Project acronym 2DTHERMS
Project Design of new thermoelectric devices based on layered and field modulated nanostructures of strongly correlated electron systems
Researcher (PI) Jose Francisco Rivadulla Fernandez
Host Institution (HI) UNIVERSIDAD DE SANTIAGO DE COMPOSTELA
Call Details Starting Grant (StG), PE3, ERC-2010-StG_20091028
Summary Design of new thermoelectric devices based on layered and field modulated nanostructures of strongly correlated electron systems
Summary
Design of new thermoelectric devices based on layered and field modulated nanostructures of strongly correlated electron systems
Max ERC Funding
1 427 190 €
Duration
Start date: 2010-11-01, End date: 2015-10-31
Project acronym 3CBIOTECH
Project Cold Carbon Catabolism of Microbial Communities underprinning a Sustainable Bioenergy and Biorefinery Economy
Researcher (PI) Gavin James Collins
Host Institution (HI) NATIONAL UNIVERSITY OF IRELAND GALWAY
Call Details Starting Grant (StG), LS9, ERC-2010-StG_20091118
Summary The applicant will collaborate with Irish, European and U.S.-based colleagues to develop a sustainable biorefinery and bioenergy industry in Ireland and Europe. The focus of this ERC Starting Grant will be the application of classical microbiological, physiological and real-time polymerase chain reaction (PCR)-based assays, to qualitatively and quantitatively characterize microbial communities underpinning novel and innovative, low-temperature, anaerobic waste (and other biomass) conversion technologies, including municipal wastewater treatment and, demonstration- and full-scale biorefinery applications.
Anaerobic digestion (AD) is a naturally-occurring process, which is widely applied for the conversion of waste to methane-containing biogas. Low-temperature (<20 degrees C) AD has been applied by the applicant as a cost-effective alternative to mesophilic (c. 35C) AD for the treatment of several waste categories. However, the microbiology of low-temperature AD is poorly understood. The applicant will work with microbial consortia isolated from anaerobic bioreactors, which have been operated for long-term experiments (>3.5 years), and include organic acid-oxidizing, hydrogen-producing syntrophic microbes and hydrogen-consuming methanogens. A major focus of the project will be the ecophysiology of psychrotolerant and psychrophilic methanogens already identified and cultivated by the applicant. The project will also investigate the role(s) of poorly-understood Crenarchaeota populations and homoacetogenic bacteria, in complex consortia. The host organization is a leading player in the microbiology of waste-to-energy applications. The applicant will train a team of scientists in all aspects of the microbiology and bioengineering of biomass conversion systems.
Summary
The applicant will collaborate with Irish, European and U.S.-based colleagues to develop a sustainable biorefinery and bioenergy industry in Ireland and Europe. The focus of this ERC Starting Grant will be the application of classical microbiological, physiological and real-time polymerase chain reaction (PCR)-based assays, to qualitatively and quantitatively characterize microbial communities underpinning novel and innovative, low-temperature, anaerobic waste (and other biomass) conversion technologies, including municipal wastewater treatment and, demonstration- and full-scale biorefinery applications.
Anaerobic digestion (AD) is a naturally-occurring process, which is widely applied for the conversion of waste to methane-containing biogas. Low-temperature (<20 degrees C) AD has been applied by the applicant as a cost-effective alternative to mesophilic (c. 35C) AD for the treatment of several waste categories. However, the microbiology of low-temperature AD is poorly understood. The applicant will work with microbial consortia isolated from anaerobic bioreactors, which have been operated for long-term experiments (>3.5 years), and include organic acid-oxidizing, hydrogen-producing syntrophic microbes and hydrogen-consuming methanogens. A major focus of the project will be the ecophysiology of psychrotolerant and psychrophilic methanogens already identified and cultivated by the applicant. The project will also investigate the role(s) of poorly-understood Crenarchaeota populations and homoacetogenic bacteria, in complex consortia. The host organization is a leading player in the microbiology of waste-to-energy applications. The applicant will train a team of scientists in all aspects of the microbiology and bioengineering of biomass conversion systems.
Max ERC Funding
1 499 797 €
Duration
Start date: 2011-05-01, End date: 2016-04-30
Project acronym 3S-BTMUC
Project Soft, Slimy, Sliding Interfaces: Biotribological Properties of Mucins and Mucus gels
Researcher (PI) Seunghwan Lee
Host Institution (HI) DANMARKS TEKNISKE UNIVERSITET
Call Details Starting Grant (StG), LS9, ERC-2010-StG_20091118
Summary Mucins are a family of high-molecular-weight glycoproteins and a major macromolecular constituent in slimy mucus gels that are covering the surface of internal biological tissues. A primary role of mucus gels in biological systems is known to be the protection and lubrication of underlying epithelial cell surfaces. This is intuitively well appreciated by both science community and the public, and yet detailed lubrication properties of mucins and mucus gels have remained largely unexplored to date. Detailed and systematic understanding of the lubrication mechanism of mucus gels is significant from many angles; firstly, lubricity of mucus gels is closely related with fundamental functions of various human organs, such as eye blinking, mastication in oral cavity, swallowing through esophagus, digestion in stomach, breathing through air way and respiratory organs, and thus often indicates the health state of those organs. Furthermore, for the application of various tissue-contacting devices or personal care products, e.g. catheters, endoscopes, and contact lenses, mucus gel layer is the first counter surface that comes into the mechanical and tribological contacts with them. Finally, remarkable lubricating performance by mucins and mucus gels in biological systems may provide many useful and possibly innovative hints in utilizing water as base lubricant for man-made engineering systems. This project thus proposes to carry out a 5 year research program focusing on exploring the lubricity of mucins and mucus gels by combining a broad range of experimental approaches in biology and tribology.
Summary
Mucins are a family of high-molecular-weight glycoproteins and a major macromolecular constituent in slimy mucus gels that are covering the surface of internal biological tissues. A primary role of mucus gels in biological systems is known to be the protection and lubrication of underlying epithelial cell surfaces. This is intuitively well appreciated by both science community and the public, and yet detailed lubrication properties of mucins and mucus gels have remained largely unexplored to date. Detailed and systematic understanding of the lubrication mechanism of mucus gels is significant from many angles; firstly, lubricity of mucus gels is closely related with fundamental functions of various human organs, such as eye blinking, mastication in oral cavity, swallowing through esophagus, digestion in stomach, breathing through air way and respiratory organs, and thus often indicates the health state of those organs. Furthermore, for the application of various tissue-contacting devices or personal care products, e.g. catheters, endoscopes, and contact lenses, mucus gel layer is the first counter surface that comes into the mechanical and tribological contacts with them. Finally, remarkable lubricating performance by mucins and mucus gels in biological systems may provide many useful and possibly innovative hints in utilizing water as base lubricant for man-made engineering systems. This project thus proposes to carry out a 5 year research program focusing on exploring the lubricity of mucins and mucus gels by combining a broad range of experimental approaches in biology and tribology.
Max ERC Funding
1 432 920 €
Duration
Start date: 2011-04-01, End date: 2016-03-31
Project acronym ABC
Project Targeting Multidrug Resistant Cancer
Researcher (PI) Gergely Szakacs
Host Institution (HI) MAGYAR TUDOMANYOS AKADEMIA TERMESZETTUDOMANYI KUTATOKOZPONT
Call Details Starting Grant (StG), LS7, ERC-2010-StG_20091118
Summary Despite considerable advances in drug discovery, resistance to anticancer chemotherapy confounds the effective treatment of patients. Cancer cells can acquire broad cross-resistance to mechanistically and structurally unrelated drugs. P-glycoprotein (Pgp) actively extrudes many types of drugs from cancer cells, thereby conferring resistance to those agents. The central tenet of my work is that Pgp, a universally accepted biomarker of drug resistance, should in addition be considered as a molecular target of multidrug-resistant (MDR) cancer cells. Successful targeting of MDR cells would reduce the tumor burden and would also enable the elimination of ABC transporter-overexpressing cancer stem cells that are responsible for the replenishment of tumors. The proposed project is based on the following observations:
- First, by using a pharmacogenomic approach, I have revealed the hidden vulnerability of MDRcells (Szakács et al. 2004, Cancer Cell 6, 129-37);
- Second, I have identified a series of MDR-selective compounds with increased toxicity toPgp-expressing cells
(Turk et al.,Cancer Res, 2009. 69(21));
- Third, I have shown that MDR-selective compounds can be used to prevent theemergence of MDR (Ludwig, Szakács et al. 2006, Cancer Res 66, 4808-15);
- Fourth, we have generated initial pharmacophore models for cytotoxicity and MDR-selectivity (Hall et al. 2009, J Med Chem 52, 3191-3204).
I propose a comprehensive series of studies that will address thefollowing critical questions:
- First, what is the scope of MDR-selective compounds?
- Second, what is their mechanism of action?
- Third, what is the optimal therapeutic modality?
Extensive biological, pharmacological and bioinformatic analyses will be utilized to address four major specific aims. These aims address basic questions concerning the physiology of MDR ABC transporters in determining the mechanism of action of MDR-selective compounds, setting the stage for a fresh therapeutic approach that may eventually translate into improved patient care.
Summary
Despite considerable advances in drug discovery, resistance to anticancer chemotherapy confounds the effective treatment of patients. Cancer cells can acquire broad cross-resistance to mechanistically and structurally unrelated drugs. P-glycoprotein (Pgp) actively extrudes many types of drugs from cancer cells, thereby conferring resistance to those agents. The central tenet of my work is that Pgp, a universally accepted biomarker of drug resistance, should in addition be considered as a molecular target of multidrug-resistant (MDR) cancer cells. Successful targeting of MDR cells would reduce the tumor burden and would also enable the elimination of ABC transporter-overexpressing cancer stem cells that are responsible for the replenishment of tumors. The proposed project is based on the following observations:
- First, by using a pharmacogenomic approach, I have revealed the hidden vulnerability of MDRcells (Szakács et al. 2004, Cancer Cell 6, 129-37);
- Second, I have identified a series of MDR-selective compounds with increased toxicity toPgp-expressing cells
(Turk et al.,Cancer Res, 2009. 69(21));
- Third, I have shown that MDR-selective compounds can be used to prevent theemergence of MDR (Ludwig, Szakács et al. 2006, Cancer Res 66, 4808-15);
- Fourth, we have generated initial pharmacophore models for cytotoxicity and MDR-selectivity (Hall et al. 2009, J Med Chem 52, 3191-3204).
I propose a comprehensive series of studies that will address thefollowing critical questions:
- First, what is the scope of MDR-selective compounds?
- Second, what is their mechanism of action?
- Third, what is the optimal therapeutic modality?
Extensive biological, pharmacological and bioinformatic analyses will be utilized to address four major specific aims. These aims address basic questions concerning the physiology of MDR ABC transporters in determining the mechanism of action of MDR-selective compounds, setting the stage for a fresh therapeutic approach that may eventually translate into improved patient care.
Max ERC Funding
1 499 640 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym ACTIVATION OF XCI
Project Molecular mechanisms controlling X chromosome inactivation
Researcher (PI) Joost Henk Gribnau
Host Institution (HI) ERASMUS UNIVERSITAIR MEDISCH CENTRUM ROTTERDAM
Call Details Starting Grant (StG), LS2, ERC-2010-StG_20091118
Summary In mammals, gene dosage of X-chromosomal genes is equalized between sexes by random inactivation of either one of the two X chromosomes in female cells. In the initial phase of X chromosome inactivation (XCI), a counting and initiation process determines the number of X chromosomes per nucleus, and elects the future inactive X chromosome (Xi). Xist is an X-encoded gene that plays a crucial role in the XCI process. At the start of XCI Xist expression is up-regulated and Xist RNA accumulates on the future Xi thereby initiating silencing in cis. Recent work performed in my laboratory indicates that the counting and initiation process is directed by a stochastic mechanism, in which each X chromosome has an independent probability to be inactivated. We also found that this probability is determined by the X:ploïdy ratio. These results indicated the presence of at least one X-linked activator of XCI. With a BAC screen we recently identified X-encoded RNF12 to be a dose-dependent activator of XCI. Expression of RNF12 correlates with Xist expression, and a heterozygous deletion of Rnf12 results in a marked loss of XCI in female cells. The presence of a small proportion of cells that still initiate XCI, in Rnf12+/- cells, also indicated that more XCI-activators are involved in XCI. Here, we propose to investigate the molecular mechanism by which RNF12 activates XCI in mouse and human, and to search for additional XCI-activators. We will also attempt to establish the role of different inhibitors of XCI, including CTCF and the pluripotency factors OCT4, SOX2 and NANOG. We anticipate that these studies will significantly advance our understanding of XCI mechanisms, which is highly relevant for a better insight in the manifestation of X-linked diseases that are affected by XCI.
Summary
In mammals, gene dosage of X-chromosomal genes is equalized between sexes by random inactivation of either one of the two X chromosomes in female cells. In the initial phase of X chromosome inactivation (XCI), a counting and initiation process determines the number of X chromosomes per nucleus, and elects the future inactive X chromosome (Xi). Xist is an X-encoded gene that plays a crucial role in the XCI process. At the start of XCI Xist expression is up-regulated and Xist RNA accumulates on the future Xi thereby initiating silencing in cis. Recent work performed in my laboratory indicates that the counting and initiation process is directed by a stochastic mechanism, in which each X chromosome has an independent probability to be inactivated. We also found that this probability is determined by the X:ploïdy ratio. These results indicated the presence of at least one X-linked activator of XCI. With a BAC screen we recently identified X-encoded RNF12 to be a dose-dependent activator of XCI. Expression of RNF12 correlates with Xist expression, and a heterozygous deletion of Rnf12 results in a marked loss of XCI in female cells. The presence of a small proportion of cells that still initiate XCI, in Rnf12+/- cells, also indicated that more XCI-activators are involved in XCI. Here, we propose to investigate the molecular mechanism by which RNF12 activates XCI in mouse and human, and to search for additional XCI-activators. We will also attempt to establish the role of different inhibitors of XCI, including CTCF and the pluripotency factors OCT4, SOX2 and NANOG. We anticipate that these studies will significantly advance our understanding of XCI mechanisms, which is highly relevant for a better insight in the manifestation of X-linked diseases that are affected by XCI.
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-04-01, End date: 2016-03-31
Project acronym ACTIVENP
Project Active and low loss nano photonics (ActiveNP)
Researcher (PI) Thomas Arno Klar
Host Institution (HI) UNIVERSITAT LINZ
Call Details Starting Grant (StG), PE3, ERC-2010-StG_20091028
Summary This project aims at designing novel hybrid nanophotonic devices comprising metallic nanostructures and active elements such as dye molecules or colloidal quantum dots. Three core objectives, each going far beyond the state of the art, shall be tackled: (i) Metamaterials containing gain materials: Metamaterials introduce magnetism to the optical frequency range and hold promise to create entirely novel devices for light manipulation. Since present day metamaterials are extremely absorptive, it is of utmost importance to fight losses. The ground-breaking approach of this proposal is to incorporate fluorescing species into the nanoscale metallic metastructures in order to compensate losses by stimulated emission. (ii) The second objective exceeds the ansatz of compensating losses and will reach out for lasing action. Individual metallic nanostructures such as pairs of nanoparticles will form novel and unusual nanometre sized resonators for laser action. State of the art microresonators still have a volume of at least half of the wavelength cubed. Noble metal nanoparticle resonators scale down this volume by a factor of thousand allowing for truly nanoscale coherent light sources. (iii) A third objective concerns a substantial improvement of nonlinear effects. This will be accomplished by drastically sharpened resonances of nanoplasmonic devices surrounded by active gain materials. An interdisciplinary team of PhD students and a PostDoc will be assembled, each scientist being uniquely qualified to cover one of the expertise fields: Design, spectroscopy, and simulation. The project s outcome is twofold: A substantial expansion of fundamental understanding of nanophotonics and practical devices such as nanoscopic lasers and low loss metamaterials.
Summary
This project aims at designing novel hybrid nanophotonic devices comprising metallic nanostructures and active elements such as dye molecules or colloidal quantum dots. Three core objectives, each going far beyond the state of the art, shall be tackled: (i) Metamaterials containing gain materials: Metamaterials introduce magnetism to the optical frequency range and hold promise to create entirely novel devices for light manipulation. Since present day metamaterials are extremely absorptive, it is of utmost importance to fight losses. The ground-breaking approach of this proposal is to incorporate fluorescing species into the nanoscale metallic metastructures in order to compensate losses by stimulated emission. (ii) The second objective exceeds the ansatz of compensating losses and will reach out for lasing action. Individual metallic nanostructures such as pairs of nanoparticles will form novel and unusual nanometre sized resonators for laser action. State of the art microresonators still have a volume of at least half of the wavelength cubed. Noble metal nanoparticle resonators scale down this volume by a factor of thousand allowing for truly nanoscale coherent light sources. (iii) A third objective concerns a substantial improvement of nonlinear effects. This will be accomplished by drastically sharpened resonances of nanoplasmonic devices surrounded by active gain materials. An interdisciplinary team of PhD students and a PostDoc will be assembled, each scientist being uniquely qualified to cover one of the expertise fields: Design, spectroscopy, and simulation. The project s outcome is twofold: A substantial expansion of fundamental understanding of nanophotonics and practical devices such as nanoscopic lasers and low loss metamaterials.
Max ERC Funding
1 494 756 €
Duration
Start date: 2010-10-01, End date: 2015-09-30
Project acronym ACTSELECTCONTEXT
Project Action Selection under Contextual Uncertainty: the Role of Learning and Effective Connectivity in the Human Brain
Researcher (PI) Sven Bestmann
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Starting Grant (StG), LS5, ERC-2010-StG_20091118
Summary In a changing world, one hallmark feature of human behaviour is the ability to learn about the statistics of the environment and use this prior information for action selection. Knowing about a forthcoming event allows for adjusting our actions pre-emptively, which can optimize survival.
This proposal studies how the human brain learns about the uncertainty in the environment, and how this leads to flexible and efficient action selection.
I hypothesise that the accumulation of evidence for future movements through learning reflects a fundamental organisational principle for action control. This explains widely distributed perceptual-, learning-, decision-, and movement-related signals in the human brain. However, little is known about the concerted interplay between brain regions in terms of effective connectivity which is required for flexible behaviour.
My proposal seeks to shed light on this unresolved issue. To this end, I will use i) a multi-disciplinary neuroimaging approach, together with model-based analyses and Bayesian model comparison, adapted to human reaching behaviour as occurring in daily life; and ii) two novel approaches for testing effective connectivity: dynamic causal modelling (DCM) and concurrent transcranial magnetic stimulation-functional magnetic resonance imaging.
My prediction is that action selection relies on effective connectivity changes, which are a function of the prior information that the brain has to learn about.
If true, this will provide novel insight into the human ability to select actions, based on learning about the uncertainty which is inherent in contextual information. This is relevant for understanding action selection during development and ageing, and for pathologies of action such as Parkinson s disease or stroke.
Summary
In a changing world, one hallmark feature of human behaviour is the ability to learn about the statistics of the environment and use this prior information for action selection. Knowing about a forthcoming event allows for adjusting our actions pre-emptively, which can optimize survival.
This proposal studies how the human brain learns about the uncertainty in the environment, and how this leads to flexible and efficient action selection.
I hypothesise that the accumulation of evidence for future movements through learning reflects a fundamental organisational principle for action control. This explains widely distributed perceptual-, learning-, decision-, and movement-related signals in the human brain. However, little is known about the concerted interplay between brain regions in terms of effective connectivity which is required for flexible behaviour.
My proposal seeks to shed light on this unresolved issue. To this end, I will use i) a multi-disciplinary neuroimaging approach, together with model-based analyses and Bayesian model comparison, adapted to human reaching behaviour as occurring in daily life; and ii) two novel approaches for testing effective connectivity: dynamic causal modelling (DCM) and concurrent transcranial magnetic stimulation-functional magnetic resonance imaging.
My prediction is that action selection relies on effective connectivity changes, which are a function of the prior information that the brain has to learn about.
If true, this will provide novel insight into the human ability to select actions, based on learning about the uncertainty which is inherent in contextual information. This is relevant for understanding action selection during development and ageing, and for pathologies of action such as Parkinson s disease or stroke.
Max ERC Funding
1 341 805 €
Duration
Start date: 2011-06-01, End date: 2016-05-31
Project acronym ADNABIOARC
Project From the earliest modern humans to the onset of farming (45,000-4,500 BP): the role of climate, life-style, health, migration and selection in shaping European population history
Researcher (PI) Ron Pinhasi
Host Institution (HI) UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN
Call Details Starting Grant (StG), SH6, ERC-2010-StG_20091209
Summary The colonisation of Europe by anatomically modern humans (AMHs) ca. 45,000 years before present (BP) and the transition to farming ca. 8,000 BP are two major events in human prehistory. Both events involved certain cultural and biological adaptations, technological innovations, and behavioural plasticity which are unique to our species. The reconstruction of these processes and the causality between them has so far remained elusive due to technological, methodological and logistical complexities. Major developments in our understanding of the anthropology of the Upper Palaeolithic, Mesolithic and Neolithic, and advances in ancient DNA (aDNA) technology and chronometric methods now allow us to assess in sufficient resolution the interface between these evolutionary processes, and changes in human culture and behaviour.
The proposed research will investigate the complex interface between the morphological, genetic, behavioural, and cultural factors that shaped the population history of European AMHs. The PI s interdisciplinary expertise in these areas, his access to and experience of relevant skeletal collections, and his ongoing European collaborations will allow significant progress in addressing these fundamental questions. The approach taken will include (a) the collection of bioarchaeological, aDNA, stable isotope (for the analysis of ancient diet) and radiometric data on 500 skeletons from key sites/phases in Europe and western Anatolia, and (b) the application of existing and novel aDNA, bioarchaeological and simulation methodologies. This research will yield results that transform our current understanding of major demographic and evolutionary processes and will place Europe at the forefront of anthropological biological and genetic research.
Summary
The colonisation of Europe by anatomically modern humans (AMHs) ca. 45,000 years before present (BP) and the transition to farming ca. 8,000 BP are two major events in human prehistory. Both events involved certain cultural and biological adaptations, technological innovations, and behavioural plasticity which are unique to our species. The reconstruction of these processes and the causality between them has so far remained elusive due to technological, methodological and logistical complexities. Major developments in our understanding of the anthropology of the Upper Palaeolithic, Mesolithic and Neolithic, and advances in ancient DNA (aDNA) technology and chronometric methods now allow us to assess in sufficient resolution the interface between these evolutionary processes, and changes in human culture and behaviour.
The proposed research will investigate the complex interface between the morphological, genetic, behavioural, and cultural factors that shaped the population history of European AMHs. The PI s interdisciplinary expertise in these areas, his access to and experience of relevant skeletal collections, and his ongoing European collaborations will allow significant progress in addressing these fundamental questions. The approach taken will include (a) the collection of bioarchaeological, aDNA, stable isotope (for the analysis of ancient diet) and radiometric data on 500 skeletons from key sites/phases in Europe and western Anatolia, and (b) the application of existing and novel aDNA, bioarchaeological and simulation methodologies. This research will yield results that transform our current understanding of major demographic and evolutionary processes and will place Europe at the forefront of anthropological biological and genetic research.
Max ERC Funding
1 088 386 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym AEROSPACEPHYS
Project Multiphysics models and simulations for reacting and plasma flows applied to the space exploration program
Researcher (PI) Thierry Edouard Bertrand Magin
Host Institution (HI) INSTITUT VON KARMAN DE DYNAMIQUE DES FLUIDES
Call Details Starting Grant (StG), PE8, ERC-2010-StG_20091028
Summary Space exploration is one of boldest and most exciting endeavors that humanity has undertaken, and it holds enormous promise for the future. Our next challenges for the spatial conquest include bringing back samples to Earth by means of robotic missions and continuing the manned exploration program, which aims at sending human beings to Mars and bring them home safely. Inaccurate prediction of the heat-flux to the surface of the spacecraft heat shield can be fatal for the crew or the success of a robotic mission. This quantity is estimated during the design phase. An accurate prediction is a particularly complex task, regarding modelling of the following phenomena that are potential “mission killers:” 1) Radiation of the plasma in the shock layer, 2) Complex surface chemistry on the thermal protection material, 3) Flow transition from laminar to turbulent. Our poor understanding of the coupled mechanisms of radiation, ablation, and transition leads to the difficulties in flux prediction. To avoid failure and ensure safety of the astronauts and payload, engineers resort to “safety factors” to determine the thickness of the heat shield, at the expense of the mass of embarked payload. Thinking out of the box and basic research are thus necessary for advancements of the models that will better define the environment and requirements for the design and safe operation of tomorrow’s space vehicles and planetary probes for the manned space exploration. The three basic ingredients for predictive science are: 1) Physico-chemical models, 2) Computational methods, 3) Experimental data. We propose to follow a complementary approach for prediction. The proposed research aims at: “Integrating new advanced physico-chemical models and computational methods, based on a multidisciplinary approach developed together with physicists, chemists, and applied mathematicians, to create a top-notch multiphysics and multiscale numerical platform for simulations of planetary atmosphere entries, crucial to the new challenges of the manned space exploration program. Experimental data will also be used for validation, following state-of-the-art uncertainty quantification methods.”
Summary
Space exploration is one of boldest and most exciting endeavors that humanity has undertaken, and it holds enormous promise for the future. Our next challenges for the spatial conquest include bringing back samples to Earth by means of robotic missions and continuing the manned exploration program, which aims at sending human beings to Mars and bring them home safely. Inaccurate prediction of the heat-flux to the surface of the spacecraft heat shield can be fatal for the crew or the success of a robotic mission. This quantity is estimated during the design phase. An accurate prediction is a particularly complex task, regarding modelling of the following phenomena that are potential “mission killers:” 1) Radiation of the plasma in the shock layer, 2) Complex surface chemistry on the thermal protection material, 3) Flow transition from laminar to turbulent. Our poor understanding of the coupled mechanisms of radiation, ablation, and transition leads to the difficulties in flux prediction. To avoid failure and ensure safety of the astronauts and payload, engineers resort to “safety factors” to determine the thickness of the heat shield, at the expense of the mass of embarked payload. Thinking out of the box and basic research are thus necessary for advancements of the models that will better define the environment and requirements for the design and safe operation of tomorrow’s space vehicles and planetary probes for the manned space exploration. The three basic ingredients for predictive science are: 1) Physico-chemical models, 2) Computational methods, 3) Experimental data. We propose to follow a complementary approach for prediction. The proposed research aims at: “Integrating new advanced physico-chemical models and computational methods, based on a multidisciplinary approach developed together with physicists, chemists, and applied mathematicians, to create a top-notch multiphysics and multiscale numerical platform for simulations of planetary atmosphere entries, crucial to the new challenges of the manned space exploration program. Experimental data will also be used for validation, following state-of-the-art uncertainty quantification methods.”
Max ERC Funding
1 494 892 €
Duration
Start date: 2010-09-01, End date: 2015-08-31
Project acronym AISENS
Project New generation of high sensitive atom interferometers
Researcher (PI) Marco Fattori
Host Institution (HI) CONSIGLIO NAZIONALE DELLE RICERCHE
Call Details Starting Grant (StG), PE2, ERC-2010-StG_20091028
Summary Interferometers are fundamental tools for the study of nature laws and for the precise measurement and control of the physical world. In the last century, the scientific and technological progress has proceeded in parallel with a constant improvement of interferometric performances. For this reason, the challenge of conceiving and realizing new generations of interferometers with broader ranges of operation and with higher sensitivities is always open and actual.
Despite the introduction of laser devices has deeply improved the way of developing and performing interferometric measurements with light, the atomic matter wave analogous, i.e. the Bose-Einstein condensate (BEC), has not yet triggered any revolution in precision interferometry. However, thanks to recent improvements on the control of the quantum properties of ultra-cold atomic gases, and new original ideas on the creation and manipulation of quantum entangled particles, the field of atom interferometry is now mature to experience a big step forward.
The system I want to realize is a Mach-Zehnder spatial interferometer operating with trapped BECs. Undesired decoherence sources will be suppressed by implementing BECs with tunable interactions in ultra-stable optical potentials. Entangled states will be used to improve the sensitivity of the sensor beyond the standard quantum limit to ideally reach the ultimate, Heisenberg, limit set by quantum mechanics. The resulting apparatus will show unprecedented spatial resolution and will overcome state-of-the-art interferometers with cold (non condensed) atomic gases.
A successful completion of this project will lead to a new generation of interferometers for the immediate application to local inertial measurements with unprecedented resolution. In addition, we expect to develop experimental capabilities which might find application well beyond quantum interferometry and crucially contribute to the broader emerging field of quantum-enhanced technologies.
Summary
Interferometers are fundamental tools for the study of nature laws and for the precise measurement and control of the physical world. In the last century, the scientific and technological progress has proceeded in parallel with a constant improvement of interferometric performances. For this reason, the challenge of conceiving and realizing new generations of interferometers with broader ranges of operation and with higher sensitivities is always open and actual.
Despite the introduction of laser devices has deeply improved the way of developing and performing interferometric measurements with light, the atomic matter wave analogous, i.e. the Bose-Einstein condensate (BEC), has not yet triggered any revolution in precision interferometry. However, thanks to recent improvements on the control of the quantum properties of ultra-cold atomic gases, and new original ideas on the creation and manipulation of quantum entangled particles, the field of atom interferometry is now mature to experience a big step forward.
The system I want to realize is a Mach-Zehnder spatial interferometer operating with trapped BECs. Undesired decoherence sources will be suppressed by implementing BECs with tunable interactions in ultra-stable optical potentials. Entangled states will be used to improve the sensitivity of the sensor beyond the standard quantum limit to ideally reach the ultimate, Heisenberg, limit set by quantum mechanics. The resulting apparatus will show unprecedented spatial resolution and will overcome state-of-the-art interferometers with cold (non condensed) atomic gases.
A successful completion of this project will lead to a new generation of interferometers for the immediate application to local inertial measurements with unprecedented resolution. In addition, we expect to develop experimental capabilities which might find application well beyond quantum interferometry and crucially contribute to the broader emerging field of quantum-enhanced technologies.
Max ERC Funding
1 068 000 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym ALLQUANTUM
Project All-solid-state quantum electrodynamics in photonic crystals
Researcher (PI) Peter Lodahl
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), PE2, ERC-2010-StG_20091028
Summary In quantum electrodynamics a range of fundamental processes are driven by omnipresent vacuum fluctuations. Photonic crystals can control vacuum fluctuations and thereby the fundamental interaction between light and matter. We will conduct experiments on quantum dots in photonic crystals and observe novel quantum electrodynamics effects including fractional decay and the modified Lamb shift. Furthermore, photonic crystals will be explored for shielding sensitive quantum-superposition states against decoherence.
Defects in photonic crystals allow novel functionalities enabling nanocavities and waveguides. We will use the tight confinement of light in a nanocavity to entangle a quantum dot and a photon, and explore the scalability. Controlled ways of generating scalable and robust quantum entanglement is the essential missing link limiting quantum communication and quantum computing. A single quantum dot coupled to a slowly propagating mode in a photonic crystal waveguide will be used to induce large nonlinearities at the few-photon level.
Finally we will explore a novel route to enhanced light-matter interaction employing controlled disorder in photonic crystals. In disordered media multiple scattering of light takes place and can lead to the formation of Anderson-localized modes. We will explore cavity quantum electrodynamics in Anderson-localized random cavities considering disorder a resource and not a nuisance, which is the traditional view.
The main focus of the project will be on optical experiments, but fabrication of photonic crystals and detailed theory will be carried out as well. Several of the proposed experiments will constitute milestones in quantum optics and may pave the way for all-solid-state quantum communication with quantum dots in photonic crystals.
Summary
In quantum electrodynamics a range of fundamental processes are driven by omnipresent vacuum fluctuations. Photonic crystals can control vacuum fluctuations and thereby the fundamental interaction between light and matter. We will conduct experiments on quantum dots in photonic crystals and observe novel quantum electrodynamics effects including fractional decay and the modified Lamb shift. Furthermore, photonic crystals will be explored for shielding sensitive quantum-superposition states against decoherence.
Defects in photonic crystals allow novel functionalities enabling nanocavities and waveguides. We will use the tight confinement of light in a nanocavity to entangle a quantum dot and a photon, and explore the scalability. Controlled ways of generating scalable and robust quantum entanglement is the essential missing link limiting quantum communication and quantum computing. A single quantum dot coupled to a slowly propagating mode in a photonic crystal waveguide will be used to induce large nonlinearities at the few-photon level.
Finally we will explore a novel route to enhanced light-matter interaction employing controlled disorder in photonic crystals. In disordered media multiple scattering of light takes place and can lead to the formation of Anderson-localized modes. We will explore cavity quantum electrodynamics in Anderson-localized random cavities considering disorder a resource and not a nuisance, which is the traditional view.
The main focus of the project will be on optical experiments, but fabrication of photonic crystals and detailed theory will be carried out as well. Several of the proposed experiments will constitute milestones in quantum optics and may pave the way for all-solid-state quantum communication with quantum dots in photonic crystals.
Max ERC Funding
1 199 648 €
Duration
Start date: 2010-12-01, End date: 2015-11-30
Project acronym ALOGLADIS
Project From Anderson localization to Bose, Fermi and spin glasses in disordered ultracold gases
Researcher (PI) Laurent Sanchez-Palencia
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE2, ERC-2010-StG_20091028
Summary The field of disordered quantum gases is developing rapidly. Dramatic progress has been achieved recently and first experimental observation of one-dimensional Anderson localization (AL) of matterwaves has been reported using Bose-Einstein condensates in controlled disorder (in our group at Institut d'Optique and at LENS; Nature, 2008). This dramatic success results from joint theoretical and experimental efforts, we have contributed to. Most importantly, it opens unprecedented routes to pursue several outstanding challenges in the multidisciplinary field of disordered systems, which, after fifty years of Anderson localization, is more active than ever.
This theoretical project aims at further developing the emerging field of disordered quantum gases towards novel challenges. Our aim is twofold. First, we will propose and analyze schemes where experiments on ultracold atoms can address unsolved issues: AL in dimensions higher than one, effects of inter-atomic interactions on AL, strongly-correlated disordered gases and quantum simulators for spin systems (spin glasses). Second, by taking into account specific features of ultracold atoms, beyond standard toy-models, we will raise and study new questions which have not been addressed before (eg long-range correlations of speckle potentials, finite-size effects, controlled interactions). Both aspects would open new frontiers to disordered quantum gases and offer new possibilities to shed new light on highly debated issues.
Our main concerns are thus to (i) study situations relevant to experiments, (ii) develop new approaches, applicable to ultracold atoms, (iii) identify key observables, and (iv) propose new challenging experiments. In this project, we will benefit from the original situation of our theory team: It is independent but forms part of a larger group (lead by A. Aspect), which is a world-leader in experiments on disordered quantum gases, we have already developed close collaborative relationship with.
Summary
The field of disordered quantum gases is developing rapidly. Dramatic progress has been achieved recently and first experimental observation of one-dimensional Anderson localization (AL) of matterwaves has been reported using Bose-Einstein condensates in controlled disorder (in our group at Institut d'Optique and at LENS; Nature, 2008). This dramatic success results from joint theoretical and experimental efforts, we have contributed to. Most importantly, it opens unprecedented routes to pursue several outstanding challenges in the multidisciplinary field of disordered systems, which, after fifty years of Anderson localization, is more active than ever.
This theoretical project aims at further developing the emerging field of disordered quantum gases towards novel challenges. Our aim is twofold. First, we will propose and analyze schemes where experiments on ultracold atoms can address unsolved issues: AL in dimensions higher than one, effects of inter-atomic interactions on AL, strongly-correlated disordered gases and quantum simulators for spin systems (spin glasses). Second, by taking into account specific features of ultracold atoms, beyond standard toy-models, we will raise and study new questions which have not been addressed before (eg long-range correlations of speckle potentials, finite-size effects, controlled interactions). Both aspects would open new frontiers to disordered quantum gases and offer new possibilities to shed new light on highly debated issues.
Our main concerns are thus to (i) study situations relevant to experiments, (ii) develop new approaches, applicable to ultracold atoms, (iii) identify key observables, and (iv) propose new challenging experiments. In this project, we will benefit from the original situation of our theory team: It is independent but forms part of a larger group (lead by A. Aspect), which is a world-leader in experiments on disordered quantum gases, we have already developed close collaborative relationship with.
Max ERC Funding
985 200 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym ALORS
Project Advanced Lagrangian Optimization, Receptivity and Sensitivity analysis applied to industrial situations
Researcher (PI) Matthew Pudan Juniper
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Starting Grant (StG), PE8, ERC-2010-StG_20091028
Summary In the last ten years there has been a surge of interest in non-modal analysis applied to canonical problems in fundamental fluid mechanics. Even in simple flows, the stability behaviour predicted by non-modal analysis can be completely different from and far more accurate than that predicted by conventional eigenvalue analysis.
As well as being more accurate, the tools of non-modal analysis, such as Lagrangian optimization, are very versatile. Furthermore, the outputs, such as receptivity and sensitivity maps of a flow, provide powerful insight for engineers. They describe where a flow is most receptive to forcing or where the flow is most sensitive to modification.
The application of non-modal analysis to canonical problems has set the scene for step changes in engineering practice in fluid mechanics and thermoacoustics. The technical objectives of this proposal are to apply non-modal analysis to high Reynolds number flows, reacting flows and thermoacoustic systems, to compare theoretical predictions with experimental measurements and to embed these techniques within an industrial design tool that has already been developed by the group.
This research group s vision is that future generations of engineering CFD tools will contain modules that can perform non-modal analysis. The generalized approach proposed here, combined with challenging scientific and engineering examples that are backed up by experimental evidence, will make this possible and demonstrate it to a wider engineering community.
Summary
In the last ten years there has been a surge of interest in non-modal analysis applied to canonical problems in fundamental fluid mechanics. Even in simple flows, the stability behaviour predicted by non-modal analysis can be completely different from and far more accurate than that predicted by conventional eigenvalue analysis.
As well as being more accurate, the tools of non-modal analysis, such as Lagrangian optimization, are very versatile. Furthermore, the outputs, such as receptivity and sensitivity maps of a flow, provide powerful insight for engineers. They describe where a flow is most receptive to forcing or where the flow is most sensitive to modification.
The application of non-modal analysis to canonical problems has set the scene for step changes in engineering practice in fluid mechanics and thermoacoustics. The technical objectives of this proposal are to apply non-modal analysis to high Reynolds number flows, reacting flows and thermoacoustic systems, to compare theoretical predictions with experimental measurements and to embed these techniques within an industrial design tool that has already been developed by the group.
This research group s vision is that future generations of engineering CFD tools will contain modules that can perform non-modal analysis. The generalized approach proposed here, combined with challenging scientific and engineering examples that are backed up by experimental evidence, will make this possible and demonstrate it to a wider engineering community.
Max ERC Funding
1 301 196 €
Duration
Start date: 2010-12-01, End date: 2016-06-30
Project acronym AMOPROX
Project Quantifying Aerobic Methane Oxidation in the Ocean: Calibration and palaeo application of a novel proxy
Researcher (PI) Helen Marie Talbot
Host Institution (HI) UNIVERSITY OF NEWCASTLE UPON TYNE
Call Details Starting Grant (StG), PE10, ERC-2010-StG_20091028
Summary Methane, a key greenhouse gas, is cycled by microorganisms via two pathways, aerobically and anaerobically. Research on the
marine methane cycle has mainly concentrated on anaerobic processes. Recent biomarker work has provided compelling
evidence that aerobic methane oxidation (AMO) can play a more significant role in cycling methane emitted from sediments than
previously considered. AMO, however, is not well studied requiring novel proxies that can be applied to the sedimentary record. A
group of complex lipids biosynthesised by aerobic methanotrophs known as aminobacteriohopanepolyols represent an ideal target
for developing such poxies. Recently BHPs have been identified in a wide range of modern and recent environments including a
continuous record from the Congo deep sea fan spanning the last 1.2 million years.
In this integrated study, the regulation and expression of BHP will be investigated and calibrated against environmental variables
including temperature, pH, salinity and, most importantly, methane concentrations. The work program has three complementary
strands. (1) Pure culture and sedimentary microcosm experiments providing an approximation to natural conditions. (2) Calibration
of BHP signatures in natural marine settings (e.g. cold seeps, mud volcanoes, pockmarks) against measured methane gradients.
(3) Application of this novel approach to the marine sedimentary record to approximate methane fluxes in the past, explore the age
and bathymetric limits of this novel molecular proxy, and identify and potentially 14C date palaeo-pockmarks structures. Crucial to
the success is also the refinement of the analytical protocols to improve both accuracy and sensitivity, using a more sensitive
analytical instrument (triple-quadrupole mass spectrometer).
Summary
Methane, a key greenhouse gas, is cycled by microorganisms via two pathways, aerobically and anaerobically. Research on the
marine methane cycle has mainly concentrated on anaerobic processes. Recent biomarker work has provided compelling
evidence that aerobic methane oxidation (AMO) can play a more significant role in cycling methane emitted from sediments than
previously considered. AMO, however, is not well studied requiring novel proxies that can be applied to the sedimentary record. A
group of complex lipids biosynthesised by aerobic methanotrophs known as aminobacteriohopanepolyols represent an ideal target
for developing such poxies. Recently BHPs have been identified in a wide range of modern and recent environments including a
continuous record from the Congo deep sea fan spanning the last 1.2 million years.
In this integrated study, the regulation and expression of BHP will be investigated and calibrated against environmental variables
including temperature, pH, salinity and, most importantly, methane concentrations. The work program has three complementary
strands. (1) Pure culture and sedimentary microcosm experiments providing an approximation to natural conditions. (2) Calibration
of BHP signatures in natural marine settings (e.g. cold seeps, mud volcanoes, pockmarks) against measured methane gradients.
(3) Application of this novel approach to the marine sedimentary record to approximate methane fluxes in the past, explore the age
and bathymetric limits of this novel molecular proxy, and identify and potentially 14C date palaeo-pockmarks structures. Crucial to
the success is also the refinement of the analytical protocols to improve both accuracy and sensitivity, using a more sensitive
analytical instrument (triple-quadrupole mass spectrometer).
Max ERC Funding
1 496 392 €
Duration
Start date: 2010-11-01, End date: 2016-04-30
Project acronym AMPCAT
Project Self-Amplifying Stereodynamic Catalysts in Enantioselective Catalysis
Researcher (PI) Oliver Trapp
Host Institution (HI) RUPRECHT-KARLS-UNIVERSITAET HEIDELBERG
Call Details Starting Grant (StG), PE5, ERC-2010-StG_20091028
Summary Think about an enantioselective catalyst, which can switch its enantioselectivity and which can be imprinted and provides self-amplification by its own chiral reaction product. Think about a catalyst, which can be fine-tuned for efficient stereoselective synthesis of drugs and other materials, e.g. polymers.
Highly promising reactions such as enantioselective autocatalysis (Soai reaction) and chiral catalysts undergoing dynamic interconversions, e.g. BIPHEP ligands, are still not understood. Their application is very limited to a few compounds, which opens the field for novel investigations.
I propose the development of a smart or switchable chiral ligand undergoing dynamic interconversions. These catalysts will be tuned by their reaction product, and this leads to self-amplification of one of the stereoisomers. I propose a novel fundamental mechanism which has the potential to overcome the limitations of the Soai reaction, exploiting the full potential of enantioselective catalysis.
As representatives of enantioselective self-amplifying stereodynamic catalysts a novel class of diazirine based ligands will be developed, their interconversion barrier is tuneable between 80 and 130 kJ/mol. Specifically, following areas will be explored:
1. Investigation of the kinetics and thermodynamics of the Soai reaction as a model reaction by analysis of large sets of kinetic data.
2. Ligands with diaziridine moieties with flexible structure will be designed and investigated, to control the enantioselectivity.
3. Design of a ligand receptor group for product interaction to switch the chirality. Study of self-amplification in enantioselective processes.
4. Enantioselective hydrogenations, Diels-Alder reactions, epoxidations and reactions generating multiple stereocenters will be targeted.
Summary
Think about an enantioselective catalyst, which can switch its enantioselectivity and which can be imprinted and provides self-amplification by its own chiral reaction product. Think about a catalyst, which can be fine-tuned for efficient stereoselective synthesis of drugs and other materials, e.g. polymers.
Highly promising reactions such as enantioselective autocatalysis (Soai reaction) and chiral catalysts undergoing dynamic interconversions, e.g. BIPHEP ligands, are still not understood. Their application is very limited to a few compounds, which opens the field for novel investigations.
I propose the development of a smart or switchable chiral ligand undergoing dynamic interconversions. These catalysts will be tuned by their reaction product, and this leads to self-amplification of one of the stereoisomers. I propose a novel fundamental mechanism which has the potential to overcome the limitations of the Soai reaction, exploiting the full potential of enantioselective catalysis.
As representatives of enantioselective self-amplifying stereodynamic catalysts a novel class of diazirine based ligands will be developed, their interconversion barrier is tuneable between 80 and 130 kJ/mol. Specifically, following areas will be explored:
1. Investigation of the kinetics and thermodynamics of the Soai reaction as a model reaction by analysis of large sets of kinetic data.
2. Ligands with diaziridine moieties with flexible structure will be designed and investigated, to control the enantioselectivity.
3. Design of a ligand receptor group for product interaction to switch the chirality. Study of self-amplification in enantioselective processes.
4. Enantioselective hydrogenations, Diels-Alder reactions, epoxidations and reactions generating multiple stereocenters will be targeted.
Max ERC Funding
1 452 000 €
Duration
Start date: 2010-12-01, End date: 2016-05-31
Project acronym ANALYTIC
Project ANALYTIC PROPERTIES OF INFINITE GROUPS:
limits, curvature, and randomness
Researcher (PI) Gulnara Arzhantseva
Host Institution (HI) UNIVERSITAT WIEN
Call Details Starting Grant (StG), PE1, ERC-2010-StG_20091028
Summary The overall goal of this project is to develop new concepts and techniques in geometric and asymptotic group theory for a systematic study of the analytic properties of discrete groups. These are properties depending on the unitary representation theory of the group. The fundamental examples are amenability, discovered by von Neumann in 1929, and property (T), introduced by Kazhdan in 1967.
My main objective is to establish the precise relations between groups recently appeared in K-theory and topology such as C*-exact groups and groups coarsely embeddable into a Hilbert space, versus those discovered in ergodic theory and operator algebra, for example, sofic and hyperlinear groups. This is a first ever attempt to confront the analytic behavior of so different nature. I plan to work on crucial open questions: Is every coarsely embeddable group C*-exact? Is every group sofic? Is every hyperlinear group sofic?
My motivation is two-fold:
- Many outstanding conjectures were recently solved for these groups, e.g. the Novikov conjecture (1965) for coarsely embeddable groups by Yu in 2000 and the Gottschalk surjunctivity conjecture (1973) for sofic groups by Gromov in 1999. However, their group-theoretical structure remains mysterious.
- In recent years, geometric group theory has undergone significant changes, mainly due to the growing impact of this theory on other branches of mathematics. However, the interplay between geometric, asymptotic, and analytic group properties has not yet been fully understood.
The main innovative contribution of this proposal lies in the interaction between 3 axes: (i) limits of groups, in the space of marked groups or metric ultralimits; (ii) analytic properties of groups with curvature, of lacunary or relatively hyperbolic groups; (iii) random groups, in a topological or statistical meaning. As a result, I will describe the above apparently unrelated classes of groups in a unified way and will detail their algebraic behavior.
Summary
The overall goal of this project is to develop new concepts and techniques in geometric and asymptotic group theory for a systematic study of the analytic properties of discrete groups. These are properties depending on the unitary representation theory of the group. The fundamental examples are amenability, discovered by von Neumann in 1929, and property (T), introduced by Kazhdan in 1967.
My main objective is to establish the precise relations between groups recently appeared in K-theory and topology such as C*-exact groups and groups coarsely embeddable into a Hilbert space, versus those discovered in ergodic theory and operator algebra, for example, sofic and hyperlinear groups. This is a first ever attempt to confront the analytic behavior of so different nature. I plan to work on crucial open questions: Is every coarsely embeddable group C*-exact? Is every group sofic? Is every hyperlinear group sofic?
My motivation is two-fold:
- Many outstanding conjectures were recently solved for these groups, e.g. the Novikov conjecture (1965) for coarsely embeddable groups by Yu in 2000 and the Gottschalk surjunctivity conjecture (1973) for sofic groups by Gromov in 1999. However, their group-theoretical structure remains mysterious.
- In recent years, geometric group theory has undergone significant changes, mainly due to the growing impact of this theory on other branches of mathematics. However, the interplay between geometric, asymptotic, and analytic group properties has not yet been fully understood.
The main innovative contribution of this proposal lies in the interaction between 3 axes: (i) limits of groups, in the space of marked groups or metric ultralimits; (ii) analytic properties of groups with curvature, of lacunary or relatively hyperbolic groups; (iii) random groups, in a topological or statistical meaning. As a result, I will describe the above apparently unrelated classes of groups in a unified way and will detail their algebraic behavior.
Max ERC Funding
1 065 500 €
Duration
Start date: 2011-04-01, End date: 2016-03-31
Project acronym ANISOTROPIC UNIVERSE
Project The anisotropic universe -- a reality or fluke?
Researcher (PI) Hans Kristian Kamfjord Eriksen
Host Institution (HI) UNIVERSITETET I OSLO
Call Details Starting Grant (StG), PE9, ERC-2010-StG_20091028
Summary "During the last decade, a strikingly successful cosmological concordance model has been established. With only six free parameters, nearly all observables, comprising millions of data points, may be fitted with outstanding precision. However, in this beautiful picture a few ""blemishes"" have turned up, apparently not consistent with the standard model: While the model predicts that the universe is isotropic (i.e., looks the same in all directions) and homogeneous (i.e., the statistical properties are the same everywhere), subtle hints of the contrary are now seen. For instance, peculiar preferred directions and correlations are observed in the cosmic microwave background; some studies considering nearby galaxies suggest the existence of anomalous large-scale cosmic flows; a study of distant quasars hints towards unexpected large-scale correlations. All of these reports are individually highly intriguing, and together they hint toward a more complicated and interesting universe than previously imagined -- but none of the reports can be considered decisive. One major obstacle in many cases has been the relatively poor data quality.
This is currently about to change, as the next generation of new and far more powerful experiments are coming online. Of special interest to me are Planck, an ESA-funded CMB satellite currently taking data; QUIET, a ground-based CMB polarization experiment located in Chile; and various large-scale structure (LSS) data sets, such as the SDSS and 2dF surveys, and in the future Euclid, a proposed galaxy survey satellite also funded by ESA. By combining the world s best data from both CMB and LSS measurements, I will in the proposed project attempt to settle this question: Is our universe really anisotropic? Or are these recent claims only the results of systematic errors or statistical flukes? If the claims turn out to hold against this tide of new and high-quality data, then cosmology as a whole may need to be re-written."
Summary
"During the last decade, a strikingly successful cosmological concordance model has been established. With only six free parameters, nearly all observables, comprising millions of data points, may be fitted with outstanding precision. However, in this beautiful picture a few ""blemishes"" have turned up, apparently not consistent with the standard model: While the model predicts that the universe is isotropic (i.e., looks the same in all directions) and homogeneous (i.e., the statistical properties are the same everywhere), subtle hints of the contrary are now seen. For instance, peculiar preferred directions and correlations are observed in the cosmic microwave background; some studies considering nearby galaxies suggest the existence of anomalous large-scale cosmic flows; a study of distant quasars hints towards unexpected large-scale correlations. All of these reports are individually highly intriguing, and together they hint toward a more complicated and interesting universe than previously imagined -- but none of the reports can be considered decisive. One major obstacle in many cases has been the relatively poor data quality.
This is currently about to change, as the next generation of new and far more powerful experiments are coming online. Of special interest to me are Planck, an ESA-funded CMB satellite currently taking data; QUIET, a ground-based CMB polarization experiment located in Chile; and various large-scale structure (LSS) data sets, such as the SDSS and 2dF surveys, and in the future Euclid, a proposed galaxy survey satellite also funded by ESA. By combining the world s best data from both CMB and LSS measurements, I will in the proposed project attempt to settle this question: Is our universe really anisotropic? Or are these recent claims only the results of systematic errors or statistical flukes? If the claims turn out to hold against this tide of new and high-quality data, then cosmology as a whole may need to be re-written."
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym ANOPTSETCON
Project Analysis of optimal sets and optimal constants: old questions and new results
Researcher (PI) Aldo Pratelli
Host Institution (HI) FRIEDRICH-ALEXANDER-UNIVERSITAET ERLANGEN NUERNBERG
Call Details Starting Grant (StG), PE1, ERC-2010-StG_20091028
Summary The analysis of geometric and functional inequalities naturally leads to consider the extremal cases, thus
looking for optimal sets, or optimal functions, or optimal constants. The most classical examples are the (different versions of the) isoperimetric inequality and the Sobolev-like inequalities. Much is known about equality cases and best constants, but there are still many questions which seem quite natural but yet have no answer. For instance, it is not known, even in the 2-dimensional space, the answer of a question by Brezis: which set,
among those with a given volume, has the biggest Sobolev-Poincaré constant for p=1? This is a very natural problem, and it appears reasonable that the optimal set should be the ball, but this has never been proved. The interest in problems like this relies not only in the extreme simplicity of the questions and in their classical flavour, but also in the new ideas and techniques which are needed to provide the answers.
The main techniques that we aim to use are fine arguments of symmetrization, geometric constructions and tools from mass transportation (which is well known to be deeply connected with functional inequalities). These are the basic tools that we already used to reach, in last years, many results in a specific direction, namely the search of sharp quantitative inequalities. Our first result, together with Fusco and Maggi, showed what follows. Everybody knows that the set which minimizes the perimeter with given volume is the ball.
But is it true that a set which almost minimizes the perimeter must be close to a ball? The question had been posed in the 1920's and many partial result appeared in the years. In our paper (Ann. of Math., 2007) we proved the sharp result. Many other results of this kind were obtained in last two years.
Summary
The analysis of geometric and functional inequalities naturally leads to consider the extremal cases, thus
looking for optimal sets, or optimal functions, or optimal constants. The most classical examples are the (different versions of the) isoperimetric inequality and the Sobolev-like inequalities. Much is known about equality cases and best constants, but there are still many questions which seem quite natural but yet have no answer. For instance, it is not known, even in the 2-dimensional space, the answer of a question by Brezis: which set,
among those with a given volume, has the biggest Sobolev-Poincaré constant for p=1? This is a very natural problem, and it appears reasonable that the optimal set should be the ball, but this has never been proved. The interest in problems like this relies not only in the extreme simplicity of the questions and in their classical flavour, but also in the new ideas and techniques which are needed to provide the answers.
The main techniques that we aim to use are fine arguments of symmetrization, geometric constructions and tools from mass transportation (which is well known to be deeply connected with functional inequalities). These are the basic tools that we already used to reach, in last years, many results in a specific direction, namely the search of sharp quantitative inequalities. Our first result, together with Fusco and Maggi, showed what follows. Everybody knows that the set which minimizes the perimeter with given volume is the ball.
But is it true that a set which almost minimizes the perimeter must be close to a ball? The question had been posed in the 1920's and many partial result appeared in the years. In our paper (Ann. of Math., 2007) we proved the sharp result. Many other results of this kind were obtained in last two years.
Max ERC Funding
540 000 €
Duration
Start date: 2010-08-01, End date: 2015-07-31
Project acronym ANOREP
Project Targeting the reproductive biology of the malaria mosquito Anopheles gambiae: from laboratory studies to field applications
Researcher (PI) Flaminia Catteruccia
Host Institution (HI) UNIVERSITA DEGLI STUDI DI PERUGIA
Call Details Starting Grant (StG), LS2, ERC-2010-StG_20091118
Summary Anopheles gambiae mosquitoes are the major vectors of malaria, a disease with devastating consequences for
human health. Novel methods for controlling the natural vector populations are urgently needed, given the
evolution of insecticide resistance in mosquitoes and the lack of novel insecticidals. Understanding the
processes at the bases of mosquito biology may help to roll back malaria. In this proposal, we will target
mosquito reproduction, a major determinant of the An. gambiae vectorial capacity. This will be achieved at
two levels: (i) fundamental research, to provide a deeper knowledge of the processes regulating reproduction
in this species, and (ii) applied research, to identify novel targets and to develop innovative approaches for
the control of natural populations. We will focus our analysis on three major players of mosquito
reproduction: male accessory glands (MAGs), sperm, and spermatheca, in both laboratory and field settings.
We will then translate this information into the identification of inhibitors of mosquito fertility. The
experimental activities will be divided across three objectives. In Objective 1, we will unravel the role of the
MAGs in shaping mosquito fertility and behaviour, by performing a combination of transcriptional and
functional studies that will reveal the multifaceted activities of these tissues. In Objective 2 we will instead
focus on the identification of the male and female factors responsible for sperm viability and function.
Results obtained in both objectives will be validated in field mosquitoes. In Objective 3, we will perform
screens aimed at the identification of inhibitors of mosquito reproductive success. This study will reveal as
yet unknown molecular mechanisms underlying reproductive success in mosquitoes, considerably increasing
our knowledge beyond the state-of-the-art and critically contributing with innovative tools and ideas to the
fight against malaria.
Summary
Anopheles gambiae mosquitoes are the major vectors of malaria, a disease with devastating consequences for
human health. Novel methods for controlling the natural vector populations are urgently needed, given the
evolution of insecticide resistance in mosquitoes and the lack of novel insecticidals. Understanding the
processes at the bases of mosquito biology may help to roll back malaria. In this proposal, we will target
mosquito reproduction, a major determinant of the An. gambiae vectorial capacity. This will be achieved at
two levels: (i) fundamental research, to provide a deeper knowledge of the processes regulating reproduction
in this species, and (ii) applied research, to identify novel targets and to develop innovative approaches for
the control of natural populations. We will focus our analysis on three major players of mosquito
reproduction: male accessory glands (MAGs), sperm, and spermatheca, in both laboratory and field settings.
We will then translate this information into the identification of inhibitors of mosquito fertility. The
experimental activities will be divided across three objectives. In Objective 1, we will unravel the role of the
MAGs in shaping mosquito fertility and behaviour, by performing a combination of transcriptional and
functional studies that will reveal the multifaceted activities of these tissues. In Objective 2 we will instead
focus on the identification of the male and female factors responsible for sperm viability and function.
Results obtained in both objectives will be validated in field mosquitoes. In Objective 3, we will perform
screens aimed at the identification of inhibitors of mosquito reproductive success. This study will reveal as
yet unknown molecular mechanisms underlying reproductive success in mosquitoes, considerably increasing
our knowledge beyond the state-of-the-art and critically contributing with innovative tools and ideas to the
fight against malaria.
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym ANTHOS
Project Analytic Number Theory: Higher Order Structures
Researcher (PI) Valentin Blomer
Host Institution (HI) GEORG-AUGUST-UNIVERSITAT GOTTINGENSTIFTUNG OFFENTLICHEN RECHTS
Call Details Starting Grant (StG), PE1, ERC-2010-StG_20091028
Summary This is a proposal for research at the interface of analytic number theory, automorphic forms and algebraic geometry. Motivated by fundamental conjectures in number theory, classical problems will be investigated in higher order situations: general number fields, automorphic forms on higher rank groups, the arithmetic of algebraic varieties of higher degree. In particular, I want to focus on
- computation of moments of L-function of degree 3 and higher with applications to subconvexity and/or non-vanishing, as well as subconvexity for multiple L-functions;
- bounds for sup-norms of cusp forms on various spaces and equidistribution of Hecke correspondences;
- automorphic forms on higher rank groups and general number fields, in particular new bounds towards the Ramanujan conjecture;
- a proof of Manin's conjecture for a certain class of singular algebraic varieties.
The underlying methods are closely related; for example, rational points on algebraic varieties
will be counted by a multiple L-series technique.
Summary
This is a proposal for research at the interface of analytic number theory, automorphic forms and algebraic geometry. Motivated by fundamental conjectures in number theory, classical problems will be investigated in higher order situations: general number fields, automorphic forms on higher rank groups, the arithmetic of algebraic varieties of higher degree. In particular, I want to focus on
- computation of moments of L-function of degree 3 and higher with applications to subconvexity and/or non-vanishing, as well as subconvexity for multiple L-functions;
- bounds for sup-norms of cusp forms on various spaces and equidistribution of Hecke correspondences;
- automorphic forms on higher rank groups and general number fields, in particular new bounds towards the Ramanujan conjecture;
- a proof of Manin's conjecture for a certain class of singular algebraic varieties.
The underlying methods are closely related; for example, rational points on algebraic varieties
will be counted by a multiple L-series technique.
Max ERC Funding
1 004 000 €
Duration
Start date: 2010-10-01, End date: 2015-09-30
Project acronym ANTIBACTERIALS
Project Natural products and their cellular targets: A multidisciplinary strategy for antibacterial drug discovery
Researcher (PI) Stephan Axel Sieber
Host Institution (HI) TECHNISCHE UNIVERSITAET MUENCHEN
Call Details Starting Grant (StG), PE5, ERC-2010-StG_20091028
Summary After decades of successful treatment of bacterial infections with antibiotics, formerly treatable bacteria have developed drug resistance and consequently pose a major threat to public health. To address the urgent need for effective antibacterial drugs we will develop a streamlined chemical-biology platform that facilitates the consolidated identification and structural elucidation of natural products together with their dedicated cellular targets. This innovative concept overcomes several limitations of classical drug discovery processes by a chemical strategy that focuses on a directed isolation, enrichment and identification procedure for certain privileged natural product subclasses. This proposal consists of four specific aims: 1) synthesizing enzyme active site mimetics that capture protein reactive natural products out of complex natural sources, 2) designing natural product based probes to identify their cellular targets by a method called activity based protein profiling , 3) developing a traceless photocrosslinking strategy for the target identification of selected non-reactive natural products, and 4) application of all probes to identify novel enzyme activities linked to viability, resistance and pathogenesis. Moreover, the compounds will be used to monitor the infection process during invasion into eukaryotic cells and will reveal host specific targets that promote and support bacterial pathogenesis. Inhibition of these targets is a novel and so far neglected approach in the treatment of infectious diseases. We anticipate that these studies will provide a powerful pharmacological platform for the development of potent natural product derived antibacterial agents directed toward novel therapeutic targets.
Summary
After decades of successful treatment of bacterial infections with antibiotics, formerly treatable bacteria have developed drug resistance and consequently pose a major threat to public health. To address the urgent need for effective antibacterial drugs we will develop a streamlined chemical-biology platform that facilitates the consolidated identification and structural elucidation of natural products together with their dedicated cellular targets. This innovative concept overcomes several limitations of classical drug discovery processes by a chemical strategy that focuses on a directed isolation, enrichment and identification procedure for certain privileged natural product subclasses. This proposal consists of four specific aims: 1) synthesizing enzyme active site mimetics that capture protein reactive natural products out of complex natural sources, 2) designing natural product based probes to identify their cellular targets by a method called activity based protein profiling , 3) developing a traceless photocrosslinking strategy for the target identification of selected non-reactive natural products, and 4) application of all probes to identify novel enzyme activities linked to viability, resistance and pathogenesis. Moreover, the compounds will be used to monitor the infection process during invasion into eukaryotic cells and will reveal host specific targets that promote and support bacterial pathogenesis. Inhibition of these targets is a novel and so far neglected approach in the treatment of infectious diseases. We anticipate that these studies will provide a powerful pharmacological platform for the development of potent natural product derived antibacterial agents directed toward novel therapeutic targets.
Max ERC Funding
1 500 000 €
Duration
Start date: 2010-11-01, End date: 2015-10-31
Project acronym ANXIETY MECHANISMS
Project Neurocognitive mechanisms of human anxiety: identifying and
targeting disrupted function
Researcher (PI) Sonia Jane Bishop
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Starting Grant (StG), LS5, ERC-2010-StG_20091118
Summary Within a 12 month period, 20% of adults will meet criteria for one or more clinical anxiety disorders (ADs). These disorders are hugely disruptive, placing an emotional burden on individuals and their families. While both cognitive behavioural therapy and pharmacological treatment are widely viewed as effective strategies for managing ADs, systematic review of the literature reveals that only 30–45% of patients demonstrate a marked response to treatment (anxiety levels being reduced into the nonaffected range). In addition, a significant proportion of initial responders relapse after treatment is discontinued. There is hence a real and marked need to improve upon current approaches to AD treatment.
One possible avenue for improving response rates is through optimizing initial treatment selection. Specifically, it is possible that certain individuals might respond better to cognitive interventions while others might respond better to pharmacological treatment. Recently it has been suggested that there may be two or more distinct biological pathways disrupted in anxiety. If this is the case, then specification of these pathways may be an important step in predicting which individuals are likely to respond to which treatment. Few studies have focused upon this issue and, in particular, upon identifying neural markers that might predict response to cognitive (as opposed to pharmacological) intervention. The proposed research aims to address this. Specifically, it tests the hypothesis that there are at least two mechanisms disrupted in ADs, one entailing amygdala hyper-responsivity to cues that signal threat, the other impoverished recruitment of frontal regions that support cognitive and emotional regulation.
Two series of functional magnetic resonance imaging experiments will be conducted. These will investigate differences in amygdala and frontal function during (a) attentional processing and (b) fear conditioning. Initial clinical experiments will investigate whether Generalised Anxiety Disorder and Specific Phobia involve differing degrees of disruption to frontal versus amygdala function during these tasks. This work will feed into training studies, the goal being to characterize AD patient subgroups that benefit from cognitive training.
Summary
Within a 12 month period, 20% of adults will meet criteria for one or more clinical anxiety disorders (ADs). These disorders are hugely disruptive, placing an emotional burden on individuals and their families. While both cognitive behavioural therapy and pharmacological treatment are widely viewed as effective strategies for managing ADs, systematic review of the literature reveals that only 30–45% of patients demonstrate a marked response to treatment (anxiety levels being reduced into the nonaffected range). In addition, a significant proportion of initial responders relapse after treatment is discontinued. There is hence a real and marked need to improve upon current approaches to AD treatment.
One possible avenue for improving response rates is through optimizing initial treatment selection. Specifically, it is possible that certain individuals might respond better to cognitive interventions while others might respond better to pharmacological treatment. Recently it has been suggested that there may be two or more distinct biological pathways disrupted in anxiety. If this is the case, then specification of these pathways may be an important step in predicting which individuals are likely to respond to which treatment. Few studies have focused upon this issue and, in particular, upon identifying neural markers that might predict response to cognitive (as opposed to pharmacological) intervention. The proposed research aims to address this. Specifically, it tests the hypothesis that there are at least two mechanisms disrupted in ADs, one entailing amygdala hyper-responsivity to cues that signal threat, the other impoverished recruitment of frontal regions that support cognitive and emotional regulation.
Two series of functional magnetic resonance imaging experiments will be conducted. These will investigate differences in amygdala and frontal function during (a) attentional processing and (b) fear conditioning. Initial clinical experiments will investigate whether Generalised Anxiety Disorder and Specific Phobia involve differing degrees of disruption to frontal versus amygdala function during these tasks. This work will feed into training studies, the goal being to characterize AD patient subgroups that benefit from cognitive training.
Max ERC Funding
1 708 407 €
Duration
Start date: 2011-04-01, End date: 2016-08-31
Project acronym APPARENT
Project Transition to parenthood: International and national studies of norms and gender division of work at the life course transition to parenthood
Researcher (PI) Daniela Grunow
Host Institution (HI) JOHANN WOLFGANG GOETHE-UNIVERSITATFRANKFURT AM MAIN
Call Details Starting Grant (StG), SH2, ERC-2010-StG_20091209
Summary The project is the first comprehensive study to assess contemporary parenting norms and practices and their diffusion. The project develops a comparative framework to study prevalent motherhood and fatherhood norms, images, identities and behaviour in current societies. The project will focus on how parenting roles are constructed by professionals, welfare states, and popular media, and will assess how cultural and institutional norms and images are perceived and realized by expecting and new parents.
In 4 subprojects this study investigates 1) How standards of 'good' mothering and fathering are perceived, shaped and disseminated by professionals (gynaecologists, midwives, family councils); 2) How welfare states, labour markets and family policies target at mothers and fathers roles as earners and care givers, and how this has changed in recent decades; 3) How images of mothers and fathers roles have been portrayed in print media from 1980 until 2010; 4) How (expecting) mothers and fathers perceive, embody and represent parenting norms and images in their own work and family roles; 5) How new parents divide paid and unpaid work and how these divisions shape career patterns over the life course; 6) How these patterns differ cross-nationally. The international collaboration includes Sweden, the Netherlands, Germany, Italy, the Czech Republic, and Poland.
The aim of this project is to develop a contemporary sociology of adult sex roles and parenting norms: A theory of the social creation of parenting norms and a comprehensive framework to study empirically the change of men's and women's roles, identities and practices as earners and care givers in the early phase of family formation.
By combining expert interviews, policy analysis and content analysis of print media with analyses of qualitative and quantitative data on (nascent) parents, the project will address the diverse layers associated with changing gender roles and parenting norms over the adult life course.
Summary
The project is the first comprehensive study to assess contemporary parenting norms and practices and their diffusion. The project develops a comparative framework to study prevalent motherhood and fatherhood norms, images, identities and behaviour in current societies. The project will focus on how parenting roles are constructed by professionals, welfare states, and popular media, and will assess how cultural and institutional norms and images are perceived and realized by expecting and new parents.
In 4 subprojects this study investigates 1) How standards of 'good' mothering and fathering are perceived, shaped and disseminated by professionals (gynaecologists, midwives, family councils); 2) How welfare states, labour markets and family policies target at mothers and fathers roles as earners and care givers, and how this has changed in recent decades; 3) How images of mothers and fathers roles have been portrayed in print media from 1980 until 2010; 4) How (expecting) mothers and fathers perceive, embody and represent parenting norms and images in their own work and family roles; 5) How new parents divide paid and unpaid work and how these divisions shape career patterns over the life course; 6) How these patterns differ cross-nationally. The international collaboration includes Sweden, the Netherlands, Germany, Italy, the Czech Republic, and Poland.
The aim of this project is to develop a contemporary sociology of adult sex roles and parenting norms: A theory of the social creation of parenting norms and a comprehensive framework to study empirically the change of men's and women's roles, identities and practices as earners and care givers in the early phase of family formation.
By combining expert interviews, policy analysis and content analysis of print media with analyses of qualitative and quantitative data on (nascent) parents, the project will address the diverse layers associated with changing gender roles and parenting norms over the adult life course.
Max ERC Funding
1 393 751 €
Duration
Start date: 2011-01-01, End date: 2016-12-31
Project acronym ASYMMETRY
Project Measurement of CP violation in the B_s system at LHCb
Researcher (PI) Stephanie Hansmann-Menzemer
Host Institution (HI) RUPRECHT-KARLS-UNIVERSITAET HEIDELBERG
Call Details Starting Grant (StG), PE2, ERC-2010-StG_20091028
Summary The Large Hadron collider (LHC) at CERN will be a milestone for the understanding of fundamental interactions and for the future of high energy
physics. Four large experiments at the LHC are complementarily addressing the question of the origin of our Universe by searching for so-called New Physics.
The world of particles and their interactions is nowadays described by the Standard Model. Up to now there is no single measurement from laboratory experiments which contradicts this theory. However, there are still many open questions, thus physicists are convinced that there is a more fundamental theory, which incorporates New Physics.
It is expected that at the LHC either New Physics beyond the Standard Model will be discovered or excluded up to very high energies, which would revolutionize the understanding of particle physics and require completely new experimental and theoretical concepts.
The LHCb (Large Hadron Collider beauty) experiment is dedicated to precision measurements of B hadrons (B hadrons are all particles containing a beauty quark).
The analysis proposed here is the measurement of asymmetries between B_s particles and anti-B_s particles at the LHCb experiment. Any New Physics model will change the rate of observable processes via additional quantum corrections. Particle antiparticle asymmetries are extremely sensitive to these corrections thus a very powerful tool for indirect searches for New Physics contributions. In the past, most of the ground-breaking findings in particle physics, such as the existence of the
charm quark and the existence of a third quark family, have first been observed in indirect searches.
First - still statistically limited - measurements of the asymmetry in the B_s system indicate a 2 sigma deviation from the Standard Model prediction. A precision measurement of this asymmetry is potentially the first observation for New Physics beyond the Standard Model at the LHC. If no hint for New Physics will be found, this measurement will severely restrict the range of potential New Physics models.
Summary
The Large Hadron collider (LHC) at CERN will be a milestone for the understanding of fundamental interactions and for the future of high energy
physics. Four large experiments at the LHC are complementarily addressing the question of the origin of our Universe by searching for so-called New Physics.
The world of particles and their interactions is nowadays described by the Standard Model. Up to now there is no single measurement from laboratory experiments which contradicts this theory. However, there are still many open questions, thus physicists are convinced that there is a more fundamental theory, which incorporates New Physics.
It is expected that at the LHC either New Physics beyond the Standard Model will be discovered or excluded up to very high energies, which would revolutionize the understanding of particle physics and require completely new experimental and theoretical concepts.
The LHCb (Large Hadron Collider beauty) experiment is dedicated to precision measurements of B hadrons (B hadrons are all particles containing a beauty quark).
The analysis proposed here is the measurement of asymmetries between B_s particles and anti-B_s particles at the LHCb experiment. Any New Physics model will change the rate of observable processes via additional quantum corrections. Particle antiparticle asymmetries are extremely sensitive to these corrections thus a very powerful tool for indirect searches for New Physics contributions. In the past, most of the ground-breaking findings in particle physics, such as the existence of the
charm quark and the existence of a third quark family, have first been observed in indirect searches.
First - still statistically limited - measurements of the asymmetry in the B_s system indicate a 2 sigma deviation from the Standard Model prediction. A precision measurement of this asymmetry is potentially the first observation for New Physics beyond the Standard Model at the LHC. If no hint for New Physics will be found, this measurement will severely restrict the range of potential New Physics models.
Max ERC Funding
1 059 240 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym ATTOELECTRONICS
Project Attoelectronics: Steering electrons in atoms and molecules with synthesized waveforms of light
Researcher (PI) Eleftherios Goulielmakis
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), PE2, ERC-2010-StG_20091028
Summary In order for electronics to meet the ever raising demands for higher speeds of operation, the dimensions of its basic elements drop continuously. This miniaturization, that will soon meet the dimensions of a single molecule or an atom, calls for new approaches in electronics that take advantage, rather than confront the dominant at these scales quantum laws.
Electronics on the scale of atoms and molecules require fields that are able to trigger and to steer electrons at speeds comparable to their intrinsic dynamics, determined by the quantum mechanical laws. For the valence electrons of atoms and molecules, this motion is clocked in tens to thousands of attoseconds, (1 as =10-18 sec) implying the potential for executing basic electronic operations in the PHz regime and beyond. This is approximately ~1000000 times faster as compared to any contemporary technology.
To meet this challenging goal, this project will utilize conceptual and technological advances of attosecond science as its primary tools. First, pulses of light, the fields of which can be sculpted and characterized with attosecond accuracy, for triggering as well as for terminating the ultrafast electron motion in an atom or a molecule. Second, attosecond pulses in the extreme ultraviolet, which can probe and frame-freeze the created electron motion, with unprecedented resolution, and determine the direction and the magnitude of the created currents.
This project will interrogate the limits of the fastest electronic motion that light fields can trigger as well as terminate, a few hundreds of attoseconds later, in an atom or a molecule. In this way it aims to explore new routes of atomic and molecular scale electronic switching at PHz frequencies.
Summary
In order for electronics to meet the ever raising demands for higher speeds of operation, the dimensions of its basic elements drop continuously. This miniaturization, that will soon meet the dimensions of a single molecule or an atom, calls for new approaches in electronics that take advantage, rather than confront the dominant at these scales quantum laws.
Electronics on the scale of atoms and molecules require fields that are able to trigger and to steer electrons at speeds comparable to their intrinsic dynamics, determined by the quantum mechanical laws. For the valence electrons of atoms and molecules, this motion is clocked in tens to thousands of attoseconds, (1 as =10-18 sec) implying the potential for executing basic electronic operations in the PHz regime and beyond. This is approximately ~1000000 times faster as compared to any contemporary technology.
To meet this challenging goal, this project will utilize conceptual and technological advances of attosecond science as its primary tools. First, pulses of light, the fields of which can be sculpted and characterized with attosecond accuracy, for triggering as well as for terminating the ultrafast electron motion in an atom or a molecule. Second, attosecond pulses in the extreme ultraviolet, which can probe and frame-freeze the created electron motion, with unprecedented resolution, and determine the direction and the magnitude of the created currents.
This project will interrogate the limits of the fastest electronic motion that light fields can trigger as well as terminate, a few hundreds of attoseconds later, in an atom or a molecule. In this way it aims to explore new routes of atomic and molecular scale electronic switching at PHz frequencies.
Max ERC Funding
1 262 000 €
Duration
Start date: 2010-12-01, End date: 2016-11-30
Project acronym AUTO-EVO
Project Autonomous DNA Evolution in a Molecule Trap
Researcher (PI) Dieter Braun
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Call Details Starting Grant (StG), PE3, ERC-2010-StG_20091028
Summary How can we create molecular life in the lab?
That is, can we drive evolvable DNA/RNA-machines under a simple nonequilibrium setting? We will trigger basic forms
of autonomous Darwinian evolution by implementing replication, mutation and selection on the molecular level in a single
micro-chamber? We will explore protein-free replication schemes to tackle the Eigen-Paradox of replication and translation
under archaic nonequilibrium settings. The conditions mimic thermal gradients in porous rock near hydrothermal vents on the
early earth. We are in a unique position to pursue these questions due to our previous inventions of convective replication,
optothermal molecule traps and light driven microfluidics. Four interconnected strategies are pursued ranging from basic
replication using tRNA-like hairpins, entropic cooling or UV degradation down to protein-based DNA evolution in a trap, all
with biotechnological applications. The approach is risky, however very interesting physics and biology on the way. We will:
(i) Replicate DNA with continuous, convective PCR in the selection of a thermal molecule trap
(ii) Replicate sequences with metastable, tRNA-like hairpins exponentially
(iii) Build DNA complexes by structure-selective trapping to replicate by entropic decay
(iv) Drive replication by Laser-based UV degradation
Both replication and trapping are exponential processes, yielding in combination a highly nonlinear dynamics. We proceed
along publishable steps and implement highly efficient modes of continuous molecular evolution. As shown in the past, we
will create biotechnological applications from basic scientific questions (see our NanoTemper Startup). The starting grant will
allow us to compete with Jack Szostak who very recently picked up our approach [JACS 131, 9628 (2009)].
Summary
How can we create molecular life in the lab?
That is, can we drive evolvable DNA/RNA-machines under a simple nonequilibrium setting? We will trigger basic forms
of autonomous Darwinian evolution by implementing replication, mutation and selection on the molecular level in a single
micro-chamber? We will explore protein-free replication schemes to tackle the Eigen-Paradox of replication and translation
under archaic nonequilibrium settings. The conditions mimic thermal gradients in porous rock near hydrothermal vents on the
early earth. We are in a unique position to pursue these questions due to our previous inventions of convective replication,
optothermal molecule traps and light driven microfluidics. Four interconnected strategies are pursued ranging from basic
replication using tRNA-like hairpins, entropic cooling or UV degradation down to protein-based DNA evolution in a trap, all
with biotechnological applications. The approach is risky, however very interesting physics and biology on the way. We will:
(i) Replicate DNA with continuous, convective PCR in the selection of a thermal molecule trap
(ii) Replicate sequences with metastable, tRNA-like hairpins exponentially
(iii) Build DNA complexes by structure-selective trapping to replicate by entropic decay
(iv) Drive replication by Laser-based UV degradation
Both replication and trapping are exponential processes, yielding in combination a highly nonlinear dynamics. We proceed
along publishable steps and implement highly efficient modes of continuous molecular evolution. As shown in the past, we
will create biotechnological applications from basic scientific questions (see our NanoTemper Startup). The starting grant will
allow us to compete with Jack Szostak who very recently picked up our approach [JACS 131, 9628 (2009)].
Max ERC Funding
1 487 827 €
Duration
Start date: 2010-08-01, End date: 2015-07-31
Project acronym AVIAN DIMORPHISM
Project The genomic and transcriptomic locus of sex-specific selection in birds
Researcher (PI) Judith Elizabeth Mank
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Starting Grant (StG), LS8, ERC-2010-StG_20091118
Summary It has long been understood that genes contribute to phenotypes that are then the basis of selection. However, the nature and process of this relationship remains largely theoretical, and the relative contribution of change in gene expression and coding sequence to phenotypic diversification is unclear. The aim of this proposal is to fuse information about sexually dimorphic phenotypes, the mating systems and sexually antagonistic selective agents that shape sexual dimorphism, and the sex-biased gene expression patterns that encode sexual dimorphisms, in order to create a cohesive integrated understanding of the relationship between evolution, the genome, and the animal form. The primary approach of this project is to harnesses emergent DNA sequencing technologies in order to measure evolutionary change in gene expression and coding sequence in response to different sex-specific selection regimes in a clade of birds with divergent mating systems. Sex-specific selection pressures arise in large part as a consequence of mating system, however males and females share nearly identical genomes, especially in the vertebrates where the sex chromosomes house very small proportions of the overall transcriptome. This single shared genome creates sex-specific phenotypes via different gene expression levels in females and males, and these sex-biased genes connect sexual dimorphisms, and the sexually antagonistic selection pressures that shape them, with the regions of the genome that encode them.
The Galloanserae (fowl and waterfowl) will be used to in the proposed project, as this clade combines the necessary requirements of both variation in mating systems and a well-conserved reference genome (chicken). The study species selected from within the Galloanserae for the proposal exhibit a range of sexual dimorphism and sperm competition, and this will be exploited with next generation (454 and Illumina) genomic and transcriptomic data to study the gene expression patterns that underlie sexual dimorphisms, and the evolutionary pressures acting on them. This work will be complemented by the development of mathematical models of sex-specific evolution that will be tested against the gene expression and gene sequence data in order to understand the mechanisms by which sex-specific selection regimes, arising largely from mating systems, shape the phenotype via the genome.
Summary
It has long been understood that genes contribute to phenotypes that are then the basis of selection. However, the nature and process of this relationship remains largely theoretical, and the relative contribution of change in gene expression and coding sequence to phenotypic diversification is unclear. The aim of this proposal is to fuse information about sexually dimorphic phenotypes, the mating systems and sexually antagonistic selective agents that shape sexual dimorphism, and the sex-biased gene expression patterns that encode sexual dimorphisms, in order to create a cohesive integrated understanding of the relationship between evolution, the genome, and the animal form. The primary approach of this project is to harnesses emergent DNA sequencing technologies in order to measure evolutionary change in gene expression and coding sequence in response to different sex-specific selection regimes in a clade of birds with divergent mating systems. Sex-specific selection pressures arise in large part as a consequence of mating system, however males and females share nearly identical genomes, especially in the vertebrates where the sex chromosomes house very small proportions of the overall transcriptome. This single shared genome creates sex-specific phenotypes via different gene expression levels in females and males, and these sex-biased genes connect sexual dimorphisms, and the sexually antagonistic selection pressures that shape them, with the regions of the genome that encode them.
The Galloanserae (fowl and waterfowl) will be used to in the proposed project, as this clade combines the necessary requirements of both variation in mating systems and a well-conserved reference genome (chicken). The study species selected from within the Galloanserae for the proposal exhibit a range of sexual dimorphism and sperm competition, and this will be exploited with next generation (454 and Illumina) genomic and transcriptomic data to study the gene expression patterns that underlie sexual dimorphisms, and the evolutionary pressures acting on them. This work will be complemented by the development of mathematical models of sex-specific evolution that will be tested against the gene expression and gene sequence data in order to understand the mechanisms by which sex-specific selection regimes, arising largely from mating systems, shape the phenotype via the genome.
Max ERC Funding
1 350 804 €
Duration
Start date: 2011-01-01, End date: 2016-07-31
Project acronym BETATOBETA
Project The molecular basis of pancreatic beta cell replication
Researcher (PI) Yuval Dor
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Starting Grant (StG), LS4, ERC-2010-StG_20091118
Summary A fundamental challenge of pancreas biology is to understand and manipulate the determinants of beta cell mass. The homeostatic maintenance of adult beta cell mass relies largely on replication of differentiated beta cells, but the triggers and signaling pathways involved remain poorly understood. Here I propose to investigate the physiological and molecular mechanisms that control beta cell replication. First, novel transgenic mouse tools will be used to isolate live replicating beta cells and to examine the genetic program of beta cell replication in vivo. Information gained will provide insights into the molecular biology of cell division in vivo. Additionally, these experiments will address critical unresolved questions in beta cell biology, for example whether duplication involves transient dedifferentiation. Second, genetic and pharmacologic tools will be used to dissect the signaling pathways controlling the entry of beta cells to the cell division cycle, with emphasis on the roles of glucose and insulin, the key physiological input and output of beta cells. The expected outcome of these studies is a detailed molecular understanding of the homeostatic maintenance of beta cell mass, describing how beta cell function is linked to beta cell number in vivo. This may suggest new targets and concepts for pharmacologic intervention, towards the development of regenerative therapy strategies in diabetes. More generally, the experiments will shed light on one of the greatest mysteries of developmental biology, namely how organs achieve and maintain their correct size. A fundamental challenge of pancreas biology is to understand and manipulate the determinants of beta cell mass. The homeostatic maintenance of adult beta cell mass relies largely on replication of differentiated beta cells, but the triggers and signaling pathways involved remain poorly understood. Here I propose to investigate the physiological and molecular mechanisms that control beta cell replication. First, novel transgenic mouse tools will be used to isolate live replicating beta cells and to examine the genetic program of beta cell replication in vivo. Information gained will provide insights into the molecular biology of cell division in vivo. Additionally, these experiments will address critical unresolved questions in beta cell biology, for example whether duplication involves transient dedifferentiation. Second, genetic and pharmacologic tools will be used to dissect the signaling pathways controlling the entry of beta cells to the cell division cycle, with emphasis on the roles of glucose and insulin, the key physiological input and output of beta cells. The expected outcome of these studies is a detailed molecular understanding of the homeostatic maintenance of beta cell mass, describing how beta cell function is linked to beta cell number in vivo. This may suggest new targets and concepts for pharmacologic intervention, towards the development of regenerative therapy strategies in diabetes. More generally, the experiments will shed light on one of the greatest mysteries of developmental biology, namely how organs achieve and maintain their correct size.
Summary
A fundamental challenge of pancreas biology is to understand and manipulate the determinants of beta cell mass. The homeostatic maintenance of adult beta cell mass relies largely on replication of differentiated beta cells, but the triggers and signaling pathways involved remain poorly understood. Here I propose to investigate the physiological and molecular mechanisms that control beta cell replication. First, novel transgenic mouse tools will be used to isolate live replicating beta cells and to examine the genetic program of beta cell replication in vivo. Information gained will provide insights into the molecular biology of cell division in vivo. Additionally, these experiments will address critical unresolved questions in beta cell biology, for example whether duplication involves transient dedifferentiation. Second, genetic and pharmacologic tools will be used to dissect the signaling pathways controlling the entry of beta cells to the cell division cycle, with emphasis on the roles of glucose and insulin, the key physiological input and output of beta cells. The expected outcome of these studies is a detailed molecular understanding of the homeostatic maintenance of beta cell mass, describing how beta cell function is linked to beta cell number in vivo. This may suggest new targets and concepts for pharmacologic intervention, towards the development of regenerative therapy strategies in diabetes. More generally, the experiments will shed light on one of the greatest mysteries of developmental biology, namely how organs achieve and maintain their correct size. A fundamental challenge of pancreas biology is to understand and manipulate the determinants of beta cell mass. The homeostatic maintenance of adult beta cell mass relies largely on replication of differentiated beta cells, but the triggers and signaling pathways involved remain poorly understood. Here I propose to investigate the physiological and molecular mechanisms that control beta cell replication. First, novel transgenic mouse tools will be used to isolate live replicating beta cells and to examine the genetic program of beta cell replication in vivo. Information gained will provide insights into the molecular biology of cell division in vivo. Additionally, these experiments will address critical unresolved questions in beta cell biology, for example whether duplication involves transient dedifferentiation. Second, genetic and pharmacologic tools will be used to dissect the signaling pathways controlling the entry of beta cells to the cell division cycle, with emphasis on the roles of glucose and insulin, the key physiological input and output of beta cells. The expected outcome of these studies is a detailed molecular understanding of the homeostatic maintenance of beta cell mass, describing how beta cell function is linked to beta cell number in vivo. This may suggest new targets and concepts for pharmacologic intervention, towards the development of regenerative therapy strategies in diabetes. More generally, the experiments will shed light on one of the greatest mysteries of developmental biology, namely how organs achieve and maintain their correct size.
Max ERC Funding
1 445 000 €
Duration
Start date: 2010-09-01, End date: 2015-08-31
Project acronym BIG_IDEA
Project Building an Integrated Genetic Infectious Disease Epidemiology Approach
Researcher (PI) Francois Balloux
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Starting Grant (StG), LS8, ERC-2010-StG_20091118
Summary Epidemiology and public health planning will increasingly rely on the analysis of genetic sequence data. The recent swine-derived influenza A/H1N1 pandemic may represent a tipping point in this trend, as it is arguably the first time when multiple strains of a human pathogen have been sequenced essentially in real time from the very beginning of its spread. However, the full potential of genetic information cannot be fully exploited to infer the spread of epidemics due to the lack of statistical methodologies capable of reconstructing transmission routes from genetic data structured both in time and space. To address this urgent need, we propose to develop a methodological framework for the reconstruction of the spatiotemporal dynamics of disease outbreaks and epidemics based on genetic sequence data. Rather than reconstructing most recent common ancestors as in phylogenetics, we will directly infer the most likely ancestries among the sampled isolates. This represents an entirely novel paradigm and allows for the development of statistically coherent and powerful inference software within a Bayesian framework. The methodological framework will be developed in parallel with the analysis of real genetic/genomic data from important human pathogens. We will in particular focus on the 2009 A/H1N1 pandemic influenza, methicilin-resistant Staphylococcus aureus clones (MRSAs), Batrachochytrium dendrobatidis, a fungus currently devastating amphibian populations worldwide. The tools we are proposing to develop are likely to impact radically on the field of infectious disease epidemiology and affect the way infectious emerging pathogens are monitored by biologists and public health professionals.
Summary
Epidemiology and public health planning will increasingly rely on the analysis of genetic sequence data. The recent swine-derived influenza A/H1N1 pandemic may represent a tipping point in this trend, as it is arguably the first time when multiple strains of a human pathogen have been sequenced essentially in real time from the very beginning of its spread. However, the full potential of genetic information cannot be fully exploited to infer the spread of epidemics due to the lack of statistical methodologies capable of reconstructing transmission routes from genetic data structured both in time and space. To address this urgent need, we propose to develop a methodological framework for the reconstruction of the spatiotemporal dynamics of disease outbreaks and epidemics based on genetic sequence data. Rather than reconstructing most recent common ancestors as in phylogenetics, we will directly infer the most likely ancestries among the sampled isolates. This represents an entirely novel paradigm and allows for the development of statistically coherent and powerful inference software within a Bayesian framework. The methodological framework will be developed in parallel with the analysis of real genetic/genomic data from important human pathogens. We will in particular focus on the 2009 A/H1N1 pandemic influenza, methicilin-resistant Staphylococcus aureus clones (MRSAs), Batrachochytrium dendrobatidis, a fungus currently devastating amphibian populations worldwide. The tools we are proposing to develop are likely to impact radically on the field of infectious disease epidemiology and affect the way infectious emerging pathogens are monitored by biologists and public health professionals.
Max ERC Funding
1 483 080 €
Duration
Start date: 2010-11-01, End date: 2015-10-31
Project acronym BIO2CHEM-D
Project Biomass to chemicals: Catalysis design from first principles for a sustainable chemical industry
Researcher (PI) Nuria Lopez
Host Institution (HI) FUNDACIO PRIVADA INSTITUT CATALA D'INVESTIGACIO QUIMICA
Call Details Starting Grant (StG), PE4, ERC-2010-StG_20091028
Summary The use of renewable feedstocks by the chemical industry is fundamental due to both the depletion of fossil
resources and the increasing pressure of environmental concerns. Biomass can act as a sustainable source of
organic industrial chemicals; however, the establishment of a renewable chemical industry that is
economically competitive with the present oil-based one requires the development of new processes to
convert biomass-derived compounds into useful industrial materials following the principles of green
chemistry. To achieve these goals, developments in several fields including heterogeneous catalysis are
needed. One of the ways to accelerate the discovery of new potentially active, selective and stable catalysts is
the massive use of computational chemistry. Recent advances have demonstrated that Density Functional
Theory coupled to ab initio thermodynamics, transition state theory and microkinetic analysis can provide a
full view of the catalytic phenomena.
The aim of the present project is thus to employ these well-tested computational techniques to the
development of a theoretical framework that can accelerate the identification of new catalysts for the
conversion of biomass derived target compounds into useful chemicals. Since compared to petroleum-based
materials-biomass derived ones are multifuncionalized, the search for new catalytic materials and processes
has a strong requirement in the selectivity of the chemical transformations. The main challenges in the
project are related to the high functionalization of the molecules, their liquid nature and the large number of
potentially competitive reaction paths. The requirements of specificity and selectivity in the chemical
transformations while keeping a reasonably flexible framework constitute a major objective. The work will
be divided in three main work packages, one devoted to the properties of small molecules or fragments
containing a single functional group; the second addresses competition in multiple functionalized molecules;
and third is dedicated to the specific transformations of two molecules that have already been identified as
potential platform generators. The goal is to identify suitable candidates that could be synthetized and tested
in the Institute facilities.
Summary
The use of renewable feedstocks by the chemical industry is fundamental due to both the depletion of fossil
resources and the increasing pressure of environmental concerns. Biomass can act as a sustainable source of
organic industrial chemicals; however, the establishment of a renewable chemical industry that is
economically competitive with the present oil-based one requires the development of new processes to
convert biomass-derived compounds into useful industrial materials following the principles of green
chemistry. To achieve these goals, developments in several fields including heterogeneous catalysis are
needed. One of the ways to accelerate the discovery of new potentially active, selective and stable catalysts is
the massive use of computational chemistry. Recent advances have demonstrated that Density Functional
Theory coupled to ab initio thermodynamics, transition state theory and microkinetic analysis can provide a
full view of the catalytic phenomena.
The aim of the present project is thus to employ these well-tested computational techniques to the
development of a theoretical framework that can accelerate the identification of new catalysts for the
conversion of biomass derived target compounds into useful chemicals. Since compared to petroleum-based
materials-biomass derived ones are multifuncionalized, the search for new catalytic materials and processes
has a strong requirement in the selectivity of the chemical transformations. The main challenges in the
project are related to the high functionalization of the molecules, their liquid nature and the large number of
potentially competitive reaction paths. The requirements of specificity and selectivity in the chemical
transformations while keeping a reasonably flexible framework constitute a major objective. The work will
be divided in three main work packages, one devoted to the properties of small molecules or fragments
containing a single functional group; the second addresses competition in multiple functionalized molecules;
and third is dedicated to the specific transformations of two molecules that have already been identified as
potential platform generators. The goal is to identify suitable candidates that could be synthetized and tested
in the Institute facilities.
Max ERC Funding
1 496 200 €
Duration
Start date: 2010-10-01, End date: 2015-09-30
Project acronym BIOMIM
Project Biomimetic films and membranes as advanced materials for studies on cellular processes
Researcher (PI) Catherine Cecile Picart
Host Institution (HI) INSTITUT POLYTECHNIQUE DE GRENOBLE
Call Details Starting Grant (StG), PE5, ERC-2010-StG_20091028
Summary The main objective nowadays in the field of biomaterials is to design highly performing bioinspired materials learning from natural processes. Importantly, biochemical and physical cues are key parameters that can affect cellular processes. Controlling processes that occur at the cell/material interface is also of prime importance to guide the cell response. The main aim of the current project is to develop novel functional bio-nanomaterials for in vitro biological studies. Our strategy is based on two related projects.
The first project deals with the rational design of smart films with foreseen applications in musculoskeletal tissue engineering. We will gain knowledge of key cellular processes by designing well defined self-assembled thin coatings. These multi-functional surfaces with bioactivity (incorporation of growth factors), mechanical (film stiffness) and topographical properties (spatial control of the film s properties) will serve as tools to mimic the complexity of the natural materials in vivo and to present bioactive molecules in the solid phase. We will get a better fundamental understanding of how cellular functions, including adhesion and differentiation of muscle cells are affected by the materials s surface properties.
In the second project, we will investigate at the molecular level a crucial aspect of cell adhesion and motility, which is the intracellular linkage between the plasma membrane and the cell cytoskeleton. We aim to elucidate the role of ERM proteins, especially ezrin and moesin, in the direct linkage between the plasma membrane and actin filaments. Here again, we will use a well defined microenvironment in vitro to simplify the complexity of the interactions that occur in cellulo. To this end, lipid membranes containing a key regulator lipid from the phosphoinositides familly, PIP2, will be employed in conjunction with purified proteins to investigate actin regulation by ERM proteins in the presence of PIP2-membranes.
Summary
The main objective nowadays in the field of biomaterials is to design highly performing bioinspired materials learning from natural processes. Importantly, biochemical and physical cues are key parameters that can affect cellular processes. Controlling processes that occur at the cell/material interface is also of prime importance to guide the cell response. The main aim of the current project is to develop novel functional bio-nanomaterials for in vitro biological studies. Our strategy is based on two related projects.
The first project deals with the rational design of smart films with foreseen applications in musculoskeletal tissue engineering. We will gain knowledge of key cellular processes by designing well defined self-assembled thin coatings. These multi-functional surfaces with bioactivity (incorporation of growth factors), mechanical (film stiffness) and topographical properties (spatial control of the film s properties) will serve as tools to mimic the complexity of the natural materials in vivo and to present bioactive molecules in the solid phase. We will get a better fundamental understanding of how cellular functions, including adhesion and differentiation of muscle cells are affected by the materials s surface properties.
In the second project, we will investigate at the molecular level a crucial aspect of cell adhesion and motility, which is the intracellular linkage between the plasma membrane and the cell cytoskeleton. We aim to elucidate the role of ERM proteins, especially ezrin and moesin, in the direct linkage between the plasma membrane and actin filaments. Here again, we will use a well defined microenvironment in vitro to simplify the complexity of the interactions that occur in cellulo. To this end, lipid membranes containing a key regulator lipid from the phosphoinositides familly, PIP2, will be employed in conjunction with purified proteins to investigate actin regulation by ERM proteins in the presence of PIP2-membranes.
Max ERC Funding
1 499 996 €
Duration
Start date: 2011-06-01, End date: 2016-05-31
Project acronym BIOMOF
Project Biomineral-inspired growth and processing of metal-organic frameworks
Researcher (PI) Darren Bradshaw
Host Institution (HI) UNIVERSITY OF SOUTHAMPTON
Call Details Starting Grant (StG), PE5, ERC-2010-StG_20091028
Summary This ERC-StG proposal, BIOMOF, outlines a dual strategy for the growth and processing of porous metal-organic framework (MOF) materials, inspired by the interfacial interactions that characterise highly controlled biomineralisation processes. The aim is to prepare MOF (bio)-composite materials of hierarchical structure and multi-modal functionality to address key societal challenges in healthcare, catalysis and energy. In order for MOFs to reach their full potential, a transformative approach to their growth, and in particular their processability, is required since the insoluble macroscopic micron-sized crystals resulting from conventional syntheses are unsuitable for many applications. The BIOMOF project defines chemically flexible routes to MOFs under mild conditions, where the added value with respect to wide-ranging experimental procedures for the growth and processing of crystalline controllably nanoscale MOF materials with tunable structure and functionality that display significant porosity for wide-ranging applications is extremely high. Theme 1 exploits protein vesicles and abundant biopolymer matrices for the confined growth of soluble nanoscale MOFs for high-end biomedical applications such as cell imaging and targeted drug delivery, whereas theme 2 focuses on the cost-effective preparation of hierarchically porous MOF composites over several length scales, of relevance to bulk industrial applications such as sustainable catalysis, separations and gas-storage. This diverse yet complementary range of applications arising simply from the way the MOF is processed, coupled with the versatile structural and physical properties of MOFs themselves indicates strongly that the BIOMOF concept is a powerful convergent new approach to applied materials chemistry.
Summary
This ERC-StG proposal, BIOMOF, outlines a dual strategy for the growth and processing of porous metal-organic framework (MOF) materials, inspired by the interfacial interactions that characterise highly controlled biomineralisation processes. The aim is to prepare MOF (bio)-composite materials of hierarchical structure and multi-modal functionality to address key societal challenges in healthcare, catalysis and energy. In order for MOFs to reach their full potential, a transformative approach to their growth, and in particular their processability, is required since the insoluble macroscopic micron-sized crystals resulting from conventional syntheses are unsuitable for many applications. The BIOMOF project defines chemically flexible routes to MOFs under mild conditions, where the added value with respect to wide-ranging experimental procedures for the growth and processing of crystalline controllably nanoscale MOF materials with tunable structure and functionality that display significant porosity for wide-ranging applications is extremely high. Theme 1 exploits protein vesicles and abundant biopolymer matrices for the confined growth of soluble nanoscale MOFs for high-end biomedical applications such as cell imaging and targeted drug delivery, whereas theme 2 focuses on the cost-effective preparation of hierarchically porous MOF composites over several length scales, of relevance to bulk industrial applications such as sustainable catalysis, separations and gas-storage. This diverse yet complementary range of applications arising simply from the way the MOF is processed, coupled with the versatile structural and physical properties of MOFs themselves indicates strongly that the BIOMOF concept is a powerful convergent new approach to applied materials chemistry.
Max ERC Funding
1 492 970 €
Duration
Start date: 2010-11-01, End date: 2015-10-31
Project acronym BIOMOTIV
Project Why do we do what we do? Biological, psychological and computational bases of motivation
Researcher (PI) Mathias Pessiglione
Host Institution (HI) INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
Call Details Starting Grant (StG), LS5, ERC-2010-StG_20091118
Summary We are largely unaware of our own motives. Understanding our motives can be reduced to knowing how we form goals and these goals translate into behavior. Goals can be defined as pleasurable situations that we particularly value and that we intend to reach. Recent investigation in the emerging field of neuro-economics has put forward a neuronal network constituting a brain valuation system (BVS). We wish to build a more comprehensive account of motivational processes, investigating not only valuation and choice but also effort (how much energy we would spend to attain a goal). More specifically, our aims are to better describe 1) how the brain assigns values to various objects and actions, 2) how values depend on parameters such as reward magnitude, probability, delay and cost, 3) how values are affected by social contexts, 4) how values are modified through learning and 5) how values influence the brain systems (perceptual, cognitive and motor) that underpin behavioral performance. To these aims, we would combine three approaches: 1) human cognitive neuroscience, which is central as we ultimately wish to understand ourselves, as well as human pathological conditions where motivation is either deficient (apathy) or out of control (compulsion), 2) primate neurophysiology, which is essential to describe information processing at the single-unit level and to derive causality by observing behavioral consequences of brain manipulations, 3) computational modeling, which is mandatory to link quantitatively the different descriptions levels (single-unit recordings, local field potentials, regional BOLD signal, vegetative manifestations and motor outputs). A bayesian framework will be developed to infer from experimental measures the subjects prior beliefs and value functions. We believe that our team, bringing together three complementary perspectives on motivation within a clinical environment, would represent a unique education and research center in Europe.
Summary
We are largely unaware of our own motives. Understanding our motives can be reduced to knowing how we form goals and these goals translate into behavior. Goals can be defined as pleasurable situations that we particularly value and that we intend to reach. Recent investigation in the emerging field of neuro-economics has put forward a neuronal network constituting a brain valuation system (BVS). We wish to build a more comprehensive account of motivational processes, investigating not only valuation and choice but also effort (how much energy we would spend to attain a goal). More specifically, our aims are to better describe 1) how the brain assigns values to various objects and actions, 2) how values depend on parameters such as reward magnitude, probability, delay and cost, 3) how values are affected by social contexts, 4) how values are modified through learning and 5) how values influence the brain systems (perceptual, cognitive and motor) that underpin behavioral performance. To these aims, we would combine three approaches: 1) human cognitive neuroscience, which is central as we ultimately wish to understand ourselves, as well as human pathological conditions where motivation is either deficient (apathy) or out of control (compulsion), 2) primate neurophysiology, which is essential to describe information processing at the single-unit level and to derive causality by observing behavioral consequences of brain manipulations, 3) computational modeling, which is mandatory to link quantitatively the different descriptions levels (single-unit recordings, local field potentials, regional BOLD signal, vegetative manifestations and motor outputs). A bayesian framework will be developed to infer from experimental measures the subjects prior beliefs and value functions. We believe that our team, bringing together three complementary perspectives on motivation within a clinical environment, would represent a unique education and research center in Europe.
Max ERC Funding
1 346 000 €
Duration
Start date: 2011-03-01, End date: 2016-08-31
Project acronym BIOPROPERTY
Project Biomedical Research and the Future of Property Rights
Researcher (PI) Javier Lezaun Barreras
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Starting Grant (StG), SH2, ERC-2010-StG_20091209
Summary This research project investigates the dynamics of private and public property in contemporary biomedical research. It will develop an analytical framework combining insights from science and technology studies, economic sociology, and legal and political philosophy, and pursues a social scientific investigation of the evolution of intellectual property rights in three fields of bioscientific research: 1) the use of transgenic research mice; 2) the legal status of totipotent and pluripotent stem cell lines; and 3) modes of collaboration for research and development on neglected diseases. These three domains, and their attendant modes of appropriation, will be compared across three general research themes: a) the production of public scientific goods; b) categories of appropriation; and c) the moral economy of research. The project rests on close observation of research practices in these three domains. The BioProperty research programme will track the trajectories of property rights and property objects in each of the three fields of biomedical research.
Summary
This research project investigates the dynamics of private and public property in contemporary biomedical research. It will develop an analytical framework combining insights from science and technology studies, economic sociology, and legal and political philosophy, and pursues a social scientific investigation of the evolution of intellectual property rights in three fields of bioscientific research: 1) the use of transgenic research mice; 2) the legal status of totipotent and pluripotent stem cell lines; and 3) modes of collaboration for research and development on neglected diseases. These three domains, and their attendant modes of appropriation, will be compared across three general research themes: a) the production of public scientific goods; b) categories of appropriation; and c) the moral economy of research. The project rests on close observation of research practices in these three domains. The BioProperty research programme will track the trajectories of property rights and property objects in each of the three fields of biomedical research.
Max ERC Funding
887 602 €
Duration
Start date: 2011-03-01, End date: 2014-12-31
Project acronym BLAST
Project Eclipsing binary stars as cutting edge laboratories for astrophysics of stellar
structure, stellar evolution and planet formation
Researcher (PI) Maciej Konacki
Host Institution (HI) CENTRUM ASTRONOMICZNE IM. MIKOLAJAKOPERNIKA POLSKIEJ AKADEMII NAUK
Call Details Starting Grant (StG), PE9, ERC-2010-StG_20091028
Summary Spectroscopic binary stars (SB2s) and in particular spectroscopic eclipsing binaries are one of the most useful objects in astrophysics. Their photometric and spectroscopic observations allow one to determine basic parameters of stars and carry out a wide range of tests of stellar structure, evolution and dynamics. Perhaps somewhat surprisingly, they can also contribute to our understanding of the formation and evolution of (extrasolar) planets. We will study eclipsing binary stars by combining the classic - stellar astronomy - and the modern - extrasolar planets - subjects into a cutting edge project.
We propose to search for and subsequently characterize circumbinary planets around ~350 eclipsing SB2s using our own novel cutting edge radial velocity technique for binary stars and a modern version of the photometry based eclipse timing of eclipsing binary stars employing 0.5-m robotic telescopes. We will also derive basic parameters of up to ~700 stars (~350 binaries) with an unprecedented precision. In particular for about 50% of our sample we expect to deliver masses of the components with an accuracy ~10-100 times better than the current state of the art.
Our project will provide unique constraints for the theories of planet formation and evolution and an unprecedented in quality set of the basic parameters of stars to test the theories of the stellar structure and evolution.
Summary
Spectroscopic binary stars (SB2s) and in particular spectroscopic eclipsing binaries are one of the most useful objects in astrophysics. Their photometric and spectroscopic observations allow one to determine basic parameters of stars and carry out a wide range of tests of stellar structure, evolution and dynamics. Perhaps somewhat surprisingly, they can also contribute to our understanding of the formation and evolution of (extrasolar) planets. We will study eclipsing binary stars by combining the classic - stellar astronomy - and the modern - extrasolar planets - subjects into a cutting edge project.
We propose to search for and subsequently characterize circumbinary planets around ~350 eclipsing SB2s using our own novel cutting edge radial velocity technique for binary stars and a modern version of the photometry based eclipse timing of eclipsing binary stars employing 0.5-m robotic telescopes. We will also derive basic parameters of up to ~700 stars (~350 binaries) with an unprecedented precision. In particular for about 50% of our sample we expect to deliver masses of the components with an accuracy ~10-100 times better than the current state of the art.
Our project will provide unique constraints for the theories of planet formation and evolution and an unprecedented in quality set of the basic parameters of stars to test the theories of the stellar structure and evolution.
Max ERC Funding
1 500 000 €
Duration
Start date: 2010-12-01, End date: 2016-11-30
Project acronym BLENDS
Project Between Direct and Indirect Discourse: Shifting Perspective in Blended Discourse
Researcher (PI) Emar Maier
Host Institution (HI) RIJKSUNIVERSITEIT GRONINGEN
Call Details Starting Grant (StG), SH4, ERC-2010-StG_20091209
Summary A fundamental feature of language is that it allows us to reproduce what others have said. It is traditionally assumed that there
are two ways of doing this: direct discourse, where you preserve the original speech act verbatim, and indirect discourse,
where you paraphrase it in your own words. In accordance with this dichotomy, linguists have posited a number of universal
characteristics to distinguish the two modes. At the same time, we are seeing more and more examples that seem to fall
somewhere in between. I reject the direct indirect distinction and replace it with a new paradigm of blended discourse.
Combining insights from philosophy and linguistics, my framework has only one kind of speech reporting, in which a speaker
always attempts to convey the content of the reported words from her own perspective, but can quote certain parts verbatim,
thereby effectively switching to the reported perspective.
To explain why some languages are shiftier than others, I hypothesize that a greater distance from face-to-face
communication, with the possibility of extra- and paralinguistic perspective marking, necessitated the introduction of
an artificial direct indirect separation. I test this hypothesis by investigating languages that are closely tied to direct
communication: Dutch child language, as recent studies hint at a very late acquisition of the direct indirect distinction; Dutch
Sign Language, which has a special role shift marker that bears a striking resemblance to the quotational shift of blended
discourse; and Ancient Greek, where philologists have long been observing perspective shifts.
In sum, my research combines a new philosophical insight on the nature of reported speech with formal semantic rigor and
linguistic data from child language experiments, native signers, and Greek philology.
Summary
A fundamental feature of language is that it allows us to reproduce what others have said. It is traditionally assumed that there
are two ways of doing this: direct discourse, where you preserve the original speech act verbatim, and indirect discourse,
where you paraphrase it in your own words. In accordance with this dichotomy, linguists have posited a number of universal
characteristics to distinguish the two modes. At the same time, we are seeing more and more examples that seem to fall
somewhere in between. I reject the direct indirect distinction and replace it with a new paradigm of blended discourse.
Combining insights from philosophy and linguistics, my framework has only one kind of speech reporting, in which a speaker
always attempts to convey the content of the reported words from her own perspective, but can quote certain parts verbatim,
thereby effectively switching to the reported perspective.
To explain why some languages are shiftier than others, I hypothesize that a greater distance from face-to-face
communication, with the possibility of extra- and paralinguistic perspective marking, necessitated the introduction of
an artificial direct indirect separation. I test this hypothesis by investigating languages that are closely tied to direct
communication: Dutch child language, as recent studies hint at a very late acquisition of the direct indirect distinction; Dutch
Sign Language, which has a special role shift marker that bears a striking resemblance to the quotational shift of blended
discourse; and Ancient Greek, where philologists have long been observing perspective shifts.
In sum, my research combines a new philosophical insight on the nature of reported speech with formal semantic rigor and
linguistic data from child language experiments, native signers, and Greek philology.
Max ERC Funding
677 254 €
Duration
Start date: 2011-03-01, End date: 2016-08-31
Project acronym BLUELEAF
Project The adaptive advantages, evolution and development of iridescence in leaves
Researcher (PI) Heather Whitney
Host Institution (HI) UNIVERSITY OF BRISTOL
Call Details Starting Grant (StG), LS8, ERC-2010-StG_20091118
Summary Iridescence is a form of structural colour which changes hue according to the angle from which it is viewed. Blue iridescence caused by multilayers has been described on the leaves of taxonomically diverse species such as the lycophyte Selaginella uncinata and the angiosperm Begonia pavonina. While much is known about the role of leaf pigment colour, the adaptive role of leaf iridescence is unknown. Hypotheses have been put forward including 1) iridescence acts as disruptive camouflage against herbivores 2) it enhances light sensing and capture in low light conditions 3) it is a photoprotective mechanism to protect shade-adapted plants against high light levels. These hypotheses are not mutually exclusive: each function may be of varying importance in different environments. To understand any one function, we need a interdisciplinary approach considering all three potential functions and their interactions. The objective of my research would be to test these hypotheses, using animal behavioural and plant physiological methods, to determine the functions of leaf iridescence and how the plant has adapted to the reflection of developmentally vital wavelengths. Use of molecular and bioinformatics methods will elucidate the genes that control the production of this potentially multifunctional optical phenomenon. This research will provide a pioneering study into the generation, developmental impact and adaptive significance of iridescence in leaves. It would also answer questions at the frontiers of several fields including those of plant evolution, insect vision, methods of camouflage, the generation and role of animal iridescence, and could also potentially inspire synthetic biomimetic applications.
Summary
Iridescence is a form of structural colour which changes hue according to the angle from which it is viewed. Blue iridescence caused by multilayers has been described on the leaves of taxonomically diverse species such as the lycophyte Selaginella uncinata and the angiosperm Begonia pavonina. While much is known about the role of leaf pigment colour, the adaptive role of leaf iridescence is unknown. Hypotheses have been put forward including 1) iridescence acts as disruptive camouflage against herbivores 2) it enhances light sensing and capture in low light conditions 3) it is a photoprotective mechanism to protect shade-adapted plants against high light levels. These hypotheses are not mutually exclusive: each function may be of varying importance in different environments. To understand any one function, we need a interdisciplinary approach considering all three potential functions and their interactions. The objective of my research would be to test these hypotheses, using animal behavioural and plant physiological methods, to determine the functions of leaf iridescence and how the plant has adapted to the reflection of developmentally vital wavelengths. Use of molecular and bioinformatics methods will elucidate the genes that control the production of this potentially multifunctional optical phenomenon. This research will provide a pioneering study into the generation, developmental impact and adaptive significance of iridescence in leaves. It would also answer questions at the frontiers of several fields including those of plant evolution, insect vision, methods of camouflage, the generation and role of animal iridescence, and could also potentially inspire synthetic biomimetic applications.
Max ERC Funding
1 118 378 €
Duration
Start date: 2011-01-01, End date: 2016-07-31
Project acronym BONEMECHBIO
Project Frontier research in bone mechanobiology during normal physiology, disease and for tissue regeneration
Researcher (PI) Laoise Maria Cunningham
Host Institution (HI) NATIONAL UNIVERSITY OF IRELAND GALWAY
Call Details Starting Grant (StG), PE8, ERC-2010-StG_20091028
Summary While previous studies have investigated cell-signalling pathways that facilitate mechanotransduction and have provided a wealth of data, to date, in vivo mechanobiology is not fully understood. In the research study proposed the applicant will embark upon frontier research to delineate these specific aspects of bone mechanotransduction during normal physiology, disease and for tissue regeneration purposes. If these quantities were better understood the proposed research program will deliver significant advances in the understanding of the mechanical regulation of bone remodelling during normal physiology and osteoporosis, and will enhance approaches for regeneration of bone tissue for treatment of bone pathologies. The primary objective is to delineate the normal mechanosensory and signalling mechanisms of bone cells. The secondary objective is to determine whether the regulatory role of bone cells is inhibited or impaired during bone diseases such as osteoporosis. The final objective of this project is to develop an in vitro mechanical loading device that can enhance bone tissue regeneration and thereby advance current treatment approaches for bone pathologies. To address these objectives, five hypotheses have been defined, each of which will underpin the research of five work packages. A combination of experimental studies, using animal models and in vitro cell culture, and computational modelling will be taken to test each of these hypotheses. Answering these hypotheses will bring us closer to an understanding of the origins of bone mechanobiology and diseases such as osteoporosis. Furthermore, the results of these studies will facilitate development of novel approaches to enhance bone regeneration in vitro.
Summary
While previous studies have investigated cell-signalling pathways that facilitate mechanotransduction and have provided a wealth of data, to date, in vivo mechanobiology is not fully understood. In the research study proposed the applicant will embark upon frontier research to delineate these specific aspects of bone mechanotransduction during normal physiology, disease and for tissue regeneration purposes. If these quantities were better understood the proposed research program will deliver significant advances in the understanding of the mechanical regulation of bone remodelling during normal physiology and osteoporosis, and will enhance approaches for regeneration of bone tissue for treatment of bone pathologies. The primary objective is to delineate the normal mechanosensory and signalling mechanisms of bone cells. The secondary objective is to determine whether the regulatory role of bone cells is inhibited or impaired during bone diseases such as osteoporosis. The final objective of this project is to develop an in vitro mechanical loading device that can enhance bone tissue regeneration and thereby advance current treatment approaches for bone pathologies. To address these objectives, five hypotheses have been defined, each of which will underpin the research of five work packages. A combination of experimental studies, using animal models and in vitro cell culture, and computational modelling will be taken to test each of these hypotheses. Answering these hypotheses will bring us closer to an understanding of the origins of bone mechanobiology and diseases such as osteoporosis. Furthermore, the results of these studies will facilitate development of novel approaches to enhance bone regeneration in vitro.
Max ERC Funding
1 499 911 €
Duration
Start date: 2011-02-01, End date: 2016-01-31
Project acronym BORDERLANDS
Project Borderlands: Expanding Boundaries, Governance, and Power in the European Union's Relations with North Africa and the Middle East
Researcher (PI) Raffaella Alessandra Del Sarto
Host Institution (HI) EUROPEAN UNIVERSITY INSTITUTE
Call Details Starting Grant (StG), SH2, ERC-2010-StG_20091209
Summary Challenging the notion of Fortress Europe , the research investigates relations between the European Union and its southern periphery through the concept of borderlands . The concept emphasises the disaggregation of the triple function of borders demarcating state territory, authority, and national identity inherent in the Westphalian model of statehood. This process is most visible in (although not limited to) Europe, where integration has led to supranational areas of sovereignty, an internal market, a common currency, and a zone of free movement of people, each with a different territorial span. The project explores the complex and differentiated process by which the EU extends its unbundled functional and legal borders to the so-called southern Mediterranean (North Africa and parts of the Middle East), thereby transforming it into borderlands . They connect the European core with the periphery through various legal and functional border regimes, governance patterns, and the selective outsourcing of some EU border control duties. The overarching questions informing this research is whether, first, the borderland policies of the EU, described by some as a neo-medieval empire, is a functional consequence of the specific integration model pursued inside the EU, a matter of foreign policy choice or a local manifestation of a broader global phenomenon. Second, the project addresses the question of power dynamics that underwrite borderland governance, presuming a growing leverage of third country governments resulting from their co-optation as gatekeepers. Thus, while adopting an innovative approach, the project will enhance our understanding of EU-Mediterranean relations while also addressing crucial theoretical questions in international relations.
Summary
Challenging the notion of Fortress Europe , the research investigates relations between the European Union and its southern periphery through the concept of borderlands . The concept emphasises the disaggregation of the triple function of borders demarcating state territory, authority, and national identity inherent in the Westphalian model of statehood. This process is most visible in (although not limited to) Europe, where integration has led to supranational areas of sovereignty, an internal market, a common currency, and a zone of free movement of people, each with a different territorial span. The project explores the complex and differentiated process by which the EU extends its unbundled functional and legal borders to the so-called southern Mediterranean (North Africa and parts of the Middle East), thereby transforming it into borderlands . They connect the European core with the periphery through various legal and functional border regimes, governance patterns, and the selective outsourcing of some EU border control duties. The overarching questions informing this research is whether, first, the borderland policies of the EU, described by some as a neo-medieval empire, is a functional consequence of the specific integration model pursued inside the EU, a matter of foreign policy choice or a local manifestation of a broader global phenomenon. Second, the project addresses the question of power dynamics that underwrite borderland governance, presuming a growing leverage of third country governments resulting from their co-optation as gatekeepers. Thus, while adopting an innovative approach, the project will enhance our understanding of EU-Mediterranean relations while also addressing crucial theoretical questions in international relations.
Max ERC Funding
1 353 920 €
Duration
Start date: 2011-10-01, End date: 2017-03-31
Project acronym BOTTOM-UP_SYSCHEM
Project Systems Chemistry from Bottom Up: Switching, Gating and Oscillations in Non Enzymatic Peptide Networks
Researcher (PI) Gonen Ashkenasy
Host Institution (HI) BEN-GURION UNIVERSITY OF THE NEGEV
Call Details Starting Grant (StG), PE5, ERC-2010-StG_20091028
Summary The study of synthetic molecular networks is of fundamental importance for understanding the organizational principles of biological systems and may well be the key to unraveling the origins of life. In addition, such systems may be useful for parallel synthesis of molecules, implementation of catalysis via multi-step pathways, and as media for various applications in nano-medicine and nano-electronics. We have been involved recently in developing peptide-based replicating networks and revealed their dynamic characteristics. We argue here that the structural information embedded in the polypeptide chains is sufficiently rich to allow the construction of peptide 'Systems Chemistry', namely, to facilitate the use of replicating networks as cell-mimetics, featuring complex dynamic behavior. To bring this novel idea to reality, we plan to take a unique holistic approach by studying such networks both experimentally and via simulations, for elucidating basic-principles and towards applications in adjacent fields, such as molecular electronics. Towards realizing these aims, we will study three separate but inter-related objectives: (i) design and characterization of networks that react and rewire in response to external triggers, such as light, (ii) design of networks that operate via new dynamic rules of product formation that lead to oscillations, and (iii) exploitation of the molecular information gathered from the networks as means to control switching and gating in molecular electronic devices. We believe that achieving the project's objectives will be highly significant for the development of the arising field of Systems Chemistry, and in addition will provide valuable tools for studying related scientific fields, such as systems biology and molecular electronics.
Summary
The study of synthetic molecular networks is of fundamental importance for understanding the organizational principles of biological systems and may well be the key to unraveling the origins of life. In addition, such systems may be useful for parallel synthesis of molecules, implementation of catalysis via multi-step pathways, and as media for various applications in nano-medicine and nano-electronics. We have been involved recently in developing peptide-based replicating networks and revealed their dynamic characteristics. We argue here that the structural information embedded in the polypeptide chains is sufficiently rich to allow the construction of peptide 'Systems Chemistry', namely, to facilitate the use of replicating networks as cell-mimetics, featuring complex dynamic behavior. To bring this novel idea to reality, we plan to take a unique holistic approach by studying such networks both experimentally and via simulations, for elucidating basic-principles and towards applications in adjacent fields, such as molecular electronics. Towards realizing these aims, we will study three separate but inter-related objectives: (i) design and characterization of networks that react and rewire in response to external triggers, such as light, (ii) design of networks that operate via new dynamic rules of product formation that lead to oscillations, and (iii) exploitation of the molecular information gathered from the networks as means to control switching and gating in molecular electronic devices. We believe that achieving the project's objectives will be highly significant for the development of the arising field of Systems Chemistry, and in addition will provide valuable tools for studying related scientific fields, such as systems biology and molecular electronics.
Max ERC Funding
1 500 000 €
Duration
Start date: 2010-10-01, End date: 2015-09-30
Project acronym BRAINBALANCE
Project Rebalancing the brain:
Guiding brain recovery after stroke
Researcher (PI) Alexander Thomas Sack
Host Institution (HI) UNIVERSITEIT MAASTRICHT
Call Details Starting Grant (StG), SH4, ERC-2010-StG_20091209
Summary Damage to parietal cortex after stroke causes patients to become unaware of large parts of their surroundings and body parts. This so-called spatial neglect is hypothesised to be brought about by a stroke-induced imbalance between the left and right hemisphere. Some patients experience a partial recovery of lost abilities, but the factors that drive this rebalancing are unknown. The research proposed here will overcome this bottleneck in our understanding of the brain recovery phenomenon, and develop therapeutic approaches that for the first time will control, steer and speed up brain rebalancing after stroke. To that goal, we introduce a revolutionary approach in which TMS, fMRI, and EEG are applied simultaneously in healthy human volunteers to artificially unbalance the brain, and then study and control processes of rebalancing. Because we are one of the few groups worldwide that has accomplished this methodology, and that has the expertise to fully analyse the data it will yield, we are in a unique position to deliver both fundamental insights into brain plasticity, and derived new therapies. In brief, we will use TMS to (i) mimic spatial neglect in healthy volunteers while simultaneously monitoring the underlying neural network effects using fMRI/EEG, and to (ii) determine which exact brain reorganisation leads to an optimal behavioral recovery after injury. Importantly, we will use cutting-edge fMRI pattern recognition and machine learning algorithms to predict which concrete TMS treatment will specifically support this optimal functional reorganisation in the unbalanced brain. Finally, we will directly translate these fundamental findings into clinical practise and apply novel TMS protocols to rebalance the brain in patients suffering from parietal stroke.
Summary
Damage to parietal cortex after stroke causes patients to become unaware of large parts of their surroundings and body parts. This so-called spatial neglect is hypothesised to be brought about by a stroke-induced imbalance between the left and right hemisphere. Some patients experience a partial recovery of lost abilities, but the factors that drive this rebalancing are unknown. The research proposed here will overcome this bottleneck in our understanding of the brain recovery phenomenon, and develop therapeutic approaches that for the first time will control, steer and speed up brain rebalancing after stroke. To that goal, we introduce a revolutionary approach in which TMS, fMRI, and EEG are applied simultaneously in healthy human volunteers to artificially unbalance the brain, and then study and control processes of rebalancing. Because we are one of the few groups worldwide that has accomplished this methodology, and that has the expertise to fully analyse the data it will yield, we are in a unique position to deliver both fundamental insights into brain plasticity, and derived new therapies. In brief, we will use TMS to (i) mimic spatial neglect in healthy volunteers while simultaneously monitoring the underlying neural network effects using fMRI/EEG, and to (ii) determine which exact brain reorganisation leads to an optimal behavioral recovery after injury. Importantly, we will use cutting-edge fMRI pattern recognition and machine learning algorithms to predict which concrete TMS treatment will specifically support this optimal functional reorganisation in the unbalanced brain. Finally, we will directly translate these fundamental findings into clinical practise and apply novel TMS protocols to rebalance the brain in patients suffering from parietal stroke.
Max ERC Funding
1 344 853 €
Duration
Start date: 2011-04-01, End date: 2016-03-31
Project acronym BRAINDEVELOPMENT
Project How brain development underlies advances in cognition and emotion in childhood and adolescence
Researcher (PI) Eveline Adriana Maria Crone
Host Institution (HI) UNIVERSITEIT LEIDEN
Call Details Starting Grant (StG), SH4, ERC-2010-StG_20091209
Summary Thanks to the recent advances in mapping brain activation during task performance using functional Magnetic Resonance Imaging (i.e., studying the brain in action), it is now possible to study one of the oldest questions in psychology: how the development of neural circuitry underlies the development of cognition and emotion. The ‘Storm and Stress’ of adolescence, a period during which adolescents develop cognitively with great speed but are also risk-takers and sensitive to opinions of their peer group, has puzzled scientists for centuries. New technologies of brain mapping have the potential to shed new light on the mystery of adolescence. The approach proposed here concerns the investigation of brain regions which underlie developmental changes in cognitive, emotional and social-emotional functions over the course of child and adolescent development.
For this purpose I will measure functional brain development longitudinally across the age range 8-20 years by using a combined cross-sectional longitudinal design including 240 participants. Participants will take part in two testing sessions over a four-year-period in order to track the within-subject time courses of functional brain development for cognitive, emotional and social-emotional functions and to understand how these functions develop relative to each other in the same individuals, using multilevel models for change. The cross-sectional longitudinal assessment of cognitive, emotional and social-emotional functional brain development in relation to brain structure and hormone levels is unique in the international field and has the potential to provide new explanations for old questions. The application of brain mapping combined with multilevel models for change is original, and allows for the examination of developmental trajectories rather than age comparisons. An integrative mapping (i.e., combined with task performance and with biological markers) of functional brain development is important not only for theory development, but also for understanding how children learn new tasks and participate in a complex social world, and eventually to tailor educational programs to the needs of children.
Summary
Thanks to the recent advances in mapping brain activation during task performance using functional Magnetic Resonance Imaging (i.e., studying the brain in action), it is now possible to study one of the oldest questions in psychology: how the development of neural circuitry underlies the development of cognition and emotion. The ‘Storm and Stress’ of adolescence, a period during which adolescents develop cognitively with great speed but are also risk-takers and sensitive to opinions of their peer group, has puzzled scientists for centuries. New technologies of brain mapping have the potential to shed new light on the mystery of adolescence. The approach proposed here concerns the investigation of brain regions which underlie developmental changes in cognitive, emotional and social-emotional functions over the course of child and adolescent development.
For this purpose I will measure functional brain development longitudinally across the age range 8-20 years by using a combined cross-sectional longitudinal design including 240 participants. Participants will take part in two testing sessions over a four-year-period in order to track the within-subject time courses of functional brain development for cognitive, emotional and social-emotional functions and to understand how these functions develop relative to each other in the same individuals, using multilevel models for change. The cross-sectional longitudinal assessment of cognitive, emotional and social-emotional functional brain development in relation to brain structure and hormone levels is unique in the international field and has the potential to provide new explanations for old questions. The application of brain mapping combined with multilevel models for change is original, and allows for the examination of developmental trajectories rather than age comparisons. An integrative mapping (i.e., combined with task performance and with biological markers) of functional brain development is important not only for theory development, but also for understanding how children learn new tasks and participate in a complex social world, and eventually to tailor educational programs to the needs of children.
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-02-01, End date: 2016-01-31
Project acronym BRAINSHAPE
Project Objects in sight: the neural basis of visuomotor transformations for actions towards objects
Researcher (PI) Peter Anna J Janssen
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Starting Grant (StG), LS5, ERC-2010-StG_20091118
Summary Humans and other primates possess an exquisite capacity to grasp and manipulate objects. The seemingly effortless interaction with objects in everyday life is subserved by a number of cortical areas of the visual and the motor system. Recent research has highlighted that dorsal stream areas in the posterior parietal cortex are involved in object processing. Because parietal lesions do not impair object recognition, the encoding of object shape in posterior parietal cortex is considered to be important for the planning of actions towards objects. In order to succesfully grasp an object, the complex pattern of visual information impinging on the retina has to be transformed into a motor plan that can control the muscle contractions. The neural basis of visuomotor transformations necessary for directing actions towards objects, however, has remained largely unknown. This proposal aims to unravel the pathways and mechanisms involved in programming actions towards objects - an essential capacity for our very survival. We envision an integrated approach to study the transformation of visual information into motor commands in the macaque brain, combining functional imaging, single-cell recording, microstimulation and reversible inactivation. Our research efforts will be focussed on parietal area AIP and premotor area F5, two key brain areas for visually-guided grasping. Above all, this proposal will move beyond purely descriptive measurements of neural activity by implementing manipulations of brain activity to reveal behavioral effects and interdependencies of cortical areas. Finally the data obtained in this project will pave the way to use the neural activity recorded in visuomotor areas to act upon the environment by grasping objects by means of a robot hand.
Summary
Humans and other primates possess an exquisite capacity to grasp and manipulate objects. The seemingly effortless interaction with objects in everyday life is subserved by a number of cortical areas of the visual and the motor system. Recent research has highlighted that dorsal stream areas in the posterior parietal cortex are involved in object processing. Because parietal lesions do not impair object recognition, the encoding of object shape in posterior parietal cortex is considered to be important for the planning of actions towards objects. In order to succesfully grasp an object, the complex pattern of visual information impinging on the retina has to be transformed into a motor plan that can control the muscle contractions. The neural basis of visuomotor transformations necessary for directing actions towards objects, however, has remained largely unknown. This proposal aims to unravel the pathways and mechanisms involved in programming actions towards objects - an essential capacity for our very survival. We envision an integrated approach to study the transformation of visual information into motor commands in the macaque brain, combining functional imaging, single-cell recording, microstimulation and reversible inactivation. Our research efforts will be focussed on parietal area AIP and premotor area F5, two key brain areas for visually-guided grasping. Above all, this proposal will move beyond purely descriptive measurements of neural activity by implementing manipulations of brain activity to reveal behavioral effects and interdependencies of cortical areas. Finally the data obtained in this project will pave the way to use the neural activity recorded in visuomotor areas to act upon the environment by grasping objects by means of a robot hand.
Max ERC Funding
1 499 200 €
Duration
Start date: 2010-11-01, End date: 2015-10-31
Project acronym BRAINSTATES
Project Brain states, synapses and behaviour
Researcher (PI) James Poulet
Host Institution (HI) MAX DELBRUECK CENTRUM FUER MOLEKULARE MEDIZIN IN DER HELMHOLTZ-GEMEINSCHAFT (MDC)
Call Details Starting Grant (StG), LS5, ERC-2010-StG_20091118
Summary Global changes in patterns of neuronal activity or brain state are the first phenomenon recorded in the awake human brain (1). Changes in brain state are present in recordings of neocortical activity from mouse to man. It is now thought that changes in brain state are fundamental to normal brain function and neuronal computation. Despite their importance, we have very little idea about the underlying neuronal mechanisms that generate them or their precise impact on neuronal processing and behaviour. In previous work we have characterised brain state changes in a well characterised model for neuroscience research the mouse whisker system. We have recorded changes in the brain state in mouse cortex during whisker movements (2). In this proposal, we aim to use the mouse whisker system further to investigate the mechanisms and functions of changes in brain state. First we will use state of the art techniques to record and manipulate neuronal activity in the awake, behaving mouse to investigate the network and cellular mechanisms involved in generating brain state. Second we will use 2-photon microscopy to investigate the impact of brain state on excitatory and inhibitory synaptic integration in vivo. Finally we will use behaviourally trained mice to measure the impact of brain state changes on sensory perception and behaviour. This proposal will therefore provide fundamental insights into brain function at every step: mechanisms of changes in brain state, how neurons communicate with eachother and how the brain controls sensory perception and behaviour.
References
1 Berger H (1929) Archiv für Psychiatrie und Nervenkrankheiten 87:527-570.
2 Poulet JFA, Petersen CC (2008) Nature 454:881-885.
Summary
Global changes in patterns of neuronal activity or brain state are the first phenomenon recorded in the awake human brain (1). Changes in brain state are present in recordings of neocortical activity from mouse to man. It is now thought that changes in brain state are fundamental to normal brain function and neuronal computation. Despite their importance, we have very little idea about the underlying neuronal mechanisms that generate them or their precise impact on neuronal processing and behaviour. In previous work we have characterised brain state changes in a well characterised model for neuroscience research the mouse whisker system. We have recorded changes in the brain state in mouse cortex during whisker movements (2). In this proposal, we aim to use the mouse whisker system further to investigate the mechanisms and functions of changes in brain state. First we will use state of the art techniques to record and manipulate neuronal activity in the awake, behaving mouse to investigate the network and cellular mechanisms involved in generating brain state. Second we will use 2-photon microscopy to investigate the impact of brain state on excitatory and inhibitory synaptic integration in vivo. Finally we will use behaviourally trained mice to measure the impact of brain state changes on sensory perception and behaviour. This proposal will therefore provide fundamental insights into brain function at every step: mechanisms of changes in brain state, how neurons communicate with eachother and how the brain controls sensory perception and behaviour.
References
1 Berger H (1929) Archiv für Psychiatrie und Nervenkrankheiten 87:527-570.
2 Poulet JFA, Petersen CC (2008) Nature 454:881-885.
Max ERC Funding
1 463 125 €
Duration
Start date: 2011-02-01, End date: 2016-01-31
Project acronym C-H ACTIVATION
Project New Concepts for Utilizing a Ubiquitous (Non-)Functional Group - C-H Bond Activation for Increased Efficiency in Organic Synthesis
Researcher (PI) Frank Klaus Glorius
Host Institution (HI) WESTFAELISCHE WILHELMS-UNIVERSITAET MUENSTER
Call Details Starting Grant (StG), PE5, ERC-2010-StG_20091028
Summary C-H activations and related reactions can potentially revolutionize the way organic molecules are made and allow a more efficient use of earth's natural resources. Despite the rapid progress of the last couple of years, many problems like limited scope, extreme reaction conditions (temperature, excess of reagents) or low reactivities and selectivities remain in many cases. In this comprehensive proposal containing a number of projects and work packages, we want to develope new C-H activation methods 1) for the efficient synthesis of heterocycles, 2) for the activation of unactivated C(sp3)-H bonds, 3) by employing newly designed Fe-NHC complexes and 4) demonstrating the application of C-H activation for the functionalization of metal-organic frameworks (MOFs). The realization of these goals would render organic synthesis greener and more efficient and would have an impact on the preparation of compounds in academia and industry.
Summary
C-H activations and related reactions can potentially revolutionize the way organic molecules are made and allow a more efficient use of earth's natural resources. Despite the rapid progress of the last couple of years, many problems like limited scope, extreme reaction conditions (temperature, excess of reagents) or low reactivities and selectivities remain in many cases. In this comprehensive proposal containing a number of projects and work packages, we want to develope new C-H activation methods 1) for the efficient synthesis of heterocycles, 2) for the activation of unactivated C(sp3)-H bonds, 3) by employing newly designed Fe-NHC complexes and 4) demonstrating the application of C-H activation for the functionalization of metal-organic frameworks (MOFs). The realization of these goals would render organic synthesis greener and more efficient and would have an impact on the preparation of compounds in academia and industry.
Max ERC Funding
1 499 400 €
Duration
Start date: 2010-12-01, End date: 2015-11-30
Project acronym C3ENV
Project Combinatorial Computational Chemistry A new field to tackle environmental problems
Researcher (PI) Thomas Heine
Host Institution (HI) JACOBS UNIVERSITY BREMEN GGMBH
Call Details Starting Grant (StG), PE4, ERC-2010-StG_20091028
Summary Combinatorial Computational Chemistry is developed as a standard tool to tackle complex problems in chemistry and materials science. The method employs a series of state-of-the-art methods, ranging from empirical molecular mechanics to first principles calculations, as well as of mathematical (graph theoretical and combinatorial) methods. The process is similar as in experimental combinatorial chemistry: First, a large set of candidate structures is generated which is complete in the sense that the best possible structure for a particular purpose must be found among the set. This structure is then identified using computational chemistry. We will apply methodologies at different stages in hierarchical order and successively screen the set of candidate structures. Screening criteria are based on the computer simulations and include geometry, stability and properties of the candidate structures. Detailed characteristics of the final materials will be simulated, including the X-ray diffraction pattern, the electronic structure, and the target properties. We will apply C3 to two important problems of environmental science. (i) We will optimise nanoporous materials to act as molecular sieves to separate water from ethanol, an important task for the production of biofuels. Here, materials are optimised to transport ethanol, but not water (or vice versa). The tuning parameters are the channel size of the material and its polarity. (ii) We will optimise nanoporous materials to transport protons, an important task for the design of energy-efficient fuel cells, by distributing flexible functional groups, acting as hopping sites for the protons, in the framework.
Summary
Combinatorial Computational Chemistry is developed as a standard tool to tackle complex problems in chemistry and materials science. The method employs a series of state-of-the-art methods, ranging from empirical molecular mechanics to first principles calculations, as well as of mathematical (graph theoretical and combinatorial) methods. The process is similar as in experimental combinatorial chemistry: First, a large set of candidate structures is generated which is complete in the sense that the best possible structure for a particular purpose must be found among the set. This structure is then identified using computational chemistry. We will apply methodologies at different stages in hierarchical order and successively screen the set of candidate structures. Screening criteria are based on the computer simulations and include geometry, stability and properties of the candidate structures. Detailed characteristics of the final materials will be simulated, including the X-ray diffraction pattern, the electronic structure, and the target properties. We will apply C3 to two important problems of environmental science. (i) We will optimise nanoporous materials to act as molecular sieves to separate water from ethanol, an important task for the production of biofuels. Here, materials are optimised to transport ethanol, but not water (or vice versa). The tuning parameters are the channel size of the material and its polarity. (ii) We will optimise nanoporous materials to transport protons, an important task for the design of energy-efficient fuel cells, by distributing flexible functional groups, acting as hopping sites for the protons, in the framework.
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-02-01, End date: 2016-04-30
Project acronym CAC
Project Cryptography and Complexity
Researcher (PI) Yuval Ishai
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Starting Grant (StG), PE6, ERC-2010-StG_20091028
Summary Modern cryptography has deeply rooted connections with computational complexity theory and other areas of computer science. This proposal suggests to explore several {\em new connections} between questions in cryptography and questions from other domains, including computational complexity, coding theory, and even the natural sciences. The project is expected to broaden the impact of ideas from cryptography on other domains, and on the other hand to benefit cryptography by applying tools from other domains towards better solutions for central problems in cryptography.
Summary
Modern cryptography has deeply rooted connections with computational complexity theory and other areas of computer science. This proposal suggests to explore several {\em new connections} between questions in cryptography and questions from other domains, including computational complexity, coding theory, and even the natural sciences. The project is expected to broaden the impact of ideas from cryptography on other domains, and on the other hand to benefit cryptography by applying tools from other domains towards better solutions for central problems in cryptography.
Max ERC Funding
1 459 703 €
Duration
Start date: 2010-12-01, End date: 2015-11-30
Project acronym CAMAP
Project CAMAP: Computer Aided Modeling for Astrophysical Plasmas
Researcher (PI) Miguel-Ángel Aloy-Torás
Host Institution (HI) UNIVERSITAT DE VALENCIA
Call Details Starting Grant (StG), PE9, ERC-2010-StG_20091028
Summary This project will be aimed at obtaining a deeper insight into the physical processes taking place in astrophysical magnetized plasmas. To study these scenarios I will employ different numerical codes as virtual tools that enable me to experiment on computers (virtual labs) with distinct initial and boundary conditions. Among the kind of sources I am interested to consider, I outline the following: Gamma-Ray Bursts (GRBs), extragalactic jets from Active Galactic Nuclei (AGN), magnetars and collapsing stellar cores. A number of important questions are still open regarding the fundamental properties of these astrophysical sources (e.g., collimation, acceleration mechanism, composition, high-energy emission, gravitational wave signature). Additionally, there are analytical issues on the formalism in relativistic dynamics not resolved yet, e.g., the covariant extension of resistive magnetohydrodynamics (MHD). All these problems are so complex that only a computational approach is feasible. I plan to study them by means of relativistic and Newtonian MHD numerical simulations. A principal focus of the project will be to assess the relevance of magnetic fields in the generation, collimation and ulterior propagation of relativistic jets from the GRB progenitors and from AGNs. More generally, I will pursue the goal of understanding the process of amplification of seed magnetic fields until they become dynamically relevant, e.g., using semi-global and local simulations of representative boxes of collapsed stellar cores. A big emphasis will be put on including all the relevant microphysics (e.g. neutrino physics), non-ideal effects (particularly, reconnection physics) and energy transport due to neutrinos and photons to account for the relevant processes in the former systems. A milestone of this project will be to end up with a numerical tool that enables us to deal with General Relativistic Radiation Magnetohydrodynamics problems in Astrophysics.
Summary
This project will be aimed at obtaining a deeper insight into the physical processes taking place in astrophysical magnetized plasmas. To study these scenarios I will employ different numerical codes as virtual tools that enable me to experiment on computers (virtual labs) with distinct initial and boundary conditions. Among the kind of sources I am interested to consider, I outline the following: Gamma-Ray Bursts (GRBs), extragalactic jets from Active Galactic Nuclei (AGN), magnetars and collapsing stellar cores. A number of important questions are still open regarding the fundamental properties of these astrophysical sources (e.g., collimation, acceleration mechanism, composition, high-energy emission, gravitational wave signature). Additionally, there are analytical issues on the formalism in relativistic dynamics not resolved yet, e.g., the covariant extension of resistive magnetohydrodynamics (MHD). All these problems are so complex that only a computational approach is feasible. I plan to study them by means of relativistic and Newtonian MHD numerical simulations. A principal focus of the project will be to assess the relevance of magnetic fields in the generation, collimation and ulterior propagation of relativistic jets from the GRB progenitors and from AGNs. More generally, I will pursue the goal of understanding the process of amplification of seed magnetic fields until they become dynamically relevant, e.g., using semi-global and local simulations of representative boxes of collapsed stellar cores. A big emphasis will be put on including all the relevant microphysics (e.g. neutrino physics), non-ideal effects (particularly, reconnection physics) and energy transport due to neutrinos and photons to account for the relevant processes in the former systems. A milestone of this project will be to end up with a numerical tool that enables us to deal with General Relativistic Radiation Magnetohydrodynamics problems in Astrophysics.
Max ERC Funding
1 497 000 €
Duration
Start date: 2011-03-01, End date: 2017-02-28
Project acronym CAPSEVO
Project Evolution of flower morphology: the selfing syndrome in Capsella
Researcher (PI) Michael Lenhard
Host Institution (HI) UNIVERSITAET POTSDAM
Call Details Starting Grant (StG), LS3, ERC-2010-StG_20091118
Summary The change from reproduction by outbreeding to selfing is one of the most frequent evolutionary transitions in plants. This transition is generally accompanied by changes in flower morphology and function, termed the selfing syndrome, including a reduction in flower size and a more closed flower structure. While the loss of self-incompatibility is relatively well understood, little is known about the molecular basis of the associated morphological changes and their evolutionary history. We will address these problems using the species pair Capsella grandiflora (the ancestral outbreeder) and C. rubella (the derived selfing species) as a genetically tractable model. We have established recombinant inbred lines from a cross of C. grandiflora x C. rubella and mapped quantitative trait loci affecting flower size and flower opening. Using this resource, the proposal will address four objectives. (1) We will isolate causal genes underlying the variation in flower size and opening, by combining genetic mapping with next-generation sequencing. (2) We will characterize the developmental and molecular functions of the isolated genes in Capsella and Arabidopsis. (3) We will dissect the molecular basis of the different allelic effects of the causal genes to determine which kinds of mutations have led to the morphological changes. (4) Based on population-genetic analyses of the isolated genes, the evolutionary history of the morphological changes will be retraced. Together, these strands of investigation will provide a detailed understanding of general processes underlying morphological evolution in plants.
Summary
The change from reproduction by outbreeding to selfing is one of the most frequent evolutionary transitions in plants. This transition is generally accompanied by changes in flower morphology and function, termed the selfing syndrome, including a reduction in flower size and a more closed flower structure. While the loss of self-incompatibility is relatively well understood, little is known about the molecular basis of the associated morphological changes and their evolutionary history. We will address these problems using the species pair Capsella grandiflora (the ancestral outbreeder) and C. rubella (the derived selfing species) as a genetically tractable model. We have established recombinant inbred lines from a cross of C. grandiflora x C. rubella and mapped quantitative trait loci affecting flower size and flower opening. Using this resource, the proposal will address four objectives. (1) We will isolate causal genes underlying the variation in flower size and opening, by combining genetic mapping with next-generation sequencing. (2) We will characterize the developmental and molecular functions of the isolated genes in Capsella and Arabidopsis. (3) We will dissect the molecular basis of the different allelic effects of the causal genes to determine which kinds of mutations have led to the morphological changes. (4) Based on population-genetic analyses of the isolated genes, the evolutionary history of the morphological changes will be retraced. Together, these strands of investigation will provide a detailed understanding of general processes underlying morphological evolution in plants.
Max ERC Funding
1 480 826 €
Duration
Start date: 2010-12-01, End date: 2016-11-30
Project acronym CARDIO-IPS
Project Induced Pluripotent stem Cells: A Novel Strategy to Study Inherited Cardiac Disorders
Researcher (PI) Lior Gepstein
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Starting Grant (StG), LS4, ERC-2010-StG_20091118
Summary The study of several genetic disorders is hampered by the lack of suitable in vitro human models. We hypothesize that the generation of patient-specific induced pluripotent stem cells (iPSCs) will allow the development of disease-specific in vitro models; yielding new pathophysiologic insights into several genetic disorders and offering a unique platform to test novel therapeutic strategies. In the current proposal we plan utilize this novel approach to establish human iPSC (hiPSC) lines for the study of a variety of inherited cardiac disorders. The specific disease states that will be studied were chosen to reflect abnormalities in a wide-array of different cardiomyocyte cellular processes.
These include mutations leading to:
(1) abnormal ion channel function (“channelopathies”), such as the long QT and Brugada syndromes;
(2) abnormal intracellular storage of unnecessary material, such as in the glycogen storage disease type IIb (Pompe’s disease); and
(3) abnormalities in cell-to-cell contacts, such as in the case of arrhythmogenic right ventricular cardiomyopathy-dysplasia (ARVC-D). The different hiPSC lines generated will be coaxed to differentiate into the cardiac lineage. Detailed molecular, structural, functional, and pharmacological studies will then be performed to characterize the phenotypic properties of the generated hiPSC-derived cardiomyocytes, with specific emphasis on their molecular, ultrastructural, electrophysiological, and Ca2+ handling properties.
These studies should provide new insights into the pathophysiological mechanisms underlying the different familial arrhythmogenic and cardiomyopathy disorders studied, may allow optimization of patient-specific therapies (personalized medicine), and may facilitate the development of novel therapeutic strategies.
Moreover, the concepts and methodological knowhow developed in the current project could be extended, in the future, to derive human disease-specific cell culture models for a plurality of genetic disorders; enabling translational research ranging from investigation of the most fundamental cellular mechanisms involved in human tissue formation and physiology through disease investigation and the development and testing of novel therapies that could potentially find their way to the bedside
Summary
The study of several genetic disorders is hampered by the lack of suitable in vitro human models. We hypothesize that the generation of patient-specific induced pluripotent stem cells (iPSCs) will allow the development of disease-specific in vitro models; yielding new pathophysiologic insights into several genetic disorders and offering a unique platform to test novel therapeutic strategies. In the current proposal we plan utilize this novel approach to establish human iPSC (hiPSC) lines for the study of a variety of inherited cardiac disorders. The specific disease states that will be studied were chosen to reflect abnormalities in a wide-array of different cardiomyocyte cellular processes.
These include mutations leading to:
(1) abnormal ion channel function (“channelopathies”), such as the long QT and Brugada syndromes;
(2) abnormal intracellular storage of unnecessary material, such as in the glycogen storage disease type IIb (Pompe’s disease); and
(3) abnormalities in cell-to-cell contacts, such as in the case of arrhythmogenic right ventricular cardiomyopathy-dysplasia (ARVC-D). The different hiPSC lines generated will be coaxed to differentiate into the cardiac lineage. Detailed molecular, structural, functional, and pharmacological studies will then be performed to characterize the phenotypic properties of the generated hiPSC-derived cardiomyocytes, with specific emphasis on their molecular, ultrastructural, electrophysiological, and Ca2+ handling properties.
These studies should provide new insights into the pathophysiological mechanisms underlying the different familial arrhythmogenic and cardiomyopathy disorders studied, may allow optimization of patient-specific therapies (personalized medicine), and may facilitate the development of novel therapeutic strategies.
Moreover, the concepts and methodological knowhow developed in the current project could be extended, in the future, to derive human disease-specific cell culture models for a plurality of genetic disorders; enabling translational research ranging from investigation of the most fundamental cellular mechanisms involved in human tissue formation and physiology through disease investigation and the development and testing of novel therapies that could potentially find their way to the bedside
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-03-01, End date: 2016-02-29
Project acronym CAT4ENSUS
Project Molecular Catalysts Made of Earth-Abundant Elements for Energy and Sustainability
Researcher (PI) Xile Hu
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Starting Grant (StG), PE5, ERC-2010-StG_20091028
Summary Energy and sustainability are among the biggest challenges humanity faces this century. Catalysis is an indispensable component for many potential solutions, and fundamental research in catalysis is as urgent as ever. Here, we propose to build up an interdisciplinary research program in molecular catalysis to address the challenges of energy and sustainability. There are two specific aims: (I) bio-inspired sulfur-rich metal complexes as efficient and practical electrocatalysts for hydrogen production and CO2 reduction; (II) well-defined Fe complexes of chelating pincer ligands for chemo- and stereoselective organic synthesis. An important feature of the proposed catalysts is that they are made of earth-abundant and readily available elements such as Fe, Co, Ni, S, N, etc.
Design and synthesis of catalysts are the starting point and a key aspect of this project. A major inspiration comes from nature, where metallo-enzymes use readily available metals for fuel production and challenging reactions. Our accumulated knowledge and experience in spectroscopy, electrochemistry, reaction chemistry, mechanism, and catalysis will enable us to thoroughly study the synthetic catalysts and their applications towards the research targets. Furthermore, we will explore research territories such as electrode modification and fabrication, catalyst immobilization and attachment, and asymmetric catalysis.
The proposed research should not only result in new insights and knowledge in catalysis that are relevant to energy and sustainability, but also produce functional, scalable, and economically feasible catalysts for fuel production and organic synthesis. The program can contribute to excellence in European research.
Summary
Energy and sustainability are among the biggest challenges humanity faces this century. Catalysis is an indispensable component for many potential solutions, and fundamental research in catalysis is as urgent as ever. Here, we propose to build up an interdisciplinary research program in molecular catalysis to address the challenges of energy and sustainability. There are two specific aims: (I) bio-inspired sulfur-rich metal complexes as efficient and practical electrocatalysts for hydrogen production and CO2 reduction; (II) well-defined Fe complexes of chelating pincer ligands for chemo- and stereoselective organic synthesis. An important feature of the proposed catalysts is that they are made of earth-abundant and readily available elements such as Fe, Co, Ni, S, N, etc.
Design and synthesis of catalysts are the starting point and a key aspect of this project. A major inspiration comes from nature, where metallo-enzymes use readily available metals for fuel production and challenging reactions. Our accumulated knowledge and experience in spectroscopy, electrochemistry, reaction chemistry, mechanism, and catalysis will enable us to thoroughly study the synthetic catalysts and their applications towards the research targets. Furthermore, we will explore research territories such as electrode modification and fabrication, catalyst immobilization and attachment, and asymmetric catalysis.
The proposed research should not only result in new insights and knowledge in catalysis that are relevant to energy and sustainability, but also produce functional, scalable, and economically feasible catalysts for fuel production and organic synthesis. The program can contribute to excellence in European research.
Max ERC Funding
1 475 712 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym CBCD
Project Understanding the basis of cerebellar and brainstem congenital defects: from clinical and molecular characterisation to the development of a novel neuroembryonic in vitro model
Researcher (PI) Enza Maria Valente
Host Institution (HI) FONDAZIONE SANTA LUCIA
Call Details Starting Grant (StG), LS7, ERC-2010-StG_20091118
Summary Cerebellar and brainstem congenital defects (CBCDs) are heterogeneous disorders with high pre-and post-natal mortality and morbidity. Their genetic basis and pathogenetic mechanisms are largely unknown, hampering patients’ diagnosis and management and family counselling. This project aims at improve current understanding of primary CBCDs through a multidisciplinary approach combining innovative clinical, neuroimaging, molecular and functional studies, that will be articulated in four workpackages:
WP1- Clinical and neuroimaging studies: collection of detailed data and biological samples from a large cohort of patients covering a broad spectrum of CBCDs, neuroimaging classification based on magnetic resonance imaging and tractography, genotype-phenotype correlates and follow-up studies.
WP2 - Molecular studies on mendelian CBCDs: high-throughput resequencing of ciliary genes to identify pathogenic mutations and genetic modifiers in patients with ciliopathies, identification of novel disease genes, mutation analysis of genes causative of other mendelian CBCDs.
WP3 - Molecular studies on sporadic CBCDs: identification of cryptic chromosomal rearrangements by high resolution SNP-array analysis, selection and mutation analysis of candidate genes mapping to the rearranged regions.
WP4 - Functional studies: optimisation of a novel neuroembryonic in vitro model derived from mouse embryonic stem cells, to test the role of known and candidate disease genes (from WP2 and 3) on cerebellar and brainstem development, define the pathways in which they are involved and the effect of disease-causative mutations.
This project is expected to improve the current CBCD nosology, identify novel genes and mechanisms involved in cerebellar and brainstem development that are responsible for mendelian or sporadic defects, expand the available tools for pre- and post-natal diagnosis and identify clinical-genetic correlates and prognostic indexes.
Summary
Cerebellar and brainstem congenital defects (CBCDs) are heterogeneous disorders with high pre-and post-natal mortality and morbidity. Their genetic basis and pathogenetic mechanisms are largely unknown, hampering patients’ diagnosis and management and family counselling. This project aims at improve current understanding of primary CBCDs through a multidisciplinary approach combining innovative clinical, neuroimaging, molecular and functional studies, that will be articulated in four workpackages:
WP1- Clinical and neuroimaging studies: collection of detailed data and biological samples from a large cohort of patients covering a broad spectrum of CBCDs, neuroimaging classification based on magnetic resonance imaging and tractography, genotype-phenotype correlates and follow-up studies.
WP2 - Molecular studies on mendelian CBCDs: high-throughput resequencing of ciliary genes to identify pathogenic mutations and genetic modifiers in patients with ciliopathies, identification of novel disease genes, mutation analysis of genes causative of other mendelian CBCDs.
WP3 - Molecular studies on sporadic CBCDs: identification of cryptic chromosomal rearrangements by high resolution SNP-array analysis, selection and mutation analysis of candidate genes mapping to the rearranged regions.
WP4 - Functional studies: optimisation of a novel neuroembryonic in vitro model derived from mouse embryonic stem cells, to test the role of known and candidate disease genes (from WP2 and 3) on cerebellar and brainstem development, define the pathways in which they are involved and the effect of disease-causative mutations.
This project is expected to improve the current CBCD nosology, identify novel genes and mechanisms involved in cerebellar and brainstem development that are responsible for mendelian or sporadic defects, expand the available tools for pre- and post-natal diagnosis and identify clinical-genetic correlates and prognostic indexes.
Max ERC Funding
1 367 960 €
Duration
Start date: 2011-08-01, End date: 2018-03-31
Project acronym CBSCS
Project Physiology of the adult carotid body stem cell niche
Researcher (PI) Ricardo Pardal
Host Institution (HI) UNIVERSIDAD DE SEVILLA
Call Details Starting Grant (StG), LS3, ERC-2010-StG_20091118
Summary The discovery of adult neural stem cells (NSCs) has broaden our view of the physiological plasticity of the nervous system,
and has opened new perspectives on the possibility of tissue regeneration and repair in the brain. NSCs reside in specialized
niches in the adult mammalian nervous system, where they are exposed to specific paracrine signals regulating their
behavior. These neural progenitors are generally in a quiescent state within their niche, and they activate their proliferation
depending on tissue regenerative and growth needs. Understanding the mechanisms by which NSCs enter and exit the
quiescent state is crucial for the comprehension of the physiology of the adult nervous system. In this project we will study
the behavior of a specific subpopulation of adult neural stem cells recently described by our group in the carotid body (CB).
This small organ constitutes the most important chemosensor of the peripheral nervous system and has neuronal glomus
cells responsible for the chemosensing, and glia-like sustentacular cells which were thought to have just a supportive role.
We recently described that these sustentacular cells are dormant stem cells able to activate their proliferation in response to a
physiological stimulus like hypoxia, and to differentiate into new glomus cells necessary for the adaptation of the organ.
Due to our precise experimental control of the activation and deactivation of the CB neurogenic niche, we believe the CB is
an ideal model to study fundamental questions about adult neural stem cell physiology and the interaction with the niche. We
propose to study the cellular and molecular mechanisms by which these carotid body stem cells enter and exit the quiescent
state, which will help us understand the physiology of adult neurogenic niches. Likewise, understanding this neurogenic
process will improve the efficacy of using glomus cells for cell therapy against neurological disease, and might help us
understand some neural tumors.
Summary
The discovery of adult neural stem cells (NSCs) has broaden our view of the physiological plasticity of the nervous system,
and has opened new perspectives on the possibility of tissue regeneration and repair in the brain. NSCs reside in specialized
niches in the adult mammalian nervous system, where they are exposed to specific paracrine signals regulating their
behavior. These neural progenitors are generally in a quiescent state within their niche, and they activate their proliferation
depending on tissue regenerative and growth needs. Understanding the mechanisms by which NSCs enter and exit the
quiescent state is crucial for the comprehension of the physiology of the adult nervous system. In this project we will study
the behavior of a specific subpopulation of adult neural stem cells recently described by our group in the carotid body (CB).
This small organ constitutes the most important chemosensor of the peripheral nervous system and has neuronal glomus
cells responsible for the chemosensing, and glia-like sustentacular cells which were thought to have just a supportive role.
We recently described that these sustentacular cells are dormant stem cells able to activate their proliferation in response to a
physiological stimulus like hypoxia, and to differentiate into new glomus cells necessary for the adaptation of the organ.
Due to our precise experimental control of the activation and deactivation of the CB neurogenic niche, we believe the CB is
an ideal model to study fundamental questions about adult neural stem cell physiology and the interaction with the niche. We
propose to study the cellular and molecular mechanisms by which these carotid body stem cells enter and exit the quiescent
state, which will help us understand the physiology of adult neurogenic niches. Likewise, understanding this neurogenic
process will improve the efficacy of using glomus cells for cell therapy against neurological disease, and might help us
understand some neural tumors.
Max ERC Funding
1 476 000 €
Duration
Start date: 2010-11-01, End date: 2015-10-31
Project acronym CCCAN
Project Characterizing and Controlling Carbon Nanomaterials
Researcher (PI) Janina Maultzsch
Host Institution (HI) TECHNISCHE UNIVERSITAT BERLIN
Call Details Starting Grant (StG), PE4, ERC-2010-StG_20091028
Summary The aim of this project is to understand and control the fundamental physical properties of novel carbon nanomaterials:
carbon nanotubes and graphene. By a combination of complementary methods, i.e. vibrational spectroscopy, scanning probe microscopy, and theoretical modelling, a comprehensive understanding of the electronic, vibrational, optical properties, and their connection with the material’s structure will be obtained. A diagnostics “toolbox” will be established on the materials in
their most unperturbed, ideal states. Taking the results as reference, the materials will be studied under conditions relevant when incorporated into devices. These include imperfections of the materials and interaction with different environments, with other carbon nanotubes/graphene, and with extrinsic materials introduced during device processing. The gained insight and understanding on a fundamental level will also advance technological routes for scaling up carbon-nanomaterial electronic device fabrication, which is still lacking sufficient control over selectivity towards the desired physical properties. Control over the electronic and optical properties will be sought through deliberately induced interactions and chemical functionalization
of the materials. The project benefits from close collaborations between experimental and theoretical physics, chemistry, and materials science.
Summary
The aim of this project is to understand and control the fundamental physical properties of novel carbon nanomaterials:
carbon nanotubes and graphene. By a combination of complementary methods, i.e. vibrational spectroscopy, scanning probe microscopy, and theoretical modelling, a comprehensive understanding of the electronic, vibrational, optical properties, and their connection with the material’s structure will be obtained. A diagnostics “toolbox” will be established on the materials in
their most unperturbed, ideal states. Taking the results as reference, the materials will be studied under conditions relevant when incorporated into devices. These include imperfections of the materials and interaction with different environments, with other carbon nanotubes/graphene, and with extrinsic materials introduced during device processing. The gained insight and understanding on a fundamental level will also advance technological routes for scaling up carbon-nanomaterial electronic device fabrication, which is still lacking sufficient control over selectivity towards the desired physical properties. Control over the electronic and optical properties will be sought through deliberately induced interactions and chemical functionalization
of the materials. The project benefits from close collaborations between experimental and theoretical physics, chemistry, and materials science.
Max ERC Funding
1 468 960 €
Duration
Start date: 2010-12-01, End date: 2015-11-30
Project acronym CCOSA
Project Classes of combinatorial objects: from structure to algorithms
Researcher (PI) Daniel Kral
Host Institution (HI) THE UNIVERSITY OF WARWICK
Call Details Starting Grant (StG), PE1, ERC-2010-StG_20091028
Summary The proposed project aims at analyzing fundamental problems from combinatorics using the most current methods available and at providing new structural and algorithmic insights to such problems. The problems considered will be treated on a general level of classes of combinatorial objects of the same kind and the developed general methods will also be applied to specific open problems. Classes of dense and sparse objects will be treated using different techniques. Dense combinatorial objects appear in extremal combinatorics and tools developed to handle them found their applications in different
areas of mathematics and computer science. The project will focus on extending known methods to new classes of combinatorial objects, in particular those from algebra, and applying the most current techniques including Razborov flag algebras to problems from extremal combinatorics. Applications of the obtained results in property testing will also be considered. On the other hand, algorithmic applications often include manipulating with sparse objects. Examples of sparse objects are graphs embeddable in a fixed surface and more general minor-closed classes of graphs. The project objectives include providing new structural results and algorithmic metatheorems for classes of sparse objects using both classical tools based on the theory of graph minors as well as new tools based on the framework of classes of nowhere-dense structures.
Summary
The proposed project aims at analyzing fundamental problems from combinatorics using the most current methods available and at providing new structural and algorithmic insights to such problems. The problems considered will be treated on a general level of classes of combinatorial objects of the same kind and the developed general methods will also be applied to specific open problems. Classes of dense and sparse objects will be treated using different techniques. Dense combinatorial objects appear in extremal combinatorics and tools developed to handle them found their applications in different
areas of mathematics and computer science. The project will focus on extending known methods to new classes of combinatorial objects, in particular those from algebra, and applying the most current techniques including Razborov flag algebras to problems from extremal combinatorics. Applications of the obtained results in property testing will also be considered. On the other hand, algorithmic applications often include manipulating with sparse objects. Examples of sparse objects are graphs embeddable in a fixed surface and more general minor-closed classes of graphs. The project objectives include providing new structural results and algorithmic metatheorems for classes of sparse objects using both classical tools based on the theory of graph minors as well as new tools based on the framework of classes of nowhere-dense structures.
Max ERC Funding
849 000 €
Duration
Start date: 2010-12-01, End date: 2015-11-30
Project acronym CELLTYPESANDCIRCUITS
Project Neural circuit function in the retina of mice and humans
Researcher (PI) Botond Roska
Host Institution (HI) FRIEDRICH MIESCHER INSTITUTE FOR BIOMEDICAL RESEARCH FONDATION
Call Details Starting Grant (StG), LS5, ERC-2010-StG_20091118
Summary The mammalian brain is assembled from thousands of neuronal cell types that are organized into distinct circuits to perform behaviourally relevant computations. To gain mechanistic insights about brain function and to treat specific diseases of the nervous system it is crucial to understand what these local circuits are computing and how they achieve these computations. By examining the structure and function of a few genetically identified and experimentally accessible neural circuits we plan to address fundamental questions about the functional architecture of neural circuits. First, are cell types assigned to a unique functional circuit with a well-defined function or do they participate in multiple circuits (multitasking cell types), adjusting their role depending on the state of these circuits? Second, does a neural circuit perform a single computation or depending on the information content of its inputs can it carry out radically different functions? Third, how, among the large number of other cell types, do the cells belonging to the same functional circuit connect together during development? We use the mouse retina as a model system to address these questions. Finally, we will study the structure and function of a specialised neural circuit in the human fovea that enables humans to read. We predict that our insights into the mechanism of multitasking, network switches and the development of selective connectivity will be instructive to study similar phenomena in other brain circuits. Knowledge of the structure and function of the human fovea will open up new opportunities to correlate human retinal function with human visual behaviour and our genetic technologies to study human foveal function will allow us and others to design better strategies for restoring vision for the blind.
Summary
The mammalian brain is assembled from thousands of neuronal cell types that are organized into distinct circuits to perform behaviourally relevant computations. To gain mechanistic insights about brain function and to treat specific diseases of the nervous system it is crucial to understand what these local circuits are computing and how they achieve these computations. By examining the structure and function of a few genetically identified and experimentally accessible neural circuits we plan to address fundamental questions about the functional architecture of neural circuits. First, are cell types assigned to a unique functional circuit with a well-defined function or do they participate in multiple circuits (multitasking cell types), adjusting their role depending on the state of these circuits? Second, does a neural circuit perform a single computation or depending on the information content of its inputs can it carry out radically different functions? Third, how, among the large number of other cell types, do the cells belonging to the same functional circuit connect together during development? We use the mouse retina as a model system to address these questions. Finally, we will study the structure and function of a specialised neural circuit in the human fovea that enables humans to read. We predict that our insights into the mechanism of multitasking, network switches and the development of selective connectivity will be instructive to study similar phenomena in other brain circuits. Knowledge of the structure and function of the human fovea will open up new opportunities to correlate human retinal function with human visual behaviour and our genetic technologies to study human foveal function will allow us and others to design better strategies for restoring vision for the blind.
Max ERC Funding
1 499 000 €
Duration
Start date: 2010-11-01, End date: 2015-10-31
Project acronym CENTRIOLSTRUCTNUMBER
Project Control of Centriole Structure And Number
Researcher (PI) Monica Bettencourt Carvalho Dias
Host Institution (HI) FUNDACAO CALOUSTE GULBENKIAN
Call Details Starting Grant (StG), LS3, ERC-2010-StG_20091118
Summary Centrioles are essential for the formation of several microtubule organizing structures including cilia, flagella and centrosomes. These structures are involved in a variety of functions, from cell motility to division. Centrosome defects are seen in many cancers, while abnormalities in cilia and flagella can lead to a variety of human diseases, such as polycystic kidney disease. The molecular mechanisms regulating centriole biogenesis have only recently started to be unravelled, opening new ways to answer a wide range of questions that have fascinated biologists for more than a century. In this grant we are asking two fundamental questions that are central to human disease: how is centriole structure and number established and regulated in the eukaryotic cell? To address these questions we propose to identify new molecular players, and to test the role of these and known players in the context of specific mechanistic hypothesis, using in vitro and in vivo models. We propose to develop novel assays for centriole structure and regulation in order to address mechanistic problems not accessible with today s assays. In our search for novel components we will use a multidisciplinary approach combining bioinformatics with high throughput screening. The use of in vitro systems will permit the quantitative dissection of molecular mechanisms, while the study of those mechanisms in Drosophila will allow us to understand them at the whole organism level. Furthermore, this analysis, together with studies in human tissue culture cells, will allow us to understand the consequences of misregulation of these fundamental centriole properties for human disease, such as ciliopathies and cancer. My group is already collaborating with medical doctors in the study of centriole aberrations in human disease (cancer and ciliopathies), which will be invaluable to bringing the results of this study to the translational level.
Summary
Centrioles are essential for the formation of several microtubule organizing structures including cilia, flagella and centrosomes. These structures are involved in a variety of functions, from cell motility to division. Centrosome defects are seen in many cancers, while abnormalities in cilia and flagella can lead to a variety of human diseases, such as polycystic kidney disease. The molecular mechanisms regulating centriole biogenesis have only recently started to be unravelled, opening new ways to answer a wide range of questions that have fascinated biologists for more than a century. In this grant we are asking two fundamental questions that are central to human disease: how is centriole structure and number established and regulated in the eukaryotic cell? To address these questions we propose to identify new molecular players, and to test the role of these and known players in the context of specific mechanistic hypothesis, using in vitro and in vivo models. We propose to develop novel assays for centriole structure and regulation in order to address mechanistic problems not accessible with today s assays. In our search for novel components we will use a multidisciplinary approach combining bioinformatics with high throughput screening. The use of in vitro systems will permit the quantitative dissection of molecular mechanisms, while the study of those mechanisms in Drosophila will allow us to understand them at the whole organism level. Furthermore, this analysis, together with studies in human tissue culture cells, will allow us to understand the consequences of misregulation of these fundamental centriole properties for human disease, such as ciliopathies and cancer. My group is already collaborating with medical doctors in the study of centriole aberrations in human disease (cancer and ciliopathies), which will be invaluable to bringing the results of this study to the translational level.
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-01-01, End date: 2016-12-31
Project acronym CGT HEMOPHILIA A
Project Cell and gene therapy based strategies to correct the bleeding phenotype in Hemophilia A
Researcher (PI) Antonia Follenzi
Host Institution (HI) UNIVERSITA DEGLI STUDI DEL PIEMONTE ORIENTALE AMEDEO AVOGADRO
Call Details Starting Grant (StG), LS7, ERC-2010-StG_20091118
Summary Currently, haemophilia A cannot be cured. To prevent major bleeding episodes in haemophilia, human Factor VIII (FVIII) protein must be frequently administered as prophylaxis or on demand. This treatment is complicated by its high cost and development of antibodies that neutralize FVIII activity in 20 to 30% of the patients. Therefore, permanent solutions in the form of cell and gene therapy are very attractive for haemophilia A. Recently, we demonstrated in a murine model that liver sinusoidal endothelial cells (LSEC) produce and secrete FVIII, although not exclusively. We have also found that these mice can be treated by reconstitution with wild-type bone marrow, indicating that bone marrow-derived cells, of hematopoietic, mesenchymal or even endothelial origin, can produce and secrete FVIII. Based on these findings in mice, I propose that human LSEC, umbilical cord blood cells, and bone marrow cells might be suitable sources of FVIII to be used for cell replacement therapy for haemophilia A. To advance opportunities for cell and gene therapies in haemophilia A and for identifying additional cell sources of FVIII, I intend to explore whether replacement of liver endothelium and bone marrow in immnocompromised Haemophilia A mice with healthy human cells will provide therapeutic correction. Recently, the possibility of reprogramming mature somatic cells to generate induced pluripotent stem (iPS) cells has enabled the derivation of disease-specific pluripotent cells, thus providing unprecedented experimental platforms to treat human diseases. Therefore, I intend to study whether the generation of patient-specific iPS cells may be applied to cell and gene therapy of coagulation disorders and in particular for the treatment of Haemophilia A. Studies with these novel target cells may impact significantly the future course of Haemophilia A by providing proof-of feasibility of a novel therapy strategies.
Summary
Currently, haemophilia A cannot be cured. To prevent major bleeding episodes in haemophilia, human Factor VIII (FVIII) protein must be frequently administered as prophylaxis or on demand. This treatment is complicated by its high cost and development of antibodies that neutralize FVIII activity in 20 to 30% of the patients. Therefore, permanent solutions in the form of cell and gene therapy are very attractive for haemophilia A. Recently, we demonstrated in a murine model that liver sinusoidal endothelial cells (LSEC) produce and secrete FVIII, although not exclusively. We have also found that these mice can be treated by reconstitution with wild-type bone marrow, indicating that bone marrow-derived cells, of hematopoietic, mesenchymal or even endothelial origin, can produce and secrete FVIII. Based on these findings in mice, I propose that human LSEC, umbilical cord blood cells, and bone marrow cells might be suitable sources of FVIII to be used for cell replacement therapy for haemophilia A. To advance opportunities for cell and gene therapies in haemophilia A and for identifying additional cell sources of FVIII, I intend to explore whether replacement of liver endothelium and bone marrow in immnocompromised Haemophilia A mice with healthy human cells will provide therapeutic correction. Recently, the possibility of reprogramming mature somatic cells to generate induced pluripotent stem (iPS) cells has enabled the derivation of disease-specific pluripotent cells, thus providing unprecedented experimental platforms to treat human diseases. Therefore, I intend to study whether the generation of patient-specific iPS cells may be applied to cell and gene therapy of coagulation disorders and in particular for the treatment of Haemophilia A. Studies with these novel target cells may impact significantly the future course of Haemophilia A by providing proof-of feasibility of a novel therapy strategies.
Max ERC Funding
1 123 000 €
Duration
Start date: 2011-05-01, End date: 2017-04-30
Project acronym CHANGING FAMILIES
Project Changing Families: Causes, Consequences and Challenges for Public Policy
Researcher (PI) Nezih Guner
Host Institution (HI) FUNDACIÓ MARKETS, ORGANIZATIONS AND VOTES IN ECONOMICS
Call Details Starting Grant (StG), SH1, ERC-2010-StG_20091209
Summary The household and family structure in every major industrialized country changed in a fundamental way during the last couple of decades. First, marriage is less important today, as divorce, cohabitation, and single-motherhood are much more common. Second, female labor force participation has increased dramatically. As a result of these changes, today s households are very far from traditional breadwinner husband and housekeeper wife paradigm. These dramatic changes generated significant public interest and a large body of literature that tries to understand causes and consequences of these changes.
This project has two main goals. First, it studies changes in household and family structure. The particular questions that it tries to answer are: 1) What are economic factors behind the rise in premarital sex and its destigmatization? What determines parents incentives to socialize their children and affect their attitudes? 2) What are the causes and consequences of the recent rise in assortative mating and diverging marriage patterns by different educational groups? 3) Why are marriage patterns among blacks so different than whites in the U.S.?
The second aim of this project is to improve our understanding of income risk, the role of social insurance policies and labor market dynamics by building models that explicitly considers two-earner households. In particular, we ask the following set of questions: 1) What is the role of social insurance policies (income maintenance programs or progressive taxation) in an economy populated by two-earner households facing uninsurable idiosyncratic risk? 2) How does marriage and labor market dynamics interact and how important this interaction for our understanding of labor supply and marriage decisions?
Summary
The household and family structure in every major industrialized country changed in a fundamental way during the last couple of decades. First, marriage is less important today, as divorce, cohabitation, and single-motherhood are much more common. Second, female labor force participation has increased dramatically. As a result of these changes, today s households are very far from traditional breadwinner husband and housekeeper wife paradigm. These dramatic changes generated significant public interest and a large body of literature that tries to understand causes and consequences of these changes.
This project has two main goals. First, it studies changes in household and family structure. The particular questions that it tries to answer are: 1) What are economic factors behind the rise in premarital sex and its destigmatization? What determines parents incentives to socialize their children and affect their attitudes? 2) What are the causes and consequences of the recent rise in assortative mating and diverging marriage patterns by different educational groups? 3) Why are marriage patterns among blacks so different than whites in the U.S.?
The second aim of this project is to improve our understanding of income risk, the role of social insurance policies and labor market dynamics by building models that explicitly considers two-earner households. In particular, we ask the following set of questions: 1) What is the role of social insurance policies (income maintenance programs or progressive taxation) in an economy populated by two-earner households facing uninsurable idiosyncratic risk? 2) How does marriage and labor market dynamics interact and how important this interaction for our understanding of labor supply and marriage decisions?
Max ERC Funding
1 037 000 €
Duration
Start date: 2010-11-01, End date: 2015-10-31
Project acronym CHD-IPS
Project Modeling congenital heart disease (CHD) in ISL1+ cardiovascular progenitors from patient-specific iPS cells
Researcher (PI) Karl-Ludwig Laugwitz
Host Institution (HI) KLINIKUM RECHTS DER ISAR DER TECHNISCHEN UNIVERSITAT MUNCHEN
Call Details Starting Grant (StG), LS4, ERC-2010-StG_20091118
Summary Tetralogy of Fallot (TOF) is the most common congenital heart disease (CHD) occurring 1 in 3000 births. Genetic studies have identified numerous genes that are responsible for inherited and sporadic forms of TOF, most of which encode key molecules that are part of regulatory networks controlling heart development. The identification of two populations of cardiac precursors, one exclusively forming the left ventricle and the second the outflow tract, the right ventricle and the atria, has suggested a new approach to interpret CHDs, in particular in TOF, not as a defect in a specific gene, but rather as a defect in the formation, expansion, and differentiation of defined subsets of embryonic cardiac precursors. The LIM-homeodomain transcription factor ISL1 marks the second population of cardiac progenitors, but little is known about its downstream targets, and how causative genes of CHDs affect cell-fate decisions in the ISL1 lineage. The main goals of this research program are: (1) to decipher the functional role of Isl1 downstream targets identified by a genome-wide ChIP-Seq approach; (2) to generate induced pluripotent stem (iPS) cells from controls and patients affected by severe forms of TOF characterized by defects in heart compartments known to derive from ISL1 cardiac progenitors; (3) to direct these iPS cells to ISL1+ cardiovascular precursors and identify cell-surface makers enabling their antibody-based purification; and (4) to use TOF-iPS-derived ISL1+ progenitors as an unique in vitro model system for deciphering molecular mechanisms that govern the fates and differentiation of this progenitor lineage and determine the pathological phenotype seen in TOF. This work will shed light on the molecular mechanisms of ISL1+ cardiac progenitor lineage specification and will give important new insights into the mechanisms of how alterations in transcriptional and epigenetic programs translate to a distinct structural defect during cardiogenesis.
Summary
Tetralogy of Fallot (TOF) is the most common congenital heart disease (CHD) occurring 1 in 3000 births. Genetic studies have identified numerous genes that are responsible for inherited and sporadic forms of TOF, most of which encode key molecules that are part of regulatory networks controlling heart development. The identification of two populations of cardiac precursors, one exclusively forming the left ventricle and the second the outflow tract, the right ventricle and the atria, has suggested a new approach to interpret CHDs, in particular in TOF, not as a defect in a specific gene, but rather as a defect in the formation, expansion, and differentiation of defined subsets of embryonic cardiac precursors. The LIM-homeodomain transcription factor ISL1 marks the second population of cardiac progenitors, but little is known about its downstream targets, and how causative genes of CHDs affect cell-fate decisions in the ISL1 lineage. The main goals of this research program are: (1) to decipher the functional role of Isl1 downstream targets identified by a genome-wide ChIP-Seq approach; (2) to generate induced pluripotent stem (iPS) cells from controls and patients affected by severe forms of TOF characterized by defects in heart compartments known to derive from ISL1 cardiac progenitors; (3) to direct these iPS cells to ISL1+ cardiovascular precursors and identify cell-surface makers enabling their antibody-based purification; and (4) to use TOF-iPS-derived ISL1+ progenitors as an unique in vitro model system for deciphering molecular mechanisms that govern the fates and differentiation of this progenitor lineage and determine the pathological phenotype seen in TOF. This work will shed light on the molecular mechanisms of ISL1+ cardiac progenitor lineage specification and will give important new insights into the mechanisms of how alterations in transcriptional and epigenetic programs translate to a distinct structural defect during cardiogenesis.
Max ERC Funding
1 499 996 €
Duration
Start date: 2011-03-01, End date: 2017-02-28
Project acronym CHEMBIOLPBINT
Project Chemical biology of natural products in plant-bacteria interactions
Researcher (PI) Markus Kaiser
Host Institution (HI) UNIVERSITAET DUISBURG-ESSEN
Call Details Starting Grant (StG), PE5, ERC-2010-StG_20091028
Summary This project deals with the elucidation of the biological role of natural products in plant-bacteria interactions. Plant-associated bacteria synthesize a vast number of biologically active natural products that modulate the physiology and functioning of their host plants. For example, plant pathogens often cause devastating crop losses by secreting low molecular weight
phytotoxins, while some symbiotic bacteria biosynthesize plant-protecting compounds that assist in lowering biotic and abiotic plant stresses. It is therefore surprising that although natural products seem to play key roles in the complex interaction network between bacteria and plants, most of their biological functions and molecular targets are still unknown.
To date, almost all studies on plant-bacteria interactions have been performed with biological approaches. Here, we propose to investigate the biological role of plant-associated natural products with the aid of a chemistry-driven approach, relying on the power of chemical synthesis to i) generate these natural products and/or suitable natural product derivatives, ii) to elucidate their targets in plants, and iii) to apply them in plant-bacteria studies. Although natural products have long been in the focus of chemical research, such a systematic chemistry-driven approach has, to our knowledge, never been performed before in plant-bacteria interactions. Our project will therefore not only serve to i) decipher basic research questions and ii) identify potential lead structures for agricultural and medicinal applications, but will also contribute to iii) the refinement of chemical syntheses strategies, iv) the advancement of target finding approaches and v) the establishment of chemical biology approaches in plant biology.
Summary
This project deals with the elucidation of the biological role of natural products in plant-bacteria interactions. Plant-associated bacteria synthesize a vast number of biologically active natural products that modulate the physiology and functioning of their host plants. For example, plant pathogens often cause devastating crop losses by secreting low molecular weight
phytotoxins, while some symbiotic bacteria biosynthesize plant-protecting compounds that assist in lowering biotic and abiotic plant stresses. It is therefore surprising that although natural products seem to play key roles in the complex interaction network between bacteria and plants, most of their biological functions and molecular targets are still unknown.
To date, almost all studies on plant-bacteria interactions have been performed with biological approaches. Here, we propose to investigate the biological role of plant-associated natural products with the aid of a chemistry-driven approach, relying on the power of chemical synthesis to i) generate these natural products and/or suitable natural product derivatives, ii) to elucidate their targets in plants, and iii) to apply them in plant-bacteria studies. Although natural products have long been in the focus of chemical research, such a systematic chemistry-driven approach has, to our knowledge, never been performed before in plant-bacteria interactions. Our project will therefore not only serve to i) decipher basic research questions and ii) identify potential lead structures for agricultural and medicinal applications, but will also contribute to iii) the refinement of chemical syntheses strategies, iv) the advancement of target finding approaches and v) the establishment of chemical biology approaches in plant biology.
Max ERC Funding
1 490 900 €
Duration
Start date: 2011-03-01, End date: 2016-02-29
Project acronym CHEMHEAT
Project Chemical Control of Heating and Cooling in Molecular Junctions: Optimizing Function and Stability
Researcher (PI) Gemma Solomon
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), PE4, ERC-2010-StG_20091028
Summary Nanoscale systems binding single molecules, or small numbers of molecules, in conducting junctions show considerable promise for a range of technological applications, from photovoltaics to rectifiers to sensors. These environments differ significantly from the traditional domain of chemical studies involving molecules in solution and the gas phase, necessitating renewed efforts to understand the physical properties of these systems. The objective of this proposal concerns one particular class of physical processes: understanding and controlling local heating in molecular junctions in terms of excitation, dissipation and transfer.
Local heating and dissipation in molecular junctions has long been a concern due to the possibly detrimental impact on device stability and function. More recently there has been increased interest, as these processes underlie both spectroscopic techniques and potential technological applications. Together these issues make an investigation of ways to chemically control local heating in molecular junctions timely and important.
The proposal objective will be addressed through the investigation of three challenges:
- Developing chemical control of local heating in molecular junctions.
- Developing chemical control of heat dissipation in molecular junctions.
- Design of optimal thermoelectric materials.
These three challenges constitute distinct, yet complementary, avenues for investigation with progress in each area supporting the other two. All three challenges build on existing theoretical methods, with the important shift of focus to methods to achieve chemical control. The combination of state-of-the-art computational methods with careful chemical studies promises significant new developments for the area.
Summary
Nanoscale systems binding single molecules, or small numbers of molecules, in conducting junctions show considerable promise for a range of technological applications, from photovoltaics to rectifiers to sensors. These environments differ significantly from the traditional domain of chemical studies involving molecules in solution and the gas phase, necessitating renewed efforts to understand the physical properties of these systems. The objective of this proposal concerns one particular class of physical processes: understanding and controlling local heating in molecular junctions in terms of excitation, dissipation and transfer.
Local heating and dissipation in molecular junctions has long been a concern due to the possibly detrimental impact on device stability and function. More recently there has been increased interest, as these processes underlie both spectroscopic techniques and potential technological applications. Together these issues make an investigation of ways to chemically control local heating in molecular junctions timely and important.
The proposal objective will be addressed through the investigation of three challenges:
- Developing chemical control of local heating in molecular junctions.
- Developing chemical control of heat dissipation in molecular junctions.
- Design of optimal thermoelectric materials.
These three challenges constitute distinct, yet complementary, avenues for investigation with progress in each area supporting the other two. All three challenges build on existing theoretical methods, with the important shift of focus to methods to achieve chemical control. The combination of state-of-the-art computational methods with careful chemical studies promises significant new developments for the area.
Max ERC Funding
1 499 999 €
Duration
Start date: 2010-12-01, End date: 2015-11-30
Project acronym CHILDCOHAB
Project Nonmarital childbearing in comparative perspective: trends, explanations, and lifecourse trajectories
Researcher (PI) Brienna Perelli-Harris
Host Institution (HI) UNIVERSITY OF SOUTHAMPTON
Call Details Starting Grant (StG), SH3, ERC-2010-StG_20091209
Summary Over the past several decades, childbearing within cohabitation has risen sharply throughout most of Europe, Australia, and the U.S. This project aims to study the diffusion of childbearing within cohabitation using a number of analytic levels and methodological perspectives. We will explore the following questions:
1) Trends: How does fertility differ by union status, and how do these differences change over time? Are there differences by parity, age pattern, or timing? How does the decline in marital fertility contribute to the increase in share of nonmarital births?
2) Explanations: What are the underlying reasons for increasing childbearing within cohabitation? What has produced variation across countries? How do policies impact and/or respond to childbearing within cohabitation? How do societal-level perceptions of cohabitation, marriage, and childbearing differ across countries?
3) Lifecourse trajectories: How do the lifecourse trajectories for women who bear children differ by union status? Are women who give birth within cohabitation more likely to experience changes in family structure? Is childbearing within cohabitation associated with future negative social, emotional, or economic outcomes?
To answer these questions, we will use an innovative mixed-methods strategy that 1) analyzes a unique database of harmonized reproductive and union histories, 2) conducts qualitative research into the role of policies and general perspectives on nonmarital childbearing, and 3) examines longitudinal surveys in comparative perspective. Ultimately, we aim to develop a new theoretical framework for understanding the diffusion of family change. This research will provide insights into whether lifecourse trajectories are diverging, potentially exacerbating social inequality.
Summary
Over the past several decades, childbearing within cohabitation has risen sharply throughout most of Europe, Australia, and the U.S. This project aims to study the diffusion of childbearing within cohabitation using a number of analytic levels and methodological perspectives. We will explore the following questions:
1) Trends: How does fertility differ by union status, and how do these differences change over time? Are there differences by parity, age pattern, or timing? How does the decline in marital fertility contribute to the increase in share of nonmarital births?
2) Explanations: What are the underlying reasons for increasing childbearing within cohabitation? What has produced variation across countries? How do policies impact and/or respond to childbearing within cohabitation? How do societal-level perceptions of cohabitation, marriage, and childbearing differ across countries?
3) Lifecourse trajectories: How do the lifecourse trajectories for women who bear children differ by union status? Are women who give birth within cohabitation more likely to experience changes in family structure? Is childbearing within cohabitation associated with future negative social, emotional, or economic outcomes?
To answer these questions, we will use an innovative mixed-methods strategy that 1) analyzes a unique database of harmonized reproductive and union histories, 2) conducts qualitative research into the role of policies and general perspectives on nonmarital childbearing, and 3) examines longitudinal surveys in comparative perspective. Ultimately, we aim to develop a new theoretical framework for understanding the diffusion of family change. This research will provide insights into whether lifecourse trajectories are diverging, potentially exacerbating social inequality.
Max ERC Funding
1 131 600 €
Duration
Start date: 2011-03-01, End date: 2016-05-31
Project acronym CHROMATINMODWEB
Project Functional and regulatory protein networks of chromatin modifying enzymes
Researcher (PI) Antonis Kirmizis
Host Institution (HI) UNIVERSITY OF CYPRUS
Call Details Starting Grant (StG), LS2, ERC-2010-StG_20091118
Summary Proper and controlled expression of genes is essential for normal cell growth. Chromatin modifying enzymes play a
fundamental role in the control of gene expression and their deregulation is often linked to cancer. In recent years chromatin
modifiers have been considered key targets for cancer therapy and this demands a full understanding of their biological
functions. Previous biochemical and structural studies have focused on the identification of chromatin modifying enzymes
and characterization of their substrate specificities and catalytic mechanisms. However, a comprehensive view of the
biological processes, signaling pathways and regulatory circuits in which these enzymes participate is missing. Protein
arginine methyltransferases (PRMTs), which methylate histones and are evolutionarily conserved from yeast to human,
constitute an example of chromatin modifying enzymes whose functional and regulatory networks remain unexplored. I
propose to use complementary state-of-the-art genomic and proteomic approaches in order to identify the protein networks
and cellular pathways that are linked to PRMTs. In parallel, I will identify novel regulatory circuits and define the molecular
mechanisms that control methylation of specific histone arginine residues. I will utilize the yeast S. cerevisiae as a model
organism because it allows genetic, biochemical and genomic approaches to be combined. Most importantly, many of the
pathways and mechanisms in yeast are highly conserved and therefore, the findings from this study will be pertinent to
human and other eukaryotic organisms. Establishing a global cellular wiring diagram of PRMTs will serve as a paradigm for
other chromatin modifiers and is imperative for assessing the efficacy of these enzymes as therapeutic targets.
Summary
Proper and controlled expression of genes is essential for normal cell growth. Chromatin modifying enzymes play a
fundamental role in the control of gene expression and their deregulation is often linked to cancer. In recent years chromatin
modifiers have been considered key targets for cancer therapy and this demands a full understanding of their biological
functions. Previous biochemical and structural studies have focused on the identification of chromatin modifying enzymes
and characterization of their substrate specificities and catalytic mechanisms. However, a comprehensive view of the
biological processes, signaling pathways and regulatory circuits in which these enzymes participate is missing. Protein
arginine methyltransferases (PRMTs), which methylate histones and are evolutionarily conserved from yeast to human,
constitute an example of chromatin modifying enzymes whose functional and regulatory networks remain unexplored. I
propose to use complementary state-of-the-art genomic and proteomic approaches in order to identify the protein networks
and cellular pathways that are linked to PRMTs. In parallel, I will identify novel regulatory circuits and define the molecular
mechanisms that control methylation of specific histone arginine residues. I will utilize the yeast S. cerevisiae as a model
organism because it allows genetic, biochemical and genomic approaches to be combined. Most importantly, many of the
pathways and mechanisms in yeast are highly conserved and therefore, the findings from this study will be pertinent to
human and other eukaryotic organisms. Establishing a global cellular wiring diagram of PRMTs will serve as a paradigm for
other chromatin modifiers and is imperative for assessing the efficacy of these enzymes as therapeutic targets.
Max ERC Funding
1 498 279 €
Duration
Start date: 2011-01-01, End date: 2016-06-30
Project acronym CIRCATRANS
Project Control of mouse metabolism by circadian clock-coordinated mRNA translation
Researcher (PI) Frédéric Bruno Martin Gachon
Host Institution (HI) NESTEC SA
Call Details Starting Grant (StG), LS1, ERC-2010-StG_20091118
Summary The mammalian circadian clock plays a fundamental role in the liver by regulating fatty acid, glucose and xenobiotic metabolism. Impairment of this rhythm has been show to lead to diverse pathologies including metabolic syndrome. At present, it is supposed that the circadian clock regulates metabolism mostly by regulating the expression of liver enzymes at the transcriptional level. We have now collected evidence that post-transcriptional regulations play also an important role in this regulation. Particularly, recent results from our laboratory show that the circadian clock can synchronize mRNA translation in mouse liver through rhythmic activation of the Target Of Rapamycin Complex 1 (TORC1) with a 12-hours period. Based on this unexpected observation, we plan to identify the genes rhythmically translated in the mouse liver as well as the mechanisms involved in this translation. Indeed, our initial observations suggest a cap-independent translation during the day and a cap-dependent translation during the night. Identification of the different complexes involved in translation at this two different times and their correlation with the sequence, structure, and/or function of the translated genes will provide new insight into the action of the circadian clock on animal metabolism. In parallel, we will identify the signalling pathways involved in the rhythmic activation of TORC1 in mouse liver. Finally, we will study the consequences of a deregulated rhythmic translation in circadian clock-deficient mice on the metabolism and the longevity of these animals. Perturbations of the circadian clock have been linked to numerous pathologies, including obesity, type 2 diabetes and cancer. Our project on the importance of circadian clock-coordinated translation will likely reveal new findings in the field of regulation of animal metabolism by the circadian clock.
Summary
The mammalian circadian clock plays a fundamental role in the liver by regulating fatty acid, glucose and xenobiotic metabolism. Impairment of this rhythm has been show to lead to diverse pathologies including metabolic syndrome. At present, it is supposed that the circadian clock regulates metabolism mostly by regulating the expression of liver enzymes at the transcriptional level. We have now collected evidence that post-transcriptional regulations play also an important role in this regulation. Particularly, recent results from our laboratory show that the circadian clock can synchronize mRNA translation in mouse liver through rhythmic activation of the Target Of Rapamycin Complex 1 (TORC1) with a 12-hours period. Based on this unexpected observation, we plan to identify the genes rhythmically translated in the mouse liver as well as the mechanisms involved in this translation. Indeed, our initial observations suggest a cap-independent translation during the day and a cap-dependent translation during the night. Identification of the different complexes involved in translation at this two different times and their correlation with the sequence, structure, and/or function of the translated genes will provide new insight into the action of the circadian clock on animal metabolism. In parallel, we will identify the signalling pathways involved in the rhythmic activation of TORC1 in mouse liver. Finally, we will study the consequences of a deregulated rhythmic translation in circadian clock-deficient mice on the metabolism and the longevity of these animals. Perturbations of the circadian clock have been linked to numerous pathologies, including obesity, type 2 diabetes and cancer. Our project on the importance of circadian clock-coordinated translation will likely reveal new findings in the field of regulation of animal metabolism by the circadian clock.
Max ERC Funding
1 475 831 €
Duration
Start date: 2011-03-01, End date: 2016-02-29
Project acronym CLR SENSING NECROSIS
Project Immune Functions of Myeloid Syk-coupled C-type Lectin Receptors Sensing Necrosis
Researcher (PI) David Sancho Madrid
Host Institution (HI) CENTRO NACIONAL DE INVESTIGACIONESCARDIOVASCULARES CARLOS III (F.S.P.)
Call Details Starting Grant (StG), LS6, ERC-2010-StG_20091118
Summary Necrosis triggers an inflammatory response driven by macrophages that normally contributes to tissue repair but, under certain conditions, can induce a state of chronic inflammation that forms the basis of many diseases. In addition, dendritic cell (DC)-mediated presentation of antigens from necrotic cells can trigger adaptive immunity in infection-free situations, such as autoimmunity or therapy-induced tumour rejection. Recently, we and others have identified the myeloid C-type lectin receptors (CLRs) CLEC9A (DNGR-1), in DC, and Mincle, in macrophages, as receptors for necrotic cells that can signal via the Syk kinase. Previous studies on similar Syk-coupled CLRs showed that Dectin-1 and Dectin-2 can induce innate and adaptive immune responses. We thus hypothesise that recognition of cell death by myeloid Syk-coupled CLRs is at the root of immune pathologies associated with accumulation of dead cells. The overall objective of this proposal is to investigate necrosis sensing by myeloid cells as a trigger of immunity and to study the underlying molecular mechanisms. Our first goal is to characterise signalling and gene induction via CLEC9A as a model necrosis receptor in DCs. Second, we will investigate the role of myeloid Syk-coupled necrosis-sensing CLRs in animal models of atherosclerosis, lupus and immunity to chemotherapy-treated tumours. Our preliminary data suggest that additional receptors can couple necrosis recognition to the Syk pathway in DC; thus, our third aim is to identify novel myeloid Syk-coupled receptors for necrotic cells. Characterisation of the outcomes of sensing necrosis by myeloid Syk-coupled receptors and their effect on the proposed pathologies promises to identify new mechanisms and targets for the treatment of these diseases.
Summary
Necrosis triggers an inflammatory response driven by macrophages that normally contributes to tissue repair but, under certain conditions, can induce a state of chronic inflammation that forms the basis of many diseases. In addition, dendritic cell (DC)-mediated presentation of antigens from necrotic cells can trigger adaptive immunity in infection-free situations, such as autoimmunity or therapy-induced tumour rejection. Recently, we and others have identified the myeloid C-type lectin receptors (CLRs) CLEC9A (DNGR-1), in DC, and Mincle, in macrophages, as receptors for necrotic cells that can signal via the Syk kinase. Previous studies on similar Syk-coupled CLRs showed that Dectin-1 and Dectin-2 can induce innate and adaptive immune responses. We thus hypothesise that recognition of cell death by myeloid Syk-coupled CLRs is at the root of immune pathologies associated with accumulation of dead cells. The overall objective of this proposal is to investigate necrosis sensing by myeloid cells as a trigger of immunity and to study the underlying molecular mechanisms. Our first goal is to characterise signalling and gene induction via CLEC9A as a model necrosis receptor in DCs. Second, we will investigate the role of myeloid Syk-coupled necrosis-sensing CLRs in animal models of atherosclerosis, lupus and immunity to chemotherapy-treated tumours. Our preliminary data suggest that additional receptors can couple necrosis recognition to the Syk pathway in DC; thus, our third aim is to identify novel myeloid Syk-coupled receptors for necrotic cells. Characterisation of the outcomes of sensing necrosis by myeloid Syk-coupled receptors and their effect on the proposed pathologies promises to identify new mechanisms and targets for the treatment of these diseases.
Max ERC Funding
1 297 671 €
Duration
Start date: 2010-12-01, End date: 2016-08-31
Project acronym CMVAGSTIMULUS
Project Molecular mechanisms of persistent antigenic stimulation in cytomegalovirus infection
Researcher (PI) Luka Cicin-Sain
Host Institution (HI) HELMHOLTZ-ZENTRUM FUR INFEKTIONSFORSCHUNG GMBH
Call Details Starting Grant (StG), LS6, ERC-2010-StG_20091118
Summary Cytomegalovirus (CMV) is a ubiquitous herpesvirus, latently persisting in the majority of the adult population worldwide. In these hosts, CMV-specific memory cells dominate the immune memory compartment. It follows that CMV-specific T-cells dominate the memory compartment of the majority of the human population worldwide.
I propose to define within this project the molecular mechanisms driving the inflation of CMV-specific T-cells. My central hypothesis is that expression levels of CMV peptides during latency, along with the avidity of T-cell receptors for peptide MHC complexes, define the amplitude of T-cell responses. A corollary hypothesis is that vigorous T-cell responses in CMV infection are defined by factors that drive CMV gene expression during latency, such as inflammatory stimuli.
This hypothesis will be verified in a model of in vivo CMV latency and immune monitoring. We will benefit from state-of-the-art inducible genetic systems, where recombinant mouse CMV will be deployed in transgenic mice. In latently infected mice, we will induce or suppress the expression of immunodominant CMV genes, and define downstream effects on T-cell response kinetics. In parallel, we will define the T-cell responses to high and low avidity peptides.
Understanding the mechanisms driving the strong T-cell response to CMV is of outstanding biological and clinical relevance. If strong T-cell responses may be redirected to target heterologous antigens of interest, CMV-based vaccine vectors might potentially allow the development of HIV or tumor vaccines. On the other hand, it is speculated that the control of latent CMV may overcommit the aging immune system and exhaust the T-cell repertoire. Given the CMV pervasiveness, discerning the mechanisms of its T-cell induction may define novel molecular targets for rejuvenation strategies. In either case, the proposed research has groundbreaking potential in the field of infection and immunity.
Summary
Cytomegalovirus (CMV) is a ubiquitous herpesvirus, latently persisting in the majority of the adult population worldwide. In these hosts, CMV-specific memory cells dominate the immune memory compartment. It follows that CMV-specific T-cells dominate the memory compartment of the majority of the human population worldwide.
I propose to define within this project the molecular mechanisms driving the inflation of CMV-specific T-cells. My central hypothesis is that expression levels of CMV peptides during latency, along with the avidity of T-cell receptors for peptide MHC complexes, define the amplitude of T-cell responses. A corollary hypothesis is that vigorous T-cell responses in CMV infection are defined by factors that drive CMV gene expression during latency, such as inflammatory stimuli.
This hypothesis will be verified in a model of in vivo CMV latency and immune monitoring. We will benefit from state-of-the-art inducible genetic systems, where recombinant mouse CMV will be deployed in transgenic mice. In latently infected mice, we will induce or suppress the expression of immunodominant CMV genes, and define downstream effects on T-cell response kinetics. In parallel, we will define the T-cell responses to high and low avidity peptides.
Understanding the mechanisms driving the strong T-cell response to CMV is of outstanding biological and clinical relevance. If strong T-cell responses may be redirected to target heterologous antigens of interest, CMV-based vaccine vectors might potentially allow the development of HIV or tumor vaccines. On the other hand, it is speculated that the control of latent CMV may overcommit the aging immune system and exhaust the T-cell repertoire. Given the CMV pervasiveness, discerning the mechanisms of its T-cell induction may define novel molecular targets for rejuvenation strategies. In either case, the proposed research has groundbreaking potential in the field of infection and immunity.
Max ERC Funding
1 498 456 €
Duration
Start date: 2011-04-01, End date: 2016-09-30
Project acronym CNTBBB
Project Targeting potential of carbon nanotubes at the blood brain barrier
Researcher (PI) Alexandra Elizabeth Porter
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Call Details Starting Grant (StG), PE5, ERC-2010-StG_20091028
Summary Targeted drug delivery across the blood brain barrier (BBB) to the central nervous system is a large challenge for the treatment of neurological disorders. This 4 year ERC program is aimed towards the evaluating the BBB penetration capacity and toxicological potential of novel carbon nanotube (CNT) carriers using an integrated multidisciplinary approach. State-of-art characterisation techniques developed by the PI will be applied and further developed to detect the interaction of carbon nanotubes with in vitro BBB model and neuronal cells. Specific aims:
1. Identify the mechanisms of translocation of CNT across the endothelial cells which comprise the BBB, as well as uptake by neuronal cells in vitro.
2. To investigate the effect of length, diameter and surface charge of CNTs on the BBB and neuronal cells penetration capacity in vitro.
3. To investigate the toxicological profile of CNT on the BBB and the various neuronal cell types (immortalised and primary neuronal cultures).
4. Develop protocols to assess whether the CNTs degrade inside the cell.
The ERC Grant will consolidate the new Research Group in nanomaterials-cell interfaces, and allow them to perform stimulating investigator-initiated frontier research in nanotoxicology and nanomedicine. To this end, a multi-disciplinary laboratory will be realized within the framework of this 4-year the ERC Programme. This will permit the group around the PI, to expand activities, push limits, create new boundaries, and develop new protocols for studying nanoparticle-cell interactions in close collaboration with ICL s Department of medicine and chemistry. Within the proposed program there is an underlying ambition both to gain a fundamental understanding for which parameters of CNTs determine their penetration capacity through the BBB and also to assess their toxicological potential at the BBB two highlighted themes by the ERC.
Summary
Targeted drug delivery across the blood brain barrier (BBB) to the central nervous system is a large challenge for the treatment of neurological disorders. This 4 year ERC program is aimed towards the evaluating the BBB penetration capacity and toxicological potential of novel carbon nanotube (CNT) carriers using an integrated multidisciplinary approach. State-of-art characterisation techniques developed by the PI will be applied and further developed to detect the interaction of carbon nanotubes with in vitro BBB model and neuronal cells. Specific aims:
1. Identify the mechanisms of translocation of CNT across the endothelial cells which comprise the BBB, as well as uptake by neuronal cells in vitro.
2. To investigate the effect of length, diameter and surface charge of CNTs on the BBB and neuronal cells penetration capacity in vitro.
3. To investigate the toxicological profile of CNT on the BBB and the various neuronal cell types (immortalised and primary neuronal cultures).
4. Develop protocols to assess whether the CNTs degrade inside the cell.
The ERC Grant will consolidate the new Research Group in nanomaterials-cell interfaces, and allow them to perform stimulating investigator-initiated frontier research in nanotoxicology and nanomedicine. To this end, a multi-disciplinary laboratory will be realized within the framework of this 4-year the ERC Programme. This will permit the group around the PI, to expand activities, push limits, create new boundaries, and develop new protocols for studying nanoparticle-cell interactions in close collaboration with ICL s Department of medicine and chemistry. Within the proposed program there is an underlying ambition both to gain a fundamental understanding for which parameters of CNTs determine their penetration capacity through the BBB and also to assess their toxicological potential at the BBB two highlighted themes by the ERC.
Max ERC Funding
1 229 998 €
Duration
Start date: 2011-02-01, End date: 2017-01-31
Project acronym COD
Project The economic, social and political consequences of democratic reforms. A quantitative and qualitative comparative analysis
Researcher (PI) Giovanni Marco Carbone
Host Institution (HI) UNIVERSITA DEGLI STUDI DI MILANO
Call Details Starting Grant (StG), SH2, ERC-2010-StG_20091209
Summary The latter part of the twentieth century was a period of rapid democratisation on a global scale. The attention of comparative politics scholars followed the progression of so-called Third Wave democracies, and gradually progressed from the study of the causes of and the transitions to democracy to the problems of democratic consolidation, and then to more recent issues relating to the quality of democracy. A further, frontier step may now be added to such research path by focusing on a subject that has remained largely under-researched, if at all, namely the political, social and economic consequences that emerged in countries where real democratic change took place. The question of what democracy has been able to deliver will become ever more relevant to the future prospects of recent democratisation processes and of democracy at large.
In the study of the consequences of democratisation, the advent of democracy is thus no longer observed as an endpoint, or a dependent variable to be explained, but as a starting point, or an independent variable that allegedly contributes to the explanation of a wide range of political, economic and social effects. The question of the corollaries of democratisation also has crucial policy implications.
The goals of the proposed research are:
a) the definition of a theoretical framework that articulates, integrates and interrelates the different existing hypotheses and arguments on the consequences of democratization processes
b) the empirical investigation, through a combination and integration of quantitative and qualitative methods, of the validity of three specific such hypotheses, namely:
i. democratisation favours the consolidation of the state (as a political effect)
ii. democratisation favours economic liberalization (as an economic effect)
iii. democratisation improves social welfare (as a social effect)
c) the analysis of the specific forms that the effects of democratization assume in different world regions
Summary
The latter part of the twentieth century was a period of rapid democratisation on a global scale. The attention of comparative politics scholars followed the progression of so-called Third Wave democracies, and gradually progressed from the study of the causes of and the transitions to democracy to the problems of democratic consolidation, and then to more recent issues relating to the quality of democracy. A further, frontier step may now be added to such research path by focusing on a subject that has remained largely under-researched, if at all, namely the political, social and economic consequences that emerged in countries where real democratic change took place. The question of what democracy has been able to deliver will become ever more relevant to the future prospects of recent democratisation processes and of democracy at large.
In the study of the consequences of democratisation, the advent of democracy is thus no longer observed as an endpoint, or a dependent variable to be explained, but as a starting point, or an independent variable that allegedly contributes to the explanation of a wide range of political, economic and social effects. The question of the corollaries of democratisation also has crucial policy implications.
The goals of the proposed research are:
a) the definition of a theoretical framework that articulates, integrates and interrelates the different existing hypotheses and arguments on the consequences of democratization processes
b) the empirical investigation, through a combination and integration of quantitative and qualitative methods, of the validity of three specific such hypotheses, namely:
i. democratisation favours the consolidation of the state (as a political effect)
ii. democratisation favours economic liberalization (as an economic effect)
iii. democratisation improves social welfare (as a social effect)
c) the analysis of the specific forms that the effects of democratization assume in different world regions
Max ERC Funding
322 284 €
Duration
Start date: 2010-11-01, End date: 2015-10-31
Project acronym CODAMODA
Project Controlling Data Movement in the Digital Age
Researcher (PI) Aggelos Kiayias
Host Institution (HI) ETHNIKO KAI KAPODISTRIAKO PANEPISTIMIO ATHINON
Call Details Starting Grant (StG), PE6, ERC-2010-StG_20091028
Summary Nowadays human intellectual product is increasingly produced and disseminated solely in digital form. The capability of digital data for effortless reproduction and transfer has lead to a true revolution that impacts every aspect of human creativity. Nevertheless, as with every technological revolution, this digital media revolution comes with a dark side that, if left unaddressed, it will limit its impact and may counter its potential advantages. In particular, the way we produce and disseminate digital content today does not lend itself to controlling the way data move and change. It turns out that the power of being digital can be a double-edged sword: the ease of production, dissemination and editing also implies the ease of misappropriation, plagiarism and improper modification.
To counter the above problems, the proposed research activity will focus on the development of a new generation of enabling cryptographic technologies that have the power to facilitate the appropriate controls for data movement. Using the techniques developed in this project it will be feasible to build digital content distribution systems where content producers will have the full possible control on the dissemination of their intellectual product, while at the same time the rights of the end-users in terms of privacy and fair use can be preserved. The PI is uniquely qualified to carry out the proposed research activity as he has extensive prior experience in making innovations in the area of digital content distribution as well as in the management of research projects. As part of the project activities, the PI will establish the CODAMODA laboratory in the University of Athens and will seek opportunities for technology transfer and interdisciplinary work with the legal science community.
Summary
Nowadays human intellectual product is increasingly produced and disseminated solely in digital form. The capability of digital data for effortless reproduction and transfer has lead to a true revolution that impacts every aspect of human creativity. Nevertheless, as with every technological revolution, this digital media revolution comes with a dark side that, if left unaddressed, it will limit its impact and may counter its potential advantages. In particular, the way we produce and disseminate digital content today does not lend itself to controlling the way data move and change. It turns out that the power of being digital can be a double-edged sword: the ease of production, dissemination and editing also implies the ease of misappropriation, plagiarism and improper modification.
To counter the above problems, the proposed research activity will focus on the development of a new generation of enabling cryptographic technologies that have the power to facilitate the appropriate controls for data movement. Using the techniques developed in this project it will be feasible to build digital content distribution systems where content producers will have the full possible control on the dissemination of their intellectual product, while at the same time the rights of the end-users in terms of privacy and fair use can be preserved. The PI is uniquely qualified to carry out the proposed research activity as he has extensive prior experience in making innovations in the area of digital content distribution as well as in the management of research projects. As part of the project activities, the PI will establish the CODAMODA laboratory in the University of Athens and will seek opportunities for technology transfer and interdisciplinary work with the legal science community.
Max ERC Funding
1 212 960 €
Duration
Start date: 2011-04-01, End date: 2017-03-31
Project acronym CODEMAP
Project COmplex Deep-sea Environments: Mapping habitat heterogeneity As Proxy for biodiversity
Researcher (PI) Veerle Ann Ida Huvenne
Host Institution (HI) NATURAL ENVIRONMENT RESEARCH COUNCIL
Call Details Starting Grant (StG), PE10, ERC-2010-StG_20091028
Summary Human impact on the deep ocean is rapidly increasing, with largely unknown consequences. Effective management and conservation, based on an ecosystem approach, is hampered by our poor understanding of the deep-sea environment. Measuring biodiversity, the main indicator of ecosystem status and functioning, is a major challenge in deep water: traditional sampling schemes are expensive and time-consuming, and their limited coverage makes it difficult to relate the results to regional patterns. Complex deep-sea environments are especially problematic. Ecosystem hotspots such as canyons or coral reefs contain true 3D morphology that cannot be surveyed with conventional techniques. CODEMAP will quantify habitat heterogeneity in complex deep-sea terrains, and will evaluate its potential as a proxy for benthic biodiversity at a variety of scales. Habitat heterogeneity has been suggested as a major driver for deep-sea biodiversity, but is rarely quantified in a spatial context in the marine realm.
To achieve its goal, CODEMAP will combine the fields of marine geology, ecology, remote sensing and underwater vehicle technology to establish an integrated, statistically robust and fully 3D methodology to map complex deep-sea habitats. Statistical techniques will be developed to extrapolate quantitative habitat information from fine-scale surveys to broad-scale maps. The optimal parameters to measure habitat heterogeneity will be defined, and their potential as biodiversity indicators tested through correlation with traditional approaches. The project focuses on submarine canyons, but the techniques will also be transferred to other environments. CODEMAP is expected to have a strong impact on the fundamental understanding of the deep sea and on ecosystem-based deep-sea management.
Summary
Human impact on the deep ocean is rapidly increasing, with largely unknown consequences. Effective management and conservation, based on an ecosystem approach, is hampered by our poor understanding of the deep-sea environment. Measuring biodiversity, the main indicator of ecosystem status and functioning, is a major challenge in deep water: traditional sampling schemes are expensive and time-consuming, and their limited coverage makes it difficult to relate the results to regional patterns. Complex deep-sea environments are especially problematic. Ecosystem hotspots such as canyons or coral reefs contain true 3D morphology that cannot be surveyed with conventional techniques. CODEMAP will quantify habitat heterogeneity in complex deep-sea terrains, and will evaluate its potential as a proxy for benthic biodiversity at a variety of scales. Habitat heterogeneity has been suggested as a major driver for deep-sea biodiversity, but is rarely quantified in a spatial context in the marine realm.
To achieve its goal, CODEMAP will combine the fields of marine geology, ecology, remote sensing and underwater vehicle technology to establish an integrated, statistically robust and fully 3D methodology to map complex deep-sea habitats. Statistical techniques will be developed to extrapolate quantitative habitat information from fine-scale surveys to broad-scale maps. The optimal parameters to measure habitat heterogeneity will be defined, and their potential as biodiversity indicators tested through correlation with traditional approaches. The project focuses on submarine canyons, but the techniques will also be transferred to other environments. CODEMAP is expected to have a strong impact on the fundamental understanding of the deep sea and on ecosystem-based deep-sea management.
Max ERC Funding
1 401 012 €
Duration
Start date: 2011-04-01, End date: 2017-01-31
Project acronym COMCOM
Project Communication and Computation - Two Sides of One Tapestry
Researcher (PI) Michael Christoph Gastpar
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Starting Grant (StG), PE7, ERC-2010-StG_20091028
Summary Networks have been studied in depth for several decades, but one aspect has received little attention: Interference. Most networks use clever algorithms to avoid interference, and this strategy has proved effective for traditional supply-chain or wired communication networks. However, the emergence of wireless networks revealed that simply avoiding interference leads to significant performance loss. A wealth of cooperative communication strategies have recently been developed to address this issue. Two fundamental roadblocks are emerging: First, it is ultimately unclear how to integrate cooperative techniques into the larger fabric of networks (short of case-by-case redesigns); and second, the lack of source/channel separation in networks (i.e., more bits do not imply better end-to-end signal quality) calls for ever more specialized cooperative techniques.
This proposal advocates a new understanding of interference as computation: Interference garbles together inputs to produce an output. This can be thought of as a certain computation, perhaps subject to noise or other stochastic effects. The proposed work will develop strategies that permit to exploit this computational potential. Building on these ``computation codes,'' an enhanced physical layer is proposed: Rather than only forwarding bits, the revised physical layer can also forward functions from several transmitting nodes to a receiver, much more efficiently than the full information. Near-seamless integration into the fabric of existing network architectures is thus possible, providing a solution for the first roadblock. In response to the second roadblock, computation codes suggest new computational primitives as fundamental currencies of information.
Summary
Networks have been studied in depth for several decades, but one aspect has received little attention: Interference. Most networks use clever algorithms to avoid interference, and this strategy has proved effective for traditional supply-chain or wired communication networks. However, the emergence of wireless networks revealed that simply avoiding interference leads to significant performance loss. A wealth of cooperative communication strategies have recently been developed to address this issue. Two fundamental roadblocks are emerging: First, it is ultimately unclear how to integrate cooperative techniques into the larger fabric of networks (short of case-by-case redesigns); and second, the lack of source/channel separation in networks (i.e., more bits do not imply better end-to-end signal quality) calls for ever more specialized cooperative techniques.
This proposal advocates a new understanding of interference as computation: Interference garbles together inputs to produce an output. This can be thought of as a certain computation, perhaps subject to noise or other stochastic effects. The proposed work will develop strategies that permit to exploit this computational potential. Building on these ``computation codes,'' an enhanced physical layer is proposed: Rather than only forwarding bits, the revised physical layer can also forward functions from several transmitting nodes to a receiver, much more efficiently than the full information. Near-seamless integration into the fabric of existing network architectures is thus possible, providing a solution for the first roadblock. In response to the second roadblock, computation codes suggest new computational primitives as fundamental currencies of information.
Max ERC Funding
1 776 473 €
Duration
Start date: 2011-05-01, End date: 2016-04-30
Project acronym COMFUS
Project Computational Methods for Fusion Technology
Researcher (PI) Santiago Ignacio Badia Rodríguez
Host Institution (HI) CENTRE INTERNACIONAL DE METODES NUMERICS EN ENGINYERIA
Call Details Starting Grant (StG), PE8, ERC-2010-StG_20091028
Summary The simulation of multidisciplinary applications use very often a combination of heterogeneous and disjoint numerical techniques that are hard to put together by the user, and whose mathematical foundation is obscure. An example of this situation is the numerical modeling of the physical processes taking place in nuclear fusion reactors. This problem, which can be modeled by a set of partial differential equations, is extremely challenging. It involves (essentially) fluid mechanics, electromagnetics, thermal radiation and neutronics. The most common numerical approaches to each of these problems separately are very different and their coupling is a hard and inefficient task.
Our main objective in this proposal is to develop and analyze a unified numerical framework based on stabilized finite element methods based on multi-scale decompositions capable to simulate all the physical processes taking place in nuclear fusion technology. The project aims at giving a substantial contribution to the numerical approximation of every physical process as well as efficient coupling techniques for the multiphysics problems.
The development of the numerical formulations we propose and their application require mastering different physics, designing numerical approximations for these different physical problems, analyzing mathematically the resulting methods, implementing them in an efficient way in parallel platforms and understanding the results and drawing conclusions, both from a physical and from an engineering perspective. Advanced research in physical modeling, numerical approximations, mathematical analysis and computer implementation are the keys to meeting these objectives.
The successful implementation of the project will provide advanced numerical techniques for the simulation of the processes taking place in a fusion reactor. A deliverable product of the project will be a unified finite element software package that will be an extremely valuable tool.
Summary
The simulation of multidisciplinary applications use very often a combination of heterogeneous and disjoint numerical techniques that are hard to put together by the user, and whose mathematical foundation is obscure. An example of this situation is the numerical modeling of the physical processes taking place in nuclear fusion reactors. This problem, which can be modeled by a set of partial differential equations, is extremely challenging. It involves (essentially) fluid mechanics, electromagnetics, thermal radiation and neutronics. The most common numerical approaches to each of these problems separately are very different and their coupling is a hard and inefficient task.
Our main objective in this proposal is to develop and analyze a unified numerical framework based on stabilized finite element methods based on multi-scale decompositions capable to simulate all the physical processes taking place in nuclear fusion technology. The project aims at giving a substantial contribution to the numerical approximation of every physical process as well as efficient coupling techniques for the multiphysics problems.
The development of the numerical formulations we propose and their application require mastering different physics, designing numerical approximations for these different physical problems, analyzing mathematically the resulting methods, implementing them in an efficient way in parallel platforms and understanding the results and drawing conclusions, both from a physical and from an engineering perspective. Advanced research in physical modeling, numerical approximations, mathematical analysis and computer implementation are the keys to meeting these objectives.
The successful implementation of the project will provide advanced numerical techniques for the simulation of the processes taking place in a fusion reactor. A deliverable product of the project will be a unified finite element software package that will be an extremely valuable tool.
Max ERC Funding
1 320 000 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym COMMOTS
Project Communication Motifs: Principles of bacterial communication in non-genetically diversified populations
Researcher (PI) Ilka Bischofs-Pfeifer
Host Institution (HI) RUPRECHT-KARLS-UNIVERSITAET HEIDELBERG
Call Details Starting Grant (StG), LS2, ERC-2010-StG_20091118
Summary Cell-to-cell communication is a central aspect for understanding how cells form and organize multi-cellular communities involving progressive cell specialization. Multi-cellularity cell specialization cell communication those keywords are frequently used to distinguish metazoans from bacteria. Yet bacteria can form morphologically complex multi-cellular communities, they can non-genetically diversify and they can communicate. This implies that even prokaryotic networks must possess the properties to facilitate these complex functions. Thus basic network features ( motifs ) determining these functions can be discovered and characterized from studying simpler bacterial networks. We want to focus on communication motifs that are present in the gene-regulatory network of Bacillus subtilis. Our proposed methodology involves a combination of quantitative fluorescence microscopy techniques (QFTLM, FRET), developmental assays, signal transduction studies in controlled micro-environments and information theory to quantitatively characterize communication motifs..
Summary
Cell-to-cell communication is a central aspect for understanding how cells form and organize multi-cellular communities involving progressive cell specialization. Multi-cellularity cell specialization cell communication those keywords are frequently used to distinguish metazoans from bacteria. Yet bacteria can form morphologically complex multi-cellular communities, they can non-genetically diversify and they can communicate. This implies that even prokaryotic networks must possess the properties to facilitate these complex functions. Thus basic network features ( motifs ) determining these functions can be discovered and characterized from studying simpler bacterial networks. We want to focus on communication motifs that are present in the gene-regulatory network of Bacillus subtilis. Our proposed methodology involves a combination of quantitative fluorescence microscopy techniques (QFTLM, FRET), developmental assays, signal transduction studies in controlled micro-environments and information theory to quantitatively characterize communication motifs..
Max ERC Funding
1 496 840 €
Duration
Start date: 2011-09-01, End date: 2016-08-31
Project acronym COMPBIOMAT
Project Computing Biomaterials
Researcher (PI) Wilfried Weber
Host Institution (HI) ALBERT-LUDWIGS-UNIVERSITAET FREIBURG
Call Details Starting Grant (StG), PE5, ERC-2010-StG_20091028
Summary The objective of the proposal is to establish the foundations of a new discipline at the intersections of Materials Science, Synthetic Biology and Computer Science: the development of Computing Biomaterials. Computing biomaterials will be able to perceive multiple input signals, to process these signals by complex computational operations and to produce a corresponding output signal. The design principle of computing biomaterials will be inspired by computer science, the molecular control elements will be derived from synthetic biology and the overall framework for the construction of biomaterials will rely on materials science.
The design principle will be hierarchical: at the basis, synthetic biology tools will act as sensor, processor and actuator. These tools will be integrated into biomaterials to build logic gates that perceive different input signals, process these signals by Boolean algebra and produce a corresponding readout. By the functional interconnected of several such gates, we will construct integrated biomaterial circuits that perform complex computational operations.
The fundamental and generally applicable design principles as established in this proposal, will enable the rapid and predictable synthesis of integrated biomaterial circuits that function as integrated sensor, processor and actuator with custom-tailored performance and will show a vast application potential in emerging disciplines like biomedicine or microsystems engineering.
Summary
The objective of the proposal is to establish the foundations of a new discipline at the intersections of Materials Science, Synthetic Biology and Computer Science: the development of Computing Biomaterials. Computing biomaterials will be able to perceive multiple input signals, to process these signals by complex computational operations and to produce a corresponding output signal. The design principle of computing biomaterials will be inspired by computer science, the molecular control elements will be derived from synthetic biology and the overall framework for the construction of biomaterials will rely on materials science.
The design principle will be hierarchical: at the basis, synthetic biology tools will act as sensor, processor and actuator. These tools will be integrated into biomaterials to build logic gates that perceive different input signals, process these signals by Boolean algebra and produce a corresponding readout. By the functional interconnected of several such gates, we will construct integrated biomaterial circuits that perform complex computational operations.
The fundamental and generally applicable design principles as established in this proposal, will enable the rapid and predictable synthesis of integrated biomaterial circuits that function as integrated sensor, processor and actuator with custom-tailored performance and will show a vast application potential in emerging disciplines like biomedicine or microsystems engineering.
Max ERC Funding
1 499 040 €
Duration
Start date: 2010-12-01, End date: 2015-11-30
Project acronym COMPCAMERAANALYZ
Project Understanding Designing and Analyzing Computational Cameras
Researcher (PI) Anat Levin
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Starting Grant (StG), PE6, ERC-2010-StG_20091028
Summary Computational cameras go beyond 2D images and allow the extraction of more dimensions from the visual world such as depth, multiple viewpoints and multiple illumination conditions. They also allow us to overcome some of the traditional photography challenges such as defocus blur, motion blur, noise and resolution. The increasing variety of computational cameras is raising the need for a meaningful comparison across camera types. We would like to understand which cameras are better for specific tasks, which aspects of a camera make it better than others and what is the best performance we can hope to achieve.
Our 2008 paper introduced a general framework to address the design and analysis of computational cameras. A camera is modeled as a linear projection in ray space. Decoding the camera data then deals with inverting the linear projection. Since the number of sensor measurements is usually much smaller than the number of rays, the inversion must be treated as a Bayesian inference problem accounting for prior knowledge on the world.
Despite significant progress which has been made in the recent years, the space of computational cameras is still far from being understood.
Computational camera analysis raises the following research challenges: 1) What is a good way to model prior knowledge on ray space? 2) Seeking efficient inference algorithms and robust ways to decode the world from the camera measurements. 3) Evaluating the expected reconstruction accuracy of a given camera. 4) Using the expected reconstruction performance for evaluating and comparing camera types. 5) What is the best camera? Can we derive upper bounds on the optimal performance?
We propose research on all aspects of computational camera design and analysis. We propose new prior models which will significantly simplify the inference and evaluation tasks. We also propose new ways to bound and evaluate computational cameras with existing priors.
Summary
Computational cameras go beyond 2D images and allow the extraction of more dimensions from the visual world such as depth, multiple viewpoints and multiple illumination conditions. They also allow us to overcome some of the traditional photography challenges such as defocus blur, motion blur, noise and resolution. The increasing variety of computational cameras is raising the need for a meaningful comparison across camera types. We would like to understand which cameras are better for specific tasks, which aspects of a camera make it better than others and what is the best performance we can hope to achieve.
Our 2008 paper introduced a general framework to address the design and analysis of computational cameras. A camera is modeled as a linear projection in ray space. Decoding the camera data then deals with inverting the linear projection. Since the number of sensor measurements is usually much smaller than the number of rays, the inversion must be treated as a Bayesian inference problem accounting for prior knowledge on the world.
Despite significant progress which has been made in the recent years, the space of computational cameras is still far from being understood.
Computational camera analysis raises the following research challenges: 1) What is a good way to model prior knowledge on ray space? 2) Seeking efficient inference algorithms and robust ways to decode the world from the camera measurements. 3) Evaluating the expected reconstruction accuracy of a given camera. 4) Using the expected reconstruction performance for evaluating and comparing camera types. 5) What is the best camera? Can we derive upper bounds on the optimal performance?
We propose research on all aspects of computational camera design and analysis. We propose new prior models which will significantly simplify the inference and evaluation tasks. We also propose new ways to bound and evaluate computational cameras with existing priors.
Max ERC Funding
756 845 €
Duration
Start date: 2010-12-01, End date: 2015-11-30
Project acronym COMPLEXDATA
Project Statistics for Complex Data: Understanding Randomness, Geometry and Complexity with a view Towards Biophysics
Researcher (PI) Victor Michael Panaretos
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Starting Grant (StG), PE1, ERC-2010-StG_20091028
Summary The ComplexData project aims at advancing our understanding of the statistical treatment of varied types of complex data by generating new theory and methods, and to obtain progress in concrete current biophysical problems through the implementation of the new tools developed. Complex Data constitute data where the basic object of observation cannot be described in the standard Euclidean context of statistics, but rather needs to be thought of as an element of an abstract mathematical space with special properties. Scientific progress has, in recent years, begun to generate an increasing number of new and complex types of data that require statistical understanding and analysis. Four such types of data that are arising in the context of current scientific research and that the project will be focusing on are: random integral transforms, random unlabelled shapes, random flows of functions, and random tensor fields. In these unconventional contexts for statistics, the strategy of the project will be to carefully exploit the special aspects involved due to geometry, dimension and randomness in order to be able to either adapt and synthesize existing statistical methods, or to generate new statistical ideas altogether. However, the project will not restrict itself to merely studying the theoretical aspects of complex data, but will be truly interdisciplinary. The connecting thread among all the above data types is that their study is motivated by, and will be applied to concrete practical problems arising in the study of biological structure, dynamics, and function: biophysics. For this reason, the programme will be in interaction with local and international contacts from this field. In particular, the theoretical/methodological output of the four programme research foci will be applied to gain insights in the following corresponding four application areas: electron microscopy, protein homology, DNA molecular dynamics, brain imaging.
Summary
The ComplexData project aims at advancing our understanding of the statistical treatment of varied types of complex data by generating new theory and methods, and to obtain progress in concrete current biophysical problems through the implementation of the new tools developed. Complex Data constitute data where the basic object of observation cannot be described in the standard Euclidean context of statistics, but rather needs to be thought of as an element of an abstract mathematical space with special properties. Scientific progress has, in recent years, begun to generate an increasing number of new and complex types of data that require statistical understanding and analysis. Four such types of data that are arising in the context of current scientific research and that the project will be focusing on are: random integral transforms, random unlabelled shapes, random flows of functions, and random tensor fields. In these unconventional contexts for statistics, the strategy of the project will be to carefully exploit the special aspects involved due to geometry, dimension and randomness in order to be able to either adapt and synthesize existing statistical methods, or to generate new statistical ideas altogether. However, the project will not restrict itself to merely studying the theoretical aspects of complex data, but will be truly interdisciplinary. The connecting thread among all the above data types is that their study is motivated by, and will be applied to concrete practical problems arising in the study of biological structure, dynamics, and function: biophysics. For this reason, the programme will be in interaction with local and international contacts from this field. In particular, the theoretical/methodological output of the four programme research foci will be applied to gain insights in the following corresponding four application areas: electron microscopy, protein homology, DNA molecular dynamics, brain imaging.
Max ERC Funding
681 146 €
Duration
Start date: 2011-06-01, End date: 2016-05-31
Project acronym COMPLEXI&AGING
Project Modulation of mitochondrial complex I as a strategy to increase lifespan and prevent age-related diseases
Researcher (PI) Alberto Sanz Montero
Host Institution (HI) UNIVERSITY OF NEWCASTLE UPON TYNE
Call Details Starting Grant (StG), LS4, ERC-2010-StG_20091118
Summary Nowadays, ageing is one of the main problems in Western society. The increase in the percentage of elderly people serves to strain the Social Security to the point of bankruptcy. The only way to alleviate the suffering caused by age-related degenerative disease is to fully understand the underlying forces which drive ageing and design strategies to delay it. Mitochondria are considered as central modulators of longevity in different species. It has been proposed that free radicals cause the accumulation of oxidative damage and as a result ageing. In accordance with this, production of Reactive Oxygen Species (ROS) by complex I negatively correlates with longevity. However, the overexpression of antioxidants or the reduction of ROS levels does not increase lifespan. These contradictory data can only be reconciled if complex I is modulating longevity through a ROS independent mechanism. We have expressed the alternative internal NADH dehydrogenase 1 (NDI1) from Saccharomyces cerevisiae in Drosophila melanogaster. The expression of NDI1 does not change the level of ROS but increases both the ratio of NAD+/NADH and Drosophila longevity. The main objective of this proposal is to study the mechanisms by which complex I regulates longevity. My general hypothesis is that complex I regulates longevity through a ROS independent mechanism. I propose that complex I controls the cellular levels of NAD+/NADH, keeping their levels at an equilibrium that favours the optimal functioning of the cell. When the ratio is moved towards NADH ageing is promoted, whereas when it is moved towards NAD+ pro-survival pathways are activated. I proposed two specific mechanisms downstream of complex I that promote cellular longevity or senescence: 1) activation of sirtuins, which would increase genome stability and 2) reduction of methylglyoxal generation, which would decrease the accumulation of cellular garbarge .
Summary
Nowadays, ageing is one of the main problems in Western society. The increase in the percentage of elderly people serves to strain the Social Security to the point of bankruptcy. The only way to alleviate the suffering caused by age-related degenerative disease is to fully understand the underlying forces which drive ageing and design strategies to delay it. Mitochondria are considered as central modulators of longevity in different species. It has been proposed that free radicals cause the accumulation of oxidative damage and as a result ageing. In accordance with this, production of Reactive Oxygen Species (ROS) by complex I negatively correlates with longevity. However, the overexpression of antioxidants or the reduction of ROS levels does not increase lifespan. These contradictory data can only be reconciled if complex I is modulating longevity through a ROS independent mechanism. We have expressed the alternative internal NADH dehydrogenase 1 (NDI1) from Saccharomyces cerevisiae in Drosophila melanogaster. The expression of NDI1 does not change the level of ROS but increases both the ratio of NAD+/NADH and Drosophila longevity. The main objective of this proposal is to study the mechanisms by which complex I regulates longevity. My general hypothesis is that complex I regulates longevity through a ROS independent mechanism. I propose that complex I controls the cellular levels of NAD+/NADH, keeping their levels at an equilibrium that favours the optimal functioning of the cell. When the ratio is moved towards NADH ageing is promoted, whereas when it is moved towards NAD+ pro-survival pathways are activated. I proposed two specific mechanisms downstream of complex I that promote cellular longevity or senescence: 1) activation of sirtuins, which would increase genome stability and 2) reduction of methylglyoxal generation, which would decrease the accumulation of cellular garbarge .
Max ERC Funding
1 491 600 €
Duration
Start date: 2011-02-01, End date: 2016-09-30
Project acronym COMPUSLANG
Project Neural and computational determinants of left cerebral dominance in speech and language
Researcher (PI) Anne-Lise Mamessier
Host Institution (HI) UNIVERSITE DE GENEVE
Call Details Starting Grant (StG), LS5, ERC-2010-StG_20091118
Summary More than a century after Wernicke and Broca established that speech perception and production rely on temporal and prefrontal cortices of the left brain hemisphere, the biological determinants for this organization are still unknown. While functional neuroanatomy has been described in great detail, the neuroscience of language still lacks a physiologically plausible model of the neuro-computational mechanisms for coding and decoding of speech acoustic signal. We propose to fill this gap by testing the biological validity and exploring the computational implications of one promising proposal, the Asymmetric Sampling in Time theory. AST assumes that speech signals are analysed in parallel at multiple timescales and that these timescales differ between left and right cerebral hemispheres. This theory is original and provocative as it implies that a single computational difference, distinct integration windows in right and left auditory cortices could be sufficient to explain why speech is preferentially processed by the left brain, and possible even why the human brain has evolved toward such an asymmetric functional organization. Our proposal has four goals: 1/ to validate, invalidate or amend AST on the basis of physiological experiments in healthy human subjects including functional magnetic resonance imaging (fMRI), combined electroencephalography (EEG) and fMRI, magnetoencephalography (MEG) and subdural electrocorticography (EcoG), 2/ to use computational modeling to probe those aspects of the theory that currently remain inaccessible to empirical testing (evaluation, assessment), 3/ to apply AST to binaural artificial hearing with cochlear implants, 4/ to test for disorders of auditory sampling in autism and dyslexia, two language neurodevelopmental pathologies in which a genetic basis implicates the physiological underpinnings of AST, and 5/ to assess potential generalisation of AST to linguistic action in the context of speech production.
Summary
More than a century after Wernicke and Broca established that speech perception and production rely on temporal and prefrontal cortices of the left brain hemisphere, the biological determinants for this organization are still unknown. While functional neuroanatomy has been described in great detail, the neuroscience of language still lacks a physiologically plausible model of the neuro-computational mechanisms for coding and decoding of speech acoustic signal. We propose to fill this gap by testing the biological validity and exploring the computational implications of one promising proposal, the Asymmetric Sampling in Time theory. AST assumes that speech signals are analysed in parallel at multiple timescales and that these timescales differ between left and right cerebral hemispheres. This theory is original and provocative as it implies that a single computational difference, distinct integration windows in right and left auditory cortices could be sufficient to explain why speech is preferentially processed by the left brain, and possible even why the human brain has evolved toward such an asymmetric functional organization. Our proposal has four goals: 1/ to validate, invalidate or amend AST on the basis of physiological experiments in healthy human subjects including functional magnetic resonance imaging (fMRI), combined electroencephalography (EEG) and fMRI, magnetoencephalography (MEG) and subdural electrocorticography (EcoG), 2/ to use computational modeling to probe those aspects of the theory that currently remain inaccessible to empirical testing (evaluation, assessment), 3/ to apply AST to binaural artificial hearing with cochlear implants, 4/ to test for disorders of auditory sampling in autism and dyslexia, two language neurodevelopmental pathologies in which a genetic basis implicates the physiological underpinnings of AST, and 5/ to assess potential generalisation of AST to linguistic action in the context of speech production.
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-02-01, End date: 2016-01-31
Project acronym CONQUEST
Project Controlled quantum effects and spin technology
- from non-equilibrium physics to functional magnetics
Researcher (PI) Henrik Ronnow
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Starting Grant (StG), PE3, ERC-2010-StG_20091028
Summary The technology of the 20th century was dominated by a single material class: The semiconductors, whose properties can be tuned between those of metals and insulators all of which describable by single-electron effects. In contrast, quantum magnets and strongly correlated electron systems offer a full palette of quantum mechanical many-electron states. CONQUEST aim to discover, understand and demonstrate control over such quantum states. A new experimental approach, building on established powerful laboratory and neutron scattering techniques combined with dynamical control-perturbations, will be developed to study correlated quantum effects in magnetic materials. The immediate goal is to open a new field of non-equilibrium and time dependent studies in solid state physics. The long-term vision is that the approach might nurture the materials of the 21st century.
Summary
The technology of the 20th century was dominated by a single material class: The semiconductors, whose properties can be tuned between those of metals and insulators all of which describable by single-electron effects. In contrast, quantum magnets and strongly correlated electron systems offer a full palette of quantum mechanical many-electron states. CONQUEST aim to discover, understand and demonstrate control over such quantum states. A new experimental approach, building on established powerful laboratory and neutron scattering techniques combined with dynamical control-perturbations, will be developed to study correlated quantum effects in magnetic materials. The immediate goal is to open a new field of non-equilibrium and time dependent studies in solid state physics. The long-term vision is that the approach might nurture the materials of the 21st century.
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-04-01, End date: 2016-03-31
Project acronym COOPAIRENT
Project Cooper pairs as a source of entanglement
Researcher (PI) Szabolcs Csonka
Host Institution (HI) BUDAPESTI MUSZAKI ES GAZDASAGTUDOMANYI EGYETEM
Call Details Starting Grant (StG), PE3, ERC-2010-StG_20091028
Summary Entanglement and non-locality are spectacular fundamentals of quantum mechanics and basic resources of future quantum computation algorithms. Electronic entanglement has attracted increasing attention during the last years. The electron spin as a purely quantum mechanical two level system has been put forward as a promising candidate for storing quantum information in solid state. Recently, great progress has been achieved in manipulation and read-out of quantum dot based spin Qubits. However, electron spin is also suitable to transfer quantum information, since mobile electrons can be coherently transmitted in a solid state device preserving the spin information. Thus, electron spin could provide a general platform for on-chip quantum computation and information processing.
Although several theoretical concepts have been worked out to address spin entangled mobile electrons, the absence of an entangler device has not allowed their realization so far. The aim of the present proposal is to overcome this experimental challenge and explore the entanglement of spatially separated electron pairs. Superconductors provide a natural source of entanglement, because their ground-state is composed of Cooper pairs in a spin-singlet state. However, the splitting of the Cooper pairs into separate electrons has to be enforced, which has been very recently realized by the applicant in two quantum dot Y-junction. This Y-junction will be used as a central building block to split Cooper pairs in a controlled fashion and the non-local nature of spin and charge correlations will be addressed in various device configurations.
Our research project will lead to a fundamental understanding of the production, manipulation and detection of spin entangled mobile electron pairs, thus it will significantly extend the frontiers of quantum coherence and opens a new horizon in the field of on-chip quantum information technologies.
Summary
Entanglement and non-locality are spectacular fundamentals of quantum mechanics and basic resources of future quantum computation algorithms. Electronic entanglement has attracted increasing attention during the last years. The electron spin as a purely quantum mechanical two level system has been put forward as a promising candidate for storing quantum information in solid state. Recently, great progress has been achieved in manipulation and read-out of quantum dot based spin Qubits. However, electron spin is also suitable to transfer quantum information, since mobile electrons can be coherently transmitted in a solid state device preserving the spin information. Thus, electron spin could provide a general platform for on-chip quantum computation and information processing.
Although several theoretical concepts have been worked out to address spin entangled mobile electrons, the absence of an entangler device has not allowed their realization so far. The aim of the present proposal is to overcome this experimental challenge and explore the entanglement of spatially separated electron pairs. Superconductors provide a natural source of entanglement, because their ground-state is composed of Cooper pairs in a spin-singlet state. However, the splitting of the Cooper pairs into separate electrons has to be enforced, which has been very recently realized by the applicant in two quantum dot Y-junction. This Y-junction will be used as a central building block to split Cooper pairs in a controlled fashion and the non-local nature of spin and charge correlations will be addressed in various device configurations.
Our research project will lead to a fundamental understanding of the production, manipulation and detection of spin entangled mobile electron pairs, thus it will significantly extend the frontiers of quantum coherence and opens a new horizon in the field of on-chip quantum information technologies.
Max ERC Funding
1 496 112 €
Duration
Start date: 2011-02-01, End date: 2016-10-31
Project acronym COSMOIGM
Project The Intergalactic Medium as a Cosmological Tool
Researcher (PI) Matteo Viel
Host Institution (HI) ISTITUTO NAZIONALE DI ASTROFISICA
Call Details Starting Grant (StG), PE9, ERC-2010-StG_20091028
Summary The cosmoIGM proposal aims at investigating the role of the Intergalactic Medium (IGM) as a cosmological probe and at exploiting the many IGM-related sinergies between observational cosmology, galaxy formation and fundamental physics. The IGM is a unique cosmological observable as it probes 3/4 of the present age of the universe, it contains up to 80% of the baryons and is sensitive to scales that are not measured by other data. In the last decade, astronomical data sets have started to be widely used by the scientific community to address important physical issues such as: the nature of the dark matter and dark energy components and their evolution; the physical properties of the baryonic matter; variation of fundamental constants; feedback processes by galaxies, etc. For example, results obtained from astronomical data are nowadays comparable to those obtained by ground based physics laboratories (e.g. neutrino masses). This proposal will rely on observations of the IGM at high and low redshift and will interpret them by means of state-of-the-art computational facilities in order to firmly establish the (yet controversial) role of the IGM as a probe for cosmology and fundamental physics. Moreover, we aim at exploring the galaxy-IGM interplay at a crucial stage of the cosmic history when the universe was few Gyrs old and star forming galaxies were strongly affecting the dynamical, thermal and chemical properties of the IGM. The hosting institution, Trieste Observatory, and the Trieste Area (ICTP, SISSA and Trieste University) have a long-standing expertise on the topics above. We foresee that the present interdisciplinary proposal will have a strong scientific impact and will help the P.I. to consolidate its independence and to create his first research team.
Summary
The cosmoIGM proposal aims at investigating the role of the Intergalactic Medium (IGM) as a cosmological probe and at exploiting the many IGM-related sinergies between observational cosmology, galaxy formation and fundamental physics. The IGM is a unique cosmological observable as it probes 3/4 of the present age of the universe, it contains up to 80% of the baryons and is sensitive to scales that are not measured by other data. In the last decade, astronomical data sets have started to be widely used by the scientific community to address important physical issues such as: the nature of the dark matter and dark energy components and their evolution; the physical properties of the baryonic matter; variation of fundamental constants; feedback processes by galaxies, etc. For example, results obtained from astronomical data are nowadays comparable to those obtained by ground based physics laboratories (e.g. neutrino masses). This proposal will rely on observations of the IGM at high and low redshift and will interpret them by means of state-of-the-art computational facilities in order to firmly establish the (yet controversial) role of the IGM as a probe for cosmology and fundamental physics. Moreover, we aim at exploring the galaxy-IGM interplay at a crucial stage of the cosmic history when the universe was few Gyrs old and star forming galaxies were strongly affecting the dynamical, thermal and chemical properties of the IGM. The hosting institution, Trieste Observatory, and the Trieste Area (ICTP, SISSA and Trieste University) have a long-standing expertise on the topics above. We foresee that the present interdisciplinary proposal will have a strong scientific impact and will help the P.I. to consolidate its independence and to create his first research team.
Max ERC Funding
891 400 €
Duration
Start date: 2010-12-01, End date: 2016-11-30
Project acronym COSMOLAB
Project Laboratory simulation of cosmological magnetic fields
Researcher (PI) Gianluca Gregori
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Starting Grant (StG), PE2, ERC-2010-StG_20091028
Summary The advent of high-power laser systems in the past two decades has opened a new field of research where astrophysical environments can be scaled down to laboratory dimensions, yet preserving the essential physics. This is due to the invariance of the equations of ideal magneto-hydrodynamics (MHD) to a class of self-similar transformations. In this proposal, we will apply these scaling laws to investigate the dynamics of the high Mach number shocks arising during the formation of the large-scale structure of the Universe. Although at the beginning of cosmic evolution matter was nearly homogenously distributed, today, as a result of gravitational instability, it forms a web-like structure made of filaments and clusters. Gas continues to accrete supersonically onto these collapsed structures, thus producing high Mach number shocks. It has been recently proposed that generation of magnetic fields can occur at these cosmic shocks on a cosmologically fast timescale via a Weibel-like instability, thus providing an appealing explanation to the ubiquitous magnetization of the Universe. Our proposal will thus provide the first experimental evidence of such mechanisms. We plan to measure the self-generated magnetic fields from laboratory shock waves using a novel combination of electron deflectometry, Faraday rotation measurements using THz lasers, and dB/dt probes. The proposed investigation on the generation of magnetic fields at shocks via plasma instabilities bears important general consequences. First, it will shed light on the origin of cosmic magnetic fields. Second, it would have a tremendous impact on one of the greatest puzzles of high energy astrophysics, the origin of Ultra High Energy Cosmic Rays. We plan to assess the role of charged particle acceleration via collisionless shocks in the amplification of the magnetic field as well as measure the spectrum of such accelerated particles. The experimental work will be carried both at Oxford U and at laser facilities.
Summary
The advent of high-power laser systems in the past two decades has opened a new field of research where astrophysical environments can be scaled down to laboratory dimensions, yet preserving the essential physics. This is due to the invariance of the equations of ideal magneto-hydrodynamics (MHD) to a class of self-similar transformations. In this proposal, we will apply these scaling laws to investigate the dynamics of the high Mach number shocks arising during the formation of the large-scale structure of the Universe. Although at the beginning of cosmic evolution matter was nearly homogenously distributed, today, as a result of gravitational instability, it forms a web-like structure made of filaments and clusters. Gas continues to accrete supersonically onto these collapsed structures, thus producing high Mach number shocks. It has been recently proposed that generation of magnetic fields can occur at these cosmic shocks on a cosmologically fast timescale via a Weibel-like instability, thus providing an appealing explanation to the ubiquitous magnetization of the Universe. Our proposal will thus provide the first experimental evidence of such mechanisms. We plan to measure the self-generated magnetic fields from laboratory shock waves using a novel combination of electron deflectometry, Faraday rotation measurements using THz lasers, and dB/dt probes. The proposed investigation on the generation of magnetic fields at shocks via plasma instabilities bears important general consequences. First, it will shed light on the origin of cosmic magnetic fields. Second, it would have a tremendous impact on one of the greatest puzzles of high energy astrophysics, the origin of Ultra High Energy Cosmic Rays. We plan to assess the role of charged particle acceleration via collisionless shocks in the amplification of the magnetic field as well as measure the spectrum of such accelerated particles. The experimental work will be carried both at Oxford U and at laser facilities.
Max ERC Funding
1 119 690 €
Duration
Start date: 2010-12-01, End date: 2015-11-30
Project acronym COSYM
Project Computational Symmetry for Geometric Data Analysis and Design
Researcher (PI) Mark Pauly
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Starting Grant (StG), PE6, ERC-2010-StG_20091028
Summary The analysis and synthesis of complex 3D geometric data sets is of crucial importance in many scientific disciplines (e.g. bio-medicine, material science, mechanical engineering, physics) and industrial applications (e.g. drug design, entertainment, architecture). We are currently witnessing a tremendous increase in the size and complexity of geometric data, largely fueled by significant advances in 3D acquisition and digital production technology. However, existing computational tools are often not suited to handle this complexity.
The goal of this project is to explore a fundamentally different way of processing 3D geometry. We will investigate a new generalized model of geometric symmetry as a unifying concept for studying spatial organization in geometric data. This model allows exposing the inherent redundancies in digital 3D data and will enable truly scalable algorithms for analysis, processing, and design of large-scale geometric data sets. The proposed research will address a number of fundamental questions: What is the information content of 3D geometric models? How can we represent, store, and transmit geometric data most efficiently? Can we we use symmetry to repair deficiencies and reduce noise in acquired data? What is the role of symmetry in the design process and how can it be used to reduce complexity?
I will investigate these questions with an integrated approach that combines thorough theoretical studies with practical solutions for real-world applications.
The proposed research has a strong interdisciplinary component and will consider the same fundamental questions from different perspectives, closely interacting with scientists of various disciplines, as well artists, architects, and designers.
Summary
The analysis and synthesis of complex 3D geometric data sets is of crucial importance in many scientific disciplines (e.g. bio-medicine, material science, mechanical engineering, physics) and industrial applications (e.g. drug design, entertainment, architecture). We are currently witnessing a tremendous increase in the size and complexity of geometric data, largely fueled by significant advances in 3D acquisition and digital production technology. However, existing computational tools are often not suited to handle this complexity.
The goal of this project is to explore a fundamentally different way of processing 3D geometry. We will investigate a new generalized model of geometric symmetry as a unifying concept for studying spatial organization in geometric data. This model allows exposing the inherent redundancies in digital 3D data and will enable truly scalable algorithms for analysis, processing, and design of large-scale geometric data sets. The proposed research will address a number of fundamental questions: What is the information content of 3D geometric models? How can we represent, store, and transmit geometric data most efficiently? Can we we use symmetry to repair deficiencies and reduce noise in acquired data? What is the role of symmetry in the design process and how can it be used to reduce complexity?
I will investigate these questions with an integrated approach that combines thorough theoretical studies with practical solutions for real-world applications.
The proposed research has a strong interdisciplinary component and will consider the same fundamental questions from different perspectives, closely interacting with scientists of various disciplines, as well artists, architects, and designers.
Max ERC Funding
1 160 302 €
Duration
Start date: 2011-02-01, End date: 2016-01-31
Project acronym CRIMMIGRATION
Project 'Crimmigration': Crime Control in the Borderlands of Europe
Researcher (PI) Katja Franko Aas
Host Institution (HI) UNIVERSITETET I OSLO
Call Details Starting Grant (StG), SH2, ERC-2010-StG_20091209
Summary Control of migration is becoming an increasingly important task of contemporary policing and criminal justice agencies. The purpose of this project is to map the progressive intertwining and merging of crime control and migration control practices in Europe and to examine their implications.
The project is guided by three sets of research questions: 1) How do contemporary police and criminal justice institutions deal with unwanted mobility and the influx of „aliens‟ (i.e. non-citizens) to their territories? 2) What is the relevance of citizenship for European penal systems? and 3) How do contemporary crime control practices support and perform the task of (cultural and territorial) border control?
The project aims to analyse the impact of the growing emphasis on migration control on criminal justice agencies such as the police, prisons and detention facilities. The basic hypothesis of the project is that migration control objectives are contributing to the development of novel forms of punishment and new rationalities of social control termed „crimmigration‟. The project aims to describe these novel hybrid forms of control since they constitute important conceptual challenges for criminal justice scholarship and require new theoretical perspectives. A question will be asked: what kind of break from traditional criminal justice practices and principles do they represent? Is the focus on punishment and reintegration of offenders gradually being replaced by a focus on diversion, immobilisation and deportation? Moreover what kind of legal, organisational and normative responses do they require?
Summary
Control of migration is becoming an increasingly important task of contemporary policing and criminal justice agencies. The purpose of this project is to map the progressive intertwining and merging of crime control and migration control practices in Europe and to examine their implications.
The project is guided by three sets of research questions: 1) How do contemporary police and criminal justice institutions deal with unwanted mobility and the influx of „aliens‟ (i.e. non-citizens) to their territories? 2) What is the relevance of citizenship for European penal systems? and 3) How do contemporary crime control practices support and perform the task of (cultural and territorial) border control?
The project aims to analyse the impact of the growing emphasis on migration control on criminal justice agencies such as the police, prisons and detention facilities. The basic hypothesis of the project is that migration control objectives are contributing to the development of novel forms of punishment and new rationalities of social control termed „crimmigration‟. The project aims to describe these novel hybrid forms of control since they constitute important conceptual challenges for criminal justice scholarship and require new theoretical perspectives. A question will be asked: what kind of break from traditional criminal justice practices and principles do they represent? Is the focus on punishment and reintegration of offenders gradually being replaced by a focus on diversion, immobilisation and deportation? Moreover what kind of legal, organisational and normative responses do they require?
Max ERC Funding
1 309 800 €
Duration
Start date: 2011-04-01, End date: 2016-03-31
Project acronym CRITIQUEUE
Project Critical queues and reflected stochastic processes
Researcher (PI) Johannes S.H. Van Leeuwaarden
Host Institution (HI) TECHNISCHE UNIVERSITEIT EINDHOVEN
Call Details Starting Grant (StG), PE1, ERC-2010-StG_20091028
Summary Our primary motivation stems from queueing theory, the branch of applied probability that deals with congestion phenomena. Congestion levels are typically nonnegative, which is why reflected stochastic processes arise naturally in queueing theory. Other applications of reflected stochastic processes are in the fields of branching processes and random graphs.
We are particularly interested in critically-loaded queueing systems (close to 100% utilization), also referred to as queues in heavy traffic. Heavy-traffic analysis typically reduces complicated queueing processes to much simpler (reflected) limit processes or scaling limits. This makes the analysis of complex systems tractable, and from a mathematical point of view, these results are appealing since they can be made rigorous. Within the large
body of literature on heavy-traffic theory and critical stochastic processes, we launch two new research lines:
(i) Time-dependent analysis through scaling limits.
(ii) Dimensioning stochastic systems via refined scaling limits and optimization.
Both research lines involve mathematical techniques that combine stochastic theory with asymptotic theory, complex analysis, functional analysis, and modern probabilistic methods. It will provide a platform enabling collaborations between researchers in pure and applied probability and researchers in performance analysis of queueing systems. This will particularly be the case at TU/e, the host institution, and at
the affiliated institution EURANDOM.
Summary
Our primary motivation stems from queueing theory, the branch of applied probability that deals with congestion phenomena. Congestion levels are typically nonnegative, which is why reflected stochastic processes arise naturally in queueing theory. Other applications of reflected stochastic processes are in the fields of branching processes and random graphs.
We are particularly interested in critically-loaded queueing systems (close to 100% utilization), also referred to as queues in heavy traffic. Heavy-traffic analysis typically reduces complicated queueing processes to much simpler (reflected) limit processes or scaling limits. This makes the analysis of complex systems tractable, and from a mathematical point of view, these results are appealing since they can be made rigorous. Within the large
body of literature on heavy-traffic theory and critical stochastic processes, we launch two new research lines:
(i) Time-dependent analysis through scaling limits.
(ii) Dimensioning stochastic systems via refined scaling limits and optimization.
Both research lines involve mathematical techniques that combine stochastic theory with asymptotic theory, complex analysis, functional analysis, and modern probabilistic methods. It will provide a platform enabling collaborations between researchers in pure and applied probability and researchers in performance analysis of queueing systems. This will particularly be the case at TU/e, the host institution, and at
the affiliated institution EURANDOM.
Max ERC Funding
970 800 €
Duration
Start date: 2010-08-01, End date: 2016-07-31
Project acronym CROSSROADS
Project Crossroads of empires: archaeology, material culture and socio-political relationships in West Africa
Researcher (PI) Anne Claire Haour
Host Institution (HI) UNIVERSITY OF EAST ANGLIA
Call Details Starting Grant (StG), SH6, ERC-2010-StG_20091209
Summary Knowledge of the last 1000 years in the West African Sahel comes largely from historical sources, which say that many regions were ruled by vast polities.
The aim of my archaeological project is to seize how, in fact, lhe 'empires' of this region structured the landscape, and the movemenl of peoples, ideas, and
things, with a focus on the period AD 1200-1850. Is 'empire' really a useful term? I will confront historical evidence with archaeological data from one area at
the intersection of several polities: the dallols in Niger. This area is rich in remains, said to result from population movements and processes of religious and
political change, but these remains have been only briefly described so far. As this region is a key area of migrations and cross-influences, it is the ideal
'laboratory' for exploring the materialisation of contacts and boundaries, through a mapping of material culture distributions.
My project will approach these sites holistically, carrying out archaeological regional survey and prospection. Excavation will indicate chronology and cultural
affiliation. At lhe same time, I will take an interdisciplinary approach, using anthropological and oral-historical enquiries to obtain background information to
test hypotheses generated by the archaeological data. Enquiries will assess how material culture can show group belonging and population shifts, and
examine the role of individuals called 'technical specialists'. This will help solve the current impasse in our understanding of vast empires which, though they
are historically known, remain poorly understood.
My project will not just improve our knowledge of an almost-unknown part of the world, but thanks to its geographical location, interdisciplinary nature and
strong thematic framework, open up avenues of thinking about the relalion between archaeological and historical data, the mediation of relations through
artefacts, and the archaeology of empires, all widely-relevant research issues
Summary
Knowledge of the last 1000 years in the West African Sahel comes largely from historical sources, which say that many regions were ruled by vast polities.
The aim of my archaeological project is to seize how, in fact, lhe 'empires' of this region structured the landscape, and the movemenl of peoples, ideas, and
things, with a focus on the period AD 1200-1850. Is 'empire' really a useful term? I will confront historical evidence with archaeological data from one area at
the intersection of several polities: the dallols in Niger. This area is rich in remains, said to result from population movements and processes of religious and
political change, but these remains have been only briefly described so far. As this region is a key area of migrations and cross-influences, it is the ideal
'laboratory' for exploring the materialisation of contacts and boundaries, through a mapping of material culture distributions.
My project will approach these sites holistically, carrying out archaeological regional survey and prospection. Excavation will indicate chronology and cultural
affiliation. At lhe same time, I will take an interdisciplinary approach, using anthropological and oral-historical enquiries to obtain background information to
test hypotheses generated by the archaeological data. Enquiries will assess how material culture can show group belonging and population shifts, and
examine the role of individuals called 'technical specialists'. This will help solve the current impasse in our understanding of vast empires which, though they
are historically known, remain poorly understood.
My project will not just improve our knowledge of an almost-unknown part of the world, but thanks to its geographical location, interdisciplinary nature and
strong thematic framework, open up avenues of thinking about the relalion between archaeological and historical data, the mediation of relations through
artefacts, and the archaeology of empires, all widely-relevant research issues
Max ERC Funding
893 161 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym CRYSP
Project CRYSP: A Novel Framework for Collaboratively Building Cryptographically Secure Programs and their Proofs
Researcher (PI) Karthikeyan Bhargavan
Host Institution (HI) INSTITUT NATIONAL DE RECHERCHE ENINFORMATIQUE ET AUTOMATIQUE
Call Details Starting Grant (StG), PE6, ERC-2010-StG_20091028
Summary The field of software security analysis stands at a critical juncture.
Applications have become too large for security experts to examine by hand,
automated verification tools do not scale, and the risks of deploying insecure software are too great to tolerate anything less than mathematical proof.
A radical shift of strategy is needed if programming and analysis techniques are to keep up in a networked world where increasing amounts of governmental and individual information are generated, manipulated, and accessed through web-based software applications.
The basic tenet of this proposal is that the main roadblock to the security verification of a large program is not its size, but rather the lack of precise security specifications for the underlying libraries and security-critical application code. Since, large-scale software is often a collaborative effort, no single programmer knows all the design goals. Hence, this proposal advocates a collaborative specification and verification framework that helps teams of programmers write detailed security specifications incrementally and then verify that they are satisfied by the source program.
The main scientific challenge is to develop new program verification techniques that can be applied collaboratively, incrementally, and modularly to application and library code written in mainstream programming languages. The validation of this approach will be through substantial case studies. Our aim is to produce the first verified open source cryptographic protocol library and the first web applications with formal proofs of security.
The proposed project is bold and ambitious, but it is certainly feasible, and has the potential to change how software security is analyzed for years to come.
Summary
The field of software security analysis stands at a critical juncture.
Applications have become too large for security experts to examine by hand,
automated verification tools do not scale, and the risks of deploying insecure software are too great to tolerate anything less than mathematical proof.
A radical shift of strategy is needed if programming and analysis techniques are to keep up in a networked world where increasing amounts of governmental and individual information are generated, manipulated, and accessed through web-based software applications.
The basic tenet of this proposal is that the main roadblock to the security verification of a large program is not its size, but rather the lack of precise security specifications for the underlying libraries and security-critical application code. Since, large-scale software is often a collaborative effort, no single programmer knows all the design goals. Hence, this proposal advocates a collaborative specification and verification framework that helps teams of programmers write detailed security specifications incrementally and then verify that they are satisfied by the source program.
The main scientific challenge is to develop new program verification techniques that can be applied collaboratively, incrementally, and modularly to application and library code written in mainstream programming languages. The validation of this approach will be through substantial case studies. Our aim is to produce the first verified open source cryptographic protocol library and the first web applications with formal proofs of security.
The proposed project is bold and ambitious, but it is certainly feasible, and has the potential to change how software security is analyzed for years to come.
Max ERC Funding
1 406 726 €
Duration
Start date: 2010-11-01, End date: 2015-10-31
Project acronym CSP-COMPLEXITY
Project Constraint Satisfaction Problems: Algorithms and Complexity
Researcher (PI) Manuel Bodirsky
Host Institution (HI) TECHNISCHE UNIVERSITAET DRESDEN
Call Details Starting Grant (StG), PE6, ERC-2010-StG_20091028
Summary The complexity of Constraint Satisfaction Problems (CSPs) has become a major common research focus of graph theory, artificial intelligence, and finite model theory. A recently discovered connection between the complexity of CSPs on finite domains to central problems in universal algebra led to additional activity in the area.
The goal of this project is to extend the powerful techniques for constraint satisfaction to CSPs with infinite domains. The generalization of CSPs to infinite domains enhances dramatically the range of computational problems that can be analyzed with tools from constraint satisfaction complexity. Many problems from areas that have so far seen no interaction with constraint satisfaction complexity theory can be formulated using infinite domains (and not with finite domains), e.g. in phylogenetic reconstruction, temporal and spatial reasoning, computer algebra, and operations research. It turns out that the search for systematic complexity classification in infinite domain constraint satisfaction often leads to fundamental algorithmic results.
The generalization of constraint satisfaction to infinite domains poses several mathematical challenges: To make the universal algebraic approach work for infinite domain constraint satisfaction we need fundamental concepts from model theory. Luckily, the new mathematical challenges come together with additional strong tools, such as Ramsey theory or results from model theory. The most important challgenges are of an algorithmic nature: finding efficient algorithms for significant constraint languages, but also finding natural classes of problems that can be solved by a given algorithm.
Summary
The complexity of Constraint Satisfaction Problems (CSPs) has become a major common research focus of graph theory, artificial intelligence, and finite model theory. A recently discovered connection between the complexity of CSPs on finite domains to central problems in universal algebra led to additional activity in the area.
The goal of this project is to extend the powerful techniques for constraint satisfaction to CSPs with infinite domains. The generalization of CSPs to infinite domains enhances dramatically the range of computational problems that can be analyzed with tools from constraint satisfaction complexity. Many problems from areas that have so far seen no interaction with constraint satisfaction complexity theory can be formulated using infinite domains (and not with finite domains), e.g. in phylogenetic reconstruction, temporal and spatial reasoning, computer algebra, and operations research. It turns out that the search for systematic complexity classification in infinite domain constraint satisfaction often leads to fundamental algorithmic results.
The generalization of constraint satisfaction to infinite domains poses several mathematical challenges: To make the universal algebraic approach work for infinite domain constraint satisfaction we need fundamental concepts from model theory. Luckily, the new mathematical challenges come together with additional strong tools, such as Ramsey theory or results from model theory. The most important challgenges are of an algorithmic nature: finding efficient algorithms for significant constraint languages, but also finding natural classes of problems that can be solved by a given algorithm.
Max ERC Funding
830 316 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym CTLANDROS
Project Reactive Oxygen Species in CTL-mediated Cell Death: from Mechanism to Applications
Researcher (PI) Denis Martinvalet
Host Institution (HI) UNIVERSITE DE GENEVE
Call Details Starting Grant (StG), LS6, ERC-2010-StG_20091118
Summary Cytotoxic T lymphocytes (CTL) and natural killer (NK) cells release granzyme and perforin from cytotoxic granules into the immune synapse to induce apoptosis of target cells that are either virus-infected or cancerous. Granzyme A activates a caspase-independent apoptotic pathway and induces mitochondrial damage characterized by superoxide anion production and loss of the mitochondrial transmembrane potential, without disrupting the integrity of the mitochondrial outer membrane; while causing single-stranded DNA damage. GzmB induces both caspase-dependent and caspase-independent cell death. In the caspase-dependent pathway, mitochondrial functions are altered as evidenced by the loss of mitochondrial transmembrane potential and the generation of reactive oxygen species (ROS). The mitochondrial outer membrane (MOM) is disrupted, resulting in the release of apoptogenic factors. To date, research on mitochondrial-dependent apoptosis has focused on mitochondrial outer membrane permeabilization (MOMP) however whether the generation of ROS is incidental or essential to the execution of apoptosis remains unclear. Like human GzmA, human GzmB promotes cell death in a ROS-dependent manner. Preliminary data suggest that human GzmB can induce ROS in a MOMP-independent manner as Bax and Bak double knockout MEF cells treated with human GzmB and perforin still display a robust ROS production and dye in an ROS-dependent manner. Since GzmA and GzmB induce cell death in a ROS-dependent manner, we hypothesize that oxygen free radicals are central to the execution of programmed cell death induced by the cytotoxic granules. Therefore, the goal of this proposal is to dissect the key molecular events triggered by ROS that lead to Citotoxic Tcell-induced target cell death. A combination of biochemical, genetic and proteomic approaches in association with Electron Spin Resonance (ESR) spectroscopy methodology will be used to unravel the essential role ROS play in CTL-mediated killing.
Summary
Cytotoxic T lymphocytes (CTL) and natural killer (NK) cells release granzyme and perforin from cytotoxic granules into the immune synapse to induce apoptosis of target cells that are either virus-infected or cancerous. Granzyme A activates a caspase-independent apoptotic pathway and induces mitochondrial damage characterized by superoxide anion production and loss of the mitochondrial transmembrane potential, without disrupting the integrity of the mitochondrial outer membrane; while causing single-stranded DNA damage. GzmB induces both caspase-dependent and caspase-independent cell death. In the caspase-dependent pathway, mitochondrial functions are altered as evidenced by the loss of mitochondrial transmembrane potential and the generation of reactive oxygen species (ROS). The mitochondrial outer membrane (MOM) is disrupted, resulting in the release of apoptogenic factors. To date, research on mitochondrial-dependent apoptosis has focused on mitochondrial outer membrane permeabilization (MOMP) however whether the generation of ROS is incidental or essential to the execution of apoptosis remains unclear. Like human GzmA, human GzmB promotes cell death in a ROS-dependent manner. Preliminary data suggest that human GzmB can induce ROS in a MOMP-independent manner as Bax and Bak double knockout MEF cells treated with human GzmB and perforin still display a robust ROS production and dye in an ROS-dependent manner. Since GzmA and GzmB induce cell death in a ROS-dependent manner, we hypothesize that oxygen free radicals are central to the execution of programmed cell death induced by the cytotoxic granules. Therefore, the goal of this proposal is to dissect the key molecular events triggered by ROS that lead to Citotoxic Tcell-induced target cell death. A combination of biochemical, genetic and proteomic approaches in association with Electron Spin Resonance (ESR) spectroscopy methodology will be used to unravel the essential role ROS play in CTL-mediated killing.
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-05-01, End date: 2016-04-30
Project acronym CUTTINGBUBBLES
Project Bubbles on the Cutting Edge
Researcher (PI) Niels Gerbrand Deen
Host Institution (HI) TECHNISCHE UNIVERSITEIT EINDHOVEN
Call Details Starting Grant (StG), PE8, ERC-2010-StG_20091028
Summary Many processes in the chemical, petrochemical and/or biological industries involve three phase gas-liquidsolid flows, where the solid material acts as a catalyst carrier, the gas phase supplies the reactants for the (bio-)chemical transformations and the liquid phase carries the product. In these processes the performance and operation of the reactor is mostly constrained by the interfacial mass transfer rate and the achievable insitu heat removal rate. A micro-structured bubble column reactor that significantly improves these crucial properties is proposed in this project. This novel type of reactor takes advantage of micro-structuring of the catalyst carrier in the form of a wire-mesh (see Figure 1).
The aim of the wire-mesh is i) to cut bubbles into smaller pieces leading to a larger interfacial area, ii) to enhance the bubble interface dynamics and mass transfer due to the interaction between the bubbles and the wires, and iii) to save costs in practical operation due to the smaller required reactor volume and the fact that
there is no need for an external filtration unit.
Cutting edge three-phase direct numerical simulation (DNS) tools and novel non-invasive optical (highspeed camera) techniques are used to study the micro-scale interaction between bubbles and a wire-mesh to gain understanding of the splitting and merging of bubbles and associated mass transfer characteristics. Furthermore, a proof-of-principle of the micro-structured reactor will be given through lab-scale experiments and macroscopic Euler-Lagrange numerical simulations, employing bubble-wire interaction closures based on the DNS simulations.
In addition to the novel reactor type, the project will generate a broad set of fundamental numerical and experimental research tools that can be used for the improvement of various gas-liquid-solid processes.
Several large companies (AkzoNobel, DSM, Sabic and Shell) have indicated their interest in the proposed
project and would like to be involved in a users committee.
Summary
Many processes in the chemical, petrochemical and/or biological industries involve three phase gas-liquidsolid flows, where the solid material acts as a catalyst carrier, the gas phase supplies the reactants for the (bio-)chemical transformations and the liquid phase carries the product. In these processes the performance and operation of the reactor is mostly constrained by the interfacial mass transfer rate and the achievable insitu heat removal rate. A micro-structured bubble column reactor that significantly improves these crucial properties is proposed in this project. This novel type of reactor takes advantage of micro-structuring of the catalyst carrier in the form of a wire-mesh (see Figure 1).
The aim of the wire-mesh is i) to cut bubbles into smaller pieces leading to a larger interfacial area, ii) to enhance the bubble interface dynamics and mass transfer due to the interaction between the bubbles and the wires, and iii) to save costs in practical operation due to the smaller required reactor volume and the fact that
there is no need for an external filtration unit.
Cutting edge three-phase direct numerical simulation (DNS) tools and novel non-invasive optical (highspeed camera) techniques are used to study the micro-scale interaction between bubbles and a wire-mesh to gain understanding of the splitting and merging of bubbles and associated mass transfer characteristics. Furthermore, a proof-of-principle of the micro-structured reactor will be given through lab-scale experiments and macroscopic Euler-Lagrange numerical simulations, employing bubble-wire interaction closures based on the DNS simulations.
In addition to the novel reactor type, the project will generate a broad set of fundamental numerical and experimental research tools that can be used for the improvement of various gas-liquid-solid processes.
Several large companies (AkzoNobel, DSM, Sabic and Shell) have indicated their interest in the proposed
project and would like to be involved in a users committee.
Max ERC Funding
1 500 000 €
Duration
Start date: 2010-09-01, End date: 2015-08-31
Project acronym CZOSQP
Project Noncommutative Calderón-Zygmund theory, operator space geometry and quantum probability
Researcher (PI) Javier Parcet Hernandez
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Starting Grant (StG), PE1, ERC-2010-StG_20091028
Summary Von Neumann's concept of quantization goes back to the foundations of quantum mechanics
and provides a noncommutative model of integration. Over the years, von Neumann algebras
have shown a profound structure and set the right framework for quantizing portions of algebra,
analysis, geometry and probability. A fundamental part of my research is devoted to develop a
very much expected Calderón-Zygmund theory for von Neumann algebras. The lack of natural
metrics partly justifies this long standing gap in the theory. Key new ingredients come from
recent results on noncommutative martingale inequalities, operator space theory and quantum
probability. This is an ambitious research project and applications include new estimates for
noncommutative Riesz transforms, Fourier and Schur multipliers on arbitrary discrete groups
or noncommutative ergodic theorems. Other related objectives of this project include Rubio
de Francia's conjecture on the almost everywhere convergence of Fourier series for matrix
valued functions or a formulation of Fefferman-Stein's maximal inequality for noncommutative
martingales. Reciprocally, I will also apply new techniques from quantum probability in
noncommutative Lp embedding theory and the local theory of operator spaces. I have already
obtained major results in this field, which might be useful towards a noncommutative form of
weighted harmonic analysis and new challenging results on quantum information theory.
Summary
Von Neumann's concept of quantization goes back to the foundations of quantum mechanics
and provides a noncommutative model of integration. Over the years, von Neumann algebras
have shown a profound structure and set the right framework for quantizing portions of algebra,
analysis, geometry and probability. A fundamental part of my research is devoted to develop a
very much expected Calderón-Zygmund theory for von Neumann algebras. The lack of natural
metrics partly justifies this long standing gap in the theory. Key new ingredients come from
recent results on noncommutative martingale inequalities, operator space theory and quantum
probability. This is an ambitious research project and applications include new estimates for
noncommutative Riesz transforms, Fourier and Schur multipliers on arbitrary discrete groups
or noncommutative ergodic theorems. Other related objectives of this project include Rubio
de Francia's conjecture on the almost everywhere convergence of Fourier series for matrix
valued functions or a formulation of Fefferman-Stein's maximal inequality for noncommutative
martingales. Reciprocally, I will also apply new techniques from quantum probability in
noncommutative Lp embedding theory and the local theory of operator spaces. I have already
obtained major results in this field, which might be useful towards a noncommutative form of
weighted harmonic analysis and new challenging results on quantum information theory.
Max ERC Funding
1 090 925 €
Duration
Start date: 2010-10-01, End date: 2015-09-30
Project acronym D-END
Project Telomeres: from the DNA end replication problem to the control of cell proliferation
Researcher (PI) Maria Teresa Teixeira Fernandes Bernardo
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), LS1, ERC-2010-StG_20091118
Summary Linear chromosomes of eukaryotes end with telomeres that ensure their stability. Because of the inability of semi-conservative DNA replication machinery to fully replicate DNA ends, telomeres require dedicated mechanisms to be duplicated and their length is eroded at each cell division. For this reason, telomeres constitute molecular clocks that determine cell proliferation potential in eukaryotes. Strikingly, we have shown recently that it is the shortest telomere in the cell that determines the onset of replicative senescence. This project aims a complete and detailed dissection of the in vivo DNA-end replication problem and the deep understanding of its impact for cell division capability. Specifically my goals are (1) the determination of the exact structures that result from the replication of DNA extremities, (2) the examination of the activities operating at the shortest telomere that triggers replicative senescence and (3) the investigation of the correspondence between telomere molecular structure and cell proliferation state at individual cell scale. To achieve this, I will undertake in Saccharomyces cerevisiae original and innovative single-molecule and single-cell approaches, that, in combination with genome-wide screens and sophisticated cellular settings, will allow to track and challenge a specified telomere of defined length. I anticipate that this work will lead to an in-depth understanding of how telomeres are replicated and how they enable the control of cell proliferation in eukaryotic cells, a matter at the intersection of the fundamentals of molecular genetics, cell biology of aging and oncology.
Summary
Linear chromosomes of eukaryotes end with telomeres that ensure their stability. Because of the inability of semi-conservative DNA replication machinery to fully replicate DNA ends, telomeres require dedicated mechanisms to be duplicated and their length is eroded at each cell division. For this reason, telomeres constitute molecular clocks that determine cell proliferation potential in eukaryotes. Strikingly, we have shown recently that it is the shortest telomere in the cell that determines the onset of replicative senescence. This project aims a complete and detailed dissection of the in vivo DNA-end replication problem and the deep understanding of its impact for cell division capability. Specifically my goals are (1) the determination of the exact structures that result from the replication of DNA extremities, (2) the examination of the activities operating at the shortest telomere that triggers replicative senescence and (3) the investigation of the correspondence between telomere molecular structure and cell proliferation state at individual cell scale. To achieve this, I will undertake in Saccharomyces cerevisiae original and innovative single-molecule and single-cell approaches, that, in combination with genome-wide screens and sophisticated cellular settings, will allow to track and challenge a specified telomere of defined length. I anticipate that this work will lead to an in-depth understanding of how telomeres are replicated and how they enable the control of cell proliferation in eukaryotic cells, a matter at the intersection of the fundamentals of molecular genetics, cell biology of aging and oncology.
Max ERC Funding
1 498 504 €
Duration
Start date: 2010-11-01, End date: 2015-10-31
Project acronym DEBIDEM
Project Defining Belief and Identities in the Eastern Mediterranean:
The Role of Interreligious Debate and Interaction
Researcher (PI) Ioannis Papadogiannakis
Host Institution (HI) KING'S COLLEGE LONDON
Call Details Starting Grant (StG), SH2, ERC-2010-StG_20091209
Summary This project seeks to recover the processes by which religious beliefs and identities were defined through interreligious interaction and debate in the religious culture of a broader social base in the eastern Mediterranean (6-8th centuries AD) through examination of a neglected, unconventional corpus of medieval Greek, Syriac and Arabic literature of debate and disputation (consisting of collections of questions and answers, dialogues among others), treating authors such as Ps. Kaisarios, Anastasios of Sinai, and Ps. Athanasios. These sources help us to understand the kinds of perplexities that were being raised in Christian communities of the eastern Mediterranean as they negotiated a lively and contentious religious and social landscape, and they highlight the multifarious issues which Christian leaders had to be prepared to deal with in their pastoral, pedagogical, and apologetic work. At the same time these collections must be seen as an attempt by Christian authors to work out how Christianity was to define its position with regard to other religions (Hellenism, Judaism and Islam) in a period still characterized by considerable fluidity and change.
As well as writing those doubts, challenges, objections, concerns, issues and anxieties back into the religious history of the eastern Mediterranean, when completed this full-length study of these texts will provide scholars not only with a detailed knowledge of the ways in which religious belief, practice and communities were defined in contrast to other religious systems, and a fuller sense of the religious, social and intellectual history of the eastern Mediterranean but also with a nuanced picture of their self-definition, one which will be more sensitive to the processes that led to its formation.
Summary
This project seeks to recover the processes by which religious beliefs and identities were defined through interreligious interaction and debate in the religious culture of a broader social base in the eastern Mediterranean (6-8th centuries AD) through examination of a neglected, unconventional corpus of medieval Greek, Syriac and Arabic literature of debate and disputation (consisting of collections of questions and answers, dialogues among others), treating authors such as Ps. Kaisarios, Anastasios of Sinai, and Ps. Athanasios. These sources help us to understand the kinds of perplexities that were being raised in Christian communities of the eastern Mediterranean as they negotiated a lively and contentious religious and social landscape, and they highlight the multifarious issues which Christian leaders had to be prepared to deal with in their pastoral, pedagogical, and apologetic work. At the same time these collections must be seen as an attempt by Christian authors to work out how Christianity was to define its position with regard to other religions (Hellenism, Judaism and Islam) in a period still characterized by considerable fluidity and change.
As well as writing those doubts, challenges, objections, concerns, issues and anxieties back into the religious history of the eastern Mediterranean, when completed this full-length study of these texts will provide scholars not only with a detailed knowledge of the ways in which religious belief, practice and communities were defined in contrast to other religious systems, and a fuller sense of the religious, social and intellectual history of the eastern Mediterranean but also with a nuanced picture of their self-definition, one which will be more sensitive to the processes that led to its formation.
Max ERC Funding
1 483 119 €
Duration
Start date: 2011-01-01, End date: 2016-12-31
Project acronym DECCAPAC
Project Design and Exploitation of C-C and C-H Activation Pathways in Asymmetric Catalysis
Researcher (PI) Nicolai Cramer
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Starting Grant (StG), PE5, ERC-2010-StG_20091028
Summary Synthesizing organic molecules in high purity with designed properties is of utmost importance for pharmaceutical applications and material- and polymer sciences including the efficient production of enantiopure compounds and the compliance with ecological concerns and sustainability. The efficiency of all reaction classes has improved over the past decades. However, the basic principle and execution did not change: The target molecule is disconnected into donor and acceptor synthons and appropriate functional groups need to be introduced and adjusted to carry out the envisioned coupling. These additional steps decrease the yield and efficiency, are costly in time, resources and produce waste. The introduction of new functionalities by direct C-H or C-C bond activation is a unique and highly appealing strategy. The range of substrates is virtually unlimited, including hydrocarbons, small molecules and polymers. Such dream reactions avoid any pre-functionalization, shorten synthetic routes, make unsought disconnections possible and allow for a more efficient usage of our dwindling resources. Despite recent progress in the activations of inert bonds, narrow scopes, poor reactivities and harsh conditions hamper most general practical applications. Especially, enantioselective activations are a longstanding challenge. The outlined project seeks to address these issues by the development and exploitation of new catalytic enantioselective C-H and C-C functionalizations of broadly available organic substrates, using chiral Rh- and Pd- catalysts, additionally supported by automated screening and computational techniques. These reactions will be then applied in the streamlined synthesis of pharmaceutically relevant scaffolds and of compounds for organic electronics.
Summary
Synthesizing organic molecules in high purity with designed properties is of utmost importance for pharmaceutical applications and material- and polymer sciences including the efficient production of enantiopure compounds and the compliance with ecological concerns and sustainability. The efficiency of all reaction classes has improved over the past decades. However, the basic principle and execution did not change: The target molecule is disconnected into donor and acceptor synthons and appropriate functional groups need to be introduced and adjusted to carry out the envisioned coupling. These additional steps decrease the yield and efficiency, are costly in time, resources and produce waste. The introduction of new functionalities by direct C-H or C-C bond activation is a unique and highly appealing strategy. The range of substrates is virtually unlimited, including hydrocarbons, small molecules and polymers. Such dream reactions avoid any pre-functionalization, shorten synthetic routes, make unsought disconnections possible and allow for a more efficient usage of our dwindling resources. Despite recent progress in the activations of inert bonds, narrow scopes, poor reactivities and harsh conditions hamper most general practical applications. Especially, enantioselective activations are a longstanding challenge. The outlined project seeks to address these issues by the development and exploitation of new catalytic enantioselective C-H and C-C functionalizations of broadly available organic substrates, using chiral Rh- and Pd- catalysts, additionally supported by automated screening and computational techniques. These reactions will be then applied in the streamlined synthesis of pharmaceutically relevant scaffolds and of compounds for organic electronics.
Max ERC Funding
1 499 500 €
Duration
Start date: 2011-02-01, End date: 2016-01-31
Project acronym DEGAS
Project Deciphering the Evolution of Galaxies and the Assembly of Structure: Probing the Growth of Non-Linear Structure in the Dark Universe with Statistical Analyses of Galaxy Surveys
Researcher (PI) Iohn Peder Ragnar Norberg
Host Institution (HI) UNIVERSITY OF DURHAM
Call Details Starting Grant (StG), PE9, ERC-2010-StG_20091028
Summary I propose to measure the growth of non-linear structure in the dark universe to answer two fundamental questions in cosmology: Is the Cold Dark Matter structure formation theory compatible with the galaxy distribution on group scales? Is the accelerating expansion of the Universe caused by Dark Energy? This frontier research probes two key components of our standard cosmological model. This study is fundamental for understanding structure formation and galaxy evolution, leading to possible ground-breaking changes in our comprehension of gravitational physics.
I will tackle this ambitious research plan by exploiting my extensive knowledge of galaxy survey analyses and propose to critically test our standard model by measuring three key properties: the shape and evolution of the Cold Dark Matter halo mass function; the efficiency of galaxy formation in Local Group sized systems; the evolution of the growth of structure. To achieve those decisive goals, I will build the DEGAS Team, an inter-disciplinary unit dedicated to solve photometric and spectroscopic survey systematics, to develop optimal clustering statistics for imaging surveys and to create a large variety of state-of-the-art mock Universes to interpret the statistical analyses. The techniques developed will be applied to two world-leading galaxy surveys: GAMA, a multi-wavelength redshift survey of which I am a founder and co-PI, and Pan-STARRS PS1, a unique 3/4-sky imaging survey. Using innovative clustering statistics accounting for individual photometric redshift distributions and statistically robust methods for halo mass function estimates, my DEGAS Team will provide the ultimate test for structure formation models, gain key insights on galaxy evolution and present novel constraints on the nature of gravity.
Summary
I propose to measure the growth of non-linear structure in the dark universe to answer two fundamental questions in cosmology: Is the Cold Dark Matter structure formation theory compatible with the galaxy distribution on group scales? Is the accelerating expansion of the Universe caused by Dark Energy? This frontier research probes two key components of our standard cosmological model. This study is fundamental for understanding structure formation and galaxy evolution, leading to possible ground-breaking changes in our comprehension of gravitational physics.
I will tackle this ambitious research plan by exploiting my extensive knowledge of galaxy survey analyses and propose to critically test our standard model by measuring three key properties: the shape and evolution of the Cold Dark Matter halo mass function; the efficiency of galaxy formation in Local Group sized systems; the evolution of the growth of structure. To achieve those decisive goals, I will build the DEGAS Team, an inter-disciplinary unit dedicated to solve photometric and spectroscopic survey systematics, to develop optimal clustering statistics for imaging surveys and to create a large variety of state-of-the-art mock Universes to interpret the statistical analyses. The techniques developed will be applied to two world-leading galaxy surveys: GAMA, a multi-wavelength redshift survey of which I am a founder and co-PI, and Pan-STARRS PS1, a unique 3/4-sky imaging survey. Using innovative clustering statistics accounting for individual photometric redshift distributions and statistically robust methods for halo mass function estimates, my DEGAS Team will provide the ultimate test for structure formation models, gain key insights on galaxy evolution and present novel constraints on the nature of gravity.
Max ERC Funding
1 256 696 €
Duration
Start date: 2011-01-01, End date: 2016-12-31
Project acronym DESERTSTORMS
Project Desert Storms - Towards an Improved
Representation of Meteorological Processes in
Models of Mineral Dust Emission
Researcher (PI) Peter Knippertz
Host Institution (HI) KARLSRUHER INSTITUT FUER TECHNOLOGIE
Call Details Starting Grant (StG), PE10, ERC-2010-StG_20091028
Summary This project aims at revolutionizing the way the emission of mineral dust from natural soils is treated in numerical models of the Earth system. Dust significantly affects weather and climate through its influences on radiation, cloud microphysics, atmospheric chemistry and the carbon cycle via the fertilization of ecosystems. To date, quantitative estimates of dust emission and deposition are highly uncertain. This is largely due to the strongly nonlinear dependence of emissions on peak winds, which are often underestimated in models and analysis data. The core objective of this project is therefore to explore ways of better representing crucial meteorological processes such as daytime downward mixing of momentum from nocturnal low-level jets, convective cold pools and small-scale dust devils and plumes in models. To achieve this, we shall undertake (A) a detailed analysis of observations including station data, measurements from recent field campaigns, analysis data and novel satellite products, (B) a comprehensive comparison between output from a wide range of global and regional dust models, and (C) extensive sensitivity studies with regional and large-eddy simulation models in realistic and idealized set-ups to explore effects of resolution and model physics. In contrast to previous studies, all evaluations will be made on a process level concentrating on specific meteorological phenomena. Main deliverables are guidelines for optimal model configurations and novel parameterizations that link gridscale quantities with probabilities of winds exceeding a given threshold within the gridbox. The results will substantially advance our quantitative understanding of the global dust cycle and reduce uncertainties in predicting climate, weather and impacts on human health.
Summary
This project aims at revolutionizing the way the emission of mineral dust from natural soils is treated in numerical models of the Earth system. Dust significantly affects weather and climate through its influences on radiation, cloud microphysics, atmospheric chemistry and the carbon cycle via the fertilization of ecosystems. To date, quantitative estimates of dust emission and deposition are highly uncertain. This is largely due to the strongly nonlinear dependence of emissions on peak winds, which are often underestimated in models and analysis data. The core objective of this project is therefore to explore ways of better representing crucial meteorological processes such as daytime downward mixing of momentum from nocturnal low-level jets, convective cold pools and small-scale dust devils and plumes in models. To achieve this, we shall undertake (A) a detailed analysis of observations including station data, measurements from recent field campaigns, analysis data and novel satellite products, (B) a comprehensive comparison between output from a wide range of global and regional dust models, and (C) extensive sensitivity studies with regional and large-eddy simulation models in realistic and idealized set-ups to explore effects of resolution and model physics. In contrast to previous studies, all evaluations will be made on a process level concentrating on specific meteorological phenomena. Main deliverables are guidelines for optimal model configurations and novel parameterizations that link gridscale quantities with probabilities of winds exceeding a given threshold within the gridbox. The results will substantially advance our quantitative understanding of the global dust cycle and reduce uncertainties in predicting climate, weather and impacts on human health.
Max ERC Funding
1 355 025 €
Duration
Start date: 2010-10-01, End date: 2015-09-30
Project acronym DIAG-CANCER
Project Diagnosis, Screening and Monitoring of Cancer Diseases via Exhaled Breath Using an Array of Nanosensors
Researcher (PI) Hossam Haick
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Starting Grant (StG), LS7, ERC-2010-StG_20091118
Summary Cancer is rapidly becoming the greatest health hazard of our days. The most widespread cancers, are lung cancer (LC), breast cancer (BC), colorectal cancer (CC), and prostate cancer (PC). The impact of the various techniques used for diagnosis, screening and monitoring
these cancers is either uncertain and/or inconvenient for the patients. This proposal aims to create a low-cost, easy-to-use and noninvasive screening method for LC, BC, CC, and PC based on breath testing with a novel nanosensors approach. With this in mind, we propose to:
(a) modify an array of nanosensors based on Au nanoparticles for obtaining highly-sensitive detection levels of breath biomarkers of cancer; and
(b) investigate the use of the developed array in a clinical study.
Towards this end, we will collect suitable breath samples from patients and healthy controls in a clinical trial and test the feasibility of the device to detect LC, BC, CC, and PC, also in the presence of other diseases.
We will then investigate possible ways to identify the stage of the disease, monitor the response to cancer
treatment, and to identify cancer subtypes. Further, we propose that the device can be used for monitoring of cancer patients during and after treatment. The chemical nature of the cancer biomarkers will be identified through spectrometry techniques.
The proposed approach would be used outside specialist settings and could considerably lessen the burden on the health budgets, both through the low cost of the proposed all-inclusive cancer test, and through earlier and, hence, more cost-effective cancer treatment.
Summary
Cancer is rapidly becoming the greatest health hazard of our days. The most widespread cancers, are lung cancer (LC), breast cancer (BC), colorectal cancer (CC), and prostate cancer (PC). The impact of the various techniques used for diagnosis, screening and monitoring
these cancers is either uncertain and/or inconvenient for the patients. This proposal aims to create a low-cost, easy-to-use and noninvasive screening method for LC, BC, CC, and PC based on breath testing with a novel nanosensors approach. With this in mind, we propose to:
(a) modify an array of nanosensors based on Au nanoparticles for obtaining highly-sensitive detection levels of breath biomarkers of cancer; and
(b) investigate the use of the developed array in a clinical study.
Towards this end, we will collect suitable breath samples from patients and healthy controls in a clinical trial and test the feasibility of the device to detect LC, BC, CC, and PC, also in the presence of other diseases.
We will then investigate possible ways to identify the stage of the disease, monitor the response to cancer
treatment, and to identify cancer subtypes. Further, we propose that the device can be used for monitoring of cancer patients during and after treatment. The chemical nature of the cancer biomarkers will be identified through spectrometry techniques.
The proposed approach would be used outside specialist settings and could considerably lessen the burden on the health budgets, both through the low cost of the proposed all-inclusive cancer test, and through earlier and, hence, more cost-effective cancer treatment.
Max ERC Funding
1 200 000 €
Duration
Start date: 2011-01-01, End date: 2014-12-31
Project acronym DICIG
Project Dynamic Interplay between Eukaryotic Chromosomes: Impact on Genome Stability
Researcher (PI) Romain Nicolas André Koszul
Host Institution (HI) INSTITUT PASTEUR
Call Details Starting Grant (StG), LS2, ERC-2010-StG_20091118
Summary The structure and role of the DNA molecule raise fascinating questions regarding its dynamics, i.e. not only the tri-dimensional reorganisation associated with functional events at short time-scale, but also the structural changes, i.e. rearrangements, that occur in the chromosome over generations. It is increasingly obvious that the physical properties of both the chromosomes and their environment the nucleoplasm, the nuclear periphery, cytoskeleton, etc. are playing important roles in the dynamic changes observed. For instance, we recently showed that chromosome movements during mid-prophase of meiosis in budding yeast result from a trans-acting force generated at the level of the global cytoskeleton network, suggesting that extranuclear mechanical trans-acting signals could also regulate chromosomal metabolism in other ways. Our objectives are to make important contributions to the understanding of the mechanical and functional interplay between the cytoskeleton, the nuclear periphery, and chromosomes through in vitro and in vivo interdisciplinary approaches. We will investigate three questions of fundamental importance: i) the potential transmission and function of mechanical forces from the cytoskeleton to chromatin during interphase, ii) the physical principles that govern chromosome reorganization under mechanical force in vitro, and iii) the global chromatin dynamics during the fundamental S phase and its impact on genome stability. We will use a combination of high-resolution imaging, micromanipulation, and high-throughput molecular techniques (chromosome conformation capture and ChIP-Seq) to reach our goals. Most of these studies will be performed in budding yeast, but will have repercussions in our understanding of higher eukaryotes metabolism.
Summary
The structure and role of the DNA molecule raise fascinating questions regarding its dynamics, i.e. not only the tri-dimensional reorganisation associated with functional events at short time-scale, but also the structural changes, i.e. rearrangements, that occur in the chromosome over generations. It is increasingly obvious that the physical properties of both the chromosomes and their environment the nucleoplasm, the nuclear periphery, cytoskeleton, etc. are playing important roles in the dynamic changes observed. For instance, we recently showed that chromosome movements during mid-prophase of meiosis in budding yeast result from a trans-acting force generated at the level of the global cytoskeleton network, suggesting that extranuclear mechanical trans-acting signals could also regulate chromosomal metabolism in other ways. Our objectives are to make important contributions to the understanding of the mechanical and functional interplay between the cytoskeleton, the nuclear periphery, and chromosomes through in vitro and in vivo interdisciplinary approaches. We will investigate three questions of fundamental importance: i) the potential transmission and function of mechanical forces from the cytoskeleton to chromatin during interphase, ii) the physical principles that govern chromosome reorganization under mechanical force in vitro, and iii) the global chromatin dynamics during the fundamental S phase and its impact on genome stability. We will use a combination of high-resolution imaging, micromanipulation, and high-throughput molecular techniques (chromosome conformation capture and ChIP-Seq) to reach our goals. Most of these studies will be performed in budding yeast, but will have repercussions in our understanding of higher eukaryotes metabolism.
Max ERC Funding
1 497 000 €
Duration
Start date: 2011-06-01, End date: 2017-05-31
Project acronym DIGIPAL
Project Digital Resource and Database of Palaeography, Manuscripts and Diplomatic
Researcher (PI) Peter Anthony Stokes
Host Institution (HI) KING'S COLLEGE LONDON
Call Details Starting Grant (StG), SH6, ERC-2010-StG_20091209
Summary This project involves developing and applying new methods in palaeography, bringing digital resources to bear in innovative ways. It comprises three components: a web resource, a database, and a monograph. The web resource will allow the study of medieval script in the context of the manuscripts and charters that preserve it. It will focus on discovery and citation, allowing users to retrieve digital images, verbal descriptions, and detailed characterisations of the writing, as well as the larger context including the content and structure of the manuscript or charter. It will incorporate different ways of exploring the material such as images, maps and timelines as well as text-based browse and search. It will provide a flexible, extensible framework to integrate external data-sources and so applies to any period or area of palaeography. It will therefore enable new developments in palaeographical method which have been discussed in theory but not yet achieved in practice.
To demonstrate these methods, content will be provided for handwriting from England in the vernacular, particularly that of AD 990-1100. This period saw rapid change in vernacular script despite relative stability in that of Latin, something that has never been fully explained. This problem will be addressed by integrating existing datasets but also by producing and incorporating an entirely new database of scripts. The result will provide access to the complete corpus of surviving examples of the script for the first time, bringing an unprecedented rigour to palaeographical analysis. A monograph will then draw on this research, demonstrating the new methods in practice and providing the first comprehensive account of English vernacular script from the period. The work will address issues in Digital Humanities (integration, interface design, visualisation and standards), in palaeographical method (quantitative methods, terminology and evidential rigour), and in the history of vernacular script
Summary
This project involves developing and applying new methods in palaeography, bringing digital resources to bear in innovative ways. It comprises three components: a web resource, a database, and a monograph. The web resource will allow the study of medieval script in the context of the manuscripts and charters that preserve it. It will focus on discovery and citation, allowing users to retrieve digital images, verbal descriptions, and detailed characterisations of the writing, as well as the larger context including the content and structure of the manuscript or charter. It will incorporate different ways of exploring the material such as images, maps and timelines as well as text-based browse and search. It will provide a flexible, extensible framework to integrate external data-sources and so applies to any period or area of palaeography. It will therefore enable new developments in palaeographical method which have been discussed in theory but not yet achieved in practice.
To demonstrate these methods, content will be provided for handwriting from England in the vernacular, particularly that of AD 990-1100. This period saw rapid change in vernacular script despite relative stability in that of Latin, something that has never been fully explained. This problem will be addressed by integrating existing datasets but also by producing and incorporating an entirely new database of scripts. The result will provide access to the complete corpus of surviving examples of the script for the first time, bringing an unprecedented rigour to palaeographical analysis. A monograph will then draw on this research, demonstrating the new methods in practice and providing the first comprehensive account of English vernacular script from the period. The work will address issues in Digital Humanities (integration, interface design, visualisation and standards), in palaeographical method (quantitative methods, terminology and evidential rigour), and in the history of vernacular script
Max ERC Funding
995 531 €
Duration
Start date: 2010-10-01, End date: 2014-09-30