Project acronym 2D-TOPSENSE
Project Tunable optoelectronic devices by strain engineering of 2D semiconductors
Researcher (PI) Andres CASTELLANOS
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Starting Grant (StG), PE7, ERC-2017-STG
Summary The goal of 2D-TOPSENSE is to exploit the remarkable stretchability of two-dimensional semiconductors to fabricate optoelectronic devices where strain is used as an external knob to tune their properties.
While bulk semiconductors tend to break under strains larger than 1.5%, 2D semiconductors (such as MoS2) can withstand deformations of up to 10-20% before rupture. This large breaking strength promises a great potential of 2D semiconductors as ‘straintronic’ materials, whose properties can be adjusted by applying a deformation to their lattice. In fact, recent theoretical works predicted an interesting physical phenomenon: a tensile strain-induced semiconductor-to-metal transition in 2D semiconductors. By tensioning single-layer MoS2 from 0% up to 10%, its electronic band structure is expected to undergo a continuous transition from a wide direct band-gap of 1.8 eV to a metallic behavior. This unprecedented large strain-tunability will undoubtedly have a strong impact in a wide range of optoelectronic applications such as photodetectors whose cut-off wavelength is tuned by varying the applied strain or atomically thin light modulators.
To date, experimental works on strain engineering have been mostly focused on fundamental studies, demonstrating part of the potential of 2D semiconductors in straintronics, but they have failed to exploit strain engineering to add extra functionalities to optoelectronic devices. In 2D-TOPSENSE I will go beyond the state of the art in straintronics by designing and fabricating optoelectronic devices whose properties and performance can be tuned by means of applying strain. 2D-TOPSENSE will focus on photodetectors with a tunable bandwidth and detectivity, light emitting devices whose emission wavelength can be adjusted, light modulators based on 2D semiconductors such as transition metal dichalcogenides or black phosphorus and solar funnels capable of directing the photogenerated charge carriers towards a specific position.
Summary
The goal of 2D-TOPSENSE is to exploit the remarkable stretchability of two-dimensional semiconductors to fabricate optoelectronic devices where strain is used as an external knob to tune their properties.
While bulk semiconductors tend to break under strains larger than 1.5%, 2D semiconductors (such as MoS2) can withstand deformations of up to 10-20% before rupture. This large breaking strength promises a great potential of 2D semiconductors as ‘straintronic’ materials, whose properties can be adjusted by applying a deformation to their lattice. In fact, recent theoretical works predicted an interesting physical phenomenon: a tensile strain-induced semiconductor-to-metal transition in 2D semiconductors. By tensioning single-layer MoS2 from 0% up to 10%, its electronic band structure is expected to undergo a continuous transition from a wide direct band-gap of 1.8 eV to a metallic behavior. This unprecedented large strain-tunability will undoubtedly have a strong impact in a wide range of optoelectronic applications such as photodetectors whose cut-off wavelength is tuned by varying the applied strain or atomically thin light modulators.
To date, experimental works on strain engineering have been mostly focused on fundamental studies, demonstrating part of the potential of 2D semiconductors in straintronics, but they have failed to exploit strain engineering to add extra functionalities to optoelectronic devices. In 2D-TOPSENSE I will go beyond the state of the art in straintronics by designing and fabricating optoelectronic devices whose properties and performance can be tuned by means of applying strain. 2D-TOPSENSE will focus on photodetectors with a tunable bandwidth and detectivity, light emitting devices whose emission wavelength can be adjusted, light modulators based on 2D semiconductors such as transition metal dichalcogenides or black phosphorus and solar funnels capable of directing the photogenerated charge carriers towards a specific position.
Max ERC Funding
1 930 437 €
Duration
Start date: 2018-03-01, End date: 2023-02-28
Project acronym 2D–SYNETRA
Project Two-dimensional colloidal nanostructures - Synthesis and electrical transport
Researcher (PI) Christian Klinke
Host Institution (HI) UNIVERSITAET HAMBURG
Call Details Starting Grant (StG), PE4, ERC-2012-StG_20111012
Summary We propose to develop truly two-dimensional continuous materials and two-dimensional monolayer films composed of individual nanocrystals by the comparatively fast, inexpensive, and scalable colloidal synthesis method. The materials’ properties will be studied in detail, especially regarding their (photo-) electrical transport. This will allow developing new types of device structures, such as Coulomb blockade and field enhancement based transistors.
Recently, we demonstrated the possibility to synthesize in a controlled manner truly two-dimensional colloidal nanostructures. We will investigate their formation mechanism, synthesize further materials as “nanosheets”, develop methodologies to tune their geometrical properties, and study their (photo-) electrical properties.
Furthermore, we will use the Langmuir-Blodgett method to deposit highly ordered monolayers of monodisperse nanoparticles. Such structures show interesting transport properties governed by Coulomb blockade effects known from individual nanoparticles. This leads to semiconductor-like behavior in metal nanoparticle films. The understanding of the electric transport in such “multi-tunnel devices” is still very limited. Thus, we will investigate this concept in detail and take it to its limits. Beside improvement of quality and exchange of material we will tune the nanoparticles’ size and shape in order to gain a deeper understanding of the electrical properties of supercrystallographic assemblies. Furthermore, we will develop device concepts for diode and transistor structures which take into account the novel properties of the low-dimensional assemblies.
Nanosheets and monolayers of nanoparticles truly follow the principle of building devices by the bottom-up approach and allow electric transport measurements in a 2D regime. Highly ordered nanomaterial systems possess easy and reliably to manipulate electronic properties what make them interesting for future (inexpensive) electronic devices.
Summary
We propose to develop truly two-dimensional continuous materials and two-dimensional monolayer films composed of individual nanocrystals by the comparatively fast, inexpensive, and scalable colloidal synthesis method. The materials’ properties will be studied in detail, especially regarding their (photo-) electrical transport. This will allow developing new types of device structures, such as Coulomb blockade and field enhancement based transistors.
Recently, we demonstrated the possibility to synthesize in a controlled manner truly two-dimensional colloidal nanostructures. We will investigate their formation mechanism, synthesize further materials as “nanosheets”, develop methodologies to tune their geometrical properties, and study their (photo-) electrical properties.
Furthermore, we will use the Langmuir-Blodgett method to deposit highly ordered monolayers of monodisperse nanoparticles. Such structures show interesting transport properties governed by Coulomb blockade effects known from individual nanoparticles. This leads to semiconductor-like behavior in metal nanoparticle films. The understanding of the electric transport in such “multi-tunnel devices” is still very limited. Thus, we will investigate this concept in detail and take it to its limits. Beside improvement of quality and exchange of material we will tune the nanoparticles’ size and shape in order to gain a deeper understanding of the electrical properties of supercrystallographic assemblies. Furthermore, we will develop device concepts for diode and transistor structures which take into account the novel properties of the low-dimensional assemblies.
Nanosheets and monolayers of nanoparticles truly follow the principle of building devices by the bottom-up approach and allow electric transport measurements in a 2D regime. Highly ordered nanomaterial systems possess easy and reliably to manipulate electronic properties what make them interesting for future (inexpensive) electronic devices.
Max ERC Funding
1 497 200 €
Duration
Start date: 2013-02-01, End date: 2019-01-31
Project acronym 2F4BIODYN
Project Two-Field Nuclear Magnetic Resonance Spectroscopy for the Exploration of Biomolecular Dynamics
Researcher (PI) Fabien Ferrage
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE4, ERC-2011-StG_20101014
Summary The paradigm of the structure-function relationship in proteins is outdated. Biological macromolecules and supramolecular assemblies are highly dynamic objects. Evidence that their motions are of utmost importance to their functions is regularly identified. The understanding of the physical chemistry of biological processes at an atomic level has to rely not only on the description of structure but also on the characterization of molecular motions.
The investigation of protein motions will be undertaken with a very innovative methodological approach in nuclear magnetic resonance relaxation. In order to widen the ranges of frequencies at which local motions in proteins are probed, we will first use and develop new techniques for a prototype shuttle system for the measurement of relaxation at low fields on a high-field NMR spectrometer. Second, we will develop a novel system: a set of low-field NMR spectrometers designed as accessories for high-field spectrometers. Used in conjunction with the shuttle, this system will offer (i) the sensitivity and resolution (i.e. atomic level information) of a high-field spectrometer (ii) the access to low fields of a relaxometer and (iii) the ability to measure a wide variety of relaxation rates with high accuracy. This system will benefit from the latest technology in homogeneous permanent magnet development to allow a control of spin systems identical to that of a high-resolution probe. This new apparatus will open the way to the use of NMR relaxation at low fields for the refinement of protein motions at an atomic scale.
Applications of this novel approach will focus on the bright side of protein dynamics: (i) the largely unexplored dynamics of intrinsically disordered proteins, and (ii) domain motions in large proteins. In both cases, we will investigate a series of diverse protein systems with implications in development, cancer and immunity.
Summary
The paradigm of the structure-function relationship in proteins is outdated. Biological macromolecules and supramolecular assemblies are highly dynamic objects. Evidence that their motions are of utmost importance to their functions is regularly identified. The understanding of the physical chemistry of biological processes at an atomic level has to rely not only on the description of structure but also on the characterization of molecular motions.
The investigation of protein motions will be undertaken with a very innovative methodological approach in nuclear magnetic resonance relaxation. In order to widen the ranges of frequencies at which local motions in proteins are probed, we will first use and develop new techniques for a prototype shuttle system for the measurement of relaxation at low fields on a high-field NMR spectrometer. Second, we will develop a novel system: a set of low-field NMR spectrometers designed as accessories for high-field spectrometers. Used in conjunction with the shuttle, this system will offer (i) the sensitivity and resolution (i.e. atomic level information) of a high-field spectrometer (ii) the access to low fields of a relaxometer and (iii) the ability to measure a wide variety of relaxation rates with high accuracy. This system will benefit from the latest technology in homogeneous permanent magnet development to allow a control of spin systems identical to that of a high-resolution probe. This new apparatus will open the way to the use of NMR relaxation at low fields for the refinement of protein motions at an atomic scale.
Applications of this novel approach will focus on the bright side of protein dynamics: (i) the largely unexplored dynamics of intrinsically disordered proteins, and (ii) domain motions in large proteins. In both cases, we will investigate a series of diverse protein systems with implications in development, cancer and immunity.
Max ERC Funding
1 462 080 €
Duration
Start date: 2012-01-01, End date: 2017-12-31
Project acronym 2STEPPARKIN
Project A novel two-step model for neurodegeneration in Parkinson’s disease
Researcher (PI) Emi Nagoshi
Host Institution (HI) UNIVERSITE DE GENEVE
Call Details Starting Grant (StG), LS5, ERC-2012-StG_20111109
Summary Parkinson’s disease (PD) is the second most common neurodegenerative disorder primarily caused by the progressive loss of dopaminergic (DA) neurons in the substantia nigra (SN). Despite the advances in gene discovery associated with PD, the knowledge of the PD pathogenesis is largely limited to the involvement of these genes in the generic cell death pathways, and why degeneration is specific to DA neurons and why the degeneration is progressive remain enigmatic. Broad goal of our work is therefore to elucidate the mechanisms underlying specific and progressive DA neuron degeneration in PD. Our new Drosophila model of PD ⎯Fer2 gene loss-of-function mutation⎯ is unusually well suited to address these questions. Fer2 mutants exhibit specific and progressive death of brain DA neurons as well as severe locomotor defects and short life span. Strikingly, the death of DA neuron is initiated in a small cluster of Fer2-expressing DA neurons and subsequently propagates to Fer2-negative DA neurons. We therefore propose a novel two-step model of the neurodegeneration in PD: primary cell death occurs in a specific subset of dopamindegic neurons that are genetically defined, and subsequently the failure of the neuronal connectivity triggers and propagates secondary cell death to remaining DA neurons. In this research, we will test this hypothesis and investigate the underlying molecular mechanisms. This will be the first study to examine circuit-dependency in DA neuron degeneration. Our approach will use a combination of non-biased genomic techniques and candidate-based screening, in addition to the powerful Drosophila genetic toolbox. Furthermore, to test this hypothesis beyond the Drosophila model, we will establish new mouse models of PD that exhibit progressive DA neuron degeneration. Outcome of this research will likely revolutionize the understanding of PD pathogenesis and open an avenue toward the discovery of effective therapy strategies against PD.
Summary
Parkinson’s disease (PD) is the second most common neurodegenerative disorder primarily caused by the progressive loss of dopaminergic (DA) neurons in the substantia nigra (SN). Despite the advances in gene discovery associated with PD, the knowledge of the PD pathogenesis is largely limited to the involvement of these genes in the generic cell death pathways, and why degeneration is specific to DA neurons and why the degeneration is progressive remain enigmatic. Broad goal of our work is therefore to elucidate the mechanisms underlying specific and progressive DA neuron degeneration in PD. Our new Drosophila model of PD ⎯Fer2 gene loss-of-function mutation⎯ is unusually well suited to address these questions. Fer2 mutants exhibit specific and progressive death of brain DA neurons as well as severe locomotor defects and short life span. Strikingly, the death of DA neuron is initiated in a small cluster of Fer2-expressing DA neurons and subsequently propagates to Fer2-negative DA neurons. We therefore propose a novel two-step model of the neurodegeneration in PD: primary cell death occurs in a specific subset of dopamindegic neurons that are genetically defined, and subsequently the failure of the neuronal connectivity triggers and propagates secondary cell death to remaining DA neurons. In this research, we will test this hypothesis and investigate the underlying molecular mechanisms. This will be the first study to examine circuit-dependency in DA neuron degeneration. Our approach will use a combination of non-biased genomic techniques and candidate-based screening, in addition to the powerful Drosophila genetic toolbox. Furthermore, to test this hypothesis beyond the Drosophila model, we will establish new mouse models of PD that exhibit progressive DA neuron degeneration. Outcome of this research will likely revolutionize the understanding of PD pathogenesis and open an avenue toward the discovery of effective therapy strategies against PD.
Max ERC Funding
1 518 960 €
Duration
Start date: 2013-06-01, End date: 2018-05-31
Project acronym 3D-nanoMorph
Project Label-free 3D morphological nanoscopy for studying sub-cellular dynamics in live cancer cells with high spatio-temporal resolution
Researcher (PI) Krishna AGARWAL
Host Institution (HI) UNIVERSITETET I TROMSOE - NORGES ARKTISKE UNIVERSITET
Call Details Starting Grant (StG), PE7, ERC-2018-STG
Summary Label-free optical nanoscopy, free from photobleaching and photochemical toxicity of fluorescence labels and yielding 3D morphological resolution of <50 nm, is the future of live cell imaging. 3D-nanoMorph breaks the diffraction barrier and shifts the paradigm in label-free nanoscopy, providing isotropic 3D resolution of <50 nm. To achieve this, 3D-nanoMorph performs non-linear inverse scattering for the first time in nanoscopy and decodes scattering between sub-cellular structures (organelles).
3D-nanoMorph innovatively devises complementary roles of light measurement system and computational nanoscopy algorithm. A novel illumination system and a novel light collection system together enable measurement of only the most relevant intensity component and create a fresh perspective about label-free measurements. A new computational nanoscopy approach employs non-linear inverse scattering. Harnessing non-linear inverse scattering for resolution enhancement in nanoscopy opens new possibilities in label-free 3D nanoscopy.
I will apply 3D-nanoMorph to study organelle degradation (autophagy) in live cancer cells over extended duration with high spatial and temporal resolution, presently limited by the lack of high-resolution label-free 3D morphological nanoscopy. Successful 3D mapping of nanoscale biological process of autophagy will open new avenues for cancer treatment and showcase 3D-nanoMorph for wider applications.
My cross-disciplinary expertise of 14 years spanning inverse problems, electromagnetism, optical microscopy, integrated optics and live cell nanoscopy paves path for successful implementation of 3D-nanoMorph.
Summary
Label-free optical nanoscopy, free from photobleaching and photochemical toxicity of fluorescence labels and yielding 3D morphological resolution of <50 nm, is the future of live cell imaging. 3D-nanoMorph breaks the diffraction barrier and shifts the paradigm in label-free nanoscopy, providing isotropic 3D resolution of <50 nm. To achieve this, 3D-nanoMorph performs non-linear inverse scattering for the first time in nanoscopy and decodes scattering between sub-cellular structures (organelles).
3D-nanoMorph innovatively devises complementary roles of light measurement system and computational nanoscopy algorithm. A novel illumination system and a novel light collection system together enable measurement of only the most relevant intensity component and create a fresh perspective about label-free measurements. A new computational nanoscopy approach employs non-linear inverse scattering. Harnessing non-linear inverse scattering for resolution enhancement in nanoscopy opens new possibilities in label-free 3D nanoscopy.
I will apply 3D-nanoMorph to study organelle degradation (autophagy) in live cancer cells over extended duration with high spatial and temporal resolution, presently limited by the lack of high-resolution label-free 3D morphological nanoscopy. Successful 3D mapping of nanoscale biological process of autophagy will open new avenues for cancer treatment and showcase 3D-nanoMorph for wider applications.
My cross-disciplinary expertise of 14 years spanning inverse problems, electromagnetism, optical microscopy, integrated optics and live cell nanoscopy paves path for successful implementation of 3D-nanoMorph.
Max ERC Funding
1 499 999 €
Duration
Start date: 2019-07-01, End date: 2024-06-30
Project acronym 4SUNS
Project 4-Colours/2-Junctions of III-V semiconductors on Si to use in electronics devices and solar cells
Researcher (PI) María Nair LOPEZ MARTINEZ
Host Institution (HI) UNIVERSIDAD AUTONOMA DE MADRID
Call Details Starting Grant (StG), PE7, ERC-2017-STG
Summary It was early predicted by M. Green and coeval colleagues that dividing the solar spectrum into narrow ranges of colours is the most efficient manner to convert solar energy into electrical power. Multijunction solar cells are the current solution to this challenge, which have reached over 30% conversion efficiencies by stacking 3 junctions together. However, the large fabrication costs and time hinders their use in everyday life. It has been shown that highly mismatched alloy (HMA) materials provide a powerful playground to achieve at least 3 different colour absorption regions that enable optimised energy conversion with just one junction. Combining HMA-based junctions with standard Silicon solar cells will rocket solar conversion efficiency at a reduced price. To turn this ambition into marketable devices, several efforts are still needed and few challenges must be overcome.
4SUNS is a revolutionary approach for the development of HMA materials on Silicon technology, which will bring highly efficient multi-colour solar cells costs below current multijunction devices. The project will develop the technology of HMA materials on Silicon via material synthesis opening a new technology for the future. The understanding and optimization of highly mismatched alloy materials-using GaAsNP alloy- will provide building blocks for the fabrication of laboratory-size 4-colours/2-junctions solar cells.
Using a molecular beam epitaxy system, 4SUNS will grow 4-colours/2-junctions structure as well as it will manufacture the final devices. Structural and optoelectronic characterizations will carry out to determine the quality of the materials and the solar cells characteristic to obtain a competitive product. These new solar cells are competitive products to breakthrough on the solar energy sector solar cells and allowing Europe to take leadership on high efficiency solar cells.
Summary
It was early predicted by M. Green and coeval colleagues that dividing the solar spectrum into narrow ranges of colours is the most efficient manner to convert solar energy into electrical power. Multijunction solar cells are the current solution to this challenge, which have reached over 30% conversion efficiencies by stacking 3 junctions together. However, the large fabrication costs and time hinders their use in everyday life. It has been shown that highly mismatched alloy (HMA) materials provide a powerful playground to achieve at least 3 different colour absorption regions that enable optimised energy conversion with just one junction. Combining HMA-based junctions with standard Silicon solar cells will rocket solar conversion efficiency at a reduced price. To turn this ambition into marketable devices, several efforts are still needed and few challenges must be overcome.
4SUNS is a revolutionary approach for the development of HMA materials on Silicon technology, which will bring highly efficient multi-colour solar cells costs below current multijunction devices. The project will develop the technology of HMA materials on Silicon via material synthesis opening a new technology for the future. The understanding and optimization of highly mismatched alloy materials-using GaAsNP alloy- will provide building blocks for the fabrication of laboratory-size 4-colours/2-junctions solar cells.
Using a molecular beam epitaxy system, 4SUNS will grow 4-colours/2-junctions structure as well as it will manufacture the final devices. Structural and optoelectronic characterizations will carry out to determine the quality of the materials and the solar cells characteristic to obtain a competitive product. These new solar cells are competitive products to breakthrough on the solar energy sector solar cells and allowing Europe to take leadership on high efficiency solar cells.
Max ERC Funding
1 499 719 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym 5D-NanoTrack
Project Five-Dimensional Localization Microscopy for Sub-Cellular Dynamics
Researcher (PI) Yoav SHECHTMAN
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Starting Grant (StG), PE7, ERC-2018-STG
Summary The sub-cellular processes that control the most critical aspects of life occur in three-dimensions (3D), and are intrinsically dynamic. While super-resolution microscopy has revolutionized cellular imaging in recent years, our current capability to observe the dynamics of life on the nanoscale is still extremely limited, due to inherent trade-offs between spatial, temporal and spectral resolution using existing approaches.
We propose to develop and demonstrate an optical microscopy methodology that would enable live sub-cellular observation in unprecedented detail. Making use of multicolor 3D point-spread-function (PSF) engineering, a technique I have recently developed, we will be able to simultaneously track multiple markers inside live cells, at high speed and in five-dimensions (3D, time, and color).
Multicolor 3D PSF engineering holds the potential of being a uniquely powerful method for 5D tracking. However, it is not yet applicable to live-cell imaging, due to significant bottlenecks in optical engineering and signal processing, which we plan to overcome in this project. Importantly, we will also demonstrate the efficacy of our method using a challenging biological application: real-time visualization of chromatin dynamics - the spatiotemporal organization of DNA. This is a highly suitable problem due to its fundamental importance, its role in a variety of cellular processes, and the lack of appropriate tools for studying it.
The project is divided into 3 aims:
1. Technology development: diffractive-element design for multicolor 3D PSFs.
2. System design: volumetric tracking of dense emitters.
3. Live-cell measurements: chromatin dynamics.
Looking ahead, here we create the imaging tools that pave the way towards the holy grail of chromatin visualization: dynamic observation of the 3D positions of the ~3 billion DNA base-pairs in a live human cell. Beyond that, our results will be applicable to numerous 3D micro/nanoscale tracking applications.
Summary
The sub-cellular processes that control the most critical aspects of life occur in three-dimensions (3D), and are intrinsically dynamic. While super-resolution microscopy has revolutionized cellular imaging in recent years, our current capability to observe the dynamics of life on the nanoscale is still extremely limited, due to inherent trade-offs between spatial, temporal and spectral resolution using existing approaches.
We propose to develop and demonstrate an optical microscopy methodology that would enable live sub-cellular observation in unprecedented detail. Making use of multicolor 3D point-spread-function (PSF) engineering, a technique I have recently developed, we will be able to simultaneously track multiple markers inside live cells, at high speed and in five-dimensions (3D, time, and color).
Multicolor 3D PSF engineering holds the potential of being a uniquely powerful method for 5D tracking. However, it is not yet applicable to live-cell imaging, due to significant bottlenecks in optical engineering and signal processing, which we plan to overcome in this project. Importantly, we will also demonstrate the efficacy of our method using a challenging biological application: real-time visualization of chromatin dynamics - the spatiotemporal organization of DNA. This is a highly suitable problem due to its fundamental importance, its role in a variety of cellular processes, and the lack of appropriate tools for studying it.
The project is divided into 3 aims:
1. Technology development: diffractive-element design for multicolor 3D PSFs.
2. System design: volumetric tracking of dense emitters.
3. Live-cell measurements: chromatin dynamics.
Looking ahead, here we create the imaging tools that pave the way towards the holy grail of chromatin visualization: dynamic observation of the 3D positions of the ~3 billion DNA base-pairs in a live human cell. Beyond that, our results will be applicable to numerous 3D micro/nanoscale tracking applications.
Max ERC Funding
1 802 500 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym a SMILE
Project analyse Soluble + Membrane complexes with Improved LILBID Experiments
Researcher (PI) Nina Morgner
Host Institution (HI) JOHANN WOLFGANG GOETHE-UNIVERSITATFRANKFURT AM MAIN
Call Details Starting Grant (StG), PE4, ERC-2013-StG
Summary Crucial processes within cells depend on specific non-covalent interactions which mediate the assembly of proteins and other biomolecules. Deriving structural information to understand the function of these complex systems is the primary goal of Structural Biology.
In this application, the recently developed LILBID method (Laser Induced Liquid Bead Ion Desorption) will be optimized for investigation of macromolecular complexes with a mass accuracy two orders of magnitude better than in 1st generation spectrometers.
Controlled disassembly of the multiprotein complexes in the mass spectrometric analysis while keeping the 3D structure intact, will allow for the determination of complex stoichiometry and connectivity of the constituting proteins. Methods for such controlled disassembly will be developed in two separate units of the proposed LILBID spectrometer, in a collision chamber and in a laser dissociation chamber, enabling gas phase dissociation of protein complexes and removal of excess water/buffer molecules. As a third unit, a chamber allowing determination of ion mobility (IM) will be integrated to determine collisional cross sections (CCS). From CCS, unique information regarding the spatial arrangement of proteins in complexes or subcomplexes will then be obtainable from LILBID.
The proposed design of the new spectrometer will offer fundamentally new possibilities for the investigation of non-covalent RNA, soluble and membrane protein complexes, as well as broadening the applicability of non-covalent MS towards supercomplexes.
Summary
Crucial processes within cells depend on specific non-covalent interactions which mediate the assembly of proteins and other biomolecules. Deriving structural information to understand the function of these complex systems is the primary goal of Structural Biology.
In this application, the recently developed LILBID method (Laser Induced Liquid Bead Ion Desorption) will be optimized for investigation of macromolecular complexes with a mass accuracy two orders of magnitude better than in 1st generation spectrometers.
Controlled disassembly of the multiprotein complexes in the mass spectrometric analysis while keeping the 3D structure intact, will allow for the determination of complex stoichiometry and connectivity of the constituting proteins. Methods for such controlled disassembly will be developed in two separate units of the proposed LILBID spectrometer, in a collision chamber and in a laser dissociation chamber, enabling gas phase dissociation of protein complexes and removal of excess water/buffer molecules. As a third unit, a chamber allowing determination of ion mobility (IM) will be integrated to determine collisional cross sections (CCS). From CCS, unique information regarding the spatial arrangement of proteins in complexes or subcomplexes will then be obtainable from LILBID.
The proposed design of the new spectrometer will offer fundamentally new possibilities for the investigation of non-covalent RNA, soluble and membrane protein complexes, as well as broadening the applicability of non-covalent MS towards supercomplexes.
Max ERC Funding
1 264 477 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym A-LIFE
Project The asymmetry of life: towards a unified view of the emergence of biological homochirality
Researcher (PI) Cornelia MEINERT
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE4, ERC-2018-STG
Summary What is responsible for the emergence of homochirality, the almost exclusive use of one enantiomer over its mirror image? And what led to the evolution of life’s homochiral biopolymers, DNA/RNA, proteins and lipids, where all the constituent monomers exhibit the same handedness?
Based on in-situ observations and laboratory studies, we propose that this handedness occurs when chiral biomolecules are synthesized asymmetrically through interaction with circularly polarized photons in interstellar space. The ultimate goal of this project will be to demonstrate how the diverse set of heterogeneous enantioenriched molecules, available from meteoritic impact, assembles into homochiral pre-biopolymers, by simulating the evolutionary stages on early Earth. My recent research has shown that the central chiral unit of RNA, ribose, forms readily under simulated comet conditions and this has provided valuable new insights into the accessibility of precursors of genetic material in interstellar environments. The significance of this project arises due to the current lack of experimental demonstration that amino acids, sugars and lipids can simultaneously and asymmetrically be synthesized by a universal physical selection process.
A synergistic methodology will be developed to build a unified theory for the origin of all chiral biological building blocks and their assembly into homochiral supramolecular entities. For the first time, advanced analyses of astrophysical-relevant samples, asymmetric photochemistry triggered by circularly polarized synchrotron and laser sources, and chiral amplification due to polymerization processes will be combined. Intermediates and autocatalytic reaction kinetics will be monitored and supported by quantum calculations to understand the underlying processes. A unified theory on the asymmetric formation and self-assembly of life’s biopolymers is groundbreaking and will impact the whole conceptual foundation of the origin of life.
Summary
What is responsible for the emergence of homochirality, the almost exclusive use of one enantiomer over its mirror image? And what led to the evolution of life’s homochiral biopolymers, DNA/RNA, proteins and lipids, where all the constituent monomers exhibit the same handedness?
Based on in-situ observations and laboratory studies, we propose that this handedness occurs when chiral biomolecules are synthesized asymmetrically through interaction with circularly polarized photons in interstellar space. The ultimate goal of this project will be to demonstrate how the diverse set of heterogeneous enantioenriched molecules, available from meteoritic impact, assembles into homochiral pre-biopolymers, by simulating the evolutionary stages on early Earth. My recent research has shown that the central chiral unit of RNA, ribose, forms readily under simulated comet conditions and this has provided valuable new insights into the accessibility of precursors of genetic material in interstellar environments. The significance of this project arises due to the current lack of experimental demonstration that amino acids, sugars and lipids can simultaneously and asymmetrically be synthesized by a universal physical selection process.
A synergistic methodology will be developed to build a unified theory for the origin of all chiral biological building blocks and their assembly into homochiral supramolecular entities. For the first time, advanced analyses of astrophysical-relevant samples, asymmetric photochemistry triggered by circularly polarized synchrotron and laser sources, and chiral amplification due to polymerization processes will be combined. Intermediates and autocatalytic reaction kinetics will be monitored and supported by quantum calculations to understand the underlying processes. A unified theory on the asymmetric formation and self-assembly of life’s biopolymers is groundbreaking and will impact the whole conceptual foundation of the origin of life.
Max ERC Funding
1 500 000 €
Duration
Start date: 2019-04-01, End date: 2024-03-31
Project acronym AAATSI
Project Advanced Antenna Architecture for THZ Sensing Instruments
Researcher (PI) Andrea Neto
Host Institution (HI) TECHNISCHE UNIVERSITEIT DELFT
Call Details Starting Grant (StG), PE7, ERC-2011-StG_20101014
Summary The Tera-Hertz portion of the spectrum presents unique potentials for advanced applications. Currently the THz spectrum is revealing the mechanisms at the origin of our universe and provides the means to monitor the health of our planet via satellite based sensing of critical gases. Potentially time domain sensing of the THz spectrum will be the ideal tool for a vast variety of medical and security applications.
Presently, systems in the THz regime are extremely expensive and consequently the THz spectrum is still the domain of only niche (expensive) scientific applications. The main problems are the lack of power and sensitivity. The wide unused THz spectral bandwidth is, herself, the only widely available resource that in the future can compensate for these problems. But, so far, when scientists try to really use the bandwidth, they run into an insurmountable physical limit: antenna dispersion. Antenna dispersion modifies the signal’s spectrum in a wavelength dependent manner in all types of radiation, but is particularly deleterious to THz signals because the spectrum is too wide and with foreseeable technology it cannot be digitized.
The goal of this proposal is to introduce break-through antenna technology that will eliminate the dispersion bottle neck and revolutionize Time Domain sensing and Spectroscopic Space Science. Achieving these goals the project will pole vault THz imaging technology into the 21-th century and develop critically important enabling technologies which will satisfy the electrical engineering needs of the next 30 years and in the long run will enable multi Tera-bit wireless communications.
In order to achieve these goals, I will first build upon two major breakthrough radiation mechanisms that I pioneered: Leaky Lenses and Connected Arrays. Eventually, ultra wide band imaging arrays constituted by thousands of components will be designed on the bases of the new theoretical findings and demonstrated.
Summary
The Tera-Hertz portion of the spectrum presents unique potentials for advanced applications. Currently the THz spectrum is revealing the mechanisms at the origin of our universe and provides the means to monitor the health of our planet via satellite based sensing of critical gases. Potentially time domain sensing of the THz spectrum will be the ideal tool for a vast variety of medical and security applications.
Presently, systems in the THz regime are extremely expensive and consequently the THz spectrum is still the domain of only niche (expensive) scientific applications. The main problems are the lack of power and sensitivity. The wide unused THz spectral bandwidth is, herself, the only widely available resource that in the future can compensate for these problems. But, so far, when scientists try to really use the bandwidth, they run into an insurmountable physical limit: antenna dispersion. Antenna dispersion modifies the signal’s spectrum in a wavelength dependent manner in all types of radiation, but is particularly deleterious to THz signals because the spectrum is too wide and with foreseeable technology it cannot be digitized.
The goal of this proposal is to introduce break-through antenna technology that will eliminate the dispersion bottle neck and revolutionize Time Domain sensing and Spectroscopic Space Science. Achieving these goals the project will pole vault THz imaging technology into the 21-th century and develop critically important enabling technologies which will satisfy the electrical engineering needs of the next 30 years and in the long run will enable multi Tera-bit wireless communications.
In order to achieve these goals, I will first build upon two major breakthrough radiation mechanisms that I pioneered: Leaky Lenses and Connected Arrays. Eventually, ultra wide band imaging arrays constituted by thousands of components will be designed on the bases of the new theoretical findings and demonstrated.
Max ERC Funding
1 499 487 €
Duration
Start date: 2011-11-01, End date: 2017-10-31
Project acronym ABATSYNAPSE
Project Evolution of Alzheimer’s Disease: From dynamics of single synapses to memory loss
Researcher (PI) Inna Slutsky
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Starting Grant (StG), LS5, ERC-2011-StG_20101109
Summary A persistent challenge in unravelling mechanisms that regulate memory function is how to bridge the gap between inter-molecular dynamics of single proteins, activity of individual synapses and emerging properties of neuronal circuits. The prototype condition of disintegrating neuronal circuits is Alzheimer’s Disease (AD). Since the early time of Alois Alzheimer at the turn of the 20th century, scientists have been searching for a molecular entity that is in the roots of the cognitive deficits. Although diverse lines of evidence suggest that the amyloid-beta peptide (Abeta) plays a central role in synaptic dysfunctions of AD, several key questions remain unresolved. First, endogenous Abeta peptides are secreted by neurons throughout life, but their physiological functions are largely unknown. Second, experience-dependent physiological mechanisms that initiate the changes in Abeta composition in sporadic, the most frequent form of AD, are unidentified. And finally, molecular mechanisms that trigger Abeta-induced synaptic failure and memory decline remain elusive.
To target these questions, I propose to develop an integrative approach to correlate structure and function at the level of single synapses in hippocampal circuits. State-of-the-art techniques will enable the simultaneous real-time visualization of inter-molecular dynamics within signalling complexes and functional synaptic modifications. Utilizing FRET spectroscopy, high-resolution optical imaging, electrophysiology, molecular biology and biochemistry we will determine the casual relationship between ongoing neuronal activity, temporo-spatial dynamics and molecular composition of Abeta, structural rearrangements within the Abeta signalling complexes and plasticity of single synapses and whole networks. The proposed research will elucidate fundamental principles of neuronal circuits function and identify critical steps that initiate primary synaptic dysfunctions at the very early stages of sporadic AD.
Summary
A persistent challenge in unravelling mechanisms that regulate memory function is how to bridge the gap between inter-molecular dynamics of single proteins, activity of individual synapses and emerging properties of neuronal circuits. The prototype condition of disintegrating neuronal circuits is Alzheimer’s Disease (AD). Since the early time of Alois Alzheimer at the turn of the 20th century, scientists have been searching for a molecular entity that is in the roots of the cognitive deficits. Although diverse lines of evidence suggest that the amyloid-beta peptide (Abeta) plays a central role in synaptic dysfunctions of AD, several key questions remain unresolved. First, endogenous Abeta peptides are secreted by neurons throughout life, but their physiological functions are largely unknown. Second, experience-dependent physiological mechanisms that initiate the changes in Abeta composition in sporadic, the most frequent form of AD, are unidentified. And finally, molecular mechanisms that trigger Abeta-induced synaptic failure and memory decline remain elusive.
To target these questions, I propose to develop an integrative approach to correlate structure and function at the level of single synapses in hippocampal circuits. State-of-the-art techniques will enable the simultaneous real-time visualization of inter-molecular dynamics within signalling complexes and functional synaptic modifications. Utilizing FRET spectroscopy, high-resolution optical imaging, electrophysiology, molecular biology and biochemistry we will determine the casual relationship between ongoing neuronal activity, temporo-spatial dynamics and molecular composition of Abeta, structural rearrangements within the Abeta signalling complexes and plasticity of single synapses and whole networks. The proposed research will elucidate fundamental principles of neuronal circuits function and identify critical steps that initiate primary synaptic dysfunctions at the very early stages of sporadic AD.
Max ERC Funding
2 000 000 €
Duration
Start date: 2011-12-01, End date: 2017-09-30
Project acronym ABIOS
Project ABIOtic Synthesis of RNA: an investigation on how life started before biology existed
Researcher (PI) Guillaume STIRNEMANN
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE4, ERC-2017-STG
Summary The emergence of life is one of the most fascinating and yet largely unsolved questions in the natural sciences, and thus a significant challenge for scientists from many disciplines. There is growing evidence that ribonucleic acid (RNA) polymers, which are capable of genetic information storage and self-catalysis, were involved in the early forms of life. But despite recent progress, RNA synthesis without biological machineries is very challenging. The current project aims at understanding how to synthesize RNA in abiotic conditions. I will solve problems associated with three critical aspects of RNA formation that I will rationalize at a molecular level: (i) accumulation of precursors, (ii) formation of a chemical bond between RNA monomers, and (iii) tolerance for alternative backbone sugars or linkages. Because I will study problems ranging from the formation of chemical bonds up to the stability of large biopolymers, I propose an original computational multi-scale approach combining techniques that range from quantum calculations to large-scale all-atom simulations, employed together with efficient enhanced-sampling algorithms, forcefield improvement, cutting-edge analysis methods and model development.
My objectives are the following:
1 • To explain why the poorly-understood thermally-driven process of thermophoresis can contribute to the accumulation of dilute precursors.
2 • To understand why linking RNA monomers with phosphoester bonds is so difficult, to understand the molecular mechanism of possible catalysts and to suggest key improvements.
3 • To rationalize the molecular basis for RNA tolerance for alternative backbone sugars or linkages that have probably been incorporated in abiotic conditions.
This unique in-silico laboratory setup should significantly impact our comprehension of life’s origin by overcoming major obstacles to RNA abiotic formation, and in addition will reveal significant orthogonal outcomes for (bio)technological applications.
Summary
The emergence of life is one of the most fascinating and yet largely unsolved questions in the natural sciences, and thus a significant challenge for scientists from many disciplines. There is growing evidence that ribonucleic acid (RNA) polymers, which are capable of genetic information storage and self-catalysis, were involved in the early forms of life. But despite recent progress, RNA synthesis without biological machineries is very challenging. The current project aims at understanding how to synthesize RNA in abiotic conditions. I will solve problems associated with three critical aspects of RNA formation that I will rationalize at a molecular level: (i) accumulation of precursors, (ii) formation of a chemical bond between RNA monomers, and (iii) tolerance for alternative backbone sugars or linkages. Because I will study problems ranging from the formation of chemical bonds up to the stability of large biopolymers, I propose an original computational multi-scale approach combining techniques that range from quantum calculations to large-scale all-atom simulations, employed together with efficient enhanced-sampling algorithms, forcefield improvement, cutting-edge analysis methods and model development.
My objectives are the following:
1 • To explain why the poorly-understood thermally-driven process of thermophoresis can contribute to the accumulation of dilute precursors.
2 • To understand why linking RNA monomers with phosphoester bonds is so difficult, to understand the molecular mechanism of possible catalysts and to suggest key improvements.
3 • To rationalize the molecular basis for RNA tolerance for alternative backbone sugars or linkages that have probably been incorporated in abiotic conditions.
This unique in-silico laboratory setup should significantly impact our comprehension of life’s origin by overcoming major obstacles to RNA abiotic formation, and in addition will reveal significant orthogonal outcomes for (bio)technological applications.
Max ERC Funding
1 497 031 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym ACrossWire
Project A Cross-Correlated Approach to Engineering Nitride Nanowires
Researcher (PI) Hannah Jane JOYCE
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Starting Grant (StG), PE7, ERC-2016-STG
Summary Nanowires based on group III–nitride semiconductors exhibit outstanding potential for emerging applications in energy-efficient lighting, optoelectronics and solar energy harvesting. Nitride nanowires, tailored at the nanoscale, should overcome many of the challenges facing conventional planar nitride materials, and also add extraordinary new functionality to these materials. However, progress towards III–nitride nanowire devices has been hampered by the challenges in quantifying nanowire electrical properties using conventional contact-based measurements. Without reliable electrical transport data, it is extremely difficult to optimise nanowire growth and device design. This project aims to overcome this problem through an unconventional approach: advanced contact-free electrical measurements. Contact-free measurements, growth studies, and device studies will be cross-correlated to provide unprecedented insight into the growth mechanisms that govern nanowire electronic properties and ultimately dictate device performance. A key contact-free technique at the heart of this proposal is ultrafast terahertz conductivity spectroscopy: an advanced technique ideal for probing nanowire electrical properties. We will develop new methods to enable the full suite of contact-free (including terahertz, photoluminescence and cathodoluminescence measurements) and contact-based measurements to be performed with high spatial resolution on the same nanowires. This will provide accurate, comprehensive and cross-correlated feedback to guide growth studies and expedite the targeted development of nanowires with specified functionality. We will apply this powerful approach to tailor nanowires as photoelectrodes for solar photoelectrochemical water splitting. This is an application for which nitride nanowires have outstanding, yet unfulfilled, potential. This project will thus harness the true potential of nitride nanowires and bring them to the forefront of 21st century technology.
Summary
Nanowires based on group III–nitride semiconductors exhibit outstanding potential for emerging applications in energy-efficient lighting, optoelectronics and solar energy harvesting. Nitride nanowires, tailored at the nanoscale, should overcome many of the challenges facing conventional planar nitride materials, and also add extraordinary new functionality to these materials. However, progress towards III–nitride nanowire devices has been hampered by the challenges in quantifying nanowire electrical properties using conventional contact-based measurements. Without reliable electrical transport data, it is extremely difficult to optimise nanowire growth and device design. This project aims to overcome this problem through an unconventional approach: advanced contact-free electrical measurements. Contact-free measurements, growth studies, and device studies will be cross-correlated to provide unprecedented insight into the growth mechanisms that govern nanowire electronic properties and ultimately dictate device performance. A key contact-free technique at the heart of this proposal is ultrafast terahertz conductivity spectroscopy: an advanced technique ideal for probing nanowire electrical properties. We will develop new methods to enable the full suite of contact-free (including terahertz, photoluminescence and cathodoluminescence measurements) and contact-based measurements to be performed with high spatial resolution on the same nanowires. This will provide accurate, comprehensive and cross-correlated feedback to guide growth studies and expedite the targeted development of nanowires with specified functionality. We will apply this powerful approach to tailor nanowires as photoelectrodes for solar photoelectrochemical water splitting. This is an application for which nitride nanowires have outstanding, yet unfulfilled, potential. This project will thus harness the true potential of nitride nanowires and bring them to the forefront of 21st century technology.
Max ERC Funding
1 499 195 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym ACTINIT
Project Brain-behavior forecasting: The causal determinants of spontaneous self-initiated action in the study of volition and the development of asynchronous brain-computer interfaces.
Researcher (PI) Aaron Schurger
Host Institution (HI) INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
Call Details Starting Grant (StG), LS5, ERC-2014-STG
Summary "How are actions initiated by the human brain when there is no external sensory cue or other immediate imperative? How do subtle ongoing interactions within the brain and between the brain, body, and sensory context influence the spontaneous initiation of action? How should we approach the problem of trying to identify the neural events that cause spontaneous voluntary action? Much is understood about how the brain decides between competing alternatives, leading to different behavioral responses. But far less is known about how the brain decides "when" to perform an action, or "whether" to perform an action in the first place, especially in a context where there is no sensory cue to act such as during foraging. This project seeks to open a new chapter in the study of spontaneous voluntary action building on a novel hypothesis recently introduced by the applicant (Schurger et al, PNAS 2012) concerning the role of ongoing neural activity in action initiation. We introduce brain-behavior forecasting, the converse of movement-locked averaging, as an approach to identifying the neurodynamic states that commit the motor system to performing an action "now", and will apply it in the context of information foraging. Spontaneous action remains a profound mystery in the brain basis of behavior, in humans and other animals, and is also central to the problem of asynchronous intention-detection in brain-computer interfaces (BCIs). A BCI must not only interpret what the user intends, but also must detect "when" the user intends to act, and not respond otherwise. This remains the biggest challenge in the development of high-performance BCIs, whether invasive or non-invasive. This project will take a systematic and collaborative approach to the study of spontaneous self-initiated action, incorporating computational modeling, neuroimaging, and machine learning techniques towards a deeper understanding of voluntary behavior and the robust asynchronous detection of decisions-to-act."
Summary
"How are actions initiated by the human brain when there is no external sensory cue or other immediate imperative? How do subtle ongoing interactions within the brain and between the brain, body, and sensory context influence the spontaneous initiation of action? How should we approach the problem of trying to identify the neural events that cause spontaneous voluntary action? Much is understood about how the brain decides between competing alternatives, leading to different behavioral responses. But far less is known about how the brain decides "when" to perform an action, or "whether" to perform an action in the first place, especially in a context where there is no sensory cue to act such as during foraging. This project seeks to open a new chapter in the study of spontaneous voluntary action building on a novel hypothesis recently introduced by the applicant (Schurger et al, PNAS 2012) concerning the role of ongoing neural activity in action initiation. We introduce brain-behavior forecasting, the converse of movement-locked averaging, as an approach to identifying the neurodynamic states that commit the motor system to performing an action "now", and will apply it in the context of information foraging. Spontaneous action remains a profound mystery in the brain basis of behavior, in humans and other animals, and is also central to the problem of asynchronous intention-detection in brain-computer interfaces (BCIs). A BCI must not only interpret what the user intends, but also must detect "when" the user intends to act, and not respond otherwise. This remains the biggest challenge in the development of high-performance BCIs, whether invasive or non-invasive. This project will take a systematic and collaborative approach to the study of spontaneous self-initiated action, incorporating computational modeling, neuroimaging, and machine learning techniques towards a deeper understanding of voluntary behavior and the robust asynchronous detection of decisions-to-act."
Max ERC Funding
1 338 130 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym ACTIVE_NEUROGENESIS
Project Activity-dependent signaling in radial glial cells and their neuronal progeny
Researcher (PI) Colin Akerman
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Starting Grant (StG), LS5, ERC-2009-StG
Summary A significant advance in the field of development has been the appreciation that radial glial cells are progenitors and give birth to neurons in the brain. In order to advance this exciting area of biology, we need approaches that combine structural and functional studies of these cells. This is reflected by the emerging realisation that dynamic interactions involving radial glia may be critical for the regulation of their proliferative behaviour. It has been observed that radial glia experience transient elevations in intracellular Ca2+ but the nature of these signals, and the information that they convey, is not known. The inability to observe these cells in vivo and over the course of their development has also meant that basic questions remain unexplored. For instance, how does the behaviour of a radial glial cell at one point in development, influence the final identity of its progeny? I propose to build a research team that will capitalise upon methods we have developed for observing individual radial glia and their progeny in an intact vertebrate nervous system. The visual system of Xenopus Laevis tadpoles offers non-invasive optical access to the brain, making time-lapse imaging of single cells feasible over minutes and weeks. The system s anatomy lends itself to techniques that measure the activity of the cells in a functional sensory network. We will use this to examine signalling mechanisms in radial glia and how a radial glial cell s experience influences its proliferative behaviour and the types of neuron it generates. We will also examine the interactions that continue between a radial glial cell and its daughter neurons. Finally, we will explore the relationships that exist within neuronal progeny derived from a single radial glial cell.
Summary
A significant advance in the field of development has been the appreciation that radial glial cells are progenitors and give birth to neurons in the brain. In order to advance this exciting area of biology, we need approaches that combine structural and functional studies of these cells. This is reflected by the emerging realisation that dynamic interactions involving radial glia may be critical for the regulation of their proliferative behaviour. It has been observed that radial glia experience transient elevations in intracellular Ca2+ but the nature of these signals, and the information that they convey, is not known. The inability to observe these cells in vivo and over the course of their development has also meant that basic questions remain unexplored. For instance, how does the behaviour of a radial glial cell at one point in development, influence the final identity of its progeny? I propose to build a research team that will capitalise upon methods we have developed for observing individual radial glia and their progeny in an intact vertebrate nervous system. The visual system of Xenopus Laevis tadpoles offers non-invasive optical access to the brain, making time-lapse imaging of single cells feasible over minutes and weeks. The system s anatomy lends itself to techniques that measure the activity of the cells in a functional sensory network. We will use this to examine signalling mechanisms in radial glia and how a radial glial cell s experience influences its proliferative behaviour and the types of neuron it generates. We will also examine the interactions that continue between a radial glial cell and its daughter neurons. Finally, we will explore the relationships that exist within neuronal progeny derived from a single radial glial cell.
Max ERC Funding
1 284 808 €
Duration
Start date: 2010-02-01, End date: 2015-01-31
Project acronym activeFly
Project Circuit mechanisms of self-movement estimation during walking
Researcher (PI) M Eugenia CHIAPPE
Host Institution (HI) FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD
Call Details Starting Grant (StG), LS5, ERC-2017-STG
Summary The brain evolves, develops, and operates in the context of animal movements. As a consequence, fundamental brain functions such as spatial perception and motor control critically depend on the precise knowledge of the ongoing body motion. An accurate internal estimate of self-movement is thought to emerge from sensorimotor integration; nonetheless, which circuits perform this internal estimation, and exactly how motor-sensory coordination is implemented within these circuits are basic questions that remain to be poorly understood. There is growing evidence suggesting that, during locomotion, motor-related and visual signals interact at early stages of visual processing. In mammals, however, it is not clear what the function of this interaction is. Recently, we have shown that a population of Drosophila optic-flow processing neurons —neurons that are sensitive to self-generated visual flow, receives convergent visual and walking-related signals to form a faithful representation of the fly’s walking movements. Leveraging from these results, and combining quantitative analysis of behavior with physiology, optogenetics, and modelling, we propose to investigate circuit mechanisms of self-movement estimation during walking. We will:1) use cell specific manipulations to identify what cells are necessary to generate the motor-related activity in the population of visual neurons, 2) record from the identified neurons and correlate their activity with specific locomotor parameters, and 3) perturb the activity of different cell-types within the identified circuits to test their role in the dynamics of the visual neurons, and on the fly’s walking behavior. These experiments will establish unprecedented causal relationships among neural activity, the formation of an internal representation, and locomotor control. The identified sensorimotor principles will establish a framework that can be tested in other scenarios or animal systems with implications both in health and disease.
Summary
The brain evolves, develops, and operates in the context of animal movements. As a consequence, fundamental brain functions such as spatial perception and motor control critically depend on the precise knowledge of the ongoing body motion. An accurate internal estimate of self-movement is thought to emerge from sensorimotor integration; nonetheless, which circuits perform this internal estimation, and exactly how motor-sensory coordination is implemented within these circuits are basic questions that remain to be poorly understood. There is growing evidence suggesting that, during locomotion, motor-related and visual signals interact at early stages of visual processing. In mammals, however, it is not clear what the function of this interaction is. Recently, we have shown that a population of Drosophila optic-flow processing neurons —neurons that are sensitive to self-generated visual flow, receives convergent visual and walking-related signals to form a faithful representation of the fly’s walking movements. Leveraging from these results, and combining quantitative analysis of behavior with physiology, optogenetics, and modelling, we propose to investigate circuit mechanisms of self-movement estimation during walking. We will:1) use cell specific manipulations to identify what cells are necessary to generate the motor-related activity in the population of visual neurons, 2) record from the identified neurons and correlate their activity with specific locomotor parameters, and 3) perturb the activity of different cell-types within the identified circuits to test their role in the dynamics of the visual neurons, and on the fly’s walking behavior. These experiments will establish unprecedented causal relationships among neural activity, the formation of an internal representation, and locomotor control. The identified sensorimotor principles will establish a framework that can be tested in other scenarios or animal systems with implications both in health and disease.
Max ERC Funding
1 500 000 €
Duration
Start date: 2017-11-01, End date: 2022-10-31
Project acronym ACTSELECTCONTEXT
Project Action Selection under Contextual Uncertainty: the Role of Learning and Effective Connectivity in the Human Brain
Researcher (PI) Sven Bestmann
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Starting Grant (StG), LS5, ERC-2010-StG_20091118
Summary In a changing world, one hallmark feature of human behaviour is the ability to learn about the statistics of the environment and use this prior information for action selection. Knowing about a forthcoming event allows for adjusting our actions pre-emptively, which can optimize survival.
This proposal studies how the human brain learns about the uncertainty in the environment, and how this leads to flexible and efficient action selection.
I hypothesise that the accumulation of evidence for future movements through learning reflects a fundamental organisational principle for action control. This explains widely distributed perceptual-, learning-, decision-, and movement-related signals in the human brain. However, little is known about the concerted interplay between brain regions in terms of effective connectivity which is required for flexible behaviour.
My proposal seeks to shed light on this unresolved issue. To this end, I will use i) a multi-disciplinary neuroimaging approach, together with model-based analyses and Bayesian model comparison, adapted to human reaching behaviour as occurring in daily life; and ii) two novel approaches for testing effective connectivity: dynamic causal modelling (DCM) and concurrent transcranial magnetic stimulation-functional magnetic resonance imaging.
My prediction is that action selection relies on effective connectivity changes, which are a function of the prior information that the brain has to learn about.
If true, this will provide novel insight into the human ability to select actions, based on learning about the uncertainty which is inherent in contextual information. This is relevant for understanding action selection during development and ageing, and for pathologies of action such as Parkinson s disease or stroke.
Summary
In a changing world, one hallmark feature of human behaviour is the ability to learn about the statistics of the environment and use this prior information for action selection. Knowing about a forthcoming event allows for adjusting our actions pre-emptively, which can optimize survival.
This proposal studies how the human brain learns about the uncertainty in the environment, and how this leads to flexible and efficient action selection.
I hypothesise that the accumulation of evidence for future movements through learning reflects a fundamental organisational principle for action control. This explains widely distributed perceptual-, learning-, decision-, and movement-related signals in the human brain. However, little is known about the concerted interplay between brain regions in terms of effective connectivity which is required for flexible behaviour.
My proposal seeks to shed light on this unresolved issue. To this end, I will use i) a multi-disciplinary neuroimaging approach, together with model-based analyses and Bayesian model comparison, adapted to human reaching behaviour as occurring in daily life; and ii) two novel approaches for testing effective connectivity: dynamic causal modelling (DCM) and concurrent transcranial magnetic stimulation-functional magnetic resonance imaging.
My prediction is that action selection relies on effective connectivity changes, which are a function of the prior information that the brain has to learn about.
If true, this will provide novel insight into the human ability to select actions, based on learning about the uncertainty which is inherent in contextual information. This is relevant for understanding action selection during development and ageing, and for pathologies of action such as Parkinson s disease or stroke.
Max ERC Funding
1 341 805 €
Duration
Start date: 2011-06-01, End date: 2016-05-31
Project acronym ADDICTIONCIRCUITS
Project Drug addiction: molecular changes in reward and aversion circuits
Researcher (PI) Nils David Engblom
Host Institution (HI) LINKOPINGS UNIVERSITET
Call Details Starting Grant (StG), LS5, ERC-2010-StG_20091118
Summary Our affective and motivational state is important for our decisions, actions and quality of life. Many pathological conditions affect this state. For example, addictive drugs are hyperactivating the reward system and trigger a strong motivation for continued drug intake, whereas many somatic and psychiatric diseases lead to an aversive state, characterized by loss of motivation. I will study specific neural circuits and mechanisms underlying reward and aversion, and how pathological signaling in these systems can trigger relapse in drug addiction.
Given the important role of the dopaminergic neurons in the midbrain for many aspects of reward signaling, I will study how synaptic plasticity in these cells, and in their target neurons in the striatum, contribute to relapse in drug seeking. I will also study the circuits underlying aversion. Little is known about these circuits, but my hypothesis is that an important component of aversion is signaled by a specific neuronal population in the brainstem parabrachial nucleus, projecting to the central amygdala. We will test this hypothesis and also determine how this aversion circuit contributes to the persistence of addiction and to relapse.
To dissect this complicated system, I am developing new genetic methods for manipulating and visualizing specific functional circuits in the mouse brain. My unique combination of state-of-the-art competence in transgenics and cutting edge knowledge in the anatomy and functional organization of the circuits behind reward and aversion should allow me to decode these systems, linking discrete circuits to behavior.
Collectively, the results will indicate how signals encoding aversion and reward are integrated to control addictive behavior and they may identify novel avenues for treatment of drug addiction as well as aversion-related symptoms affecting patients with chronic inflammatory conditions and cancer.
Summary
Our affective and motivational state is important for our decisions, actions and quality of life. Many pathological conditions affect this state. For example, addictive drugs are hyperactivating the reward system and trigger a strong motivation for continued drug intake, whereas many somatic and psychiatric diseases lead to an aversive state, characterized by loss of motivation. I will study specific neural circuits and mechanisms underlying reward and aversion, and how pathological signaling in these systems can trigger relapse in drug addiction.
Given the important role of the dopaminergic neurons in the midbrain for many aspects of reward signaling, I will study how synaptic plasticity in these cells, and in their target neurons in the striatum, contribute to relapse in drug seeking. I will also study the circuits underlying aversion. Little is known about these circuits, but my hypothesis is that an important component of aversion is signaled by a specific neuronal population in the brainstem parabrachial nucleus, projecting to the central amygdala. We will test this hypothesis and also determine how this aversion circuit contributes to the persistence of addiction and to relapse.
To dissect this complicated system, I am developing new genetic methods for manipulating and visualizing specific functional circuits in the mouse brain. My unique combination of state-of-the-art competence in transgenics and cutting edge knowledge in the anatomy and functional organization of the circuits behind reward and aversion should allow me to decode these systems, linking discrete circuits to behavior.
Collectively, the results will indicate how signals encoding aversion and reward are integrated to control addictive behavior and they may identify novel avenues for treatment of drug addiction as well as aversion-related symptoms affecting patients with chronic inflammatory conditions and cancer.
Max ERC Funding
1 500 000 €
Duration
Start date: 2010-10-01, End date: 2015-09-30
Project acronym ANGLE
Project Accelerated design and discovery of novel molecular materials via global lattice energy minimisation
Researcher (PI) Graeme Matthew Day
Host Institution (HI) UNIVERSITY OF SOUTHAMPTON
Call Details Starting Grant (StG), PE4, ERC-2012-StG_20111012
Summary The goal of crystal engineering is the design of functional crystalline materials in which the arrangement of basic structural building blocks imparts desired properties. The engineering of organic molecular crystals has, to date, relied largely on empirical rules governing the intermolecular association of functional groups in the solid state. However, many materials properties depend intricately on the complete crystal structure, i.e. the unit cell, space group and atomic positions, which cannot be predicted solely using such rules. Therefore, the development of computational methods for crystal structure prediction (CSP) from first principles has been a goal of computational chemistry that could significantly accelerate the design of new materials. It is only recently that the necessary advances in the modelling of intermolecular interactions and developments in algorithms for identifying all relevant crystal structures have come together to provide predictive methods that are becoming reliable and affordable on a timescale that could usefully complement an experimental research programme. The principle aim of the proposed work is to establish the use of state-of-the-art crystal structure prediction methods as a means of guiding the discovery and design of novel molecular materials.
This research proposal both continues the development of the computational methods for CSP and, by developing a computational framework for screening of potential molecules, develops the application of these methods for materials design. The areas on which we will focus are organic molecular semiconductors with high charge carrier mobilities and, building on our recently published results in Nature [1], the development of porous organic molecular materials. The project will both deliver novel materials, as well as improvements in the reliability of computational methods that will find widespread applications in materials chemistry.
[1] Nature 2011, 474, 367-371.
Summary
The goal of crystal engineering is the design of functional crystalline materials in which the arrangement of basic structural building blocks imparts desired properties. The engineering of organic molecular crystals has, to date, relied largely on empirical rules governing the intermolecular association of functional groups in the solid state. However, many materials properties depend intricately on the complete crystal structure, i.e. the unit cell, space group and atomic positions, which cannot be predicted solely using such rules. Therefore, the development of computational methods for crystal structure prediction (CSP) from first principles has been a goal of computational chemistry that could significantly accelerate the design of new materials. It is only recently that the necessary advances in the modelling of intermolecular interactions and developments in algorithms for identifying all relevant crystal structures have come together to provide predictive methods that are becoming reliable and affordable on a timescale that could usefully complement an experimental research programme. The principle aim of the proposed work is to establish the use of state-of-the-art crystal structure prediction methods as a means of guiding the discovery and design of novel molecular materials.
This research proposal both continues the development of the computational methods for CSP and, by developing a computational framework for screening of potential molecules, develops the application of these methods for materials design. The areas on which we will focus are organic molecular semiconductors with high charge carrier mobilities and, building on our recently published results in Nature [1], the development of porous organic molecular materials. The project will both deliver novel materials, as well as improvements in the reliability of computational methods that will find widespread applications in materials chemistry.
[1] Nature 2011, 474, 367-371.
Max ERC Funding
1 499 906 €
Duration
Start date: 2012-10-01, End date: 2017-09-30
Project acronym ANXIETY MECHANISMS
Project Neurocognitive mechanisms of human anxiety: identifying and
targeting disrupted function
Researcher (PI) Sonia Jane Bishop
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Starting Grant (StG), LS5, ERC-2010-StG_20091118
Summary Within a 12 month period, 20% of adults will meet criteria for one or more clinical anxiety disorders (ADs). These disorders are hugely disruptive, placing an emotional burden on individuals and their families. While both cognitive behavioural therapy and pharmacological treatment are widely viewed as effective strategies for managing ADs, systematic review of the literature reveals that only 30–45% of patients demonstrate a marked response to treatment (anxiety levels being reduced into the nonaffected range). In addition, a significant proportion of initial responders relapse after treatment is discontinued. There is hence a real and marked need to improve upon current approaches to AD treatment.
One possible avenue for improving response rates is through optimizing initial treatment selection. Specifically, it is possible that certain individuals might respond better to cognitive interventions while others might respond better to pharmacological treatment. Recently it has been suggested that there may be two or more distinct biological pathways disrupted in anxiety. If this is the case, then specification of these pathways may be an important step in predicting which individuals are likely to respond to which treatment. Few studies have focused upon this issue and, in particular, upon identifying neural markers that might predict response to cognitive (as opposed to pharmacological) intervention. The proposed research aims to address this. Specifically, it tests the hypothesis that there are at least two mechanisms disrupted in ADs, one entailing amygdala hyper-responsivity to cues that signal threat, the other impoverished recruitment of frontal regions that support cognitive and emotional regulation.
Two series of functional magnetic resonance imaging experiments will be conducted. These will investigate differences in amygdala and frontal function during (a) attentional processing and (b) fear conditioning. Initial clinical experiments will investigate whether Generalised Anxiety Disorder and Specific Phobia involve differing degrees of disruption to frontal versus amygdala function during these tasks. This work will feed into training studies, the goal being to characterize AD patient subgroups that benefit from cognitive training.
Summary
Within a 12 month period, 20% of adults will meet criteria for one or more clinical anxiety disorders (ADs). These disorders are hugely disruptive, placing an emotional burden on individuals and their families. While both cognitive behavioural therapy and pharmacological treatment are widely viewed as effective strategies for managing ADs, systematic review of the literature reveals that only 30–45% of patients demonstrate a marked response to treatment (anxiety levels being reduced into the nonaffected range). In addition, a significant proportion of initial responders relapse after treatment is discontinued. There is hence a real and marked need to improve upon current approaches to AD treatment.
One possible avenue for improving response rates is through optimizing initial treatment selection. Specifically, it is possible that certain individuals might respond better to cognitive interventions while others might respond better to pharmacological treatment. Recently it has been suggested that there may be two or more distinct biological pathways disrupted in anxiety. If this is the case, then specification of these pathways may be an important step in predicting which individuals are likely to respond to which treatment. Few studies have focused upon this issue and, in particular, upon identifying neural markers that might predict response to cognitive (as opposed to pharmacological) intervention. The proposed research aims to address this. Specifically, it tests the hypothesis that there are at least two mechanisms disrupted in ADs, one entailing amygdala hyper-responsivity to cues that signal threat, the other impoverished recruitment of frontal regions that support cognitive and emotional regulation.
Two series of functional magnetic resonance imaging experiments will be conducted. These will investigate differences in amygdala and frontal function during (a) attentional processing and (b) fear conditioning. Initial clinical experiments will investigate whether Generalised Anxiety Disorder and Specific Phobia involve differing degrees of disruption to frontal versus amygdala function during these tasks. This work will feed into training studies, the goal being to characterize AD patient subgroups that benefit from cognitive training.
Max ERC Funding
1 708 407 €
Duration
Start date: 2011-04-01, End date: 2016-08-31
Project acronym APES
Project Accuracy and precision for molecular solids
Researcher (PI) Jiri KLIMES
Host Institution (HI) UNIVERZITA KARLOVA
Call Details Starting Grant (StG), PE4, ERC-2017-STG
Summary The description of high pressure phases or polymorphism of molecular solids represents a significant scientific challenge both for experiment and theory. Theoretical methods that are currently used struggle to describe the tiny energy differences between different phases. It is the aim of this project to develop a scheme that would allow accurate and reliable predictions of the binding energies of molecular solids and of the energy differences between different phases.
To reach the required accuracy, we will combine the coupled cluster approach, widely used for reference quality calculations for molecules, with the random phase approximation (RPA) within periodic boundary conditions. As I have recently shown, RPA-based approaches are already some of the most accurate and practically usable methods for the description of extended systems. However, reliability is not only a question of accuracy. Reliable data need to be precise, that is, converged with the numerical parameters so that they are reproducible by other researchers.
Reproducibility is already a growing concern in the field. It is likely to become a considerable issue for highly accurate methods as the calculated energies have a stronger dependence on the simulation parameters such as the basis set size. Two main approaches will be explored to assure precision. First, we will develop the so-called asymptotic correction scheme to speed-up the convergence of the correlation energies with the basis set size. Second, we will directly compare the lattice energies from periodic and finite cluster based calculations. Both should yield identical answers, but if and how the agreement can be reached for general system is currently far from being understood for methods such as coupled cluster. Reliable data will allow us to answer some of the open questions regarding the stability of polymorphs and high pressure phases, such as the possibility of existence of high pressure ionic phases of water and ammonia.
Summary
The description of high pressure phases or polymorphism of molecular solids represents a significant scientific challenge both for experiment and theory. Theoretical methods that are currently used struggle to describe the tiny energy differences between different phases. It is the aim of this project to develop a scheme that would allow accurate and reliable predictions of the binding energies of molecular solids and of the energy differences between different phases.
To reach the required accuracy, we will combine the coupled cluster approach, widely used for reference quality calculations for molecules, with the random phase approximation (RPA) within periodic boundary conditions. As I have recently shown, RPA-based approaches are already some of the most accurate and practically usable methods for the description of extended systems. However, reliability is not only a question of accuracy. Reliable data need to be precise, that is, converged with the numerical parameters so that they are reproducible by other researchers.
Reproducibility is already a growing concern in the field. It is likely to become a considerable issue for highly accurate methods as the calculated energies have a stronger dependence on the simulation parameters such as the basis set size. Two main approaches will be explored to assure precision. First, we will develop the so-called asymptotic correction scheme to speed-up the convergence of the correlation energies with the basis set size. Second, we will directly compare the lattice energies from periodic and finite cluster based calculations. Both should yield identical answers, but if and how the agreement can be reached for general system is currently far from being understood for methods such as coupled cluster. Reliable data will allow us to answer some of the open questions regarding the stability of polymorphs and high pressure phases, such as the possibility of existence of high pressure ionic phases of water and ammonia.
Max ERC Funding
924 375 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym APROCS
Project Automated Linear Parameter-Varying Modeling and Control Synthesis for Nonlinear Complex Systems
Researcher (PI) Roland TOTH
Host Institution (HI) TECHNISCHE UNIVERSITEIT EINDHOVEN
Call Details Starting Grant (StG), PE7, ERC-2016-STG
Summary Linear Parameter-Varying (LPV) systems are flexible mathematical models capable of representing Nonlinear (NL)/Time-Varying (TV) dynamical behaviors of complex physical systems (e.g., wafer scanners, car engines, chemical reactors), often encountered in engineering, via a linear structure. The LPV framework provides computationally efficient and robust approaches to synthesize digital controllers that can ensure desired operation of such systems - making it attractive to (i) high-tech mechatronic, (ii) automotive and (iii) chemical-process applications. Such a framework is important to meet with the increasing operational demands of systems in these industrial sectors and to realize future technological targets. However, recent studies have shown that, to fully exploit the potential of the LPV framework, a number of limiting factors of the underlying theory ask a for serious innovation, as currently it is not understood how to (1) automate exact and low-complexity LPV modeling of real-world applications and how to refine uncertain aspects of these models efficiently by the help of measured data, (2) incorporate control objectives directly into modeling and to develop model reduction approaches for control, and (3) how to see modeling & control synthesis as a unified, closed-loop system synthesis approach directly oriented for the underlying NL/TV system. Furthermore, due to the increasingly cyber-physical nature of applications, (4) control synthesis is needed in a plug & play fashion, where if sub-systems are modified or exchanged, then the control design and the model of the whole system are only incrementally updated. This project aims to surmount Challenges (1)-(4) by establishing an innovative revolution of the LPV framework supported by a software suite and extensive empirical studies on real-world industrial applications; with a potential to ensure a leading role of technological innovation of the EU in the high-impact industrial sectors (i)-(iii).
Summary
Linear Parameter-Varying (LPV) systems are flexible mathematical models capable of representing Nonlinear (NL)/Time-Varying (TV) dynamical behaviors of complex physical systems (e.g., wafer scanners, car engines, chemical reactors), often encountered in engineering, via a linear structure. The LPV framework provides computationally efficient and robust approaches to synthesize digital controllers that can ensure desired operation of such systems - making it attractive to (i) high-tech mechatronic, (ii) automotive and (iii) chemical-process applications. Such a framework is important to meet with the increasing operational demands of systems in these industrial sectors and to realize future technological targets. However, recent studies have shown that, to fully exploit the potential of the LPV framework, a number of limiting factors of the underlying theory ask a for serious innovation, as currently it is not understood how to (1) automate exact and low-complexity LPV modeling of real-world applications and how to refine uncertain aspects of these models efficiently by the help of measured data, (2) incorporate control objectives directly into modeling and to develop model reduction approaches for control, and (3) how to see modeling & control synthesis as a unified, closed-loop system synthesis approach directly oriented for the underlying NL/TV system. Furthermore, due to the increasingly cyber-physical nature of applications, (4) control synthesis is needed in a plug & play fashion, where if sub-systems are modified or exchanged, then the control design and the model of the whole system are only incrementally updated. This project aims to surmount Challenges (1)-(4) by establishing an innovative revolution of the LPV framework supported by a software suite and extensive empirical studies on real-world industrial applications; with a potential to ensure a leading role of technological innovation of the EU in the high-impact industrial sectors (i)-(iii).
Max ERC Funding
1 493 561 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym AQUARAMAN
Project Pipet Based Scanning Probe Microscopy Tip-Enhanced Raman Spectroscopy: A Novel Approach for TERS in Liquids
Researcher (PI) Aleix Garcia Guell
Host Institution (HI) ECOLE POLYTECHNIQUE
Call Details Starting Grant (StG), PE4, ERC-2016-STG
Summary Tip-enhanced Raman spectroscopy (TERS) is often described as the most powerful tool for optical characterization of surfaces and their proximities. It combines the intrinsic spatial resolution of scanning probe techniques (AFM or STM) with the chemical information content of vibrational Raman spectroscopy. Capable to reveal surface heterogeneity at the nanoscale, TERS is currently playing a fundamental role in the understanding of interfacial physicochemical processes in key areas of science and technology such as chemistry, biology and material science.
Unfortunately, the undeniable potential of TERS as a label-free tool for nanoscale chemical and structural characterization is, nowadays, limited to air and vacuum environments, with it failing to operate in a reliable and systematic manner in liquid. The reasons are more technical than fundamental, as what is hindering the application of TERS in water is, among other issues, the low stability of the probes and their consistency. Fields of science and technology where the presence of water/electrolyte is unavoidable, such as biology and electrochemistry, remain unexplored with this powerful technique.
We propose a revolutionary approach for TERS in liquids founded on the employment of pipet-based scanning probe microscopy techniques (pb-SPM) as an alternative to AFM and STM. The use of recent but well established pb-SPM brings the opportunity to develop unprecedented pipet-based TERS probes (beyond the classic and limited metallized solid probes from AFM and STM), together with the implementation of ingenious and innovative measures to enhance tip stability, sensitivity and reliability, unattainable with the current techniques.
We will be in possession of a unique nano-spectroscopy platform capable of experiments in liquids, to follow dynamic processes in-situ, addressing fundamental questions and bringing insight into interfacial phenomena spanning from materials science, physics, chemistry and biology.
Summary
Tip-enhanced Raman spectroscopy (TERS) is often described as the most powerful tool for optical characterization of surfaces and their proximities. It combines the intrinsic spatial resolution of scanning probe techniques (AFM or STM) with the chemical information content of vibrational Raman spectroscopy. Capable to reveal surface heterogeneity at the nanoscale, TERS is currently playing a fundamental role in the understanding of interfacial physicochemical processes in key areas of science and technology such as chemistry, biology and material science.
Unfortunately, the undeniable potential of TERS as a label-free tool for nanoscale chemical and structural characterization is, nowadays, limited to air and vacuum environments, with it failing to operate in a reliable and systematic manner in liquid. The reasons are more technical than fundamental, as what is hindering the application of TERS in water is, among other issues, the low stability of the probes and their consistency. Fields of science and technology where the presence of water/electrolyte is unavoidable, such as biology and electrochemistry, remain unexplored with this powerful technique.
We propose a revolutionary approach for TERS in liquids founded on the employment of pipet-based scanning probe microscopy techniques (pb-SPM) as an alternative to AFM and STM. The use of recent but well established pb-SPM brings the opportunity to develop unprecedented pipet-based TERS probes (beyond the classic and limited metallized solid probes from AFM and STM), together with the implementation of ingenious and innovative measures to enhance tip stability, sensitivity and reliability, unattainable with the current techniques.
We will be in possession of a unique nano-spectroscopy platform capable of experiments in liquids, to follow dynamic processes in-situ, addressing fundamental questions and bringing insight into interfacial phenomena spanning from materials science, physics, chemistry and biology.
Max ERC Funding
1 528 442 €
Duration
Start date: 2017-07-01, End date: 2022-06-30
Project acronym aQUARiUM
Project QUAntum nanophotonics in Rolled-Up Metamaterials
Researcher (PI) Humeyra CAGLAYAN
Host Institution (HI) TAMPEREEN KORKEAKOULUSAATIO SR
Call Details Starting Grant (StG), PE7, ERC-2018-STG
Summary Novel sophisticated technologies that exploit the laws of quantum physics form a cornerstone for the future well-being, economic growth and security of Europe. Here photonic devices have gained a prominent position because the absorption, emission, propagation or storage of a photon is a process that can be harnessed at a fundamental level and render more practical ways to use light for such applications. However, the interaction of light with single quantum systems under ambient conditions is typically very weak and difficult to control. Furthermore, there are quantum phenomena occurring in matter at nanometer length scales that are currently not well understood. These deficiencies have a direct and severe impact on creating a bridge between quantum physics and photonic device technologies. aQUARiUM, precisely address the issue of controlling and enhancing the interaction between few photons and rolled-up nanostructures with ability to be deployed in practical applications.
With aQUARiUM, we will take epsilon (permittivity)-near-zero (ENZ) metamaterials into quantum nanophotonics. To this end, we will integrate quantum emitters with rolled-up waveguides, that act as ENZ metamaterial, to expand and redefine the range of light-matter interactions. We will explore the electromagnetic design freedom enabled by the extended modes of ENZ medium, which “stretches” the effective wavelength inside the structure. Specifically, aQUARiUM is built around the following two objectives: (i) Enhancing light-matter interactions with single emitters (Enhance) independent of emitter position. (ii) Enabling collective excitations in dense emitter ensembles (Collect) coherently connect emitters on nanophotonic devices to obtain coherent emission.
aQUARiUM aims to create novel light-sources and long-term entanglement generation and beyond. The envisioned outcome of aQUARiUM is a wholly new photonic platform applicable across a diverse range of areas.
Summary
Novel sophisticated technologies that exploit the laws of quantum physics form a cornerstone for the future well-being, economic growth and security of Europe. Here photonic devices have gained a prominent position because the absorption, emission, propagation or storage of a photon is a process that can be harnessed at a fundamental level and render more practical ways to use light for such applications. However, the interaction of light with single quantum systems under ambient conditions is typically very weak and difficult to control. Furthermore, there are quantum phenomena occurring in matter at nanometer length scales that are currently not well understood. These deficiencies have a direct and severe impact on creating a bridge between quantum physics and photonic device technologies. aQUARiUM, precisely address the issue of controlling and enhancing the interaction between few photons and rolled-up nanostructures with ability to be deployed in practical applications.
With aQUARiUM, we will take epsilon (permittivity)-near-zero (ENZ) metamaterials into quantum nanophotonics. To this end, we will integrate quantum emitters with rolled-up waveguides, that act as ENZ metamaterial, to expand and redefine the range of light-matter interactions. We will explore the electromagnetic design freedom enabled by the extended modes of ENZ medium, which “stretches” the effective wavelength inside the structure. Specifically, aQUARiUM is built around the following two objectives: (i) Enhancing light-matter interactions with single emitters (Enhance) independent of emitter position. (ii) Enabling collective excitations in dense emitter ensembles (Collect) coherently connect emitters on nanophotonic devices to obtain coherent emission.
aQUARiUM aims to create novel light-sources and long-term entanglement generation and beyond. The envisioned outcome of aQUARiUM is a wholly new photonic platform applicable across a diverse range of areas.
Max ERC Funding
1 499 431 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym AstroFunc
Project Molecular Studies of Astrocyte Function in Health and Disease
Researcher (PI) Matthew Guy Holt
Host Institution (HI) VIB
Call Details Starting Grant (StG), LS5, ERC-2011-StG_20101109
Summary Brain consists of two basic cell types – neurons and glia. However, the study of glia in brain function has traditionally been neglected in favor of their more “illustrious” counter-parts – neurons that are classed as the computational units of the brain. Glia have usually been classed as “brain glue” - a supportive matrix on which neurons grow and function. However, recent evidence suggests that glia are more than passive “glue” and actually modulate neuronal function. This has lead to the proposal of a “tripartite synapse”, which recognizes pre- and postsynaptic neuronal elements and glia as a unit.
However, what is still lacking is rudimentary information on how these cells actually function in situ. Here we propose taking a “bottom-up” approach, by identifying the molecules (and interactions) that control glial function in situ. This is complicated by the fact that glia show profound changes when placed into culture. To circumvent this, we will use recently developed cell sorting techniques, to rapidly isolate genetically marked glial cells from brain – which can then be analyzed using advanced biochemical and physiological techniques. The long-term aim is to identify proteins that can be “tagged” using transgenic technologies to allow protein function to be studied in real-time in vivo, using sophisticated imaging techniques. Given the number of proteins that may be identified we envisage developing new methods of generating transgenic animals that provide an attractive alternative to current “state-of-the art” technology.
The importance of studying glial function is given by the fact that every major brain pathology shows reactive gliosis. In the time it takes to read this abstract, 5 people in the EU will have suffered a stroke – not to mention those who suffer other forms of neurotrauma. Thus, understanding glial function is not only critical to understanding normal brain function, but also for relieving the burden of severe neurological injury and disease
Summary
Brain consists of two basic cell types – neurons and glia. However, the study of glia in brain function has traditionally been neglected in favor of their more “illustrious” counter-parts – neurons that are classed as the computational units of the brain. Glia have usually been classed as “brain glue” - a supportive matrix on which neurons grow and function. However, recent evidence suggests that glia are more than passive “glue” and actually modulate neuronal function. This has lead to the proposal of a “tripartite synapse”, which recognizes pre- and postsynaptic neuronal elements and glia as a unit.
However, what is still lacking is rudimentary information on how these cells actually function in situ. Here we propose taking a “bottom-up” approach, by identifying the molecules (and interactions) that control glial function in situ. This is complicated by the fact that glia show profound changes when placed into culture. To circumvent this, we will use recently developed cell sorting techniques, to rapidly isolate genetically marked glial cells from brain – which can then be analyzed using advanced biochemical and physiological techniques. The long-term aim is to identify proteins that can be “tagged” using transgenic technologies to allow protein function to be studied in real-time in vivo, using sophisticated imaging techniques. Given the number of proteins that may be identified we envisage developing new methods of generating transgenic animals that provide an attractive alternative to current “state-of-the art” technology.
The importance of studying glial function is given by the fact that every major brain pathology shows reactive gliosis. In the time it takes to read this abstract, 5 people in the EU will have suffered a stroke – not to mention those who suffer other forms of neurotrauma. Thus, understanding glial function is not only critical to understanding normal brain function, but also for relieving the burden of severe neurological injury and disease
Max ERC Funding
1 490 168 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym AstroNeuroCrosstalk
Project Astrocyte-Neuronal Crosstalk in Obesity and Diabetes
Researcher (PI) Cristina GARCÍA CÁCERES
Host Institution (HI) HELMHOLTZ ZENTRUM MUENCHEN DEUTSCHES FORSCHUNGSZENTRUM FUER GESUNDHEIT UND UMWELT GMBH
Call Details Starting Grant (StG), LS5, ERC-2017-STG
Summary Despite considerable efforts aimed at prevention and treatment, the prevalence of obesity and type 2 diabetes has increased at an alarming rate worldwide over recent decades. Given the urgent need to develop safe and efficient anti-obesity drugs, the scientific community has to intensify efforts to better understand the mechanisms involved in the pathogenesis of obesity. Based on human genome-wide association studies and targeted mouse mutagenesis models, it has recently emerged that the brain controls most aspects of systemic metabolism and that obesity may be a brain disease. I have recently shown that like neurons, astrocytes also respond to circulating nutrients, and they cooperate with neurons to efficiently regulate energy metabolism. So far, the study of brain circuits controlling energy balance has focused on neurons, ignoring the presence and role of astrocytes. Importantly, our studies were the first to describe that exposure to a high-fat, highsugar (HFHS) diet triggers hypothalamic astrogliosis prior to significant body weight gain, indicating a potentially important role in promoting obesity. Overall, my recent findings suggest a novel model in which astrocytes are actively involved in the central nervous system (CNS) control of metabolism, likely including active crosstalk between astrocytes and neurons. To test this hypothetical model, I propose to develop a functional understanding of astroglia-neuronal communication in the CNS control of metabolism focusing on: 1) dissecting the ability of astrocytes to release gliotransmitters to neurons, 2) assessing how astrocytes respond to neuronal activity, and 3) determining if HFHS-induced astrogliosis interrupts this crosstalk and contributes to the development of obesity and type 2 diabetes. These studies aim to uncover the molecular underpinnings of astrocyte-neuron inputs regulating metabolism in health and disease so as to
inspire and enable novel therapeutic strategies to fight diabetes and obesity.
Summary
Despite considerable efforts aimed at prevention and treatment, the prevalence of obesity and type 2 diabetes has increased at an alarming rate worldwide over recent decades. Given the urgent need to develop safe and efficient anti-obesity drugs, the scientific community has to intensify efforts to better understand the mechanisms involved in the pathogenesis of obesity. Based on human genome-wide association studies and targeted mouse mutagenesis models, it has recently emerged that the brain controls most aspects of systemic metabolism and that obesity may be a brain disease. I have recently shown that like neurons, astrocytes also respond to circulating nutrients, and they cooperate with neurons to efficiently regulate energy metabolism. So far, the study of brain circuits controlling energy balance has focused on neurons, ignoring the presence and role of astrocytes. Importantly, our studies were the first to describe that exposure to a high-fat, highsugar (HFHS) diet triggers hypothalamic astrogliosis prior to significant body weight gain, indicating a potentially important role in promoting obesity. Overall, my recent findings suggest a novel model in which astrocytes are actively involved in the central nervous system (CNS) control of metabolism, likely including active crosstalk between astrocytes and neurons. To test this hypothetical model, I propose to develop a functional understanding of astroglia-neuronal communication in the CNS control of metabolism focusing on: 1) dissecting the ability of astrocytes to release gliotransmitters to neurons, 2) assessing how astrocytes respond to neuronal activity, and 3) determining if HFHS-induced astrogliosis interrupts this crosstalk and contributes to the development of obesity and type 2 diabetes. These studies aim to uncover the molecular underpinnings of astrocyte-neuron inputs regulating metabolism in health and disease so as to
inspire and enable novel therapeutic strategies to fight diabetes and obesity.
Max ERC Funding
1 499 938 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym ASTROROT
Project Unraveling interstellar chemistry with broadband microwave spectroscopy and next-generation telescope arrays
Researcher (PI) Melanie Schnell-Küpper
Host Institution (HI) STIFTUNG DEUTSCHES ELEKTRONEN-SYNCHROTRON DESY
Call Details Starting Grant (StG), PE4, ERC-2014-STG
Summary The goal of the research program, ASTROROT, is to significantly advance the knowledge of astrochemistry by exploring its molecular complexity and by discovering new molecule classes and key chemical processes in space. So far, mostly physical reasons were investigated for the observed variations in molecular abundances. We here propose to study the influence of chemistry on the molecular composition of the universe by combining unprecedentedly high-quality laboratory spectroscopy and pioneering telescope observations. Array telescopes provide new observations of rotational molecular emission, leading to an urgent need for microwave spectroscopic data of exotic molecules. We will use newly developed, unique broadband microwave spectrometers with the cold conditions of a molecular jet and the higher temperatures of a waveguide to mimic different interstellar conditions. Their key advantages are accurate transition intensities, tremendously reduced measurement times, and unique mixture compatibility.
Our laboratory experiments will motivate and guide astronomic observations, and enable their interpretation. The expected results are
• the exploration of molecular complexity by discovering new classes of molecules in space,
• the detection of isotopologues that provide information about the stage of chemical evolution,
• the generation of abundance maps of highly excited molecules to learn about their environment,
• the identification of key intermediates in astrochemical reactions.
The results will significantly foster and likely revolutionize our understanding of astrochemistry. The proposed research will go far beyond the state-of-the-art: We will use cutting-edge techniques both in the laboratory and at the telescope to greatly improve and speed the process of identifying molecular fingerprints. These techniques now enable studies at this important frontier of physics and chemistry that previously would have been prohibitively time-consuming or even impossible.
Summary
The goal of the research program, ASTROROT, is to significantly advance the knowledge of astrochemistry by exploring its molecular complexity and by discovering new molecule classes and key chemical processes in space. So far, mostly physical reasons were investigated for the observed variations in molecular abundances. We here propose to study the influence of chemistry on the molecular composition of the universe by combining unprecedentedly high-quality laboratory spectroscopy and pioneering telescope observations. Array telescopes provide new observations of rotational molecular emission, leading to an urgent need for microwave spectroscopic data of exotic molecules. We will use newly developed, unique broadband microwave spectrometers with the cold conditions of a molecular jet and the higher temperatures of a waveguide to mimic different interstellar conditions. Their key advantages are accurate transition intensities, tremendously reduced measurement times, and unique mixture compatibility.
Our laboratory experiments will motivate and guide astronomic observations, and enable their interpretation. The expected results are
• the exploration of molecular complexity by discovering new classes of molecules in space,
• the detection of isotopologues that provide information about the stage of chemical evolution,
• the generation of abundance maps of highly excited molecules to learn about their environment,
• the identification of key intermediates in astrochemical reactions.
The results will significantly foster and likely revolutionize our understanding of astrochemistry. The proposed research will go far beyond the state-of-the-art: We will use cutting-edge techniques both in the laboratory and at the telescope to greatly improve and speed the process of identifying molecular fingerprints. These techniques now enable studies at this important frontier of physics and chemistry that previously would have been prohibitively time-consuming or even impossible.
Max ERC Funding
1 499 904 €
Duration
Start date: 2015-05-01, End date: 2020-04-30
Project acronym ATOMICAR
Project ATOMic Insight Cavity Array Reactor
Researcher (PI) Peter Christian Kjærgaard VESBORG
Host Institution (HI) DANMARKS TEKNISKE UNIVERSITET
Call Details Starting Grant (StG), PE4, ERC-2017-STG
Summary The goal of ATOMICAR is to achieve the ultimate sensitivity limit in heterogeneous catalysis:
Quantitative measurement of chemical turnover on a single catalytic nanoparticle.
Most heterogeneous catalysis occurs on metal nanoparticle in the size range of 3 nm - 10 nm. Model studies have established that there is often a strong coupling between nanoparticle size & shape - and catalytic activity. The strong structure-activity coupling renders it probable that “super-active” nanoparticles exist. However, since there is no way to measure catalytic activity of less than ca 1 million nanoparticles at a time, any super-activity will always be hidden by “ensemble smearing” since one million nanoparticles of exactly identical size and shape cannot be made. The state-of-the-art in catalysis benchmarking is microfabricated flow reactors with mass-spectrometric detection, but the sensitivity of this approach cannot be incrementally improved by six orders of magnitude. This calls for a new measurement paradigm where the activity of a single nanoparticle can be benchmarked – the ultimate limit for catalytic measurement.
A tiny batch reactor is the solution, but there are three key problems: How to seal it; how to track catalytic turnover inside it; and how to see the nanoparticle inside it? Graphene solves all three problems: A microfabricated cavity with a thin SixNy bottom window, a single catalytic nanoparticle inside, and a graphene seal forms a gas tight batch reactor since graphene has zero gas permeability. Catalysis is then tracked as an internal pressure change via the stress & deflection of the graphene seal. Crucially, the electron-transparency of graphene and SixNy enables subsequent transmission electron microscope access with atomic resolution so that active nanoparticles can be studied in full detail.
ATOMICAR will re-define the experimental limits of catalyst benchmarking and lift the field of basic catalysis research into the single-nanoparticle age.
Summary
The goal of ATOMICAR is to achieve the ultimate sensitivity limit in heterogeneous catalysis:
Quantitative measurement of chemical turnover on a single catalytic nanoparticle.
Most heterogeneous catalysis occurs on metal nanoparticle in the size range of 3 nm - 10 nm. Model studies have established that there is often a strong coupling between nanoparticle size & shape - and catalytic activity. The strong structure-activity coupling renders it probable that “super-active” nanoparticles exist. However, since there is no way to measure catalytic activity of less than ca 1 million nanoparticles at a time, any super-activity will always be hidden by “ensemble smearing” since one million nanoparticles of exactly identical size and shape cannot be made. The state-of-the-art in catalysis benchmarking is microfabricated flow reactors with mass-spectrometric detection, but the sensitivity of this approach cannot be incrementally improved by six orders of magnitude. This calls for a new measurement paradigm where the activity of a single nanoparticle can be benchmarked – the ultimate limit for catalytic measurement.
A tiny batch reactor is the solution, but there are three key problems: How to seal it; how to track catalytic turnover inside it; and how to see the nanoparticle inside it? Graphene solves all three problems: A microfabricated cavity with a thin SixNy bottom window, a single catalytic nanoparticle inside, and a graphene seal forms a gas tight batch reactor since graphene has zero gas permeability. Catalysis is then tracked as an internal pressure change via the stress & deflection of the graphene seal. Crucially, the electron-transparency of graphene and SixNy enables subsequent transmission electron microscope access with atomic resolution so that active nanoparticles can be studied in full detail.
ATOMICAR will re-define the experimental limits of catalyst benchmarking and lift the field of basic catalysis research into the single-nanoparticle age.
Max ERC Funding
1 496 000 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym AttentionCircuits
Project Modulation of neocortical microcircuits for attention
Researcher (PI) Johannes Jakob Letzkus
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), LS5, ERC-2013-StG
Summary At every moment in time, the brain receives a vast amount of sensory information about the environment. This makes attention, the process by which we select currently relevant stimuli for processing and ignore irrelevant input, a fundamentally important brain function. Studies in primates have yielded a detailed description of how attention to a stimulus modifies the responses of neuronal ensembles in visual cortex, but how this modulation is produced mechanistically in the circuit is not well understood. Neuronal circuits comprise a large variety of neuron types, and to gain mechanistic insights, and to treat specific diseases of the nervous system, it is crucial to characterize the contribution of different identified cell types to information processing. Inhibition supplied by a small yet highly diverse set of interneurons controls all aspects of cortical function, and the central hypothesis of this proposal is that differential modulation of genetically-defined interneuron types is a key mechanism of attention in visual cortex. To identify the interneuron types underlying attentional modulation and to investigate how this, in turn, affects computations in the circuit we will use an innovative multidisciplinary approach combining genetic targeting in mice with cutting-edge in vivo 2-photon microscopy-based recordings and selective optogenetic manipulation of activity. Importantly, a key set of experiments will test whether the observed neuronal mechanisms are causally involved in attention at the level of behavior, the ultimate readout of the computations we are interested in. The expected results will provide a detailed, mechanistic dissection of the neuronal basis of attention. Beyond attention, selection of different functional states of the same hard-wired circuit by modulatory input is a fundamental, but poorly understood, phenomenon in the brain, and we predict that our insights will elucidate similar mechanisms in other brain areas and functional contexts.
Summary
At every moment in time, the brain receives a vast amount of sensory information about the environment. This makes attention, the process by which we select currently relevant stimuli for processing and ignore irrelevant input, a fundamentally important brain function. Studies in primates have yielded a detailed description of how attention to a stimulus modifies the responses of neuronal ensembles in visual cortex, but how this modulation is produced mechanistically in the circuit is not well understood. Neuronal circuits comprise a large variety of neuron types, and to gain mechanistic insights, and to treat specific diseases of the nervous system, it is crucial to characterize the contribution of different identified cell types to information processing. Inhibition supplied by a small yet highly diverse set of interneurons controls all aspects of cortical function, and the central hypothesis of this proposal is that differential modulation of genetically-defined interneuron types is a key mechanism of attention in visual cortex. To identify the interneuron types underlying attentional modulation and to investigate how this, in turn, affects computations in the circuit we will use an innovative multidisciplinary approach combining genetic targeting in mice with cutting-edge in vivo 2-photon microscopy-based recordings and selective optogenetic manipulation of activity. Importantly, a key set of experiments will test whether the observed neuronal mechanisms are causally involved in attention at the level of behavior, the ultimate readout of the computations we are interested in. The expected results will provide a detailed, mechanistic dissection of the neuronal basis of attention. Beyond attention, selection of different functional states of the same hard-wired circuit by modulatory input is a fundamental, but poorly understood, phenomenon in the brain, and we predict that our insights will elucidate similar mechanisms in other brain areas and functional contexts.
Max ERC Funding
1 466 505 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym ATTOSCOPE
Project Measuring attosecond electron dynamics in molecules
Researcher (PI) Hans Jakob Wörner
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Starting Grant (StG), PE4, ERC-2012-StG_20111012
Summary "The goal of the present proposal is to realize measurements of electronic dynamics in polyatomic
molecules with attosecond temporal resolution (1 as = 10^-18s). We propose to study electronic
rearrangements following photoexcitation, charge migration in a molecular chain induced by
ionization and non-adiabatic multi-electron dynamics in an intense laser field. The grand question
addressed by this research is the characterization of electron correlations which control the shape, properties and function of molecules. In all three proposed projects, a time-domain approach appears to be the most suitable since it reduces complex molecular dynamics to the purely electronic dynamics by exploiting the hierarchy of motional time scales. Experimentally, we propose to realize an innovative experimental setup. A few-cycle infrared (IR) pulse will be used to generate attosecond pulses in the extreme-ultraviolet (XUV) by high-harmonic generation. The IR pulse will be separated from the XUV by means of an innovative interferometer. Additionally, it will permit the introduction of a controlled attosecond delay between the two pulses. We propose to use the attosecond pulses as a tool to look inside individual IR- or UV-field cycles to better understand light-matter interactions. Time-resolved pump-probe experiments will be carried out on polyatomic molecules by detecting the energy and angular distribution of photoelectrons in a velocity-map imaging spectrometer. These experiments are expected to provide new insights
into the dynamics of multi-electron systems along with new results for the validation and
improvement of theoretical models. Multi-electron dynamics is indeed a very complex subject
on its own and even more so in the presence of strong laser fields. The proposed experiments
directly address theses challenges and are expected to provide new insights that will be beneficial to a wide range of scientific research areas."
Summary
"The goal of the present proposal is to realize measurements of electronic dynamics in polyatomic
molecules with attosecond temporal resolution (1 as = 10^-18s). We propose to study electronic
rearrangements following photoexcitation, charge migration in a molecular chain induced by
ionization and non-adiabatic multi-electron dynamics in an intense laser field. The grand question
addressed by this research is the characterization of electron correlations which control the shape, properties and function of molecules. In all three proposed projects, a time-domain approach appears to be the most suitable since it reduces complex molecular dynamics to the purely electronic dynamics by exploiting the hierarchy of motional time scales. Experimentally, we propose to realize an innovative experimental setup. A few-cycle infrared (IR) pulse will be used to generate attosecond pulses in the extreme-ultraviolet (XUV) by high-harmonic generation. The IR pulse will be separated from the XUV by means of an innovative interferometer. Additionally, it will permit the introduction of a controlled attosecond delay between the two pulses. We propose to use the attosecond pulses as a tool to look inside individual IR- or UV-field cycles to better understand light-matter interactions. Time-resolved pump-probe experiments will be carried out on polyatomic molecules by detecting the energy and angular distribution of photoelectrons in a velocity-map imaging spectrometer. These experiments are expected to provide new insights
into the dynamics of multi-electron systems along with new results for the validation and
improvement of theoretical models. Multi-electron dynamics is indeed a very complex subject
on its own and even more so in the presence of strong laser fields. The proposed experiments
directly address theses challenges and are expected to provide new insights that will be beneficial to a wide range of scientific research areas."
Max ERC Funding
1 999 992 €
Duration
Start date: 2012-09-01, End date: 2017-08-31
Project acronym AutoCPS
Project Automated Synthesis of Cyber-Physical Systems: A Compositional Approach
Researcher (PI) Majid ZAMANI
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Call Details Starting Grant (StG), PE7, ERC-2018-STG
Summary Embedded Control software plays a critical role in many safety-critical applications. For instance, modern vehicles use interacting software and hardware components to control steering and braking. Control software forms the main core of autonomous transportation, power networks, and aerospace. These applications are examples of cyber-physical systems (CPS), where distributed software systems interact tightly with spatially distributed physical systems with complex dynamics. CPS are becoming ubiquitous due to rapid advances in computation, communication, and memory. However, the development of core control software running in these systems is still ad hoc and error-prone and much of the engineering costs today go into ensuring that control software works correctly.
In order to reduce the design costs and guaranteeing its correctness, I aim to develop an innovative design process, in which the embedded control software is synthesized from high-level correctness requirements in a push-button and formal manner. Requirements for modern CPS applications go beyond conventional properties in control theory (e.g. stability) and in computer science (e.g. protocol design). Here, I propose a compositional methodology for automated synthesis of control software by combining compositional techniques from computer science (e.g. assume-guarantee rules) with those from control theory (e.g. small-gain theorems). I will leverage decomposition and abstraction as two key tools to tackle the design complexity, by either breaking the design object into semi-independent parts or by aggregating components and eliminating unnecessary details. My project is high-risk because it requires a fundamental re-thinking of design techniques till now studied in separate disciplines. It is high-gain because a successful method for automated synthesis of control software will make it finally possible to develop complex yet reliable CPS applications while considerably reducing the engineering cost.
Summary
Embedded Control software plays a critical role in many safety-critical applications. For instance, modern vehicles use interacting software and hardware components to control steering and braking. Control software forms the main core of autonomous transportation, power networks, and aerospace. These applications are examples of cyber-physical systems (CPS), where distributed software systems interact tightly with spatially distributed physical systems with complex dynamics. CPS are becoming ubiquitous due to rapid advances in computation, communication, and memory. However, the development of core control software running in these systems is still ad hoc and error-prone and much of the engineering costs today go into ensuring that control software works correctly.
In order to reduce the design costs and guaranteeing its correctness, I aim to develop an innovative design process, in which the embedded control software is synthesized from high-level correctness requirements in a push-button and formal manner. Requirements for modern CPS applications go beyond conventional properties in control theory (e.g. stability) and in computer science (e.g. protocol design). Here, I propose a compositional methodology for automated synthesis of control software by combining compositional techniques from computer science (e.g. assume-guarantee rules) with those from control theory (e.g. small-gain theorems). I will leverage decomposition and abstraction as two key tools to tackle the design complexity, by either breaking the design object into semi-independent parts or by aggregating components and eliminating unnecessary details. My project is high-risk because it requires a fundamental re-thinking of design techniques till now studied in separate disciplines. It is high-gain because a successful method for automated synthesis of control software will make it finally possible to develop complex yet reliable CPS applications while considerably reducing the engineering cost.
Max ERC Funding
1 470 800 €
Duration
Start date: 2019-02-01, End date: 2024-01-31
Project acronym AVIANEGG
Project Evolutionary genetics in a ‘classical’ avian study system by high throughput transcriptome sequencing and SNP genotyping
Researcher (PI) Jon Slate
Host Institution (HI) THE UNIVERSITY OF SHEFFIELD
Call Details Starting Grant (StG), LS5, ERC-2007-StG
Summary Long-term studies of free-living vertebrate populations have proved a rich resource for understanding evolutionary and ecological processes, because individuals’ life histories can be measured by tracking them from birth/hatching through to death. In recent years the ‘animal model’ has been applied to pedigreed long-term study populations with great success, dramatically advancing our understanding of quantitative genetic parameters such as heritabilities, genetic correlations and plasticities of traits that are relevant to microevolutionary responses to environmental change. Unfortunately, quantitative genetic approaches have one major drawback – they cannot identify the actual genes responsible for genetic variation. Therefore, it is impossible to link evolutionary responses to a changing environment to molecular genetic variation, making our picture of the process incomplete. Many of the best long-term studies have been conducted in passerine birds. Unfortunately genomics resources are only available for two model avian species, and are absent for bird species that are studied in the wild. I will fill this gap by exploiting recent advances in genomics technology to sequence the entire transcriptome of the longest running study of wild birds – the great tit population in Wytham Woods, Oxford. Having identified most of the sequence variation in the great tit transcriptome, I will then genotype all birds for whom phenotype records and blood samples are available This will be, by far, the largest phenotype-genotype dataset of any free-living vertebrate population. I will then use gene mapping techniques to identify genes and genomic regions responsible for variation in a number of key traits such as lifetime recruitment, clutch size and breeding/laying date. This will result in a greater understanding, at the molecular level, how microevolutionary change can arise (or be constrained).
Summary
Long-term studies of free-living vertebrate populations have proved a rich resource for understanding evolutionary and ecological processes, because individuals’ life histories can be measured by tracking them from birth/hatching through to death. In recent years the ‘animal model’ has been applied to pedigreed long-term study populations with great success, dramatically advancing our understanding of quantitative genetic parameters such as heritabilities, genetic correlations and plasticities of traits that are relevant to microevolutionary responses to environmental change. Unfortunately, quantitative genetic approaches have one major drawback – they cannot identify the actual genes responsible for genetic variation. Therefore, it is impossible to link evolutionary responses to a changing environment to molecular genetic variation, making our picture of the process incomplete. Many of the best long-term studies have been conducted in passerine birds. Unfortunately genomics resources are only available for two model avian species, and are absent for bird species that are studied in the wild. I will fill this gap by exploiting recent advances in genomics technology to sequence the entire transcriptome of the longest running study of wild birds – the great tit population in Wytham Woods, Oxford. Having identified most of the sequence variation in the great tit transcriptome, I will then genotype all birds for whom phenotype records and blood samples are available This will be, by far, the largest phenotype-genotype dataset of any free-living vertebrate population. I will then use gene mapping techniques to identify genes and genomic regions responsible for variation in a number of key traits such as lifetime recruitment, clutch size and breeding/laying date. This will result in a greater understanding, at the molecular level, how microevolutionary change can arise (or be constrained).
Max ERC Funding
1 560 770 €
Duration
Start date: 2008-10-01, End date: 2014-06-30
Project acronym AXPLAST
Project Deep brain imaging of cellular mechanisms of sensory processing and learning
Researcher (PI) Jan GRUNDEMANN
Host Institution (HI) UNIVERSITAT BASEL
Call Details Starting Grant (StG), LS5, ERC-2018-STG
Summary Learning and memory are the basis of our behaviour and mental well-being. Understanding the mechanisms of structural and cellular plasticity in defined neuronal circuits in vivo will be crucial to elucidate principles of circuit-specific memory formation and their relation to changes in neuronal ensemble dynamics.
Structural plasticity studies were technically limited to cortex, excluding deep brain areas like the amygdala, and mainly focussed on the input site (dendritic spines), whilst the plasticity of the axon initial segment (AIS), a neuron’s site of output generation, was so far not studied in vivo. Length and location of the AIS are plastic and strongly affects a neurons spike output. However, it remains unknown if AIS plasticity regulates neuronal activity upon learning in vivo.
We will combine viral expression of AIS live markers and genetically-encoded Ca2+-sensors with novel deep brain imaging techniques via gradient index (GRIN) lenses to investigate how AIS location and length are regulated upon associative learning in amygdala circuits in vivo. Two-photon time-lapse imaging of the AIS of amygdala neurons upon fear conditioning will help us to track learning-driven AIS location dynamics. Next, we will combine miniature microscope imaging of neuronal activity in freely moving animals with two-photon imaging to link AIS location, length and plasticity to the intrinsic activity as well as learning-related response plasticity of amygdala neurons during fear learning and extinction in vivo. Finally, we will test if AIS plasticity is a general cellular plasticity mechanisms in brain areas afferent to the amygdala, e.g. thalamus.
Using a combination of two-photon and miniature microscopy imaging to map structural dynamics of defined neural circuits in the amygdala and its thalamic input areas will provide fundamental insights into the cellular mechanisms underlying sensory processing upon learning and relate network level plasticity with the cellular level.
Summary
Learning and memory are the basis of our behaviour and mental well-being. Understanding the mechanisms of structural and cellular plasticity in defined neuronal circuits in vivo will be crucial to elucidate principles of circuit-specific memory formation and their relation to changes in neuronal ensemble dynamics.
Structural plasticity studies were technically limited to cortex, excluding deep brain areas like the amygdala, and mainly focussed on the input site (dendritic spines), whilst the plasticity of the axon initial segment (AIS), a neuron’s site of output generation, was so far not studied in vivo. Length and location of the AIS are plastic and strongly affects a neurons spike output. However, it remains unknown if AIS plasticity regulates neuronal activity upon learning in vivo.
We will combine viral expression of AIS live markers and genetically-encoded Ca2+-sensors with novel deep brain imaging techniques via gradient index (GRIN) lenses to investigate how AIS location and length are regulated upon associative learning in amygdala circuits in vivo. Two-photon time-lapse imaging of the AIS of amygdala neurons upon fear conditioning will help us to track learning-driven AIS location dynamics. Next, we will combine miniature microscope imaging of neuronal activity in freely moving animals with two-photon imaging to link AIS location, length and plasticity to the intrinsic activity as well as learning-related response plasticity of amygdala neurons during fear learning and extinction in vivo. Finally, we will test if AIS plasticity is a general cellular plasticity mechanisms in brain areas afferent to the amygdala, e.g. thalamus.
Using a combination of two-photon and miniature microscopy imaging to map structural dynamics of defined neural circuits in the amygdala and its thalamic input areas will provide fundamental insights into the cellular mechanisms underlying sensory processing upon learning and relate network level plasticity with the cellular level.
Max ERC Funding
1 475 475 €
Duration
Start date: 2018-12-01, End date: 2023-11-30
Project acronym BEACON
Project Hybrid Digital-Analog Networking under Extreme Energy and Latency Constraints
Researcher (PI) Deniz Gunduz
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Call Details Starting Grant (StG), PE7, ERC-2015-STG
Summary The objective of the BEACON project is to (re-)introduce analog communications into the design of modern wireless networks. We argue that the extreme energy and latency constraints imposed by the emerging Internet of Everything (IoE) paradigm can only be met within a hybrid digital-analog communications framework. Current network architectures separate source and channel coding, orthogonalize users, and employ long block-length digital source and channel codes, which are either suboptimal or not applicable under the aforementioned constraints. BEACON questions these well-established design principles, and proposes to replace them with a hybrid digital-analog communications framework, which will meet the required energy and latency constraints while simplifying the encoding and decoding processes. BEACON pushes the performance of the IoE to its theoretical limits by i) exploiting signal correlations that are abundant in IoE applications, given the foreseen density of deployed sensing devices, ii) taking into account the limited and stochastic nature of energy availability due to, for example, energy harvesting capabilities, iii) using feedback resources to improve the end-to-end signal distortion, and iv) deriving novel converse results to identify fundamental performance benchmarks.
The results of BEACON will not only shed light on the fundamental limits on the performance any coding scheme can achieve, but will also lead to the development of unconventional codes and communication protocols that can approach these limits, combining digital and analog communication techniques. The ultimate challenge for this project is to exploit the developed hybrid digital-analog networking theory for a complete overhaul of the physical layer design for emerging IoE applications, such as smart grids, tele-robotics and smart homes. For this purpose, a proof-of-concept implementation test-bed will also be built using software defined radios and sensor nodes.
Summary
The objective of the BEACON project is to (re-)introduce analog communications into the design of modern wireless networks. We argue that the extreme energy and latency constraints imposed by the emerging Internet of Everything (IoE) paradigm can only be met within a hybrid digital-analog communications framework. Current network architectures separate source and channel coding, orthogonalize users, and employ long block-length digital source and channel codes, which are either suboptimal or not applicable under the aforementioned constraints. BEACON questions these well-established design principles, and proposes to replace them with a hybrid digital-analog communications framework, which will meet the required energy and latency constraints while simplifying the encoding and decoding processes. BEACON pushes the performance of the IoE to its theoretical limits by i) exploiting signal correlations that are abundant in IoE applications, given the foreseen density of deployed sensing devices, ii) taking into account the limited and stochastic nature of energy availability due to, for example, energy harvesting capabilities, iii) using feedback resources to improve the end-to-end signal distortion, and iv) deriving novel converse results to identify fundamental performance benchmarks.
The results of BEACON will not only shed light on the fundamental limits on the performance any coding scheme can achieve, but will also lead to the development of unconventional codes and communication protocols that can approach these limits, combining digital and analog communication techniques. The ultimate challenge for this project is to exploit the developed hybrid digital-analog networking theory for a complete overhaul of the physical layer design for emerging IoE applications, such as smart grids, tele-robotics and smart homes. For this purpose, a proof-of-concept implementation test-bed will also be built using software defined radios and sensor nodes.
Max ERC Funding
1 496 350 €
Duration
Start date: 2016-10-01, End date: 2021-09-30
Project acronym BeadsOnString
Project Beads on String Genomics: Experimental Toolbox for Unmasking Genetic / Epigenetic Variation in Genomic DNA and Chromatin
Researcher (PI) Yuval Ebenstein
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Starting Grant (StG), PE4, ERC-2013-StG
Summary Next generation sequencing (NGS) is revolutionizing all fields of biological research but it fails to extract the full range of information associated with genetic material and is lacking in its ability to resolve variations between genomes. The high degree of genome variation exhibited both on the population level as well as between genetically “identical” cells (even in the same organ) makes genetic and epigenetic analysis on the single cell and single genome level a necessity.
Chromosomes may be conceptually represented as a linear one-dimensional barcode. However, in contrast to a traditional binary barcode approach that considers only two possible bits of information (1 & 0), I will use colour and molecular structure to expand the variety of information represented in the barcode. Like colourful beads threaded on a string, where each bead represents a distinct type of observable, I will label each type of genomic information with a different chemical moiety thus expanding the repertoire of information that can be simultaneously measured. A major effort in this proposal is invested in the development of unique chemistries to enable this labelling.
I specifically address three types of genomic variation: Variations in genomic layout (including DNA repeats, structural and copy number variations), variations in the patterns of chemical DNA modifications (such as methylation of cytosine bases) and variations in the chromatin composition (including nucleosome and transcription factor distributions). I will use physical extension of long DNA molecules on surfaces and in nanofluidic channels to reveal this information visually in the form of a linear, fluorescent “barcode” that is read-out by advanced imaging techniques. Similarly, DNA molecules will be threaded through a nanopore where the sequential position of “bulky” molecular groups attached to the DNA may be inferred from temporal modulation of an ionic current measured across the pore.
Summary
Next generation sequencing (NGS) is revolutionizing all fields of biological research but it fails to extract the full range of information associated with genetic material and is lacking in its ability to resolve variations between genomes. The high degree of genome variation exhibited both on the population level as well as between genetically “identical” cells (even in the same organ) makes genetic and epigenetic analysis on the single cell and single genome level a necessity.
Chromosomes may be conceptually represented as a linear one-dimensional barcode. However, in contrast to a traditional binary barcode approach that considers only two possible bits of information (1 & 0), I will use colour and molecular structure to expand the variety of information represented in the barcode. Like colourful beads threaded on a string, where each bead represents a distinct type of observable, I will label each type of genomic information with a different chemical moiety thus expanding the repertoire of information that can be simultaneously measured. A major effort in this proposal is invested in the development of unique chemistries to enable this labelling.
I specifically address three types of genomic variation: Variations in genomic layout (including DNA repeats, structural and copy number variations), variations in the patterns of chemical DNA modifications (such as methylation of cytosine bases) and variations in the chromatin composition (including nucleosome and transcription factor distributions). I will use physical extension of long DNA molecules on surfaces and in nanofluidic channels to reveal this information visually in the form of a linear, fluorescent “barcode” that is read-out by advanced imaging techniques. Similarly, DNA molecules will be threaded through a nanopore where the sequential position of “bulky” molecular groups attached to the DNA may be inferred from temporal modulation of an ionic current measured across the pore.
Max ERC Funding
1 627 600 €
Duration
Start date: 2013-10-01, End date: 2018-09-30
Project acronym BETTERSENSE
Project Nanodevice Engineering for a Better Chemical Gas Sensing Technology
Researcher (PI) Juan Daniel Prades Garcia
Host Institution (HI) UNIVERSITAT DE BARCELONA
Call Details Starting Grant (StG), PE7, ERC-2013-StG
Summary BetterSense aims to solve the two main problems in current gas sensor technologies: the high power consumption and the poor selectivity. For the former, we propose a radically new approach: to integrate the sensing components and the energy sources intimately, at the nanoscale, in order to achieve a new kind of sensor concept featuring zero power consumption. For the latter, we will mimic the biological receptors designing a kit of gas-specific molecular organic functionalizations to reach ultra-high gas selectivity figures, comparable to those of biological processes. Both cutting-edge concepts will be developed in parallel an integrated together to render a totally new gas sensing technology that surpasses the state-of-the-art.
As a matter of fact, the project will enable, for the first time, the integration of gas detectors in energetically autonomous sensors networks. Additionally, BetterSense will provide an integral solution to the gas sensing challenge by producing a full set of gas-specific sensors over the same platform to ease their integration in multi-analyte systems. Moreover, the project approach will certainly open opportunities in adjacent fields in which power consumption, specificity and nano/micro integration are a concern, such as liquid chemical and biological sensing.
In spite of the promising evidences that demonstrate the feasibility of this proposal, there are still many scientific and technological issues to solve, most of them in the edge of what is known and what is possible today in nano-fabrication and nano/micro integration. For this reason, BetterSense also aims to contribute to the global challenge of making nanodevices compatible with scalable, cost-effective, microelectronic technologies.
For all this, addressing this challenging proposal in full requires a funding scheme compatible with a high-risk/high-gain vision to finance the full dedication of a highly motivated research team with multidisciplinary skill
Summary
BetterSense aims to solve the two main problems in current gas sensor technologies: the high power consumption and the poor selectivity. For the former, we propose a radically new approach: to integrate the sensing components and the energy sources intimately, at the nanoscale, in order to achieve a new kind of sensor concept featuring zero power consumption. For the latter, we will mimic the biological receptors designing a kit of gas-specific molecular organic functionalizations to reach ultra-high gas selectivity figures, comparable to those of biological processes. Both cutting-edge concepts will be developed in parallel an integrated together to render a totally new gas sensing technology that surpasses the state-of-the-art.
As a matter of fact, the project will enable, for the first time, the integration of gas detectors in energetically autonomous sensors networks. Additionally, BetterSense will provide an integral solution to the gas sensing challenge by producing a full set of gas-specific sensors over the same platform to ease their integration in multi-analyte systems. Moreover, the project approach will certainly open opportunities in adjacent fields in which power consumption, specificity and nano/micro integration are a concern, such as liquid chemical and biological sensing.
In spite of the promising evidences that demonstrate the feasibility of this proposal, there are still many scientific and technological issues to solve, most of them in the edge of what is known and what is possible today in nano-fabrication and nano/micro integration. For this reason, BetterSense also aims to contribute to the global challenge of making nanodevices compatible with scalable, cost-effective, microelectronic technologies.
For all this, addressing this challenging proposal in full requires a funding scheme compatible with a high-risk/high-gain vision to finance the full dedication of a highly motivated research team with multidisciplinary skill
Max ERC Funding
1 498 452 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym BIMOC
Project Biomimetic Organocatalysis – Development of Novel Synthetic Catalytic Methodology and Technology
Researcher (PI) Magnus Rueping
Host Institution (HI) RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN
Call Details Starting Grant (StG), PE4, ERC-2007-StG
Summary Biomimetic Organocatalysis – Development of Novel Synthetic Catalytic Methodology and Technology The objective of the proposed research is the design and development of unprecedented preassembled, modular, molecular factories. Inspiration comes from nature’s non-ribosomal peptide synthetases (NRPSs) and polyketide synthetases (PKSs). These large multifunctional enzymes possess catalytic modules with the capacity for recognition, activation and modification required for sequential biosynthesis of complex peptides and polyketides. Using nature as a role model we intend to design and prepare such catalyst “factories” synthetically and apply them in novel cascade reaction sequences. The single catalytic modules employed will be based on organocatalytic procedures, including enamine-, iminium-, as well as hydrogen bonding activation processes, but the potential scope is limitless. Organocatalysts have so far never been applied in a combined fashion utilizing their different activation mechanisms in multiple reaction cascades. Therefore, it is our intention to firstly demonstrate that such a production line approach is feasible and that these new catalyst systems can be applied in the synthesis of valuable enantiopure, biologically active, building blocks and natural products. Additionally, the extensive possibilities to vary organocatalyst modules in sequence will lead to science mimicking nature in its diversity.
Summary
Biomimetic Organocatalysis – Development of Novel Synthetic Catalytic Methodology and Technology The objective of the proposed research is the design and development of unprecedented preassembled, modular, molecular factories. Inspiration comes from nature’s non-ribosomal peptide synthetases (NRPSs) and polyketide synthetases (PKSs). These large multifunctional enzymes possess catalytic modules with the capacity for recognition, activation and modification required for sequential biosynthesis of complex peptides and polyketides. Using nature as a role model we intend to design and prepare such catalyst “factories” synthetically and apply them in novel cascade reaction sequences. The single catalytic modules employed will be based on organocatalytic procedures, including enamine-, iminium-, as well as hydrogen bonding activation processes, but the potential scope is limitless. Organocatalysts have so far never been applied in a combined fashion utilizing their different activation mechanisms in multiple reaction cascades. Therefore, it is our intention to firstly demonstrate that such a production line approach is feasible and that these new catalyst systems can be applied in the synthesis of valuable enantiopure, biologically active, building blocks and natural products. Additionally, the extensive possibilities to vary organocatalyst modules in sequence will lead to science mimicking nature in its diversity.
Max ERC Funding
999 960 €
Duration
Start date: 2008-09-01, End date: 2012-08-31
Project acronym BIO2CHEM-D
Project Biomass to chemicals: Catalysis design from first principles for a sustainable chemical industry
Researcher (PI) Nuria Lopez
Host Institution (HI) FUNDACIO PRIVADA INSTITUT CATALA D'INVESTIGACIO QUIMICA
Call Details Starting Grant (StG), PE4, ERC-2010-StG_20091028
Summary The use of renewable feedstocks by the chemical industry is fundamental due to both the depletion of fossil
resources and the increasing pressure of environmental concerns. Biomass can act as a sustainable source of
organic industrial chemicals; however, the establishment of a renewable chemical industry that is
economically competitive with the present oil-based one requires the development of new processes to
convert biomass-derived compounds into useful industrial materials following the principles of green
chemistry. To achieve these goals, developments in several fields including heterogeneous catalysis are
needed. One of the ways to accelerate the discovery of new potentially active, selective and stable catalysts is
the massive use of computational chemistry. Recent advances have demonstrated that Density Functional
Theory coupled to ab initio thermodynamics, transition state theory and microkinetic analysis can provide a
full view of the catalytic phenomena.
The aim of the present project is thus to employ these well-tested computational techniques to the
development of a theoretical framework that can accelerate the identification of new catalysts for the
conversion of biomass derived target compounds into useful chemicals. Since compared to petroleum-based
materials-biomass derived ones are multifuncionalized, the search for new catalytic materials and processes
has a strong requirement in the selectivity of the chemical transformations. The main challenges in the
project are related to the high functionalization of the molecules, their liquid nature and the large number of
potentially competitive reaction paths. The requirements of specificity and selectivity in the chemical
transformations while keeping a reasonably flexible framework constitute a major objective. The work will
be divided in three main work packages, one devoted to the properties of small molecules or fragments
containing a single functional group; the second addresses competition in multiple functionalized molecules;
and third is dedicated to the specific transformations of two molecules that have already been identified as
potential platform generators. The goal is to identify suitable candidates that could be synthetized and tested
in the Institute facilities.
Summary
The use of renewable feedstocks by the chemical industry is fundamental due to both the depletion of fossil
resources and the increasing pressure of environmental concerns. Biomass can act as a sustainable source of
organic industrial chemicals; however, the establishment of a renewable chemical industry that is
economically competitive with the present oil-based one requires the development of new processes to
convert biomass-derived compounds into useful industrial materials following the principles of green
chemistry. To achieve these goals, developments in several fields including heterogeneous catalysis are
needed. One of the ways to accelerate the discovery of new potentially active, selective and stable catalysts is
the massive use of computational chemistry. Recent advances have demonstrated that Density Functional
Theory coupled to ab initio thermodynamics, transition state theory and microkinetic analysis can provide a
full view of the catalytic phenomena.
The aim of the present project is thus to employ these well-tested computational techniques to the
development of a theoretical framework that can accelerate the identification of new catalysts for the
conversion of biomass derived target compounds into useful chemicals. Since compared to petroleum-based
materials-biomass derived ones are multifuncionalized, the search for new catalytic materials and processes
has a strong requirement in the selectivity of the chemical transformations. The main challenges in the
project are related to the high functionalization of the molecules, their liquid nature and the large number of
potentially competitive reaction paths. The requirements of specificity and selectivity in the chemical
transformations while keeping a reasonably flexible framework constitute a major objective. The work will
be divided in three main work packages, one devoted to the properties of small molecules or fragments
containing a single functional group; the second addresses competition in multiple functionalized molecules;
and third is dedicated to the specific transformations of two molecules that have already been identified as
potential platform generators. The goal is to identify suitable candidates that could be synthetized and tested
in the Institute facilities.
Max ERC Funding
1 496 200 €
Duration
Start date: 2010-10-01, End date: 2015-09-30
Project acronym BioCircuit
Project Programmable BioMolecular Circuits: Emulating Regulatory Functions in Living Cells Using a Bottom-Up Approach
Researcher (PI) Tom Antonius Franciscus De greef
Host Institution (HI) TECHNISCHE UNIVERSITEIT EINDHOVEN
Call Details Starting Grant (StG), PE4, ERC-2015-STG
Summary Programmable biomolecular circuits have received increasing attention in recent years as the scope of chemistry expands from the synthesis of individual molecules to the construction of chemical networks that can perform sophisticated functions such as logic operations and feedback control. Rationally engineered biomolecular circuits that robustly execute higher-order spatiotemporal behaviours typically associated with intracellular regulatory functions present a unique and uncharted platform to systematically explore the molecular logic and physical design principles of the cell. The experience gained by in-vitro construction of artificial cells displaying advanced system-level functions deepens our understanding of regulatory networks in living cells and allows theoretical assumptions and models to be refined in a controlled setting. This proposal combines elements from systems chemistry, in-vitro synthetic biology and micro-engineering and explores generic strategies to investigate the molecular logic of biology’s regulatory circuits by applying a physical chemistry-driven bottom-up approach. Progress in this field requires 1) proof-of-principle systems where in-vitro biomolecular circuits are designed to emulate characteristic system-level functions of regulatory circuits in living cells and 2) novel experimental tools to operate biochemical networks under out-of-equilibrium conditions. Here, a comprehensive research program is proposed that addresses these challenges by engineering three biochemical model systems that display elementary signal transduction and information processing capabilities. In addition, an open microfluidic droplet reactor is developed that will allow, for the first time, high-throughput analysis of biomolecular circuits encapsulated in water-in-oil droplets. An integral part of the research program is to combine the computational design of in-vitro circuits with novel biochemistry and innovative micro-engineering tools.
Summary
Programmable biomolecular circuits have received increasing attention in recent years as the scope of chemistry expands from the synthesis of individual molecules to the construction of chemical networks that can perform sophisticated functions such as logic operations and feedback control. Rationally engineered biomolecular circuits that robustly execute higher-order spatiotemporal behaviours typically associated with intracellular regulatory functions present a unique and uncharted platform to systematically explore the molecular logic and physical design principles of the cell. The experience gained by in-vitro construction of artificial cells displaying advanced system-level functions deepens our understanding of regulatory networks in living cells and allows theoretical assumptions and models to be refined in a controlled setting. This proposal combines elements from systems chemistry, in-vitro synthetic biology and micro-engineering and explores generic strategies to investigate the molecular logic of biology’s regulatory circuits by applying a physical chemistry-driven bottom-up approach. Progress in this field requires 1) proof-of-principle systems where in-vitro biomolecular circuits are designed to emulate characteristic system-level functions of regulatory circuits in living cells and 2) novel experimental tools to operate biochemical networks under out-of-equilibrium conditions. Here, a comprehensive research program is proposed that addresses these challenges by engineering three biochemical model systems that display elementary signal transduction and information processing capabilities. In addition, an open microfluidic droplet reactor is developed that will allow, for the first time, high-throughput analysis of biomolecular circuits encapsulated in water-in-oil droplets. An integral part of the research program is to combine the computational design of in-vitro circuits with novel biochemistry and innovative micro-engineering tools.
Max ERC Funding
1 887 180 €
Duration
Start date: 2016-08-01, End date: 2021-07-31
Project acronym BIOFUNCTION
Project Self assembly into biofunctional molecules, translating instructions into function
Researcher (PI) Nicolas Winssinger
Host Institution (HI) UNIVERSITE DE STRASBOURG
Call Details Starting Grant (StG), PE4, ERC-2007-StG
Summary The overall objective of the proposal is to develop enabling chemical technologies to address two important problems in biology: detect in a nondestructive fashion gene expression or microRNA sequences in vivo and, secondly, study the role of multivalency and spatial organization in carbohydrate recognition. Both of these projects exploit the programmable pre-organization of peptide nucleic acid (PNA) to induce a chemical reaction in the first case or modulate a ligand-receptor interaction in the second case. For nucleic acid detection, a DNA or RNA fragment will be utilized to bring two PNA fragments bearing reactive functionalities in close proximity thereby promoting a reaction. Two types of reactions are proposed, the first one to release a fluorophore for imaging purposes and the second one to release a drug as an “intelligent” therapeutic. If affinities are programmed such that hybridization is reversible, the template can work catalytically leading to large amplifications. As a proof of concept, this method will be used to measure the transcription level of genes implicated in stem cell differentiation and detect mutations in oncogenes. For the purpose of studying multivalent carbohydrate ligand architectures, the challenge of chemical synthesis has been a limiting factor. A supramolecular approach is proposed herein where different arrangements of carbohydrates can be displayed in a well organized fashion by hybridizing PNA-tagged carbohydrates to DNA templates. This will be used not only to control the distance between multiple ligands or to create combinatorial arrangements of hetero ligands but also to access more complex architectures such as Hollyday junctions. The oligosaccharide units will be prepared using de novo organoctalytic reactions. This technology will be first applied to probe the recognition events between HIV and dendritic cells which promote HIV infection.
Summary
The overall objective of the proposal is to develop enabling chemical technologies to address two important problems in biology: detect in a nondestructive fashion gene expression or microRNA sequences in vivo and, secondly, study the role of multivalency and spatial organization in carbohydrate recognition. Both of these projects exploit the programmable pre-organization of peptide nucleic acid (PNA) to induce a chemical reaction in the first case or modulate a ligand-receptor interaction in the second case. For nucleic acid detection, a DNA or RNA fragment will be utilized to bring two PNA fragments bearing reactive functionalities in close proximity thereby promoting a reaction. Two types of reactions are proposed, the first one to release a fluorophore for imaging purposes and the second one to release a drug as an “intelligent” therapeutic. If affinities are programmed such that hybridization is reversible, the template can work catalytically leading to large amplifications. As a proof of concept, this method will be used to measure the transcription level of genes implicated in stem cell differentiation and detect mutations in oncogenes. For the purpose of studying multivalent carbohydrate ligand architectures, the challenge of chemical synthesis has been a limiting factor. A supramolecular approach is proposed herein where different arrangements of carbohydrates can be displayed in a well organized fashion by hybridizing PNA-tagged carbohydrates to DNA templates. This will be used not only to control the distance between multiple ligands or to create combinatorial arrangements of hetero ligands but also to access more complex architectures such as Hollyday junctions. The oligosaccharide units will be prepared using de novo organoctalytic reactions. This technology will be first applied to probe the recognition events between HIV and dendritic cells which promote HIV infection.
Max ERC Funding
1 249 980 €
Duration
Start date: 2008-07-01, End date: 2013-06-30
Project acronym BIOGRAPHENE
Project Sequencing biological molecules with graphene
Researcher (PI) Gregory Schneider
Host Institution (HI) UNIVERSITEIT LEIDEN
Call Details Starting Grant (StG), PE4, ERC-2013-StG
Summary Graphene – a one atom thin material – has the potential to act as a sensor, primarily the surface and the edges of graphene. This proposal aims at exploring new biosensing routes by exploiting the unique surface and edge chemistry of graphene.
Summary
Graphene – a one atom thin material – has the potential to act as a sensor, primarily the surface and the edges of graphene. This proposal aims at exploring new biosensing routes by exploiting the unique surface and edge chemistry of graphene.
Max ERC Funding
1 499 996 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym BIOIONS
Project Biological ions in the gas-phase: New techniques for structural characterization of isolated biomolecular ions
Researcher (PI) Caroline Dessent
Host Institution (HI) UNIVERSITY OF YORK
Call Details Starting Grant (StG), PE4, ERC-2007-StG
Summary Recent intensive research on the laser spectroscopy of neutral gas-phase biomolecules has yielded a detailed picture of their structures and conformational preferences away from the complications of the bulk environment. In contrast, work on ionic systems has been sparse despite the fact that many important molecular groups are charged under physiological conditions. To address this probelm, we have developed a custom-built laser spectrometer, which incorporates a distincitive electrospray ionisation (ESI) cluster ion source, dedicated to producing biological anions (ATP,oligonucleotides) and their microsolvated clusters for structural characterization. Many previous laser spectrometers with ESI sources have suffered from producing "hot" congested spectra as the ions were produced at ambient temperatures. This is a particularly serious limitation for spectroscopic studies of biomolecules, since these systems can possess high internal energies due tothe presence of numerous low frequency modes. Our spectrometer overcomes this problem by exploiting the newly developed physics technique of "buffer gas cooling" to produce cold ESI molecular ions. In this proposal, we now seek to exploit the new laser-spectrometer to perform detailed spectroscopic interrogations of ESI generated biomolecular anions and clusters. In addition to traditional ion-dissociation spectroscopies, we propose to develop two new laser spectroscopy techniques (Two-color tuneable IR spectroscopy and Dipole-bound excited state spectroscopy) to give the broadest possible structural characterizations of the systems of interest. Studies will focus on ATP/GTP-anions, olignonucleotides, and sulphated and carboxylated sugars. These methodologies will provide a general approach for performing temperature-controlled spectroscopic characterizations of isolated biological ions, with measurements on the corresponding micro-solvated clusters providing details of how the molecules are perturbed by solvent.
Summary
Recent intensive research on the laser spectroscopy of neutral gas-phase biomolecules has yielded a detailed picture of their structures and conformational preferences away from the complications of the bulk environment. In contrast, work on ionic systems has been sparse despite the fact that many important molecular groups are charged under physiological conditions. To address this probelm, we have developed a custom-built laser spectrometer, which incorporates a distincitive electrospray ionisation (ESI) cluster ion source, dedicated to producing biological anions (ATP,oligonucleotides) and their microsolvated clusters for structural characterization. Many previous laser spectrometers with ESI sources have suffered from producing "hot" congested spectra as the ions were produced at ambient temperatures. This is a particularly serious limitation for spectroscopic studies of biomolecules, since these systems can possess high internal energies due tothe presence of numerous low frequency modes. Our spectrometer overcomes this problem by exploiting the newly developed physics technique of "buffer gas cooling" to produce cold ESI molecular ions. In this proposal, we now seek to exploit the new laser-spectrometer to perform detailed spectroscopic interrogations of ESI generated biomolecular anions and clusters. In addition to traditional ion-dissociation spectroscopies, we propose to develop two new laser spectroscopy techniques (Two-color tuneable IR spectroscopy and Dipole-bound excited state spectroscopy) to give the broadest possible structural characterizations of the systems of interest. Studies will focus on ATP/GTP-anions, olignonucleotides, and sulphated and carboxylated sugars. These methodologies will provide a general approach for performing temperature-controlled spectroscopic characterizations of isolated biological ions, with measurements on the corresponding micro-solvated clusters providing details of how the molecules are perturbed by solvent.
Max ERC Funding
1 250 000 €
Duration
Start date: 2008-10-01, End date: 2015-06-30
Project acronym BIOMOFS
Project Bioapplications of Metal Organic Frameworks
Researcher (PI) Christian Serre
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE4, ERC-2007-StG
Summary This project will focus on the use of nanoporous metal organic frameworks (Fe, Zn, Ti) for bioapplications. These systems are exciting porous solids, built up from inorganic clusters and polycarboxylates. This results in open-framework solids with different pore shapes and dimensions, and applications such as catalysis, separation and storage of gases. I have recently initiated the synthesis of new trivalent transition metal carboxylates. Among them, the metal carboxylates MIL-100 and MIL-101 (MIL: Materials of Institut Lavoisier) are spectacular solids with giant pores (25-34 Å), accessible metal sites and huge surface areas (3100-5900 m2.g-1). Recently, it was shown that these solids could be used for drug delivery with a loading of 1.4 g of Ibuprofen per gram of MIL-101 solid and a total release in six days. This project will concentrate on the implication of MOFs for drug release and other bioapplications. Whereas research on drug delivery is currently focused either on the use of bio-compatible polymers or mesoporous materials, our method will combine advantages of both routes including a high loading and a slow release of therapeutic molecules. A second application will use solids with accessible metal sites to coordinate NO for its controlled delivery. This would provide exogenous NO for prophylactic and therapeutic processes, anti-thrombogenic medical devices, improved dressings for wounds and ulcers, and the treatment of fungal and bacterial infections. Finally, other applications will be envisaged such as the purification of physiological fluids. The project, which will consist of a systematic study of the relation between these properties and both the composition and structure of the hybrid solids, will be assisted by a strong modelling effort including top of the art computational methods (QSAR and QSPKR). This highly impact project will be realised by assembling experienced researchers in multidisplinary areas including materials science, biology and modelling. It will involve P. Horcajada (Institut Lavoisier), whose background in pharmaceutical science will fit with my experience in inorganic chemistry and G. Maurin (Institut Gerhardt, Montpellier) expert in computational chemistry.
Summary
This project will focus on the use of nanoporous metal organic frameworks (Fe, Zn, Ti) for bioapplications. These systems are exciting porous solids, built up from inorganic clusters and polycarboxylates. This results in open-framework solids with different pore shapes and dimensions, and applications such as catalysis, separation and storage of gases. I have recently initiated the synthesis of new trivalent transition metal carboxylates. Among them, the metal carboxylates MIL-100 and MIL-101 (MIL: Materials of Institut Lavoisier) are spectacular solids with giant pores (25-34 Å), accessible metal sites and huge surface areas (3100-5900 m2.g-1). Recently, it was shown that these solids could be used for drug delivery with a loading of 1.4 g of Ibuprofen per gram of MIL-101 solid and a total release in six days. This project will concentrate on the implication of MOFs for drug release and other bioapplications. Whereas research on drug delivery is currently focused either on the use of bio-compatible polymers or mesoporous materials, our method will combine advantages of both routes including a high loading and a slow release of therapeutic molecules. A second application will use solids with accessible metal sites to coordinate NO for its controlled delivery. This would provide exogenous NO for prophylactic and therapeutic processes, anti-thrombogenic medical devices, improved dressings for wounds and ulcers, and the treatment of fungal and bacterial infections. Finally, other applications will be envisaged such as the purification of physiological fluids. The project, which will consist of a systematic study of the relation between these properties and both the composition and structure of the hybrid solids, will be assisted by a strong modelling effort including top of the art computational methods (QSAR and QSPKR). This highly impact project will be realised by assembling experienced researchers in multidisplinary areas including materials science, biology and modelling. It will involve P. Horcajada (Institut Lavoisier), whose background in pharmaceutical science will fit with my experience in inorganic chemistry and G. Maurin (Institut Gerhardt, Montpellier) expert in computational chemistry.
Max ERC Funding
1 250 000 €
Duration
Start date: 2008-06-01, End date: 2013-05-31
Project acronym BIOMOTIV
Project Why do we do what we do? Biological, psychological and computational bases of motivation
Researcher (PI) Mathias Pessiglione
Host Institution (HI) INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
Call Details Starting Grant (StG), LS5, ERC-2010-StG_20091118
Summary We are largely unaware of our own motives. Understanding our motives can be reduced to knowing how we form goals and these goals translate into behavior. Goals can be defined as pleasurable situations that we particularly value and that we intend to reach. Recent investigation in the emerging field of neuro-economics has put forward a neuronal network constituting a brain valuation system (BVS). We wish to build a more comprehensive account of motivational processes, investigating not only valuation and choice but also effort (how much energy we would spend to attain a goal). More specifically, our aims are to better describe 1) how the brain assigns values to various objects and actions, 2) how values depend on parameters such as reward magnitude, probability, delay and cost, 3) how values are affected by social contexts, 4) how values are modified through learning and 5) how values influence the brain systems (perceptual, cognitive and motor) that underpin behavioral performance. To these aims, we would combine three approaches: 1) human cognitive neuroscience, which is central as we ultimately wish to understand ourselves, as well as human pathological conditions where motivation is either deficient (apathy) or out of control (compulsion), 2) primate neurophysiology, which is essential to describe information processing at the single-unit level and to derive causality by observing behavioral consequences of brain manipulations, 3) computational modeling, which is mandatory to link quantitatively the different descriptions levels (single-unit recordings, local field potentials, regional BOLD signal, vegetative manifestations and motor outputs). A bayesian framework will be developed to infer from experimental measures the subjects prior beliefs and value functions. We believe that our team, bringing together three complementary perspectives on motivation within a clinical environment, would represent a unique education and research center in Europe.
Summary
We are largely unaware of our own motives. Understanding our motives can be reduced to knowing how we form goals and these goals translate into behavior. Goals can be defined as pleasurable situations that we particularly value and that we intend to reach. Recent investigation in the emerging field of neuro-economics has put forward a neuronal network constituting a brain valuation system (BVS). We wish to build a more comprehensive account of motivational processes, investigating not only valuation and choice but also effort (how much energy we would spend to attain a goal). More specifically, our aims are to better describe 1) how the brain assigns values to various objects and actions, 2) how values depend on parameters such as reward magnitude, probability, delay and cost, 3) how values are affected by social contexts, 4) how values are modified through learning and 5) how values influence the brain systems (perceptual, cognitive and motor) that underpin behavioral performance. To these aims, we would combine three approaches: 1) human cognitive neuroscience, which is central as we ultimately wish to understand ourselves, as well as human pathological conditions where motivation is either deficient (apathy) or out of control (compulsion), 2) primate neurophysiology, which is essential to describe information processing at the single-unit level and to derive causality by observing behavioral consequences of brain manipulations, 3) computational modeling, which is mandatory to link quantitatively the different descriptions levels (single-unit recordings, local field potentials, regional BOLD signal, vegetative manifestations and motor outputs). A bayesian framework will be developed to infer from experimental measures the subjects prior beliefs and value functions. We believe that our team, bringing together three complementary perspectives on motivation within a clinical environment, would represent a unique education and research center in Europe.
Max ERC Funding
1 346 000 €
Duration
Start date: 2011-03-01, End date: 2016-08-31
Project acronym BioNet
Project Dynamical Redesign of Biomolecular Networks
Researcher (PI) Edina ROSTA
Host Institution (HI) KING'S COLLEGE LONDON
Call Details Starting Grant (StG), PE4, ERC-2017-STG
Summary Enzymes created by Nature are still more selective and can be orders of magnitude more efficient than man-made catalysts, in spite of recent advances in the design of de novo catalysts and in enzyme redesign. The optimal engineering of either small molecular or of complex biological catalysts requires both (i) accurate quantitative computational methods capable of a priori assessing catalytic efficiency, and (ii) molecular design principles and corresponding algorithms to achieve, understand and control biomolecular catalytic function and mechanisms. Presently, the computational design of biocatalysts is challenging due to the need for accurate yet computationally-intensive quantum mechanical calculations of bond formation and cleavage, as well as to the requirement for proper statistical sampling over very many degrees of freedom. Pioneering enhanced sampling and analysis methods have been developed to address crucial challenges bridging the gap between the available simulation length and the biologically relevant timescales. However, biased simulations do not generally permit the direct calculation of kinetic information. Recently, I and others pioneered simulation tools that can enable not only accurate calculations of free energies, but also of the intrinsic molecular kinetics and the underlying reaction mechanisms as well. I propose to develop more robust, automatic, and system-tailored sampling algorithms that are optimal in each case. I will use our kinetics-based methods to develop a novel theoretical framework to address catalytic efficiency and to establish molecular design principles to key design problems for new bio-inspired nanocatalysts, and to identify and characterize small molecule modulators of enzyme activity. This is a highly interdisciplinary project that will enable fundamental advances in molecular simulations and will unveil the physical principles that will lead to design and control of catalysis with Nature-like efficiency.
Summary
Enzymes created by Nature are still more selective and can be orders of magnitude more efficient than man-made catalysts, in spite of recent advances in the design of de novo catalysts and in enzyme redesign. The optimal engineering of either small molecular or of complex biological catalysts requires both (i) accurate quantitative computational methods capable of a priori assessing catalytic efficiency, and (ii) molecular design principles and corresponding algorithms to achieve, understand and control biomolecular catalytic function and mechanisms. Presently, the computational design of biocatalysts is challenging due to the need for accurate yet computationally-intensive quantum mechanical calculations of bond formation and cleavage, as well as to the requirement for proper statistical sampling over very many degrees of freedom. Pioneering enhanced sampling and analysis methods have been developed to address crucial challenges bridging the gap between the available simulation length and the biologically relevant timescales. However, biased simulations do not generally permit the direct calculation of kinetic information. Recently, I and others pioneered simulation tools that can enable not only accurate calculations of free energies, but also of the intrinsic molecular kinetics and the underlying reaction mechanisms as well. I propose to develop more robust, automatic, and system-tailored sampling algorithms that are optimal in each case. I will use our kinetics-based methods to develop a novel theoretical framework to address catalytic efficiency and to establish molecular design principles to key design problems for new bio-inspired nanocatalysts, and to identify and characterize small molecule modulators of enzyme activity. This is a highly interdisciplinary project that will enable fundamental advances in molecular simulations and will unveil the physical principles that will lead to design and control of catalysis with Nature-like efficiency.
Max ERC Funding
1 499 999 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym bioPCET
Project Functional Proton-Electron Transfer Elements in Biological Energy Conversion
Researcher (PI) Ville KAILA
Host Institution (HI) TECHNISCHE UNIVERSITAET MUENCHEN
Call Details Starting Grant (StG), PE4, ERC-2016-STG
Summary Primary energy conversion in nature is powered by highly efficient enzymes that capture chemical or light energy and transduce it into other energy forms. These processes are catalyzed by coupled transfers of protons and electrons (PCET), but their fundamental mechanistic principles are not well understood. In order to obtain a molecular-level understanding of the functional elements powering biological energy conversion processes, we will study the catalytic machinery of one of the largest and most intricate enzymes in mitochondria and bacteria, the respiratory complex I. This gigantic redox-driven proton-pump functions as the entry point for electrons into aerobic respiratory chains, and it employs the energy released from a chemical reduction process to transport protons up to 200 Å away from its active site. Its molecular structure from bacteria and eukaryotes was recently resolved, but the origin of this remarkable action-at-a-distance effect still remains unclear. We employ and develop multi-scale quantum and classical molecular simulation techniques in combination with de novo-protein design methodology to identify and isolate the functional elements that catalyze the long-range PCET reactions in complex I. To fully understand the natural PCET-elements, we will further engineer central parts of this machinery into artificial protein frameworks, with the goal of designing modules for redox-driven proton pumps from first principles. The project aims to establish a fundamental understanding of nature's toolbox of catalytic elements, to elucidate how the complex biochemical environment contributes to the catalytic effects, and to provide blueprints that can guide the design of man-made enzymes for sustainable energy technology.
Summary
Primary energy conversion in nature is powered by highly efficient enzymes that capture chemical or light energy and transduce it into other energy forms. These processes are catalyzed by coupled transfers of protons and electrons (PCET), but their fundamental mechanistic principles are not well understood. In order to obtain a molecular-level understanding of the functional elements powering biological energy conversion processes, we will study the catalytic machinery of one of the largest and most intricate enzymes in mitochondria and bacteria, the respiratory complex I. This gigantic redox-driven proton-pump functions as the entry point for electrons into aerobic respiratory chains, and it employs the energy released from a chemical reduction process to transport protons up to 200 Å away from its active site. Its molecular structure from bacteria and eukaryotes was recently resolved, but the origin of this remarkable action-at-a-distance effect still remains unclear. We employ and develop multi-scale quantum and classical molecular simulation techniques in combination with de novo-protein design methodology to identify and isolate the functional elements that catalyze the long-range PCET reactions in complex I. To fully understand the natural PCET-elements, we will further engineer central parts of this machinery into artificial protein frameworks, with the goal of designing modules for redox-driven proton pumps from first principles. The project aims to establish a fundamental understanding of nature's toolbox of catalytic elements, to elucidate how the complex biochemical environment contributes to the catalytic effects, and to provide blueprints that can guide the design of man-made enzymes for sustainable energy technology.
Max ERC Funding
1 494 368 €
Duration
Start date: 2017-02-01, End date: 2022-01-31
Project acronym BIVAQUM
Project Bivariational Approximations in Quantum Mechanics and Applications to Quantum Chemistry
Researcher (PI) Simen Kvaal
Host Institution (HI) UNIVERSITETET I OSLO
Call Details Starting Grant (StG), PE4, ERC-2014-STG
Summary The standard variational principles (VPs) are cornerstones of quantum mechanics, and one can hardly overestimate their usefulness as tools for generating approximations to the time-independent and
time-dependent Schröodinger equations. The aim of the proposal is to study and apply a generalization of these, the bivariational principles (BIVPs), which arise naturally when one does not assume a priori that the system Hamiltonian is Hermitian. This unconventional approach may have transformative impact on development of ab initio methodology, both for electronic structure and dynamics.
The first objective is to establish the mathematical foundation for the BIVPs. This opens up a whole new axis of method development for ab initio approaches. For instance, it is a largely ignored fact that the popular traditional coupled cluster (TCC) method can be neatly formulated with the BIVPs, and TCC is both polynomially scaling with the number of electrons and size-consistent. No “variational” method enjoys these properties simultaneously, indeed this seems to be incompatible with the standard VPs.
Armed with the BIVPs, the project aims to develop new and understand existing ab initio methods. The second objective is thus a systematic multireference coupled cluster theory (MRCC) based on the BIVPs. This
is in itself a novel approach that carries large potential benefits and impact. The third and last objective is an implementation of a new coupled-cluster type method where the orbitals are bivariational
parameters. This gives a size-consistent hierarchy of approximations to multiconfiguration
Hartree--Fock.
The PI's broad contact with and background in scientific disciplines such as applied mathematics and nuclear physics in addition to quantum chemistry increases the feasibility of the project.
Summary
The standard variational principles (VPs) are cornerstones of quantum mechanics, and one can hardly overestimate their usefulness as tools for generating approximations to the time-independent and
time-dependent Schröodinger equations. The aim of the proposal is to study and apply a generalization of these, the bivariational principles (BIVPs), which arise naturally when one does not assume a priori that the system Hamiltonian is Hermitian. This unconventional approach may have transformative impact on development of ab initio methodology, both for electronic structure and dynamics.
The first objective is to establish the mathematical foundation for the BIVPs. This opens up a whole new axis of method development for ab initio approaches. For instance, it is a largely ignored fact that the popular traditional coupled cluster (TCC) method can be neatly formulated with the BIVPs, and TCC is both polynomially scaling with the number of electrons and size-consistent. No “variational” method enjoys these properties simultaneously, indeed this seems to be incompatible with the standard VPs.
Armed with the BIVPs, the project aims to develop new and understand existing ab initio methods. The second objective is thus a systematic multireference coupled cluster theory (MRCC) based on the BIVPs. This
is in itself a novel approach that carries large potential benefits and impact. The third and last objective is an implementation of a new coupled-cluster type method where the orbitals are bivariational
parameters. This gives a size-consistent hierarchy of approximations to multiconfiguration
Hartree--Fock.
The PI's broad contact with and background in scientific disciplines such as applied mathematics and nuclear physics in addition to quantum chemistry increases the feasibility of the project.
Max ERC Funding
1 499 572 €
Duration
Start date: 2015-04-01, End date: 2020-03-31
Project acronym blackQD
Project Optoelectronic of narrow band gap nanocrystals
Researcher (PI) Emmanuel LHUILLIER
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE7, ERC-2017-STG
Summary Over the past decades, silicon became the most used material for electronic, however its indirect band gap limits its use for optics and optoelectronics. As a result alternatives semiconductor such as III-V and II-VI materials are used to address a broad range of complementary application such as LED, laser diode and photodiode. However in the infrared (IR), the material challenge becomes far more complex.
New IR applications, such as flame detection or night car driving assistance are emerging and request low cost detectors. Current technologies, based on epitaxially grown semiconductors are unlikely to bring a cost disruption and organic electronics, often viewed as the alternative to silicon based materials is ineffective in the mid-IR. The blackQD project aims at transforming colloidal quantum dots (CQD) into the next generation of active material for IR detection. CQD are attracting a high interest because of their size tunable optical features and next challenges is their integration in optoelectronic devices and in particular for IR features.
The project requires a combination of material knowledge, with clean room nanofabrication and IR photoconduction which is unique in Europe. I organize blackQD in three mains parts. The first part relates to the growth of mercury chalcogenides nanocrystals with unique tunable properties in the mid and far-IR. To design devices with enhanced properties, more needs to be known on the electronic structure of these nanomaterials. In part II, I propose to develop original methods to probe static and dynamic aspects of the electronic structure. Finally the main task of the project relates to the design of a new generation of transistors and IR detectors. I propose several geometries of demonstrator which for the first time integrate from the beginning the colloidal nature of the CQD and constrain of IR photodetection. The project more generally aims to develop a tool box for the design of the next generation of low cost IR.
Summary
Over the past decades, silicon became the most used material for electronic, however its indirect band gap limits its use for optics and optoelectronics. As a result alternatives semiconductor such as III-V and II-VI materials are used to address a broad range of complementary application such as LED, laser diode and photodiode. However in the infrared (IR), the material challenge becomes far more complex.
New IR applications, such as flame detection or night car driving assistance are emerging and request low cost detectors. Current technologies, based on epitaxially grown semiconductors are unlikely to bring a cost disruption and organic electronics, often viewed as the alternative to silicon based materials is ineffective in the mid-IR. The blackQD project aims at transforming colloidal quantum dots (CQD) into the next generation of active material for IR detection. CQD are attracting a high interest because of their size tunable optical features and next challenges is their integration in optoelectronic devices and in particular for IR features.
The project requires a combination of material knowledge, with clean room nanofabrication and IR photoconduction which is unique in Europe. I organize blackQD in three mains parts. The first part relates to the growth of mercury chalcogenides nanocrystals with unique tunable properties in the mid and far-IR. To design devices with enhanced properties, more needs to be known on the electronic structure of these nanomaterials. In part II, I propose to develop original methods to probe static and dynamic aspects of the electronic structure. Finally the main task of the project relates to the design of a new generation of transistors and IR detectors. I propose several geometries of demonstrator which for the first time integrate from the beginning the colloidal nature of the CQD and constrain of IR photodetection. The project more generally aims to develop a tool box for the design of the next generation of low cost IR.
Max ERC Funding
1 499 903 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym BRAINCANNABINOIDS
Project Understanding the molecular blueprint and functional complexity of the endocannabinoid metabolome in the brain
Researcher (PI) István Katona
Host Institution (HI) INSTITUTE OF EXPERIMENTAL MEDICINE - HUNGARIAN ACADEMY OF SCIENCES
Call Details Starting Grant (StG), LS5, ERC-2009-StG
Summary We and others have recently delineated the molecular architecture of a new feedback pathway in brain synapses, which operates as a synaptic circuit breaker. This pathway is supposed to use a group of lipid messengers as retrograde synaptic signals, the so-called endocannabinoids. Although heterogeneous in their chemical structures, these molecules along with the psychoactive compound in cannabis are thought to target the same effector in the brain, the CB1 receptor. However, the molecular catalog of these bioactive lipids and their metabolic enzymes has been expanding rapidly by recent advances in lipidomics and proteomics raising the possibility that these lipids may also serve novel, yet unidentified physiological functions. Thus, the overall aim of our research program is to define the molecular and anatomical organization of these endocannabinoid-mediated pathways and to determine their functional significance. In the present proposal, we will focus on understanding how these novel pathways regulate synaptic and extrasynaptic signaling in hippocampal neurons. Using combination of lipidomic, genetic and high-resolution anatomical approaches, we will identify distinct chemical species of endocannabinoids and will show how their metabolic enzymes are segregated into different subcellular compartments in cell type- and synapse-specific manner. Subsequently, we will use genetically encoded gain-of-function, loss-of-function and reporter constructs in imaging experiments and electrophysiological recordings to gain insights into the diverse tasks that these new pathways serve in synaptic transmission and extrasynaptic signal processing. Our proposed experiments will reveal fundamental principles of intercellular and intracellular endocannabinoid signaling in the brain.
Summary
We and others have recently delineated the molecular architecture of a new feedback pathway in brain synapses, which operates as a synaptic circuit breaker. This pathway is supposed to use a group of lipid messengers as retrograde synaptic signals, the so-called endocannabinoids. Although heterogeneous in their chemical structures, these molecules along with the psychoactive compound in cannabis are thought to target the same effector in the brain, the CB1 receptor. However, the molecular catalog of these bioactive lipids and their metabolic enzymes has been expanding rapidly by recent advances in lipidomics and proteomics raising the possibility that these lipids may also serve novel, yet unidentified physiological functions. Thus, the overall aim of our research program is to define the molecular and anatomical organization of these endocannabinoid-mediated pathways and to determine their functional significance. In the present proposal, we will focus on understanding how these novel pathways regulate synaptic and extrasynaptic signaling in hippocampal neurons. Using combination of lipidomic, genetic and high-resolution anatomical approaches, we will identify distinct chemical species of endocannabinoids and will show how their metabolic enzymes are segregated into different subcellular compartments in cell type- and synapse-specific manner. Subsequently, we will use genetically encoded gain-of-function, loss-of-function and reporter constructs in imaging experiments and electrophysiological recordings to gain insights into the diverse tasks that these new pathways serve in synaptic transmission and extrasynaptic signal processing. Our proposed experiments will reveal fundamental principles of intercellular and intracellular endocannabinoid signaling in the brain.
Max ERC Funding
1 638 000 €
Duration
Start date: 2009-11-01, End date: 2014-10-31
Project acronym BrainConquest
Project Boosting Brain-Computer Communication with high Quality User Training
Researcher (PI) Fabien LOTTE
Host Institution (HI) INSTITUT NATIONAL DE RECHERCHE ENINFORMATIQUE ET AUTOMATIQUE
Call Details Starting Grant (StG), PE7, ERC-2016-STG
Summary Brain-Computer Interfaces (BCIs) are communication systems that enable users to send commands to computers through brain signals only, by measuring and processing these signals. Making computer control possible without any physical activity, BCIs have promised to revolutionize many application areas, notably assistive technologies, e.g., for wheelchair control, and human-machine interaction. Despite this promising potential, BCIs are still barely used outside laboratories, due to their current poor reliability. For instance, BCIs only using two imagined hand movements as mental commands decode, on average, less than 80% of these commands correctly, while 10 to 30% of users cannot control a BCI at all.
A BCI should be considered a co-adaptive communication system: its users learn to encode commands in their brain signals (with mental imagery) that the machine learns to decode using signal processing. Most research efforts so far have been dedicated to decoding the commands. However, BCI control is a skill that users have to learn too. Unfortunately how BCI users learn to encode the commands is essential but is barely studied, i.e., fundamental knowledge about how users learn BCI control is lacking. Moreover standard training approaches are only based on heuristics, without satisfying human learning principles. Thus, poor BCI reliability is probably largely due to highly suboptimal user training.
In order to obtain a truly reliable BCI we need to completely redefine user training approaches. To do so, I propose to study and statistically model how users learn to encode BCI commands. Then, based on human learning principles and this model, I propose to create a new generation of BCIs which ensure that users learn how to successfully encode commands with high signal-to-noise ratio in their brain signals, hence making BCIs dramatically more reliable. Such a reliable BCI could positively change human-machine interaction as BCIs have promised but failed to do so far.
Summary
Brain-Computer Interfaces (BCIs) are communication systems that enable users to send commands to computers through brain signals only, by measuring and processing these signals. Making computer control possible without any physical activity, BCIs have promised to revolutionize many application areas, notably assistive technologies, e.g., for wheelchair control, and human-machine interaction. Despite this promising potential, BCIs are still barely used outside laboratories, due to their current poor reliability. For instance, BCIs only using two imagined hand movements as mental commands decode, on average, less than 80% of these commands correctly, while 10 to 30% of users cannot control a BCI at all.
A BCI should be considered a co-adaptive communication system: its users learn to encode commands in their brain signals (with mental imagery) that the machine learns to decode using signal processing. Most research efforts so far have been dedicated to decoding the commands. However, BCI control is a skill that users have to learn too. Unfortunately how BCI users learn to encode the commands is essential but is barely studied, i.e., fundamental knowledge about how users learn BCI control is lacking. Moreover standard training approaches are only based on heuristics, without satisfying human learning principles. Thus, poor BCI reliability is probably largely due to highly suboptimal user training.
In order to obtain a truly reliable BCI we need to completely redefine user training approaches. To do so, I propose to study and statistically model how users learn to encode BCI commands. Then, based on human learning principles and this model, I propose to create a new generation of BCIs which ensure that users learn how to successfully encode commands with high signal-to-noise ratio in their brain signals, hence making BCIs dramatically more reliable. Such a reliable BCI could positively change human-machine interaction as BCIs have promised but failed to do so far.
Max ERC Funding
1 498 751 €
Duration
Start date: 2017-07-01, End date: 2022-06-30
Project acronym BrainDyn
Project Tracking information flow in the brain: A unified and general framework for dynamic communication in brain networks
Researcher (PI) Mathilde BONNEFOND
Host Institution (HI) INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
Call Details Starting Grant (StG), LS5, ERC-2016-STG
Summary The brain is composed of a set of areas specialized in specific computations whose outputs need to be transferred to other specialized areas for cognition to emerge. To account for context-dependent behaviors, the information has to be flexibly routed through the fixed anatomy of the brain. The aim of my proposal is to test a general framework for flexible communication between brain areas based on nested oscillations which I recently developed. The general idea is that internally-driven slow oscillations (<20Hz) either set-up or prevent the communication between brain areas. Stimulus-driven gamma oscillations (>30Hz), nested in the slow oscillations, can then be directed to task-relevant areas of the network. I plan to use a multimodal, multi-scale and transversal (human and monkey) approach in experiments manipulating visual processing, attention and memory to test core predictions of my framework. The theoretical approach and the methodological development used in my project will provide the basis for future fundamental and clinical research.
Summary
The brain is composed of a set of areas specialized in specific computations whose outputs need to be transferred to other specialized areas for cognition to emerge. To account for context-dependent behaviors, the information has to be flexibly routed through the fixed anatomy of the brain. The aim of my proposal is to test a general framework for flexible communication between brain areas based on nested oscillations which I recently developed. The general idea is that internally-driven slow oscillations (<20Hz) either set-up or prevent the communication between brain areas. Stimulus-driven gamma oscillations (>30Hz), nested in the slow oscillations, can then be directed to task-relevant areas of the network. I plan to use a multimodal, multi-scale and transversal (human and monkey) approach in experiments manipulating visual processing, attention and memory to test core predictions of my framework. The theoretical approach and the methodological development used in my project will provide the basis for future fundamental and clinical research.
Max ERC Funding
1 333 718 €
Duration
Start date: 2017-02-01, End date: 2022-01-31
Project acronym BrainInBrain
Project Neural circuits underlying complex brain function across animals - from conserved core concepts to specializations defining a species’ identity
Researcher (PI) Stanley HEINZE
Host Institution (HI) LUNDS UNIVERSITET
Call Details Starting Grant (StG), LS5, ERC-2016-STG
Summary The core function of all brains is to compute the current state of the world, compare it to the desired state of the world and select motor programs that drive behavior minimizing any mismatch. The circuits underlying these functions are the key to understand brains in general, but so far they are completely unknown. Three problems have hindered progress: 1) The animal’s desired state of the world is rarely known. 2) Most studies in simple models have focused on sensory driven, reflex-like processes, and not considered self-initiated behavior. 3) The circuits underlying complex behaviors in vertebrates are widely distributed, containing millions of neurons. With this proposal I aim at overcoming these problems using insects, whose tiny brains solve the same basic problems as our brains but with 100,000 times fewer cells. Moreover, the central complex, a single conserved brain region consisting of only a few thousand neurons, is crucial for sensory integration, motor control and state-dependent modulation, essentially being a ‘brain in the brain’. To simplify the problem further I will focus on navigation behavior. Here, the desired and actual states of the world are equal to the desired and current headings of the animal, with mismatches resulting in compensatory steering. I have previously shown how the central complex encodes the animal’s current heading. Now I will use behavioral training to generate animals with highly defined desired headings, and correlate neural activity with the animal’s ‘intentions’ and actions - at the level of identified neurons. To establish the involved conserved core circuitry valid across insects I will compare species with distinct lifestyles. Secondly, I will reveal how these circuits have evolved to account for each species’ unique ecology. The proposed work will provide a coherent framework to study key concepts of fundamental brain functions in unprecedented detail - using a single, conserved, but flexible neural circuit.
Summary
The core function of all brains is to compute the current state of the world, compare it to the desired state of the world and select motor programs that drive behavior minimizing any mismatch. The circuits underlying these functions are the key to understand brains in general, but so far they are completely unknown. Three problems have hindered progress: 1) The animal’s desired state of the world is rarely known. 2) Most studies in simple models have focused on sensory driven, reflex-like processes, and not considered self-initiated behavior. 3) The circuits underlying complex behaviors in vertebrates are widely distributed, containing millions of neurons. With this proposal I aim at overcoming these problems using insects, whose tiny brains solve the same basic problems as our brains but with 100,000 times fewer cells. Moreover, the central complex, a single conserved brain region consisting of only a few thousand neurons, is crucial for sensory integration, motor control and state-dependent modulation, essentially being a ‘brain in the brain’. To simplify the problem further I will focus on navigation behavior. Here, the desired and actual states of the world are equal to the desired and current headings of the animal, with mismatches resulting in compensatory steering. I have previously shown how the central complex encodes the animal’s current heading. Now I will use behavioral training to generate animals with highly defined desired headings, and correlate neural activity with the animal’s ‘intentions’ and actions - at the level of identified neurons. To establish the involved conserved core circuitry valid across insects I will compare species with distinct lifestyles. Secondly, I will reveal how these circuits have evolved to account for each species’ unique ecology. The proposed work will provide a coherent framework to study key concepts of fundamental brain functions in unprecedented detail - using a single, conserved, but flexible neural circuit.
Max ERC Funding
1 500 000 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym BrainNanoFlow
Project Nanoscale dynamics in the extracellular space of the brain in vivo
Researcher (PI) Juan Alberto VARELA
Host Institution (HI) THE UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS
Call Details Starting Grant (StG), LS5, ERC-2018-STG
Summary Aggregates of proteins such as amyloid-beta and alpha-synuclein circulate the extracellular space of the brain (ECS) and are thought to be key players in the development of neurodegenerative diseases. The clearance of these aggregates (among other toxic metabolites) is a fundamental physiological feature of the brain which is poorly understood due to the lack of techniques to study the nanoscale organisation of the ECS. Exciting advances in this field have recently shown that clearance is enhanced during sleep due to a major volume change in the ECS, facilitating the flow of the interstitial fluid. However, this process has only been characterised at a low spatial resolution while the physiological changes occur at the nanoscale. The recently proposed “glymphatic” pathway still remains controversial, as there are no techniques capable of distinguishing between diffusion and bulk flow in the ECS of living animals. Understanding these processes at a higher spatial resolution requires the development of single-molecule imaging techniques that can study the brain in living animals. Taking advantage of the strategies I have recently developed to target single-molecules in the brain in vivo with nanoparticles, we will do “nanoscopy” in living animals. Our proposal will test the glymphatic pathway at the spatial scale in which events happen, and explore how sleep and wake cycles alter the ECS and the diffusion of receptors in neuronal plasma membrane. Overall, BrainNanoFlow aims to understand how nanoscale changes in the ECS facilitate clearance of protein aggregates. We will also provide new insights to the pathological consequences of impaired clearance, focusing on the interactions between these aggregates and their putative receptors. Being able to perform single-molecule studies in vivo in the brain will be a major breakthrough in neurobiology, making possible the study of physiological and pathological processes that cannot be studied in simpler brain preparations.
Summary
Aggregates of proteins such as amyloid-beta and alpha-synuclein circulate the extracellular space of the brain (ECS) and are thought to be key players in the development of neurodegenerative diseases. The clearance of these aggregates (among other toxic metabolites) is a fundamental physiological feature of the brain which is poorly understood due to the lack of techniques to study the nanoscale organisation of the ECS. Exciting advances in this field have recently shown that clearance is enhanced during sleep due to a major volume change in the ECS, facilitating the flow of the interstitial fluid. However, this process has only been characterised at a low spatial resolution while the physiological changes occur at the nanoscale. The recently proposed “glymphatic” pathway still remains controversial, as there are no techniques capable of distinguishing between diffusion and bulk flow in the ECS of living animals. Understanding these processes at a higher spatial resolution requires the development of single-molecule imaging techniques that can study the brain in living animals. Taking advantage of the strategies I have recently developed to target single-molecules in the brain in vivo with nanoparticles, we will do “nanoscopy” in living animals. Our proposal will test the glymphatic pathway at the spatial scale in which events happen, and explore how sleep and wake cycles alter the ECS and the diffusion of receptors in neuronal plasma membrane. Overall, BrainNanoFlow aims to understand how nanoscale changes in the ECS facilitate clearance of protein aggregates. We will also provide new insights to the pathological consequences of impaired clearance, focusing on the interactions between these aggregates and their putative receptors. Being able to perform single-molecule studies in vivo in the brain will be a major breakthrough in neurobiology, making possible the study of physiological and pathological processes that cannot be studied in simpler brain preparations.
Max ERC Funding
1 552 948 €
Duration
Start date: 2018-12-01, End date: 2023-11-30
Project acronym BrainReadFBPredCode
Project Brain reading of contextual feedback and predictions
Researcher (PI) Lars Muckli
Host Institution (HI) UNIVERSITY OF GLASGOW
Call Details Starting Grant (StG), LS5, ERC-2012-StG_20111109
Summary We are currently witnessing a paradigm shift in our understanding of human brain function, moving towards a clearer description of cortical processing. Sensory systems are no longer considered as 'passively recording' but rather as dynamically anticipating and adapting to the rapidly changing environment. These new ideas are encompassed in the predictive coding framework, and indeed in a unifying theory of the brain (Friston, 2010). In terms of brain computation, a predictive model is created in higher cortical areas and communicated to lower sensory areas through feedback connections. Based on my pioneering research I propose experiments that are capable of ‘brain-reading’ cortical feedback– which would contribute invaluable data to theoretical frameworks.
The proposed research project will advance our understanding of ongoing brain activity, contextual processing, and cortical feedback - contributing to what is known about general cortical functions. By providing new insights as to the information content of cortical feedback, the proposal will fill one of the most important gaps in today’s knowledge about brain function. Friston’s unifying theory of the brain (Friston, 2010) and contemporary models of the predictive-coding framework (Hawkins and Blakeslee, 2004;Mumford, 1992;Rao and Ballard, 1999) assign feedback processing an essential role in cortical processing. Compared to feedforward information processing, our knowledge about feedback processing is in its infancy. The proposal introduces parametric and explorative brain reading designs to investigate this feedback processing. The chief goal of my proposal will be precision measures of cortical feedback, and a more ambitious objective is to read mental images and inner thoughts.
Summary
We are currently witnessing a paradigm shift in our understanding of human brain function, moving towards a clearer description of cortical processing. Sensory systems are no longer considered as 'passively recording' but rather as dynamically anticipating and adapting to the rapidly changing environment. These new ideas are encompassed in the predictive coding framework, and indeed in a unifying theory of the brain (Friston, 2010). In terms of brain computation, a predictive model is created in higher cortical areas and communicated to lower sensory areas through feedback connections. Based on my pioneering research I propose experiments that are capable of ‘brain-reading’ cortical feedback– which would contribute invaluable data to theoretical frameworks.
The proposed research project will advance our understanding of ongoing brain activity, contextual processing, and cortical feedback - contributing to what is known about general cortical functions. By providing new insights as to the information content of cortical feedback, the proposal will fill one of the most important gaps in today’s knowledge about brain function. Friston’s unifying theory of the brain (Friston, 2010) and contemporary models of the predictive-coding framework (Hawkins and Blakeslee, 2004;Mumford, 1992;Rao and Ballard, 1999) assign feedback processing an essential role in cortical processing. Compared to feedforward information processing, our knowledge about feedback processing is in its infancy. The proposal introduces parametric and explorative brain reading designs to investigate this feedback processing. The chief goal of my proposal will be precision measures of cortical feedback, and a more ambitious objective is to read mental images and inner thoughts.
Max ERC Funding
1 494 714 €
Duration
Start date: 2012-12-01, End date: 2017-11-30
Project acronym BRAINSHAPE
Project Objects in sight: the neural basis of visuomotor transformations for actions towards objects
Researcher (PI) Peter Anna J Janssen
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Starting Grant (StG), LS5, ERC-2010-StG_20091118
Summary Humans and other primates possess an exquisite capacity to grasp and manipulate objects. The seemingly effortless interaction with objects in everyday life is subserved by a number of cortical areas of the visual and the motor system. Recent research has highlighted that dorsal stream areas in the posterior parietal cortex are involved in object processing. Because parietal lesions do not impair object recognition, the encoding of object shape in posterior parietal cortex is considered to be important for the planning of actions towards objects. In order to succesfully grasp an object, the complex pattern of visual information impinging on the retina has to be transformed into a motor plan that can control the muscle contractions. The neural basis of visuomotor transformations necessary for directing actions towards objects, however, has remained largely unknown. This proposal aims to unravel the pathways and mechanisms involved in programming actions towards objects - an essential capacity for our very survival. We envision an integrated approach to study the transformation of visual information into motor commands in the macaque brain, combining functional imaging, single-cell recording, microstimulation and reversible inactivation. Our research efforts will be focussed on parietal area AIP and premotor area F5, two key brain areas for visually-guided grasping. Above all, this proposal will move beyond purely descriptive measurements of neural activity by implementing manipulations of brain activity to reveal behavioral effects and interdependencies of cortical areas. Finally the data obtained in this project will pave the way to use the neural activity recorded in visuomotor areas to act upon the environment by grasping objects by means of a robot hand.
Summary
Humans and other primates possess an exquisite capacity to grasp and manipulate objects. The seemingly effortless interaction with objects in everyday life is subserved by a number of cortical areas of the visual and the motor system. Recent research has highlighted that dorsal stream areas in the posterior parietal cortex are involved in object processing. Because parietal lesions do not impair object recognition, the encoding of object shape in posterior parietal cortex is considered to be important for the planning of actions towards objects. In order to succesfully grasp an object, the complex pattern of visual information impinging on the retina has to be transformed into a motor plan that can control the muscle contractions. The neural basis of visuomotor transformations necessary for directing actions towards objects, however, has remained largely unknown. This proposal aims to unravel the pathways and mechanisms involved in programming actions towards objects - an essential capacity for our very survival. We envision an integrated approach to study the transformation of visual information into motor commands in the macaque brain, combining functional imaging, single-cell recording, microstimulation and reversible inactivation. Our research efforts will be focussed on parietal area AIP and premotor area F5, two key brain areas for visually-guided grasping. Above all, this proposal will move beyond purely descriptive measurements of neural activity by implementing manipulations of brain activity to reveal behavioral effects and interdependencies of cortical areas. Finally the data obtained in this project will pave the way to use the neural activity recorded in visuomotor areas to act upon the environment by grasping objects by means of a robot hand.
Max ERC Funding
1 499 200 €
Duration
Start date: 2010-11-01, End date: 2015-10-31
Project acronym BRAINSIGNALS
Project Optical dissection of circuits underlying fast cholinergic signalling during cognitive behaviour
Researcher (PI) Huibert Mansvelder
Host Institution (HI) STICHTING VU
Call Details Starting Grant (StG), LS5, ERC-2011-StG_20101109
Summary Our ability to think, to memorize and focus our thoughts depends on acetylcholine signaling in the brain. The loss of cholinergic signalling in for instance Alzheimer’s disease strongly compromises these cognitive abilities. The traditional view on the role of cholinergic input to the neocortex is that slowly changing levels of extracellular acetylcholine (ACh) mediate different arousal states. This view has been challenged by recent studies demonstrating that rapid phasic changes in ACh levels at the scale of seconds are correlated with focus of attention, suggesting that these signals may mediate defined cognitive operations. Despite a wealth of anatomical data on the organization of the cholinergic system, very little understanding exists on its functional organization. How the relatively sparse input of cholinergic transmission in the prefrontal cortex elicits such a profound and specific control over attention is unknown. The main objective of this proposal is to develop a causal understanding of how cellular mechanisms of fast acetylcholine signalling are orchestrated during cognitive behaviour.
In a series of studies, I have identified several synaptic and cellular mechanisms by which the cholinergic system can alter neuronal circuitry function, both in cortical and subcortical areas. I have used a combination of behavioral, physiological and genetic methods in which I manipulated cholinergic receptor functionality in prefrontal cortex in a subunit specific manner and found that ACh receptors in the prefrontal cortex control attention performance. Recent advances in optogenetic and electrochemical methods now allow to rapidly manipulate and measure acetylcholine levels in freely moving, behaving animals. Using these techniques, I aim to uncover which cholinergic neurons are involved in fast cholinergic signaling during cognition and uncover the underlying neuronal mechanisms that alter prefrontal cortical network function.
Summary
Our ability to think, to memorize and focus our thoughts depends on acetylcholine signaling in the brain. The loss of cholinergic signalling in for instance Alzheimer’s disease strongly compromises these cognitive abilities. The traditional view on the role of cholinergic input to the neocortex is that slowly changing levels of extracellular acetylcholine (ACh) mediate different arousal states. This view has been challenged by recent studies demonstrating that rapid phasic changes in ACh levels at the scale of seconds are correlated with focus of attention, suggesting that these signals may mediate defined cognitive operations. Despite a wealth of anatomical data on the organization of the cholinergic system, very little understanding exists on its functional organization. How the relatively sparse input of cholinergic transmission in the prefrontal cortex elicits such a profound and specific control over attention is unknown. The main objective of this proposal is to develop a causal understanding of how cellular mechanisms of fast acetylcholine signalling are orchestrated during cognitive behaviour.
In a series of studies, I have identified several synaptic and cellular mechanisms by which the cholinergic system can alter neuronal circuitry function, both in cortical and subcortical areas. I have used a combination of behavioral, physiological and genetic methods in which I manipulated cholinergic receptor functionality in prefrontal cortex in a subunit specific manner and found that ACh receptors in the prefrontal cortex control attention performance. Recent advances in optogenetic and electrochemical methods now allow to rapidly manipulate and measure acetylcholine levels in freely moving, behaving animals. Using these techniques, I aim to uncover which cholinergic neurons are involved in fast cholinergic signaling during cognition and uncover the underlying neuronal mechanisms that alter prefrontal cortical network function.
Max ERC Funding
1 499 242 €
Duration
Start date: 2011-11-01, End date: 2016-10-31
Project acronym BRAINSTATES
Project Brain states, synapses and behaviour
Researcher (PI) James Poulet
Host Institution (HI) MAX DELBRUECK CENTRUM FUER MOLEKULARE MEDIZIN IN DER HELMHOLTZ-GEMEINSCHAFT (MDC)
Call Details Starting Grant (StG), LS5, ERC-2010-StG_20091118
Summary Global changes in patterns of neuronal activity or brain state are the first phenomenon recorded in the awake human brain (1). Changes in brain state are present in recordings of neocortical activity from mouse to man. It is now thought that changes in brain state are fundamental to normal brain function and neuronal computation. Despite their importance, we have very little idea about the underlying neuronal mechanisms that generate them or their precise impact on neuronal processing and behaviour. In previous work we have characterised brain state changes in a well characterised model for neuroscience research the mouse whisker system. We have recorded changes in the brain state in mouse cortex during whisker movements (2). In this proposal, we aim to use the mouse whisker system further to investigate the mechanisms and functions of changes in brain state. First we will use state of the art techniques to record and manipulate neuronal activity in the awake, behaving mouse to investigate the network and cellular mechanisms involved in generating brain state. Second we will use 2-photon microscopy to investigate the impact of brain state on excitatory and inhibitory synaptic integration in vivo. Finally we will use behaviourally trained mice to measure the impact of brain state changes on sensory perception and behaviour. This proposal will therefore provide fundamental insights into brain function at every step: mechanisms of changes in brain state, how neurons communicate with eachother and how the brain controls sensory perception and behaviour.
References
1 Berger H (1929) Archiv für Psychiatrie und Nervenkrankheiten 87:527-570.
2 Poulet JFA, Petersen CC (2008) Nature 454:881-885.
Summary
Global changes in patterns of neuronal activity or brain state are the first phenomenon recorded in the awake human brain (1). Changes in brain state are present in recordings of neocortical activity from mouse to man. It is now thought that changes in brain state are fundamental to normal brain function and neuronal computation. Despite their importance, we have very little idea about the underlying neuronal mechanisms that generate them or their precise impact on neuronal processing and behaviour. In previous work we have characterised brain state changes in a well characterised model for neuroscience research the mouse whisker system. We have recorded changes in the brain state in mouse cortex during whisker movements (2). In this proposal, we aim to use the mouse whisker system further to investigate the mechanisms and functions of changes in brain state. First we will use state of the art techniques to record and manipulate neuronal activity in the awake, behaving mouse to investigate the network and cellular mechanisms involved in generating brain state. Second we will use 2-photon microscopy to investigate the impact of brain state on excitatory and inhibitory synaptic integration in vivo. Finally we will use behaviourally trained mice to measure the impact of brain state changes on sensory perception and behaviour. This proposal will therefore provide fundamental insights into brain function at every step: mechanisms of changes in brain state, how neurons communicate with eachother and how the brain controls sensory perception and behaviour.
References
1 Berger H (1929) Archiv für Psychiatrie und Nervenkrankheiten 87:527-570.
2 Poulet JFA, Petersen CC (2008) Nature 454:881-885.
Max ERC Funding
1 463 125 €
Duration
Start date: 2011-02-01, End date: 2016-01-31
Project acronym BRAINVISIONREHAB
Project ‘Seeing’ with the ears, hands and bionic eyes: from theories about brain organization to visual rehabilitation
Researcher (PI) Amir Amedi
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Starting Grant (StG), LS5, ERC-2012-StG_20111109
Summary My lab's work ranges from basic science, querying brain plasticity and sensory integration, to technological developments, allowing the blind to be more independent and even “see” using sounds and touch similar to bats and dolphins (a.k.a. Sensory Substitution Devices, SSDs), and back to applying these devices in research. We propose that, with proper training, any brain area or network can change the type of sensory input it uses to retrieve behaviorally task-relevant information within a matter of days. If this is true, it can have far reaching implications also for clinical rehabilitation. To achieve this, we are developing several innovative SSDs which encode the most crucial aspects of vision and increase their accessibility the blind, along with targeted, structured training protocols both in virtual environments and in real life. For instance, the “EyeMusic”, encodes colored complex images using pleasant musical scales and instruments, and the “EyeCane”, a palm-size cane, which encodes distance and depth in several directions accurately and efficiently. We provide preliminary but compelling evidence that following such training, SSDs can enable almost blind to recognize daily objects, colors, faces and facial expressions, read street signs, and aiding mobility and navigation. SSDs can also be used in conjunction with (any) invasive approach for visual rehabilitation. We are developing a novel hybrid Visual Rehabilitation Device which combines SSD and bionic eyes. In this set up, the SSDs is used in training the brain to “see” prior to surgery, in providing explanatory signal after surgery and in augmenting the capabilities of the bionic-eyes using information arriving from the same image. We will chart the dynamics of the plastic changes in the brain by performing unprecedented longitudinal Neuroimaging, Electrophysiological and Neurodisruptive approaches while individuals learn to ‘see’ using each of the visual rehabilitation approaches suggested here.
Summary
My lab's work ranges from basic science, querying brain plasticity and sensory integration, to technological developments, allowing the blind to be more independent and even “see” using sounds and touch similar to bats and dolphins (a.k.a. Sensory Substitution Devices, SSDs), and back to applying these devices in research. We propose that, with proper training, any brain area or network can change the type of sensory input it uses to retrieve behaviorally task-relevant information within a matter of days. If this is true, it can have far reaching implications also for clinical rehabilitation. To achieve this, we are developing several innovative SSDs which encode the most crucial aspects of vision and increase their accessibility the blind, along with targeted, structured training protocols both in virtual environments and in real life. For instance, the “EyeMusic”, encodes colored complex images using pleasant musical scales and instruments, and the “EyeCane”, a palm-size cane, which encodes distance and depth in several directions accurately and efficiently. We provide preliminary but compelling evidence that following such training, SSDs can enable almost blind to recognize daily objects, colors, faces and facial expressions, read street signs, and aiding mobility and navigation. SSDs can also be used in conjunction with (any) invasive approach for visual rehabilitation. We are developing a novel hybrid Visual Rehabilitation Device which combines SSD and bionic eyes. In this set up, the SSDs is used in training the brain to “see” prior to surgery, in providing explanatory signal after surgery and in augmenting the capabilities of the bionic-eyes using information arriving from the same image. We will chart the dynamics of the plastic changes in the brain by performing unprecedented longitudinal Neuroimaging, Electrophysiological and Neurodisruptive approaches while individuals learn to ‘see’ using each of the visual rehabilitation approaches suggested here.
Max ERC Funding
1 499 900 €
Duration
Start date: 2013-09-01, End date: 2018-08-31
Project acronym BUCOPHSYS
Project Bottom-up hybrid control and planning synthesis with application to multi-robot multi-human coordination
Researcher (PI) DIMOS Dimarogonas
Host Institution (HI) KUNGLIGA TEKNISKA HOEGSKOLAN
Call Details Starting Grant (StG), PE7, ERC-2014-STG
Summary Current control applications necessitate the treatment of systems with multiple interconnected components, rather than the traditional single component paradigm that has been studied extensively. The individual subsystems may need to fulfil different and possibly conflicting specifications in a real-time manner. At the same time, they may need to fulfill coupled constraints that are defined as relations between their states. Towards this end, the need for methods for decentralized control at the continuous level and planning at the task level becomes apparent. We aim here towards unification of these two complementary approaches. Existing solutions rely on a top down centralized approach. We instead consider here a decentralized, bottom-up solution to the problem. The approach relies on three layers of interaction. In the first layer, agents aim at coordinating in order to fulfil their coupled constraints with limited communication exchange of their state information and design of appropriate feedback controllers; in the second layer, agents coordinate in order to mutually satisfy their discrete tasks through exchange of the corresponding plans in the form of automata; in the third and most challenging layer, the communication exchange for coordination now includes both continuous state and discrete plan/abstraction information. The results will be demonstrated in a scenario involving multiple (possibly human) users and multiple robots.
The unification will yield a completely decentralized system, in which the bottom up approach to define tasks, the consideration of coupled constraints and their combination towards distributed hybrid control and planning in a coordinated fashion require for
new ways of thinking and approaches to analysis and constitute the proposal a beyond the SoA and groundbreaking approach to the fields of control and computer science.
Summary
Current control applications necessitate the treatment of systems with multiple interconnected components, rather than the traditional single component paradigm that has been studied extensively. The individual subsystems may need to fulfil different and possibly conflicting specifications in a real-time manner. At the same time, they may need to fulfill coupled constraints that are defined as relations between their states. Towards this end, the need for methods for decentralized control at the continuous level and planning at the task level becomes apparent. We aim here towards unification of these two complementary approaches. Existing solutions rely on a top down centralized approach. We instead consider here a decentralized, bottom-up solution to the problem. The approach relies on three layers of interaction. In the first layer, agents aim at coordinating in order to fulfil their coupled constraints with limited communication exchange of their state information and design of appropriate feedback controllers; in the second layer, agents coordinate in order to mutually satisfy their discrete tasks through exchange of the corresponding plans in the form of automata; in the third and most challenging layer, the communication exchange for coordination now includes both continuous state and discrete plan/abstraction information. The results will be demonstrated in a scenario involving multiple (possibly human) users and multiple robots.
The unification will yield a completely decentralized system, in which the bottom up approach to define tasks, the consideration of coupled constraints and their combination towards distributed hybrid control and planning in a coordinated fashion require for
new ways of thinking and approaches to analysis and constitute the proposal a beyond the SoA and groundbreaking approach to the fields of control and computer science.
Max ERC Funding
1 498 729 €
Duration
Start date: 2015-03-01, End date: 2020-02-29
Project acronym BuildNet
Project Smart Building Networks
Researcher (PI) Colin Jones
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Starting Grant (StG), PE7, ERC-2012-StG_20111012
Summary The Smart Building Networks (BuildNet) program will develop optimizing controllers capable of coordinating the flow of power to and from large networks of smart buildings in order to offer critical services to the power grid. The network will make use of the thermal storage of the structures and on-site micro generation capabilities of next-generation buildings, as well as the electrical capacity of attached electric vehicles in order to intelligently control the interaction between the network of buildings and the grid. The wide range of electric utility applications, such as wind capacity firming or congestion relief, that will be possible as a result of this coordinated control will in turn allow a significant increase in the percentage of European power generated from destabilizing renewable sources.
Technologically, BuildNet will be built around optimization-based or model predictive control (MPC), a paradigm that is ideally suited to the task of incorporating the current network state and forward-looking information into an optimal decision-making process. The project team will develop novel distributed MPC controllers that utilize the flexibility in the consumption, storage and generation of a distributed network of buildings by exploiting the extensive experience of the PI in optimization-based control and MPC for energy efficient buildings.
Because of its theoretically grounded optimization-based control approach, holistic view of building systems and connected networks, as well as a future-looking technological scope, BuildNet's outputs will deliver impact and be relevant to researchers and practitioners alike.
Summary
The Smart Building Networks (BuildNet) program will develop optimizing controllers capable of coordinating the flow of power to and from large networks of smart buildings in order to offer critical services to the power grid. The network will make use of the thermal storage of the structures and on-site micro generation capabilities of next-generation buildings, as well as the electrical capacity of attached electric vehicles in order to intelligently control the interaction between the network of buildings and the grid. The wide range of electric utility applications, such as wind capacity firming or congestion relief, that will be possible as a result of this coordinated control will in turn allow a significant increase in the percentage of European power generated from destabilizing renewable sources.
Technologically, BuildNet will be built around optimization-based or model predictive control (MPC), a paradigm that is ideally suited to the task of incorporating the current network state and forward-looking information into an optimal decision-making process. The project team will develop novel distributed MPC controllers that utilize the flexibility in the consumption, storage and generation of a distributed network of buildings by exploiting the extensive experience of the PI in optimization-based control and MPC for energy efficient buildings.
Because of its theoretically grounded optimization-based control approach, holistic view of building systems and connected networks, as well as a future-looking technological scope, BuildNet's outputs will deliver impact and be relevant to researchers and practitioners alike.
Max ERC Funding
1 460 232 €
Duration
Start date: 2012-12-01, End date: 2017-11-30
Project acronym C.o.C.O.
Project Circuits of con-specific observation
Researcher (PI) Marta De Aragao Pacheco Moita
Host Institution (HI) FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD
Call Details Starting Grant (StG), LS5, ERC-2013-StG
Summary A great deal is known about the neural basis of associative fear learning. However, many animal species are able to use social cues to recognize threats, a defence mechanism that may be less costly than learning from self-experience. We have previously shown that rats perceive the cessation of movement-evoked sound as a signal of danger and its resumption as a signal of safety. To study transmission of fear between rats we assessed the behavior of an observer while witnessing a demonstrator rat display fear responses. With this paradigm we will take advantage of the accumulated knowledge on learned fear to investigate the neural mechanisms by which the social environment regulates defense behaviors. We will unravel the neural circuits involved in detecting the transition from movement-evoked sound to silence. Moreover, since observer rats previously exposed to shock display observational freezing, but naive observer rats do not, we will determine the mechanism by which prior experience contribute to observational freezing. To this end, we will focus on the amygdala, crucial for fear learning and expression, and its auditory inputs, combining immunohistochemistry, pharmacology and optogenetics. Finally, as the detection of and responses to threat are often inherently social, we will study these behaviors in the context of large groups of individuals. To circumvent the serious limitations in using large populations of rats, we will resort to a different model system. The fruit fly is the ideal model system, as it is both amenable to the search for the neural mechanism of behavior, while at the same time allowing the study of the behavior of large groups of individuals. We will develop behavioral tasks, where conditioned demonstrator flies signal danger to other naïve ones. These experiments unravel how the brain uses defense behaviors as signals of danger and how it contributes to defense mechanisms at the population level.
Summary
A great deal is known about the neural basis of associative fear learning. However, many animal species are able to use social cues to recognize threats, a defence mechanism that may be less costly than learning from self-experience. We have previously shown that rats perceive the cessation of movement-evoked sound as a signal of danger and its resumption as a signal of safety. To study transmission of fear between rats we assessed the behavior of an observer while witnessing a demonstrator rat display fear responses. With this paradigm we will take advantage of the accumulated knowledge on learned fear to investigate the neural mechanisms by which the social environment regulates defense behaviors. We will unravel the neural circuits involved in detecting the transition from movement-evoked sound to silence. Moreover, since observer rats previously exposed to shock display observational freezing, but naive observer rats do not, we will determine the mechanism by which prior experience contribute to observational freezing. To this end, we will focus on the amygdala, crucial for fear learning and expression, and its auditory inputs, combining immunohistochemistry, pharmacology and optogenetics. Finally, as the detection of and responses to threat are often inherently social, we will study these behaviors in the context of large groups of individuals. To circumvent the serious limitations in using large populations of rats, we will resort to a different model system. The fruit fly is the ideal model system, as it is both amenable to the search for the neural mechanism of behavior, while at the same time allowing the study of the behavior of large groups of individuals. We will develop behavioral tasks, where conditioned demonstrator flies signal danger to other naïve ones. These experiments unravel how the brain uses defense behaviors as signals of danger and how it contributes to defense mechanisms at the population level.
Max ERC Funding
1 412 376 €
Duration
Start date: 2013-12-01, End date: 2018-11-30
Project acronym C3ENV
Project Combinatorial Computational Chemistry A new field to tackle environmental problems
Researcher (PI) Thomas Heine
Host Institution (HI) JACOBS UNIVERSITY BREMEN GGMBH
Call Details Starting Grant (StG), PE4, ERC-2010-StG_20091028
Summary Combinatorial Computational Chemistry is developed as a standard tool to tackle complex problems in chemistry and materials science. The method employs a series of state-of-the-art methods, ranging from empirical molecular mechanics to first principles calculations, as well as of mathematical (graph theoretical and combinatorial) methods. The process is similar as in experimental combinatorial chemistry: First, a large set of candidate structures is generated which is complete in the sense that the best possible structure for a particular purpose must be found among the set. This structure is then identified using computational chemistry. We will apply methodologies at different stages in hierarchical order and successively screen the set of candidate structures. Screening criteria are based on the computer simulations and include geometry, stability and properties of the candidate structures. Detailed characteristics of the final materials will be simulated, including the X-ray diffraction pattern, the electronic structure, and the target properties. We will apply C3 to two important problems of environmental science. (i) We will optimise nanoporous materials to act as molecular sieves to separate water from ethanol, an important task for the production of biofuels. Here, materials are optimised to transport ethanol, but not water (or vice versa). The tuning parameters are the channel size of the material and its polarity. (ii) We will optimise nanoporous materials to transport protons, an important task for the design of energy-efficient fuel cells, by distributing flexible functional groups, acting as hopping sites for the protons, in the framework.
Summary
Combinatorial Computational Chemistry is developed as a standard tool to tackle complex problems in chemistry and materials science. The method employs a series of state-of-the-art methods, ranging from empirical molecular mechanics to first principles calculations, as well as of mathematical (graph theoretical and combinatorial) methods. The process is similar as in experimental combinatorial chemistry: First, a large set of candidate structures is generated which is complete in the sense that the best possible structure for a particular purpose must be found among the set. This structure is then identified using computational chemistry. We will apply methodologies at different stages in hierarchical order and successively screen the set of candidate structures. Screening criteria are based on the computer simulations and include geometry, stability and properties of the candidate structures. Detailed characteristics of the final materials will be simulated, including the X-ray diffraction pattern, the electronic structure, and the target properties. We will apply C3 to two important problems of environmental science. (i) We will optimise nanoporous materials to act as molecular sieves to separate water from ethanol, an important task for the production of biofuels. Here, materials are optimised to transport ethanol, but not water (or vice versa). The tuning parameters are the channel size of the material and its polarity. (ii) We will optimise nanoporous materials to transport protons, an important task for the design of energy-efficient fuel cells, by distributing flexible functional groups, acting as hopping sites for the protons, in the framework.
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-02-01, End date: 2016-04-30
Project acronym CARBENZYMES
Project Probing the relevance of carbene binding motifs in enzyme reactivity
Researcher (PI) Martin Albrecht
Host Institution (HI) UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN
Call Details Starting Grant (StG), PE4, ERC-2007-StG
Summary Histidine (His) is an ubiquitous ligand in the active site of metalloenzymes that is assumed by default to bind the metal center through one of its nitrogen atoms. However, protonation of His, which is likely to occur in locally slightly acidic environment, gives imidazolium sites that can bind a metal in a carbene-type structure as found in N-heterocyclic carbene complexes. Such carbene bonding has a dramatic effect on the properties of the metal center and may provide a rational for the mode of action of metalloenzymes that are still lacking a solid understanding. Up to now, the possibility of carbene bonding has been completely overlooked. Hence, any evidence for such His coordination via carbon will induce a shift of paradigm in classical peptide chemistry and will be directly included in basic textbooks. Moreover, this unprecedented bonding mode will provide access to unique and hitherto unknown reactivity patterns for artificial enzyme mimics. Undoubtedly, such a break-through will set a new stage in modern metalloenzyme research. A multicentered approach is proposed to identify for the first time carbene bonding in enzymes. This approach unconventionally combines the current frontiers of organometallic and biochemical knowledge and hence crosses traditional boarders. Specifically, we aim at probing carbene bonding of His by identifying reactivity patterns that are selective for metal-carbenes but not for metal-imine complexes. This will allow for efficient screening of large classes of metalloenzymes. In parallel, active site models will be constructed in which the His ligand is substituted by a heterocyclic carbene as a rigidly C-bonding His analog. For this purpose chemical synthesis will be considered as well as enzyme mutagenesis and subsequent carbene coordination. While such new bioorganometallic entities will be highly attractive to probe the influence of C-bound His on the metal site, they also provide conceputally new types of versatile catalysts.
Summary
Histidine (His) is an ubiquitous ligand in the active site of metalloenzymes that is assumed by default to bind the metal center through one of its nitrogen atoms. However, protonation of His, which is likely to occur in locally slightly acidic environment, gives imidazolium sites that can bind a metal in a carbene-type structure as found in N-heterocyclic carbene complexes. Such carbene bonding has a dramatic effect on the properties of the metal center and may provide a rational for the mode of action of metalloenzymes that are still lacking a solid understanding. Up to now, the possibility of carbene bonding has been completely overlooked. Hence, any evidence for such His coordination via carbon will induce a shift of paradigm in classical peptide chemistry and will be directly included in basic textbooks. Moreover, this unprecedented bonding mode will provide access to unique and hitherto unknown reactivity patterns for artificial enzyme mimics. Undoubtedly, such a break-through will set a new stage in modern metalloenzyme research. A multicentered approach is proposed to identify for the first time carbene bonding in enzymes. This approach unconventionally combines the current frontiers of organometallic and biochemical knowledge and hence crosses traditional boarders. Specifically, we aim at probing carbene bonding of His by identifying reactivity patterns that are selective for metal-carbenes but not for metal-imine complexes. This will allow for efficient screening of large classes of metalloenzymes. In parallel, active site models will be constructed in which the His ligand is substituted by a heterocyclic carbene as a rigidly C-bonding His analog. For this purpose chemical synthesis will be considered as well as enzyme mutagenesis and subsequent carbene coordination. While such new bioorganometallic entities will be highly attractive to probe the influence of C-bound His on the metal site, they also provide conceputally new types of versatile catalysts.
Max ERC Funding
1 249 808 €
Duration
Start date: 2008-07-01, End date: 2013-06-30
Project acronym CATCIR
Project Catalytic Carbene Insertion Reactions; Creating Diversity in (Material) Synthesis
Researcher (PI) Bastiaan (Bas) De Bruin
Host Institution (HI) UNIVERSITEIT VAN AMSTERDAM
Call Details Starting Grant (StG), PE4, ERC-2007-StG
Summary With this proposal the PI capitalises on his recent breakthroughs in transition metal catalysed carbene (migratory) insertion reactions to build up a new research line for controlled catalytic preparation of a variety of new functionalised (co)polymers with expected special material properties. Metallo-carbenes are well-known intermediates in olefin cyclopropanation and olefin metathesis, but the PI recently discovered that their chemistry is far richer. He demonstrated for the first time that metallo-carbenoids can be used in transition metal catalysed insertion polymerisation to arrive at completely new types of stereoregular carbon-chain polymers functionalised at each carbon of the polymer backbone. Rhodium mediated polymerisation of carbenes provides the means to prepare new materials with yet unknown properties. It also provides a valuable alternative to prepare practically identical polymers as in the desirable (but still unachievable) highly stereo-selective (co)polymerisation of functionalised olefins, representing the ‘holey-grail’ in world-wide TM polymerisation catalysis research. The mechanism and scope of this remarkable new discovery will be investigated and new, improved catalysts will be developed for the preparation of novel materials based on homo- and copolymerisation of a variety of carbene precursors. Copolymerisation of carbenes and other reactive monomers will also be investigated and the properties of all new materials will be investigated. In addition the team will try to uncover new reactions in which carbene insertion reactions play a central role. DFT calculations suggest that the transition state (TS) of the new carbene polymerisation reaction is very similar to the TS’s of a variety of carbonyl insertion reactions. Based on this analogy, the team will investigate several new carbene insertion reactions, potentially leading to new, useful polymeric materials and new synthetic routes to prepare small functional organic molecules.
Summary
With this proposal the PI capitalises on his recent breakthroughs in transition metal catalysed carbene (migratory) insertion reactions to build up a new research line for controlled catalytic preparation of a variety of new functionalised (co)polymers with expected special material properties. Metallo-carbenes are well-known intermediates in olefin cyclopropanation and olefin metathesis, but the PI recently discovered that their chemistry is far richer. He demonstrated for the first time that metallo-carbenoids can be used in transition metal catalysed insertion polymerisation to arrive at completely new types of stereoregular carbon-chain polymers functionalised at each carbon of the polymer backbone. Rhodium mediated polymerisation of carbenes provides the means to prepare new materials with yet unknown properties. It also provides a valuable alternative to prepare practically identical polymers as in the desirable (but still unachievable) highly stereo-selective (co)polymerisation of functionalised olefins, representing the ‘holey-grail’ in world-wide TM polymerisation catalysis research. The mechanism and scope of this remarkable new discovery will be investigated and new, improved catalysts will be developed for the preparation of novel materials based on homo- and copolymerisation of a variety of carbene precursors. Copolymerisation of carbenes and other reactive monomers will also be investigated and the properties of all new materials will be investigated. In addition the team will try to uncover new reactions in which carbene insertion reactions play a central role. DFT calculations suggest that the transition state (TS) of the new carbene polymerisation reaction is very similar to the TS’s of a variety of carbonyl insertion reactions. Based on this analogy, the team will investigate several new carbene insertion reactions, potentially leading to new, useful polymeric materials and new synthetic routes to prepare small functional organic molecules.
Max ERC Funding
1 250 000 €
Duration
Start date: 2008-08-01, End date: 2013-07-31
Project acronym CCCAN
Project Characterizing and Controlling Carbon Nanomaterials
Researcher (PI) Janina Maultzsch
Host Institution (HI) TECHNISCHE UNIVERSITAT BERLIN
Call Details Starting Grant (StG), PE4, ERC-2010-StG_20091028
Summary The aim of this project is to understand and control the fundamental physical properties of novel carbon nanomaterials:
carbon nanotubes and graphene. By a combination of complementary methods, i.e. vibrational spectroscopy, scanning probe microscopy, and theoretical modelling, a comprehensive understanding of the electronic, vibrational, optical properties, and their connection with the material’s structure will be obtained. A diagnostics “toolbox” will be established on the materials in
their most unperturbed, ideal states. Taking the results as reference, the materials will be studied under conditions relevant when incorporated into devices. These include imperfections of the materials and interaction with different environments, with other carbon nanotubes/graphene, and with extrinsic materials introduced during device processing. The gained insight and understanding on a fundamental level will also advance technological routes for scaling up carbon-nanomaterial electronic device fabrication, which is still lacking sufficient control over selectivity towards the desired physical properties. Control over the electronic and optical properties will be sought through deliberately induced interactions and chemical functionalization
of the materials. The project benefits from close collaborations between experimental and theoretical physics, chemistry, and materials science.
Summary
The aim of this project is to understand and control the fundamental physical properties of novel carbon nanomaterials:
carbon nanotubes and graphene. By a combination of complementary methods, i.e. vibrational spectroscopy, scanning probe microscopy, and theoretical modelling, a comprehensive understanding of the electronic, vibrational, optical properties, and their connection with the material’s structure will be obtained. A diagnostics “toolbox” will be established on the materials in
their most unperturbed, ideal states. Taking the results as reference, the materials will be studied under conditions relevant when incorporated into devices. These include imperfections of the materials and interaction with different environments, with other carbon nanotubes/graphene, and with extrinsic materials introduced during device processing. The gained insight and understanding on a fundamental level will also advance technological routes for scaling up carbon-nanomaterial electronic device fabrication, which is still lacking sufficient control over selectivity towards the desired physical properties. Control over the electronic and optical properties will be sought through deliberately induced interactions and chemical functionalization
of the materials. The project benefits from close collaborations between experimental and theoretical physics, chemistry, and materials science.
Max ERC Funding
1 468 960 €
Duration
Start date: 2010-12-01, End date: 2015-11-30
Project acronym CDMAN
Project Control of Spatially Distributed Complex Multi-Agent Networks
Researcher (PI) Ming Cao
Host Institution (HI) RIJKSUNIVERSITEIT GRONINGEN
Call Details Starting Grant (StG), PE7, ERC-2012-StG_20111012
Summary "Spatially distributed multi-agent networks have been used successfully to model a wide range of natural, social and engineered complex systems, such as animal groups, online communities and electric power grids. In various contexts, it is crucial to introduce control actions into such networks to either achieve desired collective dynamics or test the understanding of the systems’ behavior. However, controlling such systems is extremely challenging due to agents’ complicated sensing, communication and control interactions that are distributed in space. Systematic methodologies to attack this challenge are in urgent need, especially when vast efforts are being made in multiple disciplines to apply the model of complex multi-agent networks.
The goal of the project is twofold. First, understand whether a complex multi-agent network can be controlled effectively when the agents can only sense and communicate locally. Second, provide methodologies to implement distributed control in typical spatially distributed complex multi-agent networks. The project requires integrated skills since both rigorous theoretical analysis and novel empirical explorations are necessary.
The research methods that I plan to adopt have two distinguishing features. First, I use tools from algebraic graph theory and complex network theory to investigate the impact of network topologies on the systems’ controller performances characterized by mathematical control theory. Second, I utilize a homemade robotic-fish testbed to implement various multi-agent control algorithms. The unique combination of theoretical and empirical studies is expected to lead to breakthroughs in developing an integrated set of principles and techniques to control effectively spatially distributed multi-agent networks. The expected results will make original contributions to control engineering and robotics, and inspire innovative research methods in theoretical biology and theoretical sociology."
Summary
"Spatially distributed multi-agent networks have been used successfully to model a wide range of natural, social and engineered complex systems, such as animal groups, online communities and electric power grids. In various contexts, it is crucial to introduce control actions into such networks to either achieve desired collective dynamics or test the understanding of the systems’ behavior. However, controlling such systems is extremely challenging due to agents’ complicated sensing, communication and control interactions that are distributed in space. Systematic methodologies to attack this challenge are in urgent need, especially when vast efforts are being made in multiple disciplines to apply the model of complex multi-agent networks.
The goal of the project is twofold. First, understand whether a complex multi-agent network can be controlled effectively when the agents can only sense and communicate locally. Second, provide methodologies to implement distributed control in typical spatially distributed complex multi-agent networks. The project requires integrated skills since both rigorous theoretical analysis and novel empirical explorations are necessary.
The research methods that I plan to adopt have two distinguishing features. First, I use tools from algebraic graph theory and complex network theory to investigate the impact of network topologies on the systems’ controller performances characterized by mathematical control theory. Second, I utilize a homemade robotic-fish testbed to implement various multi-agent control algorithms. The unique combination of theoretical and empirical studies is expected to lead to breakthroughs in developing an integrated set of principles and techniques to control effectively spatially distributed multi-agent networks. The expected results will make original contributions to control engineering and robotics, and inspire innovative research methods in theoretical biology and theoretical sociology."
Max ERC Funding
1 495 444 €
Duration
Start date: 2013-01-01, End date: 2017-12-31
Project acronym CEIDNFSTTAIS
Project Controlling excitability in developing neurons: from synapses to the axon initial segment
Researcher (PI) Juan Burrone
Host Institution (HI) KING'S COLLEGE LONDON
Call Details Starting Grant (StG), LS5, ERC-2011-StG_20101109
Summary A critical question in neuroscience is to understand how neurons wire up to form a functional network. During the wiring of the brain it is important to establish mechanisms that act as safeguards to control and stabilize neuronal excitability in the face of large, chronic changes in neuronal or network activity. This is especially true for developing systems that undergo rapid and large scale forms of plasticity, which could easily lead to large imbalances in activity. If left unchecked, they could lead the network to its extremes: a complete loss of signal or epileptic-like activity. For this reason neurons employ different strategies to maintain their excitability within reasonable bounds. This proposal will focus on two crucial sites for neuronal information processing and integration: the synapse and the axon initial segment (AIS). Both sites undergo important structural and functional rearrangements in response to chronic activity changes, thus controlling the input-output function of a neuron and allowing the network to function efficiently. This proposal will explore novel forms of plasticity that occur during development and which are key to establishing a functional network. They range from understanding the role of activity during synapse formation to how pre- and postsynaptic structure and function become matched during development. Finally, it tackles a novel form of plasticity that lies downstream of synaptic inputs and is responsible for setting the threshold of action potential firing: the axon initial segment. Here, chronic changes in network activity results in a physical relocation of the AIS along the axon, which in turn alters the excitability of the neuron. This proposal will focus on the central issue of how a neuron alters both its input (synapses) and output (AIS) during development to maintain its activity levels within a set range and allow a functional network to form.
Summary
A critical question in neuroscience is to understand how neurons wire up to form a functional network. During the wiring of the brain it is important to establish mechanisms that act as safeguards to control and stabilize neuronal excitability in the face of large, chronic changes in neuronal or network activity. This is especially true for developing systems that undergo rapid and large scale forms of plasticity, which could easily lead to large imbalances in activity. If left unchecked, they could lead the network to its extremes: a complete loss of signal or epileptic-like activity. For this reason neurons employ different strategies to maintain their excitability within reasonable bounds. This proposal will focus on two crucial sites for neuronal information processing and integration: the synapse and the axon initial segment (AIS). Both sites undergo important structural and functional rearrangements in response to chronic activity changes, thus controlling the input-output function of a neuron and allowing the network to function efficiently. This proposal will explore novel forms of plasticity that occur during development and which are key to establishing a functional network. They range from understanding the role of activity during synapse formation to how pre- and postsynaptic structure and function become matched during development. Finally, it tackles a novel form of plasticity that lies downstream of synaptic inputs and is responsible for setting the threshold of action potential firing: the axon initial segment. Here, chronic changes in network activity results in a physical relocation of the AIS along the axon, which in turn alters the excitability of the neuron. This proposal will focus on the central issue of how a neuron alters both its input (synapses) and output (AIS) during development to maintain its activity levels within a set range and allow a functional network to form.
Max ERC Funding
1 500 000 €
Duration
Start date: 2012-03-01, End date: 2017-02-28
Project acronym CELLTYPESANDCIRCUITS
Project Neural circuit function in the retina of mice and humans
Researcher (PI) Botond Roska
Host Institution (HI) FRIEDRICH MIESCHER INSTITUTE FOR BIOMEDICAL RESEARCH FONDATION
Call Details Starting Grant (StG), LS5, ERC-2010-StG_20091118
Summary The mammalian brain is assembled from thousands of neuronal cell types that are organized into distinct circuits to perform behaviourally relevant computations. To gain mechanistic insights about brain function and to treat specific diseases of the nervous system it is crucial to understand what these local circuits are computing and how they achieve these computations. By examining the structure and function of a few genetically identified and experimentally accessible neural circuits we plan to address fundamental questions about the functional architecture of neural circuits. First, are cell types assigned to a unique functional circuit with a well-defined function or do they participate in multiple circuits (multitasking cell types), adjusting their role depending on the state of these circuits? Second, does a neural circuit perform a single computation or depending on the information content of its inputs can it carry out radically different functions? Third, how, among the large number of other cell types, do the cells belonging to the same functional circuit connect together during development? We use the mouse retina as a model system to address these questions. Finally, we will study the structure and function of a specialised neural circuit in the human fovea that enables humans to read. We predict that our insights into the mechanism of multitasking, network switches and the development of selective connectivity will be instructive to study similar phenomena in other brain circuits. Knowledge of the structure and function of the human fovea will open up new opportunities to correlate human retinal function with human visual behaviour and our genetic technologies to study human foveal function will allow us and others to design better strategies for restoring vision for the blind.
Summary
The mammalian brain is assembled from thousands of neuronal cell types that are organized into distinct circuits to perform behaviourally relevant computations. To gain mechanistic insights about brain function and to treat specific diseases of the nervous system it is crucial to understand what these local circuits are computing and how they achieve these computations. By examining the structure and function of a few genetically identified and experimentally accessible neural circuits we plan to address fundamental questions about the functional architecture of neural circuits. First, are cell types assigned to a unique functional circuit with a well-defined function or do they participate in multiple circuits (multitasking cell types), adjusting their role depending on the state of these circuits? Second, does a neural circuit perform a single computation or depending on the information content of its inputs can it carry out radically different functions? Third, how, among the large number of other cell types, do the cells belonging to the same functional circuit connect together during development? We use the mouse retina as a model system to address these questions. Finally, we will study the structure and function of a specialised neural circuit in the human fovea that enables humans to read. We predict that our insights into the mechanism of multitasking, network switches and the development of selective connectivity will be instructive to study similar phenomena in other brain circuits. Knowledge of the structure and function of the human fovea will open up new opportunities to correlate human retinal function with human visual behaviour and our genetic technologies to study human foveal function will allow us and others to design better strategies for restoring vision for the blind.
Max ERC Funding
1 499 000 €
Duration
Start date: 2010-11-01, End date: 2015-10-31
Project acronym CeMoMagneto
Project The Cellular and Molecular Basis of Magnetoreception
Researcher (PI) David Anthony Keays
Host Institution (HI) FORSCHUNGSINSTITUT FUR MOLEKULARE PATHOLOGIE GESELLSCHAFT MBH
Call Details Starting Grant (StG), LS5, ERC-2013-StG
Summary Each year millions of animals undertake remarkable migratory journeys, across oceans and through hemispheres, guided by the Earth’s magnetic field. The cellular and molecular basis of this enigmatic sense, known as magnetoreception, remains an unsolved scientific mystery. One hypothesis that attempts to explain the basis of this sensory faculty is known as the magnetite theory of magnetoreception. It argues that magnetic information is transduced into a neuronal impulse by employing the iron oxide magnetite (Fe3O4). Current evidence indicates that pigeons employ a magnetoreceptor that is associated with the ophthalmic branch of the trigeminal nerve and the vestibular system, but the sensory cells remain undiscovered. The goal of this ambitious proposal is to discover the cells and molecules that mediate magnetoreception. This overall objective can be divided into three specific aims: (1) the identification of putative magnetoreceptive cells (PMCs); (2) the cellular characterisation of PMCs; and (3) the discovery and functional ablation of molecules specific to PMCs. In tackling these three aims this proposal adopts a reductionist mindset, employing and developing the latest imaging, subcellular, and molecular technologies.
Summary
Each year millions of animals undertake remarkable migratory journeys, across oceans and through hemispheres, guided by the Earth’s magnetic field. The cellular and molecular basis of this enigmatic sense, known as magnetoreception, remains an unsolved scientific mystery. One hypothesis that attempts to explain the basis of this sensory faculty is known as the magnetite theory of magnetoreception. It argues that magnetic information is transduced into a neuronal impulse by employing the iron oxide magnetite (Fe3O4). Current evidence indicates that pigeons employ a magnetoreceptor that is associated with the ophthalmic branch of the trigeminal nerve and the vestibular system, but the sensory cells remain undiscovered. The goal of this ambitious proposal is to discover the cells and molecules that mediate magnetoreception. This overall objective can be divided into three specific aims: (1) the identification of putative magnetoreceptive cells (PMCs); (2) the cellular characterisation of PMCs; and (3) the discovery and functional ablation of molecules specific to PMCs. In tackling these three aims this proposal adopts a reductionist mindset, employing and developing the latest imaging, subcellular, and molecular technologies.
Max ERC Funding
1 499 752 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym CERDEV
Project Transcriptional controls over cerebellar neuron differentiation and circuit assembly
Researcher (PI) Ludovic TELLEY
Host Institution (HI) UNIVERSITE DE LAUSANNE
Call Details Starting Grant (StG), LS5, ERC-2017-STG
Summary The cerebellum is a critical regulator of motor function, which acts to integrate ongoing body states, sensory inputs and desired outcomes to adjust motor output. This motor control is achieved by a relatively small number of neuron types receiving two main sources of inputs and forming a single output pathway, the axons of Purkinje cells. Although the cerebellum is one of the first structures of the brain to differentiate, it undergoes a prolonged differentiation period such that mature cellular and circuit configuration is achieved only late after birth. Despite the functional importance of this structure, the molecular mechanisms that control type-specific cerebellar neurons generation, differentiation, and circuit assembly are poorly understood and are the topic of the present study.
In my research program, I propose to investigate the transcriptional programs that control the generation of distinct subtypes of cerebellar neurons from progenitors, including Purkinje cells, granule cells and molecular layer interneurons (Work Package 1); the diversity of Purkinje cells across cerebellar regions (Work Package 2) and the postnatal differentiation and circuit integration of granule cells and molecular layer interneurons (Work Package 3). The general bases of the approach I propose consist in: i) specifically label cerebellar neuron progenitors and their progeny at sequential developmental time points pre- and post-natally using birthdate-based tagging, ii) FAC-sort these distinct cell types, iii) isolate these cells and identify their transcriptional signatures with single-cell resolution, iv) functionally interrogate top candidate genes and associated transcriptional programs using in vivo gain- and loss-of-function approaches. Together, these experiments aim at deciphering the cell-intrinsic processes controlling cerebellar circuit formation, towards a better understanding of the molecular mechanisms underlying cerebellar function and dysfunction.
Summary
The cerebellum is a critical regulator of motor function, which acts to integrate ongoing body states, sensory inputs and desired outcomes to adjust motor output. This motor control is achieved by a relatively small number of neuron types receiving two main sources of inputs and forming a single output pathway, the axons of Purkinje cells. Although the cerebellum is one of the first structures of the brain to differentiate, it undergoes a prolonged differentiation period such that mature cellular and circuit configuration is achieved only late after birth. Despite the functional importance of this structure, the molecular mechanisms that control type-specific cerebellar neurons generation, differentiation, and circuit assembly are poorly understood and are the topic of the present study.
In my research program, I propose to investigate the transcriptional programs that control the generation of distinct subtypes of cerebellar neurons from progenitors, including Purkinje cells, granule cells and molecular layer interneurons (Work Package 1); the diversity of Purkinje cells across cerebellar regions (Work Package 2) and the postnatal differentiation and circuit integration of granule cells and molecular layer interneurons (Work Package 3). The general bases of the approach I propose consist in: i) specifically label cerebellar neuron progenitors and their progeny at sequential developmental time points pre- and post-natally using birthdate-based tagging, ii) FAC-sort these distinct cell types, iii) isolate these cells and identify their transcriptional signatures with single-cell resolution, iv) functionally interrogate top candidate genes and associated transcriptional programs using in vivo gain- and loss-of-function approaches. Together, these experiments aim at deciphering the cell-intrinsic processes controlling cerebellar circuit formation, towards a better understanding of the molecular mechanisms underlying cerebellar function and dysfunction.
Max ERC Funding
1 499 885 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym CerebralHominoids
Project Evolutionary biology of human and great ape brain development in cerebral organoids
Researcher (PI) Madeline LANCASTER
Host Institution (HI) UNITED KINGDOM RESEARCH AND INNOVATION
Call Details Starting Grant (StG), LS5, ERC-2017-STG
Summary Humans are endowed with a number of advanced cognitive abilities not seen in other species. So what allows the human brain to stand out from the rest in these capabilities? In general, the brains of primates, including humans, have more neurons per unit volume than other mammals. But humans are also in the fortunate position of having the largest of the primate brains, making the number of neurons in the human cerebral cortex greatly expanded. Thus, the difference seems to be a matter of quantity, not quality. My laboratory is interested in understanding how neuron number, and thus brain size, is determined in human brain development.
The research proposed here is aimed at taking an evolutionary approach to this question and comparing brain development in an in vitro 3D model system, cerebral organoids. This method, which relies on self-organization from differentiating pluripotent stem cells, recapitulates remarkably well the endogenous developmental program of the human brain. Having previously established the brain organoid approach, and more recently improved upon it with the application of bioengineering, my laboratory is in a unique position to carry out functional studies of human brain development. I propose to use this approach to compare developing human brain tissue to that of other hominid species and tease apart unique features of human neural stem cells and progenitors that allow them to generate more neurons and therefore a greater cerebral cortical size. Furthermore, we will perform transcriptomic and functional screening to identify factors underlying this expansion, followed by careful genetic substitution to test the contributions of putative evolutionary changes. In this way, we will functionally test putative human evolutionary changes in a manner not previously possible.
Summary
Humans are endowed with a number of advanced cognitive abilities not seen in other species. So what allows the human brain to stand out from the rest in these capabilities? In general, the brains of primates, including humans, have more neurons per unit volume than other mammals. But humans are also in the fortunate position of having the largest of the primate brains, making the number of neurons in the human cerebral cortex greatly expanded. Thus, the difference seems to be a matter of quantity, not quality. My laboratory is interested in understanding how neuron number, and thus brain size, is determined in human brain development.
The research proposed here is aimed at taking an evolutionary approach to this question and comparing brain development in an in vitro 3D model system, cerebral organoids. This method, which relies on self-organization from differentiating pluripotent stem cells, recapitulates remarkably well the endogenous developmental program of the human brain. Having previously established the brain organoid approach, and more recently improved upon it with the application of bioengineering, my laboratory is in a unique position to carry out functional studies of human brain development. I propose to use this approach to compare developing human brain tissue to that of other hominid species and tease apart unique features of human neural stem cells and progenitors that allow them to generate more neurons and therefore a greater cerebral cortical size. Furthermore, we will perform transcriptomic and functional screening to identify factors underlying this expansion, followed by careful genetic substitution to test the contributions of putative evolutionary changes. In this way, we will functionally test putative human evolutionary changes in a manner not previously possible.
Max ERC Funding
1 444 911 €
Duration
Start date: 2018-07-01, End date: 2023-06-30
Project acronym CHAOSNETS
Project "Building Scalable, Secure, and Reliable ""Chaotic"" Wireless Networks"
Researcher (PI) Kyle Andrew Stuart Jamieson
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Starting Grant (StG), PE7, ERC-2011-StG_20101014
Summary As a result of their unplanned, license-free nature, WiFi networks have grown quickly in recent years, giving users unprecedented improvements in wireless access to the Internet. But being “chaotic,” i.e. unplanned, they have grown to be victims of their own success: when eager users set up too many wireless access points in a densely-populated area, the resulting noise and interference hurt everyones throughput and connectivity. Cellular mobile telephone networks are planned carefully, but in order to expand coverage indoors, providers are turning to customer-deployed femtocells, thus incuring the drawbacks of chaotic WiFi networks. We propose a ground-up redesign of chaotic wireless networks, with new architectural contributions focusing on what information the physical layer should pass up to higher layers. We propose a new physical layer interface called SoftAoA that passes angle-of-arrival (AoA) information from the physical layer up to higher layers. Using this expanded physical layer interface, we will first investigate fountain coding and receiver-based rate adaptation methods to improve wireless capacity in the vagaries of the “grey zone” of marginal coverage. Second, we will investigate improvements to security and localization that can be made based on the profiling of incoming packets’ AoA at an access point. Finally, we will investigate how a chaotically-deployed network can mitigate the interference it experiences from networks not under the same administrative control, and manage the interference it causes to those networks. The result will be more scalable, secure, and reliable chaotic wireless networks that play an even more prominent role in our lives.
Summary
As a result of their unplanned, license-free nature, WiFi networks have grown quickly in recent years, giving users unprecedented improvements in wireless access to the Internet. But being “chaotic,” i.e. unplanned, they have grown to be victims of their own success: when eager users set up too many wireless access points in a densely-populated area, the resulting noise and interference hurt everyones throughput and connectivity. Cellular mobile telephone networks are planned carefully, but in order to expand coverage indoors, providers are turning to customer-deployed femtocells, thus incuring the drawbacks of chaotic WiFi networks. We propose a ground-up redesign of chaotic wireless networks, with new architectural contributions focusing on what information the physical layer should pass up to higher layers. We propose a new physical layer interface called SoftAoA that passes angle-of-arrival (AoA) information from the physical layer up to higher layers. Using this expanded physical layer interface, we will first investigate fountain coding and receiver-based rate adaptation methods to improve wireless capacity in the vagaries of the “grey zone” of marginal coverage. Second, we will investigate improvements to security and localization that can be made based on the profiling of incoming packets’ AoA at an access point. Finally, we will investigate how a chaotically-deployed network can mitigate the interference it experiences from networks not under the same administrative control, and manage the interference it causes to those networks. The result will be more scalable, secure, and reliable chaotic wireless networks that play an even more prominent role in our lives.
Max ERC Funding
1 457 675 €
Duration
Start date: 2011-11-01, End date: 2016-10-31
Project acronym CHEMBIOMECH
Project Exploring mechanism in chemical biology by high-throughput approaches
Researcher (PI) Florian Hollfelder
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Starting Grant (StG), PE4, ERC-2007-StG
Summary In the biomedical sciences, where endless combinatorial diversity of genes, proteins and synthetic molecules is involved, miniaturisation has not simply allowed an increase in the speed at which experiment can be performed: it has given birth to new areas such as combinatorial chemistry and biology, proteomics, genomics, and more recently, systems and synthetic biology. In all these areas, the synthesis, assay and analysis of large molecular ensembles has become the essence of experimental progress. However, it is the systematic analysis of the enormous amounts of data generated that will ultimately lead to an understanding of fundamental chemical and biological problems. This proposal deals with approaches in which libraries of molecules are employed to give such mechanistic insight – into how enzyme catalysis is brought about in proteins and polymeric enzyme models and into the molecular recognition and cell biology of drug delivery reagents. In each case considerable technical challenges are involved in the way diversity is brought about and probed: ranging from either using the tools of synthetic chemistry to using gene repertoires in emulsion microdroplet reactors with femtolitre volumes, handled in microfluidic devices.
Summary
In the biomedical sciences, where endless combinatorial diversity of genes, proteins and synthetic molecules is involved, miniaturisation has not simply allowed an increase in the speed at which experiment can be performed: it has given birth to new areas such as combinatorial chemistry and biology, proteomics, genomics, and more recently, systems and synthetic biology. In all these areas, the synthesis, assay and analysis of large molecular ensembles has become the essence of experimental progress. However, it is the systematic analysis of the enormous amounts of data generated that will ultimately lead to an understanding of fundamental chemical and biological problems. This proposal deals with approaches in which libraries of molecules are employed to give such mechanistic insight – into how enzyme catalysis is brought about in proteins and polymeric enzyme models and into the molecular recognition and cell biology of drug delivery reagents. In each case considerable technical challenges are involved in the way diversity is brought about and probed: ranging from either using the tools of synthetic chemistry to using gene repertoires in emulsion microdroplet reactors with femtolitre volumes, handled in microfluidic devices.
Max ERC Funding
563 848 €
Duration
Start date: 2008-09-01, End date: 2013-08-31
Project acronym CHEMHEAT
Project Chemical Control of Heating and Cooling in Molecular Junctions: Optimizing Function and Stability
Researcher (PI) Gemma Solomon
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), PE4, ERC-2010-StG_20091028
Summary Nanoscale systems binding single molecules, or small numbers of molecules, in conducting junctions show considerable promise for a range of technological applications, from photovoltaics to rectifiers to sensors. These environments differ significantly from the traditional domain of chemical studies involving molecules in solution and the gas phase, necessitating renewed efforts to understand the physical properties of these systems. The objective of this proposal concerns one particular class of physical processes: understanding and controlling local heating in molecular junctions in terms of excitation, dissipation and transfer.
Local heating and dissipation in molecular junctions has long been a concern due to the possibly detrimental impact on device stability and function. More recently there has been increased interest, as these processes underlie both spectroscopic techniques and potential technological applications. Together these issues make an investigation of ways to chemically control local heating in molecular junctions timely and important.
The proposal objective will be addressed through the investigation of three challenges:
- Developing chemical control of local heating in molecular junctions.
- Developing chemical control of heat dissipation in molecular junctions.
- Design of optimal thermoelectric materials.
These three challenges constitute distinct, yet complementary, avenues for investigation with progress in each area supporting the other two. All three challenges build on existing theoretical methods, with the important shift of focus to methods to achieve chemical control. The combination of state-of-the-art computational methods with careful chemical studies promises significant new developments for the area.
Summary
Nanoscale systems binding single molecules, or small numbers of molecules, in conducting junctions show considerable promise for a range of technological applications, from photovoltaics to rectifiers to sensors. These environments differ significantly from the traditional domain of chemical studies involving molecules in solution and the gas phase, necessitating renewed efforts to understand the physical properties of these systems. The objective of this proposal concerns one particular class of physical processes: understanding and controlling local heating in molecular junctions in terms of excitation, dissipation and transfer.
Local heating and dissipation in molecular junctions has long been a concern due to the possibly detrimental impact on device stability and function. More recently there has been increased interest, as these processes underlie both spectroscopic techniques and potential technological applications. Together these issues make an investigation of ways to chemically control local heating in molecular junctions timely and important.
The proposal objective will be addressed through the investigation of three challenges:
- Developing chemical control of local heating in molecular junctions.
- Developing chemical control of heat dissipation in molecular junctions.
- Design of optimal thermoelectric materials.
These three challenges constitute distinct, yet complementary, avenues for investigation with progress in each area supporting the other two. All three challenges build on existing theoretical methods, with the important shift of focus to methods to achieve chemical control. The combination of state-of-the-art computational methods with careful chemical studies promises significant new developments for the area.
Max ERC Funding
1 499 999 €
Duration
Start date: 2010-12-01, End date: 2015-11-30
Project acronym CHEMO-RISK
Project Chemometers for in situ risk assessment of mixtures of pollutants
Researcher (PI) Annika Jahnke Berger
Host Institution (HI) HELMHOLTZ-ZENTRUM FUR UMWELTFORSCHUNG GMBH - UFZ
Call Details Starting Grant (StG), PE4, ERC-2016-STG
Summary CHEMO-RISK aims for a novel scientifically sound chemical risk assessment paradigm that integrates exposure and effect assessment of a broad range of chemicals into a single procedure and provides information relevant to ecosystem and human health. The key innovation is polymer “chemometers” that will be equilibrated with their surroundings and deliver information on the pollutant’s chemical activity in the environment, biota, and humans. A chemometer functions analogously to a thermometer, but instead of the temperature, it yields a measure of chemical activity. Chemical activity in turn indicates the thermodynamic potential for, e.g., partitioning, biouptake and toxicity. CHEMO-RISK aims at breaking the current paradigm in environmental risk assessment of single chemicals that disregards bioavailability, ignores mixture effects, lacks site-specificity and is difficult to extrapolate to human health.
The chemometer extracts will be investigated using top-notch (a) GC and LC/Orbitrap chemical analysis to characterise the pollutant mixtures and (b) cell-based reporter gene bioassays to determine mixture effects covering baseline toxicity, specific (e.g., endocrine disruption) and reactive (e.g., genotoxicity) modes of toxic action and adaptive stress responses. Within CHEMO-RISK, the following important research questions will be tackled: (A) Which processes drive the enrichment of pollutants in aquatic biota on a thermodynamic basis? (B) How do pollutants distribute within an organism, and which effects do they elicit at the key target sites? (C) Can we apply everyday-life items such as eyeglass-nose pads to replace invasive sampling in human health risk assessment? (D) To which degree can non-target analysis of chemometer extracts explain the observed toxicity profiles across media? By combining all these research efforts, CHEMO-RISK will provide a unified risk assessment paradigm with risk-based trigger values distinguishing acceptable from unacceptable effects.
Summary
CHEMO-RISK aims for a novel scientifically sound chemical risk assessment paradigm that integrates exposure and effect assessment of a broad range of chemicals into a single procedure and provides information relevant to ecosystem and human health. The key innovation is polymer “chemometers” that will be equilibrated with their surroundings and deliver information on the pollutant’s chemical activity in the environment, biota, and humans. A chemometer functions analogously to a thermometer, but instead of the temperature, it yields a measure of chemical activity. Chemical activity in turn indicates the thermodynamic potential for, e.g., partitioning, biouptake and toxicity. CHEMO-RISK aims at breaking the current paradigm in environmental risk assessment of single chemicals that disregards bioavailability, ignores mixture effects, lacks site-specificity and is difficult to extrapolate to human health.
The chemometer extracts will be investigated using top-notch (a) GC and LC/Orbitrap chemical analysis to characterise the pollutant mixtures and (b) cell-based reporter gene bioassays to determine mixture effects covering baseline toxicity, specific (e.g., endocrine disruption) and reactive (e.g., genotoxicity) modes of toxic action and adaptive stress responses. Within CHEMO-RISK, the following important research questions will be tackled: (A) Which processes drive the enrichment of pollutants in aquatic biota on a thermodynamic basis? (B) How do pollutants distribute within an organism, and which effects do they elicit at the key target sites? (C) Can we apply everyday-life items such as eyeglass-nose pads to replace invasive sampling in human health risk assessment? (D) To which degree can non-target analysis of chemometer extracts explain the observed toxicity profiles across media? By combining all these research efforts, CHEMO-RISK will provide a unified risk assessment paradigm with risk-based trigger values distinguishing acceptable from unacceptable effects.
Max ERC Funding
1 496 030 €
Duration
Start date: 2017-05-01, End date: 2022-04-30
Project acronym CHEMOSENSORYCIRCUITS
Project Function of Chemosensory Circuits
Researcher (PI) Emre Yaksi
Host Institution (HI) NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET NTNU
Call Details Starting Grant (StG), LS5, ERC-2013-StG
Summary Smell and taste are the least studied of all senses. Very little is known about chemosensory information processing beyond the level of receptor neurons. Every morning we enjoy our coffee thanks to our brains ability to combine and process multiple sensory modalities. Meanwhile, we can still review a document on our desk by adjusting the weights of numerous sensory inputs that constantly bombard our brains. Yet, the smell of our coffee may remind us that pleasant weekend breakfast through associative learning and memory. In the proposed project we will explore the function and the architecture of neural circuits that are involved in olfactory and gustatory information processing, namely habenula and brainstem. Moreover we will investigate the fundamental principles underlying multimodal sensory integration and the neural basis of behavior in these highly conserved brain areas.
To achieve these goals we will take an innovative approach by combining two-photon calcium imaging, optogenetics and electrophysiology with the expanding genetic toolbox of a small vertebrate, the zebrafish. This pioneering approach will enable us to design new types of experiments that were unthinkable only a few years ago. Using this unique combination of methods, we will monitor and perturb the activity of functionally distinct elements of habenular and brainstem circuits, in vivo. The habenula and brainstem are important in mediating stress/anxiety and eating habits respectively. Therefore, understanding the neural computations in these brain regions is important for comprehending the neural mechanisms underlying psychological conditions related to anxiety and eating disorders. We anticipate that our results will go beyond chemical senses and contribute new insights to the understanding of how brain circuits work and interact with the sensory world to shape neural activity and behavioral outputs of animals.
Summary
Smell and taste are the least studied of all senses. Very little is known about chemosensory information processing beyond the level of receptor neurons. Every morning we enjoy our coffee thanks to our brains ability to combine and process multiple sensory modalities. Meanwhile, we can still review a document on our desk by adjusting the weights of numerous sensory inputs that constantly bombard our brains. Yet, the smell of our coffee may remind us that pleasant weekend breakfast through associative learning and memory. In the proposed project we will explore the function and the architecture of neural circuits that are involved in olfactory and gustatory information processing, namely habenula and brainstem. Moreover we will investigate the fundamental principles underlying multimodal sensory integration and the neural basis of behavior in these highly conserved brain areas.
To achieve these goals we will take an innovative approach by combining two-photon calcium imaging, optogenetics and electrophysiology with the expanding genetic toolbox of a small vertebrate, the zebrafish. This pioneering approach will enable us to design new types of experiments that were unthinkable only a few years ago. Using this unique combination of methods, we will monitor and perturb the activity of functionally distinct elements of habenular and brainstem circuits, in vivo. The habenula and brainstem are important in mediating stress/anxiety and eating habits respectively. Therefore, understanding the neural computations in these brain regions is important for comprehending the neural mechanisms underlying psychological conditions related to anxiety and eating disorders. We anticipate that our results will go beyond chemical senses and contribute new insights to the understanding of how brain circuits work and interact with the sensory world to shape neural activity and behavioral outputs of animals.
Max ERC Funding
1 499 471 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym CHIME
Project The Role of Cortico-Hippocampal Interactions during Memory Encoding
Researcher (PI) Daniel (Ari) Bendor
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Starting Grant (StG), LS5, ERC-2014-STG
Summary This research proposal’s goal is to investigate the role of cortico-hippocampal interactions during the encoding and consolidation of a memory. Current memory consolidation models postulate that memory storage in our brains occurs by a dynamic process- a recent episodic experience is initially encoded in the hippocampus, and during off-line states such as sleep, the encoded memory is gradually transferred to neocortex for long-term storage. One potential neural mechanism by which this could occur is replay, a phenomenon where neural activity patterns in the hippocampus evoked by a previous experience reactivate spontaneously during non-REM sleep, leading to coordinated cortical reactivation. While previous work suggests that hippocampal replay is important for encoding new memories, how memory consolidation is accomplished through cortico-hippocampal interactions is not well understood.
This research project has three major aims- 1) examine how cortical feedback influences which spatial trajectory is replayed by the hippocampus, 2) investigate how the hippocampal replay of a behavioural episode modifies cortical circuits, 3) measure the causal role of cortico-hippocampal interactions in consolidating memories. We will record ensemble activity from freely moving rats during an auditory-spatial association task and during post-behavioural sleep sessions. We will focus our ensemble recordings on two brain regions: 1) the dorsal CA1 region of the hippocampus, where the phenomenon of sleep replay has been most extensively examined, and 2) auditory cortex, a region of the brain critical for both auditory perception and long-term memory storage. This work will use behavioral and molecular-genetic techniques in combination with large-scale electrophysiological recordings, to help elucidate the role of cortico-hippocampal interactions in memory encoding and consolidation.
Summary
This research proposal’s goal is to investigate the role of cortico-hippocampal interactions during the encoding and consolidation of a memory. Current memory consolidation models postulate that memory storage in our brains occurs by a dynamic process- a recent episodic experience is initially encoded in the hippocampus, and during off-line states such as sleep, the encoded memory is gradually transferred to neocortex for long-term storage. One potential neural mechanism by which this could occur is replay, a phenomenon where neural activity patterns in the hippocampus evoked by a previous experience reactivate spontaneously during non-REM sleep, leading to coordinated cortical reactivation. While previous work suggests that hippocampal replay is important for encoding new memories, how memory consolidation is accomplished through cortico-hippocampal interactions is not well understood.
This research project has three major aims- 1) examine how cortical feedback influences which spatial trajectory is replayed by the hippocampus, 2) investigate how the hippocampal replay of a behavioural episode modifies cortical circuits, 3) measure the causal role of cortico-hippocampal interactions in consolidating memories. We will record ensemble activity from freely moving rats during an auditory-spatial association task and during post-behavioural sleep sessions. We will focus our ensemble recordings on two brain regions: 1) the dorsal CA1 region of the hippocampus, where the phenomenon of sleep replay has been most extensively examined, and 2) auditory cortex, a region of the brain critical for both auditory perception and long-term memory storage. This work will use behavioral and molecular-genetic techniques in combination with large-scale electrophysiological recordings, to help elucidate the role of cortico-hippocampal interactions in memory encoding and consolidation.
Max ERC Funding
1 500 000 €
Duration
Start date: 2015-04-01, End date: 2021-03-31
Project acronym CHIRALMICROBOTS
Project Chiral Nanostructured Surfaces and Colloidal Microbots
Researcher (PI) Peer Fischer
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), PE4, ERC-2011-StG_20101014
Summary "From scientific publications to the popular media, there have been numerous speculations about wirelessly controlled microrobots (microbots) navigating the human body. Microbots have the potential to revolutionize analytics, targeted drug delivery, and microsurgery, but until now there has not been any untethered microscopic system that could be properly moved let alone controlled in fluidic environments. Using glancing angle (physical vapor deposition) we will grow billions of micron-sized colloidal screw-propellers on a wafer. These chiral mesoscopic screws can be magnetized and moved through solution under computer control. The screw-propellers resemble artificial flagella and are the only ‘microbots’ to date that can be fully controlled in solution at micron length scales. The proposed work will advance the fabrication so that active microbots can be applied in rheological measurements and analytics. We will use these novel probes in bio-microrheology with the potential to probe the viscoelastic properties of membranes and tissues, and to explore questions of micro-hydrodynamics. At the same time we will develop these structures as ""colloidal molecules"" and grow asymmetric mesoscopic particles with tailored shapes and properties. We propose experiments that allow the observation of fundamental effects, such as chiral Brownian motion, something that exist at the molecular scale, but has never been observed to date. Similarly, we will be able to demonstrate for the first time chiral separations based purely on physical fields. The proposed technical advances of the growth of nanostructured surfaces will at the same time permit wafer-scale 3-D nano-structuring for photonic and plasmonic applications, which we plan to demonstrate. We will develop a system for targeted drug delivery, study the interaction of swarms of microbots and devise techniques to control and image these swarms."
Summary
"From scientific publications to the popular media, there have been numerous speculations about wirelessly controlled microrobots (microbots) navigating the human body. Microbots have the potential to revolutionize analytics, targeted drug delivery, and microsurgery, but until now there has not been any untethered microscopic system that could be properly moved let alone controlled in fluidic environments. Using glancing angle (physical vapor deposition) we will grow billions of micron-sized colloidal screw-propellers on a wafer. These chiral mesoscopic screws can be magnetized and moved through solution under computer control. The screw-propellers resemble artificial flagella and are the only ‘microbots’ to date that can be fully controlled in solution at micron length scales. The proposed work will advance the fabrication so that active microbots can be applied in rheological measurements and analytics. We will use these novel probes in bio-microrheology with the potential to probe the viscoelastic properties of membranes and tissues, and to explore questions of micro-hydrodynamics. At the same time we will develop these structures as ""colloidal molecules"" and grow asymmetric mesoscopic particles with tailored shapes and properties. We propose experiments that allow the observation of fundamental effects, such as chiral Brownian motion, something that exist at the molecular scale, but has never been observed to date. Similarly, we will be able to demonstrate for the first time chiral separations based purely on physical fields. The proposed technical advances of the growth of nanostructured surfaces will at the same time permit wafer-scale 3-D nano-structuring for photonic and plasmonic applications, which we plan to demonstrate. We will develop a system for targeted drug delivery, study the interaction of swarms of microbots and devise techniques to control and image these swarms."
Max ERC Funding
1 479 760 €
Duration
Start date: 2012-02-01, End date: 2018-01-31
Project acronym CholAminCo
Project Synergy and antagonism of cholinergic and dopaminergic systems in associative learning
Researcher (PI) Balazs Gyoergy HANGYA
Host Institution (HI) INSTITUTE OF EXPERIMENTAL MEDICINE - HUNGARIAN ACADEMY OF SCIENCES
Call Details Starting Grant (StG), LS5, ERC-2016-STG
Summary Neuromodulators such as acetylcholine and dopamine are able to rapidly reprogram neuronal information processing and dynamically change brain states. Degeneration or dysfunction of cholinergic and dopaminergic neurons can lead to neuropsychiatric conditions like schizophrenia and addiction or cognitive diseases such as Alzheimer’s. Neuromodulatory systems control overlapping cognitive processes and often have similar modes of action; therefore it is important to reveal cooperation and competition between different systems to understand their unique contributions to cognitive functions like learning, memory and attention. This is only possible by direct comparison, which necessitates monitoring multiple neuromodulatory systems under identical experimental conditions. Moreover, simultaneous recording of different neuromodulatory cell types goes beyond phenomenological description of similarities and differences by revealing the underlying correlation structure at the level of action potential timing. However, such data allowing direct comparison of neuromodulatory actions are still sparse. As a first step to bridge this gap, I propose to elucidate the unique versus complementary roles of two “classical” neuromodulatory systems, the cholinergic and dopaminergic projection system implicated in various cognitive functions including associative learning and plasticity. First, we will record optogenetically identified cholinergic and dopaminergic neurons simultaneously using chronic extracellular recording in mice undergoing classical and operant conditioning. Second, we will determine the postsynaptic impact of cholinergic and dopaminergic neurons by manipulating them both separately and simultaneously while recording consequential changes in cortical neuronal activity and learning behaviour. These experiments will reveal how major neuromodulatory systems interact to mediate similar or different aspects of the same cognitive functions.
Summary
Neuromodulators such as acetylcholine and dopamine are able to rapidly reprogram neuronal information processing and dynamically change brain states. Degeneration or dysfunction of cholinergic and dopaminergic neurons can lead to neuropsychiatric conditions like schizophrenia and addiction or cognitive diseases such as Alzheimer’s. Neuromodulatory systems control overlapping cognitive processes and often have similar modes of action; therefore it is important to reveal cooperation and competition between different systems to understand their unique contributions to cognitive functions like learning, memory and attention. This is only possible by direct comparison, which necessitates monitoring multiple neuromodulatory systems under identical experimental conditions. Moreover, simultaneous recording of different neuromodulatory cell types goes beyond phenomenological description of similarities and differences by revealing the underlying correlation structure at the level of action potential timing. However, such data allowing direct comparison of neuromodulatory actions are still sparse. As a first step to bridge this gap, I propose to elucidate the unique versus complementary roles of two “classical” neuromodulatory systems, the cholinergic and dopaminergic projection system implicated in various cognitive functions including associative learning and plasticity. First, we will record optogenetically identified cholinergic and dopaminergic neurons simultaneously using chronic extracellular recording in mice undergoing classical and operant conditioning. Second, we will determine the postsynaptic impact of cholinergic and dopaminergic neurons by manipulating them both separately and simultaneously while recording consequential changes in cortical neuronal activity and learning behaviour. These experiments will reveal how major neuromodulatory systems interact to mediate similar or different aspects of the same cognitive functions.
Max ERC Funding
1 499 463 €
Duration
Start date: 2017-05-01, End date: 2022-04-30
Project acronym CIRCUITASSEMBLY
Project Development of functional organization of the visual circuits in mice
Researcher (PI) Keisuke Yonehara
Host Institution (HI) AARHUS UNIVERSITET
Call Details Starting Grant (StG), LS5, ERC-2014-STG
Summary The key organizing principles that characterize neuronal systems include asymmetric, parallel, and topographic connectivity of the neural circuits. The main aim of my research is to elucidate the key principles underlying functional development of neural circuits by focusing on those organizing principles. I choose mouse visual system as my model since it contains all of these principles and provides sophisticated genetic tools to label and manipulate individual circuit components. My research is based on the central hypothesis that the mechanisms of brain development cannot be fully understood without first identifying individual functional cell types in adults, and then understanding how the functions of these cell types become established, using cell-type-specific molecular and synaptic mechanisms in developing animals. Recently, I have identified several transgenic mouse lines in which specific cell types in a visual center, the superior colliculus, are labeled with Cre recombinase in both developing and adult animals. Here I will take advantage of these mouse lines to ask fundamental questions about the functional development of neural circuits. First, how are distinct sensory features processed by the parallel topographic neuronal pathways, and how do they contribute to behavior? Second, what are the molecular and synaptic mechanisms that underlie developmental circuit plasticity for forming parallel topographic neuronal maps in the brain? Third, what are the molecular mechanisms that set up spatially asymmetric circuit connectivity without the need for sensory experience? I predict that my insights into the developmental mechanism of asymmetric, parallel, and topographic connectivity and circuit plasticity will be instructive when studying other brain circuits which contain similar organizing principles.
Summary
The key organizing principles that characterize neuronal systems include asymmetric, parallel, and topographic connectivity of the neural circuits. The main aim of my research is to elucidate the key principles underlying functional development of neural circuits by focusing on those organizing principles. I choose mouse visual system as my model since it contains all of these principles and provides sophisticated genetic tools to label and manipulate individual circuit components. My research is based on the central hypothesis that the mechanisms of brain development cannot be fully understood without first identifying individual functional cell types in adults, and then understanding how the functions of these cell types become established, using cell-type-specific molecular and synaptic mechanisms in developing animals. Recently, I have identified several transgenic mouse lines in which specific cell types in a visual center, the superior colliculus, are labeled with Cre recombinase in both developing and adult animals. Here I will take advantage of these mouse lines to ask fundamental questions about the functional development of neural circuits. First, how are distinct sensory features processed by the parallel topographic neuronal pathways, and how do they contribute to behavior? Second, what are the molecular and synaptic mechanisms that underlie developmental circuit plasticity for forming parallel topographic neuronal maps in the brain? Third, what are the molecular mechanisms that set up spatially asymmetric circuit connectivity without the need for sensory experience? I predict that my insights into the developmental mechanism of asymmetric, parallel, and topographic connectivity and circuit plasticity will be instructive when studying other brain circuits which contain similar organizing principles.
Max ERC Funding
1 500 000 €
Duration
Start date: 2015-04-01, End date: 2020-03-31
Project acronym CM3
Project Controlled Mechanical Manipulation of Molecules
Researcher (PI) Christian Wagner
Host Institution (HI) FORSCHUNGSZENTRUM JULICH GMBH
Call Details Starting Grant (StG), PE4, ERC-2017-STG
Summary The idea to freely control the atomic-scale structure of matter has intrigued scientists for many decades. The low-temperature scanning probe microscope (LT SPM) has become the instrument of choice for this task since it allows the rearrangement of atoms and molecules on a surface. There is, however, no generic SPM-based method for the manipulation of molecules beyond lateral rearrangement. The goal of this project is to develop controlled mechanical manipulation of molecules (CM3) in which a LT SPM is used to handle large organic molecules in three dimensions with optimal control over position, orientation and shape. CM3 will become a game-changing technique for research on molecular properties and molecular-scale engineering, because it combines fully deterministic manipulation with broad access to molecular degrees of freedom for the first time. In CM3 the tip is attached to a single reactive atom within a molecule. Tip displacement guides the molecule into a desired conformation while the surface provides a second (weaker) fixation. The fundamental challenge addressed by this project is the identification of precise molecular conformations at any time during manipulation. The solution is a big data approach where large batches of automatically recorded SPM manipulation data are structured using machine learning and interpreted by comparison to atomistic simulations. The key idea is a comparison of entire conformation spaces at once, which is robust, even if the theory is not fully quantitative. The obtained map of the conformation space is used to determine molecular conformations during manipulation by methods of control theory. The effectiveness of this approach will be demonstrated in experiments that unambiguously reveal the structure-conductance relation for a series of molecules and that realize the engineering paradigm of piecewise assembly on the molecular scale by constructing a direct current rotor / motor from individual components.
Summary
The idea to freely control the atomic-scale structure of matter has intrigued scientists for many decades. The low-temperature scanning probe microscope (LT SPM) has become the instrument of choice for this task since it allows the rearrangement of atoms and molecules on a surface. There is, however, no generic SPM-based method for the manipulation of molecules beyond lateral rearrangement. The goal of this project is to develop controlled mechanical manipulation of molecules (CM3) in which a LT SPM is used to handle large organic molecules in three dimensions with optimal control over position, orientation and shape. CM3 will become a game-changing technique for research on molecular properties and molecular-scale engineering, because it combines fully deterministic manipulation with broad access to molecular degrees of freedom for the first time. In CM3 the tip is attached to a single reactive atom within a molecule. Tip displacement guides the molecule into a desired conformation while the surface provides a second (weaker) fixation. The fundamental challenge addressed by this project is the identification of precise molecular conformations at any time during manipulation. The solution is a big data approach where large batches of automatically recorded SPM manipulation data are structured using machine learning and interpreted by comparison to atomistic simulations. The key idea is a comparison of entire conformation spaces at once, which is robust, even if the theory is not fully quantitative. The obtained map of the conformation space is used to determine molecular conformations during manipulation by methods of control theory. The effectiveness of this approach will be demonstrated in experiments that unambiguously reveal the structure-conductance relation for a series of molecules and that realize the engineering paradigm of piecewise assembly on the molecular scale by constructing a direct current rotor / motor from individual components.
Max ERC Funding
1 465 944 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym COFBMIX
Project Cortical feedback in figure background segregation of odors.
Researcher (PI) Dan ROKNI
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Starting Grant (StG), LS5, ERC-2017-STG
Summary A key question in neuroscience is how information is processed by sensory systems to guide behavior. Most of our knowledge about sensory processing is based on presentation of simple isolated stimuli and recording corresponding neural activity in relevant brain areas. Yet sensory stimuli in real life are never isolated and typically not simple. How the brain processes complex stimuli, simultaneously arising from multiple objects is unknown. Our daily experience (as well as well-controlled experiments) shows that only parts of a complex sensory scene can be perceived - we cannot listen to more than one speaker in a party. Importantly, one can easily choose what is important and should be processed and what can be ignored as background. These observations lead to the prevalent hypothesis that feedback projections from ‘higher’ brain areas to more peripheral sensory areas are involved in processing of complex stimuli. However experimental analysis of signals conveyed by feedback projections in behaving animals is scarce. The nature of these signals and how they relate to behavior is unknown.
Here I propose a cutting edge approach to directly record feedback signals in the olfactory system of behaving mice. We will use chronically implanted electrodes to record the modulation of olfactory bulb (OB) principal neurons by task related context. Additionally, we will record from piriform cortical (PC) neurons that project back to the OB. These will be tagged with channelrhodopsin-2 and identified by light sensitivity. Finally, we will express the spectrally distinct Ca++ indicators GCaMP6 and RCaMP2 in PC neurons and in olfactory sensory neurons, respectively, and use 2-photon microscopy to analyze the spatio-temporal relationship between feedforward and feedback inputs in the OB. This comprehensive approach will provide an explanation of how feedforward and feedback inputs are integrated to process complex stimuli.
Summary
A key question in neuroscience is how information is processed by sensory systems to guide behavior. Most of our knowledge about sensory processing is based on presentation of simple isolated stimuli and recording corresponding neural activity in relevant brain areas. Yet sensory stimuli in real life are never isolated and typically not simple. How the brain processes complex stimuli, simultaneously arising from multiple objects is unknown. Our daily experience (as well as well-controlled experiments) shows that only parts of a complex sensory scene can be perceived - we cannot listen to more than one speaker in a party. Importantly, one can easily choose what is important and should be processed and what can be ignored as background. These observations lead to the prevalent hypothesis that feedback projections from ‘higher’ brain areas to more peripheral sensory areas are involved in processing of complex stimuli. However experimental analysis of signals conveyed by feedback projections in behaving animals is scarce. The nature of these signals and how they relate to behavior is unknown.
Here I propose a cutting edge approach to directly record feedback signals in the olfactory system of behaving mice. We will use chronically implanted electrodes to record the modulation of olfactory bulb (OB) principal neurons by task related context. Additionally, we will record from piriform cortical (PC) neurons that project back to the OB. These will be tagged with channelrhodopsin-2 and identified by light sensitivity. Finally, we will express the spectrally distinct Ca++ indicators GCaMP6 and RCaMP2 in PC neurons and in olfactory sensory neurons, respectively, and use 2-photon microscopy to analyze the spatio-temporal relationship between feedforward and feedback inputs in the OB. This comprehensive approach will provide an explanation of how feedforward and feedback inputs are integrated to process complex stimuli.
Max ERC Funding
1 500 000 €
Duration
Start date: 2018-04-01, End date: 2023-03-31
Project acronym COGOPTO
Project The role of parvalbumin interneurons in cognition and behavior
Researcher (PI) Eva Marie Carlen
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Starting Grant (StG), LS5, ERC-2013-StG
Summary Cognition is a collective term for complex but sophisticated mental processes such as attention, learning, social interaction, language production, decision making and other executive functions. For normal brain function, these higher-order functions need to be aptly regulated and controlled, and the physiology and cellular substrates for cognitive functions are under intense investigation. The loss of cognitive control is intricately related to pathological states such as schizophrenia, depression, attention deficit hyperactive disorder and addiction.
Synchronized neural activity can be observed when the brain performs several important functions, including cognitive processes. As an example, gamma activity (30-80 Hz) predicts the allocation of attention and theta activity (4-12 Hz) is tightly linked to memory processes. A large body of work indicates that the integrity of local and global neural synchrony is mediated by interneuron networks and actuated by the balance of different neuromodulators.
However, much knowledge is still needed on the functional role interneurons play in cognitive processes, i.e. how the interneurons contribute to local and global network processes subserving cognition, and ultimately play a role in behavior. In addition, we need to understand how neuro-modulators, such as dopamine, regulate interneuron function.
The proposed project aims to functionally determine the specific role the parvalbumin interneurons and the neuromodulator dopamine in aspects of cognition, and in behavior. In addition, we ask the question if cognition can be enhanced.
We are employing a true multidisciplinary approach where brain activity is recorded in conjunctions with optogenetic manipulations of parvalbumin interneurons in animals performing cognitive tasks. In one set of experiments knock-down of dopamine receptors specifically in parvalbumin interneurons is employed to probe how this neuromodulator regulate network functions.
Summary
Cognition is a collective term for complex but sophisticated mental processes such as attention, learning, social interaction, language production, decision making and other executive functions. For normal brain function, these higher-order functions need to be aptly regulated and controlled, and the physiology and cellular substrates for cognitive functions are under intense investigation. The loss of cognitive control is intricately related to pathological states such as schizophrenia, depression, attention deficit hyperactive disorder and addiction.
Synchronized neural activity can be observed when the brain performs several important functions, including cognitive processes. As an example, gamma activity (30-80 Hz) predicts the allocation of attention and theta activity (4-12 Hz) is tightly linked to memory processes. A large body of work indicates that the integrity of local and global neural synchrony is mediated by interneuron networks and actuated by the balance of different neuromodulators.
However, much knowledge is still needed on the functional role interneurons play in cognitive processes, i.e. how the interneurons contribute to local and global network processes subserving cognition, and ultimately play a role in behavior. In addition, we need to understand how neuro-modulators, such as dopamine, regulate interneuron function.
The proposed project aims to functionally determine the specific role the parvalbumin interneurons and the neuromodulator dopamine in aspects of cognition, and in behavior. In addition, we ask the question if cognition can be enhanced.
We are employing a true multidisciplinary approach where brain activity is recorded in conjunctions with optogenetic manipulations of parvalbumin interneurons in animals performing cognitive tasks. In one set of experiments knock-down of dopamine receptors specifically in parvalbumin interneurons is employed to probe how this neuromodulator regulate network functions.
Max ERC Funding
1 400 000 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym COLDNANO
Project UltraCOLD ion and electron beams for NANOscience
Researcher (PI) Daniel Comparat
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE7, ERC-2011-StG_20101014
Summary COLDNANO (UltraCOLD ion and electron beams for NANOscience), aspires to build novel ion and electron sources with superior performance in terms of brightness, energy spread and minimum achievable spot size. Such monochromatic, spatially focused and well controlled electron and ion beams are expected to open many research possibilities in material sciences, in surface investigations (imaging, lithography) and in semiconductor diagnostics. The proposed project intends to develop sources with the best beam quality ever produced and to assess them in some advanced surface science research domains. Laterally, I will develop expertise exchange with one Small and Medium Enterprise who will exploit industrial prototypes.
The novel concept is to create ion and electron sources using advanced laser cooling techniques combined with the particular ionization properties of cold atoms. It would then be first time that “laser cooling” would lead to a real industrial development.
A cesium magneto-optical trap will first be used. The atoms will then be excited by lasers and ionized in order to provide the electron source. The specific extraction optics for the electrons will be developed. This source will be compact and portable to be used for several applications such as Low Energy Electron Microscopy, functionalization of semi-conducting surfaces or high resolution Electron Energy Loss Spectrometry by coupling to a Scanning Transmission Electron Microscope.
Based on the knowledge developed with the first experiment, a second ambitious xenon dual ion and electron beam machine will then be realized and used to study the scattering of ion and electron at low energy.
Finally, I present a very innovative scheme to control the time, position and velocity of individual particles in the beams. Such a machine providing ions or electrons on demand would open the way for the “ultimate” resolution in time and space for surface analysis, lithography, microscopy or implantation.
Summary
COLDNANO (UltraCOLD ion and electron beams for NANOscience), aspires to build novel ion and electron sources with superior performance in terms of brightness, energy spread and minimum achievable spot size. Such monochromatic, spatially focused and well controlled electron and ion beams are expected to open many research possibilities in material sciences, in surface investigations (imaging, lithography) and in semiconductor diagnostics. The proposed project intends to develop sources with the best beam quality ever produced and to assess them in some advanced surface science research domains. Laterally, I will develop expertise exchange with one Small and Medium Enterprise who will exploit industrial prototypes.
The novel concept is to create ion and electron sources using advanced laser cooling techniques combined with the particular ionization properties of cold atoms. It would then be first time that “laser cooling” would lead to a real industrial development.
A cesium magneto-optical trap will first be used. The atoms will then be excited by lasers and ionized in order to provide the electron source. The specific extraction optics for the electrons will be developed. This source will be compact and portable to be used for several applications such as Low Energy Electron Microscopy, functionalization of semi-conducting surfaces or high resolution Electron Energy Loss Spectrometry by coupling to a Scanning Transmission Electron Microscope.
Based on the knowledge developed with the first experiment, a second ambitious xenon dual ion and electron beam machine will then be realized and used to study the scattering of ion and electron at low energy.
Finally, I present a very innovative scheme to control the time, position and velocity of individual particles in the beams. Such a machine providing ions or electrons on demand would open the way for the “ultimate” resolution in time and space for surface analysis, lithography, microscopy or implantation.
Max ERC Funding
1 944 000 €
Duration
Start date: 2012-02-01, End date: 2017-01-31
Project acronym COLOURATOM
Project Colouring Atoms in 3 Dimensions
Researcher (PI) Sara Bals
Host Institution (HI) UNIVERSITEIT ANTWERPEN
Call Details Starting Grant (StG), PE4, ERC-2013-StG
Summary "Matter is a three dimensional (3D) agglomeration of atoms. The properties of materials are determined by the positions of the atoms, their chemical nature and the bonding between them. If we are able to determine these parameters in 3D, we will be able to provide the necessary input for predicting the properties and we can guide the synthesis and development of new nanomaterials.
The aim of this project is therefore to provide a complete 3D characterisation of complex hetero-nanosystems down to the atomic scale. The combination of advanced aberration corrected electron microscopy and novel 3D reconstruction algorithms is envisioned as a groundbreaking new approach to quantify the position AND the colour (chemical nature and bonding) of each individual atom in 3D for any given nanomaterial.
So far, only 3D imaging at the atomic scale was carried out for model-like systems. Measuring the position and the colour of the atoms in a complex nanomaterial can therefore be considered as an extremely challenging goal that will lead to a wealth of new information. Our objectives will enable 3D strain measurements at the atomic scale, localisation of atomic vacancies and interface characterisation in hetero-nanocrystals or hybrid soft-hard matter nanocompounds. Quantification of the oxidation states of surface atoms and of 3D surface relaxation will yield new insights concerning preferential functionalities.
Although these goals already go beyond the state-of-the-art, we plan to break fundamental limits and completely eliminate the need to tilt the sample for electron tomography. Especially for beam sensitive materials, this technique, so-called ""multi-detector stereoscopy"", can be considered as a groundbreaking approach to obtain 3D information at the atomic scale. As an ultimate ambition, we will investigate the dynamic behaviour of ultra-small binary clusters."
Summary
"Matter is a three dimensional (3D) agglomeration of atoms. The properties of materials are determined by the positions of the atoms, their chemical nature and the bonding between them. If we are able to determine these parameters in 3D, we will be able to provide the necessary input for predicting the properties and we can guide the synthesis and development of new nanomaterials.
The aim of this project is therefore to provide a complete 3D characterisation of complex hetero-nanosystems down to the atomic scale. The combination of advanced aberration corrected electron microscopy and novel 3D reconstruction algorithms is envisioned as a groundbreaking new approach to quantify the position AND the colour (chemical nature and bonding) of each individual atom in 3D for any given nanomaterial.
So far, only 3D imaging at the atomic scale was carried out for model-like systems. Measuring the position and the colour of the atoms in a complex nanomaterial can therefore be considered as an extremely challenging goal that will lead to a wealth of new information. Our objectives will enable 3D strain measurements at the atomic scale, localisation of atomic vacancies and interface characterisation in hetero-nanocrystals or hybrid soft-hard matter nanocompounds. Quantification of the oxidation states of surface atoms and of 3D surface relaxation will yield new insights concerning preferential functionalities.
Although these goals already go beyond the state-of-the-art, we plan to break fundamental limits and completely eliminate the need to tilt the sample for electron tomography. Especially for beam sensitive materials, this technique, so-called ""multi-detector stereoscopy"", can be considered as a groundbreaking approach to obtain 3D information at the atomic scale. As an ultimate ambition, we will investigate the dynamic behaviour of ultra-small binary clusters."
Max ERC Funding
1 461 466 €
Duration
Start date: 2013-12-01, End date: 2018-11-30
Project acronym COMCOM
Project Communication and Computation - Two Sides of One Tapestry
Researcher (PI) Michael Christoph Gastpar
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Starting Grant (StG), PE7, ERC-2010-StG_20091028
Summary Networks have been studied in depth for several decades, but one aspect has received little attention: Interference. Most networks use clever algorithms to avoid interference, and this strategy has proved effective for traditional supply-chain or wired communication networks. However, the emergence of wireless networks revealed that simply avoiding interference leads to significant performance loss. A wealth of cooperative communication strategies have recently been developed to address this issue. Two fundamental roadblocks are emerging: First, it is ultimately unclear how to integrate cooperative techniques into the larger fabric of networks (short of case-by-case redesigns); and second, the lack of source/channel separation in networks (i.e., more bits do not imply better end-to-end signal quality) calls for ever more specialized cooperative techniques.
This proposal advocates a new understanding of interference as computation: Interference garbles together inputs to produce an output. This can be thought of as a certain computation, perhaps subject to noise or other stochastic effects. The proposed work will develop strategies that permit to exploit this computational potential. Building on these ``computation codes,'' an enhanced physical layer is proposed: Rather than only forwarding bits, the revised physical layer can also forward functions from several transmitting nodes to a receiver, much more efficiently than the full information. Near-seamless integration into the fabric of existing network architectures is thus possible, providing a solution for the first roadblock. In response to the second roadblock, computation codes suggest new computational primitives as fundamental currencies of information.
Summary
Networks have been studied in depth for several decades, but one aspect has received little attention: Interference. Most networks use clever algorithms to avoid interference, and this strategy has proved effective for traditional supply-chain or wired communication networks. However, the emergence of wireless networks revealed that simply avoiding interference leads to significant performance loss. A wealth of cooperative communication strategies have recently been developed to address this issue. Two fundamental roadblocks are emerging: First, it is ultimately unclear how to integrate cooperative techniques into the larger fabric of networks (short of case-by-case redesigns); and second, the lack of source/channel separation in networks (i.e., more bits do not imply better end-to-end signal quality) calls for ever more specialized cooperative techniques.
This proposal advocates a new understanding of interference as computation: Interference garbles together inputs to produce an output. This can be thought of as a certain computation, perhaps subject to noise or other stochastic effects. The proposed work will develop strategies that permit to exploit this computational potential. Building on these ``computation codes,'' an enhanced physical layer is proposed: Rather than only forwarding bits, the revised physical layer can also forward functions from several transmitting nodes to a receiver, much more efficiently than the full information. Near-seamless integration into the fabric of existing network architectures is thus possible, providing a solution for the first roadblock. In response to the second roadblock, computation codes suggest new computational primitives as fundamental currencies of information.
Max ERC Funding
1 776 473 €
Duration
Start date: 2011-05-01, End date: 2016-04-30
Project acronym COMMOTION
Project Communication between Functional Molecules using Photocontrolled Ions
Researcher (PI) Nathan Mcclenaghan
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE4, ERC-2007-StG
Summary The goal of COMMOTION is to establish a strategy whereby functional molecular devices (e.g. photo-/electroactive) can communicate with one another in solution and in organized, self-assembled media (biotic and abiotic). Despite intense research, no single strategy has been shown to satisfactorily connect artificial molecular components in networks. This is perhaps the greatest hurdle to overcome if implementation of artificial molecular devices and sophisticated molecule-based arrays are to become a reality. In this project, communication between distant sites / molecules will be based on the use of photoejected ions in solution and organized media (membranes, thin films, nanostructured hosts, micellar nanodomains). Ultimately this will lead to coded information transfer through ion movement, signalled by fluorescent reporter groups and induced by photomodulated receptor groups in small photoactive molecules. Integrated photonic and ionic processes operate efficiently in the biological world for the transfer of information and multiplexing distinct functional systems. Application in small artificial systems, combining “light-in, ion-out” (photoejection of an ion) and “ion-in, light-out” processes (ion-induced fluorescence), has great potential in a bottom-up approach to nanoscopic components and sensors and understanding and implementing logic operations in biological systems. Fast processes of photoejection and migration of ions will be studied in real-time (using time-resolved photophysical techniques) with high spatial resolution (using fluorescence confocal microscopy techniques) allowing evaluation of the versatility of this strategy in the treatment and transfer of information and incorporation into devices. Additionally, an understanding of the fundamental events implicated during the process of photoejection / decomplexion of coordinated ions and ion-exchange processes at membrane surfaces will be obtained.
Summary
The goal of COMMOTION is to establish a strategy whereby functional molecular devices (e.g. photo-/electroactive) can communicate with one another in solution and in organized, self-assembled media (biotic and abiotic). Despite intense research, no single strategy has been shown to satisfactorily connect artificial molecular components in networks. This is perhaps the greatest hurdle to overcome if implementation of artificial molecular devices and sophisticated molecule-based arrays are to become a reality. In this project, communication between distant sites / molecules will be based on the use of photoejected ions in solution and organized media (membranes, thin films, nanostructured hosts, micellar nanodomains). Ultimately this will lead to coded information transfer through ion movement, signalled by fluorescent reporter groups and induced by photomodulated receptor groups in small photoactive molecules. Integrated photonic and ionic processes operate efficiently in the biological world for the transfer of information and multiplexing distinct functional systems. Application in small artificial systems, combining “light-in, ion-out” (photoejection of an ion) and “ion-in, light-out” processes (ion-induced fluorescence), has great potential in a bottom-up approach to nanoscopic components and sensors and understanding and implementing logic operations in biological systems. Fast processes of photoejection and migration of ions will be studied in real-time (using time-resolved photophysical techniques) with high spatial resolution (using fluorescence confocal microscopy techniques) allowing evaluation of the versatility of this strategy in the treatment and transfer of information and incorporation into devices. Additionally, an understanding of the fundamental events implicated during the process of photoejection / decomplexion of coordinated ions and ion-exchange processes at membrane surfaces will be obtained.
Max ERC Funding
1 250 000 €
Duration
Start date: 2008-09-01, End date: 2013-08-31
Project acronym COMNFT
Project Communication Using the Nonlinear Fourier Transform
Researcher (PI) Mansoor ISVAND YOUSEFI
Host Institution (HI) INSTITUT MINES-TELECOM
Call Details Starting Grant (StG), PE7, ERC-2018-STG
Summary High-speed optical fiber networks form the backbone of the information and communication technologies, including the Internet. More than 99% of the Internet data traffic is carried by a network of global optical fibers. Despite their great importance, today's optical fiber networks face a looming capacity crunch: The achievable rates of all current technologies characteristically vanish at high input powers due to distortions that arise from fiber nonlinearity. The solution of this long-standing complex problem has become the holy grail of the field of the optical communication.
The aim of this project is to develop a novel foundation for optical fiber communication based on the nonlinear Fourier transform (NFT). The NFT decorrelates signal degrees-of-freedom in optical fiber, in much the same way that the conventional Fourier transform does for linear systems. My collaborators and I have recently proposed nonlinear frequency-division multiplexing (NFDM) based on the NFT, in which the information is encoded in the generalized frequencies and their spectral amplitudes (similar to orthogonal frequency-division multiplexing). Since distortions such as inter-symbol and inter-channel interference are absent in NFDM, it achieves data rates higher than conventional methods. The objective of this proposal is to advance NFDM to the extent that it can be built in practical large-scale systems, thereby overcoming the limitation that fiber nonlinearity sets on the transmission rate of the communication networks. The proposed research relies on novel methodology and spans all aspects of the NFDM system design, including determining the fundamental information-theoretic limits, design of the NFDM transmitter and receiver, algorithms and implementations.
The feasibility of the project is manifest in preliminary proof-of-concepts in small examples and toy models, PI's leadership and track-record in the field, as well as the ideal research environment.
Summary
High-speed optical fiber networks form the backbone of the information and communication technologies, including the Internet. More than 99% of the Internet data traffic is carried by a network of global optical fibers. Despite their great importance, today's optical fiber networks face a looming capacity crunch: The achievable rates of all current technologies characteristically vanish at high input powers due to distortions that arise from fiber nonlinearity. The solution of this long-standing complex problem has become the holy grail of the field of the optical communication.
The aim of this project is to develop a novel foundation for optical fiber communication based on the nonlinear Fourier transform (NFT). The NFT decorrelates signal degrees-of-freedom in optical fiber, in much the same way that the conventional Fourier transform does for linear systems. My collaborators and I have recently proposed nonlinear frequency-division multiplexing (NFDM) based on the NFT, in which the information is encoded in the generalized frequencies and their spectral amplitudes (similar to orthogonal frequency-division multiplexing). Since distortions such as inter-symbol and inter-channel interference are absent in NFDM, it achieves data rates higher than conventional methods. The objective of this proposal is to advance NFDM to the extent that it can be built in practical large-scale systems, thereby overcoming the limitation that fiber nonlinearity sets on the transmission rate of the communication networks. The proposed research relies on novel methodology and spans all aspects of the NFDM system design, including determining the fundamental information-theoretic limits, design of the NFDM transmitter and receiver, algorithms and implementations.
The feasibility of the project is manifest in preliminary proof-of-concepts in small examples and toy models, PI's leadership and track-record in the field, as well as the ideal research environment.
Max ERC Funding
1 499 180 €
Duration
Start date: 2019-05-01, End date: 2024-04-30
Project acronym COMPENZYMEEVOLUTION
Project Harnessing Proto-Enzymes for Novel Catalytic Functions
Researcher (PI) Shina Caroline Lynn Kamerlin
Host Institution (HI) UPPSALA UNIVERSITET
Call Details Starting Grant (StG), PE4, ERC-2012-StG_20111012
Summary Enzymes are Nature’s catalysts, reducing the timescales of the chemical reactions that drive life from millions of years to seconds. There is also great scope for enzymes as biocatalysts outside the cell, from therapeutic and synthetic applications, to bioremediation and even for the generation of novel biofuels. Recent years have seen several impressive breakthroughs in the design of artificial enzymes, particularly through experimental studies that iteratively introduce random mutations to refine existing systems until a property of interest is observed (directed evolution), as well as examples of de novo enzyme design using combined in silico / in vitro approaches. However, the tremendous catalytic proficiencies of naturally occurring enzymes are, as yet, unmatched by any man made system, in no small part due the vastness of the sequence space that needs navigating and the almost surgical precision by which enzymatic catalysis is regulated. The proposed work aims to combine state of the art computational approaches capable of consistently reproducing the catalytic activities of both wild-type and mutant enzymes with novel screening approaches for predicting mutation hotspots, in order to redesign selected showcase systems. Specifically, we aim to (1) map catalytic promiscuity in the alkaline phosphatase superfamily, using the existing multifunctionality of these enzymes as a training set for the introduction of novel functionality, and (2) computationally design enantioselective enzymes, a problem which is of particular importance to the pharmaceutical industry due to the role of chirality in drug efficacy. The resulting theoretical constructs will be subjected to rigorous testing by our collaborators, providing a feedback loop for further design effort and methodology development. In this way, we plan to push existing theoretical tools to the limit in order to bridge the gap that exists between the catalytic proficiencies of biological and man-made catalysts.
Summary
Enzymes are Nature’s catalysts, reducing the timescales of the chemical reactions that drive life from millions of years to seconds. There is also great scope for enzymes as biocatalysts outside the cell, from therapeutic and synthetic applications, to bioremediation and even for the generation of novel biofuels. Recent years have seen several impressive breakthroughs in the design of artificial enzymes, particularly through experimental studies that iteratively introduce random mutations to refine existing systems until a property of interest is observed (directed evolution), as well as examples of de novo enzyme design using combined in silico / in vitro approaches. However, the tremendous catalytic proficiencies of naturally occurring enzymes are, as yet, unmatched by any man made system, in no small part due the vastness of the sequence space that needs navigating and the almost surgical precision by which enzymatic catalysis is regulated. The proposed work aims to combine state of the art computational approaches capable of consistently reproducing the catalytic activities of both wild-type and mutant enzymes with novel screening approaches for predicting mutation hotspots, in order to redesign selected showcase systems. Specifically, we aim to (1) map catalytic promiscuity in the alkaline phosphatase superfamily, using the existing multifunctionality of these enzymes as a training set for the introduction of novel functionality, and (2) computationally design enantioselective enzymes, a problem which is of particular importance to the pharmaceutical industry due to the role of chirality in drug efficacy. The resulting theoretical constructs will be subjected to rigorous testing by our collaborators, providing a feedback loop for further design effort and methodology development. In this way, we plan to push existing theoretical tools to the limit in order to bridge the gap that exists between the catalytic proficiencies of biological and man-made catalysts.
Max ERC Funding
1 497 667 €
Duration
Start date: 2012-10-01, End date: 2017-09-30
Project acronym complexNMR
Project Structural Dynamics of Protein Complexes by Solid-State NMR
Researcher (PI) Józef Romuald Lewandowski
Host Institution (HI) THE UNIVERSITY OF WARWICK
Call Details Starting Grant (StG), PE4, ERC-2014-STG
Summary Multidrug resistant bacteria that render worthless the current arsenal of antibiotics are a growing global problem. This grave challenge could be tackled by polyketide synthases (PKSs), which are gigantic modular enzymatic assembly lines for natural products. PKSs could be developed for industry to produce chemically difficult to synthesize drugs, but cannot be harnessed until we understand how they work on the molecular level. However, such understanding is missing because we cannot easily investigate large complexes with current structural biology and modeling methods. A key puzzle is how the function of these multicomponent systems emerges from atomic-scale interactions of their parts. Solving this puzzle requires a holistic approach involving measuring and modeling the relevant interacting parts together.
Our goal is to develop a multidisciplinary approach rooted in solid and solution state NMR that will make possible studies of complexes from PKSs. The two main challenges for the NMR of PKSs are increasing sensitivity and resolution. Recent innovations from our lab allow application of solid-state to study large complexes in 2–10 nanomole quantities. Building on this approach, with a protein-antibody complex as a test case, we will develop new NMR methods that will enable a study of structure and motions of domains in complexes. We will probe, for the first time, the structural dynamics of PKSs of enacyloxin and gladiolin, which are antibiotics against life-threatening multidrug resistant hospital-acquired Acinetobacter baumannii infections and tuberculosis. These studies will guide rational engineering of the PKSs to enable synthetic biology approaches to produce new antibiotics.
If successful, this project will go beyond the state of the art by: enabling studies of unknown proteins in large complexes and providing unique insights into novel mechanisms for controlling biosynthesis in PKSs, turning them into truly programmable synthetic biology devices.
Summary
Multidrug resistant bacteria that render worthless the current arsenal of antibiotics are a growing global problem. This grave challenge could be tackled by polyketide synthases (PKSs), which are gigantic modular enzymatic assembly lines for natural products. PKSs could be developed for industry to produce chemically difficult to synthesize drugs, but cannot be harnessed until we understand how they work on the molecular level. However, such understanding is missing because we cannot easily investigate large complexes with current structural biology and modeling methods. A key puzzle is how the function of these multicomponent systems emerges from atomic-scale interactions of their parts. Solving this puzzle requires a holistic approach involving measuring and modeling the relevant interacting parts together.
Our goal is to develop a multidisciplinary approach rooted in solid and solution state NMR that will make possible studies of complexes from PKSs. The two main challenges for the NMR of PKSs are increasing sensitivity and resolution. Recent innovations from our lab allow application of solid-state to study large complexes in 2–10 nanomole quantities. Building on this approach, with a protein-antibody complex as a test case, we will develop new NMR methods that will enable a study of structure and motions of domains in complexes. We will probe, for the first time, the structural dynamics of PKSs of enacyloxin and gladiolin, which are antibiotics against life-threatening multidrug resistant hospital-acquired Acinetobacter baumannii infections and tuberculosis. These studies will guide rational engineering of the PKSs to enable synthetic biology approaches to produce new antibiotics.
If successful, this project will go beyond the state of the art by: enabling studies of unknown proteins in large complexes and providing unique insights into novel mechanisms for controlling biosynthesis in PKSs, turning them into truly programmable synthetic biology devices.
Max ERC Funding
1 999 044 €
Duration
Start date: 2015-05-01, End date: 2020-04-30
Project acronym ComplexSwimmers
Project Biocompatible and Interactive Artificial Micro- and Nanoswimmers and Their Applications
Researcher (PI) Giovanni Volpe
Host Institution (HI) GOETEBORGS UNIVERSITET
Call Details Starting Grant (StG), PE4, ERC-2015-STG
Summary Microswimmers, i.e., biological and artificial microscopic objects capable of self-propulsion, have been attracting a growing interest from the biological and physical communities. From the fundamental side, their study can shed light on the far-from-equilibrium physics underlying the adaptive and collective behavior of biological entities such as chemotactic bacteria and eukaryotic cells. From the more applied side, they provide tantalizing options to perform tasks not easily achievable with other available techniques, such as the targeted localization, pick-up and delivery of microscopic and nanoscopic cargoes, e.g., in drug delivery, bioremediation and chemical sensing.
However, there are still several open challenges that need to be tackled in order to achieve the full scientific and technological potential of microswimmers in real-life settings. The main challenges are: (1) to identify a biocompatible propulstion mechanism and energy supply capable of lasting for the whole particle life-cycle; (2) to understand their behavior in complex and crowded environments; (3) to learn how to engineer emergent behaviors; and (4) to scale down their dimensions towards the nanoscale.
This project aims at tackling these challenges by developing biocompatible microswimmers capable of elaborate behaviors, by engineering their performance when interacting with other particles and with a complex environment, and by developing working nanoswimmers.
To achieve these goals, we have laid out a roadmap that will lead us to push the frontiers of the current understanding of active matter both at the mesoscopic and at the nanoscopic scale, and will permit us to develop some technologically disruptive techniques, namely, targeted delivery of cargoes within complex environments, which is of interest for drug delivery and bioremediation, and efficient sorting of chiral nanoparticles, which is of interest for biomedical and pharmaceutical applications.
Summary
Microswimmers, i.e., biological and artificial microscopic objects capable of self-propulsion, have been attracting a growing interest from the biological and physical communities. From the fundamental side, their study can shed light on the far-from-equilibrium physics underlying the adaptive and collective behavior of biological entities such as chemotactic bacteria and eukaryotic cells. From the more applied side, they provide tantalizing options to perform tasks not easily achievable with other available techniques, such as the targeted localization, pick-up and delivery of microscopic and nanoscopic cargoes, e.g., in drug delivery, bioremediation and chemical sensing.
However, there are still several open challenges that need to be tackled in order to achieve the full scientific and technological potential of microswimmers in real-life settings. The main challenges are: (1) to identify a biocompatible propulstion mechanism and energy supply capable of lasting for the whole particle life-cycle; (2) to understand their behavior in complex and crowded environments; (3) to learn how to engineer emergent behaviors; and (4) to scale down their dimensions towards the nanoscale.
This project aims at tackling these challenges by developing biocompatible microswimmers capable of elaborate behaviors, by engineering their performance when interacting with other particles and with a complex environment, and by developing working nanoswimmers.
To achieve these goals, we have laid out a roadmap that will lead us to push the frontiers of the current understanding of active matter both at the mesoscopic and at the nanoscopic scale, and will permit us to develop some technologically disruptive techniques, namely, targeted delivery of cargoes within complex environments, which is of interest for drug delivery and bioremediation, and efficient sorting of chiral nanoparticles, which is of interest for biomedical and pharmaceutical applications.
Max ERC Funding
1 497 500 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym comporel
Project Large-Scale Computational Screening and Design of Highly-ordered pi-conjugated Molecular Precursors to Organic Electronic
Researcher (PI) Anne-Clemence Corminboeuf
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Starting Grant (StG), PE4, ERC-2012-StG_20111012
Summary The field of electronics has been a veritable powerhouse of the economy, driving technological breakthroughs that affect all aspects of everyday life. Aside from silicon, there has been growing interest in developing a novel generation of electronic devices based on pi-conjugated polymers and oligomers. While their goal is not to exceed the performance of silicon technologies, they could enable far reduced fabrication costs as well as completely new functionalities (e.g. mechanical flexibility, transparency, impact resistance). The performance of these organic devices is greatly dependent on the organization and electronic structures of π-conjugated polymer chains at the molecular level. To achieve full potential, technological developments require fine-tuning of the relative orientation/position of the pi-conjugated moieties, which provide a practical means to enhance electronic properties. The discovery pace of novel materials can be accelerated considerably by the development of efficient computational schemes. This requires an integrated approach, based on which the structural, electronic, and charge transport properties of novel molecular candidates are evaluated computationally and predictions benchmarked by proof of principle experiments. This research program aims at developing a threefold computational screening strategy enabling the design of an emerging class of molecular precursors based on the insertion of π-conjugated molecules into self-assembled hydrogen bond aggregator segments (e.g. oligopeptide, nucleotide and carbohydrate motifs). These bioinspired functionalized pi-conjugated systems offer the highly desirable prospect of achieving ordered suprastructures abundant in nature with the enhanced functionalities only observed in synthetic polymers. A more holistic objective is to definitively establish the relationship between highly ordered architectures and the nature of the electronic interactions and charge transfer properties in the assemblies.
Summary
The field of electronics has been a veritable powerhouse of the economy, driving technological breakthroughs that affect all aspects of everyday life. Aside from silicon, there has been growing interest in developing a novel generation of electronic devices based on pi-conjugated polymers and oligomers. While their goal is not to exceed the performance of silicon technologies, they could enable far reduced fabrication costs as well as completely new functionalities (e.g. mechanical flexibility, transparency, impact resistance). The performance of these organic devices is greatly dependent on the organization and electronic structures of π-conjugated polymer chains at the molecular level. To achieve full potential, technological developments require fine-tuning of the relative orientation/position of the pi-conjugated moieties, which provide a practical means to enhance electronic properties. The discovery pace of novel materials can be accelerated considerably by the development of efficient computational schemes. This requires an integrated approach, based on which the structural, electronic, and charge transport properties of novel molecular candidates are evaluated computationally and predictions benchmarked by proof of principle experiments. This research program aims at developing a threefold computational screening strategy enabling the design of an emerging class of molecular precursors based on the insertion of π-conjugated molecules into self-assembled hydrogen bond aggregator segments (e.g. oligopeptide, nucleotide and carbohydrate motifs). These bioinspired functionalized pi-conjugated systems offer the highly desirable prospect of achieving ordered suprastructures abundant in nature with the enhanced functionalities only observed in synthetic polymers. A more holistic objective is to definitively establish the relationship between highly ordered architectures and the nature of the electronic interactions and charge transfer properties in the assemblies.
Max ERC Funding
1 482 240 €
Duration
Start date: 2012-12-01, End date: 2017-11-30
Project acronym COMPUSLANG
Project Neural and computational determinants of left cerebral dominance in speech and language
Researcher (PI) Anne-Lise Mamessier
Host Institution (HI) UNIVERSITE DE GENEVE
Call Details Starting Grant (StG), LS5, ERC-2010-StG_20091118
Summary More than a century after Wernicke and Broca established that speech perception and production rely on temporal and prefrontal cortices of the left brain hemisphere, the biological determinants for this organization are still unknown. While functional neuroanatomy has been described in great detail, the neuroscience of language still lacks a physiologically plausible model of the neuro-computational mechanisms for coding and decoding of speech acoustic signal. We propose to fill this gap by testing the biological validity and exploring the computational implications of one promising proposal, the Asymmetric Sampling in Time theory. AST assumes that speech signals are analysed in parallel at multiple timescales and that these timescales differ between left and right cerebral hemispheres. This theory is original and provocative as it implies that a single computational difference, distinct integration windows in right and left auditory cortices could be sufficient to explain why speech is preferentially processed by the left brain, and possible even why the human brain has evolved toward such an asymmetric functional organization. Our proposal has four goals: 1/ to validate, invalidate or amend AST on the basis of physiological experiments in healthy human subjects including functional magnetic resonance imaging (fMRI), combined electroencephalography (EEG) and fMRI, magnetoencephalography (MEG) and subdural electrocorticography (EcoG), 2/ to use computational modeling to probe those aspects of the theory that currently remain inaccessible to empirical testing (evaluation, assessment), 3/ to apply AST to binaural artificial hearing with cochlear implants, 4/ to test for disorders of auditory sampling in autism and dyslexia, two language neurodevelopmental pathologies in which a genetic basis implicates the physiological underpinnings of AST, and 5/ to assess potential generalisation of AST to linguistic action in the context of speech production.
Summary
More than a century after Wernicke and Broca established that speech perception and production rely on temporal and prefrontal cortices of the left brain hemisphere, the biological determinants for this organization are still unknown. While functional neuroanatomy has been described in great detail, the neuroscience of language still lacks a physiologically plausible model of the neuro-computational mechanisms for coding and decoding of speech acoustic signal. We propose to fill this gap by testing the biological validity and exploring the computational implications of one promising proposal, the Asymmetric Sampling in Time theory. AST assumes that speech signals are analysed in parallel at multiple timescales and that these timescales differ between left and right cerebral hemispheres. This theory is original and provocative as it implies that a single computational difference, distinct integration windows in right and left auditory cortices could be sufficient to explain why speech is preferentially processed by the left brain, and possible even why the human brain has evolved toward such an asymmetric functional organization. Our proposal has four goals: 1/ to validate, invalidate or amend AST on the basis of physiological experiments in healthy human subjects including functional magnetic resonance imaging (fMRI), combined electroencephalography (EEG) and fMRI, magnetoencephalography (MEG) and subdural electrocorticography (EcoG), 2/ to use computational modeling to probe those aspects of the theory that currently remain inaccessible to empirical testing (evaluation, assessment), 3/ to apply AST to binaural artificial hearing with cochlear implants, 4/ to test for disorders of auditory sampling in autism and dyslexia, two language neurodevelopmental pathologies in which a genetic basis implicates the physiological underpinnings of AST, and 5/ to assess potential generalisation of AST to linguistic action in the context of speech production.
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-02-01, End date: 2016-01-31
Project acronym CON-HUMO
Project Control based on Human Models
Researcher (PI) Sandra Hirche
Host Institution (HI) TECHNISCHE UNIVERSITAET MUENCHEN
Call Details Starting Grant (StG), PE7, ERC-2013-StG
Summary "CON-HUMO focuses on novel concepts for automatic control based on data-driven human models and machine learning. This enables innovative control applications that are difficult if not impossible to realize using traditional control and identification methods, in particular in the challenging area of smart human-machine interaction. In order to achieve intuitive and efficient goal-oriented interaction, anticipation is key. For control selection based on prediction a dynamic model of the human interaction behavior is required, which, however, is difficult to obtain from first principles. In order to cope with the high complexity of human behavior with unknown inputs and only sparsely available training data we propose to use machine-learning techniques for statistical modeling of the dynamics. In this new field of human interaction modeling – data-driven and machine-learned – control methods with guaranteed properties do not exist. CON-HUMO addresses this niche.
Key methodological innovation and breakthrough is the merger of probabilistic learning with model-based control concepts through model confidence and prediction uncertainty. For the sake of concreteness and evaluation the focus is on one of the most challenging problem classes, namely physical human-machine interaction: Because of the physical contact between the human and the machine not only information, but also energy is exchanged posing fundamental challenges for real-time human-adaptive and safe decision making/control and requiring provable stability and performance guarantees. The developed methods are a direct enabler for societally important applications such as machine-based physical rehabilitation, mobility and manipulation aids for elderly, and collaborative human-machine production systems. With its fundamental results CON-HUMO lays the ground for the systematic control design for smart human-machine/infrastructure interaction."
Summary
"CON-HUMO focuses on novel concepts for automatic control based on data-driven human models and machine learning. This enables innovative control applications that are difficult if not impossible to realize using traditional control and identification methods, in particular in the challenging area of smart human-machine interaction. In order to achieve intuitive and efficient goal-oriented interaction, anticipation is key. For control selection based on prediction a dynamic model of the human interaction behavior is required, which, however, is difficult to obtain from first principles. In order to cope with the high complexity of human behavior with unknown inputs and only sparsely available training data we propose to use machine-learning techniques for statistical modeling of the dynamics. In this new field of human interaction modeling – data-driven and machine-learned – control methods with guaranteed properties do not exist. CON-HUMO addresses this niche.
Key methodological innovation and breakthrough is the merger of probabilistic learning with model-based control concepts through model confidence and prediction uncertainty. For the sake of concreteness and evaluation the focus is on one of the most challenging problem classes, namely physical human-machine interaction: Because of the physical contact between the human and the machine not only information, but also energy is exchanged posing fundamental challenges for real-time human-adaptive and safe decision making/control and requiring provable stability and performance guarantees. The developed methods are a direct enabler for societally important applications such as machine-based physical rehabilitation, mobility and manipulation aids for elderly, and collaborative human-machine production systems. With its fundamental results CON-HUMO lays the ground for the systematic control design for smart human-machine/infrastructure interaction."
Max ERC Funding
1 494 640 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym CONENE
Project Control of Large-scale Stochastic Hybrid Systems for Stability of Power Grid with Renewable Energy
Researcher (PI) Maryam Kamgarpour
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Starting Grant (StG), PE7, ERC-2015-STG
Summary The increasing uptake of renewable energy sources and liberalization of electricity markets are significantly changing power system operations. To ensure stability of the grid, it is critical to develop provably safe feedback control algorithms that take into account uncertainties in the output of weather-based renewable generation and in participation of distributed producers and consumers in electricity markets. The focus of this proposal is to develop the theory and algorithms for control of large-scale stochastic hybrid systems in order to guarantee safe and efficient grid operations. Stochastic hybrid systems are a powerful modeling framework. They capture uncertainties in the output of weather-based renewable generation as well as complex hybrid state interactions arising from discrete-valued network topologies with continuous-valued voltages and frequencies. The problems of stability and efficiency of the grid in the face of its changes will be formulated as safety and optimal control problems for stochastic hybrid systems. Using recent advances in numerical optimization and statistics, provably safe and scalable numerical algorithms for control of this class of systems will be developed. These algorithms will be implemented and validated on realistic power grid simulation platforms and will take advantage of recent advances in sensing, control and communication technologies for the grid. The end outcome of the project is better quantifying and controlling effects of increased uncertainties on the stability of the grid. The societal and economic implications of this study are tied with the value and price of a secure power grid. Addressing the questions formulated in this proposal will bring the EU closer to its ambitious renewable energy goals.
Summary
The increasing uptake of renewable energy sources and liberalization of electricity markets are significantly changing power system operations. To ensure stability of the grid, it is critical to develop provably safe feedback control algorithms that take into account uncertainties in the output of weather-based renewable generation and in participation of distributed producers and consumers in electricity markets. The focus of this proposal is to develop the theory and algorithms for control of large-scale stochastic hybrid systems in order to guarantee safe and efficient grid operations. Stochastic hybrid systems are a powerful modeling framework. They capture uncertainties in the output of weather-based renewable generation as well as complex hybrid state interactions arising from discrete-valued network topologies with continuous-valued voltages and frequencies. The problems of stability and efficiency of the grid in the face of its changes will be formulated as safety and optimal control problems for stochastic hybrid systems. Using recent advances in numerical optimization and statistics, provably safe and scalable numerical algorithms for control of this class of systems will be developed. These algorithms will be implemented and validated on realistic power grid simulation platforms and will take advantage of recent advances in sensing, control and communication technologies for the grid. The end outcome of the project is better quantifying and controlling effects of increased uncertainties on the stability of the grid. The societal and economic implications of this study are tied with the value and price of a secure power grid. Addressing the questions formulated in this proposal will bring the EU closer to its ambitious renewable energy goals.
Max ERC Funding
1 346 438 €
Duration
Start date: 2016-04-01, End date: 2020-09-30
Project acronym CONNEXIO
Project Physiologically relevant microfluidic neuro-engineering
Researcher (PI) Thibault Frédéric Johan HONEGGER
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE7, ERC-2016-STG
Summary Developing minimalistic biological neural networks and observing their functional activity is crucial to decipher the information processing in the brain. This project aims to address two major challenges: to design and fabricate in vitro biological neural networks that are organized in physiological relevant ways and to provide a label-free monitoring platform capable of observing neural activity both at the neuron resolution and at large fields of view. To do so, the project will develop a unique microfluidic compartmentalized chips where populations of primary neurons will be seeded in deposition chambers with physiological relevant number and densities. Chambers will be connected by microgrooves in which neurites only can grow and whose dimensions will be tuned according to the connectivity pattern to reproduce. To observe the activity of such complex neural networks, we will develop a disruptive observation technique that will transduce the electrical activity of spiking neurons into optical differences observed on a lens-free platform, without calcium labelling and constantly in-incubo. By combining neuro-engineering patterning and the lens-free platform, we will compare individual spiking to global oscillators in basic neural networks under localized external stimulations. Such results will provide experimental insight into computational neuroscience current approaches. Finally, we will design an in vitro network that will reproduce a neural loop implied in major neurodegenerative diseases with physiological relevant neural types, densities and connectivities. This circuitry will be manipulated in order to model Huntington and Parkinson diseases on the chip and assess the impact of known drugs on the functional activity of the entire network. This project will engineer microfluidics chips with physiological relevant neural network and a lensfree activity monitoring platform to answer fundamental and clinically relevant issues in neuroscience.
Summary
Developing minimalistic biological neural networks and observing their functional activity is crucial to decipher the information processing in the brain. This project aims to address two major challenges: to design and fabricate in vitro biological neural networks that are organized in physiological relevant ways and to provide a label-free monitoring platform capable of observing neural activity both at the neuron resolution and at large fields of view. To do so, the project will develop a unique microfluidic compartmentalized chips where populations of primary neurons will be seeded in deposition chambers with physiological relevant number and densities. Chambers will be connected by microgrooves in which neurites only can grow and whose dimensions will be tuned according to the connectivity pattern to reproduce. To observe the activity of such complex neural networks, we will develop a disruptive observation technique that will transduce the electrical activity of spiking neurons into optical differences observed on a lens-free platform, without calcium labelling and constantly in-incubo. By combining neuro-engineering patterning and the lens-free platform, we will compare individual spiking to global oscillators in basic neural networks under localized external stimulations. Such results will provide experimental insight into computational neuroscience current approaches. Finally, we will design an in vitro network that will reproduce a neural loop implied in major neurodegenerative diseases with physiological relevant neural types, densities and connectivities. This circuitry will be manipulated in order to model Huntington and Parkinson diseases on the chip and assess the impact of known drugs on the functional activity of the entire network. This project will engineer microfluidics chips with physiological relevant neural network and a lensfree activity monitoring platform to answer fundamental and clinically relevant issues in neuroscience.
Max ERC Funding
1 727 731 €
Duration
Start date: 2016-11-01, End date: 2021-10-31
Project acronym CONT-ACT
Project Control of contact interactions for robots acting in the world
Researcher (PI) Ludovic Dominique Righetti
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), PE7, ERC-2014-STG
Summary What are the algorithmic principles that would allow a robot to run through a rocky terrain, lift a couch while reaching for an object that rolled under it or manipulate a screwdriver while balancing on top of a ladder? Answering this seemingly naïve question resorts to understanding the fundamental principles for robot locomotion and manipulation, which is very challenging. However, it is a necessary step towards ubiquitous robots capable of helping humans in an uncountable number of tasks. The fundamental aspect of both locomotion and manipulation is that the dynamic interaction of the robot with its environment through the creation of physical contacts is at the heart of the tasks. The planning of such interactions in a general manner is an unsolved problem. Moreover, it is not clear how sensory information (e.g. tactile and force sensors) can be included to improve the robustness of robot behaviors. Most of the time, it is simply discarded. CONT-ACT has the ambition to develop a consistent theoretical framework for motion generation and control where contact interaction is at the core of the approach and an efficient use of sensory information drives the development of high performance, adaptive and robust planning and control methods. CONT-ACT develops an architecture based on real-time predictive controllers that fully exploit contact interactions. In addition, the structure of sensory information during contact interactions is experimentally analyzed to create sensor representations adapted for control. It is then possible to learn predictive models in sensor space that are used to create very reactive controllers. The robot constantly improves its performance as it learns better sensory models. It is a step towards a general theory for robot movement that can be used to control any robot with legs and arms for both manipulation and locomotion tasks and that allows robots to constantly improve their performances as they experience the world.
Summary
What are the algorithmic principles that would allow a robot to run through a rocky terrain, lift a couch while reaching for an object that rolled under it or manipulate a screwdriver while balancing on top of a ladder? Answering this seemingly naïve question resorts to understanding the fundamental principles for robot locomotion and manipulation, which is very challenging. However, it is a necessary step towards ubiquitous robots capable of helping humans in an uncountable number of tasks. The fundamental aspect of both locomotion and manipulation is that the dynamic interaction of the robot with its environment through the creation of physical contacts is at the heart of the tasks. The planning of such interactions in a general manner is an unsolved problem. Moreover, it is not clear how sensory information (e.g. tactile and force sensors) can be included to improve the robustness of robot behaviors. Most of the time, it is simply discarded. CONT-ACT has the ambition to develop a consistent theoretical framework for motion generation and control where contact interaction is at the core of the approach and an efficient use of sensory information drives the development of high performance, adaptive and robust planning and control methods. CONT-ACT develops an architecture based on real-time predictive controllers that fully exploit contact interactions. In addition, the structure of sensory information during contact interactions is experimentally analyzed to create sensor representations adapted for control. It is then possible to learn predictive models in sensor space that are used to create very reactive controllers. The robot constantly improves its performance as it learns better sensory models. It is a step towards a general theory for robot movement that can be used to control any robot with legs and arms for both manipulation and locomotion tasks and that allows robots to constantly improve their performances as they experience the world.
Max ERC Funding
1 495 500 €
Duration
Start date: 2015-06-01, End date: 2020-05-31
Project acronym COOPNET
Project Cooperative Situational Awareness for Wireless Networks
Researcher (PI) Henk Wymeersch
Host Institution (HI) CHALMERS TEKNISKA HOEGSKOLA AB
Call Details Starting Grant (StG), PE7, ERC-2010-StG_20091028
Summary Devices in wireless networks are no longer used only for communicating binary information, but also for navigation and to sense their surroundings. We are currently approaching fundamental limitations in terms of communication throughput, position information availability and accuracy, and decision making based on sensory data. The goal of this proposal is to understand how the cooperative nature of future wireless networks can be leveraged to perform timekeeping, positioning, communication, and decision making, so as to obtain orders of magnitude performance improvements compared to current architectures.
Our research will have implications in many fields and will comprise fundamental theoretical contributions as well as a cooperative wireless testbed. The fundamental contributions will lead to a deep understanding of cooperative wireless networks and will enable new pervasive applications which currently cannot be supported. The testbed will be used to validate the research, and will serve as a kernel for other researchers worldwide to advance knowledge on cooperative networks. Our work will build on and consolidate knowledge currently dispersed in different scientific disciplines and communities (such as communication theory, sensor networks, distributed estimation and detection, environmental monitoring, control theory, positioning and timekeeping, distributed optimization). It will give a new thrust to research within those communities and forge relations between them.
Summary
Devices in wireless networks are no longer used only for communicating binary information, but also for navigation and to sense their surroundings. We are currently approaching fundamental limitations in terms of communication throughput, position information availability and accuracy, and decision making based on sensory data. The goal of this proposal is to understand how the cooperative nature of future wireless networks can be leveraged to perform timekeeping, positioning, communication, and decision making, so as to obtain orders of magnitude performance improvements compared to current architectures.
Our research will have implications in many fields and will comprise fundamental theoretical contributions as well as a cooperative wireless testbed. The fundamental contributions will lead to a deep understanding of cooperative wireless networks and will enable new pervasive applications which currently cannot be supported. The testbed will be used to validate the research, and will serve as a kernel for other researchers worldwide to advance knowledge on cooperative networks. Our work will build on and consolidate knowledge currently dispersed in different scientific disciplines and communities (such as communication theory, sensor networks, distributed estimation and detection, environmental monitoring, control theory, positioning and timekeeping, distributed optimization). It will give a new thrust to research within those communities and forge relations between them.
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-05-01, End date: 2016-04-30
Project acronym CoordinatedDopamine
Project Coordination of regional dopamine release in the striatum during habit formation and compulsive behaviour
Researcher (PI) Ingo Willuhn
Host Institution (HI) ACADEMISCH MEDISCH CENTRUM BIJ DE UNIVERSITEIT VAN AMSTERDAM
Call Details Starting Grant (StG), LS5, ERC-2014-STG
Summary The basal ganglia consist of a set of neuroanatomical structures that participate in the representation and execution of action sequences. Dopamine neurotransmission in the striatum, the main input nucleus of the basal ganglia, is a fundamental mechanism involved in learning and regulation of such actions. The striatum has multiple functional units, where the limbic striatum is thought to mediate motivational aspects of actions (e.g., goal-directedness) and the sensorimotor striatum their automation (e.g., habit formation). A long-standing question in the field is how limbic and sensorimotor domains communicate with each other, and specifically if they do so during the automation of action sequences. It has been suggested that such coordination is implemented by reciprocal loop connections between striatal projection neurons and the dopaminergic midbrain. Although very influential in theory the effectiveness of this limbic-sensorimotor “bridging” principle has yet to be verified. I hypothesize that during the automation of behaviour regional dopamine signalling is governed by a striatal hierarchy and that dysregulation of this coordination leads to compulsive execution of automatic actions characteristic of several psychiatric disorders. To test this hypothesis, we will conduct electrochemical measurements with real-time resolution simultaneously in limbic and sensorimotor striatum to assess the regional coordination of dopamine release in behaving animals. We developed novel chronically implantable electrodes to enable monitoring of dopamine dynamics throughout the development of habitual behaviour and its compulsive execution in transgenic rats - a species suitable for our complex behavioural assays. Novel rabies virus-mediated gene delivery for in vivo optogenetics in these rats will give us the unique opportunity to test whether specific loop pathways govern striatal dopamine transmission and are causally involved in habit formation and compulsive behaviour.
Summary
The basal ganglia consist of a set of neuroanatomical structures that participate in the representation and execution of action sequences. Dopamine neurotransmission in the striatum, the main input nucleus of the basal ganglia, is a fundamental mechanism involved in learning and regulation of such actions. The striatum has multiple functional units, where the limbic striatum is thought to mediate motivational aspects of actions (e.g., goal-directedness) and the sensorimotor striatum their automation (e.g., habit formation). A long-standing question in the field is how limbic and sensorimotor domains communicate with each other, and specifically if they do so during the automation of action sequences. It has been suggested that such coordination is implemented by reciprocal loop connections between striatal projection neurons and the dopaminergic midbrain. Although very influential in theory the effectiveness of this limbic-sensorimotor “bridging” principle has yet to be verified. I hypothesize that during the automation of behaviour regional dopamine signalling is governed by a striatal hierarchy and that dysregulation of this coordination leads to compulsive execution of automatic actions characteristic of several psychiatric disorders. To test this hypothesis, we will conduct electrochemical measurements with real-time resolution simultaneously in limbic and sensorimotor striatum to assess the regional coordination of dopamine release in behaving animals. We developed novel chronically implantable electrodes to enable monitoring of dopamine dynamics throughout the development of habitual behaviour and its compulsive execution in transgenic rats - a species suitable for our complex behavioural assays. Novel rabies virus-mediated gene delivery for in vivo optogenetics in these rats will give us the unique opportunity to test whether specific loop pathways govern striatal dopamine transmission and are causally involved in habit formation and compulsive behaviour.
Max ERC Funding
1 500 000 €
Duration
Start date: 2015-05-01, End date: 2020-04-30
Project acronym CORTEXFOLDING
Project Understanding the development and function of cerebral cortex folding
Researcher (PI) Victor Borrell Franco
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Starting Grant (StG), LS5, ERC-2012-StG_20111109
Summary The mammalian cerebral cortex was subject to a dramatic expansion in surface area during evolution. This process is recapitulated during development and is accompanied by folding of the cortical sheet, which allows fitting a large cortical surface within a limited cranial volume. A loss of cortical folds is linked to severe intellectual impairment in humans, so cortical folding is believed to be crucial for brain function. However, developmental mechanisms responsible for cortical folding, and the influence of this on cortical function, remain largely unknown. The goal of this proposal is to understand the genetic and cellular mechanisms that control the developmental expansion and folding of the cerebral cortex, and what is the impact of these processes on its functional organization. Human studies have identified genes essential for the proper folding of the human cerebral cortex. Genetic manipulations in mice have unraveled specific functions for some of those genes in the development of the cerebral cortex. But because the mouse cerebral cortex does not fold naturally, the mechanisms of cortical expansion and folding in larger brains remain unknown. We will study these mechanisms on ferret, an ideal model with a naturally folded cerebral cortex. We will combine the advantages of ferrets with cell biology, genetics and next-generation transcriptomics, together with state-of-the-art in vivo, in vitro and in silico approaches, including in vivo imaging of functional columnar maps. The successful execution of this project will provide insights into developmental and genetic risk factors for anomalies in human cortical topology, and into mechanisms responsible for the early formation of cortical functional maps.
Summary
The mammalian cerebral cortex was subject to a dramatic expansion in surface area during evolution. This process is recapitulated during development and is accompanied by folding of the cortical sheet, which allows fitting a large cortical surface within a limited cranial volume. A loss of cortical folds is linked to severe intellectual impairment in humans, so cortical folding is believed to be crucial for brain function. However, developmental mechanisms responsible for cortical folding, and the influence of this on cortical function, remain largely unknown. The goal of this proposal is to understand the genetic and cellular mechanisms that control the developmental expansion and folding of the cerebral cortex, and what is the impact of these processes on its functional organization. Human studies have identified genes essential for the proper folding of the human cerebral cortex. Genetic manipulations in mice have unraveled specific functions for some of those genes in the development of the cerebral cortex. But because the mouse cerebral cortex does not fold naturally, the mechanisms of cortical expansion and folding in larger brains remain unknown. We will study these mechanisms on ferret, an ideal model with a naturally folded cerebral cortex. We will combine the advantages of ferrets with cell biology, genetics and next-generation transcriptomics, together with state-of-the-art in vivo, in vitro and in silico approaches, including in vivo imaging of functional columnar maps. The successful execution of this project will provide insights into developmental and genetic risk factors for anomalies in human cortical topology, and into mechanisms responsible for the early formation of cortical functional maps.
Max ERC Funding
1 701 116 €
Duration
Start date: 2013-01-01, End date: 2018-06-30