Project acronym 20SComplexity
Project An integrative approach to uncover the multilevel regulation of 20S proteasome degradation
Researcher (PI) Michal Sharon
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Starting Grant (StG), LS1, ERC-2014-STG
Summary For many years, the ubiquitin-26S proteasome degradation pathway was considered the primary route for proteasomal degradation. However, it is now becoming clear that proteins can also be targeted for degradation by a ubiquitin-independent mechanism mediated by the core 20S proteasome itself. Although initially believed to be limited to rare exceptions, degradation by the 20S proteasome is now understood to have a wide range of substrates, many of which are key regulatory proteins. Despite its importance, little is known about the mechanisms that control 20S proteasomal degradation, unlike the extensive knowledge acquired over the years concerning degradation by the 26S proteasome. Our overall aim is to reveal the multiple regulatory levels that coordinate the 20S proteasome degradation route.
To achieve this goal we will carry out a comprehensive research program characterizing three distinct levels of 20S proteasome regulation:
Intra-molecular regulation- Revealing the intrinsic molecular switch that activates the latent 20S proteasome.
Inter-molecular regulation- Identifying novel proteins that bind the 20S proteasome to regulate its activity and characterizing their mechanism of function.
Cellular regulatory networks- Unraveling the cellular cues and multiple pathways that influence 20S proteasome activity using a novel systematic and unbiased screening approach.
Our experimental strategy involves the combination of biochemical approaches with native mass spectrometry, cross-linking and fluorescence measurements, complemented by cell biology analyses and high-throughput screening. Such a multidisciplinary approach, integrating in vitro and in vivo findings, will likely provide the much needed knowledge on the 20S proteasome degradation route. When completed, we anticipate that this work will be part of a new paradigm – no longer perceiving the 20S proteasome mediated degradation as a simple and passive event but rather a tightly regulated and coordinated process.
Summary
For many years, the ubiquitin-26S proteasome degradation pathway was considered the primary route for proteasomal degradation. However, it is now becoming clear that proteins can also be targeted for degradation by a ubiquitin-independent mechanism mediated by the core 20S proteasome itself. Although initially believed to be limited to rare exceptions, degradation by the 20S proteasome is now understood to have a wide range of substrates, many of which are key regulatory proteins. Despite its importance, little is known about the mechanisms that control 20S proteasomal degradation, unlike the extensive knowledge acquired over the years concerning degradation by the 26S proteasome. Our overall aim is to reveal the multiple regulatory levels that coordinate the 20S proteasome degradation route.
To achieve this goal we will carry out a comprehensive research program characterizing three distinct levels of 20S proteasome regulation:
Intra-molecular regulation- Revealing the intrinsic molecular switch that activates the latent 20S proteasome.
Inter-molecular regulation- Identifying novel proteins that bind the 20S proteasome to regulate its activity and characterizing their mechanism of function.
Cellular regulatory networks- Unraveling the cellular cues and multiple pathways that influence 20S proteasome activity using a novel systematic and unbiased screening approach.
Our experimental strategy involves the combination of biochemical approaches with native mass spectrometry, cross-linking and fluorescence measurements, complemented by cell biology analyses and high-throughput screening. Such a multidisciplinary approach, integrating in vitro and in vivo findings, will likely provide the much needed knowledge on the 20S proteasome degradation route. When completed, we anticipate that this work will be part of a new paradigm – no longer perceiving the 20S proteasome mediated degradation as a simple and passive event but rather a tightly regulated and coordinated process.
Max ERC Funding
1 500 000 €
Duration
Start date: 2015-04-01, End date: 2020-03-31
Project acronym 3Ps
Project 3Ps
Plastic-Antibodies, Plasmonics and Photovoltaic-Cells: on-site screening of cancer biomarkers made possible
Researcher (PI) Maria Goreti Ferreira Sales
Host Institution (HI) INSTITUTO SUPERIOR DE ENGENHARIA DO PORTO
Call Details Starting Grant (StG), LS7, ERC-2012-StG_20111109
Summary This project presents a new concept for the detection, diagnosis and monitoring of cancer biomarker patterns in point-of-care. The device under development will make use of the selectivity of the plastic antibodies as sensing materials and the interference they will play on the normal operation of a photovoltaic cell.
Plastic antibodies will be designed by surface imprinting procedures. Self-assembled monolayer and molecular imprinting techniques will be merged in this process because they allow the self-assembly of nanostructured materials on a “bottom-up” nanofabrication approach. A dye-sensitized solar cell will be used as photovoltaic cell. It includes a liquid interface in the cell circuit, which allows the introduction of the sample (also in liquid phase) without disturbing the normal cell operation. Furthermore, it works well with rather low cost materials and requires mild and easy processing conditions. The cell will be equipped with plasmonic structures to enhance light absorption and cell efficiency.
The device under development will be easily operated by any clinician or patient. It will require ambient light and a regular multimeter. Eye detection will be also tried out.
Summary
This project presents a new concept for the detection, diagnosis and monitoring of cancer biomarker patterns in point-of-care. The device under development will make use of the selectivity of the plastic antibodies as sensing materials and the interference they will play on the normal operation of a photovoltaic cell.
Plastic antibodies will be designed by surface imprinting procedures. Self-assembled monolayer and molecular imprinting techniques will be merged in this process because they allow the self-assembly of nanostructured materials on a “bottom-up” nanofabrication approach. A dye-sensitized solar cell will be used as photovoltaic cell. It includes a liquid interface in the cell circuit, which allows the introduction of the sample (also in liquid phase) without disturbing the normal cell operation. Furthermore, it works well with rather low cost materials and requires mild and easy processing conditions. The cell will be equipped with plasmonic structures to enhance light absorption and cell efficiency.
The device under development will be easily operated by any clinician or patient. It will require ambient light and a regular multimeter. Eye detection will be also tried out.
Max ERC Funding
998 584 €
Duration
Start date: 2013-02-01, End date: 2018-01-31
Project acronym 5HTCircuits
Project Modulation of cortical circuits and predictive neural coding by serotonin
Researcher (PI) Zachary Mainen
Host Institution (HI) FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD
Call Details Advanced Grant (AdG), LS5, ERC-2014-ADG
Summary Serotonin (5-HT) is a central neuromodulator and a major target of therapeutic psychoactive drugs, but relatively little is known about how it modulates information processing in neural circuits. The theory of predictive coding postulates that the brain combines raw bottom-up sensory information with top-down information from internal models to make perceptual inferences about the world. We hypothesize, based on preliminary data and prior literature, that a role of 5-HT in this process is to report prediction errors and promote the suppression and weakening of erroneous internal models. We propose that it does this by inhibiting top-down relative to bottom-up cortical information flow. To test this hypothesis, we propose a set of experiments in mice performing olfactory perceptual tasks. Our specific aims are: (1) We will test whether 5-HT neurons encode sensory prediction errors. (2) We will test their causal role in using predictive cues to guide perceptual decisions. (3) We will characterize how 5-HT influences the encoding of sensory information by neuronal populations in the olfactory cortex and identify the underlying circuitry. (4) Finally, we will map the effects of 5-HT across the whole brain and use this information to target further causal manipulations to specific 5-HT projections. We accomplish these aims using state-of-the-art optogenetic, electrophysiological and imaging techniques (including 9.4T small-animal functional magnetic resonance imaging) as well as psychophysical tasks amenable to quantitative analysis and computational theory. Together, these experiments will tackle multiple facets of an important general computational question, bringing to bear an array of cutting-edge technologies to address with unprecedented mechanistic detail how 5-HT impacts neural coding and perceptual decision-making.
Summary
Serotonin (5-HT) is a central neuromodulator and a major target of therapeutic psychoactive drugs, but relatively little is known about how it modulates information processing in neural circuits. The theory of predictive coding postulates that the brain combines raw bottom-up sensory information with top-down information from internal models to make perceptual inferences about the world. We hypothesize, based on preliminary data and prior literature, that a role of 5-HT in this process is to report prediction errors and promote the suppression and weakening of erroneous internal models. We propose that it does this by inhibiting top-down relative to bottom-up cortical information flow. To test this hypothesis, we propose a set of experiments in mice performing olfactory perceptual tasks. Our specific aims are: (1) We will test whether 5-HT neurons encode sensory prediction errors. (2) We will test their causal role in using predictive cues to guide perceptual decisions. (3) We will characterize how 5-HT influences the encoding of sensory information by neuronal populations in the olfactory cortex and identify the underlying circuitry. (4) Finally, we will map the effects of 5-HT across the whole brain and use this information to target further causal manipulations to specific 5-HT projections. We accomplish these aims using state-of-the-art optogenetic, electrophysiological and imaging techniques (including 9.4T small-animal functional magnetic resonance imaging) as well as psychophysical tasks amenable to quantitative analysis and computational theory. Together, these experiments will tackle multiple facets of an important general computational question, bringing to bear an array of cutting-edge technologies to address with unprecedented mechanistic detail how 5-HT impacts neural coding and perceptual decision-making.
Max ERC Funding
2 486 074 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym AcetyLys
Project Unravelling the role of lysine acetylation in the regulation of glycolysis in cancer cells through the development of synthetic biology-based tools
Researcher (PI) Eyal Arbely
Host Institution (HI) BEN-GURION UNIVERSITY OF THE NEGEV
Call Details Starting Grant (StG), LS9, ERC-2015-STG
Summary Synthetic biology is an emerging discipline that offers powerful tools to control and manipulate fundamental processes in living matter. We propose to develop and apply such tools to modify the genetic code of cultured mammalian cells and bacteria with the aim to study the role of lysine acetylation in the regulation of metabolism and in cancer development. Thousands of lysine acetylation sites were recently discovered on non-histone proteins, suggesting that acetylation is a widespread and evolutionarily conserved post translational modification, similar in scope to phosphorylation and ubiquitination. Specifically, it has been found that most of the enzymes of metabolic processes—including glycolysis—are acetylated, implying that acetylation is key regulator of cellular metabolism in general and in glycolysis in particular. The regulation of metabolic pathways is of particular importance to cancer research, as misregulation of metabolic pathways, especially upregulation of glycolysis, is common to most transformed cells and is now considered a new hallmark of cancer. These data raise an immediate question: what is the role of acetylation in the regulation of glycolysis and in the metabolic reprogramming of cancer cells? While current methods rely on mutational analyses, we will genetically encode the incorporation of acetylated lysine and directly measure the functional role of each acetylation site in cancerous and non-cancerous cell lines. Using this methodology, we will study the structural and functional implications of all the acetylation sites in glycolytic enzymes. We will also decipher the mechanism by which acetylation is regulated by deacetylases and answer a long standing question – how 18 deacetylases recognise their substrates among thousands of acetylated proteins? The developed methodologies can be applied to a wide range of protein families known to be acetylated, thereby making this study relevant to diverse research fields.
Summary
Synthetic biology is an emerging discipline that offers powerful tools to control and manipulate fundamental processes in living matter. We propose to develop and apply such tools to modify the genetic code of cultured mammalian cells and bacteria with the aim to study the role of lysine acetylation in the regulation of metabolism and in cancer development. Thousands of lysine acetylation sites were recently discovered on non-histone proteins, suggesting that acetylation is a widespread and evolutionarily conserved post translational modification, similar in scope to phosphorylation and ubiquitination. Specifically, it has been found that most of the enzymes of metabolic processes—including glycolysis—are acetylated, implying that acetylation is key regulator of cellular metabolism in general and in glycolysis in particular. The regulation of metabolic pathways is of particular importance to cancer research, as misregulation of metabolic pathways, especially upregulation of glycolysis, is common to most transformed cells and is now considered a new hallmark of cancer. These data raise an immediate question: what is the role of acetylation in the regulation of glycolysis and in the metabolic reprogramming of cancer cells? While current methods rely on mutational analyses, we will genetically encode the incorporation of acetylated lysine and directly measure the functional role of each acetylation site in cancerous and non-cancerous cell lines. Using this methodology, we will study the structural and functional implications of all the acetylation sites in glycolytic enzymes. We will also decipher the mechanism by which acetylation is regulated by deacetylases and answer a long standing question – how 18 deacetylases recognise their substrates among thousands of acetylated proteins? The developed methodologies can be applied to a wide range of protein families known to be acetylated, thereby making this study relevant to diverse research fields.
Max ERC Funding
1 499 375 €
Duration
Start date: 2016-07-01, End date: 2021-06-30
Project acronym ACTOMYO
Project Mechanisms of actomyosin-based contractility during cytokinesis
Researcher (PI) Ana Costa Xavier de Carvalho
Host Institution (HI) INSTITUTO DE BIOLOGIA MOLECULAR E CELULAR-IBMC
Call Details Starting Grant (StG), LS3, ERC-2014-STG
Summary Cytokinesis completes cell division by partitioning the contents of the mother cell to the two daughter cells. This process is accomplished through the assembly and constriction of a contractile ring, a complex actomyosin network that remains poorly understood on the molecular level. Research in cytokinesis has overwhelmingly focused on signaling mechanisms that dictate when and where the contractile ring is assembled. By contrast, the research I propose here addresses fundamental questions about the structural and functional properties of the contractile ring itself. We will use the nematode C. elegans to exploit the power of quantitative live imaging assays in an experimentally tractable metazoan organism. The early C. elegans embryo is uniquely suited to the study of the contractile ring, as cells dividing perpendicularly to the imaging plane provide a full end-on view of the contractile ring throughout constriction. This greatly facilitates accurate measurements of constriction kinetics, ring width and thickness, and levels as well as dynamics of fluorescently-tagged contractile ring components. Combining image-based assays with powerful molecular replacement technology for structure-function studies, we will 1) determine the contribution of branched and non-branched actin filament populations to contractile ring formation; 2) explore its ultra-structural organization in collaboration with a world expert in electron microcopy; 3) investigate how the contractile ring network is dynamically remodeled during constriction with the help of a novel laser microsurgery assay that has uncovered a remarkably robust ring repair mechanism; and 4) use a targeted RNAi screen and phenotype profiling to identify new components of actomyosin contractile networks. The results from this interdisciplinary project will significantly enhance our mechanistic understanding of cytokinesis and other cellular processes that involve actomyosin-based contractility.
Summary
Cytokinesis completes cell division by partitioning the contents of the mother cell to the two daughter cells. This process is accomplished through the assembly and constriction of a contractile ring, a complex actomyosin network that remains poorly understood on the molecular level. Research in cytokinesis has overwhelmingly focused on signaling mechanisms that dictate when and where the contractile ring is assembled. By contrast, the research I propose here addresses fundamental questions about the structural and functional properties of the contractile ring itself. We will use the nematode C. elegans to exploit the power of quantitative live imaging assays in an experimentally tractable metazoan organism. The early C. elegans embryo is uniquely suited to the study of the contractile ring, as cells dividing perpendicularly to the imaging plane provide a full end-on view of the contractile ring throughout constriction. This greatly facilitates accurate measurements of constriction kinetics, ring width and thickness, and levels as well as dynamics of fluorescently-tagged contractile ring components. Combining image-based assays with powerful molecular replacement technology for structure-function studies, we will 1) determine the contribution of branched and non-branched actin filament populations to contractile ring formation; 2) explore its ultra-structural organization in collaboration with a world expert in electron microcopy; 3) investigate how the contractile ring network is dynamically remodeled during constriction with the help of a novel laser microsurgery assay that has uncovered a remarkably robust ring repair mechanism; and 4) use a targeted RNAi screen and phenotype profiling to identify new components of actomyosin contractile networks. The results from this interdisciplinary project will significantly enhance our mechanistic understanding of cytokinesis and other cellular processes that involve actomyosin-based contractility.
Max ERC Funding
1 499 989 €
Duration
Start date: 2015-07-01, End date: 2020-06-30
Project acronym aNtHESIS
Project Novel heart regeneration strategies
Researcher (PI) Eldad Tzahor
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Proof of Concept (PoC), PC1, ERC-2014-PoC
Summary Heart disease and particularly myocardial infarction, i.e. heart attack, is the leading cause of death in the Western world today. The diminished regenerative potential of the heart begins shortly after birth, when most CardioMyocytes (CMs) cease to proliferate and make a transition from hyperplastic to hypertrophic growth. The Tzahor lab has been intensively exploring novel molecules, compounds as well as the molecular mechanisms that facilitate CM cell division in the adult heart of mammals as a strategy for eliciting heart regeneration. These efforts, had led to the identification of novel compounds which significantly increased the proliferation of adult CMs. Drawing upon these findings, the aim of the aNtHESIS project is two-fold. First, to (i) validate the pre-clinical application of our two novel compounds by conducting comprehensive in-vitro and in-vivo tests in mice as well as by carrying out experiments using human CMs. The second aim is (ii) to establish the business feasibility of our cardiac regenerative therapy concept by taking the necessary steps towards the commercialization of our novel compounds, focusing on the creation of strategic alliances with key private sector companies.
Summary
Heart disease and particularly myocardial infarction, i.e. heart attack, is the leading cause of death in the Western world today. The diminished regenerative potential of the heart begins shortly after birth, when most CardioMyocytes (CMs) cease to proliferate and make a transition from hyperplastic to hypertrophic growth. The Tzahor lab has been intensively exploring novel molecules, compounds as well as the molecular mechanisms that facilitate CM cell division in the adult heart of mammals as a strategy for eliciting heart regeneration. These efforts, had led to the identification of novel compounds which significantly increased the proliferation of adult CMs. Drawing upon these findings, the aim of the aNtHESIS project is two-fold. First, to (i) validate the pre-clinical application of our two novel compounds by conducting comprehensive in-vitro and in-vivo tests in mice as well as by carrying out experiments using human CMs. The second aim is (ii) to establish the business feasibility of our cardiac regenerative therapy concept by taking the necessary steps towards the commercialization of our novel compounds, focusing on the creation of strategic alliances with key private sector companies.
Max ERC Funding
150 000 €
Duration
Start date: 2016-01-01, End date: 2017-06-30
Project acronym ARITHQUANTUMCHAOS
Project Arithmetic and Quantum Chaos
Researcher (PI) Zeev Rudnick
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Advanced Grant (AdG), PE1, ERC-2012-ADG_20120216
Summary Quantum Chaos is an emerging discipline which is crossing over from Physics into Pure Mathematics. The recent crossover is driven in part by a connection with Number Theory. This project explores several aspects of this interrelationship and is composed of a number of sub-projects. The sub-projects deal with: statistics of energy levels and wave functions of pseudo-integrable systems, a hitherto unexplored subject in the mathematical community which is not well understood in the physics community; with statistics of zeros of zeta functions over function fields, a purely number theoretic topic which is linked to the subproject on Quantum Chaos through the mysterious connections to Random Matrix Theory and an analogy between energy levels and zeta zeros; and with spatial statistics in arithmetic.
Summary
Quantum Chaos is an emerging discipline which is crossing over from Physics into Pure Mathematics. The recent crossover is driven in part by a connection with Number Theory. This project explores several aspects of this interrelationship and is composed of a number of sub-projects. The sub-projects deal with: statistics of energy levels and wave functions of pseudo-integrable systems, a hitherto unexplored subject in the mathematical community which is not well understood in the physics community; with statistics of zeros of zeta functions over function fields, a purely number theoretic topic which is linked to the subproject on Quantum Chaos through the mysterious connections to Random Matrix Theory and an analogy between energy levels and zeta zeros; and with spatial statistics in arithmetic.
Max ERC Funding
1 714 000 €
Duration
Start date: 2013-02-01, End date: 2019-01-31
Project acronym ARRAY SEQ
Project Array-tagged single cell gene expression by parallel linear RNA amplification and sequencing
Researcher (PI) Itai Yanai
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Proof of Concept (PoC), ERC-2015-PoC, ERC-2015-PoC
Summary In many biomedical research and clinical applications it would be tremendously useful to know the gene expression profile of each and every cell in a sample, be it a blood sample or tumor. At present, the most advanced single-cell technologies are limited to a few thousand cells by a laborious and expensive approach. We have invented a method allowing the determination of the transcriptomes of millions of cells in parallel, using array-based technique for tagging single cells. The protocol combines our previously published protocol for single cell transcriptomics – CEL-Seq – with a new membrane based system for capturing single cells and a DNA microarray for differentially tagging each cell in the membrane. If further developed into a commercial platform, our method could have tremendous impact on clinical and research transcriptomics. Our method requires no expensive equipment, low amounts of reagents and little hands-on, making it unlike any available protocol for single cell analysis. Our method also has great versatility as it can be used for analyzing up to a million cells, but can also be easily scaled down to several hundreds, promising to make it the state of the art protocol for any lab interested in single cell biology. Our method thus represents a game-changer because it completely reinvents the scale under which cells can be examined – affordably and without a need for expensive instruments – by at least three orders of magnitude. The aim of this project is to establish a user-friendly platform for our method that could be commercially available in the coming years. The developed platform will facilitate a large-scale ability to query cells; the breadth of possible research and personal medicine applications is unimaginable at present.
Summary
In many biomedical research and clinical applications it would be tremendously useful to know the gene expression profile of each and every cell in a sample, be it a blood sample or tumor. At present, the most advanced single-cell technologies are limited to a few thousand cells by a laborious and expensive approach. We have invented a method allowing the determination of the transcriptomes of millions of cells in parallel, using array-based technique for tagging single cells. The protocol combines our previously published protocol for single cell transcriptomics – CEL-Seq – with a new membrane based system for capturing single cells and a DNA microarray for differentially tagging each cell in the membrane. If further developed into a commercial platform, our method could have tremendous impact on clinical and research transcriptomics. Our method requires no expensive equipment, low amounts of reagents and little hands-on, making it unlike any available protocol for single cell analysis. Our method also has great versatility as it can be used for analyzing up to a million cells, but can also be easily scaled down to several hundreds, promising to make it the state of the art protocol for any lab interested in single cell biology. Our method thus represents a game-changer because it completely reinvents the scale under which cells can be examined – affordably and without a need for expensive instruments – by at least three orders of magnitude. The aim of this project is to establish a user-friendly platform for our method that could be commercially available in the coming years. The developed platform will facilitate a large-scale ability to query cells; the breadth of possible research and personal medicine applications is unimaginable at present.
Max ERC Funding
150 000 €
Duration
Start date: 2015-09-01, End date: 2017-02-28
Project acronym ATLAS
Project Bioengineered autonomous cell-biomaterials devices for generating humanised micro-tissues for regenerative medicine
Researcher (PI) João Felipe Colardelle da Luz Mano
Host Institution (HI) UNIVERSIDADE DE AVEIRO
Call Details Advanced Grant (AdG), PE8, ERC-2014-ADG
Summary New generations of devices for tissue engineering (TE) should rationalize better the physical and biochemical cues operating in tandem during native regeneration, in particular at the scale/organizational-level of the stem cell niche. The understanding and the deconstruction of these factors (e.g. multiple cell types exchanging both paracrine and direct signals, structural and chemical arrangement of the extra-cellular matrix, mechanical signals…) should be then incorporated into the design of truly biomimetic biomaterials. ATLAS proposes rather unique toolboxes combining smart biomaterials and cells for the ground-breaking advances of engineering fully time-self-regulated complex 2D and 3D devices, able to adjust the cascade of processes leading to faster high-quality new tissue formation with minimum pre-processing of cells. Versatile biomaterials based on marine-origin macromolecules will be used, namely in the supramolecular assembly of instructive multilayers as nanostratified building-blocks for engineer such structures. The backbone of these biopolymers will be equipped with a variety of (bio)chemical elements permitting: post-processing chemistry and micro-patterning, specific/non-specific cell attachment, and cell-controlled degradation. Aiming at being applied in bone TE, ATLAS will integrate cells from different units of tissue physiology, namely bone and hematopoietic basic elements and consider the interactions between the immune and skeletal systems. These ingredients will permit to architect innovative films with high-level dialogue control with cells, but in particular sophisticated quasi-closed 3D capsules able to compartmentalise such components in a “globe-like” organization, providing local and long-range order for in vitro microtissue development and function. Such hybrid devices could be used in more generalised front-edge applications, including as disease models for drug discovery or test new therapies in vitro.
Summary
New generations of devices for tissue engineering (TE) should rationalize better the physical and biochemical cues operating in tandem during native regeneration, in particular at the scale/organizational-level of the stem cell niche. The understanding and the deconstruction of these factors (e.g. multiple cell types exchanging both paracrine and direct signals, structural and chemical arrangement of the extra-cellular matrix, mechanical signals…) should be then incorporated into the design of truly biomimetic biomaterials. ATLAS proposes rather unique toolboxes combining smart biomaterials and cells for the ground-breaking advances of engineering fully time-self-regulated complex 2D and 3D devices, able to adjust the cascade of processes leading to faster high-quality new tissue formation with minimum pre-processing of cells. Versatile biomaterials based on marine-origin macromolecules will be used, namely in the supramolecular assembly of instructive multilayers as nanostratified building-blocks for engineer such structures. The backbone of these biopolymers will be equipped with a variety of (bio)chemical elements permitting: post-processing chemistry and micro-patterning, specific/non-specific cell attachment, and cell-controlled degradation. Aiming at being applied in bone TE, ATLAS will integrate cells from different units of tissue physiology, namely bone and hematopoietic basic elements and consider the interactions between the immune and skeletal systems. These ingredients will permit to architect innovative films with high-level dialogue control with cells, but in particular sophisticated quasi-closed 3D capsules able to compartmentalise such components in a “globe-like” organization, providing local and long-range order for in vitro microtissue development and function. Such hybrid devices could be used in more generalised front-edge applications, including as disease models for drug discovery or test new therapies in vitro.
Max ERC Funding
2 498 988 €
Duration
Start date: 2015-12-01, End date: 2020-11-30
Project acronym AXIAL.EC
Project PRINCIPLES OF AXIAL POLARITY-DRIVEN VASCULAR PATTERNING
Researcher (PI) Claudio Franco
Host Institution (HI) INSTITUTO DE MEDICINA MOLECULAR JOAO LOBO ANTUNES
Call Details Starting Grant (StG), LS4, ERC-2015-STG
Summary The formation of a functional patterned vascular network is essential for development, tissue growth and organ physiology. Several human vascular disorders arise from the mis-patterning of blood vessels, such as arteriovenous malformations, aneurysms and diabetic retinopathy. Although blood flow is recognised as a stimulus for vascular patterning, very little is known about the molecular mechanisms that regulate endothelial cell behaviour in response to flow and promote vascular patterning.
Recently, we uncovered that endothelial cells migrate extensively in the immature vascular network, and that endothelial cells polarise against the blood flow direction. Here, we put forward the hypothesis that vascular patterning is dependent on the polarisation and migration of endothelial cells against the flow direction, in a continuous flux of cells going from low-shear stress to high-shear stress regions. We will establish new reporter mouse lines to observe and manipulate endothelial polarity in vivo in order to investigate how polarisation and coordination of endothelial cells movements are orchestrated to generate vascular patterning. We will manipulate cell polarity using mouse models to understand the importance of cell polarisation in vascular patterning. Also, using a unique zebrafish line allowing analysis of endothelial cell polarity, we will perform a screen to identify novel regulators of vascular patterning. Finally, we will explore the hypothesis that defective flow-dependent endothelial polarisation underlies arteriovenous malformations using two genetic models.
This integrative approach, based on high-resolution imaging and unique experimental models, will provide a unifying model defining the cellular and molecular principles involved in vascular patterning. Given the physiological relevance of vascular patterning in health and disease, this research plan will set the basis for the development of novel clinical therapies targeting vascular disorders.
Summary
The formation of a functional patterned vascular network is essential for development, tissue growth and organ physiology. Several human vascular disorders arise from the mis-patterning of blood vessels, such as arteriovenous malformations, aneurysms and diabetic retinopathy. Although blood flow is recognised as a stimulus for vascular patterning, very little is known about the molecular mechanisms that regulate endothelial cell behaviour in response to flow and promote vascular patterning.
Recently, we uncovered that endothelial cells migrate extensively in the immature vascular network, and that endothelial cells polarise against the blood flow direction. Here, we put forward the hypothesis that vascular patterning is dependent on the polarisation and migration of endothelial cells against the flow direction, in a continuous flux of cells going from low-shear stress to high-shear stress regions. We will establish new reporter mouse lines to observe and manipulate endothelial polarity in vivo in order to investigate how polarisation and coordination of endothelial cells movements are orchestrated to generate vascular patterning. We will manipulate cell polarity using mouse models to understand the importance of cell polarisation in vascular patterning. Also, using a unique zebrafish line allowing analysis of endothelial cell polarity, we will perform a screen to identify novel regulators of vascular patterning. Finally, we will explore the hypothesis that defective flow-dependent endothelial polarisation underlies arteriovenous malformations using two genetic models.
This integrative approach, based on high-resolution imaging and unique experimental models, will provide a unifying model defining the cellular and molecular principles involved in vascular patterning. Given the physiological relevance of vascular patterning in health and disease, this research plan will set the basis for the development of novel clinical therapies targeting vascular disorders.
Max ERC Funding
1 618 750 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym BACNK
Project Recognition of bacteria by NK cells
Researcher (PI) Ofer Mandelboim
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Advanced Grant (AdG), LS6, ERC-2012-ADG_20120314
Summary NK cells that are well known by their ability to recognize and eliminate virus infected and tumor cells were also implicated in the defence against bacteria. However, the recognition of bacteria by NK cells is only poorly understood. we do not know how bacteria are recognized and the functional consequences of such recognition are also weakly understood. In the current proposal we aimed at determining the “NK cell receptor-bacterial interactome”. We will examine the hypothesis that NK inhibitory and activating receptors are directly involved in bacterial recognition. This ground breaking hypothesis is based on our preliminary results in which we show that several NK cell receptors directly recognize various bacterial strains as well as on a few other publications. We will generate various mice knockouts for NCR1 (a major NK killer receptor) and determine their microbiota to understand the physiological function of NCR1 and whether certain bacterial strains affects its activity. We will use different human and mouse NK killer and inhibitory receptors fused to IgG1 to pull-down bacteria from saliva and fecal samples and then use 16S rRNA analysis and next generation sequencing to determine the nature of the bacteria species isolated. We will identify the bacterial ligands that are recognized by the relevant NK cell receptors, using bacterial random transposon insertion mutagenesis approach. We will end this research with functional assays. In the wake of the emerging threat of bacterial drug resistance and the involvement of bacteria in the pathogenesis of many different chronic diseases and in shaping the immune response, the completion of this study will open a new field of research; the direct recognition of bacteria by NK cell receptors.
Summary
NK cells that are well known by their ability to recognize and eliminate virus infected and tumor cells were also implicated in the defence against bacteria. However, the recognition of bacteria by NK cells is only poorly understood. we do not know how bacteria are recognized and the functional consequences of such recognition are also weakly understood. In the current proposal we aimed at determining the “NK cell receptor-bacterial interactome”. We will examine the hypothesis that NK inhibitory and activating receptors are directly involved in bacterial recognition. This ground breaking hypothesis is based on our preliminary results in which we show that several NK cell receptors directly recognize various bacterial strains as well as on a few other publications. We will generate various mice knockouts for NCR1 (a major NK killer receptor) and determine their microbiota to understand the physiological function of NCR1 and whether certain bacterial strains affects its activity. We will use different human and mouse NK killer and inhibitory receptors fused to IgG1 to pull-down bacteria from saliva and fecal samples and then use 16S rRNA analysis and next generation sequencing to determine the nature of the bacteria species isolated. We will identify the bacterial ligands that are recognized by the relevant NK cell receptors, using bacterial random transposon insertion mutagenesis approach. We will end this research with functional assays. In the wake of the emerging threat of bacterial drug resistance and the involvement of bacteria in the pathogenesis of many different chronic diseases and in shaping the immune response, the completion of this study will open a new field of research; the direct recognition of bacteria by NK cell receptors.
Max ERC Funding
2 499 800 €
Duration
Start date: 2013-03-01, End date: 2018-02-28
Project acronym BARCODE DIAGNOSTICS
Project Next-Generation Personalized Diagnostic Nanotechnologies for Predicting Response to Cancer Medicine
Researcher (PI) Avraham Dror Schroeder
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Starting Grant (StG), LS7, ERC-2015-STG
Summary Cancer is the leading cause of death in the Western world and the second cause of death worldwide. Despite advances in medical research, 30% of cancer patients are prescribed a medication the tumor does not respond to, or, alternatively, drugs that induce adverse side effects patients' cannot tolerate.
Nanotechnologies are becoming impactful therapeutic tools, granting tissue-targeting and cellular precision that cannot be attained using systems of larger scale.
In this proposal, I plan to expand far beyond the state-of-the-art and develop a conceptually new approach in which diagnostic nanoparticles are designed to retrieve drug-sensitivity information from malignant tissue inside the body. The ultimate goal of this program is to be able to predict, ahead of time, which treatment will be best for each cancer patient – an emerging field called personalized medicine. This interdisciplinary research program will expand our understandings and capabilities in nanotechnology, cancer biology and medicine.
To achieve this goal, I will engineer novel nanotechnologies that autonomously maneuver, target and diagnose the various cells that compose the tumor microenvironment and its disseminated metastasis. Each nanometric system will contain a miniscule amount of a biologically-active agent, and will serve as a nano lab for testing the activity of the agents inside the tumor cells.
To distinguish between system to system, and to grant single-cell sensitivity in vivo, nanoparticles will be barcoded with unique DNA fragments.
We will enable nanoparticle' deep tissue penetration into primary tumors and metastatic microenvironments using enzyme-loaded particles, and study how different agents, including small-molecule drugs, proteins and RNA, interact with the malignant and stromal cells that compose the cancerous microenvironments. Finally, we will demonstrate the ability of barcoded nanoparticles to predict adverse, life-threatening, side effects, in a personalized manner.
Summary
Cancer is the leading cause of death in the Western world and the second cause of death worldwide. Despite advances in medical research, 30% of cancer patients are prescribed a medication the tumor does not respond to, or, alternatively, drugs that induce adverse side effects patients' cannot tolerate.
Nanotechnologies are becoming impactful therapeutic tools, granting tissue-targeting and cellular precision that cannot be attained using systems of larger scale.
In this proposal, I plan to expand far beyond the state-of-the-art and develop a conceptually new approach in which diagnostic nanoparticles are designed to retrieve drug-sensitivity information from malignant tissue inside the body. The ultimate goal of this program is to be able to predict, ahead of time, which treatment will be best for each cancer patient – an emerging field called personalized medicine. This interdisciplinary research program will expand our understandings and capabilities in nanotechnology, cancer biology and medicine.
To achieve this goal, I will engineer novel nanotechnologies that autonomously maneuver, target and diagnose the various cells that compose the tumor microenvironment and its disseminated metastasis. Each nanometric system will contain a miniscule amount of a biologically-active agent, and will serve as a nano lab for testing the activity of the agents inside the tumor cells.
To distinguish between system to system, and to grant single-cell sensitivity in vivo, nanoparticles will be barcoded with unique DNA fragments.
We will enable nanoparticle' deep tissue penetration into primary tumors and metastatic microenvironments using enzyme-loaded particles, and study how different agents, including small-molecule drugs, proteins and RNA, interact with the malignant and stromal cells that compose the cancerous microenvironments. Finally, we will demonstrate the ability of barcoded nanoparticles to predict adverse, life-threatening, side effects, in a personalized manner.
Max ERC Funding
1 499 250 €
Duration
Start date: 2016-04-01, End date: 2021-03-31
Project acronym BeyondtheElite
Project Beyond the Elite: Jewish Daily Life in Medieval Europe
Researcher (PI) Elisheva Baumgarten
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Consolidator Grant (CoG), SH6, ERC-2015-CoG
Summary The two fundamental challenges of this project are the integration of medieval Jewries and their histories within the framework of European history without undermining their distinct communal status and the creation of a history of everyday medieval Jewish life that includes those who were not part of the learned elite. The study will focus on the Jewish communities of northern Europe (roughly modern Germany, northern France and England) from 1100-1350. From the mid-thirteenth century these medieval Jewish communities were subject to growing persecution. The approaches proposed to access daily praxis seek to highlight tangible dimensions of religious life rather than the more common study of ideologies to date. This task is complex because the extant sources in Hebrew as well as those in Latin and vernacular were written by the learned elite and will require a broad survey of multiple textual and material sources.
Four main strands will be examined and combined:
1. An outline of the strata of Jewish society, better defining the elites and other groups.
2. A study of select communal and familial spaces such as the house, the synagogue, the market place have yet to be examined as social spaces.
3. Ritual and urban rhythms especially the annual cycle, connecting between Jewish and Christian environments.
4. Material culture, as objects were used by Jews and Christians alike.
Aspects of material culture, the physical environment and urban rhythms are often described as “neutral” yet will be mined to demonstrate how they exemplified difference while being simultaneously ubiquitous in local cultures. The deterioration of relations between Jews and Christians will provide a gauge for examining change during this period. The final stage of the project will include comparative case studies of other Jewish communities. I expect my findings will inform scholars of medieval culture at large and promote comparative methodologies for studying other minority ethnic groups
Summary
The two fundamental challenges of this project are the integration of medieval Jewries and their histories within the framework of European history without undermining their distinct communal status and the creation of a history of everyday medieval Jewish life that includes those who were not part of the learned elite. The study will focus on the Jewish communities of northern Europe (roughly modern Germany, northern France and England) from 1100-1350. From the mid-thirteenth century these medieval Jewish communities were subject to growing persecution. The approaches proposed to access daily praxis seek to highlight tangible dimensions of religious life rather than the more common study of ideologies to date. This task is complex because the extant sources in Hebrew as well as those in Latin and vernacular were written by the learned elite and will require a broad survey of multiple textual and material sources.
Four main strands will be examined and combined:
1. An outline of the strata of Jewish society, better defining the elites and other groups.
2. A study of select communal and familial spaces such as the house, the synagogue, the market place have yet to be examined as social spaces.
3. Ritual and urban rhythms especially the annual cycle, connecting between Jewish and Christian environments.
4. Material culture, as objects were used by Jews and Christians alike.
Aspects of material culture, the physical environment and urban rhythms are often described as “neutral” yet will be mined to demonstrate how they exemplified difference while being simultaneously ubiquitous in local cultures. The deterioration of relations between Jews and Christians will provide a gauge for examining change during this period. The final stage of the project will include comparative case studies of other Jewish communities. I expect my findings will inform scholars of medieval culture at large and promote comparative methodologies for studying other minority ethnic groups
Max ERC Funding
1 941 688 €
Duration
Start date: 2016-11-01, End date: 2021-10-31
Project acronym BI-DSC
Project Building Integrated Dye Sensitized Solar Cells
Researcher (PI) Adélio Miguel Magalhaes Mendes
Host Institution (HI) UNIVERSIDADE DO PORTO
Call Details Advanced Grant (AdG), PE8, ERC-2012-ADG_20120216
Summary In the last decade, solar and photovoltaic (PV) technologies have emerged as a potentially major technology for power generation in the world. So far the PV field has been dominated by silicon devices, even though this technology is still expensive.Dye-sensitized solar cells (DSC) are an important type of thin-film photovoltaics due to their potential for low-cost fabrication and versatile applications, and because their aesthetic appearance, semi-transparency and different color possibilities.This advantageous characteristic makes DSC the first choice for building integrated photovoltaics.Despite their great potential, DSCs for building applications are still not available at commercial level. However, to bring DSCs to a marketable product several developments are still needed and the present project targets to give relevant answers to three key limitations: encapsulation, glass substrate enhanced electrical conductivity and more efficient and low-cost raw-materials. Recently, the proponent successfully addressed the hermetic devices sealing by developing a laser-assisted glass sealing procedure.Thus, BI-DSC proposal envisages the development of DSC modules 30x30cm2, containing four individual cells, and their incorporation in a 1m2 double glass sheet arrangement for BIPV with an energy efficiency of at least 9% and a lifetime of 20 years. Additionally, aiming at enhanced efficiency of the final device and decreased total costs of DSCs manufacturing, new materials will be also pursued. The following inner-components were identified as critical: carbon-based counter-electrode; carbon quantum-dots and hierarchically TiO2 photoelectrode. It is then clear that this project is divided into two research though parallel directions: a fundamental research line, contributing to the development of the new generation DSC technology; while a more applied research line targets the development of a DSC functional module that can be used to pave the way for its industrialization.
Summary
In the last decade, solar and photovoltaic (PV) technologies have emerged as a potentially major technology for power generation in the world. So far the PV field has been dominated by silicon devices, even though this technology is still expensive.Dye-sensitized solar cells (DSC) are an important type of thin-film photovoltaics due to their potential for low-cost fabrication and versatile applications, and because their aesthetic appearance, semi-transparency and different color possibilities.This advantageous characteristic makes DSC the first choice for building integrated photovoltaics.Despite their great potential, DSCs for building applications are still not available at commercial level. However, to bring DSCs to a marketable product several developments are still needed and the present project targets to give relevant answers to three key limitations: encapsulation, glass substrate enhanced electrical conductivity and more efficient and low-cost raw-materials. Recently, the proponent successfully addressed the hermetic devices sealing by developing a laser-assisted glass sealing procedure.Thus, BI-DSC proposal envisages the development of DSC modules 30x30cm2, containing four individual cells, and their incorporation in a 1m2 double glass sheet arrangement for BIPV with an energy efficiency of at least 9% and a lifetime of 20 years. Additionally, aiming at enhanced efficiency of the final device and decreased total costs of DSCs manufacturing, new materials will be also pursued. The following inner-components were identified as critical: carbon-based counter-electrode; carbon quantum-dots and hierarchically TiO2 photoelectrode. It is then clear that this project is divided into two research though parallel directions: a fundamental research line, contributing to the development of the new generation DSC technology; while a more applied research line targets the development of a DSC functional module that can be used to pave the way for its industrialization.
Max ERC Funding
1 989 300 €
Duration
Start date: 2013-03-01, End date: 2018-08-31
Project acronym BISON
Project Bio-Inspired Self-Assembled Supramolecular Organic Nanostructures
Researcher (PI) Ehud Gazit
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Advanced Grant (AdG), LS9, ERC-2015-AdG
Summary Peptide building blocks serve as very attractive bio-inspired elements in nanotechnology owing to their controlled self-assembly, inherent biocompatibility, chemical versatility, biological recognition abilities and facile synthesis. We have demonstrated the ability of remarkably simple aromatic peptides to form well-ordered nanostructures of exceptional physical properties. By taking inspiration from the minimal recognition modules used by nature to mediate coordinated processes of self-assembly, we have developed building blocks that form well-ordered nanostructures. The compact design of the building blocks, and therefore, the unique structural organization, resulted in metallic-like Young's modulus, blue luminescence due to quantum confinement, and notable piezoelectric properties. The goal of this proposal is to develop two new fronts for bio-inspired building block repertoire along with co-assembly to provide new avenues for organic nanotechnology. This will combine our vast experience in the assembly of aromatic peptides together with additional structural modules from nature. The new entities will be developed by exploiting the design principles of small aromatic building blocks to arrive at the smallest possible module that form super helical assembly based on the coiled coil motifs and establishing peptide nucleic acids based systems to combine the worlds of peptide and DNA nanotechnologies. The proposed research will combine extensive design and synthesis effort to provide a very diverse collection of novel buildings blocks and determination of their self-assembly process, followed by broad chemical, physical, and biological characterization of the nanostructures. Furthermore, effort will be made to establish supramolecular co-polymer systems to extend the morphological control of the assembly process. The result of the project will be a large and defined collection of novel chemical entities that will help reshape the field of bioorganic nanotechnology.
Summary
Peptide building blocks serve as very attractive bio-inspired elements in nanotechnology owing to their controlled self-assembly, inherent biocompatibility, chemical versatility, biological recognition abilities and facile synthesis. We have demonstrated the ability of remarkably simple aromatic peptides to form well-ordered nanostructures of exceptional physical properties. By taking inspiration from the minimal recognition modules used by nature to mediate coordinated processes of self-assembly, we have developed building blocks that form well-ordered nanostructures. The compact design of the building blocks, and therefore, the unique structural organization, resulted in metallic-like Young's modulus, blue luminescence due to quantum confinement, and notable piezoelectric properties. The goal of this proposal is to develop two new fronts for bio-inspired building block repertoire along with co-assembly to provide new avenues for organic nanotechnology. This will combine our vast experience in the assembly of aromatic peptides together with additional structural modules from nature. The new entities will be developed by exploiting the design principles of small aromatic building blocks to arrive at the smallest possible module that form super helical assembly based on the coiled coil motifs and establishing peptide nucleic acids based systems to combine the worlds of peptide and DNA nanotechnologies. The proposed research will combine extensive design and synthesis effort to provide a very diverse collection of novel buildings blocks and determination of their self-assembly process, followed by broad chemical, physical, and biological characterization of the nanostructures. Furthermore, effort will be made to establish supramolecular co-polymer systems to extend the morphological control of the assembly process. The result of the project will be a large and defined collection of novel chemical entities that will help reshape the field of bioorganic nanotechnology.
Max ERC Funding
3 003 125 €
Duration
Start date: 2016-06-01, End date: 2021-05-31
Project acronym BNYQ
Project Breaking the Nyquist Barrier: A New Paradigm in Data Conversion and Transmission
Researcher (PI) Yonina Eldar
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Consolidator Grant (CoG), PE7, ERC-2014-CoG
Summary Digital signal processing (DSP) is a revolutionary paradigm shift enabling processing of physical data in the digital domain where design and implementation are considerably simplified. However, state-of-the-art analog-to-digital convertors (ADCs) preclude high-rate wideband sampling and processing with low cost and energy consumption, presenting a major bottleneck. This is mostly due to a traditional assumption that sampling must be performed at the Nyquist rate, that is, twice the signal bandwidth. Modern applications including communications, medical imaging, radar and more use signals with high bandwidth, resulting in prohibitively large Nyquist rates.
Our ambitious goal is to introduce a paradigm shift in ADC design that will enable systems capable of low-rate, wideband sensing and low-rate DSP.
While DSP has a rich history in exploiting structure to reduce dimensionality and perform efficient parameter extraction, current ADCs do not exploit such knowledge.
We challenge current practice that separates the sampling stage from the processing stage and exploit structure in analog signals already in the ADC, to drastically reduce the sampling and processing rates.
Our preliminary data shows that this allows substantial savings in sampling and processing rates --- we show rate reduction of 1/28 in ultrasound imaging, and 1/30 in radar detection.
To achieve our overreaching goal we focus on three interconnected objectives -- developing the 1) theory 2) hardware and 3) applications of sub-Nyquist sampling.
Our methodology ties together two areas on the frontier of signal processing: compressed sensing (CS), focused on finite length vectors, and analog sampling. Our research plan also inherently relies on advances in several other important areas within signal processing and combines multi-disciplinary research at the intersection of signal processing, information theory, optimization, estimation theory and hardware design.
Summary
Digital signal processing (DSP) is a revolutionary paradigm shift enabling processing of physical data in the digital domain where design and implementation are considerably simplified. However, state-of-the-art analog-to-digital convertors (ADCs) preclude high-rate wideband sampling and processing with low cost and energy consumption, presenting a major bottleneck. This is mostly due to a traditional assumption that sampling must be performed at the Nyquist rate, that is, twice the signal bandwidth. Modern applications including communications, medical imaging, radar and more use signals with high bandwidth, resulting in prohibitively large Nyquist rates.
Our ambitious goal is to introduce a paradigm shift in ADC design that will enable systems capable of low-rate, wideband sensing and low-rate DSP.
While DSP has a rich history in exploiting structure to reduce dimensionality and perform efficient parameter extraction, current ADCs do not exploit such knowledge.
We challenge current practice that separates the sampling stage from the processing stage and exploit structure in analog signals already in the ADC, to drastically reduce the sampling and processing rates.
Our preliminary data shows that this allows substantial savings in sampling and processing rates --- we show rate reduction of 1/28 in ultrasound imaging, and 1/30 in radar detection.
To achieve our overreaching goal we focus on three interconnected objectives -- developing the 1) theory 2) hardware and 3) applications of sub-Nyquist sampling.
Our methodology ties together two areas on the frontier of signal processing: compressed sensing (CS), focused on finite length vectors, and analog sampling. Our research plan also inherently relies on advances in several other important areas within signal processing and combines multi-disciplinary research at the intersection of signal processing, information theory, optimization, estimation theory and hardware design.
Max ERC Funding
2 400 000 €
Duration
Start date: 2015-08-01, End date: 2020-07-31
Project acronym Brain circRNAs
Project Rounding the circle: Unravelling the biogenesis, function and mechanism of action of circRNAs in the Drosophila brain.
Researcher (PI) Sebastian Kadener
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Consolidator Grant (CoG), LS5, ERC-2014-CoG
Summary Tight regulation of RNA metabolism is essential for normal brain function. This includes co and post-transcriptional regulation, which are extremely prevalent in neurons. Recently, circular RNAs (circRNAs), a highly abundant new type of regulatory non-coding RNA have been found across the animal kingdom. Two of these RNAs have been shown to act as miRNA sponges but no function is known for the thousands of other circRNAs, indicating the existence of a widespread layer of previously unknown gene regulation.
The present proposal aims to comprehensively determine the role and mode of actions of circRNAs in gene expression and RNA metabolism in the fly brain. We will do so by studying their biogenesis, transport, and mechanism of action, as well as by determining the roles of circRNAs in neuronal function and behaviour. Briefly, we will: 1) identify factors involved in the biogenesis, localization, and stabilization of circRNAs; 2) determine neuro-developmental, molecular, neural and behavioural phenotypes associated with down or up regulation of specific circRNAs; 3) study the molecular mechanisms of action of circRNAs: identify circRNAs that work as miRNA sponges and determine whether circRNAs can encode proteins or act as signalling molecules and 4) perform mechanistic studies in order to determine cause-effect relationships between circRNA function and brain physiology and behaviour.
The present proposal will reveal the key pathways by which circRNAs control gene expression and influence neuronal function and behaviour. Therefore it will be one of the pioneer works in the study of this new and important area of research, which we predict will fundamentally transform the study of gene expression regulation in the brain
Summary
Tight regulation of RNA metabolism is essential for normal brain function. This includes co and post-transcriptional regulation, which are extremely prevalent in neurons. Recently, circular RNAs (circRNAs), a highly abundant new type of regulatory non-coding RNA have been found across the animal kingdom. Two of these RNAs have been shown to act as miRNA sponges but no function is known for the thousands of other circRNAs, indicating the existence of a widespread layer of previously unknown gene regulation.
The present proposal aims to comprehensively determine the role and mode of actions of circRNAs in gene expression and RNA metabolism in the fly brain. We will do so by studying their biogenesis, transport, and mechanism of action, as well as by determining the roles of circRNAs in neuronal function and behaviour. Briefly, we will: 1) identify factors involved in the biogenesis, localization, and stabilization of circRNAs; 2) determine neuro-developmental, molecular, neural and behavioural phenotypes associated with down or up regulation of specific circRNAs; 3) study the molecular mechanisms of action of circRNAs: identify circRNAs that work as miRNA sponges and determine whether circRNAs can encode proteins or act as signalling molecules and 4) perform mechanistic studies in order to determine cause-effect relationships between circRNA function and brain physiology and behaviour.
The present proposal will reveal the key pathways by which circRNAs control gene expression and influence neuronal function and behaviour. Therefore it will be one of the pioneer works in the study of this new and important area of research, which we predict will fundamentally transform the study of gene expression regulation in the brain
Max ERC Funding
1 971 750 €
Duration
Start date: 2016-02-01, End date: 2021-01-31
Project acronym BrainControl
Project Stable Brain-Machine control via a learnable standalone interface
Researcher (PI) Rui Manuel Marques Fernandes da Costa
Host Institution (HI) FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD
Call Details Proof of Concept (PoC), PC1, ERC-2015-PoC
Summary Non-invasive Brain Machine Interfaces (BMI) bring great promise for neuro-rehabilitation and neuro-prosthesis, as well as for brain control of everyday devices and performance of simple tasks. Over the last 15 years the interest in BMIs has grown substantially, and a variety of interfaces have been developed. The field has been growing dramatically, and market studies reveal an estimated market size of $1.46 billion by 2020. However, non-invasive BMIs have failed to reach the impressive control seen by BMIs implanted in the brain. To date, they require considerable training to reach a moderate level of control, they are susceptible to noise and interference, do not generalize between people and devices, and performance does not show long-term consolidation. Results from our ERC-funded work uncovered a new paradigm that dramatically improves these issues. We propose to develop a prototype for a novel, standalone, non-invasive, noise-resistant BMI, based on an unexplored BMI learning paradigm. In this POC we will 1) refine the brain signal interface (decoder) to be automatically customizable to each individual and produces faster training, 2) implement our BMI technology into a portable hardware-based system, and 3) develop a virtual reality/gaming training platform that will increase learning, performance and consolidation of BMI control. In addition to these technical aims, we propose to explore commercial opportunities and societal benefits, in particular in the health sector. We will conduct market analysis and develop a business case for this product, while expanding industry contacts for production and commercialization.
The work proposed in this PoC grant will permit, for the first time to our knowledge, the development of a portable, stand-alone, noise-resistant, and easy to learn BMI, applicable across a wide set of devices, which will bring a significant social impact in health, entertainment and other applications.
Summary
Non-invasive Brain Machine Interfaces (BMI) bring great promise for neuro-rehabilitation and neuro-prosthesis, as well as for brain control of everyday devices and performance of simple tasks. Over the last 15 years the interest in BMIs has grown substantially, and a variety of interfaces have been developed. The field has been growing dramatically, and market studies reveal an estimated market size of $1.46 billion by 2020. However, non-invasive BMIs have failed to reach the impressive control seen by BMIs implanted in the brain. To date, they require considerable training to reach a moderate level of control, they are susceptible to noise and interference, do not generalize between people and devices, and performance does not show long-term consolidation. Results from our ERC-funded work uncovered a new paradigm that dramatically improves these issues. We propose to develop a prototype for a novel, standalone, non-invasive, noise-resistant BMI, based on an unexplored BMI learning paradigm. In this POC we will 1) refine the brain signal interface (decoder) to be automatically customizable to each individual and produces faster training, 2) implement our BMI technology into a portable hardware-based system, and 3) develop a virtual reality/gaming training platform that will increase learning, performance and consolidation of BMI control. In addition to these technical aims, we propose to explore commercial opportunities and societal benefits, in particular in the health sector. We will conduct market analysis and develop a business case for this product, while expanding industry contacts for production and commercialization.
The work proposed in this PoC grant will permit, for the first time to our knowledge, the development of a portable, stand-alone, noise-resistant, and easy to learn BMI, applicable across a wide set of devices, which will bring a significant social impact in health, entertainment and other applications.
Max ERC Funding
149 625 €
Duration
Start date: 2016-09-01, End date: 2018-02-28
Project acronym BRAINVISIONREHAB
Project ‘Seeing’ with the ears, hands and bionic eyes: from theories about brain organization to visual rehabilitation
Researcher (PI) Amir Amedi
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Starting Grant (StG), LS5, ERC-2012-StG_20111109
Summary My lab's work ranges from basic science, querying brain plasticity and sensory integration, to technological developments, allowing the blind to be more independent and even “see” using sounds and touch similar to bats and dolphins (a.k.a. Sensory Substitution Devices, SSDs), and back to applying these devices in research. We propose that, with proper training, any brain area or network can change the type of sensory input it uses to retrieve behaviorally task-relevant information within a matter of days. If this is true, it can have far reaching implications also for clinical rehabilitation. To achieve this, we are developing several innovative SSDs which encode the most crucial aspects of vision and increase their accessibility the blind, along with targeted, structured training protocols both in virtual environments and in real life. For instance, the “EyeMusic”, encodes colored complex images using pleasant musical scales and instruments, and the “EyeCane”, a palm-size cane, which encodes distance and depth in several directions accurately and efficiently. We provide preliminary but compelling evidence that following such training, SSDs can enable almost blind to recognize daily objects, colors, faces and facial expressions, read street signs, and aiding mobility and navigation. SSDs can also be used in conjunction with (any) invasive approach for visual rehabilitation. We are developing a novel hybrid Visual Rehabilitation Device which combines SSD and bionic eyes. In this set up, the SSDs is used in training the brain to “see” prior to surgery, in providing explanatory signal after surgery and in augmenting the capabilities of the bionic-eyes using information arriving from the same image. We will chart the dynamics of the plastic changes in the brain by performing unprecedented longitudinal Neuroimaging, Electrophysiological and Neurodisruptive approaches while individuals learn to ‘see’ using each of the visual rehabilitation approaches suggested here.
Summary
My lab's work ranges from basic science, querying brain plasticity and sensory integration, to technological developments, allowing the blind to be more independent and even “see” using sounds and touch similar to bats and dolphins (a.k.a. Sensory Substitution Devices, SSDs), and back to applying these devices in research. We propose that, with proper training, any brain area or network can change the type of sensory input it uses to retrieve behaviorally task-relevant information within a matter of days. If this is true, it can have far reaching implications also for clinical rehabilitation. To achieve this, we are developing several innovative SSDs which encode the most crucial aspects of vision and increase their accessibility the blind, along with targeted, structured training protocols both in virtual environments and in real life. For instance, the “EyeMusic”, encodes colored complex images using pleasant musical scales and instruments, and the “EyeCane”, a palm-size cane, which encodes distance and depth in several directions accurately and efficiently. We provide preliminary but compelling evidence that following such training, SSDs can enable almost blind to recognize daily objects, colors, faces and facial expressions, read street signs, and aiding mobility and navigation. SSDs can also be used in conjunction with (any) invasive approach for visual rehabilitation. We are developing a novel hybrid Visual Rehabilitation Device which combines SSD and bionic eyes. In this set up, the SSDs is used in training the brain to “see” prior to surgery, in providing explanatory signal after surgery and in augmenting the capabilities of the bionic-eyes using information arriving from the same image. We will chart the dynamics of the plastic changes in the brain by performing unprecedented longitudinal Neuroimaging, Electrophysiological and Neurodisruptive approaches while individuals learn to ‘see’ using each of the visual rehabilitation approaches suggested here.
Max ERC Funding
1 499 900 €
Duration
Start date: 2013-09-01, End date: 2018-08-31
Project acronym CaNANObinoids
Project From Peripheralized to Cell- and Organelle-Targeted Medicine: The 3rd Generation of Cannabinoid-1 Receptor Antagonists for the Treatment of Chronic Kidney Disease
Researcher (PI) Yossef Tam
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Starting Grant (StG), LS4, ERC-2015-STG
Summary Clinical experience with globally-acting cannabinoid-1 receptor (CB1R) antagonists revealed the benefits of blocking CB1Rs for the treatment of obesity and diabetes. However, their use is hampered by increased CNS-mediated side effects. Recently, I have demonstrated that peripherally-restricted CB1R antagonists have the potential to treat the metabolic syndrome without eliciting these adverse effects. While these results are promising and are currently being developed into the clinic, our ability to rationally design CB1R blockers that would target a diseased organ is limited.
The current proposal aims to develop and test cell- and organelle-specific CB1R antagonists. To establish this paradigm, I will focus our interest on the kidney, since chronic kidney disease (CKD) is the leading cause of increased morbidity and mortality of patients with diabetes. Our first goal will be to characterize the obligatory role of the renal proximal tubular CB1R in the pathogenesis of diabetic renal complications. Next, we will attempt to link renal proximal CB1R with diabetic mitochondrial dysfunction. Finally, we will develop proximal tubular (cell-specific) and mitochondrial (organelle-specific) CB1R blockers and test their effectiveness in treating CKD. To that end, we will encapsulate CB1R blockers into biocompatible polymeric nanoparticles that will serve as targeted drug delivery systems, via their conjugation to targeting ligands.
The implications of this work are far reaching as they will (i) point to renal proximal tubule CB1R as a novel target for CKD; (ii) identify mitochondrial CB1R as a new player in the regulation of proximal tubular cell function, and (iii) eventually become the drug-of-choice in treating diabetic CKD and its comorbidities. Moreover, this work will lead to the development of a novel organ-specific drug delivery system for CB1R blockers, which could be then exploited in other tissues affected by obesity, diabetes and the metabolic syndrome.
Summary
Clinical experience with globally-acting cannabinoid-1 receptor (CB1R) antagonists revealed the benefits of blocking CB1Rs for the treatment of obesity and diabetes. However, their use is hampered by increased CNS-mediated side effects. Recently, I have demonstrated that peripherally-restricted CB1R antagonists have the potential to treat the metabolic syndrome without eliciting these adverse effects. While these results are promising and are currently being developed into the clinic, our ability to rationally design CB1R blockers that would target a diseased organ is limited.
The current proposal aims to develop and test cell- and organelle-specific CB1R antagonists. To establish this paradigm, I will focus our interest on the kidney, since chronic kidney disease (CKD) is the leading cause of increased morbidity and mortality of patients with diabetes. Our first goal will be to characterize the obligatory role of the renal proximal tubular CB1R in the pathogenesis of diabetic renal complications. Next, we will attempt to link renal proximal CB1R with diabetic mitochondrial dysfunction. Finally, we will develop proximal tubular (cell-specific) and mitochondrial (organelle-specific) CB1R blockers and test their effectiveness in treating CKD. To that end, we will encapsulate CB1R blockers into biocompatible polymeric nanoparticles that will serve as targeted drug delivery systems, via their conjugation to targeting ligands.
The implications of this work are far reaching as they will (i) point to renal proximal tubule CB1R as a novel target for CKD; (ii) identify mitochondrial CB1R as a new player in the regulation of proximal tubular cell function, and (iii) eventually become the drug-of-choice in treating diabetic CKD and its comorbidities. Moreover, this work will lead to the development of a novel organ-specific drug delivery system for CB1R blockers, which could be then exploited in other tissues affected by obesity, diabetes and the metabolic syndrome.
Max ERC Funding
1 500 000 €
Duration
Start date: 2016-04-01, End date: 2021-03-31
Project acronym Cancer-Drug-Screen
Project High-throughput drug screening for identifying personalized cancer treatments tailored to the particular mutations of the patient’s tumor
Researcher (PI) Eran Azriel Segal
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Proof of Concept (PoC), PC1, ERC-2014-PoC
Summary Cancer is caused by a series of genetic alterations that confer an advantage to cancer cells, leading to uncontrolled growth. However, each tumor exhibits distinct molecular changes, making each patient’s malignancy unique. Hence, in the personalized medicine era, cancer treatment aims to tailor the most suitable treatment for each patient according to his/her genetic background, tumor acquired mutations and clinical indications.
The p53 tumor suppressor is the most frequently mutated gene in human cancers, with thousands of different tumor-associated mutations reported. Many such cancer-associated mutations in p53 lead to loss of its tumor suppressive activity and in some cases, to gain of new oncogenic functions, resulting in tumor recurrence and enhanced patient mortality. Importantly, tumors with different p53 mutations exhibit specific cancerous phenotypes and do not respond to particular treatments.
Based on our ERC-funded breakthrough technology, where we made a library of ~10,000 distinct p53 variants, and based on our strong IPR offering and competitive advantages, here we propose to develop three products for determining which treatment (or combination) would be most effective for treating a patient’s tumor according to his specific p53 sequence, reducing excruciating side effects and improving treatment outcomes:
1) Offering patients/physicians a list of treatments ranked by their efficacy in treating cells of similar origin and p53 mutations to those present in the patient’s tumor, allowing them to make more informed treatment decisions.
2) Offering companies in the personalized cancer treatment field access to our existing proprietary data regarding treatment efficacies towards p53 genetic variants.
3) A service to drug developing companies that applies our technology for testing the efficacy of a client-supplied drug of interest over all ~10,000 p53 mutations in our library in a cell-line of choice.
Summary
Cancer is caused by a series of genetic alterations that confer an advantage to cancer cells, leading to uncontrolled growth. However, each tumor exhibits distinct molecular changes, making each patient’s malignancy unique. Hence, in the personalized medicine era, cancer treatment aims to tailor the most suitable treatment for each patient according to his/her genetic background, tumor acquired mutations and clinical indications.
The p53 tumor suppressor is the most frequently mutated gene in human cancers, with thousands of different tumor-associated mutations reported. Many such cancer-associated mutations in p53 lead to loss of its tumor suppressive activity and in some cases, to gain of new oncogenic functions, resulting in tumor recurrence and enhanced patient mortality. Importantly, tumors with different p53 mutations exhibit specific cancerous phenotypes and do not respond to particular treatments.
Based on our ERC-funded breakthrough technology, where we made a library of ~10,000 distinct p53 variants, and based on our strong IPR offering and competitive advantages, here we propose to develop three products for determining which treatment (or combination) would be most effective for treating a patient’s tumor according to his specific p53 sequence, reducing excruciating side effects and improving treatment outcomes:
1) Offering patients/physicians a list of treatments ranked by their efficacy in treating cells of similar origin and p53 mutations to those present in the patient’s tumor, allowing them to make more informed treatment decisions.
2) Offering companies in the personalized cancer treatment field access to our existing proprietary data regarding treatment efficacies towards p53 genetic variants.
3) A service to drug developing companies that applies our technology for testing the efficacy of a client-supplied drug of interest over all ~10,000 p53 mutations in our library in a cell-line of choice.
Max ERC Funding
150 000 €
Duration
Start date: 2015-04-01, End date: 2016-09-30
Project acronym Cancer-Targeted PolyIC
Project Treatment of EGFR over-expressing cancers by targeted non-viral delivery of PolyIC
Researcher (PI) Alexander Levitzki
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Proof of Concept (PoC), PC1, ERC-2014-PoC
Summary We have recently shown that application of EGFR targeted synthetic dsRNA: Poly Iosine/Poly Cytosine (pIC) is highly efficient and selective against deadly cancers overexpressing EGFR, like glioblastoma (U87MGwtEGFR), breast cancer (MDA-MB-468) and adenocarcinoma (A431). Double-stranded RNA, frequently expressed in cells infected with viruses, activates a number of pro-apoptotic processes simultaneously. These dsRNA-induced mechanisms efficiently kill infected cells and induce expression of anti-proliferative cytokines from the interferon (IFN) family, thereby preventing spread of the virus. pIC delivered with Melittin-polyethylenimine-polyethyleneglycol-EGF (MPPE) eliminated orthotropic and subcutaneous tumors of the above cancers. Heterogeneous glioblastoma models where only half of the cells overexpress wtEGFR are also eliminated by local application, most likely due to a bystander antiproliferative effects, at least partially mediated by interferons (Shir et al., 2006). Systemic application of EGFR targeted pIC is also highly effective against breast and adenocarcinoma disseminated cancer models resembling metastatic cancers (Shir et al., 2011). During the last two years we have improved the vectors homing to EGFR to entities that can now be translated into clinical agents (Shaffert, 2011; Shir 2011, Abourbeh 2012). The impressive results with these more simplified vectors, make this project ready for clinical development, which requires fund raising from a Company/Venture capitalist. Commercialization of the therapy will be detailed in the proposal.
Summary
We have recently shown that application of EGFR targeted synthetic dsRNA: Poly Iosine/Poly Cytosine (pIC) is highly efficient and selective against deadly cancers overexpressing EGFR, like glioblastoma (U87MGwtEGFR), breast cancer (MDA-MB-468) and adenocarcinoma (A431). Double-stranded RNA, frequently expressed in cells infected with viruses, activates a number of pro-apoptotic processes simultaneously. These dsRNA-induced mechanisms efficiently kill infected cells and induce expression of anti-proliferative cytokines from the interferon (IFN) family, thereby preventing spread of the virus. pIC delivered with Melittin-polyethylenimine-polyethyleneglycol-EGF (MPPE) eliminated orthotropic and subcutaneous tumors of the above cancers. Heterogeneous glioblastoma models where only half of the cells overexpress wtEGFR are also eliminated by local application, most likely due to a bystander antiproliferative effects, at least partially mediated by interferons (Shir et al., 2006). Systemic application of EGFR targeted pIC is also highly effective against breast and adenocarcinoma disseminated cancer models resembling metastatic cancers (Shir et al., 2011). During the last two years we have improved the vectors homing to EGFR to entities that can now be translated into clinical agents (Shaffert, 2011; Shir 2011, Abourbeh 2012). The impressive results with these more simplified vectors, make this project ready for clinical development, which requires fund raising from a Company/Venture capitalist. Commercialization of the therapy will be detailed in the proposal.
Max ERC Funding
150 000 €
Duration
Start date: 2015-02-01, End date: 2016-07-31
Project acronym CAPRI
Project Clouds and Precipitation Response to Anthropogenic Changes in the Natural Environment
Researcher (PI) Ilan Koren
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Starting Grant (StG), PE10, ERC-2012-StG_20111012
Summary Clouds and precipitation play a crucial role in the Earth's energy balance, global atmospheric circulation and the water cycle. Despite their importance, clouds still pose the largest uncertainty in climate research.
I propose a new approach for studying anthropogenic effects on cloud fields and rain, tackling the challenge from both scientific ends: reductionism and systems approach. We will develop a novel research approach using observations and models interactively that will allow us to “peel apart” detailed physical processes. In parallel we will develop a systems view of cloud fields looking for Emergent Behavior rising out of the complexity, as the end result of all of the coupled processes. Better understanding of key processes on a detailed (reductionist) manner will enable us to formulate the important basic rules that control the field and to look for emergence of the overall effects.
We will merge ideas and methods from four different disciplines: remote sensing and radiative transfer, cloud physics, pattern recognition and computer vision and ideas developed in systems approach. All of this will be done against the backdrop of natural variability of meteorological systems.
The outcomes of this work will include fundamental new understanding of the coupled surface-aerosol-cloud-precipitation system. More importantly this work will emphasize the consequences of human actions on the environment, and how we change our climate and hydrological cycle as we input pollutants and transform the Earth’s surface. This work will open new horizons in cloud research by developing novel methods and employing the bulk knowledge of pattern recognition, complexity, networking and self organization to cloud and climate studies. We are proposing a long-term, open-ended program of study that will have scientific and societal relevance as long as human-caused influences continue, evolve and change.
Summary
Clouds and precipitation play a crucial role in the Earth's energy balance, global atmospheric circulation and the water cycle. Despite their importance, clouds still pose the largest uncertainty in climate research.
I propose a new approach for studying anthropogenic effects on cloud fields and rain, tackling the challenge from both scientific ends: reductionism and systems approach. We will develop a novel research approach using observations and models interactively that will allow us to “peel apart” detailed physical processes. In parallel we will develop a systems view of cloud fields looking for Emergent Behavior rising out of the complexity, as the end result of all of the coupled processes. Better understanding of key processes on a detailed (reductionist) manner will enable us to formulate the important basic rules that control the field and to look for emergence of the overall effects.
We will merge ideas and methods from four different disciplines: remote sensing and radiative transfer, cloud physics, pattern recognition and computer vision and ideas developed in systems approach. All of this will be done against the backdrop of natural variability of meteorological systems.
The outcomes of this work will include fundamental new understanding of the coupled surface-aerosol-cloud-precipitation system. More importantly this work will emphasize the consequences of human actions on the environment, and how we change our climate and hydrological cycle as we input pollutants and transform the Earth’s surface. This work will open new horizons in cloud research by developing novel methods and employing the bulk knowledge of pattern recognition, complexity, networking and self organization to cloud and climate studies. We are proposing a long-term, open-ended program of study that will have scientific and societal relevance as long as human-caused influences continue, evolve and change.
Max ERC Funding
1 428 169 €
Duration
Start date: 2012-09-01, End date: 2017-08-31
Project acronym CapTherPV
Project Integration of Capacitor, Thermoelectric and PhotoVoltaic thin films for efficient energy conversion and storage
Researcher (PI) Isabel Maria Das Merces Ferreira
Host Institution (HI) NOVA ID FCT - ASSOCIACAO PARA A INOVACAO E DESENVOLVIMENTO DA FCT
Call Details Consolidator Grant (CoG), PE8, ERC-2014-CoG
Summary The possibility of having a unique device that converts thermal and photonics energy into electrical energy and simultaneously stores it, is something dreamed by the PI since the beginning of her research career. To achieve that goal, this project aims to gather, in a single substrate, solar cells with up-conversion nanoparticles, thermoelectrics and graphene super-capacitor, all made of thin films. These three main components will be developed separately and integrated sequentially. The innovation proposed is not limited to the integration of components, but rely in ground-breaking concepts: 1) thermoelectric elements based on thin film (TE-TF) oxides; 2) plasmonic nanoparticles for up conversion of near infrared radiation to visible emission in solar cells; 3) graphene super-capacitors; 4) integration and optimization of all components in a single CapTherPV device. This ambitious project will bring new insights at large area, low cost and flexible energy harvesting and comes from an old idea of combining energy conversion and storage that has been pursued by the PI. She started her career in amorphous silicon thin film solar cells, later she started the development of thin film batteries and more recently started a research line in thermoelectric films. If approved, this project will give financial support to consolidate the research being carried out and will give independence to the PI in terms of resources and creative think. More importantly, will facilitate the concretization of the dream that has been pursued with hard work.
Summary
The possibility of having a unique device that converts thermal and photonics energy into electrical energy and simultaneously stores it, is something dreamed by the PI since the beginning of her research career. To achieve that goal, this project aims to gather, in a single substrate, solar cells with up-conversion nanoparticles, thermoelectrics and graphene super-capacitor, all made of thin films. These three main components will be developed separately and integrated sequentially. The innovation proposed is not limited to the integration of components, but rely in ground-breaking concepts: 1) thermoelectric elements based on thin film (TE-TF) oxides; 2) plasmonic nanoparticles for up conversion of near infrared radiation to visible emission in solar cells; 3) graphene super-capacitors; 4) integration and optimization of all components in a single CapTherPV device. This ambitious project will bring new insights at large area, low cost and flexible energy harvesting and comes from an old idea of combining energy conversion and storage that has been pursued by the PI. She started her career in amorphous silicon thin film solar cells, later she started the development of thin film batteries and more recently started a research line in thermoelectric films. If approved, this project will give financial support to consolidate the research being carried out and will give independence to the PI in terms of resources and creative think. More importantly, will facilitate the concretization of the dream that has been pursued with hard work.
Max ERC Funding
1 999 375 €
Duration
Start date: 2015-07-01, End date: 2020-06-30
Project acronym CBTC
Project The Resurgence in Wage Inequality and Technological Change: A New Approach
Researcher (PI) Tali Kristal
Host Institution (HI) UNIVERSITY OF HAIFA
Call Details Starting Grant (StG), SH2, ERC-2015-STG
Summary Social-science explanations for rising wage inequality have reached a dead end. Most economists argue that computerization has been primarily responsible, while on the other side of the argument are sociologists and political scientists who stress the role of political forces in the evolution process of wages. I would like to use my knowledge and experience to come up with an original theory on the complex dynamics between technology and politics in order to solve two unsettled questions regarding the role of computerization in rising wage inequality: First, how can computerization, which diffused simultaneously in rich countries, explain the divergent inequality trends in Europe and the United States? Second, what are the mechanisms behind the well-known observed positive correlation between computers and earnings?
To answer the first question, I develop a new institutional agenda stating that politics, broadly defined, mitigates the effects of technological change on wages by stimulating norms of fair pay and equity. To answer the second question, I propose a truly novel perspective that conceptualizes the earnings advantage that derives from computerization around access to and control of information on the production process. Capitalizing on this new perspective, I develop a new approach to measuring computerization to capture the form of workers’ interaction with computers at work, and build a research strategy for analysing the effect of computerization on wages across countries and workplaces, and over time.
This research project challenges the common understanding of technology’s role in producing economic inequality, and would thereby significantly impact all of the abovementioned disciplines, which are debating over the upswing in wage inequality, as well as public policy, which discusses what should be done to confront the resurgence of income inequality.
Summary
Social-science explanations for rising wage inequality have reached a dead end. Most economists argue that computerization has been primarily responsible, while on the other side of the argument are sociologists and political scientists who stress the role of political forces in the evolution process of wages. I would like to use my knowledge and experience to come up with an original theory on the complex dynamics between technology and politics in order to solve two unsettled questions regarding the role of computerization in rising wage inequality: First, how can computerization, which diffused simultaneously in rich countries, explain the divergent inequality trends in Europe and the United States? Second, what are the mechanisms behind the well-known observed positive correlation between computers and earnings?
To answer the first question, I develop a new institutional agenda stating that politics, broadly defined, mitigates the effects of technological change on wages by stimulating norms of fair pay and equity. To answer the second question, I propose a truly novel perspective that conceptualizes the earnings advantage that derives from computerization around access to and control of information on the production process. Capitalizing on this new perspective, I develop a new approach to measuring computerization to capture the form of workers’ interaction with computers at work, and build a research strategy for analysing the effect of computerization on wages across countries and workplaces, and over time.
This research project challenges the common understanding of technology’s role in producing economic inequality, and would thereby significantly impact all of the abovementioned disciplines, which are debating over the upswing in wage inequality, as well as public policy, which discusses what should be done to confront the resurgence of income inequality.
Max ERC Funding
1 495 091 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym CentrioleBirthDeath
Project Mechanism of centriole inheritance and maintenance
Researcher (PI) Monica BETTENCOURT CARVALHO DIAS
Host Institution (HI) FUNDACAO CALOUSTE GULBENKIAN
Call Details Consolidator Grant (CoG), LS3, ERC-2015-CoG
Summary Centrioles assemble centrosomes and cilia/flagella, critical structures for cell division, polarity, motility and signalling, which are often deregulated in human disease. Centriole inheritance, in particular the preservation of their copy number and position in the cell is critical in many eukaryotes. I propose to investigate, in an integrative and quantitative way, how centrioles are formed in the right numbers at the right time and place, and how they are maintained to ensure their function and inheritance. We first ask how centrioles guide their own assembly position and centriole copy number. Our recent work highlighted several properties of the system, including positive and negative feedbacks and spatial cues. We explore critical hypotheses through a combination of biochemistry, quantitative live cell microscopy and computational modelling. We then ask how the centrosome and the cell cycle are both coordinated. We recently identified the triggering event in centriole biogenesis and how its regulation is akin to cell cycle control of DNA replication and centromere assembly. We will explore new hypotheses to understand how assembly time is coupled to the cell cycle. Lastly, we ask how centriole maintenance is regulated. By studying centriole disappearance in the female germline we uncovered that centrioles need to be actively maintained by their surrounding matrix. We propose to investigate how that matrix provides stability to the centrioles, whether this is differently regulated in different cell types and the possible consequences of its misregulation for the organism (infertility and ciliopathy-like symptoms). We will take advantage of several experimental systems (in silico, ex-vivo, flies and human cells), tailoring the assay to the question and allowing for comparisons across experimental systems to provide a deeper understanding of the process and its regulation.
Summary
Centrioles assemble centrosomes and cilia/flagella, critical structures for cell division, polarity, motility and signalling, which are often deregulated in human disease. Centriole inheritance, in particular the preservation of their copy number and position in the cell is critical in many eukaryotes. I propose to investigate, in an integrative and quantitative way, how centrioles are formed in the right numbers at the right time and place, and how they are maintained to ensure their function and inheritance. We first ask how centrioles guide their own assembly position and centriole copy number. Our recent work highlighted several properties of the system, including positive and negative feedbacks and spatial cues. We explore critical hypotheses through a combination of biochemistry, quantitative live cell microscopy and computational modelling. We then ask how the centrosome and the cell cycle are both coordinated. We recently identified the triggering event in centriole biogenesis and how its regulation is akin to cell cycle control of DNA replication and centromere assembly. We will explore new hypotheses to understand how assembly time is coupled to the cell cycle. Lastly, we ask how centriole maintenance is regulated. By studying centriole disappearance in the female germline we uncovered that centrioles need to be actively maintained by their surrounding matrix. We propose to investigate how that matrix provides stability to the centrioles, whether this is differently regulated in different cell types and the possible consequences of its misregulation for the organism (infertility and ciliopathy-like symptoms). We will take advantage of several experimental systems (in silico, ex-vivo, flies and human cells), tailoring the assay to the question and allowing for comparisons across experimental systems to provide a deeper understanding of the process and its regulation.
Max ERC Funding
2 000 000 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym CHOLINOMIRS
Project CholinomiRs: MicroRNA Regulators of Cholinergic Signalling in the Neuro-Immune Interface
Researcher (PI) Hermona Soreq
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Advanced Grant (AdG), LS5, ERC-2012-ADG_20120314
Summary "Communication between the nervous and the immune system is pivotal for maintaining homeostasis and ensuring rapid and efficient reaction to stress and infection insults. The emergence of microRNAs (miRs) as regulators of gene expression and of acetylcholine (ACh) signalling as regulator of anxiety and inflammation provides a model for studying this interaction. My hypothesis is that 1) a specific sub-group of miRs, designated ""CholinomiRs"", may silence multiple target genes in the neuro-immune interface; 2) these miRs compete with each other on the interaction with their targets, and 3) mutations interfering with miR binding lead to inherited susceptibility to anxiety and inflammation disorders by modifying these interactions. Our preliminary findings have shown that by targeting acetylcholinesterase (AChE), CholinomiR-132 can intensify acute stress, resolve intestinal inflammation and change post-ischemic stroke responses. Further, we have identified clustered single nucleotide polymorphisms (SNPs) interfering with AChE silencing by several miRs which associate with elevated trait anxiety, blood pressure and inflammation. To further study miR regulators of ACh signalling, I plan to: (1) Identify anxiety and inflammation-induced changes in CholinomiRs and their targets in challenged brain and immune cells. (2) Establish the roles of these targets for one selected CholinomiR by tissue-specific manipulations. (3) Study primate-specific CholinomiRs by continued human DNA screens to identify SNPs and in ""humanized"" mice with knocked-in human AChE and transgenic CholinomiR-608. (4) Test if therapeutic modulation of aberrant CholinomiR expression can restore homeostasis. This research will clarify how miRs interact with each other in health and disease, introduce the dimension of complexity of multi-target competition and miR interactions and make a conceptual change in miRs research while enhancing the ability to intervene with diseases involving impaired ACh signalling."
Summary
"Communication between the nervous and the immune system is pivotal for maintaining homeostasis and ensuring rapid and efficient reaction to stress and infection insults. The emergence of microRNAs (miRs) as regulators of gene expression and of acetylcholine (ACh) signalling as regulator of anxiety and inflammation provides a model for studying this interaction. My hypothesis is that 1) a specific sub-group of miRs, designated ""CholinomiRs"", may silence multiple target genes in the neuro-immune interface; 2) these miRs compete with each other on the interaction with their targets, and 3) mutations interfering with miR binding lead to inherited susceptibility to anxiety and inflammation disorders by modifying these interactions. Our preliminary findings have shown that by targeting acetylcholinesterase (AChE), CholinomiR-132 can intensify acute stress, resolve intestinal inflammation and change post-ischemic stroke responses. Further, we have identified clustered single nucleotide polymorphisms (SNPs) interfering with AChE silencing by several miRs which associate with elevated trait anxiety, blood pressure and inflammation. To further study miR regulators of ACh signalling, I plan to: (1) Identify anxiety and inflammation-induced changes in CholinomiRs and their targets in challenged brain and immune cells. (2) Establish the roles of these targets for one selected CholinomiR by tissue-specific manipulations. (3) Study primate-specific CholinomiRs by continued human DNA screens to identify SNPs and in ""humanized"" mice with knocked-in human AChE and transgenic CholinomiR-608. (4) Test if therapeutic modulation of aberrant CholinomiR expression can restore homeostasis. This research will clarify how miRs interact with each other in health and disease, introduce the dimension of complexity of multi-target competition and miR interactions and make a conceptual change in miRs research while enhancing the ability to intervene with diseases involving impaired ACh signalling."
Max ERC Funding
2 375 600 €
Duration
Start date: 2013-03-01, End date: 2018-02-28
Project acronym ChromoCellDev
Project Chromosome Architecture and the Fidelity of Mitosis during Development
Researcher (PI) Raquel Aguiar Cardoso de Oliveira
Host Institution (HI) FUNDACAO CALOUSTE GULBENKIAN
Call Details Starting Grant (StG), LS3, ERC-2014-STG
Summary Genome stability relies on accurate partition of the genome during nuclear division. Proper mitosis, in turn, depends on changes in chromosome organization, such as chromosome condensation and sister chromatid cohesion. Despite the importance of these structural changes, chromatin itself has been long assumed to play a rather passive role during mitosis and chromosomes are usually compared to a “corpse at a funeral: they provide the reason for the proceedings but do not take an active part in them.” (Mazia, 1961). Recent evidence, however, suggests that chromosomes play a more active role in the process of their own segregation. The present proposal tests the “active chromosome” hypothesis by investigating how chromosome morphology influences the fidelity of mitosis. I will use innovative methods for acute protein inactivation, developed during my postdoctoral studies, to evaluate the role of two key protein complexes involved in mitotic chromosome architecture - Condensins and Cohesins. Using a multidisciplinary approach, combining acute protein inactivation, 3D-live cell imaging and quantitative methods, I propose to investigate the role of mitotic chromosomes in the fidelity of mitosis at three different levels. The first one will use novel approaches to uncover the process of mitotic chromosome assembly, which is still largely unknown. The second will explore how mitotic chromosomes take an active part in mitosis by examining how chromosome condensation and cohesion influence chromosome movement and the signalling of the surveillance mechanisms that control nuclear division. Lastly we will evaluate how mitotic errors arising from abnormal chromosome structure impact on development. We aim to evaluate, at the cellular and organism level, how the cell perceives such errors and how (indeed if) they tolerate mitotic abnormalities. By conceptually challenging the passive chromosome view this project has the potential to redefine the role of chromatin during mitosis.
Summary
Genome stability relies on accurate partition of the genome during nuclear division. Proper mitosis, in turn, depends on changes in chromosome organization, such as chromosome condensation and sister chromatid cohesion. Despite the importance of these structural changes, chromatin itself has been long assumed to play a rather passive role during mitosis and chromosomes are usually compared to a “corpse at a funeral: they provide the reason for the proceedings but do not take an active part in them.” (Mazia, 1961). Recent evidence, however, suggests that chromosomes play a more active role in the process of their own segregation. The present proposal tests the “active chromosome” hypothesis by investigating how chromosome morphology influences the fidelity of mitosis. I will use innovative methods for acute protein inactivation, developed during my postdoctoral studies, to evaluate the role of two key protein complexes involved in mitotic chromosome architecture - Condensins and Cohesins. Using a multidisciplinary approach, combining acute protein inactivation, 3D-live cell imaging and quantitative methods, I propose to investigate the role of mitotic chromosomes in the fidelity of mitosis at three different levels. The first one will use novel approaches to uncover the process of mitotic chromosome assembly, which is still largely unknown. The second will explore how mitotic chromosomes take an active part in mitosis by examining how chromosome condensation and cohesion influence chromosome movement and the signalling of the surveillance mechanisms that control nuclear division. Lastly we will evaluate how mitotic errors arising from abnormal chromosome structure impact on development. We aim to evaluate, at the cellular and organism level, how the cell perceives such errors and how (indeed if) they tolerate mitotic abnormalities. By conceptually challenging the passive chromosome view this project has the potential to redefine the role of chromatin during mitosis.
Max ERC Funding
1 492 000 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym CLC
Project Cryptography with Low Complexity
Researcher (PI) Benny Applebaum
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Starting Grant (StG), PE6, ERC-2014-STG
Summary The efficiency of cryptographic constructions is a fundamental question. Theoretically, it is important to understand how much computational resources are needed to guarantee strong notions of security. Practically, highly efficient schemes are always desirable for real-world applications. More generally, the possibility of cryptography with low complexity has wide applications for problems in computational complexity, combinatorial optimization, and computational learning theory.
In this proposal we aim to understand what are the minimal computational resources needed to perform basic cryptographic tasks. In a nutshell, we suggest to focus on three main objectives. First, we would like to get better understanding of the cryptographic hardness of random local functions. Such functions can be computed by highly-efficient circuits and their cryptographic hardness provides a strong and clean formulation for the conjectured average-case hardness of constraint satisfaction problems - a fundamental subject which lies at the core of the theory of computer science. Our second objective is to harness our insights into the hardness of local functions to improve the efficiency of basic cryptographic building blocks such as pseudorandom functions. Finally, our third objective is to expand our theoretical understanding of garbled circuits, study their limitations, and improve their efficiency.
The suggested project can bridge across different regions of computer science such as random combinatorial structures, cryptography, and circuit complexity. It is expected to impact central problems in cryptography, while enriching the general landscape of theoretical computer science.
Summary
The efficiency of cryptographic constructions is a fundamental question. Theoretically, it is important to understand how much computational resources are needed to guarantee strong notions of security. Practically, highly efficient schemes are always desirable for real-world applications. More generally, the possibility of cryptography with low complexity has wide applications for problems in computational complexity, combinatorial optimization, and computational learning theory.
In this proposal we aim to understand what are the minimal computational resources needed to perform basic cryptographic tasks. In a nutshell, we suggest to focus on three main objectives. First, we would like to get better understanding of the cryptographic hardness of random local functions. Such functions can be computed by highly-efficient circuits and their cryptographic hardness provides a strong and clean formulation for the conjectured average-case hardness of constraint satisfaction problems - a fundamental subject which lies at the core of the theory of computer science. Our second objective is to harness our insights into the hardness of local functions to improve the efficiency of basic cryptographic building blocks such as pseudorandom functions. Finally, our third objective is to expand our theoretical understanding of garbled circuits, study their limitations, and improve their efficiency.
The suggested project can bridge across different regions of computer science such as random combinatorial structures, cryptography, and circuit complexity. It is expected to impact central problems in cryptography, while enriching the general landscape of theoretical computer science.
Max ERC Funding
1 265 750 €
Duration
Start date: 2015-05-01, End date: 2021-04-30
Project acronym CloudRadioNet
Project Cloud Wireless Networks: An Information Theoretic Framework
Researcher (PI) Shlomo Shamai Shitz
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Advanced Grant (AdG), PE7, ERC-2015-AdG
Summary This five years research proposal is focused on the development of novel information theoretic concepts and techniques and their usage, as to identify the ultimate communications limits and potential of different cloud radio network structures, in which the central signal processing is migrated to the cloud (remote central units), via fronthaul/backhaul infrastructure links. Moreover, it is also directed to introduce and study the optimal or close to optimal strategies for those systems that are to be motivated by the developed theory. We plan to address wireless networks, having future cellular technology in mind, but the basic tools and approaches to be built and researched are relevant to other communication networks as well. Cloud communication networks motivate novel information theoretic views, and perspectives that put backhaul/fronthaul connections in the center, thus deviating considerably from standard theoretical studies of communications links and networks, which are applied to this domain. Our approach accounts for the fact that in such networks information theoretic separation concepts are no longer optimal, hence isolating simple basic components of the network is essentially suboptimal. The proposed view incorporates, in a unified way, under the general cover of information theory: Multi-terminal distributed networks; Basic and timely concepts of distributed coding and communications; Network communications and primarily network coding, Index coding, as associated with interference alignment and caching; Information-Estimation relations and signal processing, addressing the impact of distributed channel state information directly; A variety of fundamental concepts in optimization and random matrix theories. This path provides a natural theoretical framework directed towards better understanding the potential and limitation of cloud networks on one hand and paves the way to innovative communications design principles on the other.
Summary
This five years research proposal is focused on the development of novel information theoretic concepts and techniques and their usage, as to identify the ultimate communications limits and potential of different cloud radio network structures, in which the central signal processing is migrated to the cloud (remote central units), via fronthaul/backhaul infrastructure links. Moreover, it is also directed to introduce and study the optimal or close to optimal strategies for those systems that are to be motivated by the developed theory. We plan to address wireless networks, having future cellular technology in mind, but the basic tools and approaches to be built and researched are relevant to other communication networks as well. Cloud communication networks motivate novel information theoretic views, and perspectives that put backhaul/fronthaul connections in the center, thus deviating considerably from standard theoretical studies of communications links and networks, which are applied to this domain. Our approach accounts for the fact that in such networks information theoretic separation concepts are no longer optimal, hence isolating simple basic components of the network is essentially suboptimal. The proposed view incorporates, in a unified way, under the general cover of information theory: Multi-terminal distributed networks; Basic and timely concepts of distributed coding and communications; Network communications and primarily network coding, Index coding, as associated with interference alignment and caching; Information-Estimation relations and signal processing, addressing the impact of distributed channel state information directly; A variety of fundamental concepts in optimization and random matrix theories. This path provides a natural theoretical framework directed towards better understanding the potential and limitation of cloud networks on one hand and paves the way to innovative communications design principles on the other.
Max ERC Funding
1 981 782 €
Duration
Start date: 2016-07-01, End date: 2021-06-30
Project acronym CLUE-BGD
Project Closing the Loop between Understanding and Effective Treatment of the Basal Ganglia and their Disorders
Researcher (PI) Hagai Bergman
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Advanced Grant (AdG), LS5, ERC-2012-ADG_20120314
Summary In this project, the basal ganglia are defined as actor-critic reinforcement learning networks that aim at an optimal tradeoff between the maximization of future cumulative rewards and the minimization of the cost (the reinforcement driven multi objective optimization RDMOO model).
This computational model will be tested by multiple neuron recordings in the major basal ganglia structures of monkeys engaged in a similar behavioral task. We will further validate the RMDOO computational model of the basal ganglia by extending our previous studies of neural activity in the MPTP primate model of Parkinson's disease to a primate model of central serotonin depletion and emotional dysregulation disorders. The findings in the primate model of emotional dysregulation will then be compared to electrophysiological recordings carried out in human patients with treatment-resistant major depression and obsessive compulsive disorder during deep brain stimulation (DBS) procedures. I aim to find neural signatures (e.g., synchronous gamma oscillations in the actor part of the basal ganglia as predicted by the RMDOO model) characterizing these emotional disorders and to use them as triggers for closed loop adaptive DBS. Our working hypothesis holds that, as for the MPTP model of Parkinson's disease, closed loop DBS will lead to greater amelioration of the emotional deficits in serotonin depleted monkeys.
This project incorporates extensive collaborations with a team of neurosurgeons, neurologists, psychiatrists, and computer science/ neural network researchers. If successful, the findings will provide a firm understanding of the computational physiology of the basal ganglia networks and their disorders. Importantly, they will pave the way to better treatment of human patients with severe mental disorders.
Summary
In this project, the basal ganglia are defined as actor-critic reinforcement learning networks that aim at an optimal tradeoff between the maximization of future cumulative rewards and the minimization of the cost (the reinforcement driven multi objective optimization RDMOO model).
This computational model will be tested by multiple neuron recordings in the major basal ganglia structures of monkeys engaged in a similar behavioral task. We will further validate the RMDOO computational model of the basal ganglia by extending our previous studies of neural activity in the MPTP primate model of Parkinson's disease to a primate model of central serotonin depletion and emotional dysregulation disorders. The findings in the primate model of emotional dysregulation will then be compared to electrophysiological recordings carried out in human patients with treatment-resistant major depression and obsessive compulsive disorder during deep brain stimulation (DBS) procedures. I aim to find neural signatures (e.g., synchronous gamma oscillations in the actor part of the basal ganglia as predicted by the RMDOO model) characterizing these emotional disorders and to use them as triggers for closed loop adaptive DBS. Our working hypothesis holds that, as for the MPTP model of Parkinson's disease, closed loop DBS will lead to greater amelioration of the emotional deficits in serotonin depleted monkeys.
This project incorporates extensive collaborations with a team of neurosurgeons, neurologists, psychiatrists, and computer science/ neural network researchers. If successful, the findings will provide a firm understanding of the computational physiology of the basal ganglia networks and their disorders. Importantly, they will pave the way to better treatment of human patients with severe mental disorders.
Max ERC Funding
2 476 922 €
Duration
Start date: 2013-12-01, End date: 2018-11-30
Project acronym CNIDARIAMICRORNA
Project Elucidation of the evolution of post-transcriptional regulation by characterizing the cnidarian microRNA pathway
Researcher (PI) Yehu Moran
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Starting Grant (StG), LS2, ERC-2014-STG
Summary Over the past decade small RNAs such as microRNAs (miRNAs) and small interfering RNAs (siRNAs) have been shown to carry pivotal roles in post-transcriptional regulation and genome protection and to play an important part in various physiological processes in animals. miRNAs can be found in a very wide range of animals yet their functions were studied almost exclusively in members of the Bilateria such as insects, nematodes and vertebrates. Hence studying their function in representatives of non-bilaterian phyla such as Cnidaria (sea anemones, corals, hydras and jellyfish) is crucial for understanding the evolution of miRNAs in animals and can provide important insights into their roles in the ancient ancestor of Cnidaria and Bilateria. The sea anemone Nematostella vectensis is an excellent model for such a study since it can be grown in large numbers throughout its life cycle in the lab and because well-established genetic manipulation techniques are available for this species. Our preliminary results indicate that miRNAs in Nematostella frequently have a nearly perfect match to their messenger RNA (mRNA) targets, resulting in cleavage of the target. This mode of action is common for plant miRNAs, but is very rare in Bilateria. This finding together with my recent discovery of a Nematostella homolog of HYL1, a protein involved in miRNA biogenesis in plants, raises the exciting possibility that the miRNA pathway existed in the common ancestor of plants and animals. Here I suggest to bring together an array of advanced biochemical and genetic methods such as gene knockdown, transgenesis, high throughput sequencing and immunoprecipitation in order to obtain - for the first time - a deep understanding of the biogenesis and mechanism of action of small RNAs in Cnidaria. This will provide a novel way to understand the evolution of this important molecular pathway and to evaluate its age and ancestral form.
Summary
Over the past decade small RNAs such as microRNAs (miRNAs) and small interfering RNAs (siRNAs) have been shown to carry pivotal roles in post-transcriptional regulation and genome protection and to play an important part in various physiological processes in animals. miRNAs can be found in a very wide range of animals yet their functions were studied almost exclusively in members of the Bilateria such as insects, nematodes and vertebrates. Hence studying their function in representatives of non-bilaterian phyla such as Cnidaria (sea anemones, corals, hydras and jellyfish) is crucial for understanding the evolution of miRNAs in animals and can provide important insights into their roles in the ancient ancestor of Cnidaria and Bilateria. The sea anemone Nematostella vectensis is an excellent model for such a study since it can be grown in large numbers throughout its life cycle in the lab and because well-established genetic manipulation techniques are available for this species. Our preliminary results indicate that miRNAs in Nematostella frequently have a nearly perfect match to their messenger RNA (mRNA) targets, resulting in cleavage of the target. This mode of action is common for plant miRNAs, but is very rare in Bilateria. This finding together with my recent discovery of a Nematostella homolog of HYL1, a protein involved in miRNA biogenesis in plants, raises the exciting possibility that the miRNA pathway existed in the common ancestor of plants and animals. Here I suggest to bring together an array of advanced biochemical and genetic methods such as gene knockdown, transgenesis, high throughput sequencing and immunoprecipitation in order to obtain - for the first time - a deep understanding of the biogenesis and mechanism of action of small RNAs in Cnidaria. This will provide a novel way to understand the evolution of this important molecular pathway and to evaluate its age and ancestral form.
Max ERC Funding
1 499 587 €
Duration
Start date: 2015-05-01, End date: 2020-04-30
Project acronym CODECHECK
Project CRACKING THE CODE BEHIND MITOTIC FIDELITY: the roles of tubulin post-translational modifications and a chromosome separation checkpoint
Researcher (PI) Helder Jose Martins Maiato
Host Institution (HI) INSTITUTO DE BIOLOGIA MOLECULAR E CELULAR-IBMC
Call Details Consolidator Grant (CoG), LS3, ERC-2015-CoG
Summary During the human lifetime 10000 trillion cell divisions take place to ensure tissue homeostasis and several vital functions in the organism. Mitosis is the process that ensures that dividing cells preserve the chromosome number of their progenitors, while deviation from this, a condition known as aneuploidy, represents the most common feature in human cancers. Here we will test two original concepts with strong implications for chromosome segregation fidelity. The first concept is based on the “tubulin code” hypothesis, which predicts that molecular motors “read” tubulin post-translational modifications on spindle microtubules. Our proof-of-concept experiments demonstrate that tubulin detyrosination works as a navigation system that guides chromosomes towards the cell equator. Thus, in addition to regulating the motors required for chromosome motion, the cell might regulate the tracks in which they move on. We will combine proteomic, super-resolution and live-cell microscopy, with in vitro reconstitutions, to perform a comprehensive survey of the tubulin code and the respective implications for motors involved in chromosome motion, mitotic spindle assembly and correction of kinetochore-microtubule attachments. The second concept is centered on the recently uncovered chromosome separation checkpoint mediated by a midzone-associated Aurora B gradient, which delays nuclear envelope reformation in response to incompletely separated chromosomes. We aim to identify Aurora B targets involved in the spatiotemporal regulation of the anaphase-telophase transition. We will establish powerful live-cell microscopy assays and a novel mammalian model system to dissect how this checkpoint allows the detection and correction of lagging/long chromosomes and DNA bridges that would otherwise contribute to genomic instability. Overall, this work will establish a paradigm shift in our understanding of how spatial information is conveyed to faithfully segregate chromosomes during mitosis.
Summary
During the human lifetime 10000 trillion cell divisions take place to ensure tissue homeostasis and several vital functions in the organism. Mitosis is the process that ensures that dividing cells preserve the chromosome number of their progenitors, while deviation from this, a condition known as aneuploidy, represents the most common feature in human cancers. Here we will test two original concepts with strong implications for chromosome segregation fidelity. The first concept is based on the “tubulin code” hypothesis, which predicts that molecular motors “read” tubulin post-translational modifications on spindle microtubules. Our proof-of-concept experiments demonstrate that tubulin detyrosination works as a navigation system that guides chromosomes towards the cell equator. Thus, in addition to regulating the motors required for chromosome motion, the cell might regulate the tracks in which they move on. We will combine proteomic, super-resolution and live-cell microscopy, with in vitro reconstitutions, to perform a comprehensive survey of the tubulin code and the respective implications for motors involved in chromosome motion, mitotic spindle assembly and correction of kinetochore-microtubule attachments. The second concept is centered on the recently uncovered chromosome separation checkpoint mediated by a midzone-associated Aurora B gradient, which delays nuclear envelope reformation in response to incompletely separated chromosomes. We aim to identify Aurora B targets involved in the spatiotemporal regulation of the anaphase-telophase transition. We will establish powerful live-cell microscopy assays and a novel mammalian model system to dissect how this checkpoint allows the detection and correction of lagging/long chromosomes and DNA bridges that would otherwise contribute to genomic instability. Overall, this work will establish a paradigm shift in our understanding of how spatial information is conveyed to faithfully segregate chromosomes during mitosis.
Max ERC Funding
2 323 468 €
Duration
Start date: 2016-07-01, End date: 2021-06-30
Project acronym ColloQuantO
Project Colloidal Quantum Dot Quantum Optics
Researcher (PI) Dan Oron
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE LTD
Call Details Consolidator Grant (CoG), PE4, ERC-2015-CoG
Summary Colloidal semiconductor nanocrystals have already found significant use in various arenas, including bioimaging, displays, lighting, photovoltaics and catalysis. Here we aim to harness the extremely broad synthetic toolbox of colloidal semiconductor quantum dots in order to utilize them as unique sources of quantum states of light, extending well beyond the present attempts to use them as single photon sources. By tailoring the shape, size, composition and the organic ligand layer of quantum dots, rods and platelets, we propose their use as sources exhibiting a deterministic number of emitted photons upon saturated excitation and as tunable sources of correlated and entangled photon pairs. The versatility afforded in their fabrication by colloidal synthesis, rather than by epitaxial growth, presents a potential pathway to overcome some of the significant limitations of present-day solid state sources of nonclassical light, including color tunability, fidelity and ease of assembly into devices.
This program is a concerted effort both on colloidal synthesis of complex multicomponent semiconductor nanocrystals and on cutting edge photophysical studies at the single nanocrystal level. This should enable new types of emitters of nonclassical light, as well as provide a platform for the implementation of recently suggested schemes in quantum optics which have never been experimentally demonstrated. These include room temperature sources of exactly two (or more) photons, correlated photon pairs from quantum dot molecules and entanglement based on time reordering. Fulfilling the optical and material requirements from this type of system, including photostability, control of carrier-carrier interactions, and a large quantum yield, will inevitably reveal some of the fundamental properties of coupled carriers in strongly confined structures.
Summary
Colloidal semiconductor nanocrystals have already found significant use in various arenas, including bioimaging, displays, lighting, photovoltaics and catalysis. Here we aim to harness the extremely broad synthetic toolbox of colloidal semiconductor quantum dots in order to utilize them as unique sources of quantum states of light, extending well beyond the present attempts to use them as single photon sources. By tailoring the shape, size, composition and the organic ligand layer of quantum dots, rods and platelets, we propose their use as sources exhibiting a deterministic number of emitted photons upon saturated excitation and as tunable sources of correlated and entangled photon pairs. The versatility afforded in their fabrication by colloidal synthesis, rather than by epitaxial growth, presents a potential pathway to overcome some of the significant limitations of present-day solid state sources of nonclassical light, including color tunability, fidelity and ease of assembly into devices.
This program is a concerted effort both on colloidal synthesis of complex multicomponent semiconductor nanocrystals and on cutting edge photophysical studies at the single nanocrystal level. This should enable new types of emitters of nonclassical light, as well as provide a platform for the implementation of recently suggested schemes in quantum optics which have never been experimentally demonstrated. These include room temperature sources of exactly two (or more) photons, correlated photon pairs from quantum dot molecules and entanglement based on time reordering. Fulfilling the optical and material requirements from this type of system, including photostability, control of carrier-carrier interactions, and a large quantum yield, will inevitably reveal some of the fundamental properties of coupled carriers in strongly confined structures.
Max ERC Funding
2 000 000 €
Duration
Start date: 2016-05-01, End date: 2021-04-30
Project acronym COLOUR
Project THE COLOUR OF LABOUR: THE RACIALIZED LIVES OF MIGRANTS
Researcher (PI) Cristiana BASTOS
Host Institution (HI) INSTITUTO DE CIENCIAS SOCIAIS
Call Details Advanced Grant (AdG), SH6, ERC-2015-AdG
Summary This project is about the racialization of migrant labourers across political boundaries, with a main focus on impoverished Europeans who served in huge numbers as indentured labourers in nineteenth-century Guianese, Caribbean and Hawaiian sugar plantations and in the workforce of late nineteenth and early twentieth century New England cotton mills.
With this project I aim to provide major, innovative contributions on three fronts:
(i) theory-making, by working the concepts of race, racism, racialization, embodiment and memory in association with migrant work across political boundaries and imperial classifications;
(ii) social relevance of basic research, by linking an issue of pressing urgency in contemporary Europe to substantive, broad-scope, and multi-sited anthropological/historical research on the wider structures of domination, rather than to targeted problem-solving research of immediate applicability;
(iii) disciplinary scope, by proposing to unsettle historical anthropology and ethnographic history from within the boundaries of a single empire, and to overcome the limitations of existing comparative studies, by inquiring into the flows and interactions between competing empires.
I will also:
(iv) strengthen the methodology for multi-sited, multi-period research in anthropology;
(v) contribute to an anthropology of global connections and trans-local approaches;
(vi) promote the multidisciplinary and combined-methods approach to complex subjects;
(vii) narrate a poorly known set of historical situations of labour racializations involving Europeans and document the ways they reverberate through generations; and
(viii) make the analysis available to both academic audiences and the different communities involved in the research.
Summary
This project is about the racialization of migrant labourers across political boundaries, with a main focus on impoverished Europeans who served in huge numbers as indentured labourers in nineteenth-century Guianese, Caribbean and Hawaiian sugar plantations and in the workforce of late nineteenth and early twentieth century New England cotton mills.
With this project I aim to provide major, innovative contributions on three fronts:
(i) theory-making, by working the concepts of race, racism, racialization, embodiment and memory in association with migrant work across political boundaries and imperial classifications;
(ii) social relevance of basic research, by linking an issue of pressing urgency in contemporary Europe to substantive, broad-scope, and multi-sited anthropological/historical research on the wider structures of domination, rather than to targeted problem-solving research of immediate applicability;
(iii) disciplinary scope, by proposing to unsettle historical anthropology and ethnographic history from within the boundaries of a single empire, and to overcome the limitations of existing comparative studies, by inquiring into the flows and interactions between competing empires.
I will also:
(iv) strengthen the methodology for multi-sited, multi-period research in anthropology;
(v) contribute to an anthropology of global connections and trans-local approaches;
(vi) promote the multidisciplinary and combined-methods approach to complex subjects;
(vii) narrate a poorly known set of historical situations of labour racializations involving Europeans and document the ways they reverberate through generations; and
(viii) make the analysis available to both academic audiences and the different communities involved in the research.
Max ERC Funding
2 161 397 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym COMbAT
Project Commercialization of a novel tool for designing personalized nOvel MelAnoma Therapies
Researcher (PI) Yardena Samuels
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Proof of Concept (PoC), ERC-2015-PoC, ERC-2015-PoC
Summary Melanoma tumours develop in the pigment cells located in the skin. It is the most aggressive and treatment-resistant type of skin cancer as well as the leading cause of death among skin diseases. Moreover, melanoma’s alarming increase in incidence, especially in the young population, in combination with its propensity for lethal metastasis, illustrates an urgent need for new treatment strategies. In this PoC project, we propose developing an innovative tool, called COMbAT, for designing highly personalized therapies for melanoma patients. Each therapy will be based on existing, already designed drugs and will specifically target the driver mutations present in a patient’s melanoma genome.
COMbAT involves the use of novel unique preclinical models designed to express patient-derived mutated genes in melanoma cells in a physiological manner. These models will undergo systematic combinatorial drug screens aiming to target the exact driver mutations present in patients. Such personalized targeting of the patient’s melanoma genetic landscape is key to a significantly improved mortality. Specifically, COMbAT can serve as a unique preclinical tool in the delivery of healthcare, from redefining clinical trials to targeted treatments of melanoma patients to start and a wide range of other cancer types later. Importantly, as COMbAT will allow the increased use of specific targeting of molecular drug targets, it will help to significantly lower the patient’s economic and psychological burden caused by unnecessary chemotherapy. COMbAT also holds the promise of realizing value from enormous past investments in drug candidates that were eliminated due to person-specific toxicities or lack of efficacy. We thus believe that COMbAT will enable the creation of new business models for the pharmaceutical industry which is suffering from patent expirations, threats from biotech companies, regulatory pressures, costly drug development timelines, and backlash from adverse drug reactions.
Summary
Melanoma tumours develop in the pigment cells located in the skin. It is the most aggressive and treatment-resistant type of skin cancer as well as the leading cause of death among skin diseases. Moreover, melanoma’s alarming increase in incidence, especially in the young population, in combination with its propensity for lethal metastasis, illustrates an urgent need for new treatment strategies. In this PoC project, we propose developing an innovative tool, called COMbAT, for designing highly personalized therapies for melanoma patients. Each therapy will be based on existing, already designed drugs and will specifically target the driver mutations present in a patient’s melanoma genome.
COMbAT involves the use of novel unique preclinical models designed to express patient-derived mutated genes in melanoma cells in a physiological manner. These models will undergo systematic combinatorial drug screens aiming to target the exact driver mutations present in patients. Such personalized targeting of the patient’s melanoma genetic landscape is key to a significantly improved mortality. Specifically, COMbAT can serve as a unique preclinical tool in the delivery of healthcare, from redefining clinical trials to targeted treatments of melanoma patients to start and a wide range of other cancer types later. Importantly, as COMbAT will allow the increased use of specific targeting of molecular drug targets, it will help to significantly lower the patient’s economic and psychological burden caused by unnecessary chemotherapy. COMbAT also holds the promise of realizing value from enormous past investments in drug candidates that were eliminated due to person-specific toxicities or lack of efficacy. We thus believe that COMbAT will enable the creation of new business models for the pharmaceutical industry which is suffering from patent expirations, threats from biotech companies, regulatory pressures, costly drug development timelines, and backlash from adverse drug reactions.
Max ERC Funding
150 000 €
Duration
Start date: 2015-10-01, End date: 2017-03-31
Project acronym CombiCompGeom
Project Combinatorial Aspects of Computational Geometry
Researcher (PI) Natan Rubin
Host Institution (HI) BEN-GURION UNIVERSITY OF THE NEGEV
Call Details Starting Grant (StG), PE6, ERC-2015-STG
Summary The project focuses on the interface between computational and combinatorial geometry.
Geometric problems emerge in a variety of computational fields that interact with the physical world.
The performance of geometric algorithms is determined by the description complexity of their underlying combinatorial structures. Hence, most theoretical challenges faced by computational geometry are of a distinctly combinatorial nature.
In the past two decades, computational geometry has been revolutionized by the powerful combination of random sampling techniques with the abstract machinery of geometric arrangements. These insights were used, in turn, to establish state-of-the-art results in combinatorial geometry. Nevertheless, a number of fundamental problems remained open and resisted numerous attempts to solve them.
Motivated by the recent breakthrough results, in which the PI played a central role, we propose two exciting lines of study with the potential to change the landscape of this field.
The first research direction concerns the complexity of Voronoi diagrams -- arguably the most common structures in computational geometry.
The second direction concerns combinatorial and algorithmic aspects of geometric intersection structures, including some fundamental open problems in geometric transversal theory. Many of these questions are motivated by geometric variants of general covering and packing problems, and all efficient approximation schemes for them must rely on the intrinsic properties of geometric graphs and hypergraphs.
Any progress in responding to these challenges will constitute a major breakthrough in both computational and combinatorial geometry.
Summary
The project focuses on the interface between computational and combinatorial geometry.
Geometric problems emerge in a variety of computational fields that interact with the physical world.
The performance of geometric algorithms is determined by the description complexity of their underlying combinatorial structures. Hence, most theoretical challenges faced by computational geometry are of a distinctly combinatorial nature.
In the past two decades, computational geometry has been revolutionized by the powerful combination of random sampling techniques with the abstract machinery of geometric arrangements. These insights were used, in turn, to establish state-of-the-art results in combinatorial geometry. Nevertheless, a number of fundamental problems remained open and resisted numerous attempts to solve them.
Motivated by the recent breakthrough results, in which the PI played a central role, we propose two exciting lines of study with the potential to change the landscape of this field.
The first research direction concerns the complexity of Voronoi diagrams -- arguably the most common structures in computational geometry.
The second direction concerns combinatorial and algorithmic aspects of geometric intersection structures, including some fundamental open problems in geometric transversal theory. Many of these questions are motivated by geometric variants of general covering and packing problems, and all efficient approximation schemes for them must rely on the intrinsic properties of geometric graphs and hypergraphs.
Any progress in responding to these challenges will constitute a major breakthrough in both computational and combinatorial geometry.
Max ERC Funding
1 303 750 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym ComplexiTE
Project An integrated multidisciplinary tissue engineering approach combining novel high-throughput screening and advanced methodologies to create complex biomaterials-stem cells constructs
Researcher (PI) Rui Luis Gonçalves Dos Reis
Host Institution (HI) UNIVERSIDADE DO MINHO
Call Details Advanced Grant (AdG), PE8, ERC-2012-ADG_20120216
Summary New developments on tissue engineering strategies should realize the complexity of tissue remodelling and the inter-dependency of many variables associated to stem cells and biomaterials interactions. ComplexiTE proposes an integrated approach to address such multiple factors in which different innovative methodologies are implemented, aiming at developing tissue-like substitutes with enhanced in vivo functionality. Several ground-breaking advances are expected to be achieved, including: i) improved methodologies for isolation and expansion of sub-populations of stem cells derived from not so explored sources such as adipose tissue and amniotic fluid; ii) radically new methods to monitor human stem cells behaviour in vivo; iii) new macromolecules isolated from renewable resources, especially from marine origin; iv) combinations of liquid volumes mingling biomaterials and distinct stem cells, generating hydrogel beads upon adequate cross-linking reactions; v) optimised culture of the produced beads in adequate 3D bioreactors and a novel selection method to sort the beads that show a (pre-defined) positive biological reading; vi) random 3D arrays validated by identifying the natural polymers and cells composing the positive beads; v) 2D arrays of selected hydrogel spots for brand new in vivo tests, in which each spot of the implanted chip may be evaluated within the living animal using adequate imaging methods; vi) new porous scaffolds of the best combinations formed by particles agglomeration or fiber-based rapid-prototyping. The ultimate goal of this proposal is to develop breakthrough research specifically focused on the above mentioned key issues and radically innovative approaches to produce and scale-up new tissue engineering strategies that are both industrially and clinically relevant, by mastering the inherent complexity associated to the correct selection among a great number of combinations of possible biomaterials, stem cells and culturing conditions.
Summary
New developments on tissue engineering strategies should realize the complexity of tissue remodelling and the inter-dependency of many variables associated to stem cells and biomaterials interactions. ComplexiTE proposes an integrated approach to address such multiple factors in which different innovative methodologies are implemented, aiming at developing tissue-like substitutes with enhanced in vivo functionality. Several ground-breaking advances are expected to be achieved, including: i) improved methodologies for isolation and expansion of sub-populations of stem cells derived from not so explored sources such as adipose tissue and amniotic fluid; ii) radically new methods to monitor human stem cells behaviour in vivo; iii) new macromolecules isolated from renewable resources, especially from marine origin; iv) combinations of liquid volumes mingling biomaterials and distinct stem cells, generating hydrogel beads upon adequate cross-linking reactions; v) optimised culture of the produced beads in adequate 3D bioreactors and a novel selection method to sort the beads that show a (pre-defined) positive biological reading; vi) random 3D arrays validated by identifying the natural polymers and cells composing the positive beads; v) 2D arrays of selected hydrogel spots for brand new in vivo tests, in which each spot of the implanted chip may be evaluated within the living animal using adequate imaging methods; vi) new porous scaffolds of the best combinations formed by particles agglomeration or fiber-based rapid-prototyping. The ultimate goal of this proposal is to develop breakthrough research specifically focused on the above mentioned key issues and radically innovative approaches to produce and scale-up new tissue engineering strategies that are both industrially and clinically relevant, by mastering the inherent complexity associated to the correct selection among a great number of combinations of possible biomaterials, stem cells and culturing conditions.
Max ERC Funding
2 320 000 €
Duration
Start date: 2013-05-01, End date: 2018-04-30
Project acronym CONC-VIA-RIEMANN
Project High-Dimensional Convexity, Isoperimetry and Concentration via a Riemannian Vantage Point
Researcher (PI) Emanuel Milman
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Starting Grant (StG), PE1, ERC-2014-STG
Summary "In recent years, the importance of superimposing the contribution of the measure to that of the metric, in determining the underlying space's (generalized Ricci) curvature, has been clarified in the works of Lott, Sturm, Villani and others, following the definition of Curvature-Dimension introduced by Bakry and Emery. We wish to systematically incorporate
this important idea of considering the measure and metric in tandem, in the study of questions pertaining to isoperimetric and concentration properties of convex domains in high-dimensional Euclidean space, where a-priori there is only a trivial metric (Euclidean) and trivial measure (Lebesgue).
The first step of enriching the class of uniform measures on convex domains to that of non-negatively curved (""log-concave"") measures in Euclidean space has been very successfully implemented in the last decades, leading to substantial progress in our understanding of volumetric properties of convex domains, mostly regarding concentration of linear functionals. However, the potential advantages of altering the Euclidean metric into a more general Riemannian one or exploiting related Riemannian structures have not been systematically explored. Our main paradigm is that in order to progress in non-linear questions pertaining to concentration in Euclidean space, it is imperative to cast and study these problems in the more general Riemannian context.
As witnessed by our own work over the last years, we expect that broadening the scope and incorporating tools from the Riemannian world will lead to significant progress in our understanding of the qualitative and quantitative structure of isoperimetric minimizers in the purely Euclidean setting. Such progress would have dramatic impact on long-standing fundamental conjectures regarding concentration of measure on high-dimensional convex domains, as well as other closely related fields such as Probability Theory, Learning Theory, Random Matrix Theory and Algorithmic Geometry."
Summary
"In recent years, the importance of superimposing the contribution of the measure to that of the metric, in determining the underlying space's (generalized Ricci) curvature, has been clarified in the works of Lott, Sturm, Villani and others, following the definition of Curvature-Dimension introduced by Bakry and Emery. We wish to systematically incorporate
this important idea of considering the measure and metric in tandem, in the study of questions pertaining to isoperimetric and concentration properties of convex domains in high-dimensional Euclidean space, where a-priori there is only a trivial metric (Euclidean) and trivial measure (Lebesgue).
The first step of enriching the class of uniform measures on convex domains to that of non-negatively curved (""log-concave"") measures in Euclidean space has been very successfully implemented in the last decades, leading to substantial progress in our understanding of volumetric properties of convex domains, mostly regarding concentration of linear functionals. However, the potential advantages of altering the Euclidean metric into a more general Riemannian one or exploiting related Riemannian structures have not been systematically explored. Our main paradigm is that in order to progress in non-linear questions pertaining to concentration in Euclidean space, it is imperative to cast and study these problems in the more general Riemannian context.
As witnessed by our own work over the last years, we expect that broadening the scope and incorporating tools from the Riemannian world will lead to significant progress in our understanding of the qualitative and quantitative structure of isoperimetric minimizers in the purely Euclidean setting. Such progress would have dramatic impact on long-standing fundamental conjectures regarding concentration of measure on high-dimensional convex domains, as well as other closely related fields such as Probability Theory, Learning Theory, Random Matrix Theory and Algorithmic Geometry."
Max ERC Funding
1 194 190 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym ContactLube
Project Highly-lubricated soft contact lenses
Researcher (PI) Jacob Klein
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Proof of Concept (PoC), PC1, ERC-2014-PoC
Summary The object of this proof of concept project is to modify soft contact lenses to render them more lubricated, and so make them far more comfortable to use. We propose to improve greatly the lubricity of soft contact lenses, used by over 100 million people worldwide with a market of around $7.5bn, and for which acute discomfort may arise from high friction at the interfaces between the lenses and the eyelid or cornea. According to an established clinical hypothesis, ocular comfort is related to the level of friction between the anterior side of the contact lens and the inner eyelid occurring during the blinking process, and boundary lubrication is the key to providing user comfort during extensive wearing of soft contact lenses. High lens friction, for a substantial part of the user population, can limit the extent to which soft lenses may be used and can also aggravate pathologies such as dry eye syndrome. Thus soft contact lenses that are much better lubricated than those currently in use have clear economic and health-related benefits. The current project, working through 5 work-packages, will establish the feasibility, will carry out competitive analysis, explore the commercialization process and the IPR position, and seek contacts with appropriate industrial partners to further develop the commercialization of this idea.
Summary
The object of this proof of concept project is to modify soft contact lenses to render them more lubricated, and so make them far more comfortable to use. We propose to improve greatly the lubricity of soft contact lenses, used by over 100 million people worldwide with a market of around $7.5bn, and for which acute discomfort may arise from high friction at the interfaces between the lenses and the eyelid or cornea. According to an established clinical hypothesis, ocular comfort is related to the level of friction between the anterior side of the contact lens and the inner eyelid occurring during the blinking process, and boundary lubrication is the key to providing user comfort during extensive wearing of soft contact lenses. High lens friction, for a substantial part of the user population, can limit the extent to which soft lenses may be used and can also aggravate pathologies such as dry eye syndrome. Thus soft contact lenses that are much better lubricated than those currently in use have clear economic and health-related benefits. The current project, working through 5 work-packages, will establish the feasibility, will carry out competitive analysis, explore the commercialization process and the IPR position, and seek contacts with appropriate industrial partners to further develop the commercialization of this idea.
Max ERC Funding
150 000 €
Duration
Start date: 2015-01-01, End date: 2016-06-30
Project acronym COSMICEXPLOSIONS
Project The nature of cosmic explosions
Researcher (PI) Avishay Gal-Yam
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Starting Grant (StG), PE9, ERC-2012-StG_20111012
Summary Cosmic explosions, the violent deaths of stars, play a crucial role in many of the most interesting open questions in physics today. These events serve as “cosmic accelerators” for ultra-high-energy particles that are beyond reach for even to most powerful terrestrial accelerators, as well as distant sources for elusive neutrinos. Explosions leave behind compact neutron stars and black hole remnants, natural laboratories to study strong gravity. Acting as cosmic furnaces, these explosions driven the chemical evolution of the Universe Cosmic explosions trigger and inhibit star formation processes, and drive galactic evolution (“feedback”). Distances measured using supernova explosions as standard candles brought about the modern revolution in our view of the accelerating Universe, driven by enigmatic “dark energy”. Understanding the nature of cosmic explosions of all types is thus an extremely well-motivated endeavour. I have been studying cosmic explosions for over a decade, and since the earliest stages of my career, have followed an ambition to figure out the nature of cosmic explosions of all types, and to search for new types of explosions. Having already made several key discoveries, I now propose to undertake a comprehensive program to systematically tackle this problem.I review below the progress made in this field and the breakthrough results we have achieved so far, and propose to climb the next step in this scientific and technological ladder, combining new powerful surveys with comprehensive multi-wavelength and multi-disciplinary (observational and theoretical) analysis. My strategy is based on a combination of two main approaches: detailed studies of single objects which serve as keys to specific questions; and systematic studies of large samples, some that I have, for the first time, been able to assemble and analyze, and those expected from forthcoming efforts. Both approaches have already yielded tantalizing results.
Summary
Cosmic explosions, the violent deaths of stars, play a crucial role in many of the most interesting open questions in physics today. These events serve as “cosmic accelerators” for ultra-high-energy particles that are beyond reach for even to most powerful terrestrial accelerators, as well as distant sources for elusive neutrinos. Explosions leave behind compact neutron stars and black hole remnants, natural laboratories to study strong gravity. Acting as cosmic furnaces, these explosions driven the chemical evolution of the Universe Cosmic explosions trigger and inhibit star formation processes, and drive galactic evolution (“feedback”). Distances measured using supernova explosions as standard candles brought about the modern revolution in our view of the accelerating Universe, driven by enigmatic “dark energy”. Understanding the nature of cosmic explosions of all types is thus an extremely well-motivated endeavour. I have been studying cosmic explosions for over a decade, and since the earliest stages of my career, have followed an ambition to figure out the nature of cosmic explosions of all types, and to search for new types of explosions. Having already made several key discoveries, I now propose to undertake a comprehensive program to systematically tackle this problem.I review below the progress made in this field and the breakthrough results we have achieved so far, and propose to climb the next step in this scientific and technological ladder, combining new powerful surveys with comprehensive multi-wavelength and multi-disciplinary (observational and theoretical) analysis. My strategy is based on a combination of two main approaches: detailed studies of single objects which serve as keys to specific questions; and systematic studies of large samples, some that I have, for the first time, been able to assemble and analyze, and those expected from forthcoming efforts. Both approaches have already yielded tantalizing results.
Max ERC Funding
1 499 302 €
Duration
Start date: 2012-09-01, End date: 2017-08-31
Project acronym DCM
Project Distributed Cryptography Module
Researcher (PI) Yehuda Lindell
Host Institution (HI) BAR ILAN UNIVERSITY
Call Details Proof of Concept (PoC), PC1, ERC-2014-PoC
Summary The DCM (Distributed Crypto Module) is a unique security system that provides a significant boost in server-side security, which will benefit almost every organisation today. The technology relies on a novel approach to protect cryptographic keys and authentication credentials that form the backbone of network and data security. Currently, the cryptographic keys and authentication credentials that reside on servers inside networks constitute single points of failure: it suffices for the attacker to obtain them and all is lost. This is due to the fact that all cryptographic techniques rely on the secrecy of the key; if the key is compromised then all is lost. Indeed, cryptography is rarely broken (even by the NSA); rather, it is bypassed by stealing the key! Server breaches are ubiquitous today and novel defenses are an acute need today in industry and government.
In the DCM, the key is first split and shared amongst two or more servers (using known secret sharing technology) and then using our novel approach, the cryptographic operations necessary are carried out without bringing the parts of the secret together. Rather, the servers run a secure protocol, based on secure multiparty computation, which has the security guarantee that even if an attacker breaks into all but one of the servers, and can run any malicious code that it wishes, it still cannot learn anything about the secret key or credential. By configuring the DCM servers independently (different OS, different admins, different defenses, etc.), a very high level of security is achieved.
The scope of the Proof of Concept DCM encapsulates the steps need to bring this groundbreaking technology to the market. A full business plan and market survey will be developed for the construction of a new company that will develop the DCM application and bring it to market. The first full version of a DCM will be ready for market a year after the company has been established (with limited versions earlier).
Summary
The DCM (Distributed Crypto Module) is a unique security system that provides a significant boost in server-side security, which will benefit almost every organisation today. The technology relies on a novel approach to protect cryptographic keys and authentication credentials that form the backbone of network and data security. Currently, the cryptographic keys and authentication credentials that reside on servers inside networks constitute single points of failure: it suffices for the attacker to obtain them and all is lost. This is due to the fact that all cryptographic techniques rely on the secrecy of the key; if the key is compromised then all is lost. Indeed, cryptography is rarely broken (even by the NSA); rather, it is bypassed by stealing the key! Server breaches are ubiquitous today and novel defenses are an acute need today in industry and government.
In the DCM, the key is first split and shared amongst two or more servers (using known secret sharing technology) and then using our novel approach, the cryptographic operations necessary are carried out without bringing the parts of the secret together. Rather, the servers run a secure protocol, based on secure multiparty computation, which has the security guarantee that even if an attacker breaks into all but one of the servers, and can run any malicious code that it wishes, it still cannot learn anything about the secret key or credential. By configuring the DCM servers independently (different OS, different admins, different defenses, etc.), a very high level of security is achieved.
The scope of the Proof of Concept DCM encapsulates the steps need to bring this groundbreaking technology to the market. A full business plan and market survey will be developed for the construction of a new company that will develop the DCM application and bring it to market. The first full version of a DCM will be ready for market a year after the company has been established (with limited versions earlier).
Max ERC Funding
149 776 €
Duration
Start date: 2014-11-01, End date: 2016-04-30
Project acronym DEATHSWITCHING
Project Identifying genes and pathways that drive molecular switches and back-up mechanisms between apoptosis and autophagy
Researcher (PI) Adi Kimchi
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Advanced Grant (AdG), LS3, ERC-2012-ADG_20120314
Summary A cell’s decision to die is governed by multiple input signals received from a complex network of programmed cell death (PCD) pathways, including apoptosis and programmed necrosis. Additionally, under some conditions, autophagy, whose function is mainly pro-survival, may act as a back-up death pathway. We propose to apply new approaches to study the molecular basis of two important questions that await resolution in the field: a) how the cell switches from a pro-survival autophagic response to an apoptotic response and b) whether and how pro-survival autophagy is converted to a death mechanism when apoptosis is blocked. To address the first issue, we will screen for direct physical interactions between autophagic and apoptotic proteins, using the protein fragment complementation assay. Validated pairs will be studied in depth to identify built-in molecular switches that activate apoptosis when autophagy fails to restore homeostasis. As a pilot case to address the concept of molecular ‘sensors’ and ‘switches’, we will focus on the previously identified Atg12/Bcl-2 interaction. In the second line of research we will categorize autophagy-dependent cell death triggers into those that directly result from autophagy-dependent degradation, either by excessive self-digestion or by selective protein degradation, and those that utilize the autophagy machinery to activate programmed necrosis. We will identify the genes regulating these scenarios by whole genome RNAi screens for increased cell survival. In parallel, we will use a cell library of annotated fluorescent-tagged proteins for measuring selective protein degradation. These will be the starting point for identification of the molecular pathways that convert survival autophagy to a death program. Finally, we will explore the physiological relevance of back-up death mechanisms and the newly identified molecular mechanisms to developmental PCD during the cavitation process in early stages of embryogenesis.
Summary
A cell’s decision to die is governed by multiple input signals received from a complex network of programmed cell death (PCD) pathways, including apoptosis and programmed necrosis. Additionally, under some conditions, autophagy, whose function is mainly pro-survival, may act as a back-up death pathway. We propose to apply new approaches to study the molecular basis of two important questions that await resolution in the field: a) how the cell switches from a pro-survival autophagic response to an apoptotic response and b) whether and how pro-survival autophagy is converted to a death mechanism when apoptosis is blocked. To address the first issue, we will screen for direct physical interactions between autophagic and apoptotic proteins, using the protein fragment complementation assay. Validated pairs will be studied in depth to identify built-in molecular switches that activate apoptosis when autophagy fails to restore homeostasis. As a pilot case to address the concept of molecular ‘sensors’ and ‘switches’, we will focus on the previously identified Atg12/Bcl-2 interaction. In the second line of research we will categorize autophagy-dependent cell death triggers into those that directly result from autophagy-dependent degradation, either by excessive self-digestion or by selective protein degradation, and those that utilize the autophagy machinery to activate programmed necrosis. We will identify the genes regulating these scenarios by whole genome RNAi screens for increased cell survival. In parallel, we will use a cell library of annotated fluorescent-tagged proteins for measuring selective protein degradation. These will be the starting point for identification of the molecular pathways that convert survival autophagy to a death program. Finally, we will explore the physiological relevance of back-up death mechanisms and the newly identified molecular mechanisms to developmental PCD during the cavitation process in early stages of embryogenesis.
Max ERC Funding
2 500 000 €
Duration
Start date: 2013-03-01, End date: 2018-02-28
Project acronym DEPENDABLECLOUD
Project Towards the dependable cloud:
Building the foundations for tomorrow's dependable cloud computing
Researcher (PI) Rodrigo Seromenho Miragaia Rodrigues
Host Institution (HI) INESC ID - INSTITUTO DE ENGENHARIADE SISTEMAS E COMPUTADORES, INVESTIGACAO E DESENVOLVIMENTO EM LISBOA
Call Details Starting Grant (StG), PE6, ERC-2012-StG_20111012
Summary Cloud computing is being increasingly adopted by individuals, organizations, and governments. However, as the computations that are offloaded to the cloud expand to societal-critical services, the dependability requirements of cloud services become much higher, and we need to ensure that the infrastructure that supports these services is ready to meet these requirements. In particular, this proposal tackles the challenges that arise from two distinctive characteristic of the cloud infrastructure.
The first is that non-crash faults, despite being considered highly unlikely by the designers of traditional systems, become commonplace at the scale and complexity of the cloud infrastructure. We argue that the current ad-hoc methods for handling these faults are insufficient, and that the only principled approach of assuming Byzantine faults is too pessimistic. Therefore, we call for a new systematic approach to tolerating non-crash, non-adversarial faults. This requires the definition of a new fault model, and the construction of a series of building blocks and key protocol elements that enable the construction of fault-tolerant cloud services.
The second issue is that to meet their scalability requirements, cloud services spread their state across multiple data centers, and direct users to the closest one. This raises the issue that not all operations can be executed optimistically, without being aware of concurrent operations over the same data, and thus multiple levels of consistency must coexist. However, this puts the onus of reasoning about which behaviors are allowed under such a hybrid consistency model on the programmer of the service. We propose a systematic solution to this problem, which includes a novel consistency model that allows for developing highly scalable services that are fast when possible and consistent when necessary, and a labeling methodology to guide the programmer in deciding which operations can run at each consistency level.
Summary
Cloud computing is being increasingly adopted by individuals, organizations, and governments. However, as the computations that are offloaded to the cloud expand to societal-critical services, the dependability requirements of cloud services become much higher, and we need to ensure that the infrastructure that supports these services is ready to meet these requirements. In particular, this proposal tackles the challenges that arise from two distinctive characteristic of the cloud infrastructure.
The first is that non-crash faults, despite being considered highly unlikely by the designers of traditional systems, become commonplace at the scale and complexity of the cloud infrastructure. We argue that the current ad-hoc methods for handling these faults are insufficient, and that the only principled approach of assuming Byzantine faults is too pessimistic. Therefore, we call for a new systematic approach to tolerating non-crash, non-adversarial faults. This requires the definition of a new fault model, and the construction of a series of building blocks and key protocol elements that enable the construction of fault-tolerant cloud services.
The second issue is that to meet their scalability requirements, cloud services spread their state across multiple data centers, and direct users to the closest one. This raises the issue that not all operations can be executed optimistically, without being aware of concurrent operations over the same data, and thus multiple levels of consistency must coexist. However, this puts the onus of reasoning about which behaviors are allowed under such a hybrid consistency model on the programmer of the service. We propose a systematic solution to this problem, which includes a novel consistency model that allows for developing highly scalable services that are fast when possible and consistent when necessary, and a labeling methodology to guide the programmer in deciding which operations can run at each consistency level.
Max ERC Funding
1 076 084 €
Duration
Start date: 2012-10-01, End date: 2018-01-31
Project acronym DevoTed_miR
Project MicroRNA determinants of the balance between effector and regulatory T cells in vivo
Researcher (PI) Bruno Miguel De Carvalho e Silva Santos
Host Institution (HI) INSTITUTO DE MEDICINA MOLECULAR JOAO LOBO ANTUNES
Call Details Consolidator Grant (CoG), LS6, ERC-2014-CoG
Summary T lymphocytes display potent pro- or anti-inflammatory properties, which typically associate with distinct effector (Teff) versus regulatory (Treg) cell subsets. Based on published and our preliminary data showing a major impact of microRNAs on T cell differentiation and (auto)immune pathology, my proposal aims to dissect the miRNA networks that control the balance between Teff and Treg subsets in vivo, in various experimental models of infection and autoimmunity.
We will focus on three critical mediators of T cell functions: interferon-gamma (IFN-g) and interleukin-17A (IL-17), highly pro-inflammatory Teff cytokines; and Foxp3, the transcription factor that confers Treg suppressive properties. To track the activity of these key genes, we will generate a new Ifng/ Il17/ Foxp3 triple reporter mouse, from which we will isolate Teff and Treg subsets to determine their genome-wide miRNA profiles and specific signatures in vivo. We will investigate both natural (thymic-derived and present in naïve mice) and induced (in the periphery upon challenge) Teff and Treg subsets, as they make distinct contributions to the immune response. We will identify miRNAs selectively expressed in Teff (Ifng+ or Il17+) versus Treg (Foxp3+) subsets of various lineages (CD4+, CD8+, gamma-delta or NKT) in each in vivo model; assess whether they are induced during thymic development or upon peripheral activation; and determine the robustness of subset-specific miRNA profiles across various in vivo challenges.
We will then use loss- and gain-of-function strategies to define the individual miRNAs that impact Teff or Treg differentiation and disease pathogenesis; dissect the external cues and intracellular mechanisms that regulate miRNA expression; and identify the mRNA networks controlled by key miRNAs in Teff and Treg differentiation. I expect this project to provide major conceptual and experimental advances towards manipulating miRNAs either to boost immunity or to treat autoimmunity.
Summary
T lymphocytes display potent pro- or anti-inflammatory properties, which typically associate with distinct effector (Teff) versus regulatory (Treg) cell subsets. Based on published and our preliminary data showing a major impact of microRNAs on T cell differentiation and (auto)immune pathology, my proposal aims to dissect the miRNA networks that control the balance between Teff and Treg subsets in vivo, in various experimental models of infection and autoimmunity.
We will focus on three critical mediators of T cell functions: interferon-gamma (IFN-g) and interleukin-17A (IL-17), highly pro-inflammatory Teff cytokines; and Foxp3, the transcription factor that confers Treg suppressive properties. To track the activity of these key genes, we will generate a new Ifng/ Il17/ Foxp3 triple reporter mouse, from which we will isolate Teff and Treg subsets to determine their genome-wide miRNA profiles and specific signatures in vivo. We will investigate both natural (thymic-derived and present in naïve mice) and induced (in the periphery upon challenge) Teff and Treg subsets, as they make distinct contributions to the immune response. We will identify miRNAs selectively expressed in Teff (Ifng+ or Il17+) versus Treg (Foxp3+) subsets of various lineages (CD4+, CD8+, gamma-delta or NKT) in each in vivo model; assess whether they are induced during thymic development or upon peripheral activation; and determine the robustness of subset-specific miRNA profiles across various in vivo challenges.
We will then use loss- and gain-of-function strategies to define the individual miRNAs that impact Teff or Treg differentiation and disease pathogenesis; dissect the external cues and intracellular mechanisms that regulate miRNA expression; and identify the mRNA networks controlled by key miRNAs in Teff and Treg differentiation. I expect this project to provide major conceptual and experimental advances towards manipulating miRNAs either to boost immunity or to treat autoimmunity.
Max ERC Funding
2 000 000 €
Duration
Start date: 2015-07-01, End date: 2020-06-30
Project acronym DG-PESP-CS
Project Deterministic Generation of Polarization Entangled single Photons Cluster States
Researcher (PI) David Gershoni
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Advanced Grant (AdG), PE2, ERC-2015-AdG
Summary Measurement based quantum computing is one of the most fault-tolerant architectures proposed for quantum information processing. It opens the possibility of performing quantum computing tasks using linear optical systems. An efficient route for measurement based quantum computing utilizes highly entangled states of photons, called cluster states. Propagation and processing quantum information is made possible this way using only single qubit measurements. It is highly resilient to qubit losses. In addition, single qubit measurements of polarization qubits is easily performed with high fidelity using standard optical tools. These features make photonic clusters excellent platforms for quantum information processing.
Constructing photonic cluster states, however, is a formidable challenge, attracting vast amounts of research efforts. While in principle it is possible to build up cluster states using interferometry, such a method is of a probabilistic nature and entails a large overhead of resources. The use of entangled photon pairs reduces this overhead by a small factor only.
We outline a novel route for constructing a deterministic source of photonic cluster states using a device based on semiconductor quantum dot. Our proposal follows a suggestion by Lindner and Rudolph. We use repeated optical excitations of a long lived coherent spin confined in a single semiconductor quantum dot and demonstrate for the first time practical realization of their proposal. Our preliminary demonstration presents a breakthrough in quantum technology since deterministic source of photonic cluster, reduces the resources needed quantum information processing. It may have revolutionary prospects for technological applications as well as to our fundamental understanding of quantum systems.
We propose to capitalize on this recent breakthrough and concentrate on R&D which will further advance this forefront field of science and technology by utilizing the horizons that it opens.
Summary
Measurement based quantum computing is one of the most fault-tolerant architectures proposed for quantum information processing. It opens the possibility of performing quantum computing tasks using linear optical systems. An efficient route for measurement based quantum computing utilizes highly entangled states of photons, called cluster states. Propagation and processing quantum information is made possible this way using only single qubit measurements. It is highly resilient to qubit losses. In addition, single qubit measurements of polarization qubits is easily performed with high fidelity using standard optical tools. These features make photonic clusters excellent platforms for quantum information processing.
Constructing photonic cluster states, however, is a formidable challenge, attracting vast amounts of research efforts. While in principle it is possible to build up cluster states using interferometry, such a method is of a probabilistic nature and entails a large overhead of resources. The use of entangled photon pairs reduces this overhead by a small factor only.
We outline a novel route for constructing a deterministic source of photonic cluster states using a device based on semiconductor quantum dot. Our proposal follows a suggestion by Lindner and Rudolph. We use repeated optical excitations of a long lived coherent spin confined in a single semiconductor quantum dot and demonstrate for the first time practical realization of their proposal. Our preliminary demonstration presents a breakthrough in quantum technology since deterministic source of photonic cluster, reduces the resources needed quantum information processing. It may have revolutionary prospects for technological applications as well as to our fundamental understanding of quantum systems.
We propose to capitalize on this recent breakthrough and concentrate on R&D which will further advance this forefront field of science and technology by utilizing the horizons that it opens.
Max ERC Funding
2 502 974 €
Duration
Start date: 2016-06-01, End date: 2021-05-31
Project acronym DIMENSION
Project High-Dimensional Phenomena and Convexity
Researcher (PI) Boaz Binyamin Klartag
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Starting Grant (StG), PE1, ERC-2012-StG_20111012
Summary High-dimensional problems with a geometric flavor appear in quite a few branches of mathematics, mathematical physics and theoretical computer science. A priori, one would think that the diversity and the rapid increase of the number of configurations would make it impossible to formulate general, interesting theorems that apply to large classes of high-dimensional geometric objects. The underlying theme of the proposed project is that the contrary is often true. Mathematical developments of the last decades indicate that high dimensionality, when viewed correctly, may create remarkable order and simplicity, rather than complication. For example, Dvoretzky's theorem demonstrates that any high-dimensional convex body has nearly-Euclidean sections of a high dimension. Another example is the central limit theorem for convex bodies due to the PI, according to which any high-dimensional convex body has approximately Gaussian marginals. There are a number of strong motifs in high-dimensional geometry, such as the concentration of measure, which seem to compensate for the vast amount of different possibilities. Convexity is one of the ways in which to harness these motifs and thereby formulate clean, non-trivial theorems. The scientific goals of the project are to develop new methods for the study of convexity in high dimensions beyond the concentration of measure, to explore emerging connections with other fields of mathematics, and to solve the outstanding problems related to the distribution of volume in high-dimensional convex sets.
Summary
High-dimensional problems with a geometric flavor appear in quite a few branches of mathematics, mathematical physics and theoretical computer science. A priori, one would think that the diversity and the rapid increase of the number of configurations would make it impossible to formulate general, interesting theorems that apply to large classes of high-dimensional geometric objects. The underlying theme of the proposed project is that the contrary is often true. Mathematical developments of the last decades indicate that high dimensionality, when viewed correctly, may create remarkable order and simplicity, rather than complication. For example, Dvoretzky's theorem demonstrates that any high-dimensional convex body has nearly-Euclidean sections of a high dimension. Another example is the central limit theorem for convex bodies due to the PI, according to which any high-dimensional convex body has approximately Gaussian marginals. There are a number of strong motifs in high-dimensional geometry, such as the concentration of measure, which seem to compensate for the vast amount of different possibilities. Convexity is one of the ways in which to harness these motifs and thereby formulate clean, non-trivial theorems. The scientific goals of the project are to develop new methods for the study of convexity in high dimensions beyond the concentration of measure, to explore emerging connections with other fields of mathematics, and to solve the outstanding problems related to the distribution of volume in high-dimensional convex sets.
Max ERC Funding
998 000 €
Duration
Start date: 2013-01-01, End date: 2018-12-31
Project acronym DIRECT-fMRI
Project Sensing activity-induced cell swellings and ensuing neurotransmitter releases for in-vivo functional imaging sans hemodynamics
Researcher (PI) Noam Shemesh
Host Institution (HI) FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD
Call Details Starting Grant (StG), PE4, ERC-2015-STG
Summary Functional-Magnetic Resonance Imaging (fMRI) has transformed our understanding of brain function due to its ability to noninvasively tag ‘active’ brain regions. Nevertheless, fMRI only detects neural activity indirectly, by relying on slow hemodynamic couplings whose relationships with underlying neural activity are not fully known.
We have recently pioneered two unique MR approaches: Non-Uniform Oscillating-Gradient Spin-Echo (NOGSE) MRI and Relaxation Enhanced MR Spectroscopy (RE MRS). NOGSE-MRI is an exquisite microstructural probe, sensing cell sizes (l) with an unprecedented l^6 sensitivity (compared to l^2 in conventional approaches); RE MRS is a new spectral technique capable of recording metabolic signals with extraordinary fidelity at ultrahigh fields.
This proposal aims to harness these novel concepts for mapping neural activity directly, without relying on hemodynamics. The specific objectives of this proposal are:
(1) Mapping neural activity via sensing cell swellings upon activity (μfMRI): we hypothesize that NOGSE can robustly sense subtle changes in cellular microstructure upon neural firings and hence convey neural activity directly.
(2) Probing the nature of elicited activity via detection of neurotransmitter release: we posit that RE MRS is sufficiently sensitive to robustly detect changes in Glutamate and GABA signals upon activation.
(3) Network mapping in optogenetically-stimulated, behaving mice: we propose to couple our novel approaches with optogenetics to resolve neural correlates of behavior in awake, behaving mice.
Simulations for μfMRI predict >4% signal changes upon subtle cell swellings; further, our in vivo RE MRS experiments have detected metabolites with SNR>50 in only 6 seconds. Hence, these two complementary –and importantly, hemodynamics-independent– approaches will represent a true paradigm shift: from indirect detection of neurovasculature couplings towards direct and noninvasive mapping of neural activity in vivo.
Summary
Functional-Magnetic Resonance Imaging (fMRI) has transformed our understanding of brain function due to its ability to noninvasively tag ‘active’ brain regions. Nevertheless, fMRI only detects neural activity indirectly, by relying on slow hemodynamic couplings whose relationships with underlying neural activity are not fully known.
We have recently pioneered two unique MR approaches: Non-Uniform Oscillating-Gradient Spin-Echo (NOGSE) MRI and Relaxation Enhanced MR Spectroscopy (RE MRS). NOGSE-MRI is an exquisite microstructural probe, sensing cell sizes (l) with an unprecedented l^6 sensitivity (compared to l^2 in conventional approaches); RE MRS is a new spectral technique capable of recording metabolic signals with extraordinary fidelity at ultrahigh fields.
This proposal aims to harness these novel concepts for mapping neural activity directly, without relying on hemodynamics. The specific objectives of this proposal are:
(1) Mapping neural activity via sensing cell swellings upon activity (μfMRI): we hypothesize that NOGSE can robustly sense subtle changes in cellular microstructure upon neural firings and hence convey neural activity directly.
(2) Probing the nature of elicited activity via detection of neurotransmitter release: we posit that RE MRS is sufficiently sensitive to robustly detect changes in Glutamate and GABA signals upon activation.
(3) Network mapping in optogenetically-stimulated, behaving mice: we propose to couple our novel approaches with optogenetics to resolve neural correlates of behavior in awake, behaving mice.
Simulations for μfMRI predict >4% signal changes upon subtle cell swellings; further, our in vivo RE MRS experiments have detected metabolites with SNR>50 in only 6 seconds. Hence, these two complementary –and importantly, hemodynamics-independent– approaches will represent a true paradigm shift: from indirect detection of neurovasculature couplings towards direct and noninvasive mapping of neural activity in vivo.
Max ERC Funding
1 787 500 €
Duration
Start date: 2016-03-01, End date: 2021-02-28
Project acronym DMR-CODE
Project Decoding the Mammalian transcriptional Regulatory code in development and stimulatory responses
Researcher (PI) Ido Amit
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Starting Grant (StG), LS2, ERC-2012-StG_20111109
Summary Transcription factors (TF) regulate genome function by controlling gene expression. Comprehensive characterization of the in vivo binding of TF to the DNA in relevant primary models is a critical step towards a global understanding of the human genome. Recent advances in high-throughput genomic technologies provide an extraordinary opportunity to develop and apply systematic approaches to learn the underline principles and mechanisms of mammalian transcriptional networks. The premise of this proposal is that a tractable set of rules govern how cells commit to a specific cell type or respond to the environment, and that these rules are coded in regulatory elements in the genome. Currently our understanding of the mammalian regulatory code is hampered by the difficulty of directly measuring in vivo binding of large numbers of TFs to DNA across multiple primary cell types and their natural response to physiological stimuli.
Here, we overcome this bottleneck by systematically exploring the genomic binding network of 1. All relevant TFs of key hematopoietic cells in both steady state and under relevant stimuli. 2. Follow the changes in TF networks as cells differentiate 3. Use these models to engineer cell states and responses. To achieve these goals, we developed a new method for automated high throughput ChIP coupled to sequencing (HT-ChIP-Seq). We used this method to measure binding of 40 TFs in 4 time points following stimulation of dendritic cells with pathogen components. We find that TFs vary substantially in their binding dynamics, genomic localization, number of binding events, and degree of interaction with other TFs. The analysis of this data suggests that the TF network is hierarchically organized, and composed of different types of TFs, cell differentiation factors, factors that prime for gene induction, and factors that bind more specifically and dynamically. This proposal revisits and challenges the current understanding of the mammalian regulatory code.
Summary
Transcription factors (TF) regulate genome function by controlling gene expression. Comprehensive characterization of the in vivo binding of TF to the DNA in relevant primary models is a critical step towards a global understanding of the human genome. Recent advances in high-throughput genomic technologies provide an extraordinary opportunity to develop and apply systematic approaches to learn the underline principles and mechanisms of mammalian transcriptional networks. The premise of this proposal is that a tractable set of rules govern how cells commit to a specific cell type or respond to the environment, and that these rules are coded in regulatory elements in the genome. Currently our understanding of the mammalian regulatory code is hampered by the difficulty of directly measuring in vivo binding of large numbers of TFs to DNA across multiple primary cell types and their natural response to physiological stimuli.
Here, we overcome this bottleneck by systematically exploring the genomic binding network of 1. All relevant TFs of key hematopoietic cells in both steady state and under relevant stimuli. 2. Follow the changes in TF networks as cells differentiate 3. Use these models to engineer cell states and responses. To achieve these goals, we developed a new method for automated high throughput ChIP coupled to sequencing (HT-ChIP-Seq). We used this method to measure binding of 40 TFs in 4 time points following stimulation of dendritic cells with pathogen components. We find that TFs vary substantially in their binding dynamics, genomic localization, number of binding events, and degree of interaction with other TFs. The analysis of this data suggests that the TF network is hierarchically organized, and composed of different types of TFs, cell differentiation factors, factors that prime for gene induction, and factors that bind more specifically and dynamically. This proposal revisits and challenges the current understanding of the mammalian regulatory code.
Max ERC Funding
1 500 000 €
Duration
Start date: 2012-10-01, End date: 2017-09-30
Project acronym DrugSense
Project Ribo-regulators that sense trace antibiotics
Researcher (PI) Rotem SOREK
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Proof of Concept (PoC), PC1, ERC-2015-PoC
Summary Over-usage of antibiotics in the clinic and in agriculture resulted not only in increased drug resistance among pathogenic bacteria, but also in the spread of antibiotics metabolites in the environment and in our food. This poses multiple significant threats, including the development and expansion of multi-drug resistant pathogens.
The health and safety risks imposed by the presence of antibiotics in food, drinking water, and environmental waters raise the strong necessity for continuous monitoring of trace antibiotics levels in multiple media. The EU now obliges food manufacturers to test for antibiotics traces in their products, but current technologies for antibiotics sensing do not provide a complete solution. There is a strong need for antibiotics sensors that would accurately, rapidly and inexpensively report on the presence of antibiotics in various environments.
In our ERC-StG project we discovered new RNA leaders (ribo-regulators) that sense very low concentrations of antibiotics, leading to the activation of antibiotics resistance genes. These ribo-regulators thus function as efficient antibiotics sensors. Within the current PoC project we will develop a prototype for a highly sensitive bio-sensor, capable of rapid detection of trace levels of multiple antibiotics in food, water and other substances in a cost-effective manner.
Our PoC project involves both prototype development and business development. Within the prototype development we will utilize our earlier discoveries to bio-engineer the antibiotics sensor. Within the business development arm we will perform a thorough market research to identify the market needs, map the competition and pinpoint market segments where our biosensor product would have an advantage over the competition. Our aim is to achieve an IP protected proof of concept prototype that will attract further external investments, leading to spawning of a start up company that will bring our technology to the market.
Summary
Over-usage of antibiotics in the clinic and in agriculture resulted not only in increased drug resistance among pathogenic bacteria, but also in the spread of antibiotics metabolites in the environment and in our food. This poses multiple significant threats, including the development and expansion of multi-drug resistant pathogens.
The health and safety risks imposed by the presence of antibiotics in food, drinking water, and environmental waters raise the strong necessity for continuous monitoring of trace antibiotics levels in multiple media. The EU now obliges food manufacturers to test for antibiotics traces in their products, but current technologies for antibiotics sensing do not provide a complete solution. There is a strong need for antibiotics sensors that would accurately, rapidly and inexpensively report on the presence of antibiotics in various environments.
In our ERC-StG project we discovered new RNA leaders (ribo-regulators) that sense very low concentrations of antibiotics, leading to the activation of antibiotics resistance genes. These ribo-regulators thus function as efficient antibiotics sensors. Within the current PoC project we will develop a prototype for a highly sensitive bio-sensor, capable of rapid detection of trace levels of multiple antibiotics in food, water and other substances in a cost-effective manner.
Our PoC project involves both prototype development and business development. Within the prototype development we will utilize our earlier discoveries to bio-engineer the antibiotics sensor. Within the business development arm we will perform a thorough market research to identify the market needs, map the competition and pinpoint market segments where our biosensor product would have an advantage over the competition. Our aim is to achieve an IP protected proof of concept prototype that will attract further external investments, leading to spawning of a start up company that will bring our technology to the market.
Max ERC Funding
150 000 €
Duration
Start date: 2016-05-01, End date: 2017-04-30
Project acronym DYNA-MIC
Project Deep non-invasive imaging via scattered-light acoustically-mediated computational microscopy
Researcher (PI) Ori Katz
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Starting Grant (StG), PE7, ERC-2015-STG
Summary Optical microscopy, perhaps the most important tool in biomedical investigation and clinical diagnostics, is currently held back by the assumption that it is not possible to noninvasively image microscopic structures more than a fraction of a millimeter deep inside tissue. The governing paradigm is that high-resolution information carried by light is lost due to random scattering in complex samples such as tissue. While non-optical imaging techniques, employing non-ionizing radiation such as ultrasound, allow deeper investigations, they possess drastically inferior resolution and do not permit microscopic studies of cellular structures, crucial for accurate diagnosis of cancer and other diseases.
I propose a new kind of microscope, one that can peer deep inside visually opaque samples, combining the sub-micron resolution of light with the penetration depth of ultrasound. My novel approach is based on our discovery that information on microscopic structures is contained in random scattered-light patterns. It breaks current limits by exploiting the randomness of scattered light rather than struggling to fight it.
We will transform this concept into a breakthrough imaging platform by combining ultrasonic probing and modulation of light with advanced digital signal processing algorithms, extracting the hidden microscopic structure by two complementary approaches: 1) By exploiting the stochastic dynamics of scattered light using methods developed to surpass the diffraction limit in optical nanoscopy and for compressive sampling, harnessing nonlinear effects. 2) Through the analysis of intrinsic correlations in scattered light that persist deep inside scattering tissue.
This proposal is formed by bringing together novel insights on the physics of light in complex media, advanced microscopy techniques, and ultrasound-mediated imaging. It is made possible by the new ability to digitally process vast amounts of scattering data, and has the potential to impact many fields.
Summary
Optical microscopy, perhaps the most important tool in biomedical investigation and clinical diagnostics, is currently held back by the assumption that it is not possible to noninvasively image microscopic structures more than a fraction of a millimeter deep inside tissue. The governing paradigm is that high-resolution information carried by light is lost due to random scattering in complex samples such as tissue. While non-optical imaging techniques, employing non-ionizing radiation such as ultrasound, allow deeper investigations, they possess drastically inferior resolution and do not permit microscopic studies of cellular structures, crucial for accurate diagnosis of cancer and other diseases.
I propose a new kind of microscope, one that can peer deep inside visually opaque samples, combining the sub-micron resolution of light with the penetration depth of ultrasound. My novel approach is based on our discovery that information on microscopic structures is contained in random scattered-light patterns. It breaks current limits by exploiting the randomness of scattered light rather than struggling to fight it.
We will transform this concept into a breakthrough imaging platform by combining ultrasonic probing and modulation of light with advanced digital signal processing algorithms, extracting the hidden microscopic structure by two complementary approaches: 1) By exploiting the stochastic dynamics of scattered light using methods developed to surpass the diffraction limit in optical nanoscopy and for compressive sampling, harnessing nonlinear effects. 2) Through the analysis of intrinsic correlations in scattered light that persist deep inside scattering tissue.
This proposal is formed by bringing together novel insights on the physics of light in complex media, advanced microscopy techniques, and ultrasound-mediated imaging. It is made possible by the new ability to digitally process vast amounts of scattering data, and has the potential to impact many fields.
Max ERC Funding
1 500 000 €
Duration
Start date: 2016-04-01, End date: 2021-03-31
Project acronym Dynamic Delegation
Project Implications of the Dynamic Nature of Portfolio Delegation
Researcher (PI) Ron Kaniel
Host Institution (HI) INTERDISCIPLINARY CENTER (IDC) HERZLIYA
Call Details Starting Grant (StG), SH1, ERC-2012-StG_20111124
Summary The asset management industry is a 60 trillion euros industry world wide, with a ratio of assets under management by asset managers to GDP around 100 percent. Despite the prominence of financial intermediaries in financial markets, our understanding of the portfolio delegation relationship, and its equilibrium asset pricing and contracting implications is at its infancy. The recent financial crisis has further underscored the importance of better understanding the incentives of financial intermediaries, the distortions induced by these incentives, the contracts that can help mitigate these distortions, and the impact of their trading on asset pricing dynamics.
One key feature that is at the core of the asset management relationship is its dynamic nature: investors can, and do, periodically re-allocate funds between managers and between funds and other investment vehicles. The magnitude of fund flows, both over time and accross funds at a given point in time, have been shown to be quantitatively large relative to assets under management. The ability of investors to quickly pull money out of funds at a time of crisis can have significant ramifications for the stability of the financial system.
Understanding implications of the dynamic nature of the delegation relationship is imperative in order to understand multiple aspects related to delegation and financial markets at large, including: risk taking behavior by funds; welfare implications for investors who invest in funds; what regulatory restrictions should be imposed on contracts; the evolution, past and future, of the asset management industry; securities return dynamics.
The objective is to develope models that will incorporate dynamic flows in settings that will allow studying implications and deriving empirical predictions on multiple dimensions: portfolio choice; optimal contracting; distribution of assets across funds; equilibrium asset pricing dynamics.
Summary
The asset management industry is a 60 trillion euros industry world wide, with a ratio of assets under management by asset managers to GDP around 100 percent. Despite the prominence of financial intermediaries in financial markets, our understanding of the portfolio delegation relationship, and its equilibrium asset pricing and contracting implications is at its infancy. The recent financial crisis has further underscored the importance of better understanding the incentives of financial intermediaries, the distortions induced by these incentives, the contracts that can help mitigate these distortions, and the impact of their trading on asset pricing dynamics.
One key feature that is at the core of the asset management relationship is its dynamic nature: investors can, and do, periodically re-allocate funds between managers and between funds and other investment vehicles. The magnitude of fund flows, both over time and accross funds at a given point in time, have been shown to be quantitatively large relative to assets under management. The ability of investors to quickly pull money out of funds at a time of crisis can have significant ramifications for the stability of the financial system.
Understanding implications of the dynamic nature of the delegation relationship is imperative in order to understand multiple aspects related to delegation and financial markets at large, including: risk taking behavior by funds; welfare implications for investors who invest in funds; what regulatory restrictions should be imposed on contracts; the evolution, past and future, of the asset management industry; securities return dynamics.
The objective is to develope models that will incorporate dynamic flows in settings that will allow studying implications and deriving empirical predictions on multiple dimensions: portfolio choice; optimal contracting; distribution of assets across funds; equilibrium asset pricing dynamics.
Max ERC Funding
728 436 €
Duration
Start date: 2013-01-01, End date: 2017-12-31
Project acronym EDUCAGE
Project The EDUCAGE: A Behavioral Platform for Naturalistic Learning
Researcher (PI) Adi Mizrahi
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Proof of Concept (PoC), PC1, ERC-2014-PoC
Summary Understanding behavior is still one of the holy grails in the natural and social sciences. Behavior is often utterly complex because it is a result of an extremely rich set of past experiences, the present state of the animal and the animal’s predictions about the future; all of which affect learning, decision making and consequently behavior. Given the complexity of behavior, most researchers work in the realm of highly simplified learning tasks but these only test very basic attributes of learning and are constraining discovery of more sophisticated behavior. To date, there are only few available platforms for rigorous study of complex behavioral paradigms in experimental animals; not in basic science nor in biomedical research. Our goal is to bring to completion (and potential commercialization) a novel platform for analyzing complex animal behavior named “The Educage” to allow fully automatic, hands free assessment of higher cognitive functions in freely behaving animals. Potential customers are research labs, and the biomedical industry. The Educage will allow researchers to study behavior at unprecedented resolution, 24/7, for any duration of time. The learning paradigms can be tailored to the specific task of interest. The Educage has many advantages that outperform existing technologies by allowing rigorous statistical assessment of complex behaviors in laboratory animals. The Educage allows researchers the flexibility to monitor, analyze and manipulate the experiment during the behavior. Our system can be reliably used to analyze perceptual learning in mice and is well suited for being a new and rigorous behavioral platform. It has great potential to become a central tool to fuel discovery in animal research both in biology and biomedical research.
Summary
Understanding behavior is still one of the holy grails in the natural and social sciences. Behavior is often utterly complex because it is a result of an extremely rich set of past experiences, the present state of the animal and the animal’s predictions about the future; all of which affect learning, decision making and consequently behavior. Given the complexity of behavior, most researchers work in the realm of highly simplified learning tasks but these only test very basic attributes of learning and are constraining discovery of more sophisticated behavior. To date, there are only few available platforms for rigorous study of complex behavioral paradigms in experimental animals; not in basic science nor in biomedical research. Our goal is to bring to completion (and potential commercialization) a novel platform for analyzing complex animal behavior named “The Educage” to allow fully automatic, hands free assessment of higher cognitive functions in freely behaving animals. Potential customers are research labs, and the biomedical industry. The Educage will allow researchers to study behavior at unprecedented resolution, 24/7, for any duration of time. The learning paradigms can be tailored to the specific task of interest. The Educage has many advantages that outperform existing technologies by allowing rigorous statistical assessment of complex behaviors in laboratory animals. The Educage allows researchers the flexibility to monitor, analyze and manipulate the experiment during the behavior. Our system can be reliably used to analyze perceptual learning in mice and is well suited for being a new and rigorous behavioral platform. It has great potential to become a central tool to fuel discovery in animal research both in biology and biomedical research.
Max ERC Funding
150 000 €
Duration
Start date: 2015-01-01, End date: 2016-06-30
Project acronym EDUCATION-LONG-RUN
Project Long-Run Effects of Education Interventions: Evidence from Randomized Trials
Researcher (PI) Haim Victor Lavy
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Advanced Grant (AdG), SH1, ERC-2012-ADG_20120411
Summary The vast majority of published research on the impact of school interventions has examined their effects on short-run outcomes, primarily test scores. While important, a possibly deeper question of interest to society is the impact of such interventions on long-run life outcomes. This is a critical question because the ultimate goal of education is to improve lifetime well-being. Recent research has begun to look at this issue but much work remains to be done, particularly with regard to the long-term effects of interventions explicitly targeting improvement in general quality and students’ educational attainment. This proposal examines the impact of seven different schooling interventions – teachers’ quality, school quality, remedial education, school choice, teacher incentive payments, students' conditional cash transfers and an experiment with an increase in the return to schooling – on long-run life outcomes, including educational attainment, employment, income, marriage and fertility, crime and welfare dependency. To address this important question I will exploit unique data from seven experimental programs and natural experiments implemented simultaneously at different schools in Israel. All programs were successful in achieving their short-term objectives, though the cost of the programs varied. This undertaking presents a unique context with unusual data and very compelling empirical settings. I will examine whether these programs also achieved a longer-term measure of success by improving students’ life outcomes. Another unique feature of the proposed study is that the interventions vary widely and touch on some emergent educational trends. The body of empirical evidence from this study will provide a more complete picture of the individual and social returns from these educational interventions, and will allow policymakers to make more informed decisions when deciding which educational programs lead to the most beneficial use of limited school resources.
Summary
The vast majority of published research on the impact of school interventions has examined their effects on short-run outcomes, primarily test scores. While important, a possibly deeper question of interest to society is the impact of such interventions on long-run life outcomes. This is a critical question because the ultimate goal of education is to improve lifetime well-being. Recent research has begun to look at this issue but much work remains to be done, particularly with regard to the long-term effects of interventions explicitly targeting improvement in general quality and students’ educational attainment. This proposal examines the impact of seven different schooling interventions – teachers’ quality, school quality, remedial education, school choice, teacher incentive payments, students' conditional cash transfers and an experiment with an increase in the return to schooling – on long-run life outcomes, including educational attainment, employment, income, marriage and fertility, crime and welfare dependency. To address this important question I will exploit unique data from seven experimental programs and natural experiments implemented simultaneously at different schools in Israel. All programs were successful in achieving their short-term objectives, though the cost of the programs varied. This undertaking presents a unique context with unusual data and very compelling empirical settings. I will examine whether these programs also achieved a longer-term measure of success by improving students’ life outcomes. Another unique feature of the proposed study is that the interventions vary widely and touch on some emergent educational trends. The body of empirical evidence from this study will provide a more complete picture of the individual and social returns from these educational interventions, and will allow policymakers to make more informed decisions when deciding which educational programs lead to the most beneficial use of limited school resources.
Max ERC Funding
1 519 000 €
Duration
Start date: 2013-05-01, End date: 2019-04-30
Project acronym ELASTIC-TURBULENCE
Project Purely-elastic flow instabilities and transition to elastic turbulence in microscale flows of complex fluids
Researcher (PI) Manuel António Moreira Alves
Host Institution (HI) UNIVERSIDADE DO PORTO
Call Details Starting Grant (StG), PE8, ERC-2012-StG_20111012
Summary Flows of complex fluids, such as many biological fluids and most synthetic fluids, are common in our daily life and are very important from an industrial perspective. Because of their inherent nonlinearity, the flow of complex viscoelastic fluids often leads to counterintuitive and complex behaviour and, above critical conditions, can prompt flow instabilities even under low Reynolds number conditions which are entirely absent in the corresponding Newtonian fluid flows.
The primary goal of this project is to substantially expand the frontiers of our current knowledge regarding the mechanisms that lead to the development of such purely-elastic flow instabilities, and ultimately to understand the transition to so-called “elastic turbulence”, a turbulent-like phenomenon which can arise even under inertialess flow conditions. This is an extremely challenging problem, and to significantly advance our knowledge in such important flows these instabilities will be investigated in a combined manner encompassing experiments, theory and numerical simulations. Such a holistic approach will enable us to understand the underlying mechanisms of those instabilities and to develop accurate criteria for their prediction far in advance of what we could achieve with either approach separately. A deep understanding of the mechanisms generating elastic instabilities and subsequent transition to elastic turbulence is crucial from a fundamental point of view and for many important practical applications involving engineered complex fluids, such as the design of microfluidic mixers for efficient operation under inertialess flow conditions, or the development of highly efficient micron-sized energy management and mass transfer systems.
This research proposal will create a solid basis for the establishment of an internationally-leading research group led by the PI studying flow instabilities and elastic turbulence in complex fluid flows.
Summary
Flows of complex fluids, such as many biological fluids and most synthetic fluids, are common in our daily life and are very important from an industrial perspective. Because of their inherent nonlinearity, the flow of complex viscoelastic fluids often leads to counterintuitive and complex behaviour and, above critical conditions, can prompt flow instabilities even under low Reynolds number conditions which are entirely absent in the corresponding Newtonian fluid flows.
The primary goal of this project is to substantially expand the frontiers of our current knowledge regarding the mechanisms that lead to the development of such purely-elastic flow instabilities, and ultimately to understand the transition to so-called “elastic turbulence”, a turbulent-like phenomenon which can arise even under inertialess flow conditions. This is an extremely challenging problem, and to significantly advance our knowledge in such important flows these instabilities will be investigated in a combined manner encompassing experiments, theory and numerical simulations. Such a holistic approach will enable us to understand the underlying mechanisms of those instabilities and to develop accurate criteria for their prediction far in advance of what we could achieve with either approach separately. A deep understanding of the mechanisms generating elastic instabilities and subsequent transition to elastic turbulence is crucial from a fundamental point of view and for many important practical applications involving engineered complex fluids, such as the design of microfluidic mixers for efficient operation under inertialess flow conditions, or the development of highly efficient micron-sized energy management and mass transfer systems.
This research proposal will create a solid basis for the establishment of an internationally-leading research group led by the PI studying flow instabilities and elastic turbulence in complex fluid flows.
Max ERC Funding
994 110 €
Duration
Start date: 2012-10-01, End date: 2018-01-31
Project acronym ELIMINATESENESCENT
Project The Role of Elimination of Senescent Cells in Cancer Development
Researcher (PI) Valery Krizhanovsky
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Starting Grant (StG), LS4, ERC-2012-StG_20111109
Summary Cellular senescence, which is a terminal cell cycle arrest, is a potent tumor suppressor mechanism that limits cancer initiation and progression; it also limits tissue damage response. While senescence is protective in the cell autonomous manner, senescent cells secrete a variety of factors that lead to inflammation, tissue destruction and promote tumorigenesis and metastasis in the sites of their presence. Here we propose a unique approach – to eliminate senescent cells from tissues in order to prevent the deleterious cell non-autonomous effects of these cells. We will use our understanding in immune surveillance of senescent cells, and in cell-intrinsic molecular pathways regulating cell viability, to identify the molecular “Achilles’ heal” of senescent cells. We will identify the mechanisms of interaction of senescent cells with NK cells and other immune cells, and harness these mechanisms for elimination of senescent cells. The impact of components of the main pathways regulating cell viability, apoptosis and autophagy, will then be evaluated for their specific contribution to the viability of senescent cells.
The molecular players identified by all these approaches will be readily implemented for the elimination of senescent cells in vivo. We will consequently be able to evaluate the impact of the elimination of senescent cells on tumor progression, in mouse models, where these cells are present during initial stages of tumorigenesis. Additionally, we will develop a novel mouse model that will allow identification of senescent cells in vivo in real time. This model is particularly challenging and valuable due to absence of single molecular marker for senescent cells.
The ability to eliminate senescent cells will lead to the understanding of the role of presence of senescent cells in tissues and the mechanisms regulating their viability. This might suggest novel ways of cancer prevention and treatment.
Summary
Cellular senescence, which is a terminal cell cycle arrest, is a potent tumor suppressor mechanism that limits cancer initiation and progression; it also limits tissue damage response. While senescence is protective in the cell autonomous manner, senescent cells secrete a variety of factors that lead to inflammation, tissue destruction and promote tumorigenesis and metastasis in the sites of their presence. Here we propose a unique approach – to eliminate senescent cells from tissues in order to prevent the deleterious cell non-autonomous effects of these cells. We will use our understanding in immune surveillance of senescent cells, and in cell-intrinsic molecular pathways regulating cell viability, to identify the molecular “Achilles’ heal” of senescent cells. We will identify the mechanisms of interaction of senescent cells with NK cells and other immune cells, and harness these mechanisms for elimination of senescent cells. The impact of components of the main pathways regulating cell viability, apoptosis and autophagy, will then be evaluated for their specific contribution to the viability of senescent cells.
The molecular players identified by all these approaches will be readily implemented for the elimination of senescent cells in vivo. We will consequently be able to evaluate the impact of the elimination of senescent cells on tumor progression, in mouse models, where these cells are present during initial stages of tumorigenesis. Additionally, we will develop a novel mouse model that will allow identification of senescent cells in vivo in real time. This model is particularly challenging and valuable due to absence of single molecular marker for senescent cells.
The ability to eliminate senescent cells will lead to the understanding of the role of presence of senescent cells in tissues and the mechanisms regulating their viability. This might suggest novel ways of cancer prevention and treatment.
Max ERC Funding
1 500 000 €
Duration
Start date: 2012-11-01, End date: 2017-10-31
Project acronym EMbRACe
Project Effective Multidrug Cocktails for Cancer
Researcher (PI) Uri ALON
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Proof of Concept (PoC), PC1, ERC-2015-PoC
Summary Cancer is a global epidemic that affects all ages and socio-economic groups. In turn, tremendous resources are being invested in prevention, diagnosis, and treatment of cancer. For instance, over 1,000 anticancer drugs are currently in various phases of development and pre-approval testing, more than the number for heart disease, stroke, and mental illness combined. Finding multi-drug combinations for cancer is an increasingly pressing therapeutic challenge. However, screening all possible drug combinations is an impossible task because the number of experiments grows exponentially with the number of different drugs and doses. Therefore, highly effective combinations of already approved drugs may likely exist that have never been tested before at the appropriate doses, due the astronomical number of wet lab tests required to find these combinations. Motivated by this challenge, we have developed a novel method for computing the effects of high order combinations of drugs on cancer cells and predicting the best drug for a given tumor based only on a very small number of experiments. In turn, the goals of our PoC project are to further validate the potential of our formula by means of numerous rigorous tests and to establish the business potential of our idea. If successful, this PoC project will pave the way to the development and adoption of highly personalized drug cocktails that are designed based only on a limited number of measurements performed on patient-derived tumor material.
Summary
Cancer is a global epidemic that affects all ages and socio-economic groups. In turn, tremendous resources are being invested in prevention, diagnosis, and treatment of cancer. For instance, over 1,000 anticancer drugs are currently in various phases of development and pre-approval testing, more than the number for heart disease, stroke, and mental illness combined. Finding multi-drug combinations for cancer is an increasingly pressing therapeutic challenge. However, screening all possible drug combinations is an impossible task because the number of experiments grows exponentially with the number of different drugs and doses. Therefore, highly effective combinations of already approved drugs may likely exist that have never been tested before at the appropriate doses, due the astronomical number of wet lab tests required to find these combinations. Motivated by this challenge, we have developed a novel method for computing the effects of high order combinations of drugs on cancer cells and predicting the best drug for a given tumor based only on a very small number of experiments. In turn, the goals of our PoC project are to further validate the potential of our formula by means of numerous rigorous tests and to establish the business potential of our idea. If successful, this PoC project will pave the way to the development and adoption of highly personalized drug cocktails that are designed based only on a limited number of measurements performed on patient-derived tumor material.
Max ERC Funding
150 000 €
Duration
Start date: 2016-11-01, End date: 2018-04-30
Project acronym EMODI
Project Epithelial resistance modulation to treat disease
Researcher (PI) Antonio Alfredo COELHO JACINTO
Host Institution (HI) UNIVERSIDADE NOVA DE LISBOA
Call Details Proof of Concept (PoC), PC1, ERC-2015-PoC
Summary Epithelial barriers are essential for organism’s homeostasis and survival. Defects in resistance of body barrier epithelial tissues and their repair are thought to underlie a range of diseases, which affect millions. Antonio Jacinto’s group has discovered that Septate/Tight Junctions are essential for epithelial repair. These cell-cell junctions can be potentially targeted by candidate compounds that have been identified by Thelial, a Start-Up that will collaborate in this project. In EMODI we will complete preclinical proof of concept of the potential therapeutic activity of two selected compounds, relying on scientific results and technologies developed under ERC starting grant awarded to Dr. Antonio Jacinto. Regarding clinical application, we will focus on rare (orphan) diseases which have been associated to impaired epithelial repair in the gastro-intestinal track for which there are very limited treatment options: Sjoergen Syndrome (SjS) and Eosinophilic Esophagitis (EoE). The plan of activities involves the following steps: 1) Biological efficacy testing of the-1 and the-2 in a zebrafish Tight Junction model and in mouse models of the diseases under focus; 2) Development of IPR based on the biological testing; 3) Consolidate outcomes of steps 1 and 2 into a business plan; 4) Present the business plan to VC funds to seek for extra round of funding. The long-term aim is clinical development of our candidates not only in the context of SjS and EoE but also towards a range of o diseases where impaired epithelial barrier function is impaired and a cause of morbidity.
Summary
Epithelial barriers are essential for organism’s homeostasis and survival. Defects in resistance of body barrier epithelial tissues and their repair are thought to underlie a range of diseases, which affect millions. Antonio Jacinto’s group has discovered that Septate/Tight Junctions are essential for epithelial repair. These cell-cell junctions can be potentially targeted by candidate compounds that have been identified by Thelial, a Start-Up that will collaborate in this project. In EMODI we will complete preclinical proof of concept of the potential therapeutic activity of two selected compounds, relying on scientific results and technologies developed under ERC starting grant awarded to Dr. Antonio Jacinto. Regarding clinical application, we will focus on rare (orphan) diseases which have been associated to impaired epithelial repair in the gastro-intestinal track for which there are very limited treatment options: Sjoergen Syndrome (SjS) and Eosinophilic Esophagitis (EoE). The plan of activities involves the following steps: 1) Biological efficacy testing of the-1 and the-2 in a zebrafish Tight Junction model and in mouse models of the diseases under focus; 2) Development of IPR based on the biological testing; 3) Consolidate outcomes of steps 1 and 2 into a business plan; 4) Present the business plan to VC funds to seek for extra round of funding. The long-term aim is clinical development of our candidates not only in the context of SjS and EoE but also towards a range of o diseases where impaired epithelial barrier function is impaired and a cause of morbidity.
Max ERC Funding
147 500 €
Duration
Start date: 2016-10-01, End date: 2018-03-31
Project acronym ErgComNum
Project Ergodic theory and additive combinatorics
Researcher (PI) Tamar Ziegler
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Consolidator Grant (CoG), PE1, ERC-2015-CoG
Summary The last decade has witnessed a new spring for dynamical systems. The field - initiated by Poincare in the study of the N-body problem - has become essential in the understanding of seemingly far off fields such as combinatorics, number theory and theoretical computer science. In particular, ideas from ergodic theory played an important role in the resolution of long standing open problems in combinatorics and number theory. A striking example is the role of dynamics on nilmanifolds in the recent proof of Hardy-Littlewood estimates for the number of solutions to systems of linear equations of finite complexity in the prime numbers. The interplay between ergodic theory, number theory and additive combinatorics has proved very fruitful; it is a fast growing area in mathematics attracting many young researchers. We propose to tackle central open problems in the area.
Summary
The last decade has witnessed a new spring for dynamical systems. The field - initiated by Poincare in the study of the N-body problem - has become essential in the understanding of seemingly far off fields such as combinatorics, number theory and theoretical computer science. In particular, ideas from ergodic theory played an important role in the resolution of long standing open problems in combinatorics and number theory. A striking example is the role of dynamics on nilmanifolds in the recent proof of Hardy-Littlewood estimates for the number of solutions to systems of linear equations of finite complexity in the prime numbers. The interplay between ergodic theory, number theory and additive combinatorics has proved very fruitful; it is a fast growing area in mathematics attracting many young researchers. We propose to tackle central open problems in the area.
Max ERC Funding
1 342 500 €
Duration
Start date: 2016-05-01, End date: 2021-04-30
Project acronym EVODEVOPATHS
Project Evolution of Developmental Gene Pathways
Researcher (PI) Itai Yanai
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Starting Grant (StG), LS8, ERC-2012-StG_20111109
Summary The staggering diversity of the living world is a testament to the amount of variation available to the agency of natural selection. While it has been assumed that variation is entirely uniform and unbiased, recent work has challenged this notion. Evolutionary developmental biology seeks to understand the biases on variation imposed by developmental processes and their distinction from selective constraints. Metazoan development is best described by developmental gene pathways which are composed of transcription factors, signaling molecules, and terminal differentiation genes. A systematic comparison of such pathways across species would reveal the patterns of conservation and divergence; however this has not yet been achieved. In the EvoDevoPaths project we will develop a new approach to unravel pathways using both single-cell and tissue-specific transcriptomics. Our aim is to elucidate the evolution of developmental gene pathways using intricate embryology in the nematode phylum, a single-cell transcriptomic method we have developed, and sophisticated computational approaches for pathway comparisons. We will ask how variation is distributed across the specification and differentiation modules of a pathway using the nematode endoderm pathway as a model system. We further propose that the evolutionary change in the tissue specification pathways of early cell lineages is constrained by the properties of cell specification pathways. To test this hypothesis we will, for the first time, determine early developmental cell lineages from single cell transcriptomic data. Finally, we will attempt to unify the molecular signatures of conserved stages in disparate phyla under a framework in which they can be systematically compared. This research collectively represents the first time that developmental gene pathways are examined in an unbiased manner contributing to a theory of molecular variation that explains the evolutionary processes that underlie phenotypic novelty.
Summary
The staggering diversity of the living world is a testament to the amount of variation available to the agency of natural selection. While it has been assumed that variation is entirely uniform and unbiased, recent work has challenged this notion. Evolutionary developmental biology seeks to understand the biases on variation imposed by developmental processes and their distinction from selective constraints. Metazoan development is best described by developmental gene pathways which are composed of transcription factors, signaling molecules, and terminal differentiation genes. A systematic comparison of such pathways across species would reveal the patterns of conservation and divergence; however this has not yet been achieved. In the EvoDevoPaths project we will develop a new approach to unravel pathways using both single-cell and tissue-specific transcriptomics. Our aim is to elucidate the evolution of developmental gene pathways using intricate embryology in the nematode phylum, a single-cell transcriptomic method we have developed, and sophisticated computational approaches for pathway comparisons. We will ask how variation is distributed across the specification and differentiation modules of a pathway using the nematode endoderm pathway as a model system. We further propose that the evolutionary change in the tissue specification pathways of early cell lineages is constrained by the properties of cell specification pathways. To test this hypothesis we will, for the first time, determine early developmental cell lineages from single cell transcriptomic data. Finally, we will attempt to unify the molecular signatures of conserved stages in disparate phyla under a framework in which they can be systematically compared. This research collectively represents the first time that developmental gene pathways are examined in an unbiased manner contributing to a theory of molecular variation that explains the evolutionary processes that underlie phenotypic novelty.
Max ERC Funding
1 500 000 €
Duration
Start date: 2012-10-01, End date: 2017-09-30
Project acronym EVOEPIC
Project Evolutionary mechanisms of epigenomic and chromosomal aberrations in cancer
Researcher (PI) Amos Tanay
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Starting Grant (StG), LS2, ERC-2012-StG_20111109
Summary Our working hypothesis is that tumorigenesis is an evolutionary process that fundamentally couples few major driving events (point mutations, rearrangements) with a complex flux of minor aberrations, many of which are epigenetic. We believe that these minor events are critical factors in the emergence of the cancer phenotype, and that understanding them is essential to the characterization of the disease. In particular, we hypothesize that a quantitative and principled evolutionary model for carcinogenesis is imperative for understanding the heterogeneity within tumor cell populations and predicting the effects of cancer therapies. We will therefore develop an interdisciplinary scheme that combines theoretical models of cancer evolution with in vitro evolutionary experiments and new methods for assaying the population heterogeneity of epigenomic organization. By developing techniques to interrogate DNA methylation and its interaction with other key epigenetic marks at the single-cell level, we will allow quantitative theoretical predictions to be scrutinized and refined. By combining models describing epigenetic aberrations with direct measurements of chromatin organization using Hi-C and 4C-seq, we shall revisit fundamental questions on the causative nature of epigenetic changes during carcinogenesis. Ultimately, we will apply both theoretical and experimental methodologies to assay and characterize the evolutionary histories of tumor cell populations from multiple mouse models and clinical patient samples.
Summary
Our working hypothesis is that tumorigenesis is an evolutionary process that fundamentally couples few major driving events (point mutations, rearrangements) with a complex flux of minor aberrations, many of which are epigenetic. We believe that these minor events are critical factors in the emergence of the cancer phenotype, and that understanding them is essential to the characterization of the disease. In particular, we hypothesize that a quantitative and principled evolutionary model for carcinogenesis is imperative for understanding the heterogeneity within tumor cell populations and predicting the effects of cancer therapies. We will therefore develop an interdisciplinary scheme that combines theoretical models of cancer evolution with in vitro evolutionary experiments and new methods for assaying the population heterogeneity of epigenomic organization. By developing techniques to interrogate DNA methylation and its interaction with other key epigenetic marks at the single-cell level, we will allow quantitative theoretical predictions to be scrutinized and refined. By combining models describing epigenetic aberrations with direct measurements of chromatin organization using Hi-C and 4C-seq, we shall revisit fundamental questions on the causative nature of epigenetic changes during carcinogenesis. Ultimately, we will apply both theoretical and experimental methodologies to assay and characterize the evolutionary histories of tumor cell populations from multiple mouse models and clinical patient samples.
Max ERC Funding
1 499 998 €
Duration
Start date: 2012-12-01, End date: 2017-11-30
Project acronym EXCHANGE
Project Forensic Geneticists and the Transnational Exchange of DNA data in the EU: Engaging Science with Social Control, Citizenship and Democracy
Researcher (PI) Helena Cristina Ferreira Machado
Host Institution (HI) CENTRO DE ESTUDOS SOCIAIS
Call Details Consolidator Grant (CoG), SH2, ERC-2014-CoG
Summary Today we are living in the “genetic age” of criminal investigation. There is a widespread cultural belief that DNA technology has the unrivalled capacity to identify authors of crimes. In light of this ideology, EU Law (Prüm Decision, 2008) obliges all Member States to create the conditions for the reciprocal automated searching and comparison of information on DNA data for the purpose of combating cross-border crime, terrorism and illegal immigration. Forensic geneticists play a crucial role in this scenario: they develop the techno-scientific procedures that enable DNA data to be shared across national boundaries. EXCHANGE aims to understand the close links between a highly specialised field of expert knowledge – forensic genetics – and surveillance in the EU.
If the EU succeeds in this political project, about 10 million genetic profiles of identified individuals will be exchanged between agencies in all EU countries. This raises acute cultural, political and societal challenges. EXCHANGE aims to address these challenges by scrutinizing how forensic geneticists, within the context of the transnational exchange of DNA data in the EU, engage with the social values attributed to science – i.e. objectivity, truth – and the values of social control, citizenship and democracy.
The expected outputs are: 1. To provide a general picture of the Prüm framework by conducting interviews with forensic geneticists in all EU countries; 2. To develop in-depth knowledge of forensic geneticists’ activities relating to Prüm using ethnographic observation and qualitative analysis of criminal cases; 3. To study countries with different local positionings in relation to Prüm by means of a comparative study involving Portugal, Germany, the Netherlands and the UK. EXCHANGE stimulates interdisciplinary dialogue between the social sciences and the forensic genetics. This research also tackles questions that are relevant to all the actors involved in criminal justice cooperation in the EU.
Summary
Today we are living in the “genetic age” of criminal investigation. There is a widespread cultural belief that DNA technology has the unrivalled capacity to identify authors of crimes. In light of this ideology, EU Law (Prüm Decision, 2008) obliges all Member States to create the conditions for the reciprocal automated searching and comparison of information on DNA data for the purpose of combating cross-border crime, terrorism and illegal immigration. Forensic geneticists play a crucial role in this scenario: they develop the techno-scientific procedures that enable DNA data to be shared across national boundaries. EXCHANGE aims to understand the close links between a highly specialised field of expert knowledge – forensic genetics – and surveillance in the EU.
If the EU succeeds in this political project, about 10 million genetic profiles of identified individuals will be exchanged between agencies in all EU countries. This raises acute cultural, political and societal challenges. EXCHANGE aims to address these challenges by scrutinizing how forensic geneticists, within the context of the transnational exchange of DNA data in the EU, engage with the social values attributed to science – i.e. objectivity, truth – and the values of social control, citizenship and democracy.
The expected outputs are: 1. To provide a general picture of the Prüm framework by conducting interviews with forensic geneticists in all EU countries; 2. To develop in-depth knowledge of forensic geneticists’ activities relating to Prüm using ethnographic observation and qualitative analysis of criminal cases; 3. To study countries with different local positionings in relation to Prüm by means of a comparative study involving Portugal, Germany, the Netherlands and the UK. EXCHANGE stimulates interdisciplinary dialogue between the social sciences and the forensic genetics. This research also tackles questions that are relevant to all the actors involved in criminal justice cooperation in the EU.
Max ERC Funding
1 838 150 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym EXTPRO
Project Quasi-Randomness in Extremal Combinatorics
Researcher (PI) Asaf Shapira
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Starting Grant (StG), PE1, ERC-2014-STG
Summary Combinatorics is an extremely fast growing mathematical discipline. While it started as a collection of isolated problems that
were tackled using ad-hoc arguments it has since grown into a mature discipline which both incorporated into it deep tools from other mathematical areas, and has also found applications in other mathematical areas such as Additive Number Theory, Theoretical Computer Science, Computational Biology and Information Theory.
The PI will work on a variety of problems in Extremal Combinatorics which is one of the most active subareas within Combinatorics with spectacular recent developments. A typical problem in this area asks to minimize (or maximize) a certain parameter attached to a discrete structure given several other constrains. One of the most powerful tools used in attacking problems in this area uses the so called Structure vs Randomness phenomenon. This roughly means that any {\em deterministic} object can be partitioned into smaller quasi-random objects, that is, objects that have properties we expect to find in truly random ones. The PI has already made significant contributions in this area and our goal in this proposal is to obtain further results of this caliber by tackling some of the hardest open problems at the forefront of current research. Some of these problems are related to the celebrated Hypergraph and Arithmetic Regularity Lemmas, to Super-saturation problems in Additive Combinatorics and Graph Theory, to problems in Ramsey Theory, as well as to applications of Extremal Combinatorics to problems in Theoretical Computer Science. Another major goal of this proposal is to develop new approaches and techniques for tackling problems in Extremal Combinatorics.
The support by means of a 5-year research grant will enable the PI to further establish himself as a leading researcher in Extremal Combinatorics and to build a vibrant research group in Extremal Combinatorics.
Summary
Combinatorics is an extremely fast growing mathematical discipline. While it started as a collection of isolated problems that
were tackled using ad-hoc arguments it has since grown into a mature discipline which both incorporated into it deep tools from other mathematical areas, and has also found applications in other mathematical areas such as Additive Number Theory, Theoretical Computer Science, Computational Biology and Information Theory.
The PI will work on a variety of problems in Extremal Combinatorics which is one of the most active subareas within Combinatorics with spectacular recent developments. A typical problem in this area asks to minimize (or maximize) a certain parameter attached to a discrete structure given several other constrains. One of the most powerful tools used in attacking problems in this area uses the so called Structure vs Randomness phenomenon. This roughly means that any {\em deterministic} object can be partitioned into smaller quasi-random objects, that is, objects that have properties we expect to find in truly random ones. The PI has already made significant contributions in this area and our goal in this proposal is to obtain further results of this caliber by tackling some of the hardest open problems at the forefront of current research. Some of these problems are related to the celebrated Hypergraph and Arithmetic Regularity Lemmas, to Super-saturation problems in Additive Combinatorics and Graph Theory, to problems in Ramsey Theory, as well as to applications of Extremal Combinatorics to problems in Theoretical Computer Science. Another major goal of this proposal is to develop new approaches and techniques for tackling problems in Extremal Combinatorics.
The support by means of a 5-year research grant will enable the PI to further establish himself as a leading researcher in Extremal Combinatorics and to build a vibrant research group in Extremal Combinatorics.
Max ERC Funding
1 221 921 €
Duration
Start date: 2015-03-01, End date: 2021-02-28
Project acronym FLDcure
Project A potent Micro-RNA therapeutic for nonalcoholic fatty liver disease (NAFLD)
Researcher (PI) Hermona Soreq
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Proof of Concept (PoC), PC1, ERC-2014-PoC
Summary Fatty Liver disease (FLD) is a widespread disease which can often progress to Nonalcoholic steatohepatitis, cirrhosis and liver cancer. At present FLD disease affects a huge perportion of the population and prompt treatment will be of major health benefits to the general population. We have developed a specific therapeutic targeting a microRNA we and others have shown to be involved in the pathogenesis of FLD. This therapeutic agent can dramatically reduce FLD in a mouse model. We would like to extend the pre-clinical studies in order to encourage interest of a pharmaceutical company who will license the technology and pursue clinical trials.
Summary
Fatty Liver disease (FLD) is a widespread disease which can often progress to Nonalcoholic steatohepatitis, cirrhosis and liver cancer. At present FLD disease affects a huge perportion of the population and prompt treatment will be of major health benefits to the general population. We have developed a specific therapeutic targeting a microRNA we and others have shown to be involved in the pathogenesis of FLD. This therapeutic agent can dramatically reduce FLD in a mouse model. We would like to extend the pre-clinical studies in order to encourage interest of a pharmaceutical company who will license the technology and pursue clinical trials.
Max ERC Funding
149 800 €
Duration
Start date: 2015-01-01, End date: 2016-06-30
Project acronym FOC
Project Foundations of Cryptographic Hardness
Researcher (PI) Iftach Ilan Haitner
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Starting Grant (StG), PE6, ERC-2014-STG
Summary A fundamental research challenge in modern cryptography is understanding the necessary hardness assumptions required to build different cryptographic primitives. Attempts to answer this question have gained tremendous success in the last 20-30 years. Most notably, it was shown that many highly complicated primitives can be based on the mere existence of one-way functions (i.e., easy to compute and hard to invert), while other primitives cannot be based on such functions. This research has yielded fundamental tools and concepts such as randomness extractors and computational notions of entropy. Yet many of the most fundamental questions remain unanswered.
Our first goal is to answer the fundamental question of whether cryptography can be based on the assumption that P not equal NP. Our second and third goals are to build a more efficient symmetric-key cryptographic primitives from one-way functions, and to establish effective methods for security amplification of cryptographic primitives. Succeeding in the second and last goals is likely to have great bearing on the way that we construct the very basic cryptographic primitives. A positive answer for the first question will be considered a dramatic result in the cryptography and computational complexity communities.
To address these goals, it is very useful to understand the relationship between different types and quantities of cryptographic hardness. Such understanding typically involves defining and manipulating different types of computational entropy, and comprehending the power of security reductions. We believe that this research will yield new concepts and techniques, with ramification beyond the realm of foundational cryptography.
Summary
A fundamental research challenge in modern cryptography is understanding the necessary hardness assumptions required to build different cryptographic primitives. Attempts to answer this question have gained tremendous success in the last 20-30 years. Most notably, it was shown that many highly complicated primitives can be based on the mere existence of one-way functions (i.e., easy to compute and hard to invert), while other primitives cannot be based on such functions. This research has yielded fundamental tools and concepts such as randomness extractors and computational notions of entropy. Yet many of the most fundamental questions remain unanswered.
Our first goal is to answer the fundamental question of whether cryptography can be based on the assumption that P not equal NP. Our second and third goals are to build a more efficient symmetric-key cryptographic primitives from one-way functions, and to establish effective methods for security amplification of cryptographic primitives. Succeeding in the second and last goals is likely to have great bearing on the way that we construct the very basic cryptographic primitives. A positive answer for the first question will be considered a dramatic result in the cryptography and computational complexity communities.
To address these goals, it is very useful to understand the relationship between different types and quantities of cryptographic hardness. Such understanding typically involves defining and manipulating different types of computational entropy, and comprehending the power of security reductions. We believe that this research will yield new concepts and techniques, with ramification beyond the realm of foundational cryptography.
Max ERC Funding
1 239 838 €
Duration
Start date: 2015-03-01, End date: 2021-02-28
Project acronym FORECASToneMONTH
Project Forecasting Surface Weather and Climate at One-Month Leads through Stratosphere-Troposphere Coupling
Researcher (PI) Chaim Israel Garfinkel
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Starting Grant (StG), PE10, ERC-2015-STG
Summary Anomalies in surface temperatures, winds, and precipitation can significantly alter energy supply and demand, cause flooding, and cripple transportation networks. Better management of these impacts can be achieved by extending the duration of reliable predictions of the atmospheric circulation.
Polar stratospheric variability can impact surface weather for well over a month, and this proposed research presents a novel approach towards understanding the fundamentals of how this coupling occurs. Specifically, we are interested in: 1) how predictable are anomalies in the stratospheric circulation? 2) why do only some stratospheric events modify surface weather? and 3) what is the mechanism whereby stratospheric anomalies reach the surface? While this last question may appear academic, several studies indicate that stratosphere-troposphere coupling drives the midlatitude tropospheric response to climate change; therefore, a clearer understanding of the mechanisms will aid in the interpretation of the upcoming changes in the surface climate.
I propose a multi-pronged effort aimed at addressing these questions and improving monthly forecasting. First, carefully designed modelling experiments using a novel modelling framework will be used to clarify how, and under what conditions, stratospheric variability couples to tropospheric variability. Second, novel linkages between variability external to the stratospheric polar vortex and the stratospheric polar vortex will be pursued, thus improving our ability to forecast polar vortex variability itself. To these ends, my group will develop 1) an analytic model for Rossby wave propagation on the sphere, and 2) a simplified general circulation model, which captures the essential processes underlying stratosphere-troposphere coupling. By combining output from the new models, observational data, and output from comprehensive climate models, the connections between the stratosphere and surface climate will be elucidated.
Summary
Anomalies in surface temperatures, winds, and precipitation can significantly alter energy supply and demand, cause flooding, and cripple transportation networks. Better management of these impacts can be achieved by extending the duration of reliable predictions of the atmospheric circulation.
Polar stratospheric variability can impact surface weather for well over a month, and this proposed research presents a novel approach towards understanding the fundamentals of how this coupling occurs. Specifically, we are interested in: 1) how predictable are anomalies in the stratospheric circulation? 2) why do only some stratospheric events modify surface weather? and 3) what is the mechanism whereby stratospheric anomalies reach the surface? While this last question may appear academic, several studies indicate that stratosphere-troposphere coupling drives the midlatitude tropospheric response to climate change; therefore, a clearer understanding of the mechanisms will aid in the interpretation of the upcoming changes in the surface climate.
I propose a multi-pronged effort aimed at addressing these questions and improving monthly forecasting. First, carefully designed modelling experiments using a novel modelling framework will be used to clarify how, and under what conditions, stratospheric variability couples to tropospheric variability. Second, novel linkages between variability external to the stratospheric polar vortex and the stratospheric polar vortex will be pursued, thus improving our ability to forecast polar vortex variability itself. To these ends, my group will develop 1) an analytic model for Rossby wave propagation on the sphere, and 2) a simplified general circulation model, which captures the essential processes underlying stratosphere-troposphere coupling. By combining output from the new models, observational data, and output from comprehensive climate models, the connections between the stratosphere and surface climate will be elucidated.
Max ERC Funding
1 808 000 €
Duration
Start date: 2016-05-01, End date: 2021-04-30
Project acronym FORMAT
Project FORMAT: a novel medium FOr Revolutionizing stem cell MAnufacturing Technologies
Researcher (PI) Yaqub HANNA
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Proof of Concept (PoC), PC1, ERC-2015-PoC
Summary One of the greatest challenges facing society is treating patients afflicted with degenerative and age-related disorders, such as multiple sclerosis, Parkinson’s disease and diabetes. For all of these, stem cell therapy represents a novel treatment approach and a great hope for the millions of patients worldwide. In my ERC-funded research project, we successfully managed to generate Extracellular-signal-Regulated Kinases (ERK) signalling independent human naïve Pluripotent Stem Cells (PSCs), a new category of human stem cells that retrain features that are characteristic of earlier developmental stages, i.e. they are more “primitive” than typical/conventional human PSCs. We managed to do so by employing a novel medium that allows the acquisition of many apparent naïve features that were previously observed only in rodent pluripotent stem cells. Importantly, this new pluripotent configuration, not only comes in different molecular flavours, but also has different functional properties. In turn, the first goal of our PoC project is to establish the technical feasibility of our novel medium by carrying out a series of molecular and functional tests. Such tests would enable us to further improve the existing medium conditions and create a commercial-like platform for enhanced expansion and derivation of human naïve induced PSCs. The second goal of FORMAT project is to establish the commercialization potential of our novel medium as a means to maintain standardized cells that can in turn be used to replenish, regenerate and repair damaged human tissues.
Summary
One of the greatest challenges facing society is treating patients afflicted with degenerative and age-related disorders, such as multiple sclerosis, Parkinson’s disease and diabetes. For all of these, stem cell therapy represents a novel treatment approach and a great hope for the millions of patients worldwide. In my ERC-funded research project, we successfully managed to generate Extracellular-signal-Regulated Kinases (ERK) signalling independent human naïve Pluripotent Stem Cells (PSCs), a new category of human stem cells that retrain features that are characteristic of earlier developmental stages, i.e. they are more “primitive” than typical/conventional human PSCs. We managed to do so by employing a novel medium that allows the acquisition of many apparent naïve features that were previously observed only in rodent pluripotent stem cells. Importantly, this new pluripotent configuration, not only comes in different molecular flavours, but also has different functional properties. In turn, the first goal of our PoC project is to establish the technical feasibility of our novel medium by carrying out a series of molecular and functional tests. Such tests would enable us to further improve the existing medium conditions and create a commercial-like platform for enhanced expansion and derivation of human naïve induced PSCs. The second goal of FORMAT project is to establish the commercialization potential of our novel medium as a means to maintain standardized cells that can in turn be used to replenish, regenerate and repair damaged human tissues.
Max ERC Funding
150 000 €
Duration
Start date: 2017-01-01, End date: 2018-06-30
Project acronym FRACTALSANDMETRICNT
Project Fractals, algebraic dynamics and metric number theory
Researcher (PI) Michael Hochman
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Starting Grant (StG), PE1, ERC-2012-StG_20111012
Summary We propose to study the fractal geometry of invariant sets for endomorphisms of compact abelian groups, specifically a family of conjectures by Furstenberg on the dimensions of orbit closures under such dynamics, and on the size of sums and intersections of invariant sets. These conjectures are related to problems on expansion in integer bases, in Diophantine approximation, measure rigidity, analysis and equidistribution. The project focuses on the conjectures themselves and some related problems, e.g. Bernoulli convolutions, and on applications to equidistribution on tori. Our approach combines tools from ergodic theory, geometric measure theory and additive combinatorics, building on recent progress in these fields and recent partial results towards the main conjectures.
Summary
We propose to study the fractal geometry of invariant sets for endomorphisms of compact abelian groups, specifically a family of conjectures by Furstenberg on the dimensions of orbit closures under such dynamics, and on the size of sums and intersections of invariant sets. These conjectures are related to problems on expansion in integer bases, in Diophantine approximation, measure rigidity, analysis and equidistribution. The project focuses on the conjectures themselves and some related problems, e.g. Bernoulli convolutions, and on applications to equidistribution on tori. Our approach combines tools from ergodic theory, geometric measure theory and additive combinatorics, building on recent progress in these fields and recent partial results towards the main conjectures.
Max ERC Funding
1 107 000 €
Duration
Start date: 2012-10-01, End date: 2018-09-30
Project acronym FSC
Project Fast and Sound Cryptography: From Theoretical Foundations to Practical Constructions
Researcher (PI) Alon Rosen
Host Institution (HI) INTERDISCIPLINARY CENTER (IDC) HERZLIYA
Call Details Starting Grant (StG), PE6, ERC-2012-StG_20111012
Summary "Much currently deployed cryptography is designed using more “art'” than “science,” and most of the schemes used in practice lack rigorous justification for their security. While theoretically sound designs do exist, they tend to be quite a bit slower to run and hence are not realistic from a practical point of view. This gap is especially evident in “low-level” cryptographic primitives, which are the building blocks that ultimately process the largest quantities of data.
Recent years have witnessed dramatic progress in the understanding of highly-parallelizable (local) cryptography, and in the construction of schemes based on the mathematics of geometric objects called lattices. Besides being based on firm theoretical foundations, these schemes also allow for very efficient implementations, especially on modern microprocessors. Yet despite all this recent progress, there has not yet been a major effort specifically focused on bringing the efficiency of such constructions as close as possible to practicality; this project will do exactly that.
The main goal of the Fast and Sound Cryptography project is to develop new tools and techniques that would lead to practical and theoretically sound implementations of cryptographic primitives. We plan to draw ideas from both theory and practice, and expect their combination to generate new questions, conjectures, and insights. A considerable fraction of our efforts will be devoted to demonstrating the efficiency of our constructions. This will be achieved by a concrete setting of parameters, allowing for cryptanalysis and direct performance comparison to popular designs.
While our initial focus will be on low-level primitives, we expect our research to also have direct impact on the practical efficiency of higher-level cryptographic tasks. Indeed, many of the recent improvements in the efficiency of lattice-based public-key cryptography can be traced back to research on the efficiency of lattice-based hash functions."
Summary
"Much currently deployed cryptography is designed using more “art'” than “science,” and most of the schemes used in practice lack rigorous justification for their security. While theoretically sound designs do exist, they tend to be quite a bit slower to run and hence are not realistic from a practical point of view. This gap is especially evident in “low-level” cryptographic primitives, which are the building blocks that ultimately process the largest quantities of data.
Recent years have witnessed dramatic progress in the understanding of highly-parallelizable (local) cryptography, and in the construction of schemes based on the mathematics of geometric objects called lattices. Besides being based on firm theoretical foundations, these schemes also allow for very efficient implementations, especially on modern microprocessors. Yet despite all this recent progress, there has not yet been a major effort specifically focused on bringing the efficiency of such constructions as close as possible to practicality; this project will do exactly that.
The main goal of the Fast and Sound Cryptography project is to develop new tools and techniques that would lead to practical and theoretically sound implementations of cryptographic primitives. We plan to draw ideas from both theory and practice, and expect their combination to generate new questions, conjectures, and insights. A considerable fraction of our efforts will be devoted to demonstrating the efficiency of our constructions. This will be achieved by a concrete setting of parameters, allowing for cryptanalysis and direct performance comparison to popular designs.
While our initial focus will be on low-level primitives, we expect our research to also have direct impact on the practical efficiency of higher-level cryptographic tasks. Indeed, many of the recent improvements in the efficiency of lattice-based public-key cryptography can be traced back to research on the efficiency of lattice-based hash functions."
Max ERC Funding
1 498 214 €
Duration
Start date: 2012-10-01, End date: 2017-09-30
Project acronym FUNMANIA
Project Functional nano Materials for Neuronal Interfacing Applications
Researcher (PI) Yael Hanein
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Starting Grant (StG), PE7, ERC-2012-StG_20111012
Summary Recent advances in nano technologies provide an exciting new tool-box best suited for stimulating and monitoring neurons at a very high accuracy and with improved bio-compatibility. In this project we propose the development of an innovative nano-material based platform to interface with neurons in-vivo, with unprecedented resolution. In particular we aim to form the building blocks for future sight restoration devices. By doing so we will address one of the most challenging and important applications in the realm of in-vivo neuronal stimulation: high-acuity artificial retina.
Existing technologies in the field of artificial retinas offer only very limited acuity and a radically new approach is needed to make the needed leap to achieve high-resolution stimulation. In this project we propose the development of flexible, electrically conducting, optically addressable and vertically aligned carbon nanotube based electrodes as a novel platform for targeting neurons at high fidelity. The morphology and density of the aligned tubes will mimic that of the retina photo-receptors to achieve record-high resolution.
The most challenging element of the project is the transduction from an optical signal to electrical activations at high resolution placing this effort at the forefront of nano-science and nano-technology research. To deal with this difficult challenge, vertically aligned carbon nanotubes will be conjugated with additional engineered materials, such as conducting polymers and quantum dots to build a supreme platform allowing unprecedented resolution and bio-compatibility. Ultimately, in this project we will focus on devising materials and processes that will become the building blocks of future devices so high density retinal implants and consequent sight restoration will become a reality in the conceivable future.
Summary
Recent advances in nano technologies provide an exciting new tool-box best suited for stimulating and monitoring neurons at a very high accuracy and with improved bio-compatibility. In this project we propose the development of an innovative nano-material based platform to interface with neurons in-vivo, with unprecedented resolution. In particular we aim to form the building blocks for future sight restoration devices. By doing so we will address one of the most challenging and important applications in the realm of in-vivo neuronal stimulation: high-acuity artificial retina.
Existing technologies in the field of artificial retinas offer only very limited acuity and a radically new approach is needed to make the needed leap to achieve high-resolution stimulation. In this project we propose the development of flexible, electrically conducting, optically addressable and vertically aligned carbon nanotube based electrodes as a novel platform for targeting neurons at high fidelity. The morphology and density of the aligned tubes will mimic that of the retina photo-receptors to achieve record-high resolution.
The most challenging element of the project is the transduction from an optical signal to electrical activations at high resolution placing this effort at the forefront of nano-science and nano-technology research. To deal with this difficult challenge, vertically aligned carbon nanotubes will be conjugated with additional engineered materials, such as conducting polymers and quantum dots to build a supreme platform allowing unprecedented resolution and bio-compatibility. Ultimately, in this project we will focus on devising materials and processes that will become the building blocks of future devices so high density retinal implants and consequent sight restoration will become a reality in the conceivable future.
Max ERC Funding
1 499 560 €
Duration
Start date: 2012-10-01, End date: 2018-09-30
Project acronym GAtransport
Project A direct, multi-faceted approach to investigate plant hormones spatial regulation: the case of gibberellins
Researcher (PI) Roy Weinstain
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Starting Grant (StG), LS3, ERC-2015-STG
Summary Plants evolved a unique molecular mechanism that spatially regulate auxin, forming finely tuned gradients and local maxima of auxin that inform and direct developmental patterning and adaptive growth processes. Recent findings call into question the uniqueness of polar auxin transport in the sense that more plant hormones seem to be actively transported. Although still lacking many mechanistic details, as well as comprehensive functional connotations, these findings warrant a more thorough investigation into the prospect of a broader scope for plants spatial regulation capacity in the context of additional hormones. Critically, we lack an effective set of tools to directly investigate and dissect the particulars of plant hormones mobility at the molecular level. My long-term goal is to provide a molecular and mechanistic understanding of plant hormones dynamics that will augment our evolving model of how they are regulated and how they convey information. Here, I hypothesize that GA mobility in plants is controlled and directed by an active transport mechanism to form distinct distribution patterns that affect signaling. I will test my hypothesis with a multi-faceted and multi-disciplinary approach, combining: fluorescent labeling of key gibberellins to map their accumulation sites in whole plants and at the sub-cellular level; chemical-biology strategies that facilitate manipulation of GA “origin point” in planta to map and quantify GA flow pathways; probe-based genetic screens and un-biased photo-affinity labeling to identify proteins affecting GA mobility; and genetic and molecular biology techniques to characterize identified proteins’ functions. I expect to offer an exceptional, detailed view into the inner workings of gibberellins dynamics in planta and into the mechanisms driving it. I further anticipate that the strategies developed here to specifically address gibberellins could be straightforwardly re-tailored to investigate additional plant hormones.
Summary
Plants evolved a unique molecular mechanism that spatially regulate auxin, forming finely tuned gradients and local maxima of auxin that inform and direct developmental patterning and adaptive growth processes. Recent findings call into question the uniqueness of polar auxin transport in the sense that more plant hormones seem to be actively transported. Although still lacking many mechanistic details, as well as comprehensive functional connotations, these findings warrant a more thorough investigation into the prospect of a broader scope for plants spatial regulation capacity in the context of additional hormones. Critically, we lack an effective set of tools to directly investigate and dissect the particulars of plant hormones mobility at the molecular level. My long-term goal is to provide a molecular and mechanistic understanding of plant hormones dynamics that will augment our evolving model of how they are regulated and how they convey information. Here, I hypothesize that GA mobility in plants is controlled and directed by an active transport mechanism to form distinct distribution patterns that affect signaling. I will test my hypothesis with a multi-faceted and multi-disciplinary approach, combining: fluorescent labeling of key gibberellins to map their accumulation sites in whole plants and at the sub-cellular level; chemical-biology strategies that facilitate manipulation of GA “origin point” in planta to map and quantify GA flow pathways; probe-based genetic screens and un-biased photo-affinity labeling to identify proteins affecting GA mobility; and genetic and molecular biology techniques to characterize identified proteins’ functions. I expect to offer an exceptional, detailed view into the inner workings of gibberellins dynamics in planta and into the mechanisms driving it. I further anticipate that the strategies developed here to specifically address gibberellins could be straightforwardly re-tailored to investigate additional plant hormones.
Max ERC Funding
1 500 000 €
Duration
Start date: 2016-02-01, End date: 2021-01-31
Project acronym Gendever
Project Genome, the Edited Version: DNA and RNA Editing of Mammalian Retroelements
Researcher (PI) Erez Levanon
Host Institution (HI) BAR ILAN UNIVERSITY
Call Details Starting Grant (StG), LS2, ERC-2012-StG_20111109
Summary It is generally thought that an organism contains the exactly same genomic information in all its cells and that a genome remains unaltered throughout the organism’s life, with the exception of rare and random somatic mutations that might occur. This genomic information will also serve as a template for exact RNA copies. However, endogenous and powerful means of creating inner genomic diversity are known to exist: (1) RNA editing that leads to alteration of one nucleotide into another, (mainly A-to-I); (2) DNA editing that changes the DNA’s content by shifting C-into-U; (3) active retroelements that can insert copies of their sequences into new locations in a genome.
Recently, we and others have found that although considered extremely rare, all three mechanisms are active somatically or at least leave traces of their occurrence in the genome, and are linked together, as most editing events occur in retroelements. However, the magnitude and scope of these mechanisms, which can lead to huge diversity and complexity within an organism and even within a cell, are still a mystery. This explosion of genomic variety can have dramatic effect on diverse biological processes, such as brain complexity, cancer and evolution acceleration.
In GENEDVER, we aim to perform the first genome-wide mapping of editing and active retroelements in various genomes using a combination of computational and genomic approaches. Specifically, we will develop a strategy to detect RNA and DNA editing in retroelements, scan for editing events in various genomes, and build the first global editing atlas. In addition, we will exploit the close association between editing and retroelements in to produce a genome-wide approach to detect active retroelements. Finally, we will screen for editing events and retrotranspositions in various biological conditions, in order to expose their involvement in many biological states and evolution.
Summary
It is generally thought that an organism contains the exactly same genomic information in all its cells and that a genome remains unaltered throughout the organism’s life, with the exception of rare and random somatic mutations that might occur. This genomic information will also serve as a template for exact RNA copies. However, endogenous and powerful means of creating inner genomic diversity are known to exist: (1) RNA editing that leads to alteration of one nucleotide into another, (mainly A-to-I); (2) DNA editing that changes the DNA’s content by shifting C-into-U; (3) active retroelements that can insert copies of their sequences into new locations in a genome.
Recently, we and others have found that although considered extremely rare, all three mechanisms are active somatically or at least leave traces of their occurrence in the genome, and are linked together, as most editing events occur in retroelements. However, the magnitude and scope of these mechanisms, which can lead to huge diversity and complexity within an organism and even within a cell, are still a mystery. This explosion of genomic variety can have dramatic effect on diverse biological processes, such as brain complexity, cancer and evolution acceleration.
In GENEDVER, we aim to perform the first genome-wide mapping of editing and active retroelements in various genomes using a combination of computational and genomic approaches. Specifically, we will develop a strategy to detect RNA and DNA editing in retroelements, scan for editing events in various genomes, and build the first global editing atlas. In addition, we will exploit the close association between editing and retroelements in to produce a genome-wide approach to detect active retroelements. Finally, we will screen for editing events and retrotranspositions in various biological conditions, in order to expose their involvement in many biological states and evolution.
Max ERC Funding
1 499 249 €
Duration
Start date: 2012-10-01, End date: 2017-09-30
Project acronym GeneBodyMethylation
Project Resolving the Nuts and Bolts of Gene Body Methylation
Researcher (PI) Assaf Zemach
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Starting Grant (StG), LS2, ERC-2015-STG
Summary DNA methylation, the covalent binding of a methyl group (CH3) to cytosine base, regulates the genome activity and plays a fundamental developmental role in eukaryotes. Its epigenetic characteristics of regulating transcription without changing the genetic code together with the ability to be transmitted through DNA replication allow organisms to memorize cellular events for many generations. DNA methylation is mostly known for its role in transcriptional silencing; however, its functional output is more complex and is influenced in part by its DNA context. Recent genomic studies, have found DNA methylation to be targeted inside sequences of actively transcribed genes, thus termed gene body methylation. Despite being an evolutionary conserved and a robust methylation pathway targeted to thousands of genes in animal and plant genomes, the function of gene body methylation is still poorly understood at both the molecular and functional level. Similar to the chicken and egg conundrum, because we do not know what gene body methylation does, therefore scientists could not apply its function to discover its regulators either. Gene body methylation is targeted to a very specific subset and subregions of genes, thus we strongly believe that specific factors exist and are missing simply because that no one has ever searched for them before. Hence, to make major breakthroughs in the field, our approach is to artificially generate gene-body-specific hypomethylated plants that together with customized genetic and biochemical systems will allow us to discover regulators and interpreters of gene body methylation. Using these unique genetic tools and novel molecular factors, we will be able to ultimately explore the particular biological roles of gene body methylation. These findings will fill the gap towards a full comprehension of the entire functional array of DNA methylation, and to its more precise exploitation in yielding better crops and in treating human diseases.
Summary
DNA methylation, the covalent binding of a methyl group (CH3) to cytosine base, regulates the genome activity and plays a fundamental developmental role in eukaryotes. Its epigenetic characteristics of regulating transcription without changing the genetic code together with the ability to be transmitted through DNA replication allow organisms to memorize cellular events for many generations. DNA methylation is mostly known for its role in transcriptional silencing; however, its functional output is more complex and is influenced in part by its DNA context. Recent genomic studies, have found DNA methylation to be targeted inside sequences of actively transcribed genes, thus termed gene body methylation. Despite being an evolutionary conserved and a robust methylation pathway targeted to thousands of genes in animal and plant genomes, the function of gene body methylation is still poorly understood at both the molecular and functional level. Similar to the chicken and egg conundrum, because we do not know what gene body methylation does, therefore scientists could not apply its function to discover its regulators either. Gene body methylation is targeted to a very specific subset and subregions of genes, thus we strongly believe that specific factors exist and are missing simply because that no one has ever searched for them before. Hence, to make major breakthroughs in the field, our approach is to artificially generate gene-body-specific hypomethylated plants that together with customized genetic and biochemical systems will allow us to discover regulators and interpreters of gene body methylation. Using these unique genetic tools and novel molecular factors, we will be able to ultimately explore the particular biological roles of gene body methylation. These findings will fill the gap towards a full comprehension of the entire functional array of DNA methylation, and to its more precise exploitation in yielding better crops and in treating human diseases.
Max ERC Funding
1 500 000 €
Duration
Start date: 2016-10-01, End date: 2021-09-30
Project acronym GeneREFORM
Project Genetically Encoded Multicolor Reporter Systems For Multiplexed MRI
Researcher (PI) Amnon Bar-Shir
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE LTD
Call Details Starting Grant (StG), PE5, ERC-2015-STG
Summary In order to fully understand the complexity of biological processes that are reflected by simultaneous occurrences of intra and inter-cellular events, multiplexed imaging platforms are needed. Fluorescent reporter genes, with their “multicolor” imaging capabilities, have revolutionized science and their founders have been awarded the Nobel Prize. Nevertheless, the light signal source of these reporters, which restricts their use in deep tissues and in large animals (and potentially in humans), calls for alternatives.
Reporter genes for MRI, although in their infancy, showed several exceptionalities, including the ability to longitudinal study the same subject with unlimited tissue penetration and to coregister information from reporter gene expression with high-resolution anatomical images. Inspired by the multicolor capabilities of optical reporter genes, this proposal aims to develop, optimize, and implement genetically engineered reporter systems for MRI with artificial “multicolor” characteristics. Capitalizing on (i) the Chemical Exchange Saturation Transfer (CEST)-MRI contrast mechanism that allows the use of small bioorganic molecules as MRI sensors, (ii) the frequency encoding, color-like features of CEST, and on (iii) enzyme engineering procedures that allow the optimization of enzymatic activity for a desired substrate, a “multicolor” genetically encoded MRI reporter system is proposed.
By (a) synthesizing libraries of non-natural nucleosides (“reporter probes”) to generate artificially “colored” CEST contrast, and (b) performing directed evolution of deoxyribonucleoside kinase (dNK) enzymes (“reporter genes”) to phosphorylate those nucleosides, the “multicolor” genetically encoded MRI “reporter system” will be created. The orthogonally of the obtained pairs of substrate (CEST sensor)/ enzyme (mutant dNK) will allow their simultaneous use as a genetically encoded reporter system for in vivo “multicolor” monitoring of reporter gene expression with MRI.
Summary
In order to fully understand the complexity of biological processes that are reflected by simultaneous occurrences of intra and inter-cellular events, multiplexed imaging platforms are needed. Fluorescent reporter genes, with their “multicolor” imaging capabilities, have revolutionized science and their founders have been awarded the Nobel Prize. Nevertheless, the light signal source of these reporters, which restricts their use in deep tissues and in large animals (and potentially in humans), calls for alternatives.
Reporter genes for MRI, although in their infancy, showed several exceptionalities, including the ability to longitudinal study the same subject with unlimited tissue penetration and to coregister information from reporter gene expression with high-resolution anatomical images. Inspired by the multicolor capabilities of optical reporter genes, this proposal aims to develop, optimize, and implement genetically engineered reporter systems for MRI with artificial “multicolor” characteristics. Capitalizing on (i) the Chemical Exchange Saturation Transfer (CEST)-MRI contrast mechanism that allows the use of small bioorganic molecules as MRI sensors, (ii) the frequency encoding, color-like features of CEST, and on (iii) enzyme engineering procedures that allow the optimization of enzymatic activity for a desired substrate, a “multicolor” genetically encoded MRI reporter system is proposed.
By (a) synthesizing libraries of non-natural nucleosides (“reporter probes”) to generate artificially “colored” CEST contrast, and (b) performing directed evolution of deoxyribonucleoside kinase (dNK) enzymes (“reporter genes”) to phosphorylate those nucleosides, the “multicolor” genetically encoded MRI “reporter system” will be created. The orthogonally of the obtained pairs of substrate (CEST sensor)/ enzyme (mutant dNK) will allow their simultaneous use as a genetically encoded reporter system for in vivo “multicolor” monitoring of reporter gene expression with MRI.
Max ERC Funding
1 478 284 €
Duration
Start date: 2016-05-01, End date: 2021-04-30
Project acronym GliaInnateSensing
Project Glia-derived factors in innate lymphoid cell sensing and intestinal defence
Researcher (PI) Jose Henrique Veiga Fernandes
Host Institution (HI) FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD
Call Details Consolidator Grant (CoG), LS6, ERC-2014-CoG
Summary The interplay between intestinal microbes and immune cells ensures vital functions of the organism. However, inadequate host-microbe relationships lead to inflammatory diseases that are major public health concerns.
Innate lymphoid cells (ILC) are an emergent family of effectors abundantly present at mucosal sites. Group 3 ILC (ILC3) produce pro-inflammatory cytokines and regulate mucosal homeostasis, anti-microbial defence and adaptive immune responses.
ILC development and function have been widely perceived to be programmed. However, recent evidence indicates that ILC are also controlled by dietary signals. Nevertheless, how ILC3 perceive, integrate and respond to environmental cues remains utterly unexplored.
We hypothesise that ILC3 sense their environment and exert their function as part of a novel epithelial-glial-ILC unit orchestrated by neurotrophic factors. Thus, we propose to employ genetic, cellular and molecular approaches to decipher how this unconventional multi-cellular unit is controlled and how glial-derived factors set ILC3 function and intestinal homeostasis.
In order to achieve this, we will assess ILC3-autonomous functions of neurotrophic factor receptors. ILC3-specific loss and gain of function mutant mice for neuroregulatory receptors will be used to define the role of these molecules in ILC3 function, mucosal homeostasis, gut defence and microbial ecology. Sequentially we propose to decipher the anatomical and functional basis for the enteric epithelial-glial-ILC unit. To this end we will employ high-resolution imaging, genome-wide expression analysis and tissue-specific mutants for define target genes.
Our ground-breaking research will establish a novel sensing program by which ILC3 integrate environmental cues and will define a key multi-cellular unit at the core of intestinal homeostasis and defence. Finally, our work will reveal new pathways that may be targeted in inflammatory diseases that are major Public Health concerns.
Summary
The interplay between intestinal microbes and immune cells ensures vital functions of the organism. However, inadequate host-microbe relationships lead to inflammatory diseases that are major public health concerns.
Innate lymphoid cells (ILC) are an emergent family of effectors abundantly present at mucosal sites. Group 3 ILC (ILC3) produce pro-inflammatory cytokines and regulate mucosal homeostasis, anti-microbial defence and adaptive immune responses.
ILC development and function have been widely perceived to be programmed. However, recent evidence indicates that ILC are also controlled by dietary signals. Nevertheless, how ILC3 perceive, integrate and respond to environmental cues remains utterly unexplored.
We hypothesise that ILC3 sense their environment and exert their function as part of a novel epithelial-glial-ILC unit orchestrated by neurotrophic factors. Thus, we propose to employ genetic, cellular and molecular approaches to decipher how this unconventional multi-cellular unit is controlled and how glial-derived factors set ILC3 function and intestinal homeostasis.
In order to achieve this, we will assess ILC3-autonomous functions of neurotrophic factor receptors. ILC3-specific loss and gain of function mutant mice for neuroregulatory receptors will be used to define the role of these molecules in ILC3 function, mucosal homeostasis, gut defence and microbial ecology. Sequentially we propose to decipher the anatomical and functional basis for the enteric epithelial-glial-ILC unit. To this end we will employ high-resolution imaging, genome-wide expression analysis and tissue-specific mutants for define target genes.
Our ground-breaking research will establish a novel sensing program by which ILC3 integrate environmental cues and will define a key multi-cellular unit at the core of intestinal homeostasis and defence. Finally, our work will reveal new pathways that may be targeted in inflammatory diseases that are major Public Health concerns.
Max ERC Funding
2 270 000 €
Duration
Start date: 2015-07-01, End date: 2020-06-30
Project acronym GlobalTrust
Project Sovereigns as Trustees of Humanity: The Obligations of Nations in an Era of Global Interdependence
Researcher (PI) Eyal Benvenisti
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Advanced Grant (AdG), SH2, ERC-2012-ADG_20120411
Summary Should sovereign governments be accountable only to their citizens or should they also consider the welfare of foreign stakeholders? Traditional doctrines on state sovereignty and citizenship offer a generally negative answer: Absent a specific, voluntarily accepted, treaty-based commitment, sovereign governments usually have no obligation to weigh foreigners’ interests. This traditional vision conceptualizes sovereigns as Janus-faced: Their public face is for domestic stakeholders to whom they are accountable and to whom they owe negative and positive obligations, and their private face is for all other stakeholders to whom their only obligation is the negative one of not inflicting a set of narrowly defined harms. The aim of this project is to revisit this Janus-faced concept of responsibility and to explore broader alternatives and their ramifications. This study will examine the scope of obligations sovereign governments currently have toward foreign stakeholders and humanity at large and will analyze the normative desirability and political feasibility of potential alternative strategies for enhancing sovereign accountability to non-citizens and promoting a more democratic, sustainable, and egalitarian management of public life and scarce global resources. This project will systematically review the extent to which current law (international law and comparative constitutional law) and institutions already regard sovereigns as public authorities accountable to foreign stakeholders. More specifically, this project will apply the general insights to examine the necessary and possible legal and institutional responses to climatic changes in an era of erratic and extreme weather conditions.
Summary
Should sovereign governments be accountable only to their citizens or should they also consider the welfare of foreign stakeholders? Traditional doctrines on state sovereignty and citizenship offer a generally negative answer: Absent a specific, voluntarily accepted, treaty-based commitment, sovereign governments usually have no obligation to weigh foreigners’ interests. This traditional vision conceptualizes sovereigns as Janus-faced: Their public face is for domestic stakeholders to whom they are accountable and to whom they owe negative and positive obligations, and their private face is for all other stakeholders to whom their only obligation is the negative one of not inflicting a set of narrowly defined harms. The aim of this project is to revisit this Janus-faced concept of responsibility and to explore broader alternatives and their ramifications. This study will examine the scope of obligations sovereign governments currently have toward foreign stakeholders and humanity at large and will analyze the normative desirability and political feasibility of potential alternative strategies for enhancing sovereign accountability to non-citizens and promoting a more democratic, sustainable, and egalitarian management of public life and scarce global resources. This project will systematically review the extent to which current law (international law and comparative constitutional law) and institutions already regard sovereigns as public authorities accountable to foreign stakeholders. More specifically, this project will apply the general insights to examine the necessary and possible legal and institutional responses to climatic changes in an era of erratic and extreme weather conditions.
Max ERC Funding
1 405 200 €
Duration
Start date: 2013-03-01, End date: 2018-02-28
Project acronym GPS-Bat
Project Foraging Decision Making in the Real World – revealed from a bat’s point of view by on-board miniature sensors
Researcher (PI) Yosef Gershon Yovel
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Starting Grant (StG), LS8, ERC-2015-STG
Summary How animals make decisions in the wild is an open key-question in biology. Our lack of knowledge results from a technological gap – the difficulty to track animals over long periods while monitoring their behaviour; and from a conceptual gap – how to identify animals’ decision-points outdoors? We suggest applying our innovative on-board miniature sensors, to study decision making in the wild. We focus on one of the most fundamental contexts of decision making – foraging for food. We will study bats, which constitute over 20% of mammalian species and are extremely diverse, enabling to examine different aspects of decision making. Importantly, echolocating bats emit sound to perceive their environment, allowing us to infer their behavior (attacks on prey and interactions with conspecifics) via sound recording. Our miniature sensors include a GPS and an ultrasonic microphone, which enables us to reveal not only bats’ movements, but also their behavior and accordingly the factors underlying their decisions.
We will study three bat species to elucidate different aspects of foraging decisions: (1) How does animal sociality facilitate decision making? We have developed a system to monitor an entire colony including all conspecific-interactions when bats are in the roost or foraging outside. (2) How do animals weigh current input against previous experience? We will study a bat that must nightly search large areas over sea to find food. (3) How flexible are animal decisions? We will manipulate the natural environment of specific individuals to study how they adjust their foraging.
Our results will have far-reaching implications in many fields, from animal conservation to robotics. The operational and technical difficulty of performing controlled manipulations in the wild drives most disciplines to perform experiments exclusively in artificial laboratory conditions. Our approach opens new opportunities to conduct controlled studies in the natural environment.
Summary
How animals make decisions in the wild is an open key-question in biology. Our lack of knowledge results from a technological gap – the difficulty to track animals over long periods while monitoring their behaviour; and from a conceptual gap – how to identify animals’ decision-points outdoors? We suggest applying our innovative on-board miniature sensors, to study decision making in the wild. We focus on one of the most fundamental contexts of decision making – foraging for food. We will study bats, which constitute over 20% of mammalian species and are extremely diverse, enabling to examine different aspects of decision making. Importantly, echolocating bats emit sound to perceive their environment, allowing us to infer their behavior (attacks on prey and interactions with conspecifics) via sound recording. Our miniature sensors include a GPS and an ultrasonic microphone, which enables us to reveal not only bats’ movements, but also their behavior and accordingly the factors underlying their decisions.
We will study three bat species to elucidate different aspects of foraging decisions: (1) How does animal sociality facilitate decision making? We have developed a system to monitor an entire colony including all conspecific-interactions when bats are in the roost or foraging outside. (2) How do animals weigh current input against previous experience? We will study a bat that must nightly search large areas over sea to find food. (3) How flexible are animal decisions? We will manipulate the natural environment of specific individuals to study how they adjust their foraging.
Our results will have far-reaching implications in many fields, from animal conservation to robotics. The operational and technical difficulty of performing controlled manipulations in the wild drives most disciplines to perform experiments exclusively in artificial laboratory conditions. Our approach opens new opportunities to conduct controlled studies in the natural environment.
Max ERC Funding
1 928 750 €
Duration
Start date: 2016-03-01, End date: 2021-02-28
Project acronym GutBCells
Project Cellular Dynamics of Intestinal Antibody-Mediated Immune Response
Researcher (PI) Ziv Shulman Ben-Avraham
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE LTD
Call Details Starting Grant (StG), LS6, ERC-2015-STG
Summary Vaccination is widely used to prevent human diseases by inducing the formation of cellular and antibody-mediated immune responses for induction of long lasting immunological memory. Although most studies focus on immune responses elicited against injected immunizations, the simplest delivery of a vaccine regimen is by oral administration. The cellular and molecular components of the antibody immune response in peripheral lymph nodes in response to immunization are well described, however, much less is known about the dynamics of immune cells in gut associate lymphoid tissues (GALT) and adjust intestinal mucosal tissues. In the proposed research plan I will implicate intravital in vivo imaging for analysis of the cellular component of the antibody immune response in intestinal tissues. My goals are: 1. To track germinal center (GC) T cells for prolong time periods in peripheral lymph nodes and GALT and determine if they enter the memory compartment. For this purpose I will develop a new photoactivation method for permanently labeling immune cells and fate tracing of their daughter cells. 2. To examine T-B interactions and their regulation by intraceullar signaling pathways in GALT and to determine where and when class switch recombination to IgA takes place. For this purpose I will use intravital imaging of fluorescent reporter mice. 3. I will analyze the dynamics of plasma cell migration from Peyer’s patches to the mucosa by implementing state of the art photoactivation and imaging techniques that allow prolonged cell tracking. I will also use photoactivation approaches for sorting plasma cells from specific intestinal layers and perform gene expression analysis. 4. I will develop a new method to study dynamics and fate of B cells specific for commensal microbes in the GC, memory and plasma cell compartments. This research plan will extend our knowledge of the antibody immune response in intestinal tissues towards the future design of improved oral vaccinations.
Summary
Vaccination is widely used to prevent human diseases by inducing the formation of cellular and antibody-mediated immune responses for induction of long lasting immunological memory. Although most studies focus on immune responses elicited against injected immunizations, the simplest delivery of a vaccine regimen is by oral administration. The cellular and molecular components of the antibody immune response in peripheral lymph nodes in response to immunization are well described, however, much less is known about the dynamics of immune cells in gut associate lymphoid tissues (GALT) and adjust intestinal mucosal tissues. In the proposed research plan I will implicate intravital in vivo imaging for analysis of the cellular component of the antibody immune response in intestinal tissues. My goals are: 1. To track germinal center (GC) T cells for prolong time periods in peripheral lymph nodes and GALT and determine if they enter the memory compartment. For this purpose I will develop a new photoactivation method for permanently labeling immune cells and fate tracing of their daughter cells. 2. To examine T-B interactions and their regulation by intraceullar signaling pathways in GALT and to determine where and when class switch recombination to IgA takes place. For this purpose I will use intravital imaging of fluorescent reporter mice. 3. I will analyze the dynamics of plasma cell migration from Peyer’s patches to the mucosa by implementing state of the art photoactivation and imaging techniques that allow prolonged cell tracking. I will also use photoactivation approaches for sorting plasma cells from specific intestinal layers and perform gene expression analysis. 4. I will develop a new method to study dynamics and fate of B cells specific for commensal microbes in the GC, memory and plasma cell compartments. This research plan will extend our knowledge of the antibody immune response in intestinal tissues towards the future design of improved oral vaccinations.
Max ERC Funding
1 375 000 €
Duration
Start date: 2016-05-01, End date: 2021-04-30
Project acronym GV-FLU
Project A Genetic View of Influenza Infection
Researcher (PI) Irit Gat-Viks
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Starting Grant (StG), LS2, ERC-2014-STG
Summary Inherited variation in the quantity and functionality of immune cells plays a key role in determining phenotypic diversity between individuals. Surprisingly little is known, however, about the specific contribution of immune cell subsets to variation in phenotypes such as susceptibility to infectious diseases and the underlying genetic variation. In many complex diseases, we currently have a poor understanding of the driver cell types that are responsible for inherited variation in disease states. A comprehensive mapping of quantities and functions of immune cell types during the course of disease, in large cohorts, bears the potential to transform genetic research; provides understanding of the genetic and immune basis of phenotypes; and reveals the key driver cell subsets.
Here I aim to derive a mechanistic understanding of how variation in quantity and function of immune cell subsets mediates inherited variation in disease states. I propose to develop a computational model that integrates predicted quantities and functions of cell subsets with genotypic and phenotypic information, leading to specific hypotheses on physiological regulation and the particular cell subsets that drive phenotypic diversity. To circumvent the technical difficulty in quantifying a large number of immune cell types, I will profile gene expression and computationally quantify changes in a large number of cell types. I will develop and apply this strategy to dissect Influenza infection in mice.
Since changes in immune responses play a key role in complex diseases, our ability to predict variation in immune responses from genotypes would have important clinical implications. This project has far reaching implications as the paradigm developed here will transform quantitative genetics studies as well as systems immunology research of complex disease. This approach will be applicable to any mammalian disease, allowing researchers to dissect their own systems at unprecedented detail.
Summary
Inherited variation in the quantity and functionality of immune cells plays a key role in determining phenotypic diversity between individuals. Surprisingly little is known, however, about the specific contribution of immune cell subsets to variation in phenotypes such as susceptibility to infectious diseases and the underlying genetic variation. In many complex diseases, we currently have a poor understanding of the driver cell types that are responsible for inherited variation in disease states. A comprehensive mapping of quantities and functions of immune cell types during the course of disease, in large cohorts, bears the potential to transform genetic research; provides understanding of the genetic and immune basis of phenotypes; and reveals the key driver cell subsets.
Here I aim to derive a mechanistic understanding of how variation in quantity and function of immune cell subsets mediates inherited variation in disease states. I propose to develop a computational model that integrates predicted quantities and functions of cell subsets with genotypic and phenotypic information, leading to specific hypotheses on physiological regulation and the particular cell subsets that drive phenotypic diversity. To circumvent the technical difficulty in quantifying a large number of immune cell types, I will profile gene expression and computationally quantify changes in a large number of cell types. I will develop and apply this strategy to dissect Influenza infection in mice.
Since changes in immune responses play a key role in complex diseases, our ability to predict variation in immune responses from genotypes would have important clinical implications. This project has far reaching implications as the paradigm developed here will transform quantitative genetics studies as well as systems immunology research of complex disease. This approach will be applicable to any mammalian disease, allowing researchers to dissect their own systems at unprecedented detail.
Max ERC Funding
1 497 000 €
Duration
Start date: 2015-07-01, End date: 2020-06-30
Project acronym HAS
Project Harmonic Analysis and l-adic sheaves
Researcher (PI) David Kazhdan
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Advanced Grant (AdG), PE1, ERC-2014-ADG
Summary "In recent years there has been impressive development of the higher category theory and in particular development of the categorical counterpart of the Langlands conjecture over fields of finite characteristic. But until now, this development has had little bearing on the classical problems which deal with spaces of functions. The main goal of this proposal is to build the technique to apply the category theory to classical problems. Of course on the way I will have to deal with problems in the categorical realm.
The first part of the proposal deals with construction of characters of irreducible representations of reductive groups over local nonarchimedian fields F in terms of traces of the Frobenious endomorphisms which should lead to the proof of the ""Stable center conjecture"" at least for representations of depth zero.
The second part is on the extension of the definition of L-functions of representations of reductive F-groups corresponding to an arbitrary representation of the dual groups. As it is now, the definition is known only for very special representations of the dual group and only in the case of classical groups.
The third part is on the extension of the classical theory to representations of Kac-Moody groups over local fields."
Summary
"In recent years there has been impressive development of the higher category theory and in particular development of the categorical counterpart of the Langlands conjecture over fields of finite characteristic. But until now, this development has had little bearing on the classical problems which deal with spaces of functions. The main goal of this proposal is to build the technique to apply the category theory to classical problems. Of course on the way I will have to deal with problems in the categorical realm.
The first part of the proposal deals with construction of characters of irreducible representations of reductive groups over local nonarchimedian fields F in terms of traces of the Frobenious endomorphisms which should lead to the proof of the ""Stable center conjecture"" at least for representations of depth zero.
The second part is on the extension of the definition of L-functions of representations of reductive F-groups corresponding to an arbitrary representation of the dual groups. As it is now, the definition is known only for very special representations of the dual group and only in the case of classical groups.
The third part is on the extension of the classical theory to representations of Kac-Moody groups over local fields."
Max ERC Funding
1 569 488 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym HIEXP
Project High Dimensional Expanders, Ramanujan Complexes and Codes
Researcher (PI) Alex LUBOTZKY
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Advanced Grant (AdG), PE1, ERC-2015-AdG
Summary "Expander graphs have been playing a fundamental role in many areas of computer science. During the last 15 years they have also found important and unexpected applications in pure mathematics. The goal of the current research is to develop systematically high-dimensional (HD) theory of expanders, i.e., simplicial complexes and hypergraphs which resemble in dimension d, the role of expander graphs for d = 1. There are several motivations for developing such a theory, some from pure mathematics and some from computer science. For example, Ramanujan complexes (the HD versions of the ""optimal"" expanders, the Ramanujan graphs) have already been useful for extremal hypergraph theory. One of the main goals of this research is to use them to solve other problems, such as Gromov's problem: are there bounded degree simplicial complexes with the topological overlapping property (""topological expanders""). Other directions of HD expanders have applications in property testing, a very important subject in theoretical computer science. Moreover they can be a tool for the construction of locally testable codes, an important question of theoretical and practical importance in the theory of error correcting codes. In addition, the study of these simplicial complexes suggests new quantum error correcting codes (QECC). It is hoped that it will lead to such codes which are also low density parity check (LDPC). The huge success and impact of the theory of expander graphs suggests that the high dimensional theory will also bring additional unexpected applications beside those which can be foreseen as of now."
Summary
"Expander graphs have been playing a fundamental role in many areas of computer science. During the last 15 years they have also found important and unexpected applications in pure mathematics. The goal of the current research is to develop systematically high-dimensional (HD) theory of expanders, i.e., simplicial complexes and hypergraphs which resemble in dimension d, the role of expander graphs for d = 1. There are several motivations for developing such a theory, some from pure mathematics and some from computer science. For example, Ramanujan complexes (the HD versions of the ""optimal"" expanders, the Ramanujan graphs) have already been useful for extremal hypergraph theory. One of the main goals of this research is to use them to solve other problems, such as Gromov's problem: are there bounded degree simplicial complexes with the topological overlapping property (""topological expanders""). Other directions of HD expanders have applications in property testing, a very important subject in theoretical computer science. Moreover they can be a tool for the construction of locally testable codes, an important question of theoretical and practical importance in the theory of error correcting codes. In addition, the study of these simplicial complexes suggests new quantum error correcting codes (QECC). It is hoped that it will lead to such codes which are also low density parity check (LDPC). The huge success and impact of the theory of expander graphs suggests that the high dimensional theory will also bring additional unexpected applications beside those which can be foreseen as of now."
Max ERC Funding
1 592 500 €
Duration
Start date: 2016-08-01, End date: 2021-07-31
Project acronym HIRESMEMMANIP
Project Spiking network mechanisms underlying short term memory
Researcher (PI) Eran Stark
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Starting Grant (StG), LS5, ERC-2015-STG
Summary Short term memory (STM) is impaired at old age and a host of neuropsychiatric disorders, and has been the focus of a multitude of psychological and theoretical studies. However, the underlying neuronal circuit mechanisms remain elusive, mainly due to the lack of experimental tools: we suggest that rapid manipulations at the neuronal level are required for deciphering underlying mechanisms. We have developed an approach combining large-scale extracellular recordings and high density multi-site/multi-color optical stimulation (“diode-probes”), which enables high resolution closed-loop manipulation of multiple circuit elements in intact, free, behaving rodents. After training mice and rats to perform bridging-free STM-tasks, we will evaluate local circuit mechanisms in hippocampus and prefrontal cortex. Two broad classes of manipulations will be used: First, necessary components and timescales needed for STM maintenance will be established by focal real-time silencing of specific cell types and real-time jittering of spiking in those cells. Second, sufficient components (neuronal codes) will be determined by a circuit-training phase, in which novel associations between synthetic brain patterns and behaviorally-relevant short-term memory traces will be established. The first class is equivalent to erasing memories and the second to their writing. Together, these manipulations are expected to reveal global and local circuit mechanisms that facilitate STM maintenance in intact animals
Summary
Short term memory (STM) is impaired at old age and a host of neuropsychiatric disorders, and has been the focus of a multitude of psychological and theoretical studies. However, the underlying neuronal circuit mechanisms remain elusive, mainly due to the lack of experimental tools: we suggest that rapid manipulations at the neuronal level are required for deciphering underlying mechanisms. We have developed an approach combining large-scale extracellular recordings and high density multi-site/multi-color optical stimulation (“diode-probes”), which enables high resolution closed-loop manipulation of multiple circuit elements in intact, free, behaving rodents. After training mice and rats to perform bridging-free STM-tasks, we will evaluate local circuit mechanisms in hippocampus and prefrontal cortex. Two broad classes of manipulations will be used: First, necessary components and timescales needed for STM maintenance will be established by focal real-time silencing of specific cell types and real-time jittering of spiking in those cells. Second, sufficient components (neuronal codes) will be determined by a circuit-training phase, in which novel associations between synthetic brain patterns and behaviorally-relevant short-term memory traces will be established. The first class is equivalent to erasing memories and the second to their writing. Together, these manipulations are expected to reveal global and local circuit mechanisms that facilitate STM maintenance in intact animals
Max ERC Funding
1 500 000 €
Duration
Start date: 2016-10-01, End date: 2021-09-30
Project acronym HisMoDetect
Project An Antibody Microarray for Histone Modifications
Researcher (PI) Eran Meshorer
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Proof of Concept (PoC), ERC-2015-PoC, ERC-2015-PoC
Summary Histones are the major structural proteins of eukaryotic DNA. Two copies each of the core histones, H2A, H2B, H3 and H4, form the core nucleosome, the basic unit of chromatin. Histone tails protrude from the nucleosome structure and are subject to a variety of post-translational modifications on multiple residues, including methylation, acetylation, phosphorylation, sumoylation, ubiquitination and polyribosylation. These histone modifications dictate local and global structure of chromatin, rendering it active and decondensed (‘euchromatic’) or suppressed and compact (‘heterochromatic’) by the recruitment of chromatin-binding proteins that recognize and associate with specific modifications. Histone modifications are therefore the basic regulatory unit of gene expression, genomic silencing, developmental programs, cell division and essentially all cellular processes. Understanding this so-called ‘epigenetic’ landscape is therefore vital for all biological mechanisms. Currently a Western blot is required in order to determine the state of each of the dozens of different histone modifications. Because of the growing number of histone modifications, this procedure is time consuming and labour intensive. Here I suggest to develop an antibody microarray to monitor the levels of all histone modifications simultaneously. This method will be essentially useful for any tissue or cell type in any biological process, for diagnosis, prognosis and drug screening. In addition to basic research, our platform will enable fast and reliable screening for epigenetic effects of existing and novel drugs. We believe that such a product could serve many drug companies interested in direct and indirect effects of epigenetic and non-epigentic drugs.
Summary
Histones are the major structural proteins of eukaryotic DNA. Two copies each of the core histones, H2A, H2B, H3 and H4, form the core nucleosome, the basic unit of chromatin. Histone tails protrude from the nucleosome structure and are subject to a variety of post-translational modifications on multiple residues, including methylation, acetylation, phosphorylation, sumoylation, ubiquitination and polyribosylation. These histone modifications dictate local and global structure of chromatin, rendering it active and decondensed (‘euchromatic’) or suppressed and compact (‘heterochromatic’) by the recruitment of chromatin-binding proteins that recognize and associate with specific modifications. Histone modifications are therefore the basic regulatory unit of gene expression, genomic silencing, developmental programs, cell division and essentially all cellular processes. Understanding this so-called ‘epigenetic’ landscape is therefore vital for all biological mechanisms. Currently a Western blot is required in order to determine the state of each of the dozens of different histone modifications. Because of the growing number of histone modifications, this procedure is time consuming and labour intensive. Here I suggest to develop an antibody microarray to monitor the levels of all histone modifications simultaneously. This method will be essentially useful for any tissue or cell type in any biological process, for diagnosis, prognosis and drug screening. In addition to basic research, our platform will enable fast and reliable screening for epigenetic effects of existing and novel drugs. We believe that such a product could serve many drug companies interested in direct and indirect effects of epigenetic and non-epigentic drugs.
Max ERC Funding
150 000 €
Duration
Start date: 2015-10-01, End date: 2017-03-31
Project acronym HoloVision
Project Advanced holographic optical neural stimulation for vision restoration and basic research
Researcher (PI) Shy Shoham
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Consolidator Grant (CoG), LS7, ERC-2014-CoG
Summary When natural sensory input is disrupted, as in outer-retinal degenerative diseases, artificial stimulation of surviving nerve cells offers a potential strategy for bypassing compromised neural circuits and substituting sensory perception. Current neuro-stimulation interfaces that use electrical currents from micro-electrode arrays are already being clinically applied for retinal stimulation, but their performance is ultimately limited by current spread and the requirement for physical contact with an implanted device. Future minimally-invasive systems could use light patterns to photo-induce complex yet precise spatio-temporal activity patterns among surviving retinal neurons, with the ultimate potential of restoring vision to a nearly normal level.
Here, we will advance, optimize and test in vivo a powerful new strategy for cellular-resolution controlled patterned optogenetic excitation, based on computer-generated holographic optical neural-stimulation (HONS). Regular (one-photon) HONS systems can dynamically address large populations of optogenetically-transduced retinal ganglion cells with single-cell resolution, while related multiphoton HONS systems can extend these capabilities to three-dimensional cortical tissue (relevant to many research applications). A series of in vivo experiments will resolve basic questions regarding the efficacy of these approaches by directly examining the retinal and cortical responses to structured holographic photo-stimulation, and test novel strategies for improving it. Finally, as a major step towards clinical translation of this technology, we will design and evaluate (in blind sheep and sighted individuals) a human-scale prototype.
Overall, by combining both basic and translational research, this study will advance novel optical neuro-technologies with potential impact on multiple scientific and clinical applications. Specifically, it will tackle the major engineering requirements and constraints towards the development of a
Summary
When natural sensory input is disrupted, as in outer-retinal degenerative diseases, artificial stimulation of surviving nerve cells offers a potential strategy for bypassing compromised neural circuits and substituting sensory perception. Current neuro-stimulation interfaces that use electrical currents from micro-electrode arrays are already being clinically applied for retinal stimulation, but their performance is ultimately limited by current spread and the requirement for physical contact with an implanted device. Future minimally-invasive systems could use light patterns to photo-induce complex yet precise spatio-temporal activity patterns among surviving retinal neurons, with the ultimate potential of restoring vision to a nearly normal level.
Here, we will advance, optimize and test in vivo a powerful new strategy for cellular-resolution controlled patterned optogenetic excitation, based on computer-generated holographic optical neural-stimulation (HONS). Regular (one-photon) HONS systems can dynamically address large populations of optogenetically-transduced retinal ganglion cells with single-cell resolution, while related multiphoton HONS systems can extend these capabilities to three-dimensional cortical tissue (relevant to many research applications). A series of in vivo experiments will resolve basic questions regarding the efficacy of these approaches by directly examining the retinal and cortical responses to structured holographic photo-stimulation, and test novel strategies for improving it. Finally, as a major step towards clinical translation of this technology, we will design and evaluate (in blind sheep and sighted individuals) a human-scale prototype.
Overall, by combining both basic and translational research, this study will advance novel optical neuro-technologies with potential impact on multiple scientific and clinical applications. Specifically, it will tackle the major engineering requirements and constraints towards the development of a
Max ERC Funding
2 624 517 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym IL7sigNETure
Project IL-7/IL-7R signaling networks in health and malignancy
Researcher (PI) João Pedro Taborda Barata
Host Institution (HI) INSTITUTO DE MEDICINA MOLECULAR JOAO LOBO ANTUNES
Call Details Consolidator Grant (CoG), LS4, ERC-2014-CoG
Summary Deregulation of signal transduction is a feature of tumor cells and signaling therapies are gaining importance in the growing arsenal against cancer. However, their full potential can only be achieved once we overcome the limited knowledge on how signaling networks are wired in cancer cells. Interleukin 7 (IL7) and its receptor (IL7R) are essential for normal T-cell development and function. However, they can also promote autoimmunity, chronic inflammation and cancer. We showed that patients with T-cell acute lymphoblastic leukemia (T-ALL), an aggressive hematological cancer, can display IL7R gain-of-function mutations leading to downstream signaling activation and cell transformation. Despite the biological relevance of IL7 and IL7R, the characterization of their signaling effectors remains limited. Here, we propose to move from the single molecule/pathway-centered analysis that has characterized the research on IL7/IL7R signaling, into a ‘holistic’ view of the IL7/IL7R signaling landscape. To do so, we will employ a multidisciplinary strategy, in which data from complementary high throughput analyses, informing on different levels of regulation of the IL7/IL7R signaling network, will be integrated via a systems biology approach, and complemented by cell and molecular biology experimentation and state-of-the-art in vivo models. The knowledge we will generate should have a profound impact on the understanding of the fundamental mechanisms by which IL7/IL7R signaling promotes leukemia and reveal novel targets for fine-tuned therapeutic intervention in T-ALL. Moreover, the scope of insights gained should extend beyond leukemia. Our in-depth, systems-level characterization of IL7/IL7R signaling will constitute a platform with extraordinary potential to illuminate the molecular role of the IL7/IL7R axis in other cancers (e.g. breast and lung) and pathological settings where IL7 has been implicated, such as HIV infection, multiple sclerosis and rheumatoid arthritis.
Summary
Deregulation of signal transduction is a feature of tumor cells and signaling therapies are gaining importance in the growing arsenal against cancer. However, their full potential can only be achieved once we overcome the limited knowledge on how signaling networks are wired in cancer cells. Interleukin 7 (IL7) and its receptor (IL7R) are essential for normal T-cell development and function. However, they can also promote autoimmunity, chronic inflammation and cancer. We showed that patients with T-cell acute lymphoblastic leukemia (T-ALL), an aggressive hematological cancer, can display IL7R gain-of-function mutations leading to downstream signaling activation and cell transformation. Despite the biological relevance of IL7 and IL7R, the characterization of their signaling effectors remains limited. Here, we propose to move from the single molecule/pathway-centered analysis that has characterized the research on IL7/IL7R signaling, into a ‘holistic’ view of the IL7/IL7R signaling landscape. To do so, we will employ a multidisciplinary strategy, in which data from complementary high throughput analyses, informing on different levels of regulation of the IL7/IL7R signaling network, will be integrated via a systems biology approach, and complemented by cell and molecular biology experimentation and state-of-the-art in vivo models. The knowledge we will generate should have a profound impact on the understanding of the fundamental mechanisms by which IL7/IL7R signaling promotes leukemia and reveal novel targets for fine-tuned therapeutic intervention in T-ALL. Moreover, the scope of insights gained should extend beyond leukemia. Our in-depth, systems-level characterization of IL7/IL7R signaling will constitute a platform with extraordinary potential to illuminate the molecular role of the IL7/IL7R axis in other cancers (e.g. breast and lung) and pathological settings where IL7 has been implicated, such as HIV infection, multiple sclerosis and rheumatoid arthritis.
Max ERC Funding
1 988 125 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym InfoInt
Project An Information Theory of Simple Interaction
Researcher (PI) Ofer Shayevitz
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Starting Grant (StG), PE7, ERC-2014-STG
Summary Motivated by our recent progress in feedback information theory and its deep relations to stochastic dynamical systems, and inspired by natural phenomena such as bio-molecular interactions and human conversation, this research will explore the fundamental limits of information transfer via simple interaction. In the standard information theoretic framework, the problem of reliable communications is typically studied in an asymptotic unidirectional regime, where optimal performance is attained via complex codes employed over increasingly long time epochs. Here, we will investigate a markedly different paradigm where communicating parties are restricted to use simple finite-state rules to act and react on the fly. We will consider a broad spectrum of models ranging from feedback communications and two-way channels to multiuser setups and large homogeneous networks, and study measures of information transfer and dissipation, their relations to dynamical system contraction factors, and the fundamental tradeoffs between complexity and performance. While prominently theoretic, our investigation is expected to admit important practical applications and a cross-disciplinary impact. In communications, and especially in resource-limited systems such as wireless sensor networks where battery-life is a bottleneck, a breakthrough in the understanding of optimal interaction can lead to a paradigm shift in system design, yielding simpler, cheaper, more robust solutions. In Finance, where market behavior is a cumulative effect of local actions taken by individuals based on limited noisy observations, quantifying interaction and its relation to information propagation can enhance our ability to forecast and explain macro level phenomena. Finally, an information theoretic characterization of interaction in large networks can shed light on the underlying mechanisms governing various biological systems that are empirically amenable to cellular automata modeling.
Summary
Motivated by our recent progress in feedback information theory and its deep relations to stochastic dynamical systems, and inspired by natural phenomena such as bio-molecular interactions and human conversation, this research will explore the fundamental limits of information transfer via simple interaction. In the standard information theoretic framework, the problem of reliable communications is typically studied in an asymptotic unidirectional regime, where optimal performance is attained via complex codes employed over increasingly long time epochs. Here, we will investigate a markedly different paradigm where communicating parties are restricted to use simple finite-state rules to act and react on the fly. We will consider a broad spectrum of models ranging from feedback communications and two-way channels to multiuser setups and large homogeneous networks, and study measures of information transfer and dissipation, their relations to dynamical system contraction factors, and the fundamental tradeoffs between complexity and performance. While prominently theoretic, our investigation is expected to admit important practical applications and a cross-disciplinary impact. In communications, and especially in resource-limited systems such as wireless sensor networks where battery-life is a bottleneck, a breakthrough in the understanding of optimal interaction can lead to a paradigm shift in system design, yielding simpler, cheaper, more robust solutions. In Finance, where market behavior is a cumulative effect of local actions taken by individuals based on limited noisy observations, quantifying interaction and its relation to information propagation can enhance our ability to forecast and explain macro level phenomena. Finally, an information theoretic characterization of interaction in large networks can shed light on the underlying mechanisms governing various biological systems that are empirically amenable to cellular automata modeling.
Max ERC Funding
1 323 875 €
Duration
Start date: 2015-03-01, End date: 2021-02-28
Project acronym InPairs
Project In Silico Pair Plasmas: from ultra intense lasers to relativistic astrophysics in the laboratory
Researcher (PI) Luís Miguel DE OLIVEIRA E SILVA
Host Institution (HI) INSTITUTO SUPERIOR TECNICO
Call Details Advanced Grant (AdG), PE2, ERC-2015-AdG
Summary How do extreme electromagnetic fields modify the dynamics of matter? Will quantum electrodynamics effects be important at the focus of an ultra intense laser? How are the magnetospheres of compact stellar remnants formed, and can we capture the physics of these environments in the laboratory? These are all longstanding questions with an overarching connection to extreme plasma physics.
Electron-positron pair plasmas are pervasive in all these scenarios. Highly nonlinear phenomena such as QED processes, magnetogenesis, radiation, field dynamics in complex geometries, and particle acceleration, are all linked with the collective dynamics of pair plasmas through mechanisms that remain poorly understood.
Building on our state-of-the-art models, on the availability of enormous computational power, and on our recent transformative discoveries on ab initio modelling of plasmas under extreme conditions, the time is ripe to answer these questions in silico. InPairs aims to understand the multidimensional dynamics of electron-positron plasmas under extreme laboratory and astrophysical fields, to determine the signatures of the radiative processes on pair plasmas, and to identify the physics of the magnetospheres of compact stellar remnants, focusing on the electrodynamics of pulsars, that can be mimicked in laboratory experiments using ultra high intensity lasers and charged particle beams.
This proposal relies on massively parallel simulations to bridge the gap, for the first time, between the pair plasma creation mechanisms, the collective multidimensional microphysics, and their global dynamics in complex geometries associated with laboratory and astrophysical systems. Emphasis will be given to detectable signatures e.g. radiation and accelerated particles, with the ultimate goal of solving some of the central questions in extreme plasma physics, thus opening new connections between computational studies, laboratory experiments, and relativistic plasma astrophysics.
Summary
How do extreme electromagnetic fields modify the dynamics of matter? Will quantum electrodynamics effects be important at the focus of an ultra intense laser? How are the magnetospheres of compact stellar remnants formed, and can we capture the physics of these environments in the laboratory? These are all longstanding questions with an overarching connection to extreme plasma physics.
Electron-positron pair plasmas are pervasive in all these scenarios. Highly nonlinear phenomena such as QED processes, magnetogenesis, radiation, field dynamics in complex geometries, and particle acceleration, are all linked with the collective dynamics of pair plasmas through mechanisms that remain poorly understood.
Building on our state-of-the-art models, on the availability of enormous computational power, and on our recent transformative discoveries on ab initio modelling of plasmas under extreme conditions, the time is ripe to answer these questions in silico. InPairs aims to understand the multidimensional dynamics of electron-positron plasmas under extreme laboratory and astrophysical fields, to determine the signatures of the radiative processes on pair plasmas, and to identify the physics of the magnetospheres of compact stellar remnants, focusing on the electrodynamics of pulsars, that can be mimicked in laboratory experiments using ultra high intensity lasers and charged particle beams.
This proposal relies on massively parallel simulations to bridge the gap, for the first time, between the pair plasma creation mechanisms, the collective multidimensional microphysics, and their global dynamics in complex geometries associated with laboratory and astrophysical systems. Emphasis will be given to detectable signatures e.g. radiation and accelerated particles, with the ultimate goal of solving some of the central questions in extreme plasma physics, thus opening new connections between computational studies, laboratory experiments, and relativistic plasma astrophysics.
Max ERC Funding
1 951 124 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym iPROTECTION
Project Molecular mechanisms of induced protection against sepsis by DNA damage responses
Researcher (PI) Luis Filipe Ferreira Moita
Host Institution (HI) FUNDACAO CALOUSTE GULBENKIAN
Call Details Consolidator Grant (CoG), LS4, ERC-2014-CoG
Summary Severe sepsis remains a poorly understood systemic inflammatory condition with high mortality rates and limited therapeutic options outside of infection control and organ support measures. Based on our recent discovery that anthracycline drugs prevent organ failure without affecting the bacterial burden in a model of severe sepsis, we propose that strategies aimed at target organ protection have extraordinary potential for the treatment of sepsis and possibly for other inflammation-driven conditions. However, the mechanisms of organ protection and disease tolerance are either unknown or poorly characterized.
The central goal of the current proposal is to identify and characterize novel cytoprotective mechanisms, with a focus on DNA damage response dependent protection activated by anthracyclines as a window into stress-induced genetic programs conferring disease tolerance. To that end, we will carry out a combination of candidate and unbiased approaches for the in vivo identification of ATM-dependent and independent mechanisms of tissue protection. We will validate the leading candidates through adenovirus-mediated delivery of constructs for overexpression (gain-of-function) or shRNA for gene silencing (loss-of-function) to the lung, based on our recent finding that rescuing this organ is essential and perhaps sufficient in anthracycline-induced protection against severe sepsis. The candidates showing the most promise will be characterized using a combination of in vitro and in vivo genetic, biochemical, cell biological and physiological methods.
The results arising from the current proposal are likely not only to inspire the design of transformative therapies for sepsis but also to open a completely new field of opportunity to molecularly understand core surveillance mechanisms of basic cellular processes with a critical role in the homeostasis of organ function and whose activation can ultimately promote quality of life during aging and increase lifespan.
Summary
Severe sepsis remains a poorly understood systemic inflammatory condition with high mortality rates and limited therapeutic options outside of infection control and organ support measures. Based on our recent discovery that anthracycline drugs prevent organ failure without affecting the bacterial burden in a model of severe sepsis, we propose that strategies aimed at target organ protection have extraordinary potential for the treatment of sepsis and possibly for other inflammation-driven conditions. However, the mechanisms of organ protection and disease tolerance are either unknown or poorly characterized.
The central goal of the current proposal is to identify and characterize novel cytoprotective mechanisms, with a focus on DNA damage response dependent protection activated by anthracyclines as a window into stress-induced genetic programs conferring disease tolerance. To that end, we will carry out a combination of candidate and unbiased approaches for the in vivo identification of ATM-dependent and independent mechanisms of tissue protection. We will validate the leading candidates through adenovirus-mediated delivery of constructs for overexpression (gain-of-function) or shRNA for gene silencing (loss-of-function) to the lung, based on our recent finding that rescuing this organ is essential and perhaps sufficient in anthracycline-induced protection against severe sepsis. The candidates showing the most promise will be characterized using a combination of in vitro and in vivo genetic, biochemical, cell biological and physiological methods.
The results arising from the current proposal are likely not only to inspire the design of transformative therapies for sepsis but also to open a completely new field of opportunity to molecularly understand core surveillance mechanisms of basic cellular processes with a critical role in the homeostasis of organ function and whose activation can ultimately promote quality of life during aging and increase lifespan.
Max ERC Funding
1 985 375 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym JCR
Project Judicial Conflict Resolution: Examining Hybrids of Non-adversarial Justice
Researcher (PI) Michal Alberstein
Host Institution (HI) BAR ILAN UNIVERSITY
Call Details Consolidator Grant (CoG), SH2, ERC-2014-CoG
Summary In the past few decades, the role of judges has changed dramatically and its nature has remained largely unexplored. To date, most cases settle or reach plea-bargaining, and the greater part of judges’ time is spent on managing cases and encouraging parties to reach consensual solutions. Adjudication based on formal rules is a rare phenomenon which judges mostly avoid.
The hypothesis underlying JCR is that the various Conflict Resolution methods which are used outside the courtroom, as alternatives to adjudication, could have a strong and positive influence, both theoretical and practical, on judicial activities inside the courts. Judicial activities may be conceptualised along the lines of generic modes of conflict resolution such as mediation and arbitration. Judicial conflict resolution activity is performed in the shadow of authority and in tension with it, and crosses the boundaries between criminal and civil conflicts. It can be evaluated, studied and improved through criteria which go beyond the prevalent search for efficiency in court administration.
Empirically, JCR will study judicial activities in promoting settlements comparatively from a quantitative and qualitative perspective, by using statistical analysis, in-depth interviews, mapping and framing legal resources, court observations and narrative analysis. Theoretically, JCR will develop a conflict resolution jurisprudence, which prioritises consent over coercion as a leading value for the administration of justice. Prescriptively, JCR will promote a participatory endeavour to build training programs for judges that implement the research findings regarding the judicial role. Following such findings, JCR will also consider generating recommendations to change legal rules, codes of ethics, measures of evaluation, and policy framings. JCR will increase accountability and access to justice by introducing coherence into a mainstream activity of processing legal conflicts.
Summary
In the past few decades, the role of judges has changed dramatically and its nature has remained largely unexplored. To date, most cases settle or reach plea-bargaining, and the greater part of judges’ time is spent on managing cases and encouraging parties to reach consensual solutions. Adjudication based on formal rules is a rare phenomenon which judges mostly avoid.
The hypothesis underlying JCR is that the various Conflict Resolution methods which are used outside the courtroom, as alternatives to adjudication, could have a strong and positive influence, both theoretical and practical, on judicial activities inside the courts. Judicial activities may be conceptualised along the lines of generic modes of conflict resolution such as mediation and arbitration. Judicial conflict resolution activity is performed in the shadow of authority and in tension with it, and crosses the boundaries between criminal and civil conflicts. It can be evaluated, studied and improved through criteria which go beyond the prevalent search for efficiency in court administration.
Empirically, JCR will study judicial activities in promoting settlements comparatively from a quantitative and qualitative perspective, by using statistical analysis, in-depth interviews, mapping and framing legal resources, court observations and narrative analysis. Theoretically, JCR will develop a conflict resolution jurisprudence, which prioritises consent over coercion as a leading value for the administration of justice. Prescriptively, JCR will promote a participatory endeavour to build training programs for judges that implement the research findings regarding the judicial role. Following such findings, JCR will also consider generating recommendations to change legal rules, codes of ethics, measures of evaluation, and policy framings. JCR will increase accountability and access to justice by introducing coherence into a mainstream activity of processing legal conflicts.
Max ERC Funding
1 272 534 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym L-SID
Project Light and sound waves in silicon and nonlinear glass waveguides
Researcher (PI) Avinoam Zadok
Host Institution (HI) BAR ILAN UNIVERSITY
Call Details Starting Grant (StG), PE7, ERC-2015-STG
Summary The interplay of light and sound waves in matter has attracted the attention of researchers for decades and has found many technological applications. Photonic integrated circuits (PICs) provide an exciting playground for such investigations, due to wavelength-scale guiding structures, periodicity in one or two dimensions, and high-quality resonance structures. The objectives of this proposal are to introduce, investigate and employ interactions between guided optical modes and hyper-sonic acoustic waves, within PICs in silicon and in chalcogenide glass media. Both these platforms are extremely important: silicon for its potential for integration of photonics and digital micro-electronics and mature fabrication technology, and chalcogenides for their unique nonlinear-optical and photo-sensitive properties. However, the introduction of hyper-sonic acoustic waves to both materials is highly challenging, due to the absence of piezoelectricity.
To address these challenges, this project is based on developing and validating two alternative methods for the generation of high-frequency acoustic waves. First, photo-acoustic absorption of intense, ultrafast laser pulses by periodic, metallic patterns will be employed. The technique is being used in bulk silicon substrates, and will be carried over and adapted for use in silicon and chalcogenide glass PICs. Second, carefully controlled stimulated Brillouin scattering (SBS) processes will be used to excite acoustic waves along chalcogenide PICs in a highly localized fashion.
Prospective outcomes include new fundamental insights into the opto-mechanical properties of materials, films and periodic structures; novel functionalities of silicon and chalcogenide PICs, such as acousto-optic modulation, dynamic gratings and elasto-optic super-lattices; new types of sensors, such as chip-level distributed measurements of strain, temperature and modal profile; and a first look at non-local behaviour of SBS.
Summary
The interplay of light and sound waves in matter has attracted the attention of researchers for decades and has found many technological applications. Photonic integrated circuits (PICs) provide an exciting playground for such investigations, due to wavelength-scale guiding structures, periodicity in one or two dimensions, and high-quality resonance structures. The objectives of this proposal are to introduce, investigate and employ interactions between guided optical modes and hyper-sonic acoustic waves, within PICs in silicon and in chalcogenide glass media. Both these platforms are extremely important: silicon for its potential for integration of photonics and digital micro-electronics and mature fabrication technology, and chalcogenides for their unique nonlinear-optical and photo-sensitive properties. However, the introduction of hyper-sonic acoustic waves to both materials is highly challenging, due to the absence of piezoelectricity.
To address these challenges, this project is based on developing and validating two alternative methods for the generation of high-frequency acoustic waves. First, photo-acoustic absorption of intense, ultrafast laser pulses by periodic, metallic patterns will be employed. The technique is being used in bulk silicon substrates, and will be carried over and adapted for use in silicon and chalcogenide glass PICs. Second, carefully controlled stimulated Brillouin scattering (SBS) processes will be used to excite acoustic waves along chalcogenide PICs in a highly localized fashion.
Prospective outcomes include new fundamental insights into the opto-mechanical properties of materials, films and periodic structures; novel functionalities of silicon and chalcogenide PICs, such as acousto-optic modulation, dynamic gratings and elasto-optic super-lattices; new types of sensors, such as chip-level distributed measurements of strain, temperature and modal profile; and a first look at non-local behaviour of SBS.
Max ERC Funding
1 496 944 €
Duration
Start date: 2016-04-01, End date: 2021-03-31
Project acronym L2STAT
Project Statistical learning and L2 literacy acquisition: Towards a neurobiological theory of assimilating novel writing systems
Researcher (PI) Ram Frost
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Advanced Grant (AdG), SH4, ERC-2015-AdG
Summary The overarching goal of L2STAT is to understand L2 literacy acquisition by bringing together, for the first time, recent advances in the neurobiology of statistical learning (SL), a detailed statistical characterization of the world’s writing systems, and neurally-plausible general principles of learning, representation, and processing. L2STAT aims to provide a new theoretical framework that considers L2 learning and SL a two-way street: SL, on the one hand, tunes learners to the regularities of a new linguistic environment, and on the other hand, L2 environment shapes learners’ sensitivity to its specific types of statistical properties. The project will focus on the assimilation of reading skills in four novel linguistic environments, and investigate how exposure to their distinct writing systems shape, in turn, SL. L2STAT is an interdisciplinary project that launches in parallel five mutually informative research axes: 1) we employ advanced methods from computational linguistics and machine learning to precisely characterize the statistics of four highly contrasting writing systems (English, Spanish, Hebrew, Chinese). 2) We study the learning that results from biologically-inspired computational models that are exposed to these statistics, to generate a priori predictions regarding what statistical properties can (or cannot) be learned, and how neural mechanisms constrain the representations learned during L2 literacy acquisition. 3) We develop psychometrically reliable behavioral tests of individuals’ capacities to extract regularities in the visual and auditory modalities. 4) We use state of the art neuroimaging techniques including EEG, MEG, fMRI to probe the neurobiological underpinning for detecting regularities in the visual and auditory modalities. 5) We conduct behavioral experimentation in four sites (Israel, Spain, Taiwan to track literacy acquisition longitudinally in the four different languages.
Summary
The overarching goal of L2STAT is to understand L2 literacy acquisition by bringing together, for the first time, recent advances in the neurobiology of statistical learning (SL), a detailed statistical characterization of the world’s writing systems, and neurally-plausible general principles of learning, representation, and processing. L2STAT aims to provide a new theoretical framework that considers L2 learning and SL a two-way street: SL, on the one hand, tunes learners to the regularities of a new linguistic environment, and on the other hand, L2 environment shapes learners’ sensitivity to its specific types of statistical properties. The project will focus on the assimilation of reading skills in four novel linguistic environments, and investigate how exposure to their distinct writing systems shape, in turn, SL. L2STAT is an interdisciplinary project that launches in parallel five mutually informative research axes: 1) we employ advanced methods from computational linguistics and machine learning to precisely characterize the statistics of four highly contrasting writing systems (English, Spanish, Hebrew, Chinese). 2) We study the learning that results from biologically-inspired computational models that are exposed to these statistics, to generate a priori predictions regarding what statistical properties can (or cannot) be learned, and how neural mechanisms constrain the representations learned during L2 literacy acquisition. 3) We develop psychometrically reliable behavioral tests of individuals’ capacities to extract regularities in the visual and auditory modalities. 4) We use state of the art neuroimaging techniques including EEG, MEG, fMRI to probe the neurobiological underpinning for detecting regularities in the visual and auditory modalities. 5) We conduct behavioral experimentation in four sites (Israel, Spain, Taiwan to track literacy acquisition longitudinally in the four different languages.
Max ERC Funding
2 500 000 €
Duration
Start date: 2016-07-01, End date: 2021-06-30
Project acronym LDMThExp
Project Going Beyond the WIMP: From Theory to Detection of Light Dark Matter
Researcher (PI) Tomer Volansky
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Consolidator Grant (CoG), PE2, ERC-2015-CoG
Summary The identity of dark matter (DM) is still unknown. For more than three decades, significant theoretical and experimental efforts have been directed towards the search for a Weakly Interacting Massive Particle (WIMP), often overlooking other possibilities. The lack of an unambiguous positive signal, at indirect- and direct-detection experiments and at the LHC, stresses the need to expand on other theoretical possibilities, and more importantly, to develop new experimental capabilities. Indeed it is conceivable that the WIMP paradigm has been misleading, and other theoretically motivated scenarios must be explored vigorously.
This proposal focuses on light, sub-GeV dark matter. In addition to novel theoretical paradigms that point to DM in the low-mass regime, several new strategies to directly detect dark matter particles with MeV to GeV mass, far below standard direct detection capabilities, are studied. In particular, techniques to search for ionized electrons or chemical bond-breaking are considered. The latter possibility is revolutionary and requires new dedicated technologies and experiments. Sensitivity to one or few electrons, on the other hand, has been established and the PI has recently derived the first direct-detection limits on MeV to GeV dark matter using XENON10 data, demonstrating proof-of-principle. Significant efforts are required to lay the theoretical foundation of light DM and to study in depth and develop the various possibilities to directly detect it. The proposal is centered around these efforts.
The innovative theoretical paradigms and novel avenues to experimentally detect sub-GeV DM, open up a new and groundbreaking field of research. The proposal at hand takes the necessary steps, and offers the opportunity to pave the way and enable the discovery of such a particle, if it exists.
Summary
The identity of dark matter (DM) is still unknown. For more than three decades, significant theoretical and experimental efforts have been directed towards the search for a Weakly Interacting Massive Particle (WIMP), often overlooking other possibilities. The lack of an unambiguous positive signal, at indirect- and direct-detection experiments and at the LHC, stresses the need to expand on other theoretical possibilities, and more importantly, to develop new experimental capabilities. Indeed it is conceivable that the WIMP paradigm has been misleading, and other theoretically motivated scenarios must be explored vigorously.
This proposal focuses on light, sub-GeV dark matter. In addition to novel theoretical paradigms that point to DM in the low-mass regime, several new strategies to directly detect dark matter particles with MeV to GeV mass, far below standard direct detection capabilities, are studied. In particular, techniques to search for ionized electrons or chemical bond-breaking are considered. The latter possibility is revolutionary and requires new dedicated technologies and experiments. Sensitivity to one or few electrons, on the other hand, has been established and the PI has recently derived the first direct-detection limits on MeV to GeV dark matter using XENON10 data, demonstrating proof-of-principle. Significant efforts are required to lay the theoretical foundation of light DM and to study in depth and develop the various possibilities to directly detect it. The proposal is centered around these efforts.
The innovative theoretical paradigms and novel avenues to experimentally detect sub-GeV DM, open up a new and groundbreaking field of research. The proposal at hand takes the necessary steps, and offers the opportunity to pave the way and enable the discovery of such a particle, if it exists.
Max ERC Funding
1 822 083 €
Duration
Start date: 2016-03-01, End date: 2022-02-28
Project acronym LeukoTheranostics
Project Harnessing Targeted Nanotheranostics to Reprogram Activated Leukocytes in Inflammatory Bowel Disease
Researcher (PI) Dan Peer
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Consolidator Grant (CoG), LS7, ERC-2014-CoG
Summary "Inflammatory bowel diseases (IBD) is a group of chronic inflammatory conditions of the gastrointestinal tract, including Crohn’s disease (CD) and Ulcerative Colitis (UC) that can impact both the large and small bowel. IBD affects approximately 3.7 million Europeans and its peak onset is in persons of 15 to 30 years of age. IBD imposes a significant burden on Europe with over €3B in annual health care costs and over €3B in indirect cost. The prevalence of IBD is expected to increase by more than 40% over the next decade in many European countries. Therefore, to meet the needs of IBD patients in the European community, we must prepare for the evolving landscape of IBD care in the near future. Although its etiology remains unknown, unregulated immune cells are implicated in the pathogenesis of IBD. As many IBD patients are refractory to conventional medical treatments, there is an urgent need to develop novel therapeutic modalities in combination with real-time imaging in order to manage the disease. I will achieve this goal by generating a ""Trojan horse"" strategy of targeting activated leukocytes that home to the gut in IBD rodent models and reprogram their fate using RNA interference (RNAi) combined with molecular imaging.
The primary objective of this proposal is to reprogram in vivo activated leukocytes involved in gut inflammation using advanced RNAi-based therapeutics combined with molecular imaging strategies as the first theranostic modality utilizing leukocytes. The following specific aims include: (i) To develop and characterize unique integrin-targeted nanoparticles (I-tsNPs) targeting a high-affinity (HA) conformation of a4b7 integrin expressed on gut leukocytes; (ii) To study I-tsNPs 3-dimensional (3-D) delivery in colitis models using microPET/CT imaging; (iii) To investigate efficacy and safety profiles using the HA I-tsNPs platform for IBD therapeutics and disease management that will lay the foundation for future clinical trials.
"
Summary
"Inflammatory bowel diseases (IBD) is a group of chronic inflammatory conditions of the gastrointestinal tract, including Crohn’s disease (CD) and Ulcerative Colitis (UC) that can impact both the large and small bowel. IBD affects approximately 3.7 million Europeans and its peak onset is in persons of 15 to 30 years of age. IBD imposes a significant burden on Europe with over €3B in annual health care costs and over €3B in indirect cost. The prevalence of IBD is expected to increase by more than 40% over the next decade in many European countries. Therefore, to meet the needs of IBD patients in the European community, we must prepare for the evolving landscape of IBD care in the near future. Although its etiology remains unknown, unregulated immune cells are implicated in the pathogenesis of IBD. As many IBD patients are refractory to conventional medical treatments, there is an urgent need to develop novel therapeutic modalities in combination with real-time imaging in order to manage the disease. I will achieve this goal by generating a ""Trojan horse"" strategy of targeting activated leukocytes that home to the gut in IBD rodent models and reprogram their fate using RNA interference (RNAi) combined with molecular imaging.
The primary objective of this proposal is to reprogram in vivo activated leukocytes involved in gut inflammation using advanced RNAi-based therapeutics combined with molecular imaging strategies as the first theranostic modality utilizing leukocytes. The following specific aims include: (i) To develop and characterize unique integrin-targeted nanoparticles (I-tsNPs) targeting a high-affinity (HA) conformation of a4b7 integrin expressed on gut leukocytes; (ii) To study I-tsNPs 3-dimensional (3-D) delivery in colitis models using microPET/CT imaging; (iii) To investigate efficacy and safety profiles using the HA I-tsNPs platform for IBD therapeutics and disease management that will lay the foundation for future clinical trials.
"
Max ERC Funding
2 703 125 €
Duration
Start date: 2015-11-01, End date: 2020-10-31
Project acronym LIBPRPOC
Project Commercialization and Public Dissemination of LIBPR Research Results
Researcher (PI) David HAREL
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Proof of Concept (PoC), PC1, ERC-2012-PoC
Summary "Behavioral programming (BP), which is a direct outcome of the current LIBPR ERC grant, is a novel, language-independent development paradigm, centered around natural and incremental specification of behavior. It is currently implemented in multiple programming languages. BP allows building software applications from independent scenarios, each corresponding
to an individual requirement. The paradigm is supported by tools for fully executing the specification, and for debugging, execution planning, learning-based adaptivity, model-checking for detection of conflicting and incomplete requirements, and automatic repair of problems and conflicts. BP has the potential of allowing complex systems to be developed by large groups
of individuals, and subsequently to be maintained by different individuals, substantially reducing the need to understand the intricacies of already-existing code when implementing new requirements. This accelerates development and reduces costs. In the proposed POC project we plan to (a) make all the source code freely available to the public (b) develop rich example applications that help demonstrate and prove the benefits of BP concepts in a broad spectrum of real-world applications (c) upgrade our tools via bug repair and functional enhancements for broad usability of the proof-of-concept. These actions will allow potential end-users to directly benefit from our research
deliverables, and enable commercial companies, professional communities and individuals, to use the research results as a basis for developing commercial and free products."
Summary
"Behavioral programming (BP), which is a direct outcome of the current LIBPR ERC grant, is a novel, language-independent development paradigm, centered around natural and incremental specification of behavior. It is currently implemented in multiple programming languages. BP allows building software applications from independent scenarios, each corresponding
to an individual requirement. The paradigm is supported by tools for fully executing the specification, and for debugging, execution planning, learning-based adaptivity, model-checking for detection of conflicting and incomplete requirements, and automatic repair of problems and conflicts. BP has the potential of allowing complex systems to be developed by large groups
of individuals, and subsequently to be maintained by different individuals, substantially reducing the need to understand the intricacies of already-existing code when implementing new requirements. This accelerates development and reduces costs. In the proposed POC project we plan to (a) make all the source code freely available to the public (b) develop rich example applications that help demonstrate and prove the benefits of BP concepts in a broad spectrum of real-world applications (c) upgrade our tools via bug repair and functional enhancements for broad usability of the proof-of-concept. These actions will allow potential end-users to directly benefit from our research
deliverables, and enable commercial companies, professional communities and individuals, to use the research results as a basis for developing commercial and free products."
Max ERC Funding
150 000 €
Duration
Start date: 2013-03-01, End date: 2014-02-28
Project acronym lightMaterInt
Project Exploiting light and material interaction
Researcher (PI) Anat Levin Keslassy
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Starting Grant (StG), PE6, ERC-2014-STG
Summary The interaction between light and material leads to beautiful visual phenomena that greatly enrich our perception of the world. The ability to measure and model light scattering is central to almost any field of science. However, light transport in rich scenes is a complex process involving a long sequence of scattering events. Computationally modeling, reproducing and acquiring the processes generated so easily by Mother Nature is an extremely challenging task. While several computational models have been proposed, they are all making various simplifying assumptions that cannot capture the full complexity of light transport processes in nature. In the proposed research, we suggest new measurement strategies and new inference algorithms that will allow us to infer more information on light and material interaction.
Specifically, the research will focus on the following tasks: (i) Acquiring internal sub-scattering, and recovering the volumetric structure of partially translucent objects using transient imaging data; (ii) Acquiring external illumination from its reflection on diffused objects; (iii) Exploiting illumination for developing digital light sensitive displays, capable of presenting 3D scenes with spatially varying reflectance properties.
As light scattering is such a fundamental phenomenon, our envisioned new tools have applications in almost any field of science, from astronomy to microscopy, and in medicine. We plan to push the bound on the penetration depth of medical imaging devices, and allow chemists to infer more information on material decomposition through scattering. In earth science we can infer aerosol density from the scattering of sunlight in the atmosphere and ocean, a central challenge in any study of climate and pollution. In addition, we will pursue new technological developments such as light sensitive displays, offering a novel form of immersive visual experience, and new technologies of coded security cameras.
Summary
The interaction between light and material leads to beautiful visual phenomena that greatly enrich our perception of the world. The ability to measure and model light scattering is central to almost any field of science. However, light transport in rich scenes is a complex process involving a long sequence of scattering events. Computationally modeling, reproducing and acquiring the processes generated so easily by Mother Nature is an extremely challenging task. While several computational models have been proposed, they are all making various simplifying assumptions that cannot capture the full complexity of light transport processes in nature. In the proposed research, we suggest new measurement strategies and new inference algorithms that will allow us to infer more information on light and material interaction.
Specifically, the research will focus on the following tasks: (i) Acquiring internal sub-scattering, and recovering the volumetric structure of partially translucent objects using transient imaging data; (ii) Acquiring external illumination from its reflection on diffused objects; (iii) Exploiting illumination for developing digital light sensitive displays, capable of presenting 3D scenes with spatially varying reflectance properties.
As light scattering is such a fundamental phenomenon, our envisioned new tools have applications in almost any field of science, from astronomy to microscopy, and in medicine. We plan to push the bound on the penetration depth of medical imaging devices, and allow chemists to infer more information on material decomposition through scattering. In earth science we can infer aerosol density from the scattering of sunlight in the atmosphere and ocean, a central challenge in any study of climate and pollution. In addition, we will pursue new technological developments such as light sensitive displays, offering a novel form of immersive visual experience, and new technologies of coded security cameras.
Max ERC Funding
1 999 825 €
Duration
Start date: 2015-12-01, End date: 2021-08-31
Project acronym lincSAFARI
Project Sequence and Function Relationships in Long Intervening Noncoding RNAs
Researcher (PI) Igor Ulitsky
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Starting Grant (StG), LS2, ERC-2014-STG
Summary It is now clear that many intergenic regions in eukaryotic genomes give rise to a range of processed and regulated transcripts that do not appear to code for functional proteins. A subset of these are long (>200 nt), capped and polyadenylated RNAs transcribed by RNA polymerase II and collectively called long intervening noncoding RNAs or lincRNAs. The recent estimates are that the human genome encodes >10,000 distinct lincRNAs, many of which show tissue-specific expression and are frequently dysregulated in human disease, including neurodegeneration.
Given the growing number of lincRNAs implicated in human disease or required for proper development, fundamental questions that need to be addressed are: Which lincRNAs are functional? How is functional information encoded in the lincRNA sequence? Is this information interpreted in the context of the mature or the nascent RNA? What are the identities and functional roles of specific sequence domains within lincRNA genes?
Our main hypothesis is that many lincRNA loci play key roles in gene regulation during cell differentiation, both via functionally important transcription events and post-transcriptionally, through the combined action of multiple short sequence domains. We will test this hypothesis using three complementary approaches – comparative genomics, detailed perturbations in mammalian cells followed by quantitative molecular phenotyping, and high-throughput screens for sequences able to carry out specific functions.
We propose an interdisciplinary approach combining computational, molecular and stem cell biology. Our methodology will be scalable, allowing us to tackle completely uncharacterized long RNAs and eventually zoom in and study their individual bases. Upon successful accomplishment of the program, we will delineate modes of action of numerous lincRNAs, report sequence patches that are functionally important and understand how specific bases and structures act in concert to drive lincRNA function.
Summary
It is now clear that many intergenic regions in eukaryotic genomes give rise to a range of processed and regulated transcripts that do not appear to code for functional proteins. A subset of these are long (>200 nt), capped and polyadenylated RNAs transcribed by RNA polymerase II and collectively called long intervening noncoding RNAs or lincRNAs. The recent estimates are that the human genome encodes >10,000 distinct lincRNAs, many of which show tissue-specific expression and are frequently dysregulated in human disease, including neurodegeneration.
Given the growing number of lincRNAs implicated in human disease or required for proper development, fundamental questions that need to be addressed are: Which lincRNAs are functional? How is functional information encoded in the lincRNA sequence? Is this information interpreted in the context of the mature or the nascent RNA? What are the identities and functional roles of specific sequence domains within lincRNA genes?
Our main hypothesis is that many lincRNA loci play key roles in gene regulation during cell differentiation, both via functionally important transcription events and post-transcriptionally, through the combined action of multiple short sequence domains. We will test this hypothesis using three complementary approaches – comparative genomics, detailed perturbations in mammalian cells followed by quantitative molecular phenotyping, and high-throughput screens for sequences able to carry out specific functions.
We propose an interdisciplinary approach combining computational, molecular and stem cell biology. Our methodology will be scalable, allowing us to tackle completely uncharacterized long RNAs and eventually zoom in and study their individual bases. Upon successful accomplishment of the program, we will delineate modes of action of numerous lincRNAs, report sequence patches that are functionally important and understand how specific bases and structures act in concert to drive lincRNA function.
Max ERC Funding
1 500 000 €
Duration
Start date: 2015-06-01, End date: 2020-05-31
Project acronym LineageDiscovery
Project Laying the Biological, Computational and Architectural Foundations for Human Cell Lineage Discovery
Researcher (PI) Ehud Shapiro
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Advanced Grant (AdG), LS2, ERC-2014-ADG
Summary Within a decade, advances in single-cell genomics would allow humanity to embark on a coordinated international effort to discover the human cell lineage tree. The goal of LineageDiscovery is to lay the biological, computational and architectural foundations for this envisioned project and demonstrate its feasibility and value.
An organismal cell lineage tree is a rooted, labelled binary tree where nodes represent organism cells, edges represent progeny relations and labels capture cell state. The tree of an adult human has about 100 trillion nodes. Many fundamental open questions in biology and medicine are about the structure, dynamics and variance of the human cell lineage tree in development, health, ageing and disease. E.g., which cancer cells give rise to metastases? Do beta cells renew? Which progeny do brain stem cells produce in development, maintenance and ageing?
LineageDiscovery is based on a decade of research on this challenge by Shapiro’s lab and others. It will develop an efficient biological-computational cell lineage discovery workflow that starts with sampled cells and ends with knowledge of their cell lineage tree; and a scalable architecture for the collaborative development and the distributed deployment of this workflow. The workflow will be based on emerging single-cell technologies and will include novel algorithms to analyse single-cell data, to reconstruct cell lineage trees, and to infer ancestral cell type and state dynamics. A programmable meta-system will be developed and used for workflow optimization and evaluation. The workflow and architecture will be deployed and tested in a broad range of proof-of-concept human cell lineage discovery experiments with self-funded collaborators.
Successful execution of this research plan coupled with expected advances in single-cell genomics would establish both the feasibility and the value of the envisioned large-scale human cell lineage discovery project, ideally leading to its launch.
Summary
Within a decade, advances in single-cell genomics would allow humanity to embark on a coordinated international effort to discover the human cell lineage tree. The goal of LineageDiscovery is to lay the biological, computational and architectural foundations for this envisioned project and demonstrate its feasibility and value.
An organismal cell lineage tree is a rooted, labelled binary tree where nodes represent organism cells, edges represent progeny relations and labels capture cell state. The tree of an adult human has about 100 trillion nodes. Many fundamental open questions in biology and medicine are about the structure, dynamics and variance of the human cell lineage tree in development, health, ageing and disease. E.g., which cancer cells give rise to metastases? Do beta cells renew? Which progeny do brain stem cells produce in development, maintenance and ageing?
LineageDiscovery is based on a decade of research on this challenge by Shapiro’s lab and others. It will develop an efficient biological-computational cell lineage discovery workflow that starts with sampled cells and ends with knowledge of their cell lineage tree; and a scalable architecture for the collaborative development and the distributed deployment of this workflow. The workflow will be based on emerging single-cell technologies and will include novel algorithms to analyse single-cell data, to reconstruct cell lineage trees, and to infer ancestral cell type and state dynamics. A programmable meta-system will be developed and used for workflow optimization and evaluation. The workflow and architecture will be deployed and tested in a broad range of proof-of-concept human cell lineage discovery experiments with self-funded collaborators.
Successful execution of this research plan coupled with expected advances in single-cell genomics would establish both the feasibility and the value of the envisioned large-scale human cell lineage discovery project, ideally leading to its launch.
Max ERC Funding
2 250 000 €
Duration
Start date: 2015-09-01, End date: 2020-07-31
Project acronym LIVIN
Project Light-Vapour Interactions at the Nanoscale
Researcher (PI) Uriel Levy
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Consolidator Grant (CoG), PE2, ERC-2014-CoG
Summary The goal of this research is to develop a chip scale toolkit for exploring light-vapour interactions at the nanoscale. The integration of hot vapour cells with nanophotonics technology will be used for enhancing the interaction of light with vapours and for constructing miniaturized devices. Our main objectives are: I-developing an advanced and versatile platform which allows for the construction of miniaturized devices bringing together photonics/plasmonics and atomic vapours. II-exploring the science of light-vapour interactions at the nanoscale. III–exploiting the benefits and the uniqueness of our approach for mitigating challenging applications.
Two major platforms will be studied in great details. One is based on combining vapour cells with nanoscale dielectric waveguides and resonators, while the other consists of nanoscale plasmonic structures integrated with hot vapour cells. Using these platforms, plethora of physical effects will be studied and important applications will be demonstrated. Few examples include the study of atomic transitions near surfaces, weak and strong coupling between photonic and atomic resonant systems, slow and fast light effects, nonlinear optics, frequency standards and magnetometry. The proposed approach provides unique features, e.g. high optical densities, low power consumption, well-controlled coupling and small device footprint together with true chip scale integration. For example, owing to the enhanced light-vapour interaction and the small volume of the optical mode, it allows to explore few photons-few atoms interactions, with the ultimate goal of demonstrating effects in the single photon level regime.
Given the uniqueness of our approach, the successful implementation of the proposed research should provide an outstanding playground for conducting basic and applied research in the fields of nanophotonics, plasmonics and atomic physics, and will serve as a landmark for constructing novel miniaturized quantum devices.
Summary
The goal of this research is to develop a chip scale toolkit for exploring light-vapour interactions at the nanoscale. The integration of hot vapour cells with nanophotonics technology will be used for enhancing the interaction of light with vapours and for constructing miniaturized devices. Our main objectives are: I-developing an advanced and versatile platform which allows for the construction of miniaturized devices bringing together photonics/plasmonics and atomic vapours. II-exploring the science of light-vapour interactions at the nanoscale. III–exploiting the benefits and the uniqueness of our approach for mitigating challenging applications.
Two major platforms will be studied in great details. One is based on combining vapour cells with nanoscale dielectric waveguides and resonators, while the other consists of nanoscale plasmonic structures integrated with hot vapour cells. Using these platforms, plethora of physical effects will be studied and important applications will be demonstrated. Few examples include the study of atomic transitions near surfaces, weak and strong coupling between photonic and atomic resonant systems, slow and fast light effects, nonlinear optics, frequency standards and magnetometry. The proposed approach provides unique features, e.g. high optical densities, low power consumption, well-controlled coupling and small device footprint together with true chip scale integration. For example, owing to the enhanced light-vapour interaction and the small volume of the optical mode, it allows to explore few photons-few atoms interactions, with the ultimate goal of demonstrating effects in the single photon level regime.
Given the uniqueness of our approach, the successful implementation of the proposed research should provide an outstanding playground for conducting basic and applied research in the fields of nanophotonics, plasmonics and atomic physics, and will serve as a landmark for constructing novel miniaturized quantum devices.
Max ERC Funding
1 998 863 €
Duration
Start date: 2015-06-01, End date: 2020-05-31
Project acronym LocalOrder
Project Localization and Ordering Phenomena in Statistical Physics, Probability Theory and Combinatorics
Researcher (PI) Ron Peled
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Starting Grant (StG), PE1, ERC-2015-STG
Summary Mathematical statistical physics has seen spectacular progress in recent years. Existing problems which were previously unattainable were solved, opening a way to approach some of the classical open questions in the field. The proposed research focuses on phenomena of localization and long-range order in physical systems of large size, identifying several fundamental questions lying at the interface of Statistical Physics, Probability Theory and Combinatorics.
One circle of questions concerns the fluctuation behavior of random surfaces, where the PI has recently proved delocalization in two dimensions answering a 1975 question of Brascamp, Lieb and Lebowitz. A main goal of the research is to establish some of the long-standing universality conjectures for random surfaces. This study is also tied to the localization features of random operators, such as random Schrodinger operators and band matrices, as well as those of reinforced random walks. The PI intends to develop this connection further to bring the state-of-the-art to the conjectured thresholds.
A second circle of questions regards long-range order in high-dimensional systems. This phenomenon is predicted to encompass many models of statistical physics but rigorous results are quite limited. A notable example is the PI’s proof of Kotecky’s 1985 conjecture on the rigidity of proper 3-colorings in high dimensions. The methods used in this context are not limited to high dimensions and were recently used by the PI to prove the analogue for the loop O(n) model of Polyakov’s 1975 prediction that the 2D Heisenberg model and its higher spin versions exhibit exponential decay of correlations at any temperature.
Lastly, statistical physics methods are proposed for solving purely combinatorial problems. The PI has applied this approach successfully to solve questions of existence and asymptotics for combinatorial structures and intends to develop it further to answer some of the tantalizing open questions in the field.
Summary
Mathematical statistical physics has seen spectacular progress in recent years. Existing problems which were previously unattainable were solved, opening a way to approach some of the classical open questions in the field. The proposed research focuses on phenomena of localization and long-range order in physical systems of large size, identifying several fundamental questions lying at the interface of Statistical Physics, Probability Theory and Combinatorics.
One circle of questions concerns the fluctuation behavior of random surfaces, where the PI has recently proved delocalization in two dimensions answering a 1975 question of Brascamp, Lieb and Lebowitz. A main goal of the research is to establish some of the long-standing universality conjectures for random surfaces. This study is also tied to the localization features of random operators, such as random Schrodinger operators and band matrices, as well as those of reinforced random walks. The PI intends to develop this connection further to bring the state-of-the-art to the conjectured thresholds.
A second circle of questions regards long-range order in high-dimensional systems. This phenomenon is predicted to encompass many models of statistical physics but rigorous results are quite limited. A notable example is the PI’s proof of Kotecky’s 1985 conjecture on the rigidity of proper 3-colorings in high dimensions. The methods used in this context are not limited to high dimensions and were recently used by the PI to prove the analogue for the loop O(n) model of Polyakov’s 1975 prediction that the 2D Heisenberg model and its higher spin versions exhibit exponential decay of correlations at any temperature.
Lastly, statistical physics methods are proposed for solving purely combinatorial problems. The PI has applied this approach successfully to solve questions of existence and asymptotics for combinatorial structures and intends to develop it further to answer some of the tantalizing open questions in the field.
Max ERC Funding
1 136 904 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym LOCOMOUSE
Project Cerebellar circuit mechanisms of coordinated locomotion in mice
Researcher (PI) Megan Rose Carey
Host Institution (HI) FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD
Call Details Starting Grant (StG), LS5, ERC-2014-STG
Summary A remarkable aspect of motor control is our seemingly effortless ability to generate coordinated movements. How is activity within neural circuits orchestrated to allow us to engage in complex activities like gymnastics, riding a bike, or walking down the street while drinking a cup of coffee? The cerebellum is critical for coordinated movement, and the well-described, stereotyped circuitry of the cerebellum has made it an attractive system for neural circuits research. Much is known about how activity and plasticity in its identified cell types contribute to simple forms of motor learning. In contrast, while gait ataxia, or uncoordinated walking, is a hallmark of cerebellar damage, the circuit mechanisms underlying cerebellar contributions to coordinated locomotion are not well understood. One limitation has been the difficulty in extracting quantitative measures of coordination from the complex, whole body action of locomotion. We have developed a custom-built system (LocoMouse) to analyze mouse locomotor coordination. It tracks continuous paw, snout, and tail trajectories in 3D with unprecedented spatiotemporal resolution and it has allowed us to identify specific, quantitative locomotor elements that depend on intact cerebellar function. Here we will combine this quantitative behavioral approach with electrophysiology and optogenetics to investigate circuit mechanisms of locomotor coordination. We will 1) Optogenetically silence the output of cerebellar subregions to understand their distinct contributions to locomotion. 2) Record from identified neurons and correlate their activity with specific locomotor parameters. 3) Optogenetically stimulate defined cell types to investigate circuit mechanisms of coordinated locomotion. These experiments will establish causal relationships between neural circuit activity and coordinated motor control, a problem with important implications for both health and disease.
Summary
A remarkable aspect of motor control is our seemingly effortless ability to generate coordinated movements. How is activity within neural circuits orchestrated to allow us to engage in complex activities like gymnastics, riding a bike, or walking down the street while drinking a cup of coffee? The cerebellum is critical for coordinated movement, and the well-described, stereotyped circuitry of the cerebellum has made it an attractive system for neural circuits research. Much is known about how activity and plasticity in its identified cell types contribute to simple forms of motor learning. In contrast, while gait ataxia, or uncoordinated walking, is a hallmark of cerebellar damage, the circuit mechanisms underlying cerebellar contributions to coordinated locomotion are not well understood. One limitation has been the difficulty in extracting quantitative measures of coordination from the complex, whole body action of locomotion. We have developed a custom-built system (LocoMouse) to analyze mouse locomotor coordination. It tracks continuous paw, snout, and tail trajectories in 3D with unprecedented spatiotemporal resolution and it has allowed us to identify specific, quantitative locomotor elements that depend on intact cerebellar function. Here we will combine this quantitative behavioral approach with electrophysiology and optogenetics to investigate circuit mechanisms of locomotor coordination. We will 1) Optogenetically silence the output of cerebellar subregions to understand their distinct contributions to locomotion. 2) Record from identified neurons and correlate their activity with specific locomotor parameters. 3) Optogenetically stimulate defined cell types to investigate circuit mechanisms of coordinated locomotion. These experiments will establish causal relationships between neural circuit activity and coordinated motor control, a problem with important implications for both health and disease.
Max ERC Funding
1 496 750 €
Duration
Start date: 2015-05-01, End date: 2020-04-30