Project acronym A-LIFE
Project Absorbing aerosol layers in a changing climate: aging, lifetime and dynamics
Researcher (PI) Bernadett Barbara Weinzierl
Host Institution (HI) UNIVERSITAT WIEN
Call Details Starting Grant (StG), PE10, ERC-2014-STG
Summary Aerosols (i.e. tiny particles suspended in the air) are regularly transported in huge amounts over long distances impacting air quality, health, weather and climate thousands of kilometers downwind of the source. Aerosols affect the atmospheric radiation budget through scattering and absorption of solar radiation and through their role as cloud/ice nuclei.
In particular, light absorption by aerosol particles such as mineral dust and black carbon (BC; thought to be the second strongest contribution to current global warming after CO2) is of fundamental importance from a climate perspective because the presence of absorbing particles (1) contributes to solar radiative forcing, (2) heats absorbing aerosol layers, (3) can evaporate clouds and (4) change atmospheric dynamics.
Considering this prominent role of aerosols, vertically-resolved in-situ data on absorbing aerosols are surprisingly scarce and aerosol-dynamic interactions are poorly understood in general. This is, as recognized in the last IPCC report, a serious barrier for taking the accuracy of climate models and predictions to the next level. To overcome this barrier, I propose to investigate aging, lifetime and dynamics of absorbing aerosol layers with a holistic end-to-end approach including laboratory studies, airborne field experiments and numerical model simulations.
Building on the internationally recognized results of my aerosol research group and my long-term experience with airborne aerosol measurements, the time seems ripe to systematically bridge the gap between in-situ measurements of aerosol microphysical and optical properties and the assessment of dynamical interactions of absorbing particles with aerosol layer lifetime through model simulations.
The outcomes of this project will provide fundamental new understanding of absorbing aerosol layers in the climate system and important information for addressing the benefits of BC emission controls for mitigating climate change.
Summary
Aerosols (i.e. tiny particles suspended in the air) are regularly transported in huge amounts over long distances impacting air quality, health, weather and climate thousands of kilometers downwind of the source. Aerosols affect the atmospheric radiation budget through scattering and absorption of solar radiation and through their role as cloud/ice nuclei.
In particular, light absorption by aerosol particles such as mineral dust and black carbon (BC; thought to be the second strongest contribution to current global warming after CO2) is of fundamental importance from a climate perspective because the presence of absorbing particles (1) contributes to solar radiative forcing, (2) heats absorbing aerosol layers, (3) can evaporate clouds and (4) change atmospheric dynamics.
Considering this prominent role of aerosols, vertically-resolved in-situ data on absorbing aerosols are surprisingly scarce and aerosol-dynamic interactions are poorly understood in general. This is, as recognized in the last IPCC report, a serious barrier for taking the accuracy of climate models and predictions to the next level. To overcome this barrier, I propose to investigate aging, lifetime and dynamics of absorbing aerosol layers with a holistic end-to-end approach including laboratory studies, airborne field experiments and numerical model simulations.
Building on the internationally recognized results of my aerosol research group and my long-term experience with airborne aerosol measurements, the time seems ripe to systematically bridge the gap between in-situ measurements of aerosol microphysical and optical properties and the assessment of dynamical interactions of absorbing particles with aerosol layer lifetime through model simulations.
The outcomes of this project will provide fundamental new understanding of absorbing aerosol layers in the climate system and important information for addressing the benefits of BC emission controls for mitigating climate change.
Max ERC Funding
1 987 980 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym ALKENoNE
Project Algal Lipids: the Key to Earth Now and aNcient Earth
Researcher (PI) Jaime Lynn Toney
Host Institution (HI) UNIVERSITY OF GLASGOW
Call Details Starting Grant (StG), PE10, ERC-2014-STG
Summary Alkenones are algal lipids that have been used for decades to reconstruct quantitative past sea surface temperature. Although alkenones are being discovered in an increasing number of lake sites worldwide, only two terrestrial temperature records have been reconstructed so far. The development of this research field is limited by the lack of interdisciplinary research that combines modern biological and ecological algal research with the organic geochemical techniques needed to develop a quantitative biomarker (or molecular fossil) for past lake temperatures. More research is needed for alkenones to become a widely used tool for reconstructing past terrestrial temperature change. The early career Principal Investigator has discovered a new lake alkenone-producing species of haptophyte algae that produces alkenones in high abundances both in the environment and in laboratory cultures. This makes the new species an ideal organism for developing a culture-based temperature calibration and exploring other potential environmental controls. In this project, alkenone production will be manipulated, and monitored using state-of-the-art photobioreactors with real-time detectors for cell density, light, and temperature. The latest algal culture and isolation techniques that are used in microalgal biofuel development will be applied to developing the lake temperature proxy. The objectives will be achieved through the analysis of 90 new Canadian lakes to develop a core-top temperature calibration across a large latitudinal and temperature gradient (Δ latitude = 5°, Δ spring surface temperature = 9°C). The results will be used to assess how regional palaeo-temperature (Uk37), palaeo-moisture (δDwax) and palaeo-evaporation (δDalgal) respond during times of past global warmth (e.g., Medieval Warm Period, 900-1200 AD) to find an accurate analogue for assessing future drought risk in the interior of Canada.
Summary
Alkenones are algal lipids that have been used for decades to reconstruct quantitative past sea surface temperature. Although alkenones are being discovered in an increasing number of lake sites worldwide, only two terrestrial temperature records have been reconstructed so far. The development of this research field is limited by the lack of interdisciplinary research that combines modern biological and ecological algal research with the organic geochemical techniques needed to develop a quantitative biomarker (or molecular fossil) for past lake temperatures. More research is needed for alkenones to become a widely used tool for reconstructing past terrestrial temperature change. The early career Principal Investigator has discovered a new lake alkenone-producing species of haptophyte algae that produces alkenones in high abundances both in the environment and in laboratory cultures. This makes the new species an ideal organism for developing a culture-based temperature calibration and exploring other potential environmental controls. In this project, alkenone production will be manipulated, and monitored using state-of-the-art photobioreactors with real-time detectors for cell density, light, and temperature. The latest algal culture and isolation techniques that are used in microalgal biofuel development will be applied to developing the lake temperature proxy. The objectives will be achieved through the analysis of 90 new Canadian lakes to develop a core-top temperature calibration across a large latitudinal and temperature gradient (Δ latitude = 5°, Δ spring surface temperature = 9°C). The results will be used to assess how regional palaeo-temperature (Uk37), palaeo-moisture (δDwax) and palaeo-evaporation (δDalgal) respond during times of past global warmth (e.g., Medieval Warm Period, 900-1200 AD) to find an accurate analogue for assessing future drought risk in the interior of Canada.
Max ERC Funding
940 883 €
Duration
Start date: 2015-04-01, End date: 2020-03-31
Project acronym C4T
Project Climate change across Cenozoic cooling steps reconstructed with clumped isotope thermometry
Researcher (PI) Anna Nele Meckler
Host Institution (HI) UNIVERSITETET I BERGEN
Call Details Starting Grant (StG), PE10, ERC-2014-STG
Summary The Earth's climate system contains a highly complex interplay of numerous components, such as atmospheric greenhouse gases, ice sheets, and ocean circulation. Due to nonlinearities and feedbacks, changes to the system can result in rapid transitions to radically different climate states. In light of rising greenhouse gas levels there is an urgent need to better understand climate at such tipping points. Reconstructions of profound climate changes in the past provide crucial insight into our climate system and help to predict future changes. However, all proxies we use to reconstruct past climate depend on assumptions that are in addition increasingly uncertain back in time. A new kind of temperature proxy, the carbonate ‘clumped isotope’ thermometer, has great potential to overcome these obstacles. The proxy relies on thermodynamic principles, taking advantage of the temperature-dependence of the binding strength between different isotopes of carbon and oxygen, which makes it independent of other variables. Yet, widespread application of this technique in paleoceanography is currently prevented by the required large sample amounts, which are difficult to obtain from ocean sediments. If applied to the minute carbonate shells preserved in the sediments, this proxy would allow robust reconstructions of past temperatures in the surface and deep ocean, as well as global ice volume, far back in time. Here I propose to considerably decrease sample amount requirements of clumped isotope thermometry, building on recent successful modifications of the method and ideas for further analytical improvements. This will enable my group and me to thoroughly ground-truth the proxy for application in paleoceanography and for the first time apply it to aspects of past climate change across major climate transitions in the past, where clumped isotope thermometry can immediately contribute to solving long-standing first-order questions and allow for major progress in the field.
Summary
The Earth's climate system contains a highly complex interplay of numerous components, such as atmospheric greenhouse gases, ice sheets, and ocean circulation. Due to nonlinearities and feedbacks, changes to the system can result in rapid transitions to radically different climate states. In light of rising greenhouse gas levels there is an urgent need to better understand climate at such tipping points. Reconstructions of profound climate changes in the past provide crucial insight into our climate system and help to predict future changes. However, all proxies we use to reconstruct past climate depend on assumptions that are in addition increasingly uncertain back in time. A new kind of temperature proxy, the carbonate ‘clumped isotope’ thermometer, has great potential to overcome these obstacles. The proxy relies on thermodynamic principles, taking advantage of the temperature-dependence of the binding strength between different isotopes of carbon and oxygen, which makes it independent of other variables. Yet, widespread application of this technique in paleoceanography is currently prevented by the required large sample amounts, which are difficult to obtain from ocean sediments. If applied to the minute carbonate shells preserved in the sediments, this proxy would allow robust reconstructions of past temperatures in the surface and deep ocean, as well as global ice volume, far back in time. Here I propose to considerably decrease sample amount requirements of clumped isotope thermometry, building on recent successful modifications of the method and ideas for further analytical improvements. This will enable my group and me to thoroughly ground-truth the proxy for application in paleoceanography and for the first time apply it to aspects of past climate change across major climate transitions in the past, where clumped isotope thermometry can immediately contribute to solving long-standing first-order questions and allow for major progress in the field.
Max ERC Funding
1 877 209 €
Duration
Start date: 2015-08-01, End date: 2020-07-31
Project acronym COALA
Project Comprehensive molecular characterization of secondary organic aerosol formation in the atmosphere
Researcher (PI) Mikael Ehn
Host Institution (HI) HELSINGIN YLIOPISTO
Call Details Starting Grant (StG), PE10, ERC-2014-STG
Summary Key words: Atmospheric secondary organic aerosol, chemical ionization mass spectrometry
The increase in anthropogenic atmospheric aerosol since the industrial revolution has considerably mitigated the global warming caused by concurrent anthropogenic greenhouse gas emissions. However, the uncertainty in the magnitude of the aerosol climate influence is larger than that of any other man-made climate-perturbing component.
Secondary organic aerosol (SOA) is one of the most prominent aerosol types, yet a detailed mechanistic understanding of its formation process is still lacking. We recently presented the ground-breaking discovery of a new important compound group in our publication in Nature: a prompt and abundant source of extremely low-volatility organic compounds (ELVOC), able to explain the majority of the SOA formed from important atmospheric precursors.
Quantifying the atmospheric role of ELVOCs requires further focused studies and I will start a research group with the main task of providing a comprehensive, quantitative and mechanistic understanding of the formation and evolution of SOA. Our recent discovery of an important missing component of SOA highlights the need for comprehensive chemical characterization of both the gas and particle phase composition.
This project will use state-of-the-art chemical ionization mass spectrometry (CIMS), which was critical also in the detection of the ELVOCs. We will extend the applicability of CIMS techniques and conduct innovative experiments in both laboratory and field settings using a novel suite of instrumentation to achieve the goals set out in this project.
We will provide unprecedented insights into the compounds and mechanisms producing SOA, helping to decrease the uncertainties in assessing the magnitude of aerosol effects on climate. Anthropogenic SOA contributes strongly to air quality deterioration as well and therefore our results will find direct applicability also in this extremely important field.
Summary
Key words: Atmospheric secondary organic aerosol, chemical ionization mass spectrometry
The increase in anthropogenic atmospheric aerosol since the industrial revolution has considerably mitigated the global warming caused by concurrent anthropogenic greenhouse gas emissions. However, the uncertainty in the magnitude of the aerosol climate influence is larger than that of any other man-made climate-perturbing component.
Secondary organic aerosol (SOA) is one of the most prominent aerosol types, yet a detailed mechanistic understanding of its formation process is still lacking. We recently presented the ground-breaking discovery of a new important compound group in our publication in Nature: a prompt and abundant source of extremely low-volatility organic compounds (ELVOC), able to explain the majority of the SOA formed from important atmospheric precursors.
Quantifying the atmospheric role of ELVOCs requires further focused studies and I will start a research group with the main task of providing a comprehensive, quantitative and mechanistic understanding of the formation and evolution of SOA. Our recent discovery of an important missing component of SOA highlights the need for comprehensive chemical characterization of both the gas and particle phase composition.
This project will use state-of-the-art chemical ionization mass spectrometry (CIMS), which was critical also in the detection of the ELVOCs. We will extend the applicability of CIMS techniques and conduct innovative experiments in both laboratory and field settings using a novel suite of instrumentation to achieve the goals set out in this project.
We will provide unprecedented insights into the compounds and mechanisms producing SOA, helping to decrease the uncertainties in assessing the magnitude of aerosol effects on climate. Anthropogenic SOA contributes strongly to air quality deterioration as well and therefore our results will find direct applicability also in this extremely important field.
Max ERC Funding
1 892 221 €
Duration
Start date: 2015-03-01, End date: 2020-02-29
Project acronym DecentLivingEnergy
Project Energy and emissions thresholds for providing decent living standards to all
Researcher (PI) Narasimha Desirazu Rao
Host Institution (HI) INTERNATIONALES INSTITUT FUER ANGEWANDTE SYSTEMANALYSE
Call Details Starting Grant (StG), SH3, ERC-2014-STG
Summary There is confusion surrounding how poverty eradication will contribute to climate change. This is due to knowledge gaps related to the material basis of poverty, and the relationship between energy and human development. Addressing this issue rigorously requires bridging gaps between global justice, economics, energy systems analysis, and industrial ecology, and applying this knowledge to projections of anthropogenic greenhouse gases. This project will develop a body of knowledge that quantifies the energy needs and related climate change impacts for providing decent living standards to all. The research will address three questions: which goods and services, and with what characteristics, constitute ‘decent living standards’? What energy resources are required to provide these goods and services in different countries, and what impact will this energy use have on climate change? How do the constituents of decent living and their energy needs evolve as countries develop? The first task will operationalize basic needs views of human development and advance their empirical validity by discerning characteristics of basic goods in household consumption patterns. The second will quantify the energy needs (and climate-related emissions) for decent living constituents and reveal their dependence on culture, climate, technology, and other contextual conditions in countries. This will be done using lifecycle analysis and input-output analysis, and mapping energy to climate change using state-of-the-art energy-economy integrated assessment modelling tools for 5 emerging economies that face the challenges of eradicating poverty and mitigating climate change. The third task will shed light on path dependencies and trends in the evolution of basic goods and their energy intensity using empirical analysis. This research will identify opportunities to shift developing societies towards low-carbon pathways, and help quantify burden-sharing arrangements for climate mitigation.
Summary
There is confusion surrounding how poverty eradication will contribute to climate change. This is due to knowledge gaps related to the material basis of poverty, and the relationship between energy and human development. Addressing this issue rigorously requires bridging gaps between global justice, economics, energy systems analysis, and industrial ecology, and applying this knowledge to projections of anthropogenic greenhouse gases. This project will develop a body of knowledge that quantifies the energy needs and related climate change impacts for providing decent living standards to all. The research will address three questions: which goods and services, and with what characteristics, constitute ‘decent living standards’? What energy resources are required to provide these goods and services in different countries, and what impact will this energy use have on climate change? How do the constituents of decent living and their energy needs evolve as countries develop? The first task will operationalize basic needs views of human development and advance their empirical validity by discerning characteristics of basic goods in household consumption patterns. The second will quantify the energy needs (and climate-related emissions) for decent living constituents and reveal their dependence on culture, climate, technology, and other contextual conditions in countries. This will be done using lifecycle analysis and input-output analysis, and mapping energy to climate change using state-of-the-art energy-economy integrated assessment modelling tools for 5 emerging economies that face the challenges of eradicating poverty and mitigating climate change. The third task will shed light on path dependencies and trends in the evolution of basic goods and their energy intensity using empirical analysis. This research will identify opportunities to shift developing societies towards low-carbon pathways, and help quantify burden-sharing arrangements for climate mitigation.
Max ERC Funding
869 722 €
Duration
Start date: 2015-06-01, End date: 2019-05-31
Project acronym DEEP TIME
Project Dynamic Earth Evolution and Paleogeography through Tomographic Imaging of the Mantle
Researcher (PI) Karin Sigloch
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Starting Grant (StG), PE10, ERC-2014-STG
Summary DEEP TIME will unearth a record of geological time that is buried thousands of kilometres deep. The seafloor that covers two-thirds of the earth's surface is a tiny fraction of all seafloor created during its history – the rest has sunk back into the viscous mantle. Slabs of subducted seafloor carry a record of surface history: how continents and oceans were configured over time and where their tectonic plate boundaries lay. DEEP TIME will follow former surface oceans as far back in time as the convecting mantle system will permit, by imaging subducted slabs down to the core with cutting-edge seismological techniques. Current tectonic plate reconstructions incorporate little if any of this deep structural information, which probably reaches back 300+ million years; they are based on present-day seafloor, which constrains only the past 100-150 million years.
DEEP TIME will match deep slab structure to the geological surface record of subduction – volcanic arcs and other crustal slivers that stayed afloat, survived collisions, and form the world’s largest mountain belts. Integrating these two direct records of subduction, the project will
* Add paleo-trenches to existing plate reconstructions and extend them 2-3 times longer into the past.
* Produce a 3-D atlas of the mantle that matches subducted seafloor with paleo-oceans inferred by land geology.
* Rigorously test the hypothesis of vertical slab sinking, which may yield an absolute mantle reference frame.
Tomographic models and geological land records will be synthesized into quantitative and testable paleogeographic reconstructions that complement and extend existing ones, especially in paleo-oceanic areas. This is likely to transform our understanding of the earth’s physical surface environment and biosphere during Mesozoic times, as well as the formation of natural resources. It also will put observational constraints on elusive mantle rheologies. Nearly every subdiscipline of the earth sciences could benefit.
Summary
DEEP TIME will unearth a record of geological time that is buried thousands of kilometres deep. The seafloor that covers two-thirds of the earth's surface is a tiny fraction of all seafloor created during its history – the rest has sunk back into the viscous mantle. Slabs of subducted seafloor carry a record of surface history: how continents and oceans were configured over time and where their tectonic plate boundaries lay. DEEP TIME will follow former surface oceans as far back in time as the convecting mantle system will permit, by imaging subducted slabs down to the core with cutting-edge seismological techniques. Current tectonic plate reconstructions incorporate little if any of this deep structural information, which probably reaches back 300+ million years; they are based on present-day seafloor, which constrains only the past 100-150 million years.
DEEP TIME will match deep slab structure to the geological surface record of subduction – volcanic arcs and other crustal slivers that stayed afloat, survived collisions, and form the world’s largest mountain belts. Integrating these two direct records of subduction, the project will
* Add paleo-trenches to existing plate reconstructions and extend them 2-3 times longer into the past.
* Produce a 3-D atlas of the mantle that matches subducted seafloor with paleo-oceans inferred by land geology.
* Rigorously test the hypothesis of vertical slab sinking, which may yield an absolute mantle reference frame.
Tomographic models and geological land records will be synthesized into quantitative and testable paleogeographic reconstructions that complement and extend existing ones, especially in paleo-oceanic areas. This is likely to transform our understanding of the earth’s physical surface environment and biosphere during Mesozoic times, as well as the formation of natural resources. It also will put observational constraints on elusive mantle rheologies. Nearly every subdiscipline of the earth sciences could benefit.
Max ERC Funding
1 438 846 €
Duration
Start date: 2015-08-01, End date: 2020-07-31
Project acronym EQUALIZE
Project Equalizing or disequalizing? Opposing socio-demographic determinants of the spatial distribution of welfare.
Researcher (PI) Iñaki Permanyer Ugartemendia
Host Institution (HI) CENTRO DE ESTUDIOS DEMOGRAFICOS
Call Details Starting Grant (StG), SH3, ERC-2014-STG
Summary This project aims to investigate the extent to which current trends in family formation, living arrangements and gender-specific education levels are related to the spatial distribution of welfare and the emergence of jobless households in contemporary societies. Inter alia, we aim to explore whether the welfare disequalizing, impoverishing and polarizing effects that are currently associated with recent patterns in assortative mating, lone parenthood and household composition are offset by an unprecedented phenomenon that is sweeping the world during the last decades: the rapid process education expansion in tandem with a reversal of the gender gap in education. The extent to which these two opposing forces occur and which of them is more influential in shaping the distribution of welfare between and within countries is among the main goals of this project. To this end, we will draw upon a variety of household surveys and the world largest sources of census microdata: the Integrated Public Use Microdata Series (IPUMS) project and the Latin American and Caribbean Demographic Centre. Because of their unparalleled geographical coverage and detail, these sources of data constitute exceptional instruments to study socio-demographic phenomena that have been vastly underutilized by the international research community. Triangulating our analysis at the micro, meso and macro levels, we will establish formal linkages between welfare distributions and its socio-demographic correlates to unveil insightful relationships that have been unsatisfactorily explored so far because of the lack of appropriately harmonized, sufficiently detailed and georeferenced datasets. We will strongly emphasize the spatial distribution of variables to unravel local patterns that might take place at highly disaggregated levels, therefore not being discernible to traditional (not as finely-grained) approaches.
Summary
This project aims to investigate the extent to which current trends in family formation, living arrangements and gender-specific education levels are related to the spatial distribution of welfare and the emergence of jobless households in contemporary societies. Inter alia, we aim to explore whether the welfare disequalizing, impoverishing and polarizing effects that are currently associated with recent patterns in assortative mating, lone parenthood and household composition are offset by an unprecedented phenomenon that is sweeping the world during the last decades: the rapid process education expansion in tandem with a reversal of the gender gap in education. The extent to which these two opposing forces occur and which of them is more influential in shaping the distribution of welfare between and within countries is among the main goals of this project. To this end, we will draw upon a variety of household surveys and the world largest sources of census microdata: the Integrated Public Use Microdata Series (IPUMS) project and the Latin American and Caribbean Demographic Centre. Because of their unparalleled geographical coverage and detail, these sources of data constitute exceptional instruments to study socio-demographic phenomena that have been vastly underutilized by the international research community. Triangulating our analysis at the micro, meso and macro levels, we will establish formal linkages between welfare distributions and its socio-demographic correlates to unveil insightful relationships that have been unsatisfactorily explored so far because of the lack of appropriately harmonized, sufficiently detailed and georeferenced datasets. We will strongly emphasize the spatial distribution of variables to unravel local patterns that might take place at highly disaggregated levels, therefore not being discernible to traditional (not as finely-grained) approaches.
Max ERC Funding
1 174 500 €
Duration
Start date: 2015-05-01, End date: 2020-04-30
Project acronym EURO-LAB
Project Experiment to Unearth the Rheological Oceanic Lithosphere-Asthenosphere Boundary
Researcher (PI) Catherine Ann Rychert
Host Institution (HI) UNIVERSITY OF SOUTHAMPTON
Call Details Starting Grant (StG), PE10, ERC-2014-STG
Summary Plate tectonics has been a fundamental tenet of Earth Science for nearly 50 years, but fundamental questions remain, such as where is the base of the plate and what makes a plate, “plate-like?” A better understanding of the transition from the rigid lithospheric plate to the weaker mantle beneath – the rheological lithosphere-asthenosphere boundary (LAB) - has important implications for the driving forces of plate tectonics, natural hazard mitigation, mantle dynamics, the evolution of the planet, and climate change. There are many proxies used to estimate the depth and nature of the base of tectonic plates, but to date no consensus has been reached. For example, temperature is known to have a strong effect on the mechanical behaviour of rocks. However, it has also been suggested that the chemical composition of the plate provides additional strength or that melt weakens the mantle beneath the plate.
We are at a critical juncture where large-scale efforts using geophysical, geochemical, and geological techniques are being launched to better understand the definition of the tectonic plate. The simple and short history of the ocean plate makes it the ideal location to advance our understanding. However, imaging the oceanic LAB has proved challenging given the remoteness of the oceans and associated difficulties in instrumentation. Most observations come from only one ocean, the Pacific, from indirect, remote observations, at different areas and scales.
I propose a large-scale effort to systematically image an oceanic plate beneath the Atlantic from birth at ridge to 40 My old seafloor. I will deploy ocean bottom seismometers (OBS) and magnetotelluric (MT) instruments, and I will image the plate at a range of resolution scales (laterally and in depth) and sensitivities to physical and chemical properties. This large, focused, interdisciplinary effort will finally determine the processes and properties that make a plate strong
and define it.
Summary
Plate tectonics has been a fundamental tenet of Earth Science for nearly 50 years, but fundamental questions remain, such as where is the base of the plate and what makes a plate, “plate-like?” A better understanding of the transition from the rigid lithospheric plate to the weaker mantle beneath – the rheological lithosphere-asthenosphere boundary (LAB) - has important implications for the driving forces of plate tectonics, natural hazard mitigation, mantle dynamics, the evolution of the planet, and climate change. There are many proxies used to estimate the depth and nature of the base of tectonic plates, but to date no consensus has been reached. For example, temperature is known to have a strong effect on the mechanical behaviour of rocks. However, it has also been suggested that the chemical composition of the plate provides additional strength or that melt weakens the mantle beneath the plate.
We are at a critical juncture where large-scale efforts using geophysical, geochemical, and geological techniques are being launched to better understand the definition of the tectonic plate. The simple and short history of the ocean plate makes it the ideal location to advance our understanding. However, imaging the oceanic LAB has proved challenging given the remoteness of the oceans and associated difficulties in instrumentation. Most observations come from only one ocean, the Pacific, from indirect, remote observations, at different areas and scales.
I propose a large-scale effort to systematically image an oceanic plate beneath the Atlantic from birth at ridge to 40 My old seafloor. I will deploy ocean bottom seismometers (OBS) and magnetotelluric (MT) instruments, and I will image the plate at a range of resolution scales (laterally and in depth) and sensitivities to physical and chemical properties. This large, focused, interdisciplinary effort will finally determine the processes and properties that make a plate strong
and define it.
Max ERC Funding
1 827 855 €
Duration
Start date: 2016-04-01, End date: 2021-03-31
Project acronym HUCO
Project Human Cooperation to Protect the Global Commons
Researcher (PI) Astrid Dannenberg
Host Institution (HI) UNIVERSITAET KASSEL
Call Details Starting Grant (StG), SH3, ERC-2014-STG
Summary The objectives of this research are to reveal the nature of large-scale human cooperation and to develop strategies for the protection of our global environment. Human activities are now the major driver of change in the biosphere, including the climate, the water cycle, and the distribution of species and biodiversity – with adverse effects that range from the local to the global scale. Since there is no world government that can enforce the protection of the global commons we have to rely on voluntary cooperation by sovereign actors. Previous findings from various disciplines have taught us important lessons about the nature of human cooperation. However, these literatures have almost exclusively focused on local or regional cooperation problems and their findings cannot be readily transferred to the international level. The research proposed here will fill this crucial gap. The methodological approach is genuinely interdisciplinary. In particular, the project will use and combine theoretical, experimental, evolutionary, and empirical methods. The interdisciplinary research team will start by analyzing case studies of international cooperation (or lack thereof). In an iterative process, the case-specific results will be explored in a rigorous context-free analysis using theoretical modeling, experiments, and simulations. With this, the project will: systematically analyze human cooperation from the local to the global scale and the differences between those scales; investigate which institutional arrangements enhance or prevent cooperative behavior at the global level; investigate whether individuals and groups are able to choose the right institutions and which factors determine their choice; synthesize the results to derive theoretical and practical insights about human cooperation and develop effective strategies for the management of the global commons; bring forward the integration of concepts and methods across disciplines for the study of human cooperation.
Summary
The objectives of this research are to reveal the nature of large-scale human cooperation and to develop strategies for the protection of our global environment. Human activities are now the major driver of change in the biosphere, including the climate, the water cycle, and the distribution of species and biodiversity – with adverse effects that range from the local to the global scale. Since there is no world government that can enforce the protection of the global commons we have to rely on voluntary cooperation by sovereign actors. Previous findings from various disciplines have taught us important lessons about the nature of human cooperation. However, these literatures have almost exclusively focused on local or regional cooperation problems and their findings cannot be readily transferred to the international level. The research proposed here will fill this crucial gap. The methodological approach is genuinely interdisciplinary. In particular, the project will use and combine theoretical, experimental, evolutionary, and empirical methods. The interdisciplinary research team will start by analyzing case studies of international cooperation (or lack thereof). In an iterative process, the case-specific results will be explored in a rigorous context-free analysis using theoretical modeling, experiments, and simulations. With this, the project will: systematically analyze human cooperation from the local to the global scale and the differences between those scales; investigate which institutional arrangements enhance or prevent cooperative behavior at the global level; investigate whether individuals and groups are able to choose the right institutions and which factors determine their choice; synthesize the results to derive theoretical and practical insights about human cooperation and develop effective strategies for the management of the global commons; bring forward the integration of concepts and methods across disciplines for the study of human cooperation.
Max ERC Funding
1 500 000 €
Duration
Start date: 2015-08-01, End date: 2020-07-31
Project acronym LEGALARCHITECTURES
Project Legal Architectures: The Influence of New Environmental Governance Rules on Environmental Compliance
Researcher (PI) Suzanne Elizabeth Kingston
Host Institution (HI) UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN
Call Details Starting Grant (StG), SH3, ERC-2014-STG
Summary Non-compliance with the EU’s environmental rules is one of the key weaknesses of the EU’s environmental policy. This research investigates the influence that environmental governance laws have on compliance decisions, and how we might best design our laws to maximise compliance. One of the most important trends in European environmental regulatory techniques over the past decade has been the shift from hierarchical, state-led government via command-and-control techniques, to decentralised, society-led governance by local private actors (see, e.g., Jordan et al (2013)). The EU has strongly supported efforts to empower compliance and enforcement by non-State actors, as embodied in the UNECE Aarhus Convention and implementing laws. Yet little is known about how this major change in environmental governance laws has actually influenced compliance levels in practice, and why. Can the design of environmental governance rules influence us not only to comply with the letter of the law, but also to go further? This research seeks to fill that gap by means of an interdisciplinary, bottom-up study of the relationships between the legal architecture of environmental governance and compliance decisions, in a selected field of EU environmental policy (biodiversity), and in three selected States. It is novel in terms of theory, because it tests new hypotheses about the effects environmental governance rules have on compliance. It is novel in terms of methodology, because in testing these hypotheses, it uses techniques that have not up to now been applied to measure the effect of law. It is challenging, because it sits at the intersection between the law and economics, socio-legal and governance/regulatory literatures, and brings together multiple methods from these fields to test its hypotheses. It has potentially high impact, because non-compliance is one of the most serious problems the EU’s environmental policy faces, and is closely linked to environmental outcomes.
Summary
Non-compliance with the EU’s environmental rules is one of the key weaknesses of the EU’s environmental policy. This research investigates the influence that environmental governance laws have on compliance decisions, and how we might best design our laws to maximise compliance. One of the most important trends in European environmental regulatory techniques over the past decade has been the shift from hierarchical, state-led government via command-and-control techniques, to decentralised, society-led governance by local private actors (see, e.g., Jordan et al (2013)). The EU has strongly supported efforts to empower compliance and enforcement by non-State actors, as embodied in the UNECE Aarhus Convention and implementing laws. Yet little is known about how this major change in environmental governance laws has actually influenced compliance levels in practice, and why. Can the design of environmental governance rules influence us not only to comply with the letter of the law, but also to go further? This research seeks to fill that gap by means of an interdisciplinary, bottom-up study of the relationships between the legal architecture of environmental governance and compliance decisions, in a selected field of EU environmental policy (biodiversity), and in three selected States. It is novel in terms of theory, because it tests new hypotheses about the effects environmental governance rules have on compliance. It is novel in terms of methodology, because in testing these hypotheses, it uses techniques that have not up to now been applied to measure the effect of law. It is challenging, because it sits at the intersection between the law and economics, socio-legal and governance/regulatory literatures, and brings together multiple methods from these fields to test its hypotheses. It has potentially high impact, because non-compliance is one of the most serious problems the EU’s environmental policy faces, and is closely linked to environmental outcomes.
Max ERC Funding
1 494 650 €
Duration
Start date: 2015-07-01, End date: 2021-06-30
Project acronym MASSIVE
Project Multinationals, Institutions and Innovation in Europe
Researcher (PI) Riccardo Crescenzi
Host Institution (HI) LONDON SCHOOL OF ECONOMICS AND POLITICAL SCIENCE
Call Details Starting Grant (StG), SH3, ERC-2014-STG
Summary Multinational Enterprises (MNEs) are key ‘tectonic forces’, shaping the ‘mountains’ in a far-from-flat world economic geography. In 2010, MNEs generated value added for approximately US$16 trillion accounting for more than a quarter of world GDP (UNCTAD, 2012). The progessive expansion of firms from emerging economies into multinational enterprises is unprecedented. Outflows of FDIs from developing economies reached the record level of $426 billion in 2012, corresponding to 31% of global outflows, up from 16% in 2007 (UNCTAD, 2013).
However, there is no consensus in the academic literature on both the factors able to shape the long-term location decisions of MNEs and, more generally, on the ultimate impact of MNEs on their host economies. This lack of consensus reflects three fundamental gaps in the existing literature. First the omission of some fundamental determinants of MNEs investment decisions in ‘traditional’ national-level analyses. Territorial/spatial factors, MNEs heterogeneity and local institutional conditions have been often overlooked in MNEs location analyses. Second the limited attention to the broader set of impacts of MNEs in their host economies and the role of institutional factors as selective ‘filters’ for these impacts. Third the intimate inter-connection between location motives and impacts has remained unexplored in the grey areas between separate streams of literature.
This research project will investigate the location strategies of MNEs and their territorial impacts addressing these three fundamental gaps in the existing literature, shedding new light on the factors shaping the economic geography of MNEs and their impacts and providing policy-makers at all levels with new tools to promote innovation, employment and economic recovery after the current economic crisis.
Summary
Multinational Enterprises (MNEs) are key ‘tectonic forces’, shaping the ‘mountains’ in a far-from-flat world economic geography. In 2010, MNEs generated value added for approximately US$16 trillion accounting for more than a quarter of world GDP (UNCTAD, 2012). The progessive expansion of firms from emerging economies into multinational enterprises is unprecedented. Outflows of FDIs from developing economies reached the record level of $426 billion in 2012, corresponding to 31% of global outflows, up from 16% in 2007 (UNCTAD, 2013).
However, there is no consensus in the academic literature on both the factors able to shape the long-term location decisions of MNEs and, more generally, on the ultimate impact of MNEs on their host economies. This lack of consensus reflects three fundamental gaps in the existing literature. First the omission of some fundamental determinants of MNEs investment decisions in ‘traditional’ national-level analyses. Territorial/spatial factors, MNEs heterogeneity and local institutional conditions have been often overlooked in MNEs location analyses. Second the limited attention to the broader set of impacts of MNEs in their host economies and the role of institutional factors as selective ‘filters’ for these impacts. Third the intimate inter-connection between location motives and impacts has remained unexplored in the grey areas between separate streams of literature.
This research project will investigate the location strategies of MNEs and their territorial impacts addressing these three fundamental gaps in the existing literature, shedding new light on the factors shaping the economic geography of MNEs and their impacts and providing policy-makers at all levels with new tools to promote innovation, employment and economic recovery after the current economic crisis.
Max ERC Funding
1 276 880 €
Duration
Start date: 2015-06-01, End date: 2020-12-31
Project acronym O2RIGIN
Project From the origin of Earth's volatiles to atmospheric oxygenation
Researcher (PI) Stephan König
Host Institution (HI) EBERHARD KARLS UNIVERSITAET TUEBINGEN
Call Details Starting Grant (StG), PE10, ERC-2014-STG
Summary Aim of this project is to understand the connection between endogenic and exogenic processes of our planet that led to the redox contrast between Earth’s surface and interior. For this purpose the time constraints on atmospheric oxygenation can be refined and for the first time linked with a new approach to Earth’s endogenic processes like plate tectonics, mantle melting, volcanism, continent formation and subduction-related sediment- and crust recycling. These objectives will be achieved by using the unique geochemical capabilities of the selenium (Se) isotope system to unlock the geological record of changing oxygen fugacities in the mantle-crust-atmosphere reservoirs. The power of the Se isotope system lies in its redox sensitivity and in the volatile and highly siderophile/chalcophile character of elemental Se. This links Se to the evolution of other volatiles during key geological processes from Earth formation ca. 4.5 Ga ago until today. The occurrence and behavior of Se is fully controlled by accessory micrometric sulfide minerals in the silicate Earth, which may conserve their original Se isotopic signatures over large geological timescales and can be dated via the 187Re-187Os geochronometer. This offers high resolutions in time and space that are groundbreaking for research on Earth System Oxygenation. Covering Earth geologic history, new high-precision Se isotope data of the sedimentary and representative mantle-derived magmatic rock record from all major plate tectonic settings will be combined with the mineral-scale record of robust and global “time capsules” such as diamond inclusions. Once the evolution into todays dynamic Earth’s Redox System is understood, the investigation will be pushed back in time to Earth’s formation. This involves a reconciliation of the meteoritic and Archean rock and mineral-scale Se isotope record to constrain the origin of volatiles essential for the oceans, generation of an atmosphere and development of life on our planet.
Summary
Aim of this project is to understand the connection between endogenic and exogenic processes of our planet that led to the redox contrast between Earth’s surface and interior. For this purpose the time constraints on atmospheric oxygenation can be refined and for the first time linked with a new approach to Earth’s endogenic processes like plate tectonics, mantle melting, volcanism, continent formation and subduction-related sediment- and crust recycling. These objectives will be achieved by using the unique geochemical capabilities of the selenium (Se) isotope system to unlock the geological record of changing oxygen fugacities in the mantle-crust-atmosphere reservoirs. The power of the Se isotope system lies in its redox sensitivity and in the volatile and highly siderophile/chalcophile character of elemental Se. This links Se to the evolution of other volatiles during key geological processes from Earth formation ca. 4.5 Ga ago until today. The occurrence and behavior of Se is fully controlled by accessory micrometric sulfide minerals in the silicate Earth, which may conserve their original Se isotopic signatures over large geological timescales and can be dated via the 187Re-187Os geochronometer. This offers high resolutions in time and space that are groundbreaking for research on Earth System Oxygenation. Covering Earth geologic history, new high-precision Se isotope data of the sedimentary and representative mantle-derived magmatic rock record from all major plate tectonic settings will be combined with the mineral-scale record of robust and global “time capsules” such as diamond inclusions. Once the evolution into todays dynamic Earth’s Redox System is understood, the investigation will be pushed back in time to Earth’s formation. This involves a reconciliation of the meteoritic and Archean rock and mineral-scale Se isotope record to constrain the origin of volatiles essential for the oceans, generation of an atmosphere and development of life on our planet.
Max ERC Funding
1 498 353 €
Duration
Start date: 2015-03-01, End date: 2021-02-28
Project acronym PRISTINE
Project High precision isotopic measurements of heavy elements in extra-terrestrial materials: origin and age of the solar system volatile element depletion
Researcher (PI) Frédéric, Pierre, Louis Moynier
Host Institution (HI) INSTITUT DE PHYSIQUE DU GLOBE DE PARIS
Call Details Starting Grant (StG), PE10, ERC-2014-STG
Summary "The objectives of this proposal, PRISTINE (high PRecision ISotopic measurements of heavy elements in extra-Terrestrial materials: origIN and age of the solar system volatile Element depletion), are to develop new cutting edge high precision isotopic measurements to understand the origin of the Earth, Moon and solar system volatile elements and link their relative depletion in the different planets to their formation mechanism. In addition, the understanding of the origin of the volatile elements will have direct consequences for the understanding of the origin of the Earth’s water. To that end, we will approach the problem from two angles: 1) Develop and use novel stable isotope systems for volatile elements (e.g. Zn, Ga, Cu, and Rb) in terrestrial, lunar and meteoritic materials to constrain the origin of solar system’s volatile element depletion 2) Determine the age of the volatile element depletion by using a novel and original approach: calculate the original Rb/Sr ratio of the Solar Nebula by measuring the isotopic composition of the Sun with respect to Sr via the isotopic composition of solar wind implanted in lunar soil grains.
The stable isotope composition (goal #1) will give us new constraints on the mechanisms (e.g. evaporation following a giant impact or incomplete condensation) that have shaped the abundances of the volatile elements in terrestrial planets, while the timing (goal #2) will be used to differentiate between nebular events (early) from planetary events (late). These new results will have major implications on our understanding of the origin of the Earth and of the Moon, and they will be used to test the giant impact hypothesis of the Moon and the origin of the Earth’s water."
Summary
"The objectives of this proposal, PRISTINE (high PRecision ISotopic measurements of heavy elements in extra-Terrestrial materials: origIN and age of the solar system volatile Element depletion), are to develop new cutting edge high precision isotopic measurements to understand the origin of the Earth, Moon and solar system volatile elements and link their relative depletion in the different planets to their formation mechanism. In addition, the understanding of the origin of the volatile elements will have direct consequences for the understanding of the origin of the Earth’s water. To that end, we will approach the problem from two angles: 1) Develop and use novel stable isotope systems for volatile elements (e.g. Zn, Ga, Cu, and Rb) in terrestrial, lunar and meteoritic materials to constrain the origin of solar system’s volatile element depletion 2) Determine the age of the volatile element depletion by using a novel and original approach: calculate the original Rb/Sr ratio of the Solar Nebula by measuring the isotopic composition of the Sun with respect to Sr via the isotopic composition of solar wind implanted in lunar soil grains.
The stable isotope composition (goal #1) will give us new constraints on the mechanisms (e.g. evaporation following a giant impact or incomplete condensation) that have shaped the abundances of the volatile elements in terrestrial planets, while the timing (goal #2) will be used to differentiate between nebular events (early) from planetary events (late). These new results will have major implications on our understanding of the origin of the Earth and of the Moon, and they will be used to test the giant impact hypothesis of the Moon and the origin of the Earth’s water."
Max ERC Funding
1 487 500 €
Duration
Start date: 2015-04-01, End date: 2020-03-31
Project acronym RELOS
Project Reducing empiricism in luminescence geochronology: Understanding the origins of luminescence from individual sand grains
Researcher (PI) Jan-Pieter Oswald Carolus Buylaert
Host Institution (HI) DANMARKS TEKNISKE UNIVERSITET
Call Details Starting Grant (StG), PE10, ERC-2014-STG
Summary Sediments preserve a history of the evolution of the Earth’s surface and its response to a changing climate – a history that can only be read reliably if we know the age of the sediments. Luminescence dating is widely used in quaternary geology and archaeology, and is applicable to almost all sediments from the last 0.5 Ma – it dates the last time the sediment grains were exposed to daylight. RELOS will improve the reliability of luminescence dating by determining the sources of unexpected spread (over-dispersion) in measured doses derived from sand-sized grains. New hypotheses concerning charge imbalance, charge transport and dose calibration of luminescence signals will be tested by: (i) quantifying the effect of grain size and irradiation geometry/quality on grain-to-grain dose dispersion, and particularly the importance of charge particle equilibrium at these scales; (ii) quantifying dispersion arising from grain-to-grain variations in environmental dose rate; (iii) developing measurement procedures giving the same luminescence response per unit dose as in nature; (iv) developing a dispersion budget and new conceptual/numerical models for luminescence production based on (i) to (iii); and (v) testing the results of these investigations using well-defined natural samples. This project investigates fundamental issues of charge (de)trapping and recombination at small scales that have been completely ignored in previous studies, and problems of luminescence response that are sidestepped in the literature, in part by the unsatisfactory approach of arbitrary data rejection. These studies will result in major improvements in our understanding of the small-scale dosimetry of mixed radiation fields and a step change in the reliability of single-grain luminescence ages. The project links these fundamental studies to clear outcomes of considerable potential value to a variety of fields including earth sciences, archaeology and palaeoanthropology.
Summary
Sediments preserve a history of the evolution of the Earth’s surface and its response to a changing climate – a history that can only be read reliably if we know the age of the sediments. Luminescence dating is widely used in quaternary geology and archaeology, and is applicable to almost all sediments from the last 0.5 Ma – it dates the last time the sediment grains were exposed to daylight. RELOS will improve the reliability of luminescence dating by determining the sources of unexpected spread (over-dispersion) in measured doses derived from sand-sized grains. New hypotheses concerning charge imbalance, charge transport and dose calibration of luminescence signals will be tested by: (i) quantifying the effect of grain size and irradiation geometry/quality on grain-to-grain dose dispersion, and particularly the importance of charge particle equilibrium at these scales; (ii) quantifying dispersion arising from grain-to-grain variations in environmental dose rate; (iii) developing measurement procedures giving the same luminescence response per unit dose as in nature; (iv) developing a dispersion budget and new conceptual/numerical models for luminescence production based on (i) to (iii); and (v) testing the results of these investigations using well-defined natural samples. This project investigates fundamental issues of charge (de)trapping and recombination at small scales that have been completely ignored in previous studies, and problems of luminescence response that are sidestepped in the literature, in part by the unsatisfactory approach of arbitrary data rejection. These studies will result in major improvements in our understanding of the small-scale dosimetry of mixed radiation fields and a step change in the reliability of single-grain luminescence ages. The project links these fundamental studies to clear outcomes of considerable potential value to a variety of fields including earth sciences, archaeology and palaeoanthropology.
Max ERC Funding
1 314 963 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym TERRA
Project 375 Million Years of the Diversification of Life on Land: Shifting the Paradigm?
Researcher (PI) Richard James Butler
Host Institution (HI) THE UNIVERSITY OF BIRMINGHAM
Call Details Starting Grant (StG), PE10, ERC-2014-STG
Summary Life on land today is spectacularly diverse, representing 75–95% of all species on Earth. However, it remains unclear how this extraordinary diversity has been acquired across deep geological time. This research project will address this major knowledge gap by reassessing the dominant paradigm of terrestrial diversification, an exponential increase in diversity over the last 375 million years, using the rich and well-studied fossil record of tetrapods (four-limbed vertebrates) as an exemplar group. Previous analyses of tetrapod diversification have been based on an outdated and problematic dataset that is likely to artificially inflate apparent diversity towards the present day. A major new dataset will be assembled, detailing the spatial and temporal distribution of terrestrial tetrapods across their entire fossil record in unprecedented detail. These data will be analysed using the latest approaches to sampling-standardisation in order to generate completely novel, rigorous curves of diversification through time. These will be compared within a cutting-edge statistical framework to alternate diversification models, as well as to changes in rock record sampling, global environments (e.g. sea level and atmospheric composition) and marine diversity. These comparisons will allow us to address the following key questions: (i) Does terrestrial diversification follow an exponential pattern over the last 375 million years? (ii) Is the terrestrial fossil record as complete as the marine fossil record? (iii) Are long-term patterns of terrestrial diversification driven by physical changes in the Earth system such as climate change? (iv) Did marine and terrestrial biodiversity follow similar trajectories across geological time? (v) How severely did mass extinction events impact upon terrestrial tetrapod diversification? Our work will establish a new, rigorous paradigm for the long-term pattern of terrestrial diversification, and test and identify its drivers.
Summary
Life on land today is spectacularly diverse, representing 75–95% of all species on Earth. However, it remains unclear how this extraordinary diversity has been acquired across deep geological time. This research project will address this major knowledge gap by reassessing the dominant paradigm of terrestrial diversification, an exponential increase in diversity over the last 375 million years, using the rich and well-studied fossil record of tetrapods (four-limbed vertebrates) as an exemplar group. Previous analyses of tetrapod diversification have been based on an outdated and problematic dataset that is likely to artificially inflate apparent diversity towards the present day. A major new dataset will be assembled, detailing the spatial and temporal distribution of terrestrial tetrapods across their entire fossil record in unprecedented detail. These data will be analysed using the latest approaches to sampling-standardisation in order to generate completely novel, rigorous curves of diversification through time. These will be compared within a cutting-edge statistical framework to alternate diversification models, as well as to changes in rock record sampling, global environments (e.g. sea level and atmospheric composition) and marine diversity. These comparisons will allow us to address the following key questions: (i) Does terrestrial diversification follow an exponential pattern over the last 375 million years? (ii) Is the terrestrial fossil record as complete as the marine fossil record? (iii) Are long-term patterns of terrestrial diversification driven by physical changes in the Earth system such as climate change? (iv) Did marine and terrestrial biodiversity follow similar trajectories across geological time? (v) How severely did mass extinction events impact upon terrestrial tetrapod diversification? Our work will establish a new, rigorous paradigm for the long-term pattern of terrestrial diversification, and test and identify its drivers.
Max ERC Funding
1 495 063 €
Duration
Start date: 2015-07-01, End date: 2020-06-30
Project acronym WAPITI
Project Water-mass transformation and Pathways In The Weddell Sea: uncovering the dynamics of a global climate chokepoint from In-situ measurements
Researcher (PI) Jean-Baptiste Bruno Sallée
Host Institution (HI) SORBONNE UNIVERSITE
Call Details Starting Grant (StG), PE10, ERC-2014-STG
Summary Deep water formed around the Antarctic continent drives the world ocean circulation. 50-70% of this deep water is formed within only about 10% of the Antarctic circumpolar band: the Weddell Sea. Subtle changes in the circulation of the Weddell Sea can lead to major changes in floating ice-shelves, with critical implications for global sea-level, the production of deep water and the global ocean overturning circulation. Despite these critical climate implications, the Antarctic shelf circulation remains poorly understood.
I propose an ambitious project at the crossroads of experimental and numerical oceanography. By drawing on the strengths of each discipline I will explore the regional water-mass pathways in the Weddell Sea: an unchartered cornerstone for understanding the polar ocean circulation and its links to global climate. A key issue facing climate scientists will be addressed: “What sets the tridimensional water-mass structure and pathways in the Weddell Sea and modulates the flow of deep waters between the Antarctica ice-shelves and the global ocean circulation?”
To address this question I propose to investigate several key aspects of the Weddell Sea system: the dynamical forcing of the Weddell gyre and its response to atmospheric variability; the forcing and the circulation on the continental shelf and its interaction with the gyre; and the time-scale and mixing associated with bottom water sinking along the continental shelf. WAPITI approaches these objectives through a series of innovations, including (i) an ambitious field experiment to investigate the shelf circulation and processes, (ii) a powerful conceptual framework applied for the first time to a realistic eddy-resolving model of the Weddell gyre, and (iii) a novel instrument that will be developed to directly observe the sinking of deep water into the abyssal ocean for the first time. Collectively, the project will contribute a new insight into global climate feedbacks.
Summary
Deep water formed around the Antarctic continent drives the world ocean circulation. 50-70% of this deep water is formed within only about 10% of the Antarctic circumpolar band: the Weddell Sea. Subtle changes in the circulation of the Weddell Sea can lead to major changes in floating ice-shelves, with critical implications for global sea-level, the production of deep water and the global ocean overturning circulation. Despite these critical climate implications, the Antarctic shelf circulation remains poorly understood.
I propose an ambitious project at the crossroads of experimental and numerical oceanography. By drawing on the strengths of each discipline I will explore the regional water-mass pathways in the Weddell Sea: an unchartered cornerstone for understanding the polar ocean circulation and its links to global climate. A key issue facing climate scientists will be addressed: “What sets the tridimensional water-mass structure and pathways in the Weddell Sea and modulates the flow of deep waters between the Antarctica ice-shelves and the global ocean circulation?”
To address this question I propose to investigate several key aspects of the Weddell Sea system: the dynamical forcing of the Weddell gyre and its response to atmospheric variability; the forcing and the circulation on the continental shelf and its interaction with the gyre; and the time-scale and mixing associated with bottom water sinking along the continental shelf. WAPITI approaches these objectives through a series of innovations, including (i) an ambitious field experiment to investigate the shelf circulation and processes, (ii) a powerful conceptual framework applied for the first time to a realistic eddy-resolving model of the Weddell gyre, and (iii) a novel instrument that will be developed to directly observe the sinking of deep water into the abyssal ocean for the first time. Collectively, the project will contribute a new insight into global climate feedbacks.
Max ERC Funding
1 998 125 €
Duration
Start date: 2015-05-01, End date: 2021-04-30
Project acronym WayTO
Project Wayfinding Through Orientation
Researcher (PI) Angela Schwering
Host Institution (HI) WESTFAELISCHE WILHELMS-UNIVERSITAET MUENSTER
Call Details Starting Grant (StG), SH3, ERC-2014-STG
Summary Wayfinding is a task that we manage every day while going to work or on vacation. Although wayfinding research has gone through tremendous development, it suffers from fundamental shortcomings: State-of-the art wayfinding research still adheres to the principles of turn-by-turn navigation.
This proposal suggests a new wayfinding paradigm “Wayfinding Through Orientation” that supports the acquisition of spatial knowledge and cognitive mapping for advancing the user’s orientation. Users learn the spatial configuration of their environment through navigating. This makes wayfinding more successful because users with orientation can take informed spatial decisions. Our project goals are achieved through four objectives:
1.We develop a scientific understanding of orientation in wayfinding through empirically analyzing what kind of information induces orientation in humans.
2.We generate orientation information automatically. Orientation information is different to spatial data stored in geographic information systems, because it does not have a consistent level of generalization, it is schematized and it refers to vernacular, vague places not included in traditional maps.
3.New means of communication are developed to integrate orientation instructions into route directions. New maps are required to account for the characteristics of orientation information.
4.To evaluate orientation wayfinding, we cannot apply traditional measures such as travel time, but develop new methods to determine the effect of orientation wayfinding on peoples’ ability to solve wayfinding tasks that require orientation and cognitive mapping.
“Wayfinding Through Orientation” is a paradigm change in wayfinding which has profound impact well beyond GI Science research. Our research lays the scientific foundations for a new way of navigation. We strongly believe that we have the necessary expertise to pursue this interdisciplinary project. Preliminary results have been well received by the community.
Summary
Wayfinding is a task that we manage every day while going to work or on vacation. Although wayfinding research has gone through tremendous development, it suffers from fundamental shortcomings: State-of-the art wayfinding research still adheres to the principles of turn-by-turn navigation.
This proposal suggests a new wayfinding paradigm “Wayfinding Through Orientation” that supports the acquisition of spatial knowledge and cognitive mapping for advancing the user’s orientation. Users learn the spatial configuration of their environment through navigating. This makes wayfinding more successful because users with orientation can take informed spatial decisions. Our project goals are achieved through four objectives:
1.We develop a scientific understanding of orientation in wayfinding through empirically analyzing what kind of information induces orientation in humans.
2.We generate orientation information automatically. Orientation information is different to spatial data stored in geographic information systems, because it does not have a consistent level of generalization, it is schematized and it refers to vernacular, vague places not included in traditional maps.
3.New means of communication are developed to integrate orientation instructions into route directions. New maps are required to account for the characteristics of orientation information.
4.To evaluate orientation wayfinding, we cannot apply traditional measures such as travel time, but develop new methods to determine the effect of orientation wayfinding on peoples’ ability to solve wayfinding tasks that require orientation and cognitive mapping.
“Wayfinding Through Orientation” is a paradigm change in wayfinding which has profound impact well beyond GI Science research. Our research lays the scientific foundations for a new way of navigation. We strongly believe that we have the necessary expertise to pursue this interdisciplinary project. Preliminary results have been well received by the community.
Max ERC Funding
1 336 563 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym WORKANDHOME
Project Reshaping society and space: home-based self-employment and businesses
Researcher (PI) Darja Reuschke
Host Institution (HI) UNIVERSITY OF SOUTHAMPTON
Call Details Starting Grant (StG), SH3, ERC-2014-STG
Summary The aim of WORKANDHOME is to develop a new framework for understanding fundamental changes currently taking place to work that situates individuals as economic actors within the context of their wider life domains, household, home and neighbourhood. This will break new ground in how we understand and classify economic activity, the home, the firm, places of economic activity, labour markets and ‘residential’ neighbourhoods. Significant and rising numbers of people work from home as a self-employed worker or business owner throughout Europe. This will be the first study that explores social, economic and spatial aspects of homeworking by self-employed workers and business owners including the role of new technologies and social media in dissolving the home-work boundary. This is an important new area for social science research since home-based self-employment and businesses vividly manifest the interconnection of ‘home’ and ‘work’ and of the ‘economic’ and the ‘social’ as part of an increasingly complex society. WORKANDHOME will integrate theoretical perspectives from economic geography, entrepreneurship and small business research, sociology, economics, housing and neighbourhood studies. In order to investigate new realities of how people work and live, this study will integrate analytical methods across the social sciences and computer sciences and create a new fusion of primary, secondary and ‘big’ social media data from the UK, the Netherlands, Germany, Europe and the world. WORKANDHOME offers a major step forward in understanding how people live, work, do business and shape space. Its integrated and international approach will stimulate considerable interdisciplinary exchange across disciplines in the social sciences for better understanding and tackling contemporary societal and economic changes and challenges.
Summary
The aim of WORKANDHOME is to develop a new framework for understanding fundamental changes currently taking place to work that situates individuals as economic actors within the context of their wider life domains, household, home and neighbourhood. This will break new ground in how we understand and classify economic activity, the home, the firm, places of economic activity, labour markets and ‘residential’ neighbourhoods. Significant and rising numbers of people work from home as a self-employed worker or business owner throughout Europe. This will be the first study that explores social, economic and spatial aspects of homeworking by self-employed workers and business owners including the role of new technologies and social media in dissolving the home-work boundary. This is an important new area for social science research since home-based self-employment and businesses vividly manifest the interconnection of ‘home’ and ‘work’ and of the ‘economic’ and the ‘social’ as part of an increasingly complex society. WORKANDHOME will integrate theoretical perspectives from economic geography, entrepreneurship and small business research, sociology, economics, housing and neighbourhood studies. In order to investigate new realities of how people work and live, this study will integrate analytical methods across the social sciences and computer sciences and create a new fusion of primary, secondary and ‘big’ social media data from the UK, the Netherlands, Germany, Europe and the world. WORKANDHOME offers a major step forward in understanding how people live, work, do business and shape space. Its integrated and international approach will stimulate considerable interdisciplinary exchange across disciplines in the social sciences for better understanding and tackling contemporary societal and economic changes and challenges.
Max ERC Funding
1 430 920 €
Duration
Start date: 2015-10-01, End date: 2020-09-30