interneurons is employed to probe how this neuromodulator regulate network functions.
Summary
Cognition is a collective term for complex but sophisticated mental processes such as attention, learning, social interaction, language production, decision making and other executive functions. For normal brain function, these higher-order functions need to be aptly regulated and controlled, and the physiology and cellular substrates for cognitive functions are under intense investigation. The loss of cognitive control is intricately related to pathological states such as schizophrenia, depression, attention deficit hyperactive disorder and addiction.
Synchronized neural activity can be observed when the brain performs several important functions, including cognitive processes. As an example, gamma activity (30-80 Hz) predicts the allocation of attention and theta activity (4-12 Hz) is tightly linked to memory processes. A large body of work indicates that the integrity of local and global neural synchrony is mediated by interneuron networks and actuated by the balance of different neuromodulators.
However, much knowledge is still needed on the functional role interneurons play in cognitive processes, i.e. how the interneurons contribute to local and global network processes subserving cognition, and ultimately play a role in behavior. In addition, we need to understand how neuro-modulators, such as dopamine, regulate interneuron function.
The proposed project aims to functionally determine the specific role the parvalbumin interneurons and the neuromodulator dopamine in aspects of cognition, and in behavior. In addition, we ask the question if cognition can be enhanced.
We are employing a true multidisciplinary approach where brain activity is recorded in conjunctions with optogenetic manipulations of parvalbumin interneurons in animals performing cognitive tasks. In one set of experiments knock-down of dopamine receptors specifically in parvalbumin interneurons is employed to probe how this neuromodulator regulate network functions.
Max ERC Funding
1 400 000 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym COLORTTH
Project The Higgs: A colored View from the Top at ATLAS
Researcher (PI) Reinhild Fatima Yvonne Peters
Host Institution (HI) THE UNIVERSITY OF MANCHESTER
Call Details Starting Grant (StG), PE2, ERC-2013-StG
Summary "With the ground-breaking discovery of a new, Higgs-like boson on July 4th, 2012, by the CMS and ATLAS collaborations at CERN, a new era of particle physics has begun. The discovery is the first step in answering an unsolved problem in particle physics, the question how fundamental bosons and fermions acquire their mass. One of the major goals in collider physics in the next few years will be the deeper insight into the nature of the new particle, its connection to the known fundamental particles and possible extensions beyond the standard model (SM) of particle physics.
My project aims at a particular interesting field to study, the relation of the new particle with the heaviest known elementary particle, the top quark. I aim to develop new, innovative techniques and beyond state-of-the-art methods to extract the Yukawa coupling between the top quark and the Higgs boson, which is expected to be of the order of one - much higher than that of any other quark. I will analyse the only process where the top-Higgs Yukawa coupling can be measured, in associated production of top quark pairs and a Higgs boson. The Higgs boson mainly decays into a pair of b-quarks. This is one of the most challenging channels at the LHC, as huge background processes from gluon splitting contribute. In particular, I will develop and study color flow variables, which provide a unique, powerful technique to distinguish color singlet Higgs bosons from the main background, color octet gluons.
The ultimate goal of the project is the first measurement of the top-Higgs Yukawa coupling and its confrontation with SM and beyond SM Higgs boson models, resulting in an unprecedented insight into the fundamental laws of nature.
The LHC will soon reach a new energy frontier of 13 TeV starting in 2014. This new environment will provide never seen opportunities to study hints of new physics and precisely measure properties of the newly found particle. This sets the stage for the project."
Summary
"With the ground-breaking discovery of a new, Higgs-like boson on July 4th, 2012, by the CMS and ATLAS collaborations at CERN, a new era of particle physics has begun. The discovery is the first step in answering an unsolved problem in particle physics, the question how fundamental bosons and fermions acquire their mass. One of the major goals in collider physics in the next few years will be the deeper insight into the nature of the new particle, its connection to the known fundamental particles and possible extensions beyond the standard model (SM) of particle physics.
My project aims at a particular interesting field to study, the relation of the new particle with the heaviest known elementary particle, the top quark. I aim to develop new, innovative techniques and beyond state-of-the-art methods to extract the Yukawa coupling between the top quark and the Higgs boson, which is expected to be of the order of one - much higher than that of any other quark. I will analyse the only process where the top-Higgs Yukawa coupling can be measured, in associated production of top quark pairs and a Higgs boson. The Higgs boson mainly decays into a pair of b-quarks. This is one of the most challenging channels at the LHC, as huge background processes from gluon splitting contribute. In particular, I will develop and study color flow variables, which provide a unique, powerful technique to distinguish color singlet Higgs bosons from the main background, color octet gluons.
The ultimate goal of the project is the first measurement of the top-Higgs Yukawa coupling and its confrontation with SM and beyond SM Higgs boson models, resulting in an unprecedented insight into the fundamental laws of nature.
The LHC will soon reach a new energy frontier of 13 TeV starting in 2014. This new environment will provide never seen opportunities to study hints of new physics and precisely measure properties of the newly found particle. This sets the stage for the project."
Max ERC Funding
1 163 755 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym CONNECTORS
Project Connectors – an international study into the development of children’s everyday practices of participation in circuits of social action
Researcher (PI) Sevasti Melissa Nolas
Host Institution (HI) GOLDSMITHS' COLLEGE
Call Details Starting Grant (StG), SH2, ERC-2013-StG
Summary Participation – defined in this project as the social practice of engaging in personal and social change – links private and public life, biography and history, and forms a mechanism for social action. Twenty years after the ratification of the United Nations Convention for the Rights of the Child (1989) the international community is no closer to identifying what constitutes a ‘good enough’ model for understanding and supporting the development of children’s participation in public life. The project asks game changing questions about the emergence of children’s orientation towards social action through qualitative, longitudinal and cross-national research. Building on biographical interviews with children, relational and geographical mapping techniques, selective participant-observation with children, and children social research workshops in three cities (London, Athens, Mumbai), the project examines the meaning of personal and social change in middle childhood (6-11 year olds), the circuits of social action that children tap into in an attempt to make changes real, the extent to which privilege, marginalization and economic crisis shape children’s practices of participation, and the ways in which encounters with difference (gender, ethnicity, race, religion) challenge children’s orientation towards social action. By sampling children from a diverse cross-section of each city the project will collect and follow a total of 100 children over a five-year period. The project will provide a rich data sources for making within and between country comparisons and in doing so enable the development a theoretical paradigm for understanding children’s participation that is derived from the bottom-up, that is generated in diverse settings, including non-Western, and that takes advantage of the current rupture to established socio-economic realities to ask questions about the future of social action.
Summary
Participation – defined in this project as the social practice of engaging in personal and social change – links private and public life, biography and history, and forms a mechanism for social action. Twenty years after the ratification of the United Nations Convention for the Rights of the Child (1989) the international community is no closer to identifying what constitutes a ‘good enough’ model for understanding and supporting the development of children’s participation in public life. The project asks game changing questions about the emergence of children’s orientation towards social action through qualitative, longitudinal and cross-national research. Building on biographical interviews with children, relational and geographical mapping techniques, selective participant-observation with children, and children social research workshops in three cities (London, Athens, Mumbai), the project examines the meaning of personal and social change in middle childhood (6-11 year olds), the circuits of social action that children tap into in an attempt to make changes real, the extent to which privilege, marginalization and economic crisis shape children’s practices of participation, and the ways in which encounters with difference (gender, ethnicity, race, religion) challenge children’s orientation towards social action. By sampling children from a diverse cross-section of each city the project will collect and follow a total of 100 children over a five-year period. The project will provide a rich data sources for making within and between country comparisons and in doing so enable the development a theoretical paradigm for understanding children’s participation that is derived from the bottom-up, that is generated in diverse settings, including non-Western, and that takes advantage of the current rupture to established socio-economic realities to ask questions about the future of social action.
Max ERC Funding
1 469 296 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym CONSERVREGCIRCUITRY
Project Conservation and Divergence of Tissue-Specific Transcriptional Regulation
Researcher (PI) Duncan Odom
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Starting Grant (StG), LS2, ERC-2007-StG
Summary Vertebrates contain hundreds of different cell types which maintain phenotypic identity by a combination of epigenetic programming and genomic regulation. Systems biology approaches are now used in a number of laboratories to determine how transcription factors and chromatin marks pattern the human genome. Despite high conservation of the cellular and molecular function of many mammalian transcription factors, our recent experiments in matched mouse and human tissues indicates that most transcription factor binding events to DNA are very poorly conserved. A hypothesis that could account for this apparent divergence is that the larger regional pattern of transcription factor binding may be conserved. To test this, (1) we are characterizing the global transcriptional profile, chromatin state, and complete genomic occupancy of a set of tissue-specific transcription factors in hepatocytes of strategically chosen mammals; (2) to further identify the precise mechanistic contribution of cis and trans effects, we are comparing transcription factor binding at homologous regions of human and mouse DNA in a mouse line that carries human chromosome 21. Together, these projects will provide insight into the general principles of how transcriptional networks are evolutionarily conserved to regulate cell fate specification and function using a clinically important cell type as a model.
Summary
Vertebrates contain hundreds of different cell types which maintain phenotypic identity by a combination of epigenetic programming and genomic regulation. Systems biology approaches are now used in a number of laboratories to determine how transcription factors and chromatin marks pattern the human genome. Despite high conservation of the cellular and molecular function of many mammalian transcription factors, our recent experiments in matched mouse and human tissues indicates that most transcription factor binding events to DNA are very poorly conserved. A hypothesis that could account for this apparent divergence is that the larger regional pattern of transcription factor binding may be conserved. To test this, (1) we are characterizing the global transcriptional profile, chromatin state, and complete genomic occupancy of a set of tissue-specific transcription factors in hepatocytes of strategically chosen mammals; (2) to further identify the precise mechanistic contribution of cis and trans effects, we are comparing transcription factor binding at homologous regions of human and mouse DNA in a mouse line that carries human chromosome 21. Together, these projects will provide insight into the general principles of how transcriptional networks are evolutionarily conserved to regulate cell fate specification and function using a clinically important cell type as a model.
Max ERC Funding
960 000 €
Duration
Start date: 2008-10-01, End date: 2013-09-30
Project acronym COSTPOST
Project Costs and Gains to Postponement: How Changes in the Age of Parenthood Influence the Health and Well-being of Children, the Parents, and Populations
Researcher (PI) Mikko Myrskyla
Host Institution (HI) LONDON SCHOOL OF ECONOMICS AND POLITICAL SCIENCE
Call Details Starting Grant (StG), SH3, ERC-2013-StG
Summary Advanced maternal and paternal ages are associated with a range of negative offspring outcomes, and have been estimated to have population-level health effects comparable to those of obesity. This project analyses the health and well-being consequences of fertility postponement, focusing on three previously unanswered questions. Project A assesses the causality of the advanced parental age-offspring outcomes association. The existing literature is largely associational. Using innovative methods that allow me to control for previously unanalysed factors, I test the causality of this association and produce new estimates for the population level health impact of advanced parental age. Project B focuses on the role of the environment. Since health improves over cohorts, can postponement of parenthood – which means that the child is born to a later cohort – improve offspring outcomes? Moreover, does the environment influence the young parental age effect on the offspring? Project C analyses the implications of postponed parenthood on parental subjective well-being, which is critical for both child and parental health, but has not been analysed before.
Each of the three sub-projects has the potential for producing ground-breaking results with important policy implications and large impact on both demography and on other disciplines. Project A either confirms that the social process of fertility postponement is an important public health threat, or shows that the health effects of postponement have been grossly overestimated. Project B may revolutionise the way postponement is seen: if the cohort trend hypothesis is found to be true, the assumption that postponement has a positive effect on offspring outcomes at the individual level will be confirmed. Project C provides an innovative analysis of a neglected outcome that is critically related to child health and will advance our knowledge of the motivation for fertility postponement.
Summary
Advanced maternal and paternal ages are associated with a range of negative offspring outcomes, and have been estimated to have population-level health effects comparable to those of obesity. This project analyses the health and well-being consequences of fertility postponement, focusing on three previously unanswered questions. Project A assesses the causality of the advanced parental age-offspring outcomes association. The existing literature is largely associational. Using innovative methods that allow me to control for previously unanalysed factors, I test the causality of this association and produce new estimates for the population level health impact of advanced parental age. Project B focuses on the role of the environment. Since health improves over cohorts, can postponement of parenthood – which means that the child is born to a later cohort – improve offspring outcomes? Moreover, does the environment influence the young parental age effect on the offspring? Project C analyses the implications of postponed parenthood on parental subjective well-being, which is critical for both child and parental health, but has not been analysed before.
Each of the three sub-projects has the potential for producing ground-breaking results with important policy implications and large impact on both demography and on other disciplines. Project A either confirms that the social process of fertility postponement is an important public health threat, or shows that the health effects of postponement have been grossly overestimated. Project B may revolutionise the way postponement is seen: if the cohort trend hypothesis is found to be true, the assumption that postponement has a positive effect on offspring outcomes at the individual level will be confirmed. Project C provides an innovative analysis of a neglected outcome that is critically related to child health and will advance our knowledge of the motivation for fertility postponement.
Max ERC Funding
1 305 600 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym Coupled gene circuit
Project Dynamics, noise, and coupling in gene circuit modules
Researcher (PI) James Charles Wallace Locke
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Starting Grant (StG), LS2, ERC-2013-StG
Summary Cells must integrate output from multiple genetic circuits in order to correctly control cellular processes. Despite much work characterizing regulation in these circuits, how circuits interact to control global cellular programs remains unclear. This is particularly true given that recent research at the single cell level has revealed that genetic circuits often generate variable or stochastic regulation dynamics. In this proposal we will use a multi-disciplinary approach, combining modelling and time-lapse microscopy, to investigate how cells can robustly integrate signals from multiple dynamic genetic circuits. In particular we will answer the following questions: 1) What types of dynamic signal encoding strategies are available for the cell? 2) What are the benefits of dynamic gene activation, whether stochastic or oscillatory, to the cell? 3) How do cells couple and integrate output from diverse gene modules despite the noise and variability observed in gene circuit dynamics?
We will study these questions using 2 key model systems. In Aim 1, we will examine stochastic pulse regulation dynamics and coupling between alternative sigma factors in B. subtilis. Our preliminary data has revealed that multiple B. subtilis sigma factors stochastically pulse under stress. We will look for evidence of any coupling or interactions between these stochastic pulse circuits. This system will serve as a model for how a cell uses stochastic pulsing to control diverse cellular processes. In Aim 2, we will examine coupling between a deterministic oscillator, the circadian clock, and multiple other key pathways in Cyanobacteria. We will examine how the cell can dynamically couple multiple cellular processes using an oscillating signal. This work will provide an excellent base for Aim 3, in which we will use synthetic biology approaches to develop ‘bottom up’ tests of generation of novel dynamic coupling strategies.
Summary
Cells must integrate output from multiple genetic circuits in order to correctly control cellular processes. Despite much work characterizing regulation in these circuits, how circuits interact to control global cellular programs remains unclear. This is particularly true given that recent research at the single cell level has revealed that genetic circuits often generate variable or stochastic regulation dynamics. In this proposal we will use a multi-disciplinary approach, combining modelling and time-lapse microscopy, to investigate how cells can robustly integrate signals from multiple dynamic genetic circuits. In particular we will answer the following questions: 1) What types of dynamic signal encoding strategies are available for the cell? 2) What are the benefits of dynamic gene activation, whether stochastic or oscillatory, to the cell? 3) How do cells couple and integrate output from diverse gene modules despite the noise and variability observed in gene circuit dynamics?
We will study these questions using 2 key model systems. In Aim 1, we will examine stochastic pulse regulation dynamics and coupling between alternative sigma factors in B. subtilis. Our preliminary data has revealed that multiple B. subtilis sigma factors stochastically pulse under stress. We will look for evidence of any coupling or interactions between these stochastic pulse circuits. This system will serve as a model for how a cell uses stochastic pulsing to control diverse cellular processes. In Aim 2, we will examine coupling between a deterministic oscillator, the circadian clock, and multiple other key pathways in Cyanobacteria. We will examine how the cell can dynamically couple multiple cellular processes using an oscillating signal. This work will provide an excellent base for Aim 3, in which we will use synthetic biology approaches to develop ‘bottom up’ tests of generation of novel dynamic coupling strategies.
Max ERC Funding
1 499 571 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym CREATES
Project Classifying the Range of Exoplanetary Atmospheres using Transmission and Emission Spectroscopy
Researcher (PI) David Kent Sing
Host Institution (HI) THE UNIVERSITY OF EXETER
Call Details Starting Grant (StG), PE9, ERC-2013-StG
Summary "Rarely in astrophysics are there opportunities to spectrally classify a completely new group of astrophysical objects. This is the challenge facing the exoplanets christened “hot Jupiters”. The detection and subsequent spectroscopic information now achievable for a large number of these exoplanets are now allowing for detailed comparative exoplanetology. This project uses a twofold approach to advance both the theory and observation of these exoplanets beyond their current limitations. Hot Jupiter atmospheric spectra are built from two large observational survey programmes headed by Dr. Sing to obtain a vast amount of high quality data on transmission spectra. One large programme uses the HST which alone will quadruple the number of broadband exoplanet transmission spectra. The Hubble survey will be augmented by a large programme on the GTC telescope, where we will put efforts into pioneering multi-object spectroscopy, capable of delivering space-like quality spectra. Both large programmes will be further complemented by followup observations, as well as existing near-IR spectroscopy. This project will combine this plethora of data in a coherent fashion, enabling studies of nearly the entire planetary atmosphere. Our observational efforts will be combined with a broad and inclusive theoretical modeling programme, where we will incorporate clouds and hazes, modelling the complete atmosphere in a self-consistent manner with a 3D global circulation model. Our library of transmission spectra across the hot-Jupiter class will be used to address long outstanding and complex issues. We will focus our efforts on two key areas, addressing why some hot Jupiters have hazes & clouds while others do not, and the outstanding issue on the presence or absence of stratospheres. For the first time a comprehensive set of high quality exoplanet spectra will be available with which to inter-compare using the required set of theoretical tools."
Summary
"Rarely in astrophysics are there opportunities to spectrally classify a completely new group of astrophysical objects. This is the challenge facing the exoplanets christened “hot Jupiters”. The detection and subsequent spectroscopic information now achievable for a large number of these exoplanets are now allowing for detailed comparative exoplanetology. This project uses a twofold approach to advance both the theory and observation of these exoplanets beyond their current limitations. Hot Jupiter atmospheric spectra are built from two large observational survey programmes headed by Dr. Sing to obtain a vast amount of high quality data on transmission spectra. One large programme uses the HST which alone will quadruple the number of broadband exoplanet transmission spectra. The Hubble survey will be augmented by a large programme on the GTC telescope, where we will put efforts into pioneering multi-object spectroscopy, capable of delivering space-like quality spectra. Both large programmes will be further complemented by followup observations, as well as existing near-IR spectroscopy. This project will combine this plethora of data in a coherent fashion, enabling studies of nearly the entire planetary atmosphere. Our observational efforts will be combined with a broad and inclusive theoretical modeling programme, where we will incorporate clouds and hazes, modelling the complete atmosphere in a self-consistent manner with a 3D global circulation model. Our library of transmission spectra across the hot-Jupiter class will be used to address long outstanding and complex issues. We will focus our efforts on two key areas, addressing why some hot Jupiters have hazes & clouds while others do not, and the outstanding issue on the presence or absence of stratospheres. For the first time a comprehensive set of high quality exoplanet spectra will be available with which to inter-compare using the required set of theoretical tools."
Max ERC Funding
1 495 824 €
Duration
Start date: 2013-11-01, End date: 2018-10-31
Project acronym CSIASC
Project Changing Structures of Islamic Authority and Consequences for Social Change: A Transnational Review
Researcher (PI) Masooda Bano
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Starting Grant (StG), SH2, ERC-2013-StG
Summary Research on Muslims in Europe or in the Muslim majority countries has since September 11, mainly focused on understanding the causes of religious radicalization. Largely ignored in the public debates, as well as in academic scholarship, is recognition of the rapid growth in a number of prominent initiatives emerging within Muslims in the west that are aimed at initiating intellectual revival within Islam. Drawing inspiration from the thinkers such as Al-Ghazali or Ibn-Rushd (associated with the ‘rationalist tradition’ in Islam), the Muslim intellectuals and scholars at the center of this movement for intellectual revival in Islam are arguing for ‘indigenizing Islam in the West.’ This project is aimed at understanding the emergence and growth of this movement, the methodology different actors within this movement adopt to initiate reform while remaining loyal to the Islamic ethical spirit, and the implications of these attempts at intellectual reform for individual behavior and social change within Muslims in the west as well as in Muslim majority countries. The project will situate the emergence of this movement within the broader shifts being witnessed in the traditional structures of Islamic authority— such as Al-Azhar University, Dar-ul Uloom, Deoband, Diyanat, and Al-Medina University— that dominate the teaching and interpretation of Islam globally but are under pressure to reform. By developing detailed ethnographic accounts of these new and old institutions of Islamic authority, examining the intellectual discourse of their scholars, observing the argumentations through which they socially advance their conception of Islam, and analyzing how these discourses impact real life choices, this project will shed light on the complexity of Islamic thought and changes in contemporary Muslim societies. It will also highlight the spaces that are emerging for engagement between the Islamic and western tradition and inform theory of religious behavior.
Summary
Research on Muslims in Europe or in the Muslim majority countries has since September 11, mainly focused on understanding the causes of religious radicalization. Largely ignored in the public debates, as well as in academic scholarship, is recognition of the rapid growth in a number of prominent initiatives emerging within Muslims in the west that are aimed at initiating intellectual revival within Islam. Drawing inspiration from the thinkers such as Al-Ghazali or Ibn-Rushd (associated with the ‘rationalist tradition’ in Islam), the Muslim intellectuals and scholars at the center of this movement for intellectual revival in Islam are arguing for ‘indigenizing Islam in the West.’ This project is aimed at understanding the emergence and growth of this movement, the methodology different actors within this movement adopt to initiate reform while remaining loyal to the Islamic ethical spirit, and the implications of these attempts at intellectual reform for individual behavior and social change within Muslims in the west as well as in Muslim majority countries. The project will situate the emergence of this movement within the broader shifts being witnessed in the traditional structures of Islamic authority— such as Al-Azhar University, Dar-ul Uloom, Deoband, Diyanat, and Al-Medina University— that dominate the teaching and interpretation of Islam globally but are under pressure to reform. By developing detailed ethnographic accounts of these new and old institutions of Islamic authority, examining the intellectual discourse of their scholars, observing the argumentations through which they socially advance their conception of Islam, and analyzing how these discourses impact real life choices, this project will shed light on the complexity of Islamic thought and changes in contemporary Muslim societies. It will also highlight the spaces that are emerging for engagement between the Islamic and western tradition and inform theory of religious behavior.
Max ERC Funding
1 376 704 €
Duration
Start date: 2014-03-01, End date: 2019-12-31
Project acronym DATA SCIENCE
Project The Epistemology of Data-Intensive Science
Researcher (PI) Sabina Leonelli
Host Institution (HI) THE UNIVERSITY OF EXETER
Call Details Starting Grant (StG), SH4, ERC-2013-StG
Summary "This project aims to develop a new ‘philosophy of data-intensive science’ that clarifies how research practices are changing in the digital age, and examines how this affects current understandings of scientific epistemology within the philosophy of science and beyond.
The scale of scientific data production has massively increased in recent times, raising urgent questions about how scientists are to transform the resulting masses of data into useful knowledge. A technical solution to this problem is offered by technologies for the storage, dissemination and handling of data over the internet, including online databases that enable scientists to retrieve and analyse vast amounts of data of potential relevance to their research. These technologies are having a profound effect on what counts as scientific knowledge and on how that knowledge is obtained and used. This is a step change in scientific methods, which scientists refer to as ‘data-intensive’ research.
Surprisingly, the characteristics and philosophical implications of this emerging way of doing science have not yet been extensively and systematically analysed. This project aims to fill this gap by combining the analytic apparatus developed by philosophers of science with empirical, qualitative methods used by social scientists to investigate cutting-edge scientific practices. Accordingly, Phase 1 of the project will investigate how the use of online databases is currently affecting research practices and outcomes in two areas: plant science and biomedicine. Phase 2 will then build on these empirical results to analyse how data-intensive methods challenge existing philosophical understandings of the epistemic role of data, theory, experiments and division of labour in science. Through the analysis of how these four key components, the PI will produce a systematic assessment of the implications of the rise of data-intensive research for how science is organised, conducted and assessed."
Summary
"This project aims to develop a new ‘philosophy of data-intensive science’ that clarifies how research practices are changing in the digital age, and examines how this affects current understandings of scientific epistemology within the philosophy of science and beyond.
The scale of scientific data production has massively increased in recent times, raising urgent questions about how scientists are to transform the resulting masses of data into useful knowledge. A technical solution to this problem is offered by technologies for the storage, dissemination and handling of data over the internet, including online databases that enable scientists to retrieve and analyse vast amounts of data of potential relevance to their research. These technologies are having a profound effect on what counts as scientific knowledge and on how that knowledge is obtained and used. This is a step change in scientific methods, which scientists refer to as ‘data-intensive’ research.
Surprisingly, the characteristics and philosophical implications of this emerging way of doing science have not yet been extensively and systematically analysed. This project aims to fill this gap by combining the analytic apparatus developed by philosophers of science with empirical, qualitative methods used by social scientists to investigate cutting-edge scientific practices. Accordingly, Phase 1 of the project will investigate how the use of online databases is currently affecting research practices and outcomes in two areas: plant science and biomedicine. Phase 2 will then build on these empirical results to analyse how data-intensive methods challenge existing philosophical understandings of the epistemic role of data, theory, experiments and division of labour in science. Through the analysis of how these four key components, the PI will produce a systematic assessment of the implications of the rise of data-intensive research for how science is organised, conducted and assessed."
Max ERC Funding
1 046 000 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym DCBIF
Project Flight dynamics and control of birds and insects
Researcher (PI) Graham Keith Taylor
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Starting Grant (StG), PE6, ERC-2007-StG
Summary Insects bristle with sensors, but how do they exploit this rich sensory information to achieve their extraordinary stability and manoeuvrability? Bird and insect wings deform in flight, and have passively deployable structures such as feathers and flaps, but how do they exploit these features when aircraft designers shy away from aeroelasticity? Birds fly without a vertical tailfin, but how do they maintain yaw stability when most aircraft require one to fly safely? Questions such as these drive my research on bird and insect flight dynamics. My research is unique in using the engineering tools of flight dynamics and control theory to analyse physiological and biomechanical data from real animals. One research track will use measurements of the forces and torques generated by insects flying tethered in a virtual-reality flight simulator to parameterise their equations of motion, in order to model the input-output relationships of their sensorimotor control systems. A second research track will measure the detailed wing kinematics and deformations of free-flying insects in order to analyse the effects of aeroelasticity on flight manoeuvres. A third research track will measure the wing and tail kinematics of free-flying birds using onboard wireless video cameras, and use system identification techniques to model how these affect the body dynamics measured using onboard instrumentation. Applying these novel experimental techniques will allow me to make and test quantitative predictions about flight stability and control. This highly interdisciplinary research bridges the fields of physiology and biomechanics, with significant feeds to and from engineering. My research will break new ground, developing novel experimental techniques and theoretical models in order to test and generate new hypotheses of adaptive function. Its broader impacts include the public interest in all things flying, and potential military and civilian applications in flapping micro-air vehicles.
Summary
Insects bristle with sensors, but how do they exploit this rich sensory information to achieve their extraordinary stability and manoeuvrability? Bird and insect wings deform in flight, and have passively deployable structures such as feathers and flaps, but how do they exploit these features when aircraft designers shy away from aeroelasticity? Birds fly without a vertical tailfin, but how do they maintain yaw stability when most aircraft require one to fly safely? Questions such as these drive my research on bird and insect flight dynamics. My research is unique in using the engineering tools of flight dynamics and control theory to analyse physiological and biomechanical data from real animals. One research track will use measurements of the forces and torques generated by insects flying tethered in a virtual-reality flight simulator to parameterise their equations of motion, in order to model the input-output relationships of their sensorimotor control systems. A second research track will measure the detailed wing kinematics and deformations of free-flying insects in order to analyse the effects of aeroelasticity on flight manoeuvres. A third research track will measure the wing and tail kinematics of free-flying birds using onboard wireless video cameras, and use system identification techniques to model how these affect the body dynamics measured using onboard instrumentation. Applying these novel experimental techniques will allow me to make and test quantitative predictions about flight stability and control. This highly interdisciplinary research bridges the fields of physiology and biomechanics, with significant feeds to and from engineering. My research will break new ground, developing novel experimental techniques and theoretical models in order to test and generate new hypotheses of adaptive function. Its broader impacts include the public interest in all things flying, and potential military and civilian applications in flapping micro-air vehicles.
Max ERC Funding
1 954 565 €
Duration
Start date: 2008-06-01, End date: 2014-05-31
Project acronym DEHALORES
Project Breathing chlorinated compounds: unravelling the biochemistry underpinning (de)halorespiration, an exciting bacterial metabolism with significant bioremediation potential
Researcher (PI) David Leys
Host Institution (HI) THE UNIVERSITY OF MANCHESTER
Call Details Starting Grant (StG), LS1, ERC-2007-StG
Summary Bacterial dehalorespiration is a microbial respiratory process in which halogenated hydrocarbons, from natural or anthropogenic origin, act as terminal electron acceptors. This leads to effective dehalogenation of these compounds, and as such their degradation and detoxification. The bacterial species, their enzymes and other components responsible for this unusual metabolism have only recently been identified. Unlocking the full potential of this process for bioremediation of persistent organohalides, such as polychlorinated biphenyls (PCBs) and tetrachloroethene, requires detailed understanding of the underpinning biochemistry. However, the regulation, mechanism and structure of the reductive dehalogenase (the enzyme responsible for delivering electrons to the halogenated substrates) are poorly understood. This ambitious proposal seeks to study representatives of the distinct reductive dehalogenase classes as well as key elements of the associated regulatory systems. Our group has been at the forefront of studying the biochemistry underpinning transcriptional regulation of dehalorespiration, providing detailed insights in the protein CprK at the atomic level. However, it is now apparent that only a subset of dehalogenases are regulated by CprK homologues with little known about the other regulators. In addition, studies on the reductive dehalogenases have been hampered by the inability to purify sufficient quantities. Using an interdisciplinary, biophysical approach focused around X-ray crystallography, enzymology and molecular biology, combined with novel reductive dehalogenase production methods, we aim to provide a detailed understanding and identification of the structural elements crucial to reductive dehalogenase mechanism and regulation. At the same time, we aim to apply the knowledge gathered and study the feasibility of generating improved dehalorespiratory components for biosensing or bioremediation applications through laboratory assisted evolution.
Summary
Bacterial dehalorespiration is a microbial respiratory process in which halogenated hydrocarbons, from natural or anthropogenic origin, act as terminal electron acceptors. This leads to effective dehalogenation of these compounds, and as such their degradation and detoxification. The bacterial species, their enzymes and other components responsible for this unusual metabolism have only recently been identified. Unlocking the full potential of this process for bioremediation of persistent organohalides, such as polychlorinated biphenyls (PCBs) and tetrachloroethene, requires detailed understanding of the underpinning biochemistry. However, the regulation, mechanism and structure of the reductive dehalogenase (the enzyme responsible for delivering electrons to the halogenated substrates) are poorly understood. This ambitious proposal seeks to study representatives of the distinct reductive dehalogenase classes as well as key elements of the associated regulatory systems. Our group has been at the forefront of studying the biochemistry underpinning transcriptional regulation of dehalorespiration, providing detailed insights in the protein CprK at the atomic level. However, it is now apparent that only a subset of dehalogenases are regulated by CprK homologues with little known about the other regulators. In addition, studies on the reductive dehalogenases have been hampered by the inability to purify sufficient quantities. Using an interdisciplinary, biophysical approach focused around X-ray crystallography, enzymology and molecular biology, combined with novel reductive dehalogenase production methods, we aim to provide a detailed understanding and identification of the structural elements crucial to reductive dehalogenase mechanism and regulation. At the same time, we aim to apply the knowledge gathered and study the feasibility of generating improved dehalorespiratory components for biosensing or bioremediation applications through laboratory assisted evolution.
Max ERC Funding
1 148 522 €
Duration
Start date: 2008-09-01, End date: 2013-08-31
Project acronym DESI_JEDI-IMAGING
Project Development of mass spectrometric techniques for 3D imaging and in-vivo analysis of biological tissues
Researcher (PI) Zoltan Takats
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Call Details Starting Grant (StG), PE4, ERC-2007-StG
Summary Recent development of atmospheric pressure desorption ionization methods has opened a unique area of application for analytical mass spectrometry. Most of these methods do not require any modification of samples, and this feature, together with the minimal invasiveness of these methods allows direct analytical interrogation of biological tissues, even the real-time, in-vivo observation of biochemical processes. The proposed research focuses on the development of atmospheric pressure desorption ionization mass spectrometric methods for the characterization of biological tissues. The first question to answer is aimed at the nature of information which can be obtained, using a variety of desorption ionization methods including desorption electrospray ionization and jet desorption ionization methods. Preliminary results show, that APDI-MS methods provide information on lipids, metabolic compounds, drugs and certain proteins. First task of the proposed research is to implement a chemical imaging system, which is capable of producing 3D concentration distribution functions for various constituents of tissue samples. The developed methodology will be used to tackle fundamental pathophysiological problems including development of various malignant tumors. A database will be created for the unequivocal identification of various tissues including healthy and malignant tissue samples. In-vivo applications of MS will also be developed. JeDI-MS,similarly to water jet surgery, also utilizes high velocity water jet can directly be used as an intelligent scalpel. Real-time in-situ tissue identification has the potential of revolutionizing cancer surgery, since this way the amount of removed tissue can be minimized, while the tumor removal efficiency is maximized. The identical experimental platform can also be used to gather real-time in-situ metabolic information, which can help to understand pathophysiological changes.
Summary
Recent development of atmospheric pressure desorption ionization methods has opened a unique area of application for analytical mass spectrometry. Most of these methods do not require any modification of samples, and this feature, together with the minimal invasiveness of these methods allows direct analytical interrogation of biological tissues, even the real-time, in-vivo observation of biochemical processes. The proposed research focuses on the development of atmospheric pressure desorption ionization mass spectrometric methods for the characterization of biological tissues. The first question to answer is aimed at the nature of information which can be obtained, using a variety of desorption ionization methods including desorption electrospray ionization and jet desorption ionization methods. Preliminary results show, that APDI-MS methods provide information on lipids, metabolic compounds, drugs and certain proteins. First task of the proposed research is to implement a chemical imaging system, which is capable of producing 3D concentration distribution functions for various constituents of tissue samples. The developed methodology will be used to tackle fundamental pathophysiological problems including development of various malignant tumors. A database will be created for the unequivocal identification of various tissues including healthy and malignant tissue samples. In-vivo applications of MS will also be developed. JeDI-MS,similarly to water jet surgery, also utilizes high velocity water jet can directly be used as an intelligent scalpel. Real-time in-situ tissue identification has the potential of revolutionizing cancer surgery, since this way the amount of removed tissue can be minimized, while the tumor removal efficiency is maximized. The identical experimental platform can also be used to gather real-time in-situ metabolic information, which can help to understand pathophysiological changes.
Max ERC Funding
1 750 000 €
Duration
Start date: 2008-09-01, End date: 2013-08-31
Project acronym DESTABLE
Project Destabilisation of sociotechnical regimes as the key to transitions towards sustainability
Researcher (PI) Frank Geels
Host Institution (HI) THE UNIVERSITY OF SUSSEX
Call Details Starting Grant (StG), SH2, ERC-2007-StG
Summary Sociotechnical transitions are important to address environmental problems. The present literature focuses on green options that break through and replace existing sociotechnical regimes. The project turns the analytical focus upside down, seeing the destabilisation and decline of existing regimes as the key to transitions. Regimes refer to the rules (knowledge base, belief system, mission, strategic orientation) shared by incumbent actors in an industry. Destabilisation results from increasing external pressures (economic, normative, regulatory) and eroding commitment of actors to regime rules. Research questions are: 1 To what degree have regimes in transport, energy and agriculture destabilised in the last 30 years, as a result of environmental pressures? 2 What kind of process is regime destabilisation and how should it be conceptualised for environmental problems? Which mechanisms are important and how do they interact? The project develops a theoretical perspective, combining insights from neo-institutional theory, STS, evolutionary economics. A phase-based pattern and three propositions are advanced. To investigate destabilisation, the project uses case studies as research strategy, which is appropriate for tracing complex processes such as changing beliefs and identities, fuzzy network boundaries, and many interacting (external) factors. Two PhD projects do four longitudinal case studies about destabilisation. Cases are selected with regard to the phase-based pattern and propositions. One case (decline of domestic coal) went though all phases. Another case (destabilisation of pig farming) has progressed far into the last phase. Coal in electricity and the car regime are less far in the phase-pattern, and probably less destabilised. The PI integrates findings from PhD projects, providing general answers to research questions. He also elaborates the inter-disciplinary perspective, and addresses the possibilities for sustainability transitions.
Summary
Sociotechnical transitions are important to address environmental problems. The present literature focuses on green options that break through and replace existing sociotechnical regimes. The project turns the analytical focus upside down, seeing the destabilisation and decline of existing regimes as the key to transitions. Regimes refer to the rules (knowledge base, belief system, mission, strategic orientation) shared by incumbent actors in an industry. Destabilisation results from increasing external pressures (economic, normative, regulatory) and eroding commitment of actors to regime rules. Research questions are: 1 To what degree have regimes in transport, energy and agriculture destabilised in the last 30 years, as a result of environmental pressures? 2 What kind of process is regime destabilisation and how should it be conceptualised for environmental problems? Which mechanisms are important and how do they interact? The project develops a theoretical perspective, combining insights from neo-institutional theory, STS, evolutionary economics. A phase-based pattern and three propositions are advanced. To investigate destabilisation, the project uses case studies as research strategy, which is appropriate for tracing complex processes such as changing beliefs and identities, fuzzy network boundaries, and many interacting (external) factors. Two PhD projects do four longitudinal case studies about destabilisation. Cases are selected with regard to the phase-based pattern and propositions. One case (decline of domestic coal) went though all phases. Another case (destabilisation of pig farming) has progressed far into the last phase. Coal in electricity and the car regime are less far in the phase-pattern, and probably less destabilised. The PI integrates findings from PhD projects, providing general answers to research questions. He also elaborates the inter-disciplinary perspective, and addresses the possibilities for sustainability transitions.
Max ERC Funding
907 114 €
Duration
Start date: 2008-09-01, End date: 2012-11-30
Project acronym DII
Project The Design of International Institutions: Legitimacy, Effectiveness and Distribution in Global Governance
Researcher (PI) Jonas Tallberg
Host Institution (HI) STOCKHOLMS UNIVERSITET
Call Details Starting Grant (StG), SH2, ERC-2007-StG
Summary One of the most profound trends in global governance over the past two decades is the growing extent to which international institutions offer mechanisms for the participation of transnational actors. This project will explore two central research questions, pertaining to the causes and effects of this shift in the design of international institutions: (1) Why have international institutions increasingly opened up to transnational actor involvement? (2) What are the consequences of involving transnational actors for the democratic legitimacy, problem-solving effectiveness, and distributional effects of international institutions? These are research questions that previously have not been explored systematically in existing literatures on international institutional design, transnational actors in global governance, and democracy beyond the nation-state. This project opens up a new research agenda on the design of international institutions through an ambitious combination of novel theory development and comparative empirical research. Theoretically, the project develops and tests alternative hypotheses about the causes and effects of transnational participation in international policy-making. Empirically, the project explores the dynamics of transnational participation through comparative case studies of five major international institutions, supplemented with a large-n mapping of formal mechanisms of transnational access in a broader sample of institutions. The project will help to establish an internationally competitive research group of post-doc researchers and Ph.D. students devoted to international institutional design, and consolidate the position of the principal investigator as a leading researcher in this field.
Summary
One of the most profound trends in global governance over the past two decades is the growing extent to which international institutions offer mechanisms for the participation of transnational actors. This project will explore two central research questions, pertaining to the causes and effects of this shift in the design of international institutions: (1) Why have international institutions increasingly opened up to transnational actor involvement? (2) What are the consequences of involving transnational actors for the democratic legitimacy, problem-solving effectiveness, and distributional effects of international institutions? These are research questions that previously have not been explored systematically in existing literatures on international institutional design, transnational actors in global governance, and democracy beyond the nation-state. This project opens up a new research agenda on the design of international institutions through an ambitious combination of novel theory development and comparative empirical research. Theoretically, the project develops and tests alternative hypotheses about the causes and effects of transnational participation in international policy-making. Empirically, the project explores the dynamics of transnational participation through comparative case studies of five major international institutions, supplemented with a large-n mapping of formal mechanisms of transnational access in a broader sample of institutions. The project will help to establish an internationally competitive research group of post-doc researchers and Ph.D. students devoted to international institutional design, and consolidate the position of the principal investigator as a leading researcher in this field.
Max ERC Funding
1 651 200 €
Duration
Start date: 2009-01-01, End date: 2014-12-31
Project acronym EARTH CORE STRUCTURE
Project Thermal and compositional state of the Earth's inner core from seismic free oscillations
Researcher (PI) Arwen Fedora Deuss
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Starting Grant (StG), PE8, ERC-2007-StG
Summary The core, comprising the innermost parts of the Earth, is one of the most dynamic regions of our planet. The inner core is solid, surrounded by a liquid iron alloy. Inner core solidification combined with motions in the fluid outer core drive the geodynamo which generates Earth's magnetic field. Solidification of the inner core also supplies some of the heat that drives mantle convection and subsequently plate tectonics at the surface of the Earth. The thermal and compositional structure of the inner core is thus key to understanding the inner workings of our planet. No direct samples can be taken of the core and our knowledge of the thermal and compositional state of the Earth's outer and inner core relies on seismology. Ray theoretical studies using short period body waves are the most commonly used seismological data; these have led to observations of a large range of anomalous structures in the Earth's inner core, including anistropy, layers and hemispherical variations. However, due to uneven station and earthquake distribution, the robustness and global distribution of these features is still controversial. Long period seismic free oscillations, on the other hand, are able to provide global constraints, but lack of appropriate theory has prevented more complicated structures from being studied using normal modes. Thus, many fundamental questions regarding the thermal history of the core and geodynamo remain unanswered. Here, I propose to develop a comprehensive seismic inner core model, employing fully-coupled normal mode theory for the first time and using data from large earthquakes such as the Sumatra-Andaman event of 26 December 2006. This will dramatically change our current ideas of structure in the inner core. Using a novel combination of fluid dynamics and mineral physics I will interpret the thermal and compositional structure found at the centre of our planet, which in turn are fundamental to understand its geodynamo and magnetic field.
Summary
The core, comprising the innermost parts of the Earth, is one of the most dynamic regions of our planet. The inner core is solid, surrounded by a liquid iron alloy. Inner core solidification combined with motions in the fluid outer core drive the geodynamo which generates Earth's magnetic field. Solidification of the inner core also supplies some of the heat that drives mantle convection and subsequently plate tectonics at the surface of the Earth. The thermal and compositional structure of the inner core is thus key to understanding the inner workings of our planet. No direct samples can be taken of the core and our knowledge of the thermal and compositional state of the Earth's outer and inner core relies on seismology. Ray theoretical studies using short period body waves are the most commonly used seismological data; these have led to observations of a large range of anomalous structures in the Earth's inner core, including anistropy, layers and hemispherical variations. However, due to uneven station and earthquake distribution, the robustness and global distribution of these features is still controversial. Long period seismic free oscillations, on the other hand, are able to provide global constraints, but lack of appropriate theory has prevented more complicated structures from being studied using normal modes. Thus, many fundamental questions regarding the thermal history of the core and geodynamo remain unanswered. Here, I propose to develop a comprehensive seismic inner core model, employing fully-coupled normal mode theory for the first time and using data from large earthquakes such as the Sumatra-Andaman event of 26 December 2006. This will dramatically change our current ideas of structure in the inner core. Using a novel combination of fluid dynamics and mineral physics I will interpret the thermal and compositional structure found at the centre of our planet, which in turn are fundamental to understand its geodynamo and magnetic field.
Max ERC Funding
1 202 744 €
Duration
Start date: 2008-10-01, End date: 2014-09-30
Project acronym EBDD
Project Beyond structure: integrated computational and experimental approach to Ensemble-Based Drug Design
Researcher (PI) Julien Michel
Host Institution (HI) THE UNIVERSITY OF EDINBURGH
Call Details Starting Grant (StG), PE4, ERC-2013-StG
Summary "Although protein dynamics plays an essential role in function, it is rarely considered explicitly in current structure-based approaches to drug design. Here I propose the computer-aided design of ligands by modulation of protein dynamics, or equivalently, protein structural ensembles. The detailed understanding of ligand-induced perturbations of protein dynamics that will result from this study is crucial not just to accurately predicting binding affinities and tackling ""undruggable"" targets, but also to understanding protein allostery.
Three major aims will be pursued during this project.
First, I will combine concepts from chemoinformatics and non-equilibrium thermodynamics to detect cryptic ""druggable"" small molecule binding sites in computed structural ensembles. New computational methods will be developed to predict how binding at these putative sites is likely to influence protein function. This will enable rational approaches to allosteric control of protein function.
Second, new classes of non-equilibrium sampling algorithms will be developed to improve by 2-3 orders of magnitude the speed of computation of protein/ligand structural ensembles by molecular simulations. This will enable routine consideration of protein flexibility in ligand optimisation problems.
Third, I will address with the above methods a frontier problem in molecular recognition: the rational design of protein isoform-specific ligands. To achieve this goal, I will integrate computation with experiments and focus efforts on the therapeutically relevant cyclophilin protein family. Experimental work will involve the use of purchased or custom-synthesized competitive and allosteric ligands in enzymatic assays, calorimetry and crystal structure analyses.
Overall, this project proposes fundamental advances in our ability to quantify and engineer protein-ligand interactions, therefore expanding opportunities for the development of future small molecule therapeutics."
Summary
"Although protein dynamics plays an essential role in function, it is rarely considered explicitly in current structure-based approaches to drug design. Here I propose the computer-aided design of ligands by modulation of protein dynamics, or equivalently, protein structural ensembles. The detailed understanding of ligand-induced perturbations of protein dynamics that will result from this study is crucial not just to accurately predicting binding affinities and tackling ""undruggable"" targets, but also to understanding protein allostery.
Three major aims will be pursued during this project.
First, I will combine concepts from chemoinformatics and non-equilibrium thermodynamics to detect cryptic ""druggable"" small molecule binding sites in computed structural ensembles. New computational methods will be developed to predict how binding at these putative sites is likely to influence protein function. This will enable rational approaches to allosteric control of protein function.
Second, new classes of non-equilibrium sampling algorithms will be developed to improve by 2-3 orders of magnitude the speed of computation of protein/ligand structural ensembles by molecular simulations. This will enable routine consideration of protein flexibility in ligand optimisation problems.
Third, I will address with the above methods a frontier problem in molecular recognition: the rational design of protein isoform-specific ligands. To achieve this goal, I will integrate computation with experiments and focus efforts on the therapeutically relevant cyclophilin protein family. Experimental work will involve the use of purchased or custom-synthesized competitive and allosteric ligands in enzymatic assays, calorimetry and crystal structure analyses.
Overall, this project proposes fundamental advances in our ability to quantify and engineer protein-ligand interactions, therefore expanding opportunities for the development of future small molecule therapeutics."
Max ERC Funding
1 382 202 €
Duration
Start date: 2013-12-01, End date: 2018-11-30
Project acronym ECOFLAM
Project The Impact of Plant Evolution on Fire Behaviour in Ancient Ecosystems
Researcher (PI) Claire Michelle Belcher
Host Institution (HI) THE UNIVERSITY OF EXETER
Call Details Starting Grant (StG), LS8, ERC-2013-StG
Summary Fire has played a key role in the evolutionary success of our species and has shaped the abundance of life that we see on our planet today. Wildfires have influenced the history of plant life for 410 million years where 5 key plant evolutionary events have occurred that led to variations in fire behaviour. Variations in fire behaviour determine a fire’s severity and its impact on an ecosystem. In order to assess palaeofire severity the heat delivered by a fire and the duration for which it remains at a site must be estimated. Currently we are unable to estimate palaeofire behaviour and are therefore unable to predict the ecological impact of palaeofires. ECOFLAM will change this by combining for the first time state-of-the-art flammability experiments with innovative modelling approaches to reconstruct variations in palaeofire behaviour due to plant innovations. ECOFLAM will establish relationships between plant traits that are measurable in the fossil record, and their flammability. It will construct simple metrics that can be applied to assess the nature of fires occurring in a fossil flora. Then using a frontier approach ECOFLAM will apply mathematical models to create the first ever estimates of palaeofire behaviour. ECOFLAM will: 1) estimate fire behaviour in Earth’s earliest forests, 2) assess the impact of the evolution of gymnosperm conifers on changes in fire regime and fire behaviour 3) test the hypothesis that early angiosperms utilised fire to invade and out compete gymnosperm forests, 4) test the hypothesis that expansion of neotropical forests led to suppression of fire and 5) track the ability of increases in grass fuel to enhance ecosystem flammability enabling expansion of the savanna biome. ECOFLAM will collaborate with an artist to visually express the relationship between fire and plants to bring fire science to the arts and public. Finally via an exciting link with Morgan Stanley, London ECOFLAM will explore the economic impact of wildfires.
Summary
Fire has played a key role in the evolutionary success of our species and has shaped the abundance of life that we see on our planet today. Wildfires have influenced the history of plant life for 410 million years where 5 key plant evolutionary events have occurred that led to variations in fire behaviour. Variations in fire behaviour determine a fire’s severity and its impact on an ecosystem. In order to assess palaeofire severity the heat delivered by a fire and the duration for which it remains at a site must be estimated. Currently we are unable to estimate palaeofire behaviour and are therefore unable to predict the ecological impact of palaeofires. ECOFLAM will change this by combining for the first time state-of-the-art flammability experiments with innovative modelling approaches to reconstruct variations in palaeofire behaviour due to plant innovations. ECOFLAM will establish relationships between plant traits that are measurable in the fossil record, and their flammability. It will construct simple metrics that can be applied to assess the nature of fires occurring in a fossil flora. Then using a frontier approach ECOFLAM will apply mathematical models to create the first ever estimates of palaeofire behaviour. ECOFLAM will: 1) estimate fire behaviour in Earth’s earliest forests, 2) assess the impact of the evolution of gymnosperm conifers on changes in fire regime and fire behaviour 3) test the hypothesis that early angiosperms utilised fire to invade and out compete gymnosperm forests, 4) test the hypothesis that expansion of neotropical forests led to suppression of fire and 5) track the ability of increases in grass fuel to enhance ecosystem flammability enabling expansion of the savanna biome. ECOFLAM will collaborate with an artist to visually express the relationship between fire and plants to bring fire science to the arts and public. Finally via an exciting link with Morgan Stanley, London ECOFLAM will explore the economic impact of wildfires.
Max ERC Funding
1 519 640 €
Duration
Start date: 2013-10-01, End date: 2018-09-30
Project acronym ECSUB
Project Encoded Cellular Synthesis of Unnatural Biopolymers
Researcher (PI) Jason William Karl Chin
Host Institution (HI) MEDICAL RESEARCH COUNCIL
Call Details Starting Grant (StG), LS7, ERC-2007-StG
Summary We are building a parallel and independent (orthogonal) translational machinery for the encoded biosynthesis of unnatural polymers in living cells. The orthogonal translation system has many potential applications beyond those possible with the natural translation system: I propose to use it: 1) To expand the chemical scope of monomers that can be polymerized by the ribosome in living cells, allowing the incorporation of monomers with unnatural backbones into proteins; 2) To increase the efficiency of in vivo unnatural amino acid mutagenesis via amber suppression, so that no truncated protein is produced and multi-site incorporation of unnatural amino acids is possible; 3) To create probes of protein function for use in vivo; 4) To free numerous codons for simultaneous encoding of multiple distinct unnatural monomers, and to experimentally explore alternate genetic codes; 5) To explore the evolution of encoded unnatural polymers toward new cellular functions.
Summary
We are building a parallel and independent (orthogonal) translational machinery for the encoded biosynthesis of unnatural polymers in living cells. The orthogonal translation system has many potential applications beyond those possible with the natural translation system: I propose to use it: 1) To expand the chemical scope of monomers that can be polymerized by the ribosome in living cells, allowing the incorporation of monomers with unnatural backbones into proteins; 2) To increase the efficiency of in vivo unnatural amino acid mutagenesis via amber suppression, so that no truncated protein is produced and multi-site incorporation of unnatural amino acids is possible; 3) To create probes of protein function for use in vivo; 4) To free numerous codons for simultaneous encoding of multiple distinct unnatural monomers, and to experimentally explore alternate genetic codes; 5) To explore the evolution of encoded unnatural polymers toward new cellular functions.
Max ERC Funding
1 782 918 €
Duration
Start date: 2009-01-01, End date: 2014-12-31
Project acronym EMF-FEIM
Project Empirical Macro-Finance and the Financial Economics of Insurance Markets
Researcher (PI) Ralph Koijen
Host Institution (HI) LONDON BUSINESS SCHOOL
Call Details Starting Grant (StG), SH1, ERC-2013-StG
Summary "My project consists of two lines of work. 1.Empirical Macro-Finance: Asset prices are informative about the macro-economic risks that matter to investors and about the welfare costs of economic fluctuations. However, recent empirical evidence suggests that leading asset pricing models cannot explain how risks are priced across maturities in equity markets, which is a key input to measuring the costs of business cycles. An analysis of what leading models miss will vastly improve our understanding of how the real economy and asset prices are related. Also, by expanding our empirical evidence about the term structure of equity to the firm-level, I plan to study how investment decisions relate to asset prices. My goal is to measure the firms' incentives to invest and how this impacts economic growth more broadly.
2.Financial Economics of Insurance Markets: Households in Europe and the US can choose from a wide variety of insurance products that insure health and mortality risks. Choosing between these products is no easy task and the costs from sub-optimal insurance choices are estimated to be large. My plan is to develop a comprehensive life-cycle theory of insurance choice that accounts for family structure, risk factors such as labor income and housing, and different institutional settings across countries. I also plan to study the supply side of insurance markets. The traditional view is that insurance prices are driven by life-cycle demand or informational frictions. However, as is clear from evidence during the financial crisis, insurance companies are in fact financial institutions. If financial constraints bind, it may affect insurance prices and ultimately consumers' welfare. My goal is to understand how financial frictions affect insurance companies. A policy implication of my research may be that the private supply of insurance is an imperfect substitute for public supply as insurance companies face different incentives and constraints than the government."
Summary
"My project consists of two lines of work. 1.Empirical Macro-Finance: Asset prices are informative about the macro-economic risks that matter to investors and about the welfare costs of economic fluctuations. However, recent empirical evidence suggests that leading asset pricing models cannot explain how risks are priced across maturities in equity markets, which is a key input to measuring the costs of business cycles. An analysis of what leading models miss will vastly improve our understanding of how the real economy and asset prices are related. Also, by expanding our empirical evidence about the term structure of equity to the firm-level, I plan to study how investment decisions relate to asset prices. My goal is to measure the firms' incentives to invest and how this impacts economic growth more broadly.
2.Financial Economics of Insurance Markets: Households in Europe and the US can choose from a wide variety of insurance products that insure health and mortality risks. Choosing between these products is no easy task and the costs from sub-optimal insurance choices are estimated to be large. My plan is to develop a comprehensive life-cycle theory of insurance choice that accounts for family structure, risk factors such as labor income and housing, and different institutional settings across countries. I also plan to study the supply side of insurance markets. The traditional view is that insurance prices are driven by life-cycle demand or informational frictions. However, as is clear from evidence during the financial crisis, insurance companies are in fact financial institutions. If financial constraints bind, it may affect insurance prices and ultimately consumers' welfare. My goal is to understand how financial frictions affect insurance companies. A policy implication of my research may be that the private supply of insurance is an imperfect substitute for public supply as insurance companies face different incentives and constraints than the government."
Max ERC Funding
1 077 765 €
Duration
Start date: 2013-10-01, End date: 2018-09-30
Project acronym EMRCC
Project Effective methods in rigid and crystalline cohomology
Researcher (PI) Alan George Beattie Lauder
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Starting Grant (StG), PE1, ERC-2007-StG
Summary The purpose of the project is to develop methods for computing with the rigid and crystalline cohomology of varieties over finite fields. The project will focus on two main problems. First, the fast computation of the Galois action. Second, the effective computation of the cycle class map, and the inverse problem of explicitly recovering algebraic cycles from Galois-invariant cohomology classes (c.f. the Tate conjecture). Research on the first problem would be a natural extension of on-going work of the Prinicipal Investigator and others. By contrast the second problem is entirely new, at least in the context of computational number theory. The overall goal of the project is to provide methods and software which will extend the range of application of computational number theory within the mathematical sciences.
Summary
The purpose of the project is to develop methods for computing with the rigid and crystalline cohomology of varieties over finite fields. The project will focus on two main problems. First, the fast computation of the Galois action. Second, the effective computation of the cycle class map, and the inverse problem of explicitly recovering algebraic cycles from Galois-invariant cohomology classes (c.f. the Tate conjecture). Research on the first problem would be a natural extension of on-going work of the Prinicipal Investigator and others. By contrast the second problem is entirely new, at least in the context of computational number theory. The overall goal of the project is to provide methods and software which will extend the range of application of computational number theory within the mathematical sciences.
Max ERC Funding
750 000 €
Duration
Start date: 2008-10-01, End date: 2013-09-30
Project acronym ERIKLINDAHLERC2007
Project Multiscale and Distributed Computing Algorithms for Biomolecular Simulation and Efficient Free Energy Calculations
Researcher (PI) Erik Lindahl
Host Institution (HI) KUNGLIGA TEKNISKA HOEGSKOLAN
Call Details Starting Grant (StG), PE4, ERC-2007-StG
Summary The long-term goal of our research is to advance the state-of-the-art in molecular simulation algorithms by 4-5 orders of magnitude, particularly in the context of the GROMACS software we are developing. This is an immense challenge, but with huge potential rewards: it will be an amazing virtual microscope for basic chemistry, polymer and material science research; it could help us understand the molecular basis of diseases such as Creutzfeldt-Jacob, and it would enable rational design rather than random screening for future drugs. To realize it, we will focus on four critical topics: • ALGORITHMS FOR SIMULATION ON GRAPHICS AND OTHER STREAMING PROCESSORS: Graphics cards and the test Intel 80-core chip are not only the most powerful processors available, but this type of streaming architectures will power many supercomputers in 3-5 years, and it is thus critical that we design new “streamable” MD algorithms. • MULTISCALE MODELING: We will develop virtual-site-based methods to bridge atomic and mesoscopic dynamics, QM/MM, and mixed explicit/implicit solvent models with water layers around macromolecules. • MULTI-LEVEL PARALLEL & DISTRIBUTED SIMULATION: Distributed computing provides virtually infinite computer power, but has been limited to small systems. We will address this by combining SMP parallelization and Markov State Models that partition phase space into transition/local dynamics to enable distributed simulation of arbitrary systems. • EFFICIENT FREE ENERGY CALCULATIONS: We will design algorithms for multi-conformational parallel sampling, implement Bennett Acceptance Ratios in Gromacs, correction terms for PME lattice sums, and combine standard force fields with polarization/multipoles, e.g. Amoeba. We have a very strong track record of converting methodological advances into applications, and the results will have impact on a wide range of fields from biomolecules and polymer science through material simulations and nanotechnology.
Summary
The long-term goal of our research is to advance the state-of-the-art in molecular simulation algorithms by 4-5 orders of magnitude, particularly in the context of the GROMACS software we are developing. This is an immense challenge, but with huge potential rewards: it will be an amazing virtual microscope for basic chemistry, polymer and material science research; it could help us understand the molecular basis of diseases such as Creutzfeldt-Jacob, and it would enable rational design rather than random screening for future drugs. To realize it, we will focus on four critical topics: • ALGORITHMS FOR SIMULATION ON GRAPHICS AND OTHER STREAMING PROCESSORS: Graphics cards and the test Intel 80-core chip are not only the most powerful processors available, but this type of streaming architectures will power many supercomputers in 3-5 years, and it is thus critical that we design new “streamable” MD algorithms. • MULTISCALE MODELING: We will develop virtual-site-based methods to bridge atomic and mesoscopic dynamics, QM/MM, and mixed explicit/implicit solvent models with water layers around macromolecules. • MULTI-LEVEL PARALLEL & DISTRIBUTED SIMULATION: Distributed computing provides virtually infinite computer power, but has been limited to small systems. We will address this by combining SMP parallelization and Markov State Models that partition phase space into transition/local dynamics to enable distributed simulation of arbitrary systems. • EFFICIENT FREE ENERGY CALCULATIONS: We will design algorithms for multi-conformational parallel sampling, implement Bennett Acceptance Ratios in Gromacs, correction terms for PME lattice sums, and combine standard force fields with polarization/multipoles, e.g. Amoeba. We have a very strong track record of converting methodological advances into applications, and the results will have impact on a wide range of fields from biomolecules and polymer science through material simulations and nanotechnology.
Max ERC Funding
992 413 €
Duration
Start date: 2008-09-01, End date: 2013-08-31
Project acronym ESCQUMA
Project Exploring Strongly Correlated Quantum Matter
with Cold Excited Atoms
Researcher (PI) Igor Walter Lesanovsky
Host Institution (HI) THE UNIVERSITY OF NOTTINGHAM
Call Details Starting Grant (StG), PE3, ERC-2013-StG
Summary The understanding of quantum matter in and out of equilibrium is among the biggest challenges of modern physics. Despite decades of research fundamental questions, such as the precise
workings behind rather ubiquitous materials such as high temperature superconductors are still unresolved. At the same time there is a new generation of experiments approaching which realises and probes quantum matter with novel and exotic interactions at an unprecedented level of precision. This has already highlighted new avenues of research but also demands for radically new theoretical approaches which lie outside the scope of just a single traditional physical discipline. Novel and in particular multidisciplinary lines of thinking are required to tackle this immense challenge. Such new research will not solely be delivering invaluable insights into currently unresolved problems but rather form a new basis for the understanding of quantum matter from a multidisciplinary perspective. This will open up new horizons for fundamental research and at the same time will pave the way for future technologies and materials which rely on non-equilibrium phenomena or quantum matter. This research proposal takes on this challenge by setting up a broad theoretical research programme which is multipronged and multidisciplinary and which directly connects to the most recent research efforts in ultra cold atomic physics. Here currently a step change is taking place where new experiments explore strongly correlated quantum physics within gases of excited atoms – so-called Rydberg atoms. Exploiting this unique moment we will develop a framework for the description of the equilibrium and non-equilibrium properties of these complex and very versatile quantum systems. This system-specific research approach has the advantage that theoretical predictions can be verified experimentally and applied in practice almost immediately, leading to research attacking the frontiers of current knowledge.
Summary
The understanding of quantum matter in and out of equilibrium is among the biggest challenges of modern physics. Despite decades of research fundamental questions, such as the precise
workings behind rather ubiquitous materials such as high temperature superconductors are still unresolved. At the same time there is a new generation of experiments approaching which realises and probes quantum matter with novel and exotic interactions at an unprecedented level of precision. This has already highlighted new avenues of research but also demands for radically new theoretical approaches which lie outside the scope of just a single traditional physical discipline. Novel and in particular multidisciplinary lines of thinking are required to tackle this immense challenge. Such new research will not solely be delivering invaluable insights into currently unresolved problems but rather form a new basis for the understanding of quantum matter from a multidisciplinary perspective. This will open up new horizons for fundamental research and at the same time will pave the way for future technologies and materials which rely on non-equilibrium phenomena or quantum matter. This research proposal takes on this challenge by setting up a broad theoretical research programme which is multipronged and multidisciplinary and which directly connects to the most recent research efforts in ultra cold atomic physics. Here currently a step change is taking place where new experiments explore strongly correlated quantum physics within gases of excited atoms – so-called Rydberg atoms. Exploiting this unique moment we will develop a framework for the description of the equilibrium and non-equilibrium properties of these complex and very versatile quantum systems. This system-specific research approach has the advantage that theoretical predictions can be verified experimentally and applied in practice almost immediately, leading to research attacking the frontiers of current knowledge.
Max ERC Funding
1 492 000 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym EUCONRES
Project A European Approach to Conflict Resolution? Institutional Learning and the ESDP
Researcher (PI) Michael Smith
Host Institution (HI) THE UNIVERSITY COURT OF THE UNIVERSITY OF ABERDEEN
Call Details Starting Grant (StG), SH2, ERC-2007-StG
Summary To what extent can international institutions learn? What factors determine whether such institutions develop capacities for self-awareness and endogenous institutional change? This project investigates these questions in the context of the European Union (EU). Specifically, it examines the dramatic expansion in security missions led by the EU since 2003, a capacity that many observers doubted was even possible for the EU. To explain this change in institutional behaviour, the project intends to develop a theory of institutional learning to analyze the EU’s instigation and implementation of 16 security operations in various regions under the auspices of the European Security and Defence Policy (ESDP). In addition, with these missions the EU has shown a growing capacity to innovate in security affairs, using a unique civilian crisis management (CCM) capacity linked to security sector reform and other EU policy tools, including the ESDP, the Common Foreign and Security Policy (CFSP), and the European Neighbourhood Policy (ENP). These changes demand further examination in light of not only the growing ambitions of the EU itself but also in terms of the increasing demands for security assistance placed on a variety of IOs, such as the UN, NATO, and the OSCE. The initial phase of the project will focus on four key ESDP operations as detailed case studies – Macedonia, the Palestinian Authority, the Democratic Republic of the Congo, and Bosnia-Hercegovina – to explain this innovation. Following the investigation of these representative cases, the later stages of the project will examine more recent EU security operations in hopes of developing a general theory of EU institutional learning in the area of foreign/security/defence policy. The project also hopes to generalize beyond this theory to other EU policy domains and, potentially, other IOs at the regional and global levels. In doing so the findings could have major implications for global governance.
Summary
To what extent can international institutions learn? What factors determine whether such institutions develop capacities for self-awareness and endogenous institutional change? This project investigates these questions in the context of the European Union (EU). Specifically, it examines the dramatic expansion in security missions led by the EU since 2003, a capacity that many observers doubted was even possible for the EU. To explain this change in institutional behaviour, the project intends to develop a theory of institutional learning to analyze the EU’s instigation and implementation of 16 security operations in various regions under the auspices of the European Security and Defence Policy (ESDP). In addition, with these missions the EU has shown a growing capacity to innovate in security affairs, using a unique civilian crisis management (CCM) capacity linked to security sector reform and other EU policy tools, including the ESDP, the Common Foreign and Security Policy (CFSP), and the European Neighbourhood Policy (ENP). These changes demand further examination in light of not only the growing ambitions of the EU itself but also in terms of the increasing demands for security assistance placed on a variety of IOs, such as the UN, NATO, and the OSCE. The initial phase of the project will focus on four key ESDP operations as detailed case studies – Macedonia, the Palestinian Authority, the Democratic Republic of the Congo, and Bosnia-Hercegovina – to explain this innovation. Following the investigation of these representative cases, the later stages of the project will examine more recent EU security operations in hopes of developing a general theory of EU institutional learning in the area of foreign/security/defence policy. The project also hopes to generalize beyond this theory to other EU policy domains and, potentially, other IOs at the regional and global levels. In doing so the findings could have major implications for global governance.
Max ERC Funding
1 019 264 €
Duration
Start date: 2008-05-01, End date: 2013-04-30
Project acronym FFP
Project Families and food poverty in three European Countries in an Age of Austerity
Researcher (PI) Rebecca O'connell
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Starting Grant (StG), SH2, ERC-2013-StG
Summary Food poverty in the global North is emerging as an urgent social and moral concern, increasingly recognized as a central issue in the field of health inequalities in industrialized countries. With widening income disparity in Austerity Europe and ‘the end of cheap food’, these effects are being exacerbated. International media report an increase in the number of children arriving at school hungry, a dramatic rise in the number of food banks handing out food parcels to families and parents forced to choose between ‘heating and eating’. However, little is known about how food practices are negotiated in low-income families, children’s and young people’s perspectives of food poverty and how it affects their lives, or how food poverty manifests and is addressed in different places. The proposed interdisciplinary, ambitious and innovative study will answer such questions, breaking new ground by: a) applying a mixed method international comparative case study design to the study of household food poverty b) including the experiences of children and young people using both extensive and intensive data and c) drawing on methodological developments in the sociology of food and consumption to elucidate habitual behaviour. Providing for ‘a contrast of contexts’ in relation to conditions of austerity, the study focuses on Portugal, where poor families with children have been most affected by economic retrenchment, the UK, which is experiencing substantial cuts in benefits to poor families, and Norway which, in comparison with most societies, is highly egalitarian and has not been subject to austerity measures. Building on the Principal Investigator’s (PI’s) current mixed-methods UK research on families, food and paid work, the project will develop the PI’s research skills, publication record and international reputation. Engaging academic and non-academic beneficiaries at various stages of analysis and dissemination the study will achieve societal as well as scientific impact.
Summary
Food poverty in the global North is emerging as an urgent social and moral concern, increasingly recognized as a central issue in the field of health inequalities in industrialized countries. With widening income disparity in Austerity Europe and ‘the end of cheap food’, these effects are being exacerbated. International media report an increase in the number of children arriving at school hungry, a dramatic rise in the number of food banks handing out food parcels to families and parents forced to choose between ‘heating and eating’. However, little is known about how food practices are negotiated in low-income families, children’s and young people’s perspectives of food poverty and how it affects their lives, or how food poverty manifests and is addressed in different places. The proposed interdisciplinary, ambitious and innovative study will answer such questions, breaking new ground by: a) applying a mixed method international comparative case study design to the study of household food poverty b) including the experiences of children and young people using both extensive and intensive data and c) drawing on methodological developments in the sociology of food and consumption to elucidate habitual behaviour. Providing for ‘a contrast of contexts’ in relation to conditions of austerity, the study focuses on Portugal, where poor families with children have been most affected by economic retrenchment, the UK, which is experiencing substantial cuts in benefits to poor families, and Norway which, in comparison with most societies, is highly egalitarian and has not been subject to austerity measures. Building on the Principal Investigator’s (PI’s) current mixed-methods UK research on families, food and paid work, the project will develop the PI’s research skills, publication record and international reputation. Engaging academic and non-academic beneficiaries at various stages of analysis and dissemination the study will achieve societal as well as scientific impact.
Max ERC Funding
1 370 937 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym FINGOVEU
Project Financial Services Governance in the European Union
Researcher (PI) Lucia Quaglia
Host Institution (HI) THE UNIVERSITY OF SUSSEX
Call Details Starting Grant (StG), SH2, ERC-2007-StG
Summary This project examines the governance of financial services in the European Union (EU). This research is both academically interesting and policy relevant. Academic research has not kept pace with new developments in this field, and interdisciplinary research is very much needed, as financial services governance is at the cross road between politics, economics and law. At the practical level, the financial sector is a core part of national economies and one of the most active areas of EU policy making. Moreover, this research will contribute to informing the public discussion in a policy area that is often perceived as 'technical', which tends to limit the public scrutiny of it. For the purposes of this research, the governance of financial services in the EU includes: i) the institutional framework through which policies are made; ii) regulation, which is comprised of market-making and market-framing measures; and iii) supervision, that is: the monitoring and enforcement of regulation as well as the practical cooperation between supervisory authorities. First, the project will map the complex institutional framework underpinning financial services governance in the EU, explaining how such framework interplays with regulatory and supervisory arrangements in international arenas and in selected countries. Second, through competitive hypotheses testing, the project will analyse the EU policy-making processes in the financial sector: the main policy-makers and stakeholders involved; their resources, relationships and influence on the policy process; and the outcome. Besides contributing to the policy-oriented debate on financial services regulation and supervision in the EU, the ultimate theoretical goal of the research is to devise an integrated analytical framework that by combining various theoretical approaches and identifying their scope conditions could account for financial services governance in the EU, advancing theories of EU policy making.
Summary
This project examines the governance of financial services in the European Union (EU). This research is both academically interesting and policy relevant. Academic research has not kept pace with new developments in this field, and interdisciplinary research is very much needed, as financial services governance is at the cross road between politics, economics and law. At the practical level, the financial sector is a core part of national economies and one of the most active areas of EU policy making. Moreover, this research will contribute to informing the public discussion in a policy area that is often perceived as 'technical', which tends to limit the public scrutiny of it. For the purposes of this research, the governance of financial services in the EU includes: i) the institutional framework through which policies are made; ii) regulation, which is comprised of market-making and market-framing measures; and iii) supervision, that is: the monitoring and enforcement of regulation as well as the practical cooperation between supervisory authorities. First, the project will map the complex institutional framework underpinning financial services governance in the EU, explaining how such framework interplays with regulatory and supervisory arrangements in international arenas and in selected countries. Second, through competitive hypotheses testing, the project will analyse the EU policy-making processes in the financial sector: the main policy-makers and stakeholders involved; their resources, relationships and influence on the policy process; and the outcome. Besides contributing to the policy-oriented debate on financial services regulation and supervision in the EU, the ultimate theoretical goal of the research is to devise an integrated analytical framework that by combining various theoretical approaches and identifying their scope conditions could account for financial services governance in the EU, advancing theories of EU policy making.
Max ERC Funding
377 464 €
Duration
Start date: 2008-10-01, End date: 2012-03-31
Project acronym FORESIGHT
Project Do Forecasts Matter? Early Warnings and the Prevention of Armed Conflict
Researcher (PI) Christoph Meyer
Host Institution (HI) KING'S COLLEGE LONDON
Call Details Starting Grant (StG), SH2, ERC-2007-StG
Summary What impact do forecasts have on political action? How are they communicated, perceived and used in order to prevent harmful events in the future? There are few policy areas as dependent on good forecasts as efforts aimed at preventing intra-state violent conflicts. Both practitioners and scholars agree that early, appropriate and sustained action on the part of various international players can help to avoid or at least alleviate many of the harmful consequences. Preventing the outbreak of such conflicts has increasingly become a priority objective of the European Union and its most influential member states. But there is a curious gap in the literature with respect to the exact linkage between early warning and political response: under what conditions do forecasts of impending conflicts lead to political action? The first objective of the project is to better understand the interplay of communication and political perception of early warnings about impending intra-state armed conflict. In a second step, the project will compare the findings about early warnings regarding armed conflict to insights about the impact of forecasts in other policy-areas such as adjusting to impending environmental and economic crises. Thus, the project aims to contribute to improving public policy by analysing the interplay of forecasting, advocacy and preventive decision-making.
Summary
What impact do forecasts have on political action? How are they communicated, perceived and used in order to prevent harmful events in the future? There are few policy areas as dependent on good forecasts as efforts aimed at preventing intra-state violent conflicts. Both practitioners and scholars agree that early, appropriate and sustained action on the part of various international players can help to avoid or at least alleviate many of the harmful consequences. Preventing the outbreak of such conflicts has increasingly become a priority objective of the European Union and its most influential member states. But there is a curious gap in the literature with respect to the exact linkage between early warning and political response: under what conditions do forecasts of impending conflicts lead to political action? The first objective of the project is to better understand the interplay of communication and political perception of early warnings about impending intra-state armed conflict. In a second step, the project will compare the findings about early warnings regarding armed conflict to insights about the impact of forecasts in other policy-areas such as adjusting to impending environmental and economic crises. Thus, the project aims to contribute to improving public policy by analysing the interplay of forecasting, advocacy and preventive decision-making.
Max ERC Funding
754 077 €
Duration
Start date: 2008-09-01, End date: 2011-10-31
Project acronym FRICTIONS
Project Frictions in the Financial System
Researcher (PI) Péter Kondor
Host Institution (HI) LONDON SCHOOL OF ECONOMICS AND POLITICAL SCIENCE
Call Details Starting Grant (StG), SH1, ERC-2013-StG
Summary "The financial crisis, since its start in 2008 has exposed enormous fractures both in the financial architecture and in the structure of the global economy. Although with some notable exceptions, the magnitude of the events caught the finance profession largely by surprise. Clearly, we have to understand better the institutional mechanism channeling savings towards the best uses of capital, and to what extent this mechanism can sometimes fail. The projects in this proposal will push the boundaries of our knowledge in this direction.
I suggest a dual approach to achieve this goal. First, we have to improve our understanding of which frictions are the crucial impediments of the efficient functioning of markets. As this approach focuses on particular markets in isolation, I call this the micro approach. I propose three projects within this approach: trading and information diffusion in OTC markets, the crowdedness in limits-to-arbitrage, and the interaction of political uncertainty and sovereign bond prices.
Second, from the frictions emerging from the micro approach, we have to select the ones which determine the aggregate liquidity fluctuations in the economy. I use this concept in a broad sense; referring to the changing efficiency with which the financial system allocates resources across investment opportunities. As this approach focuses on the functionality of the financial system as a whole, I call this the macro approach. I propose two projects within this approach. The first project focuses on the determinants of the differences in the financial architecture of different economies. It builds a novel framework to study the dynamics of the financial sector of an economy. The second project studies the role of shadow banking in the fluctuation of aggregate liquidity. In particular, this project concentrates on the fluctuation of the efficiency of private liquidity creation as the state of the economy changes."
Summary
"The financial crisis, since its start in 2008 has exposed enormous fractures both in the financial architecture and in the structure of the global economy. Although with some notable exceptions, the magnitude of the events caught the finance profession largely by surprise. Clearly, we have to understand better the institutional mechanism channeling savings towards the best uses of capital, and to what extent this mechanism can sometimes fail. The projects in this proposal will push the boundaries of our knowledge in this direction.
I suggest a dual approach to achieve this goal. First, we have to improve our understanding of which frictions are the crucial impediments of the efficient functioning of markets. As this approach focuses on particular markets in isolation, I call this the micro approach. I propose three projects within this approach: trading and information diffusion in OTC markets, the crowdedness in limits-to-arbitrage, and the interaction of political uncertainty and sovereign bond prices.
Second, from the frictions emerging from the micro approach, we have to select the ones which determine the aggregate liquidity fluctuations in the economy. I use this concept in a broad sense; referring to the changing efficiency with which the financial system allocates resources across investment opportunities. As this approach focuses on the functionality of the financial system as a whole, I call this the macro approach. I propose two projects within this approach. The first project focuses on the determinants of the differences in the financial architecture of different economies. It builds a novel framework to study the dynamics of the financial sector of an economy. The second project studies the role of shadow banking in the fluctuation of aggregate liquidity. In particular, this project concentrates on the fluctuation of the efficiency of private liquidity creation as the state of the economy changes."
Max ERC Funding
1 122 883 €
Duration
Start date: 2013-12-01, End date: 2018-11-30
Project acronym GENOMIC STABILITY
Project Genomic stability -chromosome segregation and repair
Researcher (PI) Camilla Björkegren Sjögren
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Starting Grant (StG), LS1, ERC-2007-StG
Summary The eukaryotic genome combines a highly dynamic nature with stable transmission of genetic information from mother to daughter cells. This is achieved by a plethora of protein networks regulating processes such as chromosome duplication, segregation and repair. The principal aim of our research is to determine the molecular interplay between chromosome segregation and repair. Accurate execution of these two events is crucial for the maintenance of genome stability, which in turn is essential for life. Additionally, erroneous segregation or repair leads to chromosomal aberrations that are linked to tumor formation and human developmental syndromes. Thus, our investigations are not only crucial in a basic research perspective, but important also for the understanding of the causes of human disease. The research is based on the budding yeast model system, and combines genome-wide analysis of protein-chromosome interactions with cell-based experimental systems. Our investigations have until now revealed that chromosome segregation and repair are directly linked through two evolutionary conserved SMC (Structural Maintenance of Chromosomes) protein complexes, Cohesin and the Smc5/6 complex. The project now further explores the molecular details of this connection, bringing light into this unexplored area of research, and deciphering the cellular defense against genomic alterations connected to cancer and developmental diseases.
Summary
The eukaryotic genome combines a highly dynamic nature with stable transmission of genetic information from mother to daughter cells. This is achieved by a plethora of protein networks regulating processes such as chromosome duplication, segregation and repair. The principal aim of our research is to determine the molecular interplay between chromosome segregation and repair. Accurate execution of these two events is crucial for the maintenance of genome stability, which in turn is essential for life. Additionally, erroneous segregation or repair leads to chromosomal aberrations that are linked to tumor formation and human developmental syndromes. Thus, our investigations are not only crucial in a basic research perspective, but important also for the understanding of the causes of human disease. The research is based on the budding yeast model system, and combines genome-wide analysis of protein-chromosome interactions with cell-based experimental systems. Our investigations have until now revealed that chromosome segregation and repair are directly linked through two evolutionary conserved SMC (Structural Maintenance of Chromosomes) protein complexes, Cohesin and the Smc5/6 complex. The project now further explores the molecular details of this connection, bringing light into this unexplored area of research, and deciphering the cellular defense against genomic alterations connected to cancer and developmental diseases.
Max ERC Funding
900 000 €
Duration
Start date: 2008-09-01, End date: 2013-08-31
Project acronym GEONET
Project Internet Geographies: Changing Connectivities and the Potentials of Sub-Saharan Africa's Knowledge Economy
Researcher (PI) Mark Graham
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Starting Grant (StG), SH2, ERC-2013-StG
Summary Until recently, access to telecommunication technologies was out of reach for all but the most privileged citizens in Sub-Saharan Africa (SSA). However, recent radical changes that have connected hundreds of millions have encouraged politicians, journalists, academics, and citizens to speak of an IT-fuelled economic revolution happening on the continent. Many see potentials to move away from primary industries and towards a focus on quaternary and quinary sectors (the knowledge-based parts of the economy). Yet, it remains that there is surprisingly little research into the emergence of a new knowledge economy in Africa.
As such, it is precisely now that we urgently need groundbreaking frontier research to understand precisely what impacts are observable, who benefits, and how these changes match up to our expectations for change. We should therefore ask if we are seeing a new era of development on the continent fuelled by ICTs, or whether SSA’s engagement with the global knowledge economy continues to be on terms that reinforce dependence, underdevelopment, and economic extraversion.
This research project tackles this broad line of inquiry by focusing on the geographies, causes, and effects of SSA’s emerging knowledge economies at this crucial moment of change. We do so through three key research contexts: economic geographies of knowledge production; outsourcing and bottom-of-the-pyramid labour; and the creative service sector. Using a mixed-methods approach, we will document the unexpected challenges and the unanticipated innovative uses of this changing connectivity, and cut through through the hype by empirically evaluating benefits and impacts of new communication technologies in Africa. This project will thus contribute not only to academic and policy debates surrounding connectivity and Internet access, but will also provide a robust evidence base crucial in shaping future rounds of ICT related development projects in low-income countries.
Summary
Until recently, access to telecommunication technologies was out of reach for all but the most privileged citizens in Sub-Saharan Africa (SSA). However, recent radical changes that have connected hundreds of millions have encouraged politicians, journalists, academics, and citizens to speak of an IT-fuelled economic revolution happening on the continent. Many see potentials to move away from primary industries and towards a focus on quaternary and quinary sectors (the knowledge-based parts of the economy). Yet, it remains that there is surprisingly little research into the emergence of a new knowledge economy in Africa.
As such, it is precisely now that we urgently need groundbreaking frontier research to understand precisely what impacts are observable, who benefits, and how these changes match up to our expectations for change. We should therefore ask if we are seeing a new era of development on the continent fuelled by ICTs, or whether SSA’s engagement with the global knowledge economy continues to be on terms that reinforce dependence, underdevelopment, and economic extraversion.
This research project tackles this broad line of inquiry by focusing on the geographies, causes, and effects of SSA’s emerging knowledge economies at this crucial moment of change. We do so through three key research contexts: economic geographies of knowledge production; outsourcing and bottom-of-the-pyramid labour; and the creative service sector. Using a mixed-methods approach, we will document the unexpected challenges and the unanticipated innovative uses of this changing connectivity, and cut through through the hype by empirically evaluating benefits and impacts of new communication technologies in Africa. This project will thus contribute not only to academic and policy debates surrounding connectivity and Internet access, but will also provide a robust evidence base crucial in shaping future rounds of ICT related development projects in low-income countries.
Max ERC Funding
1 499 110 €
Duration
Start date: 2014-07-01, End date: 2019-06-30
Project acronym GeopolyConc
Project Durability of geopolymers as 21st century concretes
Researcher (PI) John Lloyd Provis
Host Institution (HI) THE UNIVERSITY OF SHEFFIELD
Call Details Starting Grant (StG), PE8, ERC-2013-StG
Summary GeopolyConc will provide the necessary scientific basis for the prediction of the long-term durability performance of alkali-activated ‘geopolymer’ concretes. These materials can be synthesised from industrial by-products and widely-available natural resources, and provide the opportunity for a highly significant reduction in the environmental footprint of the global construction materials industry, as it expands to meet the infrastructure needs of 21st century society. Experimental and modelling approaches will be coupled to provide major advances in the state of the art in the science and engineering of geopolymer concretes. The key scientific focus areas will be: (a) the development of the first ever rigorous mathematical description of the factors influencing the transport properties of alkali-activated concretes, and (b) ground-breaking work in understanding and controlling the factors which lead to the onset of corrosion of steel reinforcing embedded in alkali-activated concretes. This project will generate confidence in geopolymer concrete durability, which is essential to the application of these materials in reducing EU and global CO2 emissions. The GeopolyConc project will also be integrated with leading multinational collaborative test programmes coordinated through a RILEM Technical Committee (TC DTA) which is chaired by the PI, providing a route to direct international utilisation of the project outcomes.
Summary
GeopolyConc will provide the necessary scientific basis for the prediction of the long-term durability performance of alkali-activated ‘geopolymer’ concretes. These materials can be synthesised from industrial by-products and widely-available natural resources, and provide the opportunity for a highly significant reduction in the environmental footprint of the global construction materials industry, as it expands to meet the infrastructure needs of 21st century society. Experimental and modelling approaches will be coupled to provide major advances in the state of the art in the science and engineering of geopolymer concretes. The key scientific focus areas will be: (a) the development of the first ever rigorous mathematical description of the factors influencing the transport properties of alkali-activated concretes, and (b) ground-breaking work in understanding and controlling the factors which lead to the onset of corrosion of steel reinforcing embedded in alkali-activated concretes. This project will generate confidence in geopolymer concrete durability, which is essential to the application of these materials in reducing EU and global CO2 emissions. The GeopolyConc project will also be integrated with leading multinational collaborative test programmes coordinated through a RILEM Technical Committee (TC DTA) which is chaired by the PI, providing a route to direct international utilisation of the project outcomes.
Max ERC Funding
1 495 458 €
Duration
Start date: 2013-09-01, End date: 2018-08-31
Project acronym GLOBALVISION
Project Global Optimization Methods in Computer Vision, Pattern Recognition and Medical Imaging
Researcher (PI) Fredrik Kahl
Host Institution (HI) LUNDS UNIVERSITET
Call Details Starting Grant (StG), PE5, ERC-2007-StG
Summary Computer vision concerns itself with understanding the real world through the analysis of images. Typical problems are object recognition, medical image segmentation, geometric reconstruction problems and navigation of autonomous vehicles. Such problems often lead to complicated optimization problems with a mixture of discrete and continuous variables, or even infinite dimensional variables in terms of curves and surfaces. Today, state-of-the-art in solving these problems generally relies on heuristic methods that generate only local optima of various qualities. During the last few years, work by the applicant, co-workers, and others has opened new possibilities. This research project builds on this. We will in this project focus on developing new global optimization methods for computing high-quality solutions for a broad class of problems. A guiding principle will be to relax the original, complicated problem to an approximate, simpler one to which globally optimal solutions can more easily be computed. Technically, this relaxed problem often is convex. A crucial point in this approach is to estimate the quality of the exact solution of the approximate problem compared to the (unknown) global optimum of the original problem. Preliminary results have been well received by the research community and we now wish to extend this work to more difficult and more general problem settings, resulting in thorough re-examination of algorithms used widely in different and trans-disciplinary fields. This project is to be considered as a basic research project with relevance to industry. The expected outcome is new knowledge spread to a wide community through scientific papers published at international journals and conferences as well as publicly available software.
Summary
Computer vision concerns itself with understanding the real world through the analysis of images. Typical problems are object recognition, medical image segmentation, geometric reconstruction problems and navigation of autonomous vehicles. Such problems often lead to complicated optimization problems with a mixture of discrete and continuous variables, or even infinite dimensional variables in terms of curves and surfaces. Today, state-of-the-art in solving these problems generally relies on heuristic methods that generate only local optima of various qualities. During the last few years, work by the applicant, co-workers, and others has opened new possibilities. This research project builds on this. We will in this project focus on developing new global optimization methods for computing high-quality solutions for a broad class of problems. A guiding principle will be to relax the original, complicated problem to an approximate, simpler one to which globally optimal solutions can more easily be computed. Technically, this relaxed problem often is convex. A crucial point in this approach is to estimate the quality of the exact solution of the approximate problem compared to the (unknown) global optimum of the original problem. Preliminary results have been well received by the research community and we now wish to extend this work to more difficult and more general problem settings, resulting in thorough re-examination of algorithms used widely in different and trans-disciplinary fields. This project is to be considered as a basic research project with relevance to industry. The expected outcome is new knowledge spread to a wide community through scientific papers published at international journals and conferences as well as publicly available software.
Max ERC Funding
1 440 000 €
Duration
Start date: 2008-07-01, End date: 2013-06-30
Project acronym GRACE
Project Genetic Record of Atmospheric Carbon dioxidE (GRACE)
Researcher (PI) Rosalind Rickaby
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Starting Grant (StG), PE8, ERC-2007-StG
Summary Two key variables, temperature and atmospheric carbon dioxide (pCO2), define the sensitivity of the Earth’s climate system. The geological record provides our only evidence of the past climate sensitivity of the Earth system, but there is no direct quantitative measure of pCO2 or temperature beyond the 650 kyr extent of the Antarctic ice cores. The reconstruction of past climate, on timescales of millions of years, relies on the analysis of chemical or isotopic proxies in preserved shells or organic matter. Such indirect approaches depend upon empirical calibration in modern species, without understanding the biological mechanisms that underpin the incorporation of the climate signal. The intention of this ERC grant proposal is to establish a research team to investigate the “living geological record” to address this major gap in climate research. I hypothesise that direct climate signals of the past are harboured within, and can ultimately be deciphered from, the genetic make up of extant organisms. Specifically, I propose an innovative approach to the constraint of the evolution of atmospheric pCO2 during the Cenozoic. The approach is based on the statistical signal of positive selection of adaptation within the genetic sequences of marine algal Rubisco, the notoriously inefficient enzyme responsible for photosynthetic carbon fixation, but supplemented by analysis of allied carbon concentrating mechanisms. As a calibration, I will characterise the biochemical properties of Rubisco in terms of specificity for pCO2, isotopic fractionation and kinetics, from a range of marine phytoplankton. The prime motivation is a history of pCO2, but the project will yield additional insight into the feedback between phytoplankton and climate, the carbon isotopic signatures of the geological record and the mechanistic link between genetic encoding and specific
Summary
Two key variables, temperature and atmospheric carbon dioxide (pCO2), define the sensitivity of the Earth’s climate system. The geological record provides our only evidence of the past climate sensitivity of the Earth system, but there is no direct quantitative measure of pCO2 or temperature beyond the 650 kyr extent of the Antarctic ice cores. The reconstruction of past climate, on timescales of millions of years, relies on the analysis of chemical or isotopic proxies in preserved shells or organic matter. Such indirect approaches depend upon empirical calibration in modern species, without understanding the biological mechanisms that underpin the incorporation of the climate signal. The intention of this ERC grant proposal is to establish a research team to investigate the “living geological record” to address this major gap in climate research. I hypothesise that direct climate signals of the past are harboured within, and can ultimately be deciphered from, the genetic make up of extant organisms. Specifically, I propose an innovative approach to the constraint of the evolution of atmospheric pCO2 during the Cenozoic. The approach is based on the statistical signal of positive selection of adaptation within the genetic sequences of marine algal Rubisco, the notoriously inefficient enzyme responsible for photosynthetic carbon fixation, but supplemented by analysis of allied carbon concentrating mechanisms. As a calibration, I will characterise the biochemical properties of Rubisco in terms of specificity for pCO2, isotopic fractionation and kinetics, from a range of marine phytoplankton. The prime motivation is a history of pCO2, but the project will yield additional insight into the feedback between phytoplankton and climate, the carbon isotopic signatures of the geological record and the mechanistic link between genetic encoding and specific
Max ERC Funding
1 652 907 €
Duration
Start date: 2008-09-01, End date: 2015-08-31
Project acronym GRAPHENE
Project Physics and Applications of Graphene
Researcher (PI) Konstantin Novoselov
Host Institution (HI) THE UNIVERSITY OF MANCHESTER
Call Details Starting Grant (StG), PE3, ERC-2007-StG
Summary This proposal is based on the PI’s recent work in which a conceptually new class of materials – two dimensional atomic crystals – was discovered. Such crystals can be seen as individual atomic planes “pulled out” of bulk crystals and were previously presumed not to exist in the free state. Despite being only one atom thick and unprotected from the immediate environment, these materials can be extremely stable. The PI’s work has focused on graphene, a freestanding monolayer of graphite where carbon atoms are densely packed in a honeycomb lattice. Due to its high quality and unique electronic spectrum (electrons in graphene mimic relativistic quantum particles called Dirac fermions), graphene has become a gold mine for searching for new phenomena. Graphene also offers numerous applications from smart materials to future electronics. The general objective of the proposal is to exploit the PI’s current lead in the emerging research area, so that no opportunity is missed to find new effects that are expected to be abundant in graphene, and to exploit possible applications. The project will cover three main directions, exploring most exciting features about graphene. First, the PI is planning to concentrate on graphene membranes and investigate properties induced by the unique dimensionality of these one atom thick objects. Second, charge carriers in graphene mimic massless relativistic particles, and this exceptional property allows access to the rich and subtle physics of quantum electrodynamics in a bench-top condensed matter experiment. To this end, interaction and many-body effects will be investigated. Third, graphene is considered to be a realistic candidate for electronics beyond the Si age, and one of the priorities of this project will be studies of graphene-based transistor applications. All these research directions combined should create a solid basis for a new internationally-leading research laboratory led by the PI.
Summary
This proposal is based on the PI’s recent work in which a conceptually new class of materials – two dimensional atomic crystals – was discovered. Such crystals can be seen as individual atomic planes “pulled out” of bulk crystals and were previously presumed not to exist in the free state. Despite being only one atom thick and unprotected from the immediate environment, these materials can be extremely stable. The PI’s work has focused on graphene, a freestanding monolayer of graphite where carbon atoms are densely packed in a honeycomb lattice. Due to its high quality and unique electronic spectrum (electrons in graphene mimic relativistic quantum particles called Dirac fermions), graphene has become a gold mine for searching for new phenomena. Graphene also offers numerous applications from smart materials to future electronics. The general objective of the proposal is to exploit the PI’s current lead in the emerging research area, so that no opportunity is missed to find new effects that are expected to be abundant in graphene, and to exploit possible applications. The project will cover three main directions, exploring most exciting features about graphene. First, the PI is planning to concentrate on graphene membranes and investigate properties induced by the unique dimensionality of these one atom thick objects. Second, charge carriers in graphene mimic massless relativistic particles, and this exceptional property allows access to the rich and subtle physics of quantum electrodynamics in a bench-top condensed matter experiment. To this end, interaction and many-body effects will be investigated. Third, graphene is considered to be a realistic candidate for electronics beyond the Si age, and one of the priorities of this project will be studies of graphene-based transistor applications. All these research directions combined should create a solid basis for a new internationally-leading research laboratory led by the PI.
Max ERC Funding
1 775 044 €
Duration
Start date: 2008-12-01, End date: 2013-10-31
Project acronym GRASP
Project The evolution of the human hand: grasping trees and tools
Researcher (PI) Tracy Lynne Kivell
Host Institution (HI) UNIVERSITY OF KENT
Call Details Starting Grant (StG), SH6, ERC-2013-StG
Summary The unique manipulative abilities of the human hand have fascinated scientists since the time of Darwin. However, we know little about how these unique abilities evolved because we have lacked, (1) the necessary fossil human (hominin) evidence and (2) the appropriate methods to investigate if, when and how our early ancestors used their hands for locomotion (climbing) and manipulation (tool-use). The GRASP project will use novel morphological, experimental and biomechanical methods to investigate different locomotor and manipulative behaviours in humans and other apes, and will use this knowledge to reconstruct hand use in the most complete early hominin hand fossils, those of Australopithecus sediba. The goal of GRASP is to determine the evolutionary history of the human hand by addressing two fundamental, yet unresolved, questions: (1) Were our fossil hominin ancestors still using their hands for climbing? (2) When and in which fossil hominin species did stone tool-use and tool-making first evolve? These questions will be addressed via three objectives: First, microtomography and a novel, holistic method (MedTool®) will be used to analyse the internal bony structure of human, ape and fossil hominin hand bones. Second, collection of the necessary biomechanical data on (a) the loads experienced by the human hand during tool-use and tool-making, (b) hand use and hand postures used by African apes during locomotion in the wild and, (c) the loads experienced by the bonobo hand during arboreal locomotion. Third, data from the first two objectives will be used to adapt musculoskeletal models of the human and bonobo hand and, through the creation of 3D biomechanical (finite-element) models, simulate natural loading of individual hand bones in humans, bonobos and fossil hominins. With this detailed understanding of hand function, we will determine how the locomotor and manipulative behaviours of Au. sediba and other early hominins shaped the evolution of the human hand.
Summary
The unique manipulative abilities of the human hand have fascinated scientists since the time of Darwin. However, we know little about how these unique abilities evolved because we have lacked, (1) the necessary fossil human (hominin) evidence and (2) the appropriate methods to investigate if, when and how our early ancestors used their hands for locomotion (climbing) and manipulation (tool-use). The GRASP project will use novel morphological, experimental and biomechanical methods to investigate different locomotor and manipulative behaviours in humans and other apes, and will use this knowledge to reconstruct hand use in the most complete early hominin hand fossils, those of Australopithecus sediba. The goal of GRASP is to determine the evolutionary history of the human hand by addressing two fundamental, yet unresolved, questions: (1) Were our fossil hominin ancestors still using their hands for climbing? (2) When and in which fossil hominin species did stone tool-use and tool-making first evolve? These questions will be addressed via three objectives: First, microtomography and a novel, holistic method (MedTool®) will be used to analyse the internal bony structure of human, ape and fossil hominin hand bones. Second, collection of the necessary biomechanical data on (a) the loads experienced by the human hand during tool-use and tool-making, (b) hand use and hand postures used by African apes during locomotion in the wild and, (c) the loads experienced by the bonobo hand during arboreal locomotion. Third, data from the first two objectives will be used to adapt musculoskeletal models of the human and bonobo hand and, through the creation of 3D biomechanical (finite-element) models, simulate natural loading of individual hand bones in humans, bonobos and fossil hominins. With this detailed understanding of hand function, we will determine how the locomotor and manipulative behaviours of Au. sediba and other early hominins shaped the evolution of the human hand.
Max ERC Funding
1 618 253 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym HAPSELA
Project Haploid selection in animals: investigating the importance of genetic and epigenetic effects in sperm
Researcher (PI) Simone Immler Maklakov
Host Institution (HI) UNIVERSITY OF EAST ANGLIA
Call Details Starting Grant (StG), LS8, ERC-2013-StG
Summary An inescapable consequence of sex in eukaryotes is the evolution of a biphasic life cycle with alternating diploid and haploid phases. The occurrence of selection during both phases has far reaching consequences for fundamental evolutionary processes including the rate of adaptation, the extent of inbreeding depression and the load of deleterious mutations, as well as for applied research into assisted fertilization. It has been a long-standing dogma that, unlike in plants, selection at the haploid gametic level in animals is of no great importance. However, empirical evidence for postmeiotic haploid gene expression is increasing and with the recent recognition of the importance of epigenetic effects for evolutionary mechanisms it is paramount to revisit haploid selection in animals. The aim of the proposed project is to reconsider haploid selection in animals and to investigate the relative importance of genetic and epigenetic effects in sperm for the subsequent generation. The project consists of three logically connected parts, which tackle the question from different angles using the zebrafish Danio rerio as the main model system. In Part I, I will disentangle genetic from epigenetic effects and identify epigenetic effects that affect sperm and offspring performance by combining experimental evolution with next-generation sequencing data. In Part II, I will pinpoint genes that are expressed at the postmeiotic haploid stage of spermatogenesis and determine which of these genes may be under haploid selection. In Part III, I will get to the core of the question and perform single-cell genotyping to explore possible links between sperm phenotype and the underlying sperm genotype. By combining aspects from evolutionary biology, mathematical modeling, genomics and developmental biology this project will advance our understanding of how epigenetic and genetic differences among gametes shape phenotypes and mediate evolutionary change in animals.
Summary
An inescapable consequence of sex in eukaryotes is the evolution of a biphasic life cycle with alternating diploid and haploid phases. The occurrence of selection during both phases has far reaching consequences for fundamental evolutionary processes including the rate of adaptation, the extent of inbreeding depression and the load of deleterious mutations, as well as for applied research into assisted fertilization. It has been a long-standing dogma that, unlike in plants, selection at the haploid gametic level in animals is of no great importance. However, empirical evidence for postmeiotic haploid gene expression is increasing and with the recent recognition of the importance of epigenetic effects for evolutionary mechanisms it is paramount to revisit haploid selection in animals. The aim of the proposed project is to reconsider haploid selection in animals and to investigate the relative importance of genetic and epigenetic effects in sperm for the subsequent generation. The project consists of three logically connected parts, which tackle the question from different angles using the zebrafish Danio rerio as the main model system. In Part I, I will disentangle genetic from epigenetic effects and identify epigenetic effects that affect sperm and offspring performance by combining experimental evolution with next-generation sequencing data. In Part II, I will pinpoint genes that are expressed at the postmeiotic haploid stage of spermatogenesis and determine which of these genes may be under haploid selection. In Part III, I will get to the core of the question and perform single-cell genotyping to explore possible links between sperm phenotype and the underlying sperm genotype. By combining aspects from evolutionary biology, mathematical modeling, genomics and developmental biology this project will advance our understanding of how epigenetic and genetic differences among gametes shape phenotypes and mediate evolutionary change in animals.
Max ERC Funding
1 440 248 €
Duration
Start date: 2013-12-01, End date: 2018-11-30
Project acronym HIENA
Project Hierarchical Carbon Nanomaterials
Researcher (PI) Michael Franciscus Lucas De Volder
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Starting Grant (StG), PE8, ERC-2013-StG
Summary "Over the past years, carbon nanomaterial such as graphene and carbon nanotubes (CNTs) have attracted the interest of scientists, because some of their properties are unlike any other engineering material. Individual graphene sheets and CNTs have shown a Youngs Modulus of 1 TPa and a tensile strength of 100 GPa, hereby exceeding steel at only a fraction of its weight. Further, they offer high currents carrying capacities of 10^9 A/cm², and thermal conductivities up to 3500 W/mK, exceeding diamond. Importantly, these off-the-chart properties are only valid for high quality individualized nanotubes or sheets. However, most engineering applications require the assembly of tens to millions of these nanoparticles into one device. Unfortunately, the mechanical and electronic figures of merit of such assembled materials typically drop by at least an order of magnitude in comparison to the constituent nanoparticles.
In this ERC project, we aim at the development of new techniques to create structured assemblies of carbon nanoparticles. Herein we emphasize the importance of controlling hierarchical arrangement at different length scales in order to engineer the properties of the final device. The project will follow a methodical approach, bringing together different fields of expertise ranging from macro- and microscale manufacturing, to nanoscale material synthesis and mesoscale chemical surface modification. For instance, we will pursue combined top-down microfabrication and bottom-up self-assembly, accompanied with surface modification through hydrothermal processing.
This research will impact scientific understanding of how nanotubes and nanosheets interact, and will create new hierarchical assembly techniques for nanomaterials. Further, this ERC project pursues applications with high societal impact, including energy storage and water filtration. Finally, HIENA will tie relations with EU’s rich CNT industry to disseminate its technologic achievements."
Summary
"Over the past years, carbon nanomaterial such as graphene and carbon nanotubes (CNTs) have attracted the interest of scientists, because some of their properties are unlike any other engineering material. Individual graphene sheets and CNTs have shown a Youngs Modulus of 1 TPa and a tensile strength of 100 GPa, hereby exceeding steel at only a fraction of its weight. Further, they offer high currents carrying capacities of 10^9 A/cm², and thermal conductivities up to 3500 W/mK, exceeding diamond. Importantly, these off-the-chart properties are only valid for high quality individualized nanotubes or sheets. However, most engineering applications require the assembly of tens to millions of these nanoparticles into one device. Unfortunately, the mechanical and electronic figures of merit of such assembled materials typically drop by at least an order of magnitude in comparison to the constituent nanoparticles.
In this ERC project, we aim at the development of new techniques to create structured assemblies of carbon nanoparticles. Herein we emphasize the importance of controlling hierarchical arrangement at different length scales in order to engineer the properties of the final device. The project will follow a methodical approach, bringing together different fields of expertise ranging from macro- and microscale manufacturing, to nanoscale material synthesis and mesoscale chemical surface modification. For instance, we will pursue combined top-down microfabrication and bottom-up self-assembly, accompanied with surface modification through hydrothermal processing.
This research will impact scientific understanding of how nanotubes and nanosheets interact, and will create new hierarchical assembly techniques for nanomaterials. Further, this ERC project pursues applications with high societal impact, including energy storage and water filtration. Finally, HIENA will tie relations with EU’s rich CNT industry to disseminate its technologic achievements."
Max ERC Funding
1 496 379 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym HISKNOWL
Project Using Historical Quasi-Experiments to Understand the Knowledge Economy
Researcher (PI) Fabian Waldinger
Host Institution (HI) LONDON SCHOOL OF ECONOMICS AND POLITICAL SCIENCE
Call Details Starting Grant (StG), SH1, ERC-2013-StG
Summary This proposal covers three research strands at the intersection of innovation economics, economic history, and labour economics.
In project A I will investigate how the number of entrepreneurs at the city level affects city growth. As the number of entrepreneurs in a city is likely to be endogenous I identify the causal effect of entrepreneurs using the exodus of Jewish entrepreneurs from German cities during the Nazi era. As different German cities were affected to varying extents by the exodus of Jewish entrepreneurs I can investigate how entrepreneurs affect local GDP and employment in the long-run. Furthermore, I will analyse which types of entrepreneurs matter (e.g. bankers versus manufacturers) because different cities lost Jewish entrepreneurs in different professions.
In project B we will analyse how increases in the availability of secondary schools in Germany affect the number of talented people (such as scientists, parliamentarians or entrepreneurs) who originate from certain cities. To analyse the causal effect of secondary school availability we study large expansions in the number of schools in Germany that lowered the cost of attending an academic-track school for children in some locations, in particular for students in rural areas. Furthermore, we will investigate how the school curriculum and how single-sex versus mixed-sex education affect the production of talent.
In project C we investigate the role of open science for the accumulation of knowledge. To investigate the causal effect of open science on the productivity of scientists we will investigate the exclusion of scientists from the losing Central Powers (e.g. Germany) from the international scientific community after WWI. As the exclusion affected scientists in different scientific fields and countries very differently we can identify the role of open science for the number of published articles by a certain scientist and how quickly she cites important work by foreign scientists.
Summary
This proposal covers three research strands at the intersection of innovation economics, economic history, and labour economics.
In project A I will investigate how the number of entrepreneurs at the city level affects city growth. As the number of entrepreneurs in a city is likely to be endogenous I identify the causal effect of entrepreneurs using the exodus of Jewish entrepreneurs from German cities during the Nazi era. As different German cities were affected to varying extents by the exodus of Jewish entrepreneurs I can investigate how entrepreneurs affect local GDP and employment in the long-run. Furthermore, I will analyse which types of entrepreneurs matter (e.g. bankers versus manufacturers) because different cities lost Jewish entrepreneurs in different professions.
In project B we will analyse how increases in the availability of secondary schools in Germany affect the number of talented people (such as scientists, parliamentarians or entrepreneurs) who originate from certain cities. To analyse the causal effect of secondary school availability we study large expansions in the number of schools in Germany that lowered the cost of attending an academic-track school for children in some locations, in particular for students in rural areas. Furthermore, we will investigate how the school curriculum and how single-sex versus mixed-sex education affect the production of talent.
In project C we investigate the role of open science for the accumulation of knowledge. To investigate the causal effect of open science on the productivity of scientists we will investigate the exclusion of scientists from the losing Central Powers (e.g. Germany) from the international scientific community after WWI. As the exclusion affected scientists in different scientific fields and countries very differently we can identify the role of open science for the number of published articles by a certain scientist and how quickly she cites important work by foreign scientists.
Max ERC Funding
733 621 €
Duration
Start date: 2013-11-01, End date: 2018-09-30
Project acronym HNAEPISOME
Project Directed evolution of a synthetic episome based on hexitol nucleic acids (HNA)
Researcher (PI) Vitor Bernardo Bernardes Pinheiro
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Starting Grant (StG), LS9, ERC-2013-StG
Summary A long term goal of synthetic biology is the assembly of a cell from its individual components. A genetic element based on synthetic nucleic acids capable of stable propagation, a synthetic episome, is the minimal genetic element required for the systematic development of all cellular components of a synthetic organism based on artificial nucleic acids. Recent progress in DNA polymerase engineering has successfully isolated variants with expanded substrate spectra capable of efficiently synthesising hexitol nucleic acids (HNA) from DNA templates, and capable of synthesising DNA from HNA templates. Together, they demonstrate that HNA can serve as a genetic material. However, the unavoidable DNA intermediate in HNA replication and their limited processivity greatly limit the potential of these polymerases for the development of an HNA episome.
To establish an HNA episome, processive HNA-directed HNA polymerases as well as accessory proteins to support episome maintenance and replication are required. The bacteriophage phi29 requires only four proteins (including polymerase, terminal protein, single-stranded and double-stranded DNA binding proteins) and two DNA elements (origin of replication and high affinity sites for its double-stranded DNA binding protein) to replicate and maintain its linear genome, making it a suitable starting point for the development of an HNA episome.
We propose to develop novel in vitro selection methodologies that will allow the directed evolution of a minimal HNA episome based on the phi29 system – including the isolation of an HNA-dependent HNA polymerase, a modified terminal protein and single-stranded as well as double-stranded HNA binding proteins. In addition to being a landmark result in synthetic biology, such HNA episome can form the basis of safer genetically modified organisms, in which the traits are encoded outside biology in an HNA episome dependent on the continued supply of artificial substrates for its maintenance.
Summary
A long term goal of synthetic biology is the assembly of a cell from its individual components. A genetic element based on synthetic nucleic acids capable of stable propagation, a synthetic episome, is the minimal genetic element required for the systematic development of all cellular components of a synthetic organism based on artificial nucleic acids. Recent progress in DNA polymerase engineering has successfully isolated variants with expanded substrate spectra capable of efficiently synthesising hexitol nucleic acids (HNA) from DNA templates, and capable of synthesising DNA from HNA templates. Together, they demonstrate that HNA can serve as a genetic material. However, the unavoidable DNA intermediate in HNA replication and their limited processivity greatly limit the potential of these polymerases for the development of an HNA episome.
To establish an HNA episome, processive HNA-directed HNA polymerases as well as accessory proteins to support episome maintenance and replication are required. The bacteriophage phi29 requires only four proteins (including polymerase, terminal protein, single-stranded and double-stranded DNA binding proteins) and two DNA elements (origin of replication and high affinity sites for its double-stranded DNA binding protein) to replicate and maintain its linear genome, making it a suitable starting point for the development of an HNA episome.
We propose to develop novel in vitro selection methodologies that will allow the directed evolution of a minimal HNA episome based on the phi29 system – including the isolation of an HNA-dependent HNA polymerase, a modified terminal protein and single-stranded as well as double-stranded HNA binding proteins. In addition to being a landmark result in synthetic biology, such HNA episome can form the basis of safer genetically modified organisms, in which the traits are encoded outside biology in an HNA episome dependent on the continued supply of artificial substrates for its maintenance.
Max ERC Funding
1 188 594 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym HSCnicheIVM
Project In vivo imaging of haematopoietic stem cells in their natural niches to uncover cellular and molecular dynamics regulating self-renewal
Researcher (PI) Cristina Lo Celso
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Call Details Starting Grant (StG), LS3, ERC-2013-StG
Summary Haematopoietic stem cells (HSC) reside in the bone marrow, from where they maintain immune cells, erythrocytes and platelets. To function correctly, they depend on their localisation within highly specialised niches, where cell-cell and -matrix interactions as well as medium- and long-range molecular signals are integrated to instruct them to either remain quiescent, or to generate progeny that will maintain both the stem cell pool and the differentiated lineages. Studies based on HSC transplantation assays have identified several signalling pathways and bone marrow cell types as regulators of HSC function; however the full picture of the cellular and molecular components of the HSC niche remains elusive because of lack of direct observation over time. HSC subpopulations have been identified based on their proliferative behaviour and it is likely that either migration between different microenvironments or transient modifications of the niche structure mediate changes in HSC fate in response to perturbations such as infection or leukaemia development.
I pioneered the combination of confocal and two-photon microscopy to visualise single HSC and their progeny within the bone marrow of live mice and here I propose to combine advanced microscopy techniques with multi-colour genetic lineage marking and highly sensitive expression profiling to track HSC and their clonal progeny in vivo in real time and to study the cellular and molecular composition of their niches during steady state and when responding to infection and leukaemia development. This work will uncover whether functionally distinct HSC subpopulations reside in anatomically distinct niches or rather all HSC niches are in principle equivalent, but change over time to mediate changes in HSC fate balance. The results obtained will provide a comprehensive picture of HSC niche dynamics, which will be critical for the development of regenerative medicine approaches based on in vivo or ex vivo expansion of HSC.
Summary
Haematopoietic stem cells (HSC) reside in the bone marrow, from where they maintain immune cells, erythrocytes and platelets. To function correctly, they depend on their localisation within highly specialised niches, where cell-cell and -matrix interactions as well as medium- and long-range molecular signals are integrated to instruct them to either remain quiescent, or to generate progeny that will maintain both the stem cell pool and the differentiated lineages. Studies based on HSC transplantation assays have identified several signalling pathways and bone marrow cell types as regulators of HSC function; however the full picture of the cellular and molecular components of the HSC niche remains elusive because of lack of direct observation over time. HSC subpopulations have been identified based on their proliferative behaviour and it is likely that either migration between different microenvironments or transient modifications of the niche structure mediate changes in HSC fate in response to perturbations such as infection or leukaemia development.
I pioneered the combination of confocal and two-photon microscopy to visualise single HSC and their progeny within the bone marrow of live mice and here I propose to combine advanced microscopy techniques with multi-colour genetic lineage marking and highly sensitive expression profiling to track HSC and their clonal progeny in vivo in real time and to study the cellular and molecular composition of their niches during steady state and when responding to infection and leukaemia development. This work will uncover whether functionally distinct HSC subpopulations reside in anatomically distinct niches or rather all HSC niches are in principle equivalent, but change over time to mediate changes in HSC fate balance. The results obtained will provide a comprehensive picture of HSC niche dynamics, which will be critical for the development of regenerative medicine approaches based on in vivo or ex vivo expansion of HSC.
Max ERC Funding
1 699 724 €
Duration
Start date: 2013-12-01, End date: 2018-11-30
Project acronym HUMAN LIFESPAN
Project Mothers, grandmothers and the evolution of prolonged lifespan in humans
Researcher (PI) Virpi Lummaa
Host Institution (HI) THE UNIVERSITY OF SHEFFIELD
Call Details Starting Grant (StG), LS5, ERC-2007-StG
Summary I propose a novel evolutionary approach for studying ecological and demographic factors that affect senescence and lifespan in humans. Women are unique among animals due to menopause and a prolonged lifespan after last birth. Evolutionarily, the quest of everyone is to maximise grandchildren numbers. Hence, human women life-history is enigmatic. One possibility is that older women increase their fitness by directing resources to already produced offspring rather than having more. Thus, although women gain most grandchildren from own reproduction, they also gain more by helping offspring. This has fascinating implications. All animals must split their energy between reproduction vs. self-maintenance. Most continue to reproduce until death and produce maximum grandchildren by optimising investment between current vs. future reproduction. Human women must also optimise investment between mothering and grandmothering. How this is done and affected by ecological, social and demographic factors is unknown, but is essential to understanding the ecological and genetic basis of reproduction, senescence and lifespan. My project has 5 aims: 1. How does reproductive effort affect reproductive and post-reproductive senescence? 2. What proportion of grandchildren is gained post-menopause and how is this modified? 3. Is there heritable variation in life-history traits and their senescence, and how do genetic correlations affect evolution? 4. How do patterns of fitness acquisition account for menopause, prolonged post-reproductive lifespan and age of death in humans? 5. How does fitness maximization differ between men and women and affect their lifespans? The questions will be answered using unique data on three generations of individuals that lived before healthcare and modern contraceptives in Finland. The results will have important implications for predicting demographic structure and will appeal to a wide range of people within and outwith the scientific community.
Summary
I propose a novel evolutionary approach for studying ecological and demographic factors that affect senescence and lifespan in humans. Women are unique among animals due to menopause and a prolonged lifespan after last birth. Evolutionarily, the quest of everyone is to maximise grandchildren numbers. Hence, human women life-history is enigmatic. One possibility is that older women increase their fitness by directing resources to already produced offspring rather than having more. Thus, although women gain most grandchildren from own reproduction, they also gain more by helping offspring. This has fascinating implications. All animals must split their energy between reproduction vs. self-maintenance. Most continue to reproduce until death and produce maximum grandchildren by optimising investment between current vs. future reproduction. Human women must also optimise investment between mothering and grandmothering. How this is done and affected by ecological, social and demographic factors is unknown, but is essential to understanding the ecological and genetic basis of reproduction, senescence and lifespan. My project has 5 aims: 1. How does reproductive effort affect reproductive and post-reproductive senescence? 2. What proportion of grandchildren is gained post-menopause and how is this modified? 3. Is there heritable variation in life-history traits and their senescence, and how do genetic correlations affect evolution? 4. How do patterns of fitness acquisition account for menopause, prolonged post-reproductive lifespan and age of death in humans? 5. How does fitness maximization differ between men and women and affect their lifespans? The questions will be answered using unique data on three generations of individuals that lived before healthcare and modern contraceptives in Finland. The results will have important implications for predicting demographic structure and will appeal to a wide range of people within and outwith the scientific community.
Max ERC Funding
1 143 824 €
Duration
Start date: 2008-07-01, End date: 2014-06-30
Project acronym HUMANIS
Project Human Motion Analysis from Image Sequences
Researcher (PI) Lourdes De Agapito
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Starting Grant (StG), PE5, ERC-2007-StG
Summary Recent research has uncovered real potential for humans to interact with computers in natural ways by using their body motion, gestures and facial expressions. This has resulted in a huge surge of research within the Computer Vision community to develop algorithms able to understand, model and interpret human motion using visual information. Commercial motion capture solutions exist that can reconstruct the full motion of a human body or the deformations of a face. However these systems are severely restricted by the need to use markers on the subject and multiple calibrated cameras besides being costly and technically complex. Imagine instead the possibility of pointing a camera at a person for a few seconds and obtaining a fully parameterised detailed 3D model in a completely automated way. This 3D model could subsequently be used for animation tasks, to assist physiotherapists in the rehabilitation of patients with injuries or ultimately to guide a robot in a surgical operation. The aim of this project is to bring this scenario closer to reality by conducting the ground-breaking research needed to crack some of the challenging open problems in visual human motion analysis. So far visual human motion tracking systems have typically modelled the human body as a 3D skeleton ignoring the fact that each of its articulated parts is not strictly rigid but can also deform, since they are surrounded by soft tissue, muscles and clothes. Think of a torso performing small twists, a bicep flexing or a face performing different facial expressions. In this grant I are interested in recovering the full detailed 3D shape of the human body, including a model for the supporting 3D skeleton that captures its underlying articulated structure and a collection of deformable models to describe the non-rigid nature of each of its parts. Crucially, I plan to obtain these models without the use of markers, prior models or exemplars --- purely from image measurements.
Summary
Recent research has uncovered real potential for humans to interact with computers in natural ways by using their body motion, gestures and facial expressions. This has resulted in a huge surge of research within the Computer Vision community to develop algorithms able to understand, model and interpret human motion using visual information. Commercial motion capture solutions exist that can reconstruct the full motion of a human body or the deformations of a face. However these systems are severely restricted by the need to use markers on the subject and multiple calibrated cameras besides being costly and technically complex. Imagine instead the possibility of pointing a camera at a person for a few seconds and obtaining a fully parameterised detailed 3D model in a completely automated way. This 3D model could subsequently be used for animation tasks, to assist physiotherapists in the rehabilitation of patients with injuries or ultimately to guide a robot in a surgical operation. The aim of this project is to bring this scenario closer to reality by conducting the ground-breaking research needed to crack some of the challenging open problems in visual human motion analysis. So far visual human motion tracking systems have typically modelled the human body as a 3D skeleton ignoring the fact that each of its articulated parts is not strictly rigid but can also deform, since they are surrounded by soft tissue, muscles and clothes. Think of a torso performing small twists, a bicep flexing or a face performing different facial expressions. In this grant I are interested in recovering the full detailed 3D shape of the human body, including a model for the supporting 3D skeleton that captures its underlying articulated structure and a collection of deformable models to describe the non-rigid nature of each of its parts. Crucially, I plan to obtain these models without the use of markers, prior models or exemplars --- purely from image measurements.
Max ERC Funding
1 478 208 €
Duration
Start date: 2008-11-01, End date: 2014-10-31
Project acronym HYDROCARB
Project Towards a new understanding of carbon processing in freshwaters: methane emission hot spots and carbon burial
Researcher (PI) Sebastian Sobek
Host Institution (HI) UPPSALA UNIVERSITET
Call Details Starting Grant (StG), PE10, ERC-2013-StG
Summary In spite of their small areal extent, inland waters play a vital role in the carbon cycle of the continents, as they emit significant amounts of the greenhouse gases (GHG) carbon dioxide (CO2) and methane (CH4) to the atmosphere, and simultaneously bury more organic carbon (OC) in their sediments than the entire ocean. Particularly in tropical hydropower reservoirs, GHG emissions can be large, mainly owing to high CH4 emission. Moreover, the number of tropical hydropower reservoirs will continue to increase dramatically, due to an urgent need for economic growth and a vast unused hydropower potential in many tropical countries. However, the current understanding of the magnitude of GHG emission, and of the processes regulating it, is insufficient. Here I propose a research program on tropical reservoirs in Brazil that takes advantage of recent developments in both concepts and methodologies to provide unique evaluations of GHG emission and OC burial in tropical reservoirs. In particular, I will test the following hypotheses: 1) Current estimates of reservoir CH4 emission are at least one order of magnitude too low, since they have completely missed the recently discovered existence of gas bubble emission hot spots; 2) The burial of land-derived OC in reservoir sediments offsets a significant share of the GHG emissions; and 3) The sustained, long-term CH4 emission from reservoirs is to a large degree fuelled by primary production of new OC within the reservoir, and may therefore be reduced by management of nutrient supply. The new understanding and the cross-disciplinary methodological approach will constitute a major advance to aquatic science in general, and have strong impacts on the understanding of other aquatic systems at other latitudes as well. In addition, the results will be merged into an existing reservoir GHG risk assessment tool to improve planning, design, management and judgment of hydropower reservoirs.
Summary
In spite of their small areal extent, inland waters play a vital role in the carbon cycle of the continents, as they emit significant amounts of the greenhouse gases (GHG) carbon dioxide (CO2) and methane (CH4) to the atmosphere, and simultaneously bury more organic carbon (OC) in their sediments than the entire ocean. Particularly in tropical hydropower reservoirs, GHG emissions can be large, mainly owing to high CH4 emission. Moreover, the number of tropical hydropower reservoirs will continue to increase dramatically, due to an urgent need for economic growth and a vast unused hydropower potential in many tropical countries. However, the current understanding of the magnitude of GHG emission, and of the processes regulating it, is insufficient. Here I propose a research program on tropical reservoirs in Brazil that takes advantage of recent developments in both concepts and methodologies to provide unique evaluations of GHG emission and OC burial in tropical reservoirs. In particular, I will test the following hypotheses: 1) Current estimates of reservoir CH4 emission are at least one order of magnitude too low, since they have completely missed the recently discovered existence of gas bubble emission hot spots; 2) The burial of land-derived OC in reservoir sediments offsets a significant share of the GHG emissions; and 3) The sustained, long-term CH4 emission from reservoirs is to a large degree fuelled by primary production of new OC within the reservoir, and may therefore be reduced by management of nutrient supply. The new understanding and the cross-disciplinary methodological approach will constitute a major advance to aquatic science in general, and have strong impacts on the understanding of other aquatic systems at other latitudes as well. In addition, the results will be merged into an existing reservoir GHG risk assessment tool to improve planning, design, management and judgment of hydropower reservoirs.
Max ERC Funding
1 798 227 €
Duration
Start date: 2013-09-01, End date: 2019-08-31
Project acronym IdeaofAnimation
Project The Idea of Animation: Aesthetics, Locality and the Formation of Media Identity
Researcher (PI) Kristian Olav Moen
Host Institution (HI) UNIVERSITY OF BRISTOL
Call Details Starting Grant (StG), SH5, ERC-2013-StG
Summary This project examines how changing notions of animated film emerged during the period of its consolidation, from the introduction of animated films in cinema programmes in the mid-1910s to the surge in interest in animation and the global prominence of Walt Disney studios in the 1930s. The project investigates how a changing cultural and aesthetic identity of animated film was negotiated within films and articulated in the discourse surrounding cinema. As a new medium, animated film was marked by shifting understandings of its identity, with animated films themselves often experimenting with and reflecting on the form. Sometimes situating themselves within contexts of modernity and modernism, animated films negotiated the place of animation as a medium within a wider cultural and social field. Animation was also closely entwined with other media and arts; in addition to live action film, music, comic strips, illustrated books and theatre all played a prominent role in the constitution and development of animated film. Further shaping its identity, the reception and discourse of animation – including marketing, theorizations and discussions in the popular press – contributed to an emerging sense of what animation was, what it could (or should) do, and what its place in a wider context of visual culture entailed. In order to trace these various facets of animated film, the project will focus on three of the most significant national contexts of exhibition and production during the period: the United States, England and France. This will allow for a comparative examination of ideas of animation, linked to national and transnational spheres of production, exhibition and reception. In doing so, the project will develop new approaches to the historiography of animation that enlarge our perspective on this crucial subject in the history of twentieth century visual culture, during an under-researched period in its development.
Summary
This project examines how changing notions of animated film emerged during the period of its consolidation, from the introduction of animated films in cinema programmes in the mid-1910s to the surge in interest in animation and the global prominence of Walt Disney studios in the 1930s. The project investigates how a changing cultural and aesthetic identity of animated film was negotiated within films and articulated in the discourse surrounding cinema. As a new medium, animated film was marked by shifting understandings of its identity, with animated films themselves often experimenting with and reflecting on the form. Sometimes situating themselves within contexts of modernity and modernism, animated films negotiated the place of animation as a medium within a wider cultural and social field. Animation was also closely entwined with other media and arts; in addition to live action film, music, comic strips, illustrated books and theatre all played a prominent role in the constitution and development of animated film. Further shaping its identity, the reception and discourse of animation – including marketing, theorizations and discussions in the popular press – contributed to an emerging sense of what animation was, what it could (or should) do, and what its place in a wider context of visual culture entailed. In order to trace these various facets of animated film, the project will focus on three of the most significant national contexts of exhibition and production during the period: the United States, England and France. This will allow for a comparative examination of ideas of animation, linked to national and transnational spheres of production, exhibition and reception. In doing so, the project will develop new approaches to the historiography of animation that enlarge our perspective on this crucial subject in the history of twentieth century visual culture, during an under-researched period in its development.
Max ERC Funding
560 734 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym IFA DYNAMICS
Project Countries’ external balance sheets, dynamics of international adjustment and capital flows
Researcher (PI) Helene Rey
Host Institution (HI) LONDON BUSINESS SCHOOL
Call Details Starting Grant (StG), SH1, ERC-2007-StG
Summary This project develops new theories and constructs new datasets to understand the determinants of net and gross foreign assets, the trade balance and the exchange rate. It also quantifies their respective roles in the dynamics of countries’ external deficits. In previous work, I constructed a database of US foreign assets and liabilities to analyse the sustainability of US current account deficits. I propose to build on this work along four related lines. First, I will generalize the analysis to other countries, contrasting the external balance sheets of large financially developed economies (US, UK) with those of small open economies (Canada, Australia). I will compare the historical role of the UK as a world banker to the current position of the US in the international monetary system. I will construct disaggregated databases of foreign assets at market value for these countries. Second, I will develop new theories of portfolio investment where international wealth transfers and predictable excess returns play a key role. These elements are rarely incorporated in open economy models but are essential for realism. I will develop and calibrate a new class of portfolio balance models compatible with the macroeconomic stylized facts on capital flows to study how countries’ capacity to accumulate foreign debt depends on changes in portfolio preferences (e.g. erosion of home bias). Third, I will use a disaggregated database of international investment positions of institutional investors to test for portfolio rebalancing at the microeconomic level. This exceptional database should also provide insights on the international propagation of financial crises. I will link the magnitude of price drops of given equities in crisis times to the institutional and geographical characteristics of their holders. Fourth, I will extend the methodology developed to analyze external adjustment to the issue of fiscal adjustment and twin deficits.
Summary
This project develops new theories and constructs new datasets to understand the determinants of net and gross foreign assets, the trade balance and the exchange rate. It also quantifies their respective roles in the dynamics of countries’ external deficits. In previous work, I constructed a database of US foreign assets and liabilities to analyse the sustainability of US current account deficits. I propose to build on this work along four related lines. First, I will generalize the analysis to other countries, contrasting the external balance sheets of large financially developed economies (US, UK) with those of small open economies (Canada, Australia). I will compare the historical role of the UK as a world banker to the current position of the US in the international monetary system. I will construct disaggregated databases of foreign assets at market value for these countries. Second, I will develop new theories of portfolio investment where international wealth transfers and predictable excess returns play a key role. These elements are rarely incorporated in open economy models but are essential for realism. I will develop and calibrate a new class of portfolio balance models compatible with the macroeconomic stylized facts on capital flows to study how countries’ capacity to accumulate foreign debt depends on changes in portfolio preferences (e.g. erosion of home bias). Third, I will use a disaggregated database of international investment positions of institutional investors to test for portfolio rebalancing at the microeconomic level. This exceptional database should also provide insights on the international propagation of financial crises. I will link the magnitude of price drops of given equities in crisis times to the institutional and geographical characteristics of their holders. Fourth, I will extend the methodology developed to analyze external adjustment to the issue of fiscal adjustment and twin deficits.
Max ERC Funding
1 340 000 €
Duration
Start date: 2008-07-01, End date: 2013-06-30
Project acronym IMAGEMS
Project Exploring applications of spatial-map and velocity-map imaging mass spectrometry
Researcher (PI) Claire Vallance
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Starting Grant (StG), PE4, ERC-2007-StG
Summary Our aim is to develop a next-generation mass spectrometer with unique imaging capabilities. For each mass, the new instrument will image the complete velocity or spatial distribution of the ions at their point of formation. The velocity distributions of fragment ions are highly sensitive to the detailed dynamics of the fragmentation process, such that in velocity imaging mode the new instrument will provide a powerful alternative to conventional tandem mass spectrometry approaches for fragmentation studies. In addition to the mechanistic and structural information encoded the images, the set of photofragment velocity distributions constitutes a unique ‘fingerprint’ for the parent molecule that may be used in molecular identification. In spatial imaging mode, there are clear applications in the areas of surface analysis and high throughput sampling, both of which will be explored over the course of the project. The spectrometer will utilise the method of velocity/spatial-map imaging, a technique originally developed for studying the photofragmentation dynamics of small molecules. A standard velocity-map imaging measurement yields the detailed speed and angular distributions for a single fragment. However, by employing advanced detector technology, our instrument will be capable of recording such distributions for all fragments simultaneously, opening the way for the study of much larger molecules with complex fragmentation pathways. A working prototype of the spectrometer will be constructed within the first year of the project, with further developments and improvements taking place over the remaining four years. The instrument will be calibrated using results from previous studies, and its capabilities in both spatial and velocity-map imaging modes will then be explored using a number of carefully chosen chemical systems. These include fundamental dynamics studies, ultraviolet photodissociation of peptides, and imaging of biomolecules and single cells on surfaces.
Summary
Our aim is to develop a next-generation mass spectrometer with unique imaging capabilities. For each mass, the new instrument will image the complete velocity or spatial distribution of the ions at their point of formation. The velocity distributions of fragment ions are highly sensitive to the detailed dynamics of the fragmentation process, such that in velocity imaging mode the new instrument will provide a powerful alternative to conventional tandem mass spectrometry approaches for fragmentation studies. In addition to the mechanistic and structural information encoded the images, the set of photofragment velocity distributions constitutes a unique ‘fingerprint’ for the parent molecule that may be used in molecular identification. In spatial imaging mode, there are clear applications in the areas of surface analysis and high throughput sampling, both of which will be explored over the course of the project. The spectrometer will utilise the method of velocity/spatial-map imaging, a technique originally developed for studying the photofragmentation dynamics of small molecules. A standard velocity-map imaging measurement yields the detailed speed and angular distributions for a single fragment. However, by employing advanced detector technology, our instrument will be capable of recording such distributions for all fragments simultaneously, opening the way for the study of much larger molecules with complex fragmentation pathways. A working prototype of the spectrometer will be constructed within the first year of the project, with further developments and improvements taking place over the remaining four years. The instrument will be calibrated using results from previous studies, and its capabilities in both spatial and velocity-map imaging modes will then be explored using a number of carefully chosen chemical systems. These include fundamental dynamics studies, ultraviolet photodissociation of peptides, and imaging of biomolecules and single cells on surfaces.
Max ERC Funding
1 499 969 €
Duration
Start date: 2008-06-01, End date: 2013-05-31
Project acronym INSTINCTIVE DRIVES
Project Orchestration of instinctive drives
Researcher (PI) Denis Burdakov
Host Institution (HI) MEDICAL RESEARCH COUNCIL
Call Details Starting Grant (StG), LS4, ERC-2007-StG
Summary A major goal of 21st century science is to protect human health from the growing mismatch between ancient behavioural instincts and modern socio-economic reality. This is especially vital for basic instinctive drives such as appetite, which lead to overeating when food is readily available. The resulting obesity is responsible for 100,000s of premature deaths per year in Europe and North America, and this number is rapidly rising. Sleep is another powerful instinct which substantially contributes to premature human death, for example from car accidents caused by tiredness. Thus “self-destructive” behaviours caused by inappropriate activation of feeding and sleep drives take a devastating social and economic toll in developed countries, and there is a huge unmet need for effective therapies in this area. To design these therapies, we need to understand the brain mechanisms of instinctive drives. However, brain circuits regulating appetite and sleep have only been delineated in the past few years, and their principles of operation are poorly understood at present. The broad aim of my newly-established laboratory is to fill this gap in knowledge. To understand neural signals controlling instinctive drives, and their relationship to well-being and disease, the following questions must be answered: 1) how do neurons that control appetite and sleep generate their electrical and chemical signals? ) how do these neurons interact with each other? 3) how are these neurons altered in disorders of energy balance and sleep? Our objective for the next five years is to address these key unknowns by focusing on neurons known to be unequivocally important for normal sleep and appetite, the orexin and MCH neurons of the lateral hypothalamus.
Summary
A major goal of 21st century science is to protect human health from the growing mismatch between ancient behavioural instincts and modern socio-economic reality. This is especially vital for basic instinctive drives such as appetite, which lead to overeating when food is readily available. The resulting obesity is responsible for 100,000s of premature deaths per year in Europe and North America, and this number is rapidly rising. Sleep is another powerful instinct which substantially contributes to premature human death, for example from car accidents caused by tiredness. Thus “self-destructive” behaviours caused by inappropriate activation of feeding and sleep drives take a devastating social and economic toll in developed countries, and there is a huge unmet need for effective therapies in this area. To design these therapies, we need to understand the brain mechanisms of instinctive drives. However, brain circuits regulating appetite and sleep have only been delineated in the past few years, and their principles of operation are poorly understood at present. The broad aim of my newly-established laboratory is to fill this gap in knowledge. To understand neural signals controlling instinctive drives, and their relationship to well-being and disease, the following questions must be answered: 1) how do neurons that control appetite and sleep generate their electrical and chemical signals? ) how do these neurons interact with each other? 3) how are these neurons altered in disorders of energy balance and sleep? Our objective for the next five years is to address these key unknowns by focusing on neurons known to be unequivocally important for normal sleep and appetite, the orexin and MCH neurons of the lateral hypothalamus.
Max ERC Funding
1 299 999 €
Duration
Start date: 2008-10-01, End date: 2013-09-30
Project acronym InterMetrix
Project Econometric Analysis of Interaction Models
Researcher (PI) Aureo Nilo De Paula Neto
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Starting Grant (StG), SH1, ERC-2013-StG
Summary Equilibrium models are one of the pillars of Economics. This proposal focuses on methodological and empirical studies of estimable game theoretic and social interactions models where observed outcomes are assumed to be determined in equilibrium. Ignoring this simultaneity in estimation and inference is likely to mislead conclusions and produce flawed counterfactual analyses.
One pervasive feature in many interaction models is the existence of multiple solutions for various payoff configurations, and this is an aspect that carries over to estimable versions of such systems. Overlooking this possibility or assuming an uninformed equilibrium selection process potentially opens the door to severe misspecifications and erroneous conclusions. Another notable complication in the analysis of interaction models is computability: with a large number of players and sizeable set of outcomes and/or states, the search for an equilibrium solution can be daunting.
The research projects contemplated in this proposal address one or both of these aspects in various different settings. Those projects contain methodological and substantive contributions. The work involves advances in the econometric analysis (identification and estimation) of interaction models and empirical implementation of the devised methodologies to questions of interest. Given the widespread and increasing use of such econometric models, the projects contemplated here will have a fundamental impact.
I divide the projects into three main subtopics:
1) Identification and inference in games with multiple equilibria,
2) Social interactions and network models,
3) Dynamic interaction models.
Summary
Equilibrium models are one of the pillars of Economics. This proposal focuses on methodological and empirical studies of estimable game theoretic and social interactions models where observed outcomes are assumed to be determined in equilibrium. Ignoring this simultaneity in estimation and inference is likely to mislead conclusions and produce flawed counterfactual analyses.
One pervasive feature in many interaction models is the existence of multiple solutions for various payoff configurations, and this is an aspect that carries over to estimable versions of such systems. Overlooking this possibility or assuming an uninformed equilibrium selection process potentially opens the door to severe misspecifications and erroneous conclusions. Another notable complication in the analysis of interaction models is computability: with a large number of players and sizeable set of outcomes and/or states, the search for an equilibrium solution can be daunting.
The research projects contemplated in this proposal address one or both of these aspects in various different settings. Those projects contain methodological and substantive contributions. The work involves advances in the econometric analysis (identification and estimation) of interaction models and empirical implementation of the devised methodologies to questions of interest. Given the widespread and increasing use of such econometric models, the projects contemplated here will have a fundamental impact.
I divide the projects into three main subtopics:
1) Identification and inference in games with multiple equilibria,
2) Social interactions and network models,
3) Dynamic interaction models.
Max ERC Funding
1 028 780 €
Duration
Start date: 2013-10-01, End date: 2018-09-30
Project acronym INTERMIG
Project Migration and integration of GABAergic interneurons into the developing cerebral cortex: a transgenic approach
Researcher (PI) Nicoletta Kessaris (Name On Phd Certificate: Tekki)
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Starting Grant (StG), LS1, ERC-2007-StG
Summary Inhibitory interneurons function as modulators of local circuit excitability. Their properties are of fundamental importance for normal brain function therefore understanding how these cells are generated during development may provide insight into neurodevelopmental disorders such as epilepsy and schizophrenia, in which interneuron defects have been implicated. Inhibitory GABAergic interneurons of the cerebral cortex (pallium) are generated from proliferating subpallial precursors during development and migrate extensively to populate the cortex. The aim of this proposal is to identify genetic pathways and signalling systems that underlie cortical interneuron migration and integration into functional neuronal circuits. Distinct interneuron subtypes are generated from the two most prominent neuroepithelial stem cell pools in the subpallium: the medial ganglionic eminence (MGE) and the lateral/caudal ganglionic eminence (LGE/CGE). We will genetically tag and purify interneurons originating from these precursors in order to examine their transcriptomes and identify factors involved in specification and migration. We will use Cre-lox fate mapping in transgenic mice to label specific sub-populations of neural stem cells and their differentiated progeny in the embryonic telencephalon. This will allow us to determine whether subdomains of the MGE or LGE/CGE neuroepithelium generate interneurons with distinct neurochemical phenotypes and/or characteristic migratory properties. Electrical activity and/or neurotransmitter receptor activation can act in concert with genetic programs to promote precursor proliferation, neuronal differentiation as well as neuronal migration. We will use gain-of-function and loss-of-function approaches to examine the role of neurotransmitters and neuropeptides at early stages of interneuron migration to the cortex.
Summary
Inhibitory interneurons function as modulators of local circuit excitability. Their properties are of fundamental importance for normal brain function therefore understanding how these cells are generated during development may provide insight into neurodevelopmental disorders such as epilepsy and schizophrenia, in which interneuron defects have been implicated. Inhibitory GABAergic interneurons of the cerebral cortex (pallium) are generated from proliferating subpallial precursors during development and migrate extensively to populate the cortex. The aim of this proposal is to identify genetic pathways and signalling systems that underlie cortical interneuron migration and integration into functional neuronal circuits. Distinct interneuron subtypes are generated from the two most prominent neuroepithelial stem cell pools in the subpallium: the medial ganglionic eminence (MGE) and the lateral/caudal ganglionic eminence (LGE/CGE). We will genetically tag and purify interneurons originating from these precursors in order to examine their transcriptomes and identify factors involved in specification and migration. We will use Cre-lox fate mapping in transgenic mice to label specific sub-populations of neural stem cells and their differentiated progeny in the embryonic telencephalon. This will allow us to determine whether subdomains of the MGE or LGE/CGE neuroepithelium generate interneurons with distinct neurochemical phenotypes and/or characteristic migratory properties. Electrical activity and/or neurotransmitter receptor activation can act in concert with genetic programs to promote precursor proliferation, neuronal differentiation as well as neuronal migration. We will use gain-of-function and loss-of-function approaches to examine the role of neurotransmitters and neuropeptides at early stages of interneuron migration to the cortex.
Max ERC Funding
1 250 000 €
Duration
Start date: 2008-07-01, End date: 2014-08-31
Project acronym INTRODUCING SPRITES
Project Real-Time Observation of Biological Reactions Using Femtosecond 2D-IR Spectroscopy – Introducing SPRITES
Researcher (PI) Neil Terence Hunt
Host Institution (HI) UNIVERSITY OF STRATHCLYDE
Call Details Starting Grant (StG), PE4, ERC-2007-StG
Summary A fundamental question facing physical chemistry and biology is to determine the basic mechanisms by which biological molecules react and change structure. Ultrafast two dimensional infrared (2D-IR) spectroscopy has emerged as an exciting new tool for probing the structure and dynamics of bio-systems. This proposal is the first concerted application of transient 2D-IR spectroscopy to answer pressing questions relating to reactions of biological systems. The unique combination of ultrafast time resolution and structural insight makes 2D-IR the perfect platform to observe real-time structure changes during reactions. We will exploit this ability by developing SPRITES – Structure changes in Protein Reactions via Infrared Time Evolution Spectroscopy. We will trigger reactions in peptide and enzyme systems and use 2D-IR as a time-delayed probe of molecular structure to follow them in unprecedented real-time detail. This ambitious project will be split into three stages for reasons of risk management: In stage one, simple photochemical reactions of model compounds of the hydrogenase enzyme active site will be initiated and the structural evolution of the reactants followed using 2D-IR. In stage two, the novel pH-jump SPRITES technique will be developed to study peptide folding reactions. These experiments will lead to a “molecular movie” of a folding peptide in a natural environment, representing a unique scientific development. The final stage of the project will use pH-jump SPRITES to initiate and observe the reaction of a complete hydrogenase enzyme. This ambitious final stage will yield unprecedented insight into the mechanisms of biological reactions. The purpose of the proposal is to assist the PI in consolidating the independence gained through the award of a prestigious EPSRC Fellowship. The proposal seeks funding to create a research team of two postdoctoral research associates and two PhD students. This team will be managed and directed by the PI.
Summary
A fundamental question facing physical chemistry and biology is to determine the basic mechanisms by which biological molecules react and change structure. Ultrafast two dimensional infrared (2D-IR) spectroscopy has emerged as an exciting new tool for probing the structure and dynamics of bio-systems. This proposal is the first concerted application of transient 2D-IR spectroscopy to answer pressing questions relating to reactions of biological systems. The unique combination of ultrafast time resolution and structural insight makes 2D-IR the perfect platform to observe real-time structure changes during reactions. We will exploit this ability by developing SPRITES – Structure changes in Protein Reactions via Infrared Time Evolution Spectroscopy. We will trigger reactions in peptide and enzyme systems and use 2D-IR as a time-delayed probe of molecular structure to follow them in unprecedented real-time detail. This ambitious project will be split into three stages for reasons of risk management: In stage one, simple photochemical reactions of model compounds of the hydrogenase enzyme active site will be initiated and the structural evolution of the reactants followed using 2D-IR. In stage two, the novel pH-jump SPRITES technique will be developed to study peptide folding reactions. These experiments will lead to a “molecular movie” of a folding peptide in a natural environment, representing a unique scientific development. The final stage of the project will use pH-jump SPRITES to initiate and observe the reaction of a complete hydrogenase enzyme. This ambitious final stage will yield unprecedented insight into the mechanisms of biological reactions. The purpose of the proposal is to assist the PI in consolidating the independence gained through the award of a prestigious EPSRC Fellowship. The proposal seeks funding to create a research team of two postdoctoral research associates and two PhD students. This team will be managed and directed by the PI.
Max ERC Funding
999 745 €
Duration
Start date: 2008-08-01, End date: 2012-07-31
Project acronym JAGEUROPE
Project "The Jagiellonians: Dynasty, Identity and Memory in Central Europe"
Researcher (PI) Natalia Magdalena Nowakowska
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Starting Grant (StG), SH6, ERC-2013-StG
Summary "This ERC Starter Grant project will fund an interdisciplinary, transnational and groundbreaking study of the Jagiellonian dynasty (c.1386-1596) and its role, and legacy, in the development of identity in what we now call Central Europe. One of the most spectacularly successful of early modern dynasties, comparable only to the Habsburgs, in 1500 the Jagiellonians ruled a third of continental Europe, an area comprising no fewer than 14 present-day states. Uniquely among European dynasties in this period, the Jagiellonians created a dynastic regional hegemony, a geographical ‘bloc’ of neighbouring monarchies. Our knowledge of the Jagiellonians is, however, limited and highly fragmented along both national and disciplinary lines. The project will provide the first treatment of this leading Renaissance-era dynasty as a supra-national entity; it will offer a major new investigation of Renaissance dynasty itself as a political and cultural institution; explore the part played by the Jagiellonians in the evolution of pre-modern local or 'national' and regional identities, and investigate the ways in which divergent memories of their rule have, from 1596 onwards, shaped modern national identities in Central Europe. The project will transcend scholarly divisions – between disciplines (e.g. art history, anthropology, political history), between period specialisations (late medieval, early modern, modern) and between individual national historiographies (Polish, German, Czech etc.), to offer a metahistory of the meanings attributed to this landmark European dynasty, from the founder Jogaila (d.1434) to Radek Sikorski, Poland’s current foreign minister. The research will be undertaken by a multi-lingual team of 5 post-doctoral researchers, led by the PI, drawing on a range of written and visual sources produced by and about the Jagiellonians over six centuries."
Summary
"This ERC Starter Grant project will fund an interdisciplinary, transnational and groundbreaking study of the Jagiellonian dynasty (c.1386-1596) and its role, and legacy, in the development of identity in what we now call Central Europe. One of the most spectacularly successful of early modern dynasties, comparable only to the Habsburgs, in 1500 the Jagiellonians ruled a third of continental Europe, an area comprising no fewer than 14 present-day states. Uniquely among European dynasties in this period, the Jagiellonians created a dynastic regional hegemony, a geographical ‘bloc’ of neighbouring monarchies. Our knowledge of the Jagiellonians is, however, limited and highly fragmented along both national and disciplinary lines. The project will provide the first treatment of this leading Renaissance-era dynasty as a supra-national entity; it will offer a major new investigation of Renaissance dynasty itself as a political and cultural institution; explore the part played by the Jagiellonians in the evolution of pre-modern local or 'national' and regional identities, and investigate the ways in which divergent memories of their rule have, from 1596 onwards, shaped modern national identities in Central Europe. The project will transcend scholarly divisions – between disciplines (e.g. art history, anthropology, political history), between period specialisations (late medieval, early modern, modern) and between individual national historiographies (Polish, German, Czech etc.), to offer a metahistory of the meanings attributed to this landmark European dynasty, from the founder Jogaila (d.1434) to Radek Sikorski, Poland’s current foreign minister. The research will be undertaken by a multi-lingual team of 5 post-doctoral researchers, led by the PI, drawing on a range of written and visual sources produced by and about the Jagiellonians over six centuries."
Max ERC Funding
1 407 037 €
Duration
Start date: 2013-10-01, End date: 2018-09-30
Project acronym KAONLEPTON
Project Precision Lepton Flavour Conservation Tests in Kaon Decays
Researcher (PI) Evgueni Goudzovski
Host Institution (HI) THE UNIVERSITY OF BIRMINGHAM
Call Details Starting Grant (StG), PE2, ERC-2013-StG
Summary "A unique and innovative test of a cornerstone principle of the Standard Model of particle physics, the Lepton Favour (LF) conservation, is proposed in the framework of the NA62 experiment at CERN. The search for nine decay modes of the charged kaon and the neutral pion forbidden in the Standard Model by LF conservation will be carried out at a record sensitivity of one part in a trillion. Such sensitivity will be achieved due to the uniquely intense kaon beam that will become available to the experiment in 2014, as well as a range of novel particle detection technologies employed. The collection of the LF violating decay candidates will take place in ""parasitic"" mode alongside main NA62 data taking, which guarantees the feasibility, high data quality and cost-effectiveness. The project will bridge a significant research gap that has developed due to the absence of dedicated LF projects in the kaon sector, in sharp contrast with B-meson, lepton and neutrinoless double beta decay experiments. Any observed LF violating process will unambiguously point to physical phenomena beyond the Standard Model description, and will thus represent a major discovery. The Standard Model extensions that will be probed include those involving heavy Majorana neutrinos and R-parity breaking supersymmetry. Entire classes of new physics models will be confirmed, rigorously constrained or eliminated."
Summary
"A unique and innovative test of a cornerstone principle of the Standard Model of particle physics, the Lepton Favour (LF) conservation, is proposed in the framework of the NA62 experiment at CERN. The search for nine decay modes of the charged kaon and the neutral pion forbidden in the Standard Model by LF conservation will be carried out at a record sensitivity of one part in a trillion. Such sensitivity will be achieved due to the uniquely intense kaon beam that will become available to the experiment in 2014, as well as a range of novel particle detection technologies employed. The collection of the LF violating decay candidates will take place in ""parasitic"" mode alongside main NA62 data taking, which guarantees the feasibility, high data quality and cost-effectiveness. The project will bridge a significant research gap that has developed due to the absence of dedicated LF projects in the kaon sector, in sharp contrast with B-meson, lepton and neutrinoless double beta decay experiments. Any observed LF violating process will unambiguously point to physical phenomena beyond the Standard Model description, and will thus represent a major discovery. The Standard Model extensions that will be probed include those involving heavy Majorana neutrinos and R-parity breaking supersymmetry. Entire classes of new physics models will be confirmed, rigorously constrained or eliminated."
Max ERC Funding
1 617 546 €
Duration
Start date: 2014-01-01, End date: 2019-06-30
Project acronym Learning&Achievement
Project Cognitive and Biological Factors of Mathematical Learning and Achievement
Researcher (PI) Roi Cohen Kadosh
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Starting Grant (StG), SH4, ERC-2013-StG
Summary Mathematical competence is essential for an individual’s functioning in society and for societal prosperity and progress in general. Crucially, the specific cognitive and biological factors that determine high, average, or low mathematical achievement are still poorly understood. The current project aims to address this gap by examining the link between mathematical achievement (cognitive factors) and brain indices (biological factors) across the developmental trajectory and for different competency levels. Specifically, the projects objectives are: 1) identify the critical cognitive and biological components, as well as the dynamic developmental sequence, necessary for the normal development of mathematical abilities; 2) unravel the cognitive and biological factors that contribute to and/or restrict neuroplasticity in mathematical learning. This knowledge may be used in the future to improve prevention, identification, and classification of children with impaired numeracy such as developmental dyscalculia; and 3) develop and test well-defined, evidence-based methods for improving mathematical learning. In addition, one of the objectives of the proposed project is to provide experimental knowledge that will have high ecological validity, by examining mathematical learning and achievement while subjects are studying in a classroom setting. I will use an innovative multimethod approach that integrates cognitive and developmental psychology together with neuromodulation, neurophysiology, and neurochemistry, which will provide a comprehensive understanding of the cognitive and brain bases of mathematical learning and cognition. While such knowledge will offer substantive advances for the fields of psychology, education, and neuroscience, it also has broad societal implications, as the high ecological validity provides insights in translational approaches for improving the lives of children and adults with low mathematical abilities.
Summary
Mathematical competence is essential for an individual’s functioning in society and for societal prosperity and progress in general. Crucially, the specific cognitive and biological factors that determine high, average, or low mathematical achievement are still poorly understood. The current project aims to address this gap by examining the link between mathematical achievement (cognitive factors) and brain indices (biological factors) across the developmental trajectory and for different competency levels. Specifically, the projects objectives are: 1) identify the critical cognitive and biological components, as well as the dynamic developmental sequence, necessary for the normal development of mathematical abilities; 2) unravel the cognitive and biological factors that contribute to and/or restrict neuroplasticity in mathematical learning. This knowledge may be used in the future to improve prevention, identification, and classification of children with impaired numeracy such as developmental dyscalculia; and 3) develop and test well-defined, evidence-based methods for improving mathematical learning. In addition, one of the objectives of the proposed project is to provide experimental knowledge that will have high ecological validity, by examining mathematical learning and achievement while subjects are studying in a classroom setting. I will use an innovative multimethod approach that integrates cognitive and developmental psychology together with neuromodulation, neurophysiology, and neurochemistry, which will provide a comprehensive understanding of the cognitive and brain bases of mathematical learning and cognition. While such knowledge will offer substantive advances for the fields of psychology, education, and neuroscience, it also has broad societal implications, as the high ecological validity provides insights in translational approaches for improving the lives of children and adults with low mathematical abilities.
Max ERC Funding
1 999 859 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym LVFM
Project Learning and volatility in financial markets: theory, experiments and empirics
Researcher (PI) Antonio Guarino
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Starting Grant (StG), SH1, ERC-2007-StG
Summary The project aims to study learning and volatility in financial markets. We will develop a theoretical market microstructure model to analyze how informational inefficiencies can arise in financial markets even though traders (who have non speculative reasons to trade) are allowed to buy or sell any quantity of an asset (in a continuous action space). In this theoretical framework, we will also analyze the case in which the asset value can change over time (e.g., because of shocks to the economy). We will study how learning occurs in this economy with changing fundamentals and how learning affects price volatility. This will create a bridge between the theoretical literature on learning and the empirical literature on time varying volatility (e.g., ARCH and GARCH). After developing the theoretical analyses, we will test the predictions in experiments, and proceed to a structural estimation of our models. We will run both field and laboratory experiments. The structural estimation will use transaction data in order to shed light on the process of information aggregation and volatility in different markets (e.g., more or less speculative) and different conditions (tranquil times versus financial crises).
Summary
The project aims to study learning and volatility in financial markets. We will develop a theoretical market microstructure model to analyze how informational inefficiencies can arise in financial markets even though traders (who have non speculative reasons to trade) are allowed to buy or sell any quantity of an asset (in a continuous action space). In this theoretical framework, we will also analyze the case in which the asset value can change over time (e.g., because of shocks to the economy). We will study how learning occurs in this economy with changing fundamentals and how learning affects price volatility. This will create a bridge between the theoretical literature on learning and the empirical literature on time varying volatility (e.g., ARCH and GARCH). After developing the theoretical analyses, we will test the predictions in experiments, and proceed to a structural estimation of our models. We will run both field and laboratory experiments. The structural estimation will use transaction data in order to shed light on the process of information aggregation and volatility in different markets (e.g., more or less speculative) and different conditions (tranquil times versus financial crises).
Max ERC Funding
765 000 €
Duration
Start date: 2008-10-01, End date: 2014-09-30
Project acronym MACRONETS
Project Production Networks in Macroeconomics
Researcher (PI) Vasco Pereira Marques De Carvalho
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Starting Grant (StG), SH1, ERC-2013-StG
Summary "A modern economy is an intricately linked web of specialized production units, each relying on the flow of inputs from their suppliers to produce their own output which, in turn, is routed towards other downstream units. Recent work in economics stresses that the structure of this production network is key in determining whether and how microeconomic shocks can propagate throughout the economy and shape aggregate outcomes.
This project has two main goals. First, it aims to provide novel evidence that we can trace back the origins of business cycles and asset price fluctuations to individual technologies interconnected by input-supply relations. The particular questions it tries to answer are: (1) Can we have more direct, causal, evidence that these micro shocks do matter in practice for the evolution of aggregates? What are examples of these micro shocks in reality, how can we identify them and how do they propagate through input chains? (2) What are the asset pricing implications of this perspective on the micro origins of aggregate fluctuations? What is the relation between changes in the technology portfolio of an economy and the evolution of asset prices?
The second aim of this project is to improve our understanding of the structure and evolution of these production networks by asking the following questions: (3) At the firm level, do more productive suppliers match with more productive customers and, if so, why? What is the typical duration of a supplier-customer match and does this vary across matches? What is the firm-level impact of matching with better suppliers or more productive customers? (4) How do inputs diffuse on a network of interconnected technologies? Do linkages across sectors facilitate input adoption and the diffusion of General Purpose Technologies? Can linkages across sectors help us understand not only which sectors will adopt a given input but also the order in which these sectors adopt it?"
Summary
"A modern economy is an intricately linked web of specialized production units, each relying on the flow of inputs from their suppliers to produce their own output which, in turn, is routed towards other downstream units. Recent work in economics stresses that the structure of this production network is key in determining whether and how microeconomic shocks can propagate throughout the economy and shape aggregate outcomes.
This project has two main goals. First, it aims to provide novel evidence that we can trace back the origins of business cycles and asset price fluctuations to individual technologies interconnected by input-supply relations. The particular questions it tries to answer are: (1) Can we have more direct, causal, evidence that these micro shocks do matter in practice for the evolution of aggregates? What are examples of these micro shocks in reality, how can we identify them and how do they propagate through input chains? (2) What are the asset pricing implications of this perspective on the micro origins of aggregate fluctuations? What is the relation between changes in the technology portfolio of an economy and the evolution of asset prices?
The second aim of this project is to improve our understanding of the structure and evolution of these production networks by asking the following questions: (3) At the firm level, do more productive suppliers match with more productive customers and, if so, why? What is the typical duration of a supplier-customer match and does this vary across matches? What is the firm-level impact of matching with better suppliers or more productive customers? (4) How do inputs diffuse on a network of interconnected technologies? Do linkages across sectors facilitate input adoption and the diffusion of General Purpose Technologies? Can linkages across sectors help us understand not only which sectors will adopt a given input but also the order in which these sectors adopt it?"
Max ERC Funding
940 200 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym MacTherVac
Project Modulation of a novel population of immune suppressive tumoural macrophages and the therapeutic vaccination of cancer
Researcher (PI) James Noble Arnold
Host Institution (HI) KING'S COLLEGE LONDON
Call Details Starting Grant (StG), LS7, ERC-2013-StG
Summary The therapeutic vaccination against breast cancer, and more widely all solid tumours, has largely been ineffective in clinical trials. This failure has been attributed to ‘immune editing’ of the cancerous cells, or to suppression of T cell functions within the tumour. In relation to the later, we have identified a novel population of tumoural macrophages, marked by the expression of fibroblast activation protein-alpha (FAP) which can mediate tumoural immune suppression through the enzyme heme oxygenase-1 (HO-1). Selective inhibition of HO-1 with tin mesoporphyrin (SnMP), a drug which has already been administered to infants for the treatment of neonatal jaundice, permits immunological control of tumour growth in transplantable Lewis lung carcinoma tumours. This proposal seeks to evaluate SnMP as a novel cancer immunotherapy for the treatment of breast cancer. We have demonstrated that HO-1+ cells are recruited into mammary tumours of a relevant spontaneous murine model of breast cancer. A vaccine strategy will be developed targeting telomerase, a vaccine target already in clinical trial for human breast cancer. The effect on mammary tumour growth of a vaccine induced anti-tumour immune response, alongside HO-1 inhibition to alleviate immune suppression, will be assessed. Lung metastases in these mice, and their response to treatment, will also be studied. The HO-1 expressing cells in human breast cancer will be quantitated and characterised at both the protein and transcriptome levels to validate the approach. Novel immuno-therapies directed at modulating HO-1 expression will also be investigated, facilitated by the development of a transgenic HO-1 reporter mouse which will co-express green fluorescent protein and luciferase driven by the promoter and response elements of the HO-1 gene. As cancer vaccines have already been developed, and as we have identified a drug, SnMP, which may circumvent tumoural immune suppression, this proposal is clinically relevant.
Summary
The therapeutic vaccination against breast cancer, and more widely all solid tumours, has largely been ineffective in clinical trials. This failure has been attributed to ‘immune editing’ of the cancerous cells, or to suppression of T cell functions within the tumour. In relation to the later, we have identified a novel population of tumoural macrophages, marked by the expression of fibroblast activation protein-alpha (FAP) which can mediate tumoural immune suppression through the enzyme heme oxygenase-1 (HO-1). Selective inhibition of HO-1 with tin mesoporphyrin (SnMP), a drug which has already been administered to infants for the treatment of neonatal jaundice, permits immunological control of tumour growth in transplantable Lewis lung carcinoma tumours. This proposal seeks to evaluate SnMP as a novel cancer immunotherapy for the treatment of breast cancer. We have demonstrated that HO-1+ cells are recruited into mammary tumours of a relevant spontaneous murine model of breast cancer. A vaccine strategy will be developed targeting telomerase, a vaccine target already in clinical trial for human breast cancer. The effect on mammary tumour growth of a vaccine induced anti-tumour immune response, alongside HO-1 inhibition to alleviate immune suppression, will be assessed. Lung metastases in these mice, and their response to treatment, will also be studied. The HO-1 expressing cells in human breast cancer will be quantitated and characterised at both the protein and transcriptome levels to validate the approach. Novel immuno-therapies directed at modulating HO-1 expression will also be investigated, facilitated by the development of a transgenic HO-1 reporter mouse which will co-express green fluorescent protein and luciferase driven by the promoter and response elements of the HO-1 gene. As cancer vaccines have already been developed, and as we have identified a drug, SnMP, which may circumvent tumoural immune suppression, this proposal is clinically relevant.
Max ERC Funding
1 499 994 €
Duration
Start date: 2013-09-01, End date: 2018-08-31
Project acronym MAHNOB
Project Multimodal Analysis of Human Nonverbal Behaviour in Real-World Settings
Researcher (PI) Maja Pantic
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Call Details Starting Grant (StG), PE5, ERC-2007-StG
Summary Existing tools for human interactive behaviour analysis typically handle only deliberately displayed, exaggerated expressions. As they are usually trained only on series of such exaggerated expressions, they lack models of human expressive behaviour found in real-world settings and cannot handle subtle changes in audiovisual expressions typical for such spontaneous behaviour. The main aim of MAHNOB project is to address this problem and to attempt to build automated tools for machine understanding of human interactive behaviour in naturalistic contexts. MAHNOB technology will represent a set of audiovisual spatiotemporal methods for automatic analysis of human spontaneous (as opposed to posed and exaggerated) patterns of behavioural cues including head pose, facial expression, visual focus of attention, hands and body movements, and vocal outbursts like laughter and yawns. As a proof of concept, MAHNOB technology will be developed for two specific application areas: automatic analysis of mental states like fatigue and confusion in Human-Computer Interaction contexts and non-obtrusive deception detection in standard interview settings. A team of 5 Research Assistants (RAs), led by the PI and having the background in signal processing and machine learning will develop MAHNOB technology. The expected result after 5 years is MAHNOB technology with the following capabilities: - analysis of human behaviour from facial expressions, hand and body movements, gaze, and non-linguistic vocalizations like speech rate and laughter; - interpretation of user behaviour with respect to mental states, social signals, dialogue dynamics, and deceit/veracity; - near real-time, robust, and adaptive processing by means of incremental processing, robust observation models, and learning person-specific behavioural patterns; - provision of a large, annotated, online dataset of audiovisual recordings providing a basis for benchmarks for efforts in machine analysis of human behaviour.
Summary
Existing tools for human interactive behaviour analysis typically handle only deliberately displayed, exaggerated expressions. As they are usually trained only on series of such exaggerated expressions, they lack models of human expressive behaviour found in real-world settings and cannot handle subtle changes in audiovisual expressions typical for such spontaneous behaviour. The main aim of MAHNOB project is to address this problem and to attempt to build automated tools for machine understanding of human interactive behaviour in naturalistic contexts. MAHNOB technology will represent a set of audiovisual spatiotemporal methods for automatic analysis of human spontaneous (as opposed to posed and exaggerated) patterns of behavioural cues including head pose, facial expression, visual focus of attention, hands and body movements, and vocal outbursts like laughter and yawns. As a proof of concept, MAHNOB technology will be developed for two specific application areas: automatic analysis of mental states like fatigue and confusion in Human-Computer Interaction contexts and non-obtrusive deception detection in standard interview settings. A team of 5 Research Assistants (RAs), led by the PI and having the background in signal processing and machine learning will develop MAHNOB technology. The expected result after 5 years is MAHNOB technology with the following capabilities: - analysis of human behaviour from facial expressions, hand and body movements, gaze, and non-linguistic vocalizations like speech rate and laughter; - interpretation of user behaviour with respect to mental states, social signals, dialogue dynamics, and deceit/veracity; - near real-time, robust, and adaptive processing by means of incremental processing, robust observation models, and learning person-specific behavioural patterns; - provision of a large, annotated, online dataset of audiovisual recordings providing a basis for benchmarks for efforts in machine analysis of human behaviour.
Max ERC Funding
1 736 800 €
Duration
Start date: 2008-09-01, End date: 2013-08-31
Project acronym MDEPUGS
Project Measuring Dark Energy Properties Using Galaxy Surveys
Researcher (PI) William James Percival
Host Institution (HI) UNIVERSITY OF PORTSMOUTH HIGHER EDUCATION CORPORATION
Call Details Starting Grant (StG), PE7, ERC-2007-StG
Summary Observations have shown that the expansion of the Universe is accelerating. At present, there is no physically motivated model to explain this, directly demonstrating that current theories of fundamental particles and gravity are either incorrect or incomplete. Understanding this phenomenon is consequently one of the most important outstanding problems in the whole of science. Perhaps the simplest solution is to postulate a new component of energy density with an effective negative pressure that forms 75\% of the present energy density of the Universe. There are many other theoretical ideas for explaining this phenomenon, which are often collectively referred to as ``dark energy''. The research in this proposal is designed to help to understand dark energy by setting constraints on the cosmological expansion. The spatial distribution of matter and its evolution are sensitive probes of the matter/energy content of the Universe. Consequently galaxy surveys, which trace this distribution, provide key avenues for understanding dark energy through a number of different techniques. One technique, which is the focus of the research proposed here, uses ``Baryon Acoustic Oscillations'' to constrain dark energy. Baryon Acoustic Oscillations are patterns of galaxies, initiated by sound waves in the early Universe, that form a fixed scale in the Universe whose true size we know. The apparent scale of these ``standard rulers'', when observed in galaxy surveys, constrains the distance--redshift relation and consequently how dark energy is driving the acceleration of the Universe. In this proposal, I request funding to set up a team to develop the novel techniques required to extract these distance measurements from the next generation of galaxy surveys, and apply them to measure dark energy properties. This will develop European leadership in a key future field of observational cosmology.
Summary
Observations have shown that the expansion of the Universe is accelerating. At present, there is no physically motivated model to explain this, directly demonstrating that current theories of fundamental particles and gravity are either incorrect or incomplete. Understanding this phenomenon is consequently one of the most important outstanding problems in the whole of science. Perhaps the simplest solution is to postulate a new component of energy density with an effective negative pressure that forms 75\% of the present energy density of the Universe. There are many other theoretical ideas for explaining this phenomenon, which are often collectively referred to as ``dark energy''. The research in this proposal is designed to help to understand dark energy by setting constraints on the cosmological expansion. The spatial distribution of matter and its evolution are sensitive probes of the matter/energy content of the Universe. Consequently galaxy surveys, which trace this distribution, provide key avenues for understanding dark energy through a number of different techniques. One technique, which is the focus of the research proposed here, uses ``Baryon Acoustic Oscillations'' to constrain dark energy. Baryon Acoustic Oscillations are patterns of galaxies, initiated by sound waves in the early Universe, that form a fixed scale in the Universe whose true size we know. The apparent scale of these ``standard rulers'', when observed in galaxy surveys, constrains the distance--redshift relation and consequently how dark energy is driving the acceleration of the Universe. In this proposal, I request funding to set up a team to develop the novel techniques required to extract these distance measurements from the next generation of galaxy surveys, and apply them to measure dark energy properties. This will develop European leadership in a key future field of observational cosmology.
Max ERC Funding
880 000 €
Duration
Start date: 2008-10-01, End date: 2014-03-31
Project acronym MechJointMorph
Project The role of mechanical forces induced by prenatal movements in joint morphogenesis
Researcher (PI) Niamh Catherine Nowlan
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Call Details Starting Grant (StG), PE8, ERC-2013-StG
Summary Most joints start off the same during embryonic development, as two opposing cartilage surfaces, and are moulded into the diverse range of shapes seen in the adult in a process known as morphogenesis. While we understand very little of the biological or mechanobiological processes driving joint morphogenesis, there is evidence to suggest that fetal movements play a critical role in joint shape development. Developmental Dysplasia of the Hip (DDH), where the hip is partly or fully dislocated, is much more common when the baby’s movement is restricted or prevented. This proposal will determine how mechanical forces influence joint shape morphogenesis, which is of key relevance to neonatal joint conditions such as DDH, to adult joint health and disease, and to tissue engineering of cartilage. A mouse line in which mutant embryos have no skeletal muscle will be studied, providing the first in depth analysis of mammalian joint shape development for normal and abnormal mechanical environments. The mouse line could provide the first mammalian model system for prenatal onset DDH. ‘Passive’ movements of these mutant embryos will then be induced by massage of the mother, and the effects on the joints measured. If the effects on joint shape of absent spontaneous movement are mitigated by the treatment, this technique could eventually be used as a preventative treatment for DDH. Next, an in vitro approach will be used to quantify how much movement is needed for joint shape development. This research will provide an optimised protocol for applying biophysical stimuli to promote cartilage growth and morphogenesis in culture, providing valuable cues to cartilage tissue engineers. Finally, a computational simulation of joint shape morphogenesis will be created, which will integrate the new understanding gained from the experimental research in order to predict how different joints shapes develop in normal and abnormal mechanical environments.
Summary
Most joints start off the same during embryonic development, as two opposing cartilage surfaces, and are moulded into the diverse range of shapes seen in the adult in a process known as morphogenesis. While we understand very little of the biological or mechanobiological processes driving joint morphogenesis, there is evidence to suggest that fetal movements play a critical role in joint shape development. Developmental Dysplasia of the Hip (DDH), where the hip is partly or fully dislocated, is much more common when the baby’s movement is restricted or prevented. This proposal will determine how mechanical forces influence joint shape morphogenesis, which is of key relevance to neonatal joint conditions such as DDH, to adult joint health and disease, and to tissue engineering of cartilage. A mouse line in which mutant embryos have no skeletal muscle will be studied, providing the first in depth analysis of mammalian joint shape development for normal and abnormal mechanical environments. The mouse line could provide the first mammalian model system for prenatal onset DDH. ‘Passive’ movements of these mutant embryos will then be induced by massage of the mother, and the effects on the joints measured. If the effects on joint shape of absent spontaneous movement are mitigated by the treatment, this technique could eventually be used as a preventative treatment for DDH. Next, an in vitro approach will be used to quantify how much movement is needed for joint shape development. This research will provide an optimised protocol for applying biophysical stimuli to promote cartilage growth and morphogenesis in culture, providing valuable cues to cartilage tissue engineers. Finally, a computational simulation of joint shape morphogenesis will be created, which will integrate the new understanding gained from the experimental research in order to predict how different joints shapes develop in normal and abnormal mechanical environments.
Max ERC Funding
1 499 501 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym MEDIA AND POLICY
Project The impact of mass media on public policy
Researcher (PI) David Strömberg
Host Institution (HI) STOCKHOLMS UNIVERSITET
Call Details Starting Grant (StG), SH1, ERC-2007-StG
Summary This project will study political economics issues, that is, how public policies are influenced by political considerations. The emphasis is on the mass media's role in shaping government policies. A smaller part will also analyze how different political institutions and economic outcomes influence policy and the impact of extreme weather events. The project will mainly be empirical, using statistical methods with a focus on identifying causal effects, rather than correlations. The study of media effects will analyze the political impact of having a press actively covering politics. This is an important issue, largely unanswered because the presence of an active press is endogenous to things like corruption and voter information. We will address this question in the special case of media coverage of US Congressional elections. To identify the effect of news, we will use the fact that the amount of coverage is driven to a large extent by the coincidental match between media markets and congressional districts. We intend to analyze the effect of active press coverage on, (i) voter information, (ii) politicians actions, and (iii) federal funds per capita. The project will also investigate how political institutions and economic outcomes influences the health impacts (such as mortality among old and infants) of weather extremes. Historical weather data at a very detailed geographical level will be combined with socio-economic data in a panel (longitudinal) form. This is joint work with meteorologists who will construct historical weather data at fine grids across the globe. The part dealing with structural political economics aims to develop a framework for investigating the effects of institutions on economic policy. In existing work, there is a disconnect between the theoretical modelling and empirical applications. The aim is to close this gap.
Summary
This project will study political economics issues, that is, how public policies are influenced by political considerations. The emphasis is on the mass media's role in shaping government policies. A smaller part will also analyze how different political institutions and economic outcomes influence policy and the impact of extreme weather events. The project will mainly be empirical, using statistical methods with a focus on identifying causal effects, rather than correlations. The study of media effects will analyze the political impact of having a press actively covering politics. This is an important issue, largely unanswered because the presence of an active press is endogenous to things like corruption and voter information. We will address this question in the special case of media coverage of US Congressional elections. To identify the effect of news, we will use the fact that the amount of coverage is driven to a large extent by the coincidental match between media markets and congressional districts. We intend to analyze the effect of active press coverage on, (i) voter information, (ii) politicians actions, and (iii) federal funds per capita. The project will also investigate how political institutions and economic outcomes influences the health impacts (such as mortality among old and infants) of weather extremes. Historical weather data at a very detailed geographical level will be combined with socio-economic data in a panel (longitudinal) form. This is joint work with meteorologists who will construct historical weather data at fine grids across the globe. The part dealing with structural political economics aims to develop a framework for investigating the effects of institutions on economic policy. In existing work, there is a disconnect between the theoretical modelling and empirical applications. The aim is to close this gap.
Max ERC Funding
799 945 €
Duration
Start date: 2008-09-01, End date: 2014-08-31
Project acronym MemRegPro
Project How Membrane Physical Properties and Cortical Actin Regulate Protein Interactions During T Cell Signalling
Researcher (PI) Dylan Myers Owen
Host Institution (HI) KING'S COLLEGE LONDON
Call Details Starting Grant (StG), LS6, ERC-2013-StG
Summary The overall aim of this project is to identify key biophysical mechanisms that control the spatial arrangement of signalling proteins and membrane lipids in the regulation of T cell activation. During an immune response, T cells are activated in response to antigenic peptides in a process that requires the formation of multi-molecular signalling complexes. It is known that many T cell signalling proteins (such as the kinase Lck and the scaffold protein LAT) are not randomly distributed within the plasma membrane thus giving rise to lateral organization which affects signalling efficiency. However, the biophysical mechanism(s) that control protein distributions and hence the rate of molecular interactions remains poorly understood. Two of the principal mechanisms are compartmentalisation of the membrane by lipid microdomains (the ‘lipid raft’ hypothesis) and by the cortical actin meshwork (the ‘picket-fence’ model). The two key technologies needed to unravel how protein clustering and the biophysical properties of the lipid bilayer regulate specific interactions at the molecular level have now been developed. These are single-molecule, super-resolution localisation microscopy and quantification of membrane biophysical properties using new-generation environmentally sensitive fluorescent probes. Using these methods, the proposed project will generate unique insights into the biophysical mechanisms that govern the formation of the protein clusters and complexes during early T cell signalling events. This knowledge is critical to our understanding of the molecular basis of T cell activation during the immune response and has potential applications in the development of therapeutic treatments for a range of conditions.
Summary
The overall aim of this project is to identify key biophysical mechanisms that control the spatial arrangement of signalling proteins and membrane lipids in the regulation of T cell activation. During an immune response, T cells are activated in response to antigenic peptides in a process that requires the formation of multi-molecular signalling complexes. It is known that many T cell signalling proteins (such as the kinase Lck and the scaffold protein LAT) are not randomly distributed within the plasma membrane thus giving rise to lateral organization which affects signalling efficiency. However, the biophysical mechanism(s) that control protein distributions and hence the rate of molecular interactions remains poorly understood. Two of the principal mechanisms are compartmentalisation of the membrane by lipid microdomains (the ‘lipid raft’ hypothesis) and by the cortical actin meshwork (the ‘picket-fence’ model). The two key technologies needed to unravel how protein clustering and the biophysical properties of the lipid bilayer regulate specific interactions at the molecular level have now been developed. These are single-molecule, super-resolution localisation microscopy and quantification of membrane biophysical properties using new-generation environmentally sensitive fluorescent probes. Using these methods, the proposed project will generate unique insights into the biophysical mechanisms that govern the formation of the protein clusters and complexes during early T cell signalling events. This knowledge is critical to our understanding of the molecular basis of T cell activation during the immune response and has potential applications in the development of therapeutic treatments for a range of conditions.
Max ERC Funding
1 402 513 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym MGATDE
Project Modified Gravity as an Alternative to Dark Energy
Researcher (PI) Kazuya Koyama
Host Institution (HI) UNIVERSITY OF PORTSMOUTH HIGHER EDUCATION CORPORATION
Call Details Starting Grant (StG), PE7, ERC-2007-StG
Summary Modified Gravity as an Alternative to Dark Energy
Summary
Modified Gravity as an Alternative to Dark Energy
Max ERC Funding
500 000 €
Duration
Start date: 2008-10-01, End date: 2013-09-30
Project acronym MicroDE
Project Interpreting the irrecoverable microbiota in digestive ecosystems
Researcher (PI) Phillip Byron Pope
Host Institution (HI) NORGES MILJO-OG BIOVITENSKAPLIGE UNIVERSITET
Call Details Starting Grant (StG), LS9, ERC-2013-StG
Summary Currently available enzyme technology is insufficient to economically degrade plant biomass, and presumably will remain so whilst fundamental questions are inadequately answered, the most evident being: “how do microbes and their enzymes interact with plant cell walls?” Compounding these difficulties is the “cultivability bottleneck”. The microbes that harbor the answers to these questions are largely irrecoverable in isolate form, which restricts access to their genetic and metabolic machinery.
The present project will address these issues by applying a progressive interdisciplinary approach to study and compare natural and engineered digestive ecosystems that are linked together via overlapping phenotypic and functional traits (i.e. biomass degradation). The project aims to generate insight into diverse uncultured microbial lineages and uncover core enzyme systems for biomass degradation that are present in multiple environments. To achieve its objectives the project will employ a combination of predictive genome-reconstruction technologies, as well as metagenome-directed isolation strategies to target dominant and novel saccharolytic species. Furthermore we will develop and take advantage of advanced software for enzyme annotation and phylogenetic binning as it is being developed. Relevant genes identified from reconstructed genomes and/or transcriptome data for isolates will be cloned, over-expressed and their gene products tested using state-of-the-art carbohydrate microarray technologies, prior to being characterized in detail.
The project will complement existing activities at the PI’s university on (1) polysaccharide converting enzymes in a biorefining context, (2) the impact of intestinal fiber deconstruction on satiety and (3) enhanced production of biogas. We expect to unravel novel aspects of the microbial ecology within these systems/processes. Furthermore, it is envisaged that novel isolates and enzymes will enter into live bioenergy projects.
Summary
Currently available enzyme technology is insufficient to economically degrade plant biomass, and presumably will remain so whilst fundamental questions are inadequately answered, the most evident being: “how do microbes and their enzymes interact with plant cell walls?” Compounding these difficulties is the “cultivability bottleneck”. The microbes that harbor the answers to these questions are largely irrecoverable in isolate form, which restricts access to their genetic and metabolic machinery.
The present project will address these issues by applying a progressive interdisciplinary approach to study and compare natural and engineered digestive ecosystems that are linked together via overlapping phenotypic and functional traits (i.e. biomass degradation). The project aims to generate insight into diverse uncultured microbial lineages and uncover core enzyme systems for biomass degradation that are present in multiple environments. To achieve its objectives the project will employ a combination of predictive genome-reconstruction technologies, as well as metagenome-directed isolation strategies to target dominant and novel saccharolytic species. Furthermore we will develop and take advantage of advanced software for enzyme annotation and phylogenetic binning as it is being developed. Relevant genes identified from reconstructed genomes and/or transcriptome data for isolates will be cloned, over-expressed and their gene products tested using state-of-the-art carbohydrate microarray technologies, prior to being characterized in detail.
The project will complement existing activities at the PI’s university on (1) polysaccharide converting enzymes in a biorefining context, (2) the impact of intestinal fiber deconstruction on satiety and (3) enhanced production of biogas. We expect to unravel novel aspects of the microbial ecology within these systems/processes. Furthermore, it is envisaged that novel isolates and enzymes will enter into live bioenergy projects.
Max ERC Funding
1 467 176 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym MIXTURE
Project Synergistic Modelling of Molecular Effects via Chemical and Biological Data Integration
Researcher (PI) Andreas Bender
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Starting Grant (StG), LS7, ERC-2013-StG
Summary "While conventionally effects of a chemical structure on a biological system have been determined for individual compounds, one at a time, it is now becoming apparent that biological effects of compound combination are not additive, but often conditional (antagonistic or synergistic) in nature. This phenomenon is of relevance both in the medicinal context (where drugs can be combined to have a synergistic effect), as well as the area of toxicology (where the simultaneous application of compounds shows a toxicity that is non-additive). However, it is not yet clear how to model, and anticipate, which compound combinations show this type of effect.
Hence, in this work I will derive models of synergistic compound combinations, which will be prospectively validated in experiments. Furthermore, I will describe how to capture the effect of a chemical structure on a biological system on multiple levels, namely by considering structural features of the compound, its bioactivity profile, and pathway annotations and their relationship to the phenotypic effect observed. By integrating the data generated in a biologically meaningful way, this allows us to generate predictive models for the bioactivity of compound combinations. The relevance of this work ranges from the question which drugs can be combined in a synergistic manner and which combinations should rather be avoided to the safety assessment of chemicals. Hence, with this work I will be able to improve upon the current state-of-the-art in bioactivity data integration and modelling approaches, as well as deliver concrete models for the bioactivity assessment of compound combinations."
Summary
"While conventionally effects of a chemical structure on a biological system have been determined for individual compounds, one at a time, it is now becoming apparent that biological effects of compound combination are not additive, but often conditional (antagonistic or synergistic) in nature. This phenomenon is of relevance both in the medicinal context (where drugs can be combined to have a synergistic effect), as well as the area of toxicology (where the simultaneous application of compounds shows a toxicity that is non-additive). However, it is not yet clear how to model, and anticipate, which compound combinations show this type of effect.
Hence, in this work I will derive models of synergistic compound combinations, which will be prospectively validated in experiments. Furthermore, I will describe how to capture the effect of a chemical structure on a biological system on multiple levels, namely by considering structural features of the compound, its bioactivity profile, and pathway annotations and their relationship to the phenotypic effect observed. By integrating the data generated in a biologically meaningful way, this allows us to generate predictive models for the bioactivity of compound combinations. The relevance of this work ranges from the question which drugs can be combined in a synergistic manner and which combinations should rather be avoided to the safety assessment of chemicals. Hence, with this work I will be able to improve upon the current state-of-the-art in bioactivity data integration and modelling approaches, as well as deliver concrete models for the bioactivity assessment of compound combinations."
Max ERC Funding
1 499 558 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym MPGR
Project Mathematical Problems in General Relativity
Researcher (PI) Michail Dafermos
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Starting Grant (StG), PE1, ERC-2007-StG
Summary The proposed project concerns the study of mathematical aspects of the general theory of relativity. Major unsolved problems in the area include the problem of nonlinear stability of black hole spacetimes and the problem of weak and strong cosmic censorship. Mathematically, these problems concern the global dynamics of solutions to the Einstein equations. Resolution of these problems is of fundamental importance both to our understanding of the nature of the theory of relativity and to our assessment of its validity. In previous work, I have addressed these problems either under symmetry reductions or in linearised settings. These studies have revealed much of the mathematical structure of the dynamics of the Einstein equations in the context of black holes. Further progress extending beyond symmetry or linearised theory now appears possible. A research programme with this as a goal will be outlined in the proposal.
Summary
The proposed project concerns the study of mathematical aspects of the general theory of relativity. Major unsolved problems in the area include the problem of nonlinear stability of black hole spacetimes and the problem of weak and strong cosmic censorship. Mathematically, these problems concern the global dynamics of solutions to the Einstein equations. Resolution of these problems is of fundamental importance both to our understanding of the nature of the theory of relativity and to our assessment of its validity. In previous work, I have addressed these problems either under symmetry reductions or in linearised settings. These studies have revealed much of the mathematical structure of the dynamics of the Einstein equations in the context of black holes. Further progress extending beyond symmetry or linearised theory now appears possible. A research programme with this as a goal will be outlined in the proposal.
Max ERC Funding
500 000 €
Duration
Start date: 2008-09-01, End date: 2013-08-31
Project acronym MTP
Project Mechanisms of Transcription Proofreading
Researcher (PI) Nikolay Zenkin
Host Institution (HI) UNIVERSITY OF NEWCASTLE UPON TYNE
Call Details Starting Grant (StG), LS1, ERC-2007-StG
Summary Transcription, the copying of DNA into RNA, is the first step in the realisation of genetic information. RNA is either directly used by the cell or decoded into proteins during translation. The accuracy of transcription is thus essential for proper functioning of the cell. In all living organisms transcription is performed by multisubunit RNA polymerases, enzymes that are highly conserved in evolution from bacteria to humans. Surprisingly, the mechanisms that ensure accuracy of transcription remain largely unknown. Recently I discovered a novel mechanism of transcriptional proofreading used by bacterial RNA polymerase. I showed that the RNA transcript itself assists RNA polymerase in identifying and correcting mistakes. This discovery led to the hypothesis that this transcript-assisted proofreading is the universal mechanism of transcriptional error correction in all three domains of life. In this proposal we will investigate this hypothesis and search for other mechanisms of transcriptional proofreading used by bacterial, archaeal, and three eukaryotic RNA polymerases. For the first time experimental systems will be built for the simultaneous investigation of transcription elongation complexes formed by bacterial, archaeal and eukaryotic RNA polymerases I, II and III, which will be used to elucidate the mechanisms of error correction used by these RNA polymerases. Using molecular modelling, directed mutagenesis and in vivo screenings we will investigate the impact of these proofreading mechanisms on the total fidelity of transcription in vitro and in vivo. Experimental systems built in this research may be of use for screening of potential antibacterial and antifungal drugs taking advantage of the simultaneous investigation of RNA polymerases from all domains of Life. This research may also have potential applications in drug design by providing new targets for antibiotics.
Summary
Transcription, the copying of DNA into RNA, is the first step in the realisation of genetic information. RNA is either directly used by the cell or decoded into proteins during translation. The accuracy of transcription is thus essential for proper functioning of the cell. In all living organisms transcription is performed by multisubunit RNA polymerases, enzymes that are highly conserved in evolution from bacteria to humans. Surprisingly, the mechanisms that ensure accuracy of transcription remain largely unknown. Recently I discovered a novel mechanism of transcriptional proofreading used by bacterial RNA polymerase. I showed that the RNA transcript itself assists RNA polymerase in identifying and correcting mistakes. This discovery led to the hypothesis that this transcript-assisted proofreading is the universal mechanism of transcriptional error correction in all three domains of life. In this proposal we will investigate this hypothesis and search for other mechanisms of transcriptional proofreading used by bacterial, archaeal, and three eukaryotic RNA polymerases. For the first time experimental systems will be built for the simultaneous investigation of transcription elongation complexes formed by bacterial, archaeal and eukaryotic RNA polymerases I, II and III, which will be used to elucidate the mechanisms of error correction used by these RNA polymerases. Using molecular modelling, directed mutagenesis and in vivo screenings we will investigate the impact of these proofreading mechanisms on the total fidelity of transcription in vitro and in vivo. Experimental systems built in this research may be of use for screening of potential antibacterial and antifungal drugs taking advantage of the simultaneous investigation of RNA polymerases from all domains of Life. This research may also have potential applications in drug design by providing new targets for antibiotics.
Max ERC Funding
1 149 831 €
Duration
Start date: 2008-11-01, End date: 2013-10-31
Project acronym MUSYX
Project Multiscale Simulation of Crystal Defects
Researcher (PI) Christoph Ortner
Host Institution (HI) THE UNIVERSITY OF WARWICK
Call Details Starting Grant (StG), PE1, ERC-2013-StG
Summary "The MUSYX project will develop a rigorous numerical analysis framework for assessing the accuracy of multiscale methods for simulating the dynamics of crystalline defects. The core focus of the research will be the analysis of approximation errors of atomistic-to-continuum (a/c) coupling methods and related multiscale schemes. The rigorous mathematical foundations, which will be the outcome of this work, will also lead to the construction of more robust and more efficient numerical algorithms.
The research will be undertaken within four distinct but closely related themes: Theme A: quasistatic evolutions up to and including bifurcation points (defect nucleation and evolution); Theme B: Transition paths, saddles, and transition rates between local minima (defect nucleation and diffusion at finite temperature); Theme C: Computation of defect formation energies within the framework of equilibrium statistical mechanics; Theme D: Fully dynamic problems. The four themes are connected through the focus on crystal defects and model interfaces (e.g., atomistic/continuum).
Themes A and B build on and significantly extend the theory of a/c coupling pioneered by the PI, which combines classical techniques of numerical analysis (consistency, stability) with modern concepts of multiscale and atomistic modeling. Theme C aims to develop an analogous theory for multiscale free energy calculations (precisely, defect formation energies). Theme D approaches the analysis of a fully dynamic multiscale scheme by analyzing its qualitative statistical properties."
Summary
"The MUSYX project will develop a rigorous numerical analysis framework for assessing the accuracy of multiscale methods for simulating the dynamics of crystalline defects. The core focus of the research will be the analysis of approximation errors of atomistic-to-continuum (a/c) coupling methods and related multiscale schemes. The rigorous mathematical foundations, which will be the outcome of this work, will also lead to the construction of more robust and more efficient numerical algorithms.
The research will be undertaken within four distinct but closely related themes: Theme A: quasistatic evolutions up to and including bifurcation points (defect nucleation and evolution); Theme B: Transition paths, saddles, and transition rates between local minima (defect nucleation and diffusion at finite temperature); Theme C: Computation of defect formation energies within the framework of equilibrium statistical mechanics; Theme D: Fully dynamic problems. The four themes are connected through the focus on crystal defects and model interfaces (e.g., atomistic/continuum).
Themes A and B build on and significantly extend the theory of a/c coupling pioneered by the PI, which combines classical techniques of numerical analysis (consistency, stability) with modern concepts of multiscale and atomistic modeling. Theme C aims to develop an analogous theory for multiscale free energy calculations (precisely, defect formation energies). Theme D approaches the analysis of a fully dynamic multiscale scheme by analyzing its qualitative statistical properties."
Max ERC Funding
1 111 793 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym NANOPOTS
Project Nanotube Based Polymer Optoelectronics
Researcher (PI) Andrea Carlo Ferrari
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Starting Grant (StG), PE6, ERC-2007-StG
Summary The target of this project is to develop a new class of polymer based optoelectronic devices embedding the optical and electronic functionalities of carbon nanotubes (CNTs). These devices will combine the fabrication advantages of polymer photonics, with the tunable active and passive optical properties of CNTs. This is an ambitious frontier research program, with a strong interdisciplinary nature, across engineering, physical, chemical and soft matter sciences. The ERC grant will consolidate the newly funded Research Group lead by the PI at the newly built centre for Advanced Photonics and Electronics of the University of Cambridge. CNTs will be grown by chemical vapour deposition at low temperatures, compatible with polymer processing. Direct deposition of CNT on optical components (such as fibres and mirrors) will be studied. Fundamental understanding of ultra-fast non-linear optics will be sought by a combination of theory and experiments. A range of novel photonic polymers incorporating CNTs will be produced: index matching gels, optical adhesives and silicones. These new materials, incorporating the optical functionality of CNTs, will be used to build a variety of photonic devices. Nanowires are also promising for photonic applications, since they exhibit a size-tunable absorption resonance at telecommunications wavelengths, and their use will also be considered.
Summary
The target of this project is to develop a new class of polymer based optoelectronic devices embedding the optical and electronic functionalities of carbon nanotubes (CNTs). These devices will combine the fabrication advantages of polymer photonics, with the tunable active and passive optical properties of CNTs. This is an ambitious frontier research program, with a strong interdisciplinary nature, across engineering, physical, chemical and soft matter sciences. The ERC grant will consolidate the newly funded Research Group lead by the PI at the newly built centre for Advanced Photonics and Electronics of the University of Cambridge. CNTs will be grown by chemical vapour deposition at low temperatures, compatible with polymer processing. Direct deposition of CNT on optical components (such as fibres and mirrors) will be studied. Fundamental understanding of ultra-fast non-linear optics will be sought by a combination of theory and experiments. A range of novel photonic polymers incorporating CNTs will be produced: index matching gels, optical adhesives and silicones. These new materials, incorporating the optical functionality of CNTs, will be used to build a variety of photonic devices. Nanowires are also promising for photonic applications, since they exhibit a size-tunable absorption resonance at telecommunications wavelengths, and their use will also be considered.
Max ERC Funding
1 799 964 €
Duration
Start date: 2008-10-01, End date: 2013-09-30
Project acronym NanoScope
Project Optical imaging of nanoscopic dynamics and potentials
Researcher (PI) Philipp Kukura
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Starting Grant (StG), LS1, ERC-2013-StG
Summary I propose to develop and apply a novel approach to optical microscopy to enable the direct visualization and study of dynamics on the nanoscale in biological and condensed matter physics. Given the speed with which nanoscopic objects move at ambient condition, this requires simultaneously very fast (ms) and precise (nm) imaging. The challenge is to avoid excessive perturbation of the system and enable imaging in biologically compatible environments without compromising imaging performance by pushing interferometric scattering to its theoretical limits.
Using these advanced capabilities, I will study the dynamics and thereby the structure-function relationships in three fundamental systems that are currently not captured by even the most advanced biophysical approaches. These include: (1) the flexibility of DNA on short length scales, (2) diffusion in artificial and cellular membranes and (3) the three-dimensional power stroke of molecular motors such as myosin and kinesin.
Fundamentally, this work aims to develop and establish a high-speed, non-invasive camera on the nanoscale that will enable us to study and eventually understand nanoscopic motion, dynamics and potentials on the relevant, rather than currently achievable, size and time scales.
Summary
I propose to develop and apply a novel approach to optical microscopy to enable the direct visualization and study of dynamics on the nanoscale in biological and condensed matter physics. Given the speed with which nanoscopic objects move at ambient condition, this requires simultaneously very fast (ms) and precise (nm) imaging. The challenge is to avoid excessive perturbation of the system and enable imaging in biologically compatible environments without compromising imaging performance by pushing interferometric scattering to its theoretical limits.
Using these advanced capabilities, I will study the dynamics and thereby the structure-function relationships in three fundamental systems that are currently not captured by even the most advanced biophysical approaches. These include: (1) the flexibility of DNA on short length scales, (2) diffusion in artificial and cellular membranes and (3) the three-dimensional power stroke of molecular motors such as myosin and kinesin.
Fundamentally, this work aims to develop and establish a high-speed, non-invasive camera on the nanoscale that will enable us to study and eventually understand nanoscopic motion, dynamics and potentials on the relevant, rather than currently achievable, size and time scales.
Max ERC Funding
1 498 352 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym NANOSCOPY
Project High-speed chip-based nanoscopy to discover real-time sub-cellular dynamics
Researcher (PI) Balpreet Singh Ahluwalia
Host Institution (HI) UNIVERSITETET I TROMSOE - NORGES ARKTISKE UNIVERSITET
Call Details Starting Grant (StG), PE7, ERC-2013-StG
Summary Optical nanoscopy has given a glimpse of the impact it may have on medical care in the future. Slow imaging speed and the complexity of the current nanoscope limits its use for living cells. The imaging speed is limited by the bulk optics that is used in present nanoscopy. In this project, I propose a paradigm-shift in the field of advanced microscopy by developing optical nanoscopy based on a photonic integrated circuit. The project will take advantage of nanotechnology to fabricate an advance waveguide-chip, while fast telecom optical devices will provide switching of light to the chip, enhancing the speed of imaging. This unconventional route will change the field of optical microscopy, as a simple chip-based system can be added to a normal microscope. In this project, I will build a waveguide-based structured-illumination microscope (W-SIM) to acquire fast images (25 Hz or better) from a living cell with an optical resolution of 50-100 nm. I will use W-SIM to discover the dynamics (opening and closing) of fenestrations (100 nm) present in the membrane of a living liver sinusoidal scavenger endothelial cell. It is believed among the Hepatology community that these fenestrations open and close dynamically, however there is no scientific evidence to support this hypothesis because of the lack of suitable tools. The successful imaging of fenestration kinetics in a live cell during this project will provide new fundamental knowledge and benefit human health with improved diagnoses and drug discovery for liver. Chip-based nanoscopy is a new research field, inherently making this a high-risk project, but the possible gains are also high. The W-SIM will be the first of its kind, which may open a new era of simple, integrated nanoscopy. The proposed multiple-disciplinary project requires a near-unique expertise in the field of laser physics, integrated optics, advanced microscopy and cell-biology that I have acquired at leading research centers on three continents.
Summary
Optical nanoscopy has given a glimpse of the impact it may have on medical care in the future. Slow imaging speed and the complexity of the current nanoscope limits its use for living cells. The imaging speed is limited by the bulk optics that is used in present nanoscopy. In this project, I propose a paradigm-shift in the field of advanced microscopy by developing optical nanoscopy based on a photonic integrated circuit. The project will take advantage of nanotechnology to fabricate an advance waveguide-chip, while fast telecom optical devices will provide switching of light to the chip, enhancing the speed of imaging. This unconventional route will change the field of optical microscopy, as a simple chip-based system can be added to a normal microscope. In this project, I will build a waveguide-based structured-illumination microscope (W-SIM) to acquire fast images (25 Hz or better) from a living cell with an optical resolution of 50-100 nm. I will use W-SIM to discover the dynamics (opening and closing) of fenestrations (100 nm) present in the membrane of a living liver sinusoidal scavenger endothelial cell. It is believed among the Hepatology community that these fenestrations open and close dynamically, however there is no scientific evidence to support this hypothesis because of the lack of suitable tools. The successful imaging of fenestration kinetics in a live cell during this project will provide new fundamental knowledge and benefit human health with improved diagnoses and drug discovery for liver. Chip-based nanoscopy is a new research field, inherently making this a high-risk project, but the possible gains are also high. The W-SIM will be the first of its kind, which may open a new era of simple, integrated nanoscopy. The proposed multiple-disciplinary project requires a near-unique expertise in the field of laser physics, integrated optics, advanced microscopy and cell-biology that I have acquired at leading research centers on three continents.
Max ERC Funding
1 490 976 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym NATURALE
Project Bio-Inspired Materials for Sensing and Regenerative Medicine
Researcher (PI) Molly Morag Stevens
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Call Details Starting Grant (StG), PE6, ERC-2007-StG
Summary Materials with nanometre-scale dimensions have unique functional properties that can lead to novel engineering systems with highly useful characteristics. Most traditional approaches to synthesis of nanoscale materials, unlike those in biology, require stringent conditions and often produce toxic byproducts. Within biology itself, biomaterials are highly organized from the molecular to the nanoscale, with intricate architectures that allow for optimum functionality. The focus for this proposal on bio-inspired materials is two-fold. In the first instance I aim to rationally design biologically responsive peptides to control the assembly and dis-assembly of bio-inorganic nanostructures and develop fundamental enabling technologies with applications in bio-sensing. The second focus is on exploiting our understanding of the natural biological nanostructures found in the complex extracellular matrix of tissues in order to engineer synthetic biomimetic nanostructures for improved cell growth and tissue regeneration. Outcomes will include greater fundamental understanding of cell-matrix interactions and cell differentiation as well as longer-term clinical impacts. I have begun to establish a creative research team with many developing international links and a record of timely high quality research. If successful with this proposal I will be able to manage my group to its full potential and to expand its influence and vision. The proposed research involves development of important new international collaborations in the basic sciences and is highly multidisciplinary in nature encompassing elements of engineering, biology, chemistry and physics and ranging from high-resolution techniques of surface analysis to peptide design and cell biology.
Summary
Materials with nanometre-scale dimensions have unique functional properties that can lead to novel engineering systems with highly useful characteristics. Most traditional approaches to synthesis of nanoscale materials, unlike those in biology, require stringent conditions and often produce toxic byproducts. Within biology itself, biomaterials are highly organized from the molecular to the nanoscale, with intricate architectures that allow for optimum functionality. The focus for this proposal on bio-inspired materials is two-fold. In the first instance I aim to rationally design biologically responsive peptides to control the assembly and dis-assembly of bio-inorganic nanostructures and develop fundamental enabling technologies with applications in bio-sensing. The second focus is on exploiting our understanding of the natural biological nanostructures found in the complex extracellular matrix of tissues in order to engineer synthetic biomimetic nanostructures for improved cell growth and tissue regeneration. Outcomes will include greater fundamental understanding of cell-matrix interactions and cell differentiation as well as longer-term clinical impacts. I have begun to establish a creative research team with many developing international links and a record of timely high quality research. If successful with this proposal I will be able to manage my group to its full potential and to expand its influence and vision. The proposed research involves development of important new international collaborations in the basic sciences and is highly multidisciplinary in nature encompassing elements of engineering, biology, chemistry and physics and ranging from high-resolution techniques of surface analysis to peptide design and cell biology.
Max ERC Funding
1 643 021 €
Duration
Start date: 2008-10-01, End date: 2014-06-30
Project acronym NEUROSEMANTICS
Project Neurosemantics: the human brain as a meaning processor
Researcher (PI) Guillaume Laurent Thierry
Host Institution (HI) BANGOR UNIVERSITY
Call Details Starting Grant (StG), SH3, ERC-2007-StG
Summary This research programme aims at understanding the neural mechanisms underlying the manipulation of meaning in the human brain. Throughout this interdisciplinary research programme four complementary research streams will run in parallel: (a) a developmental stream investigating the characteristics of semantic memory development in infants aged 12 to 36 months; (b) a bilingual stream addressing subtle differences in semantic conceptualisation resulting from the handling of different languages by one brain; (c) a nonverbal stream exploring the capacity of the human brain to process complex meaningful information that is not coded in words; and (d) an unconscious stream targeting the processing of meaning triggered by perceptually distorted stimuli processed outside of awareness. As the research programme unfolds, aspects of verbal and nonverbal semantic development in the infant will be compared to second language semantics and to nonverbal processing in the adult. Similarly, differences found between conscious and unconscious aspects of semantic processing will provide an interpretational basis for results obtained in the other three streams. At the end of this research programme an overall synthesis of data collected in the different streams will make it possible to characterize cognitive factors affecting semantic development in early and later life, which can be expected to lead to a completely novel conception of the human semantic system. The series of experiments planned and those generated in the course of this project will enable the research team to establish international leadership in the emerging field of neurosemantics.
Summary
This research programme aims at understanding the neural mechanisms underlying the manipulation of meaning in the human brain. Throughout this interdisciplinary research programme four complementary research streams will run in parallel: (a) a developmental stream investigating the characteristics of semantic memory development in infants aged 12 to 36 months; (b) a bilingual stream addressing subtle differences in semantic conceptualisation resulting from the handling of different languages by one brain; (c) a nonverbal stream exploring the capacity of the human brain to process complex meaningful information that is not coded in words; and (d) an unconscious stream targeting the processing of meaning triggered by perceptually distorted stimuli processed outside of awareness. As the research programme unfolds, aspects of verbal and nonverbal semantic development in the infant will be compared to second language semantics and to nonverbal processing in the adult. Similarly, differences found between conscious and unconscious aspects of semantic processing will provide an interpretational basis for results obtained in the other three streams. At the end of this research programme an overall synthesis of data collected in the different streams will make it possible to characterize cognitive factors affecting semantic development in early and later life, which can be expected to lead to a completely novel conception of the human semantic system. The series of experiments planned and those generated in the course of this project will enable the research team to establish international leadership in the emerging field of neurosemantics.
Max ERC Funding
961 958 €
Duration
Start date: 2008-09-01, End date: 2013-08-31
Project acronym NEWIRES
Project Next Generation Semiconductor Nanowires
Researcher (PI) Kimberly Thelander
Host Institution (HI) LUNDS UNIVERSITET
Call Details Starting Grant (StG), PE5, ERC-2013-StG
Summary Semiconductor nanowires composed of III-V materials have enormous potential to add new functionality to electronics and optical applications. However, integration of these promising structures into applications is severely limited by the current near-universal reliance on gold nanoparticles as seeds for nanowire fabrication. Although highly controlled fabrication is achieved, this metal is entirely incompatible with the Si-based electronics industry. It also presents limitations for the extension of nanowire research towards novel materials not existing in bulk. To date, exploration of alternatives has been limited to selective-area and self-seeded processes, both of which have major limitations in terms of size and morphology control, potential to combine materials, and crystal structure tuning. There is also very little understanding of precisely why gold has proven so successful for nanowire growth, and which alternatives may yield comparable or better results. The aim of this project will be to explore alternative nanoparticle seed materials to go beyond the use of gold in III-V nanowire fabrication. This will be achieved using a unique and recently developed capability for aerosol-phase fabrication of highly controlled nanoparticles directly integrated with conventional nanowire fabrication equipment. The primary goal will be to deepen the understanding of the nanowire fabrication process, and the specific advantages (and limitations) of gold as a seed material, in order to develop and optimize alternatives. The use of a wide variety of seed particle materials in nanowire fabrication will greatly broaden the variety of novel structures that can be fabricated. The results will also transform the nanowire fabrication research field, in order to develop important connections between nanowire research and the semiconductor industry, and to greatly improve the viability of nanowire integration into future devices.
Summary
Semiconductor nanowires composed of III-V materials have enormous potential to add new functionality to electronics and optical applications. However, integration of these promising structures into applications is severely limited by the current near-universal reliance on gold nanoparticles as seeds for nanowire fabrication. Although highly controlled fabrication is achieved, this metal is entirely incompatible with the Si-based electronics industry. It also presents limitations for the extension of nanowire research towards novel materials not existing in bulk. To date, exploration of alternatives has been limited to selective-area and self-seeded processes, both of which have major limitations in terms of size and morphology control, potential to combine materials, and crystal structure tuning. There is also very little understanding of precisely why gold has proven so successful for nanowire growth, and which alternatives may yield comparable or better results. The aim of this project will be to explore alternative nanoparticle seed materials to go beyond the use of gold in III-V nanowire fabrication. This will be achieved using a unique and recently developed capability for aerosol-phase fabrication of highly controlled nanoparticles directly integrated with conventional nanowire fabrication equipment. The primary goal will be to deepen the understanding of the nanowire fabrication process, and the specific advantages (and limitations) of gold as a seed material, in order to develop and optimize alternatives. The use of a wide variety of seed particle materials in nanowire fabrication will greatly broaden the variety of novel structures that can be fabricated. The results will also transform the nanowire fabrication research field, in order to develop important connections between nanowire research and the semiconductor industry, and to greatly improve the viability of nanowire integration into future devices.
Max ERC Funding
1 496 246 €
Duration
Start date: 2013-09-01, End date: 2018-08-31