Project acronym aCROBAT
Project Circadian Regulation Of Brown Adipose Thermogenesis
Researcher (PI) Zachary Philip Gerhart-Hines
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), LS4, ERC-2014-STG
Summary Obesity and diabetes have reached pandemic proportions and new therapeutic strategies are critically needed. Brown adipose tissue (BAT), a major source of heat production, possesses significant energy-dissipating capacity and therefore represents a promising target to use in combating these diseases. Recently, I discovered a novel link between circadian rhythm and thermogenic stress in the control of the conserved, calorie-burning functions of BAT. Circadian and thermogenic signaling to BAT incorporates blood-borne hormonal and nutrient cues with direct neuronal input. Yet how these responses coordinately shape BAT energy-expending potential through the regulation of cell surface receptors, metabolic enzymes, and transcriptional effectors is still not understood. My primary goal is to investigate this previously unappreciated network of crosstalk that allows mammals to effectively orchestrate daily rhythms in BAT metabolism, while maintaining their ability to adapt to abrupt changes in energy demand. My group will address this question using gain and loss-of-function in vitro and in vivo studies, newly-generated mouse models, customized physiological phenotyping, and cutting-edge advances in next generation RNA sequencing and mass spectrometry. Preliminary, small-scale validations of our methodologies have already yielded a number of novel candidates that may drive key facets of BAT metabolism. Additionally, we will extend our circadian and thermogenic studies into humans to evaluate the translational potential. Our results will advance the fundamental understanding of how daily oscillations in bioenergetic networks establish a framework for the anticipation of and adaptation to environmental challenges. Importantly, we expect that these mechanistic insights will reveal pharmacological targets through which we can unlock evolutionary constraints and harness the energy-expending potential of BAT for the prevention and treatment of obesity and diabetes.
Summary
Obesity and diabetes have reached pandemic proportions and new therapeutic strategies are critically needed. Brown adipose tissue (BAT), a major source of heat production, possesses significant energy-dissipating capacity and therefore represents a promising target to use in combating these diseases. Recently, I discovered a novel link between circadian rhythm and thermogenic stress in the control of the conserved, calorie-burning functions of BAT. Circadian and thermogenic signaling to BAT incorporates blood-borne hormonal and nutrient cues with direct neuronal input. Yet how these responses coordinately shape BAT energy-expending potential through the regulation of cell surface receptors, metabolic enzymes, and transcriptional effectors is still not understood. My primary goal is to investigate this previously unappreciated network of crosstalk that allows mammals to effectively orchestrate daily rhythms in BAT metabolism, while maintaining their ability to adapt to abrupt changes in energy demand. My group will address this question using gain and loss-of-function in vitro and in vivo studies, newly-generated mouse models, customized physiological phenotyping, and cutting-edge advances in next generation RNA sequencing and mass spectrometry. Preliminary, small-scale validations of our methodologies have already yielded a number of novel candidates that may drive key facets of BAT metabolism. Additionally, we will extend our circadian and thermogenic studies into humans to evaluate the translational potential. Our results will advance the fundamental understanding of how daily oscillations in bioenergetic networks establish a framework for the anticipation of and adaptation to environmental challenges. Importantly, we expect that these mechanistic insights will reveal pharmacological targets through which we can unlock evolutionary constraints and harness the energy-expending potential of BAT for the prevention and treatment of obesity and diabetes.
Max ERC Funding
1 497 008 €
Duration
Start date: 2015-05-01, End date: 2020-04-30
Project acronym AngioGenesHD
Project Epistasis analysis of angiogenes with high cellular definition
Researcher (PI) Rui Miguel Dos Santos Benedito
Host Institution (HI) CENTRO NACIONAL DE INVESTIGACIONESCARDIOVASCULARES CARLOS III (F.S.P.)
Call Details Starting Grant (StG), LS4, ERC-2014-STG
Summary Blood and lymphatic vessels have been the subject of intense investigation due to their important role in cancer development and in cardiovascular diseases. The significant advance in the methods used to modify and analyse gene function have allowed us to obtain a much better understanding of the molecular mechanisms involved in the regulation of the biology of blood vessels. However, there are two key aspects that significantly diminish our capacity to understand the function of gene networks and their intersections in vivo. One is the long time that is usually required to generate a given double mutant vertebrate tissue, and the other is the lack of single-cell genetic and phenotypic resolution. We have recently performed an in vivo comparative transcriptome analysis of highly angiogenic endothelial cells experiencing different VEGF and Notch signalling levels. These are two of the most important molecular mechanisms required for the adequate differentiation, proliferation and sprouting of endothelial cells. Using the information generated from this analysis, the overall aim of the proposed project is to characterize the vascular function of some of the previously identified genes and determine how they functionally interact with these two signalling pathways. We propose to use novel inducible genetic tools that will allow us to generate a spatially and temporally regulated fluorescent cell mosaic matrix for quantitative analysis. This will enable us to analyse with unprecedented speed and resolution the function of several different genes simultaneously, during vascular development, homeostasis or associated diseases. Understanding the genetic epistatic interactions that control the differentiation and behaviour of endothelial cells, in different contexts, and with high cellular definition, has the potential to unveil new mechanisms with high biological and therapeutic relevance.
Summary
Blood and lymphatic vessels have been the subject of intense investigation due to their important role in cancer development and in cardiovascular diseases. The significant advance in the methods used to modify and analyse gene function have allowed us to obtain a much better understanding of the molecular mechanisms involved in the regulation of the biology of blood vessels. However, there are two key aspects that significantly diminish our capacity to understand the function of gene networks and their intersections in vivo. One is the long time that is usually required to generate a given double mutant vertebrate tissue, and the other is the lack of single-cell genetic and phenotypic resolution. We have recently performed an in vivo comparative transcriptome analysis of highly angiogenic endothelial cells experiencing different VEGF and Notch signalling levels. These are two of the most important molecular mechanisms required for the adequate differentiation, proliferation and sprouting of endothelial cells. Using the information generated from this analysis, the overall aim of the proposed project is to characterize the vascular function of some of the previously identified genes and determine how they functionally interact with these two signalling pathways. We propose to use novel inducible genetic tools that will allow us to generate a spatially and temporally regulated fluorescent cell mosaic matrix for quantitative analysis. This will enable us to analyse with unprecedented speed and resolution the function of several different genes simultaneously, during vascular development, homeostasis or associated diseases. Understanding the genetic epistatic interactions that control the differentiation and behaviour of endothelial cells, in different contexts, and with high cellular definition, has the potential to unveil new mechanisms with high biological and therapeutic relevance.
Max ERC Funding
1 481 375 €
Duration
Start date: 2015-03-01, End date: 2020-02-29
Project acronym Angiolnc
Project Endothelial long non-coding RNAs
Researcher (PI) Stefanie Dimmeler
Host Institution (HI) JOHANN WOLFGANG GOETHE-UNIVERSITATFRANKFURT AM MAIN
Call Details Advanced Grant (AdG), LS4, ERC-2014-ADG
Summary Endothelial cells comprise the inner cellular cover of the vasculature, which delivers metabolites and oxygen to the tissue. Dysfunction of endothelial cells as it occurs during aging or metabolic syndromes can result in atherosclerosis, which can lead to myocardial infarction or stroke, whereas pathological angiogenesis contributes to tumor growth and diabetic retinopathy. Thus, endothelial cells play central roles in pathophysiological processes of many diseases including cardiovascular diseases and cancer. Many studies explored the regulation of endothelial cell functions by growth factors, but the impact of epigenetic mechanisms and particularly the role of novel non-coding RNAs is largely unknown. More than 70 % of the human genome encodes for non-coding RNAs (ncRNAs) and increasing evidence suggests that a significant portion of these ncRNAs are functionally active as RNA molecules. Angiolnc aims to explore the function of long ncRNAs (lncRNAs) and particular circular RNAs (circRNAs) in the endothelium. LncRNAs comprise a heterogenic class of RNAs with a length of > 200 nucleotides and circRNAs are generated by back splicing.
Angiolnc is based on the discovery of novel endothelial hypoxia-regulated lncRNAs and circRNAs by next generation sequencing. To begin to understand the potential functions of lncRNAs in the endothelium, we will study two lncRNAs, named Angiolnc1 und Angiolnc2, as prototypical examples of endothelial cell-enriched lncRNAs that are regulated by oxygen levels. We will further dissect the epigenetic mechanisms, by which these lncRNAs regulate endothelial cell function. In the second part of the application, we will determine the regulation and function of circRNAs, which may act as molecular sponges in the cytoplasm. Finally, we will study the function of identified lncRNAs and circRNAs in mouse models and measure their expression in human specimens in order to determine their role as therapeutic targets or diagnostic tools.
Summary
Endothelial cells comprise the inner cellular cover of the vasculature, which delivers metabolites and oxygen to the tissue. Dysfunction of endothelial cells as it occurs during aging or metabolic syndromes can result in atherosclerosis, which can lead to myocardial infarction or stroke, whereas pathological angiogenesis contributes to tumor growth and diabetic retinopathy. Thus, endothelial cells play central roles in pathophysiological processes of many diseases including cardiovascular diseases and cancer. Many studies explored the regulation of endothelial cell functions by growth factors, but the impact of epigenetic mechanisms and particularly the role of novel non-coding RNAs is largely unknown. More than 70 % of the human genome encodes for non-coding RNAs (ncRNAs) and increasing evidence suggests that a significant portion of these ncRNAs are functionally active as RNA molecules. Angiolnc aims to explore the function of long ncRNAs (lncRNAs) and particular circular RNAs (circRNAs) in the endothelium. LncRNAs comprise a heterogenic class of RNAs with a length of > 200 nucleotides and circRNAs are generated by back splicing.
Angiolnc is based on the discovery of novel endothelial hypoxia-regulated lncRNAs and circRNAs by next generation sequencing. To begin to understand the potential functions of lncRNAs in the endothelium, we will study two lncRNAs, named Angiolnc1 und Angiolnc2, as prototypical examples of endothelial cell-enriched lncRNAs that are regulated by oxygen levels. We will further dissect the epigenetic mechanisms, by which these lncRNAs regulate endothelial cell function. In the second part of the application, we will determine the regulation and function of circRNAs, which may act as molecular sponges in the cytoplasm. Finally, we will study the function of identified lncRNAs and circRNAs in mouse models and measure their expression in human specimens in order to determine their role as therapeutic targets or diagnostic tools.
Max ERC Funding
2 497 398 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym APOLs
Project Role of Apolipoproteins L in immunity and disease
Researcher (PI) Etienne Pays
Host Institution (HI) UNIVERSITE LIBRE DE BRUXELLES
Call Details Advanced Grant (AdG), LS6, ERC-2014-ADG
Summary Work conducted in my laboratory on the trypanosome killing factor of human serum led to the identification
of the primate-specific Apolipoprotein L1 (APOL1) as a novel pore-forming protein with striking similarities
with proteins of the apoptotic BCL2 family. APOL1 belongs to a family of proteins induced under
inflammatory conditions in myeloid and endothelial cells. APOL1 is efficiently neutralized by the SRA
protein of Trypanosoma rhodesiense, accounting for the ability of this trypanosome subspecies to infect
humans and cause sleeping sickness. We found that natural APOL1 variants escaping SRA neutralization and
therefore conferring human resistance to T. rhodesiense are associated with chronic kidney disease.
Moreover, transgenic mice expressing these APOL1 variants exhibit an obese phenotype. Our unpublished
results also indicate that APOLs control the lifespan of dendritic cells and podocytes activated by viral
stimuli. Therefore, we propose that the pathology of APOL variants is due to their deregulated activity on the
control of the cellular lifespan in myeloid/endothelial cells activated by pathogen detection.
This project aims at characterizing (i) the molecular mechanism by which APOLs control the lifespan of
activated dendritic cells and podocytes, which has direct impact on innate immunity and inflammation, and
(ii) the mechanism by which APOL1 variants cause pathology. In addition, we plan to detail the
physiological function of APOLs by studying the phenotype of transgenic mice either expressing human
APOL1 (wild-type and variants) or devoid of APOL genes, which we have recently generated. Finally, we
propose to exploit the extraordinary potential of trypanosomes for antigenic variation in order to produce
SRA variants able to neutralize the pathogenic APOL1 variants. Preliminary experiments suggest that in
podocytes SRA antagonizes APOL1 induction by viral stimulus and subsequent cell death, opening new
perspectives to treat kidney disease.
Summary
Work conducted in my laboratory on the trypanosome killing factor of human serum led to the identification
of the primate-specific Apolipoprotein L1 (APOL1) as a novel pore-forming protein with striking similarities
with proteins of the apoptotic BCL2 family. APOL1 belongs to a family of proteins induced under
inflammatory conditions in myeloid and endothelial cells. APOL1 is efficiently neutralized by the SRA
protein of Trypanosoma rhodesiense, accounting for the ability of this trypanosome subspecies to infect
humans and cause sleeping sickness. We found that natural APOL1 variants escaping SRA neutralization and
therefore conferring human resistance to T. rhodesiense are associated with chronic kidney disease.
Moreover, transgenic mice expressing these APOL1 variants exhibit an obese phenotype. Our unpublished
results also indicate that APOLs control the lifespan of dendritic cells and podocytes activated by viral
stimuli. Therefore, we propose that the pathology of APOL variants is due to their deregulated activity on the
control of the cellular lifespan in myeloid/endothelial cells activated by pathogen detection.
This project aims at characterizing (i) the molecular mechanism by which APOLs control the lifespan of
activated dendritic cells and podocytes, which has direct impact on innate immunity and inflammation, and
(ii) the mechanism by which APOL1 variants cause pathology. In addition, we plan to detail the
physiological function of APOLs by studying the phenotype of transgenic mice either expressing human
APOL1 (wild-type and variants) or devoid of APOL genes, which we have recently generated. Finally, we
propose to exploit the extraordinary potential of trypanosomes for antigenic variation in order to produce
SRA variants able to neutralize the pathogenic APOL1 variants. Preliminary experiments suggest that in
podocytes SRA antagonizes APOL1 induction by viral stimulus and subsequent cell death, opening new
perspectives to treat kidney disease.
Max ERC Funding
2 250 000 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym ApoptoMDS
Project Hematopoietic stem cell Apoptosis in bone marrow failure and MyeloDysplastic Syndromes: Friend or foe?
Researcher (PI) Miriam Erlacher
Host Institution (HI) UNIVERSITAETSKLINIKUM FREIBURG
Call Details Starting Grant (StG), LS4, ERC-2014-STG
Summary Deregulated apoptotic signaling in hematopoietic stem and progenitor cells (HSPCs) strongly contributes to the pathogenesis and phenotypes of congenital bone marrow failure and myelodysplastic syndromes (MDS) and their progression to acute myeloid leukemia (AML). HSPCs are highly susceptible to apoptosis during bone marrow failure and early MDS, but AML evolution selects for apoptosis resistance. Little is known about the main apoptotic players and their regulators. ApoptoMDS will investigate the impact of apoptotic deregulation for pathogenesis, correlate apoptotic susceptibility with the kinetics of disease progression and characterize the mechanism by which apoptotic susceptibility turns into resistance. ApoptoMDS will draw on a large collection of patient-derived samples and genetically engineered mouse models to investigate disease progression in serially transplanted and xenotransplanted mice. How activated DNA damage checkpoint signaling contributes to syndrome phenotypes and HSPC hypersusceptibility to apoptosis will be assessed. Checkpoint activation confers a competitive disadvantage, and HSPCs undergoing malignant transformation are under high selective pressure to inactivate it. Checkpoint abrogation mitigates the hematological phenotype, but increases the risk of AML evolution. ApoptoMDS aims to analyze if inhibiting apoptosis in HSPCs from bone marrow failure and early-stage MDS can overcome the dilemma of checkpoint abrogation. Whether inhibiting apoptosis is sufficient to improve HSPC function will be tested on several levels and validated in patient-derived samples. How inhibiting apoptosis in the presence of functional checkpoint signaling influences malignant transformation kinetics will be assessed. If, as hypothesized, inhibiting apoptosis both mitigates hematological symptoms and delays AML evolution, ApoptoMDS will pave the way for novel therapeutic approaches to expand the less severe symptomatic period for patients with these syndromes.
Summary
Deregulated apoptotic signaling in hematopoietic stem and progenitor cells (HSPCs) strongly contributes to the pathogenesis and phenotypes of congenital bone marrow failure and myelodysplastic syndromes (MDS) and their progression to acute myeloid leukemia (AML). HSPCs are highly susceptible to apoptosis during bone marrow failure and early MDS, but AML evolution selects for apoptosis resistance. Little is known about the main apoptotic players and their regulators. ApoptoMDS will investigate the impact of apoptotic deregulation for pathogenesis, correlate apoptotic susceptibility with the kinetics of disease progression and characterize the mechanism by which apoptotic susceptibility turns into resistance. ApoptoMDS will draw on a large collection of patient-derived samples and genetically engineered mouse models to investigate disease progression in serially transplanted and xenotransplanted mice. How activated DNA damage checkpoint signaling contributes to syndrome phenotypes and HSPC hypersusceptibility to apoptosis will be assessed. Checkpoint activation confers a competitive disadvantage, and HSPCs undergoing malignant transformation are under high selective pressure to inactivate it. Checkpoint abrogation mitigates the hematological phenotype, but increases the risk of AML evolution. ApoptoMDS aims to analyze if inhibiting apoptosis in HSPCs from bone marrow failure and early-stage MDS can overcome the dilemma of checkpoint abrogation. Whether inhibiting apoptosis is sufficient to improve HSPC function will be tested on several levels and validated in patient-derived samples. How inhibiting apoptosis in the presence of functional checkpoint signaling influences malignant transformation kinetics will be assessed. If, as hypothesized, inhibiting apoptosis both mitigates hematological symptoms and delays AML evolution, ApoptoMDS will pave the way for novel therapeutic approaches to expand the less severe symptomatic period for patients with these syndromes.
Max ERC Funding
1 372 525 €
Duration
Start date: 2015-06-01, End date: 2020-05-31
Project acronym AUROMYC
Project N-Myc and Aurora A: From Protein Stability to Chromosome TopologyN-Myc and Aurora A: From Protein Stability to Chromosome TopologyMyc and Aurora A: From Protein Stability to Chromosome Topology
Researcher (PI) Martin Eilers
Host Institution (HI) JULIUS-MAXIMILIANS-UNIVERSITAT WURZBURG
Call Details Advanced Grant (AdG), LS4, ERC-2014-ADG
Summary There is an intense interest in the function of human Myc proteins that stems from their pervasive role in the genesis of human tumors. A large body of evidence has established that expression levels of one of three closely related Myc proteins are enhanced in the majority of all human tumors and that multiple tumor entities depend on elevated Myc function, arguing that targeting Myc will have significant therapeutic efficacy. This hope awaits clinical confirmation, since the strategies that are currently under investigation to target Myc function or expression have yet to enter the clinic. Myc proteins are global regulators of transcription, but their mechanism of action is poorly understood.
Myc proteins are highly unstable in normal cells and rapidly turned over by the ubiquitin/proteasome system. In contrast, they are stabilized in tumor cells. Work by us and by others has shown that stabilization of Myc is required for tumorigenesis and has identified strategies to destabilize Myc for tumor therapy. This work has also led to the surprising observation that the N-Myc protein, which drives neuroendocrine tumorigenesis, is stabilized by association with the Aurora-A kinase and that clinically available Aurora-A inhibitors can dissociate the complex and destabilize N-Myc. Aurora-A has not previously been implicated in transcription, prompting us to use protein crystallography, proteomics and shRNA screening to understand its interaction with N-Myc. We have now identified a novel protein complex of N-Myc and Aurora-A that provides an unexpected and potentially groundbreaking insight into Myc function. We have also solved the crystal structure of the N-Myc/Aurora-A complex. Collectively, both findings open new strategies to target Myc function for tumor therapy.
Summary
There is an intense interest in the function of human Myc proteins that stems from their pervasive role in the genesis of human tumors. A large body of evidence has established that expression levels of one of three closely related Myc proteins are enhanced in the majority of all human tumors and that multiple tumor entities depend on elevated Myc function, arguing that targeting Myc will have significant therapeutic efficacy. This hope awaits clinical confirmation, since the strategies that are currently under investigation to target Myc function or expression have yet to enter the clinic. Myc proteins are global regulators of transcription, but their mechanism of action is poorly understood.
Myc proteins are highly unstable in normal cells and rapidly turned over by the ubiquitin/proteasome system. In contrast, they are stabilized in tumor cells. Work by us and by others has shown that stabilization of Myc is required for tumorigenesis and has identified strategies to destabilize Myc for tumor therapy. This work has also led to the surprising observation that the N-Myc protein, which drives neuroendocrine tumorigenesis, is stabilized by association with the Aurora-A kinase and that clinically available Aurora-A inhibitors can dissociate the complex and destabilize N-Myc. Aurora-A has not previously been implicated in transcription, prompting us to use protein crystallography, proteomics and shRNA screening to understand its interaction with N-Myc. We have now identified a novel protein complex of N-Myc and Aurora-A that provides an unexpected and potentially groundbreaking insight into Myc function. We have also solved the crystal structure of the N-Myc/Aurora-A complex. Collectively, both findings open new strategies to target Myc function for tumor therapy.
Max ERC Funding
2 455 180 €
Duration
Start date: 2015-08-01, End date: 2020-07-31
Project acronym BacCellEpi
Project Bacterial, cellular and epigenetic factors that control enteropathogenicity
Researcher (PI) Pascale Cossart
Host Institution (HI) INSTITUT PASTEUR
Call Details Advanced Grant (AdG), LS6, ERC-2014-ADG
Summary Understanding the establishment and persistence of bacterial infections in the gut requires integrating an ensemble of factors including bacterial and host components and the presence of other microorganisms. We will capitalize on 25 years of studies on the bacterium Listeria monocytogenes used as a model, to focus on three objectives which will significantly increase our knowledge of the bacterium, of the cell biology of infection and of the epigenetic reprogramming upon infection.
Our aims are:
- at the bacterial level : to describe for the first time, the proteomic landscape of a bacterium during switch from saprophytism to virulence. We will use a proteogenomic approach together with ribosome profiling, to analyze the translation of the whole transcriptome after bacterial growth in several conditions, including in vivo, in order to barcode all the proteins which play a role in infection. This will open the way to assess the role of 1) small proteins; 2) internal translation initiation sites ; 3) the coupling of transcription and translation.
- at the host cell level : To decipher the molecular mechanisms underlying the dynamics and role in infection of host intracellular organelles, starting with mitochondria.
- At the host epigenetic level : To explore how the microbe reprograms host transcription and how tolerance to a commensal such as Akkermansia muciniphila differs from responsiveness to a pathogen insult, at the level of histones and mRNA modifications by studying 1) chromatin remodeling, in particular histones modifications during infection ; 2) modifications of the epitranscriptome during Listeria infection and colonization with Akkermansia ; 3) whether there is an epigenetic memory of infection and colonization.
This ambitious multidisciplinary project will not only generate new concepts in infection biology but also will unravel fundamental mechanisms in microbiology, cell biology, and epigenetics opening new avenues for further research.
Summary
Understanding the establishment and persistence of bacterial infections in the gut requires integrating an ensemble of factors including bacterial and host components and the presence of other microorganisms. We will capitalize on 25 years of studies on the bacterium Listeria monocytogenes used as a model, to focus on three objectives which will significantly increase our knowledge of the bacterium, of the cell biology of infection and of the epigenetic reprogramming upon infection.
Our aims are:
- at the bacterial level : to describe for the first time, the proteomic landscape of a bacterium during switch from saprophytism to virulence. We will use a proteogenomic approach together with ribosome profiling, to analyze the translation of the whole transcriptome after bacterial growth in several conditions, including in vivo, in order to barcode all the proteins which play a role in infection. This will open the way to assess the role of 1) small proteins; 2) internal translation initiation sites ; 3) the coupling of transcription and translation.
- at the host cell level : To decipher the molecular mechanisms underlying the dynamics and role in infection of host intracellular organelles, starting with mitochondria.
- At the host epigenetic level : To explore how the microbe reprograms host transcription and how tolerance to a commensal such as Akkermansia muciniphila differs from responsiveness to a pathogen insult, at the level of histones and mRNA modifications by studying 1) chromatin remodeling, in particular histones modifications during infection ; 2) modifications of the epitranscriptome during Listeria infection and colonization with Akkermansia ; 3) whether there is an epigenetic memory of infection and colonization.
This ambitious multidisciplinary project will not only generate new concepts in infection biology but also will unravel fundamental mechanisms in microbiology, cell biology, and epigenetics opening new avenues for further research.
Max ERC Funding
1 147 500 €
Duration
Start date: 2015-10-01, End date: 2019-09-30
Project acronym BCELLMECHANICS
Project Regulation of antibody responses by B cell mechanical activity
Researcher (PI) Pavel Tolar
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Call Details Consolidator Grant (CoG), LS6, ERC-2014-CoG
Summary The production of antibodies against pathogens is an effective mechanism of protection against a wide range of infections. However, some pathogens evade antibody responses by rapidly changing their composition. Designing vaccines that elicit antibody responses against invariant parts of the pathogen is a rational strategy to combat existing and emerging pathogens. Production of antibodies is initiated by binding of B cell receptors (BCRs) to foreign antigens presented on the surfaces of antigen presenting cells. This binding induces B cell signalling and internalisation of the antigens for presentation to helper T cells. Although it is known that T cell help controls B cell expansion and differentiation into antibody-secreting and memory B cells, how the strength of antigen binding to the BCR regulates antigen internalisation remains poorly understood. As a result, the response and the affinity maturation of individual B cell clones are difficult to predict, posing a problem for the design of next-generation vaccines. My aim is to develop an understanding of the cellular mechanisms that underlie critical B cell activation steps. My laboratory has recently described that B cells use mechanical forces to extract antigens from antigen presenting cells. We hypothesise that application of mechanical forces tests BCR binding strength and thereby regulates B cell clonal selection during antibody affinity maturation and responses to pathogen evasion. We propose to test this hypothesis by (1) determining the magnitude and timing of the forces generated by B cells, and (2) determining the role of the mechanical properties of BCR-antigen bonds in affinity maturation and (3) in the development of broadly neutralising antibodies. We expect that the results of these studies will contribute to our understanding of the mechanisms that regulate the antibody repertoire in response to infections and have practical implications for the development of vaccines.
Summary
The production of antibodies against pathogens is an effective mechanism of protection against a wide range of infections. However, some pathogens evade antibody responses by rapidly changing their composition. Designing vaccines that elicit antibody responses against invariant parts of the pathogen is a rational strategy to combat existing and emerging pathogens. Production of antibodies is initiated by binding of B cell receptors (BCRs) to foreign antigens presented on the surfaces of antigen presenting cells. This binding induces B cell signalling and internalisation of the antigens for presentation to helper T cells. Although it is known that T cell help controls B cell expansion and differentiation into antibody-secreting and memory B cells, how the strength of antigen binding to the BCR regulates antigen internalisation remains poorly understood. As a result, the response and the affinity maturation of individual B cell clones are difficult to predict, posing a problem for the design of next-generation vaccines. My aim is to develop an understanding of the cellular mechanisms that underlie critical B cell activation steps. My laboratory has recently described that B cells use mechanical forces to extract antigens from antigen presenting cells. We hypothesise that application of mechanical forces tests BCR binding strength and thereby regulates B cell clonal selection during antibody affinity maturation and responses to pathogen evasion. We propose to test this hypothesis by (1) determining the magnitude and timing of the forces generated by B cells, and (2) determining the role of the mechanical properties of BCR-antigen bonds in affinity maturation and (3) in the development of broadly neutralising antibodies. We expect that the results of these studies will contribute to our understanding of the mechanisms that regulate the antibody repertoire in response to infections and have practical implications for the development of vaccines.
Max ERC Funding
1 999 386 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym BROADimmune
Project Structural, genetic and functional analyses of broadly neutralizing antibodies against human pathogens
Researcher (PI) Antonio Lanzavecchia
Host Institution (HI) FONDAZIONE PER L ISTITUTO DI RICERCA IN BIOMEDICINA
Call Details Advanced Grant (AdG), LS6, ERC-2014-ADG
Summary The overall goal of this project is to understand the molecular mechanisms that lead to the generation of potent and broadly neutralizing antibodies against medically relevant pathogens, and to identify the factors that limit their production in response to infection or vaccination with current vaccines. We will use high-throughput cellular screens to isolate from immune donors clonally related antibodies to different sites of influenza hemagglutinin, which will be fully characterized and sequenced in order to reconstruct their developmental pathways. Using this approach, we will ask fundamental questions with regards to the role of somatic mutations in affinity maturation and intraclonal diversification, which in some cases may lead to the generation of autoantibodies. We will combine crystallography and long time-scale molecular dynamics simulation to understand how mutations can increase affinity and broaden antibody specificity. By mapping the B and T cell response to all sites and conformations of influenza hemagglutinin, we will uncover the factors, such as insufficient T cell help or the instability of the pre-fusion hemagglutinin, that may limit the generation of broadly neutralizing antibodies. We will also perform a broad analysis of the antibody response to erythrocytes infected by P. falciparum to identify conserved epitopes on the parasite and to unravel the role of an enigmatic V gene that appears to be involved in response to blood-stage parasites. The hypotheses tested are strongly supported by preliminary observations from our own laboratory. While these studies will contribute to our understanding of B cell biology, the results obtained will also have translational implications for the development of potent and broad-spectrum antibodies, for the definition of correlates of protection, and for improving vaccine design.
Summary
The overall goal of this project is to understand the molecular mechanisms that lead to the generation of potent and broadly neutralizing antibodies against medically relevant pathogens, and to identify the factors that limit their production in response to infection or vaccination with current vaccines. We will use high-throughput cellular screens to isolate from immune donors clonally related antibodies to different sites of influenza hemagglutinin, which will be fully characterized and sequenced in order to reconstruct their developmental pathways. Using this approach, we will ask fundamental questions with regards to the role of somatic mutations in affinity maturation and intraclonal diversification, which in some cases may lead to the generation of autoantibodies. We will combine crystallography and long time-scale molecular dynamics simulation to understand how mutations can increase affinity and broaden antibody specificity. By mapping the B and T cell response to all sites and conformations of influenza hemagglutinin, we will uncover the factors, such as insufficient T cell help or the instability of the pre-fusion hemagglutinin, that may limit the generation of broadly neutralizing antibodies. We will also perform a broad analysis of the antibody response to erythrocytes infected by P. falciparum to identify conserved epitopes on the parasite and to unravel the role of an enigmatic V gene that appears to be involved in response to blood-stage parasites. The hypotheses tested are strongly supported by preliminary observations from our own laboratory. While these studies will contribute to our understanding of B cell biology, the results obtained will also have translational implications for the development of potent and broad-spectrum antibodies, for the definition of correlates of protection, and for improving vaccine design.
Max ERC Funding
1 867 500 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym Cancer-Recurrence
Project Tumor cell death supports recurrence of cancer
Researcher (PI) Jacobus Emiel van Rheenen
Host Institution (HI) STICHTING HET NEDERLANDS KANKER INSTITUUT-ANTONI VAN LEEUWENHOEK ZIEKENHUIS
Call Details Consolidator Grant (CoG), LS4, ERC-2014-CoG
Summary Introduction: Current anti-cancer treatments are often inefficient, while many patients initially benefit from anti-cancer drugs eventually experience relapse of resistant tumors throughout the body. Current clinical strategies mainly aim at inducing tumor cell death, but this induction may have unintentional and unwanted side effects on surviving tumor cells.
Preliminary data: We show that after chemotherapy-induced initial regression, PyMT mammary tumors reappear. During regression, we observe an increased number of cells that have undergone epithelial-mesenchymal transition (EMT) and become migratory. We show that migration can be induced upon uptake of extracellular vesicles (e.g. apoptotic bodies). Our findings suggest that EMT is induced upon chemotherapy, through e.g. EV uptake, potentially leading to migration and growth of surviving cells.
Hypothesis and main aim: Based on preliminary data, we hypothesize that tumor cell death induces migration and growth of the surviving tumor cells. We aim to identify the key cell types and mechanisms that mediate this effect, and establish whether interference with these cells and mechanisms can reduce recurrence of tumors after chemotherapy.
Approach: We have developed unique intravital imaging tools and genetically engineered fluorescent mice to visualize and characterize if and how dying tumor cells can affect surrounding surviving tumor and stromal cells. We will test whether dying tumor cells can influence the growth, migration, dissemination and metastasis of surviving tumor cells directly or indirectly through stromal cells. We will identify potential targets to block the influence of the dying tumor cells, and test whether this blockade inhibits the unintended side-effects of tumor cell death.
Conclusion: With the studies proposed in this grant, we will gain fundamental insights on how induction of tumor cell death, the universal aim of therapy, could play a role in growth and spread of surviving tumor cells.
Summary
Introduction: Current anti-cancer treatments are often inefficient, while many patients initially benefit from anti-cancer drugs eventually experience relapse of resistant tumors throughout the body. Current clinical strategies mainly aim at inducing tumor cell death, but this induction may have unintentional and unwanted side effects on surviving tumor cells.
Preliminary data: We show that after chemotherapy-induced initial regression, PyMT mammary tumors reappear. During regression, we observe an increased number of cells that have undergone epithelial-mesenchymal transition (EMT) and become migratory. We show that migration can be induced upon uptake of extracellular vesicles (e.g. apoptotic bodies). Our findings suggest that EMT is induced upon chemotherapy, through e.g. EV uptake, potentially leading to migration and growth of surviving cells.
Hypothesis and main aim: Based on preliminary data, we hypothesize that tumor cell death induces migration and growth of the surviving tumor cells. We aim to identify the key cell types and mechanisms that mediate this effect, and establish whether interference with these cells and mechanisms can reduce recurrence of tumors after chemotherapy.
Approach: We have developed unique intravital imaging tools and genetically engineered fluorescent mice to visualize and characterize if and how dying tumor cells can affect surrounding surviving tumor and stromal cells. We will test whether dying tumor cells can influence the growth, migration, dissemination and metastasis of surviving tumor cells directly or indirectly through stromal cells. We will identify potential targets to block the influence of the dying tumor cells, and test whether this blockade inhibits the unintended side-effects of tumor cell death.
Conclusion: With the studies proposed in this grant, we will gain fundamental insights on how induction of tumor cell death, the universal aim of therapy, could play a role in growth and spread of surviving tumor cells.
Max ERC Funding
2 000 000 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym CARDYADS
Project Controlling Cardiomyocyte Dyadic Structure
Researcher (PI) William Edward Louch
Host Institution (HI) UNIVERSITETET I OSLO
Call Details Consolidator Grant (CoG), LS4, ERC-2014-CoG
Summary Contraction and relaxation of cardiac myocytes, and thus the whole heart, are critically dependent on dyads. These functional junctions between t-tubules, which are invaginations of the surface membrane, and the sarcoplasmic reticulum allow efficient control of calcium release into the cytosol, and also its removal. Dyads are formed gradually during development and break down during disease. However, the precise nature of dyadic structure is unclear, even in healthy adult cardiac myocytes, as are the triggers and consequences of altering dyadic integrity. In this proposal, my group will investigate the precise 3-dimensional arrangement of dyads and their proteins during development, adulthood, and heart failure by employing CLEM imaging (PALM and EM tomography). This will be accomplished by developing transgenic mice with fluorescent labels on four dyadic proteins (L-type calcium channel, ryanodine receptor, sodium-calcium exchanger, SERCA), and by imaging tissue from explanted normal and failing human hearts. The signals responsible for controlling dyadic formation, maintenance, and disruption will be determined by performing high-throughput sequencing to identify novel genes involved with these processes in several established model systems. Particular focus will be given to investigating left ventricular wall stress and stretch-dependent gene regulation as controllers of dyadic integrity. Candidate genes will be manipulated in cell models and transgenic animals to promote dyadic formation and maintenance, and reverse dyadic disruption in heart failure. The consequences of dyadic structure for function will be tested experimentally and with mathematical modeling to examine effects on cardiac myocyte calcium homeostasis and whole-heart function. The results of this project are anticipated to yield unprecedented insight into dyadic structure, regulation, and function, and to identify novel therapeutic targets for heart disease patients.
Summary
Contraction and relaxation of cardiac myocytes, and thus the whole heart, are critically dependent on dyads. These functional junctions between t-tubules, which are invaginations of the surface membrane, and the sarcoplasmic reticulum allow efficient control of calcium release into the cytosol, and also its removal. Dyads are formed gradually during development and break down during disease. However, the precise nature of dyadic structure is unclear, even in healthy adult cardiac myocytes, as are the triggers and consequences of altering dyadic integrity. In this proposal, my group will investigate the precise 3-dimensional arrangement of dyads and their proteins during development, adulthood, and heart failure by employing CLEM imaging (PALM and EM tomography). This will be accomplished by developing transgenic mice with fluorescent labels on four dyadic proteins (L-type calcium channel, ryanodine receptor, sodium-calcium exchanger, SERCA), and by imaging tissue from explanted normal and failing human hearts. The signals responsible for controlling dyadic formation, maintenance, and disruption will be determined by performing high-throughput sequencing to identify novel genes involved with these processes in several established model systems. Particular focus will be given to investigating left ventricular wall stress and stretch-dependent gene regulation as controllers of dyadic integrity. Candidate genes will be manipulated in cell models and transgenic animals to promote dyadic formation and maintenance, and reverse dyadic disruption in heart failure. The consequences of dyadic structure for function will be tested experimentally and with mathematical modeling to examine effects on cardiac myocyte calcium homeostasis and whole-heart function. The results of this project are anticipated to yield unprecedented insight into dyadic structure, regulation, and function, and to identify novel therapeutic targets for heart disease patients.
Max ERC Funding
2 000 000 €
Duration
Start date: 2015-07-01, End date: 2020-06-30
Project acronym CELLPLASTICITY
Project New Frontiers in Cellular Reprogramming: Exploiting Cellular Plasticity
Researcher (PI) Manuel SERRANO MARUGAN
Host Institution (HI) FUNDACIO INSTITUT DE RECERCA BIOMEDICA (IRB BARCELONA)
Call Details Advanced Grant (AdG), LS4, ERC-2014-ADG
Summary "Our research group has worked over the years at the interface between cancer and ageing, with a strong emphasis on mouse models. More recently, we became interested in cellular reprogramming because we hypothesized that understanding cellular plasticity could yield new insights into cancer and ageing. Indeed, during the previous ERC Advanced Grant, we made relevant contributions to the fields of cellular reprogramming (Nature 2013), cellular senescence (Cell 2013), cancer (Cancer Cell 2012), and ageing (Cell Metabolism 2012). Now, we take advantage of our diverse background and integrate the above processes. Our unifying hypothesis is that cellular plasticity lies at the basis of tissue regeneration (“adaptive cellular plasticity”), as well as at the origin of cancer (“maladaptive gain of cellular plasticity”) and ageing (“maladaptive loss of cellular plasticity”). A key experimental system will be our “reprogrammable mice” (with inducible expression of the four Yamanaka factors), which we regard as a tool to induce cellular plasticity in vivo. The project is divided as follows: Objective #1 – Cellular plasticity and cancer: role of tumour suppressors in in vivo de-differentiation and reprogramming / impact of transient de-differentiation on tumour initiation / lineage tracing of Oct4 to determine whether a transient pluripotent-state occurs during cancer. Objective #2 – Cellular plasticity in tissue regeneration and ageing: impact of transient de-differentiation on tissue regeneration / contribution of the damage-induced microenvironment to tissue regeneration / impact of transient de-differentiation on ageing. Objective #3: New frontiers in cellular plasticity: chemical manipulation of cellular plasticity in vivo / new states of pluripotency / characterization of in vivo induced pluripotency and its unique properties. We anticipate that the completion of this project will yield new fundamental insights into cancer, regeneration and ageing."
Summary
"Our research group has worked over the years at the interface between cancer and ageing, with a strong emphasis on mouse models. More recently, we became interested in cellular reprogramming because we hypothesized that understanding cellular plasticity could yield new insights into cancer and ageing. Indeed, during the previous ERC Advanced Grant, we made relevant contributions to the fields of cellular reprogramming (Nature 2013), cellular senescence (Cell 2013), cancer (Cancer Cell 2012), and ageing (Cell Metabolism 2012). Now, we take advantage of our diverse background and integrate the above processes. Our unifying hypothesis is that cellular plasticity lies at the basis of tissue regeneration (“adaptive cellular plasticity”), as well as at the origin of cancer (“maladaptive gain of cellular plasticity”) and ageing (“maladaptive loss of cellular plasticity”). A key experimental system will be our “reprogrammable mice” (with inducible expression of the four Yamanaka factors), which we regard as a tool to induce cellular plasticity in vivo. The project is divided as follows: Objective #1 – Cellular plasticity and cancer: role of tumour suppressors in in vivo de-differentiation and reprogramming / impact of transient de-differentiation on tumour initiation / lineage tracing of Oct4 to determine whether a transient pluripotent-state occurs during cancer. Objective #2 – Cellular plasticity in tissue regeneration and ageing: impact of transient de-differentiation on tissue regeneration / contribution of the damage-induced microenvironment to tissue regeneration / impact of transient de-differentiation on ageing. Objective #3: New frontiers in cellular plasticity: chemical manipulation of cellular plasticity in vivo / new states of pluripotency / characterization of in vivo induced pluripotency and its unique properties. We anticipate that the completion of this project will yield new fundamental insights into cancer, regeneration and ageing."
Max ERC Funding
2 488 850 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym CholangioConcept
Project Functional in vivo analysis of cholangiocarcinoma development, progression and metastasis.
Researcher (PI) Lars Zender
Host Institution (HI) EBERHARD KARLS UNIVERSITAET TUEBINGEN
Call Details Consolidator Grant (CoG), LS4, ERC-2014-CoG
Summary Genetic heterogeneity and complexity are hallmarks of metastatic solid tumors and therapy resistance inevitably develops upon treatment with cytotoxic drugs or molecular targeted therapies. Cholangiocarcinoma (CCC, or bile duct cancer) represents the second most frequent primary liver tumor and has emerged as a health problem with sharply increasing incidence rates, in particular of intrahepatic CCC (ICC). The reason for increased CCC incidence remains unclear, but influences of western lifestyle and a resulting altered hepatic metabolism have been discussed. Surgical resection represents the only curative option for the treatment of CCC, however, many tumors are irresectable at the time of diagnosis. CCC represents a highly aggressive and metastatic tumor type and currently no effective systemic therapy regimen exists. The overall molecular mechanisms driving CCC formation and progression remain poorly characterized and it thus becomes clear that a detailed molecular characterization of cholangiocarcinogenesis and the identification of robust therapeutic targets for CCC treatment are urgently needed. Taking advantage of our strong expertises in chimaeric (mosaic) liver cancer mouse models and stable in vivo shRNA technology, we here propose a comprehensive and innovative approach to i) dissect molecular mechanisms of cholangiocarcinogenesis, with a particular emphasis on Kras driven ICC development from adult hepatocytes and oncogenomic profiling of ICC metastasis, ii) to employ direct in vivo shRNA screening to functionally identify new therapeutic targets for CCC treatment and iii) to characterize the role of the gut microbiome for CCC progression and metastasis. We envision this ERC-funded project will yield important new insights into the molecular mechanisms of CCC development, progression and metastasis. As our work comprises direct and functional strategies to identify new vulnerabilities in CCC, the obtained data harbor a very high translational potential.
Summary
Genetic heterogeneity and complexity are hallmarks of metastatic solid tumors and therapy resistance inevitably develops upon treatment with cytotoxic drugs or molecular targeted therapies. Cholangiocarcinoma (CCC, or bile duct cancer) represents the second most frequent primary liver tumor and has emerged as a health problem with sharply increasing incidence rates, in particular of intrahepatic CCC (ICC). The reason for increased CCC incidence remains unclear, but influences of western lifestyle and a resulting altered hepatic metabolism have been discussed. Surgical resection represents the only curative option for the treatment of CCC, however, many tumors are irresectable at the time of diagnosis. CCC represents a highly aggressive and metastatic tumor type and currently no effective systemic therapy regimen exists. The overall molecular mechanisms driving CCC formation and progression remain poorly characterized and it thus becomes clear that a detailed molecular characterization of cholangiocarcinogenesis and the identification of robust therapeutic targets for CCC treatment are urgently needed. Taking advantage of our strong expertises in chimaeric (mosaic) liver cancer mouse models and stable in vivo shRNA technology, we here propose a comprehensive and innovative approach to i) dissect molecular mechanisms of cholangiocarcinogenesis, with a particular emphasis on Kras driven ICC development from adult hepatocytes and oncogenomic profiling of ICC metastasis, ii) to employ direct in vivo shRNA screening to functionally identify new therapeutic targets for CCC treatment and iii) to characterize the role of the gut microbiome for CCC progression and metastasis. We envision this ERC-funded project will yield important new insights into the molecular mechanisms of CCC development, progression and metastasis. As our work comprises direct and functional strategies to identify new vulnerabilities in CCC, the obtained data harbor a very high translational potential.
Max ERC Funding
1 998 898 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym CIRCODE
Project Cell-type specific mechanisms regulating rhythms in leukocyte homing
Researcher (PI) Christoph Andreas Scheiermann
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Call Details Starting Grant (StG), LS6, ERC-2014-STG
Summary Leukocytes are the key components of the immune system that fight infections and provide tissue repair, yet their migration patterns throughout the body over the course of a day are completely unknown. Circadian, ~24 hour rhythms are emerging as important novel regulators of immune cell migration and function, which impacts inflammatory diseases such as myocardial infarction and sepsis. Altering leukocyte tissue infiltration and activation at the proper times provides an option for therapy that would maximize the clinical impact of drugs and vaccinations and minimize side effects.
We aim to create a four-dimensional map of leukocyte migration to organs in time and space and investigate with epigenetics techniques the molecular mechanisms that regulate cell-type specific rhythms. We will functionally define the daily oscillating molecular signature(s) of leukocytes and endothelial cells with novel proteomics approaches and thus identify a circadian traffic code that dictates the rhythmic migration of leukocyte subsets to specific organs under steady-state and inflammatory conditions with pharmacological and genetic tools. We will assess the impact of lineage-specific arrhythmicities on immune homeostasis and leukocyte trafficking using an innovative combination of novel genetic tools. Based on these data we will create a model predicting circadian leukocyte migration to tissues.
The project combines the disciplines of immunology and chronobiology by obtaining unprecedented information in time and space of circadian leukocyte trafficking and investigating how immune-cell specific oscillations are generated at the molecular level, which is of broad impact for both fields. Our extensive experience in the rhythmic control of the immune system makes us well poised to characterize the molecular components that orchestrate circadian leukocyte distribution across the body.
Summary
Leukocytes are the key components of the immune system that fight infections and provide tissue repair, yet their migration patterns throughout the body over the course of a day are completely unknown. Circadian, ~24 hour rhythms are emerging as important novel regulators of immune cell migration and function, which impacts inflammatory diseases such as myocardial infarction and sepsis. Altering leukocyte tissue infiltration and activation at the proper times provides an option for therapy that would maximize the clinical impact of drugs and vaccinations and minimize side effects.
We aim to create a four-dimensional map of leukocyte migration to organs in time and space and investigate with epigenetics techniques the molecular mechanisms that regulate cell-type specific rhythms. We will functionally define the daily oscillating molecular signature(s) of leukocytes and endothelial cells with novel proteomics approaches and thus identify a circadian traffic code that dictates the rhythmic migration of leukocyte subsets to specific organs under steady-state and inflammatory conditions with pharmacological and genetic tools. We will assess the impact of lineage-specific arrhythmicities on immune homeostasis and leukocyte trafficking using an innovative combination of novel genetic tools. Based on these data we will create a model predicting circadian leukocyte migration to tissues.
The project combines the disciplines of immunology and chronobiology by obtaining unprecedented information in time and space of circadian leukocyte trafficking and investigating how immune-cell specific oscillations are generated at the molecular level, which is of broad impact for both fields. Our extensive experience in the rhythmic control of the immune system makes us well poised to characterize the molecular components that orchestrate circadian leukocyte distribution across the body.
Max ERC Funding
1 497 688 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym ComBact
Project How complement molecules kill bacteria
Researcher (PI) Suzan Rooijakkers
Host Institution (HI) UNIVERSITAIR MEDISCH CENTRUM UTRECHT
Call Details Starting Grant (StG), LS6, ERC-2014-STG
Summary This proposal aims to provide insight into how bacteria are killed by the complement system, an important part of the host immune response against bacterial infections. Complement is a large protein network in plasma that labels bacteria for phagocytosis and directly kills them via the formation of a pore-forming complex (Membrane Attack Complex (MAC)). Currently we do not understand how complement activation results in bacterial killing. This knowledge gap is mainly caused by the lack of tools to study the enzymes that trigger MAC formation: the C5 convertases.
In my lab, we recently established a novel assay system for C5 convertases that allows us for the first time to study these enzymes under purified conditions. This model, combined with my expertise in microbiology, places my lab in a unique position to understand C5 convertase biology (Aim 1), determine the enzyme's role in MAC functioning (Aim 2) and elucidate how the MAC kills bacteria (Aim 3). Thus, I aim to provide insight into the molecular events necessary for bacterial killing by the complement system.
I will use biochemical, structural and microbiological approaches to elucidate the precise molecular arrangement of C5 convertases in vitro and on bacterial cells. I will generate unique tools to study how C5 convertases regulate MAC insertion into bacterial membranes. Finally, I will engineer fluorescent bacteria and labeled complement proteins to perform advanced microscopy analyses of how MAC kills bacteria.
These insights will lead to fundamental knowledge about the functioning of complement and will create new avenues for blocking the undesired complement activation during systemic infections and acute inflammatory processes. Furthermore this knowledge will improve desired complement activation by therapeutic antibodies and vaccination strategies in infectious diseases. Finally, this work opens up new possibilities to understand how both humans and bacteria regulate complement.
Summary
This proposal aims to provide insight into how bacteria are killed by the complement system, an important part of the host immune response against bacterial infections. Complement is a large protein network in plasma that labels bacteria for phagocytosis and directly kills them via the formation of a pore-forming complex (Membrane Attack Complex (MAC)). Currently we do not understand how complement activation results in bacterial killing. This knowledge gap is mainly caused by the lack of tools to study the enzymes that trigger MAC formation: the C5 convertases.
In my lab, we recently established a novel assay system for C5 convertases that allows us for the first time to study these enzymes under purified conditions. This model, combined with my expertise in microbiology, places my lab in a unique position to understand C5 convertase biology (Aim 1), determine the enzyme's role in MAC functioning (Aim 2) and elucidate how the MAC kills bacteria (Aim 3). Thus, I aim to provide insight into the molecular events necessary for bacterial killing by the complement system.
I will use biochemical, structural and microbiological approaches to elucidate the precise molecular arrangement of C5 convertases in vitro and on bacterial cells. I will generate unique tools to study how C5 convertases regulate MAC insertion into bacterial membranes. Finally, I will engineer fluorescent bacteria and labeled complement proteins to perform advanced microscopy analyses of how MAC kills bacteria.
These insights will lead to fundamental knowledge about the functioning of complement and will create new avenues for blocking the undesired complement activation during systemic infections and acute inflammatory processes. Furthermore this knowledge will improve desired complement activation by therapeutic antibodies and vaccination strategies in infectious diseases. Finally, this work opens up new possibilities to understand how both humans and bacteria regulate complement.
Max ERC Funding
1 497 290 €
Duration
Start date: 2015-03-01, End date: 2020-02-29
Project acronym CRCStemCellDynamics
Project Molecular Subtype Specific Stem Cell Dynamics in Developing and Established Colorectal Cancers
Researcher (PI) Louis Vermeulen
Host Institution (HI) ACADEMISCH MEDISCH CENTRUM BIJ DE UNIVERSITEIT VAN AMSTERDAM
Call Details Starting Grant (StG), LS4, ERC-2014-STG
Summary Annually 1.2 million new cases of colorectal cancer (CRC) are seen worldwide and over 50% of patients die of the disease making it a leading cause of cancer-related mortality. A crucial contributing factor to these disappointing figures is that CRC is a heterogeneous disease and tumours differ extensively in the clinical presentation and response to therapy. Recent unsupervised classification studies highlight that only a proportion of this heterogeneity can be explained by the variation in commonly found (epi-)genetic aberrations. Hence the origins of CRC heterogeneity remain poorly understood.
The central hypothesis of this research project is that the cell of origin contributes to the phenotype and functional properties of the pre-malignant clone and the resulting malignancy. To study this concept I will generate cell of origin- and mutation-specific molecular profiles of oncogenic clones and relate those to human CRC samples. Furthermore, I will quantitatively investigate how mutations and the cell of origin act in concert to determine the functional characteristics of the pre-malignant clone that ultimately develops into an invasive intestinal tumour. These studies are paralleled by the investigation of stem cell dynamics within established human CRCs by means of a novel marker independent lineage tracing strategy in combination with mathematical analysis techniques. This will provide critical and quantitative information on the relevance of the cancer stem cell concept in CRC and on the degree of inter-tumour variation with respect to the frequency and functional features of stem-like cells within individual CRCs and molecular subtypes of the disease.
I am convinced that a better and quantitative understanding of the dynamical properties of stem cells during tumour development and within established CRCs will be pivotal for an improved classification, prevention and treatment of CRC.
Summary
Annually 1.2 million new cases of colorectal cancer (CRC) are seen worldwide and over 50% of patients die of the disease making it a leading cause of cancer-related mortality. A crucial contributing factor to these disappointing figures is that CRC is a heterogeneous disease and tumours differ extensively in the clinical presentation and response to therapy. Recent unsupervised classification studies highlight that only a proportion of this heterogeneity can be explained by the variation in commonly found (epi-)genetic aberrations. Hence the origins of CRC heterogeneity remain poorly understood.
The central hypothesis of this research project is that the cell of origin contributes to the phenotype and functional properties of the pre-malignant clone and the resulting malignancy. To study this concept I will generate cell of origin- and mutation-specific molecular profiles of oncogenic clones and relate those to human CRC samples. Furthermore, I will quantitatively investigate how mutations and the cell of origin act in concert to determine the functional characteristics of the pre-malignant clone that ultimately develops into an invasive intestinal tumour. These studies are paralleled by the investigation of stem cell dynamics within established human CRCs by means of a novel marker independent lineage tracing strategy in combination with mathematical analysis techniques. This will provide critical and quantitative information on the relevance of the cancer stem cell concept in CRC and on the degree of inter-tumour variation with respect to the frequency and functional features of stem-like cells within individual CRCs and molecular subtypes of the disease.
I am convinced that a better and quantitative understanding of the dynamical properties of stem cells during tumour development and within established CRCs will be pivotal for an improved classification, prevention and treatment of CRC.
Max ERC Funding
1 499 875 €
Duration
Start date: 2015-04-01, End date: 2021-03-31
Project acronym CrIC
Project Molecular basis of the cross-talk between chronic inflammation and cancer
Researcher (PI) Nadine Laguette
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), LS6, ERC-2014-STG
Summary Cancer related inflammation (CRI) is a well-established hallmark of cancer. We recently demonstrated that the DNA damage repair SLX4 complex suppresses spontaneous and human immunodeficiency virus (HIV)-dependent pro-inflammatory cytokine production, revealing a role for this DNA repair complex in controlling innate immune responses. Bi-allelic mutations in SLX4 are involved in the onset of Fanconi Anemia (FA), a syndrome characterized, besides heightened cancer susceptibility, by severe defects of the immune system, resulting from increased pro-inflammatory cytokine levels and progressive bone marrow failure. Within this proposal, using SLX4-deficiency as a working model, I aim at investigating the molecular process underlying CRI. Based on our previous observation that the SLX4 complex binds to HIV-derived reverse-transcripts and promotes their degradation, my working hypothesis is that CRI results from the accumulation of endogenous pathological nucleic acids that are recognized by the innate immune system in the absence of SLX4. The present project should unveil the relationship between repression of pro-inflammatory cytokine production by proteins involved in DNA repair, DNA damage, and CRI, thereby opening unforeseen perspectives in the treatment of cancer patients.
Summary
Cancer related inflammation (CRI) is a well-established hallmark of cancer. We recently demonstrated that the DNA damage repair SLX4 complex suppresses spontaneous and human immunodeficiency virus (HIV)-dependent pro-inflammatory cytokine production, revealing a role for this DNA repair complex in controlling innate immune responses. Bi-allelic mutations in SLX4 are involved in the onset of Fanconi Anemia (FA), a syndrome characterized, besides heightened cancer susceptibility, by severe defects of the immune system, resulting from increased pro-inflammatory cytokine levels and progressive bone marrow failure. Within this proposal, using SLX4-deficiency as a working model, I aim at investigating the molecular process underlying CRI. Based on our previous observation that the SLX4 complex binds to HIV-derived reverse-transcripts and promotes their degradation, my working hypothesis is that CRI results from the accumulation of endogenous pathological nucleic acids that are recognized by the innate immune system in the absence of SLX4. The present project should unveil the relationship between repression of pro-inflammatory cytokine production by proteins involved in DNA repair, DNA damage, and CRI, thereby opening unforeseen perspectives in the treatment of cancer patients.
Max ERC Funding
1 500 000 €
Duration
Start date: 2015-04-01, End date: 2020-03-31
Project acronym DeFiNER
Project Nucleotide Excision Repair: Decoding its Functional Role in Mammals
Researcher (PI) Georgios Garinis
Host Institution (HI) IDRYMA TECHNOLOGIAS KAI EREVNAS
Call Details Consolidator Grant (CoG), LS4, ERC-2014-CoG
Summary Genome maintenance, chromatin remodelling and transcription are tightly linked biological processes that are currently poorly understood and vastly unexplored. Nucleotide excision repair (NER) is a major DNA repair pathway that mammalian cells employ to maintain their genome intact and faithfully transmit it into their progeny. Besides cancer and aging, however, defects in NER give rise to developmental disorders whose clinical heterogeneity and varying severity can only insufficiently be explained by the DNA repair defect. Recent work reveals that NER factors play a role, in addition to DNA repair, in transcription and the three-dimensional organization of our genome. Indeed, NER factors are now known to function in the regulation of gene expression, the transcriptional reprogramming of pluripotent stem cells and the fine-tuning of growth hormones during mammalian development. In this regard, the non-random organization of our genome, chromatin and the process of transcription itself are expected to play paramount roles in how NER factors coordinate, prioritize and execute their distinct tasks during development and disease progression. At present, however, no solid evidence exists as to how NER is functionally involved in such complex processes, what are the NER-associated protein complexes and underlying gene networks or how NER factors operate within the complex chromatin architecture. This is primarily due to our difficulties in dissecting the diverse functional contributions of NER proteins in an intact organism. Here, we propose to use a unique series of knock-in, transgenic and NER progeroid mice to decode the functional role of NER in mammals, thus paving the way for understanding how genome maintenance pathways are connected to developmental defects and disease mechanisms in vivo.
Summary
Genome maintenance, chromatin remodelling and transcription are tightly linked biological processes that are currently poorly understood and vastly unexplored. Nucleotide excision repair (NER) is a major DNA repair pathway that mammalian cells employ to maintain their genome intact and faithfully transmit it into their progeny. Besides cancer and aging, however, defects in NER give rise to developmental disorders whose clinical heterogeneity and varying severity can only insufficiently be explained by the DNA repair defect. Recent work reveals that NER factors play a role, in addition to DNA repair, in transcription and the three-dimensional organization of our genome. Indeed, NER factors are now known to function in the regulation of gene expression, the transcriptional reprogramming of pluripotent stem cells and the fine-tuning of growth hormones during mammalian development. In this regard, the non-random organization of our genome, chromatin and the process of transcription itself are expected to play paramount roles in how NER factors coordinate, prioritize and execute their distinct tasks during development and disease progression. At present, however, no solid evidence exists as to how NER is functionally involved in such complex processes, what are the NER-associated protein complexes and underlying gene networks or how NER factors operate within the complex chromatin architecture. This is primarily due to our difficulties in dissecting the diverse functional contributions of NER proteins in an intact organism. Here, we propose to use a unique series of knock-in, transgenic and NER progeroid mice to decode the functional role of NER in mammals, thus paving the way for understanding how genome maintenance pathways are connected to developmental defects and disease mechanisms in vivo.
Max ERC Funding
1 995 000 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym DENOVOSTEM
Project DE NOVO GENERATION OF SOMATIC STEM CELLS: REGULATION AND MECHANISMS OF CELL PLASTICITY
Researcher (PI) Stefano Piccolo
Host Institution (HI) UNIVERSITA DEGLI STUDI DI PADOVA
Call Details Advanced Grant (AdG), LS4, ERC-2014-ADG
Summary The possibility to artificially induce and expand in vitro tissue-specific stem cells (SCs) is an important goal for regenerative medicine, to understand organ physiology, for in vitro modeling of human diseases and many other applications. Here we found that this goal can be achieved in the culture dish by transiently inducing expression of YAP or TAZ - nuclear effectors of the Hippo and biomechanical pathways - into primary/terminally differentiated cells of distinct tissue origins. Moreover, YAP/TAZ are essential endogenous factors that preserve ex-vivo naturally arising SCs of distinct tissues.
In this grant, we aim to gain insights into YAP/TAZ molecular networks (upstream regulators and downstream targets) involved in somatic SC reprogramming and SC identity. Our studies will entail the identification of the genetic networks and epigenetic changes controlled by YAP/TAZ during cell de-differentiation and the re-acquisition of SC-traits in distinct cell types. We will also investigate upstream inputs establishing YAP/TAZ activity, with particular emphasis on biomechanical and cytoskeletal cues that represent overarching regulators of YAP/TAZ in tissues.
For many tumors, it appears that acquisition of an immature, stem-like state is a prerequisite for tumor progression and an early step in oncogene-mediated transformation. YAP/TAZ activation is widespread in human tumors. However, a connection between YAP/TAZ and oncogene-induced cell plasticity has never been investigated. We will also pursue some intriguing preliminary results and investigate how oncogenes and chromatin remodelers may link to cell mechanics, and the plasticity of the differentiated and SC states by controlling YAP/TAZ.
In sum, this research should advance our understanding of the cellular and molecular basis underpinning organ growth, tissue regeneration and tumor initiation.
Summary
The possibility to artificially induce and expand in vitro tissue-specific stem cells (SCs) is an important goal for regenerative medicine, to understand organ physiology, for in vitro modeling of human diseases and many other applications. Here we found that this goal can be achieved in the culture dish by transiently inducing expression of YAP or TAZ - nuclear effectors of the Hippo and biomechanical pathways - into primary/terminally differentiated cells of distinct tissue origins. Moreover, YAP/TAZ are essential endogenous factors that preserve ex-vivo naturally arising SCs of distinct tissues.
In this grant, we aim to gain insights into YAP/TAZ molecular networks (upstream regulators and downstream targets) involved in somatic SC reprogramming and SC identity. Our studies will entail the identification of the genetic networks and epigenetic changes controlled by YAP/TAZ during cell de-differentiation and the re-acquisition of SC-traits in distinct cell types. We will also investigate upstream inputs establishing YAP/TAZ activity, with particular emphasis on biomechanical and cytoskeletal cues that represent overarching regulators of YAP/TAZ in tissues.
For many tumors, it appears that acquisition of an immature, stem-like state is a prerequisite for tumor progression and an early step in oncogene-mediated transformation. YAP/TAZ activation is widespread in human tumors. However, a connection between YAP/TAZ and oncogene-induced cell plasticity has never been investigated. We will also pursue some intriguing preliminary results and investigate how oncogenes and chromatin remodelers may link to cell mechanics, and the plasticity of the differentiated and SC states by controlling YAP/TAZ.
In sum, this research should advance our understanding of the cellular and molecular basis underpinning organ growth, tissue regeneration and tumor initiation.
Max ERC Funding
2 498 934 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym DevoTed_miR
Project MicroRNA determinants of the balance between effector and regulatory T cells in vivo
Researcher (PI) Bruno Miguel De Carvalho e Silva Santos
Host Institution (HI) INSTITUTO DE MEDICINA MOLECULAR JOAO LOBO ANTUNES
Call Details Consolidator Grant (CoG), LS6, ERC-2014-CoG
Summary T lymphocytes display potent pro- or anti-inflammatory properties, which typically associate with distinct effector (Teff) versus regulatory (Treg) cell subsets. Based on published and our preliminary data showing a major impact of microRNAs on T cell differentiation and (auto)immune pathology, my proposal aims to dissect the miRNA networks that control the balance between Teff and Treg subsets in vivo, in various experimental models of infection and autoimmunity.
We will focus on three critical mediators of T cell functions: interferon-gamma (IFN-g) and interleukin-17A (IL-17), highly pro-inflammatory Teff cytokines; and Foxp3, the transcription factor that confers Treg suppressive properties. To track the activity of these key genes, we will generate a new Ifng/ Il17/ Foxp3 triple reporter mouse, from which we will isolate Teff and Treg subsets to determine their genome-wide miRNA profiles and specific signatures in vivo. We will investigate both natural (thymic-derived and present in naïve mice) and induced (in the periphery upon challenge) Teff and Treg subsets, as they make distinct contributions to the immune response. We will identify miRNAs selectively expressed in Teff (Ifng+ or Il17+) versus Treg (Foxp3+) subsets of various lineages (CD4+, CD8+, gamma-delta or NKT) in each in vivo model; assess whether they are induced during thymic development or upon peripheral activation; and determine the robustness of subset-specific miRNA profiles across various in vivo challenges.
We will then use loss- and gain-of-function strategies to define the individual miRNAs that impact Teff or Treg differentiation and disease pathogenesis; dissect the external cues and intracellular mechanisms that regulate miRNA expression; and identify the mRNA networks controlled by key miRNAs in Teff and Treg differentiation. I expect this project to provide major conceptual and experimental advances towards manipulating miRNAs either to boost immunity or to treat autoimmunity.
Summary
T lymphocytes display potent pro- or anti-inflammatory properties, which typically associate with distinct effector (Teff) versus regulatory (Treg) cell subsets. Based on published and our preliminary data showing a major impact of microRNAs on T cell differentiation and (auto)immune pathology, my proposal aims to dissect the miRNA networks that control the balance between Teff and Treg subsets in vivo, in various experimental models of infection and autoimmunity.
We will focus on three critical mediators of T cell functions: interferon-gamma (IFN-g) and interleukin-17A (IL-17), highly pro-inflammatory Teff cytokines; and Foxp3, the transcription factor that confers Treg suppressive properties. To track the activity of these key genes, we will generate a new Ifng/ Il17/ Foxp3 triple reporter mouse, from which we will isolate Teff and Treg subsets to determine their genome-wide miRNA profiles and specific signatures in vivo. We will investigate both natural (thymic-derived and present in naïve mice) and induced (in the periphery upon challenge) Teff and Treg subsets, as they make distinct contributions to the immune response. We will identify miRNAs selectively expressed in Teff (Ifng+ or Il17+) versus Treg (Foxp3+) subsets of various lineages (CD4+, CD8+, gamma-delta or NKT) in each in vivo model; assess whether they are induced during thymic development or upon peripheral activation; and determine the robustness of subset-specific miRNA profiles across various in vivo challenges.
We will then use loss- and gain-of-function strategies to define the individual miRNAs that impact Teff or Treg differentiation and disease pathogenesis; dissect the external cues and intracellular mechanisms that regulate miRNA expression; and identify the mRNA networks controlled by key miRNAs in Teff and Treg differentiation. I expect this project to provide major conceptual and experimental advances towards manipulating miRNAs either to boost immunity or to treat autoimmunity.
Max ERC Funding
2 000 000 €
Duration
Start date: 2015-07-01, End date: 2020-06-30
Project acronym DUT-signal
Project dUTPase Signalling: from Phage to Eukaryotes
Researcher (PI) Jose Rafael Penades Casanova
Host Institution (HI) UNIVERSITY OF GLASGOW
Call Details Advanced Grant (AdG), LS6, ERC-2014-ADG
Summary dUTPases (DUTs) are enzymes that regulate cellular dUTP levels to prevent the misincorporation of uracil into DNA. Recently however, DUTs have been involved in the control of relevant cellular processes. How these regulatory functions are controlled remains unsolved. The recent elucidation of the mechanistic role of DUTs in the transfer of staphylococcal pathogenicity islands (SaPIs) by our group has revealed an entirely novel and surprising strategy involving DUTs in signalling. Namely, we have demonstrated that in addition to the 5 classical domains present in all the trimeric DUTs, staphylococcal phage-encoded DUT proteins possess an extra region (Motif VI) involved in SaPI de-repression by binding to the SaPI-encoded repressor (Stl). Although this domain is necessary, it does not suffice to induce the SaPI cycle. Unexpectedly, the strongly conserved DUT motif V is also inherently involved in mediating de-repression. Crystallographic and mutagenic analyses have demonstrated that binding to dUTP orders the C-terminal motif V of phage-encoded DUTs, potentially rendering these proteins in the conformation required for SaPI de-repression. In contrast, conversion into the apo state conformation by the hydrolysis of the bound dUTP disorders motif V and generates a protein that is unable to induce the SaPI cycle. Analogously, previous work demonstrated that the trimeric rat DUT interacts with the transcriptional factor PPARα, an interaction that depends on an “extra” N-terminal motif VI present in the DUT protein and requires the C-terminal domain contribution, strongly supporting in general the mechanism involving DUTs in signalling. In summary, our results suggest that DUTs define a widespread family of signalling molecules that acts analogously to eukaryotic G-proteins. This project stems from this ground-breaking result, and will investigate the biological role of DUTs as signalling molecules, opening up the possibility to establish dUTP as a new second messenger.
Summary
dUTPases (DUTs) are enzymes that regulate cellular dUTP levels to prevent the misincorporation of uracil into DNA. Recently however, DUTs have been involved in the control of relevant cellular processes. How these regulatory functions are controlled remains unsolved. The recent elucidation of the mechanistic role of DUTs in the transfer of staphylococcal pathogenicity islands (SaPIs) by our group has revealed an entirely novel and surprising strategy involving DUTs in signalling. Namely, we have demonstrated that in addition to the 5 classical domains present in all the trimeric DUTs, staphylococcal phage-encoded DUT proteins possess an extra region (Motif VI) involved in SaPI de-repression by binding to the SaPI-encoded repressor (Stl). Although this domain is necessary, it does not suffice to induce the SaPI cycle. Unexpectedly, the strongly conserved DUT motif V is also inherently involved in mediating de-repression. Crystallographic and mutagenic analyses have demonstrated that binding to dUTP orders the C-terminal motif V of phage-encoded DUTs, potentially rendering these proteins in the conformation required for SaPI de-repression. In contrast, conversion into the apo state conformation by the hydrolysis of the bound dUTP disorders motif V and generates a protein that is unable to induce the SaPI cycle. Analogously, previous work demonstrated that the trimeric rat DUT interacts with the transcriptional factor PPARα, an interaction that depends on an “extra” N-terminal motif VI present in the DUT protein and requires the C-terminal domain contribution, strongly supporting in general the mechanism involving DUTs in signalling. In summary, our results suggest that DUTs define a widespread family of signalling molecules that acts analogously to eukaryotic G-proteins. This project stems from this ground-breaking result, and will investigate the biological role of DUTs as signalling molecules, opening up the possibility to establish dUTP as a new second messenger.
Max ERC Funding
2 246 192 €
Duration
Start date: 2015-12-01, End date: 2020-11-30
Project acronym ELFBAD
Project L-form bacteria, biotechnology and disease
Researcher (PI) Jeffery Errington
Host Institution (HI) UNIVERSITY OF NEWCASTLE UPON TYNE
Call Details Advanced Grant (AdG), LS6, ERC-2014-ADG
Summary Despite the clear importance and multiple functions of the bacterial cell wall, many bacteria appear
to be able to switch into a cell wall deficient or “L-form” state. L-forms are very heterogeneous in
size and shape and generally require osmotic stabilisers, such as 0.5 M sucrose, for viability.
However, by lacking the requirement for a cell wall, L-forms are completely resistant to common
cell wall antibiotics, such as β-lactams, and they are probably protected from some elements of
innate immune recognition. L-forms are therefore of potential interest in relation to their possible
involvement in human disease. They have often been reported in clinical specimens obtained from
patients with recurrent or persistent infections or on long term prophylaxis with β-lactam antibiotics.
Unfortunately, until recently, most of the work on L-forms had been done in the pre-molecular era,
when it was difficult to characterise the L-forms and particularly to identify their origins and
relationship with other resident pathogenic bacteria. Recently, several labs have revisited the L-form
issue and started to apply modern molecular and cell biological methods.
The proposal is divided into three Themes:
• Improve our understanding of key features of the L-forms of our best characterised model system, B. subtilis, including both basic science and possible biotechnological applications.
• Extend our analysis of basic L-form biology into several diverse bacterial systems, of relevance to both biotechnology and infectious disease.
• Explore in detail the possible clinical relevance of L-forms, aiming to identify specific clinical situations in which they are relevant or, at least, to establish model systems in which the interactions between L-form and mammalian systems can be studied.
Summary
Despite the clear importance and multiple functions of the bacterial cell wall, many bacteria appear
to be able to switch into a cell wall deficient or “L-form” state. L-forms are very heterogeneous in
size and shape and generally require osmotic stabilisers, such as 0.5 M sucrose, for viability.
However, by lacking the requirement for a cell wall, L-forms are completely resistant to common
cell wall antibiotics, such as β-lactams, and they are probably protected from some elements of
innate immune recognition. L-forms are therefore of potential interest in relation to their possible
involvement in human disease. They have often been reported in clinical specimens obtained from
patients with recurrent or persistent infections or on long term prophylaxis with β-lactam antibiotics.
Unfortunately, until recently, most of the work on L-forms had been done in the pre-molecular era,
when it was difficult to characterise the L-forms and particularly to identify their origins and
relationship with other resident pathogenic bacteria. Recently, several labs have revisited the L-form
issue and started to apply modern molecular and cell biological methods.
The proposal is divided into three Themes:
• Improve our understanding of key features of the L-forms of our best characterised model system, B. subtilis, including both basic science and possible biotechnological applications.
• Extend our analysis of basic L-form biology into several diverse bacterial systems, of relevance to both biotechnology and infectious disease.
• Explore in detail the possible clinical relevance of L-forms, aiming to identify specific clinical situations in which they are relevant or, at least, to establish model systems in which the interactions between L-form and mammalian systems can be studied.
Max ERC Funding
2 428 621 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym ENVIROIMMUNE
Project Environmental modulators of the immune cell balance in health and disease
Researcher (PI) Markus Kleinewietfeld
Host Institution (HI) VIB
Call Details Starting Grant (StG), LS6, ERC-2014-STG
Summary The incidence of autoimmune diseases in developed societies is increasing at high rates, but the underlying cause for this phenomenon has not been elucidated yet. Since the genetic architect remains considerably stable, this increase is likely associated with changes in the environment. Autoimmunity is linked to an imbalance of pro-inflammatory Th17 cells and anti-inflammatory Foxp3+ regulatory T cells (Treg). However, little is known regarding environmental factors that influence the Th17/Treg balance. We recently discovered that a sodium-rich diet severely exacerbates experimental autoimmune encephalomyelitis (EAE) through an increased induction of pathogenic Th17 cells. Surprisingly, our preliminary data indicate that high-salt conditions also significantly impair Treg function, resembling a phenotype observed in several human autoimmune diseases. In addition, we have evidence that a high-salt diet affects the gut microbiota, implicating possible indirect effects on immune cells in vivo. Based on these findings we hypothesize that excess dietary salt represents an environmental risk factor for autoimmune diseases by modulating the Th17/Treg balance by several direct and indirect mechanisms. To address this hypothesis we will 1) examine the underlying mechanisms of high-salt induced Treg dysfunction and effects on the Treg/Th17 balance by molecular and functional analysis in vitro and compare it to known risk variants of human autoimmune diseases, and 2) define direct and indirect effects of excess dietary salt on the Th17/Treg balance and autoimmunity in vivo and explore potential novel pathways for targeted interventions. Thus, the proposed study will uncover the impact of a newly discovered environmental modulator of the immune cell balance and will ultimately pave the way for new approaches in therapy and prevention of autoimmune diseases.
Summary
The incidence of autoimmune diseases in developed societies is increasing at high rates, but the underlying cause for this phenomenon has not been elucidated yet. Since the genetic architect remains considerably stable, this increase is likely associated with changes in the environment. Autoimmunity is linked to an imbalance of pro-inflammatory Th17 cells and anti-inflammatory Foxp3+ regulatory T cells (Treg). However, little is known regarding environmental factors that influence the Th17/Treg balance. We recently discovered that a sodium-rich diet severely exacerbates experimental autoimmune encephalomyelitis (EAE) through an increased induction of pathogenic Th17 cells. Surprisingly, our preliminary data indicate that high-salt conditions also significantly impair Treg function, resembling a phenotype observed in several human autoimmune diseases. In addition, we have evidence that a high-salt diet affects the gut microbiota, implicating possible indirect effects on immune cells in vivo. Based on these findings we hypothesize that excess dietary salt represents an environmental risk factor for autoimmune diseases by modulating the Th17/Treg balance by several direct and indirect mechanisms. To address this hypothesis we will 1) examine the underlying mechanisms of high-salt induced Treg dysfunction and effects on the Treg/Th17 balance by molecular and functional analysis in vitro and compare it to known risk variants of human autoimmune diseases, and 2) define direct and indirect effects of excess dietary salt on the Th17/Treg balance and autoimmunity in vivo and explore potential novel pathways for targeted interventions. Thus, the proposed study will uncover the impact of a newly discovered environmental modulator of the immune cell balance and will ultimately pave the way for new approaches in therapy and prevention of autoimmune diseases.
Max ERC Funding
1 499 041 €
Duration
Start date: 2015-08-01, End date: 2020-07-31
Project acronym EpiTALL
Project Dynamic interplay between DNA methylation, histone modifications and super enhancer activity in normal T cells and during malignant T cell transformation
Researcher (PI) Pieter Van vlierberghe
Host Institution (HI) UNIVERSITEIT GENT
Call Details Starting Grant (StG), LS4, ERC-2014-STG
Summary Dynamic interplay between histone modifications and DNA methylation defines the chromatin structure of the humane genome and serves as a conceptual framework to understand transcriptional regulation in normal development and human disease. The ultimate goal of this research proposal is to study the chromatin architecture during normal and malignant T cell differentiation in order to define how DNA methylation drives oncogenic gene expression as a novel concept in cancer research.
T-cell acute lymphoblastic leukemia (T-ALL) accounts for 15% of pediatric and 25% of adult ALL cases and was originally identified as a highly aggressive tumor entity. T-ALL therapy has been intensified leading to gradual improvements in survival. However, 20% of pediatric and 50% of adult T-ALL cases still relapse and ultimately die because of refractory disease. Research efforts have unravelled the complex genetic basis of T-ALL but failed to identify new promising targets for precision therapy.
Recent studies have identified a subset of T-ALLs whose transcriptional programs resemble those of early T-cell progenitors (ETPs), myeloid precursors and hematopoietic stem cells. Importantly, these so-called ETP-ALLs are characterized by early treatment failure and an extremely poor prognosis. The unique ETP-ALL gene expression signature suggests that the epigenomic landscape in ETP-ALL is markedly different as compared to other genetic subtypes of human T-ALL.
My project aims to identify genome-wide patterns of DNA methylation and histone modifications in genetic subtypes of human T-ALL as a basis for elucidating how DNA methylation drives the expression of critical oncogenes in the context of poor prognostic ETP-ALL. Given that these ETP-ALL patients completely fail current chemotherapy treatment, tackling this completely novel aspect of ETP-ALL genetics will yield new targets for therapeutic intervention in this aggressive haematological malignancy.
Summary
Dynamic interplay between histone modifications and DNA methylation defines the chromatin structure of the humane genome and serves as a conceptual framework to understand transcriptional regulation in normal development and human disease. The ultimate goal of this research proposal is to study the chromatin architecture during normal and malignant T cell differentiation in order to define how DNA methylation drives oncogenic gene expression as a novel concept in cancer research.
T-cell acute lymphoblastic leukemia (T-ALL) accounts for 15% of pediatric and 25% of adult ALL cases and was originally identified as a highly aggressive tumor entity. T-ALL therapy has been intensified leading to gradual improvements in survival. However, 20% of pediatric and 50% of adult T-ALL cases still relapse and ultimately die because of refractory disease. Research efforts have unravelled the complex genetic basis of T-ALL but failed to identify new promising targets for precision therapy.
Recent studies have identified a subset of T-ALLs whose transcriptional programs resemble those of early T-cell progenitors (ETPs), myeloid precursors and hematopoietic stem cells. Importantly, these so-called ETP-ALLs are characterized by early treatment failure and an extremely poor prognosis. The unique ETP-ALL gene expression signature suggests that the epigenomic landscape in ETP-ALL is markedly different as compared to other genetic subtypes of human T-ALL.
My project aims to identify genome-wide patterns of DNA methylation and histone modifications in genetic subtypes of human T-ALL as a basis for elucidating how DNA methylation drives the expression of critical oncogenes in the context of poor prognostic ETP-ALL. Given that these ETP-ALL patients completely fail current chemotherapy treatment, tackling this completely novel aspect of ETP-ALL genetics will yield new targets for therapeutic intervention in this aggressive haematological malignancy.
Max ERC Funding
958 750 €
Duration
Start date: 2015-07-01, End date: 2020-06-30
Project acronym ER_disease
Project Defining hormonal cross-talk and the role of mutations in estrogen receptor positive breast cancer
Researcher (PI) Jason Scott Carroll
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Consolidator Grant (CoG), LS4, ERC-2014-CoG
Summary Estrogen Receptor (ER) is the driving transcription factor in ~75% of all breast cancers. ER antagonists are routinely used for treatment, but significant variability exists in clinical response. We are interested in explaining this heterogeneity and exploiting the mechanistic insight. We have recently identified important, but previously uncharacterised cross-talk between ER and the progesterone receptor (PR) and androgen receptor (AR) pathways, both of which are commonly expressed in ER+ tumours. Recently, ER has been shown to be mutated in ~18-55% of metastatic breast cancers. In addition, two key ER-chromatin regulatory proteins, FoxA1 and GATA3, are mutated in primary ER+ disease. Finally we have discovered three previously unknown phosphorylation events on FoxA1.
Aim 1: We will comprehensively explore the cross-talk that exists between ER and PR and AR pathways to determine the physiological effects on ER function. Aim 2: We will recapitulate the key mutations observed in ER, FoxA1 and GATA3, to assess the impact on ER-DNA interactions, ER transcriptional activity and cell growth and drug response. This will be explored under different hormonal contexts to identify how the mutational spectrum influences the cross-talk between ER and the parallel PR and AR pathways. Aim 3: We will identify upstream kinase pathways that influence FoxA1 and GATA3 function. Aim 4: We will establish a novel single locus chromatin purification method for isolation of specific chromatin loci, followed by Mass Spectrometry to characterise the potential role of PR and AR variants and to identify unknown regulatory factors.
Given recent biological discoveries and technological advances, we are perfectly positioned to apply cutting-edge tools to glean mechanistic insight into the factors that determine variability within ER+ disease. This proposal aims to advance our understanding of ER+ tumour heterogeneity, revealing ways of exploiting this in a clinically meaningful manner.
Summary
Estrogen Receptor (ER) is the driving transcription factor in ~75% of all breast cancers. ER antagonists are routinely used for treatment, but significant variability exists in clinical response. We are interested in explaining this heterogeneity and exploiting the mechanistic insight. We have recently identified important, but previously uncharacterised cross-talk between ER and the progesterone receptor (PR) and androgen receptor (AR) pathways, both of which are commonly expressed in ER+ tumours. Recently, ER has been shown to be mutated in ~18-55% of metastatic breast cancers. In addition, two key ER-chromatin regulatory proteins, FoxA1 and GATA3, are mutated in primary ER+ disease. Finally we have discovered three previously unknown phosphorylation events on FoxA1.
Aim 1: We will comprehensively explore the cross-talk that exists between ER and PR and AR pathways to determine the physiological effects on ER function. Aim 2: We will recapitulate the key mutations observed in ER, FoxA1 and GATA3, to assess the impact on ER-DNA interactions, ER transcriptional activity and cell growth and drug response. This will be explored under different hormonal contexts to identify how the mutational spectrum influences the cross-talk between ER and the parallel PR and AR pathways. Aim 3: We will identify upstream kinase pathways that influence FoxA1 and GATA3 function. Aim 4: We will establish a novel single locus chromatin purification method for isolation of specific chromatin loci, followed by Mass Spectrometry to characterise the potential role of PR and AR variants and to identify unknown regulatory factors.
Given recent biological discoveries and technological advances, we are perfectly positioned to apply cutting-edge tools to glean mechanistic insight into the factors that determine variability within ER+ disease. This proposal aims to advance our understanding of ER+ tumour heterogeneity, revealing ways of exploiting this in a clinically meaningful manner.
Max ERC Funding
1 987 274 €
Duration
Start date: 2015-06-01, End date: 2020-05-31
Project acronym ERVE
Project Systematic discovery of functional elements in RNA virus genomes: an Encyclopedia of RNA Virus Elements
Researcher (PI) Andrew Edwin Firth
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Consolidator Grant (CoG), LS6, ERC-2014-CoG
Summary Identification of the full complement of genes and other functional elements in any virus is crucial to fully understand its molecular biology and guide the development of effective control strategies. Our recent discoveries of new 'hidden' genes in the potyviruses, alphaviruses, arteriviruses, flaviviruses and influenza A virus have demonstrated that, even in the most well-studied and economically-important viruses, small overlapping genes can remain undetected throughout decades of research. Comparative computational analyses can be used to efficiently identify hidden features and target experimental analyses, thus saving time and cost, and minimizing animal experiments. With the rapid increase in sequencing data, for the first time it is now possible to map out at high resolution functional elements genome-wide in hundreds of important virus species.
Our research involves the development of powerful new tools for virus comparative genomics, and the application of these tools to uncover hidden genes and other functional elements in RNA virus and retrovirus genomes. Hidden genes are often translated via non-canonical mechanisms, such as programmed ribosomal frameshifting, and we are particularly interested in discovering and characterizing new types of non-canonical translation. Deciphering these 'exceptions-to-the-rule' enhances our understanding of the mechanics of protein synthesis. Further, these novel mechanisms may also be relevant to cellular gene expression.
The goals of this project are:
1) To computationally identify all 'hidden' genes and major functional non-coding elements in the genomes of RNA viruses and retroviruses of medical, veterinary and agricultural importance.
2) To experimentally characterize the most interesting new features.
3) To characterize novel translation mechanisms utilized by RNA viruses.
4) To develop web interfaces to our software and an interactive RNA virus comparative genomics database.
Summary
Identification of the full complement of genes and other functional elements in any virus is crucial to fully understand its molecular biology and guide the development of effective control strategies. Our recent discoveries of new 'hidden' genes in the potyviruses, alphaviruses, arteriviruses, flaviviruses and influenza A virus have demonstrated that, even in the most well-studied and economically-important viruses, small overlapping genes can remain undetected throughout decades of research. Comparative computational analyses can be used to efficiently identify hidden features and target experimental analyses, thus saving time and cost, and minimizing animal experiments. With the rapid increase in sequencing data, for the first time it is now possible to map out at high resolution functional elements genome-wide in hundreds of important virus species.
Our research involves the development of powerful new tools for virus comparative genomics, and the application of these tools to uncover hidden genes and other functional elements in RNA virus and retrovirus genomes. Hidden genes are often translated via non-canonical mechanisms, such as programmed ribosomal frameshifting, and we are particularly interested in discovering and characterizing new types of non-canonical translation. Deciphering these 'exceptions-to-the-rule' enhances our understanding of the mechanics of protein synthesis. Further, these novel mechanisms may also be relevant to cellular gene expression.
The goals of this project are:
1) To computationally identify all 'hidden' genes and major functional non-coding elements in the genomes of RNA viruses and retroviruses of medical, veterinary and agricultural importance.
2) To experimentally characterize the most interesting new features.
3) To characterize novel translation mechanisms utilized by RNA viruses.
4) To develop web interfaces to our software and an interactive RNA virus comparative genomics database.
Max ERC Funding
1 780 000 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym EXODUS
Project Light induced spatially EXact and genetically encoded labeling of immune cells for monitoring of lOng Distance and Ultra-compartment Shuttling during autoimmunity and chronic inflammation
Researcher (PI) Thomas Gunther Thorsten Korn
Host Institution (HI) KLINIKUM RECHTS DER ISAR DER TECHNISCHEN UNIVERSITAT MUNCHEN
Call Details Consolidator Grant (CoG), LS6, ERC-2014-CoG
Summary The incidence of autoimmune diseases including multiple sclerosis is dramatically increasing. While there is a genetically defined “bedrock” susceptibility to develop T cell mediated autoimmunity, environmental cues likely determine the threshold for disease development. Yet, little is known on how environmental cues sensed at body/environment interfaces are translated into immunopathology in distant organs like the central nervous system (CNS).
Here, we raise the hypothesis that immune cells must be activated at epithelial surfaces and then physically migrate to distant organs in order to induce autoimmunity. Furthermore, we propose that the “state of activation” of (either lymphoid or myeloid) immune cells can be interrogated by IL-6 production since IL-6 deficiency confers resistance to virtually any organ specific autoimmune disease and we have contributed fundamentally in defining the role of IL-6 for the generation of Th17 cells that are highly associated with autoimmune tissue inflammation.
In EXODUS, we will develop ground-breaking next generation reporter tools in order to test these hypotheses. A split Cre recombinase protein, which dimerizes and is activated by blue light, will be used to genetically label cells (and their progeny) in a topologically defined manner (“compartment reporter”). Furthermore, we have developed a novel type of Cre-inducible in vivo IL-6 reporter (“activation reporter”). The combination of these tools will enable us to trace the anatomical compartment of activation of immune cells without limitations in lag time.
Thus, site specific photogenetic co-induction of a fluorescence and IL-6 reporter will be used to probe peripheral sites for their potency to licence immune cells to travel to the CNS (Forward). Vice versa, labeling of cells in the CNS (through a thinned skull window) will allow for studying immune cell exodus from the CNS in homeostasis and during inflammation (Reverse).
Summary
The incidence of autoimmune diseases including multiple sclerosis is dramatically increasing. While there is a genetically defined “bedrock” susceptibility to develop T cell mediated autoimmunity, environmental cues likely determine the threshold for disease development. Yet, little is known on how environmental cues sensed at body/environment interfaces are translated into immunopathology in distant organs like the central nervous system (CNS).
Here, we raise the hypothesis that immune cells must be activated at epithelial surfaces and then physically migrate to distant organs in order to induce autoimmunity. Furthermore, we propose that the “state of activation” of (either lymphoid or myeloid) immune cells can be interrogated by IL-6 production since IL-6 deficiency confers resistance to virtually any organ specific autoimmune disease and we have contributed fundamentally in defining the role of IL-6 for the generation of Th17 cells that are highly associated with autoimmune tissue inflammation.
In EXODUS, we will develop ground-breaking next generation reporter tools in order to test these hypotheses. A split Cre recombinase protein, which dimerizes and is activated by blue light, will be used to genetically label cells (and their progeny) in a topologically defined manner (“compartment reporter”). Furthermore, we have developed a novel type of Cre-inducible in vivo IL-6 reporter (“activation reporter”). The combination of these tools will enable us to trace the anatomical compartment of activation of immune cells without limitations in lag time.
Thus, site specific photogenetic co-induction of a fluorescence and IL-6 reporter will be used to probe peripheral sites for their potency to licence immune cells to travel to the CNS (Forward). Vice versa, labeling of cells in the CNS (through a thinned skull window) will allow for studying immune cell exodus from the CNS in homeostasis and during inflammation (Reverse).
Max ERC Funding
1 998 063 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym FAtoUnFRAGILITY
Project Fanconi anemia : a disease model to understand causes and consequences of common fragile site instability.
Researcher (PI) Valeria Naim
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), LS4, ERC-2014-STG
Summary Originally described by cytogeneticists, common fragile sites (CFSs) are chromosomal regions known for their susceptibility to break and rearrange aberrantly, thus altering the expression of genes located therein. CFS instability is associated with tumor development and pathogenic copy number variations. Recent advances have significantly contributed to dissect the molecular bases of CFS instability, yet a unifying model for their unique breakage propensity has not been determined. Fanconi anemia (FA) is a chromosomal instability syndrome featuring congenital abnormalities, bone marrow failure and cancer predisposition, characterized by an increased CFS fragility. FA is thus an ideal model to understand the mechanisms underpinning CFS instability and the mechanistic link between CFS instability and the pathogenesis of disease phenotypes. I propose to use FA cellular models to examine the molecular events leading to CFS instability, and FA mouse models to investigate the consequences of deletions, amplifications or rearrangements involving CFSs on the expression of genes regulating critical signal transduction pathways involved in cell survival, proliferation, and differentiation. Exploring these mechanisms can lead to the development of chemopreventive or therapeutic strategies targeting aberrant gene expression or pathological pathways.
Summary
Originally described by cytogeneticists, common fragile sites (CFSs) are chromosomal regions known for their susceptibility to break and rearrange aberrantly, thus altering the expression of genes located therein. CFS instability is associated with tumor development and pathogenic copy number variations. Recent advances have significantly contributed to dissect the molecular bases of CFS instability, yet a unifying model for their unique breakage propensity has not been determined. Fanconi anemia (FA) is a chromosomal instability syndrome featuring congenital abnormalities, bone marrow failure and cancer predisposition, characterized by an increased CFS fragility. FA is thus an ideal model to understand the mechanisms underpinning CFS instability and the mechanistic link between CFS instability and the pathogenesis of disease phenotypes. I propose to use FA cellular models to examine the molecular events leading to CFS instability, and FA mouse models to investigate the consequences of deletions, amplifications or rearrangements involving CFSs on the expression of genes regulating critical signal transduction pathways involved in cell survival, proliferation, and differentiation. Exploring these mechanisms can lead to the development of chemopreventive or therapeutic strategies targeting aberrant gene expression or pathological pathways.
Max ERC Funding
1 462 383 €
Duration
Start date: 2015-06-01, End date: 2020-05-31
Project acronym GAMES
Project Gut Microbiota in Nervous System Autoimmunity: Molecular Mechanisms of Disease Initiation and Regulation
Researcher (PI) Gurumoorthy Krishnamoorthy
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), LS6, ERC-2014-STG
Summary Multiple Sclerosis (MS), an autoimmune demyelinating disease affecting the central nervous system (CNS), causes tremendous disability in young adults and inflicts huge economic burden on the society. The incidence of MS is steadily increasing in many countries arguing for environmental factors driven changes in disease induction. How and which environmental factors contribute to disease initiation and progression is unknown. Using a spontaneous mouse model of MS, we have shown that the gut microbiota is essential in triggering CNS autoimmunity. In contrast to the mice housed in conventional housing conditions, germ free (GF) mice, devoid of gut bacteria, were protected from spontaneous experimental autoimmune encephalomyelitis (sEAE). Re-colonization of GF mice with a complex regular gut flora derived from specific pathogen free (SPF) mice resulted in sEAE within 2-3 months. The re-colonization also triggered pro-inflammatory T and B cell responses. However, colonization of GF mice with a reduced gut flora failed to induce sEAE during our observation period suggesting a “specific” rather than a “broader” microbial trigger. In this proposal, I want to study the role of gut microbiota in CNS autoimmunity with the following aims:
Aim 1: CNS autoimmunity triggering/protecting gut microbes and host immune responses
I want to study how and which gut bacterial species are modulating CNS autoimmunity to better understand the origin of autoimmune responses and their relation to host immune responses.
Aim 2: Molecular mechanisms of sensing of gut microbiota and microbial metabolites during CNS autoimmunity
I want to identify the molecular pathways that are involved in sensing the gut microbiota and its metabolites which are relevant to CNS autoimmunity.
Aim 3: Therapeutic application of gut microbiota for CNS autoimmunity
I want to identify therapeutic strategies targeting gut microbiota to limit the development of inflammatory processes during CNS autoimmunity.
Summary
Multiple Sclerosis (MS), an autoimmune demyelinating disease affecting the central nervous system (CNS), causes tremendous disability in young adults and inflicts huge economic burden on the society. The incidence of MS is steadily increasing in many countries arguing for environmental factors driven changes in disease induction. How and which environmental factors contribute to disease initiation and progression is unknown. Using a spontaneous mouse model of MS, we have shown that the gut microbiota is essential in triggering CNS autoimmunity. In contrast to the mice housed in conventional housing conditions, germ free (GF) mice, devoid of gut bacteria, were protected from spontaneous experimental autoimmune encephalomyelitis (sEAE). Re-colonization of GF mice with a complex regular gut flora derived from specific pathogen free (SPF) mice resulted in sEAE within 2-3 months. The re-colonization also triggered pro-inflammatory T and B cell responses. However, colonization of GF mice with a reduced gut flora failed to induce sEAE during our observation period suggesting a “specific” rather than a “broader” microbial trigger. In this proposal, I want to study the role of gut microbiota in CNS autoimmunity with the following aims:
Aim 1: CNS autoimmunity triggering/protecting gut microbes and host immune responses
I want to study how and which gut bacterial species are modulating CNS autoimmunity to better understand the origin of autoimmune responses and their relation to host immune responses.
Aim 2: Molecular mechanisms of sensing of gut microbiota and microbial metabolites during CNS autoimmunity
I want to identify the molecular pathways that are involved in sensing the gut microbiota and its metabolites which are relevant to CNS autoimmunity.
Aim 3: Therapeutic application of gut microbiota for CNS autoimmunity
I want to identify therapeutic strategies targeting gut microbiota to limit the development of inflammatory processes during CNS autoimmunity.
Max ERC Funding
1 499 946 €
Duration
Start date: 2015-06-01, End date: 2020-05-31
Project acronym GENESIS
Project GENEtic DiSsection of Innate Immune Sensing and Signalling
Researcher (PI) Veit Helmut Hornung
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Call Details Consolidator Grant (CoG), LS6, ERC-2014-CoG
Summary In vertebrates, a receptor-based, innate sensing machinery is used to detect the presence of microbederived molecules or the perturbation microbial infection causes within the host. In the context of viral infection, non-self nucleic acids are sensed by a set of intracellular receptors that upon activation initiate broad antiviral effector responses to eliminate the imminent threat. Over the past years our understanding of these processes has considerably grown, mainly by employing murine knockout models.
Recent advances in genome engineering now provide the opportunity to knockout genes or even to perform functional genetic screens in human cells, providing a powerful means to validate and generate hypotheses. We have developed a high-throughput genome targeting and validation platform that allows us to tackle large-scale loss-of-function studies both at a polyclonal as well as an arrayed format. In addition, we have invested considerable efforts to render this technology applicable to study innate immune sensing and signalling pathways in the human system. GENESIS will combine these efforts to tackle pertinent questions in this field that could not have been addressed before: We will systematically dissect known nucleic acid sensing pathways in the human system to explore their unique roles, cooperativity or redundancy in detecting non-self nucleic acids. We will perform polyclonal, genome-wide loss-of-function screens to elucidate signalling
events downstream of intracellular DNA and RNA sensing pathways and their roles in orchestrating antiviral effector mechanisms. Moreover, in a large-scale perturbation study, we will specifically address the role of the kinome in antiviral innate immune signalling pathways, exploring the role of its individual members and their epistatic relationships in orchestrating gene expression. Altogether, these studies will allow us to obtain insight into innate immune signalling pathways at unprecedented precision, depth and breadth.
Summary
In vertebrates, a receptor-based, innate sensing machinery is used to detect the presence of microbederived molecules or the perturbation microbial infection causes within the host. In the context of viral infection, non-self nucleic acids are sensed by a set of intracellular receptors that upon activation initiate broad antiviral effector responses to eliminate the imminent threat. Over the past years our understanding of these processes has considerably grown, mainly by employing murine knockout models.
Recent advances in genome engineering now provide the opportunity to knockout genes or even to perform functional genetic screens in human cells, providing a powerful means to validate and generate hypotheses. We have developed a high-throughput genome targeting and validation platform that allows us to tackle large-scale loss-of-function studies both at a polyclonal as well as an arrayed format. In addition, we have invested considerable efforts to render this technology applicable to study innate immune sensing and signalling pathways in the human system. GENESIS will combine these efforts to tackle pertinent questions in this field that could not have been addressed before: We will systematically dissect known nucleic acid sensing pathways in the human system to explore their unique roles, cooperativity or redundancy in detecting non-self nucleic acids. We will perform polyclonal, genome-wide loss-of-function screens to elucidate signalling
events downstream of intracellular DNA and RNA sensing pathways and their roles in orchestrating antiviral effector mechanisms. Moreover, in a large-scale perturbation study, we will specifically address the role of the kinome in antiviral innate immune signalling pathways, exploring the role of its individual members and their epistatic relationships in orchestrating gene expression. Altogether, these studies will allow us to obtain insight into innate immune signalling pathways at unprecedented precision, depth and breadth.
Max ERC Funding
1 970 000 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym GliaInnateSensing
Project Glia-derived factors in innate lymphoid cell sensing and intestinal defence
Researcher (PI) Jose Henrique Veiga Fernandes
Host Institution (HI) FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD
Call Details Consolidator Grant (CoG), LS6, ERC-2014-CoG
Summary The interplay between intestinal microbes and immune cells ensures vital functions of the organism. However, inadequate host-microbe relationships lead to inflammatory diseases that are major public health concerns.
Innate lymphoid cells (ILC) are an emergent family of effectors abundantly present at mucosal sites. Group 3 ILC (ILC3) produce pro-inflammatory cytokines and regulate mucosal homeostasis, anti-microbial defence and adaptive immune responses.
ILC development and function have been widely perceived to be programmed. However, recent evidence indicates that ILC are also controlled by dietary signals. Nevertheless, how ILC3 perceive, integrate and respond to environmental cues remains utterly unexplored.
We hypothesise that ILC3 sense their environment and exert their function as part of a novel epithelial-glial-ILC unit orchestrated by neurotrophic factors. Thus, we propose to employ genetic, cellular and molecular approaches to decipher how this unconventional multi-cellular unit is controlled and how glial-derived factors set ILC3 function and intestinal homeostasis.
In order to achieve this, we will assess ILC3-autonomous functions of neurotrophic factor receptors. ILC3-specific loss and gain of function mutant mice for neuroregulatory receptors will be used to define the role of these molecules in ILC3 function, mucosal homeostasis, gut defence and microbial ecology. Sequentially we propose to decipher the anatomical and functional basis for the enteric epithelial-glial-ILC unit. To this end we will employ high-resolution imaging, genome-wide expression analysis and tissue-specific mutants for define target genes.
Our ground-breaking research will establish a novel sensing program by which ILC3 integrate environmental cues and will define a key multi-cellular unit at the core of intestinal homeostasis and defence. Finally, our work will reveal new pathways that may be targeted in inflammatory diseases that are major Public Health concerns.
Summary
The interplay between intestinal microbes and immune cells ensures vital functions of the organism. However, inadequate host-microbe relationships lead to inflammatory diseases that are major public health concerns.
Innate lymphoid cells (ILC) are an emergent family of effectors abundantly present at mucosal sites. Group 3 ILC (ILC3) produce pro-inflammatory cytokines and regulate mucosal homeostasis, anti-microbial defence and adaptive immune responses.
ILC development and function have been widely perceived to be programmed. However, recent evidence indicates that ILC are also controlled by dietary signals. Nevertheless, how ILC3 perceive, integrate and respond to environmental cues remains utterly unexplored.
We hypothesise that ILC3 sense their environment and exert their function as part of a novel epithelial-glial-ILC unit orchestrated by neurotrophic factors. Thus, we propose to employ genetic, cellular and molecular approaches to decipher how this unconventional multi-cellular unit is controlled and how glial-derived factors set ILC3 function and intestinal homeostasis.
In order to achieve this, we will assess ILC3-autonomous functions of neurotrophic factor receptors. ILC3-specific loss and gain of function mutant mice for neuroregulatory receptors will be used to define the role of these molecules in ILC3 function, mucosal homeostasis, gut defence and microbial ecology. Sequentially we propose to decipher the anatomical and functional basis for the enteric epithelial-glial-ILC unit. To this end we will employ high-resolution imaging, genome-wide expression analysis and tissue-specific mutants for define target genes.
Our ground-breaking research will establish a novel sensing program by which ILC3 integrate environmental cues and will define a key multi-cellular unit at the core of intestinal homeostasis and defence. Finally, our work will reveal new pathways that may be targeted in inflammatory diseases that are major Public Health concerns.
Max ERC Funding
2 270 000 €
Duration
Start date: 2015-07-01, End date: 2020-06-30
Project acronym HBV1
Project Innate immune responses to human hepatotropic viral infections
Researcher (PI) Marcus Dorner
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Call Details Starting Grant (StG), LS6, ERC-2014-STG
Summary Chronic hepatotropic infections including hepatitis B (HBV) and C (HCV) are a major public health
concern. Even though both viruses belong to completely distinct families the pathogenesis they elicit is
strikingly similar, leading to liver fibrosis and cirrhosis. Treatment for HBV and HCV consists of either
direct-acting antivirals or pegylated interferon (IFN)α. In contrast to HCV, these treatment regimen are noncurative
for HBV. Little is known to date about the host/pathogen interactions determining viral persistence.
Both viruses are sensitive to IFN, activating the JAK/STAT signalling pathway to activate interferonstimulated
gene expression (ISG), which are ultimately acting as antiviral immune effectors. Nevertheless,
neither type I or III IFN are very effective in their treatment.
Here, we suggest investigating the mechanistic details of type I and type III IFN action on HCV and
HBV in vitro and vivo with the goal of uncovering not only the differential ISG induction but furthermore
characterise viral immune evasion strategies. Building on our previous success in dissecting the host
response to HCV and creating the first immunocompetent mouse model for HCV we aim at using both,
novel microfluidic culture systems based on 3D hepatocyte cultures susceptible to both HCV and HBV as
well as human liver-chimeric mice in combination with single-cell analysis of the antiviral response against
HBV and HCV elicited by type I and III IFN. Additionally, we will utilize lentiviral high throughput
screening used previously for HCV to identify interferon effector molecules active against HBV. This project
will not only provide new insights into the innate immune response to chronic hepatotropic virus infections
but furthermore holds the potential of uncovering novel drug targets, aiding in the curative therapy for both,
HCV and HBV and offer novel insights into vaccine design.
This project has the aim of identifying novel host factors and drug targets enabling the development
of immunomodulatory antiviral drugs. This ranks the scope of the proposal between LS6 Immunity and
Infection and LS9 Applied Life Sciences and Non-Medical Biotechnology. Evaluating novel bioengineered
human liver culture systems and building on human liver-chimeric mice clearly places this proposal at the
forefront of identifying novel drug targets and assisting in the development of novel biotechnology and
preclinical projects.
Summary
Chronic hepatotropic infections including hepatitis B (HBV) and C (HCV) are a major public health
concern. Even though both viruses belong to completely distinct families the pathogenesis they elicit is
strikingly similar, leading to liver fibrosis and cirrhosis. Treatment for HBV and HCV consists of either
direct-acting antivirals or pegylated interferon (IFN)α. In contrast to HCV, these treatment regimen are noncurative
for HBV. Little is known to date about the host/pathogen interactions determining viral persistence.
Both viruses are sensitive to IFN, activating the JAK/STAT signalling pathway to activate interferonstimulated
gene expression (ISG), which are ultimately acting as antiviral immune effectors. Nevertheless,
neither type I or III IFN are very effective in their treatment.
Here, we suggest investigating the mechanistic details of type I and type III IFN action on HCV and
HBV in vitro and vivo with the goal of uncovering not only the differential ISG induction but furthermore
characterise viral immune evasion strategies. Building on our previous success in dissecting the host
response to HCV and creating the first immunocompetent mouse model for HCV we aim at using both,
novel microfluidic culture systems based on 3D hepatocyte cultures susceptible to both HCV and HBV as
well as human liver-chimeric mice in combination with single-cell analysis of the antiviral response against
HBV and HCV elicited by type I and III IFN. Additionally, we will utilize lentiviral high throughput
screening used previously for HCV to identify interferon effector molecules active against HBV. This project
will not only provide new insights into the innate immune response to chronic hepatotropic virus infections
but furthermore holds the potential of uncovering novel drug targets, aiding in the curative therapy for both,
HCV and HBV and offer novel insights into vaccine design.
This project has the aim of identifying novel host factors and drug targets enabling the development
of immunomodulatory antiviral drugs. This ranks the scope of the proposal between LS6 Immunity and
Infection and LS9 Applied Life Sciences and Non-Medical Biotechnology. Evaluating novel bioengineered
human liver culture systems and building on human liver-chimeric mice clearly places this proposal at the
forefront of identifying novel drug targets and assisting in the development of novel biotechnology and
preclinical projects.
Max ERC Funding
1 498 312 €
Duration
Start date: 2015-06-01, End date: 2020-05-31
Project acronym HemNichMDS
Project Functional and Molecular Analyses of the Interplay between Hematopoietic and Mesenchymal Niche Cells in Human Myelodysplastic Syndromes.
Researcher (PI) Hind Medyouf
Host Institution (HI) CHEMOTHERAPEUTISCHES FORSCHUNGSINSTITUT GEORG-SPEYER-HAUS STIFTUNG
Call Details Starting Grant (StG), LS4, ERC-2014-STG
Summary Myelodysplastic syndromes (MDS) are heterogeneous clonal hematopoietic stem cell diseases mainly affecting the elderly (45/100,000 in >70 years). The prevalence of MDS is expected to rise mainly as a result of an aging population. MDS is characterized by ineffective production of mature blood cells with peripheral cytopenias and the propensity to evolve to acute myeloid leukemia. Most MDS patients rely on continuous blood transfusions resulting in significant costs to healthcare systems and, most importantly, secondary effects leading to complications and patient deaths. The only potential curative treatment for MDS is hematopoietic stem cells (HSC) transplantation, which is limited to younger patients with suitable donors (<10% of MDS patients).
Increasing evidence indicates that myeloid neoplasms can be triggered by abnormal functional properties of the bone marrow microenvironment in mice. However, it remains to be seen whether this also applies to human hematopoietic neoplasms. Our work revealed that patient-derived mesenchymal niche cells are essential to propagate human MDS HSCs in vivo, thus highlighting the crucial role of the niche in human MDS. Moreover, our data indicate that human MDS hematopoietic cells may “educate” their niche environment into a self-reinforcing one.
The goal of our proposal is to decipher the interplay between hematopoietic and mesenchymal niche cells in human MDS, and to assess innovative means by which we could target diseased cells to improve MDS patient outcomes.
We will perform a comprehensive molecular characterization of highly purified primary mesenchymal niche cells to define new prognostic/therapeutic niche factors in MDS. More importantly, we will take advantage of our unique xenograft model of MDS to translate our findings into groundbreaking novel therapeutic strategies for MDS patients, by disrupting essential niche/MDS stem cell interactions.
Summary
Myelodysplastic syndromes (MDS) are heterogeneous clonal hematopoietic stem cell diseases mainly affecting the elderly (45/100,000 in >70 years). The prevalence of MDS is expected to rise mainly as a result of an aging population. MDS is characterized by ineffective production of mature blood cells with peripheral cytopenias and the propensity to evolve to acute myeloid leukemia. Most MDS patients rely on continuous blood transfusions resulting in significant costs to healthcare systems and, most importantly, secondary effects leading to complications and patient deaths. The only potential curative treatment for MDS is hematopoietic stem cells (HSC) transplantation, which is limited to younger patients with suitable donors (<10% of MDS patients).
Increasing evidence indicates that myeloid neoplasms can be triggered by abnormal functional properties of the bone marrow microenvironment in mice. However, it remains to be seen whether this also applies to human hematopoietic neoplasms. Our work revealed that patient-derived mesenchymal niche cells are essential to propagate human MDS HSCs in vivo, thus highlighting the crucial role of the niche in human MDS. Moreover, our data indicate that human MDS hematopoietic cells may “educate” their niche environment into a self-reinforcing one.
The goal of our proposal is to decipher the interplay between hematopoietic and mesenchymal niche cells in human MDS, and to assess innovative means by which we could target diseased cells to improve MDS patient outcomes.
We will perform a comprehensive molecular characterization of highly purified primary mesenchymal niche cells to define new prognostic/therapeutic niche factors in MDS. More importantly, we will take advantage of our unique xenograft model of MDS to translate our findings into groundbreaking novel therapeutic strategies for MDS patients, by disrupting essential niche/MDS stem cell interactions.
Max ERC Funding
1 500 000 €
Duration
Start date: 2015-08-01, End date: 2020-07-31
Project acronym HIV1ABTHERAPY
Project Antibody-Mediated Therapy of HIV-1 Infection
Researcher (PI) Florian Klein
Host Institution (HI) KLINIKUM DER UNIVERSITAET ZU KOELN
Call Details Starting Grant (StG), LS6, ERC-2014-STG
Summary Antibodies are destined to neutralize pathogens and can prevent and fight infectious diseases. Over the last years, advances in single B cell cloning resulted in the isolation of highly potent and broad HIV-1 neutralizing antibodies (bNAbs) that have been shown to prevent SHIV infection in non-human primates (NHPs). Recently, we have demonstrated that a combination of bNAbs can suppress HIV-1 replication in humanized mice, reducing viremia to undetectable levels. Moreover, bNAb therapy of SHIV-infected NHPs induced a rapid decline in viremia, followed by a prolonged control due to the long half-life of the antibodies. While these results strongly encourage the clinical evaluation of bNAbs in HIV-1 therapy, it is of critical importance to understand how the therapeutic potential of antibodies can be harnessed in the most effective way. Therefore, we aim to: I.) Identify exceptionally potent HIV-1 neutralizing antibodies that will be a crucial component of immunotherapy. By establishing novel methods for single-cell sorting and high-throughput sequencing we want to identify bNAbs targeting novel epitopes. II.) Prevent HIV-1 escape applying rationally designed treatment strategies targeting conserved functional sites for HIV-1 entry. III.) Evaluate immune markers and function in relation to bNAb administration in humans. Being at the forefront of one of the first clinical trials studying an HIV-1-directed bNAb, we will have the unique opportunity to investigate the interplay of antibody therapy and the host immune system. This proposal aims to strongly advance the field of HIV-1 antibody therapy and therefore enable the introduction of a new therapeutic modality for HIV-1, and will gain insights for antibody-mediated therapy in other infectious diseases.
Summary
Antibodies are destined to neutralize pathogens and can prevent and fight infectious diseases. Over the last years, advances in single B cell cloning resulted in the isolation of highly potent and broad HIV-1 neutralizing antibodies (bNAbs) that have been shown to prevent SHIV infection in non-human primates (NHPs). Recently, we have demonstrated that a combination of bNAbs can suppress HIV-1 replication in humanized mice, reducing viremia to undetectable levels. Moreover, bNAb therapy of SHIV-infected NHPs induced a rapid decline in viremia, followed by a prolonged control due to the long half-life of the antibodies. While these results strongly encourage the clinical evaluation of bNAbs in HIV-1 therapy, it is of critical importance to understand how the therapeutic potential of antibodies can be harnessed in the most effective way. Therefore, we aim to: I.) Identify exceptionally potent HIV-1 neutralizing antibodies that will be a crucial component of immunotherapy. By establishing novel methods for single-cell sorting and high-throughput sequencing we want to identify bNAbs targeting novel epitopes. II.) Prevent HIV-1 escape applying rationally designed treatment strategies targeting conserved functional sites for HIV-1 entry. III.) Evaluate immune markers and function in relation to bNAb administration in humans. Being at the forefront of one of the first clinical trials studying an HIV-1-directed bNAb, we will have the unique opportunity to investigate the interplay of antibody therapy and the host immune system. This proposal aims to strongly advance the field of HIV-1 antibody therapy and therefore enable the introduction of a new therapeutic modality for HIV-1, and will gain insights for antibody-mediated therapy in other infectious diseases.
Max ERC Funding
1 500 000 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym IL7sigNETure
Project IL-7/IL-7R signaling networks in health and malignancy
Researcher (PI) João Pedro Taborda Barata
Host Institution (HI) INSTITUTO DE MEDICINA MOLECULAR JOAO LOBO ANTUNES
Call Details Consolidator Grant (CoG), LS4, ERC-2014-CoG
Summary Deregulation of signal transduction is a feature of tumor cells and signaling therapies are gaining importance in the growing arsenal against cancer. However, their full potential can only be achieved once we overcome the limited knowledge on how signaling networks are wired in cancer cells. Interleukin 7 (IL7) and its receptor (IL7R) are essential for normal T-cell development and function. However, they can also promote autoimmunity, chronic inflammation and cancer. We showed that patients with T-cell acute lymphoblastic leukemia (T-ALL), an aggressive hematological cancer, can display IL7R gain-of-function mutations leading to downstream signaling activation and cell transformation. Despite the biological relevance of IL7 and IL7R, the characterization of their signaling effectors remains limited. Here, we propose to move from the single molecule/pathway-centered analysis that has characterized the research on IL7/IL7R signaling, into a ‘holistic’ view of the IL7/IL7R signaling landscape. To do so, we will employ a multidisciplinary strategy, in which data from complementary high throughput analyses, informing on different levels of regulation of the IL7/IL7R signaling network, will be integrated via a systems biology approach, and complemented by cell and molecular biology experimentation and state-of-the-art in vivo models. The knowledge we will generate should have a profound impact on the understanding of the fundamental mechanisms by which IL7/IL7R signaling promotes leukemia and reveal novel targets for fine-tuned therapeutic intervention in T-ALL. Moreover, the scope of insights gained should extend beyond leukemia. Our in-depth, systems-level characterization of IL7/IL7R signaling will constitute a platform with extraordinary potential to illuminate the molecular role of the IL7/IL7R axis in other cancers (e.g. breast and lung) and pathological settings where IL7 has been implicated, such as HIV infection, multiple sclerosis and rheumatoid arthritis.
Summary
Deregulation of signal transduction is a feature of tumor cells and signaling therapies are gaining importance in the growing arsenal against cancer. However, their full potential can only be achieved once we overcome the limited knowledge on how signaling networks are wired in cancer cells. Interleukin 7 (IL7) and its receptor (IL7R) are essential for normal T-cell development and function. However, they can also promote autoimmunity, chronic inflammation and cancer. We showed that patients with T-cell acute lymphoblastic leukemia (T-ALL), an aggressive hematological cancer, can display IL7R gain-of-function mutations leading to downstream signaling activation and cell transformation. Despite the biological relevance of IL7 and IL7R, the characterization of their signaling effectors remains limited. Here, we propose to move from the single molecule/pathway-centered analysis that has characterized the research on IL7/IL7R signaling, into a ‘holistic’ view of the IL7/IL7R signaling landscape. To do so, we will employ a multidisciplinary strategy, in which data from complementary high throughput analyses, informing on different levels of regulation of the IL7/IL7R signaling network, will be integrated via a systems biology approach, and complemented by cell and molecular biology experimentation and state-of-the-art in vivo models. The knowledge we will generate should have a profound impact on the understanding of the fundamental mechanisms by which IL7/IL7R signaling promotes leukemia and reveal novel targets for fine-tuned therapeutic intervention in T-ALL. Moreover, the scope of insights gained should extend beyond leukemia. Our in-depth, systems-level characterization of IL7/IL7R signaling will constitute a platform with extraordinary potential to illuminate the molecular role of the IL7/IL7R axis in other cancers (e.g. breast and lung) and pathological settings where IL7 has been implicated, such as HIV infection, multiple sclerosis and rheumatoid arthritis.
Max ERC Funding
1 988 125 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym INFANTLEUKEMIA
Project GENOMIC, CELLULAR AND DEVELOPMENTAL RECONSTRUCTION OFINFANT MLL-AF4+ ACUTE LYMPHOBLASTIC LEUKEMIA
Researcher (PI) Pablo Menendez Buján
Host Institution (HI) FUNDACIO INSTITUT DE RECERCA CONTRA LA LEUCEMIA JOSEP CARRERAS
Call Details Consolidator Grant (CoG), LS4, ERC-2014-CoG
Summary Infant cancer is very distinct to adult cancer and it is progressively seen as a developmental disease. An intriguing infant cancer is the t(4;11) acute lymphoblastic leukemia (ALL) characterized by the hallmark rearrangement MLL-AF4 (MA4), and associated with dismal prognosis. The 100% concordance in twins and its prenatal onset suggest an extremely rapid disease progression. Many key issues remain elusive:
Is MA4 leukemogenic?
Which are other relevant oncogenic drivers?
Which is the nature of the cell transformed by MA4?
Which is the leukemia-initiating cell (LIC)?
Does this ALL follow a hierarchical or stochastic cancer model?
How to explain therapy resistance and CNS involvement?
To what extent do genetics vs epigenetics contribute this ALL?
These questions remain a challenge due to: 1) the absence of prospective studies on diagnostic/remission-matched samples, 2) the lack of models which faithfully reproduce the disease and 3) a surprising genomic stability of this ALL.
I hypothesize that a Multilayer-Omics to function approach in patient blasts and early human hematopoietic stem/progenitor cells (HSPC) is required to fully scrutinize the biology underlying this life-threatening leukemia. I will perform genome-wide studies on the mutational landscape, DNA and H3K79 methylation profiles, and transcriptome on a uniquely available, large cohort of diagnostic/remission-matched samples. Omics data integration will provide unprecedented information about oncogenic drivers which must be analyzed in ground-breaking functional assays using patient blasts and early HSPCs carrying a CRISPR/Cas9-mediated locus/allele-specific t(4;11). Serial xenografts combined with exome-seq in paired diagnostic samples and xenografts will identify the LIC and determine whether variegated genetics may underlie clonal functional heterogeneity. This project will provide a precise understanding and a disease model for MA4+ ALL, offering a platform for new treatment strategies.
Summary
Infant cancer is very distinct to adult cancer and it is progressively seen as a developmental disease. An intriguing infant cancer is the t(4;11) acute lymphoblastic leukemia (ALL) characterized by the hallmark rearrangement MLL-AF4 (MA4), and associated with dismal prognosis. The 100% concordance in twins and its prenatal onset suggest an extremely rapid disease progression. Many key issues remain elusive:
Is MA4 leukemogenic?
Which are other relevant oncogenic drivers?
Which is the nature of the cell transformed by MA4?
Which is the leukemia-initiating cell (LIC)?
Does this ALL follow a hierarchical or stochastic cancer model?
How to explain therapy resistance and CNS involvement?
To what extent do genetics vs epigenetics contribute this ALL?
These questions remain a challenge due to: 1) the absence of prospective studies on diagnostic/remission-matched samples, 2) the lack of models which faithfully reproduce the disease and 3) a surprising genomic stability of this ALL.
I hypothesize that a Multilayer-Omics to function approach in patient blasts and early human hematopoietic stem/progenitor cells (HSPC) is required to fully scrutinize the biology underlying this life-threatening leukemia. I will perform genome-wide studies on the mutational landscape, DNA and H3K79 methylation profiles, and transcriptome on a uniquely available, large cohort of diagnostic/remission-matched samples. Omics data integration will provide unprecedented information about oncogenic drivers which must be analyzed in ground-breaking functional assays using patient blasts and early HSPCs carrying a CRISPR/Cas9-mediated locus/allele-specific t(4;11). Serial xenografts combined with exome-seq in paired diagnostic samples and xenografts will identify the LIC and determine whether variegated genetics may underlie clonal functional heterogeneity. This project will provide a precise understanding and a disease model for MA4+ ALL, offering a platform for new treatment strategies.
Max ERC Funding
2 000 000 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym INTRAHETEROSEQ
Project Molecular characterization of the role of intra-tumor heterogeneity in cancer progression and metastasis
Researcher (PI) Ignacio VARELA EGOCHEAGA
Host Institution (HI) UNIVERSIDAD DE CANTABRIA
Call Details Starting Grant (StG), LS4, ERC-2014-STG
Summary Cancer is caused by somatically acquired changes in the DNA. Some of these changes fall in “cancer genes”, conferring clonal selective advantage to the cells that carry the mutant alleles. Identifying these genes/pathways is of vital importance for a correct understanding of cancer biology as well as for the diagnosis and treatment of human malignancies. In this respect, the use of genetically modified mice has been extremely useful in the past for characterizing the molecular pathways involved in cancer progression. The remarkable progress made during the last two decades on the genetic modification of mouse genomes offers unique opportunities to investigate different aspects of tumor molecular behavior, impossible to study on human samples.
Recently, the advent of next-generation sequencing technologies has provided new strategies for the systematic genome-wide identification of somatic changes in cancer cell genomes. Using these technologies, we and others have characterized the high intra-tumor heterogeneity observed in some human tumors. Although the exact significance of this heterogeneity is uncertain, it seems to be responsible for key aspects in the management of cancer patients such as metastasis predisposition and tissue specificity or treatment resistance.
Taking advantage of next-generation sequencing, we propose to finely characterize the intra-tumor heterogeneity evolution during the progression of tumors induced in a mouse model of pancreatic cancer, as well as, for the first time, to purify the different cell populations these primary tumors are composed of. A complete genomic and transcriptomic characterization of these populations followed by posterior functional assays will help us to identify the genes/pathways involved in tumor progression as well as metastatic potential and its tissue specificity. This new knowledge could finally contribute to a better understanding of cancer and to the design of more efficient anti-tumor therapies
Summary
Cancer is caused by somatically acquired changes in the DNA. Some of these changes fall in “cancer genes”, conferring clonal selective advantage to the cells that carry the mutant alleles. Identifying these genes/pathways is of vital importance for a correct understanding of cancer biology as well as for the diagnosis and treatment of human malignancies. In this respect, the use of genetically modified mice has been extremely useful in the past for characterizing the molecular pathways involved in cancer progression. The remarkable progress made during the last two decades on the genetic modification of mouse genomes offers unique opportunities to investigate different aspects of tumor molecular behavior, impossible to study on human samples.
Recently, the advent of next-generation sequencing technologies has provided new strategies for the systematic genome-wide identification of somatic changes in cancer cell genomes. Using these technologies, we and others have characterized the high intra-tumor heterogeneity observed in some human tumors. Although the exact significance of this heterogeneity is uncertain, it seems to be responsible for key aspects in the management of cancer patients such as metastasis predisposition and tissue specificity or treatment resistance.
Taking advantage of next-generation sequencing, we propose to finely characterize the intra-tumor heterogeneity evolution during the progression of tumors induced in a mouse model of pancreatic cancer, as well as, for the first time, to purify the different cell populations these primary tumors are composed of. A complete genomic and transcriptomic characterization of these populations followed by posterior functional assays will help us to identify the genes/pathways involved in tumor progression as well as metastatic potential and its tissue specificity. This new knowledge could finally contribute to a better understanding of cancer and to the design of more efficient anti-tumor therapies
Max ERC Funding
1 498 850 €
Duration
Start date: 2015-05-01, End date: 2020-04-30
Project acronym iPROTECTION
Project Molecular mechanisms of induced protection against sepsis by DNA damage responses
Researcher (PI) Luis Filipe Ferreira Moita
Host Institution (HI) FUNDACAO CALOUSTE GULBENKIAN
Call Details Consolidator Grant (CoG), LS4, ERC-2014-CoG
Summary Severe sepsis remains a poorly understood systemic inflammatory condition with high mortality rates and limited therapeutic options outside of infection control and organ support measures. Based on our recent discovery that anthracycline drugs prevent organ failure without affecting the bacterial burden in a model of severe sepsis, we propose that strategies aimed at target organ protection have extraordinary potential for the treatment of sepsis and possibly for other inflammation-driven conditions. However, the mechanisms of organ protection and disease tolerance are either unknown or poorly characterized.
The central goal of the current proposal is to identify and characterize novel cytoprotective mechanisms, with a focus on DNA damage response dependent protection activated by anthracyclines as a window into stress-induced genetic programs conferring disease tolerance. To that end, we will carry out a combination of candidate and unbiased approaches for the in vivo identification of ATM-dependent and independent mechanisms of tissue protection. We will validate the leading candidates through adenovirus-mediated delivery of constructs for overexpression (gain-of-function) or shRNA for gene silencing (loss-of-function) to the lung, based on our recent finding that rescuing this organ is essential and perhaps sufficient in anthracycline-induced protection against severe sepsis. The candidates showing the most promise will be characterized using a combination of in vitro and in vivo genetic, biochemical, cell biological and physiological methods.
The results arising from the current proposal are likely not only to inspire the design of transformative therapies for sepsis but also to open a completely new field of opportunity to molecularly understand core surveillance mechanisms of basic cellular processes with a critical role in the homeostasis of organ function and whose activation can ultimately promote quality of life during aging and increase lifespan.
Summary
Severe sepsis remains a poorly understood systemic inflammatory condition with high mortality rates and limited therapeutic options outside of infection control and organ support measures. Based on our recent discovery that anthracycline drugs prevent organ failure without affecting the bacterial burden in a model of severe sepsis, we propose that strategies aimed at target organ protection have extraordinary potential for the treatment of sepsis and possibly for other inflammation-driven conditions. However, the mechanisms of organ protection and disease tolerance are either unknown or poorly characterized.
The central goal of the current proposal is to identify and characterize novel cytoprotective mechanisms, with a focus on DNA damage response dependent protection activated by anthracyclines as a window into stress-induced genetic programs conferring disease tolerance. To that end, we will carry out a combination of candidate and unbiased approaches for the in vivo identification of ATM-dependent and independent mechanisms of tissue protection. We will validate the leading candidates through adenovirus-mediated delivery of constructs for overexpression (gain-of-function) or shRNA for gene silencing (loss-of-function) to the lung, based on our recent finding that rescuing this organ is essential and perhaps sufficient in anthracycline-induced protection against severe sepsis. The candidates showing the most promise will be characterized using a combination of in vitro and in vivo genetic, biochemical, cell biological and physiological methods.
The results arising from the current proposal are likely not only to inspire the design of transformative therapies for sepsis but also to open a completely new field of opportunity to molecularly understand core surveillance mechanisms of basic cellular processes with a critical role in the homeostasis of organ function and whose activation can ultimately promote quality of life during aging and increase lifespan.
Max ERC Funding
1 985 375 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym LONGHEART
Project Exploring selected long non-coding RNAs as diagnostics and therapeutic targets for heart failure
Researcher (PI) Thomas Thum
Host Institution (HI) MEDIZINISCHE HOCHSCHULE HANNOVER
Call Details Consolidator Grant (CoG), LS4, ERC-2014-CoG
Summary Despite clinical advances, diseases of the cardiovascular system are the most common cause of morbidity and mortality in the EU with currently 50 million people suffering from heart failure. These important challenges call for a better understanding of underlying mechanisms to enable development of innovative, effective diagnostic and therapeutic strategies for heart failure. Cardiac stress such as myocardial infarction or hypertension leads to cellular “remodeling” of the left ventricle resulting in heart failure. Protein-coding genes originate from only 1.5% of the genome, whereas the larger remaining portion is often transcribed to non-coding RNAs, of which functional importance is still ill understood. We pioneered a role of small microRNAs as diagnostics and therapeutic targets for heart failure (Nature, 2008; Nature Comm, 2012, J Clin Invest, 2014). We now will focus on the larger fraction of long non-coding RNAs (lncRNAs) and their functional roles, as well as diagnostic and therapeutic use in heart failure. The proposal has the following interconnected objectives: a) identify novel functional relevant cardiac remodeling-associated lncRNAs; b) characterise key lncRNA cardiac targetomes; c) investigate lncRNA-paracrine mechanisms and the diagnostic and prognostic potential of cardiac-derived extracellular lncRNAs using large clinical cohorts; and d) discover their therapeutic potential to prevent cardiac remodeling in clinically relevant animal models. Innovative molecular and cell-based methods, a unique lncRNA-shRNA library, genetic animal models and availability of large clinical biobanks will form the basis for a successful strategy. LONGHEART will lead to ground-breaking new insight into the role of lncRNAs in the heart. These findings will firmly establish lncRNA-based mechanisms to identify fundamentally novel diagnostic and therapeutic entry points for a most serious clinical important disorder in dire need for new diagnostic and therapeutic paradigms.
Summary
Despite clinical advances, diseases of the cardiovascular system are the most common cause of morbidity and mortality in the EU with currently 50 million people suffering from heart failure. These important challenges call for a better understanding of underlying mechanisms to enable development of innovative, effective diagnostic and therapeutic strategies for heart failure. Cardiac stress such as myocardial infarction or hypertension leads to cellular “remodeling” of the left ventricle resulting in heart failure. Protein-coding genes originate from only 1.5% of the genome, whereas the larger remaining portion is often transcribed to non-coding RNAs, of which functional importance is still ill understood. We pioneered a role of small microRNAs as diagnostics and therapeutic targets for heart failure (Nature, 2008; Nature Comm, 2012, J Clin Invest, 2014). We now will focus on the larger fraction of long non-coding RNAs (lncRNAs) and their functional roles, as well as diagnostic and therapeutic use in heart failure. The proposal has the following interconnected objectives: a) identify novel functional relevant cardiac remodeling-associated lncRNAs; b) characterise key lncRNA cardiac targetomes; c) investigate lncRNA-paracrine mechanisms and the diagnostic and prognostic potential of cardiac-derived extracellular lncRNAs using large clinical cohorts; and d) discover their therapeutic potential to prevent cardiac remodeling in clinically relevant animal models. Innovative molecular and cell-based methods, a unique lncRNA-shRNA library, genetic animal models and availability of large clinical biobanks will form the basis for a successful strategy. LONGHEART will lead to ground-breaking new insight into the role of lncRNAs in the heart. These findings will firmly establish lncRNA-based mechanisms to identify fundamentally novel diagnostic and therapeutic entry points for a most serious clinical important disorder in dire need for new diagnostic and therapeutic paradigms.
Max ERC Funding
1 816 250 €
Duration
Start date: 2015-06-01, End date: 2020-05-31
Project acronym LYMPHORG
Project Organ-specific mechanisms of lymphatic vascular development and specialisation
Researcher (PI) Taija Marianna Makinen
Host Institution (HI) UPPSALA UNIVERSITET
Call Details Consolidator Grant (CoG), LS4, ERC-2014-CoG
Summary Lymphatic vasculature maintains tissue fluid homeostasis and has important emerging roles in inflammation, immunity, lipid metabolism, blood pressure regulation and cancer metastasis. Lymphatic vessels are specialised to fulfil the functional needs of different organs while diseases associated with lymphatic dysfunction frequently affect vessels of specific tissues. How functional specialisation of vessels is achieved and what underlies tissue-specific vessel failure is not understood. I hypothesise that organ-specific manifestation of lymphatic dysfunction in disease is due to vascular bed-specific differences in vessel formation. In this project my aim is to identify genes and mechanisms required for organ-specific lymphatic development. Building on our recent discovery of a previously unknown progenitor cell type that is required for lymphatic development in an organ-specific manner I set out to identify the origin and function of lymphatic endothelial progenitor cells (LEPC) during development and assess their potential for therapeutic lymphatic regeneration. Towards this aim, we will identify organ-specific origins of lymphatic vasculature using lineage tracing and determine genetic signatures of lymphatic endothelial progenitors by mRNA sequencing. Cells and tissues from normal and mutant mice that show organ-specific lymphatic defects will be analysed. To identify molecular and cellular mechanisms of LEPC derived vessel formation, we will functionally characterise LEPC signature genes using mouse models and visualise vessel development by in vivo two-photon microscopy. The function and therapeutic potential of LEPCs and LEPC derived vessels will be assessed using mouse models of tolerance, inflammation, obesity and lymphoedema. This work will provide novel insights into organ-specific mechanisms of vascular morphogenesis and identify a progenitor cell that may be expoited to restore lymphatic function in disorders associated with lymphatic vessel failure.
Summary
Lymphatic vasculature maintains tissue fluid homeostasis and has important emerging roles in inflammation, immunity, lipid metabolism, blood pressure regulation and cancer metastasis. Lymphatic vessels are specialised to fulfil the functional needs of different organs while diseases associated with lymphatic dysfunction frequently affect vessels of specific tissues. How functional specialisation of vessels is achieved and what underlies tissue-specific vessel failure is not understood. I hypothesise that organ-specific manifestation of lymphatic dysfunction in disease is due to vascular bed-specific differences in vessel formation. In this project my aim is to identify genes and mechanisms required for organ-specific lymphatic development. Building on our recent discovery of a previously unknown progenitor cell type that is required for lymphatic development in an organ-specific manner I set out to identify the origin and function of lymphatic endothelial progenitor cells (LEPC) during development and assess their potential for therapeutic lymphatic regeneration. Towards this aim, we will identify organ-specific origins of lymphatic vasculature using lineage tracing and determine genetic signatures of lymphatic endothelial progenitors by mRNA sequencing. Cells and tissues from normal and mutant mice that show organ-specific lymphatic defects will be analysed. To identify molecular and cellular mechanisms of LEPC derived vessel formation, we will functionally characterise LEPC signature genes using mouse models and visualise vessel development by in vivo two-photon microscopy. The function and therapeutic potential of LEPCs and LEPC derived vessels will be assessed using mouse models of tolerance, inflammation, obesity and lymphoedema. This work will provide novel insights into organ-specific mechanisms of vascular morphogenesis and identify a progenitor cell that may be expoited to restore lymphatic function in disorders associated with lymphatic vessel failure.
Max ERC Funding
2 368 439 €
Duration
Start date: 2015-05-01, End date: 2020-04-30
Project acronym M-Imm
Project Novel etiology of autoimmune disorders: the role of acquired somatic mutations in lymphoid cells
Researcher (PI) Satu Maarit Mustjoki
Host Institution (HI) HELSINGIN YLIOPISTO
Call Details Consolidator Grant (CoG), LS6, ERC-2014-CoG
Summary Molecular pathogenesis of most immune-mediated disorders, such as of autoimmune diseases, is poorly understood. These common maladies carry a heavy burden both on patients and on society. Current therapy is non-targeted and results in significant short- and long-term adverse effects.
Large granular lymphocyte (LGL) leukemia is characterized by expansion of cytotoxic T- or NK-cells and represents an intriguing clinical continuum between a neoplastic and an autoimmune disorder. Patients suffer from autoimmune cytopenias and rheumatoid arthritis (RA), which are thought to be mediated by LGL cells targeting host tissues. My group recently discovered that 40-50% of LGL leukemia patients carry in their lymphoid cells acquired, activating mutations in the STAT3 gene – a key regulator of immune and oncogenic processes (Koskela et al, N Engl J Med, 2012). This breakthrough discovery gives insight to the pathogenesis of autoimmune disorders at large.
I present here a hypothesis that a strong antigen-induced proliferation is a mutational driver, which causes somatic mutations in lymphoid cells. When mutations hit key activating pathways, autoreactive cells acquire functional advantage and expand. The target antigen of the expanded clone determines the clinical characteristics of the autoimmune disease induced.
To prove this hypothesis, we will separate small lymphocyte clones from patients with autoimmune diseases and use sensitive next-generation sequencing methods to characterize the spectrum of somatic mutations in lymphoid cells. Further, we will study the function of mutated lymphocytes and examine the mechanisms of autocytotoxicity and end-organ/tissue damage. Finally, we aim to understand factors, which induce somatic mutations in lymphoid cells, such as the role of viral infections.
The results will transform our understanding of molecular pathogenesis of autoimmune diseases and lead to accurate diagnostics and discovery of novel drug targets.
Summary
Molecular pathogenesis of most immune-mediated disorders, such as of autoimmune diseases, is poorly understood. These common maladies carry a heavy burden both on patients and on society. Current therapy is non-targeted and results in significant short- and long-term adverse effects.
Large granular lymphocyte (LGL) leukemia is characterized by expansion of cytotoxic T- or NK-cells and represents an intriguing clinical continuum between a neoplastic and an autoimmune disorder. Patients suffer from autoimmune cytopenias and rheumatoid arthritis (RA), which are thought to be mediated by LGL cells targeting host tissues. My group recently discovered that 40-50% of LGL leukemia patients carry in their lymphoid cells acquired, activating mutations in the STAT3 gene – a key regulator of immune and oncogenic processes (Koskela et al, N Engl J Med, 2012). This breakthrough discovery gives insight to the pathogenesis of autoimmune disorders at large.
I present here a hypothesis that a strong antigen-induced proliferation is a mutational driver, which causes somatic mutations in lymphoid cells. When mutations hit key activating pathways, autoreactive cells acquire functional advantage and expand. The target antigen of the expanded clone determines the clinical characteristics of the autoimmune disease induced.
To prove this hypothesis, we will separate small lymphocyte clones from patients with autoimmune diseases and use sensitive next-generation sequencing methods to characterize the spectrum of somatic mutations in lymphoid cells. Further, we will study the function of mutated lymphocytes and examine the mechanisms of autocytotoxicity and end-organ/tissue damage. Finally, we aim to understand factors, which induce somatic mutations in lymphoid cells, such as the role of viral infections.
The results will transform our understanding of molecular pathogenesis of autoimmune diseases and lead to accurate diagnostics and discovery of novel drug targets.
Max ERC Funding
2 047 337 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym MechanoFate
Project From mechanical stress to vascular fate
Researcher (PI) Christophe, Daniel Guilluy
Host Institution (HI) INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
Call Details Starting Grant (StG), LS4, ERC-2014-STG
Summary In the vascular system, cell phenotype and fate are driven by the mechanical environment. Whereas physiological mechanical stress defines and stabilizes normal cell phenotype, aberrant mechanical signals trigger phenotypic alteration, leading to inflammation and vascular remodelling. Despite recent advances, how mechanical cues impact gene expression to specify cell phenotype remains poorly understood.
Our hypothesis is that mechanical stresses are transmitted to the nucleus where they activate signaling pathways, which in turn regulate gene expression, but what are these mechanotransduction mechanisms occurring within the nucleus? Besides, while most vascular cells respond to mechanical force, Resident Stem Cells (RSCs) are virtually insensitive and remain undifferentiated despite constant cyclic stretch. What are the molecular mechanisms which protect RSCs from stretch-induced differentiation?
To answer these questions, we designed an interdisciplinary proposal which gathers biophysical, biochemical and genetic assays, with the following objectives: I) To determine how nuclear mechanotransduction pathways regulate vascular cell phenotype in response to mechanical cues. By combining proteomic and biophysical assays, we will identify nuclear proteins that are post-translationally modified in response to mechanical stress, then we will determine their contribution to gene expression regulation and vascular cell differentiation. II) To identify the molecular mechanisms which protect RSCs from stretch-induced differentiation. We will identify differentially expressed force-bearing structural elements in RSCs compared to more differentiated vascular cells and we will evaluate their impact on gene expression, stress transmission, RSC differentiation and blood vessel formation. The proposed project will yield new insights in different areas of life science from cell biology to potential identification of new therapeutic targets in cardiovascular and regenerative medicine.
Summary
In the vascular system, cell phenotype and fate are driven by the mechanical environment. Whereas physiological mechanical stress defines and stabilizes normal cell phenotype, aberrant mechanical signals trigger phenotypic alteration, leading to inflammation and vascular remodelling. Despite recent advances, how mechanical cues impact gene expression to specify cell phenotype remains poorly understood.
Our hypothesis is that mechanical stresses are transmitted to the nucleus where they activate signaling pathways, which in turn regulate gene expression, but what are these mechanotransduction mechanisms occurring within the nucleus? Besides, while most vascular cells respond to mechanical force, Resident Stem Cells (RSCs) are virtually insensitive and remain undifferentiated despite constant cyclic stretch. What are the molecular mechanisms which protect RSCs from stretch-induced differentiation?
To answer these questions, we designed an interdisciplinary proposal which gathers biophysical, biochemical and genetic assays, with the following objectives: I) To determine how nuclear mechanotransduction pathways regulate vascular cell phenotype in response to mechanical cues. By combining proteomic and biophysical assays, we will identify nuclear proteins that are post-translationally modified in response to mechanical stress, then we will determine their contribution to gene expression regulation and vascular cell differentiation. II) To identify the molecular mechanisms which protect RSCs from stretch-induced differentiation. We will identify differentially expressed force-bearing structural elements in RSCs compared to more differentiated vascular cells and we will evaluate their impact on gene expression, stress transmission, RSC differentiation and blood vessel formation. The proposed project will yield new insights in different areas of life science from cell biology to potential identification of new therapeutic targets in cardiovascular and regenerative medicine.
Max ERC Funding
1 498 413 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym Medulloblastoma
Project Molecularly defined models of human childhood brain tumors
Researcher (PI) Fredrik Swartling
Host Institution (HI) UPPSALA UNIVERSITET
Call Details Starting Grant (StG), LS4, ERC-2014-STG
Summary MYC proteins like MYC and MYCN are transcription factors that are mis-regulated in more than half of all types of human cancer including medulloblastoma, the most common brain malignancy in children. The two main challenges that can guide research in the field of pediatric brain tumors is improving survival and reducing long-term detriments due to treatment toxicities, especially from craniospinal radiotherapy. Medulloblastoma is suggested to originate from specific cells in the small brain, cerebellum. These brain tumors have recently been classified into four distinct molecular subgroups and subgroup-specific driver genes have been suggested. However, the precise role of such drivers in tumor initiation and their importance in specifying particular subgroups has not been sufficiently evaluated in proper cells of medulloblastoma origin.
We have generated clinically relevant animal models that carefully resemble some of the defined subgroups of medulloblastoma. In this proposal we intend to use the models to identify the specific cell type these brain tumors originates from. We also aim to refine our medulloblastoma models and develop novel models to define and study cells involved in brain metastasis and tumor recurrence; the main cause of death in brain tumor patients.
We have managed to culture normal human cerebellar stem cells and we now plan to model human medulloblastoma development by overexpressing oncogenes or silencing suppressor genes that are defined as clinically relevant medulloblastoma drivers. We will use a forward genetics screen to identify novel drivers and specifiers of various subtypes of medulloblastoma. We hope these combined efforts will help us better model human medulloblastoma formation and we expect to generate tumors that correlate well, both pathologically and molecularly, with primary cell cultures derived from medulloblastoma patients.
Summary
MYC proteins like MYC and MYCN are transcription factors that are mis-regulated in more than half of all types of human cancer including medulloblastoma, the most common brain malignancy in children. The two main challenges that can guide research in the field of pediatric brain tumors is improving survival and reducing long-term detriments due to treatment toxicities, especially from craniospinal radiotherapy. Medulloblastoma is suggested to originate from specific cells in the small brain, cerebellum. These brain tumors have recently been classified into four distinct molecular subgroups and subgroup-specific driver genes have been suggested. However, the precise role of such drivers in tumor initiation and their importance in specifying particular subgroups has not been sufficiently evaluated in proper cells of medulloblastoma origin.
We have generated clinically relevant animal models that carefully resemble some of the defined subgroups of medulloblastoma. In this proposal we intend to use the models to identify the specific cell type these brain tumors originates from. We also aim to refine our medulloblastoma models and develop novel models to define and study cells involved in brain metastasis and tumor recurrence; the main cause of death in brain tumor patients.
We have managed to culture normal human cerebellar stem cells and we now plan to model human medulloblastoma development by overexpressing oncogenes or silencing suppressor genes that are defined as clinically relevant medulloblastoma drivers. We will use a forward genetics screen to identify novel drivers and specifiers of various subtypes of medulloblastoma. We hope these combined efforts will help us better model human medulloblastoma formation and we expect to generate tumors that correlate well, both pathologically and molecularly, with primary cell cultures derived from medulloblastoma patients.
Max ERC Funding
1 497 059 €
Duration
Start date: 2015-05-01, End date: 2020-04-30
Project acronym MeLiLoN
Project Metabolic Networks that Link Longevity to Reproduction in Response to Nutrition
Researcher (PI) Hugo Georges Roger Aguilaniu
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Consolidator Grant (CoG), LS4, ERC-2014-CoG
Summary In most western countries, life expectancy is increasing by 3 months a year. As the average age of
the population increases, so too does the prevalence of age-related diseases such as cancer, cardiovascular
and metabolic diseases, and neurodegenerative disorders. An essential component of ageing research is to
understand the biological mechanisms that contribute to the ageing process at the cellular and molecular
levels. This has major implications not only for the treatment of age-associated diseases but also for the
promotion of healthy ageing.
Studies of experimental animals and observations in humans have identified an array of genes and
nutritional conditions that increase lifespan. However, these manipulations (genetic or nutritional) often
have detrimental effects on other biological processes; for example, reproduction, metabolism, immunity
or growth. This is an area of ageing research that has largely been ignored but that is critical to the
success of strategies intended to slow ageing and thus the onset of disease.
The primary goal of this research proposal is to understand how lifespan extension is linked to
reproduction. We will use the nematode Caenorhabditis elegans as a model organism to identify novel
conserved genes, molecules, and metabolic networks that link reproduction and longevity through
nutrition. The proposed study is based on a unique set of preliminary data that identifies the first
clear molecular links between these traits: a steroid hormone receptor and a reproduction-responsive
lipase, both of which modulate lifespan extension achieved through changes in nutrition.
Understanding the regulation and function of these genes and pathways will clarify at the molecular
level how reproduction is linked to longevity. This may ultimately lead to interventions that optimise
metabolic activity to promote healthy ageing.
Summary
In most western countries, life expectancy is increasing by 3 months a year. As the average age of
the population increases, so too does the prevalence of age-related diseases such as cancer, cardiovascular
and metabolic diseases, and neurodegenerative disorders. An essential component of ageing research is to
understand the biological mechanisms that contribute to the ageing process at the cellular and molecular
levels. This has major implications not only for the treatment of age-associated diseases but also for the
promotion of healthy ageing.
Studies of experimental animals and observations in humans have identified an array of genes and
nutritional conditions that increase lifespan. However, these manipulations (genetic or nutritional) often
have detrimental effects on other biological processes; for example, reproduction, metabolism, immunity
or growth. This is an area of ageing research that has largely been ignored but that is critical to the
success of strategies intended to slow ageing and thus the onset of disease.
The primary goal of this research proposal is to understand how lifespan extension is linked to
reproduction. We will use the nematode Caenorhabditis elegans as a model organism to identify novel
conserved genes, molecules, and metabolic networks that link reproduction and longevity through
nutrition. The proposed study is based on a unique set of preliminary data that identifies the first
clear molecular links between these traits: a steroid hormone receptor and a reproduction-responsive
lipase, both of which modulate lifespan extension achieved through changes in nutrition.
Understanding the regulation and function of these genes and pathways will clarify at the molecular
level how reproduction is linked to longevity. This may ultimately lead to interventions that optimise
metabolic activity to promote healthy ageing.
Max ERC Funding
1 941 499 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym MetaFlex
Project Metabolic flexibility: breaking down food effectively to prolong life
Researcher (PI) Richardus Hendricus Leonardus Houtkooper
Host Institution (HI) ACADEMISCH MEDISCH CENTRUM BIJ DE UNIVERSITEIT VAN AMSTERDAM
Call Details Starting Grant (StG), LS4, ERC-2014-STG
Summary Aging has long been considered a passive process. More recently studies have defined an important, active role for metabolic pathways in aging and age-related diseases. I have previously demonstrated a marked dysregulation of fat metabolism in aged mice that contributes to their overweight and glucose intolerance. Here, I propose a model that links healthy aging to efficient processing of nutrients, a state termed metabolic flexibility: reducing protein or carbohydrate metabolism will strongly stimulate fat breakdown. I suggest that improved metabolic flexibility will thus prevent the accumulation of lipids and protect against its detrimental effects.
In this project, I aim to elucidate how nutrient breakdown is regulated and can be adapted to improve metabolic flexibility and promote healthy aging. I will use C. elegans, as well as mammalian models and human population studies. Specifically, I aim to (1) dissect the molecular actors of metabolic aging pathways; (2) identify genes that translate nutritional cues to lifespan variation; (3) find novel genetic regulators that prevent toxicity and accelerated aging caused by fat-rich diets; (4) identify associations between variants in genes involved in metabolic flexibility and aging phenotypes in humans.
This set of experiments should clarify the role of nutrient breakdown and metabolic flexibility in aging. Better understanding of these processes can lead to a prolonged healthy state of aged individuals.
Summary
Aging has long been considered a passive process. More recently studies have defined an important, active role for metabolic pathways in aging and age-related diseases. I have previously demonstrated a marked dysregulation of fat metabolism in aged mice that contributes to their overweight and glucose intolerance. Here, I propose a model that links healthy aging to efficient processing of nutrients, a state termed metabolic flexibility: reducing protein or carbohydrate metabolism will strongly stimulate fat breakdown. I suggest that improved metabolic flexibility will thus prevent the accumulation of lipids and protect against its detrimental effects.
In this project, I aim to elucidate how nutrient breakdown is regulated and can be adapted to improve metabolic flexibility and promote healthy aging. I will use C. elegans, as well as mammalian models and human population studies. Specifically, I aim to (1) dissect the molecular actors of metabolic aging pathways; (2) identify genes that translate nutritional cues to lifespan variation; (3) find novel genetic regulators that prevent toxicity and accelerated aging caused by fat-rich diets; (4) identify associations between variants in genes involved in metabolic flexibility and aging phenotypes in humans.
This set of experiments should clarify the role of nutrient breakdown and metabolic flexibility in aging. Better understanding of these processes can lead to a prolonged healthy state of aged individuals.
Max ERC Funding
1 499 446 €
Duration
Start date: 2015-04-01, End date: 2020-03-31
Project acronym MetAGEn
Project Metabolic and Genetic Regulation of Ageing
Researcher (PI) Martin Denzel
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), LS4, ERC-2014-STG
Summary Ageing is a complex physiological process that affects almost all species, including humans. Despite its importance for all of us, the biology of ageing is insufficiently understood. To uncover the molecular underpinnings of ageing, I propose an interdisciplinary research program that will identify and investigate metabolic and genetic regulators of ageing.
Progressive loss of cellular homeostasis causes ageing and an age-associated decline in protein quality control has been implicated in numerous diseases, including neurodegeneration. Seeking for ways to improve protein quality, I have identified a novel longevity pathway in Caenorhabditis elegans. In a forward genetic screen, I found a link between metabolites in the hexosamine pathway and cellular protein quality control. Hexosamine pathway activation extends C. elegans lifespan, suggesting modulation of ageing by endogenous molecules.
In a first step, I will explore the mechanism by which hexosamine metabolites improve protein quality control in mammals, using cultured mammalian cells and a mouse model for neurodegeneration. Preliminary data show that hexosamine pathway metabolites enhance proteolytic capacity in cells and reduce protein aggregation, suggesting conservation. Second, I will investigate molecular mechanisms that activate the hexosamine pathway to promote protein homeostasis and counter ageing. Third, I will perform a direct forward genetic screen for modulators of ageing in C. elegans. For the first time, mutagenesis and next generation sequencing can be paired in forward genetic screens to interrogate the whole genome for lifespan-extending mutations in a truly unbiased manner. This innovative approach has the potential to reveal novel modulators of the ageing process.
Taken together, this work aims to understand molecular mechanisms that maintain cellular homeostasis to slow the ageing process, and to develop a new technology to identify yet unknown genetic modulators of ageing.
Summary
Ageing is a complex physiological process that affects almost all species, including humans. Despite its importance for all of us, the biology of ageing is insufficiently understood. To uncover the molecular underpinnings of ageing, I propose an interdisciplinary research program that will identify and investigate metabolic and genetic regulators of ageing.
Progressive loss of cellular homeostasis causes ageing and an age-associated decline in protein quality control has been implicated in numerous diseases, including neurodegeneration. Seeking for ways to improve protein quality, I have identified a novel longevity pathway in Caenorhabditis elegans. In a forward genetic screen, I found a link between metabolites in the hexosamine pathway and cellular protein quality control. Hexosamine pathway activation extends C. elegans lifespan, suggesting modulation of ageing by endogenous molecules.
In a first step, I will explore the mechanism by which hexosamine metabolites improve protein quality control in mammals, using cultured mammalian cells and a mouse model for neurodegeneration. Preliminary data show that hexosamine pathway metabolites enhance proteolytic capacity in cells and reduce protein aggregation, suggesting conservation. Second, I will investigate molecular mechanisms that activate the hexosamine pathway to promote protein homeostasis and counter ageing. Third, I will perform a direct forward genetic screen for modulators of ageing in C. elegans. For the first time, mutagenesis and next generation sequencing can be paired in forward genetic screens to interrogate the whole genome for lifespan-extending mutations in a truly unbiased manner. This innovative approach has the potential to reveal novel modulators of the ageing process.
Taken together, this work aims to understand molecular mechanisms that maintain cellular homeostasis to slow the ageing process, and to develop a new technology to identify yet unknown genetic modulators of ageing.
Max ERC Funding
1 500 000 €
Duration
Start date: 2015-08-01, End date: 2020-07-31
Project acronym MetCAF
Project Uncovering the Role of Cancer Associated Fibroblasts in Facilitating Breast Cancer Metastasis
Researcher (PI) Neta Erez
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Starting Grant (StG), LS4, ERC-2014-STG
Summary Mortality from breast cancer is almost exclusively a result of tumor metastasis. Since advanced metastatic cancers are usually fatal, understanding the biology of tumor metastasis is the most significant challenge in cancer research today. It has become clear that the microenvironment of tumors is crucial in supporting tumor growth. Nevertheless, the role of the metastatic microenvironment in facilitating metastatic colonization is largely unknown. We recently uncovered a novel role for Cancer-Associated Fibroblasts (CAFs) in mediating tumor-promoting inflammation. However, the role of CAFs in the formation of a permissive metastatic niche that enables the growth of disseminated tumor cells is unresolved. I propose to systematically investigate, for the first time, the molecular changes in CAFs that facilitate metastases formation, which may lead to the discovery of novel targets for cancer therapeutics. To achieve this goal, I will integrate tumor biology knowledge and the unique expertise of my lab: we will combine novel mouse models of spontaneous lung metastasis of breast cancer, imitating the clinical setting, with multi-transgenic reporter mice that enable origin tracing and unbiased analysis of fibroblast sub-populations. By performing a comprehensive molecular and functional characterization of fibroblast co-evolution during metastases formation and analysis of breast cancer patient cohorts, we will uncover the dynamic changes in CAFs at the metastatic niche, identify the origin of metastatic CAFs, and elucidate the signaling pathways that govern their functional role in breast cancer metastasis.
Molecular understanding of the early stages of tumor metastasis is an essential prerequisite for the discovery of novel therapeutic targets. Achievement of the proposed goals will shed light on a central conundrum in cancer biology and open new horizons for the development of novel therapeutics that will transform cancer into a chronic, yet manageable disease.
Summary
Mortality from breast cancer is almost exclusively a result of tumor metastasis. Since advanced metastatic cancers are usually fatal, understanding the biology of tumor metastasis is the most significant challenge in cancer research today. It has become clear that the microenvironment of tumors is crucial in supporting tumor growth. Nevertheless, the role of the metastatic microenvironment in facilitating metastatic colonization is largely unknown. We recently uncovered a novel role for Cancer-Associated Fibroblasts (CAFs) in mediating tumor-promoting inflammation. However, the role of CAFs in the formation of a permissive metastatic niche that enables the growth of disseminated tumor cells is unresolved. I propose to systematically investigate, for the first time, the molecular changes in CAFs that facilitate metastases formation, which may lead to the discovery of novel targets for cancer therapeutics. To achieve this goal, I will integrate tumor biology knowledge and the unique expertise of my lab: we will combine novel mouse models of spontaneous lung metastasis of breast cancer, imitating the clinical setting, with multi-transgenic reporter mice that enable origin tracing and unbiased analysis of fibroblast sub-populations. By performing a comprehensive molecular and functional characterization of fibroblast co-evolution during metastases formation and analysis of breast cancer patient cohorts, we will uncover the dynamic changes in CAFs at the metastatic niche, identify the origin of metastatic CAFs, and elucidate the signaling pathways that govern their functional role in breast cancer metastasis.
Molecular understanding of the early stages of tumor metastasis is an essential prerequisite for the discovery of novel therapeutic targets. Achievement of the proposed goals will shed light on a central conundrum in cancer biology and open new horizons for the development of novel therapeutics that will transform cancer into a chronic, yet manageable disease.
Max ERC Funding
1 281 959 €
Duration
Start date: 2015-07-01, End date: 2020-06-30
Project acronym miRNA in Immunity
Project Testing the role of miRNA-mediated non-cell autonomous gene regulation in type-2 immunity
Researcher (PI) Mark Wilson
Host Institution (HI) THE FRANCIS CRICK INSTITUTE LIMITED
Call Details Consolidator Grant (CoG), LS6, ERC-2014-CoG
Summary MicroRNAs (miRNAs) can be transferred between cells, representing an exciting new dimension to intercellular communication, referred to as non-cell-autonomous gene regulation. We recently identified that distinct miRNAs are packaged and exported from TREG cells and delivered directly to TH1 cells, suppressing T cell-mediated disease. Different T cell populations express different miRNAs and release a distinctive set of extracellular miRNAs. In this proposal we will identify whether the transfer of miRNAs between cells contributes to T cell development, T cell differentiation and TH2-mediated allergy and anti-helminth immunity. miRNA-mediated gene silencing requires one of four catalytically active Argonaut (Ago) proteins to regulate gene expression. To investigate miRNA transport between cells, we have generated novel mice with miRNA-deficient T cells that can (Dicer–/–) or cannot (Dicer–/–Ago-1,-3,-4–/– Ago-2fl/fl) respond to exogenous miRNAs. Using these novel mice we will identify which Ago protein(s) specific miRNAs associate with and which Ago proteins are required for miRNA-mediated gene regulation in T cells. TH2 cells express unique miRNAs, which can be found within TH2 cells and in extracellular vesicles released from TH2 cells. We have generated several new TH2-associated miRNA-deficient mice to investigate the cell intrinsic (cell-autonomous) and extrinsic (non-cell-autonomous) role of these miRNAs in TH2-mediated allergy and anti-helminth immunity. Studies in plants and worms have identified various mechanisms of RNA transfer between cells, involving cell-contact dependent and independent mechanisms. We will translate these observations into mammalian systems and identify the mechanisms of miRNA transfer. Results from this work will identify novel miRNA-mediated pathways and incentivise state-of-the-art approaches for novel therapeutic intervention to treat inflammatory diseases.
Summary
MicroRNAs (miRNAs) can be transferred between cells, representing an exciting new dimension to intercellular communication, referred to as non-cell-autonomous gene regulation. We recently identified that distinct miRNAs are packaged and exported from TREG cells and delivered directly to TH1 cells, suppressing T cell-mediated disease. Different T cell populations express different miRNAs and release a distinctive set of extracellular miRNAs. In this proposal we will identify whether the transfer of miRNAs between cells contributes to T cell development, T cell differentiation and TH2-mediated allergy and anti-helminth immunity. miRNA-mediated gene silencing requires one of four catalytically active Argonaut (Ago) proteins to regulate gene expression. To investigate miRNA transport between cells, we have generated novel mice with miRNA-deficient T cells that can (Dicer–/–) or cannot (Dicer–/–Ago-1,-3,-4–/– Ago-2fl/fl) respond to exogenous miRNAs. Using these novel mice we will identify which Ago protein(s) specific miRNAs associate with and which Ago proteins are required for miRNA-mediated gene regulation in T cells. TH2 cells express unique miRNAs, which can be found within TH2 cells and in extracellular vesicles released from TH2 cells. We have generated several new TH2-associated miRNA-deficient mice to investigate the cell intrinsic (cell-autonomous) and extrinsic (non-cell-autonomous) role of these miRNAs in TH2-mediated allergy and anti-helminth immunity. Studies in plants and worms have identified various mechanisms of RNA transfer between cells, involving cell-contact dependent and independent mechanisms. We will translate these observations into mammalian systems and identify the mechanisms of miRNA transfer. Results from this work will identify novel miRNA-mediated pathways and incentivise state-of-the-art approaches for novel therapeutic intervention to treat inflammatory diseases.
Max ERC Funding
1 762 510 €
Duration
Start date: 2015-08-01, End date: 2020-07-31
Project acronym MISTRANSMITO
Project Tissue-specific mitochondrial signaling and adaptations to mistranslation
Researcher (PI) Henna Riikka Susanna Tyynismaa
Host Institution (HI) HELSINGIN YLIOPISTO
Call Details Starting Grant (StG), LS4, ERC-2014-STG
Summary Mitochondria play a central role in the energy metabolism of our bodies and their defects give rise to a large variety of clinical phenotypes that can affect practically any tissue. The mechanisms for the tissue-specific outcomes of mitochondrial diseases are poorly understood. Mitochondrial energy production relies on two separate protein synthesis machineries, cytoplasmic and mitochondrial, but the mechanisms regulating the concerted actions between the two are largely to be discovered. Defects in either protein synthesis system that lead to accumulation of mistranslated mitochondrial proteins, intrinsic or imported from the cytoplasm, result in stress signals from mitochondria and in adaptive responses within the organelle and the entire cell. My hypothesis is that some of these signals and adaptive mechanisms are tissue-specific. My group will test the hypothesis by 1) generating and characterizing mouse models of cytoplasmic and mitochondrial mistranslation to be able to address our questions in different tissues. 2) We will develop methods for detection of ribosome stalling in mouse tissues to identify the consequences of mistranslation for individual proteins. 3) We will use systems biology approaches to identify stress signal responses to mitochondrial and/or cytoplasmic mistranslation using different tissues of our models, to identify those that are unique or global. 4) Our previous study has identified an interesting candidate responder to mistranslation stress and we will test the role of this factor in knockout animal models and by crossing with the mistranslation mice. I expect to gain important new knowledge of in vivo responses to mistranslation and execution of quality control. This proposal investigates key questions in understanding differential tissue involvement in metabolic defects, and will provide new directions for utilization of tissue-specific adaptations in finding interventions for mitochondrial diseases.
Summary
Mitochondria play a central role in the energy metabolism of our bodies and their defects give rise to a large variety of clinical phenotypes that can affect practically any tissue. The mechanisms for the tissue-specific outcomes of mitochondrial diseases are poorly understood. Mitochondrial energy production relies on two separate protein synthesis machineries, cytoplasmic and mitochondrial, but the mechanisms regulating the concerted actions between the two are largely to be discovered. Defects in either protein synthesis system that lead to accumulation of mistranslated mitochondrial proteins, intrinsic or imported from the cytoplasm, result in stress signals from mitochondria and in adaptive responses within the organelle and the entire cell. My hypothesis is that some of these signals and adaptive mechanisms are tissue-specific. My group will test the hypothesis by 1) generating and characterizing mouse models of cytoplasmic and mitochondrial mistranslation to be able to address our questions in different tissues. 2) We will develop methods for detection of ribosome stalling in mouse tissues to identify the consequences of mistranslation for individual proteins. 3) We will use systems biology approaches to identify stress signal responses to mitochondrial and/or cytoplasmic mistranslation using different tissues of our models, to identify those that are unique or global. 4) Our previous study has identified an interesting candidate responder to mistranslation stress and we will test the role of this factor in knockout animal models and by crossing with the mistranslation mice. I expect to gain important new knowledge of in vivo responses to mistranslation and execution of quality control. This proposal investigates key questions in understanding differential tissue involvement in metabolic defects, and will provide new directions for utilization of tissue-specific adaptations in finding interventions for mitochondrial diseases.
Max ERC Funding
1 354 508 €
Duration
Start date: 2015-07-01, End date: 2020-06-30
Project acronym MMUVR
Project Elucidating the role of ultraviolet radiation in melanoma
Researcher (PI) Richard Marais
Host Institution (HI) THE UNIVERSITY OF MANCHESTER
Call Details Advanced Grant (AdG), LS4, ERC-2014-ADG
Summary Melanoma incidence continues to increase across Europe and compared to other cancers, it disproportionately affects young people, causing a significant loss in life-years in those affected. Ultraviolet radiation (UVR) is the only environmental risk factor in melanoma, but the underlying genetic constitution of the individual also plays an important role. However, our knowledge of the gene-gene and gene-environment interactions in melanomagenesis is still very limited and here we will use various cutting-edge technologies to investigate the role of UVR in melanoma initiation and progression. We have developed mouse models of UVR-driven melanoma that closely mimic UVR-driven melanoma in humans and these provide an unprecedented opportunity to dissect how different wavelengths and patterns of UVR exposure affect melanomagenesis. We propose a multidisciplinary programme of work to examine how host genetic susceptibility factors and responses such as DNA damage repair and inflammation affect melanoma development and progression following UVR exposure. We will integrate knowledge from our animal experiments with epidemiological, histopathological, clinical, and genetic features of human tumours to improve stratification of human melanoma and thereby assist clinical management of this deadly disease. Our overarching aim is to develop a validated stratification approach to melanoma patients that will assist in the development of effective public health campaigns for individuals at risk across Europe.
Summary
Melanoma incidence continues to increase across Europe and compared to other cancers, it disproportionately affects young people, causing a significant loss in life-years in those affected. Ultraviolet radiation (UVR) is the only environmental risk factor in melanoma, but the underlying genetic constitution of the individual also plays an important role. However, our knowledge of the gene-gene and gene-environment interactions in melanomagenesis is still very limited and here we will use various cutting-edge technologies to investigate the role of UVR in melanoma initiation and progression. We have developed mouse models of UVR-driven melanoma that closely mimic UVR-driven melanoma in humans and these provide an unprecedented opportunity to dissect how different wavelengths and patterns of UVR exposure affect melanomagenesis. We propose a multidisciplinary programme of work to examine how host genetic susceptibility factors and responses such as DNA damage repair and inflammation affect melanoma development and progression following UVR exposure. We will integrate knowledge from our animal experiments with epidemiological, histopathological, clinical, and genetic features of human tumours to improve stratification of human melanoma and thereby assist clinical management of this deadly disease. Our overarching aim is to develop a validated stratification approach to melanoma patients that will assist in the development of effective public health campaigns for individuals at risk across Europe.
Max ERC Funding
2 171 623 €
Duration
Start date: 2016-03-01, End date: 2021-02-28
Project acronym NEURIMMUNE
Project Neural regulation of immunity
Researcher (PI) Sophie Ugolini
Host Institution (HI) INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
Call Details Consolidator Grant (CoG), LS6, ERC-2014-CoG
Summary Survival of living organisms depends on their capacity to develop defence mechanisms against environmental challenges that cause tissue damage and infections. These protective functions involve the nervous system and the immune system, two systems traditionally considered as independent. However anatomical and cellular bases for bidirectional interactions between them have been established and a new paradigm on a regulatory role of the nervous system on immune functions is emerging.
Pain is one of the major signs of inflammation. Upon acute injury, inflammation or infections noxious signals are perceived by nociceptors present in tissues, such as the skin. These sensory neurons convey the damaging information to the brain and release a number of mediators locally that could modulate immunity. The goal of this project is to decipher the functional role of sensory neurons and pain sensitivity on immune responses. We will tackle this highly challenging question by studying the immune responses to vaccination in genetic mouse models in which skin innervation by nociceptors is deficient. Our preliminary results are very promising as we already demonstrated that deficits in sensory skin innervation affect both the innate and adaptive immune responses to intradermal vaccine. We will further study the cellular and molecular mechanisms involved in this local and systemic modulation of the immune response by the nervous system. As a complementary approach, we will address the role of an exacerbated pain response on immunity through the selective stimulation of nociceptive neurons in wild type animals.
This interdisciplinary study is designed to provide new insights into how the nervous system instructs the immune system. Results from NEURIMMUNE are expected to open new avenues of research on the integrated host response to pathogens with important implications for the design of innovative prophylactic vaccines and therapies.
Summary
Survival of living organisms depends on their capacity to develop defence mechanisms against environmental challenges that cause tissue damage and infections. These protective functions involve the nervous system and the immune system, two systems traditionally considered as independent. However anatomical and cellular bases for bidirectional interactions between them have been established and a new paradigm on a regulatory role of the nervous system on immune functions is emerging.
Pain is one of the major signs of inflammation. Upon acute injury, inflammation or infections noxious signals are perceived by nociceptors present in tissues, such as the skin. These sensory neurons convey the damaging information to the brain and release a number of mediators locally that could modulate immunity. The goal of this project is to decipher the functional role of sensory neurons and pain sensitivity on immune responses. We will tackle this highly challenging question by studying the immune responses to vaccination in genetic mouse models in which skin innervation by nociceptors is deficient. Our preliminary results are very promising as we already demonstrated that deficits in sensory skin innervation affect both the innate and adaptive immune responses to intradermal vaccine. We will further study the cellular and molecular mechanisms involved in this local and systemic modulation of the immune response by the nervous system. As a complementary approach, we will address the role of an exacerbated pain response on immunity through the selective stimulation of nociceptive neurons in wild type animals.
This interdisciplinary study is designed to provide new insights into how the nervous system instructs the immune system. Results from NEURIMMUNE are expected to open new avenues of research on the integrated host response to pathogens with important implications for the design of innovative prophylactic vaccines and therapies.
Max ERC Funding
2 000 000 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym NutrientSensingVivo
Project The Physiology of Nutrient Sensing by mTOR
Researcher (PI) Alejo Efeyan
Host Institution (HI) FUNDACION CENTRO NACIONAL DE INVESTIGACIONES ONCOLOGICAS CARLOS III
Call Details Starting Grant (StG), LS4, ERC-2014-STG
Summary A major role of metabolic alterations in the development of several human diseases, as diabetes, cancer and in the onset of ageing is becoming increasingly evident. This has a deep impact for human health due to the alarming increase in nutrient intake and obesity in the last decades. Fundamental aspects of how aberrant nutrient fluctuations trigger deregulated hormone levels and endocrine signals have been elucidated, being a prime example the phenomenon of insulin resistance. In contrast, how changes in nutrient levels elicit direct cell-autonomous signal transduction cascades and the consequences of these responses in physiology are less clear.
The signalling circuitry of direct nutrient sensing converges with that of hormones in the regulation of the mechanistic target of rapamycin (mTOR) kinase, a driver of anabolism, cell growth and proliferation. Deregulation of mTORC1 activity underlies the pathogenesis of cancer and diabetes, and its inhibitor rapamycin is approved as an anti-cancer agent and delays ageing from yeast to mammals. In spite of its importance for human disease, our understanding of the nutrient sensing signalling pathway and its impact in physiology is largely incomplete, as only a few years ago the direct molecular link between nutrients and mTORC1 activation, the Rag GTPases, were identified.
The present proposal aims to determine how the nutrient sensing signalling pathway affects mammalian physiology and metabolism, and whether its deregulation contributes to cancer, insulin resistance and aging. In particular, the objectives are: 1) To identify novel regulators of the Rag GTPases with unbiased and candidate-based approaches. 2) To establish the consequences of deregulated nutrient-dependent activation of mTORC1 in physiology, by means of genetically engineered mice. 3) To determine the impact of the nutrient sensing pathway in the effects of dietary restriction and nutrient limitation in glucose homeostasis and cancer.
Summary
A major role of metabolic alterations in the development of several human diseases, as diabetes, cancer and in the onset of ageing is becoming increasingly evident. This has a deep impact for human health due to the alarming increase in nutrient intake and obesity in the last decades. Fundamental aspects of how aberrant nutrient fluctuations trigger deregulated hormone levels and endocrine signals have been elucidated, being a prime example the phenomenon of insulin resistance. In contrast, how changes in nutrient levels elicit direct cell-autonomous signal transduction cascades and the consequences of these responses in physiology are less clear.
The signalling circuitry of direct nutrient sensing converges with that of hormones in the regulation of the mechanistic target of rapamycin (mTOR) kinase, a driver of anabolism, cell growth and proliferation. Deregulation of mTORC1 activity underlies the pathogenesis of cancer and diabetes, and its inhibitor rapamycin is approved as an anti-cancer agent and delays ageing from yeast to mammals. In spite of its importance for human disease, our understanding of the nutrient sensing signalling pathway and its impact in physiology is largely incomplete, as only a few years ago the direct molecular link between nutrients and mTORC1 activation, the Rag GTPases, were identified.
The present proposal aims to determine how the nutrient sensing signalling pathway affects mammalian physiology and metabolism, and whether its deregulation contributes to cancer, insulin resistance and aging. In particular, the objectives are: 1) To identify novel regulators of the Rag GTPases with unbiased and candidate-based approaches. 2) To establish the consequences of deregulated nutrient-dependent activation of mTORC1 in physiology, by means of genetically engineered mice. 3) To determine the impact of the nutrient sensing pathway in the effects of dietary restriction and nutrient limitation in glucose homeostasis and cancer.
Max ERC Funding
1 846 494 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym OxygenSensing
Project Molecular mechanisms of acute oxygen sensing.
Researcher (PI) Jose Lopez Barneo
Host Institution (HI) UNIVERSIDAD DE SEVILLA
Call Details Advanced Grant (AdG), LS4, ERC-2014-ADG
Summary Oxygen (O2) is essential for life on Earth. This proposal deals with the study of the molecular mechanisms underlying acute O2 sensing by cells, a long-standing issue that is yet to be elucidated. In recent years, the discovery of hypoxia inducible transcription factors and their regulation by the O2-dependent hydroxylases has provided a solid framework for understanding genetic responses to sustained (chronic) hypoxia. However the mechanisms of acute O2 sensing, necessary for the activation of rapid, life-saving, compensatory respiratory and cardiovascular reflexes (e.g. hyperventilation and sympathetic activation), are unknown. While the primary goal of the project is to characterize the molecular mechanisms underlying acute O2 sensing by arterial chemoreceptors (carotid body –CB- and adrenal medulla –AM-), we will also extend our study to other organs (e.g. pulmonary and systemic arteries) of the homeostatic acute O2-sensing system. We will investigate the role of mitochondria, in particular complex I (MCI), in acute O2 sensing. Previous data from our group demonstrated that rotenone, a MCI blocker, selectively occludes responsiveness to hypoxia in CB cells. In addition, our unpublished data indicate that sensitivity to hypoxia (but not to other stimuli) is lost in mice with genetic disruption of MCI genes in CB and AM cells. We have shown that the adult CB is a plastic organ that contains a population of multipotent neural stem cells. Hence, another objective of the project is to study the role of these stem cells in CB modulation (over- or infra-activation), which may participate in the pathogenesis of diseases. In the past, our group has made seminal contributions to unveiling the cellular bases of arterial chemoreception. The discovery of stem cells in the CB and the generation of new genetically modified mouse models, put us in a leading position to elucidate the molecular bases of acute O2 sensing and their biomedical implications.
Summary
Oxygen (O2) is essential for life on Earth. This proposal deals with the study of the molecular mechanisms underlying acute O2 sensing by cells, a long-standing issue that is yet to be elucidated. In recent years, the discovery of hypoxia inducible transcription factors and their regulation by the O2-dependent hydroxylases has provided a solid framework for understanding genetic responses to sustained (chronic) hypoxia. However the mechanisms of acute O2 sensing, necessary for the activation of rapid, life-saving, compensatory respiratory and cardiovascular reflexes (e.g. hyperventilation and sympathetic activation), are unknown. While the primary goal of the project is to characterize the molecular mechanisms underlying acute O2 sensing by arterial chemoreceptors (carotid body –CB- and adrenal medulla –AM-), we will also extend our study to other organs (e.g. pulmonary and systemic arteries) of the homeostatic acute O2-sensing system. We will investigate the role of mitochondria, in particular complex I (MCI), in acute O2 sensing. Previous data from our group demonstrated that rotenone, a MCI blocker, selectively occludes responsiveness to hypoxia in CB cells. In addition, our unpublished data indicate that sensitivity to hypoxia (but not to other stimuli) is lost in mice with genetic disruption of MCI genes in CB and AM cells. We have shown that the adult CB is a plastic organ that contains a population of multipotent neural stem cells. Hence, another objective of the project is to study the role of these stem cells in CB modulation (over- or infra-activation), which may participate in the pathogenesis of diseases. In the past, our group has made seminal contributions to unveiling the cellular bases of arterial chemoreception. The discovery of stem cells in the CB and the generation of new genetically modified mouse models, put us in a leading position to elucidate the molecular bases of acute O2 sensing and their biomedical implications.
Max ERC Funding
2 843 750 €
Duration
Start date: 2015-11-01, End date: 2020-10-31
Project acronym PanCaT
Project Next-generation in vivo models for improved pancreatic cancer therapies
Researcher (PI) Dieter Karl Maximilian Saur
Host Institution (HI) KLINIKUM RECHTS DER ISAR DER TECHNISCHEN UNIVERSITAT MUNCHEN
Call Details Consolidator Grant (CoG), LS4, ERC-2014-CoG
Summary Maintenance and drug resistance of pancreatic ductal adenocarcioma (PDAC) depends on cancer cell intrinsic mechanisms and a stroma that supports tumor growth. Mouse models of human PDAC have provided important insights into the evolution of this highly lethal tumor, but there are no models that allow secondary genetic manipulation of autochthonous tumors, the tumor microenvironment or the metastatic host niche once the tumor has formed.
We generated an inducible dual-recombinase system by combining Flp/frt and Cre/loxP. This novel PDAC model permits spatial and temporal control of gene expression enabling unbiased genetic approaches to study the role of tumor cell-autonomous and non-autonomous functions in endogenous cancers. This tool provides unparalleled access to the native biology of cancer cells and their hosting stroma, and rigorous genetic validation of candidate therapeutic targets. We performed tumor cell-autonomous and non-autonomous targeting, uncovered hallmarks of human multistep carcinogenesis, validated genetic tumor therapy, and showed that mast cells in the tumor microenvironment, which had been thought to be key oncogenic players, are in fact dispensable for tumor formation.
In the proposed research program, we will 1) develop and further improve next-generation PDAC models, 2) deploy these systems to identify and target key features of PDAC maintenance in tumor cells and their microenvironment, and 3) discover mechanisms of treatment resistance. The application of cutting edge genetic engineering and screening technologies will allow us to address biological questions that could not be addressed before. The PanCaT project will open new horizons for the functional understanding of pancreatic cancer biology with a strong impact on clinical management and prognosis of PDAC patients. It will also produce a unique set of highly versatile and widely applicable genetic tools that will facilitate the study of PDAC at an organismal level.
Summary
Maintenance and drug resistance of pancreatic ductal adenocarcioma (PDAC) depends on cancer cell intrinsic mechanisms and a stroma that supports tumor growth. Mouse models of human PDAC have provided important insights into the evolution of this highly lethal tumor, but there are no models that allow secondary genetic manipulation of autochthonous tumors, the tumor microenvironment or the metastatic host niche once the tumor has formed.
We generated an inducible dual-recombinase system by combining Flp/frt and Cre/loxP. This novel PDAC model permits spatial and temporal control of gene expression enabling unbiased genetic approaches to study the role of tumor cell-autonomous and non-autonomous functions in endogenous cancers. This tool provides unparalleled access to the native biology of cancer cells and their hosting stroma, and rigorous genetic validation of candidate therapeutic targets. We performed tumor cell-autonomous and non-autonomous targeting, uncovered hallmarks of human multistep carcinogenesis, validated genetic tumor therapy, and showed that mast cells in the tumor microenvironment, which had been thought to be key oncogenic players, are in fact dispensable for tumor formation.
In the proposed research program, we will 1) develop and further improve next-generation PDAC models, 2) deploy these systems to identify and target key features of PDAC maintenance in tumor cells and their microenvironment, and 3) discover mechanisms of treatment resistance. The application of cutting edge genetic engineering and screening technologies will allow us to address biological questions that could not be addressed before. The PanCaT project will open new horizons for the functional understanding of pancreatic cancer biology with a strong impact on clinical management and prognosis of PDAC patients. It will also produce a unique set of highly versatile and widely applicable genetic tools that will facilitate the study of PDAC at an organismal level.
Max ERC Funding
2 440 275 €
Duration
Start date: 2016-02-01, End date: 2021-01-31
Project acronym PERIF
Project Perivascular cells at the crossroads of inflammation, regeneration and fibrosis
Researcher (PI) Luciana Isabella Peduto
Host Institution (HI) INSTITUT PASTEUR
Call Details Consolidator Grant (CoG), LS4, ERC-2014-CoG
Summary The survival of organisms requires the ability to repair tissues upon injury, as well as, after birth, to fight foreign invaders that may have contaminated the wound. This last function is mediated by a complex host response involving immune cells, blood vessels and inflammatory mediators that collectively intend to neutralize the harmful agent and eliminate damaged/necrotic tissue. Initially beneficial, this massive inflammatory response comes with a cost, and adult injured tissues usually heal with a scar, which is an area of fibrous tissue that transiently replaces normal tissue. In chronic settings, scarring can become excessive in a process called fibrosis, to the point of preventing functional recovery of the injured organ and be life threatening. Nearly half of all deaths in industrialized world are due to diseases involving inappropriate, often chronic, inflammatory and fibrotic responses, including lung, kidney and liver diseases, scleroderma, inflammatory bowel diseases, muscular dystrophies, cardiovascular diseases, and tumors. However our current knowledge of the biological processes regulating fibrosis is partial, which has hindered therapeutic advances in the field. Recent data from our team and others drew new attention on a discrete population of mesenchymal cells that wraps around vessels, variously called mural cells, perivascular cells or pericytes, as a major source for profibrotic stromal cells generating scar tissue. Previously known for their vascular protective functions, increasing evidence suggests new and unexpected roles for these cells also in inflammation, repair/regeneration, and cancer. These new findings raise a number of challenging questions relative to their functional diversity, as well as mechanisms of activation/ regulation in disease. The identification and specific targeting of functional subsets of mesenchymal perivascular cells may have notable impact in research and medicine, paving the way for new therapeutic avenues in inflammatory/fibrotic diseases and cancer.
Summary
The survival of organisms requires the ability to repair tissues upon injury, as well as, after birth, to fight foreign invaders that may have contaminated the wound. This last function is mediated by a complex host response involving immune cells, blood vessels and inflammatory mediators that collectively intend to neutralize the harmful agent and eliminate damaged/necrotic tissue. Initially beneficial, this massive inflammatory response comes with a cost, and adult injured tissues usually heal with a scar, which is an area of fibrous tissue that transiently replaces normal tissue. In chronic settings, scarring can become excessive in a process called fibrosis, to the point of preventing functional recovery of the injured organ and be life threatening. Nearly half of all deaths in industrialized world are due to diseases involving inappropriate, often chronic, inflammatory and fibrotic responses, including lung, kidney and liver diseases, scleroderma, inflammatory bowel diseases, muscular dystrophies, cardiovascular diseases, and tumors. However our current knowledge of the biological processes regulating fibrosis is partial, which has hindered therapeutic advances in the field. Recent data from our team and others drew new attention on a discrete population of mesenchymal cells that wraps around vessels, variously called mural cells, perivascular cells or pericytes, as a major source for profibrotic stromal cells generating scar tissue. Previously known for their vascular protective functions, increasing evidence suggests new and unexpected roles for these cells also in inflammation, repair/regeneration, and cancer. These new findings raise a number of challenging questions relative to their functional diversity, as well as mechanisms of activation/ regulation in disease. The identification and specific targeting of functional subsets of mesenchymal perivascular cells may have notable impact in research and medicine, paving the way for new therapeutic avenues in inflammatory/fibrotic diseases and cancer.
Max ERC Funding
1 976 100 €
Duration
Start date: 2015-11-01, End date: 2021-10-31
Project acronym PERSYST
Project Generation and maintenance of long-lived memory T cells in humans
Researcher (PI) Enrico Lugli
Host Institution (HI) HUMANITAS MIRASOLE SPA
Call Details Starting Grant (StG), LS6, ERC-2014-STG
Summary Defining the molecular mechanisms governing memory T cell differentiation and homeostasis is of pivotal importance to generate durable and protective T cell responses against infections and cancers. Considerable knowledge in this regard has been acquired in mouse models but is still limited about human T cells. In particular, some mechanisms are assumed to occur in humans but were never formally demonstrated. We showed that memory T cells adoptively-transferred with bone marrow transplantation failed to persist in recipient hosts in the absence of antigen. By contrast, self/tumor-specific naïve T cells rapidly acquired T memory stem cell (TSCM) attributes and subsequently reconstituted the memory T cell pool by homeostatic differentiation. Current models indicate human TSCM cells as superior to conventional memory T cells in regards to effector potential and persistence capacity. Genome-wide expression analysis identified candidate TSCM cell-specific transcriptional regulators that were shown to inhibit senescence, promote self-renewal and regulate somatic differentiation. In this project, by using single cell technologies, primary human samples and in vivo humanized models, we will define the molecular mechanisms at the basis of memory T cell formation and maintenance in humans. We will initially define the antigenic requirement for the long-term persistence of memory T cells by following the fate of adoptively-transferred T cells. As the field remains unexplored, we will investigate the acquisition of memory attributes by self/tumor-specific T cells on multiple functional levels. The gene products specifically expressed by self-renewing TSCM cells will be finally tested for their capability to arrest T cell differentiation and generate long-lived memory T cells with enhanced stem cell-like properties. Our results will impact multiple physiological and pathological situations involving T cell-mediated immune responses.
Summary
Defining the molecular mechanisms governing memory T cell differentiation and homeostasis is of pivotal importance to generate durable and protective T cell responses against infections and cancers. Considerable knowledge in this regard has been acquired in mouse models but is still limited about human T cells. In particular, some mechanisms are assumed to occur in humans but were never formally demonstrated. We showed that memory T cells adoptively-transferred with bone marrow transplantation failed to persist in recipient hosts in the absence of antigen. By contrast, self/tumor-specific naïve T cells rapidly acquired T memory stem cell (TSCM) attributes and subsequently reconstituted the memory T cell pool by homeostatic differentiation. Current models indicate human TSCM cells as superior to conventional memory T cells in regards to effector potential and persistence capacity. Genome-wide expression analysis identified candidate TSCM cell-specific transcriptional regulators that were shown to inhibit senescence, promote self-renewal and regulate somatic differentiation. In this project, by using single cell technologies, primary human samples and in vivo humanized models, we will define the molecular mechanisms at the basis of memory T cell formation and maintenance in humans. We will initially define the antigenic requirement for the long-term persistence of memory T cells by following the fate of adoptively-transferred T cells. As the field remains unexplored, we will investigate the acquisition of memory attributes by self/tumor-specific T cells on multiple functional levels. The gene products specifically expressed by self-renewing TSCM cells will be finally tested for their capability to arrest T cell differentiation and generate long-lived memory T cells with enhanced stem cell-like properties. Our results will impact multiple physiological and pathological situations involving T cell-mediated immune responses.
Max ERC Funding
1 500 000 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym PHII
Project PTX3 in Humoral Innate Immunity
Researcher (PI) Alberto Mantovani
Host Institution (HI) HUMANITAS MIRASOLE SPA
Call Details Advanced Grant (AdG), LS6, ERC-2014-ADG
Summary The innate immune system includes a cellular and a humoral arm. Structural diversity is a characteristic of humoral fluid phase pattern recognition molecules. These include complement components, collectins, ficolins, and pentraxins. We have used the long pentraxin PTX3, identified by the applicant (cDNA and genomic, mouse and human), as a prototypic fluid phase pattern recognition molecule to dissect its function, as well as to define general properties of humoral innate immunity and its interplay with the cellular arm. The general objective of this application is to explore unexpected vistas on humoral innate immunity, using PTX3 as a molecular tool. Specifically two hypothesis will be tested based on preliminary data. First the applicant will test the hypothesis that matrix and microbe recognition are related functions of PTX3 and that a microenvironmental signal (acidic pH) sets PTX3 in a matrix recognition, tissue repair mode. A second related line of work will focus on inflammation as a key component of the tumor microenvironment. The applicant will test the hypothesis that PTX3 and elements of the humoral innate immune system are essential components of cancer related inflammation. In particular, based on preliminary data, the hypothesis will be tested that PTX3 acts as an extrinsic oncosuppressor in murine carcinogenesis and in selected human cancers by suppressing the recruitment of tumor-promoting inflammatory cells. These studies are expected to provide new unexpected vistas on the humoral arm of the innate immune system.
Summary
The innate immune system includes a cellular and a humoral arm. Structural diversity is a characteristic of humoral fluid phase pattern recognition molecules. These include complement components, collectins, ficolins, and pentraxins. We have used the long pentraxin PTX3, identified by the applicant (cDNA and genomic, mouse and human), as a prototypic fluid phase pattern recognition molecule to dissect its function, as well as to define general properties of humoral innate immunity and its interplay with the cellular arm. The general objective of this application is to explore unexpected vistas on humoral innate immunity, using PTX3 as a molecular tool. Specifically two hypothesis will be tested based on preliminary data. First the applicant will test the hypothesis that matrix and microbe recognition are related functions of PTX3 and that a microenvironmental signal (acidic pH) sets PTX3 in a matrix recognition, tissue repair mode. A second related line of work will focus on inflammation as a key component of the tumor microenvironment. The applicant will test the hypothesis that PTX3 and elements of the humoral innate immune system are essential components of cancer related inflammation. In particular, based on preliminary data, the hypothesis will be tested that PTX3 acts as an extrinsic oncosuppressor in murine carcinogenesis and in selected human cancers by suppressing the recruitment of tumor-promoting inflammatory cells. These studies are expected to provide new unexpected vistas on the humoral arm of the innate immune system.
Max ERC Funding
2 497 081 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym PlasmoSilencing
Project Exoribonuclease-mediated degradation of nascent RNA in Malaria Parasites: A Novel Mechanism in Virulence Gene Silencing
Researcher (PI) Artur Scherf
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), LS6, ERC-2014-ADG
Summary Background: The human protozoan malaria parasite P. falciparum causes approximately 200 million infections and 0.7 million deaths (mainly children) per year. In the well-studied asexual blood stages, cyclic monocistronic gene activation occurs at the transcriptional level; however, relatively few transcription factors have been identified, thus other types of regulatory processes that contribute to this coordinated gene expression are believed to exist. Through the study of molecular process of monoallelic expression of immune evasion genes in P. falciparum (project funded by a previous ERC grant to A. Scherf), we discovered an entirely new mechanism of gene silencing. We demonstrated that an exoribonuclease silences genes linked to severe malaria. A non-canonical 3’-5’exoribonuclease termed PfRNase II destroys nascent RNA made from promoter regions, leading to cryptic unstable mRNA. Parasites carrying a deficient PfRNase II produce full-length mRNA and long noncoding RNA. The molecular events and the number of genes directly controlled by this novel type of posttranscriptional gene silencing remain elusive.
Aim: This proposal aims to investigate the molecular mechanisms controlling PfRNase II-dependent gene silencing using innovative strategies such as the new genome editing technique (Cas9/CRISPR) developed in my laboratory for use in P. falciparum. We will study i) the recruitment of PfRNase II to promoter regions of severe malaria related genes using protein pull-down assays and ii) the genome occupancy of PfRNase II and two other 3’-5’ exoribonucleases to determine the total number of genes controlled by this mechanism.
Impact: This project represents a major change in mainstream malaria parasite gene regulation paradigms with repercussions for other organisms. The proposed research will both open new avenues in molecular process that control severe malaria and appeal to young researchers to join this rather ‘untouched’ topic.
Summary
Background: The human protozoan malaria parasite P. falciparum causes approximately 200 million infections and 0.7 million deaths (mainly children) per year. In the well-studied asexual blood stages, cyclic monocistronic gene activation occurs at the transcriptional level; however, relatively few transcription factors have been identified, thus other types of regulatory processes that contribute to this coordinated gene expression are believed to exist. Through the study of molecular process of monoallelic expression of immune evasion genes in P. falciparum (project funded by a previous ERC grant to A. Scherf), we discovered an entirely new mechanism of gene silencing. We demonstrated that an exoribonuclease silences genes linked to severe malaria. A non-canonical 3’-5’exoribonuclease termed PfRNase II destroys nascent RNA made from promoter regions, leading to cryptic unstable mRNA. Parasites carrying a deficient PfRNase II produce full-length mRNA and long noncoding RNA. The molecular events and the number of genes directly controlled by this novel type of posttranscriptional gene silencing remain elusive.
Aim: This proposal aims to investigate the molecular mechanisms controlling PfRNase II-dependent gene silencing using innovative strategies such as the new genome editing technique (Cas9/CRISPR) developed in my laboratory for use in P. falciparum. We will study i) the recruitment of PfRNase II to promoter regions of severe malaria related genes using protein pull-down assays and ii) the genome occupancy of PfRNase II and two other 3’-5’ exoribonucleases to determine the total number of genes controlled by this mechanism.
Impact: This project represents a major change in mainstream malaria parasite gene regulation paradigms with repercussions for other organisms. The proposed research will both open new avenues in molecular process that control severe malaria and appeal to young researchers to join this rather ‘untouched’ topic.
Max ERC Funding
2 499 761 €
Duration
Start date: 2015-11-01, End date: 2020-10-31
Project acronym PREG-LAB
Project Distinctive characterization of regulatory plasma cells and pro-inflammatory B cells in immunity: their origins, molecular properties, and cellular fates.
Researcher (PI) Simon Fillatreau
Host Institution (HI) INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
Call Details Consolidator Grant (CoG), LS6, ERC-2014-CoG
Summary B cells can act both as negative regulators and as drivers of immunity through the production of cytokines. Through secretion of interleukin (IL)-10 B cells inhibited immunity in autoimmune and infectious diseases. For instance, IL-10 from B cells drove complete recovery from disease in experimental autoimmune encephalomyelitis (EAE), the primary animal model for multiple sclerosis (MS), while a lack of IL-10 production by B cells resulted in a severe chronic EAE. B cells can also suppress immunity via IL-35. Human B cells might similarly play inhibitory roles. In few patients with immune-mediated diseases B cell depletion therapy with Rituximab was associated with exacerbation of symptoms, or onset of new pathologies. Conversely, an opposite role of B cells as drivers of immunity was highlighted by the beneficial effect of Rituximab in some patients with rheumatoid arthritis or MS. Clinical improvement often precedes reduction in autoantibody levels in Rituximab treated patients, indicating that B cell-mediated pathogenesis is largely antibody-independent. A candidate factor for the deleterious effects of B cells in MS is IL-6. IL-6 secretion is a major mechanism of B cell-mediated pathogenesis in EAE, and B cells from MS patients produced more IL-6 than cells from healthy individuals. There is now an urgent need for the characterization of the phenotypes of the B cells producing IL-6, IL-10, and IL-35 in vivo at single cell and molecular levels. Markers for these cells might allow understanding the paradoxical effects of B cell-depletion therapy, and guide the development of novel agents depleting distinctively pro-inflammatory B cells, while sparing the remaining of the B cell compartment. Using advanced genetic models to identify and track cytokine-expressing cells, our project aims at characterizing B cells with pro- and anti-inflammatory functions in mice in vivo, to subsequently guide the identification of comparable markers in human.
Summary
B cells can act both as negative regulators and as drivers of immunity through the production of cytokines. Through secretion of interleukin (IL)-10 B cells inhibited immunity in autoimmune and infectious diseases. For instance, IL-10 from B cells drove complete recovery from disease in experimental autoimmune encephalomyelitis (EAE), the primary animal model for multiple sclerosis (MS), while a lack of IL-10 production by B cells resulted in a severe chronic EAE. B cells can also suppress immunity via IL-35. Human B cells might similarly play inhibitory roles. In few patients with immune-mediated diseases B cell depletion therapy with Rituximab was associated with exacerbation of symptoms, or onset of new pathologies. Conversely, an opposite role of B cells as drivers of immunity was highlighted by the beneficial effect of Rituximab in some patients with rheumatoid arthritis or MS. Clinical improvement often precedes reduction in autoantibody levels in Rituximab treated patients, indicating that B cell-mediated pathogenesis is largely antibody-independent. A candidate factor for the deleterious effects of B cells in MS is IL-6. IL-6 secretion is a major mechanism of B cell-mediated pathogenesis in EAE, and B cells from MS patients produced more IL-6 than cells from healthy individuals. There is now an urgent need for the characterization of the phenotypes of the B cells producing IL-6, IL-10, and IL-35 in vivo at single cell and molecular levels. Markers for these cells might allow understanding the paradoxical effects of B cell-depletion therapy, and guide the development of novel agents depleting distinctively pro-inflammatory B cells, while sparing the remaining of the B cell compartment. Using advanced genetic models to identify and track cytokine-expressing cells, our project aims at characterizing B cells with pro- and anti-inflammatory functions in mice in vivo, to subsequently guide the identification of comparable markers in human.
Max ERC Funding
1 999 375 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym Profile Infection
Project Unraveling changes in cellular gene expression during viral infection
Researcher (PI) Noam Stern-Ginossar
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Starting Grant (StG), LS6, ERC-2014-STG
Summary The herpesvirus human cytomegalovirus (HCMV) infects the majority of the world's population, leading to severe diseases in millions of newborns and immunocompromised adults annually. During infection, HCMV extensively manipulates cellular gene expression to maintain conditions favorable for efficient viral propagation. Identifying the pathways that the virus relies on or subverts is of great interest as they have the potential to provide new therapeutic windows and reveal novel principles in cell biology. Over the past years high-throughput analyses have profoundly broadened our understanding of the processes that occur during HCMV infection. However, much of this analysis is focused on transcriptional changes at the lytic phase of infection leaving posttranscriptional regulation and the latent phase of the virus relatively untouched. Novel emerging technologies have the potential to extend our knowledge in areas that were heretofore unattainable.
My overall goal is to decipher the multiple mechanisms by which HCMV modulates the host cell. For this, I will use multiple cutting-edge deep-sequencing and imaging technologies that will allow the analysis of novel aspects of host gene regulation during infection. Accordingly, the primary objectives of this research proposal are: 1) Deciphering posttranscriptional mechanisms that control cellular gene expression during HCMV infection; 2) Identifying and characterizing cellular protein diversification during infection; and 3) Uncovering the changes that occur in infected cells during latent infection. The knowledge generated from these objectives will provide us with a clearer depiction of the changes that take place during HCMV infection, which in turn can facilitate the development of novel anti-viral strategies. More broadly, with its comprehensive and complementarity approaches, this work will provide a paradigm for understanding how gene expression is regulated during a complex biological process.
Summary
The herpesvirus human cytomegalovirus (HCMV) infects the majority of the world's population, leading to severe diseases in millions of newborns and immunocompromised adults annually. During infection, HCMV extensively manipulates cellular gene expression to maintain conditions favorable for efficient viral propagation. Identifying the pathways that the virus relies on or subverts is of great interest as they have the potential to provide new therapeutic windows and reveal novel principles in cell biology. Over the past years high-throughput analyses have profoundly broadened our understanding of the processes that occur during HCMV infection. However, much of this analysis is focused on transcriptional changes at the lytic phase of infection leaving posttranscriptional regulation and the latent phase of the virus relatively untouched. Novel emerging technologies have the potential to extend our knowledge in areas that were heretofore unattainable.
My overall goal is to decipher the multiple mechanisms by which HCMV modulates the host cell. For this, I will use multiple cutting-edge deep-sequencing and imaging technologies that will allow the analysis of novel aspects of host gene regulation during infection. Accordingly, the primary objectives of this research proposal are: 1) Deciphering posttranscriptional mechanisms that control cellular gene expression during HCMV infection; 2) Identifying and characterizing cellular protein diversification during infection; and 3) Uncovering the changes that occur in infected cells during latent infection. The knowledge generated from these objectives will provide us with a clearer depiction of the changes that take place during HCMV infection, which in turn can facilitate the development of novel anti-viral strategies. More broadly, with its comprehensive and complementarity approaches, this work will provide a paradigm for understanding how gene expression is regulated during a complex biological process.
Max ERC Funding
1 500 000 €
Duration
Start date: 2015-06-01, End date: 2020-05-31
Project acronym REGiREG
Project Regulating the immune regulators: targeting adaptive immune control
Researcher (PI) Markus Feuerer
Host Institution (HI) KLINIKUM DER UNIVERSITAET REGENSBURG
Call Details Consolidator Grant (CoG), LS6, ERC-2014-CoG
Summary The immune system with its complex interactions of cells and molecules needs a very tight and specific interplay of control elements to ensure the establishment and re-establishment of immune homeostasis after challenges. Regulatory T cells (Tregs) are key-players in this regulatory network. It is now well accepted that deficiency or dysfunction of Tregs causes various severe immune disorders due to immune hyperactivation. Conversely, an increased number of Tregs in tumor-bearing individuals suppresses efficient anti-tumor immunity and, thereby, is often associated with poor prognosis. Cancer immunology is now one of the most exciting and promising frontiers in cancer research, and recent clinical trials have proven that immunotherapies driving to activate T cells can induce durable responses. In this sense, harnessing the potential of Tregs is one of the most promising new approaches to control immune function and to treat cancer. This proposal has two objectives: 1, the identification and characterization of tissue-resident Tregs to principally understand the unique features of Treg specialization in tissues and their function in organ-homeostasis, a phenomenon that is hardly understood, but holds great promise for local, tissue-specific immune intervention. 2, to globally target Tregs, including the lymphoid organ Treg pool, by interfering with their survival and or suppression function. We expect from these studies new basic insights into a fascinating and still arcane aspect of organ-homeostasis as maintained by Tregs, as well as novel small molecule inhibitors and candidate molecules that target Tregs at the systemic level, and eventually at a tissue-specific level.
Summary
The immune system with its complex interactions of cells and molecules needs a very tight and specific interplay of control elements to ensure the establishment and re-establishment of immune homeostasis after challenges. Regulatory T cells (Tregs) are key-players in this regulatory network. It is now well accepted that deficiency or dysfunction of Tregs causes various severe immune disorders due to immune hyperactivation. Conversely, an increased number of Tregs in tumor-bearing individuals suppresses efficient anti-tumor immunity and, thereby, is often associated with poor prognosis. Cancer immunology is now one of the most exciting and promising frontiers in cancer research, and recent clinical trials have proven that immunotherapies driving to activate T cells can induce durable responses. In this sense, harnessing the potential of Tregs is one of the most promising new approaches to control immune function and to treat cancer. This proposal has two objectives: 1, the identification and characterization of tissue-resident Tregs to principally understand the unique features of Treg specialization in tissues and their function in organ-homeostasis, a phenomenon that is hardly understood, but holds great promise for local, tissue-specific immune intervention. 2, to globally target Tregs, including the lymphoid organ Treg pool, by interfering with their survival and or suppression function. We expect from these studies new basic insights into a fascinating and still arcane aspect of organ-homeostasis as maintained by Tregs, as well as novel small molecule inhibitors and candidate molecules that target Tregs at the systemic level, and eventually at a tissue-specific level.
Max ERC Funding
1 955 000 €
Duration
Start date: 2015-07-01, End date: 2020-06-30
Project acronym RegulRNA
Project Modulation of RNA-based regulatory processes by viruses
Researcher (PI) Sebastien Jean Pfeffer
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Consolidator Grant (CoG), LS6, ERC-2014-CoG
Summary Small and large non-coding RNAs are essential components at the heart of gene expression regulation. The past fifteen years have witnessed the emergence of a new field of research impacting diverse domains of biology. Among these, virology is no exception and discoveries such as the antiviral role of RNA silencing, virus-encoded microRNAs (miRNAs), or miRNA-based regulation of viruses have notably shifted our views of host-virus interactions. Although we know a lot about the mechanisms of action of ncRNAs, and their role in the context of viral infections, we know much less regarding the control of the regulatory RNAs themselves. In other words, how are the regulators regulated? To provide answers to this burning question, we propose to use different viruses as models to investigate the various levels where modulation of regulatory RNA can occur. Thus, we will study the importance of RNA secondary and tertiary structure as well as accessory proteins in the regulation of miRNA primary transcript processing. In a second axis, we propose to investigate how the functional, mature miRNAs can be controlled. To this end, we will focus on the mechanisms of target-mediated miRNA decay and the role of competing endogenous RNAs. We will finally turn to the regulation of antiviral RNA silencing. Although it seems that this kind of defence mechanism exist in mammalian cells, it is not yet clear how physiologically relevant it is and how it interfaces with other innate immune mechanisms. In this multidisciplinary project, we will use a combination of techniques ranging from bioinformatics to cellular biology to achieve our goal to get a comprehensive view of how RNA silencing processes are regulated during virus infection.
Summary
Small and large non-coding RNAs are essential components at the heart of gene expression regulation. The past fifteen years have witnessed the emergence of a new field of research impacting diverse domains of biology. Among these, virology is no exception and discoveries such as the antiviral role of RNA silencing, virus-encoded microRNAs (miRNAs), or miRNA-based regulation of viruses have notably shifted our views of host-virus interactions. Although we know a lot about the mechanisms of action of ncRNAs, and their role in the context of viral infections, we know much less regarding the control of the regulatory RNAs themselves. In other words, how are the regulators regulated? To provide answers to this burning question, we propose to use different viruses as models to investigate the various levels where modulation of regulatory RNA can occur. Thus, we will study the importance of RNA secondary and tertiary structure as well as accessory proteins in the regulation of miRNA primary transcript processing. In a second axis, we propose to investigate how the functional, mature miRNAs can be controlled. To this end, we will focus on the mechanisms of target-mediated miRNA decay and the role of competing endogenous RNAs. We will finally turn to the regulation of antiviral RNA silencing. Although it seems that this kind of defence mechanism exist in mammalian cells, it is not yet clear how physiologically relevant it is and how it interfaces with other innate immune mechanisms. In this multidisciplinary project, we will use a combination of techniques ranging from bioinformatics to cellular biology to achieve our goal to get a comprehensive view of how RNA silencing processes are regulated during virus infection.
Max ERC Funding
1 998 291 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym REMEMBER
Project Adaptive immunity in prokaryotes: how Bacteria do not forgive and do not forget their enemies
Researcher (PI) Stan Brouns
Host Institution (HI) TECHNISCHE UNIVERSITEIT DELFT
Call Details Starting Grant (StG), LS6, ERC-2014-STG
Summary Microbes in natural ecosystems are under constant evolutionary pressure from viruses. To survive in this hostile environment microbes have evolved an adaptive immune system called CRISPR-Cas. The immune system is based on incorporation of invader DNA sequences in a memory locus (CRISPR), the formation of guide RNAs from this locus, and the degradation of invading target DNA using CRISPR RNA-guided protein complexes. Invaders escape immunity by making point mutations in the targeted region of their DNA, but hosts quickly restore immunity by integrating new memory sequences against the same invader in a process called priming. Recently, I have made the remarkable discovery that hosts mount a primed immune response even when facing heavily mutated invaders. This implies that the memory of the CRISPR-Cas system not only functions in the short term against relatively recent threats, but also remembers a range of revisiting old foes in the long term, providing a huge evolutionary benefit for the host in the arms race with their invaders.
This proposal sets out to determine the mechanism of the enigmatic process of primed memory formation against heavily mutated invaders. Using a combination of genetic, biochemical and structural approaches, including state-of-the-art single molecule imaging of CRISPR immunity in living Escherichia coli cells, I will investigate the driving hypothesis that perfectly matching and degenerate targets are differentially recognized, and trigger either target DNA degradation or priming. Moreover, I will test the supposition that degenerate priming is a universal phenomenon among different CRISPR-Cas types. If this is the case, degenerate priming will impair the use of viruses as therapeutic agents to treat antibiotic resistant bacterial infections. To prevent CRISPR resistance I propose to screen for organic molecules that inhibit the formation of CRISPR resistance. These molecules can be co-administered with viruses to potentiate treatments.
Summary
Microbes in natural ecosystems are under constant evolutionary pressure from viruses. To survive in this hostile environment microbes have evolved an adaptive immune system called CRISPR-Cas. The immune system is based on incorporation of invader DNA sequences in a memory locus (CRISPR), the formation of guide RNAs from this locus, and the degradation of invading target DNA using CRISPR RNA-guided protein complexes. Invaders escape immunity by making point mutations in the targeted region of their DNA, but hosts quickly restore immunity by integrating new memory sequences against the same invader in a process called priming. Recently, I have made the remarkable discovery that hosts mount a primed immune response even when facing heavily mutated invaders. This implies that the memory of the CRISPR-Cas system not only functions in the short term against relatively recent threats, but also remembers a range of revisiting old foes in the long term, providing a huge evolutionary benefit for the host in the arms race with their invaders.
This proposal sets out to determine the mechanism of the enigmatic process of primed memory formation against heavily mutated invaders. Using a combination of genetic, biochemical and structural approaches, including state-of-the-art single molecule imaging of CRISPR immunity in living Escherichia coli cells, I will investigate the driving hypothesis that perfectly matching and degenerate targets are differentially recognized, and trigger either target DNA degradation or priming. Moreover, I will test the supposition that degenerate priming is a universal phenomenon among different CRISPR-Cas types. If this is the case, degenerate priming will impair the use of viruses as therapeutic agents to treat antibiotic resistant bacterial infections. To prevent CRISPR resistance I propose to screen for organic molecules that inhibit the formation of CRISPR resistance. These molecules can be co-administered with viruses to potentiate treatments.
Max ERC Funding
1 499 184 €
Duration
Start date: 2015-06-01, End date: 2020-05-31
Project acronym rEnDOx
Project REDOX SIGNALING AND METABOLIC STATES IN ANGIOGENESIS IN HEALTH AND DISEASE
Researcher (PI) Massimo Santoro
Host Institution (HI) UNIVERSITA DEGLI STUDI DI PADOVA
Call Details Consolidator Grant (CoG), LS4, ERC-2014-CoG
Summary Endothelial cells (ECs) exhibit a remarkable and unique plasticity in terms of redox biology and metabolism. They can quickly adapt to oxygen, nitric oxide and metabolic variations. Therefore, EC must be equipped with a selective and unique repertoire of redox and metabolic mechanisms, that play a crucial role to preserve redox balance, and adjust metabolic conditions in both normal and pathological angiogenesis. The identification of such redox signaling and metabolic pathways is crucial to the gaining of better insights in endothelial biology and dysfunction. More importantly, these insights could be used to establish innovative therapeutic approaches for the treatment of those conditions where aberrant or excessive angiogenesis is the underlying cause of the disease itself. However, the formation, actions, key molecular interactions, and physiological and pathological relevance of redox signals in ECs remain unclear. Here, by using cutting-edge real-time redox imaging platforms, and innovative molecular and genetic approaches in different in vivo animal models, we will (1) reveal the working of redox signaling in EC in health and disease, (2) shed light on the novel role for the mevalonate metabolic pathway in angiogenesis and (3) provide solid evidence, that manipulation of endothelial redox and metabolic state by genetic alteration of the redox rheostat UBIAD1, is a valuable strategy by which to block pathological angiogenesis in vivo.
The ultimate objective is to open the way for the development of innovative (cancer) therapeutic strategies and complement the existing ones based on genetic or pharmacological manipulation of redox rheostats to balance oxidative or reductive stress in angiogenic processes. The success of this project is built upon our major expertise in the field of angiogenesis in small vertebrate animal models as well as on the collaborations with leading laboratories that are active in research on the pre-clinical stages for angiogenesis-rel
Summary
Endothelial cells (ECs) exhibit a remarkable and unique plasticity in terms of redox biology and metabolism. They can quickly adapt to oxygen, nitric oxide and metabolic variations. Therefore, EC must be equipped with a selective and unique repertoire of redox and metabolic mechanisms, that play a crucial role to preserve redox balance, and adjust metabolic conditions in both normal and pathological angiogenesis. The identification of such redox signaling and metabolic pathways is crucial to the gaining of better insights in endothelial biology and dysfunction. More importantly, these insights could be used to establish innovative therapeutic approaches for the treatment of those conditions where aberrant or excessive angiogenesis is the underlying cause of the disease itself. However, the formation, actions, key molecular interactions, and physiological and pathological relevance of redox signals in ECs remain unclear. Here, by using cutting-edge real-time redox imaging platforms, and innovative molecular and genetic approaches in different in vivo animal models, we will (1) reveal the working of redox signaling in EC in health and disease, (2) shed light on the novel role for the mevalonate metabolic pathway in angiogenesis and (3) provide solid evidence, that manipulation of endothelial redox and metabolic state by genetic alteration of the redox rheostat UBIAD1, is a valuable strategy by which to block pathological angiogenesis in vivo.
The ultimate objective is to open the way for the development of innovative (cancer) therapeutic strategies and complement the existing ones based on genetic or pharmacological manipulation of redox rheostats to balance oxidative or reductive stress in angiogenic processes. The success of this project is built upon our major expertise in the field of angiogenesis in small vertebrate animal models as well as on the collaborations with leading laboratories that are active in research on the pre-clinical stages for angiogenesis-rel
Max ERC Funding
1 999 827 €
Duration
Start date: 2016-07-01, End date: 2021-06-30
Project acronym RENOIR
Project RENal prOgenItoRs as tools to understand kidney pathophysiology and treat kidney disorders
Researcher (PI) Paola Romagnani
Host Institution (HI) UNIVERSITA DEGLI STUDI DI FIRENZE
Call Details Consolidator Grant (CoG), LS4, ERC-2014-CoG
Summary Kidney disorders represent a major global health issue and new tools are needed to expand disease modeling and therapeutic options. The identification of renal progenitors (RPC) opens a wide range of possibilities to support progress in several fields of nephrology. Indeed, RPC have become a key player in the pathogenesis of kidney disorders, and their study is increasing knowledge about the mechanisms of kidney response to injury. In this project we propose new lineage tracing models to identify and characterize mouse RPC system. We then will use these models to establish RPC role in progression or resolution of glomerular and tubular injury, and the mechanisms involved in these processes. Furthermore, the role of abnormal RPC function in the pathogenesis of renal cell carcinoma will be established. We will proceed to validate RPC as therapeutic targets to improve podocyte regeneration and disease regression. Lineage tracing of the murine RPC system from development to adult life and characterization of the RPC niche will be performed through observation of RPC at various stages of nephron formation during development as well as during kidney growth, homeostasis and aging. RPC isolation and culture from kidney tissue being limited due to their inaccessibility, the recent development of a method for culturing them specifically from urine finally opens the perspective of personalized medicine of the kidney and the development of patient-specific treatment strategies. In addition, patient-specific RPC can be useful for screening of new drug compounds, developing disease-modifying assays, as well as for evaluation of drug toxicity, with particular regard to nephrotoxicity. Finally, RPC represent potential tools and/or targets for therapeutic purposes and to promote innovative renal replacement strategies for kidney disorders.
Summary
Kidney disorders represent a major global health issue and new tools are needed to expand disease modeling and therapeutic options. The identification of renal progenitors (RPC) opens a wide range of possibilities to support progress in several fields of nephrology. Indeed, RPC have become a key player in the pathogenesis of kidney disorders, and their study is increasing knowledge about the mechanisms of kidney response to injury. In this project we propose new lineage tracing models to identify and characterize mouse RPC system. We then will use these models to establish RPC role in progression or resolution of glomerular and tubular injury, and the mechanisms involved in these processes. Furthermore, the role of abnormal RPC function in the pathogenesis of renal cell carcinoma will be established. We will proceed to validate RPC as therapeutic targets to improve podocyte regeneration and disease regression. Lineage tracing of the murine RPC system from development to adult life and characterization of the RPC niche will be performed through observation of RPC at various stages of nephron formation during development as well as during kidney growth, homeostasis and aging. RPC isolation and culture from kidney tissue being limited due to their inaccessibility, the recent development of a method for culturing them specifically from urine finally opens the perspective of personalized medicine of the kidney and the development of patient-specific treatment strategies. In addition, patient-specific RPC can be useful for screening of new drug compounds, developing disease-modifying assays, as well as for evaluation of drug toxicity, with particular regard to nephrotoxicity. Finally, RPC represent potential tools and/or targets for therapeutic purposes and to promote innovative renal replacement strategies for kidney disorders.
Max ERC Funding
1 772 719 €
Duration
Start date: 2015-07-01, End date: 2020-06-30
Project acronym RNAEDIT
Project RNA EDITING IN HEALTH AND DISEASE
Researcher (PI) Fotini Nina Papavasiliou
Host Institution (HI) DEUTSCHES KREBSFORSCHUNGSZENTRUM HEIDELBERG
Call Details Consolidator Grant (CoG), LS6, ERC-2014-CoG
Summary "RNA editing is a type of programmed RNA sequence alteration that can result in a range of proteomic changes, from subtle fluctuations in output, to specific alterations in protein content. Editing is catalyzed by two classes of deaminases: those which convert adenosine to inosine (ADARs) and those which convert cytosine to uracil (APOBEC1). We have previously shown that APOBEC1-catalyzed editing in the transcriptome of macrophages leads to the generation of populations that are heterogeneous, and functionally diverse, enabling rapid population adaptation to different environmental settings.
Our first aim for this proposal is to extend our studies to additional immune cell subsets, focusing on cells that are recently recognized as ""plastic"" to define the contribution of editing to this plasticity of fate and function.
RNA editing of the type we study has also been demonstrated to be crucial for cancer progression. For instance, APOBEC1-deficiency significantly reduces tumour burden on cells of the intestine and colon that are prone to adenocarcinomas in the context of the APC-min mutation. This is also the case for testicular carcinomas in mouse models of such tumours. Thus, there is genetic evidence for a requirement for APOBEC1 and RNA editing to drive tumour progression, in two tumour contexts. Based on these data and on our recently deciphered role for APOBEC1 as a ""stealthy"" diversifier of cellular transcriptomes (and proteomic outcomes), we hypothesize that APOBEC1 drives tumour progression by editing select transcripts in tumour cells (or tumour stem cells), thus enabling the rapid adaptation of the tumour to the onslaught of the immune response.
Our second aim is to characterize the subset of edited transcripts in these model tumours (either at the population or at the single cell level) and understand their role to tumour survival and progression, both in mouse models of disease, and in human tumour samples (in collaboration with QP Hammarstrom, KI)."
Summary
"RNA editing is a type of programmed RNA sequence alteration that can result in a range of proteomic changes, from subtle fluctuations in output, to specific alterations in protein content. Editing is catalyzed by two classes of deaminases: those which convert adenosine to inosine (ADARs) and those which convert cytosine to uracil (APOBEC1). We have previously shown that APOBEC1-catalyzed editing in the transcriptome of macrophages leads to the generation of populations that are heterogeneous, and functionally diverse, enabling rapid population adaptation to different environmental settings.
Our first aim for this proposal is to extend our studies to additional immune cell subsets, focusing on cells that are recently recognized as ""plastic"" to define the contribution of editing to this plasticity of fate and function.
RNA editing of the type we study has also been demonstrated to be crucial for cancer progression. For instance, APOBEC1-deficiency significantly reduces tumour burden on cells of the intestine and colon that are prone to adenocarcinomas in the context of the APC-min mutation. This is also the case for testicular carcinomas in mouse models of such tumours. Thus, there is genetic evidence for a requirement for APOBEC1 and RNA editing to drive tumour progression, in two tumour contexts. Based on these data and on our recently deciphered role for APOBEC1 as a ""stealthy"" diversifier of cellular transcriptomes (and proteomic outcomes), we hypothesize that APOBEC1 drives tumour progression by editing select transcripts in tumour cells (or tumour stem cells), thus enabling the rapid adaptation of the tumour to the onslaught of the immune response.
Our second aim is to characterize the subset of edited transcripts in these model tumours (either at the population or at the single cell level) and understand their role to tumour survival and progression, both in mouse models of disease, and in human tumour samples (in collaboration with QP Hammarstrom, KI)."
Max ERC Funding
2 270 000 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym SENTINEL
Project HIV-1 sensing and signaling in dendritic cells
Researcher (PI) Teunis Geijtenbeek
Host Institution (HI) ACADEMISCH MEDISCH CENTRUM BIJ DE UNIVERSITEIT VAN AMSTERDAM
Call Details Advanced Grant (AdG), LS6, ERC-2014-ADG
Summary HIV-1 is a major global health problem with over 2 million new infections every year, and although antiretroviral therapy is effective, chronic infected patients suffer from severe co-morbidities due to immune dysfunction. With the proposed SENTINEL project, I aim to identify novel strategies to enhance innate antiviral immunity to HIV-1 to limit establishment and progression of chronic disease. Our novel data strongly suggest that induction of antiviral innate immune responses in dendritic cell subsets delays disease progression and improves survival in chronic HIV-1-infected patients. Current paradigm suggests that HIV-1 evades innate sensing in dendritic cells and that this underlies immune dysfunction. However, our innovative data demonstrate that HIV-1 actively suppresses a novel innate sensing mechanism and antagonizing this HIV-1 suppression by drugs strongly enhanced antiviral immunity. Strikingly, we identified a gene polymorphism in a component of the novel HIV-1 sensing machinery, rendering the pathway insensitive to HIV-1 suppression; this polymorphism is associated with delayed disease progression and improved survival in HIV-1 patients from the Amsterdam Cohort Studies. Thus, I hypothesize that therapies counteracting the suppression by HIV-1 will enhance antiviral immunity and restore immune dysfunction in chronic patients. Within this SENTINEL project, novel targets for HIV-1 therapy will be identified. As we identified proto-oncogenes involved in the suppression of innate immune responses by HIV-1, we will also screen clinically approved anti-cancer drugs as novel therapies to enhance the innate immune responses to HIV-1. Our exciting data strongly underscore the innovation and feasibility of the project. The unique expertise of my group in elucidating complex mechanisms that shape immunity, our innovative ex vivo human tissue infection models and cohort studies will be crucial in the proposed research and paramount to its success.
Summary
HIV-1 is a major global health problem with over 2 million new infections every year, and although antiretroviral therapy is effective, chronic infected patients suffer from severe co-morbidities due to immune dysfunction. With the proposed SENTINEL project, I aim to identify novel strategies to enhance innate antiviral immunity to HIV-1 to limit establishment and progression of chronic disease. Our novel data strongly suggest that induction of antiviral innate immune responses in dendritic cell subsets delays disease progression and improves survival in chronic HIV-1-infected patients. Current paradigm suggests that HIV-1 evades innate sensing in dendritic cells and that this underlies immune dysfunction. However, our innovative data demonstrate that HIV-1 actively suppresses a novel innate sensing mechanism and antagonizing this HIV-1 suppression by drugs strongly enhanced antiviral immunity. Strikingly, we identified a gene polymorphism in a component of the novel HIV-1 sensing machinery, rendering the pathway insensitive to HIV-1 suppression; this polymorphism is associated with delayed disease progression and improved survival in HIV-1 patients from the Amsterdam Cohort Studies. Thus, I hypothesize that therapies counteracting the suppression by HIV-1 will enhance antiviral immunity and restore immune dysfunction in chronic patients. Within this SENTINEL project, novel targets for HIV-1 therapy will be identified. As we identified proto-oncogenes involved in the suppression of innate immune responses by HIV-1, we will also screen clinically approved anti-cancer drugs as novel therapies to enhance the innate immune responses to HIV-1. Our exciting data strongly underscore the innovation and feasibility of the project. The unique expertise of my group in elucidating complex mechanisms that shape immunity, our innovative ex vivo human tissue infection models and cohort studies will be crucial in the proposed research and paramount to its success.
Max ERC Funding
2 499 156 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym SILENCE
Project Mechanisms of Gene Silencing by the Glucocorticoid Receptor
Researcher (PI) Henriette Uhlenhaut
Host Institution (HI) HELMHOLTZ ZENTRUM MUENCHEN DEUTSCHES FORSCHUNGSZENTRUM FUER GESUNDHEIT UND UMWELT GMBH
Call Details Starting Grant (StG), LS4, ERC-2014-STG
Summary I propose to decipher the unresolved molecular paradox of positive versus negative gene regulation by the Glucocorticoid Receptor (GR). GR is one of the most potent anti-inflammatory drug targets in clinical use today, and one of the most powerful metabolic regulators. Unfortunately, its unique ability to efficiently shut off inflammatory gene expression is accompanied by serious side effects. These undesired effects are attributed to the transcriptional activation of its metabolic target genes and limit its therapeutic use.
SILENCE uses cutting-edge genome-wide approaches to identify the molecular mechanisms underlying the transcriptional repression, or silencing, of inflammatory genes by GR. The general, open question I want to address is how one transcription factor can simultaneously both activate and repress transcription.
GR is a member of the nuclear hormone receptor family of ligand-gated transcription factors. Upon hormone binding, GR can regulate gene expression both positively and negatively, but the mechanism governing this choice is unknown. I have previously shown that classical models and existing paradigms are insufficient to explain GR-mediated gene silencing. Therefore, I postulate the existence of unknown coregulator proteins, cis-regulatory DNA sequences, noncoding RNAs, or combinations thereof. To test these hypotheses, I plan 1. a large scale RNAi screen to identify those cofactors that specify repression versus activation, 2. ChIP-exo experiments to map genomic GR binding sites at an unprecedented resolution, and 3. GRO-Seq studies to define the role of noncoding RNAs during the silencing of inflammatory genes.
Inflammation is known to contribute to the pathogenesis of numerous human illnesses, including cancer, autoimmune diseases, diabetes and cardiovascular disease. Understanding the specific mechanisms involved in the silencing of inflammatory gene expression carries transformative potential for novel therapies and safer drugs.
Summary
I propose to decipher the unresolved molecular paradox of positive versus negative gene regulation by the Glucocorticoid Receptor (GR). GR is one of the most potent anti-inflammatory drug targets in clinical use today, and one of the most powerful metabolic regulators. Unfortunately, its unique ability to efficiently shut off inflammatory gene expression is accompanied by serious side effects. These undesired effects are attributed to the transcriptional activation of its metabolic target genes and limit its therapeutic use.
SILENCE uses cutting-edge genome-wide approaches to identify the molecular mechanisms underlying the transcriptional repression, or silencing, of inflammatory genes by GR. The general, open question I want to address is how one transcription factor can simultaneously both activate and repress transcription.
GR is a member of the nuclear hormone receptor family of ligand-gated transcription factors. Upon hormone binding, GR can regulate gene expression both positively and negatively, but the mechanism governing this choice is unknown. I have previously shown that classical models and existing paradigms are insufficient to explain GR-mediated gene silencing. Therefore, I postulate the existence of unknown coregulator proteins, cis-regulatory DNA sequences, noncoding RNAs, or combinations thereof. To test these hypotheses, I plan 1. a large scale RNAi screen to identify those cofactors that specify repression versus activation, 2. ChIP-exo experiments to map genomic GR binding sites at an unprecedented resolution, and 3. GRO-Seq studies to define the role of noncoding RNAs during the silencing of inflammatory genes.
Inflammation is known to contribute to the pathogenesis of numerous human illnesses, including cancer, autoimmune diseases, diabetes and cardiovascular disease. Understanding the specific mechanisms involved in the silencing of inflammatory gene expression carries transformative potential for novel therapies and safer drugs.
Max ERC Funding
1 496 275 €
Duration
Start date: 2015-08-01, End date: 2020-07-31
Project acronym SOS
Project Sorting of Self
Researcher (PI) Gerhard Krönke
Host Institution (HI) UNIVERSITATSKLINIKUM ERLANGEN
Call Details Starting Grant (StG), LS6, ERC-2014-STG
Summary During inflammation and infection, we are simultaneously confronted with both self and non-self in form of dying cells and microbes, respectively. Mechanisms that facilitate the non-immunogenic clearance of self-antigens derived from apoptotic and necrotic cells and that, in parallel, allow the initiation of an immune response against invading pathogens are incompletely understood.
Recent data from our laboratory show that the immune system actively sorts apoptotic cells (ACs) and bacteria into distinct subspecies of macrophages and dendritic cells thereby enabling a segregated processing of self and non-self as well as a differential immune response against these two entities. Incorrect sorting and aberrant uptake of AC-derived self-antigens by pro-inflammatory and antigen-presenting dendritic cells, however, results in the break of self-tolerance and autoimmunity.
Due to technical limitations, the identification and fate-mapping of specific phagocyte subsets that mediate the simultaneous clearance of dying cells and pathogens in vivo has remained largely elusive. We thus plan to develop novel tools that are based on cutting-edge technologies to comprehensively elucidate the sorting of dying cells and pathogens under inflammatory conditions in vivo. We plan to generate TAT-Cre transgenic mice and bacteria that will be used in conjunction with R26-eYFP reporter animals to permanently track phagocytes after ingestion of endogenously accumulated dying cells and pathogens, respectively. These approaches will enable us to characterize the involved phagocytes, study molecular mechanisms underlying the differential processing of self and non-self and follow the phagocyte’s migratory behaviour and its subsequent differentiation. The obtained data will not only provide insights into the pathogenesis of autoimmune and infectious diseases, but will also foster the development of novel therapeutic strategies for the treatment of such disorders.
Summary
During inflammation and infection, we are simultaneously confronted with both self and non-self in form of dying cells and microbes, respectively. Mechanisms that facilitate the non-immunogenic clearance of self-antigens derived from apoptotic and necrotic cells and that, in parallel, allow the initiation of an immune response against invading pathogens are incompletely understood.
Recent data from our laboratory show that the immune system actively sorts apoptotic cells (ACs) and bacteria into distinct subspecies of macrophages and dendritic cells thereby enabling a segregated processing of self and non-self as well as a differential immune response against these two entities. Incorrect sorting and aberrant uptake of AC-derived self-antigens by pro-inflammatory and antigen-presenting dendritic cells, however, results in the break of self-tolerance and autoimmunity.
Due to technical limitations, the identification and fate-mapping of specific phagocyte subsets that mediate the simultaneous clearance of dying cells and pathogens in vivo has remained largely elusive. We thus plan to develop novel tools that are based on cutting-edge technologies to comprehensively elucidate the sorting of dying cells and pathogens under inflammatory conditions in vivo. We plan to generate TAT-Cre transgenic mice and bacteria that will be used in conjunction with R26-eYFP reporter animals to permanently track phagocytes after ingestion of endogenously accumulated dying cells and pathogens, respectively. These approaches will enable us to characterize the involved phagocytes, study molecular mechanisms underlying the differential processing of self and non-self and follow the phagocyte’s migratory behaviour and its subsequent differentiation. The obtained data will not only provide insights into the pathogenesis of autoimmune and infectious diseases, but will also foster the development of novel therapeutic strategies for the treatment of such disorders.
Max ERC Funding
1 479 781 €
Duration
Start date: 2015-05-01, End date: 2020-04-30
Project acronym StemBAT
Project New players in human BAT differentiation and activation: a human PSC-derived BAT approach combined with state of the art genome engineering and –omics based methodologies
Researcher (PI) Antonio Vidal-Puig
Host Institution (HI) GENOME RESEARCH LIMITED
Call Details Advanced Grant (AdG), LS4, ERC-2014-ADG
Summary Here we propose a strategy to control body weight and prevent/reverse obesity based on targeting brown adipose tissue (BAT) to facilitate negative energy balance and prevent adaptive responses to dietary restriction. However, BAT in humans is limited and poorly characterised. Thus, we propose to use stem cells as a tool to gain unique insights into the biology of human brown adipocytes.
The General Objective is to identify pathways and factors of potential therapeutic relevance that promote BAT development and/or activation/recruitment using a stem cell based BAT differentiation approach, and then to functionally validate the role of these factors in vitro by genome engineering human stem cell derived adipocytes and in vivo by transplanting these cells into mice.
Specific Aims are: 1.To identify molecular mechanisms involved in human brown adipose tissue development and activation. 2. To investigate the molecular mechanisms involved in human white adipose tissue browning/beige cells recruitment 3. To identify new agents/compounds of therapeutic value, able to activate or recruit human brown adipose tissue/brite cells.
Experimental strategy: We will use a UCP1-reporter human pluripotent stem cell (PSC) line differentiated into brown and white adipocytes to identify genetic factors that may contribute to brown adipocyte differentiation/activation and white adipocyte browning. Following the identification of candidate genes, we will knock out, constitutively and/or inducibly, both alleles of these genes in human PSC cells, producing a total loss of function. Following the in vitro phenotyping of the cells we will proceed to the in vivo validation of the functional properties/phenotype of human PSC derived brown/brite adipocytes (wild-type and loss of function) by transplanting these cells into mice. Using these reporter tools we will also perform in vitro pharmacological screening and in vivo validation of new compounds that stimulate BAT activation and WAT browning
Summary
Here we propose a strategy to control body weight and prevent/reverse obesity based on targeting brown adipose tissue (BAT) to facilitate negative energy balance and prevent adaptive responses to dietary restriction. However, BAT in humans is limited and poorly characterised. Thus, we propose to use stem cells as a tool to gain unique insights into the biology of human brown adipocytes.
The General Objective is to identify pathways and factors of potential therapeutic relevance that promote BAT development and/or activation/recruitment using a stem cell based BAT differentiation approach, and then to functionally validate the role of these factors in vitro by genome engineering human stem cell derived adipocytes and in vivo by transplanting these cells into mice.
Specific Aims are: 1.To identify molecular mechanisms involved in human brown adipose tissue development and activation. 2. To investigate the molecular mechanisms involved in human white adipose tissue browning/beige cells recruitment 3. To identify new agents/compounds of therapeutic value, able to activate or recruit human brown adipose tissue/brite cells.
Experimental strategy: We will use a UCP1-reporter human pluripotent stem cell (PSC) line differentiated into brown and white adipocytes to identify genetic factors that may contribute to brown adipocyte differentiation/activation and white adipocyte browning. Following the identification of candidate genes, we will knock out, constitutively and/or inducibly, both alleles of these genes in human PSC cells, producing a total loss of function. Following the in vitro phenotyping of the cells we will proceed to the in vivo validation of the functional properties/phenotype of human PSC derived brown/brite adipocytes (wild-type and loss of function) by transplanting these cells into mice. Using these reporter tools we will also perform in vitro pharmacological screening and in vivo validation of new compounds that stimulate BAT activation and WAT browning
Max ERC Funding
2 500 000 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym STROMA
Project IMMUNOBIOLOGY OF LYMPHOID STROMAL CELLS
Researcher (PI) Marc Bajénoff
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Consolidator Grant (CoG), LS6, ERC-2014-CoG
Summary In 1984, Nossal wrote ‘‘A readership consisting of primarily anatomists has every right to question the favorite sport of research workers in cell immunology. This is to take a lymphoid tissue and totally destroy its beautiful and elaborately designed architecture to obtain simple cell suspension of lymphocytes, which are then asked to do more or less all the jobs of the original anatomic masterpiece’’. Growing evidence that lymph node (LN) stromal cells control the motility, activation and survival of lymphocytes has reinforced this view. These architectural cells assemble in 3D networks that regulate LN homeostasis and control its ability to remodel during inflammation. Understanding stromal cell biology is thus mandatory to our full comprehension of the immune system but this ambitious objective is technically challenging. As the complexity of the LN cannot be modelled in culture, knowledge gained from in vitro experiments is limited and will not address many relevant questions related to the biology of LN stromal cells, in particular (i) the elucidation of their origin and the precursor/product relationships that link them, (ii) the determination of their behavior in inflamed LNs and (iii) their subsequent fate in LNs that have returned to homeostasis. To this aim, I have developed several original, cutting-edge multicolor fluorescent reporter mouse models and computational modeling approaches to map the fate of single stromal cells and their progeny in situ. Using this innovative approach, my group will investigate the spatio-temporal behavior and molecular cues that orchestrate the development and dynamics of the major LN stromal cell populations in vivo, at steady state and under inflammatory conditions, at the single cell level. Because the proposed studies will unravel the precursor/product relationships linking the various stromal cell types, we anticipate to provide the first “Phylogenetic tree” of LN stromal cell development and remodeling.
Summary
In 1984, Nossal wrote ‘‘A readership consisting of primarily anatomists has every right to question the favorite sport of research workers in cell immunology. This is to take a lymphoid tissue and totally destroy its beautiful and elaborately designed architecture to obtain simple cell suspension of lymphocytes, which are then asked to do more or less all the jobs of the original anatomic masterpiece’’. Growing evidence that lymph node (LN) stromal cells control the motility, activation and survival of lymphocytes has reinforced this view. These architectural cells assemble in 3D networks that regulate LN homeostasis and control its ability to remodel during inflammation. Understanding stromal cell biology is thus mandatory to our full comprehension of the immune system but this ambitious objective is technically challenging. As the complexity of the LN cannot be modelled in culture, knowledge gained from in vitro experiments is limited and will not address many relevant questions related to the biology of LN stromal cells, in particular (i) the elucidation of their origin and the precursor/product relationships that link them, (ii) the determination of their behavior in inflamed LNs and (iii) their subsequent fate in LNs that have returned to homeostasis. To this aim, I have developed several original, cutting-edge multicolor fluorescent reporter mouse models and computational modeling approaches to map the fate of single stromal cells and their progeny in situ. Using this innovative approach, my group will investigate the spatio-temporal behavior and molecular cues that orchestrate the development and dynamics of the major LN stromal cell populations in vivo, at steady state and under inflammatory conditions, at the single cell level. Because the proposed studies will unravel the precursor/product relationships linking the various stromal cell types, we anticipate to provide the first “Phylogenetic tree” of LN stromal cell development and remodeling.
Max ERC Funding
2 547 762 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym SYNECT
Project Immunological synapse derived ectosomes in T cell effector function
Researcher (PI) Michael Dustin
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Advanced Grant (AdG), LS6, ERC-2014-ADG
Summary The immunological synapse is a highly conserved scaffold for communication between immune cells built around cooperation of antigen and adhesion receptors. It often takes the form of a bull’s eye with a central cluster of antigen receptors surrounded by a ring of adhesion molecules. We have recently observed that antigen receptor coated extracellular microvesicles bud directly from the center of the immunological synapse- which we define as synaptic ectosomes. Synaptic ectosomes are transferred to the antigen- presenting cell and can generate signals after the T cell-APC synapse has dissolved. We aim to determine the composition of synaptic ectosomes, determine their fate in the antigen-presenting cell and identify approaches to manipulate their formation in vivo. The objectives will be to 1) isolate synaptic ectosomes from human T cells and determine their molecular composition; 2) determine the functional impact of synaptic ectosomes on the antigen presenting cell; and 3) use gene targeting to control the process in vivo to understand its role in T function of helper, cytotoxic and regulatory T cells. The technologies will include microscopy, proteomics, genomics, and in vivo models with constitutive and conditional gene targeting. This work will address fundamental gaps in our understanding of immune cell communication.
Summary
The immunological synapse is a highly conserved scaffold for communication between immune cells built around cooperation of antigen and adhesion receptors. It often takes the form of a bull’s eye with a central cluster of antigen receptors surrounded by a ring of adhesion molecules. We have recently observed that antigen receptor coated extracellular microvesicles bud directly from the center of the immunological synapse- which we define as synaptic ectosomes. Synaptic ectosomes are transferred to the antigen- presenting cell and can generate signals after the T cell-APC synapse has dissolved. We aim to determine the composition of synaptic ectosomes, determine their fate in the antigen-presenting cell and identify approaches to manipulate their formation in vivo. The objectives will be to 1) isolate synaptic ectosomes from human T cells and determine their molecular composition; 2) determine the functional impact of synaptic ectosomes on the antigen presenting cell; and 3) use gene targeting to control the process in vivo to understand its role in T function of helper, cytotoxic and regulatory T cells. The technologies will include microscopy, proteomics, genomics, and in vivo models with constitutive and conditional gene targeting. This work will address fundamental gaps in our understanding of immune cell communication.
Max ERC Funding
2 212 114 €
Duration
Start date: 2015-11-01, End date: 2020-10-31
Project acronym TEC_Pro
Project Molecular control of self-renewal and lineage specification in thymic epithelial cell progenitors in vivo.
Researcher (PI) Nuno Miguel De Oliveira Lages Alves
Host Institution (HI) INSTITUTO DE BIOLOGIA MOLECULAR E CELULAR-IBMC
Call Details Starting Grant (StG), LS6, ERC-2014-STG
Summary The development of vaccines for the treatment of infectious diseases, cancer and autoimmunity depends on our knowledge of T-cell differentiation. This proposal is focused on studying the thymus, the organ responsible for the generation of T cells that are responsive against pathogen-derived antigens, and yet tolerant to self. Within the thymus, thymic epithelial cells (TECs) provide key inductive microenvironments for the development and selection of T cells that arise from hematopoietic progenitors. As a result, defects in TEC differentiation cause syndromes that range from immunodeficiency to autoimmunity, which makes the study of TECs of fundamental, and clinical, importance to understand immunity and tolerance induction. TECs are divided into two functionally distinct cortical (cTECs) and medullary (mTECs) subtypes, which derive from common bipotent TEC progenitors (TEPs). Yet, the genetic and epigenetic details that control cTEC/mTEC lineage specifications from TEPs are unsettled.
My objectives are to identify TEC progenitors and their niches within the thymus, define new molecular components involved in their self-renewal and lineage potential, and elucidate the epigenetic codes that regulate the genetic programs during cTEC/mTEC fate decisions. We take a global approach to examine TEC differentiation, which integrates the study of molecular processes taking place at cellular level and the analysis of in vivo mouse models. Using advanced research tools that combine reporter mice, clonogenic assays, organotypic cultures, high-throughput RNAi screen and genome-wide epigenetic and transcriptomic profiling, we will dissect the principles that underlie the self-renewal and lineage differentiation of TEC progenitors in vivo. I believe this project has the potential to contribute to one of the great challenges of modern immunology – modulate thymic function through the induction of TEPs - and therefore, represents a major advance in Health Sciences.
Summary
The development of vaccines for the treatment of infectious diseases, cancer and autoimmunity depends on our knowledge of T-cell differentiation. This proposal is focused on studying the thymus, the organ responsible for the generation of T cells that are responsive against pathogen-derived antigens, and yet tolerant to self. Within the thymus, thymic epithelial cells (TECs) provide key inductive microenvironments for the development and selection of T cells that arise from hematopoietic progenitors. As a result, defects in TEC differentiation cause syndromes that range from immunodeficiency to autoimmunity, which makes the study of TECs of fundamental, and clinical, importance to understand immunity and tolerance induction. TECs are divided into two functionally distinct cortical (cTECs) and medullary (mTECs) subtypes, which derive from common bipotent TEC progenitors (TEPs). Yet, the genetic and epigenetic details that control cTEC/mTEC lineage specifications from TEPs are unsettled.
My objectives are to identify TEC progenitors and their niches within the thymus, define new molecular components involved in their self-renewal and lineage potential, and elucidate the epigenetic codes that regulate the genetic programs during cTEC/mTEC fate decisions. We take a global approach to examine TEC differentiation, which integrates the study of molecular processes taking place at cellular level and the analysis of in vivo mouse models. Using advanced research tools that combine reporter mice, clonogenic assays, organotypic cultures, high-throughput RNAi screen and genome-wide epigenetic and transcriptomic profiling, we will dissect the principles that underlie the self-renewal and lineage differentiation of TEC progenitors in vivo. I believe this project has the potential to contribute to one of the great challenges of modern immunology – modulate thymic function through the induction of TEPs - and therefore, represents a major advance in Health Sciences.
Max ERC Funding
1 491 749 €
Duration
Start date: 2015-07-01, End date: 2020-06-30
Project acronym Troy Stem Cells
Project Troy+ stomach stem cells in homeostasis, repair and pathogenesis
Researcher (PI) Bon-Kyoung Koo
Host Institution (HI) INSTITUT FUER MOLEKULARE BIOTECHNOLOGIE GMBH
Call Details Starting Grant (StG), LS4, ERC-2014-STG
Summary The adult mammalian stomach can be divided into three distinct parts: From the proximal fore-stomach over the corpus to the distal pylorus. Due to constant exposure to mechanical stress and to hostile contents of the lumen, highly specialized cell types have to be constantly reproduced in order to maintain the function of the gastrointestinal tract. Recently, the applicant identified Troy+ chief cells as a novel stem cell population in the corpus epithelium. Troy+ chief cells displayed a very low proliferation rate indicating their quiescent nature compared to other known gastro-intestinal tract stem cells. Interestingly, these stem cells can actively divide upon tissue damage, suggesting distinctive statuses under conditions of homeostasis and injury.
As Troy+ stomach stem cells exhibit interconvertible characteristics i.e. quiescent and proliferative, they represent a unique model of adult stem cells with which we can study 1) the dynamics of stem cell propagation in homeostasis and regeneration and the underlying mechanism of this switch by analysing molecular and epigenetic profiles. Subsequently, by analysing mRNA expression profiles and epigenetic changes in Troy+ stem cells between homeostasis and injury repair, we will generate a list of genes with potentially interesting functions in cell fate decisions. We will therefore investigate 2) the stomach stem cell programme in homeostasis and regeneration using in vitro and in vivo functional genetics. Lastly, we will characterise 3) human stomach stem cells in normal and pathological conditions.
Here we pursue three main aims:
- Investigating Troy+ stem cell dynamics during homeostasis and injury repair
- Unmasking the stomach stem cell programme using in vitro and in vivo functional genetics
- Characterising human stomach stem cells
Summary
The adult mammalian stomach can be divided into three distinct parts: From the proximal fore-stomach over the corpus to the distal pylorus. Due to constant exposure to mechanical stress and to hostile contents of the lumen, highly specialized cell types have to be constantly reproduced in order to maintain the function of the gastrointestinal tract. Recently, the applicant identified Troy+ chief cells as a novel stem cell population in the corpus epithelium. Troy+ chief cells displayed a very low proliferation rate indicating their quiescent nature compared to other known gastro-intestinal tract stem cells. Interestingly, these stem cells can actively divide upon tissue damage, suggesting distinctive statuses under conditions of homeostasis and injury.
As Troy+ stomach stem cells exhibit interconvertible characteristics i.e. quiescent and proliferative, they represent a unique model of adult stem cells with which we can study 1) the dynamics of stem cell propagation in homeostasis and regeneration and the underlying mechanism of this switch by analysing molecular and epigenetic profiles. Subsequently, by analysing mRNA expression profiles and epigenetic changes in Troy+ stem cells between homeostasis and injury repair, we will generate a list of genes with potentially interesting functions in cell fate decisions. We will therefore investigate 2) the stomach stem cell programme in homeostasis and regeneration using in vitro and in vivo functional genetics. Lastly, we will characterise 3) human stomach stem cells in normal and pathological conditions.
Here we pursue three main aims:
- Investigating Troy+ stem cell dynamics during homeostasis and injury repair
- Unmasking the stomach stem cell programme using in vitro and in vivo functional genetics
- Characterising human stomach stem cells
Max ERC Funding
1 570 399 €
Duration
Start date: 2015-08-01, End date: 2020-07-31
Project acronym TWILIGHT
Project ToWards Immunisations that Last: the Immunology and Gerontology of Helper T cells
Researcher (PI) Michelle Linterman
Host Institution (HI) THE BABRAHAM INSTITUTE
Call Details Starting Grant (StG), LS6, ERC-2014-STG
Summary A major accomplishment of modern society is the extension of human life expectancy. However, this creates a new challenge for medical science, to facilitate healthy ageing. With age, the function of the immune system declines, rendering older people more susceptible to infections and less able to benefit from vaccination. Indeed, improving vaccine efficacy is key to reducing infection-related morbidity in older people. To date, the complexity of the ageing process has hindered attempts to fulfil this ambition, and thus innovative approaches are required to better understand the underlying biology.
Vaccination creates protective immunity by inducing the germinal centre (GC) response, an intricate process that generates memory B cells and long-lived antibody-secreting plasma cells. However, the GC response declines with age. Strikingly, it is not B cells that are responsible for the age-dependent decline in the GC response, but the CD4+ T cells and the microenvironment of older individuals. The cellular and molecular mechanisms responsible, however, remain unknown. In the GC there are two subsets of specialised CD4+ T cells, T follicular helper (Tfh) and T follicular regulatory (Tfr) cells, which act in opposition to promote and suppress the response, respectively. I hypothesise that aberrant formation and/or function of Tfh and Tfr cells contribute to impaired GC responses during ageing, and that these cells could be targeted to improve vaccine efficacy. Furthermore, the most prominent age-dependent change in secondary lymphoid tissues is the accumulation of senescent cells, which can modify immune function and tissue structure. I hypothesise that accumulation of senescent cells alters this microenvironment, impairing the response to vaccination. I will test these hypotheses using new mouse models and innovative approaches to human research, in the expectation that the knowledge obtained will promote healthy ageing and uncover novel aspects of GC biology.
Summary
A major accomplishment of modern society is the extension of human life expectancy. However, this creates a new challenge for medical science, to facilitate healthy ageing. With age, the function of the immune system declines, rendering older people more susceptible to infections and less able to benefit from vaccination. Indeed, improving vaccine efficacy is key to reducing infection-related morbidity in older people. To date, the complexity of the ageing process has hindered attempts to fulfil this ambition, and thus innovative approaches are required to better understand the underlying biology.
Vaccination creates protective immunity by inducing the germinal centre (GC) response, an intricate process that generates memory B cells and long-lived antibody-secreting plasma cells. However, the GC response declines with age. Strikingly, it is not B cells that are responsible for the age-dependent decline in the GC response, but the CD4+ T cells and the microenvironment of older individuals. The cellular and molecular mechanisms responsible, however, remain unknown. In the GC there are two subsets of specialised CD4+ T cells, T follicular helper (Tfh) and T follicular regulatory (Tfr) cells, which act in opposition to promote and suppress the response, respectively. I hypothesise that aberrant formation and/or function of Tfh and Tfr cells contribute to impaired GC responses during ageing, and that these cells could be targeted to improve vaccine efficacy. Furthermore, the most prominent age-dependent change in secondary lymphoid tissues is the accumulation of senescent cells, which can modify immune function and tissue structure. I hypothesise that accumulation of senescent cells alters this microenvironment, impairing the response to vaccination. I will test these hypotheses using new mouse models and innovative approaches to human research, in the expectation that the knowledge obtained will promote healthy ageing and uncover novel aspects of GC biology.
Max ERC Funding
1 499 998 €
Duration
Start date: 2015-06-01, End date: 2020-05-31
Project acronym UbiProPox
Project Modulation of the Ubiquitin Proteasome System During Multiple Stages of the Poxvirus Lifecycle
Researcher (PI) Jason Paul Mercer
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Consolidator Grant (CoG), LS6, ERC-2014-CoG
Summary Vaccinia virus (VACV), the prototypic poxvirus, is a large, enveloped, DNA virus characterized by its cytoplasmic site of replication and large subset of genes. Due to the complexity of VACV, the majority of studies focus on the virus rather than the host cell. Thus the repertoire of cell factors and functions required for its replication remain largely unknown. Our previous work to define a subset of these, revealed the cellular degradation machinery as a key requirement of VACV replication. Our findings indicated that ubiquitin (Ub), Ub ligase activity, and proteasome-mediated degradation are required for multiple stages of the virus lifecycle. The aim of this proposal is to reveal how VACV differentially modulates or takes advantage of the Ub proteasome system during genome uncoating, the initiation of DNA replication, and the assembly of progeny virions. For genome uncoating we will characterize the spatial and temporal interactions between ubiquitinated viral proteins, proteasomes, the viral uncoating factor, and the viral genome that occur on cytoplasmic cores. To ascertain how Cullin-3 based ubiquitination and proteasome degradation facilitate the switch from uncoating to replication of the viral genome, we will identify the relevant Cullin-3 substrates in the context of a detailed characterization of viral replication initiation sites. Coming full circle, we will explore the mechanisms used by VACV to modulate cellular degradation such that ubiquitinated viral core proteins are packaged into newly forming virions without being degraded. Using systems biology, virology, cell biology, biochemistry, molecular biology and a wide range of microscopy approaches we will unravel the complex interactions between poxviruses and the host cell degradation machinery. In turn, as viruses often serve as valuable tools to study cell function, this work is likely to uncover new insights into how cells spatially and temporally regulate their own degradative capacities.
Summary
Vaccinia virus (VACV), the prototypic poxvirus, is a large, enveloped, DNA virus characterized by its cytoplasmic site of replication and large subset of genes. Due to the complexity of VACV, the majority of studies focus on the virus rather than the host cell. Thus the repertoire of cell factors and functions required for its replication remain largely unknown. Our previous work to define a subset of these, revealed the cellular degradation machinery as a key requirement of VACV replication. Our findings indicated that ubiquitin (Ub), Ub ligase activity, and proteasome-mediated degradation are required for multiple stages of the virus lifecycle. The aim of this proposal is to reveal how VACV differentially modulates or takes advantage of the Ub proteasome system during genome uncoating, the initiation of DNA replication, and the assembly of progeny virions. For genome uncoating we will characterize the spatial and temporal interactions between ubiquitinated viral proteins, proteasomes, the viral uncoating factor, and the viral genome that occur on cytoplasmic cores. To ascertain how Cullin-3 based ubiquitination and proteasome degradation facilitate the switch from uncoating to replication of the viral genome, we will identify the relevant Cullin-3 substrates in the context of a detailed characterization of viral replication initiation sites. Coming full circle, we will explore the mechanisms used by VACV to modulate cellular degradation such that ubiquitinated viral core proteins are packaged into newly forming virions without being degraded. Using systems biology, virology, cell biology, biochemistry, molecular biology and a wide range of microscopy approaches we will unravel the complex interactions between poxviruses and the host cell degradation machinery. In turn, as viruses often serve as valuable tools to study cell function, this work is likely to uncover new insights into how cells spatially and temporally regulate their own degradative capacities.
Max ERC Funding
2 270 000 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym YOUNGatHEART
Project YOUNGatHEART: CARDIAC REJUVENATION BY EPIGENETIC REMODELLING
Researcher (PI) SUSANA Gonzalez
Host Institution (HI) CENTRO NACIONAL DE INVESTIGACIONESCARDIOVASCULARES CARLOS III (F.S.P.)
Call Details Consolidator Grant (CoG), LS4, ERC-2014-CoG
Summary Aging poses the largest risk for cardiovascular disease (CVD) and is orchestrated, to some extent, by epigenetic changes. Despite the significant progress on many fronts in the cardiovascular field, non-inherited epigenetic regulation in cardiac aging and CVD remains unexplored. Dilated Cardiomyopathy (DCM) is a major contributor to healthcare costs and it is the leading indication for heart transplantation. We have recently discovered that adult cardiac-specific deletion of epigenetic regulator Bmi1 in mice induces DCM and heart failure. These unprecedented data support the idea that inadequate epigenetic regulation in adulthood is critical in CVD. In addition, our studies with parabiotic pairing of healthy and DCM-diagnosed mice show that the circulation of a healthy mouse significantly improve the cardiac performance of mouse with DCM. These ground-breaking discoveries suggest that DCM regression, or cardiac rejuvenation, is feasible in terms of epigenetic states. Therefore, YOUNGatHEART will unveil significant breakthrough on (1) how non-inherited epigenetic deregulation induces DCM and (2) how epigenetic remodeling reversed this process. For that, our challenges are: 1A. To decipher how aged-linked cardiac dysfunction contributes to CVD by identifying the epigenetic landscape regulating cardiac aging among species; 1B. To decode how epigenetic deregulation induces DCM by integrating clinical data and samples from DCM-transplanted patients with imaging, transcriptomic, proteomic, and functional approaches from DCM model; and, 2A. To identified systemic factors with anti-cardiomyopathic effects by systematic proteomic screenings after parabiosis and epigenome of the DCM hearts. In sum, YOUNGatHEART puts forward an ambitious but feasible and pioneering program to tackle the epigenetic hallmark in cardiac aging with the final aim (2B) of setting the molecular basis for future therapeutic interventions in CVD.
Summary
Aging poses the largest risk for cardiovascular disease (CVD) and is orchestrated, to some extent, by epigenetic changes. Despite the significant progress on many fronts in the cardiovascular field, non-inherited epigenetic regulation in cardiac aging and CVD remains unexplored. Dilated Cardiomyopathy (DCM) is a major contributor to healthcare costs and it is the leading indication for heart transplantation. We have recently discovered that adult cardiac-specific deletion of epigenetic regulator Bmi1 in mice induces DCM and heart failure. These unprecedented data support the idea that inadequate epigenetic regulation in adulthood is critical in CVD. In addition, our studies with parabiotic pairing of healthy and DCM-diagnosed mice show that the circulation of a healthy mouse significantly improve the cardiac performance of mouse with DCM. These ground-breaking discoveries suggest that DCM regression, or cardiac rejuvenation, is feasible in terms of epigenetic states. Therefore, YOUNGatHEART will unveil significant breakthrough on (1) how non-inherited epigenetic deregulation induces DCM and (2) how epigenetic remodeling reversed this process. For that, our challenges are: 1A. To decipher how aged-linked cardiac dysfunction contributes to CVD by identifying the epigenetic landscape regulating cardiac aging among species; 1B. To decode how epigenetic deregulation induces DCM by integrating clinical data and samples from DCM-transplanted patients with imaging, transcriptomic, proteomic, and functional approaches from DCM model; and, 2A. To identified systemic factors with anti-cardiomyopathic effects by systematic proteomic screenings after parabiosis and epigenome of the DCM hearts. In sum, YOUNGatHEART puts forward an ambitious but feasible and pioneering program to tackle the epigenetic hallmark in cardiac aging with the final aim (2B) of setting the molecular basis for future therapeutic interventions in CVD.
Max ERC Funding
1 861 910 €
Duration
Start date: 2015-11-01, End date: 2020-10-31
Project acronym ZF-MEL-CHEMBIO
Project Chemical Biology in Zebrafish: Drug-Leads and New Targets in the Melanocyte Lineage and Melanoma
Researcher (PI) Eleanor Elizabeth Patton
Host Institution (HI) THE UNIVERSITY OF EDINBURGH
Call Details Consolidator Grant (CoG), LS4, ERC-2014-CoG
Summary Melanoma (cancer of the melanocyte) kills over 20,000 Europeans each year and incidence continues to rise rapidly. BRAF(V600E) inhibitors have led to clinically significant improvements in outcomes for melanoma patients, yet many patients with metastatic melanoma rapidly succumb to the disease due to eventual chemoresistance, or insensitivity to the drug. Thus, it is critical to identify new therapies that can act alone, or be combined with available treatments for enhanced efficacy and/or to overcome drug resistance.
An important and new therapeutic concept for melanoma is to target the melanocyte lineage. Recent evidence reveals that a melanocyte lineage specific programme maintains melanoma survival, and we have engineered the first animal model in zebrafish to demonstrate that targeting the master melanocyte lineage transcription factor MITF leads to rapid melanoma regression. Thus, understanding and targeting the melanocyte lineage is directly relevant to melanoma, and reveals therapeutically targetable processes.
Our vision is to use live-imaging of the melanocyte lineage as the basis for phenotypic chemical screens in zebrafish to find drugs/leads and identify targetable processes that might elucidate pathways for cancer therapy. Screening for targets of the melanocyte lineage is highly relevant to melanoma because melanocytes are the melanoma cell of origin, and genes that specify the melanocyte stem cells and the lineage during embryogenesis are the same genes that play fundamental roles in cancer. We will use innovative chemical-biology to capture and validate targets in vivo, and perform chemo-preventative and -therapeutic trials in zebrafish melanoma models using known and novel drug-delivery methods.
Ultimately, we aim to translate our most promising drug/leads and targets into the mammalian system, to establish the basis for patent applications and clinical trials.
Summary
Melanoma (cancer of the melanocyte) kills over 20,000 Europeans each year and incidence continues to rise rapidly. BRAF(V600E) inhibitors have led to clinically significant improvements in outcomes for melanoma patients, yet many patients with metastatic melanoma rapidly succumb to the disease due to eventual chemoresistance, or insensitivity to the drug. Thus, it is critical to identify new therapies that can act alone, or be combined with available treatments for enhanced efficacy and/or to overcome drug resistance.
An important and new therapeutic concept for melanoma is to target the melanocyte lineage. Recent evidence reveals that a melanocyte lineage specific programme maintains melanoma survival, and we have engineered the first animal model in zebrafish to demonstrate that targeting the master melanocyte lineage transcription factor MITF leads to rapid melanoma regression. Thus, understanding and targeting the melanocyte lineage is directly relevant to melanoma, and reveals therapeutically targetable processes.
Our vision is to use live-imaging of the melanocyte lineage as the basis for phenotypic chemical screens in zebrafish to find drugs/leads and identify targetable processes that might elucidate pathways for cancer therapy. Screening for targets of the melanocyte lineage is highly relevant to melanoma because melanocytes are the melanoma cell of origin, and genes that specify the melanocyte stem cells and the lineage during embryogenesis are the same genes that play fundamental roles in cancer. We will use innovative chemical-biology to capture and validate targets in vivo, and perform chemo-preventative and -therapeutic trials in zebrafish melanoma models using known and novel drug-delivery methods.
Ultimately, we aim to translate our most promising drug/leads and targets into the mammalian system, to establish the basis for patent applications and clinical trials.
Max ERC Funding
1 865 345 €
Duration
Start date: 2015-09-01, End date: 2020-08-31