Project acronym a SMILE
Project analyse Soluble + Membrane complexes with Improved LILBID Experiments
Researcher (PI) Nina Morgner
Host Institution (HI) JOHANN WOLFGANG GOETHE-UNIVERSITATFRANKFURT AM MAIN
Call Details Starting Grant (StG), PE4, ERC-2013-StG
Summary Crucial processes within cells depend on specific non-covalent interactions which mediate the assembly of proteins and other biomolecules. Deriving structural information to understand the function of these complex systems is the primary goal of Structural Biology.
In this application, the recently developed LILBID method (Laser Induced Liquid Bead Ion Desorption) will be optimized for investigation of macromolecular complexes with a mass accuracy two orders of magnitude better than in 1st generation spectrometers.
Controlled disassembly of the multiprotein complexes in the mass spectrometric analysis while keeping the 3D structure intact, will allow for the determination of complex stoichiometry and connectivity of the constituting proteins. Methods for such controlled disassembly will be developed in two separate units of the proposed LILBID spectrometer, in a collision chamber and in a laser dissociation chamber, enabling gas phase dissociation of protein complexes and removal of excess water/buffer molecules. As a third unit, a chamber allowing determination of ion mobility (IM) will be integrated to determine collisional cross sections (CCS). From CCS, unique information regarding the spatial arrangement of proteins in complexes or subcomplexes will then be obtainable from LILBID.
The proposed design of the new spectrometer will offer fundamentally new possibilities for the investigation of non-covalent RNA, soluble and membrane protein complexes, as well as broadening the applicability of non-covalent MS towards supercomplexes.
Summary
Crucial processes within cells depend on specific non-covalent interactions which mediate the assembly of proteins and other biomolecules. Deriving structural information to understand the function of these complex systems is the primary goal of Structural Biology.
In this application, the recently developed LILBID method (Laser Induced Liquid Bead Ion Desorption) will be optimized for investigation of macromolecular complexes with a mass accuracy two orders of magnitude better than in 1st generation spectrometers.
Controlled disassembly of the multiprotein complexes in the mass spectrometric analysis while keeping the 3D structure intact, will allow for the determination of complex stoichiometry and connectivity of the constituting proteins. Methods for such controlled disassembly will be developed in two separate units of the proposed LILBID spectrometer, in a collision chamber and in a laser dissociation chamber, enabling gas phase dissociation of protein complexes and removal of excess water/buffer molecules. As a third unit, a chamber allowing determination of ion mobility (IM) will be integrated to determine collisional cross sections (CCS). From CCS, unique information regarding the spatial arrangement of proteins in complexes or subcomplexes will then be obtainable from LILBID.
The proposed design of the new spectrometer will offer fundamentally new possibilities for the investigation of non-covalent RNA, soluble and membrane protein complexes, as well as broadening the applicability of non-covalent MS towards supercomplexes.
Max ERC Funding
1 264 477 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym AAREA
Project The Archaeology of Agricultural Resilience in Eastern Africa
Researcher (PI) Daryl Stump
Host Institution (HI) UNIVERSITY OF YORK
Call Details Starting Grant (StG), SH6, ERC-2013-StG
Summary "The twin concepts of sustainability and conservation that are so pivotal within current debates regarding economic development and biodiversity protection both contain an inherent temporal dimension, since both refer to the need to balance short-term gains with long-term resource maintenance. Proponents of resilience theory and of development based on ‘indigenous knowledge’ have thus argued for the necessity of including archaeological, historical and palaeoenvironmental components within development project design. Indeed, some have argued that archaeology should lead these interdisciplinary projects on the grounds that it provides the necessary time depth and bridges the social and natural sciences. The project proposed here accepts this logic and endorses this renewed contemporary relevance of archaeological research. However, it also needs to be admitted that moving beyond critiques of the misuse of historical data presents significant hurdles. When presenting results outside the discipline, for example, archaeological projects tend to downplay the poor archaeological visibility of certain agricultural practices, and computer models designed to test sustainability struggle to adequately account for local cultural preferences. This field will therefore not progress unless there is a frank appraisal of archaeology’s strengths and weaknesses. This project will provide this assessment by employing a range of established and groundbreaking archaeological and modelling techniques to examine the development of two east Africa agricultural systems: one at the abandoned site of Engaruka in Tanzania, commonly seen as an example of resource mismanagement and ecological collapse; and another at the current agricultural landscape in Konso, Ethiopia, described by the UN FAO as one of a select few African “lessons from the past”. The project thus aims to assess the sustainability of these systems, but will also assess the role archaeology can play in such debates worldwide."
Summary
"The twin concepts of sustainability and conservation that are so pivotal within current debates regarding economic development and biodiversity protection both contain an inherent temporal dimension, since both refer to the need to balance short-term gains with long-term resource maintenance. Proponents of resilience theory and of development based on ‘indigenous knowledge’ have thus argued for the necessity of including archaeological, historical and palaeoenvironmental components within development project design. Indeed, some have argued that archaeology should lead these interdisciplinary projects on the grounds that it provides the necessary time depth and bridges the social and natural sciences. The project proposed here accepts this logic and endorses this renewed contemporary relevance of archaeological research. However, it also needs to be admitted that moving beyond critiques of the misuse of historical data presents significant hurdles. When presenting results outside the discipline, for example, archaeological projects tend to downplay the poor archaeological visibility of certain agricultural practices, and computer models designed to test sustainability struggle to adequately account for local cultural preferences. This field will therefore not progress unless there is a frank appraisal of archaeology’s strengths and weaknesses. This project will provide this assessment by employing a range of established and groundbreaking archaeological and modelling techniques to examine the development of two east Africa agricultural systems: one at the abandoned site of Engaruka in Tanzania, commonly seen as an example of resource mismanagement and ecological collapse; and another at the current agricultural landscape in Konso, Ethiopia, described by the UN FAO as one of a select few African “lessons from the past”. The project thus aims to assess the sustainability of these systems, but will also assess the role archaeology can play in such debates worldwide."
Max ERC Funding
1 196 701 €
Duration
Start date: 2014-02-01, End date: 2018-01-31
Project acronym ACDC
Project Algorithms and Complexity of Highly Decentralized Computations
Researcher (PI) Fabian Daniel Kuhn
Host Institution (HI) ALBERT-LUDWIGS-UNIVERSITAET FREIBURG
Call Details Starting Grant (StG), PE6, ERC-2013-StG
Summary "Many of today's and tomorrow's computer systems are built on top of large-scale networks such as, e.g., the Internet, the world wide web, wireless ad hoc and sensor networks, or peer-to-peer networks. Driven by technological advances, new kinds of networks and applications have become possible and we can safely assume that this trend is going to continue. Often modern systems are envisioned to consist of a potentially large number of individual components that are organized in a completely decentralized way. There is no central authority that controls the topology of the network, how nodes join or leave the system, or in which way nodes communicate with each other. Also, many future distributed applications will be built using wireless devices that communicate via radio.
The general objective of the proposed project is to improve our understanding of the algorithmic and theoretical foundations of decentralized distributed systems. From an algorithmic point of view, decentralized networks and computations pose a number of fascinating and unique challenges that are not present in sequential or more standard distributed systems. As communication is limited and mostly between nearby nodes, each node of a large network can only maintain a very restricted view of the global state of the system. This is particularly true if the network can change dynamically, either by nodes joining or leaving the system or if the topology changes over time, e.g., because of the mobility of the devices in case of a wireless network. Nevertheless, the nodes of a network need to coordinate in order to achieve some global goal.
In particular, we plan to study algorithms and lower bounds for basic computation and information dissemination tasks in such systems. In addition, we are particularly interested in the complexity of distributed computations in dynamic and wireless networks."
Summary
"Many of today's and tomorrow's computer systems are built on top of large-scale networks such as, e.g., the Internet, the world wide web, wireless ad hoc and sensor networks, or peer-to-peer networks. Driven by technological advances, new kinds of networks and applications have become possible and we can safely assume that this trend is going to continue. Often modern systems are envisioned to consist of a potentially large number of individual components that are organized in a completely decentralized way. There is no central authority that controls the topology of the network, how nodes join or leave the system, or in which way nodes communicate with each other. Also, many future distributed applications will be built using wireless devices that communicate via radio.
The general objective of the proposed project is to improve our understanding of the algorithmic and theoretical foundations of decentralized distributed systems. From an algorithmic point of view, decentralized networks and computations pose a number of fascinating and unique challenges that are not present in sequential or more standard distributed systems. As communication is limited and mostly between nearby nodes, each node of a large network can only maintain a very restricted view of the global state of the system. This is particularly true if the network can change dynamically, either by nodes joining or leaving the system or if the topology changes over time, e.g., because of the mobility of the devices in case of a wireless network. Nevertheless, the nodes of a network need to coordinate in order to achieve some global goal.
In particular, we plan to study algorithms and lower bounds for basic computation and information dissemination tasks in such systems. In addition, we are particularly interested in the complexity of distributed computations in dynamic and wireless networks."
Max ERC Funding
1 148 000 €
Duration
Start date: 2013-11-01, End date: 2018-10-31
Project acronym AGESPACE
Project SPATIAL NAVIGATION – A UNIQUE WINDOW INTO MECHANISMS OF COGNITIVE AGEING
Researcher (PI) Thomas Wolbers
Host Institution (HI) DEUTSCHES ZENTRUM FUR NEURODEGENERATIVE ERKRANKUNGEN EV
Call Details Starting Grant (StG), SH4, ERC-2013-StG
Summary "By 2040, the European population aged over 60 will rise to 290 million, with those estimated to have dementia to 15.9 million. These dramatic demographic changes will pose huge challenges to health care systems, hence a detailed understanding of age-related cognitive and neurobiological changes is essential for helping elderly populations maintain independence. However, while existing research into cognitive ageing has carefully characterised developmental trajectories of functions such as memory and processing speed, one key cognitive ability that is particularly relevant to everyday functioning has received very little attention: In surveys, elderly people often report substantial declines in navigational abilities such as problems with finding one’s way in a novel environment. Such deficits severely restrict the mobility of elderly people and affect physical activity and social participation, but the underlying behavioural and neuronal mechanisms are poorly understood.
In this proposal, I will take a new approach to cognitive ageing that will bridge the gap between animal neurobiology and human cognitive neuroscience. With support from the ERC, I will create a team that will characterise the mechanisms mediating age-related changes in navigational processing in humans. The project will focus on three structures that perform key computations for spatial navigation, form a closely interconnected triadic network, and are particularly sensitive to the ageing process. Crucially, the team will employ an interdisciplinary methodological approach that combines mathematical modelling, brain imaging and innovative data analysis techniques with novel virtual environment technology, which allows for rigorous testing of predictions derived from animal findings. Finally, the proposal also incorporates a translational project aimed at improving spatial mnemonic functioning with a behavioural intervention, which provides a direct test of functional relevance and societal impact."
Summary
"By 2040, the European population aged over 60 will rise to 290 million, with those estimated to have dementia to 15.9 million. These dramatic demographic changes will pose huge challenges to health care systems, hence a detailed understanding of age-related cognitive and neurobiological changes is essential for helping elderly populations maintain independence. However, while existing research into cognitive ageing has carefully characterised developmental trajectories of functions such as memory and processing speed, one key cognitive ability that is particularly relevant to everyday functioning has received very little attention: In surveys, elderly people often report substantial declines in navigational abilities such as problems with finding one’s way in a novel environment. Such deficits severely restrict the mobility of elderly people and affect physical activity and social participation, but the underlying behavioural and neuronal mechanisms are poorly understood.
In this proposal, I will take a new approach to cognitive ageing that will bridge the gap between animal neurobiology and human cognitive neuroscience. With support from the ERC, I will create a team that will characterise the mechanisms mediating age-related changes in navigational processing in humans. The project will focus on three structures that perform key computations for spatial navigation, form a closely interconnected triadic network, and are particularly sensitive to the ageing process. Crucially, the team will employ an interdisciplinary methodological approach that combines mathematical modelling, brain imaging and innovative data analysis techniques with novel virtual environment technology, which allows for rigorous testing of predictions derived from animal findings. Finally, the proposal also incorporates a translational project aimed at improving spatial mnemonic functioning with a behavioural intervention, which provides a direct test of functional relevance and societal impact."
Max ERC Funding
1 318 990 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym APPLAUSE
Project Adolescent Precursors to Psychiatric Disorders – Learing from Analysis of User-Service Engagement
Researcher (PI) Sara Evans
Host Institution (HI) LONDON SCHOOL OF ECONOMICS AND POLITICAL SCIENCE
Call Details Starting Grant (StG), LS7, ERC-2013-StG
Summary APPLAUSE’s aim is to produce a body of evidence that illustrates how young people with mental health problems currently interact with both formal mental health services and informal social and familial support structures. Careful analysis of data gathered in the UK and Brazil will allow formulation of globally relevant insights into mental health care delivery for young people, which will be presented internationally as a resource for future health care service design.
APPLAUSE will allow the collection of an important data set that does not currently exist in this field, and will look to other disciplines for innovative approaches to data analysis. Whist standard analysis may allow for snapshots of health service use, using innovative life course methods will allow us to to characterise patterns of complete service use of each individual participant’s experience of accessing mental health care and social support.
Adolescence is a critical period in mental health development, which has been largely neglected by public health efforts. Psychiatric disorders rank as the primary cause of disability among individuals aged 10-24 years, worldwide. Moreover, many health risk behaviours emerge during adolescence and 70% of adult psychiatric disorders are preceded by mental health problems during adolescent years. However, delays to receiving care for psychiatric disorders, following disorder onset, avreage more than ten years and little is known about factors which impede access to and continuity of care among young people with mental health problems. APPLAUSE will analyse current access models, reports of individual experiences of positive and negative interactions with health care services and the culturally embedded social factors that impact on such access. Addressing this complex problem from a global perspective will advance the development of a more diverse and innovative set of strategies for improving earlier access to care.
Summary
APPLAUSE’s aim is to produce a body of evidence that illustrates how young people with mental health problems currently interact with both formal mental health services and informal social and familial support structures. Careful analysis of data gathered in the UK and Brazil will allow formulation of globally relevant insights into mental health care delivery for young people, which will be presented internationally as a resource for future health care service design.
APPLAUSE will allow the collection of an important data set that does not currently exist in this field, and will look to other disciplines for innovative approaches to data analysis. Whist standard analysis may allow for snapshots of health service use, using innovative life course methods will allow us to to characterise patterns of complete service use of each individual participant’s experience of accessing mental health care and social support.
Adolescence is a critical period in mental health development, which has been largely neglected by public health efforts. Psychiatric disorders rank as the primary cause of disability among individuals aged 10-24 years, worldwide. Moreover, many health risk behaviours emerge during adolescence and 70% of adult psychiatric disorders are preceded by mental health problems during adolescent years. However, delays to receiving care for psychiatric disorders, following disorder onset, avreage more than ten years and little is known about factors which impede access to and continuity of care among young people with mental health problems. APPLAUSE will analyse current access models, reports of individual experiences of positive and negative interactions with health care services and the culturally embedded social factors that impact on such access. Addressing this complex problem from a global perspective will advance the development of a more diverse and innovative set of strategies for improving earlier access to care.
Max ERC Funding
1 499 948 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym AQSER
Project Automorphic q-series and their application
Researcher (PI) Kathrin Bringmann
Host Institution (HI) UNIVERSITAET ZU KOELN
Call Details Starting Grant (StG), PE1, ERC-2013-StG
Summary This proposal aims to unravel mysteries at the frontier of number theory and other areas of mathematics and physics. The main focus will be to understand and exploit “modularity” of q-hypergeometric series. “Modular forms are functions on the complex plane that are inordinately symmetric.” (Mazur) The motivation comes from the wide-reaching applications of modularity in combinatorics, percolation, Lie theory, and physics (black holes).
The interplay between automorphic forms, q-series, and other areas of mathematics and physics is often two-sided. On the one hand, the other areas provide interesting examples of automorphic objects and predict their behavior. Sometimes these even motivate new classes of automorphic objects which have not been previously studied. On the other hand, knowing that certain generating functions are modular gives one access to deep theoretical tools to prove results in other areas. “Mathematics is a language, and we need that language to understand the physics of our universe.”(Ooguri) Understanding this interplay has attracted attention of researchers from a variety of areas. However, proofs of modularity of q-hypergeometric series currently fall far short of a comprehensive theory to describe the interplay between them and automorphic forms. A recent conjecture of W. Nahm relates the modularity of such series to K-theory. In this proposal I aim to fill this gap and provide a better understanding of this interplay by building a general structural framework enveloping these q-series. For this I will employ new kinds of automorphic objects and embed the functions of interest into bigger families
A successful outcome of the proposed research will open further horizons and also answer open questions, even those in other areas which were not addressed in this proposal; for example the new theory could be applied to better understand Donaldson invariants.
Summary
This proposal aims to unravel mysteries at the frontier of number theory and other areas of mathematics and physics. The main focus will be to understand and exploit “modularity” of q-hypergeometric series. “Modular forms are functions on the complex plane that are inordinately symmetric.” (Mazur) The motivation comes from the wide-reaching applications of modularity in combinatorics, percolation, Lie theory, and physics (black holes).
The interplay between automorphic forms, q-series, and other areas of mathematics and physics is often two-sided. On the one hand, the other areas provide interesting examples of automorphic objects and predict their behavior. Sometimes these even motivate new classes of automorphic objects which have not been previously studied. On the other hand, knowing that certain generating functions are modular gives one access to deep theoretical tools to prove results in other areas. “Mathematics is a language, and we need that language to understand the physics of our universe.”(Ooguri) Understanding this interplay has attracted attention of researchers from a variety of areas. However, proofs of modularity of q-hypergeometric series currently fall far short of a comprehensive theory to describe the interplay between them and automorphic forms. A recent conjecture of W. Nahm relates the modularity of such series to K-theory. In this proposal I aim to fill this gap and provide a better understanding of this interplay by building a general structural framework enveloping these q-series. For this I will employ new kinds of automorphic objects and embed the functions of interest into bigger families
A successful outcome of the proposed research will open further horizons and also answer open questions, even those in other areas which were not addressed in this proposal; for example the new theory could be applied to better understand Donaldson invariants.
Max ERC Funding
1 240 500 €
Duration
Start date: 2014-01-01, End date: 2019-04-30
Project acronym assemblyNMR
Project 3D structures of bacterial supramolecular assemblies by solid-state NMR
Researcher (PI) Adam Lange
Host Institution (HI) FORSCHUNGSVERBUND BERLIN EV
Call Details Starting Grant (StG), LS1, ERC-2013-StG
Summary Supramolecular assemblies – formed by the self-assembly of hundreds of protein subunits – are part of bacterial nanomachines involved in key cellular processes. Important examples in pathogenic bacteria are pili and type 3 secretion systems (T3SS) that mediate adhesion to host cells and injection of virulence proteins. Structure determination at atomic resolution of such assemblies by standard techniques such as X-ray crystallography or solution NMR is severely limited: Intact T3SSs or pili cannot be crystallized and are also inherently insoluble. Cryo-electron microscopy techniques have recently made it possible to obtain low- and medium-resolution models, but atomic details have not been accessible at the resolution obtained in these studies, leading sometimes to inaccurate models.
I propose to use solid-state NMR (ssNMR) to fill this knowledge-gap. I could recently show that ssNMR on in vitro preparations of Salmonella T3SS needles constitutes a powerful approach to study the structure of this virulence factor. Our integrated approach also included results from electron microscopy and modeling as well as in vivo assays (Loquet et al., Nature 2012). This is the foundation of this application. I propose to extend ssNMR methodology to tackle the structures of even larger or more complex homo-oligomeric assemblies with up to 200 residues per monomeric subunit. We will apply such techniques to address the currently unknown 3D structures of type I pili and cytoskeletal bactofilin filaments. Furthermore, I want to develop strategies to directly study assemblies in a native-like setting. As a first application, I will study the 3D structure of T3SS needles when they are complemented with intact T3SSs purified from Salmonella or Shigella. The ultimate goal of this proposal is to establish ssNMR as a generally applicable method that allows solving the currently unknown structures of bacterial supramolecular assemblies at atomic resolution.
Summary
Supramolecular assemblies – formed by the self-assembly of hundreds of protein subunits – are part of bacterial nanomachines involved in key cellular processes. Important examples in pathogenic bacteria are pili and type 3 secretion systems (T3SS) that mediate adhesion to host cells and injection of virulence proteins. Structure determination at atomic resolution of such assemblies by standard techniques such as X-ray crystallography or solution NMR is severely limited: Intact T3SSs or pili cannot be crystallized and are also inherently insoluble. Cryo-electron microscopy techniques have recently made it possible to obtain low- and medium-resolution models, but atomic details have not been accessible at the resolution obtained in these studies, leading sometimes to inaccurate models.
I propose to use solid-state NMR (ssNMR) to fill this knowledge-gap. I could recently show that ssNMR on in vitro preparations of Salmonella T3SS needles constitutes a powerful approach to study the structure of this virulence factor. Our integrated approach also included results from electron microscopy and modeling as well as in vivo assays (Loquet et al., Nature 2012). This is the foundation of this application. I propose to extend ssNMR methodology to tackle the structures of even larger or more complex homo-oligomeric assemblies with up to 200 residues per monomeric subunit. We will apply such techniques to address the currently unknown 3D structures of type I pili and cytoskeletal bactofilin filaments. Furthermore, I want to develop strategies to directly study assemblies in a native-like setting. As a first application, I will study the 3D structure of T3SS needles when they are complemented with intact T3SSs purified from Salmonella or Shigella. The ultimate goal of this proposal is to establish ssNMR as a generally applicable method that allows solving the currently unknown structures of bacterial supramolecular assemblies at atomic resolution.
Max ERC Funding
1 456 000 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym AttentionCircuits
Project Modulation of neocortical microcircuits for attention
Researcher (PI) Johannes Jakob Letzkus
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), LS5, ERC-2013-StG
Summary At every moment in time, the brain receives a vast amount of sensory information about the environment. This makes attention, the process by which we select currently relevant stimuli for processing and ignore irrelevant input, a fundamentally important brain function. Studies in primates have yielded a detailed description of how attention to a stimulus modifies the responses of neuronal ensembles in visual cortex, but how this modulation is produced mechanistically in the circuit is not well understood. Neuronal circuits comprise a large variety of neuron types, and to gain mechanistic insights, and to treat specific diseases of the nervous system, it is crucial to characterize the contribution of different identified cell types to information processing. Inhibition supplied by a small yet highly diverse set of interneurons controls all aspects of cortical function, and the central hypothesis of this proposal is that differential modulation of genetically-defined interneuron types is a key mechanism of attention in visual cortex. To identify the interneuron types underlying attentional modulation and to investigate how this, in turn, affects computations in the circuit we will use an innovative multidisciplinary approach combining genetic targeting in mice with cutting-edge in vivo 2-photon microscopy-based recordings and selective optogenetic manipulation of activity. Importantly, a key set of experiments will test whether the observed neuronal mechanisms are causally involved in attention at the level of behavior, the ultimate readout of the computations we are interested in. The expected results will provide a detailed, mechanistic dissection of the neuronal basis of attention. Beyond attention, selection of different functional states of the same hard-wired circuit by modulatory input is a fundamental, but poorly understood, phenomenon in the brain, and we predict that our insights will elucidate similar mechanisms in other brain areas and functional contexts.
Summary
At every moment in time, the brain receives a vast amount of sensory information about the environment. This makes attention, the process by which we select currently relevant stimuli for processing and ignore irrelevant input, a fundamentally important brain function. Studies in primates have yielded a detailed description of how attention to a stimulus modifies the responses of neuronal ensembles in visual cortex, but how this modulation is produced mechanistically in the circuit is not well understood. Neuronal circuits comprise a large variety of neuron types, and to gain mechanistic insights, and to treat specific diseases of the nervous system, it is crucial to characterize the contribution of different identified cell types to information processing. Inhibition supplied by a small yet highly diverse set of interneurons controls all aspects of cortical function, and the central hypothesis of this proposal is that differential modulation of genetically-defined interneuron types is a key mechanism of attention in visual cortex. To identify the interneuron types underlying attentional modulation and to investigate how this, in turn, affects computations in the circuit we will use an innovative multidisciplinary approach combining genetic targeting in mice with cutting-edge in vivo 2-photon microscopy-based recordings and selective optogenetic manipulation of activity. Importantly, a key set of experiments will test whether the observed neuronal mechanisms are causally involved in attention at the level of behavior, the ultimate readout of the computations we are interested in. The expected results will provide a detailed, mechanistic dissection of the neuronal basis of attention. Beyond attention, selection of different functional states of the same hard-wired circuit by modulatory input is a fundamental, but poorly understood, phenomenon in the brain, and we predict that our insights will elucidate similar mechanisms in other brain areas and functional contexts.
Max ERC Funding
1 466 505 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym AUTHORITARIANISM2.0:
Project Authoritarianism2.0: The Internet, Political Discussion, and Authoritarian Rule in China
Researcher (PI) Daniela Stockmann
Host Institution (HI) HERTIE SCHOOL OF GOVERNANCE GEMMEINNUTZIGE GMBH
Call Details Starting Grant (StG), SH2, ERC-2013-StG
Summary I suggest that perceptions of diversity and disagreement voiced in the on-line political discussion may play a key role in mobilizing citizens to voice their views and take action in authoritarian regimes. The empirical focus is the Chinese Internet. Subjective perceptions of group discussion among participants can significantly differ from the objective content of the discussion. These perceptions can have an independent effect on political engagement. Novel is also that I will study which technological settings (blogs, Weibo (Twitter), public hearings, etc) facilitate these perceptions.
I will address these novel issues by specifying the conditions and causal mechanisms that facilitate the rise of online public opinion. As an expansion to prior work, I will study passive in addition to active participants in online discussion. This is of particular interest because passive participants outnumber active participants.
My overall aim is to deepen our knowledge of how participants experience online political discussion in stabilizing or destabilizing authoritarian rule. To this end, I propose to work with one post-doc and two PhD research assistants on four objectives: Objective 1 is to explore what kinds of people engage in online discussions and differences between active and passive participants. Objective 2 is to understand how the technological settings that create the conditions for online discussion differ from each other. Objective 3 is to assess how active and passive participants see the diversity and disagreement in the discussion in these settings. Objective 4 is to assess whether citizens take action upon online political discussion depending on how they see it.
I will produce the first nationally representative survey on the experiences of participants in online political discussion in China. In addition to academics, this knowledge is of interest to policy-makers, professionals, and journalists aiming to understand authoritarian politics and media
Summary
I suggest that perceptions of diversity and disagreement voiced in the on-line political discussion may play a key role in mobilizing citizens to voice their views and take action in authoritarian regimes. The empirical focus is the Chinese Internet. Subjective perceptions of group discussion among participants can significantly differ from the objective content of the discussion. These perceptions can have an independent effect on political engagement. Novel is also that I will study which technological settings (blogs, Weibo (Twitter), public hearings, etc) facilitate these perceptions.
I will address these novel issues by specifying the conditions and causal mechanisms that facilitate the rise of online public opinion. As an expansion to prior work, I will study passive in addition to active participants in online discussion. This is of particular interest because passive participants outnumber active participants.
My overall aim is to deepen our knowledge of how participants experience online political discussion in stabilizing or destabilizing authoritarian rule. To this end, I propose to work with one post-doc and two PhD research assistants on four objectives: Objective 1 is to explore what kinds of people engage in online discussions and differences between active and passive participants. Objective 2 is to understand how the technological settings that create the conditions for online discussion differ from each other. Objective 3 is to assess how active and passive participants see the diversity and disagreement in the discussion in these settings. Objective 4 is to assess whether citizens take action upon online political discussion depending on how they see it.
I will produce the first nationally representative survey on the experiences of participants in online political discussion in China. In addition to academics, this knowledge is of interest to policy-makers, professionals, and journalists aiming to understand authoritarian politics and media
Max ERC Funding
1 499 780 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym BENELEX
Project Benefit-sharing for an equitable transition to the green economy - the role of law
Researcher (PI) Elisa Morgera
Host Institution (HI) UNIVERSITY OF STRATHCLYDE
Call Details Starting Grant (StG), SH2, ERC-2013-StG
Summary Can benefit-sharing address the equity deficit within the green economy? This project aims to investigate benefit-sharing as an under-theorised and little-implemented regulatory approach to the equity concerns (disregard for the special circumstances of developing countries and of indigenous peoples and local communities) in transitioning to the green economy.
Although benefit-sharing is increasingly deployed in a variety of international environmental agreements and also in human rights and corporate accountability instruments, no comprehensive account exists of its conceptual and practical relevance to equitably address global environmental challenges. This project will be the first systematic evaluation of the conceptualisations and operationalisations of benefit-sharing as a tool for equitable change through the allocation among different stakeholders of economic and also socio-cultural and environmental advantages arising from natural resource use.
The project will combine a comparative study of international law with empirical legal research, and include an inter-disciplinary study integrating political sociology in a legal enquiry on the role of “biocultural community protocols” that articulate and implement benefit-sharing at the intersection of international, transnational, national and indigenous communities’ customary law (global environmental law).
The project aims to: 1. develop a comprehensive understanding of benefit-sharing in international law; 2. clarify whether and how benefit-sharing supports equity and the protection of human rights across key sectors of international environmental regulation (biodiversity, climate change, oceans, food and agriculture) that are seen as inter-related in the transition to the green economy; 3. understand the development of benefit-sharing in the context of global environmental law; and
4. clarify the role of transnational legal advisors (NGOs and bilateral cooperation partners) in the green economy.
Summary
Can benefit-sharing address the equity deficit within the green economy? This project aims to investigate benefit-sharing as an under-theorised and little-implemented regulatory approach to the equity concerns (disregard for the special circumstances of developing countries and of indigenous peoples and local communities) in transitioning to the green economy.
Although benefit-sharing is increasingly deployed in a variety of international environmental agreements and also in human rights and corporate accountability instruments, no comprehensive account exists of its conceptual and practical relevance to equitably address global environmental challenges. This project will be the first systematic evaluation of the conceptualisations and operationalisations of benefit-sharing as a tool for equitable change through the allocation among different stakeholders of economic and also socio-cultural and environmental advantages arising from natural resource use.
The project will combine a comparative study of international law with empirical legal research, and include an inter-disciplinary study integrating political sociology in a legal enquiry on the role of “biocultural community protocols” that articulate and implement benefit-sharing at the intersection of international, transnational, national and indigenous communities’ customary law (global environmental law).
The project aims to: 1. develop a comprehensive understanding of benefit-sharing in international law; 2. clarify whether and how benefit-sharing supports equity and the protection of human rights across key sectors of international environmental regulation (biodiversity, climate change, oceans, food and agriculture) that are seen as inter-related in the transition to the green economy; 3. understand the development of benefit-sharing in the context of global environmental law; and
4. clarify the role of transnational legal advisors (NGOs and bilateral cooperation partners) in the green economy.
Max ERC Funding
1 481 708 €
Duration
Start date: 2013-11-01, End date: 2018-10-31
Project acronym BEYONDENEMYLINES
Project Beyond Enemy Lines: Literature and Film in the British and American Zones of Occupied Germany, 1945-1949
Researcher (PI) Lara Feigel
Host Institution (HI) KING'S COLLEGE LONDON
Call Details Starting Grant (StG), SH5, ERC-2013-StG
Summary This project investigates the cross-fertilisation of Anglo/American and German literature and film during the Allied Occupation of Germany. It will be the first study to survey the cultural landscape of the British and American zones of Occupied Germany in any detail. By doing so it will offer a new interpretative framework for postwar culture, in particular in three areas: the history of the Allied Occupation of Germany; the history of postwar Anglophone and Germanophone literature (arguing the two were more intertwined than has previously been suggested); and the history of the relationship between postwar and Cold War. Combining Anglo-American and German literature and film history with critical analysis, cultural history and life-writing, this is a necessarily ambitious, multidisciplinary study which will open up a major new field of research.
Summary
This project investigates the cross-fertilisation of Anglo/American and German literature and film during the Allied Occupation of Germany. It will be the first study to survey the cultural landscape of the British and American zones of Occupied Germany in any detail. By doing so it will offer a new interpretative framework for postwar culture, in particular in three areas: the history of the Allied Occupation of Germany; the history of postwar Anglophone and Germanophone literature (arguing the two were more intertwined than has previously been suggested); and the history of the relationship between postwar and Cold War. Combining Anglo-American and German literature and film history with critical analysis, cultural history and life-writing, this is a necessarily ambitious, multidisciplinary study which will open up a major new field of research.
Max ERC Funding
1 414 601 €
Duration
Start date: 2013-09-01, End date: 2019-02-28
Project acronym BIO-IRT
Project Biologically individualized, model-based radiotherapy on the basis of multi-parametric molecular tumour profiling
Researcher (PI) Daniela Thorwarth
Host Institution (HI) EBERHARD KARLS UNIVERSITAET TUEBINGEN
Call Details Starting Grant (StG), LS7, ERC-2013-StG
Summary High precision radiotherapy (RT) allows extremely flexible tumour treatments achieving highly conformal radiation doses while sparing surrounding organs at risk. Nevertheless, failure rates of up to 50% are reported for head and neck cancer (HNC) due to radiation resistance induced by pathophysiologic factors such as hypoxia and other clinical factors as HPV-status, stage and tumour volume.
This project aims at developing a multi-parametric model for individualized RT (iRT) dose prescriptions in HNC based on biological markers and functional PET/MR imaging. This project goes far beyond current research standards and clinical practice as it aims for establishing hypoxia PET and f-MRI as well as biological markers in HNC as a role model for a novel concept from anatomy-based to biologically iRT.
During this project, a multi-parametric model will be developed on a preclinical basis that combines biological markers such as different oncogenes and hypoxia gene classifier with functional PET/MR imaging, such as FMISO PET in combination with different f-MRI techniques, like DW-, DCE- and BOLD-MRI in addition to MR spectroscopy. The ultimate goal of this project is a multi-parametric model to predict therapy outcome and guide iRT.
In a second part, a clinical study will be carried out to validate the preclinical model in patients. Based on the most informative radiobiological and imaging parameters as identified during the pre-clinical phase, biological markers and advanced PET/MR imaging will be evaluated in terms of their potential for iRT dose prescription.
Successful development of a model for biologically iRT prescription on the basis of multi-parametric molecular profiling would provide a unique basis for personalized cancer treatment. A validated multi-parametric model for RT outcome would represent a paradigm shift from anatomy-based to biologically iRT concepts with the ultimate goal of improving cancer cure rates.
Summary
High precision radiotherapy (RT) allows extremely flexible tumour treatments achieving highly conformal radiation doses while sparing surrounding organs at risk. Nevertheless, failure rates of up to 50% are reported for head and neck cancer (HNC) due to radiation resistance induced by pathophysiologic factors such as hypoxia and other clinical factors as HPV-status, stage and tumour volume.
This project aims at developing a multi-parametric model for individualized RT (iRT) dose prescriptions in HNC based on biological markers and functional PET/MR imaging. This project goes far beyond current research standards and clinical practice as it aims for establishing hypoxia PET and f-MRI as well as biological markers in HNC as a role model for a novel concept from anatomy-based to biologically iRT.
During this project, a multi-parametric model will be developed on a preclinical basis that combines biological markers such as different oncogenes and hypoxia gene classifier with functional PET/MR imaging, such as FMISO PET in combination with different f-MRI techniques, like DW-, DCE- and BOLD-MRI in addition to MR spectroscopy. The ultimate goal of this project is a multi-parametric model to predict therapy outcome and guide iRT.
In a second part, a clinical study will be carried out to validate the preclinical model in patients. Based on the most informative radiobiological and imaging parameters as identified during the pre-clinical phase, biological markers and advanced PET/MR imaging will be evaluated in terms of their potential for iRT dose prescription.
Successful development of a model for biologically iRT prescription on the basis of multi-parametric molecular profiling would provide a unique basis for personalized cancer treatment. A validated multi-parametric model for RT outcome would represent a paradigm shift from anatomy-based to biologically iRT concepts with the ultimate goal of improving cancer cure rates.
Max ERC Funding
1 370 799 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym BODYBUILDING
Project Building body representations: An investigation of the formation and maintenance of body representations
Researcher (PI) Matthew Ryan Longo
Host Institution (HI) BIRKBECK COLLEGE - UNIVERSITY OF LONDON
Call Details Starting Grant (StG), SH4, ERC-2013-StG
Summary "The body is ubiquitous in perceptual experience and is central to our sense of self and personal identity. Disordered body representations are central to several serious psychiatric and neurological disorders. Thus, identifying factors which contribute to the formation and maintenance of body representations is crucial for understanding how body representation goes awry in disease, and how it might be corrected by potential novel therapeutic interventions. Several types of sensory signals provide information about the body, making the body the multisensory object, par excellence. Little is known, however, about how information from somatosensation and from vision is integrated to construct the rich body representations we all experience. This project fills this gap in current understanding by determining how the brain builds body representations (BODYBUILDING). A hierarchical model of body representation is proposed, providing a novel theoretical framework for understanding the diversity of body representations and how they interact. The key motivating hypothesis is that body representation is determined by the dialectic between two major cognitive processes. First, from the bottom-up, somatosensation represents the body surface as a mosaic of discrete receptive fields, which become progressively agglomerated into larger and larger units of organisation, a process I call fusion. Second, from the top-down, vision starts out depicting the body as an undifferentiated whole, which is progressively broken into smaller parts, a process I call segmentation. Thus, body representation operates from the bottom-up as a process of fusion of primitive elements into larger complexes, as well as from the top-down as a process of segmentation of an initially undifferentiated whole into more basic parts. This project uses a combination of psychophysical, electrophysiological, and neuroimaging methods to provide fundamental insight into how we come to represent our body."
Summary
"The body is ubiquitous in perceptual experience and is central to our sense of self and personal identity. Disordered body representations are central to several serious psychiatric and neurological disorders. Thus, identifying factors which contribute to the formation and maintenance of body representations is crucial for understanding how body representation goes awry in disease, and how it might be corrected by potential novel therapeutic interventions. Several types of sensory signals provide information about the body, making the body the multisensory object, par excellence. Little is known, however, about how information from somatosensation and from vision is integrated to construct the rich body representations we all experience. This project fills this gap in current understanding by determining how the brain builds body representations (BODYBUILDING). A hierarchical model of body representation is proposed, providing a novel theoretical framework for understanding the diversity of body representations and how they interact. The key motivating hypothesis is that body representation is determined by the dialectic between two major cognitive processes. First, from the bottom-up, somatosensation represents the body surface as a mosaic of discrete receptive fields, which become progressively agglomerated into larger and larger units of organisation, a process I call fusion. Second, from the top-down, vision starts out depicting the body as an undifferentiated whole, which is progressively broken into smaller parts, a process I call segmentation. Thus, body representation operates from the bottom-up as a process of fusion of primitive elements into larger complexes, as well as from the top-down as a process of segmentation of an initially undifferentiated whole into more basic parts. This project uses a combination of psychophysical, electrophysiological, and neuroimaging methods to provide fundamental insight into how we come to represent our body."
Max ERC Funding
1 497 715 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym BRAINIMAGES
Project "How do we keep apart internally generated mental images from externally induced percepts? Dissociating mental imagery, working memory and conscious perception."
Researcher (PI) Juha Tapani Silvanto
Host Institution (HI) THE UNIVERSITY OF WESTMINSTER LBG
Call Details Starting Grant (StG), SH4, ERC-2013-StG
Summary "Conscious experiences normally result from the flow of external input into our sensory systems. However, our minds are also able to create conscious percepts in the absence of any sensory stimulation; these internally generated percepts are referred to as mental images, and they have many similarities with real visual percepts; consequently, mental imagery is often referred to as “seeing in the mind’s eye”. Mental imagery is also believed to be closely related to working memory, a mechanism which can maintain “offline” representations of visual stimuli no longer in the observer’s view, as both involve internal representations of previously seen visual attributes. Indeed, visual imagery is often thought of as a conscious window into the content of memory representations. Imagery, working memory, and conscious perception are thus thought to rely on very similar mechanisms. However, in everyday life we are generally able to keep apart the constructs of our imagination from real physical events; this begs the question of how the brain distinguishes internal mental images from externally induced visual percepts. To answer this question, the proposed work aims to isolate the cortical mechanisms associated uniquely with WM and imagery independently of each other and independently of the influence of external conscious percepts. Furthermore, by the use of neuroimaging and brain stimulation, we aim to determine the cortical mechanisms which keep apart internally generated and externally induced percepts, in both health and disease. This is a question of great clinical interest, as the ability to distinguish the perceived from the imagined is impoverished in psychotic disorders. In addition to revealing the mechanisms underlying this confusion, the present project aims to alleviate it in psychotic patients by the use of brain stimulation. The project will thus significantly improve our understanding of these cognitive processes and will also have clinical implications."
Summary
"Conscious experiences normally result from the flow of external input into our sensory systems. However, our minds are also able to create conscious percepts in the absence of any sensory stimulation; these internally generated percepts are referred to as mental images, and they have many similarities with real visual percepts; consequently, mental imagery is often referred to as “seeing in the mind’s eye”. Mental imagery is also believed to be closely related to working memory, a mechanism which can maintain “offline” representations of visual stimuli no longer in the observer’s view, as both involve internal representations of previously seen visual attributes. Indeed, visual imagery is often thought of as a conscious window into the content of memory representations. Imagery, working memory, and conscious perception are thus thought to rely on very similar mechanisms. However, in everyday life we are generally able to keep apart the constructs of our imagination from real physical events; this begs the question of how the brain distinguishes internal mental images from externally induced visual percepts. To answer this question, the proposed work aims to isolate the cortical mechanisms associated uniquely with WM and imagery independently of each other and independently of the influence of external conscious percepts. Furthermore, by the use of neuroimaging and brain stimulation, we aim to determine the cortical mechanisms which keep apart internally generated and externally induced percepts, in both health and disease. This is a question of great clinical interest, as the ability to distinguish the perceived from the imagined is impoverished in psychotic disorders. In addition to revealing the mechanisms underlying this confusion, the present project aims to alleviate it in psychotic patients by the use of brain stimulation. The project will thus significantly improve our understanding of these cognitive processes and will also have clinical implications."
Max ERC Funding
1 280 680 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym CancerExomesInPlasma
Project Non-invasive genomic analysis of cancer using circulating tumour DNA
Researcher (PI) Nitzan Rosenfeld
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Starting Grant (StG), LS7, ERC-2013-StG
Summary Non-invasive genomic analysis of cancer can revolutionize the study of tumour evolution, heterogeneity, and drug resistance. Clinically applied, this can transform current practice in cancer diagnosis and management. Cell-free DNA in plasma contains tumour-specific sequences. This circulating tumour DNA (ctDNA) is a promising source of genomic and diagnostic information, readily accessible non-invasively. The study of ctDNA is therefore timely and of great importance. But it is also very challenging. Measurement can be complex, and high-quality samples are not easily obtained. Though progress has been made, much remains to be discovered.
My lab pioneered the use of targeted sequencing to analyse mutations in ctDNA. We recently developed a ground-breaking paradigm for analysing evolving cancer genomes in plasma DNA, combining ctDNA quantification with exome-sequencing of serial plasma samples. Applied to extensive sets of clinical samples my lab has characterized, this will enable large-scale exploration of acquired drug resistance with unprecedented resolution. CancerExomesInPlasma aims to use ctDNA for genome-wide analysis of tumour evolution, as a means for non-invasive, unbiased discovery of genes and pathways involved in resistance to cancer therapy.
Summary
Non-invasive genomic analysis of cancer can revolutionize the study of tumour evolution, heterogeneity, and drug resistance. Clinically applied, this can transform current practice in cancer diagnosis and management. Cell-free DNA in plasma contains tumour-specific sequences. This circulating tumour DNA (ctDNA) is a promising source of genomic and diagnostic information, readily accessible non-invasively. The study of ctDNA is therefore timely and of great importance. But it is also very challenging. Measurement can be complex, and high-quality samples are not easily obtained. Though progress has been made, much remains to be discovered.
My lab pioneered the use of targeted sequencing to analyse mutations in ctDNA. We recently developed a ground-breaking paradigm for analysing evolving cancer genomes in plasma DNA, combining ctDNA quantification with exome-sequencing of serial plasma samples. Applied to extensive sets of clinical samples my lab has characterized, this will enable large-scale exploration of acquired drug resistance with unprecedented resolution. CancerExomesInPlasma aims to use ctDNA for genome-wide analysis of tumour evolution, as a means for non-invasive, unbiased discovery of genes and pathways involved in resistance to cancer therapy.
Max ERC Funding
1 769 380 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym CapReal
Project Performance Capture of the Real World in Motion
Researcher (PI) Christian Theobalt
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), PE6, ERC-2013-StG
Summary Computer graphics technology for realistic rendering has improved
dramatically; however, the technology to create scene models to be rendered,
e.g., for movies, has not developed at the same pace. In practice, the state
of the art in model creation still requires months of complex manual design,
and this is a serious threat to progress. To attack this problem, computer
graphics and computer vision researchers jointly developed methods that
capture scene models from real world examples. Of particular importance is
the capturing of moving scenes. The pinnacle of dynamic scene capture
technology in research is marker-less performance capture. From multi-view
video, they capture dynamic surface and texture models of the real world.
Performance capture is hardly used in practice due to profound limitations:
recording is usually limited to indoor studios, controlled lighting, and
dense static camera arrays. Methods are often limited to single objects, and
reconstructed shape detail is very limited. Assumptions about materials,
reflectance, and lighting in a scene are simplistic, and we cannot easily
modify captured data.
In this project, we will pioneer a new generation of performance capture
techniques to overcome these limitations. Our methods will allow the
reconstruction of dynamic surface models of unprecedented shape detail. They
will succeed on general scenes outside of the lab and outdoors, scenes with
complex material and reflectance distributions, and scenes in which lighting
is general, uncontrolled, and unknown. They will capture dense and crowded
scenes with complex shape deformations. They will reconstruct conveniently
modifiable scene models. They will work with sparse and moving sets of
cameras, ultimately even with mobile phones. This far-reaching,
multi-disciplinary project will turn performance capture from a research
technology into a practical technology, provide groundbreaking scientific
insights, and open up revolutionary new applications.
Summary
Computer graphics technology for realistic rendering has improved
dramatically; however, the technology to create scene models to be rendered,
e.g., for movies, has not developed at the same pace. In practice, the state
of the art in model creation still requires months of complex manual design,
and this is a serious threat to progress. To attack this problem, computer
graphics and computer vision researchers jointly developed methods that
capture scene models from real world examples. Of particular importance is
the capturing of moving scenes. The pinnacle of dynamic scene capture
technology in research is marker-less performance capture. From multi-view
video, they capture dynamic surface and texture models of the real world.
Performance capture is hardly used in practice due to profound limitations:
recording is usually limited to indoor studios, controlled lighting, and
dense static camera arrays. Methods are often limited to single objects, and
reconstructed shape detail is very limited. Assumptions about materials,
reflectance, and lighting in a scene are simplistic, and we cannot easily
modify captured data.
In this project, we will pioneer a new generation of performance capture
techniques to overcome these limitations. Our methods will allow the
reconstruction of dynamic surface models of unprecedented shape detail. They
will succeed on general scenes outside of the lab and outdoors, scenes with
complex material and reflectance distributions, and scenes in which lighting
is general, uncontrolled, and unknown. They will capture dense and crowded
scenes with complex shape deformations. They will reconstruct conveniently
modifiable scene models. They will work with sparse and moving sets of
cameras, ultimately even with mobile phones. This far-reaching,
multi-disciplinary project will turn performance capture from a research
technology into a practical technology, provide groundbreaking scientific
insights, and open up revolutionary new applications.
Max ERC Funding
1 480 800 €
Duration
Start date: 2013-09-01, End date: 2018-08-31
Project acronym CARDIOMICS
Project Cardiomics: Use of -omics methods in large populations for identification of novel drug targets and clinical biomarkers for coronary heart disease
Researcher (PI) Erik Ingelsson
Host Institution (HI) UPPSALA UNIVERSITET
Call Details Starting Grant (StG), LS7, ERC-2013-StG
Summary There is a large need for revitalization of the research on coronary heart disease (CHD) including: a) improved risk prediction and more adequate individually-tailored treatment; and b) new targets for drug development based on pathways previously unknown to be involved in CHD pathophysiology.
The overall goal of this proposal is to improve prevention and treatment of CHD through better understanding of the biology underlying disease development, identification of new biomarkers for improved risk prediction, and discovery of novel targets for drug development.
The specific aims are to:
1) Establish and characterize causal genes in known CHD loci (gene regions) through: a) resequencing of known CHD loci; b) expression profiling in liver, arteries, myocardium and skeletal muscle; c) high-throughput protein profiling; and d) experimental follow-up in zebrafish (Danio rerio) models.
2) Discover new proteins, metabolites and pathways involved in CHD pathophysiology using global proteomic and metabolomic profiling to provide new biomarkers and drug targets.
We will integrate genomic, transcriptomic, metabolomic and proteomic data from five longitudinal, population-based cohort studies with detailed phenotyping and one study with tissue collections for expression studies. The cohort studies include 36,907 individuals; there are 3,093 prevalent CHD cases at baseline and the estimated number of incident (new) events in previously healthy by 2016 is 2,202. In addition, we work with zebrafish model systems to establish causal CHD genes and characterize their mechanisms of action.
We have access to unique study materials, state-of-the art methods, and a strong track record of successful projects in this field. To our knowledge, there are no other groups combining -omics methods to elucidate the whole chain from DNA variation to overt CHD in such large and well-characterized study samples. Further, we are unaware of other groups using zebrafish models to screen for and characterize causal CHD genes. Our work is anticipated to lead to new important insights into the pathophysiology of CHD, identification of new biomarkers for improved risk prediction, and discovery of novel targets for drug development.
Summary
There is a large need for revitalization of the research on coronary heart disease (CHD) including: a) improved risk prediction and more adequate individually-tailored treatment; and b) new targets for drug development based on pathways previously unknown to be involved in CHD pathophysiology.
The overall goal of this proposal is to improve prevention and treatment of CHD through better understanding of the biology underlying disease development, identification of new biomarkers for improved risk prediction, and discovery of novel targets for drug development.
The specific aims are to:
1) Establish and characterize causal genes in known CHD loci (gene regions) through: a) resequencing of known CHD loci; b) expression profiling in liver, arteries, myocardium and skeletal muscle; c) high-throughput protein profiling; and d) experimental follow-up in zebrafish (Danio rerio) models.
2) Discover new proteins, metabolites and pathways involved in CHD pathophysiology using global proteomic and metabolomic profiling to provide new biomarkers and drug targets.
We will integrate genomic, transcriptomic, metabolomic and proteomic data from five longitudinal, population-based cohort studies with detailed phenotyping and one study with tissue collections for expression studies. The cohort studies include 36,907 individuals; there are 3,093 prevalent CHD cases at baseline and the estimated number of incident (new) events in previously healthy by 2016 is 2,202. In addition, we work with zebrafish model systems to establish causal CHD genes and characterize their mechanisms of action.
We have access to unique study materials, state-of-the art methods, and a strong track record of successful projects in this field. To our knowledge, there are no other groups combining -omics methods to elucidate the whole chain from DNA variation to overt CHD in such large and well-characterized study samples. Further, we are unaware of other groups using zebrafish models to screen for and characterize causal CHD genes. Our work is anticipated to lead to new important insights into the pathophysiology of CHD, identification of new biomarkers for improved risk prediction, and discovery of novel targets for drug development.
Max ERC Funding
1 498 224 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym CASPI
Project Low-carbon Lifestyles and Behavioural Spillover
Researcher (PI) Lorraine Elisabeth Whitmarsh
Host Institution (HI) CARDIFF UNIVERSITY
Call Details Starting Grant (StG), SH3, ERC-2013-StG
Summary Responding to climate change has profound implications for behaviour; yet policies to achieve this change have met with limited success. A key challenge for environmental social scientists is the need to move forward in understanding how to bring about change in consumption, community and political behaviours, which is commensurate to the scale of the climate change challenge. One promising area is ‘behavioural spillover’, the notion that taking up a new behaviour (e.g., recycling) may lead to adoption of other, more environmentally beneficial, behaviours. Such a notion appears to hold the promise of changing a suite of behaviours in a cost-effective way. Yet despite robust theoretical principles (e.g., self-perception theory) underpinning behavioural spillover, there is little empirical research. The proposed research intends to produce a step-change in behavioural and sustainability science by undertaking a mixed-method, cross-cultural study of pro-environmental behavioural spillover in order to open up new ways of promoting sustainable lifestyle change and significantly broadening our understanding of behaviour within individuals and cultures. There are three objectives for the research:
1. To examine ways in which pro-environmental behaviour, lifestyles and spillover are understood and develop within different cultures;
2. To understand drivers of behavioural consistency and spillover effects across contexts, including home and work, and cultures; and
3. To develop a theoretical framework for behavioural spillover and test interventions to promote spillover across different contexts and cultures.
Three Work Packages will address these objectives:
1. Defining and understanding spillover: Focus groups with biographical questions and card sorts [Years 1-2]
2. Examining drivers of spillover: Cross-national survey with factor, correlation and regression analyses [Years 2-3]
3. Developing theory and testing interventions: Laboratory and field experiments [Years 3-5]
Summary
Responding to climate change has profound implications for behaviour; yet policies to achieve this change have met with limited success. A key challenge for environmental social scientists is the need to move forward in understanding how to bring about change in consumption, community and political behaviours, which is commensurate to the scale of the climate change challenge. One promising area is ‘behavioural spillover’, the notion that taking up a new behaviour (e.g., recycling) may lead to adoption of other, more environmentally beneficial, behaviours. Such a notion appears to hold the promise of changing a suite of behaviours in a cost-effective way. Yet despite robust theoretical principles (e.g., self-perception theory) underpinning behavioural spillover, there is little empirical research. The proposed research intends to produce a step-change in behavioural and sustainability science by undertaking a mixed-method, cross-cultural study of pro-environmental behavioural spillover in order to open up new ways of promoting sustainable lifestyle change and significantly broadening our understanding of behaviour within individuals and cultures. There are three objectives for the research:
1. To examine ways in which pro-environmental behaviour, lifestyles and spillover are understood and develop within different cultures;
2. To understand drivers of behavioural consistency and spillover effects across contexts, including home and work, and cultures; and
3. To develop a theoretical framework for behavioural spillover and test interventions to promote spillover across different contexts and cultures.
Three Work Packages will address these objectives:
1. Defining and understanding spillover: Focus groups with biographical questions and card sorts [Years 1-2]
2. Examining drivers of spillover: Cross-national survey with factor, correlation and regression analyses [Years 2-3]
3. Developing theory and testing interventions: Laboratory and field experiments [Years 3-5]
Max ERC Funding
1 486 563 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym CellInspired
Project Mechanotransduction mediating cell adhesion - towards cell-inspired adaptive materials
Researcher (PI) Christine Johanna Maria Selhuber-Unkel
Host Institution (HI) CHRISTIAN-ALBRECHTS-UNIVERSITAET ZU KIEL
Call Details Starting Grant (StG), PE3, ERC-2013-StG
Summary Adhesion is a key event for eukaryotic cells to establish contact with the extracellular matrix and other cells. It allows cells to quickly adapt to mechanical changes in their environment by either adhesion reinforcement or release. Understanding and mimicking the interplay between adhesion reinforcement and release could result in novel cell-inspired adaptive materials. In order to ultimately be able to transfer functional principles of cell adhesion to a next generation of biomimetic materials, we will elucidate the biophysics of cell adhesion in response to external force. We have already obtained important results that have provided new insights into cell adhesion. For example, we have found that the nanoscale spacing of adhesion sites controls cell adhesion reinforcement. With the project proposed here I want to advance our understanding of cell adhesion by generating a comprehensive model of mechanotransduction-mediated cell adhesion. Therefore, my group will develop new force measurement methods based on atomic force microscopy and 2D force sensor arrays that allow for a systematic investigation of key parameters in the cell adhesion system, including the concept of cellular mechanosensing. My hypothesis is that there is a transition between adhesion reinforcement and release as a function of external mechanical stress, stress history, and the biofunctionalization of the adhesive surface. Transferring our biophysical knowledge into materials science promises new materials with a dynamic adaptive mechanical and adhesion response. This transfer of biological concepts into cell-inspired materials will follow the construction principles of cells: the proposed material will be based on polymer fibers that are reversibly cross-linked and reinforce adhesion upon mechanical stress. The ultimate goal of the proposed project is to develop an intelligent polymer material with an adaptive adhesive and mechanical response similar to that found in living cells.
Summary
Adhesion is a key event for eukaryotic cells to establish contact with the extracellular matrix and other cells. It allows cells to quickly adapt to mechanical changes in their environment by either adhesion reinforcement or release. Understanding and mimicking the interplay between adhesion reinforcement and release could result in novel cell-inspired adaptive materials. In order to ultimately be able to transfer functional principles of cell adhesion to a next generation of biomimetic materials, we will elucidate the biophysics of cell adhesion in response to external force. We have already obtained important results that have provided new insights into cell adhesion. For example, we have found that the nanoscale spacing of adhesion sites controls cell adhesion reinforcement. With the project proposed here I want to advance our understanding of cell adhesion by generating a comprehensive model of mechanotransduction-mediated cell adhesion. Therefore, my group will develop new force measurement methods based on atomic force microscopy and 2D force sensor arrays that allow for a systematic investigation of key parameters in the cell adhesion system, including the concept of cellular mechanosensing. My hypothesis is that there is a transition between adhesion reinforcement and release as a function of external mechanical stress, stress history, and the biofunctionalization of the adhesive surface. Transferring our biophysical knowledge into materials science promises new materials with a dynamic adaptive mechanical and adhesion response. This transfer of biological concepts into cell-inspired materials will follow the construction principles of cells: the proposed material will be based on polymer fibers that are reversibly cross-linked and reinforce adhesion upon mechanical stress. The ultimate goal of the proposed project is to develop an intelligent polymer material with an adaptive adhesive and mechanical response similar to that found in living cells.
Max ERC Funding
1 467 483 €
Duration
Start date: 2013-09-01, End date: 2018-08-31
Project acronym CHAPARDYN
Project Chaos in Parabolic Dynamics: Mixing, Rigidity, Spectra
Researcher (PI) Corinna Ulcigrai
Host Institution (HI) UNIVERSITY OF BRISTOL
Call Details Starting Grant (StG), PE1, ERC-2013-StG
Summary "The theme of the proposal is the mathematical investigation of chaos (in particular ergodic and spectral properties) in parabolic dynamics, via analytic, geometric and probabilistic techniques. Parabolic dynamical systems are mathematical models of the many phenomena which display a ""slow"" form of chaotic evolution, in the sense that nearby trajectories diverge polynomially in time. In contrast with the hyperbolic case and with the elliptic case, there is no general theory which describes parabolic dynamical systems. Only few classical examples are well understood.
The research plan aims at bridging this gap, by studying new classes of parabolic systems and unexplored properties of classical ones. More precisely, I propose to study parabolic flows beyond the algebraic set-up and infinite measure-preserving parabolic systems, both of which are very virgin fields of research, and to attack open conjectures and questions on fine chaotic properties, such as spectra and rigidity, for area-preserving flows. Moreover, connections between parabolic dynamics and respectively number theory, mathematical physics and probability will be explored. g New techniques, stemming from some recent breakthroughs in Teichmueller dynamics, spectral theory and infinite ergodic theory, will be developed.
The proposed research will bring our knowledge significantly beyond the current state-of-the art, both in breadth and depth and will identify common features and mechanisms for chaos in parabolic systems. Understanding similar features and common geometric mechanisms responsible for mixing, rigidity and spectral properties of parabolic systems will provide important insight towards an universal theory of parabolic dynamics."
Summary
"The theme of the proposal is the mathematical investigation of chaos (in particular ergodic and spectral properties) in parabolic dynamics, via analytic, geometric and probabilistic techniques. Parabolic dynamical systems are mathematical models of the many phenomena which display a ""slow"" form of chaotic evolution, in the sense that nearby trajectories diverge polynomially in time. In contrast with the hyperbolic case and with the elliptic case, there is no general theory which describes parabolic dynamical systems. Only few classical examples are well understood.
The research plan aims at bridging this gap, by studying new classes of parabolic systems and unexplored properties of classical ones. More precisely, I propose to study parabolic flows beyond the algebraic set-up and infinite measure-preserving parabolic systems, both of which are very virgin fields of research, and to attack open conjectures and questions on fine chaotic properties, such as spectra and rigidity, for area-preserving flows. Moreover, connections between parabolic dynamics and respectively number theory, mathematical physics and probability will be explored. g New techniques, stemming from some recent breakthroughs in Teichmueller dynamics, spectral theory and infinite ergodic theory, will be developed.
The proposed research will bring our knowledge significantly beyond the current state-of-the art, both in breadth and depth and will identify common features and mechanisms for chaos in parabolic systems. Understanding similar features and common geometric mechanisms responsible for mixing, rigidity and spectral properties of parabolic systems will provide important insight towards an universal theory of parabolic dynamics."
Max ERC Funding
1 193 534 €
Duration
Start date: 2014-01-01, End date: 2019-08-31
Project acronym CHASM
Project Convective Heat Transport and Stellar Magnetism
Researcher (PI) Matthew Keith Morris Browning
Host Institution (HI) THE UNIVERSITY OF EXETER
Call Details Starting Grant (StG), PE9, ERC-2013-StG
Summary "Magnetism plays a profound role in stars and planets. In the Sun, magnetic fields are ultimately responsible for solar flares and coronal mass ejections that can impact our technological society. Earth's own magnetic field partly shields us from these events, but solar storms can still interrupt satellite communications, disrupt power grids, and pose a danger to astronauts on spacewalks. More generally, magnetic fields partly control the rotational evolution of stars, likely impact the habitability of extrasolar planets, and may modify the sizes and internal structures of
low-mass stars and gaseous planets. In all cases, the magnetism is generally thought to arise from a convective dynamo -- but a detailed theoretical understanding of this process, and its influence on the overall evolution of stars and planets, has remained elusive. Particularly fascinating observational puzzles have recently come from the study of low-mass M-dwarf stars: the most numerous type of stars in our galaxy and perhaps the most likely to host habitable planets.
We therefore propose to study how stars and sub-stellar objects build magnetic fields using 3-D magnetohydrodynamic simulations, and to quantify the effects of those fields on stellar structure and evolution. Using the Anelastic Spherical Harmonic (ASH) and Compressible Spherical Segment (CSS) codes, we will examine (a) how global magnetic field generation in these stars depends upon parameters like stellar mass, rotation rate, and the presence of a stable core, and (b) how the deep convection and magnetism imprints through (and is shaped by) the near-surface layers of these objects. We will (c) determine the impact of the resulting fields on the convective transport of heat and angular momentum, incorporate our results into state of the art 1-D evolutionary models of stars, and explore the consequences for stellar evolution. Separately, we will (d) develop and maintain a public database of 3-D convective dynamo models."
Summary
"Magnetism plays a profound role in stars and planets. In the Sun, magnetic fields are ultimately responsible for solar flares and coronal mass ejections that can impact our technological society. Earth's own magnetic field partly shields us from these events, but solar storms can still interrupt satellite communications, disrupt power grids, and pose a danger to astronauts on spacewalks. More generally, magnetic fields partly control the rotational evolution of stars, likely impact the habitability of extrasolar planets, and may modify the sizes and internal structures of
low-mass stars and gaseous planets. In all cases, the magnetism is generally thought to arise from a convective dynamo -- but a detailed theoretical understanding of this process, and its influence on the overall evolution of stars and planets, has remained elusive. Particularly fascinating observational puzzles have recently come from the study of low-mass M-dwarf stars: the most numerous type of stars in our galaxy and perhaps the most likely to host habitable planets.
We therefore propose to study how stars and sub-stellar objects build magnetic fields using 3-D magnetohydrodynamic simulations, and to quantify the effects of those fields on stellar structure and evolution. Using the Anelastic Spherical Harmonic (ASH) and Compressible Spherical Segment (CSS) codes, we will examine (a) how global magnetic field generation in these stars depends upon parameters like stellar mass, rotation rate, and the presence of a stable core, and (b) how the deep convection and magnetism imprints through (and is shaped by) the near-surface layers of these objects. We will (c) determine the impact of the resulting fields on the convective transport of heat and angular momentum, incorporate our results into state of the art 1-D evolutionary models of stars, and explore the consequences for stellar evolution. Separately, we will (d) develop and maintain a public database of 3-D convective dynamo models."
Max ERC Funding
1 469 070 €
Duration
Start date: 2013-12-01, End date: 2018-11-30
Project acronym CHEMOSENSORYCIRCUITS
Project Function of Chemosensory Circuits
Researcher (PI) Emre Yaksi
Host Institution (HI) NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET NTNU
Call Details Starting Grant (StG), LS5, ERC-2013-StG
Summary Smell and taste are the least studied of all senses. Very little is known about chemosensory information processing beyond the level of receptor neurons. Every morning we enjoy our coffee thanks to our brains ability to combine and process multiple sensory modalities. Meanwhile, we can still review a document on our desk by adjusting the weights of numerous sensory inputs that constantly bombard our brains. Yet, the smell of our coffee may remind us that pleasant weekend breakfast through associative learning and memory. In the proposed project we will explore the function and the architecture of neural circuits that are involved in olfactory and gustatory information processing, namely habenula and brainstem. Moreover we will investigate the fundamental principles underlying multimodal sensory integration and the neural basis of behavior in these highly conserved brain areas.
To achieve these goals we will take an innovative approach by combining two-photon calcium imaging, optogenetics and electrophysiology with the expanding genetic toolbox of a small vertebrate, the zebrafish. This pioneering approach will enable us to design new types of experiments that were unthinkable only a few years ago. Using this unique combination of methods, we will monitor and perturb the activity of functionally distinct elements of habenular and brainstem circuits, in vivo. The habenula and brainstem are important in mediating stress/anxiety and eating habits respectively. Therefore, understanding the neural computations in these brain regions is important for comprehending the neural mechanisms underlying psychological conditions related to anxiety and eating disorders. We anticipate that our results will go beyond chemical senses and contribute new insights to the understanding of how brain circuits work and interact with the sensory world to shape neural activity and behavioral outputs of animals.
Summary
Smell and taste are the least studied of all senses. Very little is known about chemosensory information processing beyond the level of receptor neurons. Every morning we enjoy our coffee thanks to our brains ability to combine and process multiple sensory modalities. Meanwhile, we can still review a document on our desk by adjusting the weights of numerous sensory inputs that constantly bombard our brains. Yet, the smell of our coffee may remind us that pleasant weekend breakfast through associative learning and memory. In the proposed project we will explore the function and the architecture of neural circuits that are involved in olfactory and gustatory information processing, namely habenula and brainstem. Moreover we will investigate the fundamental principles underlying multimodal sensory integration and the neural basis of behavior in these highly conserved brain areas.
To achieve these goals we will take an innovative approach by combining two-photon calcium imaging, optogenetics and electrophysiology with the expanding genetic toolbox of a small vertebrate, the zebrafish. This pioneering approach will enable us to design new types of experiments that were unthinkable only a few years ago. Using this unique combination of methods, we will monitor and perturb the activity of functionally distinct elements of habenular and brainstem circuits, in vivo. The habenula and brainstem are important in mediating stress/anxiety and eating habits respectively. Therefore, understanding the neural computations in these brain regions is important for comprehending the neural mechanisms underlying psychological conditions related to anxiety and eating disorders. We anticipate that our results will go beyond chemical senses and contribute new insights to the understanding of how brain circuits work and interact with the sensory world to shape neural activity and behavioral outputs of animals.
Max ERC Funding
1 499 471 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym CHMIFLUORS
Project Carbohydrate Mimesis using Fluorinated Sugars for Chemical Biology: From Reaction Design to Applications in Molecular Imaging
Researcher (PI) Ryan Gilmour
Host Institution (HI) WESTFAELISCHE WILHELMS-UNIVERSITAET MUENSTER
Call Details Starting Grant (StG), PE5, ERC-2013-StG
Summary The principle objective of this proposal is to validate fluorinated glyco-structures as effective carbohydrate mimics for the next frontier in pharmaceutical research. Herein we propose to capitalise on the major advances in statistical data analysis which are unravelling the complexity of mammalian and bacterial “glycospace”. Molecular mimicry is a powerful drug design approach. It is therefore envisaged to develop a focussed programme of research to validate fluorinated glycostructures, and in particular 2-fluoro sugars, as carbohydrate mimics for chemical biology, exploiting the ubiquitous role of carbohydrates in molecular recognition. Salient features of the 2-fluoro substituent include (i) enhanced hydrolytic stability to enzymatic degradation, (ii) the presence of a NMR active reporter nucleus (19F) for facile analysis, and (iii) the possibility for molecular imaging application when using 18F labelled glycostructures. Phase one of this project will aim to develop synthetic routes to the target fluoro-glycostructures. This will involve a substantial component of physical organic chemistry including conformational analysis, advanced 19F NMR spectroscopy and the possible isolation of oxo-carbenium analogues by exploiting advances in the development of large, weakly co-ordinating anions. From first principle reaction design and development, through a basic understanding of conformation and reactivity, phase 2 will focus on the application of these materials for chemical biology applications. Phase 2 will then heavily focus on the application of complex oligosaccharides containing the PET active 18F moiety. It is envisaged that by exploiting the ubiquitous role of carbohydrates in molecular recognition that this would conceivably lead to the development of selective imaging agents, thus bypassing the current problem of relying on the metabolically controlled distribution of the commonly used PET tracer 2-fluorodeoxy glucose (18F-FDG).
Summary
The principle objective of this proposal is to validate fluorinated glyco-structures as effective carbohydrate mimics for the next frontier in pharmaceutical research. Herein we propose to capitalise on the major advances in statistical data analysis which are unravelling the complexity of mammalian and bacterial “glycospace”. Molecular mimicry is a powerful drug design approach. It is therefore envisaged to develop a focussed programme of research to validate fluorinated glycostructures, and in particular 2-fluoro sugars, as carbohydrate mimics for chemical biology, exploiting the ubiquitous role of carbohydrates in molecular recognition. Salient features of the 2-fluoro substituent include (i) enhanced hydrolytic stability to enzymatic degradation, (ii) the presence of a NMR active reporter nucleus (19F) for facile analysis, and (iii) the possibility for molecular imaging application when using 18F labelled glycostructures. Phase one of this project will aim to develop synthetic routes to the target fluoro-glycostructures. This will involve a substantial component of physical organic chemistry including conformational analysis, advanced 19F NMR spectroscopy and the possible isolation of oxo-carbenium analogues by exploiting advances in the development of large, weakly co-ordinating anions. From first principle reaction design and development, through a basic understanding of conformation and reactivity, phase 2 will focus on the application of these materials for chemical biology applications. Phase 2 will then heavily focus on the application of complex oligosaccharides containing the PET active 18F moiety. It is envisaged that by exploiting the ubiquitous role of carbohydrates in molecular recognition that this would conceivably lead to the development of selective imaging agents, thus bypassing the current problem of relying on the metabolically controlled distribution of the commonly used PET tracer 2-fluorodeoxy glucose (18F-FDG).
Max ERC Funding
1 253 880 €
Duration
Start date: 2013-11-01, End date: 2018-10-31
Project acronym CHROMOOCYTE
Project Mechanisms of chromosome segregation in mammalian oocytes
Researcher (PI) Melina Schuh
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), LS3, ERC-2013-StG
Summary All animal life starts with the fertilization of an egg. A haploid egg and a haploid sperm fuse and together they form a new genetically unique embryo. But surprisingly, eggs frequently contain an incorrect number of chromosomes. Depending on the age of the woman, 10-50% of eggs are chromosomally abnormal. This high percentage of abnormal eggs results from chromosome segregation errors during oocyte maturation, the process by which a diploid oocyte matures into a haploid egg. Thus, errors during meiosis in human oocytes are the most common cause of pregnancy losses and contribute to approximately 95% of human aneuploidy such as Down’s syndrome. Surprisingly, we still know very little about how mammalian oocytes mature into eggs, and it is still unclear why chromosome segregation during meiosis is so much more error-prone than during mitosis.
My proposal combines three innovative and complementary approaches towards understanding how homologous chromosomes are segregated and why oocyte maturation in mammals is so error-prone. Specifically, we will work towards the following three aims: 1. We will complete the first large scale screen for genes required for accurate progression through meiosis in mammalian oocytes and characterize the function of a few selected genes in detail. 2. We will analyse meiosis and investigate potential causes of chromosome segregation errors directly in live human oocytes. 3. We will study the function of an F-actin spindle and a chromosome-associated myosin that might be required for chromosome segregation in mammalian oocytes.
Because errors during oocyte maturation lead to pregnancy loss, birth defects and infertility, this work will not only provide important insights into fundamental cellular mechanisms, but will also have important implications for human health.
Summary
All animal life starts with the fertilization of an egg. A haploid egg and a haploid sperm fuse and together they form a new genetically unique embryo. But surprisingly, eggs frequently contain an incorrect number of chromosomes. Depending on the age of the woman, 10-50% of eggs are chromosomally abnormal. This high percentage of abnormal eggs results from chromosome segregation errors during oocyte maturation, the process by which a diploid oocyte matures into a haploid egg. Thus, errors during meiosis in human oocytes are the most common cause of pregnancy losses and contribute to approximately 95% of human aneuploidy such as Down’s syndrome. Surprisingly, we still know very little about how mammalian oocytes mature into eggs, and it is still unclear why chromosome segregation during meiosis is so much more error-prone than during mitosis.
My proposal combines three innovative and complementary approaches towards understanding how homologous chromosomes are segregated and why oocyte maturation in mammals is so error-prone. Specifically, we will work towards the following three aims: 1. We will complete the first large scale screen for genes required for accurate progression through meiosis in mammalian oocytes and characterize the function of a few selected genes in detail. 2. We will analyse meiosis and investigate potential causes of chromosome segregation errors directly in live human oocytes. 3. We will study the function of an F-actin spindle and a chromosome-associated myosin that might be required for chromosome segregation in mammalian oocytes.
Because errors during oocyte maturation lead to pregnancy loss, birth defects and infertility, this work will not only provide important insights into fundamental cellular mechanisms, but will also have important implications for human health.
Max ERC Funding
1 487 611 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym CHROMOTHRIPSIS
Project Dissecting the Molecular Mechanism of Catastrophic DNA Rearrangement in Cancer
Researcher (PI) Jan Oliver Korbel
Host Institution (HI) EUROPEAN MOLECULAR BIOLOGY LABORATORY
Call Details Starting Grant (StG), LS2, ERC-2013-StG
Summary Recent cancer genome analyses have led to the discovery of a process involving massive genome structural rearrangement (SR) formation in a one-step, cataclysmic event, coined chromothripsis. The term chromothripsis (chromo from chromosome; thripsis for shattering into pieces) stands for a hypothetical process in which individual chromosomes are pulverised, resulting in a multitude of fragments, some of which are lost to the cell whereas others are erroneously rejoined. Compelling evidence was presented that chromothripsis plays a crucial role in the development, or progression of a notable subset of human cancers – thus, tumorigensis models involving gradual acquisitions of alterations may need to be revised in these cancers.
Presently, chromothripsis lacks a mechanistic basis. We recently showed that in childhood medulloblastoma brain tumours driven by Sonic Hedgehog (Shh) signalling, chromothripsis is linked with predisposing TP53 mutations. Thus, rather than occurring in isolation, chromothripsis appears to be prone to happen in conjunction with (or instigated by) gradually acquired alterations, or in the context of active signalling pathways, the inference of which may lead to further mechanistic insights. Using such rationale, I propose to dissect the mechanism behind chromothripsis using interdisciplinary approaches. First, we will develop a computational approach to accurately detect chromothripsis. Second, we will use this approach to link chromothripsis with novel factors and contexts. Third, we will develop highly controllable cell line-based systems to test concrete mechanistic hypotheses, thereby taking into account our data on linked factors and contexts. Fourth, we will generate transcriptome data to monitor pathways involved in inducing chromothripsis, and such involved in coping with the massive SRs occurring. We will also combine findings from all these approaches to build a comprehensive model of chromothripsis and its associated pathways.
Summary
Recent cancer genome analyses have led to the discovery of a process involving massive genome structural rearrangement (SR) formation in a one-step, cataclysmic event, coined chromothripsis. The term chromothripsis (chromo from chromosome; thripsis for shattering into pieces) stands for a hypothetical process in which individual chromosomes are pulverised, resulting in a multitude of fragments, some of which are lost to the cell whereas others are erroneously rejoined. Compelling evidence was presented that chromothripsis plays a crucial role in the development, or progression of a notable subset of human cancers – thus, tumorigensis models involving gradual acquisitions of alterations may need to be revised in these cancers.
Presently, chromothripsis lacks a mechanistic basis. We recently showed that in childhood medulloblastoma brain tumours driven by Sonic Hedgehog (Shh) signalling, chromothripsis is linked with predisposing TP53 mutations. Thus, rather than occurring in isolation, chromothripsis appears to be prone to happen in conjunction with (or instigated by) gradually acquired alterations, or in the context of active signalling pathways, the inference of which may lead to further mechanistic insights. Using such rationale, I propose to dissect the mechanism behind chromothripsis using interdisciplinary approaches. First, we will develop a computational approach to accurately detect chromothripsis. Second, we will use this approach to link chromothripsis with novel factors and contexts. Third, we will develop highly controllable cell line-based systems to test concrete mechanistic hypotheses, thereby taking into account our data on linked factors and contexts. Fourth, we will generate transcriptome data to monitor pathways involved in inducing chromothripsis, and such involved in coping with the massive SRs occurring. We will also combine findings from all these approaches to build a comprehensive model of chromothripsis and its associated pathways.
Max ERC Funding
1 471 964 €
Duration
Start date: 2014-04-01, End date: 2019-01-31
Project acronym CLAPO
Project The Coevolution of Life and Arsenic in Precambrian Oceans
Researcher (PI) Ernest Chi Fru
Host Institution (HI) CARDIFF UNIVERSITY
Call Details Starting Grant (StG), PE10, ERC-2013-StG
Summary The ubiquity of arsenic resistant genes across all of life’s variety suggests a close intimacy between arsenic biogeochemistry and evolution, over geological time scales. However, the behaviour of arsenic in past environments where life originated and its impact on our evolution is essentially unknown. Arsenic is of particular importance because of its toxic properties, prevalence in tight association with ubiquitous iron and sulfide minerals and as a major component of sulfide-rich waters, all common features of Precambrian oceans. Arsenic obstructs the synthesis of the building blocks of life, exhibiting both chronic and acute toxicity at very low concentrations. These properties make arsenic an agent capable of exerting strong selective pressure on the distribution, success and diversity of life. This is exemplified by when the release of arsenic into groundwater following rock-weathering processes results in widespread poisoning. Using the state of the art stable isotopes tools, coupled to biomass production, bacterial iron, arsenic and sulfur cycling under ancient oceanic conditions, this project will open a new discussion on the much debated relationship between ocean chemistry and evolution, by introducing a new arsenic framework. This will be achieved under three majors themes: 1) Does there exist a biogeochemical connection between arsenic and the timing and transition from the iron-rich to the hypothesized sulfide-rich oceans that are linked to the rise of atmospheric oxygen? 2) Does arsenic and sulfide show concomitant cyclicity during the Precambrian? 3) Could arsenic thus serve as a proxy for the calibration of key transitional steps in the timing of biological innovation?
Summary
The ubiquity of arsenic resistant genes across all of life’s variety suggests a close intimacy between arsenic biogeochemistry and evolution, over geological time scales. However, the behaviour of arsenic in past environments where life originated and its impact on our evolution is essentially unknown. Arsenic is of particular importance because of its toxic properties, prevalence in tight association with ubiquitous iron and sulfide minerals and as a major component of sulfide-rich waters, all common features of Precambrian oceans. Arsenic obstructs the synthesis of the building blocks of life, exhibiting both chronic and acute toxicity at very low concentrations. These properties make arsenic an agent capable of exerting strong selective pressure on the distribution, success and diversity of life. This is exemplified by when the release of arsenic into groundwater following rock-weathering processes results in widespread poisoning. Using the state of the art stable isotopes tools, coupled to biomass production, bacterial iron, arsenic and sulfur cycling under ancient oceanic conditions, this project will open a new discussion on the much debated relationship between ocean chemistry and evolution, by introducing a new arsenic framework. This will be achieved under three majors themes: 1) Does there exist a biogeochemical connection between arsenic and the timing and transition from the iron-rich to the hypothesized sulfide-rich oceans that are linked to the rise of atmospheric oxygen? 2) Does arsenic and sulfide show concomitant cyclicity during the Precambrian? 3) Could arsenic thus serve as a proxy for the calibration of key transitional steps in the timing of biological innovation?
Max ERC Funding
1 486 374 €
Duration
Start date: 2013-09-01, End date: 2018-08-31
Project acronym CLOC
Project Cultured Liver Organoids for Investigation and Treatment of Inherited Cholestatic Diseases
Researcher (PI) Paul Gissen
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Starting Grant (StG), LS7, ERC-2013-StG
Summary "Bile synthesis and secretion are crucial to liver function and involve multiple proteins. Disorders due to defects in this process (Inherited Cholestatic Disorders, ICDs) lead to progressive liver disease. Many ICD patients do not respond to medical treatment and need liver transplantation (LT). Although ICDs are rare, multifactorial cholestatic diseases are common and many patients will benefit from ICD research.
There is acute shortage of liver donors. 10% of patients die while waiting on the liver transplant list. Therefore alternatives to LT are urgently needed. Bioengineered tissues may reduce the need for donor organs but complexity of it's organisation makes generation of functional liver challenging.
The OBJECTIVE of this project is to generate Cultured Liver Organoids (CLOs) using hepatocytes cultured on 3-D scaffolds as novel models for study of liver development and disease and potential treatment of ICDs.
3-D extracellular matrix (ECM) scaffolds derived from decellularised livers and polymeric matrices (PM) have been used to mimic liver architecture but further work is needed to establish functional bile flow.
Human Induced Pluripotent Stem Cells (hIPSCs) derived from reprogrammed skin fibroblasts by overexpression of pluripotency factors can proliferate and be differentiated into various cell types including hepatocytes. hIPSCs enable production of patient specific cells, which are fully immuno-compatible. Genetically corrected mutant hIPSCs differentiated into hepatocytes have been used as cell therapy in animal models of inherited metabolic disorders but direct infusion of hepatocytes into the liver is unlikely to achieve polarised bile flow and correct ICDs.
Therefore hIPSCs developed from ICD patients will be used to culture hepatocytes on decellularised mouse liver ECM to generate in vitro models of ICDs. CLOs containing hepatocytes from genetically corrected hIPSC will be tested in mouse models of ICDs as potential treatment."
Summary
"Bile synthesis and secretion are crucial to liver function and involve multiple proteins. Disorders due to defects in this process (Inherited Cholestatic Disorders, ICDs) lead to progressive liver disease. Many ICD patients do not respond to medical treatment and need liver transplantation (LT). Although ICDs are rare, multifactorial cholestatic diseases are common and many patients will benefit from ICD research.
There is acute shortage of liver donors. 10% of patients die while waiting on the liver transplant list. Therefore alternatives to LT are urgently needed. Bioengineered tissues may reduce the need for donor organs but complexity of it's organisation makes generation of functional liver challenging.
The OBJECTIVE of this project is to generate Cultured Liver Organoids (CLOs) using hepatocytes cultured on 3-D scaffolds as novel models for study of liver development and disease and potential treatment of ICDs.
3-D extracellular matrix (ECM) scaffolds derived from decellularised livers and polymeric matrices (PM) have been used to mimic liver architecture but further work is needed to establish functional bile flow.
Human Induced Pluripotent Stem Cells (hIPSCs) derived from reprogrammed skin fibroblasts by overexpression of pluripotency factors can proliferate and be differentiated into various cell types including hepatocytes. hIPSCs enable production of patient specific cells, which are fully immuno-compatible. Genetically corrected mutant hIPSCs differentiated into hepatocytes have been used as cell therapy in animal models of inherited metabolic disorders but direct infusion of hepatocytes into the liver is unlikely to achieve polarised bile flow and correct ICDs.
Therefore hIPSCs developed from ICD patients will be used to culture hepatocytes on decellularised mouse liver ECM to generate in vitro models of ICDs. CLOs containing hepatocytes from genetically corrected hIPSC will be tested in mouse models of ICDs as potential treatment."
Max ERC Funding
1 500 000 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym CLUSTERS
Project Galaxy formation through the eyes of globular clusters
Researcher (PI) Mark Gieles
Host Institution (HI) UNIVERSITY OF SURREY
Call Details Starting Grant (StG), PE9, ERC-2013-StG
Summary "Globular clusters (GCs) are among the first baryonic structures to form at a redshift of 10 and they witnessed the earliest phases of galaxy formation. Despite their ubiquity and importance for our understanding of the stellar initial mass function, star formation and chemical evolution in the early Universe, their origin is shrouded in mystery. They could have formed in gas rich discs, similarly to young massive clusters (YMCs) that we see forming today in starburst environments; or they could require a more exotic environment such as the centre of dark matter ``mini-haloes"".
The Milky Way GCs are resolved into their constituent stellar population making them the obvious place to look for clues. Their pristine properties are, however, affected by a Hubble time of dynamical evolution within an evolving Milky Way. In this proposal I present three projects to determine the initial properties of GCs, allowing them to be used as robust probes of early star formation, stellar evolution and cosmology. Specifically, I will: (1) dynamically evolve YMCs on a star-by-star basis and achieve a complete census of the fate of the clusters and their debris (``cold"" streams) within the framework of the hierarchical assembly of the Milky Way; (2) I will develop an extremely fast cluster evolution algorithm to do population synthesis of (globular) star clusters which will uniquely establish their initial masses, densities and the corresponding distributions; and (3) I will break the degeneracy of a dark matter halo, tidal heating and alternative gravity laws on the kinematics of GCs and determine whether Milky Way GCs contain dark matter, or not.
Galactic archaeology is entering a Golden Age. ALMA is operational and already putting constraints on the formation of YMCs and Gaia is due to fly next year. The three novel projects presented here will pave the way and prepare for the wealth of unprecedented data."
Summary
"Globular clusters (GCs) are among the first baryonic structures to form at a redshift of 10 and they witnessed the earliest phases of galaxy formation. Despite their ubiquity and importance for our understanding of the stellar initial mass function, star formation and chemical evolution in the early Universe, their origin is shrouded in mystery. They could have formed in gas rich discs, similarly to young massive clusters (YMCs) that we see forming today in starburst environments; or they could require a more exotic environment such as the centre of dark matter ``mini-haloes"".
The Milky Way GCs are resolved into their constituent stellar population making them the obvious place to look for clues. Their pristine properties are, however, affected by a Hubble time of dynamical evolution within an evolving Milky Way. In this proposal I present three projects to determine the initial properties of GCs, allowing them to be used as robust probes of early star formation, stellar evolution and cosmology. Specifically, I will: (1) dynamically evolve YMCs on a star-by-star basis and achieve a complete census of the fate of the clusters and their debris (``cold"" streams) within the framework of the hierarchical assembly of the Milky Way; (2) I will develop an extremely fast cluster evolution algorithm to do population synthesis of (globular) star clusters which will uniquely establish their initial masses, densities and the corresponding distributions; and (3) I will break the degeneracy of a dark matter halo, tidal heating and alternative gravity laws on the kinematics of GCs and determine whether Milky Way GCs contain dark matter, or not.
Galactic archaeology is entering a Golden Age. ALMA is operational and already putting constraints on the formation of YMCs and Gaia is due to fly next year. The three novel projects presented here will pave the way and prepare for the wealth of unprecedented data."
Max ERC Funding
1 499 863 €
Duration
Start date: 2013-11-01, End date: 2018-10-31
Project acronym COGOPTO
Project The role of parvalbumin interneurons in cognition and behavior
Researcher (PI) Eva Marie Carlen
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Starting Grant (StG), LS5, ERC-2013-StG
Summary Cognition is a collective term for complex but sophisticated mental processes such as attention, learning, social interaction, language production, decision making and other executive functions. For normal brain function, these higher-order functions need to be aptly regulated and controlled, and the physiology and cellular substrates for cognitive functions are under intense investigation. The loss of cognitive control is intricately related to pathological states such as schizophrenia, depression, attention deficit hyperactive disorder and addiction.
Synchronized neural activity can be observed when the brain performs several important functions, including cognitive processes. As an example, gamma activity (30-80 Hz) predicts the allocation of attention and theta activity (4-12 Hz) is tightly linked to memory processes. A large body of work indicates that the integrity of local and global neural synchrony is mediated by interneuron networks and actuated by the balance of different neuromodulators.
However, much knowledge is still needed on the functional role interneurons play in cognitive processes, i.e. how the interneurons contribute to local and global network processes subserving cognition, and ultimately play a role in behavior. In addition, we need to understand how neuro-modulators, such as dopamine, regulate interneuron function.
The proposed project aims to functionally determine the specific role the parvalbumin interneurons and the neuromodulator dopamine in aspects of cognition, and in behavior. In addition, we ask the question if cognition can be enhanced.
We are employing a true multidisciplinary approach where brain activity is recorded in conjunctions with optogenetic manipulations of parvalbumin interneurons in animals performing cognitive tasks. In one set of experiments knock-down of dopamine receptors specifically in parvalbumin interneurons is employed to probe how this neuromodulator regulate network functions.
Summary
Cognition is a collective term for complex but sophisticated mental processes such as attention, learning, social interaction, language production, decision making and other executive functions. For normal brain function, these higher-order functions need to be aptly regulated and controlled, and the physiology and cellular substrates for cognitive functions are under intense investigation. The loss of cognitive control is intricately related to pathological states such as schizophrenia, depression, attention deficit hyperactive disorder and addiction.
Synchronized neural activity can be observed when the brain performs several important functions, including cognitive processes. As an example, gamma activity (30-80 Hz) predicts the allocation of attention and theta activity (4-12 Hz) is tightly linked to memory processes. A large body of work indicates that the integrity of local and global neural synchrony is mediated by interneuron networks and actuated by the balance of different neuromodulators.
However, much knowledge is still needed on the functional role interneurons play in cognitive processes, i.e. how the interneurons contribute to local and global network processes subserving cognition, and ultimately play a role in behavior. In addition, we need to understand how neuro-modulators, such as dopamine, regulate interneuron function.
The proposed project aims to functionally determine the specific role the parvalbumin interneurons and the neuromodulator dopamine in aspects of cognition, and in behavior. In addition, we ask the question if cognition can be enhanced.
We are employing a true multidisciplinary approach where brain activity is recorded in conjunctions with optogenetic manipulations of parvalbumin interneurons in animals performing cognitive tasks. In one set of experiments knock-down of dopamine receptors specifically in parvalbumin interneurons is employed to probe how this neuromodulator regulate network functions.
Max ERC Funding
1 400 000 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym COLORTTH
Project The Higgs: A colored View from the Top at ATLAS
Researcher (PI) Reinhild Fatima Yvonne Peters
Host Institution (HI) THE UNIVERSITY OF MANCHESTER
Call Details Starting Grant (StG), PE2, ERC-2013-StG
Summary "With the ground-breaking discovery of a new, Higgs-like boson on July 4th, 2012, by the CMS and ATLAS collaborations at CERN, a new era of particle physics has begun. The discovery is the first step in answering an unsolved problem in particle physics, the question how fundamental bosons and fermions acquire their mass. One of the major goals in collider physics in the next few years will be the deeper insight into the nature of the new particle, its connection to the known fundamental particles and possible extensions beyond the standard model (SM) of particle physics.
My project aims at a particular interesting field to study, the relation of the new particle with the heaviest known elementary particle, the top quark. I aim to develop new, innovative techniques and beyond state-of-the-art methods to extract the Yukawa coupling between the top quark and the Higgs boson, which is expected to be of the order of one - much higher than that of any other quark. I will analyse the only process where the top-Higgs Yukawa coupling can be measured, in associated production of top quark pairs and a Higgs boson. The Higgs boson mainly decays into a pair of b-quarks. This is one of the most challenging channels at the LHC, as huge background processes from gluon splitting contribute. In particular, I will develop and study color flow variables, which provide a unique, powerful technique to distinguish color singlet Higgs bosons from the main background, color octet gluons.
The ultimate goal of the project is the first measurement of the top-Higgs Yukawa coupling and its confrontation with SM and beyond SM Higgs boson models, resulting in an unprecedented insight into the fundamental laws of nature.
The LHC will soon reach a new energy frontier of 13 TeV starting in 2014. This new environment will provide never seen opportunities to study hints of new physics and precisely measure properties of the newly found particle. This sets the stage for the project."
Summary
"With the ground-breaking discovery of a new, Higgs-like boson on July 4th, 2012, by the CMS and ATLAS collaborations at CERN, a new era of particle physics has begun. The discovery is the first step in answering an unsolved problem in particle physics, the question how fundamental bosons and fermions acquire their mass. One of the major goals in collider physics in the next few years will be the deeper insight into the nature of the new particle, its connection to the known fundamental particles and possible extensions beyond the standard model (SM) of particle physics.
My project aims at a particular interesting field to study, the relation of the new particle with the heaviest known elementary particle, the top quark. I aim to develop new, innovative techniques and beyond state-of-the-art methods to extract the Yukawa coupling between the top quark and the Higgs boson, which is expected to be of the order of one - much higher than that of any other quark. I will analyse the only process where the top-Higgs Yukawa coupling can be measured, in associated production of top quark pairs and a Higgs boson. The Higgs boson mainly decays into a pair of b-quarks. This is one of the most challenging channels at the LHC, as huge background processes from gluon splitting contribute. In particular, I will develop and study color flow variables, which provide a unique, powerful technique to distinguish color singlet Higgs bosons from the main background, color octet gluons.
The ultimate goal of the project is the first measurement of the top-Higgs Yukawa coupling and its confrontation with SM and beyond SM Higgs boson models, resulting in an unprecedented insight into the fundamental laws of nature.
The LHC will soon reach a new energy frontier of 13 TeV starting in 2014. This new environment will provide never seen opportunities to study hints of new physics and precisely measure properties of the newly found particle. This sets the stage for the project."
Max ERC Funding
1 163 755 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym CON-HUMO
Project Control based on Human Models
Researcher (PI) Sandra Hirche
Host Institution (HI) TECHNISCHE UNIVERSITAET MUENCHEN
Call Details Starting Grant (StG), PE7, ERC-2013-StG
Summary "CON-HUMO focuses on novel concepts for automatic control based on data-driven human models and machine learning. This enables innovative control applications that are difficult if not impossible to realize using traditional control and identification methods, in particular in the challenging area of smart human-machine interaction. In order to achieve intuitive and efficient goal-oriented interaction, anticipation is key. For control selection based on prediction a dynamic model of the human interaction behavior is required, which, however, is difficult to obtain from first principles. In order to cope with the high complexity of human behavior with unknown inputs and only sparsely available training data we propose to use machine-learning techniques for statistical modeling of the dynamics. In this new field of human interaction modeling – data-driven and machine-learned – control methods with guaranteed properties do not exist. CON-HUMO addresses this niche.
Key methodological innovation and breakthrough is the merger of probabilistic learning with model-based control concepts through model confidence and prediction uncertainty. For the sake of concreteness and evaluation the focus is on one of the most challenging problem classes, namely physical human-machine interaction: Because of the physical contact between the human and the machine not only information, but also energy is exchanged posing fundamental challenges for real-time human-adaptive and safe decision making/control and requiring provable stability and performance guarantees. The developed methods are a direct enabler for societally important applications such as machine-based physical rehabilitation, mobility and manipulation aids for elderly, and collaborative human-machine production systems. With its fundamental results CON-HUMO lays the ground for the systematic control design for smart human-machine/infrastructure interaction."
Summary
"CON-HUMO focuses on novel concepts for automatic control based on data-driven human models and machine learning. This enables innovative control applications that are difficult if not impossible to realize using traditional control and identification methods, in particular in the challenging area of smart human-machine interaction. In order to achieve intuitive and efficient goal-oriented interaction, anticipation is key. For control selection based on prediction a dynamic model of the human interaction behavior is required, which, however, is difficult to obtain from first principles. In order to cope with the high complexity of human behavior with unknown inputs and only sparsely available training data we propose to use machine-learning techniques for statistical modeling of the dynamics. In this new field of human interaction modeling – data-driven and machine-learned – control methods with guaranteed properties do not exist. CON-HUMO addresses this niche.
Key methodological innovation and breakthrough is the merger of probabilistic learning with model-based control concepts through model confidence and prediction uncertainty. For the sake of concreteness and evaluation the focus is on one of the most challenging problem classes, namely physical human-machine interaction: Because of the physical contact between the human and the machine not only information, but also energy is exchanged posing fundamental challenges for real-time human-adaptive and safe decision making/control and requiring provable stability and performance guarantees. The developed methods are a direct enabler for societally important applications such as machine-based physical rehabilitation, mobility and manipulation aids for elderly, and collaborative human-machine production systems. With its fundamental results CON-HUMO lays the ground for the systematic control design for smart human-machine/infrastructure interaction."
Max ERC Funding
1 494 640 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym CONNECTORS
Project Connectors – an international study into the development of children’s everyday practices of participation in circuits of social action
Researcher (PI) Sevasti Melissa Nolas
Host Institution (HI) GOLDSMITHS' COLLEGE
Call Details Starting Grant (StG), SH2, ERC-2013-StG
Summary Participation – defined in this project as the social practice of engaging in personal and social change – links private and public life, biography and history, and forms a mechanism for social action. Twenty years after the ratification of the United Nations Convention for the Rights of the Child (1989) the international community is no closer to identifying what constitutes a ‘good enough’ model for understanding and supporting the development of children’s participation in public life. The project asks game changing questions about the emergence of children’s orientation towards social action through qualitative, longitudinal and cross-national research. Building on biographical interviews with children, relational and geographical mapping techniques, selective participant-observation with children, and children social research workshops in three cities (London, Athens, Mumbai), the project examines the meaning of personal and social change in middle childhood (6-11 year olds), the circuits of social action that children tap into in an attempt to make changes real, the extent to which privilege, marginalization and economic crisis shape children’s practices of participation, and the ways in which encounters with difference (gender, ethnicity, race, religion) challenge children’s orientation towards social action. By sampling children from a diverse cross-section of each city the project will collect and follow a total of 100 children over a five-year period. The project will provide a rich data sources for making within and between country comparisons and in doing so enable the development a theoretical paradigm for understanding children’s participation that is derived from the bottom-up, that is generated in diverse settings, including non-Western, and that takes advantage of the current rupture to established socio-economic realities to ask questions about the future of social action.
Summary
Participation – defined in this project as the social practice of engaging in personal and social change – links private and public life, biography and history, and forms a mechanism for social action. Twenty years after the ratification of the United Nations Convention for the Rights of the Child (1989) the international community is no closer to identifying what constitutes a ‘good enough’ model for understanding and supporting the development of children’s participation in public life. The project asks game changing questions about the emergence of children’s orientation towards social action through qualitative, longitudinal and cross-national research. Building on biographical interviews with children, relational and geographical mapping techniques, selective participant-observation with children, and children social research workshops in three cities (London, Athens, Mumbai), the project examines the meaning of personal and social change in middle childhood (6-11 year olds), the circuits of social action that children tap into in an attempt to make changes real, the extent to which privilege, marginalization and economic crisis shape children’s practices of participation, and the ways in which encounters with difference (gender, ethnicity, race, religion) challenge children’s orientation towards social action. By sampling children from a diverse cross-section of each city the project will collect and follow a total of 100 children over a five-year period. The project will provide a rich data sources for making within and between country comparisons and in doing so enable the development a theoretical paradigm for understanding children’s participation that is derived from the bottom-up, that is generated in diverse settings, including non-Western, and that takes advantage of the current rupture to established socio-economic realities to ask questions about the future of social action.
Max ERC Funding
1 469 296 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym COSMASS
Project Constraining Stellar Mass and Supermassive Black Hole Growth through Cosmic Times: Paving the way for the next generation sky surveys
Researcher (PI) Vernesa Smolcic
Host Institution (HI) FACULTY OF SCIENCE UNIVERSITY OF ZAGREB
Call Details Starting Grant (StG), PE9, ERC-2013-StG
Summary Understanding how galaxies form in the early universe and how they evolve through cosmic time is a major goal of modern astrophysics. Panchromatic look-back sky surveys significantly advanced the field in the past decade, and we are now entering a 'golden age' of radio astronomy given an order of magnitude improved facilities like JVLA, ATCA and ALMA. I am leading two unique, state-of-the-art (JVLA/ATCA) radio surveys that will push to the next frontiers. The proposed ERC project will focus on the growth of stellar and black-hole mass in galaxies across cosmic time by: 1-probing various types of extremely faint radio sources over cosmic time, revealing the debated abundance of faint radio sources, 2-exploring star formation conditions at early cosmic times, allowing to access for the first time the dust-unbiased cosmic star formation history since the epoch of reionization, 3-performing the first census of high-redshift starbursting galaxies (SMGs), and their role in galaxy formation and evolution, and 4-performing a full census of galaxies hosting supermassive black holes (AGN), with different black-hole accretion modes, and their roles in galaxy evolution.
The exploitation of these radio sky surveys is essential for the preparation and success of the future large facilities like ASKAP, and SKA as they will 1-provide best predictions of the to-date uncertain cosmic radio background seen with the SKA, and 2-optimize photometric redshift estimates, essential for the success of the first ASKAP sky survey (EMU, >2016).
My radio surveys, expected to yield >100 refereed publications, carry an immense legacy value. The proposed ERC funding is essential for the success of these timely surveys, which I will conduct from Croatia. The ERC grant will allow me to lead my own research group working on this novel data, and to even more firmly establish myself as a leading survey scientist, and lead my group to internationally competitive levels, and enhance EU competitiveness.
Summary
Understanding how galaxies form in the early universe and how they evolve through cosmic time is a major goal of modern astrophysics. Panchromatic look-back sky surveys significantly advanced the field in the past decade, and we are now entering a 'golden age' of radio astronomy given an order of magnitude improved facilities like JVLA, ATCA and ALMA. I am leading two unique, state-of-the-art (JVLA/ATCA) radio surveys that will push to the next frontiers. The proposed ERC project will focus on the growth of stellar and black-hole mass in galaxies across cosmic time by: 1-probing various types of extremely faint radio sources over cosmic time, revealing the debated abundance of faint radio sources, 2-exploring star formation conditions at early cosmic times, allowing to access for the first time the dust-unbiased cosmic star formation history since the epoch of reionization, 3-performing the first census of high-redshift starbursting galaxies (SMGs), and their role in galaxy formation and evolution, and 4-performing a full census of galaxies hosting supermassive black holes (AGN), with different black-hole accretion modes, and their roles in galaxy evolution.
The exploitation of these radio sky surveys is essential for the preparation and success of the future large facilities like ASKAP, and SKA as they will 1-provide best predictions of the to-date uncertain cosmic radio background seen with the SKA, and 2-optimize photometric redshift estimates, essential for the success of the first ASKAP sky survey (EMU, >2016).
My radio surveys, expected to yield >100 refereed publications, carry an immense legacy value. The proposed ERC funding is essential for the success of these timely surveys, which I will conduct from Croatia. The ERC grant will allow me to lead my own research group working on this novel data, and to even more firmly establish myself as a leading survey scientist, and lead my group to internationally competitive levels, and enhance EU competitiveness.
Max ERC Funding
1 500 000 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym COSTPOST
Project Costs and Gains to Postponement: How Changes in the Age of Parenthood Influence the Health and Well-being of Children, the Parents, and Populations
Researcher (PI) Mikko Myrskyla
Host Institution (HI) LONDON SCHOOL OF ECONOMICS AND POLITICAL SCIENCE
Call Details Starting Grant (StG), SH3, ERC-2013-StG
Summary Advanced maternal and paternal ages are associated with a range of negative offspring outcomes, and have been estimated to have population-level health effects comparable to those of obesity. This project analyses the health and well-being consequences of fertility postponement, focusing on three previously unanswered questions. Project A assesses the causality of the advanced parental age-offspring outcomes association. The existing literature is largely associational. Using innovative methods that allow me to control for previously unanalysed factors, I test the causality of this association and produce new estimates for the population level health impact of advanced parental age. Project B focuses on the role of the environment. Since health improves over cohorts, can postponement of parenthood – which means that the child is born to a later cohort – improve offspring outcomes? Moreover, does the environment influence the young parental age effect on the offspring? Project C analyses the implications of postponed parenthood on parental subjective well-being, which is critical for both child and parental health, but has not been analysed before.
Each of the three sub-projects has the potential for producing ground-breaking results with important policy implications and large impact on both demography and on other disciplines. Project A either confirms that the social process of fertility postponement is an important public health threat, or shows that the health effects of postponement have been grossly overestimated. Project B may revolutionise the way postponement is seen: if the cohort trend hypothesis is found to be true, the assumption that postponement has a positive effect on offspring outcomes at the individual level will be confirmed. Project C provides an innovative analysis of a neglected outcome that is critically related to child health and will advance our knowledge of the motivation for fertility postponement.
Summary
Advanced maternal and paternal ages are associated with a range of negative offspring outcomes, and have been estimated to have population-level health effects comparable to those of obesity. This project analyses the health and well-being consequences of fertility postponement, focusing on three previously unanswered questions. Project A assesses the causality of the advanced parental age-offspring outcomes association. The existing literature is largely associational. Using innovative methods that allow me to control for previously unanalysed factors, I test the causality of this association and produce new estimates for the population level health impact of advanced parental age. Project B focuses on the role of the environment. Since health improves over cohorts, can postponement of parenthood – which means that the child is born to a later cohort – improve offspring outcomes? Moreover, does the environment influence the young parental age effect on the offspring? Project C analyses the implications of postponed parenthood on parental subjective well-being, which is critical for both child and parental health, but has not been analysed before.
Each of the three sub-projects has the potential for producing ground-breaking results with important policy implications and large impact on both demography and on other disciplines. Project A either confirms that the social process of fertility postponement is an important public health threat, or shows that the health effects of postponement have been grossly overestimated. Project B may revolutionise the way postponement is seen: if the cohort trend hypothesis is found to be true, the assumption that postponement has a positive effect on offspring outcomes at the individual level will be confirmed. Project C provides an innovative analysis of a neglected outcome that is critically related to child health and will advance our knowledge of the motivation for fertility postponement.
Max ERC Funding
1 305 600 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym Coupled gene circuit
Project Dynamics, noise, and coupling in gene circuit modules
Researcher (PI) James Charles Wallace Locke
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Starting Grant (StG), LS2, ERC-2013-StG
Summary Cells must integrate output from multiple genetic circuits in order to correctly control cellular processes. Despite much work characterizing regulation in these circuits, how circuits interact to control global cellular programs remains unclear. This is particularly true given that recent research at the single cell level has revealed that genetic circuits often generate variable or stochastic regulation dynamics. In this proposal we will use a multi-disciplinary approach, combining modelling and time-lapse microscopy, to investigate how cells can robustly integrate signals from multiple dynamic genetic circuits. In particular we will answer the following questions: 1) What types of dynamic signal encoding strategies are available for the cell? 2) What are the benefits of dynamic gene activation, whether stochastic or oscillatory, to the cell? 3) How do cells couple and integrate output from diverse gene modules despite the noise and variability observed in gene circuit dynamics?
We will study these questions using 2 key model systems. In Aim 1, we will examine stochastic pulse regulation dynamics and coupling between alternative sigma factors in B. subtilis. Our preliminary data has revealed that multiple B. subtilis sigma factors stochastically pulse under stress. We will look for evidence of any coupling or interactions between these stochastic pulse circuits. This system will serve as a model for how a cell uses stochastic pulsing to control diverse cellular processes. In Aim 2, we will examine coupling between a deterministic oscillator, the circadian clock, and multiple other key pathways in Cyanobacteria. We will examine how the cell can dynamically couple multiple cellular processes using an oscillating signal. This work will provide an excellent base for Aim 3, in which we will use synthetic biology approaches to develop ‘bottom up’ tests of generation of novel dynamic coupling strategies.
Summary
Cells must integrate output from multiple genetic circuits in order to correctly control cellular processes. Despite much work characterizing regulation in these circuits, how circuits interact to control global cellular programs remains unclear. This is particularly true given that recent research at the single cell level has revealed that genetic circuits often generate variable or stochastic regulation dynamics. In this proposal we will use a multi-disciplinary approach, combining modelling and time-lapse microscopy, to investigate how cells can robustly integrate signals from multiple dynamic genetic circuits. In particular we will answer the following questions: 1) What types of dynamic signal encoding strategies are available for the cell? 2) What are the benefits of dynamic gene activation, whether stochastic or oscillatory, to the cell? 3) How do cells couple and integrate output from diverse gene modules despite the noise and variability observed in gene circuit dynamics?
We will study these questions using 2 key model systems. In Aim 1, we will examine stochastic pulse regulation dynamics and coupling between alternative sigma factors in B. subtilis. Our preliminary data has revealed that multiple B. subtilis sigma factors stochastically pulse under stress. We will look for evidence of any coupling or interactions between these stochastic pulse circuits. This system will serve as a model for how a cell uses stochastic pulsing to control diverse cellular processes. In Aim 2, we will examine coupling between a deterministic oscillator, the circadian clock, and multiple other key pathways in Cyanobacteria. We will examine how the cell can dynamically couple multiple cellular processes using an oscillating signal. This work will provide an excellent base for Aim 3, in which we will use synthetic biology approaches to develop ‘bottom up’ tests of generation of novel dynamic coupling strategies.
Max ERC Funding
1 499 571 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym CREATES
Project Classifying the Range of Exoplanetary Atmospheres using Transmission and Emission Spectroscopy
Researcher (PI) David Kent Sing
Host Institution (HI) THE UNIVERSITY OF EXETER
Call Details Starting Grant (StG), PE9, ERC-2013-StG
Summary "Rarely in astrophysics are there opportunities to spectrally classify a completely new group of astrophysical objects. This is the challenge facing the exoplanets christened “hot Jupiters”. The detection and subsequent spectroscopic information now achievable for a large number of these exoplanets are now allowing for detailed comparative exoplanetology. This project uses a twofold approach to advance both the theory and observation of these exoplanets beyond their current limitations. Hot Jupiter atmospheric spectra are built from two large observational survey programmes headed by Dr. Sing to obtain a vast amount of high quality data on transmission spectra. One large programme uses the HST which alone will quadruple the number of broadband exoplanet transmission spectra. The Hubble survey will be augmented by a large programme on the GTC telescope, where we will put efforts into pioneering multi-object spectroscopy, capable of delivering space-like quality spectra. Both large programmes will be further complemented by followup observations, as well as existing near-IR spectroscopy. This project will combine this plethora of data in a coherent fashion, enabling studies of nearly the entire planetary atmosphere. Our observational efforts will be combined with a broad and inclusive theoretical modeling programme, where we will incorporate clouds and hazes, modelling the complete atmosphere in a self-consistent manner with a 3D global circulation model. Our library of transmission spectra across the hot-Jupiter class will be used to address long outstanding and complex issues. We will focus our efforts on two key areas, addressing why some hot Jupiters have hazes & clouds while others do not, and the outstanding issue on the presence or absence of stratospheres. For the first time a comprehensive set of high quality exoplanet spectra will be available with which to inter-compare using the required set of theoretical tools."
Summary
"Rarely in astrophysics are there opportunities to spectrally classify a completely new group of astrophysical objects. This is the challenge facing the exoplanets christened “hot Jupiters”. The detection and subsequent spectroscopic information now achievable for a large number of these exoplanets are now allowing for detailed comparative exoplanetology. This project uses a twofold approach to advance both the theory and observation of these exoplanets beyond their current limitations. Hot Jupiter atmospheric spectra are built from two large observational survey programmes headed by Dr. Sing to obtain a vast amount of high quality data on transmission spectra. One large programme uses the HST which alone will quadruple the number of broadband exoplanet transmission spectra. The Hubble survey will be augmented by a large programme on the GTC telescope, where we will put efforts into pioneering multi-object spectroscopy, capable of delivering space-like quality spectra. Both large programmes will be further complemented by followup observations, as well as existing near-IR spectroscopy. This project will combine this plethora of data in a coherent fashion, enabling studies of nearly the entire planetary atmosphere. Our observational efforts will be combined with a broad and inclusive theoretical modeling programme, where we will incorporate clouds and hazes, modelling the complete atmosphere in a self-consistent manner with a 3D global circulation model. Our library of transmission spectra across the hot-Jupiter class will be used to address long outstanding and complex issues. We will focus our efforts on two key areas, addressing why some hot Jupiters have hazes & clouds while others do not, and the outstanding issue on the presence or absence of stratospheres. For the first time a comprehensive set of high quality exoplanet spectra will be available with which to inter-compare using the required set of theoretical tools."
Max ERC Funding
1 495 824 €
Duration
Start date: 2013-11-01, End date: 2018-10-31
Project acronym CSIASC
Project Changing Structures of Islamic Authority and Consequences for Social Change: A Transnational Review
Researcher (PI) Masooda Bano
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Starting Grant (StG), SH2, ERC-2013-StG
Summary Research on Muslims in Europe or in the Muslim majority countries has since September 11, mainly focused on understanding the causes of religious radicalization. Largely ignored in the public debates, as well as in academic scholarship, is recognition of the rapid growth in a number of prominent initiatives emerging within Muslims in the west that are aimed at initiating intellectual revival within Islam. Drawing inspiration from the thinkers such as Al-Ghazali or Ibn-Rushd (associated with the ‘rationalist tradition’ in Islam), the Muslim intellectuals and scholars at the center of this movement for intellectual revival in Islam are arguing for ‘indigenizing Islam in the West.’ This project is aimed at understanding the emergence and growth of this movement, the methodology different actors within this movement adopt to initiate reform while remaining loyal to the Islamic ethical spirit, and the implications of these attempts at intellectual reform for individual behavior and social change within Muslims in the west as well as in Muslim majority countries. The project will situate the emergence of this movement within the broader shifts being witnessed in the traditional structures of Islamic authority— such as Al-Azhar University, Dar-ul Uloom, Deoband, Diyanat, and Al-Medina University— that dominate the teaching and interpretation of Islam globally but are under pressure to reform. By developing detailed ethnographic accounts of these new and old institutions of Islamic authority, examining the intellectual discourse of their scholars, observing the argumentations through which they socially advance their conception of Islam, and analyzing how these discourses impact real life choices, this project will shed light on the complexity of Islamic thought and changes in contemporary Muslim societies. It will also highlight the spaces that are emerging for engagement between the Islamic and western tradition and inform theory of religious behavior.
Summary
Research on Muslims in Europe or in the Muslim majority countries has since September 11, mainly focused on understanding the causes of religious radicalization. Largely ignored in the public debates, as well as in academic scholarship, is recognition of the rapid growth in a number of prominent initiatives emerging within Muslims in the west that are aimed at initiating intellectual revival within Islam. Drawing inspiration from the thinkers such as Al-Ghazali or Ibn-Rushd (associated with the ‘rationalist tradition’ in Islam), the Muslim intellectuals and scholars at the center of this movement for intellectual revival in Islam are arguing for ‘indigenizing Islam in the West.’ This project is aimed at understanding the emergence and growth of this movement, the methodology different actors within this movement adopt to initiate reform while remaining loyal to the Islamic ethical spirit, and the implications of these attempts at intellectual reform for individual behavior and social change within Muslims in the west as well as in Muslim majority countries. The project will situate the emergence of this movement within the broader shifts being witnessed in the traditional structures of Islamic authority— such as Al-Azhar University, Dar-ul Uloom, Deoband, Diyanat, and Al-Medina University— that dominate the teaching and interpretation of Islam globally but are under pressure to reform. By developing detailed ethnographic accounts of these new and old institutions of Islamic authority, examining the intellectual discourse of their scholars, observing the argumentations through which they socially advance their conception of Islam, and analyzing how these discourses impact real life choices, this project will shed light on the complexity of Islamic thought and changes in contemporary Muslim societies. It will also highlight the spaces that are emerging for engagement between the Islamic and western tradition and inform theory of religious behavior.
Max ERC Funding
1 376 704 €
Duration
Start date: 2014-03-01, End date: 2019-12-31
Project acronym DARKSIDE
Project Harnessing the Dark Side of Protein Folding: Manipulating Aggregation for Recombinant Protein Production
Researcher (PI) Daniel Kaganovich
Host Institution (HI) UNIVERSITAETSMEDIZIN GOETTINGEN - GEORG-AUGUST-UNIVERSITAET GOETTINGEN - STIFTUNG OEFFENTLICHEN RECHTS
Call Details Starting Grant (StG), LS9, ERC-2013-StG
Summary Nearly all desirable biological activities, whether for the purposes of nutrition, pharmacology, biofuel production, or waste disposal, can be carried out by proteins. Nature has furnished a vast array of bioactive and biocatalytic tools, and with the advent of rational protein design nearly any imaginable bioactivity is at our fingertips. There is, therefore, a pressing need for cost-effective, safe, and easily scalable strategies for generating Recombinant Proteins (rProteins). The main bottleneck for mass-producing a whole host of valuable biologically active rProteins is the difficulty of recovering functional proteins from expression hosts.
This difficulty stems largely from the lack of sufficient know-how for manipulating protein biogenesis in the cell. The key component of protein biology, whether in the context of rProtein production or cell viability, is enabling a protein to achieve its proper folding state. Most proteins do not fold on their own – they require the assistance of a vast network of folding managers, or chaperones. The cellular chaperone machinery not only assists protein folding, it also carries out quality control, ensuring that proteins that are damaged or unable to fold for other reasons are properly disposed of through degradation or protective aggregation.
The aim of this proposal is to understand the protein biosynthetic pathway in sufficient detail, so as to be able to manipulate its overall function. My eventual goal is to exert control over folding and aggregation in order to produce higher yields of functional rProteins in eukaryotes. The biotechnological strategy will consist of: 1. Manipulating aggregation to remove damaged endogenous proteins from the folding proteome, thus diverting more resources to the folding of rProteins; 2. Manipulating the allocation of cellular chaperone resources between folding, degradation, and aggregation; 3. Utilizing aggregates to produce substantially higher amounts of functional rProteins.
Summary
Nearly all desirable biological activities, whether for the purposes of nutrition, pharmacology, biofuel production, or waste disposal, can be carried out by proteins. Nature has furnished a vast array of bioactive and biocatalytic tools, and with the advent of rational protein design nearly any imaginable bioactivity is at our fingertips. There is, therefore, a pressing need for cost-effective, safe, and easily scalable strategies for generating Recombinant Proteins (rProteins). The main bottleneck for mass-producing a whole host of valuable biologically active rProteins is the difficulty of recovering functional proteins from expression hosts.
This difficulty stems largely from the lack of sufficient know-how for manipulating protein biogenesis in the cell. The key component of protein biology, whether in the context of rProtein production or cell viability, is enabling a protein to achieve its proper folding state. Most proteins do not fold on their own – they require the assistance of a vast network of folding managers, or chaperones. The cellular chaperone machinery not only assists protein folding, it also carries out quality control, ensuring that proteins that are damaged or unable to fold for other reasons are properly disposed of through degradation or protective aggregation.
The aim of this proposal is to understand the protein biosynthetic pathway in sufficient detail, so as to be able to manipulate its overall function. My eventual goal is to exert control over folding and aggregation in order to produce higher yields of functional rProteins in eukaryotes. The biotechnological strategy will consist of: 1. Manipulating aggregation to remove damaged endogenous proteins from the folding proteome, thus diverting more resources to the folding of rProteins; 2. Manipulating the allocation of cellular chaperone resources between folding, degradation, and aggregation; 3. Utilizing aggregates to produce substantially higher amounts of functional rProteins.
Max ERC Funding
1 639 400 €
Duration
Start date: 2013-11-01, End date: 2019-10-31
Project acronym DATA SCIENCE
Project The Epistemology of Data-Intensive Science
Researcher (PI) Sabina Leonelli
Host Institution (HI) THE UNIVERSITY OF EXETER
Call Details Starting Grant (StG), SH4, ERC-2013-StG
Summary "This project aims to develop a new ‘philosophy of data-intensive science’ that clarifies how research practices are changing in the digital age, and examines how this affects current understandings of scientific epistemology within the philosophy of science and beyond.
The scale of scientific data production has massively increased in recent times, raising urgent questions about how scientists are to transform the resulting masses of data into useful knowledge. A technical solution to this problem is offered by technologies for the storage, dissemination and handling of data over the internet, including online databases that enable scientists to retrieve and analyse vast amounts of data of potential relevance to their research. These technologies are having a profound effect on what counts as scientific knowledge and on how that knowledge is obtained and used. This is a step change in scientific methods, which scientists refer to as ‘data-intensive’ research.
Surprisingly, the characteristics and philosophical implications of this emerging way of doing science have not yet been extensively and systematically analysed. This project aims to fill this gap by combining the analytic apparatus developed by philosophers of science with empirical, qualitative methods used by social scientists to investigate cutting-edge scientific practices. Accordingly, Phase 1 of the project will investigate how the use of online databases is currently affecting research practices and outcomes in two areas: plant science and biomedicine. Phase 2 will then build on these empirical results to analyse how data-intensive methods challenge existing philosophical understandings of the epistemic role of data, theory, experiments and division of labour in science. Through the analysis of how these four key components, the PI will produce a systematic assessment of the implications of the rise of data-intensive research for how science is organised, conducted and assessed."
Summary
"This project aims to develop a new ‘philosophy of data-intensive science’ that clarifies how research practices are changing in the digital age, and examines how this affects current understandings of scientific epistemology within the philosophy of science and beyond.
The scale of scientific data production has massively increased in recent times, raising urgent questions about how scientists are to transform the resulting masses of data into useful knowledge. A technical solution to this problem is offered by technologies for the storage, dissemination and handling of data over the internet, including online databases that enable scientists to retrieve and analyse vast amounts of data of potential relevance to their research. These technologies are having a profound effect on what counts as scientific knowledge and on how that knowledge is obtained and used. This is a step change in scientific methods, which scientists refer to as ‘data-intensive’ research.
Surprisingly, the characteristics and philosophical implications of this emerging way of doing science have not yet been extensively and systematically analysed. This project aims to fill this gap by combining the analytic apparatus developed by philosophers of science with empirical, qualitative methods used by social scientists to investigate cutting-edge scientific practices. Accordingly, Phase 1 of the project will investigate how the use of online databases is currently affecting research practices and outcomes in two areas: plant science and biomedicine. Phase 2 will then build on these empirical results to analyse how data-intensive methods challenge existing philosophical understandings of the epistemic role of data, theory, experiments and division of labour in science. Through the analysis of how these four key components, the PI will produce a systematic assessment of the implications of the rise of data-intensive research for how science is organised, conducted and assessed."
Max ERC Funding
1 046 000 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym DissectIFT
Project In vitro reconstitution and mechanistic dissection of Intraflagellar Transport in C.elegans sensory cilia
Researcher (PI) Zeynep Ökten
Host Institution (HI) TECHNISCHE UNIVERSITAET MUENCHEN
Call Details Starting Grant (StG), LS1, ERC-2013-StG
Summary Cilia are microtubule-based protrusions of the plasma membrane found on many eukaryotic cells, including most cell types of the human body. Whereas the functions of motile cilia were immediately obvious, the role of the immotile or so-called primary cilia remained largely unrecognized for many decades. Once referred to as aberrant solitary cilia with no obvious function, these ancient structures now hold the promise of revealing no less than the secrets of multicellularity and development. Even though the importance of primary cilia is now evident, molecular mechanisms underlying their assembly and function are far from being understood. The construction and maintenance of cilia relies on an ancient, universally conserved machinery termed IntraFlagellar Transport (IFT). IFT requires a multi-subunit, non-membranous protein complex assembled from more than 20 distinct subunits. At the heart of IFT are the microtubule-associated motors, -kinesin and dynein-, that continuously ferry cargo in a bi-directional fashion needed for ciliary assembly and function. To pave the way towards a molecular understanding of this fascinating organelle, we propose to employ a bottom-up approach in which we stepwise reconstitute the IFT complex from recombinantly expressed subunits of the so far best understood primary cilium from C.elegans. The structural integrity and stability of the IFT complex will be characterized using multifaceted approaches such as chemical crosslinking or thermophoresis. To mechanistically dissect the kinesin-dependent transport in vitro, we will make use of enzymatic bulk and single-molecule assays. Collectively, these results will provide a quantitative understanding of the assembly and kinesin-dependent motility of the IFT machinery. Given that cells mobilize ~600 components to build their cilia, this experimental platform will significantly streamline future efforts to identify novel cargoes and the effects of putative regulators of the IFT machinery.
Summary
Cilia are microtubule-based protrusions of the plasma membrane found on many eukaryotic cells, including most cell types of the human body. Whereas the functions of motile cilia were immediately obvious, the role of the immotile or so-called primary cilia remained largely unrecognized for many decades. Once referred to as aberrant solitary cilia with no obvious function, these ancient structures now hold the promise of revealing no less than the secrets of multicellularity and development. Even though the importance of primary cilia is now evident, molecular mechanisms underlying their assembly and function are far from being understood. The construction and maintenance of cilia relies on an ancient, universally conserved machinery termed IntraFlagellar Transport (IFT). IFT requires a multi-subunit, non-membranous protein complex assembled from more than 20 distinct subunits. At the heart of IFT are the microtubule-associated motors, -kinesin and dynein-, that continuously ferry cargo in a bi-directional fashion needed for ciliary assembly and function. To pave the way towards a molecular understanding of this fascinating organelle, we propose to employ a bottom-up approach in which we stepwise reconstitute the IFT complex from recombinantly expressed subunits of the so far best understood primary cilium from C.elegans. The structural integrity and stability of the IFT complex will be characterized using multifaceted approaches such as chemical crosslinking or thermophoresis. To mechanistically dissect the kinesin-dependent transport in vitro, we will make use of enzymatic bulk and single-molecule assays. Collectively, these results will provide a quantitative understanding of the assembly and kinesin-dependent motility of the IFT machinery. Given that cells mobilize ~600 components to build their cilia, this experimental platform will significantly streamline future efforts to identify novel cargoes and the effects of putative regulators of the IFT machinery.
Max ERC Funding
1 497 740 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym DROPCELLARRAY
Project DropletMicroarrays: Ultra High-Throughput Screening of Cells in 3D Microenvironments
Researcher (PI) Pavel Levkin
Host Institution (HI) KARLSRUHER INSTITUT FUER TECHNOLOGIE
Call Details Starting Grant (StG), PE8, ERC-2013-StG
Summary High-throughput (HT) screening of live cells is crucial to accelerate both fundamental biological research and discovery of new drugs. Current methods for HT cell screenings, however, either require a large number of microplates, are prone to cross-contaminations and are limited to adherent cells (cell microarrays), or are not compatible with adherent cells as well as with spatial indexing (droplet microfluidics). We recently demonstrated the use of superhydrophobic-superhydrophilic microarrays to create high-density arrays of microdroplets or hydrogel micropads. We propose here to develop a new platform for HT cell screening experiments using the unique properties of the superhydrophilic microarrays separated by superhydrophobic thin barriers. The new technology will allow us to perform up to 300K cell experiments in parallel using a single chip. Individual cell experiments will be performed in thousands of completely isolated microdroplet at defined locations on the chip. This will enable spatial indexing, time-lapse measurements and screening of either adherent or non-adherent cells. Parallel manipulations within individual microreservoirs, such as washing, addition of chemical libraries, or staining will be developed to open new possibilities in the field of live cell studies. Superhydrophobic barriers will allow complete isolation of the microreservoirs, thus preventing cross-contamination and cell migration. We will also develop a technology for the HT screening of cells in 3D hydrogel micropads. We will use these methods to gain better understanding of how different parameters of the 3D cell microenvironment influence various aspects of cell behavior. The project will require the development of new technological tools which can later be applied to a wide range of cell screening experiments and biological problems. Our long term aim is to replace the outdated microplate technology with a more powerful and convenient method for cell screening experiments.
Summary
High-throughput (HT) screening of live cells is crucial to accelerate both fundamental biological research and discovery of new drugs. Current methods for HT cell screenings, however, either require a large number of microplates, are prone to cross-contaminations and are limited to adherent cells (cell microarrays), or are not compatible with adherent cells as well as with spatial indexing (droplet microfluidics). We recently demonstrated the use of superhydrophobic-superhydrophilic microarrays to create high-density arrays of microdroplets or hydrogel micropads. We propose here to develop a new platform for HT cell screening experiments using the unique properties of the superhydrophilic microarrays separated by superhydrophobic thin barriers. The new technology will allow us to perform up to 300K cell experiments in parallel using a single chip. Individual cell experiments will be performed in thousands of completely isolated microdroplet at defined locations on the chip. This will enable spatial indexing, time-lapse measurements and screening of either adherent or non-adherent cells. Parallel manipulations within individual microreservoirs, such as washing, addition of chemical libraries, or staining will be developed to open new possibilities in the field of live cell studies. Superhydrophobic barriers will allow complete isolation of the microreservoirs, thus preventing cross-contamination and cell migration. We will also develop a technology for the HT screening of cells in 3D hydrogel micropads. We will use these methods to gain better understanding of how different parameters of the 3D cell microenvironment influence various aspects of cell behavior. The project will require the development of new technological tools which can later be applied to a wide range of cell screening experiments and biological problems. Our long term aim is to replace the outdated microplate technology with a more powerful and convenient method for cell screening experiments.
Max ERC Funding
1 499 820 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym EBDD
Project Beyond structure: integrated computational and experimental approach to Ensemble-Based Drug Design
Researcher (PI) Julien Michel
Host Institution (HI) THE UNIVERSITY OF EDINBURGH
Call Details Starting Grant (StG), PE4, ERC-2013-StG
Summary "Although protein dynamics plays an essential role in function, it is rarely considered explicitly in current structure-based approaches to drug design. Here I propose the computer-aided design of ligands by modulation of protein dynamics, or equivalently, protein structural ensembles. The detailed understanding of ligand-induced perturbations of protein dynamics that will result from this study is crucial not just to accurately predicting binding affinities and tackling ""undruggable"" targets, but also to understanding protein allostery.
Three major aims will be pursued during this project.
First, I will combine concepts from chemoinformatics and non-equilibrium thermodynamics to detect cryptic ""druggable"" small molecule binding sites in computed structural ensembles. New computational methods will be developed to predict how binding at these putative sites is likely to influence protein function. This will enable rational approaches to allosteric control of protein function.
Second, new classes of non-equilibrium sampling algorithms will be developed to improve by 2-3 orders of magnitude the speed of computation of protein/ligand structural ensembles by molecular simulations. This will enable routine consideration of protein flexibility in ligand optimisation problems.
Third, I will address with the above methods a frontier problem in molecular recognition: the rational design of protein isoform-specific ligands. To achieve this goal, I will integrate computation with experiments and focus efforts on the therapeutically relevant cyclophilin protein family. Experimental work will involve the use of purchased or custom-synthesized competitive and allosteric ligands in enzymatic assays, calorimetry and crystal structure analyses.
Overall, this project proposes fundamental advances in our ability to quantify and engineer protein-ligand interactions, therefore expanding opportunities for the development of future small molecule therapeutics."
Summary
"Although protein dynamics plays an essential role in function, it is rarely considered explicitly in current structure-based approaches to drug design. Here I propose the computer-aided design of ligands by modulation of protein dynamics, or equivalently, protein structural ensembles. The detailed understanding of ligand-induced perturbations of protein dynamics that will result from this study is crucial not just to accurately predicting binding affinities and tackling ""undruggable"" targets, but also to understanding protein allostery.
Three major aims will be pursued during this project.
First, I will combine concepts from chemoinformatics and non-equilibrium thermodynamics to detect cryptic ""druggable"" small molecule binding sites in computed structural ensembles. New computational methods will be developed to predict how binding at these putative sites is likely to influence protein function. This will enable rational approaches to allosteric control of protein function.
Second, new classes of non-equilibrium sampling algorithms will be developed to improve by 2-3 orders of magnitude the speed of computation of protein/ligand structural ensembles by molecular simulations. This will enable routine consideration of protein flexibility in ligand optimisation problems.
Third, I will address with the above methods a frontier problem in molecular recognition: the rational design of protein isoform-specific ligands. To achieve this goal, I will integrate computation with experiments and focus efforts on the therapeutically relevant cyclophilin protein family. Experimental work will involve the use of purchased or custom-synthesized competitive and allosteric ligands in enzymatic assays, calorimetry and crystal structure analyses.
Overall, this project proposes fundamental advances in our ability to quantify and engineer protein-ligand interactions, therefore expanding opportunities for the development of future small molecule therapeutics."
Max ERC Funding
1 382 202 €
Duration
Start date: 2013-12-01, End date: 2018-11-30
Project acronym ECOFLAM
Project The Impact of Plant Evolution on Fire Behaviour in Ancient Ecosystems
Researcher (PI) Claire Michelle Belcher
Host Institution (HI) THE UNIVERSITY OF EXETER
Call Details Starting Grant (StG), LS8, ERC-2013-StG
Summary Fire has played a key role in the evolutionary success of our species and has shaped the abundance of life that we see on our planet today. Wildfires have influenced the history of plant life for 410 million years where 5 key plant evolutionary events have occurred that led to variations in fire behaviour. Variations in fire behaviour determine a fire’s severity and its impact on an ecosystem. In order to assess palaeofire severity the heat delivered by a fire and the duration for which it remains at a site must be estimated. Currently we are unable to estimate palaeofire behaviour and are therefore unable to predict the ecological impact of palaeofires. ECOFLAM will change this by combining for the first time state-of-the-art flammability experiments with innovative modelling approaches to reconstruct variations in palaeofire behaviour due to plant innovations. ECOFLAM will establish relationships between plant traits that are measurable in the fossil record, and their flammability. It will construct simple metrics that can be applied to assess the nature of fires occurring in a fossil flora. Then using a frontier approach ECOFLAM will apply mathematical models to create the first ever estimates of palaeofire behaviour. ECOFLAM will: 1) estimate fire behaviour in Earth’s earliest forests, 2) assess the impact of the evolution of gymnosperm conifers on changes in fire regime and fire behaviour 3) test the hypothesis that early angiosperms utilised fire to invade and out compete gymnosperm forests, 4) test the hypothesis that expansion of neotropical forests led to suppression of fire and 5) track the ability of increases in grass fuel to enhance ecosystem flammability enabling expansion of the savanna biome. ECOFLAM will collaborate with an artist to visually express the relationship between fire and plants to bring fire science to the arts and public. Finally via an exciting link with Morgan Stanley, London ECOFLAM will explore the economic impact of wildfires.
Summary
Fire has played a key role in the evolutionary success of our species and has shaped the abundance of life that we see on our planet today. Wildfires have influenced the history of plant life for 410 million years where 5 key plant evolutionary events have occurred that led to variations in fire behaviour. Variations in fire behaviour determine a fire’s severity and its impact on an ecosystem. In order to assess palaeofire severity the heat delivered by a fire and the duration for which it remains at a site must be estimated. Currently we are unable to estimate palaeofire behaviour and are therefore unable to predict the ecological impact of palaeofires. ECOFLAM will change this by combining for the first time state-of-the-art flammability experiments with innovative modelling approaches to reconstruct variations in palaeofire behaviour due to plant innovations. ECOFLAM will establish relationships between plant traits that are measurable in the fossil record, and their flammability. It will construct simple metrics that can be applied to assess the nature of fires occurring in a fossil flora. Then using a frontier approach ECOFLAM will apply mathematical models to create the first ever estimates of palaeofire behaviour. ECOFLAM will: 1) estimate fire behaviour in Earth’s earliest forests, 2) assess the impact of the evolution of gymnosperm conifers on changes in fire regime and fire behaviour 3) test the hypothesis that early angiosperms utilised fire to invade and out compete gymnosperm forests, 4) test the hypothesis that expansion of neotropical forests led to suppression of fire and 5) track the ability of increases in grass fuel to enhance ecosystem flammability enabling expansion of the savanna biome. ECOFLAM will collaborate with an artist to visually express the relationship between fire and plants to bring fire science to the arts and public. Finally via an exciting link with Morgan Stanley, London ECOFLAM will explore the economic impact of wildfires.
Max ERC Funding
1 519 640 €
Duration
Start date: 2013-10-01, End date: 2018-09-30
Project acronym EMF-FEIM
Project Empirical Macro-Finance and the Financial Economics of Insurance Markets
Researcher (PI) Ralph Koijen
Host Institution (HI) LONDON BUSINESS SCHOOL
Call Details Starting Grant (StG), SH1, ERC-2013-StG
Summary "My project consists of two lines of work. 1.Empirical Macro-Finance: Asset prices are informative about the macro-economic risks that matter to investors and about the welfare costs of economic fluctuations. However, recent empirical evidence suggests that leading asset pricing models cannot explain how risks are priced across maturities in equity markets, which is a key input to measuring the costs of business cycles. An analysis of what leading models miss will vastly improve our understanding of how the real economy and asset prices are related. Also, by expanding our empirical evidence about the term structure of equity to the firm-level, I plan to study how investment decisions relate to asset prices. My goal is to measure the firms' incentives to invest and how this impacts economic growth more broadly.
2.Financial Economics of Insurance Markets: Households in Europe and the US can choose from a wide variety of insurance products that insure health and mortality risks. Choosing between these products is no easy task and the costs from sub-optimal insurance choices are estimated to be large. My plan is to develop a comprehensive life-cycle theory of insurance choice that accounts for family structure, risk factors such as labor income and housing, and different institutional settings across countries. I also plan to study the supply side of insurance markets. The traditional view is that insurance prices are driven by life-cycle demand or informational frictions. However, as is clear from evidence during the financial crisis, insurance companies are in fact financial institutions. If financial constraints bind, it may affect insurance prices and ultimately consumers' welfare. My goal is to understand how financial frictions affect insurance companies. A policy implication of my research may be that the private supply of insurance is an imperfect substitute for public supply as insurance companies face different incentives and constraints than the government."
Summary
"My project consists of two lines of work. 1.Empirical Macro-Finance: Asset prices are informative about the macro-economic risks that matter to investors and about the welfare costs of economic fluctuations. However, recent empirical evidence suggests that leading asset pricing models cannot explain how risks are priced across maturities in equity markets, which is a key input to measuring the costs of business cycles. An analysis of what leading models miss will vastly improve our understanding of how the real economy and asset prices are related. Also, by expanding our empirical evidence about the term structure of equity to the firm-level, I plan to study how investment decisions relate to asset prices. My goal is to measure the firms' incentives to invest and how this impacts economic growth more broadly.
2.Financial Economics of Insurance Markets: Households in Europe and the US can choose from a wide variety of insurance products that insure health and mortality risks. Choosing between these products is no easy task and the costs from sub-optimal insurance choices are estimated to be large. My plan is to develop a comprehensive life-cycle theory of insurance choice that accounts for family structure, risk factors such as labor income and housing, and different institutional settings across countries. I also plan to study the supply side of insurance markets. The traditional view is that insurance prices are driven by life-cycle demand or informational frictions. However, as is clear from evidence during the financial crisis, insurance companies are in fact financial institutions. If financial constraints bind, it may affect insurance prices and ultimately consumers' welfare. My goal is to understand how financial frictions affect insurance companies. A policy implication of my research may be that the private supply of insurance is an imperfect substitute for public supply as insurance companies face different incentives and constraints than the government."
Max ERC Funding
1 077 765 €
Duration
Start date: 2013-10-01, End date: 2018-09-30
Project acronym ENREMOS
Project Enantioselective Reactions on Model Chirally Modified Surfaces
Researcher (PI) Swetlana Schauermann
Host Institution (HI) CHRISTIAN-ALBRECHTS-UNIVERSITAET ZU KIEL
Call Details Starting Grant (StG), PE4, ERC-2013-StG
Summary Imparting chirality to non-chiral metal surfaces by adsorption of chiral modifiers is a highly promising route to create effective heterogeneously catalyzed processes for production of enantiopure pharmaceuticals. A molecular-level understanding of enantioselective processes on chiral surfaces is an importance prerequisite for the rational design of new enantiospecific catalysts. With the research outlined in this proposal we are aiming at a fundamental level understanding of the structure of chirally modified surfaces, the bonding of the prochiral substrate on the chiral media and the details of the kinetics and dynamics of enantioselective surface reactions. A full mechanistic picture can be obtained if these aspects will be understood both on the extended single crystal surfaces, mimicking a local interaction of the modifier-substrate complexes with a metal, as well as on the small chirally modified nanoparticles that more accurately resemble the structural properties and high catalytic activity of practically relevant powdered supported catalyst. To achieve these atomistic insights, we propose to apply a combination of ultrahigh vacuum (UHV) based methods for studying reaction kinetics and dynamics (multi-molecular beam techniques) and in-situ surface spectroscopic and microscopic tools on well-defined model surfaces consisting of metal nanoparticles supported on thin single crystalline oxide films. Complementary, the catalytic behaviour of these chirally modified model surfaces will be investigated under ambient pressure conditions with enantiospecific detection of the reaction products that will enable detailed atomistic insights into structure-reactivity relationships.
Summary
Imparting chirality to non-chiral metal surfaces by adsorption of chiral modifiers is a highly promising route to create effective heterogeneously catalyzed processes for production of enantiopure pharmaceuticals. A molecular-level understanding of enantioselective processes on chiral surfaces is an importance prerequisite for the rational design of new enantiospecific catalysts. With the research outlined in this proposal we are aiming at a fundamental level understanding of the structure of chirally modified surfaces, the bonding of the prochiral substrate on the chiral media and the details of the kinetics and dynamics of enantioselective surface reactions. A full mechanistic picture can be obtained if these aspects will be understood both on the extended single crystal surfaces, mimicking a local interaction of the modifier-substrate complexes with a metal, as well as on the small chirally modified nanoparticles that more accurately resemble the structural properties and high catalytic activity of practically relevant powdered supported catalyst. To achieve these atomistic insights, we propose to apply a combination of ultrahigh vacuum (UHV) based methods for studying reaction kinetics and dynamics (multi-molecular beam techniques) and in-situ surface spectroscopic and microscopic tools on well-defined model surfaces consisting of metal nanoparticles supported on thin single crystalline oxide films. Complementary, the catalytic behaviour of these chirally modified model surfaces will be investigated under ambient pressure conditions with enantiospecific detection of the reaction products that will enable detailed atomistic insights into structure-reactivity relationships.
Max ERC Funding
1 589 736 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym ESCQUMA
Project Exploring Strongly Correlated Quantum Matter
with Cold Excited Atoms
Researcher (PI) Igor Walter Lesanovsky
Host Institution (HI) THE UNIVERSITY OF NOTTINGHAM
Call Details Starting Grant (StG), PE3, ERC-2013-StG
Summary The understanding of quantum matter in and out of equilibrium is among the biggest challenges of modern physics. Despite decades of research fundamental questions, such as the precise
workings behind rather ubiquitous materials such as high temperature superconductors are still unresolved. At the same time there is a new generation of experiments approaching which realises and probes quantum matter with novel and exotic interactions at an unprecedented level of precision. This has already highlighted new avenues of research but also demands for radically new theoretical approaches which lie outside the scope of just a single traditional physical discipline. Novel and in particular multidisciplinary lines of thinking are required to tackle this immense challenge. Such new research will not solely be delivering invaluable insights into currently unresolved problems but rather form a new basis for the understanding of quantum matter from a multidisciplinary perspective. This will open up new horizons for fundamental research and at the same time will pave the way for future technologies and materials which rely on non-equilibrium phenomena or quantum matter. This research proposal takes on this challenge by setting up a broad theoretical research programme which is multipronged and multidisciplinary and which directly connects to the most recent research efforts in ultra cold atomic physics. Here currently a step change is taking place where new experiments explore strongly correlated quantum physics within gases of excited atoms – so-called Rydberg atoms. Exploiting this unique moment we will develop a framework for the description of the equilibrium and non-equilibrium properties of these complex and very versatile quantum systems. This system-specific research approach has the advantage that theoretical predictions can be verified experimentally and applied in practice almost immediately, leading to research attacking the frontiers of current knowledge.
Summary
The understanding of quantum matter in and out of equilibrium is among the biggest challenges of modern physics. Despite decades of research fundamental questions, such as the precise
workings behind rather ubiquitous materials such as high temperature superconductors are still unresolved. At the same time there is a new generation of experiments approaching which realises and probes quantum matter with novel and exotic interactions at an unprecedented level of precision. This has already highlighted new avenues of research but also demands for radically new theoretical approaches which lie outside the scope of just a single traditional physical discipline. Novel and in particular multidisciplinary lines of thinking are required to tackle this immense challenge. Such new research will not solely be delivering invaluable insights into currently unresolved problems but rather form a new basis for the understanding of quantum matter from a multidisciplinary perspective. This will open up new horizons for fundamental research and at the same time will pave the way for future technologies and materials which rely on non-equilibrium phenomena or quantum matter. This research proposal takes on this challenge by setting up a broad theoretical research programme which is multipronged and multidisciplinary and which directly connects to the most recent research efforts in ultra cold atomic physics. Here currently a step change is taking place where new experiments explore strongly correlated quantum physics within gases of excited atoms – so-called Rydberg atoms. Exploiting this unique moment we will develop a framework for the description of the equilibrium and non-equilibrium properties of these complex and very versatile quantum systems. This system-specific research approach has the advantage that theoretical predictions can be verified experimentally and applied in practice almost immediately, leading to research attacking the frontiers of current knowledge.
Max ERC Funding
1 492 000 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym EVOLMAPPING
Project An integrated assessment of recent evolutionary change
through genome wide mapping of regulatory changes and signatures of selection in natural sculpin (Cottus) hybrids
Researcher (PI) Arne W. Nolte
Host Institution (HI) CARL VON OSSIETZKY UNIVERSITAET OLDENBURG
Call Details Starting Grant (StG), LS8, ERC-2013-StG
Summary It is the unprecedented access to genome wide data that highlights the potential of current evolutionary studies and this proposal aims at exploiting this progress to analyze evolutionary processes in a well-established fish system of hybrid speciation. We study natural populations of freshwater fish referred to as sculpins (Cottus). In these we have identified species that have recently (<200 years) hybridized as a result of secondary contact through man-made canals between river systems. This gave rise to a new lineage with new adaptations that have allowed it to invade habitats that were not used by the parental species before. We are thus also dealing with evolutionary change that is associated with man-made ecological perturbations, the analysis of which is particularly timely. It is now possible to perform a near exhaustive search to identify genes and to study gene expression as a measure of evolutionary change in Cottus. A combination of genetic mapping experiments and screens for genotypic selection can reveal loci and functions as targets of selection in the adaptive evolution of invasive Cottus. This proposal specifically aims at identifying genomic traits such as copy number changes of coding sequences or changes in the gene regulatory architecture that have evolved as a direct consequence of hybridization and to explore their implication in adaptive evolution. The results will contribute to our understanding of the genetics of adaptation and the invasion of a new environment. With respect to hybrid zones and the evolution of new species, we will identify candidate genes and functions that can explain barriers to reproduction in the wild. Finally, we will be able to make significant progress with respect to the genetics associated with hybrid speciation.
Summary
It is the unprecedented access to genome wide data that highlights the potential of current evolutionary studies and this proposal aims at exploiting this progress to analyze evolutionary processes in a well-established fish system of hybrid speciation. We study natural populations of freshwater fish referred to as sculpins (Cottus). In these we have identified species that have recently (<200 years) hybridized as a result of secondary contact through man-made canals between river systems. This gave rise to a new lineage with new adaptations that have allowed it to invade habitats that were not used by the parental species before. We are thus also dealing with evolutionary change that is associated with man-made ecological perturbations, the analysis of which is particularly timely. It is now possible to perform a near exhaustive search to identify genes and to study gene expression as a measure of evolutionary change in Cottus. A combination of genetic mapping experiments and screens for genotypic selection can reveal loci and functions as targets of selection in the adaptive evolution of invasive Cottus. This proposal specifically aims at identifying genomic traits such as copy number changes of coding sequences or changes in the gene regulatory architecture that have evolved as a direct consequence of hybridization and to explore their implication in adaptive evolution. The results will contribute to our understanding of the genetics of adaptation and the invasion of a new environment. With respect to hybrid zones and the evolution of new species, we will identify candidate genes and functions that can explain barriers to reproduction in the wild. Finally, we will be able to make significant progress with respect to the genetics associated with hybrid speciation.
Max ERC Funding
1 377 162 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym FFP
Project Families and food poverty in three European Countries in an Age of Austerity
Researcher (PI) Rebecca O'connell
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Starting Grant (StG), SH2, ERC-2013-StG
Summary Food poverty in the global North is emerging as an urgent social and moral concern, increasingly recognized as a central issue in the field of health inequalities in industrialized countries. With widening income disparity in Austerity Europe and ‘the end of cheap food’, these effects are being exacerbated. International media report an increase in the number of children arriving at school hungry, a dramatic rise in the number of food banks handing out food parcels to families and parents forced to choose between ‘heating and eating’. However, little is known about how food practices are negotiated in low-income families, children’s and young people’s perspectives of food poverty and how it affects their lives, or how food poverty manifests and is addressed in different places. The proposed interdisciplinary, ambitious and innovative study will answer such questions, breaking new ground by: a) applying a mixed method international comparative case study design to the study of household food poverty b) including the experiences of children and young people using both extensive and intensive data and c) drawing on methodological developments in the sociology of food and consumption to elucidate habitual behaviour. Providing for ‘a contrast of contexts’ in relation to conditions of austerity, the study focuses on Portugal, where poor families with children have been most affected by economic retrenchment, the UK, which is experiencing substantial cuts in benefits to poor families, and Norway which, in comparison with most societies, is highly egalitarian and has not been subject to austerity measures. Building on the Principal Investigator’s (PI’s) current mixed-methods UK research on families, food and paid work, the project will develop the PI’s research skills, publication record and international reputation. Engaging academic and non-academic beneficiaries at various stages of analysis and dissemination the study will achieve societal as well as scientific impact.
Summary
Food poverty in the global North is emerging as an urgent social and moral concern, increasingly recognized as a central issue in the field of health inequalities in industrialized countries. With widening income disparity in Austerity Europe and ‘the end of cheap food’, these effects are being exacerbated. International media report an increase in the number of children arriving at school hungry, a dramatic rise in the number of food banks handing out food parcels to families and parents forced to choose between ‘heating and eating’. However, little is known about how food practices are negotiated in low-income families, children’s and young people’s perspectives of food poverty and how it affects their lives, or how food poverty manifests and is addressed in different places. The proposed interdisciplinary, ambitious and innovative study will answer such questions, breaking new ground by: a) applying a mixed method international comparative case study design to the study of household food poverty b) including the experiences of children and young people using both extensive and intensive data and c) drawing on methodological developments in the sociology of food and consumption to elucidate habitual behaviour. Providing for ‘a contrast of contexts’ in relation to conditions of austerity, the study focuses on Portugal, where poor families with children have been most affected by economic retrenchment, the UK, which is experiencing substantial cuts in benefits to poor families, and Norway which, in comparison with most societies, is highly egalitarian and has not been subject to austerity measures. Building on the Principal Investigator’s (PI’s) current mixed-methods UK research on families, food and paid work, the project will develop the PI’s research skills, publication record and international reputation. Engaging academic and non-academic beneficiaries at various stages of analysis and dissemination the study will achieve societal as well as scientific impact.
Max ERC Funding
1 370 937 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym FLAMMASEC
Project "Inflammasome-induced IL-1 Secretion: Route, Mechanism, and Cell Fate"
Researcher (PI) Olaf Groß
Host Institution (HI) UNIVERSITAETSKLINIKUM FREIBURG
Call Details Starting Grant (StG), LS6, ERC-2013-StG
Summary "Inflammasomes are intracellular danger-sensing protein complexes that are important for host protection. They initiate inflammation by controlling the activity of the proinflammatory cytokine interleukin-1β (IL-1β). Unlike most other cytokines, IL-1β is produced and retained in the cytoplasm in an inactive pro-form. Inflammasome-dependent maturation of proIL-1β is mediated by the common component of all inflammasomes, the protease caspase-1. Caspase-1 also controls the secretion of IL-1β, but the mechanism and route of secretion are unknown. We have recently demonstrated that the ability of caspase-1 to control IL-1β secretion is not dependent on its protease activity, but rather on a scaffold or adapter function of caspase-1. Furthermore, we and others could show that caspase-1 can control the secretion of non-substrates like IL-1α. These insights provide us with new and potentially revealing means to investigate the downstream effector functions of caspase-1, including the route and mechanism of IL-1 secretion. We will develop new tools to study the process of IL-1 secretion by microscopy and the novel mode-of-action of caspase-1 through the generation of transgenic models.
Despite the important role of IL-1 in host defence against infection, dysregulated inflammasome activation and IL-1 production has a causal role in a number of acquired and hereditary auto-inflammatory conditions. These include particle-induced sterile inflammation (as is seen in gout and asbestosis), hereditary periodic fever syndromes, and metabolic diseases like diabetes and atherosclerosis. Currently, recombinant proteins that block the IL-1 receptor or deplete secreted IL-1 are used to treat IL-1-dependent diseases. These are costly treatments, and are also therapeutically cumbersome since they are not orally available. We hope that a better understanding of caspase-1-mediated secretion of IL-1 will unveil mechanisms that may serve as targets for future therapies for these diseases."
Summary
"Inflammasomes are intracellular danger-sensing protein complexes that are important for host protection. They initiate inflammation by controlling the activity of the proinflammatory cytokine interleukin-1β (IL-1β). Unlike most other cytokines, IL-1β is produced and retained in the cytoplasm in an inactive pro-form. Inflammasome-dependent maturation of proIL-1β is mediated by the common component of all inflammasomes, the protease caspase-1. Caspase-1 also controls the secretion of IL-1β, but the mechanism and route of secretion are unknown. We have recently demonstrated that the ability of caspase-1 to control IL-1β secretion is not dependent on its protease activity, but rather on a scaffold or adapter function of caspase-1. Furthermore, we and others could show that caspase-1 can control the secretion of non-substrates like IL-1α. These insights provide us with new and potentially revealing means to investigate the downstream effector functions of caspase-1, including the route and mechanism of IL-1 secretion. We will develop new tools to study the process of IL-1 secretion by microscopy and the novel mode-of-action of caspase-1 through the generation of transgenic models.
Despite the important role of IL-1 in host defence against infection, dysregulated inflammasome activation and IL-1 production has a causal role in a number of acquired and hereditary auto-inflammatory conditions. These include particle-induced sterile inflammation (as is seen in gout and asbestosis), hereditary periodic fever syndromes, and metabolic diseases like diabetes and atherosclerosis. Currently, recombinant proteins that block the IL-1 receptor or deplete secreted IL-1 are used to treat IL-1-dependent diseases. These are costly treatments, and are also therapeutically cumbersome since they are not orally available. We hope that a better understanding of caspase-1-mediated secretion of IL-1 will unveil mechanisms that may serve as targets for future therapies for these diseases."
Max ERC Funding
1 495 533 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym FOPS-water
Project Fundamentals Of Photocatalytic Splitting of Water
Researcher (PI) Eleonora Hendrika Gertruda Mezger-Backus
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), PE4, ERC-2013-StG
Summary Hydrogen produced by sunlight is a very promising, environmentally-friendly energy source as an alternative for increasingly scarce and polluting fossil fuels. Since the discovery of hydrogen production by photocatalytic water dissociation on a titanium dioxide (TiO2) electrode 40 years ago, much research has been aimed at increasing the process efficiency. Remarkably, insights into how water is bound to the catalyst and into the dynamics of the photodissociation reaction, have been scarce up to now, due to the lack of suitable techniques to interrogate water at the interface. The aim of this proposal is to provide these insights by looking at specifically the molecules at the interface, before, during and after their photo-reaction. With the surface sensitive spectroscopic technique sum-frequency generation (SFG) we can determine binding motifs of the ~monolayer of water at the interface, quantify the heterogeneity of the water molecules at the interface and follow changes in water molecular structure and dynamics at the interface during the reaction. The structure of interfacial water will be studied using steady-state SFG; the dynamics of the water photodissociation will be investigated using pump-SFG probe spectroscopy. At variable delay times after the pump pulse the probe pulses will interrogate the interface and detect the reaction intermediates and products. Thanks to recent developments of SFG it should now be possible to determine the structure of water at the TiO2 interface and to unravel the dynamics of the photodissocation process. These insights will allow us to relate the interfacial TiO2-water structure and dynamics to reactivity of the photocatalyst, and to bridge the gap between the fundamentals of the process at the molecular level to the efficiency of the photocatalys. The results will be essential for developing cheaper and more efficient photocatalysts for the production of hydrogen.
Summary
Hydrogen produced by sunlight is a very promising, environmentally-friendly energy source as an alternative for increasingly scarce and polluting fossil fuels. Since the discovery of hydrogen production by photocatalytic water dissociation on a titanium dioxide (TiO2) electrode 40 years ago, much research has been aimed at increasing the process efficiency. Remarkably, insights into how water is bound to the catalyst and into the dynamics of the photodissociation reaction, have been scarce up to now, due to the lack of suitable techniques to interrogate water at the interface. The aim of this proposal is to provide these insights by looking at specifically the molecules at the interface, before, during and after their photo-reaction. With the surface sensitive spectroscopic technique sum-frequency generation (SFG) we can determine binding motifs of the ~monolayer of water at the interface, quantify the heterogeneity of the water molecules at the interface and follow changes in water molecular structure and dynamics at the interface during the reaction. The structure of interfacial water will be studied using steady-state SFG; the dynamics of the water photodissociation will be investigated using pump-SFG probe spectroscopy. At variable delay times after the pump pulse the probe pulses will interrogate the interface and detect the reaction intermediates and products. Thanks to recent developments of SFG it should now be possible to determine the structure of water at the TiO2 interface and to unravel the dynamics of the photodissocation process. These insights will allow us to relate the interfacial TiO2-water structure and dynamics to reactivity of the photocatalyst, and to bridge the gap between the fundamentals of the process at the molecular level to the efficiency of the photocatalys. The results will be essential for developing cheaper and more efficient photocatalysts for the production of hydrogen.
Max ERC Funding
1 498 800 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym FRICTIONS
Project Frictions in the Financial System
Researcher (PI) Péter Kondor
Host Institution (HI) LONDON SCHOOL OF ECONOMICS AND POLITICAL SCIENCE
Call Details Starting Grant (StG), SH1, ERC-2013-StG
Summary "The financial crisis, since its start in 2008 has exposed enormous fractures both in the financial architecture and in the structure of the global economy. Although with some notable exceptions, the magnitude of the events caught the finance profession largely by surprise. Clearly, we have to understand better the institutional mechanism channeling savings towards the best uses of capital, and to what extent this mechanism can sometimes fail. The projects in this proposal will push the boundaries of our knowledge in this direction.
I suggest a dual approach to achieve this goal. First, we have to improve our understanding of which frictions are the crucial impediments of the efficient functioning of markets. As this approach focuses on particular markets in isolation, I call this the micro approach. I propose three projects within this approach: trading and information diffusion in OTC markets, the crowdedness in limits-to-arbitrage, and the interaction of political uncertainty and sovereign bond prices.
Second, from the frictions emerging from the micro approach, we have to select the ones which determine the aggregate liquidity fluctuations in the economy. I use this concept in a broad sense; referring to the changing efficiency with which the financial system allocates resources across investment opportunities. As this approach focuses on the functionality of the financial system as a whole, I call this the macro approach. I propose two projects within this approach. The first project focuses on the determinants of the differences in the financial architecture of different economies. It builds a novel framework to study the dynamics of the financial sector of an economy. The second project studies the role of shadow banking in the fluctuation of aggregate liquidity. In particular, this project concentrates on the fluctuation of the efficiency of private liquidity creation as the state of the economy changes."
Summary
"The financial crisis, since its start in 2008 has exposed enormous fractures both in the financial architecture and in the structure of the global economy. Although with some notable exceptions, the magnitude of the events caught the finance profession largely by surprise. Clearly, we have to understand better the institutional mechanism channeling savings towards the best uses of capital, and to what extent this mechanism can sometimes fail. The projects in this proposal will push the boundaries of our knowledge in this direction.
I suggest a dual approach to achieve this goal. First, we have to improve our understanding of which frictions are the crucial impediments of the efficient functioning of markets. As this approach focuses on particular markets in isolation, I call this the micro approach. I propose three projects within this approach: trading and information diffusion in OTC markets, the crowdedness in limits-to-arbitrage, and the interaction of political uncertainty and sovereign bond prices.
Second, from the frictions emerging from the micro approach, we have to select the ones which determine the aggregate liquidity fluctuations in the economy. I use this concept in a broad sense; referring to the changing efficiency with which the financial system allocates resources across investment opportunities. As this approach focuses on the functionality of the financial system as a whole, I call this the macro approach. I propose two projects within this approach. The first project focuses on the determinants of the differences in the financial architecture of different economies. It builds a novel framework to study the dynamics of the financial sector of an economy. The second project studies the role of shadow banking in the fluctuation of aggregate liquidity. In particular, this project concentrates on the fluctuation of the efficiency of private liquidity creation as the state of the economy changes."
Max ERC Funding
1 122 883 €
Duration
Start date: 2013-12-01, End date: 2018-11-30
Project acronym FUNCSPECGEN
Project What is the engine of biodiversity? Comparative and Functional Speciation Genetics in the Post-genomic Era
Researcher (PI) Jochen Brock Wacain Wolf
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Call Details Starting Grant (StG), LS8, ERC-2013-StG
Summary More than 150 years after the seminal works of Charles Darwin on speciation, we are beginning to unravel the genetic underpinnings of the splitting process (Ellegren H [..] JBW Wolf, Nature, in press). The genomic revolution is progressing at full speed, and for the first time in history we are equipped with the necessary tools to investigate the genomic architecture of speciation at base-pair resolution in any organisms of our choice. When integrated to the mature theoretical framework of the evolutionary sciences, this wealth of genome-scale data will produce fundamental insights into the processes governing adaptation and speciation.
Here, I identify a novel evolutionary model system - crows and ravens of the genus Corvus - and demonstrate its potential for speciation genetic and functional genomic research. Central to this system is the phylogenetically independent recurrence of a pied colour-pattern in several species that stands in contrasts to the predominant all-black plumage in the clade. Building on the idea that colour polymorphism can promote speciation through sexual selection, I choose a number of black and pied species pairs that can be positioned along a time line representing different stages of the speciation process. This comparative framework is unrivalled in its setup and is uniquely suited to study the genetics of speciation across different stages of species divergence. It also provides a promising entry point to the fascinating theme of parallel evolution.
This research program is among the first to harness the possibilities of the post-genomic era in a wild organism. Using a combination of population- and phylo-genomic approaches, single sperm sequencing, experimental work in a breeding population, systems biology approaches and in situ mRNA quantification at cellular resolution, this interdisciplinary program covers novel ground in the nascent field of functional avian genomics and pushes the boundaries of speciation genetic research.
Summary
More than 150 years after the seminal works of Charles Darwin on speciation, we are beginning to unravel the genetic underpinnings of the splitting process (Ellegren H [..] JBW Wolf, Nature, in press). The genomic revolution is progressing at full speed, and for the first time in history we are equipped with the necessary tools to investigate the genomic architecture of speciation at base-pair resolution in any organisms of our choice. When integrated to the mature theoretical framework of the evolutionary sciences, this wealth of genome-scale data will produce fundamental insights into the processes governing adaptation and speciation.
Here, I identify a novel evolutionary model system - crows and ravens of the genus Corvus - and demonstrate its potential for speciation genetic and functional genomic research. Central to this system is the phylogenetically independent recurrence of a pied colour-pattern in several species that stands in contrasts to the predominant all-black plumage in the clade. Building on the idea that colour polymorphism can promote speciation through sexual selection, I choose a number of black and pied species pairs that can be positioned along a time line representing different stages of the speciation process. This comparative framework is unrivalled in its setup and is uniquely suited to study the genetics of speciation across different stages of species divergence. It also provides a promising entry point to the fascinating theme of parallel evolution.
This research program is among the first to harness the possibilities of the post-genomic era in a wild organism. Using a combination of population- and phylo-genomic approaches, single sperm sequencing, experimental work in a breeding population, systems biology approaches and in situ mRNA quantification at cellular resolution, this interdisciplinary program covers novel ground in the nascent field of functional avian genomics and pushes the boundaries of speciation genetic research.
Max ERC Funding
1 494 300 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym GEONET
Project Internet Geographies: Changing Connectivities and the Potentials of Sub-Saharan Africa's Knowledge Economy
Researcher (PI) Mark Graham
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Starting Grant (StG), SH2, ERC-2013-StG
Summary Until recently, access to telecommunication technologies was out of reach for all but the most privileged citizens in Sub-Saharan Africa (SSA). However, recent radical changes that have connected hundreds of millions have encouraged politicians, journalists, academics, and citizens to speak of an IT-fuelled economic revolution happening on the continent. Many see potentials to move away from primary industries and towards a focus on quaternary and quinary sectors (the knowledge-based parts of the economy). Yet, it remains that there is surprisingly little research into the emergence of a new knowledge economy in Africa.
As such, it is precisely now that we urgently need groundbreaking frontier research to understand precisely what impacts are observable, who benefits, and how these changes match up to our expectations for change. We should therefore ask if we are seeing a new era of development on the continent fuelled by ICTs, or whether SSA’s engagement with the global knowledge economy continues to be on terms that reinforce dependence, underdevelopment, and economic extraversion.
This research project tackles this broad line of inquiry by focusing on the geographies, causes, and effects of SSA’s emerging knowledge economies at this crucial moment of change. We do so through three key research contexts: economic geographies of knowledge production; outsourcing and bottom-of-the-pyramid labour; and the creative service sector. Using a mixed-methods approach, we will document the unexpected challenges and the unanticipated innovative uses of this changing connectivity, and cut through through the hype by empirically evaluating benefits and impacts of new communication technologies in Africa. This project will thus contribute not only to academic and policy debates surrounding connectivity and Internet access, but will also provide a robust evidence base crucial in shaping future rounds of ICT related development projects in low-income countries.
Summary
Until recently, access to telecommunication technologies was out of reach for all but the most privileged citizens in Sub-Saharan Africa (SSA). However, recent radical changes that have connected hundreds of millions have encouraged politicians, journalists, academics, and citizens to speak of an IT-fuelled economic revolution happening on the continent. Many see potentials to move away from primary industries and towards a focus on quaternary and quinary sectors (the knowledge-based parts of the economy). Yet, it remains that there is surprisingly little research into the emergence of a new knowledge economy in Africa.
As such, it is precisely now that we urgently need groundbreaking frontier research to understand precisely what impacts are observable, who benefits, and how these changes match up to our expectations for change. We should therefore ask if we are seeing a new era of development on the continent fuelled by ICTs, or whether SSA’s engagement with the global knowledge economy continues to be on terms that reinforce dependence, underdevelopment, and economic extraversion.
This research project tackles this broad line of inquiry by focusing on the geographies, causes, and effects of SSA’s emerging knowledge economies at this crucial moment of change. We do so through three key research contexts: economic geographies of knowledge production; outsourcing and bottom-of-the-pyramid labour; and the creative service sector. Using a mixed-methods approach, we will document the unexpected challenges and the unanticipated innovative uses of this changing connectivity, and cut through through the hype by empirically evaluating benefits and impacts of new communication technologies in Africa. This project will thus contribute not only to academic and policy debates surrounding connectivity and Internet access, but will also provide a robust evidence base crucial in shaping future rounds of ICT related development projects in low-income countries.
Max ERC Funding
1 499 110 €
Duration
Start date: 2014-07-01, End date: 2019-06-30
Project acronym GeopolyConc
Project Durability of geopolymers as 21st century concretes
Researcher (PI) John Lloyd Provis
Host Institution (HI) THE UNIVERSITY OF SHEFFIELD
Call Details Starting Grant (StG), PE8, ERC-2013-StG
Summary GeopolyConc will provide the necessary scientific basis for the prediction of the long-term durability performance of alkali-activated ‘geopolymer’ concretes. These materials can be synthesised from industrial by-products and widely-available natural resources, and provide the opportunity for a highly significant reduction in the environmental footprint of the global construction materials industry, as it expands to meet the infrastructure needs of 21st century society. Experimental and modelling approaches will be coupled to provide major advances in the state of the art in the science and engineering of geopolymer concretes. The key scientific focus areas will be: (a) the development of the first ever rigorous mathematical description of the factors influencing the transport properties of alkali-activated concretes, and (b) ground-breaking work in understanding and controlling the factors which lead to the onset of corrosion of steel reinforcing embedded in alkali-activated concretes. This project will generate confidence in geopolymer concrete durability, which is essential to the application of these materials in reducing EU and global CO2 emissions. The GeopolyConc project will also be integrated with leading multinational collaborative test programmes coordinated through a RILEM Technical Committee (TC DTA) which is chaired by the PI, providing a route to direct international utilisation of the project outcomes.
Summary
GeopolyConc will provide the necessary scientific basis for the prediction of the long-term durability performance of alkali-activated ‘geopolymer’ concretes. These materials can be synthesised from industrial by-products and widely-available natural resources, and provide the opportunity for a highly significant reduction in the environmental footprint of the global construction materials industry, as it expands to meet the infrastructure needs of 21st century society. Experimental and modelling approaches will be coupled to provide major advances in the state of the art in the science and engineering of geopolymer concretes. The key scientific focus areas will be: (a) the development of the first ever rigorous mathematical description of the factors influencing the transport properties of alkali-activated concretes, and (b) ground-breaking work in understanding and controlling the factors which lead to the onset of corrosion of steel reinforcing embedded in alkali-activated concretes. This project will generate confidence in geopolymer concrete durability, which is essential to the application of these materials in reducing EU and global CO2 emissions. The GeopolyConc project will also be integrated with leading multinational collaborative test programmes coordinated through a RILEM Technical Committee (TC DTA) which is chaired by the PI, providing a route to direct international utilisation of the project outcomes.
Max ERC Funding
1 495 458 €
Duration
Start date: 2013-09-01, End date: 2018-08-31
Project acronym GRASP
Project The evolution of the human hand: grasping trees and tools
Researcher (PI) Tracy Lynne Kivell
Host Institution (HI) UNIVERSITY OF KENT
Call Details Starting Grant (StG), SH6, ERC-2013-StG
Summary The unique manipulative abilities of the human hand have fascinated scientists since the time of Darwin. However, we know little about how these unique abilities evolved because we have lacked, (1) the necessary fossil human (hominin) evidence and (2) the appropriate methods to investigate if, when and how our early ancestors used their hands for locomotion (climbing) and manipulation (tool-use). The GRASP project will use novel morphological, experimental and biomechanical methods to investigate different locomotor and manipulative behaviours in humans and other apes, and will use this knowledge to reconstruct hand use in the most complete early hominin hand fossils, those of Australopithecus sediba. The goal of GRASP is to determine the evolutionary history of the human hand by addressing two fundamental, yet unresolved, questions: (1) Were our fossil hominin ancestors still using their hands for climbing? (2) When and in which fossil hominin species did stone tool-use and tool-making first evolve? These questions will be addressed via three objectives: First, microtomography and a novel, holistic method (MedTool®) will be used to analyse the internal bony structure of human, ape and fossil hominin hand bones. Second, collection of the necessary biomechanical data on (a) the loads experienced by the human hand during tool-use and tool-making, (b) hand use and hand postures used by African apes during locomotion in the wild and, (c) the loads experienced by the bonobo hand during arboreal locomotion. Third, data from the first two objectives will be used to adapt musculoskeletal models of the human and bonobo hand and, through the creation of 3D biomechanical (finite-element) models, simulate natural loading of individual hand bones in humans, bonobos and fossil hominins. With this detailed understanding of hand function, we will determine how the locomotor and manipulative behaviours of Au. sediba and other early hominins shaped the evolution of the human hand.
Summary
The unique manipulative abilities of the human hand have fascinated scientists since the time of Darwin. However, we know little about how these unique abilities evolved because we have lacked, (1) the necessary fossil human (hominin) evidence and (2) the appropriate methods to investigate if, when and how our early ancestors used their hands for locomotion (climbing) and manipulation (tool-use). The GRASP project will use novel morphological, experimental and biomechanical methods to investigate different locomotor and manipulative behaviours in humans and other apes, and will use this knowledge to reconstruct hand use in the most complete early hominin hand fossils, those of Australopithecus sediba. The goal of GRASP is to determine the evolutionary history of the human hand by addressing two fundamental, yet unresolved, questions: (1) Were our fossil hominin ancestors still using their hands for climbing? (2) When and in which fossil hominin species did stone tool-use and tool-making first evolve? These questions will be addressed via three objectives: First, microtomography and a novel, holistic method (MedTool®) will be used to analyse the internal bony structure of human, ape and fossil hominin hand bones. Second, collection of the necessary biomechanical data on (a) the loads experienced by the human hand during tool-use and tool-making, (b) hand use and hand postures used by African apes during locomotion in the wild and, (c) the loads experienced by the bonobo hand during arboreal locomotion. Third, data from the first two objectives will be used to adapt musculoskeletal models of the human and bonobo hand and, through the creation of 3D biomechanical (finite-element) models, simulate natural loading of individual hand bones in humans, bonobos and fossil hominins. With this detailed understanding of hand function, we will determine how the locomotor and manipulative behaviours of Au. sediba and other early hominins shaped the evolution of the human hand.
Max ERC Funding
1 618 253 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym HAPSELA
Project Haploid selection in animals: investigating the importance of genetic and epigenetic effects in sperm
Researcher (PI) Simone Immler Maklakov
Host Institution (HI) UNIVERSITY OF EAST ANGLIA
Call Details Starting Grant (StG), LS8, ERC-2013-StG
Summary An inescapable consequence of sex in eukaryotes is the evolution of a biphasic life cycle with alternating diploid and haploid phases. The occurrence of selection during both phases has far reaching consequences for fundamental evolutionary processes including the rate of adaptation, the extent of inbreeding depression and the load of deleterious mutations, as well as for applied research into assisted fertilization. It has been a long-standing dogma that, unlike in plants, selection at the haploid gametic level in animals is of no great importance. However, empirical evidence for postmeiotic haploid gene expression is increasing and with the recent recognition of the importance of epigenetic effects for evolutionary mechanisms it is paramount to revisit haploid selection in animals. The aim of the proposed project is to reconsider haploid selection in animals and to investigate the relative importance of genetic and epigenetic effects in sperm for the subsequent generation. The project consists of three logically connected parts, which tackle the question from different angles using the zebrafish Danio rerio as the main model system. In Part I, I will disentangle genetic from epigenetic effects and identify epigenetic effects that affect sperm and offspring performance by combining experimental evolution with next-generation sequencing data. In Part II, I will pinpoint genes that are expressed at the postmeiotic haploid stage of spermatogenesis and determine which of these genes may be under haploid selection. In Part III, I will get to the core of the question and perform single-cell genotyping to explore possible links between sperm phenotype and the underlying sperm genotype. By combining aspects from evolutionary biology, mathematical modeling, genomics and developmental biology this project will advance our understanding of how epigenetic and genetic differences among gametes shape phenotypes and mediate evolutionary change in animals.
Summary
An inescapable consequence of sex in eukaryotes is the evolution of a biphasic life cycle with alternating diploid and haploid phases. The occurrence of selection during both phases has far reaching consequences for fundamental evolutionary processes including the rate of adaptation, the extent of inbreeding depression and the load of deleterious mutations, as well as for applied research into assisted fertilization. It has been a long-standing dogma that, unlike in plants, selection at the haploid gametic level in animals is of no great importance. However, empirical evidence for postmeiotic haploid gene expression is increasing and with the recent recognition of the importance of epigenetic effects for evolutionary mechanisms it is paramount to revisit haploid selection in animals. The aim of the proposed project is to reconsider haploid selection in animals and to investigate the relative importance of genetic and epigenetic effects in sperm for the subsequent generation. The project consists of three logically connected parts, which tackle the question from different angles using the zebrafish Danio rerio as the main model system. In Part I, I will disentangle genetic from epigenetic effects and identify epigenetic effects that affect sperm and offspring performance by combining experimental evolution with next-generation sequencing data. In Part II, I will pinpoint genes that are expressed at the postmeiotic haploid stage of spermatogenesis and determine which of these genes may be under haploid selection. In Part III, I will get to the core of the question and perform single-cell genotyping to explore possible links between sperm phenotype and the underlying sperm genotype. By combining aspects from evolutionary biology, mathematical modeling, genomics and developmental biology this project will advance our understanding of how epigenetic and genetic differences among gametes shape phenotypes and mediate evolutionary change in animals.
Max ERC Funding
1 440 248 €
Duration
Start date: 2013-12-01, End date: 2018-11-30
Project acronym HIENA
Project Hierarchical Carbon Nanomaterials
Researcher (PI) Michael Franciscus Lucas De Volder
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Starting Grant (StG), PE8, ERC-2013-StG
Summary "Over the past years, carbon nanomaterial such as graphene and carbon nanotubes (CNTs) have attracted the interest of scientists, because some of their properties are unlike any other engineering material. Individual graphene sheets and CNTs have shown a Youngs Modulus of 1 TPa and a tensile strength of 100 GPa, hereby exceeding steel at only a fraction of its weight. Further, they offer high currents carrying capacities of 10^9 A/cm², and thermal conductivities up to 3500 W/mK, exceeding diamond. Importantly, these off-the-chart properties are only valid for high quality individualized nanotubes or sheets. However, most engineering applications require the assembly of tens to millions of these nanoparticles into one device. Unfortunately, the mechanical and electronic figures of merit of such assembled materials typically drop by at least an order of magnitude in comparison to the constituent nanoparticles.
In this ERC project, we aim at the development of new techniques to create structured assemblies of carbon nanoparticles. Herein we emphasize the importance of controlling hierarchical arrangement at different length scales in order to engineer the properties of the final device. The project will follow a methodical approach, bringing together different fields of expertise ranging from macro- and microscale manufacturing, to nanoscale material synthesis and mesoscale chemical surface modification. For instance, we will pursue combined top-down microfabrication and bottom-up self-assembly, accompanied with surface modification through hydrothermal processing.
This research will impact scientific understanding of how nanotubes and nanosheets interact, and will create new hierarchical assembly techniques for nanomaterials. Further, this ERC project pursues applications with high societal impact, including energy storage and water filtration. Finally, HIENA will tie relations with EU’s rich CNT industry to disseminate its technologic achievements."
Summary
"Over the past years, carbon nanomaterial such as graphene and carbon nanotubes (CNTs) have attracted the interest of scientists, because some of their properties are unlike any other engineering material. Individual graphene sheets and CNTs have shown a Youngs Modulus of 1 TPa and a tensile strength of 100 GPa, hereby exceeding steel at only a fraction of its weight. Further, they offer high currents carrying capacities of 10^9 A/cm², and thermal conductivities up to 3500 W/mK, exceeding diamond. Importantly, these off-the-chart properties are only valid for high quality individualized nanotubes or sheets. However, most engineering applications require the assembly of tens to millions of these nanoparticles into one device. Unfortunately, the mechanical and electronic figures of merit of such assembled materials typically drop by at least an order of magnitude in comparison to the constituent nanoparticles.
In this ERC project, we aim at the development of new techniques to create structured assemblies of carbon nanoparticles. Herein we emphasize the importance of controlling hierarchical arrangement at different length scales in order to engineer the properties of the final device. The project will follow a methodical approach, bringing together different fields of expertise ranging from macro- and microscale manufacturing, to nanoscale material synthesis and mesoscale chemical surface modification. For instance, we will pursue combined top-down microfabrication and bottom-up self-assembly, accompanied with surface modification through hydrothermal processing.
This research will impact scientific understanding of how nanotubes and nanosheets interact, and will create new hierarchical assembly techniques for nanomaterials. Further, this ERC project pursues applications with high societal impact, including energy storage and water filtration. Finally, HIENA will tie relations with EU’s rich CNT industry to disseminate its technologic achievements."
Max ERC Funding
1 496 379 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym HISKNOWL
Project Using Historical Quasi-Experiments to Understand the Knowledge Economy
Researcher (PI) Fabian Waldinger
Host Institution (HI) LONDON SCHOOL OF ECONOMICS AND POLITICAL SCIENCE
Call Details Starting Grant (StG), SH1, ERC-2013-StG
Summary This proposal covers three research strands at the intersection of innovation economics, economic history, and labour economics.
In project A I will investigate how the number of entrepreneurs at the city level affects city growth. As the number of entrepreneurs in a city is likely to be endogenous I identify the causal effect of entrepreneurs using the exodus of Jewish entrepreneurs from German cities during the Nazi era. As different German cities were affected to varying extents by the exodus of Jewish entrepreneurs I can investigate how entrepreneurs affect local GDP and employment in the long-run. Furthermore, I will analyse which types of entrepreneurs matter (e.g. bankers versus manufacturers) because different cities lost Jewish entrepreneurs in different professions.
In project B we will analyse how increases in the availability of secondary schools in Germany affect the number of talented people (such as scientists, parliamentarians or entrepreneurs) who originate from certain cities. To analyse the causal effect of secondary school availability we study large expansions in the number of schools in Germany that lowered the cost of attending an academic-track school for children in some locations, in particular for students in rural areas. Furthermore, we will investigate how the school curriculum and how single-sex versus mixed-sex education affect the production of talent.
In project C we investigate the role of open science for the accumulation of knowledge. To investigate the causal effect of open science on the productivity of scientists we will investigate the exclusion of scientists from the losing Central Powers (e.g. Germany) from the international scientific community after WWI. As the exclusion affected scientists in different scientific fields and countries very differently we can identify the role of open science for the number of published articles by a certain scientist and how quickly she cites important work by foreign scientists.
Summary
This proposal covers three research strands at the intersection of innovation economics, economic history, and labour economics.
In project A I will investigate how the number of entrepreneurs at the city level affects city growth. As the number of entrepreneurs in a city is likely to be endogenous I identify the causal effect of entrepreneurs using the exodus of Jewish entrepreneurs from German cities during the Nazi era. As different German cities were affected to varying extents by the exodus of Jewish entrepreneurs I can investigate how entrepreneurs affect local GDP and employment in the long-run. Furthermore, I will analyse which types of entrepreneurs matter (e.g. bankers versus manufacturers) because different cities lost Jewish entrepreneurs in different professions.
In project B we will analyse how increases in the availability of secondary schools in Germany affect the number of talented people (such as scientists, parliamentarians or entrepreneurs) who originate from certain cities. To analyse the causal effect of secondary school availability we study large expansions in the number of schools in Germany that lowered the cost of attending an academic-track school for children in some locations, in particular for students in rural areas. Furthermore, we will investigate how the school curriculum and how single-sex versus mixed-sex education affect the production of talent.
In project C we investigate the role of open science for the accumulation of knowledge. To investigate the causal effect of open science on the productivity of scientists we will investigate the exclusion of scientists from the losing Central Powers (e.g. Germany) from the international scientific community after WWI. As the exclusion affected scientists in different scientific fields and countries very differently we can identify the role of open science for the number of published articles by a certain scientist and how quickly she cites important work by foreign scientists.
Max ERC Funding
733 621 €
Duration
Start date: 2013-11-01, End date: 2018-09-30
Project acronym HNAEPISOME
Project Directed evolution of a synthetic episome based on hexitol nucleic acids (HNA)
Researcher (PI) Vitor Bernardo Bernardes Pinheiro
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Starting Grant (StG), LS9, ERC-2013-StG
Summary A long term goal of synthetic biology is the assembly of a cell from its individual components. A genetic element based on synthetic nucleic acids capable of stable propagation, a synthetic episome, is the minimal genetic element required for the systematic development of all cellular components of a synthetic organism based on artificial nucleic acids. Recent progress in DNA polymerase engineering has successfully isolated variants with expanded substrate spectra capable of efficiently synthesising hexitol nucleic acids (HNA) from DNA templates, and capable of synthesising DNA from HNA templates. Together, they demonstrate that HNA can serve as a genetic material. However, the unavoidable DNA intermediate in HNA replication and their limited processivity greatly limit the potential of these polymerases for the development of an HNA episome.
To establish an HNA episome, processive HNA-directed HNA polymerases as well as accessory proteins to support episome maintenance and replication are required. The bacteriophage phi29 requires only four proteins (including polymerase, terminal protein, single-stranded and double-stranded DNA binding proteins) and two DNA elements (origin of replication and high affinity sites for its double-stranded DNA binding protein) to replicate and maintain its linear genome, making it a suitable starting point for the development of an HNA episome.
We propose to develop novel in vitro selection methodologies that will allow the directed evolution of a minimal HNA episome based on the phi29 system – including the isolation of an HNA-dependent HNA polymerase, a modified terminal protein and single-stranded as well as double-stranded HNA binding proteins. In addition to being a landmark result in synthetic biology, such HNA episome can form the basis of safer genetically modified organisms, in which the traits are encoded outside biology in an HNA episome dependent on the continued supply of artificial substrates for its maintenance.
Summary
A long term goal of synthetic biology is the assembly of a cell from its individual components. A genetic element based on synthetic nucleic acids capable of stable propagation, a synthetic episome, is the minimal genetic element required for the systematic development of all cellular components of a synthetic organism based on artificial nucleic acids. Recent progress in DNA polymerase engineering has successfully isolated variants with expanded substrate spectra capable of efficiently synthesising hexitol nucleic acids (HNA) from DNA templates, and capable of synthesising DNA from HNA templates. Together, they demonstrate that HNA can serve as a genetic material. However, the unavoidable DNA intermediate in HNA replication and their limited processivity greatly limit the potential of these polymerases for the development of an HNA episome.
To establish an HNA episome, processive HNA-directed HNA polymerases as well as accessory proteins to support episome maintenance and replication are required. The bacteriophage phi29 requires only four proteins (including polymerase, terminal protein, single-stranded and double-stranded DNA binding proteins) and two DNA elements (origin of replication and high affinity sites for its double-stranded DNA binding protein) to replicate and maintain its linear genome, making it a suitable starting point for the development of an HNA episome.
We propose to develop novel in vitro selection methodologies that will allow the directed evolution of a minimal HNA episome based on the phi29 system – including the isolation of an HNA-dependent HNA polymerase, a modified terminal protein and single-stranded as well as double-stranded HNA binding proteins. In addition to being a landmark result in synthetic biology, such HNA episome can form the basis of safer genetically modified organisms, in which the traits are encoded outside biology in an HNA episome dependent on the continued supply of artificial substrates for its maintenance.
Max ERC Funding
1 188 594 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym HSCnicheIVM
Project In vivo imaging of haematopoietic stem cells in their natural niches to uncover cellular and molecular dynamics regulating self-renewal
Researcher (PI) Cristina Lo Celso
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Call Details Starting Grant (StG), LS3, ERC-2013-StG
Summary Haematopoietic stem cells (HSC) reside in the bone marrow, from where they maintain immune cells, erythrocytes and platelets. To function correctly, they depend on their localisation within highly specialised niches, where cell-cell and -matrix interactions as well as medium- and long-range molecular signals are integrated to instruct them to either remain quiescent, or to generate progeny that will maintain both the stem cell pool and the differentiated lineages. Studies based on HSC transplantation assays have identified several signalling pathways and bone marrow cell types as regulators of HSC function; however the full picture of the cellular and molecular components of the HSC niche remains elusive because of lack of direct observation over time. HSC subpopulations have been identified based on their proliferative behaviour and it is likely that either migration between different microenvironments or transient modifications of the niche structure mediate changes in HSC fate in response to perturbations such as infection or leukaemia development.
I pioneered the combination of confocal and two-photon microscopy to visualise single HSC and their progeny within the bone marrow of live mice and here I propose to combine advanced microscopy techniques with multi-colour genetic lineage marking and highly sensitive expression profiling to track HSC and their clonal progeny in vivo in real time and to study the cellular and molecular composition of their niches during steady state and when responding to infection and leukaemia development. This work will uncover whether functionally distinct HSC subpopulations reside in anatomically distinct niches or rather all HSC niches are in principle equivalent, but change over time to mediate changes in HSC fate balance. The results obtained will provide a comprehensive picture of HSC niche dynamics, which will be critical for the development of regenerative medicine approaches based on in vivo or ex vivo expansion of HSC.
Summary
Haematopoietic stem cells (HSC) reside in the bone marrow, from where they maintain immune cells, erythrocytes and platelets. To function correctly, they depend on their localisation within highly specialised niches, where cell-cell and -matrix interactions as well as medium- and long-range molecular signals are integrated to instruct them to either remain quiescent, or to generate progeny that will maintain both the stem cell pool and the differentiated lineages. Studies based on HSC transplantation assays have identified several signalling pathways and bone marrow cell types as regulators of HSC function; however the full picture of the cellular and molecular components of the HSC niche remains elusive because of lack of direct observation over time. HSC subpopulations have been identified based on their proliferative behaviour and it is likely that either migration between different microenvironments or transient modifications of the niche structure mediate changes in HSC fate in response to perturbations such as infection or leukaemia development.
I pioneered the combination of confocal and two-photon microscopy to visualise single HSC and their progeny within the bone marrow of live mice and here I propose to combine advanced microscopy techniques with multi-colour genetic lineage marking and highly sensitive expression profiling to track HSC and their clonal progeny in vivo in real time and to study the cellular and molecular composition of their niches during steady state and when responding to infection and leukaemia development. This work will uncover whether functionally distinct HSC subpopulations reside in anatomically distinct niches or rather all HSC niches are in principle equivalent, but change over time to mediate changes in HSC fate balance. The results obtained will provide a comprehensive picture of HSC niche dynamics, which will be critical for the development of regenerative medicine approaches based on in vivo or ex vivo expansion of HSC.
Max ERC Funding
1 699 724 €
Duration
Start date: 2013-12-01, End date: 2018-11-30
Project acronym HYDROCARB
Project Towards a new understanding of carbon processing in freshwaters: methane emission hot spots and carbon burial
Researcher (PI) Sebastian Sobek
Host Institution (HI) UPPSALA UNIVERSITET
Call Details Starting Grant (StG), PE10, ERC-2013-StG
Summary In spite of their small areal extent, inland waters play a vital role in the carbon cycle of the continents, as they emit significant amounts of the greenhouse gases (GHG) carbon dioxide (CO2) and methane (CH4) to the atmosphere, and simultaneously bury more organic carbon (OC) in their sediments than the entire ocean. Particularly in tropical hydropower reservoirs, GHG emissions can be large, mainly owing to high CH4 emission. Moreover, the number of tropical hydropower reservoirs will continue to increase dramatically, due to an urgent need for economic growth and a vast unused hydropower potential in many tropical countries. However, the current understanding of the magnitude of GHG emission, and of the processes regulating it, is insufficient. Here I propose a research program on tropical reservoirs in Brazil that takes advantage of recent developments in both concepts and methodologies to provide unique evaluations of GHG emission and OC burial in tropical reservoirs. In particular, I will test the following hypotheses: 1) Current estimates of reservoir CH4 emission are at least one order of magnitude too low, since they have completely missed the recently discovered existence of gas bubble emission hot spots; 2) The burial of land-derived OC in reservoir sediments offsets a significant share of the GHG emissions; and 3) The sustained, long-term CH4 emission from reservoirs is to a large degree fuelled by primary production of new OC within the reservoir, and may therefore be reduced by management of nutrient supply. The new understanding and the cross-disciplinary methodological approach will constitute a major advance to aquatic science in general, and have strong impacts on the understanding of other aquatic systems at other latitudes as well. In addition, the results will be merged into an existing reservoir GHG risk assessment tool to improve planning, design, management and judgment of hydropower reservoirs.
Summary
In spite of their small areal extent, inland waters play a vital role in the carbon cycle of the continents, as they emit significant amounts of the greenhouse gases (GHG) carbon dioxide (CO2) and methane (CH4) to the atmosphere, and simultaneously bury more organic carbon (OC) in their sediments than the entire ocean. Particularly in tropical hydropower reservoirs, GHG emissions can be large, mainly owing to high CH4 emission. Moreover, the number of tropical hydropower reservoirs will continue to increase dramatically, due to an urgent need for economic growth and a vast unused hydropower potential in many tropical countries. However, the current understanding of the magnitude of GHG emission, and of the processes regulating it, is insufficient. Here I propose a research program on tropical reservoirs in Brazil that takes advantage of recent developments in both concepts and methodologies to provide unique evaluations of GHG emission and OC burial in tropical reservoirs. In particular, I will test the following hypotheses: 1) Current estimates of reservoir CH4 emission are at least one order of magnitude too low, since they have completely missed the recently discovered existence of gas bubble emission hot spots; 2) The burial of land-derived OC in reservoir sediments offsets a significant share of the GHG emissions; and 3) The sustained, long-term CH4 emission from reservoirs is to a large degree fuelled by primary production of new OC within the reservoir, and may therefore be reduced by management of nutrient supply. The new understanding and the cross-disciplinary methodological approach will constitute a major advance to aquatic science in general, and have strong impacts on the understanding of other aquatic systems at other latitudes as well. In addition, the results will be merged into an existing reservoir GHG risk assessment tool to improve planning, design, management and judgment of hydropower reservoirs.
Max ERC Funding
1 798 227 €
Duration
Start date: 2013-09-01, End date: 2019-08-31
Project acronym IBDlipids
Project Lipid antigens in intestinal inflammation and tumor development
Researcher (PI) Sebastian Zeißig
Host Institution (HI) TECHNISCHE UNIVERSITAET DRESDEN
Call Details Starting Grant (StG), LS6, ERC-2013-StG
Summary Lipids play crucial roles in metabolism, immunity and cancer. In addition to their function as inflammatory mediators, lipids serve as antigens presented by CD1d and activate a subset of T cells called natural killer T (NKT) cells. While NKT cells are critical for human immunity, their uncontrolled activation contributes to inflammatory bowel disease (IBD), a group of diseases characterized by chronic intestinal inflammation and an increased risk of colorectal cancer (CRC). Specifically, NKT cells are the major source of pathogenic TH2 cytokines in the inflammatory bowel disease ulcerative colitis (UC), are sufficient to cause intestinal inflammation in mice, and are required for colitis and colitis-associated cancer in a mouse model of UC. These observations suggest that targeting of lipid antigen presentation may be of therapeutic value in IBD, where current therapies are of limited efficacy and aim at control rather than cure of disease.
Here, I propose to identify the lipid antigens responsible for NKT cell-mediated intestinal inflammation and colitis-associated cancer in human IBD and mouse models of intestinal inflammation and to develop therapeutic strategies for interference with pathogenic lipid antigen presentation. Specifically, I propose to characterize the intestinal inflammation- and cancer-associated CD1d lipidome based on novel in vitro and in vivo models of cleavable CD1d and a recently established lipidomics approach. Furthermore, I propose to develop strategies for inhibition of the generation, loading and presentation of inflammation- and cancer-associated lipid antigens. These studies combine biochemical, immunological and high-throughput technologies in an interdisciplinary manner to provide the knowledge required for the generation of novel, efficacious therapies for the treatment of IBD. These studies will have major implications for IBD and other inflammatory, infectious, and neoplastic diseases at mucosal barriers.
Summary
Lipids play crucial roles in metabolism, immunity and cancer. In addition to their function as inflammatory mediators, lipids serve as antigens presented by CD1d and activate a subset of T cells called natural killer T (NKT) cells. While NKT cells are critical for human immunity, their uncontrolled activation contributes to inflammatory bowel disease (IBD), a group of diseases characterized by chronic intestinal inflammation and an increased risk of colorectal cancer (CRC). Specifically, NKT cells are the major source of pathogenic TH2 cytokines in the inflammatory bowel disease ulcerative colitis (UC), are sufficient to cause intestinal inflammation in mice, and are required for colitis and colitis-associated cancer in a mouse model of UC. These observations suggest that targeting of lipid antigen presentation may be of therapeutic value in IBD, where current therapies are of limited efficacy and aim at control rather than cure of disease.
Here, I propose to identify the lipid antigens responsible for NKT cell-mediated intestinal inflammation and colitis-associated cancer in human IBD and mouse models of intestinal inflammation and to develop therapeutic strategies for interference with pathogenic lipid antigen presentation. Specifically, I propose to characterize the intestinal inflammation- and cancer-associated CD1d lipidome based on novel in vitro and in vivo models of cleavable CD1d and a recently established lipidomics approach. Furthermore, I propose to develop strategies for inhibition of the generation, loading and presentation of inflammation- and cancer-associated lipid antigens. These studies combine biochemical, immunological and high-throughput technologies in an interdisciplinary manner to provide the knowledge required for the generation of novel, efficacious therapies for the treatment of IBD. These studies will have major implications for IBD and other inflammatory, infectious, and neoplastic diseases at mucosal barriers.
Max ERC Funding
1 500 000 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym IdeaofAnimation
Project The Idea of Animation: Aesthetics, Locality and the Formation of Media Identity
Researcher (PI) Kristian Olav Moen
Host Institution (HI) UNIVERSITY OF BRISTOL
Call Details Starting Grant (StG), SH5, ERC-2013-StG
Summary This project examines how changing notions of animated film emerged during the period of its consolidation, from the introduction of animated films in cinema programmes in the mid-1910s to the surge in interest in animation and the global prominence of Walt Disney studios in the 1930s. The project investigates how a changing cultural and aesthetic identity of animated film was negotiated within films and articulated in the discourse surrounding cinema. As a new medium, animated film was marked by shifting understandings of its identity, with animated films themselves often experimenting with and reflecting on the form. Sometimes situating themselves within contexts of modernity and modernism, animated films negotiated the place of animation as a medium within a wider cultural and social field. Animation was also closely entwined with other media and arts; in addition to live action film, music, comic strips, illustrated books and theatre all played a prominent role in the constitution and development of animated film. Further shaping its identity, the reception and discourse of animation – including marketing, theorizations and discussions in the popular press – contributed to an emerging sense of what animation was, what it could (or should) do, and what its place in a wider context of visual culture entailed. In order to trace these various facets of animated film, the project will focus on three of the most significant national contexts of exhibition and production during the period: the United States, England and France. This will allow for a comparative examination of ideas of animation, linked to national and transnational spheres of production, exhibition and reception. In doing so, the project will develop new approaches to the historiography of animation that enlarge our perspective on this crucial subject in the history of twentieth century visual culture, during an under-researched period in its development.
Summary
This project examines how changing notions of animated film emerged during the period of its consolidation, from the introduction of animated films in cinema programmes in the mid-1910s to the surge in interest in animation and the global prominence of Walt Disney studios in the 1930s. The project investigates how a changing cultural and aesthetic identity of animated film was negotiated within films and articulated in the discourse surrounding cinema. As a new medium, animated film was marked by shifting understandings of its identity, with animated films themselves often experimenting with and reflecting on the form. Sometimes situating themselves within contexts of modernity and modernism, animated films negotiated the place of animation as a medium within a wider cultural and social field. Animation was also closely entwined with other media and arts; in addition to live action film, music, comic strips, illustrated books and theatre all played a prominent role in the constitution and development of animated film. Further shaping its identity, the reception and discourse of animation – including marketing, theorizations and discussions in the popular press – contributed to an emerging sense of what animation was, what it could (or should) do, and what its place in a wider context of visual culture entailed. In order to trace these various facets of animated film, the project will focus on three of the most significant national contexts of exhibition and production during the period: the United States, England and France. This will allow for a comparative examination of ideas of animation, linked to national and transnational spheres of production, exhibition and reception. In doing so, the project will develop new approaches to the historiography of animation that enlarge our perspective on this crucial subject in the history of twentieth century visual culture, during an under-researched period in its development.
Max ERC Funding
560 734 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym IHEARU
Project Intelligent systems' Holistic Evolving Analysis of Real-life Universal speaker characteristics
Researcher (PI) Bjoern Wolfgang Schuller
Host Institution (HI) UNIVERSITAT PASSAU
Call Details Starting Grant (StG), PE6, ERC-2013-StG
Summary "Recently, automatic speech and speaker recognition has matured to the degree that it entered the daily lives of thousands of Europe's citizens, e.g., on their smart phones or in call services. During the next years, speech processing technology will move to a new level of social awareness to make interaction more intuitive, speech retrieval more efficient, and lend additional competence to computer-mediated communication and speech-analysis services in the commercial, health, security, and further sectors. To reach this goal, rich speaker traits and states such as age, height, personality and physical and mental state as carried by the tone of the voice and the spoken words must be reliably identified by machines. In the iHEARu project, ground-breaking methodology including novel techniques for multi-task and semi-supervised learning will deliver for the first time intelligent holistic and evolving analysis in real-life condition of universal speaker characteristics which have been considered only in isolation so far. Today's sparseness of annotated realistic speech data will be overcome by large-scale speech and meta-data mining from public sources such as social media, crowd-sourcing for labelling and quality control, and shared semi-automatic annotation. All stages from pre-processing and feature extraction, to the statistical modelling will evolve in ""life-long learning"" according to new data, by utilising feedback, deep, and evolutionary learning methods. Human-in-the-loop system validation and novel perception studies will analyse the self-organising systems and the relation of automatic signal processing to human interpretation in a previously unseen variety of speaker classification tasks. The project's work plan gives the unique opportunity to transfer current world-leading expertise in this field into a new de-facto standard of speaker characterisation methods and open-source tools ready for tomorrow's challenge of socially aware speech analysis."
Summary
"Recently, automatic speech and speaker recognition has matured to the degree that it entered the daily lives of thousands of Europe's citizens, e.g., on their smart phones or in call services. During the next years, speech processing technology will move to a new level of social awareness to make interaction more intuitive, speech retrieval more efficient, and lend additional competence to computer-mediated communication and speech-analysis services in the commercial, health, security, and further sectors. To reach this goal, rich speaker traits and states such as age, height, personality and physical and mental state as carried by the tone of the voice and the spoken words must be reliably identified by machines. In the iHEARu project, ground-breaking methodology including novel techniques for multi-task and semi-supervised learning will deliver for the first time intelligent holistic and evolving analysis in real-life condition of universal speaker characteristics which have been considered only in isolation so far. Today's sparseness of annotated realistic speech data will be overcome by large-scale speech and meta-data mining from public sources such as social media, crowd-sourcing for labelling and quality control, and shared semi-automatic annotation. All stages from pre-processing and feature extraction, to the statistical modelling will evolve in ""life-long learning"" according to new data, by utilising feedback, deep, and evolutionary learning methods. Human-in-the-loop system validation and novel perception studies will analyse the self-organising systems and the relation of automatic signal processing to human interpretation in a previously unseen variety of speaker classification tasks. The project's work plan gives the unique opportunity to transfer current world-leading expertise in this field into a new de-facto standard of speaker characterisation methods and open-source tools ready for tomorrow's challenge of socially aware speech analysis."
Max ERC Funding
1 498 200 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym IL-22 AND IL-22BP
Project Identifying the immune and microbial network controlling the IL-22 – IL-22bp axis to open the doors for targeted therapies
Researcher (PI) Samuel Huber
Host Institution (HI) UNIVERSITAETSKLINIKUM HAMBURG-EPPENDORF
Call Details Starting Grant (StG), LS6, ERC-2013-StG
Summary Chronic mucosal inflammation and tissue damage predisposes patients to the development of colorectal cancer. One hypothesis is that the same factors important for wound healing, if left unchecked, also promote tumorigenesis. Tight control by a sensor of tissue damage should induce these factors to promote tissue repair, while limiting their activity to prevent development of cancer.
IL-22, a prototypical tissue repair factor, plays an important role in a wide variety of intestinal disease including infection, wound healing, colitis, and cancer. Indeed, IL-22 has protective and detrimental effects dependent on the milieu and disease suggesting that proper regulation is required. IL-22 expression is directly regulated, additionally a soluble IL-22 receptor (IL-22 binding protein; IL-22bp), can bind and neutralize IL-22. We reported recently that sensing of intestinal tissue damage and components of the microbiota via the NLRP3 or NLRP6 inflammasomes led to a down regulation of IL-22bp, thereby increasing bioavailability of IL-22. IL-22, which is induced during intestinal tissue damage, exerted protective properties during the peak of damage, but promoted tumor development if not controlled by IL-22bp during the recovery phase.
Accordingly a spatial and temporal regulation of IL-22 is crucial. Hence, global administration or blockade of IL-22 is unlikely to be therapeutically beneficial. We are using several newly generated conditional knock-out (cCasp1-/-, cIL-18R-/-, cIL-18-/-, cIL-22R1-/-), knock-in (IL-22 BFP), and gnotobiotic mice, aiming to analyze the cellular and microbial network regulating the IL-22 – IL-22bp axis at a resolution previously unfeasible. Our results will provide novel insights into the network between microflora, epithelium, and immune system regulating tissue regeneration and tumor development, and can lead to therapies for potentially a wide variety of intestinal diseases, such as infection, colon cancer, IBD, or wound healing.
Summary
Chronic mucosal inflammation and tissue damage predisposes patients to the development of colorectal cancer. One hypothesis is that the same factors important for wound healing, if left unchecked, also promote tumorigenesis. Tight control by a sensor of tissue damage should induce these factors to promote tissue repair, while limiting their activity to prevent development of cancer.
IL-22, a prototypical tissue repair factor, plays an important role in a wide variety of intestinal disease including infection, wound healing, colitis, and cancer. Indeed, IL-22 has protective and detrimental effects dependent on the milieu and disease suggesting that proper regulation is required. IL-22 expression is directly regulated, additionally a soluble IL-22 receptor (IL-22 binding protein; IL-22bp), can bind and neutralize IL-22. We reported recently that sensing of intestinal tissue damage and components of the microbiota via the NLRP3 or NLRP6 inflammasomes led to a down regulation of IL-22bp, thereby increasing bioavailability of IL-22. IL-22, which is induced during intestinal tissue damage, exerted protective properties during the peak of damage, but promoted tumor development if not controlled by IL-22bp during the recovery phase.
Accordingly a spatial and temporal regulation of IL-22 is crucial. Hence, global administration or blockade of IL-22 is unlikely to be therapeutically beneficial. We are using several newly generated conditional knock-out (cCasp1-/-, cIL-18R-/-, cIL-18-/-, cIL-22R1-/-), knock-in (IL-22 BFP), and gnotobiotic mice, aiming to analyze the cellular and microbial network regulating the IL-22 – IL-22bp axis at a resolution previously unfeasible. Our results will provide novel insights into the network between microflora, epithelium, and immune system regulating tissue regeneration and tumor development, and can lead to therapies for potentially a wide variety of intestinal diseases, such as infection, colon cancer, IBD, or wound healing.
Max ERC Funding
1 498 392 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym InterMetrix
Project Econometric Analysis of Interaction Models
Researcher (PI) Aureo Nilo De Paula Neto
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Starting Grant (StG), SH1, ERC-2013-StG
Summary Equilibrium models are one of the pillars of Economics. This proposal focuses on methodological and empirical studies of estimable game theoretic and social interactions models where observed outcomes are assumed to be determined in equilibrium. Ignoring this simultaneity in estimation and inference is likely to mislead conclusions and produce flawed counterfactual analyses.
One pervasive feature in many interaction models is the existence of multiple solutions for various payoff configurations, and this is an aspect that carries over to estimable versions of such systems. Overlooking this possibility or assuming an uninformed equilibrium selection process potentially opens the door to severe misspecifications and erroneous conclusions. Another notable complication in the analysis of interaction models is computability: with a large number of players and sizeable set of outcomes and/or states, the search for an equilibrium solution can be daunting.
The research projects contemplated in this proposal address one or both of these aspects in various different settings. Those projects contain methodological and substantive contributions. The work involves advances in the econometric analysis (identification and estimation) of interaction models and empirical implementation of the devised methodologies to questions of interest. Given the widespread and increasing use of such econometric models, the projects contemplated here will have a fundamental impact.
I divide the projects into three main subtopics:
1) Identification and inference in games with multiple equilibria,
2) Social interactions and network models,
3) Dynamic interaction models.
Summary
Equilibrium models are one of the pillars of Economics. This proposal focuses on methodological and empirical studies of estimable game theoretic and social interactions models where observed outcomes are assumed to be determined in equilibrium. Ignoring this simultaneity in estimation and inference is likely to mislead conclusions and produce flawed counterfactual analyses.
One pervasive feature in many interaction models is the existence of multiple solutions for various payoff configurations, and this is an aspect that carries over to estimable versions of such systems. Overlooking this possibility or assuming an uninformed equilibrium selection process potentially opens the door to severe misspecifications and erroneous conclusions. Another notable complication in the analysis of interaction models is computability: with a large number of players and sizeable set of outcomes and/or states, the search for an equilibrium solution can be daunting.
The research projects contemplated in this proposal address one or both of these aspects in various different settings. Those projects contain methodological and substantive contributions. The work involves advances in the econometric analysis (identification and estimation) of interaction models and empirical implementation of the devised methodologies to questions of interest. Given the widespread and increasing use of such econometric models, the projects contemplated here will have a fundamental impact.
I divide the projects into three main subtopics:
1) Identification and inference in games with multiple equilibria,
2) Social interactions and network models,
3) Dynamic interaction models.
Max ERC Funding
1 028 780 €
Duration
Start date: 2013-10-01, End date: 2018-09-30
Project acronym JAGEUROPE
Project "The Jagiellonians: Dynasty, Identity and Memory in Central Europe"
Researcher (PI) Natalia Magdalena Nowakowska
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Starting Grant (StG), SH6, ERC-2013-StG
Summary "This ERC Starter Grant project will fund an interdisciplinary, transnational and groundbreaking study of the Jagiellonian dynasty (c.1386-1596) and its role, and legacy, in the development of identity in what we now call Central Europe. One of the most spectacularly successful of early modern dynasties, comparable only to the Habsburgs, in 1500 the Jagiellonians ruled a third of continental Europe, an area comprising no fewer than 14 present-day states. Uniquely among European dynasties in this period, the Jagiellonians created a dynastic regional hegemony, a geographical ‘bloc’ of neighbouring monarchies. Our knowledge of the Jagiellonians is, however, limited and highly fragmented along both national and disciplinary lines. The project will provide the first treatment of this leading Renaissance-era dynasty as a supra-national entity; it will offer a major new investigation of Renaissance dynasty itself as a political and cultural institution; explore the part played by the Jagiellonians in the evolution of pre-modern local or 'national' and regional identities, and investigate the ways in which divergent memories of their rule have, from 1596 onwards, shaped modern national identities in Central Europe. The project will transcend scholarly divisions – between disciplines (e.g. art history, anthropology, political history), between period specialisations (late medieval, early modern, modern) and between individual national historiographies (Polish, German, Czech etc.), to offer a metahistory of the meanings attributed to this landmark European dynasty, from the founder Jogaila (d.1434) to Radek Sikorski, Poland’s current foreign minister. The research will be undertaken by a multi-lingual team of 5 post-doctoral researchers, led by the PI, drawing on a range of written and visual sources produced by and about the Jagiellonians over six centuries."
Summary
"This ERC Starter Grant project will fund an interdisciplinary, transnational and groundbreaking study of the Jagiellonian dynasty (c.1386-1596) and its role, and legacy, in the development of identity in what we now call Central Europe. One of the most spectacularly successful of early modern dynasties, comparable only to the Habsburgs, in 1500 the Jagiellonians ruled a third of continental Europe, an area comprising no fewer than 14 present-day states. Uniquely among European dynasties in this period, the Jagiellonians created a dynastic regional hegemony, a geographical ‘bloc’ of neighbouring monarchies. Our knowledge of the Jagiellonians is, however, limited and highly fragmented along both national and disciplinary lines. The project will provide the first treatment of this leading Renaissance-era dynasty as a supra-national entity; it will offer a major new investigation of Renaissance dynasty itself as a political and cultural institution; explore the part played by the Jagiellonians in the evolution of pre-modern local or 'national' and regional identities, and investigate the ways in which divergent memories of their rule have, from 1596 onwards, shaped modern national identities in Central Europe. The project will transcend scholarly divisions – between disciplines (e.g. art history, anthropology, political history), between period specialisations (late medieval, early modern, modern) and between individual national historiographies (Polish, German, Czech etc.), to offer a metahistory of the meanings attributed to this landmark European dynasty, from the founder Jogaila (d.1434) to Radek Sikorski, Poland’s current foreign minister. The research will be undertaken by a multi-lingual team of 5 post-doctoral researchers, led by the PI, drawing on a range of written and visual sources produced by and about the Jagiellonians over six centuries."
Max ERC Funding
1 407 037 €
Duration
Start date: 2013-10-01, End date: 2018-09-30
Project acronym KAONLEPTON
Project Precision Lepton Flavour Conservation Tests in Kaon Decays
Researcher (PI) Evgueni Goudzovski
Host Institution (HI) THE UNIVERSITY OF BIRMINGHAM
Call Details Starting Grant (StG), PE2, ERC-2013-StG
Summary "A unique and innovative test of a cornerstone principle of the Standard Model of particle physics, the Lepton Favour (LF) conservation, is proposed in the framework of the NA62 experiment at CERN. The search for nine decay modes of the charged kaon and the neutral pion forbidden in the Standard Model by LF conservation will be carried out at a record sensitivity of one part in a trillion. Such sensitivity will be achieved due to the uniquely intense kaon beam that will become available to the experiment in 2014, as well as a range of novel particle detection technologies employed. The collection of the LF violating decay candidates will take place in ""parasitic"" mode alongside main NA62 data taking, which guarantees the feasibility, high data quality and cost-effectiveness. The project will bridge a significant research gap that has developed due to the absence of dedicated LF projects in the kaon sector, in sharp contrast with B-meson, lepton and neutrinoless double beta decay experiments. Any observed LF violating process will unambiguously point to physical phenomena beyond the Standard Model description, and will thus represent a major discovery. The Standard Model extensions that will be probed include those involving heavy Majorana neutrinos and R-parity breaking supersymmetry. Entire classes of new physics models will be confirmed, rigorously constrained or eliminated."
Summary
"A unique and innovative test of a cornerstone principle of the Standard Model of particle physics, the Lepton Favour (LF) conservation, is proposed in the framework of the NA62 experiment at CERN. The search for nine decay modes of the charged kaon and the neutral pion forbidden in the Standard Model by LF conservation will be carried out at a record sensitivity of one part in a trillion. Such sensitivity will be achieved due to the uniquely intense kaon beam that will become available to the experiment in 2014, as well as a range of novel particle detection technologies employed. The collection of the LF violating decay candidates will take place in ""parasitic"" mode alongside main NA62 data taking, which guarantees the feasibility, high data quality and cost-effectiveness. The project will bridge a significant research gap that has developed due to the absence of dedicated LF projects in the kaon sector, in sharp contrast with B-meson, lepton and neutrinoless double beta decay experiments. Any observed LF violating process will unambiguously point to physical phenomena beyond the Standard Model description, and will thus represent a major discovery. The Standard Model extensions that will be probed include those involving heavy Majorana neutrinos and R-parity breaking supersymmetry. Entire classes of new physics models will be confirmed, rigorously constrained or eliminated."
Max ERC Funding
1 617 546 €
Duration
Start date: 2014-01-01, End date: 2019-06-30
Project acronym Learning&Achievement
Project Cognitive and Biological Factors of Mathematical Learning and Achievement
Researcher (PI) Roi Cohen Kadosh
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Starting Grant (StG), SH4, ERC-2013-StG
Summary Mathematical competence is essential for an individual’s functioning in society and for societal prosperity and progress in general. Crucially, the specific cognitive and biological factors that determine high, average, or low mathematical achievement are still poorly understood. The current project aims to address this gap by examining the link between mathematical achievement (cognitive factors) and brain indices (biological factors) across the developmental trajectory and for different competency levels. Specifically, the projects objectives are: 1) identify the critical cognitive and biological components, as well as the dynamic developmental sequence, necessary for the normal development of mathematical abilities; 2) unravel the cognitive and biological factors that contribute to and/or restrict neuroplasticity in mathematical learning. This knowledge may be used in the future to improve prevention, identification, and classification of children with impaired numeracy such as developmental dyscalculia; and 3) develop and test well-defined, evidence-based methods for improving mathematical learning. In addition, one of the objectives of the proposed project is to provide experimental knowledge that will have high ecological validity, by examining mathematical learning and achievement while subjects are studying in a classroom setting. I will use an innovative multimethod approach that integrates cognitive and developmental psychology together with neuromodulation, neurophysiology, and neurochemistry, which will provide a comprehensive understanding of the cognitive and brain bases of mathematical learning and cognition. While such knowledge will offer substantive advances for the fields of psychology, education, and neuroscience, it also has broad societal implications, as the high ecological validity provides insights in translational approaches for improving the lives of children and adults with low mathematical abilities.
Summary
Mathematical competence is essential for an individual’s functioning in society and for societal prosperity and progress in general. Crucially, the specific cognitive and biological factors that determine high, average, or low mathematical achievement are still poorly understood. The current project aims to address this gap by examining the link between mathematical achievement (cognitive factors) and brain indices (biological factors) across the developmental trajectory and for different competency levels. Specifically, the projects objectives are: 1) identify the critical cognitive and biological components, as well as the dynamic developmental sequence, necessary for the normal development of mathematical abilities; 2) unravel the cognitive and biological factors that contribute to and/or restrict neuroplasticity in mathematical learning. This knowledge may be used in the future to improve prevention, identification, and classification of children with impaired numeracy such as developmental dyscalculia; and 3) develop and test well-defined, evidence-based methods for improving mathematical learning. In addition, one of the objectives of the proposed project is to provide experimental knowledge that will have high ecological validity, by examining mathematical learning and achievement while subjects are studying in a classroom setting. I will use an innovative multimethod approach that integrates cognitive and developmental psychology together with neuromodulation, neurophysiology, and neurochemistry, which will provide a comprehensive understanding of the cognitive and brain bases of mathematical learning and cognition. While such knowledge will offer substantive advances for the fields of psychology, education, and neuroscience, it also has broad societal implications, as the high ecological validity provides insights in translational approaches for improving the lives of children and adults with low mathematical abilities.
Max ERC Funding
1 999 859 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym LIA
Project Light Field Imaging and Analysis
Researcher (PI) Bastian Goldlücke
Host Institution (HI) UNIVERSITAT KONSTANZ
Call Details Starting Grant (StG), PE6, ERC-2013-StG
Summary One of the most fundamental challenges in computer vision is to reliably establish correspondence - how to match a location in one image to its counterpart in another. It lies at the heart of numerous important problems, for example stereo, optical flow, tracking and the reconstruction of scene geometry from several photographs. The most popular approaches to solve these problems are based on the simplification that a scene point looks the same from wherever and whenever it is observed. However, this is fundamentally wrong, since its color changes with viewing direction and illumination. This invariably leads to failures when dealing with reflecting or transparent surfaces or changes in lighting, which commonly occur in natural scenes.
We therefore propose to radically rethink the underlying assumptions and work with light fields to describe the visual appearance of a scene. Compared to a traditional image, a light field offers information not only about the amount of incident light, but also the direction where it is coming from. In effect, the light field implicitly captures scene geometry and reflectance properties. In the following, we will argue that variational algorithms based on light field data have the potential to considerably advance the state-of-the-art in all image analysis applications related to lighting-invariant robust matching, geometry reconstruction or reflectance estimation.
Since computational cameras are currently making rapid progress, we believe that light fields will soon become a focus of computer vision research. Already, commercial plenoptic cameras allow to easily capture the light field of a scene and are suitable for real-world applications, while a recent survey even predicted that in about 20 years time, every consumer camera will be a light field camera. Our research will investigate fundamental mathematical tools and algorithms which will substantially contribute to drive this development.
Summary
One of the most fundamental challenges in computer vision is to reliably establish correspondence - how to match a location in one image to its counterpart in another. It lies at the heart of numerous important problems, for example stereo, optical flow, tracking and the reconstruction of scene geometry from several photographs. The most popular approaches to solve these problems are based on the simplification that a scene point looks the same from wherever and whenever it is observed. However, this is fundamentally wrong, since its color changes with viewing direction and illumination. This invariably leads to failures when dealing with reflecting or transparent surfaces or changes in lighting, which commonly occur in natural scenes.
We therefore propose to radically rethink the underlying assumptions and work with light fields to describe the visual appearance of a scene. Compared to a traditional image, a light field offers information not only about the amount of incident light, but also the direction where it is coming from. In effect, the light field implicitly captures scene geometry and reflectance properties. In the following, we will argue that variational algorithms based on light field data have the potential to considerably advance the state-of-the-art in all image analysis applications related to lighting-invariant robust matching, geometry reconstruction or reflectance estimation.
Since computational cameras are currently making rapid progress, we believe that light fields will soon become a focus of computer vision research. Already, commercial plenoptic cameras allow to easily capture the light field of a scene and are suitable for real-world applications, while a recent survey even predicted that in about 20 years time, every consumer camera will be a light field camera. Our research will investigate fundamental mathematical tools and algorithms which will substantially contribute to drive this development.
Max ERC Funding
1 466 100 €
Duration
Start date: 2014-07-01, End date: 2019-06-30
Project acronym MACRONETS
Project Production Networks in Macroeconomics
Researcher (PI) Vasco Pereira Marques De Carvalho
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Starting Grant (StG), SH1, ERC-2013-StG
Summary "A modern economy is an intricately linked web of specialized production units, each relying on the flow of inputs from their suppliers to produce their own output which, in turn, is routed towards other downstream units. Recent work in economics stresses that the structure of this production network is key in determining whether and how microeconomic shocks can propagate throughout the economy and shape aggregate outcomes.
This project has two main goals. First, it aims to provide novel evidence that we can trace back the origins of business cycles and asset price fluctuations to individual technologies interconnected by input-supply relations. The particular questions it tries to answer are: (1) Can we have more direct, causal, evidence that these micro shocks do matter in practice for the evolution of aggregates? What are examples of these micro shocks in reality, how can we identify them and how do they propagate through input chains? (2) What are the asset pricing implications of this perspective on the micro origins of aggregate fluctuations? What is the relation between changes in the technology portfolio of an economy and the evolution of asset prices?
The second aim of this project is to improve our understanding of the structure and evolution of these production networks by asking the following questions: (3) At the firm level, do more productive suppliers match with more productive customers and, if so, why? What is the typical duration of a supplier-customer match and does this vary across matches? What is the firm-level impact of matching with better suppliers or more productive customers? (4) How do inputs diffuse on a network of interconnected technologies? Do linkages across sectors facilitate input adoption and the diffusion of General Purpose Technologies? Can linkages across sectors help us understand not only which sectors will adopt a given input but also the order in which these sectors adopt it?"
Summary
"A modern economy is an intricately linked web of specialized production units, each relying on the flow of inputs from their suppliers to produce their own output which, in turn, is routed towards other downstream units. Recent work in economics stresses that the structure of this production network is key in determining whether and how microeconomic shocks can propagate throughout the economy and shape aggregate outcomes.
This project has two main goals. First, it aims to provide novel evidence that we can trace back the origins of business cycles and asset price fluctuations to individual technologies interconnected by input-supply relations. The particular questions it tries to answer are: (1) Can we have more direct, causal, evidence that these micro shocks do matter in practice for the evolution of aggregates? What are examples of these micro shocks in reality, how can we identify them and how do they propagate through input chains? (2) What are the asset pricing implications of this perspective on the micro origins of aggregate fluctuations? What is the relation between changes in the technology portfolio of an economy and the evolution of asset prices?
The second aim of this project is to improve our understanding of the structure and evolution of these production networks by asking the following questions: (3) At the firm level, do more productive suppliers match with more productive customers and, if so, why? What is the typical duration of a supplier-customer match and does this vary across matches? What is the firm-level impact of matching with better suppliers or more productive customers? (4) How do inputs diffuse on a network of interconnected technologies? Do linkages across sectors facilitate input adoption and the diffusion of General Purpose Technologies? Can linkages across sectors help us understand not only which sectors will adopt a given input but also the order in which these sectors adopt it?"
Max ERC Funding
940 200 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym MacTherVac
Project Modulation of a novel population of immune suppressive tumoural macrophages and the therapeutic vaccination of cancer
Researcher (PI) James Noble Arnold
Host Institution (HI) KING'S COLLEGE LONDON
Call Details Starting Grant (StG), LS7, ERC-2013-StG
Summary The therapeutic vaccination against breast cancer, and more widely all solid tumours, has largely been ineffective in clinical trials. This failure has been attributed to ‘immune editing’ of the cancerous cells, or to suppression of T cell functions within the tumour. In relation to the later, we have identified a novel population of tumoural macrophages, marked by the expression of fibroblast activation protein-alpha (FAP) which can mediate tumoural immune suppression through the enzyme heme oxygenase-1 (HO-1). Selective inhibition of HO-1 with tin mesoporphyrin (SnMP), a drug which has already been administered to infants for the treatment of neonatal jaundice, permits immunological control of tumour growth in transplantable Lewis lung carcinoma tumours. This proposal seeks to evaluate SnMP as a novel cancer immunotherapy for the treatment of breast cancer. We have demonstrated that HO-1+ cells are recruited into mammary tumours of a relevant spontaneous murine model of breast cancer. A vaccine strategy will be developed targeting telomerase, a vaccine target already in clinical trial for human breast cancer. The effect on mammary tumour growth of a vaccine induced anti-tumour immune response, alongside HO-1 inhibition to alleviate immune suppression, will be assessed. Lung metastases in these mice, and their response to treatment, will also be studied. The HO-1 expressing cells in human breast cancer will be quantitated and characterised at both the protein and transcriptome levels to validate the approach. Novel immuno-therapies directed at modulating HO-1 expression will also be investigated, facilitated by the development of a transgenic HO-1 reporter mouse which will co-express green fluorescent protein and luciferase driven by the promoter and response elements of the HO-1 gene. As cancer vaccines have already been developed, and as we have identified a drug, SnMP, which may circumvent tumoural immune suppression, this proposal is clinically relevant.
Summary
The therapeutic vaccination against breast cancer, and more widely all solid tumours, has largely been ineffective in clinical trials. This failure has been attributed to ‘immune editing’ of the cancerous cells, or to suppression of T cell functions within the tumour. In relation to the later, we have identified a novel population of tumoural macrophages, marked by the expression of fibroblast activation protein-alpha (FAP) which can mediate tumoural immune suppression through the enzyme heme oxygenase-1 (HO-1). Selective inhibition of HO-1 with tin mesoporphyrin (SnMP), a drug which has already been administered to infants for the treatment of neonatal jaundice, permits immunological control of tumour growth in transplantable Lewis lung carcinoma tumours. This proposal seeks to evaluate SnMP as a novel cancer immunotherapy for the treatment of breast cancer. We have demonstrated that HO-1+ cells are recruited into mammary tumours of a relevant spontaneous murine model of breast cancer. A vaccine strategy will be developed targeting telomerase, a vaccine target already in clinical trial for human breast cancer. The effect on mammary tumour growth of a vaccine induced anti-tumour immune response, alongside HO-1 inhibition to alleviate immune suppression, will be assessed. Lung metastases in these mice, and their response to treatment, will also be studied. The HO-1 expressing cells in human breast cancer will be quantitated and characterised at both the protein and transcriptome levels to validate the approach. Novel immuno-therapies directed at modulating HO-1 expression will also be investigated, facilitated by the development of a transgenic HO-1 reporter mouse which will co-express green fluorescent protein and luciferase driven by the promoter and response elements of the HO-1 gene. As cancer vaccines have already been developed, and as we have identified a drug, SnMP, which may circumvent tumoural immune suppression, this proposal is clinically relevant.
Max ERC Funding
1 499 994 €
Duration
Start date: 2013-09-01, End date: 2018-08-31
Project acronym MaoLegacy
Project The Maoist Legacy: Party Dictatorship, Transitional Justice, and the Politics of Truth
Researcher (PI) Daniel Leese
Host Institution (HI) ALBERT-LUDWIGS-UNIVERSITAET FREIBURG
Call Details Starting Grant (StG), SH6, ERC-2013-StG
Summary The proposed research project breaks important new ground by analyzing and documenting how the Chinese Communist Party (CCP) dealt with the legacy of mass atrocities committed under Maoist rule. Most accounts of the period mention the trial against the “Gang of Four” and the accompanying resolution on party history from 1981, which held former party chairman Mao Zedong accountable for grave political errors but not for criminal deeds. However, as yet there has been no in-depth analysis of the roughly five million cases and the over ten million petitions handled by courts and party committees between 1978 and 1987 in order to right previous injustices. Despite its enormous scale and relevance to societal stability, this so-called “revision of unjust, wrong, and false verdicts” has been virtually left unattended to by scholarly research. The project aims at diminishing this gap by studying the CCP’s strategies and the societal consequences of this major policy change. It proposes to analyze the partial break from the Maoist legacy as an important, yet by and large overlooked example of transitional justice, albeit confined by the party dictatorship’s overarching aim to stay in power. By way of relying on a wide array of recently available official and non-official sources, the project analyzes and documents how the CCP selectively dealt with the towering injustices of the past. The project will significantly contribute to current research on China’s transformation process and the Maoist legacy in at least four different areas: First, it will detail the CCP’s standards, institutions, and processes of administrating historical justice; second, it will show the great regional variances in implementing these policies between center and periphery; third, it will offer new explanations for the persistence of CCP rule despite the horrors of Maoism; and fourth, it will document both the revisal of verdicts and past atrocities in an electronic database to ease future research.
Summary
The proposed research project breaks important new ground by analyzing and documenting how the Chinese Communist Party (CCP) dealt with the legacy of mass atrocities committed under Maoist rule. Most accounts of the period mention the trial against the “Gang of Four” and the accompanying resolution on party history from 1981, which held former party chairman Mao Zedong accountable for grave political errors but not for criminal deeds. However, as yet there has been no in-depth analysis of the roughly five million cases and the over ten million petitions handled by courts and party committees between 1978 and 1987 in order to right previous injustices. Despite its enormous scale and relevance to societal stability, this so-called “revision of unjust, wrong, and false verdicts” has been virtually left unattended to by scholarly research. The project aims at diminishing this gap by studying the CCP’s strategies and the societal consequences of this major policy change. It proposes to analyze the partial break from the Maoist legacy as an important, yet by and large overlooked example of transitional justice, albeit confined by the party dictatorship’s overarching aim to stay in power. By way of relying on a wide array of recently available official and non-official sources, the project analyzes and documents how the CCP selectively dealt with the towering injustices of the past. The project will significantly contribute to current research on China’s transformation process and the Maoist legacy in at least four different areas: First, it will detail the CCP’s standards, institutions, and processes of administrating historical justice; second, it will show the great regional variances in implementing these policies between center and periphery; third, it will offer new explanations for the persistence of CCP rule despite the horrors of Maoism; and fourth, it will document both the revisal of verdicts and past atrocities in an electronic database to ease future research.
Max ERC Funding
1 443 756 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym MechJointMorph
Project The role of mechanical forces induced by prenatal movements in joint morphogenesis
Researcher (PI) Niamh Catherine Nowlan
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Call Details Starting Grant (StG), PE8, ERC-2013-StG
Summary Most joints start off the same during embryonic development, as two opposing cartilage surfaces, and are moulded into the diverse range of shapes seen in the adult in a process known as morphogenesis. While we understand very little of the biological or mechanobiological processes driving joint morphogenesis, there is evidence to suggest that fetal movements play a critical role in joint shape development. Developmental Dysplasia of the Hip (DDH), where the hip is partly or fully dislocated, is much more common when the baby’s movement is restricted or prevented. This proposal will determine how mechanical forces influence joint shape morphogenesis, which is of key relevance to neonatal joint conditions such as DDH, to adult joint health and disease, and to tissue engineering of cartilage. A mouse line in which mutant embryos have no skeletal muscle will be studied, providing the first in depth analysis of mammalian joint shape development for normal and abnormal mechanical environments. The mouse line could provide the first mammalian model system for prenatal onset DDH. ‘Passive’ movements of these mutant embryos will then be induced by massage of the mother, and the effects on the joints measured. If the effects on joint shape of absent spontaneous movement are mitigated by the treatment, this technique could eventually be used as a preventative treatment for DDH. Next, an in vitro approach will be used to quantify how much movement is needed for joint shape development. This research will provide an optimised protocol for applying biophysical stimuli to promote cartilage growth and morphogenesis in culture, providing valuable cues to cartilage tissue engineers. Finally, a computational simulation of joint shape morphogenesis will be created, which will integrate the new understanding gained from the experimental research in order to predict how different joints shapes develop in normal and abnormal mechanical environments.
Summary
Most joints start off the same during embryonic development, as two opposing cartilage surfaces, and are moulded into the diverse range of shapes seen in the adult in a process known as morphogenesis. While we understand very little of the biological or mechanobiological processes driving joint morphogenesis, there is evidence to suggest that fetal movements play a critical role in joint shape development. Developmental Dysplasia of the Hip (DDH), where the hip is partly or fully dislocated, is much more common when the baby’s movement is restricted or prevented. This proposal will determine how mechanical forces influence joint shape morphogenesis, which is of key relevance to neonatal joint conditions such as DDH, to adult joint health and disease, and to tissue engineering of cartilage. A mouse line in which mutant embryos have no skeletal muscle will be studied, providing the first in depth analysis of mammalian joint shape development for normal and abnormal mechanical environments. The mouse line could provide the first mammalian model system for prenatal onset DDH. ‘Passive’ movements of these mutant embryos will then be induced by massage of the mother, and the effects on the joints measured. If the effects on joint shape of absent spontaneous movement are mitigated by the treatment, this technique could eventually be used as a preventative treatment for DDH. Next, an in vitro approach will be used to quantify how much movement is needed for joint shape development. This research will provide an optimised protocol for applying biophysical stimuli to promote cartilage growth and morphogenesis in culture, providing valuable cues to cartilage tissue engineers. Finally, a computational simulation of joint shape morphogenesis will be created, which will integrate the new understanding gained from the experimental research in order to predict how different joints shapes develop in normal and abnormal mechanical environments.
Max ERC Funding
1 499 501 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym MEMBRANESACT
Project Biological Membranes in Action: A Unified Approach
to Complexation, Scaffolding and Active Transport
Researcher (PI) Ana-Suncana Barišic Smith
Host Institution (HI) FRIEDRICH-ALEXANDER-UNIVERSITAET ERLANGEN NUERNBERG
Call Details Starting Grant (StG), PE3, ERC-2013-StG
Summary In recent breakthrough publications, the effect of fluctuations on the affinity of membrane-confined molecules has been evaluated, and a quantitative model for the time evolution of small adhesion domains has been developed under my leadership. Now I propose to bring my research to a new level by tackling the problem of active and passive organisation of proteins into macromolecular structures on fluctuating fluid membranes, using a physicist’s approach across established disciplinary boundaries.
The formation and transport of supramolecular complexes in membranes is ubiquitous to nearly all functions of biological cells. Today, there is a variety of experiments suggesting that macromolecular complexes act as scaffolds for free proteins, overall yielding obstructed diffusion, counterbalanced by active transport by molecular motors. However, an integrative view connecting complexation and transport is largely missing. Furthermore, the effects of membrane mediated interactions and (non)-thermal fluctuations were so far overlooked. Gaining a quantitative insight into these processes is key to understanding the fundamental functioning of cells.
Together with my carefully selected team, I will address these intrinsically biological problems, by means of theoretical physics. Phenomena such as active and anomalous transport, as well as complexation are also currently subject to intense research in the statistical and soft matter physics communities. In this context, the aim of this proposal is to bridge the divide between the two worlds and significantly contribute to both physics and the life sciences by developing general principles that can be applied to processes in cells. Resolving these issues is of fundamental importance since it would identify how interactions on the cell surface arise, and may translate directly into pharmaceutical applications.
Summary
In recent breakthrough publications, the effect of fluctuations on the affinity of membrane-confined molecules has been evaluated, and a quantitative model for the time evolution of small adhesion domains has been developed under my leadership. Now I propose to bring my research to a new level by tackling the problem of active and passive organisation of proteins into macromolecular structures on fluctuating fluid membranes, using a physicist’s approach across established disciplinary boundaries.
The formation and transport of supramolecular complexes in membranes is ubiquitous to nearly all functions of biological cells. Today, there is a variety of experiments suggesting that macromolecular complexes act as scaffolds for free proteins, overall yielding obstructed diffusion, counterbalanced by active transport by molecular motors. However, an integrative view connecting complexation and transport is largely missing. Furthermore, the effects of membrane mediated interactions and (non)-thermal fluctuations were so far overlooked. Gaining a quantitative insight into these processes is key to understanding the fundamental functioning of cells.
Together with my carefully selected team, I will address these intrinsically biological problems, by means of theoretical physics. Phenomena such as active and anomalous transport, as well as complexation are also currently subject to intense research in the statistical and soft matter physics communities. In this context, the aim of this proposal is to bridge the divide between the two worlds and significantly contribute to both physics and the life sciences by developing general principles that can be applied to processes in cells. Resolving these issues is of fundamental importance since it would identify how interactions on the cell surface arise, and may translate directly into pharmaceutical applications.
Max ERC Funding
1 500 000 €
Duration
Start date: 2013-10-01, End date: 2019-09-30
Project acronym MemRegPro
Project How Membrane Physical Properties and Cortical Actin Regulate Protein Interactions During T Cell Signalling
Researcher (PI) Dylan Myers Owen
Host Institution (HI) KING'S COLLEGE LONDON
Call Details Starting Grant (StG), LS6, ERC-2013-StG
Summary The overall aim of this project is to identify key biophysical mechanisms that control the spatial arrangement of signalling proteins and membrane lipids in the regulation of T cell activation. During an immune response, T cells are activated in response to antigenic peptides in a process that requires the formation of multi-molecular signalling complexes. It is known that many T cell signalling proteins (such as the kinase Lck and the scaffold protein LAT) are not randomly distributed within the plasma membrane thus giving rise to lateral organization which affects signalling efficiency. However, the biophysical mechanism(s) that control protein distributions and hence the rate of molecular interactions remains poorly understood. Two of the principal mechanisms are compartmentalisation of the membrane by lipid microdomains (the ‘lipid raft’ hypothesis) and by the cortical actin meshwork (the ‘picket-fence’ model). The two key technologies needed to unravel how protein clustering and the biophysical properties of the lipid bilayer regulate specific interactions at the molecular level have now been developed. These are single-molecule, super-resolution localisation microscopy and quantification of membrane biophysical properties using new-generation environmentally sensitive fluorescent probes. Using these methods, the proposed project will generate unique insights into the biophysical mechanisms that govern the formation of the protein clusters and complexes during early T cell signalling events. This knowledge is critical to our understanding of the molecular basis of T cell activation during the immune response and has potential applications in the development of therapeutic treatments for a range of conditions.
Summary
The overall aim of this project is to identify key biophysical mechanisms that control the spatial arrangement of signalling proteins and membrane lipids in the regulation of T cell activation. During an immune response, T cells are activated in response to antigenic peptides in a process that requires the formation of multi-molecular signalling complexes. It is known that many T cell signalling proteins (such as the kinase Lck and the scaffold protein LAT) are not randomly distributed within the plasma membrane thus giving rise to lateral organization which affects signalling efficiency. However, the biophysical mechanism(s) that control protein distributions and hence the rate of molecular interactions remains poorly understood. Two of the principal mechanisms are compartmentalisation of the membrane by lipid microdomains (the ‘lipid raft’ hypothesis) and by the cortical actin meshwork (the ‘picket-fence’ model). The two key technologies needed to unravel how protein clustering and the biophysical properties of the lipid bilayer regulate specific interactions at the molecular level have now been developed. These are single-molecule, super-resolution localisation microscopy and quantification of membrane biophysical properties using new-generation environmentally sensitive fluorescent probes. Using these methods, the proposed project will generate unique insights into the biophysical mechanisms that govern the formation of the protein clusters and complexes during early T cell signalling events. This knowledge is critical to our understanding of the molecular basis of T cell activation during the immune response and has potential applications in the development of therapeutic treatments for a range of conditions.
Max ERC Funding
1 402 513 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym MESA
Project Mechanisms of social attention
Researcher (PI) Matthias Gamer
Host Institution (HI) JULIUS-MAXIMILIANS-UNIVERSITAT WURZBURG
Call Details Starting Grant (StG), SH4, ERC-2013-StG
Summary "A fundamental research question of several disciplines concerns the description, explanation and prediction of human behavior in social contexts. While significant research had been devoted to higher order social capabilities, much less is known about basic principles that are underlying these functions. This is especially true for social attention which is at the heart of every higher order social function but has neither been systematically examined in naturalistic environments before nor has it been linked to the extensive body of psychological and neuroscientific research on basic principles of attention. As a consequence, it is unknown whether the neural computation and the behavioral expression of social attention is similar or divergent to other forms of non-social attention.
The current project will fill this gap by comprehensively characterizing the distinctive features of social attention on the behavioral and neural level using a multimodal approach involving eye tracking measures, neuropeptidergic manipulations, fMRI and EEG. I propose that social elements in complex environments are automatically selected and preferentially processed which is mediated by a specialized subcortico-cortical system that allows for tagging social cues in the visual field. These hypotheses will be tested in healthy volunteers and in clinical disorders with well-described impairments in social functioning. Finally, immersive virtual reality environments will be used that allow for examining active behavior and attentional allocation in complex social situations which approximate naturalistic field settings.
By highlighting ecological validity, this project will provide unique insights into the mechanisms of social attention in healthy individuals and it will identify maladaptive attentional processes in individuals with impaired social functioning. Building on these data, the proposed research will provide a new framework for understanding human behavior in social situations."
Summary
"A fundamental research question of several disciplines concerns the description, explanation and prediction of human behavior in social contexts. While significant research had been devoted to higher order social capabilities, much less is known about basic principles that are underlying these functions. This is especially true for social attention which is at the heart of every higher order social function but has neither been systematically examined in naturalistic environments before nor has it been linked to the extensive body of psychological and neuroscientific research on basic principles of attention. As a consequence, it is unknown whether the neural computation and the behavioral expression of social attention is similar or divergent to other forms of non-social attention.
The current project will fill this gap by comprehensively characterizing the distinctive features of social attention on the behavioral and neural level using a multimodal approach involving eye tracking measures, neuropeptidergic manipulations, fMRI and EEG. I propose that social elements in complex environments are automatically selected and preferentially processed which is mediated by a specialized subcortico-cortical system that allows for tagging social cues in the visual field. These hypotheses will be tested in healthy volunteers and in clinical disorders with well-described impairments in social functioning. Finally, immersive virtual reality environments will be used that allow for examining active behavior and attentional allocation in complex social situations which approximate naturalistic field settings.
By highlighting ecological validity, this project will provide unique insights into the mechanisms of social attention in healthy individuals and it will identify maladaptive attentional processes in individuals with impaired social functioning. Building on these data, the proposed research will provide a new framework for understanding human behavior in social situations."
Max ERC Funding
1 379 710 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym MesoFermi
Project Mesoscopic Fermi Gases
Researcher (PI) Henning Moritz
Host Institution (HI) UNIVERSITAET HAMBURG
Call Details Starting Grant (StG), PE2, ERC-2013-StG
Summary This proposal brings together the fields of ultracold Fermi gases and of mesoscopic systems. Starting with a two-dimensional (2D) Fermi gas, we will imprint small-scale potential structures onto the atoms. Thus, a mesoscopic system embedded in a 2D reservoir is produced.
Specifically, we will imprint optical dipole potentials varying on a micrometre scale onto a 2D gas of 6Li atoms. Due to the widely different energy scales, the entropy of the atoms in the mesoscopic structures will be massively reduced as compared to the reservoir atoms. The atoms in the mesoscopic structures will be characterised by an innovative detection scheme with single atom sensitivity. The combination of mesoscopic potentials, single atom detection and entropy reduction will put us in a unique position to access new regimes of many-body physics.
First, we will investigate a mesoscopic realisation of the 2D Hubbard model. Beyond the study of the fermionic Mott insulating phase and its excitations, the possibility to study staggered Hubbard models and create domain structures is a very attractive prospect. Most importantly, the massive entropy reduction inherent to the mesoscopic approach will enable us to observe antiferromagnetic ordering, the major milestone central to further progress in the field.
Going beyond periodic structures, we will focus on the direct creation of mesoscopic model systems. In a bottom-up approach, we will realise a plaquette consisting of 2x2 sites, the essential building block for models of d-wave superconductivity. The creation of 1D structures with local defects will open the possibility to study phenomena such as spin-charge separation, Friedel oscillations and the rectification of atomic transport. Finally, the physics of open quantum systems will become accessible when studying the interaction between mesoscopic system and reservoir. In conclusion, I believe that the proposed research programme will bring a new level of functionality to the field.
Summary
This proposal brings together the fields of ultracold Fermi gases and of mesoscopic systems. Starting with a two-dimensional (2D) Fermi gas, we will imprint small-scale potential structures onto the atoms. Thus, a mesoscopic system embedded in a 2D reservoir is produced.
Specifically, we will imprint optical dipole potentials varying on a micrometre scale onto a 2D gas of 6Li atoms. Due to the widely different energy scales, the entropy of the atoms in the mesoscopic structures will be massively reduced as compared to the reservoir atoms. The atoms in the mesoscopic structures will be characterised by an innovative detection scheme with single atom sensitivity. The combination of mesoscopic potentials, single atom detection and entropy reduction will put us in a unique position to access new regimes of many-body physics.
First, we will investigate a mesoscopic realisation of the 2D Hubbard model. Beyond the study of the fermionic Mott insulating phase and its excitations, the possibility to study staggered Hubbard models and create domain structures is a very attractive prospect. Most importantly, the massive entropy reduction inherent to the mesoscopic approach will enable us to observe antiferromagnetic ordering, the major milestone central to further progress in the field.
Going beyond periodic structures, we will focus on the direct creation of mesoscopic model systems. In a bottom-up approach, we will realise a plaquette consisting of 2x2 sites, the essential building block for models of d-wave superconductivity. The creation of 1D structures with local defects will open the possibility to study phenomena such as spin-charge separation, Friedel oscillations and the rectification of atomic transport. Finally, the physics of open quantum systems will become accessible when studying the interaction between mesoscopic system and reservoir. In conclusion, I believe that the proposed research programme will bring a new level of functionality to the field.
Max ERC Funding
1 236 060 €
Duration
Start date: 2013-10-01, End date: 2018-09-30
Project acronym MicroDE
Project Interpreting the irrecoverable microbiota in digestive ecosystems
Researcher (PI) Phillip Byron Pope
Host Institution (HI) NORGES MILJO-OG BIOVITENSKAPLIGE UNIVERSITET
Call Details Starting Grant (StG), LS9, ERC-2013-StG
Summary Currently available enzyme technology is insufficient to economically degrade plant biomass, and presumably will remain so whilst fundamental questions are inadequately answered, the most evident being: “how do microbes and their enzymes interact with plant cell walls?” Compounding these difficulties is the “cultivability bottleneck”. The microbes that harbor the answers to these questions are largely irrecoverable in isolate form, which restricts access to their genetic and metabolic machinery.
The present project will address these issues by applying a progressive interdisciplinary approach to study and compare natural and engineered digestive ecosystems that are linked together via overlapping phenotypic and functional traits (i.e. biomass degradation). The project aims to generate insight into diverse uncultured microbial lineages and uncover core enzyme systems for biomass degradation that are present in multiple environments. To achieve its objectives the project will employ a combination of predictive genome-reconstruction technologies, as well as metagenome-directed isolation strategies to target dominant and novel saccharolytic species. Furthermore we will develop and take advantage of advanced software for enzyme annotation and phylogenetic binning as it is being developed. Relevant genes identified from reconstructed genomes and/or transcriptome data for isolates will be cloned, over-expressed and their gene products tested using state-of-the-art carbohydrate microarray technologies, prior to being characterized in detail.
The project will complement existing activities at the PI’s university on (1) polysaccharide converting enzymes in a biorefining context, (2) the impact of intestinal fiber deconstruction on satiety and (3) enhanced production of biogas. We expect to unravel novel aspects of the microbial ecology within these systems/processes. Furthermore, it is envisaged that novel isolates and enzymes will enter into live bioenergy projects.
Summary
Currently available enzyme technology is insufficient to economically degrade plant biomass, and presumably will remain so whilst fundamental questions are inadequately answered, the most evident being: “how do microbes and their enzymes interact with plant cell walls?” Compounding these difficulties is the “cultivability bottleneck”. The microbes that harbor the answers to these questions are largely irrecoverable in isolate form, which restricts access to their genetic and metabolic machinery.
The present project will address these issues by applying a progressive interdisciplinary approach to study and compare natural and engineered digestive ecosystems that are linked together via overlapping phenotypic and functional traits (i.e. biomass degradation). The project aims to generate insight into diverse uncultured microbial lineages and uncover core enzyme systems for biomass degradation that are present in multiple environments. To achieve its objectives the project will employ a combination of predictive genome-reconstruction technologies, as well as metagenome-directed isolation strategies to target dominant and novel saccharolytic species. Furthermore we will develop and take advantage of advanced software for enzyme annotation and phylogenetic binning as it is being developed. Relevant genes identified from reconstructed genomes and/or transcriptome data for isolates will be cloned, over-expressed and their gene products tested using state-of-the-art carbohydrate microarray technologies, prior to being characterized in detail.
The project will complement existing activities at the PI’s university on (1) polysaccharide converting enzymes in a biorefining context, (2) the impact of intestinal fiber deconstruction on satiety and (3) enhanced production of biogas. We expect to unravel novel aspects of the microbial ecology within these systems/processes. Furthermore, it is envisaged that novel isolates and enzymes will enter into live bioenergy projects.
Max ERC Funding
1 467 176 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym MITOPEXLYSONETWORK
Project "Mitochondria, Peroxisomes and Lysosomes - the ""menage a trois"" of cellular metabolism"
Researcher (PI) Nuno Filipe Viegas Das Neves Raimundo
Host Institution (HI) UNIVERSITAETSMEDIZIN GOETTINGEN - GEORG-AUGUST-UNIVERSITAET GOETTINGEN - STIFTUNG OEFFENTLICHEN RECHTS
Call Details Starting Grant (StG), LS4, ERC-2013-StG
Summary The metabolic roles of mitochondria, peroxisomes and lysosomes are well established. Numerous genetic defects affecting the function of these organelles result in a wide spectrum of metabolic diseases. The involvement of these organelles in signalling pathways is receiving increasing attention. Furthermore, interactions between them and other cellular components have been elucidated. Evidence is now emerging that dysfunction in mitochondria, peroxisomes or lysosomes causes secondary perturbations in the other two organelles. The fundamental hypothesis presiding to this proposal is that mitochondria, peroxisomes and lysosomes form an interdependent network (MytoPexLyso), which is likely to have fundamental roles in cell biology, metabolism and metabolic diseases.
To test this hypothesis and elucidate the role of the MitoPexLyso network in physiology and disease, we will employ state-of-the-art imaging and systems biology approaches. First, we will uncover how dysfunction of each MitoPexLyso organelle affects the network. We will test if mitochondrial dysfunction can trigger lysosome biogenesis, and also systematically address how perturbations in one organelle affect the other two. Second, we will identify signalling pathways sensing perturbations on the MytoPexLyso network, and elucidate their pathologic significance, both in cell lines and in animal models of metabolic diseases. Third, we will test a novel strategy to cure mitochondrial diseases: enhanced removal of damaged mitochondria through increased lysosomal autophagic capacity. We will generate a novel mouse model with higher lysosomal capacity in the skeletal muscle, and use a mouse model of mitochondrial myopathy, to test this premise in vivo.
This proposal addresses key questions in cell biology and metabolism, and will lay the foundation for a new field of “organelle networks” which will profoundly impact our understanding of metabolism and metabolic diseases and drive future research endeavours.
Summary
The metabolic roles of mitochondria, peroxisomes and lysosomes are well established. Numerous genetic defects affecting the function of these organelles result in a wide spectrum of metabolic diseases. The involvement of these organelles in signalling pathways is receiving increasing attention. Furthermore, interactions between them and other cellular components have been elucidated. Evidence is now emerging that dysfunction in mitochondria, peroxisomes or lysosomes causes secondary perturbations in the other two organelles. The fundamental hypothesis presiding to this proposal is that mitochondria, peroxisomes and lysosomes form an interdependent network (MytoPexLyso), which is likely to have fundamental roles in cell biology, metabolism and metabolic diseases.
To test this hypothesis and elucidate the role of the MitoPexLyso network in physiology and disease, we will employ state-of-the-art imaging and systems biology approaches. First, we will uncover how dysfunction of each MitoPexLyso organelle affects the network. We will test if mitochondrial dysfunction can trigger lysosome biogenesis, and also systematically address how perturbations in one organelle affect the other two. Second, we will identify signalling pathways sensing perturbations on the MytoPexLyso network, and elucidate their pathologic significance, both in cell lines and in animal models of metabolic diseases. Third, we will test a novel strategy to cure mitochondrial diseases: enhanced removal of damaged mitochondria through increased lysosomal autophagic capacity. We will generate a novel mouse model with higher lysosomal capacity in the skeletal muscle, and use a mouse model of mitochondrial myopathy, to test this premise in vivo.
This proposal addresses key questions in cell biology and metabolism, and will lay the foundation for a new field of “organelle networks” which will profoundly impact our understanding of metabolism and metabolic diseases and drive future research endeavours.
Max ERC Funding
1 345 200 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym MIXTURE
Project Synergistic Modelling of Molecular Effects via Chemical and Biological Data Integration
Researcher (PI) Andreas Bender
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Starting Grant (StG), LS7, ERC-2013-StG
Summary "While conventionally effects of a chemical structure on a biological system have been determined for individual compounds, one at a time, it is now becoming apparent that biological effects of compound combination are not additive, but often conditional (antagonistic or synergistic) in nature. This phenomenon is of relevance both in the medicinal context (where drugs can be combined to have a synergistic effect), as well as the area of toxicology (where the simultaneous application of compounds shows a toxicity that is non-additive). However, it is not yet clear how to model, and anticipate, which compound combinations show this type of effect.
Hence, in this work I will derive models of synergistic compound combinations, which will be prospectively validated in experiments. Furthermore, I will describe how to capture the effect of a chemical structure on a biological system on multiple levels, namely by considering structural features of the compound, its bioactivity profile, and pathway annotations and their relationship to the phenotypic effect observed. By integrating the data generated in a biologically meaningful way, this allows us to generate predictive models for the bioactivity of compound combinations. The relevance of this work ranges from the question which drugs can be combined in a synergistic manner and which combinations should rather be avoided to the safety assessment of chemicals. Hence, with this work I will be able to improve upon the current state-of-the-art in bioactivity data integration and modelling approaches, as well as deliver concrete models for the bioactivity assessment of compound combinations."
Summary
"While conventionally effects of a chemical structure on a biological system have been determined for individual compounds, one at a time, it is now becoming apparent that biological effects of compound combination are not additive, but often conditional (antagonistic or synergistic) in nature. This phenomenon is of relevance both in the medicinal context (where drugs can be combined to have a synergistic effect), as well as the area of toxicology (where the simultaneous application of compounds shows a toxicity that is non-additive). However, it is not yet clear how to model, and anticipate, which compound combinations show this type of effect.
Hence, in this work I will derive models of synergistic compound combinations, which will be prospectively validated in experiments. Furthermore, I will describe how to capture the effect of a chemical structure on a biological system on multiple levels, namely by considering structural features of the compound, its bioactivity profile, and pathway annotations and their relationship to the phenotypic effect observed. By integrating the data generated in a biologically meaningful way, this allows us to generate predictive models for the bioactivity of compound combinations. The relevance of this work ranges from the question which drugs can be combined in a synergistic manner and which combinations should rather be avoided to the safety assessment of chemicals. Hence, with this work I will be able to improve upon the current state-of-the-art in bioactivity data integration and modelling approaches, as well as deliver concrete models for the bioactivity assessment of compound combinations."
Max ERC Funding
1 499 558 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym MUSYX
Project Multiscale Simulation of Crystal Defects
Researcher (PI) Christoph Ortner
Host Institution (HI) THE UNIVERSITY OF WARWICK
Call Details Starting Grant (StG), PE1, ERC-2013-StG
Summary "The MUSYX project will develop a rigorous numerical analysis framework for assessing the accuracy of multiscale methods for simulating the dynamics of crystalline defects. The core focus of the research will be the analysis of approximation errors of atomistic-to-continuum (a/c) coupling methods and related multiscale schemes. The rigorous mathematical foundations, which will be the outcome of this work, will also lead to the construction of more robust and more efficient numerical algorithms.
The research will be undertaken within four distinct but closely related themes: Theme A: quasistatic evolutions up to and including bifurcation points (defect nucleation and evolution); Theme B: Transition paths, saddles, and transition rates between local minima (defect nucleation and diffusion at finite temperature); Theme C: Computation of defect formation energies within the framework of equilibrium statistical mechanics; Theme D: Fully dynamic problems. The four themes are connected through the focus on crystal defects and model interfaces (e.g., atomistic/continuum).
Themes A and B build on and significantly extend the theory of a/c coupling pioneered by the PI, which combines classical techniques of numerical analysis (consistency, stability) with modern concepts of multiscale and atomistic modeling. Theme C aims to develop an analogous theory for multiscale free energy calculations (precisely, defect formation energies). Theme D approaches the analysis of a fully dynamic multiscale scheme by analyzing its qualitative statistical properties."
Summary
"The MUSYX project will develop a rigorous numerical analysis framework for assessing the accuracy of multiscale methods for simulating the dynamics of crystalline defects. The core focus of the research will be the analysis of approximation errors of atomistic-to-continuum (a/c) coupling methods and related multiscale schemes. The rigorous mathematical foundations, which will be the outcome of this work, will also lead to the construction of more robust and more efficient numerical algorithms.
The research will be undertaken within four distinct but closely related themes: Theme A: quasistatic evolutions up to and including bifurcation points (defect nucleation and evolution); Theme B: Transition paths, saddles, and transition rates between local minima (defect nucleation and diffusion at finite temperature); Theme C: Computation of defect formation energies within the framework of equilibrium statistical mechanics; Theme D: Fully dynamic problems. The four themes are connected through the focus on crystal defects and model interfaces (e.g., atomistic/continuum).
Themes A and B build on and significantly extend the theory of a/c coupling pioneered by the PI, which combines classical techniques of numerical analysis (consistency, stability) with modern concepts of multiscale and atomistic modeling. Theme C aims to develop an analogous theory for multiscale free energy calculations (precisely, defect formation energies). Theme D approaches the analysis of a fully dynamic multiscale scheme by analyzing its qualitative statistical properties."
Max ERC Funding
1 111 793 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym NanoScope
Project Optical imaging of nanoscopic dynamics and potentials
Researcher (PI) Philipp Kukura
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Starting Grant (StG), LS1, ERC-2013-StG
Summary I propose to develop and apply a novel approach to optical microscopy to enable the direct visualization and study of dynamics on the nanoscale in biological and condensed matter physics. Given the speed with which nanoscopic objects move at ambient condition, this requires simultaneously very fast (ms) and precise (nm) imaging. The challenge is to avoid excessive perturbation of the system and enable imaging in biologically compatible environments without compromising imaging performance by pushing interferometric scattering to its theoretical limits.
Using these advanced capabilities, I will study the dynamics and thereby the structure-function relationships in three fundamental systems that are currently not captured by even the most advanced biophysical approaches. These include: (1) the flexibility of DNA on short length scales, (2) diffusion in artificial and cellular membranes and (3) the three-dimensional power stroke of molecular motors such as myosin and kinesin.
Fundamentally, this work aims to develop and establish a high-speed, non-invasive camera on the nanoscale that will enable us to study and eventually understand nanoscopic motion, dynamics and potentials on the relevant, rather than currently achievable, size and time scales.
Summary
I propose to develop and apply a novel approach to optical microscopy to enable the direct visualization and study of dynamics on the nanoscale in biological and condensed matter physics. Given the speed with which nanoscopic objects move at ambient condition, this requires simultaneously very fast (ms) and precise (nm) imaging. The challenge is to avoid excessive perturbation of the system and enable imaging in biologically compatible environments without compromising imaging performance by pushing interferometric scattering to its theoretical limits.
Using these advanced capabilities, I will study the dynamics and thereby the structure-function relationships in three fundamental systems that are currently not captured by even the most advanced biophysical approaches. These include: (1) the flexibility of DNA on short length scales, (2) diffusion in artificial and cellular membranes and (3) the three-dimensional power stroke of molecular motors such as myosin and kinesin.
Fundamentally, this work aims to develop and establish a high-speed, non-invasive camera on the nanoscale that will enable us to study and eventually understand nanoscopic motion, dynamics and potentials on the relevant, rather than currently achievable, size and time scales.
Max ERC Funding
1 498 352 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym NANOSCOPY
Project High-speed chip-based nanoscopy to discover real-time sub-cellular dynamics
Researcher (PI) Balpreet Singh Ahluwalia
Host Institution (HI) UNIVERSITETET I TROMSOE - NORGES ARKTISKE UNIVERSITET
Call Details Starting Grant (StG), PE7, ERC-2013-StG
Summary Optical nanoscopy has given a glimpse of the impact it may have on medical care in the future. Slow imaging speed and the complexity of the current nanoscope limits its use for living cells. The imaging speed is limited by the bulk optics that is used in present nanoscopy. In this project, I propose a paradigm-shift in the field of advanced microscopy by developing optical nanoscopy based on a photonic integrated circuit. The project will take advantage of nanotechnology to fabricate an advance waveguide-chip, while fast telecom optical devices will provide switching of light to the chip, enhancing the speed of imaging. This unconventional route will change the field of optical microscopy, as a simple chip-based system can be added to a normal microscope. In this project, I will build a waveguide-based structured-illumination microscope (W-SIM) to acquire fast images (25 Hz or better) from a living cell with an optical resolution of 50-100 nm. I will use W-SIM to discover the dynamics (opening and closing) of fenestrations (100 nm) present in the membrane of a living liver sinusoidal scavenger endothelial cell. It is believed among the Hepatology community that these fenestrations open and close dynamically, however there is no scientific evidence to support this hypothesis because of the lack of suitable tools. The successful imaging of fenestration kinetics in a live cell during this project will provide new fundamental knowledge and benefit human health with improved diagnoses and drug discovery for liver. Chip-based nanoscopy is a new research field, inherently making this a high-risk project, but the possible gains are also high. The W-SIM will be the first of its kind, which may open a new era of simple, integrated nanoscopy. The proposed multiple-disciplinary project requires a near-unique expertise in the field of laser physics, integrated optics, advanced microscopy and cell-biology that I have acquired at leading research centers on three continents.
Summary
Optical nanoscopy has given a glimpse of the impact it may have on medical care in the future. Slow imaging speed and the complexity of the current nanoscope limits its use for living cells. The imaging speed is limited by the bulk optics that is used in present nanoscopy. In this project, I propose a paradigm-shift in the field of advanced microscopy by developing optical nanoscopy based on a photonic integrated circuit. The project will take advantage of nanotechnology to fabricate an advance waveguide-chip, while fast telecom optical devices will provide switching of light to the chip, enhancing the speed of imaging. This unconventional route will change the field of optical microscopy, as a simple chip-based system can be added to a normal microscope. In this project, I will build a waveguide-based structured-illumination microscope (W-SIM) to acquire fast images (25 Hz or better) from a living cell with an optical resolution of 50-100 nm. I will use W-SIM to discover the dynamics (opening and closing) of fenestrations (100 nm) present in the membrane of a living liver sinusoidal scavenger endothelial cell. It is believed among the Hepatology community that these fenestrations open and close dynamically, however there is no scientific evidence to support this hypothesis because of the lack of suitable tools. The successful imaging of fenestration kinetics in a live cell during this project will provide new fundamental knowledge and benefit human health with improved diagnoses and drug discovery for liver. Chip-based nanoscopy is a new research field, inherently making this a high-risk project, but the possible gains are also high. The W-SIM will be the first of its kind, which may open a new era of simple, integrated nanoscopy. The proposed multiple-disciplinary project requires a near-unique expertise in the field of laser physics, integrated optics, advanced microscopy and cell-biology that I have acquired at leading research centers on three continents.
Max ERC Funding
1 490 976 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym NEWIRES
Project Next Generation Semiconductor Nanowires
Researcher (PI) Kimberly Thelander
Host Institution (HI) LUNDS UNIVERSITET
Call Details Starting Grant (StG), PE5, ERC-2013-StG
Summary Semiconductor nanowires composed of III-V materials have enormous potential to add new functionality to electronics and optical applications. However, integration of these promising structures into applications is severely limited by the current near-universal reliance on gold nanoparticles as seeds for nanowire fabrication. Although highly controlled fabrication is achieved, this metal is entirely incompatible with the Si-based electronics industry. It also presents limitations for the extension of nanowire research towards novel materials not existing in bulk. To date, exploration of alternatives has been limited to selective-area and self-seeded processes, both of which have major limitations in terms of size and morphology control, potential to combine materials, and crystal structure tuning. There is also very little understanding of precisely why gold has proven so successful for nanowire growth, and which alternatives may yield comparable or better results. The aim of this project will be to explore alternative nanoparticle seed materials to go beyond the use of gold in III-V nanowire fabrication. This will be achieved using a unique and recently developed capability for aerosol-phase fabrication of highly controlled nanoparticles directly integrated with conventional nanowire fabrication equipment. The primary goal will be to deepen the understanding of the nanowire fabrication process, and the specific advantages (and limitations) of gold as a seed material, in order to develop and optimize alternatives. The use of a wide variety of seed particle materials in nanowire fabrication will greatly broaden the variety of novel structures that can be fabricated. The results will also transform the nanowire fabrication research field, in order to develop important connections between nanowire research and the semiconductor industry, and to greatly improve the viability of nanowire integration into future devices.
Summary
Semiconductor nanowires composed of III-V materials have enormous potential to add new functionality to electronics and optical applications. However, integration of these promising structures into applications is severely limited by the current near-universal reliance on gold nanoparticles as seeds for nanowire fabrication. Although highly controlled fabrication is achieved, this metal is entirely incompatible with the Si-based electronics industry. It also presents limitations for the extension of nanowire research towards novel materials not existing in bulk. To date, exploration of alternatives has been limited to selective-area and self-seeded processes, both of which have major limitations in terms of size and morphology control, potential to combine materials, and crystal structure tuning. There is also very little understanding of precisely why gold has proven so successful for nanowire growth, and which alternatives may yield comparable or better results. The aim of this project will be to explore alternative nanoparticle seed materials to go beyond the use of gold in III-V nanowire fabrication. This will be achieved using a unique and recently developed capability for aerosol-phase fabrication of highly controlled nanoparticles directly integrated with conventional nanowire fabrication equipment. The primary goal will be to deepen the understanding of the nanowire fabrication process, and the specific advantages (and limitations) of gold as a seed material, in order to develop and optimize alternatives. The use of a wide variety of seed particle materials in nanowire fabrication will greatly broaden the variety of novel structures that can be fabricated. The results will also transform the nanowire fabrication research field, in order to develop important connections between nanowire research and the semiconductor industry, and to greatly improve the viability of nanowire integration into future devices.
Max ERC Funding
1 496 246 €
Duration
Start date: 2013-09-01, End date: 2018-08-31
Project acronym NINA
Project Nitride-based nanostructured novel thermoelectric thin-film materials
Researcher (PI) Per Daniel Eklund
Host Institution (HI) LINKOPINGS UNIVERSITET
Call Details Starting Grant (StG), PE5, ERC-2013-StG
Summary My recent discovery of the anomalously high thermoelectric power factor of ScN thin films demonstrates that unexpected thermoelectric materials can be found among the early transition-metal and rare-earth nitrides. Corroborated by first-principles calculations, we have well-founded hypotheses that these properties stem from nitrogen vacancies, dopants, and alloying, which introduce controllable sharp features with a large slope at the Fermi level, causing a drastically increased Seebeck coefficient. In-depth fundamental studies are needed to enable property tuning and materials design in these systems, to timely exploit my discovery and break new ground.
The project concerns fundamental, primarily experimental, studies on scandium nitride-based and related single-phase and nanostructured films. The overall goal is to understand the complex correlations between electronic, thermal and thermoelectric properties and structural features such as layering, orientation, epitaxy, dopants and lattice defects. Ab initio calculations of band structures, mixing thermodynamics, and properties are integrated with the experimental activities. Novel mechanisms are proposed for drastic reduction of the thermal conductivity with retained high power factor. This will be realized by intentionally introduced secondary phases and artificial nanolaminates; the layering causing discontinuities in the phonon distribution and thus reducing thermal conductivity.
My expertise in thin-film processing and advanced materials characterization places me in a unique position to pursue this novel high-gain approach to thermoelectrics, and an ERC starting grant will be essential in achieving critical mass and consolidating an internationally leading research platform. The scientific impact and vision is in pioneering an understanding of a novel class of thermoelectric materials with potential for thermoelectric devices for widespread use in environmentally friendly energy applications.
Summary
My recent discovery of the anomalously high thermoelectric power factor of ScN thin films demonstrates that unexpected thermoelectric materials can be found among the early transition-metal and rare-earth nitrides. Corroborated by first-principles calculations, we have well-founded hypotheses that these properties stem from nitrogen vacancies, dopants, and alloying, which introduce controllable sharp features with a large slope at the Fermi level, causing a drastically increased Seebeck coefficient. In-depth fundamental studies are needed to enable property tuning and materials design in these systems, to timely exploit my discovery and break new ground.
The project concerns fundamental, primarily experimental, studies on scandium nitride-based and related single-phase and nanostructured films. The overall goal is to understand the complex correlations between electronic, thermal and thermoelectric properties and structural features such as layering, orientation, epitaxy, dopants and lattice defects. Ab initio calculations of band structures, mixing thermodynamics, and properties are integrated with the experimental activities. Novel mechanisms are proposed for drastic reduction of the thermal conductivity with retained high power factor. This will be realized by intentionally introduced secondary phases and artificial nanolaminates; the layering causing discontinuities in the phonon distribution and thus reducing thermal conductivity.
My expertise in thin-film processing and advanced materials characterization places me in a unique position to pursue this novel high-gain approach to thermoelectrics, and an ERC starting grant will be essential in achieving critical mass and consolidating an internationally leading research platform. The scientific impact and vision is in pioneering an understanding of a novel class of thermoelectric materials with potential for thermoelectric devices for widespread use in environmentally friendly energy applications.
Max ERC Funding
1 499 976 €
Duration
Start date: 2013-10-01, End date: 2018-09-30
Project acronym NODAL
Project Nodal Lines
Researcher (PI) Igor Wigman
Host Institution (HI) KING'S COLLEGE LONDON
Call Details Starting Grant (StG), PE1, ERC-2013-StG
Summary "First observed by the physicist and musician Ernst Chladni in the 18th century, the nodal lines
(also referred to as the Chladni Plates or Chladni Modes) appear in many problems in engineering, physics and natural sciences. Nodal lines describe sets that remain stationary during membrane vibrations, hence their importance in such diverse areas as musical instruments industry, mechanical structures, earthquake study and other fields. My proposed research aims at the nodal patterns and question arising from them with mathematical rigour.
So far, the nodal structures have been mainly addressed in the physics literature, whose statement are lacking the mathematical precision; most of their results are based on numerical experiments and heuristic computations rather than analytic methods typical for mathematics. In his seminal paper, Michael Berry (1977) suggested that the behaviour of the deterministic nodal patterns corresponding to the high frequency vibration on generic membranes is universal, and may be ""miraculously"" explained by a random ensemble of monochromatic waves. Extensive numerical experiments confirm Berry's predictions, however no rigorous statement is known (or even formulated) to date.
In this research I propose to investigate the nodal structures in depth arising for various random ensembles. These kind of questions, very natural, especially in light of the proposed random models, were studied empirically in physics literature, and in the last few years analytically in the mathematics literature, mainly by Nazarov and Sodin, and the PI in various collaborations. The questions arising are of fundamental importance in mathematical physics, probability theory, mathematical analysis, and, as was recently discovered, number theory. The proposed research aims at rigorously answering some of the related open questions."
Summary
"First observed by the physicist and musician Ernst Chladni in the 18th century, the nodal lines
(also referred to as the Chladni Plates or Chladni Modes) appear in many problems in engineering, physics and natural sciences. Nodal lines describe sets that remain stationary during membrane vibrations, hence their importance in such diverse areas as musical instruments industry, mechanical structures, earthquake study and other fields. My proposed research aims at the nodal patterns and question arising from them with mathematical rigour.
So far, the nodal structures have been mainly addressed in the physics literature, whose statement are lacking the mathematical precision; most of their results are based on numerical experiments and heuristic computations rather than analytic methods typical for mathematics. In his seminal paper, Michael Berry (1977) suggested that the behaviour of the deterministic nodal patterns corresponding to the high frequency vibration on generic membranes is universal, and may be ""miraculously"" explained by a random ensemble of monochromatic waves. Extensive numerical experiments confirm Berry's predictions, however no rigorous statement is known (or even formulated) to date.
In this research I propose to investigate the nodal structures in depth arising for various random ensembles. These kind of questions, very natural, especially in light of the proposed random models, were studied empirically in physics literature, and in the last few years analytically in the mathematics literature, mainly by Nazarov and Sodin, and the PI in various collaborations. The questions arising are of fundamental importance in mathematical physics, probability theory, mathematical analysis, and, as was recently discovered, number theory. The proposed research aims at rigorously answering some of the related open questions."
Max ERC Funding
966 361 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym OptoMotorPath
Project Optogenetic dissection of motor cortex dynamics and pathways
Researcher (PI) Ilka Diester
Host Institution (HI) ALBERT-LUDWIGS-UNIVERSITAET FREIBURG
Call Details Starting Grant (StG), LS5, ERC-2013-StG
Summary Within a densely interconnected network, selective communication can be achieved only if neuronal inputs and outputs are functionally segmented and if only one segment is selected for a given time and neural population. We focus here on this process in the primary motor cortex (M1) which projects to a variety of brain structures involved in motor generation and suppression as well as somatosensory perception. We propose to investigate what kind of information is sent to two of M1’s main target brain areas – the striatum and the somatosensory cortex by separate or partially overlapping neural subpopulations. To dissect the two pathways we will apply new optogenetic projection and stimulation strategies and combine them with controlled behavior and electrophysiological recordings conducted with advanced optoelectronic probes. The goal is to neurophysiologically characterize the two populations in a specially designed Go/NoGo task with sensorimotor component and understand their functional relevance for motor behavior. For causally defining the optimal stimulation frequencies for a specific task period, we will make use of real-time feedback by measuring ongoing oscillatory patterns and enhance or phase shift the synchronized activity in motor cortex and its targets. In particular, we will focus on beta and gamma band oscillations. While beta band activity has been mainly associated with the suppression of movements and with postural maintenance as well as sensorimotor integration and planning, elevated gamma band activity has been reported often during movement initiation and attention. We hypothesize that the best suited resonance frequencies differ between the two communication paths to S1 and striatum and that they might change across trial phases. Apart from the impact on basic science, finding out about the details of sensorimotor integration and the role of synchronization may lead to a better understanding of motor disorders, e.g. Parkinson’s disease.
Summary
Within a densely interconnected network, selective communication can be achieved only if neuronal inputs and outputs are functionally segmented and if only one segment is selected for a given time and neural population. We focus here on this process in the primary motor cortex (M1) which projects to a variety of brain structures involved in motor generation and suppression as well as somatosensory perception. We propose to investigate what kind of information is sent to two of M1’s main target brain areas – the striatum and the somatosensory cortex by separate or partially overlapping neural subpopulations. To dissect the two pathways we will apply new optogenetic projection and stimulation strategies and combine them with controlled behavior and electrophysiological recordings conducted with advanced optoelectronic probes. The goal is to neurophysiologically characterize the two populations in a specially designed Go/NoGo task with sensorimotor component and understand their functional relevance for motor behavior. For causally defining the optimal stimulation frequencies for a specific task period, we will make use of real-time feedback by measuring ongoing oscillatory patterns and enhance or phase shift the synchronized activity in motor cortex and its targets. In particular, we will focus on beta and gamma band oscillations. While beta band activity has been mainly associated with the suppression of movements and with postural maintenance as well as sensorimotor integration and planning, elevated gamma band activity has been reported often during movement initiation and attention. We hypothesize that the best suited resonance frequencies differ between the two communication paths to S1 and striatum and that they might change across trial phases. Apart from the impact on basic science, finding out about the details of sensorimotor integration and the role of synchronization may lead to a better understanding of motor disorders, e.g. Parkinson’s disease.
Max ERC Funding
1 498 890 €
Duration
Start date: 2014-11-01, End date: 2019-10-31
Project acronym OptoQMol
Project Optical Quantum Control of Magnetic Molecules
Researcher (PI) Lapo Bogani
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Starting Grant (StG), PE3, ERC-2013-StG
Summary A revolution is underway, as molecular magnets are establishing a fundamental link between spintronics, molecular electronics and quantum computation. On the other hand, we know almost nothing on how a magnetic molecule is affected by electrons flowing through it or by the excitation of a molecular group. OptoQMol will investigate these uncharted waters by developing innovative, ultra-clean methods that will provide information inaccessible to established procedures. This will allow an unprecedented study of the interplay of electronic and spin degrees of freedom in magnetic molecules and of its possible use for quantum logic.
OptoQMol is a strongly multidisciplinary project, and makes use of an innovative mix of chemical and physical methods to overcome present experimental limitations, both in terms of time resolution and cleanliness. Instead of placing a magnetic molecule between bulk electrodes, we will directly grow photoactive groups on the molecule, so that electrons will flow through or close to the spin centers after a light pulse. This affords an ultra-clean system that can be studied in bulk, with a perfectly defined geometry of the magnetic and electronic elements. We will then combine optical and electron paramagnetic resonance techniques with ns time resolution, so as to observe the effect of electron flow on the spins in real time and measure the spin quantum coherence. Eventually we will use these innovative methods to control the interactions among spins and perform quantum logic operations.
The success of OptoQMol will answer two fundamental questions: How do molecular spins interact with flowing electrons? How can we use electronic excitations to perform quantum logic operations between multiple electron spins? The results will open a totally new area of experimental and theoretical investigation. Moreover they will redefine the limits and possibilities of molecular spintronics and allow quantum logic operations among multiple electron spins.
Summary
A revolution is underway, as molecular magnets are establishing a fundamental link between spintronics, molecular electronics and quantum computation. On the other hand, we know almost nothing on how a magnetic molecule is affected by electrons flowing through it or by the excitation of a molecular group. OptoQMol will investigate these uncharted waters by developing innovative, ultra-clean methods that will provide information inaccessible to established procedures. This will allow an unprecedented study of the interplay of electronic and spin degrees of freedom in magnetic molecules and of its possible use for quantum logic.
OptoQMol is a strongly multidisciplinary project, and makes use of an innovative mix of chemical and physical methods to overcome present experimental limitations, both in terms of time resolution and cleanliness. Instead of placing a magnetic molecule between bulk electrodes, we will directly grow photoactive groups on the molecule, so that electrons will flow through or close to the spin centers after a light pulse. This affords an ultra-clean system that can be studied in bulk, with a perfectly defined geometry of the magnetic and electronic elements. We will then combine optical and electron paramagnetic resonance techniques with ns time resolution, so as to observe the effect of electron flow on the spins in real time and measure the spin quantum coherence. Eventually we will use these innovative methods to control the interactions among spins and perform quantum logic operations.
The success of OptoQMol will answer two fundamental questions: How do molecular spins interact with flowing electrons? How can we use electronic excitations to perform quantum logic operations between multiple electron spins? The results will open a totally new area of experimental and theoretical investigation. Moreover they will redefine the limits and possibilities of molecular spintronics and allow quantum logic operations among multiple electron spins.
Max ERC Funding
1 498 300 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym ORCA
Project Optical Responses Controlled by DNA Assembly
Researcher (PI) Tim Liedl
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Call Details Starting Grant (StG), PE5, ERC-2013-StG
Summary Artificially constructed materials can be designed to shape the propagation of light and can thus exhibit optical characteristics that are not found in nature. With such metamaterials, remarkable optical applications such as cloaking of objects, sensing of molecular environments or the fabrication of perfect lenses that are not bound by optical resolution limits could be realised. However, for metamaterials to operate at visible wavelengths they have to be structured in three dimensions with nanometre precision which currently poses an enormous barrier to their fabrication. By using molecular self-assembly based on the self-recognizing properties of sequence-programmable DNA strands, this barrier will be overcome. After having pioneered the 3D DNA origami method and the creation of DNA-based metamaterials, I propose the following new paths of research:
i) Metamaterials that are switchable in electric or magnetic fields and operate at visible or near infrared wavelengths will be designed and produced by DNA self-assembly for the first time. The hypothesis that materials with strong chirality show negative refraction will be tested and optical resonators with dimensions below 100 nm will be generated.
ii) The light-shaping characteristics of metal particle helices will be used to detect organic molecules. As most organic molecules are chiral and can be considered as chiral arrangements of multiple dipole elements, it is expected that the organic dipoles couple to the plasmonic dipoles of the metal helices. This in turn will induce changes in the optical activity of the material. In a parallel approach, organic molecules will be used to induce conformational changes in DNA-supported particle assemblies, which will then be detected in their optical response. Both of these fundamentally new detection schemes will allow extremely sensitive detection of biomolecules at visible wavelengths.
Summary
Artificially constructed materials can be designed to shape the propagation of light and can thus exhibit optical characteristics that are not found in nature. With such metamaterials, remarkable optical applications such as cloaking of objects, sensing of molecular environments or the fabrication of perfect lenses that are not bound by optical resolution limits could be realised. However, for metamaterials to operate at visible wavelengths they have to be structured in three dimensions with nanometre precision which currently poses an enormous barrier to their fabrication. By using molecular self-assembly based on the self-recognizing properties of sequence-programmable DNA strands, this barrier will be overcome. After having pioneered the 3D DNA origami method and the creation of DNA-based metamaterials, I propose the following new paths of research:
i) Metamaterials that are switchable in electric or magnetic fields and operate at visible or near infrared wavelengths will be designed and produced by DNA self-assembly for the first time. The hypothesis that materials with strong chirality show negative refraction will be tested and optical resonators with dimensions below 100 nm will be generated.
ii) The light-shaping characteristics of metal particle helices will be used to detect organic molecules. As most organic molecules are chiral and can be considered as chiral arrangements of multiple dipole elements, it is expected that the organic dipoles couple to the plasmonic dipoles of the metal helices. This in turn will induce changes in the optical activity of the material. In a parallel approach, organic molecules will be used to induce conformational changes in DNA-supported particle assemblies, which will then be detected in their optical response. Both of these fundamentally new detection schemes will allow extremely sensitive detection of biomolecules at visible wavelengths.
Max ERC Funding
1 433 840 €
Duration
Start date: 2013-12-01, End date: 2018-11-30
Project acronym PASSME
Project Air-sea gas exchange - PArameterization of the Sea-Surface Microlayer Effect
Researcher (PI) Oliver Wurl
Host Institution (HI) CARL VON OSSIETZKY UNIVERSITAET OLDENBURG
Call Details Starting Grant (StG), PE10, ERC-2013-StG
Summary The Earth’s oceans absorb about 11 billion tonnes of carbon dioxide (CO2) each year, about 25% of all anthropogenic CO2. The oceans are huge reservoirs of CO2, and a better understanding on how the oceans absorb CO2 is critical for predicting climate change. The sea-surface microlayer (SML), the aqueous boundary layer between the ocean and atmosphere, plays an important role in the exchange of gases between the ocean and atmosphere. The effects of the SML on air-sea gas exchange have been widely ignored by past and current research efforts due to uncertainties to what extent the SML covers the oceans. However, we recently reported the ubiquitous coverage of the oceans with SML, which pushes the SML into a new and wider context that is relevant to many ocean and climate sciences.
I propose experiments at multiple scales, i.e. in laboratory tanks, wind wave tunnel, mesocosm and during a long-term field study. I propose a systematic field study measuring air-sea CO2 fluxes and mapping chemical, biological and physical properties of the SML. With the experiments on smaller scales, such measurements will allow for the first time (i) to define new parameters controlling gas fluxes, (ii) to quantify short-time and seasonal variability, (iii) to define global proxies for the effects of the SML, and (iv) to develop and apply a new parameterization for the correction of global CO2 flux data. For the first time, biogeochemical processes relevant to carbon cycling are investigated on the ocean’s surface at an interfacial level. Furthermore, I aim to reconstruct the natural composition of the SML in a wind-wave tunnel to study its ability to modify the ocean’s surface at well-defined wind regimes.
The results from the proposed studies can form the basis for an improvement of current assessments of CO2 fluxes, and oceanic uptake rates. A better understanding in the oceanic uptake of atmospheric CO2 is critical in predicting climate trends and establishing policies.
Summary
The Earth’s oceans absorb about 11 billion tonnes of carbon dioxide (CO2) each year, about 25% of all anthropogenic CO2. The oceans are huge reservoirs of CO2, and a better understanding on how the oceans absorb CO2 is critical for predicting climate change. The sea-surface microlayer (SML), the aqueous boundary layer between the ocean and atmosphere, plays an important role in the exchange of gases between the ocean and atmosphere. The effects of the SML on air-sea gas exchange have been widely ignored by past and current research efforts due to uncertainties to what extent the SML covers the oceans. However, we recently reported the ubiquitous coverage of the oceans with SML, which pushes the SML into a new and wider context that is relevant to many ocean and climate sciences.
I propose experiments at multiple scales, i.e. in laboratory tanks, wind wave tunnel, mesocosm and during a long-term field study. I propose a systematic field study measuring air-sea CO2 fluxes and mapping chemical, biological and physical properties of the SML. With the experiments on smaller scales, such measurements will allow for the first time (i) to define new parameters controlling gas fluxes, (ii) to quantify short-time and seasonal variability, (iii) to define global proxies for the effects of the SML, and (iv) to develop and apply a new parameterization for the correction of global CO2 flux data. For the first time, biogeochemical processes relevant to carbon cycling are investigated on the ocean’s surface at an interfacial level. Furthermore, I aim to reconstruct the natural composition of the SML in a wind-wave tunnel to study its ability to modify the ocean’s surface at well-defined wind regimes.
The results from the proposed studies can form the basis for an improvement of current assessments of CO2 fluxes, and oceanic uptake rates. A better understanding in the oceanic uptake of atmospheric CO2 is critical in predicting climate trends and establishing policies.
Max ERC Funding
1 485 797 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym PETA-CARB
Project Rapid Permafrost Thaw in a Warming Arctic and Impacts on the Soil Organic Carbon Pool
Researcher (PI) Guido Grosse
Host Institution (HI) ALFRED-WEGENER-INSTITUT HELMHOLTZ-ZENTRUM FUR POLAR- UND MEERESFORSCHUNG
Call Details Starting Grant (StG), PE10, ERC-2013-StG
Summary In a warming Arctic, frozen soil organic carbon (SOC) stored in permafrost will increasingly become vulnerable to thaw and mobilization. Over millennia, permafrost soils accumulated about 1672 Petagram of SOC, about twice the carbon currently in the atmosphere. Rapid permafrost thaw (thermokarst) releases fossil SOC as greenhouse gases, constituting a positive feedback to global warming. However, complex landscape, hydrological, and ecological feedbacks necessitate quantification of landscape scale carbon pools and fluxes in Arctic permafrost regions. A globally important question is whether permafrost soils will turn from a natural carbon sink into a source.
The project combines remote sensing based change detection, mapping, and spatial data analysis for permafrost landscapes, quantitative field studies, and modelling of thermokarst processes to quantify the size and vulnerability of deep permafrost SOC pools to rapid permafrost thaw and resulting impacts. The three research topics are: (1) Systematic measurement of rapid permafrost thaw, (2) Determining deep permafrost SOC stocks and carbon accumulation rates, and (3) Quantification of deep permafrost SOC pools and vulnerability assessment.
The project will provide for the first time quantitative data on rapid permafrost thaw over large regions, provide first-time data on the size of SOC pool components related to thermokarst, substantially enhance previous SOC pool estimates for Yedoma deposits and arctic river deltas, and characterize overall permafrost SOC distribution and vulnerability to thaw. It will answer the question of how climate change affects permafrost SOC pools and how permafrost thaw feeds back to climate.
Summary
In a warming Arctic, frozen soil organic carbon (SOC) stored in permafrost will increasingly become vulnerable to thaw and mobilization. Over millennia, permafrost soils accumulated about 1672 Petagram of SOC, about twice the carbon currently in the atmosphere. Rapid permafrost thaw (thermokarst) releases fossil SOC as greenhouse gases, constituting a positive feedback to global warming. However, complex landscape, hydrological, and ecological feedbacks necessitate quantification of landscape scale carbon pools and fluxes in Arctic permafrost regions. A globally important question is whether permafrost soils will turn from a natural carbon sink into a source.
The project combines remote sensing based change detection, mapping, and spatial data analysis for permafrost landscapes, quantitative field studies, and modelling of thermokarst processes to quantify the size and vulnerability of deep permafrost SOC pools to rapid permafrost thaw and resulting impacts. The three research topics are: (1) Systematic measurement of rapid permafrost thaw, (2) Determining deep permafrost SOC stocks and carbon accumulation rates, and (3) Quantification of deep permafrost SOC pools and vulnerability assessment.
The project will provide for the first time quantitative data on rapid permafrost thaw over large regions, provide first-time data on the size of SOC pool components related to thermokarst, substantially enhance previous SOC pool estimates for Yedoma deposits and arctic river deltas, and characterize overall permafrost SOC distribution and vulnerability to thaw. It will answer the question of how climate change affects permafrost SOC pools and how permafrost thaw feeds back to climate.
Max ERC Funding
1 786 966 €
Duration
Start date: 2013-11-01, End date: 2018-10-31
Project acronym PhysProt
Project Determining Physical Properties of Heterogeneous Protein Complexes in Small Volumes
Researcher (PI) Tuomas Pertti Jonathan Knowles
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Starting Grant (StG), PE3, ERC-2013-StG
Summary The objective of this proposal is to probe in aqueous solution protein complexes which are both heterogeneous and possess highly variable stoichiometries. The study of heterogeneous protein systems by conventional means is very challenging since most current biophysical methods perform best for pure solutions of isolated components - yet proteins exert in the majority of cases their biological functionality through forming complexes. We propose in this application that the key to study such systems is to operate in much smaller volumes than in conventional biophysical experiments. We will use microfluidics to obtain information about the physical properties of protein complexes in real time through quantitative micron-scale measurements of mass transport of molecular species under the action of diffusion and electric or centrifugal fields. Furthermore, by working in small volumes, we will study nucleation phenomena inherent to many protein self-assembly phenomena on the level of single nucleation events by segregating individual nuclei into spatially distinct compartments. Modern microfabrication techniques that allow for the manipulation of liquids on the picolitre scales required for this project are available and will be exploited, but the potential of this technology to define experimentally highly heterogeneous protein complexes in terms of their key fundamental physical properties, such as the hydrodynamic radius, charge and mass, and shed light on the physical basis of protein self-assembly, have remained unexploited. Using this approach, we will explore biological problems of fundamental and practical importance characterised by heterogeneity, including functional chaperone complexes, formation and detection of amyloid oligomers and studies of complex biomolecular mixtures. This programme will deliver fundamentally new approaches to study heterogeneous protein complexes and will shed light on the physical principles that govern protein self-assembly.
Summary
The objective of this proposal is to probe in aqueous solution protein complexes which are both heterogeneous and possess highly variable stoichiometries. The study of heterogeneous protein systems by conventional means is very challenging since most current biophysical methods perform best for pure solutions of isolated components - yet proteins exert in the majority of cases their biological functionality through forming complexes. We propose in this application that the key to study such systems is to operate in much smaller volumes than in conventional biophysical experiments. We will use microfluidics to obtain information about the physical properties of protein complexes in real time through quantitative micron-scale measurements of mass transport of molecular species under the action of diffusion and electric or centrifugal fields. Furthermore, by working in small volumes, we will study nucleation phenomena inherent to many protein self-assembly phenomena on the level of single nucleation events by segregating individual nuclei into spatially distinct compartments. Modern microfabrication techniques that allow for the manipulation of liquids on the picolitre scales required for this project are available and will be exploited, but the potential of this technology to define experimentally highly heterogeneous protein complexes in terms of their key fundamental physical properties, such as the hydrodynamic radius, charge and mass, and shed light on the physical basis of protein self-assembly, have remained unexploited. Using this approach, we will explore biological problems of fundamental and practical importance characterised by heterogeneity, including functional chaperone complexes, formation and detection of amyloid oligomers and studies of complex biomolecular mixtures. This programme will deliver fundamentally new approaches to study heterogeneous protein complexes and will shed light on the physical principles that govern protein self-assembly.
Max ERC Funding
1 499 895 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym PIPA
Project Paleo-robotics and the Innovations of Propulsion in Amphibians
Researcher (PI) Christopher Richards
Host Institution (HI) THE ROYAL VETERINARY COLLEGE
Call Details Starting Grant (StG), LS4, ERC-2013-StG
Summary "Scientists race to find evolutionary ‘missing links’ between major vertebrate lineages to explain the origin of new groups. In this effort, biomechanics is crucial since major transitions can spring from mechanical innovations (e.g. amphibian limbs or bird wings). Yet, biomechanics is limited due to its own missing link: we poorly understand interactions among muscle dynamics, skeletal structure and external forces of limbs on the ground. Aiming to bridge gaps in both evolution and biomechanics, PIPA offers three approaches to investigate a long-standing mystery: how did musculoskeletal transformations drive the origin and radiation of frogs? 1) PIPA combines external force measurements with in vivo and in vitro muscle physiology for insights inaccessible in other systems during locomotion. We will determine whether muscles operate near their mechanical limits. Also, we will reveal how well muscles meet the demands of various tasks (walking vs. swimming vs. jumping) to settle debates on whether muscles are ‘tuned’ for specific tasks. 2) Beyond muscle physiology, PIPA will computationally simulate the evolution of limbs in response to hypothetical selection pressures. Such models will test whether muscle dynamics (AIM 1) evolved for locomotor specialization (jumping) versus generalization for multiple tasks. Specifically, we will evaluate whether the muscular complexity of derived frogs evolved such that they can both generate extreme power and execute fine control. (3) To directly test conclusions from AIMS 1&2, PIPA uses innovative muscle-controlled paleo-robots to hypothetically ‘replay’ the anatomical and physiological transformations of frog evolution. Such integrative techniques will clarify our understanding of limb evolution, resolve long-standing evolutionary questions and discover general principles that will ultimately advance limbed robotics and prosthetics engineering."
Summary
"Scientists race to find evolutionary ‘missing links’ between major vertebrate lineages to explain the origin of new groups. In this effort, biomechanics is crucial since major transitions can spring from mechanical innovations (e.g. amphibian limbs or bird wings). Yet, biomechanics is limited due to its own missing link: we poorly understand interactions among muscle dynamics, skeletal structure and external forces of limbs on the ground. Aiming to bridge gaps in both evolution and biomechanics, PIPA offers three approaches to investigate a long-standing mystery: how did musculoskeletal transformations drive the origin and radiation of frogs? 1) PIPA combines external force measurements with in vivo and in vitro muscle physiology for insights inaccessible in other systems during locomotion. We will determine whether muscles operate near their mechanical limits. Also, we will reveal how well muscles meet the demands of various tasks (walking vs. swimming vs. jumping) to settle debates on whether muscles are ‘tuned’ for specific tasks. 2) Beyond muscle physiology, PIPA will computationally simulate the evolution of limbs in response to hypothetical selection pressures. Such models will test whether muscle dynamics (AIM 1) evolved for locomotor specialization (jumping) versus generalization for multiple tasks. Specifically, we will evaluate whether the muscular complexity of derived frogs evolved such that they can both generate extreme power and execute fine control. (3) To directly test conclusions from AIMS 1&2, PIPA uses innovative muscle-controlled paleo-robots to hypothetically ‘replay’ the anatomical and physiological transformations of frog evolution. Such integrative techniques will clarify our understanding of limb evolution, resolve long-standing evolutionary questions and discover general principles that will ultimately advance limbed robotics and prosthetics engineering."
Max ERC Funding
1 494 998 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym PP1TOOLS
Project Development of chemical biology tools for the elucidation of protein phosphatase-1 substrates and druggability
Researcher (PI) Maja Banks-Köhn
Host Institution (HI) ALBERT-LUDWIGS-UNIVERSITAET FREIBURG
Call Details Starting Grant (StG), PE5, ERC-2013-StG
Summary Protein serine/threonine phosphatases (PSTPs) are considered undruggable although they are involved in the most prominent post-translational modifications. This is mainly due to an apparent lack of substrate specificity. One important PSTP is protein phosphatase-1 (PP1), a ubiquitous PSTP that is predicted to catalyze about 1/3rd of Ser and Thr dephosphorylations in eukaryotic cells, counteracting hundreds of kinases. PP1 has broad substrate specificity but is restrained in vivo by numerous PP1-interacting proteins functioning for example as substrate-targeting proteins and forming specific holoenzymes with PP1. PP1 holoenzymes play a role in many different diseases such as cancer (counteracting oncogenic kinases), diabetes (insulin release), Alzheimer’s (dephosphorylation of Tau protein) and HIV (viral translation). Currently, there are no chemical modulators available that target PP1 selectively, except that we recently developed the first compound that selectively activates PP1 in intact cells, leading to rapid dephosphorylation of PP1 substrates. The activator does not act on the most closely related protein phosphatase-2A. This proposal aims to generate and apply tools for the investigation of PP1, in part based on our previously developed activator. The tools include selective, photo- and enzymatically releasable chemical inhibitors and activators and semisynthetic proteins, and they will be applied to study PP1–substrate interactions and help identify the correlating interacting proteins. The proposed research will provide long-sought selective chemical tools to study PP1 by applying new concepts of activator and inhibitor design using peptide and small molecule chemistry to an enzyme class that is difficult to be targeted chemically. This research program will contribute to a much more detailed understanding of PP1 biology, and will open doors to investigate PP1 and its holoenzymes as drug targets.
Summary
Protein serine/threonine phosphatases (PSTPs) are considered undruggable although they are involved in the most prominent post-translational modifications. This is mainly due to an apparent lack of substrate specificity. One important PSTP is protein phosphatase-1 (PP1), a ubiquitous PSTP that is predicted to catalyze about 1/3rd of Ser and Thr dephosphorylations in eukaryotic cells, counteracting hundreds of kinases. PP1 has broad substrate specificity but is restrained in vivo by numerous PP1-interacting proteins functioning for example as substrate-targeting proteins and forming specific holoenzymes with PP1. PP1 holoenzymes play a role in many different diseases such as cancer (counteracting oncogenic kinases), diabetes (insulin release), Alzheimer’s (dephosphorylation of Tau protein) and HIV (viral translation). Currently, there are no chemical modulators available that target PP1 selectively, except that we recently developed the first compound that selectively activates PP1 in intact cells, leading to rapid dephosphorylation of PP1 substrates. The activator does not act on the most closely related protein phosphatase-2A. This proposal aims to generate and apply tools for the investigation of PP1, in part based on our previously developed activator. The tools include selective, photo- and enzymatically releasable chemical inhibitors and activators and semisynthetic proteins, and they will be applied to study PP1–substrate interactions and help identify the correlating interacting proteins. The proposed research will provide long-sought selective chemical tools to study PP1 by applying new concepts of activator and inhibitor design using peptide and small molecule chemistry to an enzyme class that is difficult to be targeted chemically. This research program will contribute to a much more detailed understanding of PP1 biology, and will open doors to investigate PP1 and its holoenzymes as drug targets.
Max ERC Funding
1 164 516 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym PROTECTC
Project Identify novel pathways to enhance the induction of protective CD8+ T cell responses
Researcher (PI) Dietmar Zehn
Host Institution (HI) TECHNISCHE UNIVERSITAET MUENCHEN
Call Details Starting Grant (StG), LS6, ERC-2013-StG
Summary There is an urgent need for progress in developing prophylactic and therapeutic vaccination strategies that induce polyfunctional, strongly protective cytotoxic CD8 T cell responses. These could shield us from pathogens against which the presently available, neutralizing antibody-inducing vaccine approaches confer limited or no protection and they could be used to eliminate tumors or chronic infections. In contrast to this need, we currently fail to induce effector and memory CD8 T cells in numbers high enough to effectively impact an infection or the growth of tumors. As protective CD8 T cell responses are readily generated during several viral infections, we need to improve our insight into how pathogen protection is naturally achieved, identify why immune protection sometimes fails, and use this knowledge to develop novel vaccine strategies. We will use a well balanced approach of hypothesis stimulated and unbiased multisystem observations to exploit novel mechanisms and to find ways to augment the CD8 T cell response to a vaccine. We have established model systems that are uniquely suited to extract and test molecules that determine T cell differentiation and expansion magnitude. Along with that we aim to enhance our insight of immune responses in vaccinated individuals to prevent creating situation in which vaccines fail to confer protection or may cause adverse effects. We recently made very unexpected observations that challenge our current concept of T cell differentiation in chronic infections, which proposes that T cells terminally differentiate and become senescent. We therefore aim to redefine our understanding of T cell responses in such infections. This will also be pursued to unravel novel strategies to reactivate T cells in persisting infections. Overall, the project will strongly further our insight into CD8 T cell responses during infections and will support the development of more effective vaccine strategies to induce antigen-specific CD8 T cells
Summary
There is an urgent need for progress in developing prophylactic and therapeutic vaccination strategies that induce polyfunctional, strongly protective cytotoxic CD8 T cell responses. These could shield us from pathogens against which the presently available, neutralizing antibody-inducing vaccine approaches confer limited or no protection and they could be used to eliminate tumors or chronic infections. In contrast to this need, we currently fail to induce effector and memory CD8 T cells in numbers high enough to effectively impact an infection or the growth of tumors. As protective CD8 T cell responses are readily generated during several viral infections, we need to improve our insight into how pathogen protection is naturally achieved, identify why immune protection sometimes fails, and use this knowledge to develop novel vaccine strategies. We will use a well balanced approach of hypothesis stimulated and unbiased multisystem observations to exploit novel mechanisms and to find ways to augment the CD8 T cell response to a vaccine. We have established model systems that are uniquely suited to extract and test molecules that determine T cell differentiation and expansion magnitude. Along with that we aim to enhance our insight of immune responses in vaccinated individuals to prevent creating situation in which vaccines fail to confer protection or may cause adverse effects. We recently made very unexpected observations that challenge our current concept of T cell differentiation in chronic infections, which proposes that T cells terminally differentiate and become senescent. We therefore aim to redefine our understanding of T cell responses in such infections. This will also be pursued to unravel novel strategies to reactivate T cells in persisting infections. Overall, the project will strongly further our insight into CD8 T cell responses during infections and will support the development of more effective vaccine strategies to induce antigen-specific CD8 T cells
Max ERC Funding
1 499 850 €
Duration
Start date: 2013-10-01, End date: 2018-09-30
Project acronym QLEDS
Project Quantum Logic Enabled test of Discrete Symmetries
Researcher (PI) Christian Ospelkaus
Host Institution (HI) GOTTFRIED WILHELM LEIBNIZ UNIVERSITAET HANNOVER
Call Details Starting Grant (StG), PE2, ERC-2013-StG
Summary "This proposal aims to apply ion-trap quantum logic techniques to precision measurements on individual (anti-)protons for fundamental physics tests. In particular, we aim to measure g-factors of single (anti-)protons as a precise test of CPT symmetry. This requires a method to detect single (anti-)proton spin flips. Current efforts based on classical “magnetic bottle” techniques are hurt by the extreme difficulty and slowness of the spin state detection. Discrete and direct state measurement is a prerequisite for inaccuracies below 10-6 and has not been achieved yet.
Towards this end, we will employ a radically different approach and use quantum logic techniques developed by the PI in the NIST ion storage group of D. J. Wineland [Nature 476, 181(2011); Nature 471, 196(2011)]. This will allow us to transfer the (anti-)proton’s spin state to a nearby trapped atomic “logic” ion and subsequently read it out using standard quantum logic detection techniques along the lines of Heinzen and Wineland [PRA 42, 2977; J. Res. NIST 103, 259 (1998)]. The same ideas are also at the root of NIST’s world-record single-ion Al+ frequency standard.
Ultimately, this quantum logic technique will lead to a precise test of CPT symmetry, a fundamental symmetry within the standard model of particle physics, by comparing the proton’s and the antiproton’s g-factor with fast detection and single spin-flip resolution. It thus has the potential to reach inaccuracies below 10-9, exceeding the state-of-the-art for the antiproton g-factor by six orders of magnitude. Such a measurement is urgently needed to complement ongoing tests with electrons and positrons. It is closely intertwined with our desire to understand the observed matter-antimatter imbalance in the universe and to obtain a unified description of matter and interactions. Further, the project will considerably broaden the arsenal of quantum state manipulation techniques in Penning traps and possibly impact high precision mass measurement."
Summary
"This proposal aims to apply ion-trap quantum logic techniques to precision measurements on individual (anti-)protons for fundamental physics tests. In particular, we aim to measure g-factors of single (anti-)protons as a precise test of CPT symmetry. This requires a method to detect single (anti-)proton spin flips. Current efforts based on classical “magnetic bottle” techniques are hurt by the extreme difficulty and slowness of the spin state detection. Discrete and direct state measurement is a prerequisite for inaccuracies below 10-6 and has not been achieved yet.
Towards this end, we will employ a radically different approach and use quantum logic techniques developed by the PI in the NIST ion storage group of D. J. Wineland [Nature 476, 181(2011); Nature 471, 196(2011)]. This will allow us to transfer the (anti-)proton’s spin state to a nearby trapped atomic “logic” ion and subsequently read it out using standard quantum logic detection techniques along the lines of Heinzen and Wineland [PRA 42, 2977; J. Res. NIST 103, 259 (1998)]. The same ideas are also at the root of NIST’s world-record single-ion Al+ frequency standard.
Ultimately, this quantum logic technique will lead to a precise test of CPT symmetry, a fundamental symmetry within the standard model of particle physics, by comparing the proton’s and the antiproton’s g-factor with fast detection and single spin-flip resolution. It thus has the potential to reach inaccuracies below 10-9, exceeding the state-of-the-art for the antiproton g-factor by six orders of magnitude. Such a measurement is urgently needed to complement ongoing tests with electrons and positrons. It is closely intertwined with our desire to understand the observed matter-antimatter imbalance in the universe and to obtain a unified description of matter and interactions. Further, the project will considerably broaden the arsenal of quantum state manipulation techniques in Penning traps and possibly impact high precision mass measurement."
Max ERC Funding
1 619 640 €
Duration
Start date: 2013-09-01, End date: 2018-08-31
Project acronym QUANTUMCANDI
Project Interfacing quantum states in carbon nanotube devices
Researcher (PI) Alexander Högele
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Call Details Starting Grant (StG), PE3, ERC-2013-StG
Summary Coherent control and sensitive detection of quantum states in condensed matter are among the most topical challenges of modern physics. They drive the development of novel materials, theoretical concepts, and experimental methods to advance our understanding of fundamental laws of quantum mechanics and to create transformative technologies for future applications. During the past decades carbon has emerged as a new material platform to address these challenges: graphene and carbon nanotubes have been created as paradigm systems with exceptional physical properties.
As atomically-thin cylinders carbon nanotubes combine ultra-low mass with extreme mechanical stiffness. This identifies them as perfect candidates for the realization of ultra-high quality mechanical resonators with applications in quantum metrology and sensing. Their crystalline lattice can be made free of nuclear spins by material engineering to ensure ultra-long electron spin coherence times for quantum information processing and coherent spintronics. In addition, semiconducting single-wall carbon nanotubes exhibit optical resonances with unprecedented tunability in color for quantum communication and cryptography. These outstanding material properties form the basis for our scientific research proposal.
Our vision is to realize up-conversion schemes interfacing light with spin, mechanical, and spin-mechanical degrees of freedom in carbon nanotube devices. In particular, we will study spin dynamics in carbon nanotubes with an isotopically engineered nuclear spin lattice and we will suspend individual carbon nanotubes in high-fidelity optical micro-cavities to detect and control mechanical motion down to the quantum ground state. Ultimately, our devices will realize entirely novel regimes of quantum states by hybridizing light with magnetic or mechanical excitations and explore the foundations of emerging technologies at the quantum limit.
Summary
Coherent control and sensitive detection of quantum states in condensed matter are among the most topical challenges of modern physics. They drive the development of novel materials, theoretical concepts, and experimental methods to advance our understanding of fundamental laws of quantum mechanics and to create transformative technologies for future applications. During the past decades carbon has emerged as a new material platform to address these challenges: graphene and carbon nanotubes have been created as paradigm systems with exceptional physical properties.
As atomically-thin cylinders carbon nanotubes combine ultra-low mass with extreme mechanical stiffness. This identifies them as perfect candidates for the realization of ultra-high quality mechanical resonators with applications in quantum metrology and sensing. Their crystalline lattice can be made free of nuclear spins by material engineering to ensure ultra-long electron spin coherence times for quantum information processing and coherent spintronics. In addition, semiconducting single-wall carbon nanotubes exhibit optical resonances with unprecedented tunability in color for quantum communication and cryptography. These outstanding material properties form the basis for our scientific research proposal.
Our vision is to realize up-conversion schemes interfacing light with spin, mechanical, and spin-mechanical degrees of freedom in carbon nanotube devices. In particular, we will study spin dynamics in carbon nanotubes with an isotopically engineered nuclear spin lattice and we will suspend individual carbon nanotubes in high-fidelity optical micro-cavities to detect and control mechanical motion down to the quantum ground state. Ultimately, our devices will realize entirely novel regimes of quantum states by hybridizing light with magnetic or mechanical excitations and explore the foundations of emerging technologies at the quantum limit.
Max ERC Funding
1 739 680 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym RAT MIRROR CELL
Project Deconstructing action planning and action observation in parietal circuits in rats
Researcher (PI) Jonathan Whitlock
Host Institution (HI) NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET NTNU
Call Details Starting Grant (StG), LS5, ERC-2013-StG
Summary The posterior parietal cortex (PPC) mediates cognitive motor functions including motor planning and action understanding. The latter process is thought to occur via ‘mirror’ neurons, which fire both when an animal performs an action and when it observes a cohort performing the same action. The extraordinary tuning properties of PPC cells require the convergence of sensory and motor inputs from several areas, but the function of these inputs is ill-defined since it is not yet feasible in humans or primates to reversibly inhibit targeted anatomical projections. I propose to overcome this by studying PPC in rodents, and will apply optogenetic tools and multi-tetrode recordings to characterize the function of selected cortical inputs to PPC. Similar to motor planning functions for hand or eye movements in primates, the rodent PPC encodes upcoming locomotor movements, and a growing literature suggests that rodents have a mirror system. I thus propose two related research programmes focusing on action planning and the mirror mechanism. The first project will determine if behavioral coding in PPC changes between a foraging task, in which behavior is spontaneous, and during navigational planning in a working memory-based T-maze. I will then determine if silencing fronto-parietal anatomical connections at different phases of the T-maze tasks disrupts motor planning and decision making functions in PPC. Next, I will record from PPC while rats observe cohorts performing the T-maze task to determine if the rat PPC contains mirror neurons. If I find mirror cells in rats, I will optically silence visual and frontal inputs to PPC to determine if they confer mirror selectivity to PPC. These experiments will reveal the anatomical circuitry underlying action planning and the mirror system in a way which cannot be achieved in primate models, and will open the door for studying mirror cells in rodent models of human mental disorders, including autism and Fragile-X syndrome.
Summary
The posterior parietal cortex (PPC) mediates cognitive motor functions including motor planning and action understanding. The latter process is thought to occur via ‘mirror’ neurons, which fire both when an animal performs an action and when it observes a cohort performing the same action. The extraordinary tuning properties of PPC cells require the convergence of sensory and motor inputs from several areas, but the function of these inputs is ill-defined since it is not yet feasible in humans or primates to reversibly inhibit targeted anatomical projections. I propose to overcome this by studying PPC in rodents, and will apply optogenetic tools and multi-tetrode recordings to characterize the function of selected cortical inputs to PPC. Similar to motor planning functions for hand or eye movements in primates, the rodent PPC encodes upcoming locomotor movements, and a growing literature suggests that rodents have a mirror system. I thus propose two related research programmes focusing on action planning and the mirror mechanism. The first project will determine if behavioral coding in PPC changes between a foraging task, in which behavior is spontaneous, and during navigational planning in a working memory-based T-maze. I will then determine if silencing fronto-parietal anatomical connections at different phases of the T-maze tasks disrupts motor planning and decision making functions in PPC. Next, I will record from PPC while rats observe cohorts performing the T-maze task to determine if the rat PPC contains mirror neurons. If I find mirror cells in rats, I will optically silence visual and frontal inputs to PPC to determine if they confer mirror selectivity to PPC. These experiments will reveal the anatomical circuitry underlying action planning and the mirror system in a way which cannot be achieved in primate models, and will open the door for studying mirror cells in rodent models of human mental disorders, including autism and Fragile-X syndrome.
Max ERC Funding
1 500 000 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym RATE
Project Repression and the Escalation of Conflict
Researcher (PI) Sabine Carey
Host Institution (HI) UNIVERSITAET MANNHEIM
Call Details Starting Grant (StG), SH2, ERC-2013-StG
Summary The objective of this project is to uncover and explain the escalation and non-escalation of repression and intra-state armed conflict by analyzing how characteristics of the government and its formal and informal security apparatus shape the dynamics of such violence, paying particular attention to the role of monitoring and accountability. RATE analyzes when and under what conditions what types of human rights violations lead to the escalation or deterrence of further repression and armed conflict. Although there has been substantial increase in research on civil war, we know surprisingly little about the dynamics that escalate armed conflict within country-borders and those that prevent an escalation and what role human rights violations and informal armed actors play in those dynamics. While civil wars are a relatively rare occurrence, repression and human rights violations are not. What can this tell us about the link between human rights violations and repression? What leads to the escalation of political violence, increasing the severity and breadth of repression? What hampers the escalation of repression into civil war? Does the avoidance of civil war come at the cost of increased repression? The proposed project produces new data on personal integrity rights and civil liberties, disaggregated by type, intensity, perpetrator, as well as time and space, and on pro-government militias to investigate the conditions under which repression escalates and how monitoring and accountability of formal and particularly informal armed actors affect these escalation processes. It analyzes whether particular human rights violations prevent the escalation of violence by compromising the personal security of the people living in that country. An exploratory case study and agent-based models will be used to refine the theoretical argument, which will then be tested on the new data with cross-national quantitative analyses and three qualitative comparative case studies.
Summary
The objective of this project is to uncover and explain the escalation and non-escalation of repression and intra-state armed conflict by analyzing how characteristics of the government and its formal and informal security apparatus shape the dynamics of such violence, paying particular attention to the role of monitoring and accountability. RATE analyzes when and under what conditions what types of human rights violations lead to the escalation or deterrence of further repression and armed conflict. Although there has been substantial increase in research on civil war, we know surprisingly little about the dynamics that escalate armed conflict within country-borders and those that prevent an escalation and what role human rights violations and informal armed actors play in those dynamics. While civil wars are a relatively rare occurrence, repression and human rights violations are not. What can this tell us about the link between human rights violations and repression? What leads to the escalation of political violence, increasing the severity and breadth of repression? What hampers the escalation of repression into civil war? Does the avoidance of civil war come at the cost of increased repression? The proposed project produces new data on personal integrity rights and civil liberties, disaggregated by type, intensity, perpetrator, as well as time and space, and on pro-government militias to investigate the conditions under which repression escalates and how monitoring and accountability of formal and particularly informal armed actors affect these escalation processes. It analyzes whether particular human rights violations prevent the escalation of violence by compromising the personal security of the people living in that country. An exploratory case study and agent-based models will be used to refine the theoretical argument, which will then be tested on the new data with cross-national quantitative analyses and three qualitative comparative case studies.
Max ERC Funding
1 487 112 €
Duration
Start date: 2014-02-01, End date: 2019-01-31