Project acronym ANGEOM
Project Geometric analysis in the Euclidean space
Researcher (PI) Xavier Tolsa Domenech
Host Institution (HI) UNIVERSITAT AUTONOMA DE BARCELONA
Call Details Advanced Grant (AdG), PE1, ERC-2012-ADG_20120216
Summary "We propose to study different questions in the area of the so called geometric analysis. Most of the topics we are interested in deal with the connection between the behavior of singular integrals and the geometry of sets and measures. The study of this connection has been shown to be extremely helpful in the solution of certain long standing problems in the last years, such as the solution of the Painlev\'e problem or the obtaining of the optimal distortion bounds for quasiconformal mappings by Astala.
More specifically, we would like to study the relationship between the L^2 boundedness of singular integrals associated with Riesz and other related kernels, and rectifiability and other geometric notions. The so called David-Semmes problem is probably the main open problem in this area. Up to now, the techniques used to deal with this problem come from multiscale analysis and involve ideas from Littlewood-Paley theory and quantitative techniques of rectifiability. We propose to apply new ideas that combine variational arguments with other techniques which have connections with mass transportation. Further, we think that it is worth to explore in more detail the connection among mass transportation, singular integrals, and uniform rectifiability.
We are also interested in the field of quasiconformal mappings. We plan to study a problem regarding the quasiconformal distortion of quasicircles. This problem consists in proving that the bounds obtained recently by S. Smirnov on the dimension of K-quasicircles are optimal. We want to apply techniques from quantitative geometric measure theory to deal with this question.
Another question that we intend to explore lies in the interplay of harmonic analysis, geometric measure theory and partial differential equations. This concerns an old problem on the unique continuation of harmonic functions at the boundary open C^1 or Lipschitz domain. All the results known by now deal with smoother Dini domains."
Summary
"We propose to study different questions in the area of the so called geometric analysis. Most of the topics we are interested in deal with the connection between the behavior of singular integrals and the geometry of sets and measures. The study of this connection has been shown to be extremely helpful in the solution of certain long standing problems in the last years, such as the solution of the Painlev\'e problem or the obtaining of the optimal distortion bounds for quasiconformal mappings by Astala.
More specifically, we would like to study the relationship between the L^2 boundedness of singular integrals associated with Riesz and other related kernels, and rectifiability and other geometric notions. The so called David-Semmes problem is probably the main open problem in this area. Up to now, the techniques used to deal with this problem come from multiscale analysis and involve ideas from Littlewood-Paley theory and quantitative techniques of rectifiability. We propose to apply new ideas that combine variational arguments with other techniques which have connections with mass transportation. Further, we think that it is worth to explore in more detail the connection among mass transportation, singular integrals, and uniform rectifiability.
We are also interested in the field of quasiconformal mappings. We plan to study a problem regarding the quasiconformal distortion of quasicircles. This problem consists in proving that the bounds obtained recently by S. Smirnov on the dimension of K-quasicircles are optimal. We want to apply techniques from quantitative geometric measure theory to deal with this question.
Another question that we intend to explore lies in the interplay of harmonic analysis, geometric measure theory and partial differential equations. This concerns an old problem on the unique continuation of harmonic functions at the boundary open C^1 or Lipschitz domain. All the results known by now deal with smoother Dini domains."
Max ERC Funding
1 105 930 €
Duration
Start date: 2013-05-01, End date: 2018-04-30
Project acronym CATGOLD
Project ADVANCING GOLD CATALYSIS
Researcher (PI) Antonio María Echavarren Pablos
Host Institution (HI) FUNDACIO PRIVADA INSTITUT CATALA D'INVESTIGACIO QUIMICA
Call Details Advanced Grant (AdG), PE5, ERC-2012-ADG_20120216
Summary We plan to chase new goals by exploring the limits of gold chemistry and organic synthesis. A major goal is to promote copper to the level of gold as the catalyst of choice for the activation of alkynes under homogeneous conditions. Another major goal is to develop enantioselective reactions based on a new chiral catalyst design to overcome the inherent limitations of the linear coordination of d10 M(I) coinage metals. We whish to contribute to bridge the gap between homogeneous and heterogeneous gold catalysis discovering new reactions for C-C bond formation via cross-coupling and C-H activation. We will apply new methods based on Au catalysis to fill the gap that exists between chemical synthesis and physical methods such as graphite exfoliation or laser ablation for the synthesis of nanographenes and other large acenes.
Summary
We plan to chase new goals by exploring the limits of gold chemistry and organic synthesis. A major goal is to promote copper to the level of gold as the catalyst of choice for the activation of alkynes under homogeneous conditions. Another major goal is to develop enantioselective reactions based on a new chiral catalyst design to overcome the inherent limitations of the linear coordination of d10 M(I) coinage metals. We whish to contribute to bridge the gap between homogeneous and heterogeneous gold catalysis discovering new reactions for C-C bond formation via cross-coupling and C-H activation. We will apply new methods based on Au catalysis to fill the gap that exists between chemical synthesis and physical methods such as graphite exfoliation or laser ablation for the synthesis of nanographenes and other large acenes.
Max ERC Funding
2 499 060 €
Duration
Start date: 2013-03-01, End date: 2018-02-28
Project acronym CHIRALLCARBON
Project Chiral Allotropes of Carbon
Researcher (PI) Nazario Martín
Host Institution (HI) UNIVERSIDAD COMPLUTENSE DE MADRID
Call Details Advanced Grant (AdG), PE5, ERC-2012-ADG_20120216
Summary The aim of the present project is to answer fundamental questions about how to introduce chirality into a variety of carbon nanostructures and how it modifies the properties in the search for new applications in materials science and nanotecnology. Thus, it describes a fundamental and technological research program designed to gain new knowledge for the development of novel covalent and supramolecular chiral carbon nanoforms, and their further chemical modification for the preparation of sophisticated supramolecular 3D nanoarchitectures. Our research activity should reinforce and integrate the strong position of Europe in the knowledge of carbon nanoforms.
This important scientific challenge has not been properly addressed so far due to the inherent difficulties to work on these materials and, particularly, to the lack of an efficient chemical protocol to prepare chiral carbon nanoforms.
Summary
The aim of the present project is to answer fundamental questions about how to introduce chirality into a variety of carbon nanostructures and how it modifies the properties in the search for new applications in materials science and nanotecnology. Thus, it describes a fundamental and technological research program designed to gain new knowledge for the development of novel covalent and supramolecular chiral carbon nanoforms, and their further chemical modification for the preparation of sophisticated supramolecular 3D nanoarchitectures. Our research activity should reinforce and integrate the strong position of Europe in the knowledge of carbon nanoforms.
This important scientific challenge has not been properly addressed so far due to the inherent difficulties to work on these materials and, particularly, to the lack of an efficient chemical protocol to prepare chiral carbon nanoforms.
Max ERC Funding
2 235 000 €
Duration
Start date: 2013-04-01, End date: 2019-03-31
Project acronym COMP-DES-MAT
Project Advanced tools for computational design of engineering materials
Researcher (PI) Francisco Javier (Xavier) Oliver Olivella
Host Institution (HI) CENTRE INTERNACIONAL DE METODES NUMERICS EN ENGINYERIA
Call Details Advanced Grant (AdG), PE8, ERC-2012-ADG_20120216
Summary The overall goal of the project is to contribute to the consolidation of the nascent and revolutionary philosophy of “Materials by Design” by resorting to the enormous power provided by the nowadays-available computational techniques. Limitations of current procedures for developing material-based innovative technologies in engineering, are often made manifest; many times only a catalog, or a data basis, of materials is available and these new technologies have to adapt to them, in the same way that the users of ready-to-wear have to take from the shop the costume that fits them better, but not the one that fits them properly. This constitutes an enormous limitation for the intended goals and scope. Certainly, availability of materials specifically designed by goal-oriented methods could eradicate that limitation, but this purpose faces the bounds of experimental procedures of material design, commonly based on trial and error procedures.
Computational mechanics, with the emerging Computational Materials Design (CMD) research field, has much to offer in this respect. The increasing power of the new computer processors and, most importantly, development of new methods and strategies of computational simulation, opens new ways to face the problem. The project intends breaking through the barriers that presently hinder the development and application of computational materials design, by means of the synergic exploration and development of three supplementary families of methods: 1) computational multiscale material modeling (CMM) based on the bottom-up, one-way coupled, description of the material structure in different representative scales, 2) development of a new generation of high performance reduced-order-modeling techniques (HP-ROM), in order to bring down the associated computational costs to affordable levels, and 3) new computational strategies and methods for the optimal design of the material meso/micro structure arrangement and topology (MATO) .
Summary
The overall goal of the project is to contribute to the consolidation of the nascent and revolutionary philosophy of “Materials by Design” by resorting to the enormous power provided by the nowadays-available computational techniques. Limitations of current procedures for developing material-based innovative technologies in engineering, are often made manifest; many times only a catalog, or a data basis, of materials is available and these new technologies have to adapt to them, in the same way that the users of ready-to-wear have to take from the shop the costume that fits them better, but not the one that fits them properly. This constitutes an enormous limitation for the intended goals and scope. Certainly, availability of materials specifically designed by goal-oriented methods could eradicate that limitation, but this purpose faces the bounds of experimental procedures of material design, commonly based on trial and error procedures.
Computational mechanics, with the emerging Computational Materials Design (CMD) research field, has much to offer in this respect. The increasing power of the new computer processors and, most importantly, development of new methods and strategies of computational simulation, opens new ways to face the problem. The project intends breaking through the barriers that presently hinder the development and application of computational materials design, by means of the synergic exploration and development of three supplementary families of methods: 1) computational multiscale material modeling (CMM) based on the bottom-up, one-way coupled, description of the material structure in different representative scales, 2) development of a new generation of high performance reduced-order-modeling techniques (HP-ROM), in order to bring down the associated computational costs to affordable levels, and 3) new computational strategies and methods for the optimal design of the material meso/micro structure arrangement and topology (MATO) .
Max ERC Funding
2 372 973 €
Duration
Start date: 2013-02-01, End date: 2018-01-31
Project acronym CORTEXFOLDING
Project Understanding the development and function of cerebral cortex folding
Researcher (PI) Victor Borrell Franco
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Starting Grant (StG), LS5, ERC-2012-StG_20111109
Summary The mammalian cerebral cortex was subject to a dramatic expansion in surface area during evolution. This process is recapitulated during development and is accompanied by folding of the cortical sheet, which allows fitting a large cortical surface within a limited cranial volume. A loss of cortical folds is linked to severe intellectual impairment in humans, so cortical folding is believed to be crucial for brain function. However, developmental mechanisms responsible for cortical folding, and the influence of this on cortical function, remain largely unknown. The goal of this proposal is to understand the genetic and cellular mechanisms that control the developmental expansion and folding of the cerebral cortex, and what is the impact of these processes on its functional organization. Human studies have identified genes essential for the proper folding of the human cerebral cortex. Genetic manipulations in mice have unraveled specific functions for some of those genes in the development of the cerebral cortex. But because the mouse cerebral cortex does not fold naturally, the mechanisms of cortical expansion and folding in larger brains remain unknown. We will study these mechanisms on ferret, an ideal model with a naturally folded cerebral cortex. We will combine the advantages of ferrets with cell biology, genetics and next-generation transcriptomics, together with state-of-the-art in vivo, in vitro and in silico approaches, including in vivo imaging of functional columnar maps. The successful execution of this project will provide insights into developmental and genetic risk factors for anomalies in human cortical topology, and into mechanisms responsible for the early formation of cortical functional maps.
Summary
The mammalian cerebral cortex was subject to a dramatic expansion in surface area during evolution. This process is recapitulated during development and is accompanied by folding of the cortical sheet, which allows fitting a large cortical surface within a limited cranial volume. A loss of cortical folds is linked to severe intellectual impairment in humans, so cortical folding is believed to be crucial for brain function. However, developmental mechanisms responsible for cortical folding, and the influence of this on cortical function, remain largely unknown. The goal of this proposal is to understand the genetic and cellular mechanisms that control the developmental expansion and folding of the cerebral cortex, and what is the impact of these processes on its functional organization. Human studies have identified genes essential for the proper folding of the human cerebral cortex. Genetic manipulations in mice have unraveled specific functions for some of those genes in the development of the cerebral cortex. But because the mouse cerebral cortex does not fold naturally, the mechanisms of cortical expansion and folding in larger brains remain unknown. We will study these mechanisms on ferret, an ideal model with a naturally folded cerebral cortex. We will combine the advantages of ferrets with cell biology, genetics and next-generation transcriptomics, together with state-of-the-art in vivo, in vitro and in silico approaches, including in vivo imaging of functional columnar maps. The successful execution of this project will provide insights into developmental and genetic risk factors for anomalies in human cortical topology, and into mechanisms responsible for the early formation of cortical functional maps.
Max ERC Funding
1 701 116 €
Duration
Start date: 2013-01-01, End date: 2018-06-30
Project acronym E-GAMES
Project Surface Self-Assembled Molecular Electronic Devices: Logic Gates, Memories and Sensors
Researcher (PI) Marta Mas Torrent
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Starting Grant (StG), PE5, ERC-2012-StG_20111012
Summary Organic electronic devices, such as organic field-effect transistors (OFETs), are raising an increasing interest for their potential in large area coverage and low cost applications. Also, the use of single molecules as active electronic components offers great prospects for the miniaturization of devices and for their compatibility with biological systems. Within this framework, e-GAMES goals are:
1) Molecular logic gates for the storage and transmission of magnetic and optical information and for locally controlling surface wettability. The two huge limitations that hinder the application of molecules in logic gates are: i) Fabrication of devices on a solid support, ii) Concatenation of logic gates. I plan to overcome these drawbacks employing self-assembled monolayers of bistable electroactive molecules. These systems could also be used in the fabrication of surfaces with tunable wettability properties, of high interest in microfluidics and for biosensors.
2) Ambipolar organic field-effect transistors with donor-acceptor systems and their exploitation in light, temperature or pressure sensors, and/or memory devices.
Intramolecular electron transfer in organic semiconductors designed for preparing ambipolar OFETs will be explored for the first time. This phenomenon will be exploited for the fabrication of light, pressure or temperature stimuli-responsive OFETs bringing innovative perspectives to the field.
3) Organic/inorganic hybrid devices based on field-effect transistors for sensing environmentally hazardous carbon nanoparticles.
Carbon-based nanoparticles are being increasingly used in many applications despite their recognized toxicity. The grounds for the development of a new generation of nanotechnological low-cost and selective sensors based on transistors functionalized with organic sensing molecular monolayers for the detection of such materials will be developed, contributing towards the improvement of citizens’ safety and environmental preservation.
Summary
Organic electronic devices, such as organic field-effect transistors (OFETs), are raising an increasing interest for their potential in large area coverage and low cost applications. Also, the use of single molecules as active electronic components offers great prospects for the miniaturization of devices and for their compatibility with biological systems. Within this framework, e-GAMES goals are:
1) Molecular logic gates for the storage and transmission of magnetic and optical information and for locally controlling surface wettability. The two huge limitations that hinder the application of molecules in logic gates are: i) Fabrication of devices on a solid support, ii) Concatenation of logic gates. I plan to overcome these drawbacks employing self-assembled monolayers of bistable electroactive molecules. These systems could also be used in the fabrication of surfaces with tunable wettability properties, of high interest in microfluidics and for biosensors.
2) Ambipolar organic field-effect transistors with donor-acceptor systems and their exploitation in light, temperature or pressure sensors, and/or memory devices.
Intramolecular electron transfer in organic semiconductors designed for preparing ambipolar OFETs will be explored for the first time. This phenomenon will be exploited for the fabrication of light, pressure or temperature stimuli-responsive OFETs bringing innovative perspectives to the field.
3) Organic/inorganic hybrid devices based on field-effect transistors for sensing environmentally hazardous carbon nanoparticles.
Carbon-based nanoparticles are being increasingly used in many applications despite their recognized toxicity. The grounds for the development of a new generation of nanotechnological low-cost and selective sensors based on transistors functionalized with organic sensing molecular monolayers for the detection of such materials will be developed, contributing towards the improvement of citizens’ safety and environmental preservation.
Max ERC Funding
1 499 675 €
Duration
Start date: 2012-12-01, End date: 2018-09-30
Project acronym GFTIPFD
Project Geometric function theory, inverse problems and fluid dinamics
Researcher (PI) Daniel Faraco Hurtado
Host Institution (HI) UNIVERSIDAD AUTONOMA DE MADRID
Call Details Starting Grant (StG), PE1, ERC-2012-StG_20111012
Summary The project will strike for conquering frontier results in three capital areas in partial differential equations and mathematical analysis: Elliptic equations and systems, fluid dynamics and inverse problems.
I propose to tackle the central problems in these areas with a new perspective based on the theory of differential inclusions. A thorough study of oscillating div-curl couples in this framework will lead us to the long expected higher dimensional version of the Tartar conjecture. The corresponding analysis of differential inclusions for gradient fields will lead to new results respect to the existence, uniqueness and regularity theory on the so far intractable theory of higher dimensional Beltrami systems. Next we will concentrate in weak solutions to the classical non linear equations governing fluid dynamics. A reformulation of these equations as differential inclusions enables a much more rich theory of weak solutions than the classical one. With this new tool at hand,we will close several long standing questions about existence, uniqueness and contour dynamics. The third part of the project is devoted to inverse problems in p.d.e. The most famous inverse problem is Calderón conductivity problem which asks whether the Dirichlet to Neumann map of an elliptic equation determines the coefficients. The problem is still open in three or more dimensions but a new formulation as a differential inclusion will allow us to close the 1980 Calderón conjecture by constructing new invisible materials. In dimension n=2 the recent approach based on quasiconformal theory will lead to the first regularization scheme valid for discontinuous conductivities and first results for non linear equations. For the stationary Schrödinger equation I propose to exploit a fascinating connection with the convergence to initial data of the non elliptic time dependent Schrödinger equation.
Summary
The project will strike for conquering frontier results in three capital areas in partial differential equations and mathematical analysis: Elliptic equations and systems, fluid dynamics and inverse problems.
I propose to tackle the central problems in these areas with a new perspective based on the theory of differential inclusions. A thorough study of oscillating div-curl couples in this framework will lead us to the long expected higher dimensional version of the Tartar conjecture. The corresponding analysis of differential inclusions for gradient fields will lead to new results respect to the existence, uniqueness and regularity theory on the so far intractable theory of higher dimensional Beltrami systems. Next we will concentrate in weak solutions to the classical non linear equations governing fluid dynamics. A reformulation of these equations as differential inclusions enables a much more rich theory of weak solutions than the classical one. With this new tool at hand,we will close several long standing questions about existence, uniqueness and contour dynamics. The third part of the project is devoted to inverse problems in p.d.e. The most famous inverse problem is Calderón conductivity problem which asks whether the Dirichlet to Neumann map of an elliptic equation determines the coefficients. The problem is still open in three or more dimensions but a new formulation as a differential inclusion will allow us to close the 1980 Calderón conjecture by constructing new invisible materials. In dimension n=2 the recent approach based on quasiconformal theory will lead to the first regularization scheme valid for discontinuous conductivities and first results for non linear equations. For the stationary Schrödinger equation I propose to exploit a fascinating connection with the convergence to initial data of the non elliptic time dependent Schrödinger equation.
Max ERC Funding
1 121 400 €
Duration
Start date: 2012-10-01, End date: 2018-09-30
Project acronym INPAINTING
Project Inpainting Tools for Video Post-production: Variational theory and fast algorithms
Researcher (PI) Vicent Caselles Costa
Host Institution (HI) UNIVERSIDAD POMPEU FABRA
Call Details Advanced Grant (AdG), PE1, ERC-2012-ADG_20120216
Summary The goal of this project is the mathematical investigation of smoothness and self-similarity principles in generating natural images, the mathematical formulation and unification of both ideas in a variational form, and its application to develop models and algorithms for image processing tasks.
The proposed research will lead to the formulation and mathematical analysis of new variational principles for image and movie processing, the analysis of their underlying geometric measure theory and partial differential equations, unifying local and nonlocal approaches as respective mathematical expressions of the ideas of regularity and self-similarity. Our research will be guided by a thorough investigation of the inpainting problem (including images, video and stereo video inpainting), as a very suitable model for testing the proposed ideas.
The first practical impact will be the development of models and algorithms for 2D and 3D image and video editing and manipulation, enabling the deletion and insertion of objects. As a second impact we will provide the theoretical background and implementation of a set of algorithms for 2D to 3D conversion of video data enabling the generation of 3D content for 3D TV from existing 2D video. Due to its fundamental nature, the proposed models may impact other image and video processing areas such as denoising, restoration, optical flow computation, or stereo, that share similar challenges. Although their study is not in the scope of this project, it will be fostered by the dissemination of our results and the public release of our algorithms.
The PI has a long experience in the variational formulation of image processing problems, with key contributions in the variational formulations of edge detection and image inpainting, mathematical morphology, and the analysis of Total Variation based models. On the practical side, he has been contributing to the development of video post-production tools in several projects led by industry.
Summary
The goal of this project is the mathematical investigation of smoothness and self-similarity principles in generating natural images, the mathematical formulation and unification of both ideas in a variational form, and its application to develop models and algorithms for image processing tasks.
The proposed research will lead to the formulation and mathematical analysis of new variational principles for image and movie processing, the analysis of their underlying geometric measure theory and partial differential equations, unifying local and nonlocal approaches as respective mathematical expressions of the ideas of regularity and self-similarity. Our research will be guided by a thorough investigation of the inpainting problem (including images, video and stereo video inpainting), as a very suitable model for testing the proposed ideas.
The first practical impact will be the development of models and algorithms for 2D and 3D image and video editing and manipulation, enabling the deletion and insertion of objects. As a second impact we will provide the theoretical background and implementation of a set of algorithms for 2D to 3D conversion of video data enabling the generation of 3D content for 3D TV from existing 2D video. Due to its fundamental nature, the proposed models may impact other image and video processing areas such as denoising, restoration, optical flow computation, or stereo, that share similar challenges. Although their study is not in the scope of this project, it will be fostered by the dissemination of our results and the public release of our algorithms.
The PI has a long experience in the variational formulation of image processing problems, with key contributions in the variational formulations of edge detection and image inpainting, mathematical morphology, and the analysis of Total Variation based models. On the practical side, he has been contributing to the development of video post-production tools in several projects led by industry.
Max ERC Funding
515 055 €
Duration
Start date: 2013-04-01, End date: 2014-09-30
Project acronym INSILICO-CELL
Project Predictive modelling and simulation in mechano-chemo-biology: a computer multi-approach
Researcher (PI) Jose Manuel Garcia-Aznar
Host Institution (HI) UNIVERSIDAD DE ZARAGOZA
Call Details Starting Grant (StG), PE8, ERC-2012-StG_20111012
Summary Living tissues are regulated by multi-cellular collectives mediated at cellular level through complex interactions between mechanical and biochemical factors. A further understanding of these mechanisms could provide new insights in the development of therapies and diagnosis techniques, reducing animal experiments. I propose a combined and complementary methodology to advance in the knowledge of how cells interact with each other and with the environment to produce the large-scale organization typical of tissues. I will couple in-silico and in-vitro models for investigating the micro-fabrication of tissues in-vitro using a 3D multicellular environment. By computational cell-based modelling of tissue development, I will use a multiscale and multiphysics approach to investigate various key factors: how environmental conditions (mechanical and biochemical) drive cell behaviour, how individual cell behaviour produces multicellular patterns, how cells respond to the multicellular environment, how cells are able to fabricate new tissues and how cell-matrix interactions affect these processes. In-vitro experiments will be developed to validate numerical models, determine their parameters, improve their hypotheses and help designing new experiments. The in-vitro experiments will be performed in a microfluidic platform capable of controlling biochemical and mechanical conditions in a 3D environment. This research will be applied in three applications, where the role of environment conditions is important and the main biological events are cell migration, cell-matrix and cell-cell interactions: bone regeneration, wound healing and angiogenesis.
Summary
Living tissues are regulated by multi-cellular collectives mediated at cellular level through complex interactions between mechanical and biochemical factors. A further understanding of these mechanisms could provide new insights in the development of therapies and diagnosis techniques, reducing animal experiments. I propose a combined and complementary methodology to advance in the knowledge of how cells interact with each other and with the environment to produce the large-scale organization typical of tissues. I will couple in-silico and in-vitro models for investigating the micro-fabrication of tissues in-vitro using a 3D multicellular environment. By computational cell-based modelling of tissue development, I will use a multiscale and multiphysics approach to investigate various key factors: how environmental conditions (mechanical and biochemical) drive cell behaviour, how individual cell behaviour produces multicellular patterns, how cells respond to the multicellular environment, how cells are able to fabricate new tissues and how cell-matrix interactions affect these processes. In-vitro experiments will be developed to validate numerical models, determine their parameters, improve their hypotheses and help designing new experiments. The in-vitro experiments will be performed in a microfluidic platform capable of controlling biochemical and mechanical conditions in a 3D environment. This research will be applied in three applications, where the role of environment conditions is important and the main biological events are cell migration, cell-matrix and cell-cell interactions: bone regeneration, wound healing and angiogenesis.
Max ERC Funding
1 299 083 €
Duration
Start date: 2012-11-01, End date: 2018-05-31
Project acronym IPES
Project Innovative Polymers for Energy Storage
Researcher (PI) David Mecerreyes Molero
Host Institution (HI) UNIVERSIDAD DEL PAIS VASCO/ EUSKAL HERRIKO UNIBERTSITATEA
Call Details Starting Grant (StG), PE5, ERC-2012-StG_20111012
Summary iPes project aims to provide adequate support to Dr. David Mecerreyes (DM) who is at the stage of consolidating an independent research team. During his scientific career, DM has demonstrated creative thinking and excellent capacity to carry out research and going beyond the state of the art. His meritorious record of research, scientific publications (128 ISI articles, h index = 33), project conception, private sector experience, networking ability (participated in 10 European collaborative projects) and capacity for supervising and coordinating a research team are presented in detail in the initial part of the proposal. He recently moved from the private sector to create a new research group at the University of the Basque Country. He is now in an excellent academic position and research environment to commit and be devoted to an ERC frontier research project. DM’s proposal passed to the second stage in the ERC starting grant call of last year. This year the research project has been re-built taking into account his group directions and the detected weak points of last year’s proposal. This is his last opportunity for participating to the ERC starting-grant call.
iPes proposes an innovative research programme at the forefront of polymer chemistry. The proposal goes in depth into the topic of energetic polymers. iPes activities will fully develop the field of polymers for energy storage by using an innovative macromolecular engineering approach generating the ground for future innovations. The main S&T goal is to obtain new polymeric materials, to get an insight into their unique electronic properties, to model the new energetic polymers and to investigate their application in innovative battery prototypes. These technologies are currently dominated by inorganic electrode materials. iPes aims at bringing polymer chemistry to a next level and developing basic knowledge about innovative polymeric materials which may open up new opportunities for Energy Storage.
Summary
iPes project aims to provide adequate support to Dr. David Mecerreyes (DM) who is at the stage of consolidating an independent research team. During his scientific career, DM has demonstrated creative thinking and excellent capacity to carry out research and going beyond the state of the art. His meritorious record of research, scientific publications (128 ISI articles, h index = 33), project conception, private sector experience, networking ability (participated in 10 European collaborative projects) and capacity for supervising and coordinating a research team are presented in detail in the initial part of the proposal. He recently moved from the private sector to create a new research group at the University of the Basque Country. He is now in an excellent academic position and research environment to commit and be devoted to an ERC frontier research project. DM’s proposal passed to the second stage in the ERC starting grant call of last year. This year the research project has been re-built taking into account his group directions and the detected weak points of last year’s proposal. This is his last opportunity for participating to the ERC starting-grant call.
iPes proposes an innovative research programme at the forefront of polymer chemistry. The proposal goes in depth into the topic of energetic polymers. iPes activities will fully develop the field of polymers for energy storage by using an innovative macromolecular engineering approach generating the ground for future innovations. The main S&T goal is to obtain new polymeric materials, to get an insight into their unique electronic properties, to model the new energetic polymers and to investigate their application in innovative battery prototypes. These technologies are currently dominated by inorganic electrode materials. iPes aims at bringing polymer chemistry to a next level and developing basic knowledge about innovative polymeric materials which may open up new opportunities for Energy Storage.
Max ERC Funding
1 430 239 €
Duration
Start date: 2012-12-01, End date: 2018-11-30
Project acronym MINT
Project Mechanically Interlocked Carbon Nanotubes
Researcher (PI) Emilio Manuel Pérez Álvarez
Host Institution (HI) FUNDACION IMDEA NANOCIENCIA
Call Details Starting Grant (StG), PE5, ERC-2012-StG_20111012
Summary "We present a plan to design, synthesize and exploit the properties of mechanically interlocked carbon nanotubes (MINTs).
The scientific aim of the project is to introduce the mechanical bond as a new tool for the derivatization of carbon nanotubes. The mechanical link combines the advantages of covalent and supramolecular modifications, namely: kinetic stability (covalent) and conserved chemical structure (supramolecular). Besides this, its dynamic nature opens up unique opportunities for both fundamental studies and applications.
From a technological point of view, MINTs should have a practical impact in the fields of molecular electronics and molecular machinery. A general modular approach to MINT-based materials for photovoltaic devices and electrochemical sensors is presented. We also expect to exploit the rigidity and low dimensionality of SWNTs to construct molecular machines that utilize them as tracks to move across long distances, which is not possible in small-molecule molecular machines.
To achieve these goals we will exploit the PI’s expertise in the chemical modification of carbon nanostructures, in the self-assembly of electroactive materials and in the synthesis and characterization of mechanically interlocked molecules."
Summary
"We present a plan to design, synthesize and exploit the properties of mechanically interlocked carbon nanotubes (MINTs).
The scientific aim of the project is to introduce the mechanical bond as a new tool for the derivatization of carbon nanotubes. The mechanical link combines the advantages of covalent and supramolecular modifications, namely: kinetic stability (covalent) and conserved chemical structure (supramolecular). Besides this, its dynamic nature opens up unique opportunities for both fundamental studies and applications.
From a technological point of view, MINTs should have a practical impact in the fields of molecular electronics and molecular machinery. A general modular approach to MINT-based materials for photovoltaic devices and electrochemical sensors is presented. We also expect to exploit the rigidity and low dimensionality of SWNTs to construct molecular machines that utilize them as tracks to move across long distances, which is not possible in small-molecule molecular machines.
To achieve these goals we will exploit the PI’s expertise in the chemical modification of carbon nanostructures, in the self-assembly of electroactive materials and in the synthesis and characterization of mechanically interlocked molecules."
Max ERC Funding
1 444 999 €
Duration
Start date: 2012-10-01, End date: 2017-09-30
Project acronym MUSIC
Project Modeling and Simulation of Cancer Growth
Researcher (PI) Hector Gómez Díaz
Host Institution (HI) UNIVERSIDADE DA CORUNA
Call Details Starting Grant (StG), PE8, ERC-2012-StG_20111012
Summary Nowadays, the treatment of cancer is based on the so-called diagnostic paradigm. We feel that the shift from the traditional diagnostic paradigm to a predictive patient-specific one may lead to more effective therapies. Thus, the objective of this project is to introduce predictive models for cancer growth. These predictive models will take the form of mathematical models developed from first principles and the fundamental features of cancer biology. For these models to be useful in clinical practice, we will need to introduce new numerical algorithms that permit to obtain fast and accurate simulations based on patient-specific data.
We propose to develop mathematical models using the framework provided by the mixtures theory and the phase-field method. Our model will account for the growth of the tumor and the vasculature that develops around it, which is essential for the tumor to grow beyond a harmless limited size. We propose to develop new algorithms based on Isogeometric Analysis, which is a recent generalization of Finite Elements with several advantages. The use of Isogeometric Analysis will simplify the interface between medical images and the computational mesh, permitting to generate smooth basis functions necessary to approximate higher-order partial differential equations like those that govern cancer growth. Our modeling and simulation tools will be examined and validated by experimental and clinical observations. To accomplish this, we propose to use anonymized patient-specific data through several patient imaging modalities.
Arguably, the successful undertaking of this project, would have the potential to transform classical population/statistics-based treatments of cancer into patient-specific therapies. This would elevate mathematical modeling and simulation of cancer growth to a stage in which it can be used as a quantitatively accurate predictive tool with implications for clinical practice, clinical trial design, and outcome prediction.
Summary
Nowadays, the treatment of cancer is based on the so-called diagnostic paradigm. We feel that the shift from the traditional diagnostic paradigm to a predictive patient-specific one may lead to more effective therapies. Thus, the objective of this project is to introduce predictive models for cancer growth. These predictive models will take the form of mathematical models developed from first principles and the fundamental features of cancer biology. For these models to be useful in clinical practice, we will need to introduce new numerical algorithms that permit to obtain fast and accurate simulations based on patient-specific data.
We propose to develop mathematical models using the framework provided by the mixtures theory and the phase-field method. Our model will account for the growth of the tumor and the vasculature that develops around it, which is essential for the tumor to grow beyond a harmless limited size. We propose to develop new algorithms based on Isogeometric Analysis, which is a recent generalization of Finite Elements with several advantages. The use of Isogeometric Analysis will simplify the interface between medical images and the computational mesh, permitting to generate smooth basis functions necessary to approximate higher-order partial differential equations like those that govern cancer growth. Our modeling and simulation tools will be examined and validated by experimental and clinical observations. To accomplish this, we propose to use anonymized patient-specific data through several patient imaging modalities.
Arguably, the successful undertaking of this project, would have the potential to transform classical population/statistics-based treatments of cancer into patient-specific therapies. This would elevate mathematical modeling and simulation of cancer growth to a stage in which it can be used as a quantitatively accurate predictive tool with implications for clinical practice, clinical trial design, and outcome prediction.
Max ERC Funding
1 405 420 €
Duration
Start date: 2012-10-01, End date: 2017-09-30
Project acronym POLIGHT
Project Polymer-Inorganic Flexible Nanostructured Films for the Control of Light
Researcher (PI) Hernan Miguez García
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Starting Grant (StG), PE5, ERC-2012-StG_20111012
Summary The POLIGHT project will focus on the integration of a series of inorganic nanostructured materials possessing photonic or combined photonic and plasmonic properties into polymeric films, providing a significant advance with respect to current state of the art in flexible photonics. These highly adaptable films could act either as passive UV-Vis-NIR selective frequency mirrors or filters, or as matrices for light absorbing or optically active species capable of tailoring their optical response. The goal of this project is two-fold. In one aspect, the aim is to fill a currently existing hole in the field of materials for radiation protection, which is the absence of highly flexible and adaptable films in which selected ranges of the electromagnetic spectrum wavelengths can be sharply blocked or allowed to pass depending on the different foreseen applications. In another, the POLIGHT project seeks to go one step beyond in the integration of absorbing and emitting nanomaterials into simple flexible polymeric matrices by including hierarchically structured photonic lattices that provide fine tuning of the optical properties of these hybrid ensembles. This will be achieved by means of enhanced matter-radiation interactions that result from field localization effects at specific resonant modes. The opportunity arises as a result of the recent development of a series of robust inorganic photonic structures that present interconnected porous networks susceptible of hosting polymers and thus inheriting their mechanical properties.
Summary
The POLIGHT project will focus on the integration of a series of inorganic nanostructured materials possessing photonic or combined photonic and plasmonic properties into polymeric films, providing a significant advance with respect to current state of the art in flexible photonics. These highly adaptable films could act either as passive UV-Vis-NIR selective frequency mirrors or filters, or as matrices for light absorbing or optically active species capable of tailoring their optical response. The goal of this project is two-fold. In one aspect, the aim is to fill a currently existing hole in the field of materials for radiation protection, which is the absence of highly flexible and adaptable films in which selected ranges of the electromagnetic spectrum wavelengths can be sharply blocked or allowed to pass depending on the different foreseen applications. In another, the POLIGHT project seeks to go one step beyond in the integration of absorbing and emitting nanomaterials into simple flexible polymeric matrices by including hierarchically structured photonic lattices that provide fine tuning of the optical properties of these hybrid ensembles. This will be achieved by means of enhanced matter-radiation interactions that result from field localization effects at specific resonant modes. The opportunity arises as a result of the recent development of a series of robust inorganic photonic structures that present interconnected porous networks susceptible of hosting polymers and thus inheriting their mechanical properties.
Max ERC Funding
1 497 730 €
Duration
Start date: 2012-12-01, End date: 2017-11-30
Project acronym STEMCLOCK
Project Spatiotemporal regulation of epidermal stem cells by circadian rhythms: impact on homeostasis and aging
Researcher (PI) Salvador Aznar Benitah
Host Institution (HI) FUNDACIO INSTITUT DE RECERCA BIOMEDICA (IRB BARCELONA)
Call Details Starting Grant (StG), LS4, ERC-2012-StG_20111109
Summary "Most adult stem cells are compartmentalized in functionally deterministic niches where they self-renew and maintain homeostasis. From there, stem cells are instructed by combinations of signals and spatial tensile forces which they translate into a specific behavior. However how stem cells spatiotemporally coordinate their stem cell potential with niche- and systemic cues is poorly understood. These issues are essential since perturbations in stem cell function can cause tissue malfunction, such as tumorigenesis and aging.
We propose to perform a systematic analysis to identify the molecular causes that underlie epidermal stem cell aging. We will focus on the interplay between circadian rhythms and stem cell function. The circadian machinery anticipates and synchronizes the daily function of tissues according to the entrainment by natural changes in light and metabolism. We have shown that the molecular clock fine-tunes the behavior of epidermal stem cells by imposing oscillations in the expression of stem cell regulatory genes. These oscillations provide stem cells with a spatiotemporal axis for responding to dormancy, activating, and differentiation cues. Notably, the stem cell clock is naturally dampened upon aging, and forced circadian arrhythmia causes severe epidermal aging and predisposition to tumorigenesis.
We now propose to understand how the circadian clock coordinates the communication between stem cells with local and systemic cues, and how these are perturbed during aging. Specifically we aim: i) To study whether circadian rhythms coordinate the function of niche cells and epidermal stem cells; ii) To identify the molecular causes underlying the age-related dampening of the stem cell clock. We will combine large-scale genomic data, mouse models of circadian arrhythmia, and bioinformatic analysis. We hope to unveil some of the molecular causes underlying the loss of communication between epidermal stem cells and their environment resulting in aging."
Summary
"Most adult stem cells are compartmentalized in functionally deterministic niches where they self-renew and maintain homeostasis. From there, stem cells are instructed by combinations of signals and spatial tensile forces which they translate into a specific behavior. However how stem cells spatiotemporally coordinate their stem cell potential with niche- and systemic cues is poorly understood. These issues are essential since perturbations in stem cell function can cause tissue malfunction, such as tumorigenesis and aging.
We propose to perform a systematic analysis to identify the molecular causes that underlie epidermal stem cell aging. We will focus on the interplay between circadian rhythms and stem cell function. The circadian machinery anticipates and synchronizes the daily function of tissues according to the entrainment by natural changes in light and metabolism. We have shown that the molecular clock fine-tunes the behavior of epidermal stem cells by imposing oscillations in the expression of stem cell regulatory genes. These oscillations provide stem cells with a spatiotemporal axis for responding to dormancy, activating, and differentiation cues. Notably, the stem cell clock is naturally dampened upon aging, and forced circadian arrhythmia causes severe epidermal aging and predisposition to tumorigenesis.
We now propose to understand how the circadian clock coordinates the communication between stem cells with local and systemic cues, and how these are perturbed during aging. Specifically we aim: i) To study whether circadian rhythms coordinate the function of niche cells and epidermal stem cells; ii) To identify the molecular causes underlying the age-related dampening of the stem cell clock. We will combine large-scale genomic data, mouse models of circadian arrhythmia, and bioinformatic analysis. We hope to unveil some of the molecular causes underlying the loss of communication between epidermal stem cells and their environment resulting in aging."
Max ERC Funding
1 495 484 €
Duration
Start date: 2013-01-01, End date: 2017-12-31