Project acronym 15CBOOKTRADE
Project The 15th-century Book Trade: An Evidence-based Assessment and Visualization of the Distribution, Sale, and Reception of Books in the Renaissance
Researcher (PI) Cristina Dondi
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Consolidator Grant (CoG), SH6, ERC-2013-CoG
Summary The idea that underpins this project is to use the material evidence from thousands of surviving 15th-c. books, as well as unique documentary evidence — the unpublished ledger of a Venetian bookseller in the 1480s which records the sale of 25,000 printed books with their prices — to address four fundamental questions relating to the introduction of printing in the West which have so far eluded scholarship, partly because of lack of evidence, partly because of the lack of effective tools to deal with existing evidence. The book trade differs from other trades operating in the medieval and early modern periods in that the goods traded survive in considerable numbers. Not only do they survive, but many of them bear stratified evidence of their history in the form of marks of ownership, prices, manuscript annotations, binding and decoration styles. A British Academy pilot project conceived by the PI produced a now internationally-used database which gathers together this kind of evidence for thousands of surviving 15th-c. printed books. For the first time, this makes it possible to track the circulation of books, their trade routes and later collecting, across Europe and the USA, and throughout the centuries. The objectives of this project are to examine (1) the distribution and trade-routes, national and international, of 15th-c. printed books, along with the identity of the buyers and users (private, institutional, religious, lay, female, male, and by profession) and their reading practices; (2) the books' contemporary market value; (3) the transmission and dissemination of the texts they contain, their survival and their loss (rebalancing potentially skewed scholarship); and (4) the circulation and re-use of the illustrations they contain. Finally, the project will experiment with the application of scientific visualization techniques to represent, geographically and chronologically, the movement of 15th-c. printed books and of the texts they contain.
Summary
The idea that underpins this project is to use the material evidence from thousands of surviving 15th-c. books, as well as unique documentary evidence — the unpublished ledger of a Venetian bookseller in the 1480s which records the sale of 25,000 printed books with their prices — to address four fundamental questions relating to the introduction of printing in the West which have so far eluded scholarship, partly because of lack of evidence, partly because of the lack of effective tools to deal with existing evidence. The book trade differs from other trades operating in the medieval and early modern periods in that the goods traded survive in considerable numbers. Not only do they survive, but many of them bear stratified evidence of their history in the form of marks of ownership, prices, manuscript annotations, binding and decoration styles. A British Academy pilot project conceived by the PI produced a now internationally-used database which gathers together this kind of evidence for thousands of surviving 15th-c. printed books. For the first time, this makes it possible to track the circulation of books, their trade routes and later collecting, across Europe and the USA, and throughout the centuries. The objectives of this project are to examine (1) the distribution and trade-routes, national and international, of 15th-c. printed books, along with the identity of the buyers and users (private, institutional, religious, lay, female, male, and by profession) and their reading practices; (2) the books' contemporary market value; (3) the transmission and dissemination of the texts they contain, their survival and their loss (rebalancing potentially skewed scholarship); and (4) the circulation and re-use of the illustrations they contain. Finally, the project will experiment with the application of scientific visualization techniques to represent, geographically and chronologically, the movement of 15th-c. printed books and of the texts they contain.
Max ERC Funding
1 999 172 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym 20SComplexity
Project An integrative approach to uncover the multilevel regulation of 20S proteasome degradation
Researcher (PI) Michal Sharon
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Starting Grant (StG), LS1, ERC-2014-STG
Summary For many years, the ubiquitin-26S proteasome degradation pathway was considered the primary route for proteasomal degradation. However, it is now becoming clear that proteins can also be targeted for degradation by a ubiquitin-independent mechanism mediated by the core 20S proteasome itself. Although initially believed to be limited to rare exceptions, degradation by the 20S proteasome is now understood to have a wide range of substrates, many of which are key regulatory proteins. Despite its importance, little is known about the mechanisms that control 20S proteasomal degradation, unlike the extensive knowledge acquired over the years concerning degradation by the 26S proteasome. Our overall aim is to reveal the multiple regulatory levels that coordinate the 20S proteasome degradation route.
To achieve this goal we will carry out a comprehensive research program characterizing three distinct levels of 20S proteasome regulation:
Intra-molecular regulation- Revealing the intrinsic molecular switch that activates the latent 20S proteasome.
Inter-molecular regulation- Identifying novel proteins that bind the 20S proteasome to regulate its activity and characterizing their mechanism of function.
Cellular regulatory networks- Unraveling the cellular cues and multiple pathways that influence 20S proteasome activity using a novel systematic and unbiased screening approach.
Our experimental strategy involves the combination of biochemical approaches with native mass spectrometry, cross-linking and fluorescence measurements, complemented by cell biology analyses and high-throughput screening. Such a multidisciplinary approach, integrating in vitro and in vivo findings, will likely provide the much needed knowledge on the 20S proteasome degradation route. When completed, we anticipate that this work will be part of a new paradigm – no longer perceiving the 20S proteasome mediated degradation as a simple and passive event but rather a tightly regulated and coordinated process.
Summary
For many years, the ubiquitin-26S proteasome degradation pathway was considered the primary route for proteasomal degradation. However, it is now becoming clear that proteins can also be targeted for degradation by a ubiquitin-independent mechanism mediated by the core 20S proteasome itself. Although initially believed to be limited to rare exceptions, degradation by the 20S proteasome is now understood to have a wide range of substrates, many of which are key regulatory proteins. Despite its importance, little is known about the mechanisms that control 20S proteasomal degradation, unlike the extensive knowledge acquired over the years concerning degradation by the 26S proteasome. Our overall aim is to reveal the multiple regulatory levels that coordinate the 20S proteasome degradation route.
To achieve this goal we will carry out a comprehensive research program characterizing three distinct levels of 20S proteasome regulation:
Intra-molecular regulation- Revealing the intrinsic molecular switch that activates the latent 20S proteasome.
Inter-molecular regulation- Identifying novel proteins that bind the 20S proteasome to regulate its activity and characterizing their mechanism of function.
Cellular regulatory networks- Unraveling the cellular cues and multiple pathways that influence 20S proteasome activity using a novel systematic and unbiased screening approach.
Our experimental strategy involves the combination of biochemical approaches with native mass spectrometry, cross-linking and fluorescence measurements, complemented by cell biology analyses and high-throughput screening. Such a multidisciplinary approach, integrating in vitro and in vivo findings, will likely provide the much needed knowledge on the 20S proteasome degradation route. When completed, we anticipate that this work will be part of a new paradigm – no longer perceiving the 20S proteasome mediated degradation as a simple and passive event but rather a tightly regulated and coordinated process.
Max ERC Funding
1 500 000 €
Duration
Start date: 2015-04-01, End date: 2020-03-31
Project acronym AAMDDR
Project DNA damage response and genome stability: The role of ATM, ATR and the Mre11 complex
Researcher (PI) Vincenzo Costanzo
Host Institution (HI) CANCER RESEARCH UK LBG
Call Details Starting Grant (StG), LS1, ERC-2007-StG
Summary Chromosomal DNA is continuously subjected to exogenous and endogenous damaging insults. In the presence of DNA damage cells activate a multi-faceted checkpoint response that delays cell cycle progression and promotes DNA repair. Failures in this response lead to genomic instability, the main feature of cancer cells. Several cancer-prone human syndromes including the Ataxia teleangiectasia (A-T), the A-T Like Disorder (ATLD) and the Seckel Syndrome reflect defects in the specific genes of the DNA damage response such as ATM, MRE11 and ATR. DNA damage response pathways are poorly understood at biochemical level in vertebrate organisms. We have established a cell-free system based on Xenopus laevis egg extract to study molecular events underlying DNA damage response. This is the first in vitro system that recapitulates different aspects of the DNA damage response in vertebrates. Using this system we propose to study the biochemistry of the ATM, ATR and the Mre11 complex dependent DNA damage response. In particular we will: 1) Dissect the signal transduction pathway that senses DNA damage and promotes cell cycle arrest and DNA damage repair; 2) Analyze at molecular level the role of ATM, ATR, Mre11 in chromosomal DNA replication and mitosis during normal and stressful conditions; 3) Identify substrates of the ATM and ATR dependent DNA damage response using an innovative screening procedure.
Summary
Chromosomal DNA is continuously subjected to exogenous and endogenous damaging insults. In the presence of DNA damage cells activate a multi-faceted checkpoint response that delays cell cycle progression and promotes DNA repair. Failures in this response lead to genomic instability, the main feature of cancer cells. Several cancer-prone human syndromes including the Ataxia teleangiectasia (A-T), the A-T Like Disorder (ATLD) and the Seckel Syndrome reflect defects in the specific genes of the DNA damage response such as ATM, MRE11 and ATR. DNA damage response pathways are poorly understood at biochemical level in vertebrate organisms. We have established a cell-free system based on Xenopus laevis egg extract to study molecular events underlying DNA damage response. This is the first in vitro system that recapitulates different aspects of the DNA damage response in vertebrates. Using this system we propose to study the biochemistry of the ATM, ATR and the Mre11 complex dependent DNA damage response. In particular we will: 1) Dissect the signal transduction pathway that senses DNA damage and promotes cell cycle arrest and DNA damage repair; 2) Analyze at molecular level the role of ATM, ATR, Mre11 in chromosomal DNA replication and mitosis during normal and stressful conditions; 3) Identify substrates of the ATM and ATR dependent DNA damage response using an innovative screening procedure.
Max ERC Funding
1 000 000 €
Duration
Start date: 2008-07-01, End date: 2013-06-30
Project acronym AAREA
Project The Archaeology of Agricultural Resilience in Eastern Africa
Researcher (PI) Daryl Stump
Host Institution (HI) UNIVERSITY OF YORK
Call Details Starting Grant (StG), SH6, ERC-2013-StG
Summary "The twin concepts of sustainability and conservation that are so pivotal within current debates regarding economic development and biodiversity protection both contain an inherent temporal dimension, since both refer to the need to balance short-term gains with long-term resource maintenance. Proponents of resilience theory and of development based on ‘indigenous knowledge’ have thus argued for the necessity of including archaeological, historical and palaeoenvironmental components within development project design. Indeed, some have argued that archaeology should lead these interdisciplinary projects on the grounds that it provides the necessary time depth and bridges the social and natural sciences. The project proposed here accepts this logic and endorses this renewed contemporary relevance of archaeological research. However, it also needs to be admitted that moving beyond critiques of the misuse of historical data presents significant hurdles. When presenting results outside the discipline, for example, archaeological projects tend to downplay the poor archaeological visibility of certain agricultural practices, and computer models designed to test sustainability struggle to adequately account for local cultural preferences. This field will therefore not progress unless there is a frank appraisal of archaeology’s strengths and weaknesses. This project will provide this assessment by employing a range of established and groundbreaking archaeological and modelling techniques to examine the development of two east Africa agricultural systems: one at the abandoned site of Engaruka in Tanzania, commonly seen as an example of resource mismanagement and ecological collapse; and another at the current agricultural landscape in Konso, Ethiopia, described by the UN FAO as one of a select few African “lessons from the past”. The project thus aims to assess the sustainability of these systems, but will also assess the role archaeology can play in such debates worldwide."
Summary
"The twin concepts of sustainability and conservation that are so pivotal within current debates regarding economic development and biodiversity protection both contain an inherent temporal dimension, since both refer to the need to balance short-term gains with long-term resource maintenance. Proponents of resilience theory and of development based on ‘indigenous knowledge’ have thus argued for the necessity of including archaeological, historical and palaeoenvironmental components within development project design. Indeed, some have argued that archaeology should lead these interdisciplinary projects on the grounds that it provides the necessary time depth and bridges the social and natural sciences. The project proposed here accepts this logic and endorses this renewed contemporary relevance of archaeological research. However, it also needs to be admitted that moving beyond critiques of the misuse of historical data presents significant hurdles. When presenting results outside the discipline, for example, archaeological projects tend to downplay the poor archaeological visibility of certain agricultural practices, and computer models designed to test sustainability struggle to adequately account for local cultural preferences. This field will therefore not progress unless there is a frank appraisal of archaeology’s strengths and weaknesses. This project will provide this assessment by employing a range of established and groundbreaking archaeological and modelling techniques to examine the development of two east Africa agricultural systems: one at the abandoned site of Engaruka in Tanzania, commonly seen as an example of resource mismanagement and ecological collapse; and another at the current agricultural landscape in Konso, Ethiopia, described by the UN FAO as one of a select few African “lessons from the past”. The project thus aims to assess the sustainability of these systems, but will also assess the role archaeology can play in such debates worldwide."
Max ERC Funding
1 196 701 €
Duration
Start date: 2014-02-01, End date: 2018-01-31
Project acronym ABATSYNAPSE
Project Evolution of Alzheimer’s Disease: From dynamics of single synapses to memory loss
Researcher (PI) Inna Slutsky
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Starting Grant (StG), LS5, ERC-2011-StG_20101109
Summary A persistent challenge in unravelling mechanisms that regulate memory function is how to bridge the gap between inter-molecular dynamics of single proteins, activity of individual synapses and emerging properties of neuronal circuits. The prototype condition of disintegrating neuronal circuits is Alzheimer’s Disease (AD). Since the early time of Alois Alzheimer at the turn of the 20th century, scientists have been searching for a molecular entity that is in the roots of the cognitive deficits. Although diverse lines of evidence suggest that the amyloid-beta peptide (Abeta) plays a central role in synaptic dysfunctions of AD, several key questions remain unresolved. First, endogenous Abeta peptides are secreted by neurons throughout life, but their physiological functions are largely unknown. Second, experience-dependent physiological mechanisms that initiate the changes in Abeta composition in sporadic, the most frequent form of AD, are unidentified. And finally, molecular mechanisms that trigger Abeta-induced synaptic failure and memory decline remain elusive.
To target these questions, I propose to develop an integrative approach to correlate structure and function at the level of single synapses in hippocampal circuits. State-of-the-art techniques will enable the simultaneous real-time visualization of inter-molecular dynamics within signalling complexes and functional synaptic modifications. Utilizing FRET spectroscopy, high-resolution optical imaging, electrophysiology, molecular biology and biochemistry we will determine the casual relationship between ongoing neuronal activity, temporo-spatial dynamics and molecular composition of Abeta, structural rearrangements within the Abeta signalling complexes and plasticity of single synapses and whole networks. The proposed research will elucidate fundamental principles of neuronal circuits function and identify critical steps that initiate primary synaptic dysfunctions at the very early stages of sporadic AD.
Summary
A persistent challenge in unravelling mechanisms that regulate memory function is how to bridge the gap between inter-molecular dynamics of single proteins, activity of individual synapses and emerging properties of neuronal circuits. The prototype condition of disintegrating neuronal circuits is Alzheimer’s Disease (AD). Since the early time of Alois Alzheimer at the turn of the 20th century, scientists have been searching for a molecular entity that is in the roots of the cognitive deficits. Although diverse lines of evidence suggest that the amyloid-beta peptide (Abeta) plays a central role in synaptic dysfunctions of AD, several key questions remain unresolved. First, endogenous Abeta peptides are secreted by neurons throughout life, but their physiological functions are largely unknown. Second, experience-dependent physiological mechanisms that initiate the changes in Abeta composition in sporadic, the most frequent form of AD, are unidentified. And finally, molecular mechanisms that trigger Abeta-induced synaptic failure and memory decline remain elusive.
To target these questions, I propose to develop an integrative approach to correlate structure and function at the level of single synapses in hippocampal circuits. State-of-the-art techniques will enable the simultaneous real-time visualization of inter-molecular dynamics within signalling complexes and functional synaptic modifications. Utilizing FRET spectroscopy, high-resolution optical imaging, electrophysiology, molecular biology and biochemistry we will determine the casual relationship between ongoing neuronal activity, temporo-spatial dynamics and molecular composition of Abeta, structural rearrangements within the Abeta signalling complexes and plasticity of single synapses and whole networks. The proposed research will elucidate fundamental principles of neuronal circuits function and identify critical steps that initiate primary synaptic dysfunctions at the very early stages of sporadic AD.
Max ERC Funding
2 000 000 €
Duration
Start date: 2011-12-01, End date: 2017-09-30
Project acronym ABDESIGN
Project Computational design of novel protein function in antibodies
Researcher (PI) Sarel-Jacob Fleishman
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Starting Grant (StG), LS1, ERC-2013-StG
Summary We propose to elucidate the structural design principles of naturally occurring antibody complementarity-determining regions (CDRs) and to computationally design novel antibody functions. Antibodies represent the most versatile known system for molecular recognition. Research has yielded many insights into antibody design principles and promising biotechnological and pharmaceutical applications. Still, our understanding of how CDRs encode specific loop conformations lags far behind our understanding of structure-function relationships in non-immunological scaffolds. Thus, design of antibodies from first principles has not been demonstrated. We propose a computational-experimental strategy to address this challenge. We will: (a) characterize the design principles and sequence elements that rigidify antibody CDRs. Natural antibody loops will be subjected to computational modeling, crystallography, and a combined in vitro evolution and deep-sequencing approach to isolate sequence features that rigidify loop backbones; (b) develop a novel computational-design strategy, which uses the >1000 solved structures of antibodies deposited in structure databases to realistically model CDRs and design them to recognize proteins that have not been co-crystallized with antibodies. For example, we will design novel antibodies targeting insulin, for which clinically useful diagnostics are needed. By accessing much larger sequence/structure spaces than are available to natural immune-system repertoires and experimental methods, computational antibody design could produce higher-specificity and higher-affinity binders, even to challenging targets; and (c) develop new strategies to program conformational change in CDRs, generating, e.g., the first allosteric antibodies. These will allow targeting, in principle, of any molecule, potentially revolutionizing how antibodies are generated for research and medicine, providing new insights on the design principles of protein functional sites.
Summary
We propose to elucidate the structural design principles of naturally occurring antibody complementarity-determining regions (CDRs) and to computationally design novel antibody functions. Antibodies represent the most versatile known system for molecular recognition. Research has yielded many insights into antibody design principles and promising biotechnological and pharmaceutical applications. Still, our understanding of how CDRs encode specific loop conformations lags far behind our understanding of structure-function relationships in non-immunological scaffolds. Thus, design of antibodies from first principles has not been demonstrated. We propose a computational-experimental strategy to address this challenge. We will: (a) characterize the design principles and sequence elements that rigidify antibody CDRs. Natural antibody loops will be subjected to computational modeling, crystallography, and a combined in vitro evolution and deep-sequencing approach to isolate sequence features that rigidify loop backbones; (b) develop a novel computational-design strategy, which uses the >1000 solved structures of antibodies deposited in structure databases to realistically model CDRs and design them to recognize proteins that have not been co-crystallized with antibodies. For example, we will design novel antibodies targeting insulin, for which clinically useful diagnostics are needed. By accessing much larger sequence/structure spaces than are available to natural immune-system repertoires and experimental methods, computational antibody design could produce higher-specificity and higher-affinity binders, even to challenging targets; and (c) develop new strategies to program conformational change in CDRs, generating, e.g., the first allosteric antibodies. These will allow targeting, in principle, of any molecule, potentially revolutionizing how antibodies are generated for research and medicine, providing new insights on the design principles of protein functional sites.
Max ERC Funding
1 499 930 €
Duration
Start date: 2013-09-01, End date: 2018-08-31
Project acronym ACMO
Project Systematic dissection of molecular machines and neural circuits coordinating C. elegans aggregation behaviour
Researcher (PI) Mario De Bono
Host Institution (HI) MEDICAL RESEARCH COUNCIL
Call Details Advanced Grant (AdG), LS5, ERC-2010-AdG_20100317
Summary Elucidating how neural circuits coordinate behaviour, and how molecules underpin the properties of individual neurons are major goals of neuroscience. Optogenetics and neural imaging combined with the powerful genetics and well-described nervous system of C. elegans offer special opportunities to address these questions. Previously, we identified a series of sensory neurons that modulate aggregation of C. elegans. These include neurons that respond to O2, CO2, noxious cues, satiety state, and pheromones. We propose to take our analysis to the next level by dissecting how, in mechanistic molecular terms, these distributed inputs modify the activity of populations of interneurons and motoneurons to coordinate group formation. Our strategy is to develop new, highly parallel approaches to replace the traditional piecemeal analysis.
We propose to:
1) Harness next generation sequencing (NGS) to forward genetics, rapidly to identify a molecular ¿parts list¿ for aggregation. Much of the genetics has been done: we have identified almost 200 mutations that inhibit or enhance aggregation but otherwise show no overt phenotype. A pilot study of 50 of these mutations suggests they identify dozens of genes not previously implicated in aggregation. NGS will allow us to molecularly identify these genes in a few months, providing multiple entry points to study molecular and circuitry mechanisms for behaviour.
2) Develop new methods to image the activity of populations of neurons in immobilized and freely moving animals, using genetically encoded indicators such as the calcium sensor cameleon and the voltage indicator mermaid.
This will be the first time a complex behaviour has been dissected in this way. We expect to identify novel conserved molecular and circuitry mechanisms.
Summary
Elucidating how neural circuits coordinate behaviour, and how molecules underpin the properties of individual neurons are major goals of neuroscience. Optogenetics and neural imaging combined with the powerful genetics and well-described nervous system of C. elegans offer special opportunities to address these questions. Previously, we identified a series of sensory neurons that modulate aggregation of C. elegans. These include neurons that respond to O2, CO2, noxious cues, satiety state, and pheromones. We propose to take our analysis to the next level by dissecting how, in mechanistic molecular terms, these distributed inputs modify the activity of populations of interneurons and motoneurons to coordinate group formation. Our strategy is to develop new, highly parallel approaches to replace the traditional piecemeal analysis.
We propose to:
1) Harness next generation sequencing (NGS) to forward genetics, rapidly to identify a molecular ¿parts list¿ for aggregation. Much of the genetics has been done: we have identified almost 200 mutations that inhibit or enhance aggregation but otherwise show no overt phenotype. A pilot study of 50 of these mutations suggests they identify dozens of genes not previously implicated in aggregation. NGS will allow us to molecularly identify these genes in a few months, providing multiple entry points to study molecular and circuitry mechanisms for behaviour.
2) Develop new methods to image the activity of populations of neurons in immobilized and freely moving animals, using genetically encoded indicators such as the calcium sensor cameleon and the voltage indicator mermaid.
This will be the first time a complex behaviour has been dissected in this way. We expect to identify novel conserved molecular and circuitry mechanisms.
Max ERC Funding
2 439 996 €
Duration
Start date: 2011-04-01, End date: 2017-03-31
Project acronym ACROSS
Project Australasian Colonization Research: Origins of Seafaring to Sahul
Researcher (PI) Rosemary Helen FARR
Host Institution (HI) UNIVERSITY OF SOUTHAMPTON
Call Details Starting Grant (StG), SH6, ERC-2017-STG
Summary One of the most exciting research questions within archaeology is that of the peopling of Australasia by at least c.50,000 years ago. This represents some of the earliest evidence of modern human colonization outside Africa, yet, even at the greatest sea-level lowstand, this migration would have involved seafaring. It is the maritime nature of this dispersal which makes it so important to questions of technological, cognitive and social human development. These issues have traditionally been the preserve of archaeologists, but with a multidisciplinary approach that embraces cutting-edge marine geophysical, hydrodynamic and archaeogenetic analyses, we now have the opportunity to examine the When, Where, Who and How of the earliest seafaring in world history.
The voyage from Sunda (South East Asia) to Sahul (Australasia) provides evidence for the earliest ‘open water’ crossing in the world. A combination of the sparse number of early archaeological finds and the significant changes in the palaeolandscape and submergence of the broad north western Australian continental shelf, mean that little is known about the routes taken and what these crossings may have entailed.
This project will combine research of the submerged palaeolandscape of the continental shelf to refine our knowledge of the onshore/offshore environment, identify potential submerged prehistoric sites and enhance our understanding of the palaeoshoreline and tidal regime. This will be combined with archaeogenetic research targeting mtDNA and Y-chromosome data to resolve questions of demography and dating.
For the first time this project takes a truly multidisciplinary approach to address the colonization of Sahul, providing an unique opportunity to tackle some of the most important questions about human origins, the relationship between humans and the changing environment, population dynamics and migration, seafaring technology, social organisation and cognition.
Summary
One of the most exciting research questions within archaeology is that of the peopling of Australasia by at least c.50,000 years ago. This represents some of the earliest evidence of modern human colonization outside Africa, yet, even at the greatest sea-level lowstand, this migration would have involved seafaring. It is the maritime nature of this dispersal which makes it so important to questions of technological, cognitive and social human development. These issues have traditionally been the preserve of archaeologists, but with a multidisciplinary approach that embraces cutting-edge marine geophysical, hydrodynamic and archaeogenetic analyses, we now have the opportunity to examine the When, Where, Who and How of the earliest seafaring in world history.
The voyage from Sunda (South East Asia) to Sahul (Australasia) provides evidence for the earliest ‘open water’ crossing in the world. A combination of the sparse number of early archaeological finds and the significant changes in the palaeolandscape and submergence of the broad north western Australian continental shelf, mean that little is known about the routes taken and what these crossings may have entailed.
This project will combine research of the submerged palaeolandscape of the continental shelf to refine our knowledge of the onshore/offshore environment, identify potential submerged prehistoric sites and enhance our understanding of the palaeoshoreline and tidal regime. This will be combined with archaeogenetic research targeting mtDNA and Y-chromosome data to resolve questions of demography and dating.
For the first time this project takes a truly multidisciplinary approach to address the colonization of Sahul, providing an unique opportunity to tackle some of the most important questions about human origins, the relationship between humans and the changing environment, population dynamics and migration, seafaring technology, social organisation and cognition.
Max ERC Funding
1 134 928 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym ACTINONSRF
Project MAL: an actin-regulated SRF transcriptional coactivator
Researcher (PI) Richard Treisman
Host Institution (HI) THE FRANCIS CRICK INSTITUTE LIMITED
Call Details Advanced Grant (AdG), LS1, ERC-2010-AdG_20100317
Summary MAL: an actin-regulated SRF transcriptional coactivator
Recent years have seen a revitalised interest in the role of actin in nuclear processes, but the molecular mechanisms involved remain largely unexplored. We will elucidate the molecular basis for the actin-based control of the SRF transcriptional coactivator, MAL. SRF controls transcription through two families of coactivators, the actin-binding MRTFs (MAL, Mkl2), which couple its activity to cytoskeletal dynamics, and the ERK-regulated TCFs (Elk-1, SAP-1, Net). MAL subcellular localisation and transcriptional activity responds to signal-induced changes in G-actin concentration, which are sensed by its actin-binding N-terminal RPEL domain. Members of a second family of RPEL proteins, the Phactrs, also exhibit actin-regulated nucleocytoplasmic shuttling. The proposal addresses the following novel features of actin biology:
¿ Actin as a transcriptional regulator
¿ Actin as a signalling molecule
¿ Actin-binding proteins as targets for regulation by actin, rather than regulators of actin function
We will analyse the sequences and proteins involved in actin-regulated nucleocytoplasmic shuttling, using structural biology and biochemistry to analyse its control by changes in actin-RPEL domain interactions. We will characterise the dynamics of shuttling, and develop reporters for changes in actin-MAL interaction for analysis of pathway activation in vivo. We will identify genes controlling MAL itself, and the balance between the nuclear and cytoplasmic actin pools. The mechanism by which actin represses transcriptional activation by MAL in the nucleus, and its relation to MAL phosphorylation, will be elucidated. Finally, we will map MRTF and TCF cofactor recruitment to SRF targets on a genome-wide scale, and identify the steps in transcription controlled by actin-MAL interaction.
Summary
MAL: an actin-regulated SRF transcriptional coactivator
Recent years have seen a revitalised interest in the role of actin in nuclear processes, but the molecular mechanisms involved remain largely unexplored. We will elucidate the molecular basis for the actin-based control of the SRF transcriptional coactivator, MAL. SRF controls transcription through two families of coactivators, the actin-binding MRTFs (MAL, Mkl2), which couple its activity to cytoskeletal dynamics, and the ERK-regulated TCFs (Elk-1, SAP-1, Net). MAL subcellular localisation and transcriptional activity responds to signal-induced changes in G-actin concentration, which are sensed by its actin-binding N-terminal RPEL domain. Members of a second family of RPEL proteins, the Phactrs, also exhibit actin-regulated nucleocytoplasmic shuttling. The proposal addresses the following novel features of actin biology:
¿ Actin as a transcriptional regulator
¿ Actin as a signalling molecule
¿ Actin-binding proteins as targets for regulation by actin, rather than regulators of actin function
We will analyse the sequences and proteins involved in actin-regulated nucleocytoplasmic shuttling, using structural biology and biochemistry to analyse its control by changes in actin-RPEL domain interactions. We will characterise the dynamics of shuttling, and develop reporters for changes in actin-MAL interaction for analysis of pathway activation in vivo. We will identify genes controlling MAL itself, and the balance between the nuclear and cytoplasmic actin pools. The mechanism by which actin represses transcriptional activation by MAL in the nucleus, and its relation to MAL phosphorylation, will be elucidated. Finally, we will map MRTF and TCF cofactor recruitment to SRF targets on a genome-wide scale, and identify the steps in transcription controlled by actin-MAL interaction.
Max ERC Funding
1 889 995 €
Duration
Start date: 2011-10-01, End date: 2017-09-30
Project acronym ACTIVE_NEUROGENESIS
Project Activity-dependent signaling in radial glial cells and their neuronal progeny
Researcher (PI) Colin Akerman
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Starting Grant (StG), LS5, ERC-2009-StG
Summary A significant advance in the field of development has been the appreciation that radial glial cells are progenitors and give birth to neurons in the brain. In order to advance this exciting area of biology, we need approaches that combine structural and functional studies of these cells. This is reflected by the emerging realisation that dynamic interactions involving radial glia may be critical for the regulation of their proliferative behaviour. It has been observed that radial glia experience transient elevations in intracellular Ca2+ but the nature of these signals, and the information that they convey, is not known. The inability to observe these cells in vivo and over the course of their development has also meant that basic questions remain unexplored. For instance, how does the behaviour of a radial glial cell at one point in development, influence the final identity of its progeny? I propose to build a research team that will capitalise upon methods we have developed for observing individual radial glia and their progeny in an intact vertebrate nervous system. The visual system of Xenopus Laevis tadpoles offers non-invasive optical access to the brain, making time-lapse imaging of single cells feasible over minutes and weeks. The system s anatomy lends itself to techniques that measure the activity of the cells in a functional sensory network. We will use this to examine signalling mechanisms in radial glia and how a radial glial cell s experience influences its proliferative behaviour and the types of neuron it generates. We will also examine the interactions that continue between a radial glial cell and its daughter neurons. Finally, we will explore the relationships that exist within neuronal progeny derived from a single radial glial cell.
Summary
A significant advance in the field of development has been the appreciation that radial glial cells are progenitors and give birth to neurons in the brain. In order to advance this exciting area of biology, we need approaches that combine structural and functional studies of these cells. This is reflected by the emerging realisation that dynamic interactions involving radial glia may be critical for the regulation of their proliferative behaviour. It has been observed that radial glia experience transient elevations in intracellular Ca2+ but the nature of these signals, and the information that they convey, is not known. The inability to observe these cells in vivo and over the course of their development has also meant that basic questions remain unexplored. For instance, how does the behaviour of a radial glial cell at one point in development, influence the final identity of its progeny? I propose to build a research team that will capitalise upon methods we have developed for observing individual radial glia and their progeny in an intact vertebrate nervous system. The visual system of Xenopus Laevis tadpoles offers non-invasive optical access to the brain, making time-lapse imaging of single cells feasible over minutes and weeks. The system s anatomy lends itself to techniques that measure the activity of the cells in a functional sensory network. We will use this to examine signalling mechanisms in radial glia and how a radial glial cell s experience influences its proliferative behaviour and the types of neuron it generates. We will also examine the interactions that continue between a radial glial cell and its daughter neurons. Finally, we will explore the relationships that exist within neuronal progeny derived from a single radial glial cell.
Max ERC Funding
1 284 808 €
Duration
Start date: 2010-02-01, End date: 2015-01-31
Project acronym ACTSELECTCONTEXT
Project Action Selection under Contextual Uncertainty: the Role of Learning and Effective Connectivity in the Human Brain
Researcher (PI) Sven Bestmann
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Starting Grant (StG), LS5, ERC-2010-StG_20091118
Summary In a changing world, one hallmark feature of human behaviour is the ability to learn about the statistics of the environment and use this prior information for action selection. Knowing about a forthcoming event allows for adjusting our actions pre-emptively, which can optimize survival.
This proposal studies how the human brain learns about the uncertainty in the environment, and how this leads to flexible and efficient action selection.
I hypothesise that the accumulation of evidence for future movements through learning reflects a fundamental organisational principle for action control. This explains widely distributed perceptual-, learning-, decision-, and movement-related signals in the human brain. However, little is known about the concerted interplay between brain regions in terms of effective connectivity which is required for flexible behaviour.
My proposal seeks to shed light on this unresolved issue. To this end, I will use i) a multi-disciplinary neuroimaging approach, together with model-based analyses and Bayesian model comparison, adapted to human reaching behaviour as occurring in daily life; and ii) two novel approaches for testing effective connectivity: dynamic causal modelling (DCM) and concurrent transcranial magnetic stimulation-functional magnetic resonance imaging.
My prediction is that action selection relies on effective connectivity changes, which are a function of the prior information that the brain has to learn about.
If true, this will provide novel insight into the human ability to select actions, based on learning about the uncertainty which is inherent in contextual information. This is relevant for understanding action selection during development and ageing, and for pathologies of action such as Parkinson s disease or stroke.
Summary
In a changing world, one hallmark feature of human behaviour is the ability to learn about the statistics of the environment and use this prior information for action selection. Knowing about a forthcoming event allows for adjusting our actions pre-emptively, which can optimize survival.
This proposal studies how the human brain learns about the uncertainty in the environment, and how this leads to flexible and efficient action selection.
I hypothesise that the accumulation of evidence for future movements through learning reflects a fundamental organisational principle for action control. This explains widely distributed perceptual-, learning-, decision-, and movement-related signals in the human brain. However, little is known about the concerted interplay between brain regions in terms of effective connectivity which is required for flexible behaviour.
My proposal seeks to shed light on this unresolved issue. To this end, I will use i) a multi-disciplinary neuroimaging approach, together with model-based analyses and Bayesian model comparison, adapted to human reaching behaviour as occurring in daily life; and ii) two novel approaches for testing effective connectivity: dynamic causal modelling (DCM) and concurrent transcranial magnetic stimulation-functional magnetic resonance imaging.
My prediction is that action selection relies on effective connectivity changes, which are a function of the prior information that the brain has to learn about.
If true, this will provide novel insight into the human ability to select actions, based on learning about the uncertainty which is inherent in contextual information. This is relevant for understanding action selection during development and ageing, and for pathologies of action such as Parkinson s disease or stroke.
Max ERC Funding
1 341 805 €
Duration
Start date: 2011-06-01, End date: 2016-05-31
Project acronym ADAPT
Project Life in a cold climate: the adaptation of cereals to new environments and the establishment of agriculture in Europe
Researcher (PI) Terence Austen Brown
Host Institution (HI) THE UNIVERSITY OF MANCHESTER
Call Details Advanced Grant (AdG), SH6, ERC-2013-ADG
Summary "This project explores the concept of agricultural spread as analogous to enforced climate change and asks how cereals adapted to new environments when agriculture was introduced into Europe. Archaeologists have long recognized that the ecological pressures placed on crops would have had an impact on the spread and subsequent development of agriculture, but previously there has been no means of directly assessing the scale and nature of this impact. Recent work that I have directed has shown how such a study could be carried out, and the purpose of this project is to exploit these breakthroughs with the goal of assessing the influence of environmental adaptation on the spread of agriculture, its adoption as the primary subsistence strategy, and the subsequent establishment of farming in different parts of Europe. This will correct the current imbalance between our understanding of the human and environmental dimensions to the domestication of Europe. I will use methods from population genomics to identify loci within the barley and wheat genomes that have undergone selection since the beginning of cereal cultivation in Europe. I will then use ecological modelling to identify those loci whose patterns of selection are associated with ecogeographical variables and hence represent adaptations to local environmental conditions. I will assign dates to the periods when adaptations occurred by sequencing ancient DNA from archaeobotanical assemblages and by computer methods that enable the temporal order of adaptations to be deduced. I will then synthesise the information on environmental adaptations with dating evidence for the spread of agriculture in Europe, which reveals pauses that might be linked to environmental adaptation, with demographic data that indicate regions where Neolithic populations declined, possibly due to inadequate crop productivity, and with an archaeobotanical database showing changes in the prevalence of individual cereals in different regions."
Summary
"This project explores the concept of agricultural spread as analogous to enforced climate change and asks how cereals adapted to new environments when agriculture was introduced into Europe. Archaeologists have long recognized that the ecological pressures placed on crops would have had an impact on the spread and subsequent development of agriculture, but previously there has been no means of directly assessing the scale and nature of this impact. Recent work that I have directed has shown how such a study could be carried out, and the purpose of this project is to exploit these breakthroughs with the goal of assessing the influence of environmental adaptation on the spread of agriculture, its adoption as the primary subsistence strategy, and the subsequent establishment of farming in different parts of Europe. This will correct the current imbalance between our understanding of the human and environmental dimensions to the domestication of Europe. I will use methods from population genomics to identify loci within the barley and wheat genomes that have undergone selection since the beginning of cereal cultivation in Europe. I will then use ecological modelling to identify those loci whose patterns of selection are associated with ecogeographical variables and hence represent adaptations to local environmental conditions. I will assign dates to the periods when adaptations occurred by sequencing ancient DNA from archaeobotanical assemblages and by computer methods that enable the temporal order of adaptations to be deduced. I will then synthesise the information on environmental adaptations with dating evidence for the spread of agriculture in Europe, which reveals pauses that might be linked to environmental adaptation, with demographic data that indicate regions where Neolithic populations declined, possibly due to inadequate crop productivity, and with an archaeobotanical database showing changes in the prevalence of individual cereals in different regions."
Max ERC Funding
2 492 964 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym ADaPt
Project Adaptation, Dispersals and Phenotype: understanding the roles of climate,
natural selection and energetics in shaping global hunter-gatherer adaptability
Researcher (PI) Jay Stock
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Consolidator Grant (CoG), SH6, ERC-2013-CoG
Summary Relative to other species, humans are characterised by considerable biological diversity despite genetic homogeneity. This diversity is reflected in skeletal variation, but we lack sufficient understanding of the underlying mechanisms to adequately interpret the archaeological record. The proposed research will address problems in our current understanding of the origins of human variation in the past by: 1) documenting and interpreting the pattern of global hunter-gatherer variation relative to genetic phylogenies and climatic variation; 2) testing the relationship between environmental and skeletal variation among genetically related hunter-gatherers from different environments; 3) examining the adaptability of living humans to different environments, through the study of energetic expenditure and life history trade-offs associated with locomotion; and 4) investigating the relationship between muscle and skeletal variation associated with locomotion in diverse environments. This will be achieved by linking: a) detailed study of the global pattern of hunter-gatherer variation in the Late Pleistocene and Holocene with; b) ground-breaking experimental research which tests the relationship between energetic stress, muscle function, and bone variation in living humans. The first component tests the correspondence between skeletal variation and both genetic and climatic history, to infer mechanisms driving variation. The second component integrates this skeletal variation with experimental studies of living humans to, for the first time, directly test adaptive implications of skeletal variation observed in the past. ADaPt will provide the first links between prehistoric hunter-gatherer variation and the evolutionary parameters of life history and energetics that may have shaped our success as a species. It will lead to breakthroughs necessary to interpret variation in the archaeological record, relative to human dispersals and adaptation in the past.
Summary
Relative to other species, humans are characterised by considerable biological diversity despite genetic homogeneity. This diversity is reflected in skeletal variation, but we lack sufficient understanding of the underlying mechanisms to adequately interpret the archaeological record. The proposed research will address problems in our current understanding of the origins of human variation in the past by: 1) documenting and interpreting the pattern of global hunter-gatherer variation relative to genetic phylogenies and climatic variation; 2) testing the relationship between environmental and skeletal variation among genetically related hunter-gatherers from different environments; 3) examining the adaptability of living humans to different environments, through the study of energetic expenditure and life history trade-offs associated with locomotion; and 4) investigating the relationship between muscle and skeletal variation associated with locomotion in diverse environments. This will be achieved by linking: a) detailed study of the global pattern of hunter-gatherer variation in the Late Pleistocene and Holocene with; b) ground-breaking experimental research which tests the relationship between energetic stress, muscle function, and bone variation in living humans. The first component tests the correspondence between skeletal variation and both genetic and climatic history, to infer mechanisms driving variation. The second component integrates this skeletal variation with experimental studies of living humans to, for the first time, directly test adaptive implications of skeletal variation observed in the past. ADaPt will provide the first links between prehistoric hunter-gatherer variation and the evolutionary parameters of life history and energetics that may have shaped our success as a species. It will lead to breakthroughs necessary to interpret variation in the archaeological record, relative to human dispersals and adaptation in the past.
Max ERC Funding
1 911 485 €
Duration
Start date: 2014-07-01, End date: 2019-06-30
Project acronym AgricUrb
Project The Agricultural Origins of Urban Civilization
Researcher (PI) Amy Marie Bogaard
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Starting Grant (StG), SH6, ERC-2012-StG_20111124
Summary The establishment of farming is a pivotal moment in human history, setting the stage for the emergence of class-based society and urbanization. Monolithic views of the nature and development of early agriculture, however, have prevented clear understanding of how exactly farming fuelled, shaped and sustained the emergence of complex societies. A breakthrough in archaeological approach is needed to determine the actual roles of farming in the emergence of social complexity. The methodology required must push beyond conventional interpretation of the most direct farming evidence – archaeobotanical remains of crops and associated arable weeds – to reconstruct not only what crops were grown, but also how, where and why farming was practised. Addressing these related aspects, in contexts ranging from early agricultural villages to some of the world’s earliest cities, would provide the key to unraveling the contribution of farming to the development of lasting social inequalities. The research proposed here takes a new interdisciplinary approach combining archaeobotany, plant stable isotope chemistry and functional plant ecology, building on groundwork laid in previous research by the applicant. These approaches will be applied to two relatively well researched areas, western Asia and Europe, where a series of sites that chart multiple pathways to early complex societies offer rich plant and other bioarchaeological assemblages. The proposed project will set a wholly new standard of insight into early farming and its relationship with early civilization, facilitating similar approaches in other parts of the world and the construction of comparative perspectives on the global significance of early agriculture in social development.
Summary
The establishment of farming is a pivotal moment in human history, setting the stage for the emergence of class-based society and urbanization. Monolithic views of the nature and development of early agriculture, however, have prevented clear understanding of how exactly farming fuelled, shaped and sustained the emergence of complex societies. A breakthrough in archaeological approach is needed to determine the actual roles of farming in the emergence of social complexity. The methodology required must push beyond conventional interpretation of the most direct farming evidence – archaeobotanical remains of crops and associated arable weeds – to reconstruct not only what crops were grown, but also how, where and why farming was practised. Addressing these related aspects, in contexts ranging from early agricultural villages to some of the world’s earliest cities, would provide the key to unraveling the contribution of farming to the development of lasting social inequalities. The research proposed here takes a new interdisciplinary approach combining archaeobotany, plant stable isotope chemistry and functional plant ecology, building on groundwork laid in previous research by the applicant. These approaches will be applied to two relatively well researched areas, western Asia and Europe, where a series of sites that chart multiple pathways to early complex societies offer rich plant and other bioarchaeological assemblages. The proposed project will set a wholly new standard of insight into early farming and its relationship with early civilization, facilitating similar approaches in other parts of the world and the construction of comparative perspectives on the global significance of early agriculture in social development.
Max ERC Funding
1 199 647 €
Duration
Start date: 2013-02-01, End date: 2017-01-31
Project acronym ALZSYN
Project Imaging synaptic contributors to dementia
Researcher (PI) Tara Spires-Jones
Host Institution (HI) THE UNIVERSITY OF EDINBURGH
Call Details Consolidator Grant (CoG), LS5, ERC-2015-CoG
Summary Alzheimer's disease, the most common cause of dementia in older people, is a devastating condition that is becoming a public health crisis as our population ages. Despite great progress recently in Alzheimer’s disease research, we have no disease modifying drugs and a decade with a 99.6% failure rate of clinical trials attempting to treat the disease. This project aims to develop relevant therapeutic targets to restore brain function in Alzheimer’s disease by integrating human and model studies of synapses. It is widely accepted in the field that alterations in amyloid beta initiate the disease process. However the cascade leading from changes in amyloid to widespread tau pathology and neurodegeneration remain unclear. Synapse loss is the strongest pathological correlate of dementia in Alzheimer’s, and mounting evidence suggests that synapse degeneration plays a key role in causing cognitive decline. Here I propose to test the hypothesis that the amyloid cascade begins at the synapse leading to tau pathology, synapse dysfunction and loss, and ultimately neural circuit collapse causing cognitive impairment. The team will use cutting-edge multiphoton and array tomography imaging techniques to test mechanisms downstream of amyloid beta at synapses, and determine whether intervening in the cascade allows recovery of synapse structure and function. Importantly, I will combine studies in robust models of familial Alzheimer’s disease with studies in postmortem human brain to confirm relevance of our mechanistic studies to human disease. Finally, human stem cell derived neurons will be used to test mechanisms and potential therapeutics in neurons expressing the human proteome. Together, these experiments are ground-breaking since they have the potential to further our understanding of how synapses are lost in Alzheimer’s disease and to identify targets for effective therapeutic intervention, which is a critical unmet need in today’s health care system.
Summary
Alzheimer's disease, the most common cause of dementia in older people, is a devastating condition that is becoming a public health crisis as our population ages. Despite great progress recently in Alzheimer’s disease research, we have no disease modifying drugs and a decade with a 99.6% failure rate of clinical trials attempting to treat the disease. This project aims to develop relevant therapeutic targets to restore brain function in Alzheimer’s disease by integrating human and model studies of synapses. It is widely accepted in the field that alterations in amyloid beta initiate the disease process. However the cascade leading from changes in amyloid to widespread tau pathology and neurodegeneration remain unclear. Synapse loss is the strongest pathological correlate of dementia in Alzheimer’s, and mounting evidence suggests that synapse degeneration plays a key role in causing cognitive decline. Here I propose to test the hypothesis that the amyloid cascade begins at the synapse leading to tau pathology, synapse dysfunction and loss, and ultimately neural circuit collapse causing cognitive impairment. The team will use cutting-edge multiphoton and array tomography imaging techniques to test mechanisms downstream of amyloid beta at synapses, and determine whether intervening in the cascade allows recovery of synapse structure and function. Importantly, I will combine studies in robust models of familial Alzheimer’s disease with studies in postmortem human brain to confirm relevance of our mechanistic studies to human disease. Finally, human stem cell derived neurons will be used to test mechanisms and potential therapeutics in neurons expressing the human proteome. Together, these experiments are ground-breaking since they have the potential to further our understanding of how synapses are lost in Alzheimer’s disease and to identify targets for effective therapeutic intervention, which is a critical unmet need in today’s health care system.
Max ERC Funding
2 000 000 €
Duration
Start date: 2016-11-01, End date: 2021-10-31
Project acronym AMYTOX
Project Amyloid fibril cytotoxicity: new insights from novel approaches
Researcher (PI) Sheena Radford
Host Institution (HI) UNIVERSITY OF LEEDS
Call Details Advanced Grant (AdG), LS1, ERC-2012-ADG_20120314
Summary Despite the discovery of amyloidosis more than a century ago, the molecular and cellular mechanisms of these devastating human disorders remain obscure. In addition to their involvement in disease, amyloid fibrils perform physiological functions, whilst others have potentials as biomaterials. To realise their use in nanotechnology and to enable the development of amyloid therapies, there is an urgent need to understand the molecular pathways of amyloid assembly and to determine how amyloid fibrils interact with cells and cellular components. The challenges lie in the transient nature and low population of aggregating species and the panoply of amyloid fibril structures. This molecular complexity renders identification of the culprits of amyloid disease impossible to achieve using traditional methods.
Here I propose a series of exciting experiments that aim to cast new light on the molecular and cellular mechanisms of amyloidosis by exploiting approaches capable of imaging individual protein molecules or single protein fibrils in vitro and in living cells. The proposal builds on new data from our laboratory that have shown that amyloid fibrils (disease-associated, functional and created from de novo designed sequences) kill cells by a mechanism that depends on fibril length and on cellular uptake. Specifically, I will (i) use single molecule fluorescence and non-covalent mass spectrometry and to determine why short fibril samples disrupt biological membranes more than their longer counterparts and electron tomography to determine, for the first time, the structural properties of cytotoxic fibril ends; (ii) develop single molecule force spectroscopy to probe the interactions between amyloid precursors, fibrils and cellular membranes; and (iii) develop cell biological assays to discover the biological mechanism(s) of amyloid-induced cell death and high resolution imaging and electron tomography to visualise amyloid fibrils in the act of killing living cells.
Summary
Despite the discovery of amyloidosis more than a century ago, the molecular and cellular mechanisms of these devastating human disorders remain obscure. In addition to their involvement in disease, amyloid fibrils perform physiological functions, whilst others have potentials as biomaterials. To realise their use in nanotechnology and to enable the development of amyloid therapies, there is an urgent need to understand the molecular pathways of amyloid assembly and to determine how amyloid fibrils interact with cells and cellular components. The challenges lie in the transient nature and low population of aggregating species and the panoply of amyloid fibril structures. This molecular complexity renders identification of the culprits of amyloid disease impossible to achieve using traditional methods.
Here I propose a series of exciting experiments that aim to cast new light on the molecular and cellular mechanisms of amyloidosis by exploiting approaches capable of imaging individual protein molecules or single protein fibrils in vitro and in living cells. The proposal builds on new data from our laboratory that have shown that amyloid fibrils (disease-associated, functional and created from de novo designed sequences) kill cells by a mechanism that depends on fibril length and on cellular uptake. Specifically, I will (i) use single molecule fluorescence and non-covalent mass spectrometry and to determine why short fibril samples disrupt biological membranes more than their longer counterparts and electron tomography to determine, for the first time, the structural properties of cytotoxic fibril ends; (ii) develop single molecule force spectroscopy to probe the interactions between amyloid precursors, fibrils and cellular membranes; and (iii) develop cell biological assays to discover the biological mechanism(s) of amyloid-induced cell death and high resolution imaging and electron tomography to visualise amyloid fibrils in the act of killing living cells.
Max ERC Funding
2 498 465 €
Duration
Start date: 2013-05-01, End date: 2019-04-30
Project acronym ANXIETY MECHANISMS
Project Neurocognitive mechanisms of human anxiety: identifying and
targeting disrupted function
Researcher (PI) Sonia Jane Bishop
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Starting Grant (StG), LS5, ERC-2010-StG_20091118
Summary Within a 12 month period, 20% of adults will meet criteria for one or more clinical anxiety disorders (ADs). These disorders are hugely disruptive, placing an emotional burden on individuals and their families. While both cognitive behavioural therapy and pharmacological treatment are widely viewed as effective strategies for managing ADs, systematic review of the literature reveals that only 30–45% of patients demonstrate a marked response to treatment (anxiety levels being reduced into the nonaffected range). In addition, a significant proportion of initial responders relapse after treatment is discontinued. There is hence a real and marked need to improve upon current approaches to AD treatment.
One possible avenue for improving response rates is through optimizing initial treatment selection. Specifically, it is possible that certain individuals might respond better to cognitive interventions while others might respond better to pharmacological treatment. Recently it has been suggested that there may be two or more distinct biological pathways disrupted in anxiety. If this is the case, then specification of these pathways may be an important step in predicting which individuals are likely to respond to which treatment. Few studies have focused upon this issue and, in particular, upon identifying neural markers that might predict response to cognitive (as opposed to pharmacological) intervention. The proposed research aims to address this. Specifically, it tests the hypothesis that there are at least two mechanisms disrupted in ADs, one entailing amygdala hyper-responsivity to cues that signal threat, the other impoverished recruitment of frontal regions that support cognitive and emotional regulation.
Two series of functional magnetic resonance imaging experiments will be conducted. These will investigate differences in amygdala and frontal function during (a) attentional processing and (b) fear conditioning. Initial clinical experiments will investigate whether Generalised Anxiety Disorder and Specific Phobia involve differing degrees of disruption to frontal versus amygdala function during these tasks. This work will feed into training studies, the goal being to characterize AD patient subgroups that benefit from cognitive training.
Summary
Within a 12 month period, 20% of adults will meet criteria for one or more clinical anxiety disorders (ADs). These disorders are hugely disruptive, placing an emotional burden on individuals and their families. While both cognitive behavioural therapy and pharmacological treatment are widely viewed as effective strategies for managing ADs, systematic review of the literature reveals that only 30–45% of patients demonstrate a marked response to treatment (anxiety levels being reduced into the nonaffected range). In addition, a significant proportion of initial responders relapse after treatment is discontinued. There is hence a real and marked need to improve upon current approaches to AD treatment.
One possible avenue for improving response rates is through optimizing initial treatment selection. Specifically, it is possible that certain individuals might respond better to cognitive interventions while others might respond better to pharmacological treatment. Recently it has been suggested that there may be two or more distinct biological pathways disrupted in anxiety. If this is the case, then specification of these pathways may be an important step in predicting which individuals are likely to respond to which treatment. Few studies have focused upon this issue and, in particular, upon identifying neural markers that might predict response to cognitive (as opposed to pharmacological) intervention. The proposed research aims to address this. Specifically, it tests the hypothesis that there are at least two mechanisms disrupted in ADs, one entailing amygdala hyper-responsivity to cues that signal threat, the other impoverished recruitment of frontal regions that support cognitive and emotional regulation.
Two series of functional magnetic resonance imaging experiments will be conducted. These will investigate differences in amygdala and frontal function during (a) attentional processing and (b) fear conditioning. Initial clinical experiments will investigate whether Generalised Anxiety Disorder and Specific Phobia involve differing degrees of disruption to frontal versus amygdala function during these tasks. This work will feed into training studies, the goal being to characterize AD patient subgroups that benefit from cognitive training.
Max ERC Funding
1 708 407 €
Duration
Start date: 2011-04-01, End date: 2016-08-31
Project acronym AR.C.H.I.VES
Project A comparative history of archives in late medieval and early modern Italy
Researcher (PI) Filippo Luciano Carlo De Vivo
Host Institution (HI) BIRKBECK COLLEGE - UNIVERSITY OF LONDON
Call Details Starting Grant (StG), SH6, ERC-2011-StG_20101124
Summary Most historians work in archives, but generally have not made archives into their primary object of research. While we tend to be preoccupied by documentary loss, what is striking is the sheer amount of paperwork preserved over the centuries. We need to study the reasons for this preservation.
This project wishes to study the history of the archives and of the chanceries that oversaw their production storage and organization in late medieval and early modern Italy: essentially from the creation of the first chanceries in city-states in the late twelfth century to the opening of the Archivi di Stato that, after the ancient states’ dissolution, preserved documents as tools for scholarship rather than administration. Because of its fragmented political history, concentrating on Italy means having access to the archives of a wide variety of regimes; in turn, as institutions pursuing similar functions, archives lend themselves to comparison and therefore such research may help us overcome the traditional disconnectedness in the study of Italy’s past.
The project proposes to break significantly new ground, first, by adopting a comparative approach through the in-depth analysis of seven case studies and, second, by contextualising the study of archives away from institutional history in a wider social and cultural context, by focusing on six themes researched in six successive phases: 1) the political role of archives, and the efforts devoted by governments to their development; 2) their organization, subdivisions, referencing systems; 3) the material culture of documents and physical repositories as well as spatial locations; 4) the social characteristiscs of the staff; 5) the archives’ place in society, including their access and misuse; 6) their use by historians. As implied in the choice of these themes, the project is deliberately interdisciplinary, and aims at the mutually beneficial exchange between archivists, social, political cultural and art historians.
Summary
Most historians work in archives, but generally have not made archives into their primary object of research. While we tend to be preoccupied by documentary loss, what is striking is the sheer amount of paperwork preserved over the centuries. We need to study the reasons for this preservation.
This project wishes to study the history of the archives and of the chanceries that oversaw their production storage and organization in late medieval and early modern Italy: essentially from the creation of the first chanceries in city-states in the late twelfth century to the opening of the Archivi di Stato that, after the ancient states’ dissolution, preserved documents as tools for scholarship rather than administration. Because of its fragmented political history, concentrating on Italy means having access to the archives of a wide variety of regimes; in turn, as institutions pursuing similar functions, archives lend themselves to comparison and therefore such research may help us overcome the traditional disconnectedness in the study of Italy’s past.
The project proposes to break significantly new ground, first, by adopting a comparative approach through the in-depth analysis of seven case studies and, second, by contextualising the study of archives away from institutional history in a wider social and cultural context, by focusing on six themes researched in six successive phases: 1) the political role of archives, and the efforts devoted by governments to their development; 2) their organization, subdivisions, referencing systems; 3) the material culture of documents and physical repositories as well as spatial locations; 4) the social characteristiscs of the staff; 5) the archives’ place in society, including their access and misuse; 6) their use by historians. As implied in the choice of these themes, the project is deliberately interdisciplinary, and aims at the mutually beneficial exchange between archivists, social, political cultural and art historians.
Max ERC Funding
1 107 070 €
Duration
Start date: 2012-02-01, End date: 2016-07-31
Project acronym ARABCOMMAPH
Project Arabic Commentaries on the Hippocratic Aphorisms
Researcher (PI) Peter Ernst Pormann
Host Institution (HI) THE UNIVERSITY OF MANCHESTER
Call Details Starting Grant (StG), SH6, ERC-2011-StG_20101124
Summary The Hippocratic Aphorisms have exerted a singular influence over generations of physicians both in the East and in the West. Galen (d. c. 216) produced an extensive commentary on this text, as did other medical authors writing in Greek, Latin, Arabic, and Hebrew. The Arabic tradition is particularly rich, with more than a dozen commentaries extant in over a hundred manuscripts. These Arabic commentaries did not merely contain scholastic debates, but constituted important venues for innovation and change. Moreover, they impacted on medical practice, as the Aphorisms were so popular that both doctors and their patients knew them by heart. Despite their importance for medical theory and practice, previous scholarship on them has barely scratched the surface. Put succinctly, the present project breaks new ground by conducting an in-depth study of this tradition through a highly innovative methodology: it approaches the available evidence as a corpus, to be constituted electronically, and to be analysed in an interdisciplinary way.
We propose to survey the manuscript tradition of the Arabic commentaries on the Hippocratic Aphorisms, beginning with Ḥunayn ibn ʾIsḥāq’s Arabic translation of Galen’s commentary. On the basis of this philological survey that will employ a new approach to stemmatics, we shall produce provisional electronic XML editions of the commentaries. These texts will constitute the corpus, some 600,000 words long, that we shall investigate through the latest IT tools to address a set of interdisciplinary problems: textual criticism of the Greek sources; Graeco-Arabic translation technique; methods of quotation; hermeneutic procedures; development of medical theory; medical practice; and social history of medicine. Both in approach and scope, the project will bring about a paradigm shift in our study of exegetical cultures in Arabic, and the role that commentaries played in the transmission and transformation of scientific knowledge.
Summary
The Hippocratic Aphorisms have exerted a singular influence over generations of physicians both in the East and in the West. Galen (d. c. 216) produced an extensive commentary on this text, as did other medical authors writing in Greek, Latin, Arabic, and Hebrew. The Arabic tradition is particularly rich, with more than a dozen commentaries extant in over a hundred manuscripts. These Arabic commentaries did not merely contain scholastic debates, but constituted important venues for innovation and change. Moreover, they impacted on medical practice, as the Aphorisms were so popular that both doctors and their patients knew them by heart. Despite their importance for medical theory and practice, previous scholarship on them has barely scratched the surface. Put succinctly, the present project breaks new ground by conducting an in-depth study of this tradition through a highly innovative methodology: it approaches the available evidence as a corpus, to be constituted electronically, and to be analysed in an interdisciplinary way.
We propose to survey the manuscript tradition of the Arabic commentaries on the Hippocratic Aphorisms, beginning with Ḥunayn ibn ʾIsḥāq’s Arabic translation of Galen’s commentary. On the basis of this philological survey that will employ a new approach to stemmatics, we shall produce provisional electronic XML editions of the commentaries. These texts will constitute the corpus, some 600,000 words long, that we shall investigate through the latest IT tools to address a set of interdisciplinary problems: textual criticism of the Greek sources; Graeco-Arabic translation technique; methods of quotation; hermeneutic procedures; development of medical theory; medical practice; and social history of medicine. Both in approach and scope, the project will bring about a paradigm shift in our study of exegetical cultures in Arabic, and the role that commentaries played in the transmission and transformation of scientific knowledge.
Max ERC Funding
1 499 968 €
Duration
Start date: 2012-02-01, End date: 2017-07-31
Project acronym ATG9_SOLVES_IT
Project In vitro high resolution reconstitution of autophagosome nucleation and expansion catalyzed byATG9
Researcher (PI) Sharon TOOZE
Host Institution (HI) THE FRANCIS CRICK INSTITUTE LIMITED
Call Details Advanced Grant (AdG), LS1, ERC-2017-ADG
Summary Autophagy is a conserved, lysosomal-mediated pathway required for cell homeostasis and survival. It is controlled by the master regulators of energy (AMPK) and growth (TORC1) and mediated by the ATG (autophagy) proteins. Deregulation of autophagy is implicated in cancer, immunity, infection, aging and neurodegeneration. Autophagosomes form and expand using membranes from the secretory and endocytic pathways but how this occurs is not understood. ATG9, the only transmembrane ATG protein traffics through the cell in vesicles, and is essential for rapid initiation and expansion of the membranes which form the autophagosome. Crucially, how ATG9 functions is unknown. I will determine how ATG9 initiates the formation and expansion of the autophagosome by amino acid starvation through a molecular dissection of proteins resident in ATG9 vesicles which modulate the composition and property of the initiating membrane. I will employ high resolution light and electron microscopy to characterize the nucleation of the autophagosome, proximity-specific biotinylation and quantitative Mass Spectrometry to uncover the proteome required for the function of the ATG9, and optogenetic tools to acutely regulate signaling lipids. Lastly, with our tools and knowledge I will develop an in vitro reconstitution system to define at a molecular level how ATG9 vesicle proteins, membranes that interact with ATG9 vesicles, and other accessory ATG components nucleate and form an autophagosome. In vitro reconstitution of autophagosomes will be assayed biochemically, and by correlative light and cryo-EM and cryo-EM tomography, while functional reconstitution of autophagy will be tested by selective cargo recruitment. The development of a reconstituted system and identification proteins and lipids which are key components for autophagosome formation will provide a means to identify a new generation of targets for translational work leading to manipulation of autophagy for disease related therapies.
Summary
Autophagy is a conserved, lysosomal-mediated pathway required for cell homeostasis and survival. It is controlled by the master regulators of energy (AMPK) and growth (TORC1) and mediated by the ATG (autophagy) proteins. Deregulation of autophagy is implicated in cancer, immunity, infection, aging and neurodegeneration. Autophagosomes form and expand using membranes from the secretory and endocytic pathways but how this occurs is not understood. ATG9, the only transmembrane ATG protein traffics through the cell in vesicles, and is essential for rapid initiation and expansion of the membranes which form the autophagosome. Crucially, how ATG9 functions is unknown. I will determine how ATG9 initiates the formation and expansion of the autophagosome by amino acid starvation through a molecular dissection of proteins resident in ATG9 vesicles which modulate the composition and property of the initiating membrane. I will employ high resolution light and electron microscopy to characterize the nucleation of the autophagosome, proximity-specific biotinylation and quantitative Mass Spectrometry to uncover the proteome required for the function of the ATG9, and optogenetic tools to acutely regulate signaling lipids. Lastly, with our tools and knowledge I will develop an in vitro reconstitution system to define at a molecular level how ATG9 vesicle proteins, membranes that interact with ATG9 vesicles, and other accessory ATG components nucleate and form an autophagosome. In vitro reconstitution of autophagosomes will be assayed biochemically, and by correlative light and cryo-EM and cryo-EM tomography, while functional reconstitution of autophagy will be tested by selective cargo recruitment. The development of a reconstituted system and identification proteins and lipids which are key components for autophagosome formation will provide a means to identify a new generation of targets for translational work leading to manipulation of autophagy for disease related therapies.
Max ERC Funding
2 121 055 €
Duration
Start date: 2018-07-01, End date: 2023-06-30
Project acronym ATMINDDR
Project ATMINistrating ATM signalling: exploring the significance of ATM regulation by ATMIN
Researcher (PI) Axel Behrens
Host Institution (HI) THE FRANCIS CRICK INSTITUTE LIMITED
Call Details Starting Grant (StG), LS1, ERC-2011-StG_20101109
Summary ATM is the protein kinase that is mutated in the hereditary autosomal recessive disease ataxia telangiectasia (A-T). A-T patients display immune deficiencies, cancer predisposition and radiosensitivity. The molecular role of ATM is to respond to DNA damage by phosphorylating its substrates, thereby promoting repair of damage or arresting the cell cycle. Following the induction of double-strand breaks (DSBs), the NBS1 protein is required for activation of ATM. But ATM can also be activated in the absence of DNA damage. Treatment of cultured cells with hypotonic stress leads to the activation of ATM, presumably due to changes in chromatin structure. We have recently described a second ATM cofactor, ATMIN (ATM INteractor). ATMIN is dispensable for DSBs-induced ATM signalling, but ATM activation following hypotonic stress is mediated by ATMIN. While the biological role of ATM activation by DSBs and NBS1 is well established, the significance, if any, of ATM activation by ATMIN and changes in chromatin was up to now completely enigmatic.
ATM is required for class switch recombination (CSR) and the suppression of translocations in B cells. In order to determine whether ATMIN is required for any of the physiological functions of ATM, we generated a conditional knock-out mouse model for ATMIN. ATM signaling was dramatically reduced following osmotic stress in ATMIN-mutant B cells. ATMIN deficiency led to impaired CSR, and consequently ATMIN-mutant mice developed B cell lymphomas. Thus ablation of ATMIN resulted in a severe defect in ATM function. Our data strongly argue for the existence of a second NBS1-independent mode of ATM activation that is physiologically relevant. While a large amount of scientific effort has gone into characterising ATM signaling triggered by DSBs, essentially nothing is known about NBS1-independent ATM signaling. The experiments outlined in this proposal have the aim to identify and understand the molecular pathway of ATMIN-dependent ATM signaling.
Summary
ATM is the protein kinase that is mutated in the hereditary autosomal recessive disease ataxia telangiectasia (A-T). A-T patients display immune deficiencies, cancer predisposition and radiosensitivity. The molecular role of ATM is to respond to DNA damage by phosphorylating its substrates, thereby promoting repair of damage or arresting the cell cycle. Following the induction of double-strand breaks (DSBs), the NBS1 protein is required for activation of ATM. But ATM can also be activated in the absence of DNA damage. Treatment of cultured cells with hypotonic stress leads to the activation of ATM, presumably due to changes in chromatin structure. We have recently described a second ATM cofactor, ATMIN (ATM INteractor). ATMIN is dispensable for DSBs-induced ATM signalling, but ATM activation following hypotonic stress is mediated by ATMIN. While the biological role of ATM activation by DSBs and NBS1 is well established, the significance, if any, of ATM activation by ATMIN and changes in chromatin was up to now completely enigmatic.
ATM is required for class switch recombination (CSR) and the suppression of translocations in B cells. In order to determine whether ATMIN is required for any of the physiological functions of ATM, we generated a conditional knock-out mouse model for ATMIN. ATM signaling was dramatically reduced following osmotic stress in ATMIN-mutant B cells. ATMIN deficiency led to impaired CSR, and consequently ATMIN-mutant mice developed B cell lymphomas. Thus ablation of ATMIN resulted in a severe defect in ATM function. Our data strongly argue for the existence of a second NBS1-independent mode of ATM activation that is physiologically relevant. While a large amount of scientific effort has gone into characterising ATM signaling triggered by DSBs, essentially nothing is known about NBS1-independent ATM signaling. The experiments outlined in this proposal have the aim to identify and understand the molecular pathway of ATMIN-dependent ATM signaling.
Max ERC Funding
1 499 881 €
Duration
Start date: 2012-02-01, End date: 2018-01-31
Project acronym AveTransRisk
Project Average - Transaction Costs and Risk Management during the First Globalization (Sixteenth-Eighteenth Centuries)
Researcher (PI) Maria FUSARO
Host Institution (HI) THE UNIVERSITY OF EXETER
Call Details Consolidator Grant (CoG), SH6, ERC-2016-COG
Summary This project focuses on the historical analysis of institutions and their impact on economic development through the investigation of a legal instrument – general average (GA) – which underpins maritime trade by redistributing damages’ costs across all interested parties. This will be pursued through the comparative investigation of GA in those European countries where substantial data exists: Italy, Spain, England, France and the Low Countries (1500-1800). Average and insurance were both created in the Middle Ages to facilitate trade through the redistribution of risk. Insurance has been widely studied, average – the expenses which can befall ships and cargoes from the time of their loading aboard until their unloading (due to accidents, jettison, and unexpected costs) – has been neglected. GA still plays an essential role in the redistribution of transaction costs, and being a form of strictly mutual self-protection, never evolved into a speculative financial instrument as insurance did; it therefore represents an excellent case of long-term effectiveness of a non-market economic phenomenon. Although the principle behind GA was very similar across Europe, in practice there were substantial differences in declaring and adjudicating claims. GA reports provide unparalleled evidence on maritime trade which, analysed quantitatively and quantitatively through a novel interdisciplinary approach, will contribute to the reassessment of the role played by the maritime sector in fostering economic growth during the early modern first globalization, when GA was the object of fierce debates on state jurisdiction and standardization of practice. Today they are regulated by the York-Antwerp Rules (YAR), currently under revision. This timely conjuncture provides plenty of opportunities for active engagement with practitioners, thereby fostering a creative dialogue on GA historical study and its future development to better face the challenges of mature globalization.
Summary
This project focuses on the historical analysis of institutions and their impact on economic development through the investigation of a legal instrument – general average (GA) – which underpins maritime trade by redistributing damages’ costs across all interested parties. This will be pursued through the comparative investigation of GA in those European countries where substantial data exists: Italy, Spain, England, France and the Low Countries (1500-1800). Average and insurance were both created in the Middle Ages to facilitate trade through the redistribution of risk. Insurance has been widely studied, average – the expenses which can befall ships and cargoes from the time of their loading aboard until their unloading (due to accidents, jettison, and unexpected costs) – has been neglected. GA still plays an essential role in the redistribution of transaction costs, and being a form of strictly mutual self-protection, never evolved into a speculative financial instrument as insurance did; it therefore represents an excellent case of long-term effectiveness of a non-market economic phenomenon. Although the principle behind GA was very similar across Europe, in practice there were substantial differences in declaring and adjudicating claims. GA reports provide unparalleled evidence on maritime trade which, analysed quantitatively and quantitatively through a novel interdisciplinary approach, will contribute to the reassessment of the role played by the maritime sector in fostering economic growth during the early modern first globalization, when GA was the object of fierce debates on state jurisdiction and standardization of practice. Today they are regulated by the York-Antwerp Rules (YAR), currently under revision. This timely conjuncture provides plenty of opportunities for active engagement with practitioners, thereby fostering a creative dialogue on GA historical study and its future development to better face the challenges of mature globalization.
Max ERC Funding
1 854 256 €
Duration
Start date: 2017-07-01, End date: 2022-06-30
Project acronym AVIANEGG
Project Evolutionary genetics in a ‘classical’ avian study system by high throughput transcriptome sequencing and SNP genotyping
Researcher (PI) Jon Slate
Host Institution (HI) THE UNIVERSITY OF SHEFFIELD
Call Details Starting Grant (StG), LS5, ERC-2007-StG
Summary Long-term studies of free-living vertebrate populations have proved a rich resource for understanding evolutionary and ecological processes, because individuals’ life histories can be measured by tracking them from birth/hatching through to death. In recent years the ‘animal model’ has been applied to pedigreed long-term study populations with great success, dramatically advancing our understanding of quantitative genetic parameters such as heritabilities, genetic correlations and plasticities of traits that are relevant to microevolutionary responses to environmental change. Unfortunately, quantitative genetic approaches have one major drawback – they cannot identify the actual genes responsible for genetic variation. Therefore, it is impossible to link evolutionary responses to a changing environment to molecular genetic variation, making our picture of the process incomplete. Many of the best long-term studies have been conducted in passerine birds. Unfortunately genomics resources are only available for two model avian species, and are absent for bird species that are studied in the wild. I will fill this gap by exploiting recent advances in genomics technology to sequence the entire transcriptome of the longest running study of wild birds – the great tit population in Wytham Woods, Oxford. Having identified most of the sequence variation in the great tit transcriptome, I will then genotype all birds for whom phenotype records and blood samples are available This will be, by far, the largest phenotype-genotype dataset of any free-living vertebrate population. I will then use gene mapping techniques to identify genes and genomic regions responsible for variation in a number of key traits such as lifetime recruitment, clutch size and breeding/laying date. This will result in a greater understanding, at the molecular level, how microevolutionary change can arise (or be constrained).
Summary
Long-term studies of free-living vertebrate populations have proved a rich resource for understanding evolutionary and ecological processes, because individuals’ life histories can be measured by tracking them from birth/hatching through to death. In recent years the ‘animal model’ has been applied to pedigreed long-term study populations with great success, dramatically advancing our understanding of quantitative genetic parameters such as heritabilities, genetic correlations and plasticities of traits that are relevant to microevolutionary responses to environmental change. Unfortunately, quantitative genetic approaches have one major drawback – they cannot identify the actual genes responsible for genetic variation. Therefore, it is impossible to link evolutionary responses to a changing environment to molecular genetic variation, making our picture of the process incomplete. Many of the best long-term studies have been conducted in passerine birds. Unfortunately genomics resources are only available for two model avian species, and are absent for bird species that are studied in the wild. I will fill this gap by exploiting recent advances in genomics technology to sequence the entire transcriptome of the longest running study of wild birds – the great tit population in Wytham Woods, Oxford. Having identified most of the sequence variation in the great tit transcriptome, I will then genotype all birds for whom phenotype records and blood samples are available This will be, by far, the largest phenotype-genotype dataset of any free-living vertebrate population. I will then use gene mapping techniques to identify genes and genomic regions responsible for variation in a number of key traits such as lifetime recruitment, clutch size and breeding/laying date. This will result in a greater understanding, at the molecular level, how microevolutionary change can arise (or be constrained).
Max ERC Funding
1 560 770 €
Duration
Start date: 2008-10-01, End date: 2014-06-30
Project acronym AXONGROWTH
Project Systematic analysis of the molecular mechanisms underlying axon growth during development and following injury
Researcher (PI) Oren Schuldiner
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Consolidator Grant (CoG), LS5, ERC-2013-CoG
Summary Axon growth potential declines during development, contributing to the lack of effective regeneration in the adult central nervous system. What determines the intrinsic growth potential of neurites, and how such growth is regulated during development, disease and following injury is a fundamental question in neuroscience. Although multiple lines of evidence indicate that intrinsic growth capability is genetically encoded, its nature remains poorly defined. Neuronal remodeling of the Drosophila mushroom body offers a unique opportunity to study the mechanisms of various types of axon degeneration and growth. We have recently demonstrated that regrowth of axons following developmental pruning is not only distinct from initial outgrowth but also shares molecular similarities with regeneration following injury. In this proposal we combine state of the art tools from genomics, functional genetics and microscopy to perform a comprehensive study of the mechanisms underlying axon growth during development and following injury. First, we will combine genetic, biochemical and genomic studies to gain a mechanistic understanding of the developmental regrowth program. Next, we will perform extensive transcriptomic analyses and comparisons aimed at defining the genetic programs involved in initial axon growth, developmental regrowth, and regeneration following injury. Finally, we will harness the genetic power of Drosophila to perform a comprehensive functional analysis of genes and pathways, those previously known and new ones that we will discover, in various neurite growth paradigms. Importantly, these functional assays will be performed in the same organism, allowing us to use identical genetic mutations across our analyses. To this end, our identification of a new genetic program regulating developmental axon regrowth, together with emerging tools in genomics, places us in a unique position to gain a broad understanding of axon growth during development and following injury.
Summary
Axon growth potential declines during development, contributing to the lack of effective regeneration in the adult central nervous system. What determines the intrinsic growth potential of neurites, and how such growth is regulated during development, disease and following injury is a fundamental question in neuroscience. Although multiple lines of evidence indicate that intrinsic growth capability is genetically encoded, its nature remains poorly defined. Neuronal remodeling of the Drosophila mushroom body offers a unique opportunity to study the mechanisms of various types of axon degeneration and growth. We have recently demonstrated that regrowth of axons following developmental pruning is not only distinct from initial outgrowth but also shares molecular similarities with regeneration following injury. In this proposal we combine state of the art tools from genomics, functional genetics and microscopy to perform a comprehensive study of the mechanisms underlying axon growth during development and following injury. First, we will combine genetic, biochemical and genomic studies to gain a mechanistic understanding of the developmental regrowth program. Next, we will perform extensive transcriptomic analyses and comparisons aimed at defining the genetic programs involved in initial axon growth, developmental regrowth, and regeneration following injury. Finally, we will harness the genetic power of Drosophila to perform a comprehensive functional analysis of genes and pathways, those previously known and new ones that we will discover, in various neurite growth paradigms. Importantly, these functional assays will be performed in the same organism, allowing us to use identical genetic mutations across our analyses. To this end, our identification of a new genetic program regulating developmental axon regrowth, together with emerging tools in genomics, places us in a unique position to gain a broad understanding of axon growth during development and following injury.
Max ERC Funding
2 000 000 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym AXONSURVIVAL
Project Axon survival: the role of protein synthesis
Researcher (PI) Christine Elizabeth Holt
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Advanced Grant (AdG), LS5, ERC-2012-ADG_20120314
Summary Neurons make long-distance connections with synaptic targets via axons. These axons survive throughout the lifetime of an organism, often many years in mammals, yet how axons are maintained is not fully understood. Recently, we provided in vivo evidence that local mRNA translation in mature axons is required for their maintenance. This new finding, along with in vitro work from other groups, indicates that promoting axonal protein synthesis is a key mechanism by which trophic factors act to prevent axon degeneration. Here we propose a program of research to investigate the importance of ribosomal proteins (RPs) in axon maintenance and degeneration. The rationale for this is fourfold. First, recent genome-wide studies of axonal transcriptomes have revealed that protein synthesis (including RP mRNAs) is the highest functional category in several neuronal types. Second, some RPs have evolved extra-ribosomal functions that include signalling, such as 67LR which acts both as a cell surface receptor for laminin and as a RP. Third, mutations in different RPs in vertebrates cause unexpectedly specific defects, such as the loss of optic axons. Fourth, preliminary results show that RP mRNAs are translated in optic axons in response to trophic factors. Collectively these findings lead us to propose that locally synthesized RPs play a role in axon maintenance through either ribosomal or extra-ribosomal function. To pursue this proposal, we will perform unbiased screens and functional assays using an array of experimental approaches and animal models. By gaining an understanding of how local RP synthesis contributes to axon survival, our studies have the potential to provide novel insights into how components conventionally associated with a housekeeping role (translation) are linked to axon degeneration. Our findings could provide new directions for developing therapeutic tools for neurodegenerative disorders and may have an impact on more diverse areas of biology and disease.
Summary
Neurons make long-distance connections with synaptic targets via axons. These axons survive throughout the lifetime of an organism, often many years in mammals, yet how axons are maintained is not fully understood. Recently, we provided in vivo evidence that local mRNA translation in mature axons is required for their maintenance. This new finding, along with in vitro work from other groups, indicates that promoting axonal protein synthesis is a key mechanism by which trophic factors act to prevent axon degeneration. Here we propose a program of research to investigate the importance of ribosomal proteins (RPs) in axon maintenance and degeneration. The rationale for this is fourfold. First, recent genome-wide studies of axonal transcriptomes have revealed that protein synthesis (including RP mRNAs) is the highest functional category in several neuronal types. Second, some RPs have evolved extra-ribosomal functions that include signalling, such as 67LR which acts both as a cell surface receptor for laminin and as a RP. Third, mutations in different RPs in vertebrates cause unexpectedly specific defects, such as the loss of optic axons. Fourth, preliminary results show that RP mRNAs are translated in optic axons in response to trophic factors. Collectively these findings lead us to propose that locally synthesized RPs play a role in axon maintenance through either ribosomal or extra-ribosomal function. To pursue this proposal, we will perform unbiased screens and functional assays using an array of experimental approaches and animal models. By gaining an understanding of how local RP synthesis contributes to axon survival, our studies have the potential to provide novel insights into how components conventionally associated with a housekeeping role (translation) are linked to axon degeneration. Our findings could provide new directions for developing therapeutic tools for neurodegenerative disorders and may have an impact on more diverse areas of biology and disease.
Max ERC Funding
2 426 573 €
Duration
Start date: 2013-03-01, End date: 2018-09-30
Project acronym BeyondtheElite
Project Beyond the Elite: Jewish Daily Life in Medieval Europe
Researcher (PI) Elisheva Baumgarten
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Consolidator Grant (CoG), SH6, ERC-2015-CoG
Summary The two fundamental challenges of this project are the integration of medieval Jewries and their histories within the framework of European history without undermining their distinct communal status and the creation of a history of everyday medieval Jewish life that includes those who were not part of the learned elite. The study will focus on the Jewish communities of northern Europe (roughly modern Germany, northern France and England) from 1100-1350. From the mid-thirteenth century these medieval Jewish communities were subject to growing persecution. The approaches proposed to access daily praxis seek to highlight tangible dimensions of religious life rather than the more common study of ideologies to date. This task is complex because the extant sources in Hebrew as well as those in Latin and vernacular were written by the learned elite and will require a broad survey of multiple textual and material sources.
Four main strands will be examined and combined:
1. An outline of the strata of Jewish society, better defining the elites and other groups.
2. A study of select communal and familial spaces such as the house, the synagogue, the market place have yet to be examined as social spaces.
3. Ritual and urban rhythms especially the annual cycle, connecting between Jewish and Christian environments.
4. Material culture, as objects were used by Jews and Christians alike.
Aspects of material culture, the physical environment and urban rhythms are often described as “neutral” yet will be mined to demonstrate how they exemplified difference while being simultaneously ubiquitous in local cultures. The deterioration of relations between Jews and Christians will provide a gauge for examining change during this period. The final stage of the project will include comparative case studies of other Jewish communities. I expect my findings will inform scholars of medieval culture at large and promote comparative methodologies for studying other minority ethnic groups
Summary
The two fundamental challenges of this project are the integration of medieval Jewries and their histories within the framework of European history without undermining their distinct communal status and the creation of a history of everyday medieval Jewish life that includes those who were not part of the learned elite. The study will focus on the Jewish communities of northern Europe (roughly modern Germany, northern France and England) from 1100-1350. From the mid-thirteenth century these medieval Jewish communities were subject to growing persecution. The approaches proposed to access daily praxis seek to highlight tangible dimensions of religious life rather than the more common study of ideologies to date. This task is complex because the extant sources in Hebrew as well as those in Latin and vernacular were written by the learned elite and will require a broad survey of multiple textual and material sources.
Four main strands will be examined and combined:
1. An outline of the strata of Jewish society, better defining the elites and other groups.
2. A study of select communal and familial spaces such as the house, the synagogue, the market place have yet to be examined as social spaces.
3. Ritual and urban rhythms especially the annual cycle, connecting between Jewish and Christian environments.
4. Material culture, as objects were used by Jews and Christians alike.
Aspects of material culture, the physical environment and urban rhythms are often described as “neutral” yet will be mined to demonstrate how they exemplified difference while being simultaneously ubiquitous in local cultures. The deterioration of relations between Jews and Christians will provide a gauge for examining change during this period. The final stage of the project will include comparative case studies of other Jewish communities. I expect my findings will inform scholars of medieval culture at large and promote comparative methodologies for studying other minority ethnic groups
Max ERC Funding
1 941 688 €
Duration
Start date: 2016-11-01, End date: 2021-10-31
Project acronym BM
Project Becoming Muslim: Conversion to Islam and Islamisation in Eastern Ethiopia
Researcher (PI) Timothy Insoll
Host Institution (HI) THE UNIVERSITY OF EXETER
Call Details Advanced Grant (AdG), SH6, ERC-2015-AdG
Summary "
Why do people convert to Islam? The contemporary relevance of this question is immediately apparent.""Becoming Muslim"" will transform our knowledge about Islamisation processes and contexts through archaeological research in Harar, Eastern Ethiopia, and examine this in comparison to other regions in sub-Saharan Africa via publication and a major conference. Assessing genuine belief is difficult, but the impact of trade, Saints, Sufis and Holy men, proselytisation, benefits gained from Arabic literacy and administration systems, enhanced power, prestige, warfare, and belonging to the larger Muslim community have all been suggested. Equally significant is the context of conversion. Why were certain sub-Saharan African cities key points for conversion to Islam, e.g. Gao and Timbuktu in the Western Sahel, and Harar in Ethiopia? Archaeological engagement with Islamisation processes and contexts of conversion in Africa is variable, and in parts of the continent research is static. This exciting 4-year project explores, for the first time, Islamic conversion and Islamisation through focusing on Harar, the most important living Islamic centre in the Horn of Africa, and its surrounding region.
Islamic archaeology has been neglected in Ethiopia, and is wholly non-existent in Harar. Excavation at 5 key sites: 2 shrines, 2 abandoned settlements, 1 urban site, will permit evaluation of urban Islam, the veneration of saints, pilgrimage and shrine based practices, rural Islam, architecture and jihad, changes in lifeways, and early and comparative evidence for Islam and long-distance trade, through analysis of, e.g. architecture, epigraphy, burial orientation, imported artifacts, and faunal and botanical remains. Although it is fully acknowledged that conversion to Islam and Islamisation processes are not universal, my project is groundbreaking in developing and applying a transferable methodology for the archaeological explanation of ""Becoming Muslim"" in sub-Saharan Africa."
Summary
"
Why do people convert to Islam? The contemporary relevance of this question is immediately apparent.""Becoming Muslim"" will transform our knowledge about Islamisation processes and contexts through archaeological research in Harar, Eastern Ethiopia, and examine this in comparison to other regions in sub-Saharan Africa via publication and a major conference. Assessing genuine belief is difficult, but the impact of trade, Saints, Sufis and Holy men, proselytisation, benefits gained from Arabic literacy and administration systems, enhanced power, prestige, warfare, and belonging to the larger Muslim community have all been suggested. Equally significant is the context of conversion. Why were certain sub-Saharan African cities key points for conversion to Islam, e.g. Gao and Timbuktu in the Western Sahel, and Harar in Ethiopia? Archaeological engagement with Islamisation processes and contexts of conversion in Africa is variable, and in parts of the continent research is static. This exciting 4-year project explores, for the first time, Islamic conversion and Islamisation through focusing on Harar, the most important living Islamic centre in the Horn of Africa, and its surrounding region.
Islamic archaeology has been neglected in Ethiopia, and is wholly non-existent in Harar. Excavation at 5 key sites: 2 shrines, 2 abandoned settlements, 1 urban site, will permit evaluation of urban Islam, the veneration of saints, pilgrimage and shrine based practices, rural Islam, architecture and jihad, changes in lifeways, and early and comparative evidence for Islam and long-distance trade, through analysis of, e.g. architecture, epigraphy, burial orientation, imported artifacts, and faunal and botanical remains. Although it is fully acknowledged that conversion to Islam and Islamisation processes are not universal, my project is groundbreaking in developing and applying a transferable methodology for the archaeological explanation of ""Becoming Muslim"" in sub-Saharan Africa."
Max ERC Funding
1 031 105 €
Duration
Start date: 2016-09-01, End date: 2020-08-31
Project acronym Brain circRNAs
Project Rounding the circle: Unravelling the biogenesis, function and mechanism of action of circRNAs in the Drosophila brain.
Researcher (PI) Sebastian Kadener
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Consolidator Grant (CoG), LS5, ERC-2014-CoG
Summary Tight regulation of RNA metabolism is essential for normal brain function. This includes co and post-transcriptional regulation, which are extremely prevalent in neurons. Recently, circular RNAs (circRNAs), a highly abundant new type of regulatory non-coding RNA have been found across the animal kingdom. Two of these RNAs have been shown to act as miRNA sponges but no function is known for the thousands of other circRNAs, indicating the existence of a widespread layer of previously unknown gene regulation.
The present proposal aims to comprehensively determine the role and mode of actions of circRNAs in gene expression and RNA metabolism in the fly brain. We will do so by studying their biogenesis, transport, and mechanism of action, as well as by determining the roles of circRNAs in neuronal function and behaviour. Briefly, we will: 1) identify factors involved in the biogenesis, localization, and stabilization of circRNAs; 2) determine neuro-developmental, molecular, neural and behavioural phenotypes associated with down or up regulation of specific circRNAs; 3) study the molecular mechanisms of action of circRNAs: identify circRNAs that work as miRNA sponges and determine whether circRNAs can encode proteins or act as signalling molecules and 4) perform mechanistic studies in order to determine cause-effect relationships between circRNA function and brain physiology and behaviour.
The present proposal will reveal the key pathways by which circRNAs control gene expression and influence neuronal function and behaviour. Therefore it will be one of the pioneer works in the study of this new and important area of research, which we predict will fundamentally transform the study of gene expression regulation in the brain
Summary
Tight regulation of RNA metabolism is essential for normal brain function. This includes co and post-transcriptional regulation, which are extremely prevalent in neurons. Recently, circular RNAs (circRNAs), a highly abundant new type of regulatory non-coding RNA have been found across the animal kingdom. Two of these RNAs have been shown to act as miRNA sponges but no function is known for the thousands of other circRNAs, indicating the existence of a widespread layer of previously unknown gene regulation.
The present proposal aims to comprehensively determine the role and mode of actions of circRNAs in gene expression and RNA metabolism in the fly brain. We will do so by studying their biogenesis, transport, and mechanism of action, as well as by determining the roles of circRNAs in neuronal function and behaviour. Briefly, we will: 1) identify factors involved in the biogenesis, localization, and stabilization of circRNAs; 2) determine neuro-developmental, molecular, neural and behavioural phenotypes associated with down or up regulation of specific circRNAs; 3) study the molecular mechanisms of action of circRNAs: identify circRNAs that work as miRNA sponges and determine whether circRNAs can encode proteins or act as signalling molecules and 4) perform mechanistic studies in order to determine cause-effect relationships between circRNA function and brain physiology and behaviour.
The present proposal will reveal the key pathways by which circRNAs control gene expression and influence neuronal function and behaviour. Therefore it will be one of the pioneer works in the study of this new and important area of research, which we predict will fundamentally transform the study of gene expression regulation in the brain
Max ERC Funding
1 971 750 €
Duration
Start date: 2016-02-01, End date: 2021-01-31
Project acronym BrainEnergy
Project Control of cerebral blood flow by capillary pericytes in health and disease
Researcher (PI) David ATTWELL
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Advanced Grant (AdG), LS5, ERC-2016-ADG
Summary Pericytes, located at intervals along capillaries, have recently been revealed as major controllers of brain blood flow. Normally, they dilate capillaries in response to neuronal activity, increasing local blood flow and energy supply. But in pathology they have a more sinister role. After artery block causes a stroke, the brain suffers from the so-called “no-reflow” phenomenon - a failure to fully reperfuse capillaries, even after the upstream occluded artery has been reperfused successfully. The resulting long-lasting decrease of energy supply damages neurons. I have shown that a major cause of no-reflow lies in pericytes: during ischaemia they constrict and then die in rigor. This reduces capillary diameter and blood flow, and probably degrades blood-brain barrier function. However, despite their crucial role in regulating blood flow physiologically and in pathology, little is known about the mechanisms by which pericytes function.
By using blood vessel imaging, patch-clamping, two-photon imaging, optogenetics, immunohistochemistry, mathematical modelling, and live human tissue obtained from neurosurgery, this programme of research will:
(i) define the signalling mechanisms controlling capillary constriction and dilation in health and disease;
(ii) identify the relative contributions of neurons, astrocytes and microglia to regulating pericyte tone;
(iii) develop approaches to preventing brain pericyte constriction and death during ischaemia;
(iv) define how pericyte constriction of capillaries and pericyte death contribute to Alzheimer’s disease;
(v) extend these results from rodent brain to human brain pericytes as a prelude to developing therapies.
The diseases to which pericytes contribute include stroke, spinal cord injury, diabetes and Alzheimer’s disease. These all have an enormous economic impact, as well as causing great suffering for patients and their carers. This work will provide novel therapeutic approaches for treating these diseases.
Summary
Pericytes, located at intervals along capillaries, have recently been revealed as major controllers of brain blood flow. Normally, they dilate capillaries in response to neuronal activity, increasing local blood flow and energy supply. But in pathology they have a more sinister role. After artery block causes a stroke, the brain suffers from the so-called “no-reflow” phenomenon - a failure to fully reperfuse capillaries, even after the upstream occluded artery has been reperfused successfully. The resulting long-lasting decrease of energy supply damages neurons. I have shown that a major cause of no-reflow lies in pericytes: during ischaemia they constrict and then die in rigor. This reduces capillary diameter and blood flow, and probably degrades blood-brain barrier function. However, despite their crucial role in regulating blood flow physiologically and in pathology, little is known about the mechanisms by which pericytes function.
By using blood vessel imaging, patch-clamping, two-photon imaging, optogenetics, immunohistochemistry, mathematical modelling, and live human tissue obtained from neurosurgery, this programme of research will:
(i) define the signalling mechanisms controlling capillary constriction and dilation in health and disease;
(ii) identify the relative contributions of neurons, astrocytes and microglia to regulating pericyte tone;
(iii) develop approaches to preventing brain pericyte constriction and death during ischaemia;
(iv) define how pericyte constriction of capillaries and pericyte death contribute to Alzheimer’s disease;
(v) extend these results from rodent brain to human brain pericytes as a prelude to developing therapies.
The diseases to which pericytes contribute include stroke, spinal cord injury, diabetes and Alzheimer’s disease. These all have an enormous economic impact, as well as causing great suffering for patients and their carers. This work will provide novel therapeutic approaches for treating these diseases.
Max ERC Funding
2 499 954 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym BrainNanoFlow
Project Nanoscale dynamics in the extracellular space of the brain in vivo
Researcher (PI) Juan Alberto VARELA
Host Institution (HI) THE UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS
Call Details Starting Grant (StG), LS5, ERC-2018-STG
Summary Aggregates of proteins such as amyloid-beta and alpha-synuclein circulate the extracellular space of the brain (ECS) and are thought to be key players in the development of neurodegenerative diseases. The clearance of these aggregates (among other toxic metabolites) is a fundamental physiological feature of the brain which is poorly understood due to the lack of techniques to study the nanoscale organisation of the ECS. Exciting advances in this field have recently shown that clearance is enhanced during sleep due to a major volume change in the ECS, facilitating the flow of the interstitial fluid. However, this process has only been characterised at a low spatial resolution while the physiological changes occur at the nanoscale. The recently proposed “glymphatic” pathway still remains controversial, as there are no techniques capable of distinguishing between diffusion and bulk flow in the ECS of living animals. Understanding these processes at a higher spatial resolution requires the development of single-molecule imaging techniques that can study the brain in living animals. Taking advantage of the strategies I have recently developed to target single-molecules in the brain in vivo with nanoparticles, we will do “nanoscopy” in living animals. Our proposal will test the glymphatic pathway at the spatial scale in which events happen, and explore how sleep and wake cycles alter the ECS and the diffusion of receptors in neuronal plasma membrane. Overall, BrainNanoFlow aims to understand how nanoscale changes in the ECS facilitate clearance of protein aggregates. We will also provide new insights to the pathological consequences of impaired clearance, focusing on the interactions between these aggregates and their putative receptors. Being able to perform single-molecule studies in vivo in the brain will be a major breakthrough in neurobiology, making possible the study of physiological and pathological processes that cannot be studied in simpler brain preparations.
Summary
Aggregates of proteins such as amyloid-beta and alpha-synuclein circulate the extracellular space of the brain (ECS) and are thought to be key players in the development of neurodegenerative diseases. The clearance of these aggregates (among other toxic metabolites) is a fundamental physiological feature of the brain which is poorly understood due to the lack of techniques to study the nanoscale organisation of the ECS. Exciting advances in this field have recently shown that clearance is enhanced during sleep due to a major volume change in the ECS, facilitating the flow of the interstitial fluid. However, this process has only been characterised at a low spatial resolution while the physiological changes occur at the nanoscale. The recently proposed “glymphatic” pathway still remains controversial, as there are no techniques capable of distinguishing between diffusion and bulk flow in the ECS of living animals. Understanding these processes at a higher spatial resolution requires the development of single-molecule imaging techniques that can study the brain in living animals. Taking advantage of the strategies I have recently developed to target single-molecules in the brain in vivo with nanoparticles, we will do “nanoscopy” in living animals. Our proposal will test the glymphatic pathway at the spatial scale in which events happen, and explore how sleep and wake cycles alter the ECS and the diffusion of receptors in neuronal plasma membrane. Overall, BrainNanoFlow aims to understand how nanoscale changes in the ECS facilitate clearance of protein aggregates. We will also provide new insights to the pathological consequences of impaired clearance, focusing on the interactions between these aggregates and their putative receptors. Being able to perform single-molecule studies in vivo in the brain will be a major breakthrough in neurobiology, making possible the study of physiological and pathological processes that cannot be studied in simpler brain preparations.
Max ERC Funding
1 552 948 €
Duration
Start date: 2018-12-01, End date: 2023-11-30
Project acronym BRAINPOWER
Project Brain energy supply and the consequences of its failure
Researcher (PI) David Ian Attwell
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Advanced Grant (AdG), LS5, ERC-2009-AdG
Summary Energy, supplied in the form of oxygen and glucose in the blood, is essential for the brain s cognitive power. Failure of the energy supply to the nervous system underlies the mental and physical disability occurring in a wide range of economically important neurological disorders, such as stroke, spinal cord injury and cerebral palsy. Using a combination of two-photon imaging, electrophysiological, molecular and transgenic approaches, I will investigate the control of brain energy supply at the vascular level, and at the level of individual neurons and glial cells, and study the deleterious consequences for the neurons, glia and vasculature of a failure of brain energy supply. The work will focus on the following fundamental issues: A. Vascular control of the brain energy supply (1) How important is control of energy supply at the capillary level, by pericytes? (2) Which synapses control blood flow (and thus generate functional imaging signals) in the cortex? B. Neuronal and glial control of brain energy supply (3) How is grey matter neuronal activity powered? (4) How is the white matter supplied with energy? C. The pathological consequences of a loss of brain energy supply (5) How does a fall of energy supply cause neurotoxic glutamate release? (6) How similar are events in the grey and white matter in energy deprivation conditions? (7) How does a transient loss of energy supply affect blood flow regulation? (8) How does brain energy use change after a period without energy supply? Together this work will significantly advance our understanding of how the energy supply to neurons and glia is regulated in normal conditions, and how the loss of the energy supply causes disorders which consume more than 5% of the costs of European health services (5% of ~1000 billion euro/year).
Summary
Energy, supplied in the form of oxygen and glucose in the blood, is essential for the brain s cognitive power. Failure of the energy supply to the nervous system underlies the mental and physical disability occurring in a wide range of economically important neurological disorders, such as stroke, spinal cord injury and cerebral palsy. Using a combination of two-photon imaging, electrophysiological, molecular and transgenic approaches, I will investigate the control of brain energy supply at the vascular level, and at the level of individual neurons and glial cells, and study the deleterious consequences for the neurons, glia and vasculature of a failure of brain energy supply. The work will focus on the following fundamental issues: A. Vascular control of the brain energy supply (1) How important is control of energy supply at the capillary level, by pericytes? (2) Which synapses control blood flow (and thus generate functional imaging signals) in the cortex? B. Neuronal and glial control of brain energy supply (3) How is grey matter neuronal activity powered? (4) How is the white matter supplied with energy? C. The pathological consequences of a loss of brain energy supply (5) How does a fall of energy supply cause neurotoxic glutamate release? (6) How similar are events in the grey and white matter in energy deprivation conditions? (7) How does a transient loss of energy supply affect blood flow regulation? (8) How does brain energy use change after a period without energy supply? Together this work will significantly advance our understanding of how the energy supply to neurons and glia is regulated in normal conditions, and how the loss of the energy supply causes disorders which consume more than 5% of the costs of European health services (5% of ~1000 billion euro/year).
Max ERC Funding
2 499 947 €
Duration
Start date: 2010-04-01, End date: 2016-03-31
Project acronym BrainReadFBPredCode
Project Brain reading of contextual feedback and predictions
Researcher (PI) Lars Muckli
Host Institution (HI) UNIVERSITY OF GLASGOW
Call Details Starting Grant (StG), LS5, ERC-2012-StG_20111109
Summary We are currently witnessing a paradigm shift in our understanding of human brain function, moving towards a clearer description of cortical processing. Sensory systems are no longer considered as 'passively recording' but rather as dynamically anticipating and adapting to the rapidly changing environment. These new ideas are encompassed in the predictive coding framework, and indeed in a unifying theory of the brain (Friston, 2010). In terms of brain computation, a predictive model is created in higher cortical areas and communicated to lower sensory areas through feedback connections. Based on my pioneering research I propose experiments that are capable of ‘brain-reading’ cortical feedback– which would contribute invaluable data to theoretical frameworks.
The proposed research project will advance our understanding of ongoing brain activity, contextual processing, and cortical feedback - contributing to what is known about general cortical functions. By providing new insights as to the information content of cortical feedback, the proposal will fill one of the most important gaps in today’s knowledge about brain function. Friston’s unifying theory of the brain (Friston, 2010) and contemporary models of the predictive-coding framework (Hawkins and Blakeslee, 2004;Mumford, 1992;Rao and Ballard, 1999) assign feedback processing an essential role in cortical processing. Compared to feedforward information processing, our knowledge about feedback processing is in its infancy. The proposal introduces parametric and explorative brain reading designs to investigate this feedback processing. The chief goal of my proposal will be precision measures of cortical feedback, and a more ambitious objective is to read mental images and inner thoughts.
Summary
We are currently witnessing a paradigm shift in our understanding of human brain function, moving towards a clearer description of cortical processing. Sensory systems are no longer considered as 'passively recording' but rather as dynamically anticipating and adapting to the rapidly changing environment. These new ideas are encompassed in the predictive coding framework, and indeed in a unifying theory of the brain (Friston, 2010). In terms of brain computation, a predictive model is created in higher cortical areas and communicated to lower sensory areas through feedback connections. Based on my pioneering research I propose experiments that are capable of ‘brain-reading’ cortical feedback– which would contribute invaluable data to theoretical frameworks.
The proposed research project will advance our understanding of ongoing brain activity, contextual processing, and cortical feedback - contributing to what is known about general cortical functions. By providing new insights as to the information content of cortical feedback, the proposal will fill one of the most important gaps in today’s knowledge about brain function. Friston’s unifying theory of the brain (Friston, 2010) and contemporary models of the predictive-coding framework (Hawkins and Blakeslee, 2004;Mumford, 1992;Rao and Ballard, 1999) assign feedback processing an essential role in cortical processing. Compared to feedforward information processing, our knowledge about feedback processing is in its infancy. The proposal introduces parametric and explorative brain reading designs to investigate this feedback processing. The chief goal of my proposal will be precision measures of cortical feedback, and a more ambitious objective is to read mental images and inner thoughts.
Max ERC Funding
1 494 714 €
Duration
Start date: 2012-12-01, End date: 2017-11-30
Project acronym BRAINVISIONREHAB
Project ‘Seeing’ with the ears, hands and bionic eyes: from theories about brain organization to visual rehabilitation
Researcher (PI) Amir Amedi
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Starting Grant (StG), LS5, ERC-2012-StG_20111109
Summary My lab's work ranges from basic science, querying brain plasticity and sensory integration, to technological developments, allowing the blind to be more independent and even “see” using sounds and touch similar to bats and dolphins (a.k.a. Sensory Substitution Devices, SSDs), and back to applying these devices in research. We propose that, with proper training, any brain area or network can change the type of sensory input it uses to retrieve behaviorally task-relevant information within a matter of days. If this is true, it can have far reaching implications also for clinical rehabilitation. To achieve this, we are developing several innovative SSDs which encode the most crucial aspects of vision and increase their accessibility the blind, along with targeted, structured training protocols both in virtual environments and in real life. For instance, the “EyeMusic”, encodes colored complex images using pleasant musical scales and instruments, and the “EyeCane”, a palm-size cane, which encodes distance and depth in several directions accurately and efficiently. We provide preliminary but compelling evidence that following such training, SSDs can enable almost blind to recognize daily objects, colors, faces and facial expressions, read street signs, and aiding mobility and navigation. SSDs can also be used in conjunction with (any) invasive approach for visual rehabilitation. We are developing a novel hybrid Visual Rehabilitation Device which combines SSD and bionic eyes. In this set up, the SSDs is used in training the brain to “see” prior to surgery, in providing explanatory signal after surgery and in augmenting the capabilities of the bionic-eyes using information arriving from the same image. We will chart the dynamics of the plastic changes in the brain by performing unprecedented longitudinal Neuroimaging, Electrophysiological and Neurodisruptive approaches while individuals learn to ‘see’ using each of the visual rehabilitation approaches suggested here.
Summary
My lab's work ranges from basic science, querying brain plasticity and sensory integration, to technological developments, allowing the blind to be more independent and even “see” using sounds and touch similar to bats and dolphins (a.k.a. Sensory Substitution Devices, SSDs), and back to applying these devices in research. We propose that, with proper training, any brain area or network can change the type of sensory input it uses to retrieve behaviorally task-relevant information within a matter of days. If this is true, it can have far reaching implications also for clinical rehabilitation. To achieve this, we are developing several innovative SSDs which encode the most crucial aspects of vision and increase their accessibility the blind, along with targeted, structured training protocols both in virtual environments and in real life. For instance, the “EyeMusic”, encodes colored complex images using pleasant musical scales and instruments, and the “EyeCane”, a palm-size cane, which encodes distance and depth in several directions accurately and efficiently. We provide preliminary but compelling evidence that following such training, SSDs can enable almost blind to recognize daily objects, colors, faces and facial expressions, read street signs, and aiding mobility and navigation. SSDs can also be used in conjunction with (any) invasive approach for visual rehabilitation. We are developing a novel hybrid Visual Rehabilitation Device which combines SSD and bionic eyes. In this set up, the SSDs is used in training the brain to “see” prior to surgery, in providing explanatory signal after surgery and in augmenting the capabilities of the bionic-eyes using information arriving from the same image. We will chart the dynamics of the plastic changes in the brain by performing unprecedented longitudinal Neuroimaging, Electrophysiological and Neurodisruptive approaches while individuals learn to ‘see’ using each of the visual rehabilitation approaches suggested here.
Max ERC Funding
1 499 900 €
Duration
Start date: 2013-09-01, End date: 2018-08-31
Project acronym C9ND
Project C9orf72-mediated neurodegeneration: mechanisms and therapeutics
Researcher (PI) Adrian Michael Isaacs
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Consolidator Grant (CoG), LS5, ERC-2014-CoG
Summary An expanded GGGGCC repeat in a non-coding region of the C9orf72 gene is the most common known cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). The repeat RNA is transcribed and accumulates in neuronal RNA aggregates, implicating RNA toxicity as a key pathogenic mechanism. However, the pathways that lead to neurodegeneration are unknown. My lab has made pioneering contributions to the understanding of C9orf72 FTD/ALS, and reported the first structure of the repeat RNA, and the first description of both sense and antisense RNA aggregates in patient brain. We have now developed new disease models that allow, for the first time, the dissection of RNA toxicity both in vivo and in sophisticated neuronal culture models. We have also used our knowledge of the repeat structure to identify novel small molecules that show very strong binding to the repeats. We will utilise our innovative disease models in a multidisciplinary approach to fully dissect the cellular pathways underlying C9orf72 repeat RNA toxicity in vivo, on a genome-wide scale. Altered RNA metabolism has been implicated in a wide range of neurodegenerative diseases, indicating that our findings will provide profound new insight into fundamental mechanisms of neuronal maintenance and survival. This research programme will also deliver a step change in our understanding of C9orf72 FTD/ALS pathogenesis and provide essential insight for the identification of small molecules with genuine therapeutic potential. RNA-mediated mechanisms are now known to be a common theme in neurodegeneration, suggesting these findings will have broad significance.
Summary
An expanded GGGGCC repeat in a non-coding region of the C9orf72 gene is the most common known cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). The repeat RNA is transcribed and accumulates in neuronal RNA aggregates, implicating RNA toxicity as a key pathogenic mechanism. However, the pathways that lead to neurodegeneration are unknown. My lab has made pioneering contributions to the understanding of C9orf72 FTD/ALS, and reported the first structure of the repeat RNA, and the first description of both sense and antisense RNA aggregates in patient brain. We have now developed new disease models that allow, for the first time, the dissection of RNA toxicity both in vivo and in sophisticated neuronal culture models. We have also used our knowledge of the repeat structure to identify novel small molecules that show very strong binding to the repeats. We will utilise our innovative disease models in a multidisciplinary approach to fully dissect the cellular pathways underlying C9orf72 repeat RNA toxicity in vivo, on a genome-wide scale. Altered RNA metabolism has been implicated in a wide range of neurodegenerative diseases, indicating that our findings will provide profound new insight into fundamental mechanisms of neuronal maintenance and survival. This research programme will also deliver a step change in our understanding of C9orf72 FTD/ALS pathogenesis and provide essential insight for the identification of small molecules with genuine therapeutic potential. RNA-mediated mechanisms are now known to be a common theme in neurodegeneration, suggesting these findings will have broad significance.
Max ERC Funding
1 985 699 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym CALENDARS
Project Calendars in late Antiquity and the Middle Ages: standardization and fixation
Researcher (PI) Sacha David Stern
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Advanced Grant (AdG), SH6, ERC-2012-ADG_20120411
Summary This project will study how calendars evolved in late antique and medieval societies towards ever increasing standardization and fixation. The study of calendars has been neglected by historians as a technical curiosity; but in fact, the calendar was at the heart of ancient and medieval culture, as a structured concept of time, and as an organizing principle of social life.
The history of calendars in late Antiquity and the Middle Ages was a complex social and cultural process, closely related to politics, science, and religion. The standardization and fixation of calendars was related in Antiquity to the rise of large, centralized empires in the Mediterranean and Near East, and in the Middle Ages, to the rise of the monotheistic, universalist religions of Christianity and Islam. The standardization and fixation of calendars contributed also, more widely, to the formation of a unified and universal culture in the ancient and medieval worlds.
The standardization and fixation of ancient and medieval calendars will be analyzed by focusing on four, specific manifestations of this process: (1) the diffusion and standardization of the seven-day week in the Roman Empire; (2) the production of hemerologia (comparative calendar tables) in late Antiquity; (3) the use of Jewish calendar fixed cycles in medieval manuscripts; (4) the production and diffusion of monographs on the calendar by medieval Muslim, Christian, and Jewish scholars, especially al-Biruni’s Chronology of the Ancient Nations and Isaac Israeli’s Yesod Olam. Study of these four research areas will enable us to formulate a general interpretation and explanation of how and why calendars became increasingly standardized and fixed.
This will be the first ever study of calendars on this scale, covering a wide range of historical periods and cultures, and involving a wide range of disciplines: social history, ancient and medieval astronomy and mathematics, study of religions, literature, epigraphy, and codicology.
Summary
This project will study how calendars evolved in late antique and medieval societies towards ever increasing standardization and fixation. The study of calendars has been neglected by historians as a technical curiosity; but in fact, the calendar was at the heart of ancient and medieval culture, as a structured concept of time, and as an organizing principle of social life.
The history of calendars in late Antiquity and the Middle Ages was a complex social and cultural process, closely related to politics, science, and religion. The standardization and fixation of calendars was related in Antiquity to the rise of large, centralized empires in the Mediterranean and Near East, and in the Middle Ages, to the rise of the monotheistic, universalist religions of Christianity and Islam. The standardization and fixation of calendars contributed also, more widely, to the formation of a unified and universal culture in the ancient and medieval worlds.
The standardization and fixation of ancient and medieval calendars will be analyzed by focusing on four, specific manifestations of this process: (1) the diffusion and standardization of the seven-day week in the Roman Empire; (2) the production of hemerologia (comparative calendar tables) in late Antiquity; (3) the use of Jewish calendar fixed cycles in medieval manuscripts; (4) the production and diffusion of monographs on the calendar by medieval Muslim, Christian, and Jewish scholars, especially al-Biruni’s Chronology of the Ancient Nations and Isaac Israeli’s Yesod Olam. Study of these four research areas will enable us to formulate a general interpretation and explanation of how and why calendars became increasingly standardized and fixed.
This will be the first ever study of calendars on this scale, covering a wide range of historical periods and cultures, and involving a wide range of disciplines: social history, ancient and medieval astronomy and mathematics, study of religions, literature, epigraphy, and codicology.
Max ERC Funding
2 499 006 €
Duration
Start date: 2013-02-01, End date: 2018-01-31
Project acronym CArchipelago
Project The Carceral Archipelago: transnational circulations in global perspective, 1415-1960
Researcher (PI) Clare Anderson
Host Institution (HI) UNIVERSITY OF LEICESTER
Call Details Starting Grant (StG), SH6, ERC-2012-StG_20111124
Summary This project centres ‘the carceral archipelago’ in the history of the making of the modern world. It analyses the relationships and circulations between and across convict transportation, penal colonies and labour, migration, coercion and confinement. It incorporates all the global powers engaged in transportation for the purpose of expansion and colonization - Europe, Russia, Latin America, China, Japan – over the period from Portugal’s first use of convicts in North Africa in 1415 to the dissolution of Stalin’s gulags in 1960. It uses an innovative theoretical base to shift convict transportation out of the history of crime and punishment into the new questions being raised by global and postcolonial history.
The project maps for the first time global networks of transportation and penal colonies. It undertakes case study archival research on relatively unexplored convict flows, and on the mobility of ideas and practices around transportation and other modes of confinement. It analyses its findings within the broader literature, including on transportation but also debates around the definition of freedom/ unfreedom, the importance of circulating labour, and global divergence and convergence. It redefines what we mean by ‘transportation,’ explores penal transportation as an engine of global change, de-centres Europe in historical analysis, and defines long-term impacts on economy, society and identity. It places special stress on investigating whether a transnational approach to the topic gives us a fresh theoretical starting point for studying global history that moves beyond ‘nation’ or ‘empire.’
The project lies at the intersections of national, colonial and global history, and economic, social and cultural history. It will be of wide interest to scholars of labour, migration, punishment and confinement; comparative and global history; diaspora, creolization and cultural translation; and museum and heritage studies.
Summary
This project centres ‘the carceral archipelago’ in the history of the making of the modern world. It analyses the relationships and circulations between and across convict transportation, penal colonies and labour, migration, coercion and confinement. It incorporates all the global powers engaged in transportation for the purpose of expansion and colonization - Europe, Russia, Latin America, China, Japan – over the period from Portugal’s first use of convicts in North Africa in 1415 to the dissolution of Stalin’s gulags in 1960. It uses an innovative theoretical base to shift convict transportation out of the history of crime and punishment into the new questions being raised by global and postcolonial history.
The project maps for the first time global networks of transportation and penal colonies. It undertakes case study archival research on relatively unexplored convict flows, and on the mobility of ideas and practices around transportation and other modes of confinement. It analyses its findings within the broader literature, including on transportation but also debates around the definition of freedom/ unfreedom, the importance of circulating labour, and global divergence and convergence. It redefines what we mean by ‘transportation,’ explores penal transportation as an engine of global change, de-centres Europe in historical analysis, and defines long-term impacts on economy, society and identity. It places special stress on investigating whether a transnational approach to the topic gives us a fresh theoretical starting point for studying global history that moves beyond ‘nation’ or ‘empire.’
The project lies at the intersections of national, colonial and global history, and economic, social and cultural history. It will be of wide interest to scholars of labour, migration, punishment and confinement; comparative and global history; diaspora, creolization and cultural translation; and museum and heritage studies.
Max ERC Funding
1 492 870 €
Duration
Start date: 2013-03-01, End date: 2018-02-28
Project acronym CEIDNFSTTAIS
Project Controlling excitability in developing neurons: from synapses to the axon initial segment
Researcher (PI) Juan Burrone
Host Institution (HI) KING'S COLLEGE LONDON
Call Details Starting Grant (StG), LS5, ERC-2011-StG_20101109
Summary A critical question in neuroscience is to understand how neurons wire up to form a functional network. During the wiring of the brain it is important to establish mechanisms that act as safeguards to control and stabilize neuronal excitability in the face of large, chronic changes in neuronal or network activity. This is especially true for developing systems that undergo rapid and large scale forms of plasticity, which could easily lead to large imbalances in activity. If left unchecked, they could lead the network to its extremes: a complete loss of signal or epileptic-like activity. For this reason neurons employ different strategies to maintain their excitability within reasonable bounds. This proposal will focus on two crucial sites for neuronal information processing and integration: the synapse and the axon initial segment (AIS). Both sites undergo important structural and functional rearrangements in response to chronic activity changes, thus controlling the input-output function of a neuron and allowing the network to function efficiently. This proposal will explore novel forms of plasticity that occur during development and which are key to establishing a functional network. They range from understanding the role of activity during synapse formation to how pre- and postsynaptic structure and function become matched during development. Finally, it tackles a novel form of plasticity that lies downstream of synaptic inputs and is responsible for setting the threshold of action potential firing: the axon initial segment. Here, chronic changes in network activity results in a physical relocation of the AIS along the axon, which in turn alters the excitability of the neuron. This proposal will focus on the central issue of how a neuron alters both its input (synapses) and output (AIS) during development to maintain its activity levels within a set range and allow a functional network to form.
Summary
A critical question in neuroscience is to understand how neurons wire up to form a functional network. During the wiring of the brain it is important to establish mechanisms that act as safeguards to control and stabilize neuronal excitability in the face of large, chronic changes in neuronal or network activity. This is especially true for developing systems that undergo rapid and large scale forms of plasticity, which could easily lead to large imbalances in activity. If left unchecked, they could lead the network to its extremes: a complete loss of signal or epileptic-like activity. For this reason neurons employ different strategies to maintain their excitability within reasonable bounds. This proposal will focus on two crucial sites for neuronal information processing and integration: the synapse and the axon initial segment (AIS). Both sites undergo important structural and functional rearrangements in response to chronic activity changes, thus controlling the input-output function of a neuron and allowing the network to function efficiently. This proposal will explore novel forms of plasticity that occur during development and which are key to establishing a functional network. They range from understanding the role of activity during synapse formation to how pre- and postsynaptic structure and function become matched during development. Finally, it tackles a novel form of plasticity that lies downstream of synaptic inputs and is responsible for setting the threshold of action potential firing: the axon initial segment. Here, chronic changes in network activity results in a physical relocation of the AIS along the axon, which in turn alters the excitability of the neuron. This proposal will focus on the central issue of how a neuron alters both its input (synapses) and output (AIS) during development to maintain its activity levels within a set range and allow a functional network to form.
Max ERC Funding
1 500 000 €
Duration
Start date: 2012-03-01, End date: 2017-02-28
Project acronym CerebralHominoids
Project Evolutionary biology of human and great ape brain development in cerebral organoids
Researcher (PI) Madeline LANCASTER
Host Institution (HI) UNITED KINGDOM RESEARCH AND INNOVATION
Call Details Starting Grant (StG), LS5, ERC-2017-STG
Summary Humans are endowed with a number of advanced cognitive abilities not seen in other species. So what allows the human brain to stand out from the rest in these capabilities? In general, the brains of primates, including humans, have more neurons per unit volume than other mammals. But humans are also in the fortunate position of having the largest of the primate brains, making the number of neurons in the human cerebral cortex greatly expanded. Thus, the difference seems to be a matter of quantity, not quality. My laboratory is interested in understanding how neuron number, and thus brain size, is determined in human brain development.
The research proposed here is aimed at taking an evolutionary approach to this question and comparing brain development in an in vitro 3D model system, cerebral organoids. This method, which relies on self-organization from differentiating pluripotent stem cells, recapitulates remarkably well the endogenous developmental program of the human brain. Having previously established the brain organoid approach, and more recently improved upon it with the application of bioengineering, my laboratory is in a unique position to carry out functional studies of human brain development. I propose to use this approach to compare developing human brain tissue to that of other hominid species and tease apart unique features of human neural stem cells and progenitors that allow them to generate more neurons and therefore a greater cerebral cortical size. Furthermore, we will perform transcriptomic and functional screening to identify factors underlying this expansion, followed by careful genetic substitution to test the contributions of putative evolutionary changes. In this way, we will functionally test putative human evolutionary changes in a manner not previously possible.
Summary
Humans are endowed with a number of advanced cognitive abilities not seen in other species. So what allows the human brain to stand out from the rest in these capabilities? In general, the brains of primates, including humans, have more neurons per unit volume than other mammals. But humans are also in the fortunate position of having the largest of the primate brains, making the number of neurons in the human cerebral cortex greatly expanded. Thus, the difference seems to be a matter of quantity, not quality. My laboratory is interested in understanding how neuron number, and thus brain size, is determined in human brain development.
The research proposed here is aimed at taking an evolutionary approach to this question and comparing brain development in an in vitro 3D model system, cerebral organoids. This method, which relies on self-organization from differentiating pluripotent stem cells, recapitulates remarkably well the endogenous developmental program of the human brain. Having previously established the brain organoid approach, and more recently improved upon it with the application of bioengineering, my laboratory is in a unique position to carry out functional studies of human brain development. I propose to use this approach to compare developing human brain tissue to that of other hominid species and tease apart unique features of human neural stem cells and progenitors that allow them to generate more neurons and therefore a greater cerebral cortical size. Furthermore, we will perform transcriptomic and functional screening to identify factors underlying this expansion, followed by careful genetic substitution to test the contributions of putative evolutionary changes. In this way, we will functionally test putative human evolutionary changes in a manner not previously possible.
Max ERC Funding
1 444 911 €
Duration
Start date: 2018-07-01, End date: 2023-06-30
Project acronym CFRONTIERS
Project Coastal Frontiers: Water, Power, and the Boundaries of South Asia
Researcher (PI) Sunil Amrith
Host Institution (HI) BIRKBECK COLLEGE - UNIVERSITY OF LONDON
Call Details Starting Grant (StG), SH6, ERC-2011-StG_20101124
Summary 'Coastal Frontiers' will involve the Principal Investigator, Dr Sunil Amrith, and a post-doctoral research assistant, in a study of the Bay of Bengal’s coastal rim from the late-nineteenth century to the present. This project will illuminate the entangled political and ecological history of the coastal arc stretching from India’s southern tip to the edge of the Malay Peninsula. It will combine macro-level perspectives on environmental change, contingent histories of transformations in political sovereignty, and local histories of coastal peoples. It seeks to examine how people have actually inhabited the coastal borderlands of Asia, and the contrasting ways these worlds appear through the eyes of states, or in the minds of coastal ecologists. It will focus on key coastal sites at the frontiers of ecological change, at the frontiers between empires and nations, at the frontiers between terrestrial and maritime law. The project will examine the deeper history of environmental change and political conflict in a region that is now particularly vulnerable to climate change, and at the fault-lines of strategic conflict between India and China.
The project will build on the Principal Investigator’s recent work at the frontiers of scholarship in Asian history, through his studies of the links between South and Southeast Asia’s histories of migration and oceanic connection. It is time, now, to root this re-conceptualization of Asia’s regional frontiers in a closer study of environmental change, but to do so in a way that does not lose sight of the experiences and consciousness of individuals. This represents a new departure in scholarship, combining environmental history with the history of transnational flows, bridging insights from the humanities and ecological science. This ambitious project seeks new ways for historians to engage with questions of planetary change, without losing the fine-grained detail and hard archival research that has characterised our discipline.
Summary
'Coastal Frontiers' will involve the Principal Investigator, Dr Sunil Amrith, and a post-doctoral research assistant, in a study of the Bay of Bengal’s coastal rim from the late-nineteenth century to the present. This project will illuminate the entangled political and ecological history of the coastal arc stretching from India’s southern tip to the edge of the Malay Peninsula. It will combine macro-level perspectives on environmental change, contingent histories of transformations in political sovereignty, and local histories of coastal peoples. It seeks to examine how people have actually inhabited the coastal borderlands of Asia, and the contrasting ways these worlds appear through the eyes of states, or in the minds of coastal ecologists. It will focus on key coastal sites at the frontiers of ecological change, at the frontiers between empires and nations, at the frontiers between terrestrial and maritime law. The project will examine the deeper history of environmental change and political conflict in a region that is now particularly vulnerable to climate change, and at the fault-lines of strategic conflict between India and China.
The project will build on the Principal Investigator’s recent work at the frontiers of scholarship in Asian history, through his studies of the links between South and Southeast Asia’s histories of migration and oceanic connection. It is time, now, to root this re-conceptualization of Asia’s regional frontiers in a closer study of environmental change, but to do so in a way that does not lose sight of the experiences and consciousness of individuals. This represents a new departure in scholarship, combining environmental history with the history of transnational flows, bridging insights from the humanities and ecological science. This ambitious project seeks new ways for historians to engage with questions of planetary change, without losing the fine-grained detail and hard archival research that has characterised our discipline.
Max ERC Funding
606 655 €
Duration
Start date: 2012-01-01, End date: 2015-06-30
Project acronym CHIME
Project The Role of Cortico-Hippocampal Interactions during Memory Encoding
Researcher (PI) Daniel (Ari) Bendor
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Starting Grant (StG), LS5, ERC-2014-STG
Summary This research proposal’s goal is to investigate the role of cortico-hippocampal interactions during the encoding and consolidation of a memory. Current memory consolidation models postulate that memory storage in our brains occurs by a dynamic process- a recent episodic experience is initially encoded in the hippocampus, and during off-line states such as sleep, the encoded memory is gradually transferred to neocortex for long-term storage. One potential neural mechanism by which this could occur is replay, a phenomenon where neural activity patterns in the hippocampus evoked by a previous experience reactivate spontaneously during non-REM sleep, leading to coordinated cortical reactivation. While previous work suggests that hippocampal replay is important for encoding new memories, how memory consolidation is accomplished through cortico-hippocampal interactions is not well understood.
This research project has three major aims- 1) examine how cortical feedback influences which spatial trajectory is replayed by the hippocampus, 2) investigate how the hippocampal replay of a behavioural episode modifies cortical circuits, 3) measure the causal role of cortico-hippocampal interactions in consolidating memories. We will record ensemble activity from freely moving rats during an auditory-spatial association task and during post-behavioural sleep sessions. We will focus our ensemble recordings on two brain regions: 1) the dorsal CA1 region of the hippocampus, where the phenomenon of sleep replay has been most extensively examined, and 2) auditory cortex, a region of the brain critical for both auditory perception and long-term memory storage. This work will use behavioral and molecular-genetic techniques in combination with large-scale electrophysiological recordings, to help elucidate the role of cortico-hippocampal interactions in memory encoding and consolidation.
Summary
This research proposal’s goal is to investigate the role of cortico-hippocampal interactions during the encoding and consolidation of a memory. Current memory consolidation models postulate that memory storage in our brains occurs by a dynamic process- a recent episodic experience is initially encoded in the hippocampus, and during off-line states such as sleep, the encoded memory is gradually transferred to neocortex for long-term storage. One potential neural mechanism by which this could occur is replay, a phenomenon where neural activity patterns in the hippocampus evoked by a previous experience reactivate spontaneously during non-REM sleep, leading to coordinated cortical reactivation. While previous work suggests that hippocampal replay is important for encoding new memories, how memory consolidation is accomplished through cortico-hippocampal interactions is not well understood.
This research project has three major aims- 1) examine how cortical feedback influences which spatial trajectory is replayed by the hippocampus, 2) investigate how the hippocampal replay of a behavioural episode modifies cortical circuits, 3) measure the causal role of cortico-hippocampal interactions in consolidating memories. We will record ensemble activity from freely moving rats during an auditory-spatial association task and during post-behavioural sleep sessions. We will focus our ensemble recordings on two brain regions: 1) the dorsal CA1 region of the hippocampus, where the phenomenon of sleep replay has been most extensively examined, and 2) auditory cortex, a region of the brain critical for both auditory perception and long-term memory storage. This work will use behavioral and molecular-genetic techniques in combination with large-scale electrophysiological recordings, to help elucidate the role of cortico-hippocampal interactions in memory encoding and consolidation.
Max ERC Funding
1 500 000 €
Duration
Start date: 2015-04-01, End date: 2021-03-31
Project acronym CHOLINOMIRS
Project CholinomiRs: MicroRNA Regulators of Cholinergic Signalling in the Neuro-Immune Interface
Researcher (PI) Hermona Soreq
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Advanced Grant (AdG), LS5, ERC-2012-ADG_20120314
Summary "Communication between the nervous and the immune system is pivotal for maintaining homeostasis and ensuring rapid and efficient reaction to stress and infection insults. The emergence of microRNAs (miRs) as regulators of gene expression and of acetylcholine (ACh) signalling as regulator of anxiety and inflammation provides a model for studying this interaction. My hypothesis is that 1) a specific sub-group of miRs, designated ""CholinomiRs"", may silence multiple target genes in the neuro-immune interface; 2) these miRs compete with each other on the interaction with their targets, and 3) mutations interfering with miR binding lead to inherited susceptibility to anxiety and inflammation disorders by modifying these interactions. Our preliminary findings have shown that by targeting acetylcholinesterase (AChE), CholinomiR-132 can intensify acute stress, resolve intestinal inflammation and change post-ischemic stroke responses. Further, we have identified clustered single nucleotide polymorphisms (SNPs) interfering with AChE silencing by several miRs which associate with elevated trait anxiety, blood pressure and inflammation. To further study miR regulators of ACh signalling, I plan to: (1) Identify anxiety and inflammation-induced changes in CholinomiRs and their targets in challenged brain and immune cells. (2) Establish the roles of these targets for one selected CholinomiR by tissue-specific manipulations. (3) Study primate-specific CholinomiRs by continued human DNA screens to identify SNPs and in ""humanized"" mice with knocked-in human AChE and transgenic CholinomiR-608. (4) Test if therapeutic modulation of aberrant CholinomiR expression can restore homeostasis. This research will clarify how miRs interact with each other in health and disease, introduce the dimension of complexity of multi-target competition and miR interactions and make a conceptual change in miRs research while enhancing the ability to intervene with diseases involving impaired ACh signalling."
Summary
"Communication between the nervous and the immune system is pivotal for maintaining homeostasis and ensuring rapid and efficient reaction to stress and infection insults. The emergence of microRNAs (miRs) as regulators of gene expression and of acetylcholine (ACh) signalling as regulator of anxiety and inflammation provides a model for studying this interaction. My hypothesis is that 1) a specific sub-group of miRs, designated ""CholinomiRs"", may silence multiple target genes in the neuro-immune interface; 2) these miRs compete with each other on the interaction with their targets, and 3) mutations interfering with miR binding lead to inherited susceptibility to anxiety and inflammation disorders by modifying these interactions. Our preliminary findings have shown that by targeting acetylcholinesterase (AChE), CholinomiR-132 can intensify acute stress, resolve intestinal inflammation and change post-ischemic stroke responses. Further, we have identified clustered single nucleotide polymorphisms (SNPs) interfering with AChE silencing by several miRs which associate with elevated trait anxiety, blood pressure and inflammation. To further study miR regulators of ACh signalling, I plan to: (1) Identify anxiety and inflammation-induced changes in CholinomiRs and their targets in challenged brain and immune cells. (2) Establish the roles of these targets for one selected CholinomiR by tissue-specific manipulations. (3) Study primate-specific CholinomiRs by continued human DNA screens to identify SNPs and in ""humanized"" mice with knocked-in human AChE and transgenic CholinomiR-608. (4) Test if therapeutic modulation of aberrant CholinomiR expression can restore homeostasis. This research will clarify how miRs interact with each other in health and disease, introduce the dimension of complexity of multi-target competition and miR interactions and make a conceptual change in miRs research while enhancing the ability to intervene with diseases involving impaired ACh signalling."
Max ERC Funding
2 375 600 €
Duration
Start date: 2013-03-01, End date: 2018-02-28
Project acronym ChromatidCohesion
Project Establishment of Sister Chromatid Cohesion
Researcher (PI) Frank Uhlmann
Host Institution (HI) THE FRANCIS CRICK INSTITUTE LIMITED
Call Details Advanced Grant (AdG), LS1, ERC-2014-ADG
Summary Following their synthesis during DNA replication, sister chromatids remain paired by the cohesin complex, which forms the basis for their faithful segregation during cell division. Cohesin is a large ring-shaped protein complex, incorporating an ABC-type ATPase module. Despite its importance for genome stability, the molecular mechanism of cohesin action remains as intriguing as it remains poorly understood. How is cohesin topologically loaded onto chromatin? How is it unloaded again? What happens to cohesin during DNA replication in S-phase, so that it establishes cohesion between newly synthesized sister chromatids? We propose to capitalise on our recent success in the biochemical reconstitution of topological cohesin loading onto DNA. This lays the foundation for a work programme encompassing a combination of biochemical, single molecule, structural and genetic approaches to address the above questions. Five work packages will investigate cohesin’s molecular behaviour during its life-cycle on chromosomes, including the ATP binding and hydrolysis-dependent conformational changes that make this molecular machine work. It will be complemented by mechanistic analyses of the cofactors that help cohesin to load onto chromosomes and establish sister chromatid cohesion. The insight gained will not only advance our molecular knowledge of sister chromatid cohesion. It will more generally advance our understanding of the ubiquitous family of chromosomal SMC ATPases, of which cohesin is a member, and their activity of shaping and segregating genomes.
Summary
Following their synthesis during DNA replication, sister chromatids remain paired by the cohesin complex, which forms the basis for their faithful segregation during cell division. Cohesin is a large ring-shaped protein complex, incorporating an ABC-type ATPase module. Despite its importance for genome stability, the molecular mechanism of cohesin action remains as intriguing as it remains poorly understood. How is cohesin topologically loaded onto chromatin? How is it unloaded again? What happens to cohesin during DNA replication in S-phase, so that it establishes cohesion between newly synthesized sister chromatids? We propose to capitalise on our recent success in the biochemical reconstitution of topological cohesin loading onto DNA. This lays the foundation for a work programme encompassing a combination of biochemical, single molecule, structural and genetic approaches to address the above questions. Five work packages will investigate cohesin’s molecular behaviour during its life-cycle on chromosomes, including the ATP binding and hydrolysis-dependent conformational changes that make this molecular machine work. It will be complemented by mechanistic analyses of the cofactors that help cohesin to load onto chromosomes and establish sister chromatid cohesion. The insight gained will not only advance our molecular knowledge of sister chromatid cohesion. It will more generally advance our understanding of the ubiquitous family of chromosomal SMC ATPases, of which cohesin is a member, and their activity of shaping and segregating genomes.
Max ERC Funding
2 120 100 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym CHROMOREP
Project Reconstitution of Chromosome Replication and Epigenetic Inheritance
Researcher (PI) John Diffley
Host Institution (HI) THE FRANCIS CRICK INSTITUTE LIMITED
Call Details Advanced Grant (AdG), LS1, ERC-2014-ADG
Summary A PubMed search for ‘epigenetic’ identifies nearly 35,000 entries, yet the molecular mechanisms by which chromatin modification and gene expression patterns are actually inherited during chromosome replication — mechanisms which lie at the heart of epigenetic inheritance of gene expression — are still largely uncharacterised. Understanding these mechanisms would be greatly aided if we could reconstitute the replication of chromosomes with purified proteins. The past few years have seen great progress in understanding eukaryotic DNA replication through the use of cell-free replication systems and reconstitution of individual steps in replication with purified proteins and naked DNA. We will use these in vitro replication systems together with both established and novel chromatin assembly systems to understand: a) how chromatin influences replication origin choice and timing, b) how nucleosomes on parental chromosomes are disrupted during replication and are distributed to daughter chromatids, and c) how chromatin states and gene expression patterns are re-established after passage of the replication fork. We will begin with simple, defined templates to learn basic principles, and we will use this knowledge to reconstitute genome-wide replication patterns. The experimental plan will exploit our well-characterised yeast systems, and where feasible explore these questions with human proteins. Our work will help explain how epigenetic inheritance works at a molecular level, and will complement work in vivo by many others. It will also underpin our long-term research goals aimed at making functional chromosomes from purified, defined components to understand how DNA replication interacts with gene expression, DNA repair and chromosome segregation.
Summary
A PubMed search for ‘epigenetic’ identifies nearly 35,000 entries, yet the molecular mechanisms by which chromatin modification and gene expression patterns are actually inherited during chromosome replication — mechanisms which lie at the heart of epigenetic inheritance of gene expression — are still largely uncharacterised. Understanding these mechanisms would be greatly aided if we could reconstitute the replication of chromosomes with purified proteins. The past few years have seen great progress in understanding eukaryotic DNA replication through the use of cell-free replication systems and reconstitution of individual steps in replication with purified proteins and naked DNA. We will use these in vitro replication systems together with both established and novel chromatin assembly systems to understand: a) how chromatin influences replication origin choice and timing, b) how nucleosomes on parental chromosomes are disrupted during replication and are distributed to daughter chromatids, and c) how chromatin states and gene expression patterns are re-established after passage of the replication fork. We will begin with simple, defined templates to learn basic principles, and we will use this knowledge to reconstitute genome-wide replication patterns. The experimental plan will exploit our well-characterised yeast systems, and where feasible explore these questions with human proteins. Our work will help explain how epigenetic inheritance works at a molecular level, and will complement work in vivo by many others. It will also underpin our long-term research goals aimed at making functional chromosomes from purified, defined components to understand how DNA replication interacts with gene expression, DNA repair and chromosome segregation.
Max ERC Funding
1 983 019 €
Duration
Start date: 2015-11-01, End date: 2020-10-31
Project acronym CHROMOSOME STABILITY
Project Coordination of DNA replication and DNA repair at single-forks: the role of the Smc5-Smc6 complex in replication fork stalling and resumption
Researcher (PI) Luis Fernando Aragon Alcaide
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Call Details Starting Grant (StG), LS1, ERC-2007-StG
Summary DNA replication represents a dangerous moment in the life of the cell as endogenous and exogenous events challenge genome integrity by interfering with the progression, stability and restart of the replication fork. Failure to protect stalled forks or to process the replication fork appropriately contribute to the pathological mechanisms giving rise to cancer, therefore an understanding of the intricate mechanisms that ensure fork integrity can provide targets for new chemotherapeutic assays. Smc5-Smc6 is a multi-subunit complex with a poorly understood function in DNA replication and repair. One of its subunits, Nse2, is able to promote the addition of a small ubiquitin-like protein modifier (SUMO) to specific target proteins. Recent work has revealed that the Smc5-Smc6 complex is required for the progression of replication forks through damaged DNA and is recruited de novo to forks that undergo collapse. In addition, Smc5-Smc6 mediate repair of DNA breaks by homologous recombination between sister-chromatids. Thus, Smc5-Smc6 is anticipated to promote recombinational repair at stalled/collapsed replication forks. My laboratory proposes to develop molecular techniques to study replication at the level of single replication forks. We will employ these assays to identify and dissect the function of factors involved in replication fork stability and repair. We will place an emphasis on the study of the Smc5-Smc6 complex in these processes because of its potential roles in recombination-dependent fork repair and restart. We also propose to identify novel Nse2 substrates involved in DNA repair using yeast model systems. Specifically, we will address the following points: (1) Development of assays for analysis of factors involved in stabilisation, collapse and re-start of single-forks, (2) Analysis of the roles of Smc5-Smc6 in fork biology using developed techniques, (3) Isolation and functional analysis of novel Nse2 substrates.
Summary
DNA replication represents a dangerous moment in the life of the cell as endogenous and exogenous events challenge genome integrity by interfering with the progression, stability and restart of the replication fork. Failure to protect stalled forks or to process the replication fork appropriately contribute to the pathological mechanisms giving rise to cancer, therefore an understanding of the intricate mechanisms that ensure fork integrity can provide targets for new chemotherapeutic assays. Smc5-Smc6 is a multi-subunit complex with a poorly understood function in DNA replication and repair. One of its subunits, Nse2, is able to promote the addition of a small ubiquitin-like protein modifier (SUMO) to specific target proteins. Recent work has revealed that the Smc5-Smc6 complex is required for the progression of replication forks through damaged DNA and is recruited de novo to forks that undergo collapse. In addition, Smc5-Smc6 mediate repair of DNA breaks by homologous recombination between sister-chromatids. Thus, Smc5-Smc6 is anticipated to promote recombinational repair at stalled/collapsed replication forks. My laboratory proposes to develop molecular techniques to study replication at the level of single replication forks. We will employ these assays to identify and dissect the function of factors involved in replication fork stability and repair. We will place an emphasis on the study of the Smc5-Smc6 complex in these processes because of its potential roles in recombination-dependent fork repair and restart. We also propose to identify novel Nse2 substrates involved in DNA repair using yeast model systems. Specifically, we will address the following points: (1) Development of assays for analysis of factors involved in stabilisation, collapse and re-start of single-forks, (2) Analysis of the roles of Smc5-Smc6 in fork biology using developed techniques, (3) Isolation and functional analysis of novel Nse2 substrates.
Max ERC Funding
893 396 €
Duration
Start date: 2008-09-01, End date: 2013-08-31
Project acronym CilDyn
Project Molecular analysis of the Hedgehog signal transduction complex in the primary cilium
Researcher (PI) Christian Siebold
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Consolidator Grant (CoG), LS1, ERC-2014-CoG
Summary The unexpected connection between the primary cilium and cell-to-cell signalling is one of the most exciting discoveries in cell and developmental biology in the last decade. In particular, the Hedgehog (Hh) pathway relies on the primary cilium to fulfil its fundamental functions in orchestrating vertebrate development. This microtubule-based antenna, up to 5 µm long, protrudes from the plasma membrane of almost every human cell and is the essential compartment for the entire Hh signalling cascade. All its molecular components, from the most upstream transmembrane Hh receptor down to the ultimate transcription factors, are dynamically localised and enriched in the primary cilium. The aim of this proposal, which combines structural biology and live cell imaging, is to understand the function and signalling consequences of the multivalent interactions between Hh signal transducer proteins as well as their spatial and temporal regulation in the primary cilium. The key questions my laboratory will address are: What are the rules for assembly of Hh signal transduction complexes? How dynamic are these complexes in size and organisation? How are these processes linked to the transport and accumulation in the primary cilium?
I will combine state-of-the art structural biology techniques (with an emphasis on X-ray crystallography) to study the molecular architecture of binary and higher-order Hh signal transduction complexes and live cell fluorescence microscopy (for protein localisation and direct protein interactions). These two approaches will allow me to identify and define specific protein-protein interfaces at the atomic level and test their functional consequences in the cell in real time. My goal is to consolidate a world-class morphogen signal transduction laboratory, deciphering fundamental biological insights. Importantly, my results and reagents can potentially feed into the development of novel anti-cancer therapeutics and reagents promoting stem cell therapy.
Summary
The unexpected connection between the primary cilium and cell-to-cell signalling is one of the most exciting discoveries in cell and developmental biology in the last decade. In particular, the Hedgehog (Hh) pathway relies on the primary cilium to fulfil its fundamental functions in orchestrating vertebrate development. This microtubule-based antenna, up to 5 µm long, protrudes from the plasma membrane of almost every human cell and is the essential compartment for the entire Hh signalling cascade. All its molecular components, from the most upstream transmembrane Hh receptor down to the ultimate transcription factors, are dynamically localised and enriched in the primary cilium. The aim of this proposal, which combines structural biology and live cell imaging, is to understand the function and signalling consequences of the multivalent interactions between Hh signal transducer proteins as well as their spatial and temporal regulation in the primary cilium. The key questions my laboratory will address are: What are the rules for assembly of Hh signal transduction complexes? How dynamic are these complexes in size and organisation? How are these processes linked to the transport and accumulation in the primary cilium?
I will combine state-of-the art structural biology techniques (with an emphasis on X-ray crystallography) to study the molecular architecture of binary and higher-order Hh signal transduction complexes and live cell fluorescence microscopy (for protein localisation and direct protein interactions). These two approaches will allow me to identify and define specific protein-protein interfaces at the atomic level and test their functional consequences in the cell in real time. My goal is to consolidate a world-class morphogen signal transduction laboratory, deciphering fundamental biological insights. Importantly, my results and reagents can potentially feed into the development of novel anti-cancer therapeutics and reagents promoting stem cell therapy.
Max ERC Funding
1 727 456 €
Duration
Start date: 2015-08-01, End date: 2020-07-31
Project acronym CIRCOMMUNICATION
Project Deciphering molecular pathways of circadian clock communication
Researcher (PI) gad ASHER
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Consolidator Grant (CoG), LS1, ERC-2017-COG
Summary The overarching objective of this interdisciplinary project is to elucidate mechanisms through which billions of individual clocks in the body communicate with each other and tick in harmony. The mammalian circadian timing system consists of a master clock in the brain and subsidiary oscillators in almost every cell of the body. Since these clocks anticipate environmental changes and function together to orchestrate daily physiology and behavior their temporal synchronization is critical.
Our recent finding that oxygen serves as a resetting cue for circadian clocks points towards the unprecedented involvement of blood gases as time signals. We will apply cutting edge continuous physiological measurements in freely moving animals, alongside biochemical/molecular biology approaches and advanced cell culture setup to determine the molecular role of oxygen, carbon dioxide and pH in circadian clock communication and function.
The intricate nature of the mammalian circadian system demands the presence of communication mechanisms between clocks throughout the body at multiple levels. While previous studies primarily addressed the role of the master clock in resetting peripheral clocks, our knowledge regarding the communication among clocks between and within peripheral organs is rudimentary. We will reconstruct the mammalian circadian system from the bottom up, sequentially restoring clocks in peripheral tissues of a non-rhythmic animal to (i) obtain a system-view of the peripheral circadian communication network; and (ii) study novel tissue-derived circadian communication mechanisms.
This integrative proposal addresses fundamental aspects of circadian biology. It is expected to unravel the circadian communication network and shed light on how billions of clocks in the body function in unison. Its impact extends beyond circadian rhythms and bears great potential for research on communication between cells/tissues in various fields of biology.
Summary
The overarching objective of this interdisciplinary project is to elucidate mechanisms through which billions of individual clocks in the body communicate with each other and tick in harmony. The mammalian circadian timing system consists of a master clock in the brain and subsidiary oscillators in almost every cell of the body. Since these clocks anticipate environmental changes and function together to orchestrate daily physiology and behavior their temporal synchronization is critical.
Our recent finding that oxygen serves as a resetting cue for circadian clocks points towards the unprecedented involvement of blood gases as time signals. We will apply cutting edge continuous physiological measurements in freely moving animals, alongside biochemical/molecular biology approaches and advanced cell culture setup to determine the molecular role of oxygen, carbon dioxide and pH in circadian clock communication and function.
The intricate nature of the mammalian circadian system demands the presence of communication mechanisms between clocks throughout the body at multiple levels. While previous studies primarily addressed the role of the master clock in resetting peripheral clocks, our knowledge regarding the communication among clocks between and within peripheral organs is rudimentary. We will reconstruct the mammalian circadian system from the bottom up, sequentially restoring clocks in peripheral tissues of a non-rhythmic animal to (i) obtain a system-view of the peripheral circadian communication network; and (ii) study novel tissue-derived circadian communication mechanisms.
This integrative proposal addresses fundamental aspects of circadian biology. It is expected to unravel the circadian communication network and shed light on how billions of clocks in the body function in unison. Its impact extends beyond circadian rhythms and bears great potential for research on communication between cells/tissues in various fields of biology.
Max ERC Funding
1 999 945 €
Duration
Start date: 2018-03-01, End date: 2023-02-28
Project acronym CLaSS
Project Climate, Landscape, Settlement and Society: Exploring Human-Environment Interaction in the Ancient Near East
Researcher (PI) Daniel LAWRENCE
Host Institution (HI) UNIVERSITY OF DURHAM
Call Details Starting Grant (StG), SH6, ERC-2018-STG
Summary Over the last 8000 years, the Fertile Crescent of the Near East has seen the emergence of cities, states and empires. Climate fluctuations are generally considered to be a significant factor in these changes because in pre-industrial societies they directly relate to food production and security. In the short term, ‘collapse’ events brought about by extreme weather changes such as droughts have been blamed for declines in population, social complexity and political systems. More broadly, the relationships between environment, settlement and surplus drive most models for the development of urbanism and hierarchical political systems.
Studies seeking to correlate social and climatic changes in the past tend either to focus on highly localised analyses of specific sites and surveys or to take a more synthetic overview at much larger, even continental, scales. The CLaSS project will take a ground breaking hybrid approach using archaeological data science (or ‘big data’) to construct detailed, empirical datasets at unprecedented scales. Archaeological settlement data and archaeobotanical data (plant and tree remains) will be collated for the entire Fertile Crescent and combined with climate simulations derived from General Circulation Models using cutting edge techniques. The resulting datasets will represent the largest of their kind ever compiled, covering the period between 8000BP and 2000BP and an area of 600,000km2.
Collecting data at this scale will enable us to compare population densities and distribution, subsistence practices and landscape management strategies to investigate the question: What factors have allowed for the differential persistence of societies in the face of changing climatic and environmental conditions? This ambitious project will provide insights into the sustainability and resilience of societies through both abrupt and longer term climate changes, leveraging the deep time perspective only available to archaeology.
Summary
Over the last 8000 years, the Fertile Crescent of the Near East has seen the emergence of cities, states and empires. Climate fluctuations are generally considered to be a significant factor in these changes because in pre-industrial societies they directly relate to food production and security. In the short term, ‘collapse’ events brought about by extreme weather changes such as droughts have been blamed for declines in population, social complexity and political systems. More broadly, the relationships between environment, settlement and surplus drive most models for the development of urbanism and hierarchical political systems.
Studies seeking to correlate social and climatic changes in the past tend either to focus on highly localised analyses of specific sites and surveys or to take a more synthetic overview at much larger, even continental, scales. The CLaSS project will take a ground breaking hybrid approach using archaeological data science (or ‘big data’) to construct detailed, empirical datasets at unprecedented scales. Archaeological settlement data and archaeobotanical data (plant and tree remains) will be collated for the entire Fertile Crescent and combined with climate simulations derived from General Circulation Models using cutting edge techniques. The resulting datasets will represent the largest of their kind ever compiled, covering the period between 8000BP and 2000BP and an area of 600,000km2.
Collecting data at this scale will enable us to compare population densities and distribution, subsistence practices and landscape management strategies to investigate the question: What factors have allowed for the differential persistence of societies in the face of changing climatic and environmental conditions? This ambitious project will provide insights into the sustainability and resilience of societies through both abrupt and longer term climate changes, leveraging the deep time perspective only available to archaeology.
Max ERC Funding
1 498 650 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym CLAUSTRUM
Project The Claustrum: A Circuit Hub for Attention
Researcher (PI) Amihai CITRI
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Consolidator Grant (CoG), LS5, ERC-2017-COG
Summary Our senses face a constant barrage of information. Hence, understanding how our brain enables us to attend to relevant stimuli, while ignoring distractions, is of increasing biomedical importance. Recently, I discovered that the claustrum, a multi-sensory hub and recipient of extensive neuromodulatory input, enables resilience to distraction.
In my ERC project, I will explore the mechanisms underlying claustral mediation of resilience to distraction and develop novel approaches for assessing and modulating attention in mice, with implications for humans. Transgenic mouse models that I identified as enabling selective access to claustral neurons overcome its limiting anatomy, making the claustrum accessible to functional investigation. Using this novel genetic access, I obtained preliminary results strongly suggesting that the claustrum functions to filter distractions by adjusting cortical sensory gain.
My specific aims are: 1) To delineate the mechanisms whereby the claustrum achieves sensory gain control, by applying in-vivo cell-attached, multi-unit and fiber photometry recordings from claustral and cortical neurons during attention-demanding tasks. 2) To discriminate between the functions of the claustrum in multi-sensory integration and implementation of attention strategies, by employing multi-sensory behavioral paradigms while modulating claustral function. 3) To develop validated complementary physiological and behavioral protocols for adjusting claustral mediation of attention via neuromodulation.
This study is unique in its focus and aims: it will provide a stringent neurophysiological framework for defining a key mechanism underlying cognitive concepts of attention, and establish a novel platform for studying the function of the claustrum and manipulating its activity. The project is designed to achieve breakthroughs of fundamental nature and potentially lead to diagnostic and therapeutic advances relevant to attention disorders.
Summary
Our senses face a constant barrage of information. Hence, understanding how our brain enables us to attend to relevant stimuli, while ignoring distractions, is of increasing biomedical importance. Recently, I discovered that the claustrum, a multi-sensory hub and recipient of extensive neuromodulatory input, enables resilience to distraction.
In my ERC project, I will explore the mechanisms underlying claustral mediation of resilience to distraction and develop novel approaches for assessing and modulating attention in mice, with implications for humans. Transgenic mouse models that I identified as enabling selective access to claustral neurons overcome its limiting anatomy, making the claustrum accessible to functional investigation. Using this novel genetic access, I obtained preliminary results strongly suggesting that the claustrum functions to filter distractions by adjusting cortical sensory gain.
My specific aims are: 1) To delineate the mechanisms whereby the claustrum achieves sensory gain control, by applying in-vivo cell-attached, multi-unit and fiber photometry recordings from claustral and cortical neurons during attention-demanding tasks. 2) To discriminate between the functions of the claustrum in multi-sensory integration and implementation of attention strategies, by employing multi-sensory behavioral paradigms while modulating claustral function. 3) To develop validated complementary physiological and behavioral protocols for adjusting claustral mediation of attention via neuromodulation.
This study is unique in its focus and aims: it will provide a stringent neurophysiological framework for defining a key mechanism underlying cognitive concepts of attention, and establish a novel platform for studying the function of the claustrum and manipulating its activity. The project is designed to achieve breakthroughs of fundamental nature and potentially lead to diagnostic and therapeutic advances relevant to attention disorders.
Max ERC Funding
1 995 000 €
Duration
Start date: 2018-03-01, End date: 2023-02-28
Project acronym CLCLCL
Project Civil Law, Common Law, Customary Law: Consonance, Divergence and Transformation in Western Europe from the late eleventh to the thirteenth centuries
Researcher (PI) John HUDSON
Host Institution (HI) THE UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS
Call Details Advanced Grant (AdG), SH6, ERC-2016-ADG
Summary A highly significant division in present-day Europe is between two types of legal system: the Continental with foundations in Civil Law (law with an ultimately Roman law basis), and English Common Law. Both trace their continuous history back to the twelfth century. The present project re-evaluates this vital period in legal history, by comparing not just English Common Law and Continental Civil Law (or “Ius commune”), but also the customary laws crucially important in Continental Europe even beyond the twelfth century. Such laws shared many features with English law, and the comparison thus disrupts the simplistic English:Continental distinction. The project first analyses the form, functioning and development of local, national, and supra-national laws. Similarities, differences, and influences will then be examined from perspectives of longer-term European legal development. Proper historical re-examination of the subject is very timely because of current invocation of supposed legal histories, be it Eurosceptic celebration of English Common Law or rhetorical use of Ius commune as precedent for a common European Law.
F. W. Maitland wrote that ‘there is not much “comparative jurisprudence” for those who do not know thoroughly well the things to be compared’. A comparative project requires collaboration – PI, senior researcher, post-doctoral and doctoral researchers, and Advisory Board. It also needs an integrated approach, through carefully selected areas, themes, and sources. The purpose is not just to provide geographical and thematic coverage but to assemble scholars who overcome divisions of approach in legal historiography: between lawyers and historians, between national traditions, between Common Law and Civil Law. The project is thus very significant in developing methods for writing comparative legal history - and legal history and comparative law more widely - in terms of uncovering patterns, constructing narratives, and testing theories of causation.
Summary
A highly significant division in present-day Europe is between two types of legal system: the Continental with foundations in Civil Law (law with an ultimately Roman law basis), and English Common Law. Both trace their continuous history back to the twelfth century. The present project re-evaluates this vital period in legal history, by comparing not just English Common Law and Continental Civil Law (or “Ius commune”), but also the customary laws crucially important in Continental Europe even beyond the twelfth century. Such laws shared many features with English law, and the comparison thus disrupts the simplistic English:Continental distinction. The project first analyses the form, functioning and development of local, national, and supra-national laws. Similarities, differences, and influences will then be examined from perspectives of longer-term European legal development. Proper historical re-examination of the subject is very timely because of current invocation of supposed legal histories, be it Eurosceptic celebration of English Common Law or rhetorical use of Ius commune as precedent for a common European Law.
F. W. Maitland wrote that ‘there is not much “comparative jurisprudence” for those who do not know thoroughly well the things to be compared’. A comparative project requires collaboration – PI, senior researcher, post-doctoral and doctoral researchers, and Advisory Board. It also needs an integrated approach, through carefully selected areas, themes, and sources. The purpose is not just to provide geographical and thematic coverage but to assemble scholars who overcome divisions of approach in legal historiography: between lawyers and historians, between national traditions, between Common Law and Civil Law. The project is thus very significant in developing methods for writing comparative legal history - and legal history and comparative law more widely - in terms of uncovering patterns, constructing narratives, and testing theories of causation.
Max ERC Funding
2 161 502 €
Duration
Start date: 2017-05-01, End date: 2022-04-30
Project acronym CLIP
Project Mapping functional protein-RNA interactions to identify new targets for oligonucleotide-based therapy
Researcher (PI) Jernej Ule
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Starting Grant (StG), LS1, ERC-2007-StG
Summary An important question of modern neurobiology is how neurons regulate synaptic function in response to excitation. In particular, the roles of alternative pre-mRNA splicing and mRNA translation regulation in this response are poorly understood. We will study the RNA-binding proteins (RBPs) that control these post-transcriptional changes using a UV crosslinking-based purification method (CLIP) and ultra-high throughput sequencing. Computational analysis of the resulting data will define the sequence and structural features of RNA motifs recognized by each RBP. Splicing microarrays and translation reporter assays will then allow us to examine the regulatory functions of RBPs and RNA motifs. By integrating the biochemical and functional datasets, we will relate the position of RNA motifs to the activity of bound RBPs, and predict the interactions that act as central nodes in the regulatory network. The physiological role of these core RBP-RNA interactions will then be tested using antisense RNAs. Together, these projects will provide insights to the regulatory mechanisms underlying neuronal activity-dependent changes, and provide new opportunities for future treatments of neurodegenerative disorders.
Summary
An important question of modern neurobiology is how neurons regulate synaptic function in response to excitation. In particular, the roles of alternative pre-mRNA splicing and mRNA translation regulation in this response are poorly understood. We will study the RNA-binding proteins (RBPs) that control these post-transcriptional changes using a UV crosslinking-based purification method (CLIP) and ultra-high throughput sequencing. Computational analysis of the resulting data will define the sequence and structural features of RNA motifs recognized by each RBP. Splicing microarrays and translation reporter assays will then allow us to examine the regulatory functions of RBPs and RNA motifs. By integrating the biochemical and functional datasets, we will relate the position of RNA motifs to the activity of bound RBPs, and predict the interactions that act as central nodes in the regulatory network. The physiological role of these core RBP-RNA interactions will then be tested using antisense RNAs. Together, these projects will provide insights to the regulatory mechanisms underlying neuronal activity-dependent changes, and provide new opportunities for future treatments of neurodegenerative disorders.
Max ERC Funding
900 000 €
Duration
Start date: 2008-09-01, End date: 2013-08-31
Project acronym Clock Mechanics
Project Mechanosensation and the circadian clock: a reciprocal analysis
Researcher (PI) Joerg Albert
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Consolidator Grant (CoG), LS5, ERC-2014-CoG
Summary All forms of life adjust themselves to the daily rhythms of their environments using endogenous oscillators collectively referred to as circadian clocks. Peripheral and central body clocks exist, which both require extrinsic information (e.g. light or temperature changes) to keep in sync with the geophysical cycle (entrainment). In addition, intrinsic cues (e.g. activity levels) have been linked to clock entrainment. Recently, we could show that activation of proprioceptors is sufficient to entrain the central clock of the fruit fly Drosophila melanogaster. Proprioceptors are mechanosensors that monitor the positions, and relative movements, of an animal’s own body parts. The existence of proprioceptive entrainment pathways has significant implications; it implies that an animal’s ‘clock time’ is computed by integrating, and weighting, various external and internal conditions, suggesting the existence of external and internal time.
Using Drosophila, I will investigate the relationship between mechanosensory and circadian systems in a dual, and bidirectional, approach. The project’s first aim is to dissect the neurobiological bases of proprioceptive clock entrainment (i) identifying the specific stimulus requirements for effective entrainment, (ii) determining its mechanosensory pathways and, in a combined computational and experimental strategy, (iii) quantifying the precise contributions of an animal’s activity to its sense of time. The project’s second aim, in turn, is to unravel the roles of the clock, and clock genes, for the function of mechanosensory systems. Previous studies have linked the clock to noise vulnerability in mammalian ears, and clock genes to regeneration in avian ears. Our own preliminary data reveal severe mechanosensory defects in flies mutant for core clock genes. I will use the Drosophila ear as a unifying model to analyse the specific roles of the clock, and clock genes, for the function of mechanotransducer systems.
Summary
All forms of life adjust themselves to the daily rhythms of their environments using endogenous oscillators collectively referred to as circadian clocks. Peripheral and central body clocks exist, which both require extrinsic information (e.g. light or temperature changes) to keep in sync with the geophysical cycle (entrainment). In addition, intrinsic cues (e.g. activity levels) have been linked to clock entrainment. Recently, we could show that activation of proprioceptors is sufficient to entrain the central clock of the fruit fly Drosophila melanogaster. Proprioceptors are mechanosensors that monitor the positions, and relative movements, of an animal’s own body parts. The existence of proprioceptive entrainment pathways has significant implications; it implies that an animal’s ‘clock time’ is computed by integrating, and weighting, various external and internal conditions, suggesting the existence of external and internal time.
Using Drosophila, I will investigate the relationship between mechanosensory and circadian systems in a dual, and bidirectional, approach. The project’s first aim is to dissect the neurobiological bases of proprioceptive clock entrainment (i) identifying the specific stimulus requirements for effective entrainment, (ii) determining its mechanosensory pathways and, in a combined computational and experimental strategy, (iii) quantifying the precise contributions of an animal’s activity to its sense of time. The project’s second aim, in turn, is to unravel the roles of the clock, and clock genes, for the function of mechanosensory systems. Previous studies have linked the clock to noise vulnerability in mammalian ears, and clock genes to regeneration in avian ears. Our own preliminary data reveal severe mechanosensory defects in flies mutant for core clock genes. I will use the Drosophila ear as a unifying model to analyse the specific roles of the clock, and clock genes, for the function of mechanotransducer systems.
Max ERC Funding
1 899 549 €
Duration
Start date: 2015-09-01, End date: 2021-08-31
Project acronym CLUE-BGD
Project Closing the Loop between Understanding and Effective Treatment of the Basal Ganglia and their Disorders
Researcher (PI) Hagai Bergman
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Advanced Grant (AdG), LS5, ERC-2012-ADG_20120314
Summary In this project, the basal ganglia are defined as actor-critic reinforcement learning networks that aim at an optimal tradeoff between the maximization of future cumulative rewards and the minimization of the cost (the reinforcement driven multi objective optimization RDMOO model).
This computational model will be tested by multiple neuron recordings in the major basal ganglia structures of monkeys engaged in a similar behavioral task. We will further validate the RMDOO computational model of the basal ganglia by extending our previous studies of neural activity in the MPTP primate model of Parkinson's disease to a primate model of central serotonin depletion and emotional dysregulation disorders. The findings in the primate model of emotional dysregulation will then be compared to electrophysiological recordings carried out in human patients with treatment-resistant major depression and obsessive compulsive disorder during deep brain stimulation (DBS) procedures. I aim to find neural signatures (e.g., synchronous gamma oscillations in the actor part of the basal ganglia as predicted by the RMDOO model) characterizing these emotional disorders and to use them as triggers for closed loop adaptive DBS. Our working hypothesis holds that, as for the MPTP model of Parkinson's disease, closed loop DBS will lead to greater amelioration of the emotional deficits in serotonin depleted monkeys.
This project incorporates extensive collaborations with a team of neurosurgeons, neurologists, psychiatrists, and computer science/ neural network researchers. If successful, the findings will provide a firm understanding of the computational physiology of the basal ganglia networks and their disorders. Importantly, they will pave the way to better treatment of human patients with severe mental disorders.
Summary
In this project, the basal ganglia are defined as actor-critic reinforcement learning networks that aim at an optimal tradeoff between the maximization of future cumulative rewards and the minimization of the cost (the reinforcement driven multi objective optimization RDMOO model).
This computational model will be tested by multiple neuron recordings in the major basal ganglia structures of monkeys engaged in a similar behavioral task. We will further validate the RMDOO computational model of the basal ganglia by extending our previous studies of neural activity in the MPTP primate model of Parkinson's disease to a primate model of central serotonin depletion and emotional dysregulation disorders. The findings in the primate model of emotional dysregulation will then be compared to electrophysiological recordings carried out in human patients with treatment-resistant major depression and obsessive compulsive disorder during deep brain stimulation (DBS) procedures. I aim to find neural signatures (e.g., synchronous gamma oscillations in the actor part of the basal ganglia as predicted by the RMDOO model) characterizing these emotional disorders and to use them as triggers for closed loop adaptive DBS. Our working hypothesis holds that, as for the MPTP model of Parkinson's disease, closed loop DBS will lead to greater amelioration of the emotional deficits in serotonin depleted monkeys.
This project incorporates extensive collaborations with a team of neurosurgeons, neurologists, psychiatrists, and computer science/ neural network researchers. If successful, the findings will provide a firm understanding of the computational physiology of the basal ganglia networks and their disorders. Importantly, they will pave the way to better treatment of human patients with severe mental disorders.
Max ERC Funding
2 476 922 €
Duration
Start date: 2013-12-01, End date: 2018-11-30
Project acronym COFBMIX
Project Cortical feedback in figure background segregation of odors.
Researcher (PI) Dan ROKNI
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Starting Grant (StG), LS5, ERC-2017-STG
Summary A key question in neuroscience is how information is processed by sensory systems to guide behavior. Most of our knowledge about sensory processing is based on presentation of simple isolated stimuli and recording corresponding neural activity in relevant brain areas. Yet sensory stimuli in real life are never isolated and typically not simple. How the brain processes complex stimuli, simultaneously arising from multiple objects is unknown. Our daily experience (as well as well-controlled experiments) shows that only parts of a complex sensory scene can be perceived - we cannot listen to more than one speaker in a party. Importantly, one can easily choose what is important and should be processed and what can be ignored as background. These observations lead to the prevalent hypothesis that feedback projections from ‘higher’ brain areas to more peripheral sensory areas are involved in processing of complex stimuli. However experimental analysis of signals conveyed by feedback projections in behaving animals is scarce. The nature of these signals and how they relate to behavior is unknown.
Here I propose a cutting edge approach to directly record feedback signals in the olfactory system of behaving mice. We will use chronically implanted electrodes to record the modulation of olfactory bulb (OB) principal neurons by task related context. Additionally, we will record from piriform cortical (PC) neurons that project back to the OB. These will be tagged with channelrhodopsin-2 and identified by light sensitivity. Finally, we will express the spectrally distinct Ca++ indicators GCaMP6 and RCaMP2 in PC neurons and in olfactory sensory neurons, respectively, and use 2-photon microscopy to analyze the spatio-temporal relationship between feedforward and feedback inputs in the OB. This comprehensive approach will provide an explanation of how feedforward and feedback inputs are integrated to process complex stimuli.
Summary
A key question in neuroscience is how information is processed by sensory systems to guide behavior. Most of our knowledge about sensory processing is based on presentation of simple isolated stimuli and recording corresponding neural activity in relevant brain areas. Yet sensory stimuli in real life are never isolated and typically not simple. How the brain processes complex stimuli, simultaneously arising from multiple objects is unknown. Our daily experience (as well as well-controlled experiments) shows that only parts of a complex sensory scene can be perceived - we cannot listen to more than one speaker in a party. Importantly, one can easily choose what is important and should be processed and what can be ignored as background. These observations lead to the prevalent hypothesis that feedback projections from ‘higher’ brain areas to more peripheral sensory areas are involved in processing of complex stimuli. However experimental analysis of signals conveyed by feedback projections in behaving animals is scarce. The nature of these signals and how they relate to behavior is unknown.
Here I propose a cutting edge approach to directly record feedback signals in the olfactory system of behaving mice. We will use chronically implanted electrodes to record the modulation of olfactory bulb (OB) principal neurons by task related context. Additionally, we will record from piriform cortical (PC) neurons that project back to the OB. These will be tagged with channelrhodopsin-2 and identified by light sensitivity. Finally, we will express the spectrally distinct Ca++ indicators GCaMP6 and RCaMP2 in PC neurons and in olfactory sensory neurons, respectively, and use 2-photon microscopy to analyze the spatio-temporal relationship between feedforward and feedback inputs in the OB. This comprehensive approach will provide an explanation of how feedforward and feedback inputs are integrated to process complex stimuli.
Max ERC Funding
1 500 000 €
Duration
Start date: 2018-04-01, End date: 2023-03-31
Project acronym COMMIOS
Project Communities and Connectivities: Iron Age Britons and their Continental Neighbours
Researcher (PI) Ian ARMIT
Host Institution (HI) UNIVERSITY OF LEICESTER
Call Details Advanced Grant (AdG), SH6, ERC-2018-ADG
Summary Recent breakthroughs in ancient DNA and isotope analysis are transforming our understanding of diversity, mobility and social dynamics in the human past. COMMIOS integrates these cutting-edge methods on a scale not previously attempted, within a ground-breaking interdisciplinary framework, to provide a radically new vision of Iron Age communities in Britain (800 BC – AD 100) within their wider European context.
At the broad scale, we will conduct the first concerted programme of genome-wide ancient DNA analysis on Iron Age populations anywhere in the world (c. 1000 individuals in the UK, 250 in Europe), mapping genetic clusters to shed light on ancient populations themselves and on their relationships to modern genetic patterning. Together with isotope analysis, and underpinned by both osteoarchaeological and cultural archaeological approaches, this will also enable us to directly address critical issues of population movement and inter-regional connectivity in Iron Age Europe. We will utilise the power of these new scientific methods to examine the structure and social dynamics of Iron Age societies in Britain, including household and kin-group composition, the identification of familial relationships, gender-specific mobility, and the development of social inequalities. Previously the preserve of cultural anthropologists studying recent societies, we will draw these questions into the archaeological domain, opening up new areas of enquiry for prehistoric societies.
The scope and scale of the project represents a new departure for European archaeology, made possible by the coming-of-age of new analytical methods. Many of these have been pioneered by the project team, which comprises world-leaders in the fields of ancient DNA, isotope analysis, osteoarchaeology, chronological modelling and cultural archaeology. Although focussed on Iron Age Britain, the project will establish a new benchmark for future analyses of other regions and periods in Europe and beyond.
Summary
Recent breakthroughs in ancient DNA and isotope analysis are transforming our understanding of diversity, mobility and social dynamics in the human past. COMMIOS integrates these cutting-edge methods on a scale not previously attempted, within a ground-breaking interdisciplinary framework, to provide a radically new vision of Iron Age communities in Britain (800 BC – AD 100) within their wider European context.
At the broad scale, we will conduct the first concerted programme of genome-wide ancient DNA analysis on Iron Age populations anywhere in the world (c. 1000 individuals in the UK, 250 in Europe), mapping genetic clusters to shed light on ancient populations themselves and on their relationships to modern genetic patterning. Together with isotope analysis, and underpinned by both osteoarchaeological and cultural archaeological approaches, this will also enable us to directly address critical issues of population movement and inter-regional connectivity in Iron Age Europe. We will utilise the power of these new scientific methods to examine the structure and social dynamics of Iron Age societies in Britain, including household and kin-group composition, the identification of familial relationships, gender-specific mobility, and the development of social inequalities. Previously the preserve of cultural anthropologists studying recent societies, we will draw these questions into the archaeological domain, opening up new areas of enquiry for prehistoric societies.
The scope and scale of the project represents a new departure for European archaeology, made possible by the coming-of-age of new analytical methods. Many of these have been pioneered by the project team, which comprises world-leaders in the fields of ancient DNA, isotope analysis, osteoarchaeology, chronological modelling and cultural archaeology. Although focussed on Iron Age Britain, the project will establish a new benchmark for future analyses of other regions and periods in Europe and beyond.
Max ERC Funding
2 499 872 €
Duration
Start date: 2019-10-01, End date: 2024-09-30
Project acronym COMPAG
Project Comparative Pathways to Agriculture: the archaeobotany of parallel and divergent plant domestications across world regions
Researcher (PI) Dorian Fuller
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Advanced Grant (AdG), SH6, ERC-2012-ADG_20120411
Summary The ComPAg research program will produce the first global comparative synthesis of the convergent evolution of domesticated plants and early agricultural systems based primarily on empirical archaeobotanical data. We will produce ground-breaking data on the earliest crop packages across large parts of Eurasia and Africa, comparisons of the nature of early cultivation inferred from associated weed floras, quantified time series data on evolution of domestication traits for over 30 crops, including both primary and secondary domestications. This program will pursue primary archaeobotanical research in East and Southeast Asia, India, and parts of Africa, with synthesis of existing evidence from Southwest Asia and Europe. We aim to achieve a new framework for explaining the multiple routes from foraging to agriculture on a global scale. The origins of agriculture is widely regarded as the most significant ecological and economic change in the history of human populations, constituting the basis of a fundamental demographic transition towards higher and denser human populations. Plant cultivation is common to all instances of food production that supported sedentism, and thus the origins of crop agriculture is a core issue of socioeconomic evolution in long-term human history. This program will pursue cutting edge research to produce a new critical understanding of early agricultural transformations.
Summary
The ComPAg research program will produce the first global comparative synthesis of the convergent evolution of domesticated plants and early agricultural systems based primarily on empirical archaeobotanical data. We will produce ground-breaking data on the earliest crop packages across large parts of Eurasia and Africa, comparisons of the nature of early cultivation inferred from associated weed floras, quantified time series data on evolution of domestication traits for over 30 crops, including both primary and secondary domestications. This program will pursue primary archaeobotanical research in East and Southeast Asia, India, and parts of Africa, with synthesis of existing evidence from Southwest Asia and Europe. We aim to achieve a new framework for explaining the multiple routes from foraging to agriculture on a global scale. The origins of agriculture is widely regarded as the most significant ecological and economic change in the history of human populations, constituting the basis of a fundamental demographic transition towards higher and denser human populations. Plant cultivation is common to all instances of food production that supported sedentism, and thus the origins of crop agriculture is a core issue of socioeconomic evolution in long-term human history. This program will pursue cutting edge research to produce a new critical understanding of early agricultural transformations.
Max ERC Funding
2 041 992 €
Duration
Start date: 2013-06-01, End date: 2018-05-31
Project acronym ComparingCopperbelt
Project Comparing the Copperbelt: Political Culture and Knowledge Production in Central Africa
Researcher (PI) Miles Larmer
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Consolidator Grant (CoG), SH6, ERC-2015-CoG
Summary This project provides the first comparative historical analysis – local, national and transnational - of the Central African copperbelt. This globally strategic mineral region is central to the history of two nation-states (Zambia and Democratic Republic of Congo (DRC)), as well as wider debates about the role of mineral wealth in development. The project has three interrelated and comparative objectives. First, it will examine the copperbelt as a single region divided by a (post-)colonial border, across which flowed minerals, peoples, and ideas about the relationship between them. Political economy created the circumstances in which distinct political cultures of mining communities developed, but this also involved a process of imagination, drawing on ‘modern’ notions such as national development, but also morally framed ideas about the societies and land from which minerals are extracted. The project will explain the relationship between minerals and African polities, economies, societies and ideas. Second, it will analyse how ‘top-down’ knowledge production processes of Anglo-American and Belgian academies shaped understanding of these societies. Explaining how social scientists imagined and constructed copperbelt society will enable a new understanding of the relationship between mining societies and academic knowledge production. Third, it will explore the interaction between these intellectual constructions and the copperbelt’s political culture, exploring the interchange between academic and popular perceptions. This project will investigate the hypothesis that the resultant understanding of this region is the result of a long unequal interaction of definition and determination between western observers and African participants that has only a partial relationship to the reality of mineral extraction, filtered as it has been through successive sedimentations of imagining and representation laid down over nearly a century of urban life in central Africa.
Summary
This project provides the first comparative historical analysis – local, national and transnational - of the Central African copperbelt. This globally strategic mineral region is central to the history of two nation-states (Zambia and Democratic Republic of Congo (DRC)), as well as wider debates about the role of mineral wealth in development. The project has three interrelated and comparative objectives. First, it will examine the copperbelt as a single region divided by a (post-)colonial border, across which flowed minerals, peoples, and ideas about the relationship between them. Political economy created the circumstances in which distinct political cultures of mining communities developed, but this also involved a process of imagination, drawing on ‘modern’ notions such as national development, but also morally framed ideas about the societies and land from which minerals are extracted. The project will explain the relationship between minerals and African polities, economies, societies and ideas. Second, it will analyse how ‘top-down’ knowledge production processes of Anglo-American and Belgian academies shaped understanding of these societies. Explaining how social scientists imagined and constructed copperbelt society will enable a new understanding of the relationship between mining societies and academic knowledge production. Third, it will explore the interaction between these intellectual constructions and the copperbelt’s political culture, exploring the interchange between academic and popular perceptions. This project will investigate the hypothesis that the resultant understanding of this region is the result of a long unequal interaction of definition and determination between western observers and African participants that has only a partial relationship to the reality of mineral extraction, filtered as it has been through successive sedimentations of imagining and representation laid down over nearly a century of urban life in central Africa.
Max ERC Funding
1 599 661 €
Duration
Start date: 2016-07-01, End date: 2020-06-30
Project acronym CONNEC
Project CONNECTED CLERICS. BUILDING A UNIVERSAL CHURCH IN THE LATE ANTIQUE WEST (380-604 CE)
Researcher (PI) David NATAL VILLAZALA
Host Institution (HI) ROYAL HOLLOWAY AND BEDFORD NEW COLLEGE
Call Details Starting Grant (StG), SH6, ERC-2017-STG
Summary In 380 CE, the Emperor Theodosius (d. 395) ordered all Roman subjects to follow Catholic Christianity and limited imperial patronage to the Catholic Church. Theodosius was the last ruler to reign over a united empire. At his death the realm was divided into two halves, and by the end of Gregory the Great’s papacy (d. 604), a mosaic of independent kingdoms had replaced the western part of the empire. Yet despite the political division, during this period western clerics built a supra-regional ecclesiastical structure with substantial levels of hierarchy and cohesion.
Up to the 1950s historians have largely conceived of these ecclesiastical institutions as organizations with widely accepted power. More recent scholarship, however, has revealed the social origin and fallibility of clerical authority. Nonetheless, this move away from the study of institutions has left unanswered the fundamental questions of how a ‘universal’ church was built at a time of political fragmentation, and how the transition from informal mutual aid to more formal hierarchical structures of law- and policy-making came about.
With innovative methods of social inquiry we can offer new answers to these historiographical questions. Our project (CONNEC) will use social network analysis and new institutional theory to trace four processes: how clerical networks adapted to the new secular contexts, how these interactions shaped the development of ecclesiastical law, how clerics constructed and disseminated discourses that supported different structures of the church, and how networks fostered compliance and a sense of accountability among clerics. CONNEC’s use of state-of-the-art methods will be enhanced by the implementation of cutting-edge digital technologies, adapting network analysis software for late antique sources. By bringing together digital tools with qualitative textual analysis, CONNEC will provide a more nuanced understanding of a key process of world history.
Summary
In 380 CE, the Emperor Theodosius (d. 395) ordered all Roman subjects to follow Catholic Christianity and limited imperial patronage to the Catholic Church. Theodosius was the last ruler to reign over a united empire. At his death the realm was divided into two halves, and by the end of Gregory the Great’s papacy (d. 604), a mosaic of independent kingdoms had replaced the western part of the empire. Yet despite the political division, during this period western clerics built a supra-regional ecclesiastical structure with substantial levels of hierarchy and cohesion.
Up to the 1950s historians have largely conceived of these ecclesiastical institutions as organizations with widely accepted power. More recent scholarship, however, has revealed the social origin and fallibility of clerical authority. Nonetheless, this move away from the study of institutions has left unanswered the fundamental questions of how a ‘universal’ church was built at a time of political fragmentation, and how the transition from informal mutual aid to more formal hierarchical structures of law- and policy-making came about.
With innovative methods of social inquiry we can offer new answers to these historiographical questions. Our project (CONNEC) will use social network analysis and new institutional theory to trace four processes: how clerical networks adapted to the new secular contexts, how these interactions shaped the development of ecclesiastical law, how clerics constructed and disseminated discourses that supported different structures of the church, and how networks fostered compliance and a sense of accountability among clerics. CONNEC’s use of state-of-the-art methods will be enhanced by the implementation of cutting-edge digital technologies, adapting network analysis software for late antique sources. By bringing together digital tools with qualitative textual analysis, CONNEC will provide a more nuanced understanding of a key process of world history.
Max ERC Funding
1 465 316 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym CORTEX
Project Computations by Neurons and Populations in Visual Cortex
Researcher (PI) Matteo Carandini
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Advanced Grant (AdG), LS5, ERC-2008-AdG
Summary Neurons in primary visual cortex (area V1) receive feedforward inputs from thalamic afferents and lateral inputs from other cortical neurons. Little is known about how these components interact to determine the responses of a V1 neuron. One camp ascribes most responses to feedforward mechanisms. The other camp ascribes them mostly to lateral interactions. We propose that these two apparently opposed views can be simply reconciled in a single framework. We hypothesize that area V1 can operate both in a feedforward regime and in a lateral interaction regime, depending on the nature of the stimulus and on the cognitive task at hand, and that the transition from one regime to the other is governed by synaptic inhibition. We will test these hypotheses by recording from individual V1 neurons while monitoring the activity of nearby populations of cortical neurons via multiprobe electrodes. In Aim 1 we will relate the activity of V1 neurons to that of nearby populations. We will use simple measures of correlation and nonlinear models that predict individual spikes to measure how responses depend on a feedforward contribution (the receptive field ) and on a lateral contribution (the connection field ). We will test our first hypothesis, concerning the role of the stimulus in changing this dependence. In Aim 2 we will extend these results to a behaving animal. We will record from V1 of mice performing a 2-alternative forced-choice psychophysical task, and we will test our second hypothesis, concerning the role of the cognitive task in determining the operating regime of the cortex. In Aim 3 we will seek a biophysical interpretation of the functional mechanisms and effective connectivity revealed by the previous Aims. We will test our third hypothesis, concerning the role of synaptic inhibition. The tools involved will include intracellular recordings and optical stimulation in transgenic mice whose cortical neurons are sensitive to light.
Summary
Neurons in primary visual cortex (area V1) receive feedforward inputs from thalamic afferents and lateral inputs from other cortical neurons. Little is known about how these components interact to determine the responses of a V1 neuron. One camp ascribes most responses to feedforward mechanisms. The other camp ascribes them mostly to lateral interactions. We propose that these two apparently opposed views can be simply reconciled in a single framework. We hypothesize that area V1 can operate both in a feedforward regime and in a lateral interaction regime, depending on the nature of the stimulus and on the cognitive task at hand, and that the transition from one regime to the other is governed by synaptic inhibition. We will test these hypotheses by recording from individual V1 neurons while monitoring the activity of nearby populations of cortical neurons via multiprobe electrodes. In Aim 1 we will relate the activity of V1 neurons to that of nearby populations. We will use simple measures of correlation and nonlinear models that predict individual spikes to measure how responses depend on a feedforward contribution (the receptive field ) and on a lateral contribution (the connection field ). We will test our first hypothesis, concerning the role of the stimulus in changing this dependence. In Aim 2 we will extend these results to a behaving animal. We will record from V1 of mice performing a 2-alternative forced-choice psychophysical task, and we will test our second hypothesis, concerning the role of the cognitive task in determining the operating regime of the cortex. In Aim 3 we will seek a biophysical interpretation of the functional mechanisms and effective connectivity revealed by the previous Aims. We will test our third hypothesis, concerning the role of synaptic inhibition. The tools involved will include intracellular recordings and optical stimulation in transgenic mice whose cortical neurons are sensitive to light.
Max ERC Funding
2 499 921 €
Duration
Start date: 2009-04-01, End date: 2014-03-31
Project acronym CORTICAL ASSEMBLY
Project Excitatory and inhibitory cell assemblies
in the cerebral cortex
Researcher (PI) Oscar Marin Parra
Host Institution (HI) KING'S COLLEGE LONDON
Call Details Advanced Grant (AdG), LS5, ERC-2011-ADG_20110310
Summary The neural assembly underlying the formation of functional networks in the cerebral cortex is conceivably the most complex biological system that exists. Much of this complexity arises during development through the interaction of dozens of different neuronal populations, which belong to two general classes: excitatory glutamatergic pyramidal cells and inhibitory gamma-aminobutyric containing (GABAergic) interneurons. Perhaps the most fascinating aspect of the assembly of cortical circuits is that pyramidal cells and interneurons are generated in distant germinal zones. Pyramidal cells are born locally from progenitors located in the cortical anlage, while interneurons derive from progenitors in the embryonic subpallium. Much progress has been made recently in understanding the molecular mechanisms that regulate the migration of interneurons towards the cortex, but how interneurons find their appropriate partners to build cortical networks with balanced excitation and inhibition remains an enigma.
The general goal of this project is to identify the mechanisms controlling the precise allocation of different classes of interneurons into specific layers of the cortex, where they assemble into neural circuits. We also aim to determine how the allocation of interneurons into specific cortical layers influences their function. This project is now possible due to the unique combination of our detailed know-how on the early development of cortical interneurons, including a variety of genetically modified mice available to us, and the application of new technologies to specifically target synchronically generated populations of interneurons. Our multidisciplinary approach, combining mouse genetics, in vivo functional genomics and electrophysiological methodologies represents a technological breakthrough that should accelerate our understanding of the general principles guiding the assembly of neuronal circuits in the cerebral cortex.
Summary
The neural assembly underlying the formation of functional networks in the cerebral cortex is conceivably the most complex biological system that exists. Much of this complexity arises during development through the interaction of dozens of different neuronal populations, which belong to two general classes: excitatory glutamatergic pyramidal cells and inhibitory gamma-aminobutyric containing (GABAergic) interneurons. Perhaps the most fascinating aspect of the assembly of cortical circuits is that pyramidal cells and interneurons are generated in distant germinal zones. Pyramidal cells are born locally from progenitors located in the cortical anlage, while interneurons derive from progenitors in the embryonic subpallium. Much progress has been made recently in understanding the molecular mechanisms that regulate the migration of interneurons towards the cortex, but how interneurons find their appropriate partners to build cortical networks with balanced excitation and inhibition remains an enigma.
The general goal of this project is to identify the mechanisms controlling the precise allocation of different classes of interneurons into specific layers of the cortex, where they assemble into neural circuits. We also aim to determine how the allocation of interneurons into specific cortical layers influences their function. This project is now possible due to the unique combination of our detailed know-how on the early development of cortical interneurons, including a variety of genetically modified mice available to us, and the application of new technologies to specifically target synchronically generated populations of interneurons. Our multidisciplinary approach, combining mouse genetics, in vivo functional genomics and electrophysiological methodologies represents a technological breakthrough that should accelerate our understanding of the general principles guiding the assembly of neuronal circuits in the cerebral cortex.
Max ERC Funding
2 493 481 €
Duration
Start date: 2012-04-01, End date: 2017-09-30
Project acronym COS
Project "The Cult of Saints: a christendom-wide study of its origins, spread and development"
Researcher (PI) Bryan Ward-Perkins
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Advanced Grant (AdG), SH6, ERC-2013-ADG
Summary "An investigation of the origins and development of a central feature of late-antique, medieval and modern culture: the belief that dead saints can act as mediators between a distant God and humankind, and that they are active on earth in many different ways (such as healing the sick, punishing the irreverent, or even controlling the weather).
The project will investigate the emergence of this belief by systematically collecting all the available evidence - across several academic disciplines and six linguistic cultures (Latin, Greek, Syriac, Coptic, Armenian and Georgian), from the first stirrings of the phenomenon in the third century until around the year 700, by which time the cult of saints was fully developed and firmly rooted throughout the Christian world, from Ireland to Iran.
The work will be done by a team of researchers (under expert supervision for four of the eastern languages), closely co-ordinated by the PI. The project will operate concurrently at two levels. The individual researchers will produce free-standing regional studies on aspects of the cult of saints that are essential to the wider project, but at present under-researched. While doing this, they will collect the full range of evidence from their regions within a single searchable database. This will provide the basis for a christendom-wide monograph on the emergence of the cult of saints authored by the PI, and also the context essential to give breadth and depth to the regional studies.
For the first time it will be possible to tell the history of the emergence of the cult of saints across the full geographical and cultural range of early Christendom. Of great importance in itself, this will also link, and thereby enhance, the many pre-existing works of scholarship on aspects of the cult of saints.
The ‘Cult of Saints’ will result in a major summative monograph, a comprehensive international conference, a series of ground-breaking regional studies, and a freely-available database."
Summary
"An investigation of the origins and development of a central feature of late-antique, medieval and modern culture: the belief that dead saints can act as mediators between a distant God and humankind, and that they are active on earth in many different ways (such as healing the sick, punishing the irreverent, or even controlling the weather).
The project will investigate the emergence of this belief by systematically collecting all the available evidence - across several academic disciplines and six linguistic cultures (Latin, Greek, Syriac, Coptic, Armenian and Georgian), from the first stirrings of the phenomenon in the third century until around the year 700, by which time the cult of saints was fully developed and firmly rooted throughout the Christian world, from Ireland to Iran.
The work will be done by a team of researchers (under expert supervision for four of the eastern languages), closely co-ordinated by the PI. The project will operate concurrently at two levels. The individual researchers will produce free-standing regional studies on aspects of the cult of saints that are essential to the wider project, but at present under-researched. While doing this, they will collect the full range of evidence from their regions within a single searchable database. This will provide the basis for a christendom-wide monograph on the emergence of the cult of saints authored by the PI, and also the context essential to give breadth and depth to the regional studies.
For the first time it will be possible to tell the history of the emergence of the cult of saints across the full geographical and cultural range of early Christendom. Of great importance in itself, this will also link, and thereby enhance, the many pre-existing works of scholarship on aspects of the cult of saints.
The ‘Cult of Saints’ will result in a major summative monograph, a comprehensive international conference, a series of ground-breaking regional studies, and a freely-available database."
Max ERC Funding
2 499 240 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym COSMIC
Project Complex Synthetic Mimics of the Cell Membrane
Researcher (PI) Mark Ian Wallace
Host Institution (HI) KING'S COLLEGE LONDON
Call Details Starting Grant (StG), LS1, ERC-2012-StG_20111109
Summary I propose to bridge the gap between simple in vitro measurements of biological processes, and the complexities of the cellular environment. This requires reduced in vitro systems that are sufficiently complex to reproduce the subtleties of the in vivo biological phenomenon, but sufficiently controllable to test how quantitative changes in a particular property affects function. The challenge is to step beyond the most simple and straightforward in vitro mimics of the cell membrane, and create model systems that more closely reproduce the conditions in vivo.
I propose to tackle two specific, but interrelated membrane phenomena, that are currently not captured in artificial bilayers and create new complex mimics of the cell membrane capable of tackling these systems; namely (1) protein crowding and the cytoskeleton, and (2) lateral forces and membrane curvature. Testing our synthetic mimics with models that we understand in vivo is vital. This benchmarking will ensure that the mimics we create are relevant and will help ensure the more ambitious later goals of the this proposal are successful.We will then take these tools to go on and aim to create a synthetic mimic of the bacterial membrane.
However we are not limited to creating purely natural duplicates, and we can exploit a much wider range of building material than nature. In addition to creating complex mimics, we will also create totally new synthetic systems inspired by the properties of the cell membrane, but possessing unique properties.
Summary
I propose to bridge the gap between simple in vitro measurements of biological processes, and the complexities of the cellular environment. This requires reduced in vitro systems that are sufficiently complex to reproduce the subtleties of the in vivo biological phenomenon, but sufficiently controllable to test how quantitative changes in a particular property affects function. The challenge is to step beyond the most simple and straightforward in vitro mimics of the cell membrane, and create model systems that more closely reproduce the conditions in vivo.
I propose to tackle two specific, but interrelated membrane phenomena, that are currently not captured in artificial bilayers and create new complex mimics of the cell membrane capable of tackling these systems; namely (1) protein crowding and the cytoskeleton, and (2) lateral forces and membrane curvature. Testing our synthetic mimics with models that we understand in vivo is vital. This benchmarking will ensure that the mimics we create are relevant and will help ensure the more ambitious later goals of the this proposal are successful.We will then take these tools to go on and aim to create a synthetic mimic of the bacterial membrane.
However we are not limited to creating purely natural duplicates, and we can exploit a much wider range of building material than nature. In addition to creating complex mimics, we will also create totally new synthetic systems inspired by the properties of the cell membrane, but possessing unique properties.
Max ERC Funding
1 498 523 €
Duration
Start date: 2013-02-01, End date: 2018-10-31
Project acronym COTCA
Project Cultures of Occupation in Twentieth-century Asia
Researcher (PI) Jeremy Edmund Taylor
Host Institution (HI) THE UNIVERSITY OF NOTTINGHAM
Call Details Consolidator Grant (CoG), SH6, ERC-2015-CoG
Summary How has foreign occupation shaped culture? What has been the lasting cultural legacy of foreign occupation in those societies where it represented the usual state of affairs for much of the modern era? These are key questions which, in light of ongoing cases of occupation around the world, remain crucial in the 21st century. Cultures of Occupation in Twentieth-century Asia (COTCA) will answer these questions by analysing how occupation―be it under colonial, wartime or Cold War powers―gave rise to unique visual, auditory and spatial regimes in East and Southeast Asia. The core objective of this important project is to produce a paradigm shift in the study of occupation, and to challenge the 'collaboration'/'resistance' dichotomy which has defined the field thus far. It will adopt a transnational, intertextual and comparative approach to the study of cultural expression produced under occupation from the 1930s to the 1970s. It will also break new methodological ground by drawing on and contributing to recent developments in visual, auditory and spatial history as a means of highlighting intersections and cultural convergences across different types of occupation. By doing so, COTCA will, for the first time, determine what occupation looked, sounded and felt like in twentieth-century Asia. The COTCA team will consist of the PI, 2 postdoctoral researchers and 3 PhD students, and will run along 3 streams: (i) Representations of occupation; (ii) sounds of occupation; and (iii) spaces of occupation. Case studies based on hitherto rarely examined examples will be undertaken in each stream. These include: A visual history of Japanese-occupied China; soundscapes of the US naval bases in the Philippines; and, spaces of occupation in late-colonial Malaya. COTCA will also build a Digital Archive which will enable researchers to trace the development of narratives, tropes and motifs common to 'occupation' cultural expression in Asia across national and temporal borders.
Summary
How has foreign occupation shaped culture? What has been the lasting cultural legacy of foreign occupation in those societies where it represented the usual state of affairs for much of the modern era? These are key questions which, in light of ongoing cases of occupation around the world, remain crucial in the 21st century. Cultures of Occupation in Twentieth-century Asia (COTCA) will answer these questions by analysing how occupation―be it under colonial, wartime or Cold War powers―gave rise to unique visual, auditory and spatial regimes in East and Southeast Asia. The core objective of this important project is to produce a paradigm shift in the study of occupation, and to challenge the 'collaboration'/'resistance' dichotomy which has defined the field thus far. It will adopt a transnational, intertextual and comparative approach to the study of cultural expression produced under occupation from the 1930s to the 1970s. It will also break new methodological ground by drawing on and contributing to recent developments in visual, auditory and spatial history as a means of highlighting intersections and cultural convergences across different types of occupation. By doing so, COTCA will, for the first time, determine what occupation looked, sounded and felt like in twentieth-century Asia. The COTCA team will consist of the PI, 2 postdoctoral researchers and 3 PhD students, and will run along 3 streams: (i) Representations of occupation; (ii) sounds of occupation; and (iii) spaces of occupation. Case studies based on hitherto rarely examined examples will be undertaken in each stream. These include: A visual history of Japanese-occupied China; soundscapes of the US naval bases in the Philippines; and, spaces of occupation in late-colonial Malaya. COTCA will also build a Digital Archive which will enable researchers to trace the development of narratives, tropes and motifs common to 'occupation' cultural expression in Asia across national and temporal borders.
Max ERC Funding
1 885 268 €
Duration
Start date: 2016-07-01, End date: 2021-06-30
Project acronym CRIPTON
Project Role of ncRNAs in Chromatin and Transcription
Researcher (PI) Tony Kouzarides
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Advanced Grant (AdG), LS1, ERC-2010-AdG_20100317
Summary The human genome is highly transcribed, with over 90% of sequences contributing to the production of RNA. The function of the vast majority of these RNAs is unknown. Evidence over many years has revealed that transcription factors and chromatin regulators are associated with a variety of non-coding (nc)RNAs, but their function remains largely unknown. There are a few cases where a role has been ascribed for ncRNAs in transcription, but no clear mechanistic insight has been defined yet. We predict that many of the newly identified ncRNAs emanating from the genome will play a role in transcriptional processes. We intend to identify and characterise such ncRNAs. This will take place in two phases. In the first phase we will use biochemical approaches to identify ncRNAs involved in the regulation of chromatin and transcription. Our investigations will focus on proteins leading to the induction of pluripotency and oncogenesis. ncRNAs associated with such proteins will be identified using targeted screens. In the second phase, the importance of these RNAs in determining pluripotency and oncogenesis will be analysed. In addition, a variety of molecular approaches will be used to investigate the mechanism by which these ncRNAs regulate the function of the proteins or complexes they associate with. One particular hypothesis we will explore is that such ncRNAs play a role in guiding proteins to DNA sequences, via the formation of RNA/DNA triplexes. This concerted and focused analysis will provide mechanistic insights into the functions of ncRNAs in transcriptional regulation and validate their role in key biological processes. The identification of such new ncRNA-regulated pathways may open up new avenues for therapeutic intervention.
Summary
The human genome is highly transcribed, with over 90% of sequences contributing to the production of RNA. The function of the vast majority of these RNAs is unknown. Evidence over many years has revealed that transcription factors and chromatin regulators are associated with a variety of non-coding (nc)RNAs, but their function remains largely unknown. There are a few cases where a role has been ascribed for ncRNAs in transcription, but no clear mechanistic insight has been defined yet. We predict that many of the newly identified ncRNAs emanating from the genome will play a role in transcriptional processes. We intend to identify and characterise such ncRNAs. This will take place in two phases. In the first phase we will use biochemical approaches to identify ncRNAs involved in the regulation of chromatin and transcription. Our investigations will focus on proteins leading to the induction of pluripotency and oncogenesis. ncRNAs associated with such proteins will be identified using targeted screens. In the second phase, the importance of these RNAs in determining pluripotency and oncogenesis will be analysed. In addition, a variety of molecular approaches will be used to investigate the mechanism by which these ncRNAs regulate the function of the proteins or complexes they associate with. One particular hypothesis we will explore is that such ncRNAs play a role in guiding proteins to DNA sequences, via the formation of RNA/DNA triplexes. This concerted and focused analysis will provide mechanistic insights into the functions of ncRNAs in transcriptional regulation and validate their role in key biological processes. The identification of such new ncRNA-regulated pathways may open up new avenues for therapeutic intervention.
Max ERC Funding
2 141 470 €
Duration
Start date: 2011-05-01, End date: 2017-04-30
Project acronym CROSSROADS
Project Crossroads of empires: archaeology, material culture and socio-political relationships in West Africa
Researcher (PI) Anne Claire Haour
Host Institution (HI) UNIVERSITY OF EAST ANGLIA
Call Details Starting Grant (StG), SH6, ERC-2010-StG_20091209
Summary Knowledge of the last 1000 years in the West African Sahel comes largely from historical sources, which say that many regions were ruled by vast polities.
The aim of my archaeological project is to seize how, in fact, lhe 'empires' of this region structured the landscape, and the movemenl of peoples, ideas, and
things, with a focus on the period AD 1200-1850. Is 'empire' really a useful term? I will confront historical evidence with archaeological data from one area at
the intersection of several polities: the dallols in Niger. This area is rich in remains, said to result from population movements and processes of religious and
political change, but these remains have been only briefly described so far. As this region is a key area of migrations and cross-influences, it is the ideal
'laboratory' for exploring the materialisation of contacts and boundaries, through a mapping of material culture distributions.
My project will approach these sites holistically, carrying out archaeological regional survey and prospection. Excavation will indicate chronology and cultural
affiliation. At lhe same time, I will take an interdisciplinary approach, using anthropological and oral-historical enquiries to obtain background information to
test hypotheses generated by the archaeological data. Enquiries will assess how material culture can show group belonging and population shifts, and
examine the role of individuals called 'technical specialists'. This will help solve the current impasse in our understanding of vast empires which, though they
are historically known, remain poorly understood.
My project will not just improve our knowledge of an almost-unknown part of the world, but thanks to its geographical location, interdisciplinary nature and
strong thematic framework, open up avenues of thinking about the relalion between archaeological and historical data, the mediation of relations through
artefacts, and the archaeology of empires, all widely-relevant research issues
Summary
Knowledge of the last 1000 years in the West African Sahel comes largely from historical sources, which say that many regions were ruled by vast polities.
The aim of my archaeological project is to seize how, in fact, lhe 'empires' of this region structured the landscape, and the movemenl of peoples, ideas, and
things, with a focus on the period AD 1200-1850. Is 'empire' really a useful term? I will confront historical evidence with archaeological data from one area at
the intersection of several polities: the dallols in Niger. This area is rich in remains, said to result from population movements and processes of religious and
political change, but these remains have been only briefly described so far. As this region is a key area of migrations and cross-influences, it is the ideal
'laboratory' for exploring the materialisation of contacts and boundaries, through a mapping of material culture distributions.
My project will approach these sites holistically, carrying out archaeological regional survey and prospection. Excavation will indicate chronology and cultural
affiliation. At lhe same time, I will take an interdisciplinary approach, using anthropological and oral-historical enquiries to obtain background information to
test hypotheses generated by the archaeological data. Enquiries will assess how material culture can show group belonging and population shifts, and
examine the role of individuals called 'technical specialists'. This will help solve the current impasse in our understanding of vast empires which, though they
are historically known, remain poorly understood.
My project will not just improve our knowledge of an almost-unknown part of the world, but thanks to its geographical location, interdisciplinary nature and
strong thematic framework, open up avenues of thinking about the relalion between archaeological and historical data, the mediation of relations through
artefacts, and the archaeology of empires, all widely-relevant research issues
Max ERC Funding
893 161 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym CRYOREP
Project Chromosome Replication Visualised by Cryo-EM
Researcher (PI) Alessandro COSTA
Host Institution (HI) THE FRANCIS CRICK INSTITUTE LIMITED
Call Details Consolidator Grant (CoG), LS1, ERC-2018-COG
Summary In eukaryotic cells, DNA replication is tightly regulated to ensure that the genome is duplicated only once per cell cycle. Errors in the control mechanisms that regulate chromosome ploidy cause genomic instability, which is linked to the development of cellular abnormalities, genetic disease and the onset of cancer. Recent reconstitution experiments performed with purified proteins revealed that initiation of eukaryotic genome duplication requires three distinct steps. First, DNA replication start sites are identified and targeted for the loading of an inactive MCM helicase motor, which encircles the double helix. Second, MCM activators are recruited, causing duplex-DNA untwisting. Third, upon interaction with a firing factor, the MCM ring opens to eject one DNA strand, leading to unwinding of the replication fork and duplication by dedicated replicative polymerases. These three events are not understood at a molecular level. Structural investigations so far aimed at imaging artificially isolated replication steps and used simplified templates, such as linear duplex DNA to study helicase loading or pre-formed forks to understand unwinding. However, the natural substrate of the eukaryotic replication machinery is not DNA but rather chromatin, formed of nucleosome arrays that compact the genome. Chromatin plays important regulatory roles in all steps of DNA replication, by dictating origin start-site selection and stimulating replication fork progression. Only by studying chromatin replication, we argue, will we understand the molecular basis of genome propagation. To this end, we have developed new protocols to perform visual biochemistry experiments under the cryo-electron microscope, to image chromatin duplication at high resolution, frozen as it is being catalysed. Using these strategies we want to generate a molecular movie of the entire replication reaction. Our achievements will change the way we think about genome stability in eukaryotic cells.
Summary
In eukaryotic cells, DNA replication is tightly regulated to ensure that the genome is duplicated only once per cell cycle. Errors in the control mechanisms that regulate chromosome ploidy cause genomic instability, which is linked to the development of cellular abnormalities, genetic disease and the onset of cancer. Recent reconstitution experiments performed with purified proteins revealed that initiation of eukaryotic genome duplication requires three distinct steps. First, DNA replication start sites are identified and targeted for the loading of an inactive MCM helicase motor, which encircles the double helix. Second, MCM activators are recruited, causing duplex-DNA untwisting. Third, upon interaction with a firing factor, the MCM ring opens to eject one DNA strand, leading to unwinding of the replication fork and duplication by dedicated replicative polymerases. These three events are not understood at a molecular level. Structural investigations so far aimed at imaging artificially isolated replication steps and used simplified templates, such as linear duplex DNA to study helicase loading or pre-formed forks to understand unwinding. However, the natural substrate of the eukaryotic replication machinery is not DNA but rather chromatin, formed of nucleosome arrays that compact the genome. Chromatin plays important regulatory roles in all steps of DNA replication, by dictating origin start-site selection and stimulating replication fork progression. Only by studying chromatin replication, we argue, will we understand the molecular basis of genome propagation. To this end, we have developed new protocols to perform visual biochemistry experiments under the cryo-electron microscope, to image chromatin duplication at high resolution, frozen as it is being catalysed. Using these strategies we want to generate a molecular movie of the entire replication reaction. Our achievements will change the way we think about genome stability in eukaryotic cells.
Max ERC Funding
2 000 000 €
Duration
Start date: 2019-03-01, End date: 2024-02-29
Project acronym DDRREAM
Project DNA-Damage responses: Regulation and mechanisms
Researcher (PI) Stephen Philip Jackson
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Advanced Grant (AdG), LS1, ERC-2010-AdG_20100317
Summary The prime objective for every life form is to deliver its genetic material, intact, to the next generation. Each human cell receives tens-of-thousands of DNA lesions per day. These lesions can block genome replication and transcription, and if not repaired or repaired incorrectly, they lead to mutations or wider genome aberrations that threaten cell viability. To counter such threats, life has evolved the DNA-damage response (DDR), to detect DNA damage, signal its presence and mediate its repair. DDR events impact on many cellular processes and, crucially, prevent diverse human diseases that include cancer, neurodegenerative diseases, immune-deficiencies and premature ageing. While much progress has been made in identifying DDR proteins, much remains to be learned about the molecular and cellular functions that they control. Furthermore, the frequent reporting of new DDR proteins in the literature suggests that many others await identification. The main goals for the proposed research are to: identify important new DDR-proteins and DDR-modulators, particularly those responding to DNA double-strand breaks (DSBs); provide mechanistic insights into how these proteins function; and determine how DDR events are affected by chromatin structure, by molecular chaperones and components of the Ubiquitin and Sumo systems. To achieve these ends, we will use molecular biology, biochemical, cell-biology and molecular genetics approaches, including synthetic-lethal and phenotypic-suppression screening methods in human cells and in the nematode worm. This work will not only be of academic importance, but will also indicate how DDR dysfunction can cause human disease and how such diseases might be better diagnosed and treated.
Summary
The prime objective for every life form is to deliver its genetic material, intact, to the next generation. Each human cell receives tens-of-thousands of DNA lesions per day. These lesions can block genome replication and transcription, and if not repaired or repaired incorrectly, they lead to mutations or wider genome aberrations that threaten cell viability. To counter such threats, life has evolved the DNA-damage response (DDR), to detect DNA damage, signal its presence and mediate its repair. DDR events impact on many cellular processes and, crucially, prevent diverse human diseases that include cancer, neurodegenerative diseases, immune-deficiencies and premature ageing. While much progress has been made in identifying DDR proteins, much remains to be learned about the molecular and cellular functions that they control. Furthermore, the frequent reporting of new DDR proteins in the literature suggests that many others await identification. The main goals for the proposed research are to: identify important new DDR-proteins and DDR-modulators, particularly those responding to DNA double-strand breaks (DSBs); provide mechanistic insights into how these proteins function; and determine how DDR events are affected by chromatin structure, by molecular chaperones and components of the Ubiquitin and Sumo systems. To achieve these ends, we will use molecular biology, biochemical, cell-biology and molecular genetics approaches, including synthetic-lethal and phenotypic-suppression screening methods in human cells and in the nematode worm. This work will not only be of academic importance, but will also indicate how DDR dysfunction can cause human disease and how such diseases might be better diagnosed and treated.
Max ERC Funding
2 482 492 €
Duration
Start date: 2011-05-01, End date: 2016-04-30
Project acronym DEADSEA_ECO
Project Modelling Anthropocene Trophic Cascades of the Judean Desert Ecosystem: A Hidden Dimension in the History of Human-Environment Interactions
Researcher (PI) Nimrod MAROM
Host Institution (HI) UNIVERSITY OF HAIFA
Call Details Starting Grant (StG), SH6, ERC-2018-STG
Summary This project aims to explore the effects of human settlement intensity on desert ecological community structure, focusing on the hitherto unstudied phenomenon of trophic cascades in antiquity. Its key research question is whether human-induced changes in arid land biodiversity can feedback to affect natural resources important for human subsistence, such as pasture and wood. The role of such feedback effects in ecological systems is increasingly acknowledged in recent years in the biological literature but has not been addressed in the study of human past. The research question will be approached using bioarchaeological methods applied to the uniquely-preserved material record from the middle and late Holocene settlement sequence (approximately 4,500 BCE to 700 CE) of the Dead Sea Ein Gedi Oasis, and to the contemporary palaeontological assemblages from caves located in the surrounding Judean Desert. The proposed research is expected to bridge between aspects of current thinking on ecosystem dynamics and the study of human past by exploring the role of trophic cascades as an invisible dimension of Anthropocene life in marginal environments. The study of the history of human impact on such environments is important to resource management planning across a rapidly expanding ecological frontier on Earth, as climate deterioration brings more people in contact with life-sustaining and sensitive arid land ecosystems.
Summary
This project aims to explore the effects of human settlement intensity on desert ecological community structure, focusing on the hitherto unstudied phenomenon of trophic cascades in antiquity. Its key research question is whether human-induced changes in arid land biodiversity can feedback to affect natural resources important for human subsistence, such as pasture and wood. The role of such feedback effects in ecological systems is increasingly acknowledged in recent years in the biological literature but has not been addressed in the study of human past. The research question will be approached using bioarchaeological methods applied to the uniquely-preserved material record from the middle and late Holocene settlement sequence (approximately 4,500 BCE to 700 CE) of the Dead Sea Ein Gedi Oasis, and to the contemporary palaeontological assemblages from caves located in the surrounding Judean Desert. The proposed research is expected to bridge between aspects of current thinking on ecosystem dynamics and the study of human past by exploring the role of trophic cascades as an invisible dimension of Anthropocene life in marginal environments. The study of the history of human impact on such environments is important to resource management planning across a rapidly expanding ecological frontier on Earth, as climate deterioration brings more people in contact with life-sustaining and sensitive arid land ecosystems.
Max ERC Funding
1 499 563 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym DEHALORES
Project Breathing chlorinated compounds: unravelling the biochemistry underpinning (de)halorespiration, an exciting bacterial metabolism with significant bioremediation potential
Researcher (PI) David Leys
Host Institution (HI) THE UNIVERSITY OF MANCHESTER
Call Details Starting Grant (StG), LS1, ERC-2007-StG
Summary Bacterial dehalorespiration is a microbial respiratory process in which halogenated hydrocarbons, from natural or anthropogenic origin, act as terminal electron acceptors. This leads to effective dehalogenation of these compounds, and as such their degradation and detoxification. The bacterial species, their enzymes and other components responsible for this unusual metabolism have only recently been identified. Unlocking the full potential of this process for bioremediation of persistent organohalides, such as polychlorinated biphenyls (PCBs) and tetrachloroethene, requires detailed understanding of the underpinning biochemistry. However, the regulation, mechanism and structure of the reductive dehalogenase (the enzyme responsible for delivering electrons to the halogenated substrates) are poorly understood. This ambitious proposal seeks to study representatives of the distinct reductive dehalogenase classes as well as key elements of the associated regulatory systems. Our group has been at the forefront of studying the biochemistry underpinning transcriptional regulation of dehalorespiration, providing detailed insights in the protein CprK at the atomic level. However, it is now apparent that only a subset of dehalogenases are regulated by CprK homologues with little known about the other regulators. In addition, studies on the reductive dehalogenases have been hampered by the inability to purify sufficient quantities. Using an interdisciplinary, biophysical approach focused around X-ray crystallography, enzymology and molecular biology, combined with novel reductive dehalogenase production methods, we aim to provide a detailed understanding and identification of the structural elements crucial to reductive dehalogenase mechanism and regulation. At the same time, we aim to apply the knowledge gathered and study the feasibility of generating improved dehalorespiratory components for biosensing or bioremediation applications through laboratory assisted evolution.
Summary
Bacterial dehalorespiration is a microbial respiratory process in which halogenated hydrocarbons, from natural or anthropogenic origin, act as terminal electron acceptors. This leads to effective dehalogenation of these compounds, and as such their degradation and detoxification. The bacterial species, their enzymes and other components responsible for this unusual metabolism have only recently been identified. Unlocking the full potential of this process for bioremediation of persistent organohalides, such as polychlorinated biphenyls (PCBs) and tetrachloroethene, requires detailed understanding of the underpinning biochemistry. However, the regulation, mechanism and structure of the reductive dehalogenase (the enzyme responsible for delivering electrons to the halogenated substrates) are poorly understood. This ambitious proposal seeks to study representatives of the distinct reductive dehalogenase classes as well as key elements of the associated regulatory systems. Our group has been at the forefront of studying the biochemistry underpinning transcriptional regulation of dehalorespiration, providing detailed insights in the protein CprK at the atomic level. However, it is now apparent that only a subset of dehalogenases are regulated by CprK homologues with little known about the other regulators. In addition, studies on the reductive dehalogenases have been hampered by the inability to purify sufficient quantities. Using an interdisciplinary, biophysical approach focused around X-ray crystallography, enzymology and molecular biology, combined with novel reductive dehalogenase production methods, we aim to provide a detailed understanding and identification of the structural elements crucial to reductive dehalogenase mechanism and regulation. At the same time, we aim to apply the knowledge gathered and study the feasibility of generating improved dehalorespiratory components for biosensing or bioremediation applications through laboratory assisted evolution.
Max ERC Funding
1 148 522 €
Duration
Start date: 2008-09-01, End date: 2013-08-31
Project acronym DENDRITE
Project Cellular and circuit determinants of dendritic computation
Researcher (PI) Michael Andreas Hausser
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Advanced Grant (AdG), LS5, ERC-2009-AdG
Summary What is the fundamental unit of computation in the brain? Answering this question is crucial not only for understanding how the brain works, but also for building accurate models of brain function, which require abstraction based on identification of the essential elements for carrying out computations relevant to behaviour. We will directly test the possibility that single dendritic branches may act as individual computational units during behaviour, challenging the classical view that the neuron is the fundamental unit of computation. We will address this question using a combination of electrophysiological, anatomical, imaging, molecular, and modeling approaches to probe dendritic integration in pyramidal cells and Purkinje cells in mouse cortex and cerebellum. We will define the computational rules for integration of synaptic input in dendrites by examining the responses to different spatiotemporal patterns of excitatory and inhibitory inputs. We will use computational modeling to extract simple rules describing dendritic integration that captures the essence of the computation. Next, we will determine how these rules are engaged by patterns of sensory stimulation in vivo, by using various strategies to map the spatiotemporal patterns of synaptic inputs to dendrites. To understand how physiological patterns of activity in the circuit engage these dendritic computations, we will use anatomical approaches to map the wiring diagram of synaptic inputs to individual dendrites. Finally, we will manipulate dendritic function using molecular tools, in order to provide causal links between specific dendritic computations and sensory processing. These experiments will provide us with deeper insights into how single neurons act as computing devices, and how fundamental computations that drive behaviour are implemented on the level of single cells and neural circuits.
Summary
What is the fundamental unit of computation in the brain? Answering this question is crucial not only for understanding how the brain works, but also for building accurate models of brain function, which require abstraction based on identification of the essential elements for carrying out computations relevant to behaviour. We will directly test the possibility that single dendritic branches may act as individual computational units during behaviour, challenging the classical view that the neuron is the fundamental unit of computation. We will address this question using a combination of electrophysiological, anatomical, imaging, molecular, and modeling approaches to probe dendritic integration in pyramidal cells and Purkinje cells in mouse cortex and cerebellum. We will define the computational rules for integration of synaptic input in dendrites by examining the responses to different spatiotemporal patterns of excitatory and inhibitory inputs. We will use computational modeling to extract simple rules describing dendritic integration that captures the essence of the computation. Next, we will determine how these rules are engaged by patterns of sensory stimulation in vivo, by using various strategies to map the spatiotemporal patterns of synaptic inputs to dendrites. To understand how physiological patterns of activity in the circuit engage these dendritic computations, we will use anatomical approaches to map the wiring diagram of synaptic inputs to individual dendrites. Finally, we will manipulate dendritic function using molecular tools, in order to provide causal links between specific dendritic computations and sensory processing. These experiments will provide us with deeper insights into how single neurons act as computing devices, and how fundamental computations that drive behaviour are implemented on the level of single cells and neural circuits.
Max ERC Funding
2 416 078 €
Duration
Start date: 2010-06-01, End date: 2016-05-31
Project acronym DENDRITECIRCUITS
Project The origins of dendritic computation within mammalian neural circuits
Researcher (PI) Michael HAUSSER
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Advanced Grant (AdG), LS5, ERC-2015-AdG
Summary This proposal aims to address a simple question: what is the fundamental unit of computation in the brain? Answering this question is crucial not only for understanding how the brain works, but also if we are to build accurate models of brain function, which require abstraction based on identification of the essential elements for carrying out computations relevant to behaviour. In this proposal, we will build on recent work demonstrating that dendrites are highly electrically excitable to test the possibility that single dendritic branches may act as individual computational units during behaviour, challenging the classical view that the neuron is the fundamental unit of computation. We will address this question using a combination of electrophysiolgical, anatomical, imaging, molecular, and modeling approaches to probe dendritic integration in pyramidal cells and Purkinje cells in mouse cortex and cerebellum.
We will first define the computational rules for integration of synaptic input in single and multiple dendrites by examining the somatic and dendritic responses to different spatiotemporal patterns of excitatory and inhibitory inputs in brain slices. Next, we will determine how these rules are engaged by patterns of sensory stimulation in vivo, by using various strategies to map the spatiotemporal patterns of synaptic inputs onto single dendrites. To understand how physiological patterns of activity in the circuit engage these dendritic computations, we will use anatomical approaches to map the wiring diagram of synaptic inputs to individual dendrites. Finally, we will perturb the dendritic computational rules by manipulating dendritic function using molecular and optogenetic tools, in order to provide causal links between specific dendritic computations and sensory processing relevant to behaviour.
These experiments will provide us with deeper insights into how single neurons act as computing devices.
Summary
This proposal aims to address a simple question: what is the fundamental unit of computation in the brain? Answering this question is crucial not only for understanding how the brain works, but also if we are to build accurate models of brain function, which require abstraction based on identification of the essential elements for carrying out computations relevant to behaviour. In this proposal, we will build on recent work demonstrating that dendrites are highly electrically excitable to test the possibility that single dendritic branches may act as individual computational units during behaviour, challenging the classical view that the neuron is the fundamental unit of computation. We will address this question using a combination of electrophysiolgical, anatomical, imaging, molecular, and modeling approaches to probe dendritic integration in pyramidal cells and Purkinje cells in mouse cortex and cerebellum.
We will first define the computational rules for integration of synaptic input in single and multiple dendrites by examining the somatic and dendritic responses to different spatiotemporal patterns of excitatory and inhibitory inputs in brain slices. Next, we will determine how these rules are engaged by patterns of sensory stimulation in vivo, by using various strategies to map the spatiotemporal patterns of synaptic inputs onto single dendrites. To understand how physiological patterns of activity in the circuit engage these dendritic computations, we will use anatomical approaches to map the wiring diagram of synaptic inputs to individual dendrites. Finally, we will perturb the dendritic computational rules by manipulating dendritic function using molecular and optogenetic tools, in order to provide causal links between specific dendritic computations and sensory processing relevant to behaviour.
These experiments will provide us with deeper insights into how single neurons act as computing devices.
Max ERC Funding
2 495 563 €
Duration
Start date: 2016-07-01, End date: 2021-06-30
Project acronym DEVINCI
Project Developmental principles for the functional specialisation of inhibitory circuits in neocortical areas
Researcher (PI) Oscar MARIN
Host Institution (HI) KING'S COLLEGE LONDON
Call Details Advanced Grant (AdG), LS5, ERC-2017-ADG
Summary The mammalian neocortex consists of discrete, but highly interconnected, functional areas that collectively encode features of the environment, form associations between stimuli and drive behaviour by transforming sensory input into motor output. All neocortical areas are organised into six layers containing two major classes of neurons, excitatory glutamatergic pyramidal cells and inhibitory GABAergic interneurons. However, each area has distinctive cytoarchitectonical features and inputs that largely determine its computational capabilities. As pyramidal cells comprise the large majority of neurons in the cerebral cortex, much emphasis has been made on their contribution to the differential organisation of cortical areas. In contrast, interneurons have received little attention in the context of the functional specialisation of cortical areas, even though their distribution is highly heterogeneous.
The central tenet of this research proposal is that distinct patterns of inhibitory connectivity may accompany, and perhaps even determine, the functional specialisation of neocortical areas. We hypothesise that interneurons play an important role in the tuning of circuits in each cortical area, and therefore that quantitative differences in the relative distribution of specific classes of interneurons, which arise during development, reflect functional specialisations. The overall aim of this research project is to understand how developmental mechanisms ‘sculpting’ the distribution of inhibitory neurons across different neocortical areas contribute to their functional specialisation. This project has the potential to transform our understanding of the organisation of inhibitory circuits in the mammalian neocortex.
Summary
The mammalian neocortex consists of discrete, but highly interconnected, functional areas that collectively encode features of the environment, form associations between stimuli and drive behaviour by transforming sensory input into motor output. All neocortical areas are organised into six layers containing two major classes of neurons, excitatory glutamatergic pyramidal cells and inhibitory GABAergic interneurons. However, each area has distinctive cytoarchitectonical features and inputs that largely determine its computational capabilities. As pyramidal cells comprise the large majority of neurons in the cerebral cortex, much emphasis has been made on their contribution to the differential organisation of cortical areas. In contrast, interneurons have received little attention in the context of the functional specialisation of cortical areas, even though their distribution is highly heterogeneous.
The central tenet of this research proposal is that distinct patterns of inhibitory connectivity may accompany, and perhaps even determine, the functional specialisation of neocortical areas. We hypothesise that interneurons play an important role in the tuning of circuits in each cortical area, and therefore that quantitative differences in the relative distribution of specific classes of interneurons, which arise during development, reflect functional specialisations. The overall aim of this research project is to understand how developmental mechanisms ‘sculpting’ the distribution of inhibitory neurons across different neocortical areas contribute to their functional specialisation. This project has the potential to transform our understanding of the organisation of inhibitory circuits in the mammalian neocortex.
Max ERC Funding
2 500 000 €
Duration
Start date: 2018-07-01, End date: 2023-06-30
Project acronym DEVSPACE
Project The development of the hippocampal spatial representation system
Researcher (PI) Francesca Cacucci
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Starting Grant (StG), LS5, ERC-2011-StG_20101109
Summary This proposal will address how a multimodal cognitive system, the neural representation of space in the hippocampus, emerges during development. There is a long tradition in neuroscience of studying the development of primary sensory systems, but fewer studies have concentrated on the development of brain networks supporting higher-order cognitive representations.
Our recent findings (Wills, Cacucci et al. Science, 2010) provide a starting point to fill this gap, charting the emergence of spatial responses of hippocampal formation neurons, using in vivo recording in awake, behaving rats.
The hippocampal formation supports neural representations of the environment ('cognitive maps') by means of which an animal can locate itself and navigate to a goal location. It contains three classes of spatially-tuned cells: place cells, which code for location, head direction cells, which code for directional orientation and grid cells, which may code for distance travelled.
The key aim of this proposal is to delineate the developmental processes that create this neural representation of space, focusing on the representations of place and direction.
We will delineate which sensory information is capable of driving spatial firing, and whether early hippocampal coding is truly spatial in the sense of representing configurations of stimuli and not single cues. How are abstract spatial constructs (place and head direction) built from raw sensory information during development? We will test whether boundary sensitive neurons and angular velocity tuned neurons are the elemental 'building blocks' making up place and directional signals, as suggested by many theoretical models.
We will also investigate the role of experience in the construction of spatial representations. Do the network architectures underlying spatial firing emerge through experience-dependent learning mechanisms, or are they the result of self-organizing processes which take place independently of experience?
Summary
This proposal will address how a multimodal cognitive system, the neural representation of space in the hippocampus, emerges during development. There is a long tradition in neuroscience of studying the development of primary sensory systems, but fewer studies have concentrated on the development of brain networks supporting higher-order cognitive representations.
Our recent findings (Wills, Cacucci et al. Science, 2010) provide a starting point to fill this gap, charting the emergence of spatial responses of hippocampal formation neurons, using in vivo recording in awake, behaving rats.
The hippocampal formation supports neural representations of the environment ('cognitive maps') by means of which an animal can locate itself and navigate to a goal location. It contains three classes of spatially-tuned cells: place cells, which code for location, head direction cells, which code for directional orientation and grid cells, which may code for distance travelled.
The key aim of this proposal is to delineate the developmental processes that create this neural representation of space, focusing on the representations of place and direction.
We will delineate which sensory information is capable of driving spatial firing, and whether early hippocampal coding is truly spatial in the sense of representing configurations of stimuli and not single cues. How are abstract spatial constructs (place and head direction) built from raw sensory information during development? We will test whether boundary sensitive neurons and angular velocity tuned neurons are the elemental 'building blocks' making up place and directional signals, as suggested by many theoretical models.
We will also investigate the role of experience in the construction of spatial representations. Do the network architectures underlying spatial firing emerge through experience-dependent learning mechanisms, or are they the result of self-organizing processes which take place independently of experience?
Max ERC Funding
1 491 930 €
Duration
Start date: 2012-01-01, End date: 2017-12-31
Project acronym DIASPORAINTRANSITION
Project A Diaspora in Transition - Cultural and Religious Changes in Western Sephardic Communities in the Early Modern Period
Researcher (PI) Yosef Mauricio Kaplan
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Advanced Grant (AdG), SH6, ERC-2011-ADG_20110406
Summary The communities of the Western Sephardic Diaspora were founded in the 16th and 17th centuries by New Christians from Iberia who returned to Judaism that had been abandoned by their ancestors in the late Middle Ages. This project will concentrate on the changes in the religious conceptions and behavior as well as the cultural patterns of the communities of Amsterdam, Hamburg, Leghorn, London, and Bordeaux. We will analyze the vigorous activity of their leaders to set the boundaries of their new religious identity in comparison to the policy of several Christian “communities of belief,” which went into exile following religious persecution in their homelands. We will also examine the changes in the attitude toward Judaism during the 17th century in certain segments of the Sephardic Diaspora: rather than a normative system covering every area of life, Judaism came to be seen as a system of faith restricted to the religious sphere. We will seek to explain the extent to which this significant change influenced their institutions and social behaviour. This study will provide us with better understanding of the place of the Jews in European society. At the same time, we will subject a central series of concepts in the historiographical discourse of the Early Modern Period to critical analysis: confessionalization, disciplinary revolution, civilizing process, affective individualism, etc. This phase of the research will be based on qualitative and quantitative analysis of many hundreds of documents, texts and the material remains of these communities. Using sociological and anthropological models, we will analyze ceremonies and rituals described at length in the sources, the social and cultural meaning of the architecture of the Sephardic synagogues of that time, and of other visual symbols.
Summary
The communities of the Western Sephardic Diaspora were founded in the 16th and 17th centuries by New Christians from Iberia who returned to Judaism that had been abandoned by their ancestors in the late Middle Ages. This project will concentrate on the changes in the religious conceptions and behavior as well as the cultural patterns of the communities of Amsterdam, Hamburg, Leghorn, London, and Bordeaux. We will analyze the vigorous activity of their leaders to set the boundaries of their new religious identity in comparison to the policy of several Christian “communities of belief,” which went into exile following religious persecution in their homelands. We will also examine the changes in the attitude toward Judaism during the 17th century in certain segments of the Sephardic Diaspora: rather than a normative system covering every area of life, Judaism came to be seen as a system of faith restricted to the religious sphere. We will seek to explain the extent to which this significant change influenced their institutions and social behaviour. This study will provide us with better understanding of the place of the Jews in European society. At the same time, we will subject a central series of concepts in the historiographical discourse of the Early Modern Period to critical analysis: confessionalization, disciplinary revolution, civilizing process, affective individualism, etc. This phase of the research will be based on qualitative and quantitative analysis of many hundreds of documents, texts and the material remains of these communities. Using sociological and anthropological models, we will analyze ceremonies and rituals described at length in the sources, the social and cultural meaning of the architecture of the Sephardic synagogues of that time, and of other visual symbols.
Max ERC Funding
1 671 200 €
Duration
Start date: 2012-03-01, End date: 2018-02-28
Project acronym DICTATOREXPERIENCE
Project Dictatorship as experience: a comparative history of everyday life and the 'lived experience' of dictatorship in Mediterranean Europe (1922-1975)
Researcher (PI) Catherine Ferris
Host Institution (HI) THE UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS
Call Details Consolidator Grant (CoG), SH6, ERC-2017-COG
Summary ‘Dictatorship’ conventionally conjures an image of a charismatic, dogmatic (male) leader ruling from on high, through magnetism, propaganda and violence, a pliant population alternately rallied in fervent support or cowed into submission. Such images belie the crucial reality that dictatorships were experienced subjectively – and in some respects put into practice - by the men, women and children who lived (through) them. Individuals encountered the dictatorial state not only in official policies, propaganda and rituals but also in everyday settings: the market; the factory; the bar; the street; the home. These venues were sites where dictatorships were made – and unmade. Whilst the ‘everyday life history’ of the mid 20th-century dictatorships in Germany, the USSR and (less often) Italy has been compared, this project will be the first to comparatively examine the ‘lived experience’ of dictatorships in four countries bordering the northern Mediterranean: Italy; Spain; Portugal; Greece. Framing this study within the context of Mediterranean Europe allows us to interrogate some of the institutions and cultural practices often assumed to connect and characterize this region and how, if at all, these intersected with the subjective experience of dictatorial rule. These include: certain family structures and practices; diet; temporal rhythms and spatial dimensions; and the perceived disjuncture between pays leal and pays real. How did Mediterranean populations experience dictatorship? Could shared socio-cultural institutions and practices, if detected, offer common tactics for negotiating daily life? Using a series of analytical concepts including subjectivity and agency, multiplicity, and everyday 'spaces', the project will reveal the complex ways in which dictators' ideology and practices were enacted on an intimate scale and the fragmented and multivalent encounters between individuals and the state which constituted the 'actually-existing' dictatorship.
Summary
‘Dictatorship’ conventionally conjures an image of a charismatic, dogmatic (male) leader ruling from on high, through magnetism, propaganda and violence, a pliant population alternately rallied in fervent support or cowed into submission. Such images belie the crucial reality that dictatorships were experienced subjectively – and in some respects put into practice - by the men, women and children who lived (through) them. Individuals encountered the dictatorial state not only in official policies, propaganda and rituals but also in everyday settings: the market; the factory; the bar; the street; the home. These venues were sites where dictatorships were made – and unmade. Whilst the ‘everyday life history’ of the mid 20th-century dictatorships in Germany, the USSR and (less often) Italy has been compared, this project will be the first to comparatively examine the ‘lived experience’ of dictatorships in four countries bordering the northern Mediterranean: Italy; Spain; Portugal; Greece. Framing this study within the context of Mediterranean Europe allows us to interrogate some of the institutions and cultural practices often assumed to connect and characterize this region and how, if at all, these intersected with the subjective experience of dictatorial rule. These include: certain family structures and practices; diet; temporal rhythms and spatial dimensions; and the perceived disjuncture between pays leal and pays real. How did Mediterranean populations experience dictatorship? Could shared socio-cultural institutions and practices, if detected, offer common tactics for negotiating daily life? Using a series of analytical concepts including subjectivity and agency, multiplicity, and everyday 'spaces', the project will reveal the complex ways in which dictators' ideology and practices were enacted on an intimate scale and the fragmented and multivalent encounters between individuals and the state which constituted the 'actually-existing' dictatorship.
Max ERC Funding
1 497 724 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym DIGIPAL
Project Digital Resource and Database of Palaeography, Manuscripts and Diplomatic
Researcher (PI) Peter Anthony Stokes
Host Institution (HI) KING'S COLLEGE LONDON
Call Details Starting Grant (StG), SH6, ERC-2010-StG_20091209
Summary This project involves developing and applying new methods in palaeography, bringing digital resources to bear in innovative ways. It comprises three components: a web resource, a database, and a monograph. The web resource will allow the study of medieval script in the context of the manuscripts and charters that preserve it. It will focus on discovery and citation, allowing users to retrieve digital images, verbal descriptions, and detailed characterisations of the writing, as well as the larger context including the content and structure of the manuscript or charter. It will incorporate different ways of exploring the material such as images, maps and timelines as well as text-based browse and search. It will provide a flexible, extensible framework to integrate external data-sources and so applies to any period or area of palaeography. It will therefore enable new developments in palaeographical method which have been discussed in theory but not yet achieved in practice.
To demonstrate these methods, content will be provided for handwriting from England in the vernacular, particularly that of AD 990-1100. This period saw rapid change in vernacular script despite relative stability in that of Latin, something that has never been fully explained. This problem will be addressed by integrating existing datasets but also by producing and incorporating an entirely new database of scripts. The result will provide access to the complete corpus of surviving examples of the script for the first time, bringing an unprecedented rigour to palaeographical analysis. A monograph will then draw on this research, demonstrating the new methods in practice and providing the first comprehensive account of English vernacular script from the period. The work will address issues in Digital Humanities (integration, interface design, visualisation and standards), in palaeographical method (quantitative methods, terminology and evidential rigour), and in the history of vernacular script
Summary
This project involves developing and applying new methods in palaeography, bringing digital resources to bear in innovative ways. It comprises three components: a web resource, a database, and a monograph. The web resource will allow the study of medieval script in the context of the manuscripts and charters that preserve it. It will focus on discovery and citation, allowing users to retrieve digital images, verbal descriptions, and detailed characterisations of the writing, as well as the larger context including the content and structure of the manuscript or charter. It will incorporate different ways of exploring the material such as images, maps and timelines as well as text-based browse and search. It will provide a flexible, extensible framework to integrate external data-sources and so applies to any period or area of palaeography. It will therefore enable new developments in palaeographical method which have been discussed in theory but not yet achieved in practice.
To demonstrate these methods, content will be provided for handwriting from England in the vernacular, particularly that of AD 990-1100. This period saw rapid change in vernacular script despite relative stability in that of Latin, something that has never been fully explained. This problem will be addressed by integrating existing datasets but also by producing and incorporating an entirely new database of scripts. The result will provide access to the complete corpus of surviving examples of the script for the first time, bringing an unprecedented rigour to palaeographical analysis. A monograph will then draw on this research, demonstrating the new methods in practice and providing the first comprehensive account of English vernacular script from the period. The work will address issues in Digital Humanities (integration, interface design, visualisation and standards), in palaeographical method (quantitative methods, terminology and evidential rigour), and in the history of vernacular script
Max ERC Funding
995 531 €
Duration
Start date: 2010-10-01, End date: 2014-09-30
Project acronym DiSCo MRI SFN
Project Developing Integrated Susceptibility and Conductivity MRI for Next Generation Structural and Functional Neuroimaging
Researcher (PI) Karin SHMUELI
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Consolidator Grant (CoG), LS5, ERC-2017-COG
Summary MRI is indispensable in the diagnosis of neurodegenerative diseases. These are poorly understood while their prevalence and socio-economic burden continue to rise. Structural and functional MRI can provide biomarkers for early diagnosis and potential therapeutic intervention. My research vision is to develop novel MRI methods for structural and functional mapping of tissue magnetic susceptibility and electrical conductivity as these show great promise for neuroimaging in diseases such as Alzheimer’s (AD).
Susceptibility mapping (SM), which I pioneered, is uniquely sensitive to tissue composition including iron content affected in AD while conductivity mapping (CM) probably reflects cellular disruption in AD. Resting-state functional MRI (rsfMRI) reveals how AD affects brain networks without any tasks or stimulation equipment. However, each technique currently needs a separate time-consuming MRI scan. I will develop an integrated scan for simultaneous structural SM and CM, and rsfMRI functional connectivity characterisation. This efficient scan, ideal for AD patients, will reveal totally new resting-state networks based on electromagnetic properties: resting-state functional SM and resting-state functional CM for the first time. As changes in blood susceptibility underlie fMRI, rsfSM should measure functional connectivity more directly. This also makes it sensitive to physiological noise so I will develop noise removal methods building on fMRI techniques I established. Initial fSM studies have been at 7 Tesla but I will target the more widespread 3T field to maximise applicability. As a leader in both SM and rsfMRI physiological noise removal I have the ideal background to integrate SM and CM with fMRI and extend them for ground-breaking functional electromagnetic connectivity. This research will yield a rich set of novel, multimodal MRI contrasts to allow development of new combined structural and functional biomarkers for early diagnosis of AD and other diseases.
Summary
MRI is indispensable in the diagnosis of neurodegenerative diseases. These are poorly understood while their prevalence and socio-economic burden continue to rise. Structural and functional MRI can provide biomarkers for early diagnosis and potential therapeutic intervention. My research vision is to develop novel MRI methods for structural and functional mapping of tissue magnetic susceptibility and electrical conductivity as these show great promise for neuroimaging in diseases such as Alzheimer’s (AD).
Susceptibility mapping (SM), which I pioneered, is uniquely sensitive to tissue composition including iron content affected in AD while conductivity mapping (CM) probably reflects cellular disruption in AD. Resting-state functional MRI (rsfMRI) reveals how AD affects brain networks without any tasks or stimulation equipment. However, each technique currently needs a separate time-consuming MRI scan. I will develop an integrated scan for simultaneous structural SM and CM, and rsfMRI functional connectivity characterisation. This efficient scan, ideal for AD patients, will reveal totally new resting-state networks based on electromagnetic properties: resting-state functional SM and resting-state functional CM for the first time. As changes in blood susceptibility underlie fMRI, rsfSM should measure functional connectivity more directly. This also makes it sensitive to physiological noise so I will develop noise removal methods building on fMRI techniques I established. Initial fSM studies have been at 7 Tesla but I will target the more widespread 3T field to maximise applicability. As a leader in both SM and rsfMRI physiological noise removal I have the ideal background to integrate SM and CM with fMRI and extend them for ground-breaking functional electromagnetic connectivity. This research will yield a rich set of novel, multimodal MRI contrasts to allow development of new combined structural and functional biomarkers for early diagnosis of AD and other diseases.
Max ERC Funding
1 721 726 €
Duration
Start date: 2019-04-01, End date: 2024-03-31
Project acronym DISPERSE
Project Dynamic Landscapes, Coastal Environments and Human Dispersals
Researcher (PI) Geoffrey Nigel Bailey
Host Institution (HI) UNIVERSITY OF YORK
Call Details Advanced Grant (AdG), SH6, ERC-2010-AdG_20100407
Summary We aim to understand the relationship between dynamic changes in physical landscapes and patterns of human dispersal and development in prehistory, paying particular attention to the impact of active tectonics and sea-level change. We will:
• Introduce and develop concepts and techniques of tectonic geomorphology and mapping to analyse the relationship between geological instability, complex topographies, and archaeological remains at a variety of geographical scales
• Focus on the western Arabian Peninsula and the Red Sea coast, a key, but little known, intermediary region between Africa and Eurasia, and draw on a wider comparative sample of key site-regions throughout the main axes of early dispersal in Africa, SW Asia and S Europe.
• Develop strategies to explore the submerged landscapes and archaeology of the continental shelf, now recognised as a major gap in our understanding of the human story
• Analyse the shell mounds of recent millennia to develop a detailed benchmark for what constitutes the archaeological signature of a coastal economy, and a guide to the interpretation of more vestigial data from earlier periods and the search for material on submerged coastlines when sea levels were lower
• Synthesise the results with existing palaeoclimatic and palaeoenvironmental data
• Tackle the fundamental but hitherto unresolved technical challenge of how to distinguish in distributions of archaeological sites between genuine patterns of human habitat preference and geological effects of differential visibility
• Produce a case study that demonstrates how long-term human engagement with the material world of a changing physical landscape and the cumulative palimpsests of archaeological deposits can give rise to new adaptations and new strategies of social action
Summary
We aim to understand the relationship between dynamic changes in physical landscapes and patterns of human dispersal and development in prehistory, paying particular attention to the impact of active tectonics and sea-level change. We will:
• Introduce and develop concepts and techniques of tectonic geomorphology and mapping to analyse the relationship between geological instability, complex topographies, and archaeological remains at a variety of geographical scales
• Focus on the western Arabian Peninsula and the Red Sea coast, a key, but little known, intermediary region between Africa and Eurasia, and draw on a wider comparative sample of key site-regions throughout the main axes of early dispersal in Africa, SW Asia and S Europe.
• Develop strategies to explore the submerged landscapes and archaeology of the continental shelf, now recognised as a major gap in our understanding of the human story
• Analyse the shell mounds of recent millennia to develop a detailed benchmark for what constitutes the archaeological signature of a coastal economy, and a guide to the interpretation of more vestigial data from earlier periods and the search for material on submerged coastlines when sea levels were lower
• Synthesise the results with existing palaeoclimatic and palaeoenvironmental data
• Tackle the fundamental but hitherto unresolved technical challenge of how to distinguish in distributions of archaeological sites between genuine patterns of human habitat preference and geological effects of differential visibility
• Produce a case study that demonstrates how long-term human engagement with the material world of a changing physical landscape and the cumulative palimpsests of archaeological deposits can give rise to new adaptations and new strategies of social action
Max ERC Funding
2 550 000 €
Duration
Start date: 2011-04-01, End date: 2016-03-31
Project acronym DNA-REPAIR-CHROMATIN
Project Biochemical reconstitution of DNA repair reactions on physiological chromatin substrates
Researcher (PI) Matthew John Neale
Host Institution (HI) THE UNIVERSITY OF SUSSEX
Call Details Starting Grant (StG), LS1, ERC-2012-StG_20111109
Summary For cells and organisms to survive and propagate, they must accurately pass on their genetic information to the next generation. Errors in this process may arise from spontaneous mistakes in normal cellular metabolism, or from exposure to external agents, such as chemical mutagens and radiation. To protect themselves from the consequences of DNA damage, cells have evolved a vast array of pathways DNA repair mechanisms, each optimised for the resolution of a particular problem. One method of DNA repair, called homologous recombination (HR), involves using intact undamaged DNA sequences as a template to repair the damaged copy. HR is used extensively in meiotic cells to repair DNA breaks that are purposely created by the cell. In this context, HR is not just a repair mechanism, but also a method to drive interaction and genetic exchange between maternally and paternally inherited chromosomes, creating haploid genomes which are chimeras of the parental genetic information. Thus, the study of DNA repair and recombination informs our understanding of mechanisms that maintain genome stability, but which also generate genetic diversity, topics that are as critical to the survival of an individual cell as they are for the evolution and survival of an entire ecosystem. In recent decades a great deal has been learned of the genetic and biochemical control of the DNA repair and recombination mechanism. In general we infer gene function from what happens (or doesn’t happen) when we mutate a pathway of interest, and use biochemistry to test function using surrogate, simplified in vitro assays. Here, to bridge the divide between these classic approaches, I propose to develop biochemical methods using intact chromatin prepared from living cells. I believe that integrating chromatin biochemistry, with cell biology and genome-wide analysis will enable a new mode of scientific investigation, detailing how molecular reactions occur on biologically-relevant chromosomal substrates.
Summary
For cells and organisms to survive and propagate, they must accurately pass on their genetic information to the next generation. Errors in this process may arise from spontaneous mistakes in normal cellular metabolism, or from exposure to external agents, such as chemical mutagens and radiation. To protect themselves from the consequences of DNA damage, cells have evolved a vast array of pathways DNA repair mechanisms, each optimised for the resolution of a particular problem. One method of DNA repair, called homologous recombination (HR), involves using intact undamaged DNA sequences as a template to repair the damaged copy. HR is used extensively in meiotic cells to repair DNA breaks that are purposely created by the cell. In this context, HR is not just a repair mechanism, but also a method to drive interaction and genetic exchange between maternally and paternally inherited chromosomes, creating haploid genomes which are chimeras of the parental genetic information. Thus, the study of DNA repair and recombination informs our understanding of mechanisms that maintain genome stability, but which also generate genetic diversity, topics that are as critical to the survival of an individual cell as they are for the evolution and survival of an entire ecosystem. In recent decades a great deal has been learned of the genetic and biochemical control of the DNA repair and recombination mechanism. In general we infer gene function from what happens (or doesn’t happen) when we mutate a pathway of interest, and use biochemistry to test function using surrogate, simplified in vitro assays. Here, to bridge the divide between these classic approaches, I propose to develop biochemical methods using intact chromatin prepared from living cells. I believe that integrating chromatin biochemistry, with cell biology and genome-wide analysis will enable a new mode of scientific investigation, detailing how molecular reactions occur on biologically-relevant chromosomal substrates.
Max ERC Funding
1 747 823 €
Duration
Start date: 2013-01-01, End date: 2018-12-31
Project acronym DNA2REPAIR
Project DNA strand break repair and links to human disease
Researcher (PI) Stephen West
Host Institution (HI) THE FRANCIS CRICK INSTITUTE LIMITED
Call Details Advanced Grant (AdG), LS1, ERC-2014-ADG
Summary Our genetic material is continually subjected to damage, either from endogenous sources such as reactive oxygen species, produced as by-products of oxidative metabolism, from the breakdown of replication forks during cell growth, or by agents in the environment such as ionising radiation or carcinogenic chemicals. To cope with DNA damage, cells employ elaborate and effective repair processes that specifically recognise a wide variety of lesions in DNA. These repair systems are essential for the maintenance of genome integrity. Unfortunately, some individuals are genetically predisposed to crippling diseases or cancers that are the direct result of mutations in genes involved in the DNA damage response. For several years our work has been at the forefront of basic biological research in the area of DNA repair, and in particular we have made significant contributions to the understanding of inheritable diseases such as breast cancer, Fanconi anemia, and the neurodegenerative disorder Ataxia with Oculomotor Apraxia (AOA). The focus of this ERC proposal is: (i) to determine the mechanism of action and high-resolution structure of the BRCA2 tumour suppressor, and to provide a detailed picture of the interplay between BRCA2, PALB2, RAD51AP1 and the RAD51 paralogs, in terms of RAD51 filament assembly, using biochemical, electron microscopic and cell biological approaches, (ii) to determine the biological role of a unique structure-selective tri-nuclease complex (SLX1-SLX4-MUS81-EME1-XPF-ERCC1), with particular emphasis on its roles in DNA crosslink repair and Fanconi anemia, and (iii) to understand the actions of Senataxin, which is defective in AOA2, in protecting against genome instability in neuronal cells. These three distinct and yet inter-related areas of the research programme will provide an improved understanding of basic mechanisms of DNA repair and thereby underpin future therapeutic developments that will help individuals afflicted with these diseases.
Summary
Our genetic material is continually subjected to damage, either from endogenous sources such as reactive oxygen species, produced as by-products of oxidative metabolism, from the breakdown of replication forks during cell growth, or by agents in the environment such as ionising radiation or carcinogenic chemicals. To cope with DNA damage, cells employ elaborate and effective repair processes that specifically recognise a wide variety of lesions in DNA. These repair systems are essential for the maintenance of genome integrity. Unfortunately, some individuals are genetically predisposed to crippling diseases or cancers that are the direct result of mutations in genes involved in the DNA damage response. For several years our work has been at the forefront of basic biological research in the area of DNA repair, and in particular we have made significant contributions to the understanding of inheritable diseases such as breast cancer, Fanconi anemia, and the neurodegenerative disorder Ataxia with Oculomotor Apraxia (AOA). The focus of this ERC proposal is: (i) to determine the mechanism of action and high-resolution structure of the BRCA2 tumour suppressor, and to provide a detailed picture of the interplay between BRCA2, PALB2, RAD51AP1 and the RAD51 paralogs, in terms of RAD51 filament assembly, using biochemical, electron microscopic and cell biological approaches, (ii) to determine the biological role of a unique structure-selective tri-nuclease complex (SLX1-SLX4-MUS81-EME1-XPF-ERCC1), with particular emphasis on its roles in DNA crosslink repair and Fanconi anemia, and (iii) to understand the actions of Senataxin, which is defective in AOA2, in protecting against genome instability in neuronal cells. These three distinct and yet inter-related areas of the research programme will provide an improved understanding of basic mechanisms of DNA repair and thereby underpin future therapeutic developments that will help individuals afflicted with these diseases.
Max ERC Funding
2 203 153 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym DNAREPAIR
Project Defects in DNA strand break repair and links to inheritable disease
Researcher (PI) Stephen West
Host Institution (HI) THE FRANCIS CRICK INSTITUTE LIMITED
Call Details Advanced Grant (AdG), LS1, ERC-2009-AdG
Summary Our genetic material is continually subjected to damage, either from endogenous sources such as reactive oxygen species produced as by-products of oxidative metabolism, from the breakdown of replication forks during cell growth, or by agents in the environment such as ionising radiation or carcinogenic chemicals. To cope with DNA damage, cells employ elaborate and effective repair processes that specifically recognise a wide variety of lesions in DNA. These repair systems are essential for the maintenance of genome integrity. Unfortunately, some individuals are genetically predisposed to crippling diseases or cancers that are the direct result of mutations in genes involved in the DNA damage response. For several years our work has been at the forefront of basic biological research in the area of DNA repair, and in particular we have made significant contributions to the understanding of inheritable diseases such as breast cancer, Fanconi anemia, and the neurodegenerative disease Ataxia with Oculomotor Apraxia-1 (AOA-1). The focus of this ERC proposal is: (i) to define the phenotypic interplay between three inheritable cancer predisposition syndromes, Fanconi anemia, Bloom s syndrome and breast cancers caused by mutation of BRCA2, (ii) to determine the biological role of the newly discovered GEN1 Holliday junction resolvase in homologous recombination and repair, and (iii) to understand the actions of Aprataxin and Senataxin in relation to the inheritable neurodegenerative diseases AOA-1 and AOA-2, respectively. Our studies will provide an improved understanding of basic mechanisms of DNA repair and thereby underpin future therapeutic developments that will help individuals afflicted with these diseases.
Summary
Our genetic material is continually subjected to damage, either from endogenous sources such as reactive oxygen species produced as by-products of oxidative metabolism, from the breakdown of replication forks during cell growth, or by agents in the environment such as ionising radiation or carcinogenic chemicals. To cope with DNA damage, cells employ elaborate and effective repair processes that specifically recognise a wide variety of lesions in DNA. These repair systems are essential for the maintenance of genome integrity. Unfortunately, some individuals are genetically predisposed to crippling diseases or cancers that are the direct result of mutations in genes involved in the DNA damage response. For several years our work has been at the forefront of basic biological research in the area of DNA repair, and in particular we have made significant contributions to the understanding of inheritable diseases such as breast cancer, Fanconi anemia, and the neurodegenerative disease Ataxia with Oculomotor Apraxia-1 (AOA-1). The focus of this ERC proposal is: (i) to define the phenotypic interplay between three inheritable cancer predisposition syndromes, Fanconi anemia, Bloom s syndrome and breast cancers caused by mutation of BRCA2, (ii) to determine the biological role of the newly discovered GEN1 Holliday junction resolvase in homologous recombination and repair, and (iii) to understand the actions of Aprataxin and Senataxin in relation to the inheritable neurodegenerative diseases AOA-1 and AOA-2, respectively. Our studies will provide an improved understanding of basic mechanisms of DNA repair and thereby underpin future therapeutic developments that will help individuals afflicted with these diseases.
Max ERC Funding
2 449 091 €
Duration
Start date: 2010-06-01, End date: 2015-05-31
Project acronym DOCUMULT
Project Documenting Multiculturalism: coexistence, law and multiculturalism in the administrative and legal documents of Norman and Hohenstaufen Sicily, c.1060-c.1266
Researcher (PI) Jeremy JOHNS
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Advanced Grant (AdG), SH6, ERC-2017-ADG
Summary Documenting Multiculturalism will investigate comprehensively and systematically the coexistence of the diverse confessional, ethnic and linguistic communities of the island of Sicily under its Norman and Hohenstaufen rulers — Arabic-speaking Muslims and Jews, Greek Christians, and Latin Christians. It will investigate: the legal foundations upon which the coexistence of the subject communities rested; the nature, extent and results of cultural, linguistic and social interactions between them; and variation in the above, from time to time c. 1060 – c. 1266, and from place to place within the island. The ambitious objective is to create the fundamental tools to study, and to begin to write, the history of the subject communities of Norman Sicily from the bottom up, using documentary rather than narrative sources, and illustrating as far as possible the full variety in space and time.
The Project will do this by making new critical editions of all of the administrative and legal documents for Norman Sicily, in the three principal administrative languages — Arabic, Greek and Latin. These texts will populate a database, to which further data from the non-documentary sources will be added. The database will then be used to generate a series of powerful electronic research tools, which will be both the means to meet the ends of this particular project, and ends in themselves that will revolutionise the future study of all aspects of the history of Norman Sicily. At the end of the Project, a series of summative studies will document, analyse and discuss different aspects of coexistence and popular multiculturalism in Norman Sicily, and set the case of Sicily in the wider Mediterranean context.
What is distinctive about this Project is that not only the publication of its research objectives, but also the tools that it will create in order to achieve them, will revolutionise the future study of all aspects of the cultural, economic and social history of Norman Sicily.
Summary
Documenting Multiculturalism will investigate comprehensively and systematically the coexistence of the diverse confessional, ethnic and linguistic communities of the island of Sicily under its Norman and Hohenstaufen rulers — Arabic-speaking Muslims and Jews, Greek Christians, and Latin Christians. It will investigate: the legal foundations upon which the coexistence of the subject communities rested; the nature, extent and results of cultural, linguistic and social interactions between them; and variation in the above, from time to time c. 1060 – c. 1266, and from place to place within the island. The ambitious objective is to create the fundamental tools to study, and to begin to write, the history of the subject communities of Norman Sicily from the bottom up, using documentary rather than narrative sources, and illustrating as far as possible the full variety in space and time.
The Project will do this by making new critical editions of all of the administrative and legal documents for Norman Sicily, in the three principal administrative languages — Arabic, Greek and Latin. These texts will populate a database, to which further data from the non-documentary sources will be added. The database will then be used to generate a series of powerful electronic research tools, which will be both the means to meet the ends of this particular project, and ends in themselves that will revolutionise the future study of all aspects of the history of Norman Sicily. At the end of the Project, a series of summative studies will document, analyse and discuss different aspects of coexistence and popular multiculturalism in Norman Sicily, and set the case of Sicily in the wider Mediterranean context.
What is distinctive about this Project is that not only the publication of its research objectives, but also the tools that it will create in order to achieve them, will revolutionise the future study of all aspects of the cultural, economic and social history of Norman Sicily.
Max ERC Funding
2 467 965 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym DOJSFL
Project The Dissolution of the Japanese Empire and the Struggle for Legitimacy in Postwar East Asia, 1945-1965
Researcher (PI) Barak Kushner
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Starting Grant (StG), SH6, ERC-2012-StG_20111124
Summary This five-year project aims to understand how political rule and legal authority were redrafted in postwar East Asia after the Japanese surrender in 1945. The research will shed light on the social and political transformations that continue to have deep resonance in our world in the form of East Asia’s regional alliances and Japan’s relations with its closest neighbors – China, North and South Korea, and Taiwan. The renovation of East Asia after the fall of the Japanese empire has mainly been written from a western perspective, owing to the preponderance of postwar American scholarship and its political dominance, but also the systematic declassification and easy access to government and private archival papers. Even with the economic rise and growing importance of contemporary China, the region’s understanding of its own past and its internal dynamics remain deeply rooted to the contours of the manner in which World War II ended. This narrative is linked to the process of how Japanese imperial rule was judged at the local level through war crimes trials and the pursuit of justice against imperial supporters. The search for war criminals, collaborators or suspected traitors offered a means to resolve the upturned former imperial hierarchies, dealing with grudges and finding justice for committed atrocities. Such moves demonstrated that the new authorities were “just,” a crucial element to bolster domestic and international mobilization campaigns for support. This new research makes clear that Japan’s sudden surrender in no way signified that the country would immediately disavow its extensive imperial ideology; such a move would require a long time to inculcate.
Summary
This five-year project aims to understand how political rule and legal authority were redrafted in postwar East Asia after the Japanese surrender in 1945. The research will shed light on the social and political transformations that continue to have deep resonance in our world in the form of East Asia’s regional alliances and Japan’s relations with its closest neighbors – China, North and South Korea, and Taiwan. The renovation of East Asia after the fall of the Japanese empire has mainly been written from a western perspective, owing to the preponderance of postwar American scholarship and its political dominance, but also the systematic declassification and easy access to government and private archival papers. Even with the economic rise and growing importance of contemporary China, the region’s understanding of its own past and its internal dynamics remain deeply rooted to the contours of the manner in which World War II ended. This narrative is linked to the process of how Japanese imperial rule was judged at the local level through war crimes trials and the pursuit of justice against imperial supporters. The search for war criminals, collaborators or suspected traitors offered a means to resolve the upturned former imperial hierarchies, dealing with grudges and finding justice for committed atrocities. Such moves demonstrated that the new authorities were “just,” a crucial element to bolster domestic and international mobilization campaigns for support. This new research makes clear that Japan’s sudden surrender in no way signified that the country would immediately disavow its extensive imperial ideology; such a move would require a long time to inculcate.
Max ERC Funding
1 463 924 €
Duration
Start date: 2013-03-01, End date: 2019-02-28
Project acronym DYNAMITO
Project The analysis of mitochondrial dynamics in ageing and neurodegeneration
Researcher (PI) Alexander James Whitworth
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Starting Grant (StG), LS5, ERC-2012-StG_20111109
Summary The survival of our most active tissues, such as the brain and heart, throughout decades of a human lifespan presents an extraordinary biological challenge. Mitochondria are central to the life and death of these tissues. They provide the cellular energy required by these cells and protect them by buffering potentially lethal levels of cytoplasmic calcium, while at the same time mitochondria produce much of the molecules that cause cellular damage and contain a lethal arsenal of apoptotic cell death machinery. These organelles require exquisite maintenance processes to keep them intact and prevent potentially catastrophic disruption. Failure in mitochondrial homeostasis is strongly linked to age-related conditions such as neurodegeneration.
This subject has garnered intense interest recently with emergence that two genes linked to Parkinson's disease, PINK1 and parkin, regulate the autophagic degradation of mitochondria (mitophagy). Mitophagy is coordinated with mitochondrial dynamics, processes vital to neuronal health. While recent work has uncovered the basic mechanisms of PINK1/parkin-induced mitophagy, many questions and caveats surround the current knowledge. Most notably, all studies to date have used in vitro approaches and non-physiological manipulations. Thus, we still have a poor understanding of this process in a physiological context.
I will principally use the powerful genetic techniques of Drosophila to investigate the influence of mitochondrial dynamics on maintaining normal neuronal function and survival, and its impact on neurodegeneration, in the context of an intact animal system. I will also use molecular, cell biology and biochemical approaches in mammalian cells to complement our in vivo findings and verify their relevance to human biology. These insights will deliver a greater understanding of the role of mitochondrial dynamics in the health and dysfunction of the nervous system in a physiological context and guide therapeutic developments.
Summary
The survival of our most active tissues, such as the brain and heart, throughout decades of a human lifespan presents an extraordinary biological challenge. Mitochondria are central to the life and death of these tissues. They provide the cellular energy required by these cells and protect them by buffering potentially lethal levels of cytoplasmic calcium, while at the same time mitochondria produce much of the molecules that cause cellular damage and contain a lethal arsenal of apoptotic cell death machinery. These organelles require exquisite maintenance processes to keep them intact and prevent potentially catastrophic disruption. Failure in mitochondrial homeostasis is strongly linked to age-related conditions such as neurodegeneration.
This subject has garnered intense interest recently with emergence that two genes linked to Parkinson's disease, PINK1 and parkin, regulate the autophagic degradation of mitochondria (mitophagy). Mitophagy is coordinated with mitochondrial dynamics, processes vital to neuronal health. While recent work has uncovered the basic mechanisms of PINK1/parkin-induced mitophagy, many questions and caveats surround the current knowledge. Most notably, all studies to date have used in vitro approaches and non-physiological manipulations. Thus, we still have a poor understanding of this process in a physiological context.
I will principally use the powerful genetic techniques of Drosophila to investigate the influence of mitochondrial dynamics on maintaining normal neuronal function and survival, and its impact on neurodegeneration, in the context of an intact animal system. I will also use molecular, cell biology and biochemical approaches in mammalian cells to complement our in vivo findings and verify their relevance to human biology. These insights will deliver a greater understanding of the role of mitochondrial dynamics in the health and dysfunction of the nervous system in a physiological context and guide therapeutic developments.
Max ERC Funding
1 486 761 €
Duration
Start date: 2013-01-01, End date: 2018-12-31
Project acronym ECMneuro
Project Perineuronal net treatments for neurodegenerative disease
Researcher (PI) James Fawcett
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Advanced Grant (AdG), LS5, ERC-2011-ADG_20110310
Summary Inhibitory chondroitin sulphate proteoglycans (CSPGs) have several roles in CNS damage and repair, revealed by their digestion with chondroitinase. Most recently, digestion of CSPGs in the limbic system and cortex has led to a very substantial enhancement of memory.
The effects of CSPGs on plasticity and memory are largely through their concentration into PNNs, because transgenics lacking the PNN component link protein in the CNS have very attenuated PNNs, and show continuing plasticity into adulthood, and enhanced memory in just the same way as chondroitinase-treated animals. The PNN is therefore a novel therapeutic target that has not been explored.
This application focuses particularly on enhancement of memory through manipulation of PNNs.
In Alzheimer’s disease (AD) and ageing the main cognitive disability is loss of memory. The enhancement of memory following chondroitinase treatment or PNN knockout in object memory is many times greater than obtained using cholinesterase inhibitors (the only currently available treatment for memory enhancement). PNN manipulation is therefore a particularly promising avenue for developing treatments to overcome the main cognitive disability of AD and ageing.
The aims of the application are:
1. Test the extent of memory enhancement due to PNN manipulation in models of AD due to Abeta, tau mutations and in aged CNS.
2. Establish the molecular mechanism for PNN effects on memory, focusing on Semaphorin3 presentation by PNNs, and direct effects via the PTPsigma receptor.
3. Discover the sulphation modifications of the CSPG glycan chains that enable binding of Semaphorin3s, activation of the PTPsigma receptor.
4. Analyse molecules that bind to PNN glycans, to identify new potential effectors of PNN effects on memory and plasticity
5. Testing in memory and plasticity models of novel PNN-targeted approaches.
Summary
Inhibitory chondroitin sulphate proteoglycans (CSPGs) have several roles in CNS damage and repair, revealed by their digestion with chondroitinase. Most recently, digestion of CSPGs in the limbic system and cortex has led to a very substantial enhancement of memory.
The effects of CSPGs on plasticity and memory are largely through their concentration into PNNs, because transgenics lacking the PNN component link protein in the CNS have very attenuated PNNs, and show continuing plasticity into adulthood, and enhanced memory in just the same way as chondroitinase-treated animals. The PNN is therefore a novel therapeutic target that has not been explored.
This application focuses particularly on enhancement of memory through manipulation of PNNs.
In Alzheimer’s disease (AD) and ageing the main cognitive disability is loss of memory. The enhancement of memory following chondroitinase treatment or PNN knockout in object memory is many times greater than obtained using cholinesterase inhibitors (the only currently available treatment for memory enhancement). PNN manipulation is therefore a particularly promising avenue for developing treatments to overcome the main cognitive disability of AD and ageing.
The aims of the application are:
1. Test the extent of memory enhancement due to PNN manipulation in models of AD due to Abeta, tau mutations and in aged CNS.
2. Establish the molecular mechanism for PNN effects on memory, focusing on Semaphorin3 presentation by PNNs, and direct effects via the PTPsigma receptor.
3. Discover the sulphation modifications of the CSPG glycan chains that enable binding of Semaphorin3s, activation of the PTPsigma receptor.
4. Analyse molecules that bind to PNN glycans, to identify new potential effectors of PNN effects on memory and plasticity
5. Testing in memory and plasticity models of novel PNN-targeted approaches.
Max ERC Funding
2 450 543 €
Duration
Start date: 2012-03-01, End date: 2017-02-28
Project acronym EMOTIONS
Project The social and cultural construction of emotions: The Greek paradigm
Researcher (PI) Angelos Chaniotis
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Advanced Grant (AdG), SH6, ERC-2008-AdG
Summary Emotions influence social relations; consequently, they are socially relevant, subject to scrutiny, judgment, and normative intervention. The manifestation, perception and treatment of emotions are subject to social interventions and to the influence of cultural change. Emotions in the Classical world have been primarily studied in the light of their representation in literature and art. Such studies have provided important insights; yet, they are based on works primarily created in a few major urban centres, almost exclusively by educated men of a higher status. This project is based on an analysis of documentary sources (inscriptions and papyri, c. 800 BC-c. 500 AD). Although they provide abundant, diverse, and representative evidence, they have never been studied in connection with this subject. As compared to literature and art, these sources represent a wide range of social strata and age-classes, originate in both genders, and are widely disseminated over time and space. These sources will be analysed both diachronically (history of particular emotions) and synchronically (manifestations of emotions in defined historical contexts). Selected literary sources and archaeological material will also be taken into consideration. The project pursues the following objectives: to contribute to a more reliable, nuanced, and comprehensive history of emotions in the Greek world; to increase awareness of the importance of emotions in Classical studies; to contribute to the transdisciplinary study of emotions through the presentation of paradigms from Classical antiquity; to enhance the dialogue between historical, social, and natural sciences; and to make documentary sources accessible to scholars working on the history of emotions and, more generally, on the history of mentality.
Summary
Emotions influence social relations; consequently, they are socially relevant, subject to scrutiny, judgment, and normative intervention. The manifestation, perception and treatment of emotions are subject to social interventions and to the influence of cultural change. Emotions in the Classical world have been primarily studied in the light of their representation in literature and art. Such studies have provided important insights; yet, they are based on works primarily created in a few major urban centres, almost exclusively by educated men of a higher status. This project is based on an analysis of documentary sources (inscriptions and papyri, c. 800 BC-c. 500 AD). Although they provide abundant, diverse, and representative evidence, they have never been studied in connection with this subject. As compared to literature and art, these sources represent a wide range of social strata and age-classes, originate in both genders, and are widely disseminated over time and space. These sources will be analysed both diachronically (history of particular emotions) and synchronically (manifestations of emotions in defined historical contexts). Selected literary sources and archaeological material will also be taken into consideration. The project pursues the following objectives: to contribute to a more reliable, nuanced, and comprehensive history of emotions in the Greek world; to increase awareness of the importance of emotions in Classical studies; to contribute to the transdisciplinary study of emotions through the presentation of paradigms from Classical antiquity; to enhance the dialogue between historical, social, and natural sciences; and to make documentary sources accessible to scholars working on the history of emotions and, more generally, on the history of mentality.
Max ERC Funding
1 593 945 €
Duration
Start date: 2009-01-01, End date: 2013-12-31
Project acronym EMPSI
Project Receptors, Channels and Transporters:
Development and Application of Novel Technologies for Structure Determination
Researcher (PI) Christopher Gordon Tate
Host Institution (HI) MEDICAL RESEARCH COUNCIL
Call Details Advanced Grant (AdG), LS1, ERC-2013-ADG
Summary Structure determination of G protein-coupled receptors (GPCRs) has been exceedingly successful over the last 5 years due to the development of complimentary generic methodologies that will now allow the structure determination of virtually any GPCR. However, these technologies address only two aspects of the process, namely the stability of the receptors during purification and the ability to form well-diffracting crystals. The strategies also apply only to GPCRs and not transporters or ion channels. The recent successes have been of GPCRs that are expressed in either yeasts or in insect cells using the baculovirus expression system, but many membrane proteins are expressed poorly in these systems or may be expressed in a misfolded non-functional form. A second issue with the future structure determination of GPCRs is the lack of generic technologies to allow the crystallisation of arrestin-GPCR and G protein-GPCR complexes. Although one G protein GPCR complex has been crystallised this was exceedingly diffciult and resulted in poor resolution of the GPCR component of the complex. We believe that it is possible to thermostabilise both arrestin and heterotrimeric G proteins, which will allow a simplified strategy for the crystallisation and structure determination of GPCR complexes. This is based on the development of the strategy of conformational thermostabilisation of GPCRs developed in our lab that has resulted in the structure determination of 3 different GPCRs bound to either antagonists, partial agonists, full agonists and/or biased agonists.
The aims are:
1. The development of generic methodology for the production of eukaryotic membrane proteins in mammalian cells.
2. The development of a thermostable functional arrestin mutant
3. Structures of β1-adrenoceptor, adenosine A2A receptor and angiotensin receptor bound to a G protein and arrestin
4. Understanding the role of each amino acid residue in the activation process of GPCRs through saturation mutagenes
Summary
Structure determination of G protein-coupled receptors (GPCRs) has been exceedingly successful over the last 5 years due to the development of complimentary generic methodologies that will now allow the structure determination of virtually any GPCR. However, these technologies address only two aspects of the process, namely the stability of the receptors during purification and the ability to form well-diffracting crystals. The strategies also apply only to GPCRs and not transporters or ion channels. The recent successes have been of GPCRs that are expressed in either yeasts or in insect cells using the baculovirus expression system, but many membrane proteins are expressed poorly in these systems or may be expressed in a misfolded non-functional form. A second issue with the future structure determination of GPCRs is the lack of generic technologies to allow the crystallisation of arrestin-GPCR and G protein-GPCR complexes. Although one G protein GPCR complex has been crystallised this was exceedingly diffciult and resulted in poor resolution of the GPCR component of the complex. We believe that it is possible to thermostabilise both arrestin and heterotrimeric G proteins, which will allow a simplified strategy for the crystallisation and structure determination of GPCR complexes. This is based on the development of the strategy of conformational thermostabilisation of GPCRs developed in our lab that has resulted in the structure determination of 3 different GPCRs bound to either antagonists, partial agonists, full agonists and/or biased agonists.
The aims are:
1. The development of generic methodology for the production of eukaryotic membrane proteins in mammalian cells.
2. The development of a thermostable functional arrestin mutant
3. Structures of β1-adrenoceptor, adenosine A2A receptor and angiotensin receptor bound to a G protein and arrestin
4. Understanding the role of each amino acid residue in the activation process of GPCRs through saturation mutagenes
Max ERC Funding
2 378 162 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym ENABLE
Project Elucidating natural bilayer lipid environments
Researcher (PI) Carol Robinson
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Advanced Grant (AdG), LS1, ERC-2015-AdG
Summary Excising a membrane protein from its natural environment, preserving the lipid bilayer, and characterising the lipids that surround it is the ‘holy grail’ of membrane protein biophysics. However, with some 40,000 different lipid structures the challenges we face in understanding selective binding arise not just from the complexity and dynamics of the lipidome, but also from the transient nature of protein lipid interactions. To overcome these challenges we will take mass spectrometry (MS) into a new era, allowing, for the first time, the study of proteins in an environment as close as possible to the natural one. To do this we will (i) characterise protein lipid interactions by employing a high resolution Orbitrap mass spectrometer developed in-house, specifically for membrane proteins, (ii) capture the native lipid environment in vehicles suitable for use in conjunction with MS, and (iii) establish a new platform to be known as integral membrane protein desorption electrospray ionization (impDESI). Designed and built in-house impDESI is capable of releasing membrane proteins from surfaces directly into the mass spectrometer (MS). We will develop impDESI for membrane mimetics, and subsequently portions of natural membranes, enabling us to extract proteins with oligomeric state preserved and native lipid binding intact. The development of impDESI, in conjunction with high resolution Orbitrap MS, and coupled with the optimisation of membrane mimetics, has the potential to radically transform our understanding of native lipid binding, not only directly, but also temporally and spatially. Together these advances will answer key questions about how lipids modulate protein interfaces, occupy different binding sites, modulate membrane protein structure and modify function in vivo. Given the importance of membrane proteins as potential drugs targets understanding their modulation by lipids would be a major step towards more effective drug development.
Summary
Excising a membrane protein from its natural environment, preserving the lipid bilayer, and characterising the lipids that surround it is the ‘holy grail’ of membrane protein biophysics. However, with some 40,000 different lipid structures the challenges we face in understanding selective binding arise not just from the complexity and dynamics of the lipidome, but also from the transient nature of protein lipid interactions. To overcome these challenges we will take mass spectrometry (MS) into a new era, allowing, for the first time, the study of proteins in an environment as close as possible to the natural one. To do this we will (i) characterise protein lipid interactions by employing a high resolution Orbitrap mass spectrometer developed in-house, specifically for membrane proteins, (ii) capture the native lipid environment in vehicles suitable for use in conjunction with MS, and (iii) establish a new platform to be known as integral membrane protein desorption electrospray ionization (impDESI). Designed and built in-house impDESI is capable of releasing membrane proteins from surfaces directly into the mass spectrometer (MS). We will develop impDESI for membrane mimetics, and subsequently portions of natural membranes, enabling us to extract proteins with oligomeric state preserved and native lipid binding intact. The development of impDESI, in conjunction with high resolution Orbitrap MS, and coupled with the optimisation of membrane mimetics, has the potential to radically transform our understanding of native lipid binding, not only directly, but also temporally and spatially. Together these advances will answer key questions about how lipids modulate protein interfaces, occupy different binding sites, modulate membrane protein structure and modify function in vivo. Given the importance of membrane proteins as potential drugs targets understanding their modulation by lipids would be a major step towards more effective drug development.
Max ERC Funding
2 481 744 €
Duration
Start date: 2016-06-01, End date: 2021-05-31
Project acronym ENCOUNTER
Project Demography, Cultural change, and the Diffusion of Rice and Millet during the Jomon-Yayoi transition in prehistoric Japan
Researcher (PI) Enrico Ryunosuke CREMA
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Starting Grant (StG), SH6, ERC-2018-STG
Summary Human history is punctuated by episodes of large-scale diffusion of new ideas and people that lead to era-defining transitions in past societies. Investigating what promotes these events, how societies react to these, and what are their long-term consequences is a key to understand the fundamental drivers of cultural change. ENCOUNTER will push forward this research agenda by investigating the Jomon-Yayoi transition, a demic and cultural diffusion event that led the predominantly hunting, gathering, and fishing-based communities of the Japanese islands to adopt rice and millet farming during the 1st millennium BC. The continental migrants who triggered this transition event did not bring just a new economy, but also new technology and culture, deeply impacting the indigenous society. The transition was however not uniform, as different regions responded to the new culture in different ways. Some immediately adopted the new cultural repertoire to its full extent, others embraced only certain elements, and still others resisted for over 1,000 years, generating cultural, linguistic and genetic clines that are still tangible today. ENCOUNTER will investigate this pivotal moment in Japanese prehistory, seeking to determine why the indigenous inhabitants responded so differently to the arrival of the new culture. It will examine the dynamics of this transition by: synthesising one of the richest archaeological records available in the world; combining new and old lines of evidence across different disciplines, including organic chemistry, palynology, and material culture studies; and developing a suite of computational techniques to reconstruct patterns of demographic change and cultural diffusion. It will question the existing narrative that farming is inevitable and instead put new emphasis on the incumbent hunter-gatherer populations to understand their motivations to change subsistence strategies with respect to their environment settings and cultural affinities.
Summary
Human history is punctuated by episodes of large-scale diffusion of new ideas and people that lead to era-defining transitions in past societies. Investigating what promotes these events, how societies react to these, and what are their long-term consequences is a key to understand the fundamental drivers of cultural change. ENCOUNTER will push forward this research agenda by investigating the Jomon-Yayoi transition, a demic and cultural diffusion event that led the predominantly hunting, gathering, and fishing-based communities of the Japanese islands to adopt rice and millet farming during the 1st millennium BC. The continental migrants who triggered this transition event did not bring just a new economy, but also new technology and culture, deeply impacting the indigenous society. The transition was however not uniform, as different regions responded to the new culture in different ways. Some immediately adopted the new cultural repertoire to its full extent, others embraced only certain elements, and still others resisted for over 1,000 years, generating cultural, linguistic and genetic clines that are still tangible today. ENCOUNTER will investigate this pivotal moment in Japanese prehistory, seeking to determine why the indigenous inhabitants responded so differently to the arrival of the new culture. It will examine the dynamics of this transition by: synthesising one of the richest archaeological records available in the world; combining new and old lines of evidence across different disciplines, including organic chemistry, palynology, and material culture studies; and developing a suite of computational techniques to reconstruct patterns of demographic change and cultural diffusion. It will question the existing narrative that farming is inevitable and instead put new emphasis on the incumbent hunter-gatherer populations to understand their motivations to change subsistence strategies with respect to their environment settings and cultural affinities.
Max ERC Funding
1 499 095 €
Duration
Start date: 2019-04-01, End date: 2024-03-31
Project acronym ENGLAID
Project Landscape and Identities: the case of the English Landscape 1500 BC- Ad1086
Researcher (PI) Christopher Hugh Gosden
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Advanced Grant (AdG), SH6, ERC-2010-AdG_20100407
Summary The five-year EngLaId project will look at the long-term history of the English landscape from 1500 BC to AD 1086, combining evidence on landscape features, such as track-ways,fields and settlements, with the distribution of metalwork. The project aims to understand how people built relations with each other and broader cosmological forces from the start of the settled landscape to the early Medieval world. The project will combine a mass of digital data on landscapes and artefacts to uncover both continuity and change over 2500 years throwing a new light on the nature of pre-modern communities, contributing method and theory which can have model value in other areas of Europe.
Summary
The five-year EngLaId project will look at the long-term history of the English landscape from 1500 BC to AD 1086, combining evidence on landscape features, such as track-ways,fields and settlements, with the distribution of metalwork. The project aims to understand how people built relations with each other and broader cosmological forces from the start of the settled landscape to the early Medieval world. The project will combine a mass of digital data on landscapes and artefacts to uncover both continuity and change over 2500 years throwing a new light on the nature of pre-modern communities, contributing method and theory which can have model value in other areas of Europe.
Max ERC Funding
2 059 935 €
Duration
Start date: 2011-08-01, End date: 2016-12-31
Project acronym EOA
Project The Evolutionary Origins of Agriculture
Researcher (PI) Glynis Eleanor May Jones
Host Institution (HI) THE UNIVERSITY OF SHEFFIELD
Call Details Advanced Grant (AdG), SH6, ERC-2010-AdG_20100407
Summary The transition from a mobile hunter-gatherer lifestyle to one of settled agriculture is arguably the most fundamental change in human development since the origin of the human species, and the major question is why hunter-gatherer populations abandoned this way of life in favour of an agricultural existence. A crucial element in this change is the evolution of the crops upon which agriculture is founded. This proposal seeks to understand the selective pressures driving the this evolution through an investigation of the key phenotypic traits associated with crop domestication, providing insights into the ways in which plants were changed by human exploitation, as well as non-human environmental factors. This research programme brings together experimental ecology, molecular biology, and archaeobotany to address the three key elements for understanding the selective pressures acting on early crop evolution: (1) the relationship between human and environmental pressures and plant ecological characteristics, (2) early genetic trait selection in crop plants, and (3) the temporal and spatial location of trait selection. DNA methods will be developed for establishing the order in which traits were selected during domestication, and experimental ecology will investigate the reasons behind plant trait selection, for example whether through conscious selection for increased seed size or unconscious selection for associated traits related to the competitive ability. Improved morphometric measurement of archaeobotanical material will permit precise pinpointing of the appearance of domestication traits, and so identify the primary selective pressures driving the evolution of crop plants in different time periods and geographic locations. We will take advantage of recently developed methods to open up new areas of investigation for future research into both the origins and subsequent development of agriculture, and its role in the emergence and maintenance of civilisation.
Summary
The transition from a mobile hunter-gatherer lifestyle to one of settled agriculture is arguably the most fundamental change in human development since the origin of the human species, and the major question is why hunter-gatherer populations abandoned this way of life in favour of an agricultural existence. A crucial element in this change is the evolution of the crops upon which agriculture is founded. This proposal seeks to understand the selective pressures driving the this evolution through an investigation of the key phenotypic traits associated with crop domestication, providing insights into the ways in which plants were changed by human exploitation, as well as non-human environmental factors. This research programme brings together experimental ecology, molecular biology, and archaeobotany to address the three key elements for understanding the selective pressures acting on early crop evolution: (1) the relationship between human and environmental pressures and plant ecological characteristics, (2) early genetic trait selection in crop plants, and (3) the temporal and spatial location of trait selection. DNA methods will be developed for establishing the order in which traits were selected during domestication, and experimental ecology will investigate the reasons behind plant trait selection, for example whether through conscious selection for increased seed size or unconscious selection for associated traits related to the competitive ability. Improved morphometric measurement of archaeobotanical material will permit precise pinpointing of the appearance of domestication traits, and so identify the primary selective pressures driving the evolution of crop plants in different time periods and geographic locations. We will take advantage of recently developed methods to open up new areas of investigation for future research into both the origins and subsequent development of agriculture, and its role in the emergence and maintenance of civilisation.
Max ERC Funding
1 999 388 €
Duration
Start date: 2011-05-01, End date: 2016-01-31
Project acronym EPICut
Project Molecular mechanisms, evolutionary impacts and applications of prokaryotic epigenetic-targeted immune systems
Researcher (PI) Mark Dominik SZCZELKUN
Host Institution (HI) UNIVERSITY OF BRISTOL
Call Details Advanced Grant (AdG), LS1, ERC-2017-ADG
Summary Interactions between bacteria and their viruses (bacteriophages) have led to the evolution of a wide range of bacterial mechanisms to resist viral infection. The exploitation of such systems has produced true revolutions in biotechnology; firstly, the restriction-modification (RM) enzymes for genetic engineering, and secondly, CRISPR-Cas9 for gene editing. This project aims to unravel the mechanisms and consequences of prokaryotic immune systems that target covalently-modified DNA, such as base methylation, hydroxymethylation and glucosylation. Very little is known about these Type IV restriction enzymes at a mechanistic level, or about their importance to the coevolution of prokaryotic-phage communities. I propose a unique interdisciplinary approach that combines biophysical and single-molecule analysis of enzyme function, nucleoprotein structure determination, prokaryotic evolutionary ecology, and epigenome sequencing, to link the molecular mechanisms of prokaryotic defence to individual, population and community-level phenotypes. This knowledge is vital to a full understanding of how bacterial immunity influences horizontal gene transfer, including the spread of virulence or antimicrobial resistance. In addition, a deeper analysis of enzyme function will support our reengineering of these systems to produce improved restriction enzyme tools for the mapping of eukaryotic epigenetics markers.
Summary
Interactions between bacteria and their viruses (bacteriophages) have led to the evolution of a wide range of bacterial mechanisms to resist viral infection. The exploitation of such systems has produced true revolutions in biotechnology; firstly, the restriction-modification (RM) enzymes for genetic engineering, and secondly, CRISPR-Cas9 for gene editing. This project aims to unravel the mechanisms and consequences of prokaryotic immune systems that target covalently-modified DNA, such as base methylation, hydroxymethylation and glucosylation. Very little is known about these Type IV restriction enzymes at a mechanistic level, or about their importance to the coevolution of prokaryotic-phage communities. I propose a unique interdisciplinary approach that combines biophysical and single-molecule analysis of enzyme function, nucleoprotein structure determination, prokaryotic evolutionary ecology, and epigenome sequencing, to link the molecular mechanisms of prokaryotic defence to individual, population and community-level phenotypes. This knowledge is vital to a full understanding of how bacterial immunity influences horizontal gene transfer, including the spread of virulence or antimicrobial resistance. In addition, a deeper analysis of enzyme function will support our reengineering of these systems to produce improved restriction enzyme tools for the mapping of eukaryotic epigenetics markers.
Max ERC Funding
2 196 414 €
Duration
Start date: 2018-08-01, End date: 2023-07-31
Project acronym EPISWITCH
Project Mechanistic basis of nucleation and spreading underlying a Polycomb-mediated epigenetic switch
Researcher (PI) Caroline DEAN
Host Institution (HI) JOHN INNES CENTRE
Call Details Advanced Grant (AdG), LS1, ERC-2018-ADG
Summary Polycomb-mediated epigenetic regulation of gene expression is central to development and environmental plasticity in most eukaryotes. Polycomb Repressive Complex 2 (PRC2) is targeted to genomic sites, known as nucleation regions or Polycomb Response elements, and switches those targets to an epigenetically silenced state. But what constitutes the switching mechanism is unknown. Core epigenetic switching mechanisms have proven difficult to elucidate due to the complex molecular feedbacks involved. We will exploit a well-characterized gene system, Arabidopsis FLC, to address a central question – what are the core events that constitute a Polycomb switch?
Our hypothesis is that the epigenetic switch involves stochastic conformationally-induced oligomerization, generating an ordered protein assembly of PRC2 accessory proteins and PRC2, that is then robustly distributed onto both daughter strands during DNA replication through self-templating feedback mechanisms. We will determine the local chromatin features that promote the epigenetic switch independently at each allele (i.e., in cis). We will also dissect the involvement of DNA replication in the transition from metastable to long-term epigenetic silencing, associated with the Polycomb complex spreading across the body of the locus.
This interdisciplinary proposal combines molecular genetics/biology, computational biology, with structural biology, achieved through close working relationships with Prof. Martin Howard (John Innes Centre), Dr Mariann Bienz (MRC Laboratory of Molecular Biology, Cambridge) and Dr Julian Sale, (MRC Laboratory of Molecular Biology, Cambridge). This blue-sky programme aims to provide important new concepts in Polycomb-mediated epigenetic switching mechanisms, important for the whole epigenetics field.
Summary
Polycomb-mediated epigenetic regulation of gene expression is central to development and environmental plasticity in most eukaryotes. Polycomb Repressive Complex 2 (PRC2) is targeted to genomic sites, known as nucleation regions or Polycomb Response elements, and switches those targets to an epigenetically silenced state. But what constitutes the switching mechanism is unknown. Core epigenetic switching mechanisms have proven difficult to elucidate due to the complex molecular feedbacks involved. We will exploit a well-characterized gene system, Arabidopsis FLC, to address a central question – what are the core events that constitute a Polycomb switch?
Our hypothesis is that the epigenetic switch involves stochastic conformationally-induced oligomerization, generating an ordered protein assembly of PRC2 accessory proteins and PRC2, that is then robustly distributed onto both daughter strands during DNA replication through self-templating feedback mechanisms. We will determine the local chromatin features that promote the epigenetic switch independently at each allele (i.e., in cis). We will also dissect the involvement of DNA replication in the transition from metastable to long-term epigenetic silencing, associated with the Polycomb complex spreading across the body of the locus.
This interdisciplinary proposal combines molecular genetics/biology, computational biology, with structural biology, achieved through close working relationships with Prof. Martin Howard (John Innes Centre), Dr Mariann Bienz (MRC Laboratory of Molecular Biology, Cambridge) and Dr Julian Sale, (MRC Laboratory of Molecular Biology, Cambridge). This blue-sky programme aims to provide important new concepts in Polycomb-mediated epigenetic switching mechanisms, important for the whole epigenetics field.
Max ERC Funding
2 101 325 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym EUKDNAREP
Project The Initiation of Eukaryotic DNA Replication: Mechanism, Regulation and Role in Genome Stability
Researcher (PI) John Diffley
Host Institution (HI) THE FRANCIS CRICK INSTITUTE LIMITED
Call Details Advanced Grant (AdG), LS1, ERC-2009-AdG
Summary In each cell cycle, eukaryotic cells must faithfully replicate large genomes in a relatively short time. This is accomplished by initiating DNA replication from many replication origins distributed along chromosomes. Ensuring that each origin is efficiently activated once and only once per cell cycle is crucial for maintaining the integrity of the genome. Recent evidence indicates that defects in the regulation of origin firing may be important contributors to genome instability in cancer. Strict once per cell cycle DNA replication is achieved by a two-step mechanism. DNA replication origins are first licensed by loading an inactive DNA helicase (Mcm2-7) into pre-replicative complexes (pre-RCs). This can only occur during G1 phase. Initiation then occurs during S phase, triggered by cyclin dependent kinases (CDKs) and Dbf4-dependent kinase (DDK), which promote recruitment of proteins required for helicase activation and replisome assembly. Research proposed herein will lead to a deeper understanding of the mechanism and regulation of DNA replication. We have reconstituted the licensing reaction with purified proteins which will be used to characterise the mechanism of licensing and the mechanism by which licensing is regulated in the cell cycle. We will also use this system to reconstitute events leading to the initiation of DNA replication. We will use genetic and biochemical approaches to characterise the mechanisms by which perturbed licensing causes gross chromosome rearrangements. We will also explore mechanisms involved in regulating the temporal programme of origin firing and how origin firing is regulated in response to DNA damage. Work in budding yeast and mammalian cells will be pursued in parallel to exploit the specific advantages of each system.
Summary
In each cell cycle, eukaryotic cells must faithfully replicate large genomes in a relatively short time. This is accomplished by initiating DNA replication from many replication origins distributed along chromosomes. Ensuring that each origin is efficiently activated once and only once per cell cycle is crucial for maintaining the integrity of the genome. Recent evidence indicates that defects in the regulation of origin firing may be important contributors to genome instability in cancer. Strict once per cell cycle DNA replication is achieved by a two-step mechanism. DNA replication origins are first licensed by loading an inactive DNA helicase (Mcm2-7) into pre-replicative complexes (pre-RCs). This can only occur during G1 phase. Initiation then occurs during S phase, triggered by cyclin dependent kinases (CDKs) and Dbf4-dependent kinase (DDK), which promote recruitment of proteins required for helicase activation and replisome assembly. Research proposed herein will lead to a deeper understanding of the mechanism and regulation of DNA replication. We have reconstituted the licensing reaction with purified proteins which will be used to characterise the mechanism of licensing and the mechanism by which licensing is regulated in the cell cycle. We will also use this system to reconstitute events leading to the initiation of DNA replication. We will use genetic and biochemical approaches to characterise the mechanisms by which perturbed licensing causes gross chromosome rearrangements. We will also explore mechanisms involved in regulating the temporal programme of origin firing and how origin firing is regulated in response to DNA damage. Work in budding yeast and mammalian cells will be pursued in parallel to exploit the specific advantages of each system.
Max ERC Funding
2 449 999 €
Duration
Start date: 2010-05-01, End date: 2015-04-30
Project acronym EURECON
Project The Making of a Lopsided Union: Economic Integration in the European Economic Community, 1957-1992
Researcher (PI) Emmanuel MOURLON-DRUOL
Host Institution (HI) UNIVERSITY OF GLASGOW
Call Details Starting Grant (StG), SH6, ERC-2016-STG
Summary The project investigates European policymakers’ views about how to make the European Economic
Community (EEC) fit for a monetary union. It will thus assess the origins of the issues that are currently
bedevilling the EU.
From the EEC creation in 1957 to the decision to create the euro in 1992, several proposals were tabled
to improve the functioning of the EEC as a possible currency area. Five interconnected domains are crucial
to achieve economic integration in a currency union, and were continuously discussed before 1992:
macroeconomic policy coordination, fiscal transfers, capital market integration, banking regulation, and
deepening of the common/single market. The project will provide the first historical appraisal of these
proposals and debates, and identify the dynamics of political and economic trade-offs and compromises,
shifting priorities, and alternative approaches abandoned at the time but recycled later.
The project intertwines international, legal, political, and economic history approaches in order to
provide a thorough portrait of European policymakers’ paradigms, goals, and constraints in envisioning an
economic union in a changing global context. It relies on pioneering multilateral, multi-archival research
analysing material from all member states and EEC institutions.
The project also intends to encourage the study of the critical influence of non-EEC and non-state actors
and factors on the European decision-making level. To this end, the PI will lead a team of two PhD students
and two Postdocs to explore specific case studies involving commercial banks, big business, trade unions and
the evolution of economic thinking.
The project aims to link the usually insulated scholarships of European integration, postwar European
history, and national histories of economic policymaking. It will shed new light on the EU’s post-Maastricht
evolution and contextualise the Eurozone’s current challenges by providing a deeper understanding of its
foundations.
Summary
The project investigates European policymakers’ views about how to make the European Economic
Community (EEC) fit for a monetary union. It will thus assess the origins of the issues that are currently
bedevilling the EU.
From the EEC creation in 1957 to the decision to create the euro in 1992, several proposals were tabled
to improve the functioning of the EEC as a possible currency area. Five interconnected domains are crucial
to achieve economic integration in a currency union, and were continuously discussed before 1992:
macroeconomic policy coordination, fiscal transfers, capital market integration, banking regulation, and
deepening of the common/single market. The project will provide the first historical appraisal of these
proposals and debates, and identify the dynamics of political and economic trade-offs and compromises,
shifting priorities, and alternative approaches abandoned at the time but recycled later.
The project intertwines international, legal, political, and economic history approaches in order to
provide a thorough portrait of European policymakers’ paradigms, goals, and constraints in envisioning an
economic union in a changing global context. It relies on pioneering multilateral, multi-archival research
analysing material from all member states and EEC institutions.
The project also intends to encourage the study of the critical influence of non-EEC and non-state actors
and factors on the European decision-making level. To this end, the PI will lead a team of two PhD students
and two Postdocs to explore specific case studies involving commercial banks, big business, trade unions and
the evolution of economic thinking.
The project aims to link the usually insulated scholarships of European integration, postwar European
history, and national histories of economic policymaking. It will shed new light on the EU’s post-Maastricht
evolution and contextualise the Eurozone’s current challenges by providing a deeper understanding of its
foundations.
Max ERC Funding
1 498 451 €
Duration
Start date: 2017-03-01, End date: 2022-02-28
Project acronym EURO-NEUROSTRESS
Project Dissecting the Central Stress Response: Bridging the Genotype-Phenotype Gap
Researcher (PI) Alon Chen
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Starting Grant (StG), LS5, ERC-2010-StG_20091118
Summary The biological response to stress is concerned with the maintenance of homeostasis in the presence of real or perceived challenges. This process requires numerous adaptive responses involving changes in the central nervous and neuroendocrine systems. When a situation is perceived as stressful, the brain activates many neuronal circuits linking centers involved in sensory, motor, autonomic, neuroendocrine, cognitive, and emotional functions in order to adapt to the demand. However, the details of the pathways by which the brain translates stressful stimuli into the final, integrated biological response are presently incompletely understood. Nevertheless, it is clear that dysregulation of these physiological responses to stress can have severe psychological and physiological consequences, and there is much evidence to suggest that inappropriate regulation, disproportional intensity, or chronic and/or irreversible activation of the stress response is linked to the etiology and pathophysiology of anxiety disorders and depression.
Understanding the neurobiology of stress by focusing on the brain circuits and genes, which are associated with, or altered by, the stress response will provide important insights into the brain mechanisms by which stress affects psychological and physiological disorders. This is an integrated multidisciplinary project from gene to behavior using state-of-the-art moue genetics and animal models. We will employ integrated molecular, biochemical, physiological and behavioral methods, focusing on the generation of mice genetic models as an in vivo tool, in order to study the central pathways and molecular mechanisms mediating the stress response. Defining the contributions of known and novel gene products to the maintenance of stress-linked homeostasis may improve our ability to design therapeutic interventions for, and thus manage, stress-related disorders.
Summary
The biological response to stress is concerned with the maintenance of homeostasis in the presence of real or perceived challenges. This process requires numerous adaptive responses involving changes in the central nervous and neuroendocrine systems. When a situation is perceived as stressful, the brain activates many neuronal circuits linking centers involved in sensory, motor, autonomic, neuroendocrine, cognitive, and emotional functions in order to adapt to the demand. However, the details of the pathways by which the brain translates stressful stimuli into the final, integrated biological response are presently incompletely understood. Nevertheless, it is clear that dysregulation of these physiological responses to stress can have severe psychological and physiological consequences, and there is much evidence to suggest that inappropriate regulation, disproportional intensity, or chronic and/or irreversible activation of the stress response is linked to the etiology and pathophysiology of anxiety disorders and depression.
Understanding the neurobiology of stress by focusing on the brain circuits and genes, which are associated with, or altered by, the stress response will provide important insights into the brain mechanisms by which stress affects psychological and physiological disorders. This is an integrated multidisciplinary project from gene to behavior using state-of-the-art moue genetics and animal models. We will employ integrated molecular, biochemical, physiological and behavioral methods, focusing on the generation of mice genetic models as an in vivo tool, in order to study the central pathways and molecular mechanisms mediating the stress response. Defining the contributions of known and novel gene products to the maintenance of stress-linked homeostasis may improve our ability to design therapeutic interventions for, and thus manage, stress-related disorders.
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-04-01, End date: 2016-03-31
Project acronym EUROEVOL
Project Cultural Evolution of Neolithic Europe
Researcher (PI) Stephen Shennan
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Advanced Grant (AdG), SH6, ERC-2009-AdG
Summary The last 30 years have seen the rapid emergence and growth of a new high-profile interdisciplinary field, the study of cultural evolution, which has produced novel ways of understanding human cultural and socio-economic behaviour. In particular, it has produced mathematical models derived from evolutionary biology demonstrating the importance of culture and history in understanding human cultures and societies, while at the same time taking into account the adaptive dimension. The field has seen a great deal of theoretical development and some empirical work, not least by myself and colleagues at the UCL AHRC Centre for the Evolution of Cultural Diversity and its predecessor. However, there has been no substantive attempt to bring the different sub-fields of cultural evolutionary theory and method together in an integrated fashion and apply them to large-scale case-studies in history or prehistory to address specific questions concerning the links between demographic, economic, social and cultural patterns and processes. The aim of this proposal is to do that for the first time and in doing so to provide the basis for a new account of the role of farming in transforming early European farming societies, c.6000-2000 calBC, focussing on the western half of Europe, where the available data are best. The project will have a major impact on the field of cultural evolution by providing a model example for cultural evolutionary studies of early societies in other parts of the world. It will also provide important new insights into the history of European society and give a significant impetus to re-orienting the disciplinary field of archaeology, making it part of the broader inter-disciplinary endeavour of evolutionary social science, as other researchers follow its example.
Summary
The last 30 years have seen the rapid emergence and growth of a new high-profile interdisciplinary field, the study of cultural evolution, which has produced novel ways of understanding human cultural and socio-economic behaviour. In particular, it has produced mathematical models derived from evolutionary biology demonstrating the importance of culture and history in understanding human cultures and societies, while at the same time taking into account the adaptive dimension. The field has seen a great deal of theoretical development and some empirical work, not least by myself and colleagues at the UCL AHRC Centre for the Evolution of Cultural Diversity and its predecessor. However, there has been no substantive attempt to bring the different sub-fields of cultural evolutionary theory and method together in an integrated fashion and apply them to large-scale case-studies in history or prehistory to address specific questions concerning the links between demographic, economic, social and cultural patterns and processes. The aim of this proposal is to do that for the first time and in doing so to provide the basis for a new account of the role of farming in transforming early European farming societies, c.6000-2000 calBC, focussing on the western half of Europe, where the available data are best. The project will have a major impact on the field of cultural evolution by providing a model example for cultural evolutionary studies of early societies in other parts of the world. It will also provide important new insights into the history of European society and give a significant impetus to re-orienting the disciplinary field of archaeology, making it part of the broader inter-disciplinary endeavour of evolutionary social science, as other researchers follow its example.
Max ERC Funding
2 000 000 €
Duration
Start date: 2010-05-01, End date: 2015-04-30
Project acronym EUROFARM
Project Transmission of innovations: comparison and modelling of early farming and associated technologies in Europe
Researcher (PI) Marc Marie André Georges Vander Linden
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Starting Grant (StG), SH6, ERC-2012-StG_20111124
Summary "This project will investigate the transmission of farming and associated technological innovations (landscape use, pottery, lithics) in the western Balkans during the 6th and 5th millennium BC through a combination of new data collection (archaeological field work, access to museum collections and literature survey), analysis and agent-based modelling. The research area provides a unique opportunity to observe the creation and initial dispersal of the two cultural streams (inland and maritime) responsible for the introduction of farming across much of Europe. This project will be the first one to consider explicitly this process from the point of view of the transmission of innovations, that is how one becomes a farmer. The analytical work will characterise the competences and knowledge required for the transmission of each selected technological innovation. The agent-based modelling will aim at comparing these technologies together and weighing their respective impact in shaping the variability between the inland and maritime streams of neolithisation. Thanks to its combination of robust analytical work and modelling, this project will achieve the difficult balance between reflecting the complexity inherent to each technology, and the need for abstraction required for comparison."
Summary
"This project will investigate the transmission of farming and associated technological innovations (landscape use, pottery, lithics) in the western Balkans during the 6th and 5th millennium BC through a combination of new data collection (archaeological field work, access to museum collections and literature survey), analysis and agent-based modelling. The research area provides a unique opportunity to observe the creation and initial dispersal of the two cultural streams (inland and maritime) responsible for the introduction of farming across much of Europe. This project will be the first one to consider explicitly this process from the point of view of the transmission of innovations, that is how one becomes a farmer. The analytical work will characterise the competences and knowledge required for the transmission of each selected technological innovation. The agent-based modelling will aim at comparing these technologies together and weighing their respective impact in shaping the variability between the inland and maritime streams of neolithisation. Thanks to its combination of robust analytical work and modelling, this project will achieve the difficult balance between reflecting the complexity inherent to each technology, and the need for abstraction required for comparison."
Max ERC Funding
1 499 832 €
Duration
Start date: 2012-10-01, End date: 2017-09-30
Project acronym EvolutioNeuroCircuit
Project Cellular and genetic bases of neural circuits evolution
Researcher (PI) Lucia PRIETO GODINO
Host Institution (HI) THE FRANCIS CRICK INSTITUTE LIMITED
Call Details Starting Grant (StG), LS5, ERC-2018-STG
Summary Sensory systems encode the world around us to produce context-dependent appropriate behaviours. However, we know little about the way new sensory evoked behaviours arise as neural circuits are re-shaped during evolution. Tackling this question requires a deep understanding of the circuits underlying specific behaviours and integration of this knowledge with tools from other fields, including evolutionary and developmental biology. Recent technological advancements on neural circuit interrogation and genome editing have put progress on this fundamental biological question within reach.
The olfactory system of the larval stage of the fly Drosophila melanogaster and related species is an ideal model for investigating these questions because (i) D. melanogaster has pioneered both the fields of population genetics and neurogenetics and (ii) its olfactory system is one of the best-characterised neural circuits. We will address the question of how olfactory circuits evolve by studying four species with divergent odour-guided behaviours through the following multidisciplinary aims:
1. Which olfactory pathways are targeted in the evolution of ecological specialisation? – Combining high-throughput behavioural assays, optogenetics and calcium imaging in the larva of all four species we will determine whether/which olfactory pathways have switched valences or sensitivity.
2. How have central neural circuits diverged? – We will address this question at unprecedented resolution through whole-brain calcium imaging and serial electron microscopy reconstruction.
3. What are the molecular and genetic bases of neural circuits rewiring during evolution? – Using transcriptomic profiling we will identify differentially expressed genes in conserved and divergent circuits across species, and functionally probe selected candidates to establish causality.
4. How do evolutionary forces shape olfactory circuits? – We will investigate this question using field studies and population genetics
Summary
Sensory systems encode the world around us to produce context-dependent appropriate behaviours. However, we know little about the way new sensory evoked behaviours arise as neural circuits are re-shaped during evolution. Tackling this question requires a deep understanding of the circuits underlying specific behaviours and integration of this knowledge with tools from other fields, including evolutionary and developmental biology. Recent technological advancements on neural circuit interrogation and genome editing have put progress on this fundamental biological question within reach.
The olfactory system of the larval stage of the fly Drosophila melanogaster and related species is an ideal model for investigating these questions because (i) D. melanogaster has pioneered both the fields of population genetics and neurogenetics and (ii) its olfactory system is one of the best-characterised neural circuits. We will address the question of how olfactory circuits evolve by studying four species with divergent odour-guided behaviours through the following multidisciplinary aims:
1. Which olfactory pathways are targeted in the evolution of ecological specialisation? – Combining high-throughput behavioural assays, optogenetics and calcium imaging in the larva of all four species we will determine whether/which olfactory pathways have switched valences or sensitivity.
2. How have central neural circuits diverged? – We will address this question at unprecedented resolution through whole-brain calcium imaging and serial electron microscopy reconstruction.
3. What are the molecular and genetic bases of neural circuits rewiring during evolution? – Using transcriptomic profiling we will identify differentially expressed genes in conserved and divergent circuits across species, and functionally probe selected candidates to establish causality.
4. How do evolutionary forces shape olfactory circuits? – We will investigate this question using field studies and population genetics
Max ERC Funding
1 312 500 €
Duration
Start date: 2019-03-01, End date: 2024-02-29
Project acronym FeedSax
Project Feeding Anglo-Saxon England: The Bioarchaeology of an Agricultural Revolution
Researcher (PI) Helena HAMEROW
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Advanced Grant (AdG), SH6, ERC-2016-ADG
Summary By the time of the Norman Conquest in 1066, England’s population was again comparable to that of Roman Britain and included substantial urban centres. By 1200, England was more densely populated than ever before. Such population growth was mirrored across much of Europe. It drove the expansion of towns and markets and was fed, literally, by an increase in agricultural productivity that involved a fundamental reorganization of the countryside. The social, economic and demographic consequences of this reorganization were so far-reaching that it has often been described as an ‘agricultural revolution’. At the heart of this proposal is the question, how and when was this revolution achieved? FeedSax will effect a breakthrough in understanding this critically important period in Europe’s agricultural history by generating new, direct evidence for changing land-use from the excavated remains of crops, animals and farms.
The timing and nature of the ‘cerealisation’ of England have been debated for over a century, with arguments focusing on the origins of open fields. These arrays of strip fields were communally cultivated, requiring collective decision-making and sharing of resources. Peasant households therefore had to live close together, giving rise to the nucleated villages that remain such a striking feature of the landscape. Fields thus created communities, reconfiguring both landscapes and social geography. The spread of open fields laid the foundations for the modern countryside and is widely regarded as one of the transformative changes of the Middle Ages, yet theories about when and how this unprecedented type of agriculture emerged and spread are based on limited, indirect written and archaeological evidence. FeedSax breaks new ground by integrating scientific methods such as stable isotope and pollen analysis, radiocarbon dating, archaeobotany and archaeozoology with structural remains to resolve this hitherto intractable problem.
Summary
By the time of the Norman Conquest in 1066, England’s population was again comparable to that of Roman Britain and included substantial urban centres. By 1200, England was more densely populated than ever before. Such population growth was mirrored across much of Europe. It drove the expansion of towns and markets and was fed, literally, by an increase in agricultural productivity that involved a fundamental reorganization of the countryside. The social, economic and demographic consequences of this reorganization were so far-reaching that it has often been described as an ‘agricultural revolution’. At the heart of this proposal is the question, how and when was this revolution achieved? FeedSax will effect a breakthrough in understanding this critically important period in Europe’s agricultural history by generating new, direct evidence for changing land-use from the excavated remains of crops, animals and farms.
The timing and nature of the ‘cerealisation’ of England have been debated for over a century, with arguments focusing on the origins of open fields. These arrays of strip fields were communally cultivated, requiring collective decision-making and sharing of resources. Peasant households therefore had to live close together, giving rise to the nucleated villages that remain such a striking feature of the landscape. Fields thus created communities, reconfiguring both landscapes and social geography. The spread of open fields laid the foundations for the modern countryside and is widely regarded as one of the transformative changes of the Middle Ages, yet theories about when and how this unprecedented type of agriculture emerged and spread are based on limited, indirect written and archaeological evidence. FeedSax breaks new ground by integrating scientific methods such as stable isotope and pollen analysis, radiocarbon dating, archaeobotany and archaeozoology with structural remains to resolve this hitherto intractable problem.
Max ERC Funding
1 933 165 €
Duration
Start date: 2017-09-01, End date: 2021-08-31
Project acronym FLAME
Project FLow of Ancient Metals across Eurasia (FLAME): New frameworks for interpreting human interaction in Later Prehistory
Researcher (PI) Alan Mark Pollard
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Advanced Grant (AdG), SH6, ERC-2014-ADG
Summary FLow of Ancient Metals across Eurasia (FLAME) is a new empirical and conceptual framework for understanding human interactions in Later Prehistory across all of Eurasia. Taking existing data on the chemical and isotopic composition of copper alloy objects and combining them with typological and chronological information within a GIS framework, FLAME aims to rewrite the history of human engagement with copper and its alloys across Eurasia, from Atlantic Iberia to the shores of the Pacific during approximately the 3rd to early 1st millennia BCE. It replaces the outdated concept of provenance with a completely new interpretative paradigm (‘form and flow’), which is built upon the expectation that copper may be recycled, re-alloyed and generally re-used, thus breaking the simple linear assumption of a direct chemical or isotopic link between the copper and the ore from which it came. In this new paradigm, small shifts in chemistry are interpreted not necessarily as changing ore sources but also as the natural consequence of high-temperature processing and mixing, thus putting the emphasis on human interaction with metal rather than on sourcing. We will address major questions at a range of scales, from assemblage to continental, to look at how metal flowed literally and metaphorically through the complex societies of Bronze Age Eurasia. Our reassessment of the metallurgy will also be underpinned by new GIS frameworks and the creation of regional Bayesian-modelled radiocarbon chronologies. Previous scientific assessments of early metal have too often isolated the chemical and isotopic evidence from both the immediate archaeological context and any sense of a real time and place. FLAME brings together a broad range of skills to examine for the first time the intertwined social, scientific, chronological and geographical aspects of Eurasian early metallurgy.
Summary
FLow of Ancient Metals across Eurasia (FLAME) is a new empirical and conceptual framework for understanding human interactions in Later Prehistory across all of Eurasia. Taking existing data on the chemical and isotopic composition of copper alloy objects and combining them with typological and chronological information within a GIS framework, FLAME aims to rewrite the history of human engagement with copper and its alloys across Eurasia, from Atlantic Iberia to the shores of the Pacific during approximately the 3rd to early 1st millennia BCE. It replaces the outdated concept of provenance with a completely new interpretative paradigm (‘form and flow’), which is built upon the expectation that copper may be recycled, re-alloyed and generally re-used, thus breaking the simple linear assumption of a direct chemical or isotopic link between the copper and the ore from which it came. In this new paradigm, small shifts in chemistry are interpreted not necessarily as changing ore sources but also as the natural consequence of high-temperature processing and mixing, thus putting the emphasis on human interaction with metal rather than on sourcing. We will address major questions at a range of scales, from assemblage to continental, to look at how metal flowed literally and metaphorically through the complex societies of Bronze Age Eurasia. Our reassessment of the metallurgy will also be underpinned by new GIS frameworks and the creation of regional Bayesian-modelled radiocarbon chronologies. Previous scientific assessments of early metal have too often isolated the chemical and isotopic evidence from both the immediate archaeological context and any sense of a real time and place. FLAME brings together a broad range of skills to examine for the first time the intertwined social, scientific, chronological and geographical aspects of Eurasian early metallurgy.
Max ERC Funding
2 447 052 €
Duration
Start date: 2015-10-01, End date: 2020-09-30