Project acronym 1st-principles-discs
Project A First Principles Approach to Accretion Discs
Researcher (PI) Martin Elias Pessah
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), PE9, ERC-2012-StG_20111012
Summary Most celestial bodies, from planets, to stars, to black holes; gain mass during their lives by means of an accretion disc. Understanding the physical processes that determine the rate at which matter accretes and energy is radiated in these discs is vital for unraveling the formation, evolution, and fate of almost every type of object in the Universe. Despite the fact that magnetic fields have been known to be crucial in accretion discs since the early 90’s, the majority of astrophysical questions that depend on the details of how disc accretion proceeds are still being addressed using the “standard” accretion disc model (developed in the early 70’s), where magnetic fields do not play an explicit role. This has prevented us from fully exploring the astrophysical consequences and observational signatures of realistic accretion disc models, leading to a profound disconnect between observations (usually interpreted with the standard paradigm) and modern accretion disc theory and numerical simulations (where magnetic turbulence is crucial). The goal of this proposal is to use several complementary approaches in order to finally move beyond the standard paradigm. This program has two main objectives: 1) Develop the theoretical framework to incorporate magnetic fields, and the ensuing turbulence, into self-consistent accretion disc models, and investigate their observational implications. 2) Investigate transport and radiative processes in collision-less disc regions, where non-thermal radiation originates, by employing a kinetic particle description of the plasma. In order to achieve these goals, we will use, and build upon, state-of-the-art magnetohydrodynamic and particle-in-cell codes in conjunction with theoretical modeling. This framework will make it possible to address fundamental questions on stellar and planet formation, binary systems with a compact object, and supermassive black hole feedback in a way that has no counterpart within the standard paradigm.
Summary
Most celestial bodies, from planets, to stars, to black holes; gain mass during their lives by means of an accretion disc. Understanding the physical processes that determine the rate at which matter accretes and energy is radiated in these discs is vital for unraveling the formation, evolution, and fate of almost every type of object in the Universe. Despite the fact that magnetic fields have been known to be crucial in accretion discs since the early 90’s, the majority of astrophysical questions that depend on the details of how disc accretion proceeds are still being addressed using the “standard” accretion disc model (developed in the early 70’s), where magnetic fields do not play an explicit role. This has prevented us from fully exploring the astrophysical consequences and observational signatures of realistic accretion disc models, leading to a profound disconnect between observations (usually interpreted with the standard paradigm) and modern accretion disc theory and numerical simulations (where magnetic turbulence is crucial). The goal of this proposal is to use several complementary approaches in order to finally move beyond the standard paradigm. This program has two main objectives: 1) Develop the theoretical framework to incorporate magnetic fields, and the ensuing turbulence, into self-consistent accretion disc models, and investigate their observational implications. 2) Investigate transport and radiative processes in collision-less disc regions, where non-thermal radiation originates, by employing a kinetic particle description of the plasma. In order to achieve these goals, we will use, and build upon, state-of-the-art magnetohydrodynamic and particle-in-cell codes in conjunction with theoretical modeling. This framework will make it possible to address fundamental questions on stellar and planet formation, binary systems with a compact object, and supermassive black hole feedback in a way that has no counterpart within the standard paradigm.
Max ERC Funding
1 793 697 €
Duration
Start date: 2013-02-01, End date: 2018-01-31
Project acronym 2D-TOPSENSE
Project Tunable optoelectronic devices by strain engineering of 2D semiconductors
Researcher (PI) Andres CASTELLANOS
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Starting Grant (StG), PE7, ERC-2017-STG
Summary The goal of 2D-TOPSENSE is to exploit the remarkable stretchability of two-dimensional semiconductors to fabricate optoelectronic devices where strain is used as an external knob to tune their properties.
While bulk semiconductors tend to break under strains larger than 1.5%, 2D semiconductors (such as MoS2) can withstand deformations of up to 10-20% before rupture. This large breaking strength promises a great potential of 2D semiconductors as ‘straintronic’ materials, whose properties can be adjusted by applying a deformation to their lattice. In fact, recent theoretical works predicted an interesting physical phenomenon: a tensile strain-induced semiconductor-to-metal transition in 2D semiconductors. By tensioning single-layer MoS2 from 0% up to 10%, its electronic band structure is expected to undergo a continuous transition from a wide direct band-gap of 1.8 eV to a metallic behavior. This unprecedented large strain-tunability will undoubtedly have a strong impact in a wide range of optoelectronic applications such as photodetectors whose cut-off wavelength is tuned by varying the applied strain or atomically thin light modulators.
To date, experimental works on strain engineering have been mostly focused on fundamental studies, demonstrating part of the potential of 2D semiconductors in straintronics, but they have failed to exploit strain engineering to add extra functionalities to optoelectronic devices. In 2D-TOPSENSE I will go beyond the state of the art in straintronics by designing and fabricating optoelectronic devices whose properties and performance can be tuned by means of applying strain. 2D-TOPSENSE will focus on photodetectors with a tunable bandwidth and detectivity, light emitting devices whose emission wavelength can be adjusted, light modulators based on 2D semiconductors such as transition metal dichalcogenides or black phosphorus and solar funnels capable of directing the photogenerated charge carriers towards a specific position.
Summary
The goal of 2D-TOPSENSE is to exploit the remarkable stretchability of two-dimensional semiconductors to fabricate optoelectronic devices where strain is used as an external knob to tune their properties.
While bulk semiconductors tend to break under strains larger than 1.5%, 2D semiconductors (such as MoS2) can withstand deformations of up to 10-20% before rupture. This large breaking strength promises a great potential of 2D semiconductors as ‘straintronic’ materials, whose properties can be adjusted by applying a deformation to their lattice. In fact, recent theoretical works predicted an interesting physical phenomenon: a tensile strain-induced semiconductor-to-metal transition in 2D semiconductors. By tensioning single-layer MoS2 from 0% up to 10%, its electronic band structure is expected to undergo a continuous transition from a wide direct band-gap of 1.8 eV to a metallic behavior. This unprecedented large strain-tunability will undoubtedly have a strong impact in a wide range of optoelectronic applications such as photodetectors whose cut-off wavelength is tuned by varying the applied strain or atomically thin light modulators.
To date, experimental works on strain engineering have been mostly focused on fundamental studies, demonstrating part of the potential of 2D semiconductors in straintronics, but they have failed to exploit strain engineering to add extra functionalities to optoelectronic devices. In 2D-TOPSENSE I will go beyond the state of the art in straintronics by designing and fabricating optoelectronic devices whose properties and performance can be tuned by means of applying strain. 2D-TOPSENSE will focus on photodetectors with a tunable bandwidth and detectivity, light emitting devices whose emission wavelength can be adjusted, light modulators based on 2D semiconductors such as transition metal dichalcogenides or black phosphorus and solar funnels capable of directing the photogenerated charge carriers towards a specific position.
Max ERC Funding
1 930 437 €
Duration
Start date: 2018-03-01, End date: 2023-02-28
Project acronym 2STEPPARKIN
Project A novel two-step model for neurodegeneration in Parkinson’s disease
Researcher (PI) Emi Nagoshi
Host Institution (HI) UNIVERSITE DE GENEVE
Call Details Starting Grant (StG), LS5, ERC-2012-StG_20111109
Summary Parkinson’s disease (PD) is the second most common neurodegenerative disorder primarily caused by the progressive loss of dopaminergic (DA) neurons in the substantia nigra (SN). Despite the advances in gene discovery associated with PD, the knowledge of the PD pathogenesis is largely limited to the involvement of these genes in the generic cell death pathways, and why degeneration is specific to DA neurons and why the degeneration is progressive remain enigmatic. Broad goal of our work is therefore to elucidate the mechanisms underlying specific and progressive DA neuron degeneration in PD. Our new Drosophila model of PD ⎯Fer2 gene loss-of-function mutation⎯ is unusually well suited to address these questions. Fer2 mutants exhibit specific and progressive death of brain DA neurons as well as severe locomotor defects and short life span. Strikingly, the death of DA neuron is initiated in a small cluster of Fer2-expressing DA neurons and subsequently propagates to Fer2-negative DA neurons. We therefore propose a novel two-step model of the neurodegeneration in PD: primary cell death occurs in a specific subset of dopamindegic neurons that are genetically defined, and subsequently the failure of the neuronal connectivity triggers and propagates secondary cell death to remaining DA neurons. In this research, we will test this hypothesis and investigate the underlying molecular mechanisms. This will be the first study to examine circuit-dependency in DA neuron degeneration. Our approach will use a combination of non-biased genomic techniques and candidate-based screening, in addition to the powerful Drosophila genetic toolbox. Furthermore, to test this hypothesis beyond the Drosophila model, we will establish new mouse models of PD that exhibit progressive DA neuron degeneration. Outcome of this research will likely revolutionize the understanding of PD pathogenesis and open an avenue toward the discovery of effective therapy strategies against PD.
Summary
Parkinson’s disease (PD) is the second most common neurodegenerative disorder primarily caused by the progressive loss of dopaminergic (DA) neurons in the substantia nigra (SN). Despite the advances in gene discovery associated with PD, the knowledge of the PD pathogenesis is largely limited to the involvement of these genes in the generic cell death pathways, and why degeneration is specific to DA neurons and why the degeneration is progressive remain enigmatic. Broad goal of our work is therefore to elucidate the mechanisms underlying specific and progressive DA neuron degeneration in PD. Our new Drosophila model of PD ⎯Fer2 gene loss-of-function mutation⎯ is unusually well suited to address these questions. Fer2 mutants exhibit specific and progressive death of brain DA neurons as well as severe locomotor defects and short life span. Strikingly, the death of DA neuron is initiated in a small cluster of Fer2-expressing DA neurons and subsequently propagates to Fer2-negative DA neurons. We therefore propose a novel two-step model of the neurodegeneration in PD: primary cell death occurs in a specific subset of dopamindegic neurons that are genetically defined, and subsequently the failure of the neuronal connectivity triggers and propagates secondary cell death to remaining DA neurons. In this research, we will test this hypothesis and investigate the underlying molecular mechanisms. This will be the first study to examine circuit-dependency in DA neuron degeneration. Our approach will use a combination of non-biased genomic techniques and candidate-based screening, in addition to the powerful Drosophila genetic toolbox. Furthermore, to test this hypothesis beyond the Drosophila model, we will establish new mouse models of PD that exhibit progressive DA neuron degeneration. Outcome of this research will likely revolutionize the understanding of PD pathogenesis and open an avenue toward the discovery of effective therapy strategies against PD.
Max ERC Funding
1 518 960 €
Duration
Start date: 2013-06-01, End date: 2018-05-31
Project acronym 3D-nanoMorph
Project Label-free 3D morphological nanoscopy for studying sub-cellular dynamics in live cancer cells with high spatio-temporal resolution
Researcher (PI) Krishna AGARWAL
Host Institution (HI) UNIVERSITETET I TROMSOE - NORGES ARKTISKE UNIVERSITET
Call Details Starting Grant (StG), PE7, ERC-2018-STG
Summary Label-free optical nanoscopy, free from photobleaching and photochemical toxicity of fluorescence labels and yielding 3D morphological resolution of <50 nm, is the future of live cell imaging. 3D-nanoMorph breaks the diffraction barrier and shifts the paradigm in label-free nanoscopy, providing isotropic 3D resolution of <50 nm. To achieve this, 3D-nanoMorph performs non-linear inverse scattering for the first time in nanoscopy and decodes scattering between sub-cellular structures (organelles).
3D-nanoMorph innovatively devises complementary roles of light measurement system and computational nanoscopy algorithm. A novel illumination system and a novel light collection system together enable measurement of only the most relevant intensity component and create a fresh perspective about label-free measurements. A new computational nanoscopy approach employs non-linear inverse scattering. Harnessing non-linear inverse scattering for resolution enhancement in nanoscopy opens new possibilities in label-free 3D nanoscopy.
I will apply 3D-nanoMorph to study organelle degradation (autophagy) in live cancer cells over extended duration with high spatial and temporal resolution, presently limited by the lack of high-resolution label-free 3D morphological nanoscopy. Successful 3D mapping of nanoscale biological process of autophagy will open new avenues for cancer treatment and showcase 3D-nanoMorph for wider applications.
My cross-disciplinary expertise of 14 years spanning inverse problems, electromagnetism, optical microscopy, integrated optics and live cell nanoscopy paves path for successful implementation of 3D-nanoMorph.
Summary
Label-free optical nanoscopy, free from photobleaching and photochemical toxicity of fluorescence labels and yielding 3D morphological resolution of <50 nm, is the future of live cell imaging. 3D-nanoMorph breaks the diffraction barrier and shifts the paradigm in label-free nanoscopy, providing isotropic 3D resolution of <50 nm. To achieve this, 3D-nanoMorph performs non-linear inverse scattering for the first time in nanoscopy and decodes scattering between sub-cellular structures (organelles).
3D-nanoMorph innovatively devises complementary roles of light measurement system and computational nanoscopy algorithm. A novel illumination system and a novel light collection system together enable measurement of only the most relevant intensity component and create a fresh perspective about label-free measurements. A new computational nanoscopy approach employs non-linear inverse scattering. Harnessing non-linear inverse scattering for resolution enhancement in nanoscopy opens new possibilities in label-free 3D nanoscopy.
I will apply 3D-nanoMorph to study organelle degradation (autophagy) in live cancer cells over extended duration with high spatial and temporal resolution, presently limited by the lack of high-resolution label-free 3D morphological nanoscopy. Successful 3D mapping of nanoscale biological process of autophagy will open new avenues for cancer treatment and showcase 3D-nanoMorph for wider applications.
My cross-disciplinary expertise of 14 years spanning inverse problems, electromagnetism, optical microscopy, integrated optics and live cell nanoscopy paves path for successful implementation of 3D-nanoMorph.
Max ERC Funding
1 499 999 €
Duration
Start date: 2019-07-01, End date: 2024-06-30
Project acronym 3DICE
Project 3D Interstellar Chemo-physical Evolution
Researcher (PI) Valentine Wakelam
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE9, ERC-2013-StG
Summary At the end of their life, stars spread their inner material into the diffuse interstellar medium. This diffuse medium gets locally denser and form dark clouds (also called dense or molecular clouds) whose innermost part is shielded from the external UV field by the dust, allowing for molecules to grow and get more complex. Gravitational collapse occurs inside these dense clouds, forming protostars and their surrounding disks, and eventually planetary systems like (or unlike) our solar system. The formation and evolution of molecules, minerals, ices and organics from the diffuse medium to planetary bodies, their alteration or preservation throughout this cosmic chemical history set the initial conditions for building planets, atmospheres and possibly the first bricks of life. The current view of interstellar chemistry is based on fragmental works on key steps of the sequence that are observed. The objective of this proposal is to follow the fractionation of the elements between the gas-phase and the interstellar grains, from the most diffuse medium to protoplanetary disks, in order to constrain the chemical composition of the material in which planets are formed. The potential outcome of this project is to get a consistent and more accurate description of the chemical evolution of interstellar matter. To achieve this objective, I will improve our chemical model by adding new processes on grain surfaces relevant under the diffuse medium conditions. This upgraded gas-grain model will be coupled to 3D dynamical models of the formation of dense clouds from diffuse medium and of protoplanetary disks from dense clouds. The computed chemical composition will also be used with 3D radiative transfer codes to study the chemical tracers of the physics of protoplanetary disk formation. The robustness of the model predictions will be studied with sensitivity analyses. Finally, model results will be confronted to observations to address some of the current challenges.
Summary
At the end of their life, stars spread their inner material into the diffuse interstellar medium. This diffuse medium gets locally denser and form dark clouds (also called dense or molecular clouds) whose innermost part is shielded from the external UV field by the dust, allowing for molecules to grow and get more complex. Gravitational collapse occurs inside these dense clouds, forming protostars and their surrounding disks, and eventually planetary systems like (or unlike) our solar system. The formation and evolution of molecules, minerals, ices and organics from the diffuse medium to planetary bodies, their alteration or preservation throughout this cosmic chemical history set the initial conditions for building planets, atmospheres and possibly the first bricks of life. The current view of interstellar chemistry is based on fragmental works on key steps of the sequence that are observed. The objective of this proposal is to follow the fractionation of the elements between the gas-phase and the interstellar grains, from the most diffuse medium to protoplanetary disks, in order to constrain the chemical composition of the material in which planets are formed. The potential outcome of this project is to get a consistent and more accurate description of the chemical evolution of interstellar matter. To achieve this objective, I will improve our chemical model by adding new processes on grain surfaces relevant under the diffuse medium conditions. This upgraded gas-grain model will be coupled to 3D dynamical models of the formation of dense clouds from diffuse medium and of protoplanetary disks from dense clouds. The computed chemical composition will also be used with 3D radiative transfer codes to study the chemical tracers of the physics of protoplanetary disk formation. The robustness of the model predictions will be studied with sensitivity analyses. Finally, model results will be confronted to observations to address some of the current challenges.
Max ERC Funding
1 166 231 €
Duration
Start date: 2013-09-01, End date: 2018-08-31
Project acronym 4SUNS
Project 4-Colours/2-Junctions of III-V semiconductors on Si to use in electronics devices and solar cells
Researcher (PI) María Nair LOPEZ MARTINEZ
Host Institution (HI) UNIVERSIDAD AUTONOMA DE MADRID
Call Details Starting Grant (StG), PE7, ERC-2017-STG
Summary It was early predicted by M. Green and coeval colleagues that dividing the solar spectrum into narrow ranges of colours is the most efficient manner to convert solar energy into electrical power. Multijunction solar cells are the current solution to this challenge, which have reached over 30% conversion efficiencies by stacking 3 junctions together. However, the large fabrication costs and time hinders their use in everyday life. It has been shown that highly mismatched alloy (HMA) materials provide a powerful playground to achieve at least 3 different colour absorption regions that enable optimised energy conversion with just one junction. Combining HMA-based junctions with standard Silicon solar cells will rocket solar conversion efficiency at a reduced price. To turn this ambition into marketable devices, several efforts are still needed and few challenges must be overcome.
4SUNS is a revolutionary approach for the development of HMA materials on Silicon technology, which will bring highly efficient multi-colour solar cells costs below current multijunction devices. The project will develop the technology of HMA materials on Silicon via material synthesis opening a new technology for the future. The understanding and optimization of highly mismatched alloy materials-using GaAsNP alloy- will provide building blocks for the fabrication of laboratory-size 4-colours/2-junctions solar cells.
Using a molecular beam epitaxy system, 4SUNS will grow 4-colours/2-junctions structure as well as it will manufacture the final devices. Structural and optoelectronic characterizations will carry out to determine the quality of the materials and the solar cells characteristic to obtain a competitive product. These new solar cells are competitive products to breakthrough on the solar energy sector solar cells and allowing Europe to take leadership on high efficiency solar cells.
Summary
It was early predicted by M. Green and coeval colleagues that dividing the solar spectrum into narrow ranges of colours is the most efficient manner to convert solar energy into electrical power. Multijunction solar cells are the current solution to this challenge, which have reached over 30% conversion efficiencies by stacking 3 junctions together. However, the large fabrication costs and time hinders their use in everyday life. It has been shown that highly mismatched alloy (HMA) materials provide a powerful playground to achieve at least 3 different colour absorption regions that enable optimised energy conversion with just one junction. Combining HMA-based junctions with standard Silicon solar cells will rocket solar conversion efficiency at a reduced price. To turn this ambition into marketable devices, several efforts are still needed and few challenges must be overcome.
4SUNS is a revolutionary approach for the development of HMA materials on Silicon technology, which will bring highly efficient multi-colour solar cells costs below current multijunction devices. The project will develop the technology of HMA materials on Silicon via material synthesis opening a new technology for the future. The understanding and optimization of highly mismatched alloy materials-using GaAsNP alloy- will provide building blocks for the fabrication of laboratory-size 4-colours/2-junctions solar cells.
Using a molecular beam epitaxy system, 4SUNS will grow 4-colours/2-junctions structure as well as it will manufacture the final devices. Structural and optoelectronic characterizations will carry out to determine the quality of the materials and the solar cells characteristic to obtain a competitive product. These new solar cells are competitive products to breakthrough on the solar energy sector solar cells and allowing Europe to take leadership on high efficiency solar cells.
Max ERC Funding
1 499 719 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym 5D-NanoTrack
Project Five-Dimensional Localization Microscopy for Sub-Cellular Dynamics
Researcher (PI) Yoav SHECHTMAN
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Starting Grant (StG), PE7, ERC-2018-STG
Summary The sub-cellular processes that control the most critical aspects of life occur in three-dimensions (3D), and are intrinsically dynamic. While super-resolution microscopy has revolutionized cellular imaging in recent years, our current capability to observe the dynamics of life on the nanoscale is still extremely limited, due to inherent trade-offs between spatial, temporal and spectral resolution using existing approaches.
We propose to develop and demonstrate an optical microscopy methodology that would enable live sub-cellular observation in unprecedented detail. Making use of multicolor 3D point-spread-function (PSF) engineering, a technique I have recently developed, we will be able to simultaneously track multiple markers inside live cells, at high speed and in five-dimensions (3D, time, and color).
Multicolor 3D PSF engineering holds the potential of being a uniquely powerful method for 5D tracking. However, it is not yet applicable to live-cell imaging, due to significant bottlenecks in optical engineering and signal processing, which we plan to overcome in this project. Importantly, we will also demonstrate the efficacy of our method using a challenging biological application: real-time visualization of chromatin dynamics - the spatiotemporal organization of DNA. This is a highly suitable problem due to its fundamental importance, its role in a variety of cellular processes, and the lack of appropriate tools for studying it.
The project is divided into 3 aims:
1. Technology development: diffractive-element design for multicolor 3D PSFs.
2. System design: volumetric tracking of dense emitters.
3. Live-cell measurements: chromatin dynamics.
Looking ahead, here we create the imaging tools that pave the way towards the holy grail of chromatin visualization: dynamic observation of the 3D positions of the ~3 billion DNA base-pairs in a live human cell. Beyond that, our results will be applicable to numerous 3D micro/nanoscale tracking applications.
Summary
The sub-cellular processes that control the most critical aspects of life occur in three-dimensions (3D), and are intrinsically dynamic. While super-resolution microscopy has revolutionized cellular imaging in recent years, our current capability to observe the dynamics of life on the nanoscale is still extremely limited, due to inherent trade-offs between spatial, temporal and spectral resolution using existing approaches.
We propose to develop and demonstrate an optical microscopy methodology that would enable live sub-cellular observation in unprecedented detail. Making use of multicolor 3D point-spread-function (PSF) engineering, a technique I have recently developed, we will be able to simultaneously track multiple markers inside live cells, at high speed and in five-dimensions (3D, time, and color).
Multicolor 3D PSF engineering holds the potential of being a uniquely powerful method for 5D tracking. However, it is not yet applicable to live-cell imaging, due to significant bottlenecks in optical engineering and signal processing, which we plan to overcome in this project. Importantly, we will also demonstrate the efficacy of our method using a challenging biological application: real-time visualization of chromatin dynamics - the spatiotemporal organization of DNA. This is a highly suitable problem due to its fundamental importance, its role in a variety of cellular processes, and the lack of appropriate tools for studying it.
The project is divided into 3 aims:
1. Technology development: diffractive-element design for multicolor 3D PSFs.
2. System design: volumetric tracking of dense emitters.
3. Live-cell measurements: chromatin dynamics.
Looking ahead, here we create the imaging tools that pave the way towards the holy grail of chromatin visualization: dynamic observation of the 3D positions of the ~3 billion DNA base-pairs in a live human cell. Beyond that, our results will be applicable to numerous 3D micro/nanoscale tracking applications.
Max ERC Funding
1 802 500 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym AAATSI
Project Advanced Antenna Architecture for THZ Sensing Instruments
Researcher (PI) Andrea Neto
Host Institution (HI) TECHNISCHE UNIVERSITEIT DELFT
Call Details Starting Grant (StG), PE7, ERC-2011-StG_20101014
Summary The Tera-Hertz portion of the spectrum presents unique potentials for advanced applications. Currently the THz spectrum is revealing the mechanisms at the origin of our universe and provides the means to monitor the health of our planet via satellite based sensing of critical gases. Potentially time domain sensing of the THz spectrum will be the ideal tool for a vast variety of medical and security applications.
Presently, systems in the THz regime are extremely expensive and consequently the THz spectrum is still the domain of only niche (expensive) scientific applications. The main problems are the lack of power and sensitivity. The wide unused THz spectral bandwidth is, herself, the only widely available resource that in the future can compensate for these problems. But, so far, when scientists try to really use the bandwidth, they run into an insurmountable physical limit: antenna dispersion. Antenna dispersion modifies the signal’s spectrum in a wavelength dependent manner in all types of radiation, but is particularly deleterious to THz signals because the spectrum is too wide and with foreseeable technology it cannot be digitized.
The goal of this proposal is to introduce break-through antenna technology that will eliminate the dispersion bottle neck and revolutionize Time Domain sensing and Spectroscopic Space Science. Achieving these goals the project will pole vault THz imaging technology into the 21-th century and develop critically important enabling technologies which will satisfy the electrical engineering needs of the next 30 years and in the long run will enable multi Tera-bit wireless communications.
In order to achieve these goals, I will first build upon two major breakthrough radiation mechanisms that I pioneered: Leaky Lenses and Connected Arrays. Eventually, ultra wide band imaging arrays constituted by thousands of components will be designed on the bases of the new theoretical findings and demonstrated.
Summary
The Tera-Hertz portion of the spectrum presents unique potentials for advanced applications. Currently the THz spectrum is revealing the mechanisms at the origin of our universe and provides the means to monitor the health of our planet via satellite based sensing of critical gases. Potentially time domain sensing of the THz spectrum will be the ideal tool for a vast variety of medical and security applications.
Presently, systems in the THz regime are extremely expensive and consequently the THz spectrum is still the domain of only niche (expensive) scientific applications. The main problems are the lack of power and sensitivity. The wide unused THz spectral bandwidth is, herself, the only widely available resource that in the future can compensate for these problems. But, so far, when scientists try to really use the bandwidth, they run into an insurmountable physical limit: antenna dispersion. Antenna dispersion modifies the signal’s spectrum in a wavelength dependent manner in all types of radiation, but is particularly deleterious to THz signals because the spectrum is too wide and with foreseeable technology it cannot be digitized.
The goal of this proposal is to introduce break-through antenna technology that will eliminate the dispersion bottle neck and revolutionize Time Domain sensing and Spectroscopic Space Science. Achieving these goals the project will pole vault THz imaging technology into the 21-th century and develop critically important enabling technologies which will satisfy the electrical engineering needs of the next 30 years and in the long run will enable multi Tera-bit wireless communications.
In order to achieve these goals, I will first build upon two major breakthrough radiation mechanisms that I pioneered: Leaky Lenses and Connected Arrays. Eventually, ultra wide band imaging arrays constituted by thousands of components will be designed on the bases of the new theoretical findings and demonstrated.
Max ERC Funding
1 499 487 €
Duration
Start date: 2011-11-01, End date: 2017-10-31
Project acronym AAREA
Project The Archaeology of Agricultural Resilience in Eastern Africa
Researcher (PI) Daryl Stump
Host Institution (HI) UNIVERSITY OF YORK
Call Details Starting Grant (StG), SH6, ERC-2013-StG
Summary "The twin concepts of sustainability and conservation that are so pivotal within current debates regarding economic development and biodiversity protection both contain an inherent temporal dimension, since both refer to the need to balance short-term gains with long-term resource maintenance. Proponents of resilience theory and of development based on ‘indigenous knowledge’ have thus argued for the necessity of including archaeological, historical and palaeoenvironmental components within development project design. Indeed, some have argued that archaeology should lead these interdisciplinary projects on the grounds that it provides the necessary time depth and bridges the social and natural sciences. The project proposed here accepts this logic and endorses this renewed contemporary relevance of archaeological research. However, it also needs to be admitted that moving beyond critiques of the misuse of historical data presents significant hurdles. When presenting results outside the discipline, for example, archaeological projects tend to downplay the poor archaeological visibility of certain agricultural practices, and computer models designed to test sustainability struggle to adequately account for local cultural preferences. This field will therefore not progress unless there is a frank appraisal of archaeology’s strengths and weaknesses. This project will provide this assessment by employing a range of established and groundbreaking archaeological and modelling techniques to examine the development of two east Africa agricultural systems: one at the abandoned site of Engaruka in Tanzania, commonly seen as an example of resource mismanagement and ecological collapse; and another at the current agricultural landscape in Konso, Ethiopia, described by the UN FAO as one of a select few African “lessons from the past”. The project thus aims to assess the sustainability of these systems, but will also assess the role archaeology can play in such debates worldwide."
Summary
"The twin concepts of sustainability and conservation that are so pivotal within current debates regarding economic development and biodiversity protection both contain an inherent temporal dimension, since both refer to the need to balance short-term gains with long-term resource maintenance. Proponents of resilience theory and of development based on ‘indigenous knowledge’ have thus argued for the necessity of including archaeological, historical and palaeoenvironmental components within development project design. Indeed, some have argued that archaeology should lead these interdisciplinary projects on the grounds that it provides the necessary time depth and bridges the social and natural sciences. The project proposed here accepts this logic and endorses this renewed contemporary relevance of archaeological research. However, it also needs to be admitted that moving beyond critiques of the misuse of historical data presents significant hurdles. When presenting results outside the discipline, for example, archaeological projects tend to downplay the poor archaeological visibility of certain agricultural practices, and computer models designed to test sustainability struggle to adequately account for local cultural preferences. This field will therefore not progress unless there is a frank appraisal of archaeology’s strengths and weaknesses. This project will provide this assessment by employing a range of established and groundbreaking archaeological and modelling techniques to examine the development of two east Africa agricultural systems: one at the abandoned site of Engaruka in Tanzania, commonly seen as an example of resource mismanagement and ecological collapse; and another at the current agricultural landscape in Konso, Ethiopia, described by the UN FAO as one of a select few African “lessons from the past”. The project thus aims to assess the sustainability of these systems, but will also assess the role archaeology can play in such debates worldwide."
Max ERC Funding
1 196 701 €
Duration
Start date: 2014-02-01, End date: 2018-01-31
Project acronym ABATSYNAPSE
Project Evolution of Alzheimer’s Disease: From dynamics of single synapses to memory loss
Researcher (PI) Inna Slutsky
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Starting Grant (StG), LS5, ERC-2011-StG_20101109
Summary A persistent challenge in unravelling mechanisms that regulate memory function is how to bridge the gap between inter-molecular dynamics of single proteins, activity of individual synapses and emerging properties of neuronal circuits. The prototype condition of disintegrating neuronal circuits is Alzheimer’s Disease (AD). Since the early time of Alois Alzheimer at the turn of the 20th century, scientists have been searching for a molecular entity that is in the roots of the cognitive deficits. Although diverse lines of evidence suggest that the amyloid-beta peptide (Abeta) plays a central role in synaptic dysfunctions of AD, several key questions remain unresolved. First, endogenous Abeta peptides are secreted by neurons throughout life, but their physiological functions are largely unknown. Second, experience-dependent physiological mechanisms that initiate the changes in Abeta composition in sporadic, the most frequent form of AD, are unidentified. And finally, molecular mechanisms that trigger Abeta-induced synaptic failure and memory decline remain elusive.
To target these questions, I propose to develop an integrative approach to correlate structure and function at the level of single synapses in hippocampal circuits. State-of-the-art techniques will enable the simultaneous real-time visualization of inter-molecular dynamics within signalling complexes and functional synaptic modifications. Utilizing FRET spectroscopy, high-resolution optical imaging, electrophysiology, molecular biology and biochemistry we will determine the casual relationship between ongoing neuronal activity, temporo-spatial dynamics and molecular composition of Abeta, structural rearrangements within the Abeta signalling complexes and plasticity of single synapses and whole networks. The proposed research will elucidate fundamental principles of neuronal circuits function and identify critical steps that initiate primary synaptic dysfunctions at the very early stages of sporadic AD.
Summary
A persistent challenge in unravelling mechanisms that regulate memory function is how to bridge the gap between inter-molecular dynamics of single proteins, activity of individual synapses and emerging properties of neuronal circuits. The prototype condition of disintegrating neuronal circuits is Alzheimer’s Disease (AD). Since the early time of Alois Alzheimer at the turn of the 20th century, scientists have been searching for a molecular entity that is in the roots of the cognitive deficits. Although diverse lines of evidence suggest that the amyloid-beta peptide (Abeta) plays a central role in synaptic dysfunctions of AD, several key questions remain unresolved. First, endogenous Abeta peptides are secreted by neurons throughout life, but their physiological functions are largely unknown. Second, experience-dependent physiological mechanisms that initiate the changes in Abeta composition in sporadic, the most frequent form of AD, are unidentified. And finally, molecular mechanisms that trigger Abeta-induced synaptic failure and memory decline remain elusive.
To target these questions, I propose to develop an integrative approach to correlate structure and function at the level of single synapses in hippocampal circuits. State-of-the-art techniques will enable the simultaneous real-time visualization of inter-molecular dynamics within signalling complexes and functional synaptic modifications. Utilizing FRET spectroscopy, high-resolution optical imaging, electrophysiology, molecular biology and biochemistry we will determine the casual relationship between ongoing neuronal activity, temporo-spatial dynamics and molecular composition of Abeta, structural rearrangements within the Abeta signalling complexes and plasticity of single synapses and whole networks. The proposed research will elucidate fundamental principles of neuronal circuits function and identify critical steps that initiate primary synaptic dysfunctions at the very early stages of sporadic AD.
Max ERC Funding
2 000 000 €
Duration
Start date: 2011-12-01, End date: 2017-09-30
Project acronym ACROSS
Project Australasian Colonization Research: Origins of Seafaring to Sahul
Researcher (PI) Rosemary Helen FARR
Host Institution (HI) UNIVERSITY OF SOUTHAMPTON
Call Details Starting Grant (StG), SH6, ERC-2017-STG
Summary One of the most exciting research questions within archaeology is that of the peopling of Australasia by at least c.50,000 years ago. This represents some of the earliest evidence of modern human colonization outside Africa, yet, even at the greatest sea-level lowstand, this migration would have involved seafaring. It is the maritime nature of this dispersal which makes it so important to questions of technological, cognitive and social human development. These issues have traditionally been the preserve of archaeologists, but with a multidisciplinary approach that embraces cutting-edge marine geophysical, hydrodynamic and archaeogenetic analyses, we now have the opportunity to examine the When, Where, Who and How of the earliest seafaring in world history.
The voyage from Sunda (South East Asia) to Sahul (Australasia) provides evidence for the earliest ‘open water’ crossing in the world. A combination of the sparse number of early archaeological finds and the significant changes in the palaeolandscape and submergence of the broad north western Australian continental shelf, mean that little is known about the routes taken and what these crossings may have entailed.
This project will combine research of the submerged palaeolandscape of the continental shelf to refine our knowledge of the onshore/offshore environment, identify potential submerged prehistoric sites and enhance our understanding of the palaeoshoreline and tidal regime. This will be combined with archaeogenetic research targeting mtDNA and Y-chromosome data to resolve questions of demography and dating.
For the first time this project takes a truly multidisciplinary approach to address the colonization of Sahul, providing an unique opportunity to tackle some of the most important questions about human origins, the relationship between humans and the changing environment, population dynamics and migration, seafaring technology, social organisation and cognition.
Summary
One of the most exciting research questions within archaeology is that of the peopling of Australasia by at least c.50,000 years ago. This represents some of the earliest evidence of modern human colonization outside Africa, yet, even at the greatest sea-level lowstand, this migration would have involved seafaring. It is the maritime nature of this dispersal which makes it so important to questions of technological, cognitive and social human development. These issues have traditionally been the preserve of archaeologists, but with a multidisciplinary approach that embraces cutting-edge marine geophysical, hydrodynamic and archaeogenetic analyses, we now have the opportunity to examine the When, Where, Who and How of the earliest seafaring in world history.
The voyage from Sunda (South East Asia) to Sahul (Australasia) provides evidence for the earliest ‘open water’ crossing in the world. A combination of the sparse number of early archaeological finds and the significant changes in the palaeolandscape and submergence of the broad north western Australian continental shelf, mean that little is known about the routes taken and what these crossings may have entailed.
This project will combine research of the submerged palaeolandscape of the continental shelf to refine our knowledge of the onshore/offshore environment, identify potential submerged prehistoric sites and enhance our understanding of the palaeoshoreline and tidal regime. This will be combined with archaeogenetic research targeting mtDNA and Y-chromosome data to resolve questions of demography and dating.
For the first time this project takes a truly multidisciplinary approach to address the colonization of Sahul, providing an unique opportunity to tackle some of the most important questions about human origins, the relationship between humans and the changing environment, population dynamics and migration, seafaring technology, social organisation and cognition.
Max ERC Funding
1 134 928 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym ACROSSBORDERS
Project Across ancient borders and cultures: An Egyptian microcosm in Sudan during the 2nd millennium BC
Researcher (PI) Julia Budka
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Call Details Starting Grant (StG), SH6, ERC-2012-StG_20111124
Summary Pharaonic Egypt is commonly known for its pyramids and tomb treasures. The present knowledge of Egyptian everyday life and social structures derives mostly from mortuary records associated with the upper classes, whereas traces of ordinary life from domestic sites are generally disregarded. Settlement archaeology in Egypt and Nubia (Ancient North Sudan) is still in its infancy; it is timely to strenghten this field. Responsible for the pottery at three major settlement sites (Abydos and Elephantine in Egypt; Sai Island in Sudan), the PI is in a unique position to co-ordinate a research project on settlement patterns in Northeast Africa of the 2nd millennium BC based on the detailed analysis of material remains. The selected case studies situated across ancient and modern borders and of diverse environmental and cultural preconditions, show very similar archaeological remains. Up to now, no attempt has been made to explain this situation in detail.
The focus of the project is the well-preserved, only partially explored site of Sai Island, seemingly an Egyptian microcosm in New Kingdom Upper Nubia. Little time is left to conduct the requisite large-scale archaeology as Sai is endangered by the planned high dam of Dal. With the application of microarchaeology we will introduce an approach that is new in Egyptian settlement archaeology. Our interdisciplinary research will result in novel insights into (a) multifaceted lives on Sai at a micro-spatial level and (b) domestic life in 2nd millennium BC Egypt and Nubia from a macroscopic view. The present understanding of the political situation in Upper Nubia during the New Kingdom as based on written records will be significantly enlarged by the envisaged approach. Furthermore, in reconstructing Sai Island as “home away from home”, the project presents a showcase study of what we can learn about acculturation and adaptation from ancient cultures, in this case from the coexistence of Egyptians and Nubians
Summary
Pharaonic Egypt is commonly known for its pyramids and tomb treasures. The present knowledge of Egyptian everyday life and social structures derives mostly from mortuary records associated with the upper classes, whereas traces of ordinary life from domestic sites are generally disregarded. Settlement archaeology in Egypt and Nubia (Ancient North Sudan) is still in its infancy; it is timely to strenghten this field. Responsible for the pottery at three major settlement sites (Abydos and Elephantine in Egypt; Sai Island in Sudan), the PI is in a unique position to co-ordinate a research project on settlement patterns in Northeast Africa of the 2nd millennium BC based on the detailed analysis of material remains. The selected case studies situated across ancient and modern borders and of diverse environmental and cultural preconditions, show very similar archaeological remains. Up to now, no attempt has been made to explain this situation in detail.
The focus of the project is the well-preserved, only partially explored site of Sai Island, seemingly an Egyptian microcosm in New Kingdom Upper Nubia. Little time is left to conduct the requisite large-scale archaeology as Sai is endangered by the planned high dam of Dal. With the application of microarchaeology we will introduce an approach that is new in Egyptian settlement archaeology. Our interdisciplinary research will result in novel insights into (a) multifaceted lives on Sai at a micro-spatial level and (b) domestic life in 2nd millennium BC Egypt and Nubia from a macroscopic view. The present understanding of the political situation in Upper Nubia during the New Kingdom as based on written records will be significantly enlarged by the envisaged approach. Furthermore, in reconstructing Sai Island as “home away from home”, the project presents a showcase study of what we can learn about acculturation and adaptation from ancient cultures, in this case from the coexistence of Egyptians and Nubians
Max ERC Funding
1 497 460 €
Duration
Start date: 2012-12-01, End date: 2018-04-30
Project acronym ACrossWire
Project A Cross-Correlated Approach to Engineering Nitride Nanowires
Researcher (PI) Hannah Jane JOYCE
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Starting Grant (StG), PE7, ERC-2016-STG
Summary Nanowires based on group III–nitride semiconductors exhibit outstanding potential for emerging applications in energy-efficient lighting, optoelectronics and solar energy harvesting. Nitride nanowires, tailored at the nanoscale, should overcome many of the challenges facing conventional planar nitride materials, and also add extraordinary new functionality to these materials. However, progress towards III–nitride nanowire devices has been hampered by the challenges in quantifying nanowire electrical properties using conventional contact-based measurements. Without reliable electrical transport data, it is extremely difficult to optimise nanowire growth and device design. This project aims to overcome this problem through an unconventional approach: advanced contact-free electrical measurements. Contact-free measurements, growth studies, and device studies will be cross-correlated to provide unprecedented insight into the growth mechanisms that govern nanowire electronic properties and ultimately dictate device performance. A key contact-free technique at the heart of this proposal is ultrafast terahertz conductivity spectroscopy: an advanced technique ideal for probing nanowire electrical properties. We will develop new methods to enable the full suite of contact-free (including terahertz, photoluminescence and cathodoluminescence measurements) and contact-based measurements to be performed with high spatial resolution on the same nanowires. This will provide accurate, comprehensive and cross-correlated feedback to guide growth studies and expedite the targeted development of nanowires with specified functionality. We will apply this powerful approach to tailor nanowires as photoelectrodes for solar photoelectrochemical water splitting. This is an application for which nitride nanowires have outstanding, yet unfulfilled, potential. This project will thus harness the true potential of nitride nanowires and bring them to the forefront of 21st century technology.
Summary
Nanowires based on group III–nitride semiconductors exhibit outstanding potential for emerging applications in energy-efficient lighting, optoelectronics and solar energy harvesting. Nitride nanowires, tailored at the nanoscale, should overcome many of the challenges facing conventional planar nitride materials, and also add extraordinary new functionality to these materials. However, progress towards III–nitride nanowire devices has been hampered by the challenges in quantifying nanowire electrical properties using conventional contact-based measurements. Without reliable electrical transport data, it is extremely difficult to optimise nanowire growth and device design. This project aims to overcome this problem through an unconventional approach: advanced contact-free electrical measurements. Contact-free measurements, growth studies, and device studies will be cross-correlated to provide unprecedented insight into the growth mechanisms that govern nanowire electronic properties and ultimately dictate device performance. A key contact-free technique at the heart of this proposal is ultrafast terahertz conductivity spectroscopy: an advanced technique ideal for probing nanowire electrical properties. We will develop new methods to enable the full suite of contact-free (including terahertz, photoluminescence and cathodoluminescence measurements) and contact-based measurements to be performed with high spatial resolution on the same nanowires. This will provide accurate, comprehensive and cross-correlated feedback to guide growth studies and expedite the targeted development of nanowires with specified functionality. We will apply this powerful approach to tailor nanowires as photoelectrodes for solar photoelectrochemical water splitting. This is an application for which nitride nanowires have outstanding, yet unfulfilled, potential. This project will thus harness the true potential of nitride nanowires and bring them to the forefront of 21st century technology.
Max ERC Funding
1 499 195 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym ACTINIT
Project Brain-behavior forecasting: The causal determinants of spontaneous self-initiated action in the study of volition and the development of asynchronous brain-computer interfaces.
Researcher (PI) Aaron Schurger
Host Institution (HI) INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
Call Details Starting Grant (StG), LS5, ERC-2014-STG
Summary "How are actions initiated by the human brain when there is no external sensory cue or other immediate imperative? How do subtle ongoing interactions within the brain and between the brain, body, and sensory context influence the spontaneous initiation of action? How should we approach the problem of trying to identify the neural events that cause spontaneous voluntary action? Much is understood about how the brain decides between competing alternatives, leading to different behavioral responses. But far less is known about how the brain decides "when" to perform an action, or "whether" to perform an action in the first place, especially in a context where there is no sensory cue to act such as during foraging. This project seeks to open a new chapter in the study of spontaneous voluntary action building on a novel hypothesis recently introduced by the applicant (Schurger et al, PNAS 2012) concerning the role of ongoing neural activity in action initiation. We introduce brain-behavior forecasting, the converse of movement-locked averaging, as an approach to identifying the neurodynamic states that commit the motor system to performing an action "now", and will apply it in the context of information foraging. Spontaneous action remains a profound mystery in the brain basis of behavior, in humans and other animals, and is also central to the problem of asynchronous intention-detection in brain-computer interfaces (BCIs). A BCI must not only interpret what the user intends, but also must detect "when" the user intends to act, and not respond otherwise. This remains the biggest challenge in the development of high-performance BCIs, whether invasive or non-invasive. This project will take a systematic and collaborative approach to the study of spontaneous self-initiated action, incorporating computational modeling, neuroimaging, and machine learning techniques towards a deeper understanding of voluntary behavior and the robust asynchronous detection of decisions-to-act."
Summary
"How are actions initiated by the human brain when there is no external sensory cue or other immediate imperative? How do subtle ongoing interactions within the brain and between the brain, body, and sensory context influence the spontaneous initiation of action? How should we approach the problem of trying to identify the neural events that cause spontaneous voluntary action? Much is understood about how the brain decides between competing alternatives, leading to different behavioral responses. But far less is known about how the brain decides "when" to perform an action, or "whether" to perform an action in the first place, especially in a context where there is no sensory cue to act such as during foraging. This project seeks to open a new chapter in the study of spontaneous voluntary action building on a novel hypothesis recently introduced by the applicant (Schurger et al, PNAS 2012) concerning the role of ongoing neural activity in action initiation. We introduce brain-behavior forecasting, the converse of movement-locked averaging, as an approach to identifying the neurodynamic states that commit the motor system to performing an action "now", and will apply it in the context of information foraging. Spontaneous action remains a profound mystery in the brain basis of behavior, in humans and other animals, and is also central to the problem of asynchronous intention-detection in brain-computer interfaces (BCIs). A BCI must not only interpret what the user intends, but also must detect "when" the user intends to act, and not respond otherwise. This remains the biggest challenge in the development of high-performance BCIs, whether invasive or non-invasive. This project will take a systematic and collaborative approach to the study of spontaneous self-initiated action, incorporating computational modeling, neuroimaging, and machine learning techniques towards a deeper understanding of voluntary behavior and the robust asynchronous detection of decisions-to-act."
Max ERC Funding
1 338 130 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym ACTIVE_NEUROGENESIS
Project Activity-dependent signaling in radial glial cells and their neuronal progeny
Researcher (PI) Colin Akerman
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Starting Grant (StG), LS5, ERC-2009-StG
Summary A significant advance in the field of development has been the appreciation that radial glial cells are progenitors and give birth to neurons in the brain. In order to advance this exciting area of biology, we need approaches that combine structural and functional studies of these cells. This is reflected by the emerging realisation that dynamic interactions involving radial glia may be critical for the regulation of their proliferative behaviour. It has been observed that radial glia experience transient elevations in intracellular Ca2+ but the nature of these signals, and the information that they convey, is not known. The inability to observe these cells in vivo and over the course of their development has also meant that basic questions remain unexplored. For instance, how does the behaviour of a radial glial cell at one point in development, influence the final identity of its progeny? I propose to build a research team that will capitalise upon methods we have developed for observing individual radial glia and their progeny in an intact vertebrate nervous system. The visual system of Xenopus Laevis tadpoles offers non-invasive optical access to the brain, making time-lapse imaging of single cells feasible over minutes and weeks. The system s anatomy lends itself to techniques that measure the activity of the cells in a functional sensory network. We will use this to examine signalling mechanisms in radial glia and how a radial glial cell s experience influences its proliferative behaviour and the types of neuron it generates. We will also examine the interactions that continue between a radial glial cell and its daughter neurons. Finally, we will explore the relationships that exist within neuronal progeny derived from a single radial glial cell.
Summary
A significant advance in the field of development has been the appreciation that radial glial cells are progenitors and give birth to neurons in the brain. In order to advance this exciting area of biology, we need approaches that combine structural and functional studies of these cells. This is reflected by the emerging realisation that dynamic interactions involving radial glia may be critical for the regulation of their proliferative behaviour. It has been observed that radial glia experience transient elevations in intracellular Ca2+ but the nature of these signals, and the information that they convey, is not known. The inability to observe these cells in vivo and over the course of their development has also meant that basic questions remain unexplored. For instance, how does the behaviour of a radial glial cell at one point in development, influence the final identity of its progeny? I propose to build a research team that will capitalise upon methods we have developed for observing individual radial glia and their progeny in an intact vertebrate nervous system. The visual system of Xenopus Laevis tadpoles offers non-invasive optical access to the brain, making time-lapse imaging of single cells feasible over minutes and weeks. The system s anatomy lends itself to techniques that measure the activity of the cells in a functional sensory network. We will use this to examine signalling mechanisms in radial glia and how a radial glial cell s experience influences its proliferative behaviour and the types of neuron it generates. We will also examine the interactions that continue between a radial glial cell and its daughter neurons. Finally, we will explore the relationships that exist within neuronal progeny derived from a single radial glial cell.
Max ERC Funding
1 284 808 €
Duration
Start date: 2010-02-01, End date: 2015-01-31
Project acronym activeFly
Project Circuit mechanisms of self-movement estimation during walking
Researcher (PI) M Eugenia CHIAPPE
Host Institution (HI) FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD
Call Details Starting Grant (StG), LS5, ERC-2017-STG
Summary The brain evolves, develops, and operates in the context of animal movements. As a consequence, fundamental brain functions such as spatial perception and motor control critically depend on the precise knowledge of the ongoing body motion. An accurate internal estimate of self-movement is thought to emerge from sensorimotor integration; nonetheless, which circuits perform this internal estimation, and exactly how motor-sensory coordination is implemented within these circuits are basic questions that remain to be poorly understood. There is growing evidence suggesting that, during locomotion, motor-related and visual signals interact at early stages of visual processing. In mammals, however, it is not clear what the function of this interaction is. Recently, we have shown that a population of Drosophila optic-flow processing neurons —neurons that are sensitive to self-generated visual flow, receives convergent visual and walking-related signals to form a faithful representation of the fly’s walking movements. Leveraging from these results, and combining quantitative analysis of behavior with physiology, optogenetics, and modelling, we propose to investigate circuit mechanisms of self-movement estimation during walking. We will:1) use cell specific manipulations to identify what cells are necessary to generate the motor-related activity in the population of visual neurons, 2) record from the identified neurons and correlate their activity with specific locomotor parameters, and 3) perturb the activity of different cell-types within the identified circuits to test their role in the dynamics of the visual neurons, and on the fly’s walking behavior. These experiments will establish unprecedented causal relationships among neural activity, the formation of an internal representation, and locomotor control. The identified sensorimotor principles will establish a framework that can be tested in other scenarios or animal systems with implications both in health and disease.
Summary
The brain evolves, develops, and operates in the context of animal movements. As a consequence, fundamental brain functions such as spatial perception and motor control critically depend on the precise knowledge of the ongoing body motion. An accurate internal estimate of self-movement is thought to emerge from sensorimotor integration; nonetheless, which circuits perform this internal estimation, and exactly how motor-sensory coordination is implemented within these circuits are basic questions that remain to be poorly understood. There is growing evidence suggesting that, during locomotion, motor-related and visual signals interact at early stages of visual processing. In mammals, however, it is not clear what the function of this interaction is. Recently, we have shown that a population of Drosophila optic-flow processing neurons —neurons that are sensitive to self-generated visual flow, receives convergent visual and walking-related signals to form a faithful representation of the fly’s walking movements. Leveraging from these results, and combining quantitative analysis of behavior with physiology, optogenetics, and modelling, we propose to investigate circuit mechanisms of self-movement estimation during walking. We will:1) use cell specific manipulations to identify what cells are necessary to generate the motor-related activity in the population of visual neurons, 2) record from the identified neurons and correlate their activity with specific locomotor parameters, and 3) perturb the activity of different cell-types within the identified circuits to test their role in the dynamics of the visual neurons, and on the fly’s walking behavior. These experiments will establish unprecedented causal relationships among neural activity, the formation of an internal representation, and locomotor control. The identified sensorimotor principles will establish a framework that can be tested in other scenarios or animal systems with implications both in health and disease.
Max ERC Funding
1 500 000 €
Duration
Start date: 2017-11-01, End date: 2022-10-31
Project acronym ACTSELECTCONTEXT
Project Action Selection under Contextual Uncertainty: the Role of Learning and Effective Connectivity in the Human Brain
Researcher (PI) Sven Bestmann
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Starting Grant (StG), LS5, ERC-2010-StG_20091118
Summary In a changing world, one hallmark feature of human behaviour is the ability to learn about the statistics of the environment and use this prior information for action selection. Knowing about a forthcoming event allows for adjusting our actions pre-emptively, which can optimize survival.
This proposal studies how the human brain learns about the uncertainty in the environment, and how this leads to flexible and efficient action selection.
I hypothesise that the accumulation of evidence for future movements through learning reflects a fundamental organisational principle for action control. This explains widely distributed perceptual-, learning-, decision-, and movement-related signals in the human brain. However, little is known about the concerted interplay between brain regions in terms of effective connectivity which is required for flexible behaviour.
My proposal seeks to shed light on this unresolved issue. To this end, I will use i) a multi-disciplinary neuroimaging approach, together with model-based analyses and Bayesian model comparison, adapted to human reaching behaviour as occurring in daily life; and ii) two novel approaches for testing effective connectivity: dynamic causal modelling (DCM) and concurrent transcranial magnetic stimulation-functional magnetic resonance imaging.
My prediction is that action selection relies on effective connectivity changes, which are a function of the prior information that the brain has to learn about.
If true, this will provide novel insight into the human ability to select actions, based on learning about the uncertainty which is inherent in contextual information. This is relevant for understanding action selection during development and ageing, and for pathologies of action such as Parkinson s disease or stroke.
Summary
In a changing world, one hallmark feature of human behaviour is the ability to learn about the statistics of the environment and use this prior information for action selection. Knowing about a forthcoming event allows for adjusting our actions pre-emptively, which can optimize survival.
This proposal studies how the human brain learns about the uncertainty in the environment, and how this leads to flexible and efficient action selection.
I hypothesise that the accumulation of evidence for future movements through learning reflects a fundamental organisational principle for action control. This explains widely distributed perceptual-, learning-, decision-, and movement-related signals in the human brain. However, little is known about the concerted interplay between brain regions in terms of effective connectivity which is required for flexible behaviour.
My proposal seeks to shed light on this unresolved issue. To this end, I will use i) a multi-disciplinary neuroimaging approach, together with model-based analyses and Bayesian model comparison, adapted to human reaching behaviour as occurring in daily life; and ii) two novel approaches for testing effective connectivity: dynamic causal modelling (DCM) and concurrent transcranial magnetic stimulation-functional magnetic resonance imaging.
My prediction is that action selection relies on effective connectivity changes, which are a function of the prior information that the brain has to learn about.
If true, this will provide novel insight into the human ability to select actions, based on learning about the uncertainty which is inherent in contextual information. This is relevant for understanding action selection during development and ageing, and for pathologies of action such as Parkinson s disease or stroke.
Max ERC Funding
1 341 805 €
Duration
Start date: 2011-06-01, End date: 2016-05-31
Project acronym ADDICTIONCIRCUITS
Project Drug addiction: molecular changes in reward and aversion circuits
Researcher (PI) Nils David Engblom
Host Institution (HI) LINKOPINGS UNIVERSITET
Call Details Starting Grant (StG), LS5, ERC-2010-StG_20091118
Summary Our affective and motivational state is important for our decisions, actions and quality of life. Many pathological conditions affect this state. For example, addictive drugs are hyperactivating the reward system and trigger a strong motivation for continued drug intake, whereas many somatic and psychiatric diseases lead to an aversive state, characterized by loss of motivation. I will study specific neural circuits and mechanisms underlying reward and aversion, and how pathological signaling in these systems can trigger relapse in drug addiction.
Given the important role of the dopaminergic neurons in the midbrain for many aspects of reward signaling, I will study how synaptic plasticity in these cells, and in their target neurons in the striatum, contribute to relapse in drug seeking. I will also study the circuits underlying aversion. Little is known about these circuits, but my hypothesis is that an important component of aversion is signaled by a specific neuronal population in the brainstem parabrachial nucleus, projecting to the central amygdala. We will test this hypothesis and also determine how this aversion circuit contributes to the persistence of addiction and to relapse.
To dissect this complicated system, I am developing new genetic methods for manipulating and visualizing specific functional circuits in the mouse brain. My unique combination of state-of-the-art competence in transgenics and cutting edge knowledge in the anatomy and functional organization of the circuits behind reward and aversion should allow me to decode these systems, linking discrete circuits to behavior.
Collectively, the results will indicate how signals encoding aversion and reward are integrated to control addictive behavior and they may identify novel avenues for treatment of drug addiction as well as aversion-related symptoms affecting patients with chronic inflammatory conditions and cancer.
Summary
Our affective and motivational state is important for our decisions, actions and quality of life. Many pathological conditions affect this state. For example, addictive drugs are hyperactivating the reward system and trigger a strong motivation for continued drug intake, whereas many somatic and psychiatric diseases lead to an aversive state, characterized by loss of motivation. I will study specific neural circuits and mechanisms underlying reward and aversion, and how pathological signaling in these systems can trigger relapse in drug addiction.
Given the important role of the dopaminergic neurons in the midbrain for many aspects of reward signaling, I will study how synaptic plasticity in these cells, and in their target neurons in the striatum, contribute to relapse in drug seeking. I will also study the circuits underlying aversion. Little is known about these circuits, but my hypothesis is that an important component of aversion is signaled by a specific neuronal population in the brainstem parabrachial nucleus, projecting to the central amygdala. We will test this hypothesis and also determine how this aversion circuit contributes to the persistence of addiction and to relapse.
To dissect this complicated system, I am developing new genetic methods for manipulating and visualizing specific functional circuits in the mouse brain. My unique combination of state-of-the-art competence in transgenics and cutting edge knowledge in the anatomy and functional organization of the circuits behind reward and aversion should allow me to decode these systems, linking discrete circuits to behavior.
Collectively, the results will indicate how signals encoding aversion and reward are integrated to control addictive behavior and they may identify novel avenues for treatment of drug addiction as well as aversion-related symptoms affecting patients with chronic inflammatory conditions and cancer.
Max ERC Funding
1 500 000 €
Duration
Start date: 2010-10-01, End date: 2015-09-30
Project acronym ADNABIOARC
Project From the earliest modern humans to the onset of farming (45,000-4,500 BP): the role of climate, life-style, health, migration and selection in shaping European population history
Researcher (PI) Ron Pinhasi
Host Institution (HI) UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN
Call Details Starting Grant (StG), SH6, ERC-2010-StG_20091209
Summary The colonisation of Europe by anatomically modern humans (AMHs) ca. 45,000 years before present (BP) and the transition to farming ca. 8,000 BP are two major events in human prehistory. Both events involved certain cultural and biological adaptations, technological innovations, and behavioural plasticity which are unique to our species. The reconstruction of these processes and the causality between them has so far remained elusive due to technological, methodological and logistical complexities. Major developments in our understanding of the anthropology of the Upper Palaeolithic, Mesolithic and Neolithic, and advances in ancient DNA (aDNA) technology and chronometric methods now allow us to assess in sufficient resolution the interface between these evolutionary processes, and changes in human culture and behaviour.
The proposed research will investigate the complex interface between the morphological, genetic, behavioural, and cultural factors that shaped the population history of European AMHs. The PI s interdisciplinary expertise in these areas, his access to and experience of relevant skeletal collections, and his ongoing European collaborations will allow significant progress in addressing these fundamental questions. The approach taken will include (a) the collection of bioarchaeological, aDNA, stable isotope (for the analysis of ancient diet) and radiometric data on 500 skeletons from key sites/phases in Europe and western Anatolia, and (b) the application of existing and novel aDNA, bioarchaeological and simulation methodologies. This research will yield results that transform our current understanding of major demographic and evolutionary processes and will place Europe at the forefront of anthropological biological and genetic research.
Summary
The colonisation of Europe by anatomically modern humans (AMHs) ca. 45,000 years before present (BP) and the transition to farming ca. 8,000 BP are two major events in human prehistory. Both events involved certain cultural and biological adaptations, technological innovations, and behavioural plasticity which are unique to our species. The reconstruction of these processes and the causality between them has so far remained elusive due to technological, methodological and logistical complexities. Major developments in our understanding of the anthropology of the Upper Palaeolithic, Mesolithic and Neolithic, and advances in ancient DNA (aDNA) technology and chronometric methods now allow us to assess in sufficient resolution the interface between these evolutionary processes, and changes in human culture and behaviour.
The proposed research will investigate the complex interface between the morphological, genetic, behavioural, and cultural factors that shaped the population history of European AMHs. The PI s interdisciplinary expertise in these areas, his access to and experience of relevant skeletal collections, and his ongoing European collaborations will allow significant progress in addressing these fundamental questions. The approach taken will include (a) the collection of bioarchaeological, aDNA, stable isotope (for the analysis of ancient diet) and radiometric data on 500 skeletons from key sites/phases in Europe and western Anatolia, and (b) the application of existing and novel aDNA, bioarchaeological and simulation methodologies. This research will yield results that transform our current understanding of major demographic and evolutionary processes and will place Europe at the forefront of anthropological biological and genetic research.
Max ERC Funding
1 088 386 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym ADULT
Project Analysis of the Dark Universe through Lensing Tomography
Researcher (PI) Hendrik Hoekstra
Host Institution (HI) UNIVERSITEIT LEIDEN
Call Details Starting Grant (StG), PE9, ERC-2011-StG_20101014
Summary The discoveries that the expansion of the universe is accelerating due to an unknown “dark energy”
and that most of the matter is invisible, highlight our lack of understanding of the major constituents
of the universe. These surprising findings set the stage for research in cosmology at the start of the
21st century. The objective of this proposal is to advance observational constraints to a level where we can distinguish between physical mechanisms that aim to explain the properties of dark energy and the observed distribution of dark matter throughout the universe. We use a relatively new technique called weak gravitational lensing: the accurate measurement of correlations in the orientations of distant galaxies enables us to map the dark matter distribution directly and to extract the cosmological information that is encoded by the large-scale structure.
To study the dark universe we will analyse data from a new state-of-the-art imaging survey: the Kilo-
Degree Survey (KiDS) will cover 1500 square degrees in 9 filters. The combination of its large survey
area and the availability of exquisite photometric redshifts for the sources makes KiDS the first
project that can place interesting constraints on the dark energy equation-of-state using lensing data
alone. Combined with complementary results from Planck, our measurements will provide one of the
best views of the dark side of the universe before much larger space-based projects commence.
To reach the desired accuracy we need to carefully measure the shapes of distant background galaxies. We also need to account for any intrinsic alignments that arise due to tidal interactions, rather than through lensing. Reducing these observational and physical biases to negligible levels is a necessarystep to ensure the success of KiDS and an important part of our preparation for more challenging projects such as the European-led space mission Euclid.
Summary
The discoveries that the expansion of the universe is accelerating due to an unknown “dark energy”
and that most of the matter is invisible, highlight our lack of understanding of the major constituents
of the universe. These surprising findings set the stage for research in cosmology at the start of the
21st century. The objective of this proposal is to advance observational constraints to a level where we can distinguish between physical mechanisms that aim to explain the properties of dark energy and the observed distribution of dark matter throughout the universe. We use a relatively new technique called weak gravitational lensing: the accurate measurement of correlations in the orientations of distant galaxies enables us to map the dark matter distribution directly and to extract the cosmological information that is encoded by the large-scale structure.
To study the dark universe we will analyse data from a new state-of-the-art imaging survey: the Kilo-
Degree Survey (KiDS) will cover 1500 square degrees in 9 filters. The combination of its large survey
area and the availability of exquisite photometric redshifts for the sources makes KiDS the first
project that can place interesting constraints on the dark energy equation-of-state using lensing data
alone. Combined with complementary results from Planck, our measurements will provide one of the
best views of the dark side of the universe before much larger space-based projects commence.
To reach the desired accuracy we need to carefully measure the shapes of distant background galaxies. We also need to account for any intrinsic alignments that arise due to tidal interactions, rather than through lensing. Reducing these observational and physical biases to negligible levels is a necessarystep to ensure the success of KiDS and an important part of our preparation for more challenging projects such as the European-led space mission Euclid.
Max ERC Funding
1 316 880 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym AfricanNeo
Project The African Neolithic: A genetic perspective
Researcher (PI) Carina SCHLEBUSCH
Host Institution (HI) UPPSALA UNIVERSITET
Call Details Starting Grant (StG), SH6, ERC-2017-STG
Summary The spread of farming practices in various parts of the world had a marked influence on how humans live today and how we are distributed around the globe. Around 10,000 years ago, warmer conditions lead to population increases, coinciding with the invention of farming in several places around the world. Archaeological evidence attest to the spread of these practices to neighboring regions. In many cases this lead to whole continents being converted from hunter-gatherer to farming societies. It is however difficult to see from archaeological records if only the farming culture spread to other places or whether the farming people themselves migrated. Investigating patterns of genetic variation for farming populations and for remaining hunter-gatherer groups can help to resolve questions on population movements co-occurring with the spread of farming practices. It can further shed light on the routes of migration and dates when migrants arrived.
The spread of farming to Europe has been thoroughly investigated in the fields of archaeology, linguistics and genetics, while on other continents these events have been less investigated. In Africa, mainly linguistic and archaeological studies have attempted to elucidate the spread of farming and herding practices. I propose to investigate the movement of farmer and pastoral groups in Africa, by typing densely spaced genome-wide variant positions in a large number of African populations. The data will be used to infer how farming and pastoralism was introduced to various regions, where the incoming people originated from and when these (potential) population movements occurred. Through this study, the Holocene history of Africa will be revealed and placed into a global context of migration, mobility and cultural transitions. Additionally the study will give due credence to one of the largest Neolithic expansion events, the Bantu-expansion, which caused a pronounced change in the demographic landscape of the African continent
Summary
The spread of farming practices in various parts of the world had a marked influence on how humans live today and how we are distributed around the globe. Around 10,000 years ago, warmer conditions lead to population increases, coinciding with the invention of farming in several places around the world. Archaeological evidence attest to the spread of these practices to neighboring regions. In many cases this lead to whole continents being converted from hunter-gatherer to farming societies. It is however difficult to see from archaeological records if only the farming culture spread to other places or whether the farming people themselves migrated. Investigating patterns of genetic variation for farming populations and for remaining hunter-gatherer groups can help to resolve questions on population movements co-occurring with the spread of farming practices. It can further shed light on the routes of migration and dates when migrants arrived.
The spread of farming to Europe has been thoroughly investigated in the fields of archaeology, linguistics and genetics, while on other continents these events have been less investigated. In Africa, mainly linguistic and archaeological studies have attempted to elucidate the spread of farming and herding practices. I propose to investigate the movement of farmer and pastoral groups in Africa, by typing densely spaced genome-wide variant positions in a large number of African populations. The data will be used to infer how farming and pastoralism was introduced to various regions, where the incoming people originated from and when these (potential) population movements occurred. Through this study, the Holocene history of Africa will be revealed and placed into a global context of migration, mobility and cultural transitions. Additionally the study will give due credence to one of the largest Neolithic expansion events, the Bantu-expansion, which caused a pronounced change in the demographic landscape of the African continent
Max ERC Funding
1 500 000 €
Duration
Start date: 2017-11-01, End date: 2022-10-31
Project acronym Aftermath
Project THE AFTERMATH OF THE EAST ASIAN WAR OF 1592-1598.
Researcher (PI) Rebekah CLEMENTS
Host Institution (HI) UNIVERSITAT AUTONOMA DE BARCELONA
Call Details Starting Grant (StG), SH6, ERC-2017-STG
Summary Aftermath seeks to understand the legacy of the East Asian War of 1592-1598. This conflict involved over 500,000 combatants from Japan, China, and Korea; up to 100,000 Korean civilians were abducted to Japan. The war caused momentous demographic upheaval and widespread destruction, but also had long-lasting cultural impact as a result of the removal to Japan of Korean technology and skilled labourers. The conflict and its aftermath bear striking parallels to events in East Asia during World War 2, and memories of the 16th century war remain deeply resonant in the region. However, the war and its immediate aftermath are also significant because they occurred at the juncture of periods often characterized as “medieval” and “early modern” in the East Asian case. What were the implications for the social, economic, and cultural contours of early modern East Asia? What can this conflict tell us about war “aftermath” across historical periods and about such periodization itself? There is little Western scholarship on the war and few studies in any language cross linguistic, disciplinary, and national boundaries to achieve a regional perspective that reflects the interconnected history of East Asia. Aftermath will radically alter our understanding of the region’s history by providing the first analysis of the state of East Asia as a result of the war. The focus will be on the period up to the middle of the 17th century, but not precluding ongoing effects. The team, with expertise covering Japan, Korea, and China, will investigate three themes: the movement of people and demographic change, the impact on the natural environment, and technological diffusion. The project will be the first large scale investigation to use Japanese, Korean, and Chinese sources to understand the war’s aftermath. It will broaden understandings of the early modern world, and push the boundaries of war legacy studies by exploring the meanings of “aftermath” in the early modern East Asian context.
Summary
Aftermath seeks to understand the legacy of the East Asian War of 1592-1598. This conflict involved over 500,000 combatants from Japan, China, and Korea; up to 100,000 Korean civilians were abducted to Japan. The war caused momentous demographic upheaval and widespread destruction, but also had long-lasting cultural impact as a result of the removal to Japan of Korean technology and skilled labourers. The conflict and its aftermath bear striking parallels to events in East Asia during World War 2, and memories of the 16th century war remain deeply resonant in the region. However, the war and its immediate aftermath are also significant because they occurred at the juncture of periods often characterized as “medieval” and “early modern” in the East Asian case. What were the implications for the social, economic, and cultural contours of early modern East Asia? What can this conflict tell us about war “aftermath” across historical periods and about such periodization itself? There is little Western scholarship on the war and few studies in any language cross linguistic, disciplinary, and national boundaries to achieve a regional perspective that reflects the interconnected history of East Asia. Aftermath will radically alter our understanding of the region’s history by providing the first analysis of the state of East Asia as a result of the war. The focus will be on the period up to the middle of the 17th century, but not precluding ongoing effects. The team, with expertise covering Japan, Korea, and China, will investigate three themes: the movement of people and demographic change, the impact on the natural environment, and technological diffusion. The project will be the first large scale investigation to use Japanese, Korean, and Chinese sources to understand the war’s aftermath. It will broaden understandings of the early modern world, and push the boundaries of war legacy studies by exploring the meanings of “aftermath” in the early modern East Asian context.
Max ERC Funding
1 444 980 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym AgricUrb
Project The Agricultural Origins of Urban Civilization
Researcher (PI) Amy Marie Bogaard
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Starting Grant (StG), SH6, ERC-2012-StG_20111124
Summary The establishment of farming is a pivotal moment in human history, setting the stage for the emergence of class-based society and urbanization. Monolithic views of the nature and development of early agriculture, however, have prevented clear understanding of how exactly farming fuelled, shaped and sustained the emergence of complex societies. A breakthrough in archaeological approach is needed to determine the actual roles of farming in the emergence of social complexity. The methodology required must push beyond conventional interpretation of the most direct farming evidence – archaeobotanical remains of crops and associated arable weeds – to reconstruct not only what crops were grown, but also how, where and why farming was practised. Addressing these related aspects, in contexts ranging from early agricultural villages to some of the world’s earliest cities, would provide the key to unraveling the contribution of farming to the development of lasting social inequalities. The research proposed here takes a new interdisciplinary approach combining archaeobotany, plant stable isotope chemistry and functional plant ecology, building on groundwork laid in previous research by the applicant. These approaches will be applied to two relatively well researched areas, western Asia and Europe, where a series of sites that chart multiple pathways to early complex societies offer rich plant and other bioarchaeological assemblages. The proposed project will set a wholly new standard of insight into early farming and its relationship with early civilization, facilitating similar approaches in other parts of the world and the construction of comparative perspectives on the global significance of early agriculture in social development.
Summary
The establishment of farming is a pivotal moment in human history, setting the stage for the emergence of class-based society and urbanization. Monolithic views of the nature and development of early agriculture, however, have prevented clear understanding of how exactly farming fuelled, shaped and sustained the emergence of complex societies. A breakthrough in archaeological approach is needed to determine the actual roles of farming in the emergence of social complexity. The methodology required must push beyond conventional interpretation of the most direct farming evidence – archaeobotanical remains of crops and associated arable weeds – to reconstruct not only what crops were grown, but also how, where and why farming was practised. Addressing these related aspects, in contexts ranging from early agricultural villages to some of the world’s earliest cities, would provide the key to unraveling the contribution of farming to the development of lasting social inequalities. The research proposed here takes a new interdisciplinary approach combining archaeobotany, plant stable isotope chemistry and functional plant ecology, building on groundwork laid in previous research by the applicant. These approaches will be applied to two relatively well researched areas, western Asia and Europe, where a series of sites that chart multiple pathways to early complex societies offer rich plant and other bioarchaeological assemblages. The proposed project will set a wholly new standard of insight into early farming and its relationship with early civilization, facilitating similar approaches in other parts of the world and the construction of comparative perspectives on the global significance of early agriculture in social development.
Max ERC Funding
1 199 647 €
Duration
Start date: 2013-02-01, End date: 2017-01-31
Project acronym AIDA
Project An Illumination of the Dark Ages: modeling reionization and interpreting observations
Researcher (PI) Andrei Albert Mesinger
Host Institution (HI) SCUOLA NORMALE SUPERIORE
Call Details Starting Grant (StG), PE9, ERC-2014-STG
Summary "Understanding the dawn of the first galaxies and how their light permeated the early Universe is at the very frontier of modern astrophysical cosmology. Generous resources, including ambitions observational programs, are being devoted to studying these epochs of Cosmic Dawn (CD) and Reionization (EoR). In order to interpret these observations, we propose to build on our widely-used, semi-numeric simulation tool, 21cmFAST, and apply it to observations. Using sub-grid, semi-analytic models, we will incorporate additional physical processes governing the evolution of sources and sinks of ionizing photons. The resulting state-of-the-art simulations will be well poised to interpret topical observations of quasar spectra and the cosmic 21cm signal. They would be both physically-motivated and fast, allowing us to rapidly explore astrophysical parameter space. We will statistically quantify the resulting degeneracies and constraints, providing a robust answer to the question, ""What can we learn from EoR/CD observations?"" As an end goal, these investigations will help us understand when the first generations of galaxies formed, how they drove the EoR, and what are the associated large-scale observational signatures."
Summary
"Understanding the dawn of the first galaxies and how their light permeated the early Universe is at the very frontier of modern astrophysical cosmology. Generous resources, including ambitions observational programs, are being devoted to studying these epochs of Cosmic Dawn (CD) and Reionization (EoR). In order to interpret these observations, we propose to build on our widely-used, semi-numeric simulation tool, 21cmFAST, and apply it to observations. Using sub-grid, semi-analytic models, we will incorporate additional physical processes governing the evolution of sources and sinks of ionizing photons. The resulting state-of-the-art simulations will be well poised to interpret topical observations of quasar spectra and the cosmic 21cm signal. They would be both physically-motivated and fast, allowing us to rapidly explore astrophysical parameter space. We will statistically quantify the resulting degeneracies and constraints, providing a robust answer to the question, ""What can we learn from EoR/CD observations?"" As an end goal, these investigations will help us understand when the first generations of galaxies formed, how they drove the EoR, and what are the associated large-scale observational signatures."
Max ERC Funding
1 468 750 €
Duration
Start date: 2015-05-01, End date: 2021-01-31
Project acronym AncientAdhesives
Project Ancient Adhesives - A window on prehistoric technological complexity
Researcher (PI) Geeske LANGEJANS
Host Institution (HI) TECHNISCHE UNIVERSITEIT DELFT
Call Details Starting Grant (StG), SH6, ERC-2018-STG
Summary AncientAdhesives addresses the most crucial problem in Palaeolithic archaeology: How to reliably infer cognitively complex behaviour in the deep past. To study the evolution of Neandertal and modern human cognitive capacities, certain find categories are taken to reflect behavioural and thus cognitive complexitye.g. Among these are art objects, personal ornaments and complex technology. Of these technology is best-suited to trace changing behavioural complexity, because 1) it is the least vulnerable to differential preservation, and 2) technological behaviours are present throughout the history of our genus. Adhesives are the oldest examples of highly complex technology. They are also known earlier from Neandertal than from modern human contexts. Understanding their technological complexity is thus essential to resolve debates on differences in cognitive complexity of both species. However, currently, there is no agreed-upon method to measure technological complexity.
The aim of AncientAdhesives is to create the first reliable method to compare the complexity of Neandertal and modern human technologies. This is achieved through three main objectives:
1. Collate the first comprehensive body of knowledge on adhesives, including ethnography, archaeology and (experimental) material properties (e.g. preservation, production).
2. Develop a new archaeological methodology by modifying industrial process modelling for archaeological applications.
3. Evaluate the development of adhesive technological complexity through time and across species using a range of explicit complexity measures.
By analysing adhesives, it is possible to measure technological complexity, to identify idiosyncratic behaviours and to track adoption and loss of complex technological know-how. This represents a step-change in debates about the development of behavioural complexity and differences/similarities between Neanderthals and modern humans.
Summary
AncientAdhesives addresses the most crucial problem in Palaeolithic archaeology: How to reliably infer cognitively complex behaviour in the deep past. To study the evolution of Neandertal and modern human cognitive capacities, certain find categories are taken to reflect behavioural and thus cognitive complexitye.g. Among these are art objects, personal ornaments and complex technology. Of these technology is best-suited to trace changing behavioural complexity, because 1) it is the least vulnerable to differential preservation, and 2) technological behaviours are present throughout the history of our genus. Adhesives are the oldest examples of highly complex technology. They are also known earlier from Neandertal than from modern human contexts. Understanding their technological complexity is thus essential to resolve debates on differences in cognitive complexity of both species. However, currently, there is no agreed-upon method to measure technological complexity.
The aim of AncientAdhesives is to create the first reliable method to compare the complexity of Neandertal and modern human technologies. This is achieved through three main objectives:
1. Collate the first comprehensive body of knowledge on adhesives, including ethnography, archaeology and (experimental) material properties (e.g. preservation, production).
2. Develop a new archaeological methodology by modifying industrial process modelling for archaeological applications.
3. Evaluate the development of adhesive technological complexity through time and across species using a range of explicit complexity measures.
By analysing adhesives, it is possible to measure technological complexity, to identify idiosyncratic behaviours and to track adoption and loss of complex technological know-how. This represents a step-change in debates about the development of behavioural complexity and differences/similarities between Neanderthals and modern humans.
Max ERC Funding
1 499 926 €
Duration
Start date: 2019-02-01, End date: 2024-01-31
Project acronym ANISOTROPIC UNIVERSE
Project The anisotropic universe -- a reality or fluke?
Researcher (PI) Hans Kristian Kamfjord Eriksen
Host Institution (HI) UNIVERSITETET I OSLO
Call Details Starting Grant (StG), PE9, ERC-2010-StG_20091028
Summary "During the last decade, a strikingly successful cosmological concordance model has been established. With only six free parameters, nearly all observables, comprising millions of data points, may be fitted with outstanding precision. However, in this beautiful picture a few ""blemishes"" have turned up, apparently not consistent with the standard model: While the model predicts that the universe is isotropic (i.e., looks the same in all directions) and homogeneous (i.e., the statistical properties are the same everywhere), subtle hints of the contrary are now seen. For instance, peculiar preferred directions and correlations are observed in the cosmic microwave background; some studies considering nearby galaxies suggest the existence of anomalous large-scale cosmic flows; a study of distant quasars hints towards unexpected large-scale correlations. All of these reports are individually highly intriguing, and together they hint toward a more complicated and interesting universe than previously imagined -- but none of the reports can be considered decisive. One major obstacle in many cases has been the relatively poor data quality.
This is currently about to change, as the next generation of new and far more powerful experiments are coming online. Of special interest to me are Planck, an ESA-funded CMB satellite currently taking data; QUIET, a ground-based CMB polarization experiment located in Chile; and various large-scale structure (LSS) data sets, such as the SDSS and 2dF surveys, and in the future Euclid, a proposed galaxy survey satellite also funded by ESA. By combining the world s best data from both CMB and LSS measurements, I will in the proposed project attempt to settle this question: Is our universe really anisotropic? Or are these recent claims only the results of systematic errors or statistical flukes? If the claims turn out to hold against this tide of new and high-quality data, then cosmology as a whole may need to be re-written."
Summary
"During the last decade, a strikingly successful cosmological concordance model has been established. With only six free parameters, nearly all observables, comprising millions of data points, may be fitted with outstanding precision. However, in this beautiful picture a few ""blemishes"" have turned up, apparently not consistent with the standard model: While the model predicts that the universe is isotropic (i.e., looks the same in all directions) and homogeneous (i.e., the statistical properties are the same everywhere), subtle hints of the contrary are now seen. For instance, peculiar preferred directions and correlations are observed in the cosmic microwave background; some studies considering nearby galaxies suggest the existence of anomalous large-scale cosmic flows; a study of distant quasars hints towards unexpected large-scale correlations. All of these reports are individually highly intriguing, and together they hint toward a more complicated and interesting universe than previously imagined -- but none of the reports can be considered decisive. One major obstacle in many cases has been the relatively poor data quality.
This is currently about to change, as the next generation of new and far more powerful experiments are coming online. Of special interest to me are Planck, an ESA-funded CMB satellite currently taking data; QUIET, a ground-based CMB polarization experiment located in Chile; and various large-scale structure (LSS) data sets, such as the SDSS and 2dF surveys, and in the future Euclid, a proposed galaxy survey satellite also funded by ESA. By combining the world s best data from both CMB and LSS measurements, I will in the proposed project attempt to settle this question: Is our universe really anisotropic? Or are these recent claims only the results of systematic errors or statistical flukes? If the claims turn out to hold against this tide of new and high-quality data, then cosmology as a whole may need to be re-written."
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym ANXIETY MECHANISMS
Project Neurocognitive mechanisms of human anxiety: identifying and
targeting disrupted function
Researcher (PI) Sonia Jane Bishop
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Starting Grant (StG), LS5, ERC-2010-StG_20091118
Summary Within a 12 month period, 20% of adults will meet criteria for one or more clinical anxiety disorders (ADs). These disorders are hugely disruptive, placing an emotional burden on individuals and their families. While both cognitive behavioural therapy and pharmacological treatment are widely viewed as effective strategies for managing ADs, systematic review of the literature reveals that only 30–45% of patients demonstrate a marked response to treatment (anxiety levels being reduced into the nonaffected range). In addition, a significant proportion of initial responders relapse after treatment is discontinued. There is hence a real and marked need to improve upon current approaches to AD treatment.
One possible avenue for improving response rates is through optimizing initial treatment selection. Specifically, it is possible that certain individuals might respond better to cognitive interventions while others might respond better to pharmacological treatment. Recently it has been suggested that there may be two or more distinct biological pathways disrupted in anxiety. If this is the case, then specification of these pathways may be an important step in predicting which individuals are likely to respond to which treatment. Few studies have focused upon this issue and, in particular, upon identifying neural markers that might predict response to cognitive (as opposed to pharmacological) intervention. The proposed research aims to address this. Specifically, it tests the hypothesis that there are at least two mechanisms disrupted in ADs, one entailing amygdala hyper-responsivity to cues that signal threat, the other impoverished recruitment of frontal regions that support cognitive and emotional regulation.
Two series of functional magnetic resonance imaging experiments will be conducted. These will investigate differences in amygdala and frontal function during (a) attentional processing and (b) fear conditioning. Initial clinical experiments will investigate whether Generalised Anxiety Disorder and Specific Phobia involve differing degrees of disruption to frontal versus amygdala function during these tasks. This work will feed into training studies, the goal being to characterize AD patient subgroups that benefit from cognitive training.
Summary
Within a 12 month period, 20% of adults will meet criteria for one or more clinical anxiety disorders (ADs). These disorders are hugely disruptive, placing an emotional burden on individuals and their families. While both cognitive behavioural therapy and pharmacological treatment are widely viewed as effective strategies for managing ADs, systematic review of the literature reveals that only 30–45% of patients demonstrate a marked response to treatment (anxiety levels being reduced into the nonaffected range). In addition, a significant proportion of initial responders relapse after treatment is discontinued. There is hence a real and marked need to improve upon current approaches to AD treatment.
One possible avenue for improving response rates is through optimizing initial treatment selection. Specifically, it is possible that certain individuals might respond better to cognitive interventions while others might respond better to pharmacological treatment. Recently it has been suggested that there may be two or more distinct biological pathways disrupted in anxiety. If this is the case, then specification of these pathways may be an important step in predicting which individuals are likely to respond to which treatment. Few studies have focused upon this issue and, in particular, upon identifying neural markers that might predict response to cognitive (as opposed to pharmacological) intervention. The proposed research aims to address this. Specifically, it tests the hypothesis that there are at least two mechanisms disrupted in ADs, one entailing amygdala hyper-responsivity to cues that signal threat, the other impoverished recruitment of frontal regions that support cognitive and emotional regulation.
Two series of functional magnetic resonance imaging experiments will be conducted. These will investigate differences in amygdala and frontal function during (a) attentional processing and (b) fear conditioning. Initial clinical experiments will investigate whether Generalised Anxiety Disorder and Specific Phobia involve differing degrees of disruption to frontal versus amygdala function during these tasks. This work will feed into training studies, the goal being to characterize AD patient subgroups that benefit from cognitive training.
Max ERC Funding
1 708 407 €
Duration
Start date: 2011-04-01, End date: 2016-08-31
Project acronym APROCS
Project Automated Linear Parameter-Varying Modeling and Control Synthesis for Nonlinear Complex Systems
Researcher (PI) Roland TOTH
Host Institution (HI) TECHNISCHE UNIVERSITEIT EINDHOVEN
Call Details Starting Grant (StG), PE7, ERC-2016-STG
Summary Linear Parameter-Varying (LPV) systems are flexible mathematical models capable of representing Nonlinear (NL)/Time-Varying (TV) dynamical behaviors of complex physical systems (e.g., wafer scanners, car engines, chemical reactors), often encountered in engineering, via a linear structure. The LPV framework provides computationally efficient and robust approaches to synthesize digital controllers that can ensure desired operation of such systems - making it attractive to (i) high-tech mechatronic, (ii) automotive and (iii) chemical-process applications. Such a framework is important to meet with the increasing operational demands of systems in these industrial sectors and to realize future technological targets. However, recent studies have shown that, to fully exploit the potential of the LPV framework, a number of limiting factors of the underlying theory ask a for serious innovation, as currently it is not understood how to (1) automate exact and low-complexity LPV modeling of real-world applications and how to refine uncertain aspects of these models efficiently by the help of measured data, (2) incorporate control objectives directly into modeling and to develop model reduction approaches for control, and (3) how to see modeling & control synthesis as a unified, closed-loop system synthesis approach directly oriented for the underlying NL/TV system. Furthermore, due to the increasingly cyber-physical nature of applications, (4) control synthesis is needed in a plug & play fashion, where if sub-systems are modified or exchanged, then the control design and the model of the whole system are only incrementally updated. This project aims to surmount Challenges (1)-(4) by establishing an innovative revolution of the LPV framework supported by a software suite and extensive empirical studies on real-world industrial applications; with a potential to ensure a leading role of technological innovation of the EU in the high-impact industrial sectors (i)-(iii).
Summary
Linear Parameter-Varying (LPV) systems are flexible mathematical models capable of representing Nonlinear (NL)/Time-Varying (TV) dynamical behaviors of complex physical systems (e.g., wafer scanners, car engines, chemical reactors), often encountered in engineering, via a linear structure. The LPV framework provides computationally efficient and robust approaches to synthesize digital controllers that can ensure desired operation of such systems - making it attractive to (i) high-tech mechatronic, (ii) automotive and (iii) chemical-process applications. Such a framework is important to meet with the increasing operational demands of systems in these industrial sectors and to realize future technological targets. However, recent studies have shown that, to fully exploit the potential of the LPV framework, a number of limiting factors of the underlying theory ask a for serious innovation, as currently it is not understood how to (1) automate exact and low-complexity LPV modeling of real-world applications and how to refine uncertain aspects of these models efficiently by the help of measured data, (2) incorporate control objectives directly into modeling and to develop model reduction approaches for control, and (3) how to see modeling & control synthesis as a unified, closed-loop system synthesis approach directly oriented for the underlying NL/TV system. Furthermore, due to the increasingly cyber-physical nature of applications, (4) control synthesis is needed in a plug & play fashion, where if sub-systems are modified or exchanged, then the control design and the model of the whole system are only incrementally updated. This project aims to surmount Challenges (1)-(4) by establishing an innovative revolution of the LPV framework supported by a software suite and extensive empirical studies on real-world industrial applications; with a potential to ensure a leading role of technological innovation of the EU in the high-impact industrial sectors (i)-(iii).
Max ERC Funding
1 493 561 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym aQUARiUM
Project QUAntum nanophotonics in Rolled-Up Metamaterials
Researcher (PI) Humeyra CAGLAYAN
Host Institution (HI) TAMPEREEN KORKEAKOULUSAATIO SR
Call Details Starting Grant (StG), PE7, ERC-2018-STG
Summary Novel sophisticated technologies that exploit the laws of quantum physics form a cornerstone for the future well-being, economic growth and security of Europe. Here photonic devices have gained a prominent position because the absorption, emission, propagation or storage of a photon is a process that can be harnessed at a fundamental level and render more practical ways to use light for such applications. However, the interaction of light with single quantum systems under ambient conditions is typically very weak and difficult to control. Furthermore, there are quantum phenomena occurring in matter at nanometer length scales that are currently not well understood. These deficiencies have a direct and severe impact on creating a bridge between quantum physics and photonic device technologies. aQUARiUM, precisely address the issue of controlling and enhancing the interaction between few photons and rolled-up nanostructures with ability to be deployed in practical applications.
With aQUARiUM, we will take epsilon (permittivity)-near-zero (ENZ) metamaterials into quantum nanophotonics. To this end, we will integrate quantum emitters with rolled-up waveguides, that act as ENZ metamaterial, to expand and redefine the range of light-matter interactions. We will explore the electromagnetic design freedom enabled by the extended modes of ENZ medium, which “stretches” the effective wavelength inside the structure. Specifically, aQUARiUM is built around the following two objectives: (i) Enhancing light-matter interactions with single emitters (Enhance) independent of emitter position. (ii) Enabling collective excitations in dense emitter ensembles (Collect) coherently connect emitters on nanophotonic devices to obtain coherent emission.
aQUARiUM aims to create novel light-sources and long-term entanglement generation and beyond. The envisioned outcome of aQUARiUM is a wholly new photonic platform applicable across a diverse range of areas.
Summary
Novel sophisticated technologies that exploit the laws of quantum physics form a cornerstone for the future well-being, economic growth and security of Europe. Here photonic devices have gained a prominent position because the absorption, emission, propagation or storage of a photon is a process that can be harnessed at a fundamental level and render more practical ways to use light for such applications. However, the interaction of light with single quantum systems under ambient conditions is typically very weak and difficult to control. Furthermore, there are quantum phenomena occurring in matter at nanometer length scales that are currently not well understood. These deficiencies have a direct and severe impact on creating a bridge between quantum physics and photonic device technologies. aQUARiUM, precisely address the issue of controlling and enhancing the interaction between few photons and rolled-up nanostructures with ability to be deployed in practical applications.
With aQUARiUM, we will take epsilon (permittivity)-near-zero (ENZ) metamaterials into quantum nanophotonics. To this end, we will integrate quantum emitters with rolled-up waveguides, that act as ENZ metamaterial, to expand and redefine the range of light-matter interactions. We will explore the electromagnetic design freedom enabled by the extended modes of ENZ medium, which “stretches” the effective wavelength inside the structure. Specifically, aQUARiUM is built around the following two objectives: (i) Enhancing light-matter interactions with single emitters (Enhance) independent of emitter position. (ii) Enabling collective excitations in dense emitter ensembles (Collect) coherently connect emitters on nanophotonic devices to obtain coherent emission.
aQUARiUM aims to create novel light-sources and long-term entanglement generation and beyond. The envisioned outcome of aQUARiUM is a wholly new photonic platform applicable across a diverse range of areas.
Max ERC Funding
1 499 431 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym AR.C.H.I.VES
Project A comparative history of archives in late medieval and early modern Italy
Researcher (PI) Filippo Luciano Carlo De Vivo
Host Institution (HI) BIRKBECK COLLEGE - UNIVERSITY OF LONDON
Call Details Starting Grant (StG), SH6, ERC-2011-StG_20101124
Summary Most historians work in archives, but generally have not made archives into their primary object of research. While we tend to be preoccupied by documentary loss, what is striking is the sheer amount of paperwork preserved over the centuries. We need to study the reasons for this preservation.
This project wishes to study the history of the archives and of the chanceries that oversaw their production storage and organization in late medieval and early modern Italy: essentially from the creation of the first chanceries in city-states in the late twelfth century to the opening of the Archivi di Stato that, after the ancient states’ dissolution, preserved documents as tools for scholarship rather than administration. Because of its fragmented political history, concentrating on Italy means having access to the archives of a wide variety of regimes; in turn, as institutions pursuing similar functions, archives lend themselves to comparison and therefore such research may help us overcome the traditional disconnectedness in the study of Italy’s past.
The project proposes to break significantly new ground, first, by adopting a comparative approach through the in-depth analysis of seven case studies and, second, by contextualising the study of archives away from institutional history in a wider social and cultural context, by focusing on six themes researched in six successive phases: 1) the political role of archives, and the efforts devoted by governments to their development; 2) their organization, subdivisions, referencing systems; 3) the material culture of documents and physical repositories as well as spatial locations; 4) the social characteristiscs of the staff; 5) the archives’ place in society, including their access and misuse; 6) their use by historians. As implied in the choice of these themes, the project is deliberately interdisciplinary, and aims at the mutually beneficial exchange between archivists, social, political cultural and art historians.
Summary
Most historians work in archives, but generally have not made archives into their primary object of research. While we tend to be preoccupied by documentary loss, what is striking is the sheer amount of paperwork preserved over the centuries. We need to study the reasons for this preservation.
This project wishes to study the history of the archives and of the chanceries that oversaw their production storage and organization in late medieval and early modern Italy: essentially from the creation of the first chanceries in city-states in the late twelfth century to the opening of the Archivi di Stato that, after the ancient states’ dissolution, preserved documents as tools for scholarship rather than administration. Because of its fragmented political history, concentrating on Italy means having access to the archives of a wide variety of regimes; in turn, as institutions pursuing similar functions, archives lend themselves to comparison and therefore such research may help us overcome the traditional disconnectedness in the study of Italy’s past.
The project proposes to break significantly new ground, first, by adopting a comparative approach through the in-depth analysis of seven case studies and, second, by contextualising the study of archives away from institutional history in a wider social and cultural context, by focusing on six themes researched in six successive phases: 1) the political role of archives, and the efforts devoted by governments to their development; 2) their organization, subdivisions, referencing systems; 3) the material culture of documents and physical repositories as well as spatial locations; 4) the social characteristiscs of the staff; 5) the archives’ place in society, including their access and misuse; 6) their use by historians. As implied in the choice of these themes, the project is deliberately interdisciplinary, and aims at the mutually beneficial exchange between archivists, social, political cultural and art historians.
Max ERC Funding
1 107 070 €
Duration
Start date: 2012-02-01, End date: 2016-07-31
Project acronym ARABCOMMAPH
Project Arabic Commentaries on the Hippocratic Aphorisms
Researcher (PI) Peter Ernst Pormann
Host Institution (HI) THE UNIVERSITY OF MANCHESTER
Call Details Starting Grant (StG), SH6, ERC-2011-StG_20101124
Summary The Hippocratic Aphorisms have exerted a singular influence over generations of physicians both in the East and in the West. Galen (d. c. 216) produced an extensive commentary on this text, as did other medical authors writing in Greek, Latin, Arabic, and Hebrew. The Arabic tradition is particularly rich, with more than a dozen commentaries extant in over a hundred manuscripts. These Arabic commentaries did not merely contain scholastic debates, but constituted important venues for innovation and change. Moreover, they impacted on medical practice, as the Aphorisms were so popular that both doctors and their patients knew them by heart. Despite their importance for medical theory and practice, previous scholarship on them has barely scratched the surface. Put succinctly, the present project breaks new ground by conducting an in-depth study of this tradition through a highly innovative methodology: it approaches the available evidence as a corpus, to be constituted electronically, and to be analysed in an interdisciplinary way.
We propose to survey the manuscript tradition of the Arabic commentaries on the Hippocratic Aphorisms, beginning with Ḥunayn ibn ʾIsḥāq’s Arabic translation of Galen’s commentary. On the basis of this philological survey that will employ a new approach to stemmatics, we shall produce provisional electronic XML editions of the commentaries. These texts will constitute the corpus, some 600,000 words long, that we shall investigate through the latest IT tools to address a set of interdisciplinary problems: textual criticism of the Greek sources; Graeco-Arabic translation technique; methods of quotation; hermeneutic procedures; development of medical theory; medical practice; and social history of medicine. Both in approach and scope, the project will bring about a paradigm shift in our study of exegetical cultures in Arabic, and the role that commentaries played in the transmission and transformation of scientific knowledge.
Summary
The Hippocratic Aphorisms have exerted a singular influence over generations of physicians both in the East and in the West. Galen (d. c. 216) produced an extensive commentary on this text, as did other medical authors writing in Greek, Latin, Arabic, and Hebrew. The Arabic tradition is particularly rich, with more than a dozen commentaries extant in over a hundred manuscripts. These Arabic commentaries did not merely contain scholastic debates, but constituted important venues for innovation and change. Moreover, they impacted on medical practice, as the Aphorisms were so popular that both doctors and their patients knew them by heart. Despite their importance for medical theory and practice, previous scholarship on them has barely scratched the surface. Put succinctly, the present project breaks new ground by conducting an in-depth study of this tradition through a highly innovative methodology: it approaches the available evidence as a corpus, to be constituted electronically, and to be analysed in an interdisciplinary way.
We propose to survey the manuscript tradition of the Arabic commentaries on the Hippocratic Aphorisms, beginning with Ḥunayn ibn ʾIsḥāq’s Arabic translation of Galen’s commentary. On the basis of this philological survey that will employ a new approach to stemmatics, we shall produce provisional electronic XML editions of the commentaries. These texts will constitute the corpus, some 600,000 words long, that we shall investigate through the latest IT tools to address a set of interdisciplinary problems: textual criticism of the Greek sources; Graeco-Arabic translation technique; methods of quotation; hermeneutic procedures; development of medical theory; medical practice; and social history of medicine. Both in approach and scope, the project will bring about a paradigm shift in our study of exegetical cultures in Arabic, and the role that commentaries played in the transmission and transformation of scientific knowledge.
Max ERC Funding
1 499 968 €
Duration
Start date: 2012-02-01, End date: 2017-07-31
Project acronym ARCHGLASS
Project Archaeometry and Archaeology of Ancient Glass Production as a Source for Ancient Technology and Trade of Raw Materials
Researcher (PI) Patrick Degryse
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Starting Grant (StG), SH6, ERC-2009-StG
Summary In this project, innovative techniques to reconstruct ancient economies are developed and new insights in the trade and processing of mineral raw materials are gained based on interdisciplinary archaeological and archaeometrical research. An innovative methodology for and a practical provenance database of the primary origin of natron glass from the Hellenistic-Roman world will be established. The project investigates both production and consumer sites of glass raw materials using both typo-chronological and archaeometrical (isotope geochemical) study of finished glass artefacts at consumer sites as well as mineralogical and chemical characterisation of raw glass and mineral resources at primary production sites. Suitable sand resources in the locations described by ancient authors will be identified through geological prospecting on the basis of literature review and field work. Sand and flux (natron) deposits will be mineralogically and geochemically characterised and compared to the results of the archaeological and geochemical investigations of the glass. Through integrated typo-chronological and archaeometrical analysis, the possible occurrence of primary production centres of raw glass outside the known locations in Syro-Palestine and Egypt, particularly in North-Africa, Italy, Spain and Gaul will be critically studied. In this way, historical, archaeological and archaeometrical data are combined, developing new interdisciplinary techniques for innovative archaeological interpretation of glass trade in the Hellenistic-Roman world.
Summary
In this project, innovative techniques to reconstruct ancient economies are developed and new insights in the trade and processing of mineral raw materials are gained based on interdisciplinary archaeological and archaeometrical research. An innovative methodology for and a practical provenance database of the primary origin of natron glass from the Hellenistic-Roman world will be established. The project investigates both production and consumer sites of glass raw materials using both typo-chronological and archaeometrical (isotope geochemical) study of finished glass artefacts at consumer sites as well as mineralogical and chemical characterisation of raw glass and mineral resources at primary production sites. Suitable sand resources in the locations described by ancient authors will be identified through geological prospecting on the basis of literature review and field work. Sand and flux (natron) deposits will be mineralogically and geochemically characterised and compared to the results of the archaeological and geochemical investigations of the glass. Through integrated typo-chronological and archaeometrical analysis, the possible occurrence of primary production centres of raw glass outside the known locations in Syro-Palestine and Egypt, particularly in North-Africa, Italy, Spain and Gaul will be critically studied. In this way, historical, archaeological and archaeometrical data are combined, developing new interdisciplinary techniques for innovative archaeological interpretation of glass trade in the Hellenistic-Roman world.
Max ERC Funding
954 960 €
Duration
Start date: 2009-11-01, End date: 2014-10-31
Project acronym AstroFunc
Project Molecular Studies of Astrocyte Function in Health and Disease
Researcher (PI) Matthew Guy Holt
Host Institution (HI) VIB
Call Details Starting Grant (StG), LS5, ERC-2011-StG_20101109
Summary Brain consists of two basic cell types – neurons and glia. However, the study of glia in brain function has traditionally been neglected in favor of their more “illustrious” counter-parts – neurons that are classed as the computational units of the brain. Glia have usually been classed as “brain glue” - a supportive matrix on which neurons grow and function. However, recent evidence suggests that glia are more than passive “glue” and actually modulate neuronal function. This has lead to the proposal of a “tripartite synapse”, which recognizes pre- and postsynaptic neuronal elements and glia as a unit.
However, what is still lacking is rudimentary information on how these cells actually function in situ. Here we propose taking a “bottom-up” approach, by identifying the molecules (and interactions) that control glial function in situ. This is complicated by the fact that glia show profound changes when placed into culture. To circumvent this, we will use recently developed cell sorting techniques, to rapidly isolate genetically marked glial cells from brain – which can then be analyzed using advanced biochemical and physiological techniques. The long-term aim is to identify proteins that can be “tagged” using transgenic technologies to allow protein function to be studied in real-time in vivo, using sophisticated imaging techniques. Given the number of proteins that may be identified we envisage developing new methods of generating transgenic animals that provide an attractive alternative to current “state-of-the art” technology.
The importance of studying glial function is given by the fact that every major brain pathology shows reactive gliosis. In the time it takes to read this abstract, 5 people in the EU will have suffered a stroke – not to mention those who suffer other forms of neurotrauma. Thus, understanding glial function is not only critical to understanding normal brain function, but also for relieving the burden of severe neurological injury and disease
Summary
Brain consists of two basic cell types – neurons and glia. However, the study of glia in brain function has traditionally been neglected in favor of their more “illustrious” counter-parts – neurons that are classed as the computational units of the brain. Glia have usually been classed as “brain glue” - a supportive matrix on which neurons grow and function. However, recent evidence suggests that glia are more than passive “glue” and actually modulate neuronal function. This has lead to the proposal of a “tripartite synapse”, which recognizes pre- and postsynaptic neuronal elements and glia as a unit.
However, what is still lacking is rudimentary information on how these cells actually function in situ. Here we propose taking a “bottom-up” approach, by identifying the molecules (and interactions) that control glial function in situ. This is complicated by the fact that glia show profound changes when placed into culture. To circumvent this, we will use recently developed cell sorting techniques, to rapidly isolate genetically marked glial cells from brain – which can then be analyzed using advanced biochemical and physiological techniques. The long-term aim is to identify proteins that can be “tagged” using transgenic technologies to allow protein function to be studied in real-time in vivo, using sophisticated imaging techniques. Given the number of proteins that may be identified we envisage developing new methods of generating transgenic animals that provide an attractive alternative to current “state-of-the art” technology.
The importance of studying glial function is given by the fact that every major brain pathology shows reactive gliosis. In the time it takes to read this abstract, 5 people in the EU will have suffered a stroke – not to mention those who suffer other forms of neurotrauma. Thus, understanding glial function is not only critical to understanding normal brain function, but also for relieving the burden of severe neurological injury and disease
Max ERC Funding
1 490 168 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym ASTROLAB
Project Cold Collisions and the Pathways Toward Life in Interstellar Space
Researcher (PI) Holger Kreckel
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), PE9, ERC-2012-StG_20111012
Summary Modern telescopes like Herschel and ALMA open up a new window into molecular astrophysics to investigate a surprisingly rich chemistry that operates even at low densities and low temperatures. Observations with these instruments have the potential of unraveling key questions of astrobiology, like the accumulation of water and pre-biotic organic molecules on (exo)planets from asteroids and comets. Hand-in-hand with the heightened observational activities comes a strong demand for a thorough understanding of the molecular formation mechanisms. The vast majority of interstellar molecules are formed in ion-neutral reactions that remain efficient even at low temperatures. Unfortunately, the unusual nature of these processes under terrestrial conditions makes their laboratory study extremely difficult.
To address these issues, I propose to build a versatile merged beams setup for laboratory studies of ion-neutral collisions at the Cryogenic Storage Ring (CSR), the most ambitious of the next-generation storage devices under development worldwide. With this experimental setup, I will make use of a low-temperature and low-density environment that is ideal to simulate the conditions prevailing in interstellar space. The cryogenic surrounding, in combination with laser-generated ground state atom beams, will allow me to perform precise energy-resolved rate coefficient measurements for reactions between cold molecular ions (like, e.g., H2+, H3+, HCO+, CH2+, CH3+, etc.) and neutral atoms (H, D, C or O) in order to shed light on long-standing problems of astrochemistry and the formation of organic molecules in space.
With the large variability of the collision energy (corresponding to 40-40000 K), I will be able to provide data that are crucial for the interpretation of molecular observations in a variety of objects, ranging from cold molecular clouds to warm layers in protoplanetary disks.
Summary
Modern telescopes like Herschel and ALMA open up a new window into molecular astrophysics to investigate a surprisingly rich chemistry that operates even at low densities and low temperatures. Observations with these instruments have the potential of unraveling key questions of astrobiology, like the accumulation of water and pre-biotic organic molecules on (exo)planets from asteroids and comets. Hand-in-hand with the heightened observational activities comes a strong demand for a thorough understanding of the molecular formation mechanisms. The vast majority of interstellar molecules are formed in ion-neutral reactions that remain efficient even at low temperatures. Unfortunately, the unusual nature of these processes under terrestrial conditions makes their laboratory study extremely difficult.
To address these issues, I propose to build a versatile merged beams setup for laboratory studies of ion-neutral collisions at the Cryogenic Storage Ring (CSR), the most ambitious of the next-generation storage devices under development worldwide. With this experimental setup, I will make use of a low-temperature and low-density environment that is ideal to simulate the conditions prevailing in interstellar space. The cryogenic surrounding, in combination with laser-generated ground state atom beams, will allow me to perform precise energy-resolved rate coefficient measurements for reactions between cold molecular ions (like, e.g., H2+, H3+, HCO+, CH2+, CH3+, etc.) and neutral atoms (H, D, C or O) in order to shed light on long-standing problems of astrochemistry and the formation of organic molecules in space.
With the large variability of the collision energy (corresponding to 40-40000 K), I will be able to provide data that are crucial for the interpretation of molecular observations in a variety of objects, ranging from cold molecular clouds to warm layers in protoplanetary disks.
Max ERC Funding
1 486 800 €
Duration
Start date: 2012-09-01, End date: 2017-11-30
Project acronym AstroNeuroCrosstalk
Project Astrocyte-Neuronal Crosstalk in Obesity and Diabetes
Researcher (PI) Cristina GARCÍA CÁCERES
Host Institution (HI) HELMHOLTZ ZENTRUM MUENCHEN DEUTSCHES FORSCHUNGSZENTRUM FUER GESUNDHEIT UND UMWELT GMBH
Call Details Starting Grant (StG), LS5, ERC-2017-STG
Summary Despite considerable efforts aimed at prevention and treatment, the prevalence of obesity and type 2 diabetes has increased at an alarming rate worldwide over recent decades. Given the urgent need to develop safe and efficient anti-obesity drugs, the scientific community has to intensify efforts to better understand the mechanisms involved in the pathogenesis of obesity. Based on human genome-wide association studies and targeted mouse mutagenesis models, it has recently emerged that the brain controls most aspects of systemic metabolism and that obesity may be a brain disease. I have recently shown that like neurons, astrocytes also respond to circulating nutrients, and they cooperate with neurons to efficiently regulate energy metabolism. So far, the study of brain circuits controlling energy balance has focused on neurons, ignoring the presence and role of astrocytes. Importantly, our studies were the first to describe that exposure to a high-fat, highsugar (HFHS) diet triggers hypothalamic astrogliosis prior to significant body weight gain, indicating a potentially important role in promoting obesity. Overall, my recent findings suggest a novel model in which astrocytes are actively involved in the central nervous system (CNS) control of metabolism, likely including active crosstalk between astrocytes and neurons. To test this hypothetical model, I propose to develop a functional understanding of astroglia-neuronal communication in the CNS control of metabolism focusing on: 1) dissecting the ability of astrocytes to release gliotransmitters to neurons, 2) assessing how astrocytes respond to neuronal activity, and 3) determining if HFHS-induced astrogliosis interrupts this crosstalk and contributes to the development of obesity and type 2 diabetes. These studies aim to uncover the molecular underpinnings of astrocyte-neuron inputs regulating metabolism in health and disease so as to
inspire and enable novel therapeutic strategies to fight diabetes and obesity.
Summary
Despite considerable efforts aimed at prevention and treatment, the prevalence of obesity and type 2 diabetes has increased at an alarming rate worldwide over recent decades. Given the urgent need to develop safe and efficient anti-obesity drugs, the scientific community has to intensify efforts to better understand the mechanisms involved in the pathogenesis of obesity. Based on human genome-wide association studies and targeted mouse mutagenesis models, it has recently emerged that the brain controls most aspects of systemic metabolism and that obesity may be a brain disease. I have recently shown that like neurons, astrocytes also respond to circulating nutrients, and they cooperate with neurons to efficiently regulate energy metabolism. So far, the study of brain circuits controlling energy balance has focused on neurons, ignoring the presence and role of astrocytes. Importantly, our studies were the first to describe that exposure to a high-fat, highsugar (HFHS) diet triggers hypothalamic astrogliosis prior to significant body weight gain, indicating a potentially important role in promoting obesity. Overall, my recent findings suggest a novel model in which astrocytes are actively involved in the central nervous system (CNS) control of metabolism, likely including active crosstalk between astrocytes and neurons. To test this hypothetical model, I propose to develop a functional understanding of astroglia-neuronal communication in the CNS control of metabolism focusing on: 1) dissecting the ability of astrocytes to release gliotransmitters to neurons, 2) assessing how astrocytes respond to neuronal activity, and 3) determining if HFHS-induced astrogliosis interrupts this crosstalk and contributes to the development of obesity and type 2 diabetes. These studies aim to uncover the molecular underpinnings of astrocyte-neuron inputs regulating metabolism in health and disease so as to
inspire and enable novel therapeutic strategies to fight diabetes and obesity.
Max ERC Funding
1 499 938 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym ATMO
Project Atmospheres across the Universe
Researcher (PI) Pascal TREMBLIN
Host Institution (HI) COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
Call Details Starting Grant (StG), PE9, ERC-2017-STG
Summary Which molecules are present in the atmosphere of exoplanets? What are their mass, radius and age? Do they have clouds, convection (atmospheric turbulence), fingering convection, or a circulation induced by irradiation? These questions are fundamental in exoplanetology in order to study issues such as planet formation and exoplanet habitability.
Yet, the impact of fingering convection and circulation induced by irradiation remain poorly understood:
- Fingering convection (triggered by gradients of mean-molecular-weight) has already been suggested to happen in stars (accumulation of heavy elements) and in brown dwarfs and exoplanets (chemical transition e.g. CO/CH4). A large-scale efficient turbulent transport of energy through the fingering instability can reduce the temperature gradient in the atmosphere and explain many observed spectral properties of brown dwarfs and exoplanets. Nonetheless, this large-scale efficiency is not yet characterized and standard approximations (Boussinesq) cannot be used to achieve this goal.
- The interaction between atmospheric circulation and the fingering instability is an open question in the case of irradiated exoplanets. Fingering convection can change the location and magnitude of the hot spot induced by irradiation, whereas the hot deep atmosphere induced by irradiation can change the location of the chemical transitions that trigger the fingering instability.
This project will characterize the impact of fingering convection in the atmosphere of stars, brown dwarfs, and exoplanets and its interaction with the circulation in the case of irradiated planets. By developing innovative numerical models, we will characterize the reduction of the temperature gradient of the atmosphere induced by the instability and study the impact of the circulation. We will then predict and interpret the mass, radius, and chemical composition of exoplanets that will be observed with future missions such as the James Webb Space Telescope (JWST).
Summary
Which molecules are present in the atmosphere of exoplanets? What are their mass, radius and age? Do they have clouds, convection (atmospheric turbulence), fingering convection, or a circulation induced by irradiation? These questions are fundamental in exoplanetology in order to study issues such as planet formation and exoplanet habitability.
Yet, the impact of fingering convection and circulation induced by irradiation remain poorly understood:
- Fingering convection (triggered by gradients of mean-molecular-weight) has already been suggested to happen in stars (accumulation of heavy elements) and in brown dwarfs and exoplanets (chemical transition e.g. CO/CH4). A large-scale efficient turbulent transport of energy through the fingering instability can reduce the temperature gradient in the atmosphere and explain many observed spectral properties of brown dwarfs and exoplanets. Nonetheless, this large-scale efficiency is not yet characterized and standard approximations (Boussinesq) cannot be used to achieve this goal.
- The interaction between atmospheric circulation and the fingering instability is an open question in the case of irradiated exoplanets. Fingering convection can change the location and magnitude of the hot spot induced by irradiation, whereas the hot deep atmosphere induced by irradiation can change the location of the chemical transitions that trigger the fingering instability.
This project will characterize the impact of fingering convection in the atmosphere of stars, brown dwarfs, and exoplanets and its interaction with the circulation in the case of irradiated planets. By developing innovative numerical models, we will characterize the reduction of the temperature gradient of the atmosphere induced by the instability and study the impact of the circulation. We will then predict and interpret the mass, radius, and chemical composition of exoplanets that will be observed with future missions such as the James Webb Space Telescope (JWST).
Max ERC Funding
1 500 000 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym AttentionCircuits
Project Modulation of neocortical microcircuits for attention
Researcher (PI) Johannes Jakob Letzkus
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), LS5, ERC-2013-StG
Summary At every moment in time, the brain receives a vast amount of sensory information about the environment. This makes attention, the process by which we select currently relevant stimuli for processing and ignore irrelevant input, a fundamentally important brain function. Studies in primates have yielded a detailed description of how attention to a stimulus modifies the responses of neuronal ensembles in visual cortex, but how this modulation is produced mechanistically in the circuit is not well understood. Neuronal circuits comprise a large variety of neuron types, and to gain mechanistic insights, and to treat specific diseases of the nervous system, it is crucial to characterize the contribution of different identified cell types to information processing. Inhibition supplied by a small yet highly diverse set of interneurons controls all aspects of cortical function, and the central hypothesis of this proposal is that differential modulation of genetically-defined interneuron types is a key mechanism of attention in visual cortex. To identify the interneuron types underlying attentional modulation and to investigate how this, in turn, affects computations in the circuit we will use an innovative multidisciplinary approach combining genetic targeting in mice with cutting-edge in vivo 2-photon microscopy-based recordings and selective optogenetic manipulation of activity. Importantly, a key set of experiments will test whether the observed neuronal mechanisms are causally involved in attention at the level of behavior, the ultimate readout of the computations we are interested in. The expected results will provide a detailed, mechanistic dissection of the neuronal basis of attention. Beyond attention, selection of different functional states of the same hard-wired circuit by modulatory input is a fundamental, but poorly understood, phenomenon in the brain, and we predict that our insights will elucidate similar mechanisms in other brain areas and functional contexts.
Summary
At every moment in time, the brain receives a vast amount of sensory information about the environment. This makes attention, the process by which we select currently relevant stimuli for processing and ignore irrelevant input, a fundamentally important brain function. Studies in primates have yielded a detailed description of how attention to a stimulus modifies the responses of neuronal ensembles in visual cortex, but how this modulation is produced mechanistically in the circuit is not well understood. Neuronal circuits comprise a large variety of neuron types, and to gain mechanistic insights, and to treat specific diseases of the nervous system, it is crucial to characterize the contribution of different identified cell types to information processing. Inhibition supplied by a small yet highly diverse set of interneurons controls all aspects of cortical function, and the central hypothesis of this proposal is that differential modulation of genetically-defined interneuron types is a key mechanism of attention in visual cortex. To identify the interneuron types underlying attentional modulation and to investigate how this, in turn, affects computations in the circuit we will use an innovative multidisciplinary approach combining genetic targeting in mice with cutting-edge in vivo 2-photon microscopy-based recordings and selective optogenetic manipulation of activity. Importantly, a key set of experiments will test whether the observed neuronal mechanisms are causally involved in attention at the level of behavior, the ultimate readout of the computations we are interested in. The expected results will provide a detailed, mechanistic dissection of the neuronal basis of attention. Beyond attention, selection of different functional states of the same hard-wired circuit by modulatory input is a fundamental, but poorly understood, phenomenon in the brain, and we predict that our insights will elucidate similar mechanisms in other brain areas and functional contexts.
Max ERC Funding
1 466 505 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym AutoCPS
Project Automated Synthesis of Cyber-Physical Systems: A Compositional Approach
Researcher (PI) Majid ZAMANI
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Call Details Starting Grant (StG), PE7, ERC-2018-STG
Summary Embedded Control software plays a critical role in many safety-critical applications. For instance, modern vehicles use interacting software and hardware components to control steering and braking. Control software forms the main core of autonomous transportation, power networks, and aerospace. These applications are examples of cyber-physical systems (CPS), where distributed software systems interact tightly with spatially distributed physical systems with complex dynamics. CPS are becoming ubiquitous due to rapid advances in computation, communication, and memory. However, the development of core control software running in these systems is still ad hoc and error-prone and much of the engineering costs today go into ensuring that control software works correctly.
In order to reduce the design costs and guaranteeing its correctness, I aim to develop an innovative design process, in which the embedded control software is synthesized from high-level correctness requirements in a push-button and formal manner. Requirements for modern CPS applications go beyond conventional properties in control theory (e.g. stability) and in computer science (e.g. protocol design). Here, I propose a compositional methodology for automated synthesis of control software by combining compositional techniques from computer science (e.g. assume-guarantee rules) with those from control theory (e.g. small-gain theorems). I will leverage decomposition and abstraction as two key tools to tackle the design complexity, by either breaking the design object into semi-independent parts or by aggregating components and eliminating unnecessary details. My project is high-risk because it requires a fundamental re-thinking of design techniques till now studied in separate disciplines. It is high-gain because a successful method for automated synthesis of control software will make it finally possible to develop complex yet reliable CPS applications while considerably reducing the engineering cost.
Summary
Embedded Control software plays a critical role in many safety-critical applications. For instance, modern vehicles use interacting software and hardware components to control steering and braking. Control software forms the main core of autonomous transportation, power networks, and aerospace. These applications are examples of cyber-physical systems (CPS), where distributed software systems interact tightly with spatially distributed physical systems with complex dynamics. CPS are becoming ubiquitous due to rapid advances in computation, communication, and memory. However, the development of core control software running in these systems is still ad hoc and error-prone and much of the engineering costs today go into ensuring that control software works correctly.
In order to reduce the design costs and guaranteeing its correctness, I aim to develop an innovative design process, in which the embedded control software is synthesized from high-level correctness requirements in a push-button and formal manner. Requirements for modern CPS applications go beyond conventional properties in control theory (e.g. stability) and in computer science (e.g. protocol design). Here, I propose a compositional methodology for automated synthesis of control software by combining compositional techniques from computer science (e.g. assume-guarantee rules) with those from control theory (e.g. small-gain theorems). I will leverage decomposition and abstraction as two key tools to tackle the design complexity, by either breaking the design object into semi-independent parts or by aggregating components and eliminating unnecessary details. My project is high-risk because it requires a fundamental re-thinking of design techniques till now studied in separate disciplines. It is high-gain because a successful method for automated synthesis of control software will make it finally possible to develop complex yet reliable CPS applications while considerably reducing the engineering cost.
Max ERC Funding
1 470 800 €
Duration
Start date: 2019-02-01, End date: 2024-01-31
Project acronym AVIANEGG
Project Evolutionary genetics in a ‘classical’ avian study system by high throughput transcriptome sequencing and SNP genotyping
Researcher (PI) Jon Slate
Host Institution (HI) THE UNIVERSITY OF SHEFFIELD
Call Details Starting Grant (StG), LS5, ERC-2007-StG
Summary Long-term studies of free-living vertebrate populations have proved a rich resource for understanding evolutionary and ecological processes, because individuals’ life histories can be measured by tracking them from birth/hatching through to death. In recent years the ‘animal model’ has been applied to pedigreed long-term study populations with great success, dramatically advancing our understanding of quantitative genetic parameters such as heritabilities, genetic correlations and plasticities of traits that are relevant to microevolutionary responses to environmental change. Unfortunately, quantitative genetic approaches have one major drawback – they cannot identify the actual genes responsible for genetic variation. Therefore, it is impossible to link evolutionary responses to a changing environment to molecular genetic variation, making our picture of the process incomplete. Many of the best long-term studies have been conducted in passerine birds. Unfortunately genomics resources are only available for two model avian species, and are absent for bird species that are studied in the wild. I will fill this gap by exploiting recent advances in genomics technology to sequence the entire transcriptome of the longest running study of wild birds – the great tit population in Wytham Woods, Oxford. Having identified most of the sequence variation in the great tit transcriptome, I will then genotype all birds for whom phenotype records and blood samples are available This will be, by far, the largest phenotype-genotype dataset of any free-living vertebrate population. I will then use gene mapping techniques to identify genes and genomic regions responsible for variation in a number of key traits such as lifetime recruitment, clutch size and breeding/laying date. This will result in a greater understanding, at the molecular level, how microevolutionary change can arise (or be constrained).
Summary
Long-term studies of free-living vertebrate populations have proved a rich resource for understanding evolutionary and ecological processes, because individuals’ life histories can be measured by tracking them from birth/hatching through to death. In recent years the ‘animal model’ has been applied to pedigreed long-term study populations with great success, dramatically advancing our understanding of quantitative genetic parameters such as heritabilities, genetic correlations and plasticities of traits that are relevant to microevolutionary responses to environmental change. Unfortunately, quantitative genetic approaches have one major drawback – they cannot identify the actual genes responsible for genetic variation. Therefore, it is impossible to link evolutionary responses to a changing environment to molecular genetic variation, making our picture of the process incomplete. Many of the best long-term studies have been conducted in passerine birds. Unfortunately genomics resources are only available for two model avian species, and are absent for bird species that are studied in the wild. I will fill this gap by exploiting recent advances in genomics technology to sequence the entire transcriptome of the longest running study of wild birds – the great tit population in Wytham Woods, Oxford. Having identified most of the sequence variation in the great tit transcriptome, I will then genotype all birds for whom phenotype records and blood samples are available This will be, by far, the largest phenotype-genotype dataset of any free-living vertebrate population. I will then use gene mapping techniques to identify genes and genomic regions responsible for variation in a number of key traits such as lifetime recruitment, clutch size and breeding/laying date. This will result in a greater understanding, at the molecular level, how microevolutionary change can arise (or be constrained).
Max ERC Funding
1 560 770 €
Duration
Start date: 2008-10-01, End date: 2014-06-30
Project acronym AXPLAST
Project Deep brain imaging of cellular mechanisms of sensory processing and learning
Researcher (PI) Jan GRUNDEMANN
Host Institution (HI) UNIVERSITAT BASEL
Call Details Starting Grant (StG), LS5, ERC-2018-STG
Summary Learning and memory are the basis of our behaviour and mental well-being. Understanding the mechanisms of structural and cellular plasticity in defined neuronal circuits in vivo will be crucial to elucidate principles of circuit-specific memory formation and their relation to changes in neuronal ensemble dynamics.
Structural plasticity studies were technically limited to cortex, excluding deep brain areas like the amygdala, and mainly focussed on the input site (dendritic spines), whilst the plasticity of the axon initial segment (AIS), a neuron’s site of output generation, was so far not studied in vivo. Length and location of the AIS are plastic and strongly affects a neurons spike output. However, it remains unknown if AIS plasticity regulates neuronal activity upon learning in vivo.
We will combine viral expression of AIS live markers and genetically-encoded Ca2+-sensors with novel deep brain imaging techniques via gradient index (GRIN) lenses to investigate how AIS location and length are regulated upon associative learning in amygdala circuits in vivo. Two-photon time-lapse imaging of the AIS of amygdala neurons upon fear conditioning will help us to track learning-driven AIS location dynamics. Next, we will combine miniature microscope imaging of neuronal activity in freely moving animals with two-photon imaging to link AIS location, length and plasticity to the intrinsic activity as well as learning-related response plasticity of amygdala neurons during fear learning and extinction in vivo. Finally, we will test if AIS plasticity is a general cellular plasticity mechanisms in brain areas afferent to the amygdala, e.g. thalamus.
Using a combination of two-photon and miniature microscopy imaging to map structural dynamics of defined neural circuits in the amygdala and its thalamic input areas will provide fundamental insights into the cellular mechanisms underlying sensory processing upon learning and relate network level plasticity with the cellular level.
Summary
Learning and memory are the basis of our behaviour and mental well-being. Understanding the mechanisms of structural and cellular plasticity in defined neuronal circuits in vivo will be crucial to elucidate principles of circuit-specific memory formation and their relation to changes in neuronal ensemble dynamics.
Structural plasticity studies were technically limited to cortex, excluding deep brain areas like the amygdala, and mainly focussed on the input site (dendritic spines), whilst the plasticity of the axon initial segment (AIS), a neuron’s site of output generation, was so far not studied in vivo. Length and location of the AIS are plastic and strongly affects a neurons spike output. However, it remains unknown if AIS plasticity regulates neuronal activity upon learning in vivo.
We will combine viral expression of AIS live markers and genetically-encoded Ca2+-sensors with novel deep brain imaging techniques via gradient index (GRIN) lenses to investigate how AIS location and length are regulated upon associative learning in amygdala circuits in vivo. Two-photon time-lapse imaging of the AIS of amygdala neurons upon fear conditioning will help us to track learning-driven AIS location dynamics. Next, we will combine miniature microscope imaging of neuronal activity in freely moving animals with two-photon imaging to link AIS location, length and plasticity to the intrinsic activity as well as learning-related response plasticity of amygdala neurons during fear learning and extinction in vivo. Finally, we will test if AIS plasticity is a general cellular plasticity mechanisms in brain areas afferent to the amygdala, e.g. thalamus.
Using a combination of two-photon and miniature microscopy imaging to map structural dynamics of defined neural circuits in the amygdala and its thalamic input areas will provide fundamental insights into the cellular mechanisms underlying sensory processing upon learning and relate network level plasticity with the cellular level.
Max ERC Funding
1 475 475 €
Duration
Start date: 2018-12-01, End date: 2023-11-30
Project acronym AYURYOG
Project Medicine, Immortality, Moksha: Entangled Histories of Yoga, Ayurveda and Alchemy in South Asia
Researcher (PI) Dagmar Wujastyk
Host Institution (HI) UNIVERSITAT WIEN
Call Details Starting Grant (StG), SH6, ERC-2014-STG
Summary The project will examine the histories of yoga, ayurveda and rasashastra (Indian alchemy and iatrochemistry) from the tenth century to the present, focussing on the disciplines' health, rejuvenation and longevity practices. The goals of the project are to reveal the entanglements of these historical traditions, and to trace the trajectories of their evolution as components of today's global healthcare and personal development industries.
Our hypothesis is that practices aimed at achieving health, rejuvenation and longevity constitute a key area of exchange between the three disciplines, preparing the grounds for a series of important pharmaceutical and technological innovations and also profoundly influencing the discourses of today's medicalized forms of globalized yoga as well as of contemporary institutionalized forms of ayurveda and rasashastra.
Drawing upon the primary historical sources of each respective tradition as well as on fieldwork data, the research team will explore the shared terminology, praxis and theory of these three disciplines. We will examine why, when and how health, rejuvenation and longevity practices were employed; how each discipline’s discourse and practical applications relates to those of the others; and how past encounters and cross-fertilizations impact on contemporary health-related practices in yogic, ayurvedic and alchemists’ milieus.
The five-year project will be based at the Department of South Asian, Tibetan and Buddhist Studies at Vienna University and carried out by an international team of 3 post-doctoral researchers. The research will be grounded in the fields of South Asian studies and social history. An international workshop and an international conference will be organized to present and discuss the research results, which will also be published in peer-reviewed journals, an edited volume, and in individual monographs. A project website will provide open access to all research results.
Summary
The project will examine the histories of yoga, ayurveda and rasashastra (Indian alchemy and iatrochemistry) from the tenth century to the present, focussing on the disciplines' health, rejuvenation and longevity practices. The goals of the project are to reveal the entanglements of these historical traditions, and to trace the trajectories of their evolution as components of today's global healthcare and personal development industries.
Our hypothesis is that practices aimed at achieving health, rejuvenation and longevity constitute a key area of exchange between the three disciplines, preparing the grounds for a series of important pharmaceutical and technological innovations and also profoundly influencing the discourses of today's medicalized forms of globalized yoga as well as of contemporary institutionalized forms of ayurveda and rasashastra.
Drawing upon the primary historical sources of each respective tradition as well as on fieldwork data, the research team will explore the shared terminology, praxis and theory of these three disciplines. We will examine why, when and how health, rejuvenation and longevity practices were employed; how each discipline’s discourse and practical applications relates to those of the others; and how past encounters and cross-fertilizations impact on contemporary health-related practices in yogic, ayurvedic and alchemists’ milieus.
The five-year project will be based at the Department of South Asian, Tibetan and Buddhist Studies at Vienna University and carried out by an international team of 3 post-doctoral researchers. The research will be grounded in the fields of South Asian studies and social history. An international workshop and an international conference will be organized to present and discuss the research results, which will also be published in peer-reviewed journals, an edited volume, and in individual monographs. A project website will provide open access to all research results.
Max ERC Funding
1 416 146 €
Duration
Start date: 2015-06-01, End date: 2020-05-31
Project acronym BABYLON
Project By the Rivers of Babylon: New Perspectives on Second Temple Judaism from Cuneiform Texts
Researcher (PI) Caroline Waerzeggers
Host Institution (HI) UNIVERSITEIT LEIDEN
Call Details Starting Grant (StG), SH6, ERC-2009-StG
Summary This project has the potential to radically change current understanding of cultic and social transformation in the post-exilic temple community of Jerusalem (c. 6th-4th centuries BCE), an important formative phase of ancient Judaism. “BABYLON” draws on recent, ground-breaking advances in the study of cuneiform texts to illuminate the Babylonian environment of the Judean exile, the socio-historical context which gave rise to the transformative era in Second Temple Judaism. In particular, these new data show that the parallels between Babylonian and post-exilic forms of cultic and social organization were substantially more far-reaching than presently recognized in Biblical scholarship. “BABYLON” will study the extent of these similarities and explore the question how Babylonian models could have influenced the restoration effort in Jerusalem.
This goal will be achieved through four sub-projects. P1 will study the social dynamics and intellectual universe of the Babylonian priesthood. P2 will finalize the publication of cuneiform archives of Babylonian priests living in the time of the exile. P3 will identify the exact areas of change in the post-exilic temple community of Jerusalem. P4, the synthesis, will draw from each of these sub-projects to present a comparative study of the Second Temple and contemporary Babylonian models of cultic and social organization, and to propose a strategy of research into the possible routes of transmission between Babylonia and Jerusalem.
The research will be carried out by three team members: the PI (P1 and P4), a PhD in Assyriology (P2) and a post-doctoral researcher in Biblical Studies specialized in the Second Temple period (P3 and P4). The participation of the wider academic community will be invited at two moments in the course of the project, in the form of a workshop and an international conference.
“BABYLON” will adopt an interdisciplinary approach by bringing together Assyriologists and Biblical scholars for a much-needed dialogue, thereby exploding the artificial boundaries that currently exist in the academic landscape between these two fields.
Summary
This project has the potential to radically change current understanding of cultic and social transformation in the post-exilic temple community of Jerusalem (c. 6th-4th centuries BCE), an important formative phase of ancient Judaism. “BABYLON” draws on recent, ground-breaking advances in the study of cuneiform texts to illuminate the Babylonian environment of the Judean exile, the socio-historical context which gave rise to the transformative era in Second Temple Judaism. In particular, these new data show that the parallels between Babylonian and post-exilic forms of cultic and social organization were substantially more far-reaching than presently recognized in Biblical scholarship. “BABYLON” will study the extent of these similarities and explore the question how Babylonian models could have influenced the restoration effort in Jerusalem.
This goal will be achieved through four sub-projects. P1 will study the social dynamics and intellectual universe of the Babylonian priesthood. P2 will finalize the publication of cuneiform archives of Babylonian priests living in the time of the exile. P3 will identify the exact areas of change in the post-exilic temple community of Jerusalem. P4, the synthesis, will draw from each of these sub-projects to present a comparative study of the Second Temple and contemporary Babylonian models of cultic and social organization, and to propose a strategy of research into the possible routes of transmission between Babylonia and Jerusalem.
The research will be carried out by three team members: the PI (P1 and P4), a PhD in Assyriology (P2) and a post-doctoral researcher in Biblical Studies specialized in the Second Temple period (P3 and P4). The participation of the wider academic community will be invited at two moments in the course of the project, in the form of a workshop and an international conference.
“BABYLON” will adopt an interdisciplinary approach by bringing together Assyriologists and Biblical scholars for a much-needed dialogue, thereby exploding the artificial boundaries that currently exist in the academic landscape between these two fields.
Max ERC Funding
1 200 000 €
Duration
Start date: 2009-09-01, End date: 2015-08-31
Project acronym BACCO
Project Bias and Clustering Calculations Optimised: Maximising discovery with galaxy surveys
Researcher (PI) Raúl Esteban ANGULO de la Fuente
Host Institution (HI) FUNDACION CENTRO DE ESTUDIOS DE FISICA DEL COSMOS DE ARAGON
Call Details Starting Grant (StG), PE9, ERC-2016-STG
Summary A new generation of galaxy surveys will soon start measuring the spatial distribution of millions of galaxies over a broad range of redshifts, offering an imminent opportunity to discover new physics. A detailed comparison of these measurements with theoretical models of galaxy clustering may reveal a new fundamental particle, a breakdown of General Relativity, or a hint on the nature of cosmic acceleration. Despite a large progress in the analytic treatment of structure formation in recent years, traditional clustering models still suffer from large uncertainties. This limits cosmological analyses to a very restricted range of scales and statistics, which will be one of the main obstacles to reach a comprehensive exploitation of future surveys.
Here I propose to develop a novel simulation--based approach to predict galaxy clustering. Combining recent advances in computational cosmology, from cosmological N--body calculations to physically-motivated galaxy formation models, I will develop a unified framework to directly predict the position and velocity of individual dark matter structures and galaxies as function of cosmological and astrophysical parameters. In this formulation, galaxy clustering will be a prediction of a set of physical assumptions in a given cosmological setting. The new theoretical framework will be flexible, accurate and fast: it will provide predictions for any clustering statistic, down to scales 100 times smaller than in state-of-the-art perturbation--theory--based models, and in less than 1 minute of CPU time. These advances will enable major improvements in future cosmological constraints, which will significantly increase the overall power of future surveys maximising our potential to discover new physics.
Summary
A new generation of galaxy surveys will soon start measuring the spatial distribution of millions of galaxies over a broad range of redshifts, offering an imminent opportunity to discover new physics. A detailed comparison of these measurements with theoretical models of galaxy clustering may reveal a new fundamental particle, a breakdown of General Relativity, or a hint on the nature of cosmic acceleration. Despite a large progress in the analytic treatment of structure formation in recent years, traditional clustering models still suffer from large uncertainties. This limits cosmological analyses to a very restricted range of scales and statistics, which will be one of the main obstacles to reach a comprehensive exploitation of future surveys.
Here I propose to develop a novel simulation--based approach to predict galaxy clustering. Combining recent advances in computational cosmology, from cosmological N--body calculations to physically-motivated galaxy formation models, I will develop a unified framework to directly predict the position and velocity of individual dark matter structures and galaxies as function of cosmological and astrophysical parameters. In this formulation, galaxy clustering will be a prediction of a set of physical assumptions in a given cosmological setting. The new theoretical framework will be flexible, accurate and fast: it will provide predictions for any clustering statistic, down to scales 100 times smaller than in state-of-the-art perturbation--theory--based models, and in less than 1 minute of CPU time. These advances will enable major improvements in future cosmological constraints, which will significantly increase the overall power of future surveys maximising our potential to discover new physics.
Max ERC Funding
1 484 240 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym BANTURIVERS
Project At a Crossroads of Bantu Expansions: Present and Past Riverside Communities in the Congo Basin, from an Integrated Linguistic, Anthropological and Archaeological Perspective
Researcher (PI) Birgit RICQUIER
Host Institution (HI) UNIVERSITE LIBRE DE BRUXELLES
Call Details Starting Grant (StG), SH6, ERC-2018-STG
Summary The “Bantu Expansion”, a research theme within the precolonial history of Central Africa, unites scholars of different disciplines. Much research is focused on the initial expansions of Bantu subgroups, which are explained as farmers ever looking for new lands and therefore avoiding the rainforest, also in the recent research on the “Savannah Corridor”. We want to study a crossroads of different Bantu expansions in the very heart of the Central-African rainforest, namely the eastern part of the Congo Basin (the Congo River and its tributaries up- and downstream of Kisangani until Bumba and Kindu). The region hosts multiple language groups from Bantu and other origin, complex ethnic identities and people practicing complementary subsistence strategies. Considering that farming is complicated in a rainforest environment, we will investigate the role of rivers in the settlement of these speech communities into the area, both as ways into the forest and as abundant source of animal protein (fish).
The project is multidisciplinary and will apply an integrated linguistic, anthropological and archaeological approach to study both present and past riverside communities in the Congo Basin. Historical comparative linguistics will offer insights into the historical relations between speech communities through language classification and the study of language contact, and will study specialized vocabulary to trace the history of river-related techniques, tools and knowledge. Anthropological research involves extensive fieldwork concerning ethnoecology, trade and/or exchange networks, sociocultural aspects of life at the riverside, and ethnohistory. Archaeologists will conduct surveys in the region of focus to provide a chrono-cultural framework.
Summary
The “Bantu Expansion”, a research theme within the precolonial history of Central Africa, unites scholars of different disciplines. Much research is focused on the initial expansions of Bantu subgroups, which are explained as farmers ever looking for new lands and therefore avoiding the rainforest, also in the recent research on the “Savannah Corridor”. We want to study a crossroads of different Bantu expansions in the very heart of the Central-African rainforest, namely the eastern part of the Congo Basin (the Congo River and its tributaries up- and downstream of Kisangani until Bumba and Kindu). The region hosts multiple language groups from Bantu and other origin, complex ethnic identities and people practicing complementary subsistence strategies. Considering that farming is complicated in a rainforest environment, we will investigate the role of rivers in the settlement of these speech communities into the area, both as ways into the forest and as abundant source of animal protein (fish).
The project is multidisciplinary and will apply an integrated linguistic, anthropological and archaeological approach to study both present and past riverside communities in the Congo Basin. Historical comparative linguistics will offer insights into the historical relations between speech communities through language classification and the study of language contact, and will study specialized vocabulary to trace the history of river-related techniques, tools and knowledge. Anthropological research involves extensive fieldwork concerning ethnoecology, trade and/or exchange networks, sociocultural aspects of life at the riverside, and ethnohistory. Archaeologists will conduct surveys in the region of focus to provide a chrono-cultural framework.
Max ERC Funding
1 427 821 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym Beacon
Project Beacons in the Dark
Researcher (PI) Paulo César Carvalho Freire
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), PE9, ERC-2011-StG_20101014
Summary BEACON aims at performing an ambitious multi-disciplinary (optical, radio astronomy and theoretical physics) study to enable a fundamentally improved understanding of gravitation and space-time. For almost a century Einstein's general relativity has been the last word on gravity. However, superstring theory predicts new gravitational phenomena beyond relativity. In this proposal I will attempt to detect these new phenomena, with a sensitivity 20 times better than state-of-the-art attempts. A successful detection would take physics beyond its current understanding of the Universe.
These new gravitational phenomena are emission of dipolar gravitational waves and the violation of the strong equivalence principle (SEP). I plan to look for them by timing newly discovered binary pulsars. I will improve upon the best current limits on dipolar gravitational wave emission by a factor of 20 within the time of this proposal. I also plan to develop a test of the Strong Equivalence Principle using a new pulsar/main-sequence star binary. The precision of this test is likely to surpass the current best limits within the time frame of this proposal and then keep improving indefinitely with time. This happens because this is the cleanest gravitational experiment ever carried out.
In order to further these goals, I plan to build the ultimate pulsar observing system. By taking advantage of recent technological advances in microwave engineering (particularly sensitive ultra-wide band receivers) digital electronics (fast analogue-to-digital converters and digital spectrometers) and computing, my team and me will be able to greatly improve the sensitivity and precision for pulsar timing experiments and exploit the capabilities of modern radio telescopes to their limits.
Pulsars are the beacons that will guide me in these new, uncharted seas.
Summary
BEACON aims at performing an ambitious multi-disciplinary (optical, radio astronomy and theoretical physics) study to enable a fundamentally improved understanding of gravitation and space-time. For almost a century Einstein's general relativity has been the last word on gravity. However, superstring theory predicts new gravitational phenomena beyond relativity. In this proposal I will attempt to detect these new phenomena, with a sensitivity 20 times better than state-of-the-art attempts. A successful detection would take physics beyond its current understanding of the Universe.
These new gravitational phenomena are emission of dipolar gravitational waves and the violation of the strong equivalence principle (SEP). I plan to look for them by timing newly discovered binary pulsars. I will improve upon the best current limits on dipolar gravitational wave emission by a factor of 20 within the time of this proposal. I also plan to develop a test of the Strong Equivalence Principle using a new pulsar/main-sequence star binary. The precision of this test is likely to surpass the current best limits within the time frame of this proposal and then keep improving indefinitely with time. This happens because this is the cleanest gravitational experiment ever carried out.
In order to further these goals, I plan to build the ultimate pulsar observing system. By taking advantage of recent technological advances in microwave engineering (particularly sensitive ultra-wide band receivers) digital electronics (fast analogue-to-digital converters and digital spectrometers) and computing, my team and me will be able to greatly improve the sensitivity and precision for pulsar timing experiments and exploit the capabilities of modern radio telescopes to their limits.
Pulsars are the beacons that will guide me in these new, uncharted seas.
Max ERC Funding
1 892 376 €
Duration
Start date: 2011-09-01, End date: 2016-08-31
Project acronym BEACON
Project Hybrid Digital-Analog Networking under Extreme Energy and Latency Constraints
Researcher (PI) Deniz Gunduz
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Call Details Starting Grant (StG), PE7, ERC-2015-STG
Summary The objective of the BEACON project is to (re-)introduce analog communications into the design of modern wireless networks. We argue that the extreme energy and latency constraints imposed by the emerging Internet of Everything (IoE) paradigm can only be met within a hybrid digital-analog communications framework. Current network architectures separate source and channel coding, orthogonalize users, and employ long block-length digital source and channel codes, which are either suboptimal or not applicable under the aforementioned constraints. BEACON questions these well-established design principles, and proposes to replace them with a hybrid digital-analog communications framework, which will meet the required energy and latency constraints while simplifying the encoding and decoding processes. BEACON pushes the performance of the IoE to its theoretical limits by i) exploiting signal correlations that are abundant in IoE applications, given the foreseen density of deployed sensing devices, ii) taking into account the limited and stochastic nature of energy availability due to, for example, energy harvesting capabilities, iii) using feedback resources to improve the end-to-end signal distortion, and iv) deriving novel converse results to identify fundamental performance benchmarks.
The results of BEACON will not only shed light on the fundamental limits on the performance any coding scheme can achieve, but will also lead to the development of unconventional codes and communication protocols that can approach these limits, combining digital and analog communication techniques. The ultimate challenge for this project is to exploit the developed hybrid digital-analog networking theory for a complete overhaul of the physical layer design for emerging IoE applications, such as smart grids, tele-robotics and smart homes. For this purpose, a proof-of-concept implementation test-bed will also be built using software defined radios and sensor nodes.
Summary
The objective of the BEACON project is to (re-)introduce analog communications into the design of modern wireless networks. We argue that the extreme energy and latency constraints imposed by the emerging Internet of Everything (IoE) paradigm can only be met within a hybrid digital-analog communications framework. Current network architectures separate source and channel coding, orthogonalize users, and employ long block-length digital source and channel codes, which are either suboptimal or not applicable under the aforementioned constraints. BEACON questions these well-established design principles, and proposes to replace them with a hybrid digital-analog communications framework, which will meet the required energy and latency constraints while simplifying the encoding and decoding processes. BEACON pushes the performance of the IoE to its theoretical limits by i) exploiting signal correlations that are abundant in IoE applications, given the foreseen density of deployed sensing devices, ii) taking into account the limited and stochastic nature of energy availability due to, for example, energy harvesting capabilities, iii) using feedback resources to improve the end-to-end signal distortion, and iv) deriving novel converse results to identify fundamental performance benchmarks.
The results of BEACON will not only shed light on the fundamental limits on the performance any coding scheme can achieve, but will also lead to the development of unconventional codes and communication protocols that can approach these limits, combining digital and analog communication techniques. The ultimate challenge for this project is to exploit the developed hybrid digital-analog networking theory for a complete overhaul of the physical layer design for emerging IoE applications, such as smart grids, tele-robotics and smart homes. For this purpose, a proof-of-concept implementation test-bed will also be built using software defined radios and sensor nodes.
Max ERC Funding
1 496 350 €
Duration
Start date: 2016-10-01, End date: 2021-09-30
Project acronym BEBOP
Project Binaries Escorted By Orbiting Planets
Researcher (PI) Amaury TRIAUD
Host Institution (HI) THE UNIVERSITY OF BIRMINGHAM
Call Details Starting Grant (StG), PE9, ERC-2018-STG
Summary Planets orbiting both stars of a binary system -circumbinary planets- are challenging our understanding about how planets assemble, and how their orbits subsequently evolve. Long confined to science-fiction, circumbinary planets were confirmed by the Kepler spacecraft, in one of its most spectacular, and impactful result. Despite Kepler’s insights, a lot remains unknown about these planets. Kepler also suffered from intractable biases that the BEBOP project will solve.
BEBOP will revolutionise how we detect and study circumbinary planets. Conducting a Doppler survey, we will vastly improve the efficiency of circumbinary planet detection, and remove Kepler’s biases. BEBOP will construct a clearer picture of the circumbinary planet population, and free us from the inherent vagaries, and important costs of space-funding. Thanks to the Doppler method we will study dynamical effects unique to circumbinary planets, estimate their multiplicity, and compute their true occurrence rate.
Circumbinary planets are essential objects. Binaries disturbe planet formation. Any similarity, and any difference between the population of circumbinary planets and planets orbiting single stars, will bring novel information about how planets are produced. In addition, circumbinary planets have unique orbital properties that boost their probability to experience transits. BEBOP’s detections will open the door to atmospheric studies of colder worlds than presently available.
Based on already discovered systems, and on two successful proofs-of-concept, the BEBOP team will detect 15 circumbinary gas-giants, three times more than Kepler. BEBOP will provide an unambiguous measure of the efficiency of gas-giant formation in circumbinary environments. In addition the BEBOP project comes with an ambitious programme to combine three detection methods (Doppler, transits, and astrometry) in a holistic approach that will bolster investigations into circumbinary planets, and create a lasting legacy.
Summary
Planets orbiting both stars of a binary system -circumbinary planets- are challenging our understanding about how planets assemble, and how their orbits subsequently evolve. Long confined to science-fiction, circumbinary planets were confirmed by the Kepler spacecraft, in one of its most spectacular, and impactful result. Despite Kepler’s insights, a lot remains unknown about these planets. Kepler also suffered from intractable biases that the BEBOP project will solve.
BEBOP will revolutionise how we detect and study circumbinary planets. Conducting a Doppler survey, we will vastly improve the efficiency of circumbinary planet detection, and remove Kepler’s biases. BEBOP will construct a clearer picture of the circumbinary planet population, and free us from the inherent vagaries, and important costs of space-funding. Thanks to the Doppler method we will study dynamical effects unique to circumbinary planets, estimate their multiplicity, and compute their true occurrence rate.
Circumbinary planets are essential objects. Binaries disturbe planet formation. Any similarity, and any difference between the population of circumbinary planets and planets orbiting single stars, will bring novel information about how planets are produced. In addition, circumbinary planets have unique orbital properties that boost their probability to experience transits. BEBOP’s detections will open the door to atmospheric studies of colder worlds than presently available.
Based on already discovered systems, and on two successful proofs-of-concept, the BEBOP team will detect 15 circumbinary gas-giants, three times more than Kepler. BEBOP will provide an unambiguous measure of the efficiency of gas-giant formation in circumbinary environments. In addition the BEBOP project comes with an ambitious programme to combine three detection methods (Doppler, transits, and astrometry) in a holistic approach that will bolster investigations into circumbinary planets, and create a lasting legacy.
Max ERC Funding
1 186 313 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym BETTERSENSE
Project Nanodevice Engineering for a Better Chemical Gas Sensing Technology
Researcher (PI) Juan Daniel Prades Garcia
Host Institution (HI) UNIVERSITAT DE BARCELONA
Call Details Starting Grant (StG), PE7, ERC-2013-StG
Summary BetterSense aims to solve the two main problems in current gas sensor technologies: the high power consumption and the poor selectivity. For the former, we propose a radically new approach: to integrate the sensing components and the energy sources intimately, at the nanoscale, in order to achieve a new kind of sensor concept featuring zero power consumption. For the latter, we will mimic the biological receptors designing a kit of gas-specific molecular organic functionalizations to reach ultra-high gas selectivity figures, comparable to those of biological processes. Both cutting-edge concepts will be developed in parallel an integrated together to render a totally new gas sensing technology that surpasses the state-of-the-art.
As a matter of fact, the project will enable, for the first time, the integration of gas detectors in energetically autonomous sensors networks. Additionally, BetterSense will provide an integral solution to the gas sensing challenge by producing a full set of gas-specific sensors over the same platform to ease their integration in multi-analyte systems. Moreover, the project approach will certainly open opportunities in adjacent fields in which power consumption, specificity and nano/micro integration are a concern, such as liquid chemical and biological sensing.
In spite of the promising evidences that demonstrate the feasibility of this proposal, there are still many scientific and technological issues to solve, most of them in the edge of what is known and what is possible today in nano-fabrication and nano/micro integration. For this reason, BetterSense also aims to contribute to the global challenge of making nanodevices compatible with scalable, cost-effective, microelectronic technologies.
For all this, addressing this challenging proposal in full requires a funding scheme compatible with a high-risk/high-gain vision to finance the full dedication of a highly motivated research team with multidisciplinary skill
Summary
BetterSense aims to solve the two main problems in current gas sensor technologies: the high power consumption and the poor selectivity. For the former, we propose a radically new approach: to integrate the sensing components and the energy sources intimately, at the nanoscale, in order to achieve a new kind of sensor concept featuring zero power consumption. For the latter, we will mimic the biological receptors designing a kit of gas-specific molecular organic functionalizations to reach ultra-high gas selectivity figures, comparable to those of biological processes. Both cutting-edge concepts will be developed in parallel an integrated together to render a totally new gas sensing technology that surpasses the state-of-the-art.
As a matter of fact, the project will enable, for the first time, the integration of gas detectors in energetically autonomous sensors networks. Additionally, BetterSense will provide an integral solution to the gas sensing challenge by producing a full set of gas-specific sensors over the same platform to ease their integration in multi-analyte systems. Moreover, the project approach will certainly open opportunities in adjacent fields in which power consumption, specificity and nano/micro integration are a concern, such as liquid chemical and biological sensing.
In spite of the promising evidences that demonstrate the feasibility of this proposal, there are still many scientific and technological issues to solve, most of them in the edge of what is known and what is possible today in nano-fabrication and nano/micro integration. For this reason, BetterSense also aims to contribute to the global challenge of making nanodevices compatible with scalable, cost-effective, microelectronic technologies.
For all this, addressing this challenging proposal in full requires a funding scheme compatible with a high-risk/high-gain vision to finance the full dedication of a highly motivated research team with multidisciplinary skill
Max ERC Funding
1 498 452 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym BETWEEN THE TIMES
Project “Between the Times”: Embattled Temporalities and Political Imagination in Interwar Europe
Researcher (PI) Liisi KEEDUS
Host Institution (HI) TALLINN UNIVERSITY
Call Details Starting Grant (StG), SH6, ERC-2017-STG
Summary The proposed project offers a new, pan-European intellectual history of the political imagination in the interwar period that places the demise of historicism and progressivism – and the emerging anti-teleological visions of time – at the center of some of its most innovative ethical, political and methodological pursuits. It argues that only a distinctively cross-disciplinary and European narrative can capture the full ramifications and legacies of a fundamental rupture in thought conventionally, yet inadequately confined to the German cultural space and termed “anti-historicism”. It innovates narratively by exploring politically and theoretically interlaced reinventions of temporality across and between different disciplines (theology, jurisprudence, classical studies, literary theory, linguistics, sociology, philosophy), as well as other creative fields. It experiments methodologically by reconstructing the dynamics of political thought prosopographically, through intellectual groupings at the forefront of the scholarly and political debates of the period. It challenges the sufficiency of the standard focus in interwar intellectual history on one or two, at most three (usually “Western” European) national contexts by following out the interactions of these groupings in France, Britain, Germany, Russia, Czechoslovakia, and Romania – groupings whose members frequently moved across national contexts. What were the political languages encoded in the reinventions of time, and vice versa – how were political aims translated into and advanced through theoretical innovation? How did these differ in different national contexts, and why? What are the fragmented legacies of this rupture, disbursed in and through the philosophical, methodological and political dicta and dogmas that rooted themselves in post-1945 thought? This project provides the first comprehensive answer to these fundamental questions about the intellectual identity of Europe and its historicities.
Summary
The proposed project offers a new, pan-European intellectual history of the political imagination in the interwar period that places the demise of historicism and progressivism – and the emerging anti-teleological visions of time – at the center of some of its most innovative ethical, political and methodological pursuits. It argues that only a distinctively cross-disciplinary and European narrative can capture the full ramifications and legacies of a fundamental rupture in thought conventionally, yet inadequately confined to the German cultural space and termed “anti-historicism”. It innovates narratively by exploring politically and theoretically interlaced reinventions of temporality across and between different disciplines (theology, jurisprudence, classical studies, literary theory, linguistics, sociology, philosophy), as well as other creative fields. It experiments methodologically by reconstructing the dynamics of political thought prosopographically, through intellectual groupings at the forefront of the scholarly and political debates of the period. It challenges the sufficiency of the standard focus in interwar intellectual history on one or two, at most three (usually “Western” European) national contexts by following out the interactions of these groupings in France, Britain, Germany, Russia, Czechoslovakia, and Romania – groupings whose members frequently moved across national contexts. What were the political languages encoded in the reinventions of time, and vice versa – how were political aims translated into and advanced through theoretical innovation? How did these differ in different national contexts, and why? What are the fragmented legacies of this rupture, disbursed in and through the philosophical, methodological and political dicta and dogmas that rooted themselves in post-1945 thought? This project provides the first comprehensive answer to these fundamental questions about the intellectual identity of Europe and its historicities.
Max ERC Funding
1 425 000 €
Duration
Start date: 2018-06-01, End date: 2023-05-31
Project acronym BinCosmos
Project The Impact of Massive Binaries Through Cosmic Time
Researcher (PI) Selma DE MINK
Host Institution (HI) UNIVERSITEIT VAN AMSTERDAM
Call Details Starting Grant (StG), PE9, ERC-2016-STG
Summary Massive stars play many key roles in Astrophysics. As COSMIC ENGINES they transformed the pristine Universe left after the Big Bang into our modern Universe. We use massive stars, their explosions and products as COSMIC PROBES to study the conditions in the distant Universe and the extreme physics inaccessible at earth. Models of massive stars are thus widely applied. A central common assumption is that massive stars are non-rotating single objects, in stark contrast with new data. Recent studies show that majority (70% according to our data) will experience severe interaction with a companion (Sana, de Mink et al. Science 2012).
I propose to conduct the most ambitious and extensive exploration to date of the effects of binarity and rotation on the lives and fates of massive stars to (I) transform our understanding of the complex physical processes and how they operate in the vast parameter space and (II) explore the cosmological implications after calibrating and verifying the models. To achieve this ambitious objective I will use an innovative computational approach that combines the strength of two highly complementary codes and seek direct confrontation with observations to overcome the computational challenges that inhibited previous work.
This timely project will provide the urgent theory framework needed for interpretation and guiding of observing programs with the new facilities (JWST, LSST, aLIGO/VIRGO). Public release of the model grids and code will ensure wide impact of this project. I am in the unique position to successfully lead this project because of my (i) extensive experience modeling the complex physical processes, (ii) leading role in introducing large statistical simulations in the massive star community and (iii) direct involvement in surveys that will be used in this project.
Summary
Massive stars play many key roles in Astrophysics. As COSMIC ENGINES they transformed the pristine Universe left after the Big Bang into our modern Universe. We use massive stars, their explosions and products as COSMIC PROBES to study the conditions in the distant Universe and the extreme physics inaccessible at earth. Models of massive stars are thus widely applied. A central common assumption is that massive stars are non-rotating single objects, in stark contrast with new data. Recent studies show that majority (70% according to our data) will experience severe interaction with a companion (Sana, de Mink et al. Science 2012).
I propose to conduct the most ambitious and extensive exploration to date of the effects of binarity and rotation on the lives and fates of massive stars to (I) transform our understanding of the complex physical processes and how they operate in the vast parameter space and (II) explore the cosmological implications after calibrating and verifying the models. To achieve this ambitious objective I will use an innovative computational approach that combines the strength of two highly complementary codes and seek direct confrontation with observations to overcome the computational challenges that inhibited previous work.
This timely project will provide the urgent theory framework needed for interpretation and guiding of observing programs with the new facilities (JWST, LSST, aLIGO/VIRGO). Public release of the model grids and code will ensure wide impact of this project. I am in the unique position to successfully lead this project because of my (i) extensive experience modeling the complex physical processes, (ii) leading role in introducing large statistical simulations in the massive star community and (iii) direct involvement in surveys that will be used in this project.
Max ERC Funding
1 926 634 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym BIOMOTIV
Project Why do we do what we do? Biological, psychological and computational bases of motivation
Researcher (PI) Mathias Pessiglione
Host Institution (HI) INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
Call Details Starting Grant (StG), LS5, ERC-2010-StG_20091118
Summary We are largely unaware of our own motives. Understanding our motives can be reduced to knowing how we form goals and these goals translate into behavior. Goals can be defined as pleasurable situations that we particularly value and that we intend to reach. Recent investigation in the emerging field of neuro-economics has put forward a neuronal network constituting a brain valuation system (BVS). We wish to build a more comprehensive account of motivational processes, investigating not only valuation and choice but also effort (how much energy we would spend to attain a goal). More specifically, our aims are to better describe 1) how the brain assigns values to various objects and actions, 2) how values depend on parameters such as reward magnitude, probability, delay and cost, 3) how values are affected by social contexts, 4) how values are modified through learning and 5) how values influence the brain systems (perceptual, cognitive and motor) that underpin behavioral performance. To these aims, we would combine three approaches: 1) human cognitive neuroscience, which is central as we ultimately wish to understand ourselves, as well as human pathological conditions where motivation is either deficient (apathy) or out of control (compulsion), 2) primate neurophysiology, which is essential to describe information processing at the single-unit level and to derive causality by observing behavioral consequences of brain manipulations, 3) computational modeling, which is mandatory to link quantitatively the different descriptions levels (single-unit recordings, local field potentials, regional BOLD signal, vegetative manifestations and motor outputs). A bayesian framework will be developed to infer from experimental measures the subjects prior beliefs and value functions. We believe that our team, bringing together three complementary perspectives on motivation within a clinical environment, would represent a unique education and research center in Europe.
Summary
We are largely unaware of our own motives. Understanding our motives can be reduced to knowing how we form goals and these goals translate into behavior. Goals can be defined as pleasurable situations that we particularly value and that we intend to reach. Recent investigation in the emerging field of neuro-economics has put forward a neuronal network constituting a brain valuation system (BVS). We wish to build a more comprehensive account of motivational processes, investigating not only valuation and choice but also effort (how much energy we would spend to attain a goal). More specifically, our aims are to better describe 1) how the brain assigns values to various objects and actions, 2) how values depend on parameters such as reward magnitude, probability, delay and cost, 3) how values are affected by social contexts, 4) how values are modified through learning and 5) how values influence the brain systems (perceptual, cognitive and motor) that underpin behavioral performance. To these aims, we would combine three approaches: 1) human cognitive neuroscience, which is central as we ultimately wish to understand ourselves, as well as human pathological conditions where motivation is either deficient (apathy) or out of control (compulsion), 2) primate neurophysiology, which is essential to describe information processing at the single-unit level and to derive causality by observing behavioral consequences of brain manipulations, 3) computational modeling, which is mandatory to link quantitatively the different descriptions levels (single-unit recordings, local field potentials, regional BOLD signal, vegetative manifestations and motor outputs). A bayesian framework will be developed to infer from experimental measures the subjects prior beliefs and value functions. We believe that our team, bringing together three complementary perspectives on motivation within a clinical environment, would represent a unique education and research center in Europe.
Max ERC Funding
1 346 000 €
Duration
Start date: 2011-03-01, End date: 2016-08-31
Project acronym BIRTH
Project Births, mothers and babies: prehistoric fertility in the Balkans between 10000 – 5000 BC
Researcher (PI) Sofija Stefanovic
Host Institution (HI) BIOSENSE INSTITUTE - RESEARCH AND DEVELOPMENT INSTITUTE FOR INFORMATION TECHNOLOGIES IN BIOSYSTEMS
Call Details Starting Grant (StG), SH6, ERC-2014-STG
Summary The BIRTH project will investigate the key biological and cultural mechanisms affecting fertility rates resulting the Neolithic Demogaphic Transition, the major demographic shift in human evolution. We integrate skeletal markers with micro-nutritional and macro-scaled cultural effects on fertility rates during the Early-Middle Holocene (10000-5000 BC) in the Central Balkans. Human, animal and plant remains, will be analysed using methods from bioarchaeological, forensic, chemical sciences in order to: 1) Investigate variability in the pattern of birth rates (number of pregnancies, interval(s) between them and the duration of the reproductive period) through histological analysis of irregularities in tooth cementum of women; 2) Determine paleoobstetric and neonatal body characteristics, health status and nutrition through analysis of skeletal remains; 3) Determine micronutritional changes during the Early-Middle Holocene through trace element (Zn, Ca and Fe) analysis; 4) Investigate the micro and macronutritional value of prehistoric foodstuffs, through an analysis of animal and plant remains and to compare the nutritional intake in relation to health and fertility; 5) Establish a chronology of the NDT in the Balkans by summed radiocarbon probability distributions; 6) Explore the possible role of culture in driving fertility increases, through analysis of community attitudes to birthing trough investigation of neonate graves and artifact connected to the birthing process. Given that the issues of health and fertility are of utmost importance in the present as they were in the past, the BIRTH project offers new understanding of biocultural mechanisms which led to fertility increase and novel approaches to ancient skeletal heritage, and emphasizes their great potential for modern humanity.
Summary
The BIRTH project will investigate the key biological and cultural mechanisms affecting fertility rates resulting the Neolithic Demogaphic Transition, the major demographic shift in human evolution. We integrate skeletal markers with micro-nutritional and macro-scaled cultural effects on fertility rates during the Early-Middle Holocene (10000-5000 BC) in the Central Balkans. Human, animal and plant remains, will be analysed using methods from bioarchaeological, forensic, chemical sciences in order to: 1) Investigate variability in the pattern of birth rates (number of pregnancies, interval(s) between them and the duration of the reproductive period) through histological analysis of irregularities in tooth cementum of women; 2) Determine paleoobstetric and neonatal body characteristics, health status and nutrition through analysis of skeletal remains; 3) Determine micronutritional changes during the Early-Middle Holocene through trace element (Zn, Ca and Fe) analysis; 4) Investigate the micro and macronutritional value of prehistoric foodstuffs, through an analysis of animal and plant remains and to compare the nutritional intake in relation to health and fertility; 5) Establish a chronology of the NDT in the Balkans by summed radiocarbon probability distributions; 6) Explore the possible role of culture in driving fertility increases, through analysis of community attitudes to birthing trough investigation of neonate graves and artifact connected to the birthing process. Given that the issues of health and fertility are of utmost importance in the present as they were in the past, the BIRTH project offers new understanding of biocultural mechanisms which led to fertility increase and novel approaches to ancient skeletal heritage, and emphasizes their great potential for modern humanity.
Max ERC Funding
1 714 880 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym blackQD
Project Optoelectronic of narrow band gap nanocrystals
Researcher (PI) Emmanuel LHUILLIER
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE7, ERC-2017-STG
Summary Over the past decades, silicon became the most used material for electronic, however its indirect band gap limits its use for optics and optoelectronics. As a result alternatives semiconductor such as III-V and II-VI materials are used to address a broad range of complementary application such as LED, laser diode and photodiode. However in the infrared (IR), the material challenge becomes far more complex.
New IR applications, such as flame detection or night car driving assistance are emerging and request low cost detectors. Current technologies, based on epitaxially grown semiconductors are unlikely to bring a cost disruption and organic electronics, often viewed as the alternative to silicon based materials is ineffective in the mid-IR. The blackQD project aims at transforming colloidal quantum dots (CQD) into the next generation of active material for IR detection. CQD are attracting a high interest because of their size tunable optical features and next challenges is their integration in optoelectronic devices and in particular for IR features.
The project requires a combination of material knowledge, with clean room nanofabrication and IR photoconduction which is unique in Europe. I organize blackQD in three mains parts. The first part relates to the growth of mercury chalcogenides nanocrystals with unique tunable properties in the mid and far-IR. To design devices with enhanced properties, more needs to be known on the electronic structure of these nanomaterials. In part II, I propose to develop original methods to probe static and dynamic aspects of the electronic structure. Finally the main task of the project relates to the design of a new generation of transistors and IR detectors. I propose several geometries of demonstrator which for the first time integrate from the beginning the colloidal nature of the CQD and constrain of IR photodetection. The project more generally aims to develop a tool box for the design of the next generation of low cost IR.
Summary
Over the past decades, silicon became the most used material for electronic, however its indirect band gap limits its use for optics and optoelectronics. As a result alternatives semiconductor such as III-V and II-VI materials are used to address a broad range of complementary application such as LED, laser diode and photodiode. However in the infrared (IR), the material challenge becomes far more complex.
New IR applications, such as flame detection or night car driving assistance are emerging and request low cost detectors. Current technologies, based on epitaxially grown semiconductors are unlikely to bring a cost disruption and organic electronics, often viewed as the alternative to silicon based materials is ineffective in the mid-IR. The blackQD project aims at transforming colloidal quantum dots (CQD) into the next generation of active material for IR detection. CQD are attracting a high interest because of their size tunable optical features and next challenges is their integration in optoelectronic devices and in particular for IR features.
The project requires a combination of material knowledge, with clean room nanofabrication and IR photoconduction which is unique in Europe. I organize blackQD in three mains parts. The first part relates to the growth of mercury chalcogenides nanocrystals with unique tunable properties in the mid and far-IR. To design devices with enhanced properties, more needs to be known on the electronic structure of these nanomaterials. In part II, I propose to develop original methods to probe static and dynamic aspects of the electronic structure. Finally the main task of the project relates to the design of a new generation of transistors and IR detectors. I propose several geometries of demonstrator which for the first time integrate from the beginning the colloidal nature of the CQD and constrain of IR photodetection. The project more generally aims to develop a tool box for the design of the next generation of low cost IR.
Max ERC Funding
1 499 903 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym BLAST
Project Eclipsing binary stars as cutting edge laboratories for astrophysics of stellar
structure, stellar evolution and planet formation
Researcher (PI) Maciej Konacki
Host Institution (HI) CENTRUM ASTRONOMICZNE IM. MIKOLAJAKOPERNIKA POLSKIEJ AKADEMII NAUK
Call Details Starting Grant (StG), PE9, ERC-2010-StG_20091028
Summary Spectroscopic binary stars (SB2s) and in particular spectroscopic eclipsing binaries are one of the most useful objects in astrophysics. Their photometric and spectroscopic observations allow one to determine basic parameters of stars and carry out a wide range of tests of stellar structure, evolution and dynamics. Perhaps somewhat surprisingly, they can also contribute to our understanding of the formation and evolution of (extrasolar) planets. We will study eclipsing binary stars by combining the classic - stellar astronomy - and the modern - extrasolar planets - subjects into a cutting edge project.
We propose to search for and subsequently characterize circumbinary planets around ~350 eclipsing SB2s using our own novel cutting edge radial velocity technique for binary stars and a modern version of the photometry based eclipse timing of eclipsing binary stars employing 0.5-m robotic telescopes. We will also derive basic parameters of up to ~700 stars (~350 binaries) with an unprecedented precision. In particular for about 50% of our sample we expect to deliver masses of the components with an accuracy ~10-100 times better than the current state of the art.
Our project will provide unique constraints for the theories of planet formation and evolution and an unprecedented in quality set of the basic parameters of stars to test the theories of the stellar structure and evolution.
Summary
Spectroscopic binary stars (SB2s) and in particular spectroscopic eclipsing binaries are one of the most useful objects in astrophysics. Their photometric and spectroscopic observations allow one to determine basic parameters of stars and carry out a wide range of tests of stellar structure, evolution and dynamics. Perhaps somewhat surprisingly, they can also contribute to our understanding of the formation and evolution of (extrasolar) planets. We will study eclipsing binary stars by combining the classic - stellar astronomy - and the modern - extrasolar planets - subjects into a cutting edge project.
We propose to search for and subsequently characterize circumbinary planets around ~350 eclipsing SB2s using our own novel cutting edge radial velocity technique for binary stars and a modern version of the photometry based eclipse timing of eclipsing binary stars employing 0.5-m robotic telescopes. We will also derive basic parameters of up to ~700 stars (~350 binaries) with an unprecedented precision. In particular for about 50% of our sample we expect to deliver masses of the components with an accuracy ~10-100 times better than the current state of the art.
Our project will provide unique constraints for the theories of planet formation and evolution and an unprecedented in quality set of the basic parameters of stars to test the theories of the stellar structure and evolution.
Max ERC Funding
1 500 000 €
Duration
Start date: 2010-12-01, End date: 2016-11-30
Project acronym BRAINCANNABINOIDS
Project Understanding the molecular blueprint and functional complexity of the endocannabinoid metabolome in the brain
Researcher (PI) István Katona
Host Institution (HI) INSTITUTE OF EXPERIMENTAL MEDICINE - HUNGARIAN ACADEMY OF SCIENCES
Call Details Starting Grant (StG), LS5, ERC-2009-StG
Summary We and others have recently delineated the molecular architecture of a new feedback pathway in brain synapses, which operates as a synaptic circuit breaker. This pathway is supposed to use a group of lipid messengers as retrograde synaptic signals, the so-called endocannabinoids. Although heterogeneous in their chemical structures, these molecules along with the psychoactive compound in cannabis are thought to target the same effector in the brain, the CB1 receptor. However, the molecular catalog of these bioactive lipids and their metabolic enzymes has been expanding rapidly by recent advances in lipidomics and proteomics raising the possibility that these lipids may also serve novel, yet unidentified physiological functions. Thus, the overall aim of our research program is to define the molecular and anatomical organization of these endocannabinoid-mediated pathways and to determine their functional significance. In the present proposal, we will focus on understanding how these novel pathways regulate synaptic and extrasynaptic signaling in hippocampal neurons. Using combination of lipidomic, genetic and high-resolution anatomical approaches, we will identify distinct chemical species of endocannabinoids and will show how their metabolic enzymes are segregated into different subcellular compartments in cell type- and synapse-specific manner. Subsequently, we will use genetically encoded gain-of-function, loss-of-function and reporter constructs in imaging experiments and electrophysiological recordings to gain insights into the diverse tasks that these new pathways serve in synaptic transmission and extrasynaptic signal processing. Our proposed experiments will reveal fundamental principles of intercellular and intracellular endocannabinoid signaling in the brain.
Summary
We and others have recently delineated the molecular architecture of a new feedback pathway in brain synapses, which operates as a synaptic circuit breaker. This pathway is supposed to use a group of lipid messengers as retrograde synaptic signals, the so-called endocannabinoids. Although heterogeneous in their chemical structures, these molecules along with the psychoactive compound in cannabis are thought to target the same effector in the brain, the CB1 receptor. However, the molecular catalog of these bioactive lipids and their metabolic enzymes has been expanding rapidly by recent advances in lipidomics and proteomics raising the possibility that these lipids may also serve novel, yet unidentified physiological functions. Thus, the overall aim of our research program is to define the molecular and anatomical organization of these endocannabinoid-mediated pathways and to determine their functional significance. In the present proposal, we will focus on understanding how these novel pathways regulate synaptic and extrasynaptic signaling in hippocampal neurons. Using combination of lipidomic, genetic and high-resolution anatomical approaches, we will identify distinct chemical species of endocannabinoids and will show how their metabolic enzymes are segregated into different subcellular compartments in cell type- and synapse-specific manner. Subsequently, we will use genetically encoded gain-of-function, loss-of-function and reporter constructs in imaging experiments and electrophysiological recordings to gain insights into the diverse tasks that these new pathways serve in synaptic transmission and extrasynaptic signal processing. Our proposed experiments will reveal fundamental principles of intercellular and intracellular endocannabinoid signaling in the brain.
Max ERC Funding
1 638 000 €
Duration
Start date: 2009-11-01, End date: 2014-10-31
Project acronym BrainConquest
Project Boosting Brain-Computer Communication with high Quality User Training
Researcher (PI) Fabien LOTTE
Host Institution (HI) INSTITUT NATIONAL DE RECHERCHE ENINFORMATIQUE ET AUTOMATIQUE
Call Details Starting Grant (StG), PE7, ERC-2016-STG
Summary Brain-Computer Interfaces (BCIs) are communication systems that enable users to send commands to computers through brain signals only, by measuring and processing these signals. Making computer control possible without any physical activity, BCIs have promised to revolutionize many application areas, notably assistive technologies, e.g., for wheelchair control, and human-machine interaction. Despite this promising potential, BCIs are still barely used outside laboratories, due to their current poor reliability. For instance, BCIs only using two imagined hand movements as mental commands decode, on average, less than 80% of these commands correctly, while 10 to 30% of users cannot control a BCI at all.
A BCI should be considered a co-adaptive communication system: its users learn to encode commands in their brain signals (with mental imagery) that the machine learns to decode using signal processing. Most research efforts so far have been dedicated to decoding the commands. However, BCI control is a skill that users have to learn too. Unfortunately how BCI users learn to encode the commands is essential but is barely studied, i.e., fundamental knowledge about how users learn BCI control is lacking. Moreover standard training approaches are only based on heuristics, without satisfying human learning principles. Thus, poor BCI reliability is probably largely due to highly suboptimal user training.
In order to obtain a truly reliable BCI we need to completely redefine user training approaches. To do so, I propose to study and statistically model how users learn to encode BCI commands. Then, based on human learning principles and this model, I propose to create a new generation of BCIs which ensure that users learn how to successfully encode commands with high signal-to-noise ratio in their brain signals, hence making BCIs dramatically more reliable. Such a reliable BCI could positively change human-machine interaction as BCIs have promised but failed to do so far.
Summary
Brain-Computer Interfaces (BCIs) are communication systems that enable users to send commands to computers through brain signals only, by measuring and processing these signals. Making computer control possible without any physical activity, BCIs have promised to revolutionize many application areas, notably assistive technologies, e.g., for wheelchair control, and human-machine interaction. Despite this promising potential, BCIs are still barely used outside laboratories, due to their current poor reliability. For instance, BCIs only using two imagined hand movements as mental commands decode, on average, less than 80% of these commands correctly, while 10 to 30% of users cannot control a BCI at all.
A BCI should be considered a co-adaptive communication system: its users learn to encode commands in their brain signals (with mental imagery) that the machine learns to decode using signal processing. Most research efforts so far have been dedicated to decoding the commands. However, BCI control is a skill that users have to learn too. Unfortunately how BCI users learn to encode the commands is essential but is barely studied, i.e., fundamental knowledge about how users learn BCI control is lacking. Moreover standard training approaches are only based on heuristics, without satisfying human learning principles. Thus, poor BCI reliability is probably largely due to highly suboptimal user training.
In order to obtain a truly reliable BCI we need to completely redefine user training approaches. To do so, I propose to study and statistically model how users learn to encode BCI commands. Then, based on human learning principles and this model, I propose to create a new generation of BCIs which ensure that users learn how to successfully encode commands with high signal-to-noise ratio in their brain signals, hence making BCIs dramatically more reliable. Such a reliable BCI could positively change human-machine interaction as BCIs have promised but failed to do so far.
Max ERC Funding
1 498 751 €
Duration
Start date: 2017-07-01, End date: 2022-06-30
Project acronym BrainDyn
Project Tracking information flow in the brain: A unified and general framework for dynamic communication in brain networks
Researcher (PI) Mathilde BONNEFOND
Host Institution (HI) INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
Call Details Starting Grant (StG), LS5, ERC-2016-STG
Summary The brain is composed of a set of areas specialized in specific computations whose outputs need to be transferred to other specialized areas for cognition to emerge. To account for context-dependent behaviors, the information has to be flexibly routed through the fixed anatomy of the brain. The aim of my proposal is to test a general framework for flexible communication between brain areas based on nested oscillations which I recently developed. The general idea is that internally-driven slow oscillations (<20Hz) either set-up or prevent the communication between brain areas. Stimulus-driven gamma oscillations (>30Hz), nested in the slow oscillations, can then be directed to task-relevant areas of the network. I plan to use a multimodal, multi-scale and transversal (human and monkey) approach in experiments manipulating visual processing, attention and memory to test core predictions of my framework. The theoretical approach and the methodological development used in my project will provide the basis for future fundamental and clinical research.
Summary
The brain is composed of a set of areas specialized in specific computations whose outputs need to be transferred to other specialized areas for cognition to emerge. To account for context-dependent behaviors, the information has to be flexibly routed through the fixed anatomy of the brain. The aim of my proposal is to test a general framework for flexible communication between brain areas based on nested oscillations which I recently developed. The general idea is that internally-driven slow oscillations (<20Hz) either set-up or prevent the communication between brain areas. Stimulus-driven gamma oscillations (>30Hz), nested in the slow oscillations, can then be directed to task-relevant areas of the network. I plan to use a multimodal, multi-scale and transversal (human and monkey) approach in experiments manipulating visual processing, attention and memory to test core predictions of my framework. The theoretical approach and the methodological development used in my project will provide the basis for future fundamental and clinical research.
Max ERC Funding
1 333 718 €
Duration
Start date: 2017-02-01, End date: 2022-01-31
Project acronym BrainInBrain
Project Neural circuits underlying complex brain function across animals - from conserved core concepts to specializations defining a species’ identity
Researcher (PI) Stanley HEINZE
Host Institution (HI) LUNDS UNIVERSITET
Call Details Starting Grant (StG), LS5, ERC-2016-STG
Summary The core function of all brains is to compute the current state of the world, compare it to the desired state of the world and select motor programs that drive behavior minimizing any mismatch. The circuits underlying these functions are the key to understand brains in general, but so far they are completely unknown. Three problems have hindered progress: 1) The animal’s desired state of the world is rarely known. 2) Most studies in simple models have focused on sensory driven, reflex-like processes, and not considered self-initiated behavior. 3) The circuits underlying complex behaviors in vertebrates are widely distributed, containing millions of neurons. With this proposal I aim at overcoming these problems using insects, whose tiny brains solve the same basic problems as our brains but with 100,000 times fewer cells. Moreover, the central complex, a single conserved brain region consisting of only a few thousand neurons, is crucial for sensory integration, motor control and state-dependent modulation, essentially being a ‘brain in the brain’. To simplify the problem further I will focus on navigation behavior. Here, the desired and actual states of the world are equal to the desired and current headings of the animal, with mismatches resulting in compensatory steering. I have previously shown how the central complex encodes the animal’s current heading. Now I will use behavioral training to generate animals with highly defined desired headings, and correlate neural activity with the animal’s ‘intentions’ and actions - at the level of identified neurons. To establish the involved conserved core circuitry valid across insects I will compare species with distinct lifestyles. Secondly, I will reveal how these circuits have evolved to account for each species’ unique ecology. The proposed work will provide a coherent framework to study key concepts of fundamental brain functions in unprecedented detail - using a single, conserved, but flexible neural circuit.
Summary
The core function of all brains is to compute the current state of the world, compare it to the desired state of the world and select motor programs that drive behavior minimizing any mismatch. The circuits underlying these functions are the key to understand brains in general, but so far they are completely unknown. Three problems have hindered progress: 1) The animal’s desired state of the world is rarely known. 2) Most studies in simple models have focused on sensory driven, reflex-like processes, and not considered self-initiated behavior. 3) The circuits underlying complex behaviors in vertebrates are widely distributed, containing millions of neurons. With this proposal I aim at overcoming these problems using insects, whose tiny brains solve the same basic problems as our brains but with 100,000 times fewer cells. Moreover, the central complex, a single conserved brain region consisting of only a few thousand neurons, is crucial for sensory integration, motor control and state-dependent modulation, essentially being a ‘brain in the brain’. To simplify the problem further I will focus on navigation behavior. Here, the desired and actual states of the world are equal to the desired and current headings of the animal, with mismatches resulting in compensatory steering. I have previously shown how the central complex encodes the animal’s current heading. Now I will use behavioral training to generate animals with highly defined desired headings, and correlate neural activity with the animal’s ‘intentions’ and actions - at the level of identified neurons. To establish the involved conserved core circuitry valid across insects I will compare species with distinct lifestyles. Secondly, I will reveal how these circuits have evolved to account for each species’ unique ecology. The proposed work will provide a coherent framework to study key concepts of fundamental brain functions in unprecedented detail - using a single, conserved, but flexible neural circuit.
Max ERC Funding
1 500 000 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym BrainNanoFlow
Project Nanoscale dynamics in the extracellular space of the brain in vivo
Researcher (PI) Juan Alberto VARELA
Host Institution (HI) THE UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS
Call Details Starting Grant (StG), LS5, ERC-2018-STG
Summary Aggregates of proteins such as amyloid-beta and alpha-synuclein circulate the extracellular space of the brain (ECS) and are thought to be key players in the development of neurodegenerative diseases. The clearance of these aggregates (among other toxic metabolites) is a fundamental physiological feature of the brain which is poorly understood due to the lack of techniques to study the nanoscale organisation of the ECS. Exciting advances in this field have recently shown that clearance is enhanced during sleep due to a major volume change in the ECS, facilitating the flow of the interstitial fluid. However, this process has only been characterised at a low spatial resolution while the physiological changes occur at the nanoscale. The recently proposed “glymphatic” pathway still remains controversial, as there are no techniques capable of distinguishing between diffusion and bulk flow in the ECS of living animals. Understanding these processes at a higher spatial resolution requires the development of single-molecule imaging techniques that can study the brain in living animals. Taking advantage of the strategies I have recently developed to target single-molecules in the brain in vivo with nanoparticles, we will do “nanoscopy” in living animals. Our proposal will test the glymphatic pathway at the spatial scale in which events happen, and explore how sleep and wake cycles alter the ECS and the diffusion of receptors in neuronal plasma membrane. Overall, BrainNanoFlow aims to understand how nanoscale changes in the ECS facilitate clearance of protein aggregates. We will also provide new insights to the pathological consequences of impaired clearance, focusing on the interactions between these aggregates and their putative receptors. Being able to perform single-molecule studies in vivo in the brain will be a major breakthrough in neurobiology, making possible the study of physiological and pathological processes that cannot be studied in simpler brain preparations.
Summary
Aggregates of proteins such as amyloid-beta and alpha-synuclein circulate the extracellular space of the brain (ECS) and are thought to be key players in the development of neurodegenerative diseases. The clearance of these aggregates (among other toxic metabolites) is a fundamental physiological feature of the brain which is poorly understood due to the lack of techniques to study the nanoscale organisation of the ECS. Exciting advances in this field have recently shown that clearance is enhanced during sleep due to a major volume change in the ECS, facilitating the flow of the interstitial fluid. However, this process has only been characterised at a low spatial resolution while the physiological changes occur at the nanoscale. The recently proposed “glymphatic” pathway still remains controversial, as there are no techniques capable of distinguishing between diffusion and bulk flow in the ECS of living animals. Understanding these processes at a higher spatial resolution requires the development of single-molecule imaging techniques that can study the brain in living animals. Taking advantage of the strategies I have recently developed to target single-molecules in the brain in vivo with nanoparticles, we will do “nanoscopy” in living animals. Our proposal will test the glymphatic pathway at the spatial scale in which events happen, and explore how sleep and wake cycles alter the ECS and the diffusion of receptors in neuronal plasma membrane. Overall, BrainNanoFlow aims to understand how nanoscale changes in the ECS facilitate clearance of protein aggregates. We will also provide new insights to the pathological consequences of impaired clearance, focusing on the interactions between these aggregates and their putative receptors. Being able to perform single-molecule studies in vivo in the brain will be a major breakthrough in neurobiology, making possible the study of physiological and pathological processes that cannot be studied in simpler brain preparations.
Max ERC Funding
1 552 948 €
Duration
Start date: 2018-12-01, End date: 2023-11-30
Project acronym BrainReadFBPredCode
Project Brain reading of contextual feedback and predictions
Researcher (PI) Lars Muckli
Host Institution (HI) UNIVERSITY OF GLASGOW
Call Details Starting Grant (StG), LS5, ERC-2012-StG_20111109
Summary We are currently witnessing a paradigm shift in our understanding of human brain function, moving towards a clearer description of cortical processing. Sensory systems are no longer considered as 'passively recording' but rather as dynamically anticipating and adapting to the rapidly changing environment. These new ideas are encompassed in the predictive coding framework, and indeed in a unifying theory of the brain (Friston, 2010). In terms of brain computation, a predictive model is created in higher cortical areas and communicated to lower sensory areas through feedback connections. Based on my pioneering research I propose experiments that are capable of ‘brain-reading’ cortical feedback– which would contribute invaluable data to theoretical frameworks.
The proposed research project will advance our understanding of ongoing brain activity, contextual processing, and cortical feedback - contributing to what is known about general cortical functions. By providing new insights as to the information content of cortical feedback, the proposal will fill one of the most important gaps in today’s knowledge about brain function. Friston’s unifying theory of the brain (Friston, 2010) and contemporary models of the predictive-coding framework (Hawkins and Blakeslee, 2004;Mumford, 1992;Rao and Ballard, 1999) assign feedback processing an essential role in cortical processing. Compared to feedforward information processing, our knowledge about feedback processing is in its infancy. The proposal introduces parametric and explorative brain reading designs to investigate this feedback processing. The chief goal of my proposal will be precision measures of cortical feedback, and a more ambitious objective is to read mental images and inner thoughts.
Summary
We are currently witnessing a paradigm shift in our understanding of human brain function, moving towards a clearer description of cortical processing. Sensory systems are no longer considered as 'passively recording' but rather as dynamically anticipating and adapting to the rapidly changing environment. These new ideas are encompassed in the predictive coding framework, and indeed in a unifying theory of the brain (Friston, 2010). In terms of brain computation, a predictive model is created in higher cortical areas and communicated to lower sensory areas through feedback connections. Based on my pioneering research I propose experiments that are capable of ‘brain-reading’ cortical feedback– which would contribute invaluable data to theoretical frameworks.
The proposed research project will advance our understanding of ongoing brain activity, contextual processing, and cortical feedback - contributing to what is known about general cortical functions. By providing new insights as to the information content of cortical feedback, the proposal will fill one of the most important gaps in today’s knowledge about brain function. Friston’s unifying theory of the brain (Friston, 2010) and contemporary models of the predictive-coding framework (Hawkins and Blakeslee, 2004;Mumford, 1992;Rao and Ballard, 1999) assign feedback processing an essential role in cortical processing. Compared to feedforward information processing, our knowledge about feedback processing is in its infancy. The proposal introduces parametric and explorative brain reading designs to investigate this feedback processing. The chief goal of my proposal will be precision measures of cortical feedback, and a more ambitious objective is to read mental images and inner thoughts.
Max ERC Funding
1 494 714 €
Duration
Start date: 2012-12-01, End date: 2017-11-30
Project acronym BRAINSHAPE
Project Objects in sight: the neural basis of visuomotor transformations for actions towards objects
Researcher (PI) Peter Anna J Janssen
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Starting Grant (StG), LS5, ERC-2010-StG_20091118
Summary Humans and other primates possess an exquisite capacity to grasp and manipulate objects. The seemingly effortless interaction with objects in everyday life is subserved by a number of cortical areas of the visual and the motor system. Recent research has highlighted that dorsal stream areas in the posterior parietal cortex are involved in object processing. Because parietal lesions do not impair object recognition, the encoding of object shape in posterior parietal cortex is considered to be important for the planning of actions towards objects. In order to succesfully grasp an object, the complex pattern of visual information impinging on the retina has to be transformed into a motor plan that can control the muscle contractions. The neural basis of visuomotor transformations necessary for directing actions towards objects, however, has remained largely unknown. This proposal aims to unravel the pathways and mechanisms involved in programming actions towards objects - an essential capacity for our very survival. We envision an integrated approach to study the transformation of visual information into motor commands in the macaque brain, combining functional imaging, single-cell recording, microstimulation and reversible inactivation. Our research efforts will be focussed on parietal area AIP and premotor area F5, two key brain areas for visually-guided grasping. Above all, this proposal will move beyond purely descriptive measurements of neural activity by implementing manipulations of brain activity to reveal behavioral effects and interdependencies of cortical areas. Finally the data obtained in this project will pave the way to use the neural activity recorded in visuomotor areas to act upon the environment by grasping objects by means of a robot hand.
Summary
Humans and other primates possess an exquisite capacity to grasp and manipulate objects. The seemingly effortless interaction with objects in everyday life is subserved by a number of cortical areas of the visual and the motor system. Recent research has highlighted that dorsal stream areas in the posterior parietal cortex are involved in object processing. Because parietal lesions do not impair object recognition, the encoding of object shape in posterior parietal cortex is considered to be important for the planning of actions towards objects. In order to succesfully grasp an object, the complex pattern of visual information impinging on the retina has to be transformed into a motor plan that can control the muscle contractions. The neural basis of visuomotor transformations necessary for directing actions towards objects, however, has remained largely unknown. This proposal aims to unravel the pathways and mechanisms involved in programming actions towards objects - an essential capacity for our very survival. We envision an integrated approach to study the transformation of visual information into motor commands in the macaque brain, combining functional imaging, single-cell recording, microstimulation and reversible inactivation. Our research efforts will be focussed on parietal area AIP and premotor area F5, two key brain areas for visually-guided grasping. Above all, this proposal will move beyond purely descriptive measurements of neural activity by implementing manipulations of brain activity to reveal behavioral effects and interdependencies of cortical areas. Finally the data obtained in this project will pave the way to use the neural activity recorded in visuomotor areas to act upon the environment by grasping objects by means of a robot hand.
Max ERC Funding
1 499 200 €
Duration
Start date: 2010-11-01, End date: 2015-10-31
Project acronym BRAINSIGNALS
Project Optical dissection of circuits underlying fast cholinergic signalling during cognitive behaviour
Researcher (PI) Huibert Mansvelder
Host Institution (HI) STICHTING VU
Call Details Starting Grant (StG), LS5, ERC-2011-StG_20101109
Summary Our ability to think, to memorize and focus our thoughts depends on acetylcholine signaling in the brain. The loss of cholinergic signalling in for instance Alzheimer’s disease strongly compromises these cognitive abilities. The traditional view on the role of cholinergic input to the neocortex is that slowly changing levels of extracellular acetylcholine (ACh) mediate different arousal states. This view has been challenged by recent studies demonstrating that rapid phasic changes in ACh levels at the scale of seconds are correlated with focus of attention, suggesting that these signals may mediate defined cognitive operations. Despite a wealth of anatomical data on the organization of the cholinergic system, very little understanding exists on its functional organization. How the relatively sparse input of cholinergic transmission in the prefrontal cortex elicits such a profound and specific control over attention is unknown. The main objective of this proposal is to develop a causal understanding of how cellular mechanisms of fast acetylcholine signalling are orchestrated during cognitive behaviour.
In a series of studies, I have identified several synaptic and cellular mechanisms by which the cholinergic system can alter neuronal circuitry function, both in cortical and subcortical areas. I have used a combination of behavioral, physiological and genetic methods in which I manipulated cholinergic receptor functionality in prefrontal cortex in a subunit specific manner and found that ACh receptors in the prefrontal cortex control attention performance. Recent advances in optogenetic and electrochemical methods now allow to rapidly manipulate and measure acetylcholine levels in freely moving, behaving animals. Using these techniques, I aim to uncover which cholinergic neurons are involved in fast cholinergic signaling during cognition and uncover the underlying neuronal mechanisms that alter prefrontal cortical network function.
Summary
Our ability to think, to memorize and focus our thoughts depends on acetylcholine signaling in the brain. The loss of cholinergic signalling in for instance Alzheimer’s disease strongly compromises these cognitive abilities. The traditional view on the role of cholinergic input to the neocortex is that slowly changing levels of extracellular acetylcholine (ACh) mediate different arousal states. This view has been challenged by recent studies demonstrating that rapid phasic changes in ACh levels at the scale of seconds are correlated with focus of attention, suggesting that these signals may mediate defined cognitive operations. Despite a wealth of anatomical data on the organization of the cholinergic system, very little understanding exists on its functional organization. How the relatively sparse input of cholinergic transmission in the prefrontal cortex elicits such a profound and specific control over attention is unknown. The main objective of this proposal is to develop a causal understanding of how cellular mechanisms of fast acetylcholine signalling are orchestrated during cognitive behaviour.
In a series of studies, I have identified several synaptic and cellular mechanisms by which the cholinergic system can alter neuronal circuitry function, both in cortical and subcortical areas. I have used a combination of behavioral, physiological and genetic methods in which I manipulated cholinergic receptor functionality in prefrontal cortex in a subunit specific manner and found that ACh receptors in the prefrontal cortex control attention performance. Recent advances in optogenetic and electrochemical methods now allow to rapidly manipulate and measure acetylcholine levels in freely moving, behaving animals. Using these techniques, I aim to uncover which cholinergic neurons are involved in fast cholinergic signaling during cognition and uncover the underlying neuronal mechanisms that alter prefrontal cortical network function.
Max ERC Funding
1 499 242 €
Duration
Start date: 2011-11-01, End date: 2016-10-31
Project acronym BRAINSTATES
Project Brain states, synapses and behaviour
Researcher (PI) James Poulet
Host Institution (HI) MAX DELBRUECK CENTRUM FUER MOLEKULARE MEDIZIN IN DER HELMHOLTZ-GEMEINSCHAFT (MDC)
Call Details Starting Grant (StG), LS5, ERC-2010-StG_20091118
Summary Global changes in patterns of neuronal activity or brain state are the first phenomenon recorded in the awake human brain (1). Changes in brain state are present in recordings of neocortical activity from mouse to man. It is now thought that changes in brain state are fundamental to normal brain function and neuronal computation. Despite their importance, we have very little idea about the underlying neuronal mechanisms that generate them or their precise impact on neuronal processing and behaviour. In previous work we have characterised brain state changes in a well characterised model for neuroscience research the mouse whisker system. We have recorded changes in the brain state in mouse cortex during whisker movements (2). In this proposal, we aim to use the mouse whisker system further to investigate the mechanisms and functions of changes in brain state. First we will use state of the art techniques to record and manipulate neuronal activity in the awake, behaving mouse to investigate the network and cellular mechanisms involved in generating brain state. Second we will use 2-photon microscopy to investigate the impact of brain state on excitatory and inhibitory synaptic integration in vivo. Finally we will use behaviourally trained mice to measure the impact of brain state changes on sensory perception and behaviour. This proposal will therefore provide fundamental insights into brain function at every step: mechanisms of changes in brain state, how neurons communicate with eachother and how the brain controls sensory perception and behaviour.
References
1 Berger H (1929) Archiv für Psychiatrie und Nervenkrankheiten 87:527-570.
2 Poulet JFA, Petersen CC (2008) Nature 454:881-885.
Summary
Global changes in patterns of neuronal activity or brain state are the first phenomenon recorded in the awake human brain (1). Changes in brain state are present in recordings of neocortical activity from mouse to man. It is now thought that changes in brain state are fundamental to normal brain function and neuronal computation. Despite their importance, we have very little idea about the underlying neuronal mechanisms that generate them or their precise impact on neuronal processing and behaviour. In previous work we have characterised brain state changes in a well characterised model for neuroscience research the mouse whisker system. We have recorded changes in the brain state in mouse cortex during whisker movements (2). In this proposal, we aim to use the mouse whisker system further to investigate the mechanisms and functions of changes in brain state. First we will use state of the art techniques to record and manipulate neuronal activity in the awake, behaving mouse to investigate the network and cellular mechanisms involved in generating brain state. Second we will use 2-photon microscopy to investigate the impact of brain state on excitatory and inhibitory synaptic integration in vivo. Finally we will use behaviourally trained mice to measure the impact of brain state changes on sensory perception and behaviour. This proposal will therefore provide fundamental insights into brain function at every step: mechanisms of changes in brain state, how neurons communicate with eachother and how the brain controls sensory perception and behaviour.
References
1 Berger H (1929) Archiv für Psychiatrie und Nervenkrankheiten 87:527-570.
2 Poulet JFA, Petersen CC (2008) Nature 454:881-885.
Max ERC Funding
1 463 125 €
Duration
Start date: 2011-02-01, End date: 2016-01-31
Project acronym BRAINVISIONREHAB
Project ‘Seeing’ with the ears, hands and bionic eyes: from theories about brain organization to visual rehabilitation
Researcher (PI) Amir Amedi
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Starting Grant (StG), LS5, ERC-2012-StG_20111109
Summary My lab's work ranges from basic science, querying brain plasticity and sensory integration, to technological developments, allowing the blind to be more independent and even “see” using sounds and touch similar to bats and dolphins (a.k.a. Sensory Substitution Devices, SSDs), and back to applying these devices in research. We propose that, with proper training, any brain area or network can change the type of sensory input it uses to retrieve behaviorally task-relevant information within a matter of days. If this is true, it can have far reaching implications also for clinical rehabilitation. To achieve this, we are developing several innovative SSDs which encode the most crucial aspects of vision and increase their accessibility the blind, along with targeted, structured training protocols both in virtual environments and in real life. For instance, the “EyeMusic”, encodes colored complex images using pleasant musical scales and instruments, and the “EyeCane”, a palm-size cane, which encodes distance and depth in several directions accurately and efficiently. We provide preliminary but compelling evidence that following such training, SSDs can enable almost blind to recognize daily objects, colors, faces and facial expressions, read street signs, and aiding mobility and navigation. SSDs can also be used in conjunction with (any) invasive approach for visual rehabilitation. We are developing a novel hybrid Visual Rehabilitation Device which combines SSD and bionic eyes. In this set up, the SSDs is used in training the brain to “see” prior to surgery, in providing explanatory signal after surgery and in augmenting the capabilities of the bionic-eyes using information arriving from the same image. We will chart the dynamics of the plastic changes in the brain by performing unprecedented longitudinal Neuroimaging, Electrophysiological and Neurodisruptive approaches while individuals learn to ‘see’ using each of the visual rehabilitation approaches suggested here.
Summary
My lab's work ranges from basic science, querying brain plasticity and sensory integration, to technological developments, allowing the blind to be more independent and even “see” using sounds and touch similar to bats and dolphins (a.k.a. Sensory Substitution Devices, SSDs), and back to applying these devices in research. We propose that, with proper training, any brain area or network can change the type of sensory input it uses to retrieve behaviorally task-relevant information within a matter of days. If this is true, it can have far reaching implications also for clinical rehabilitation. To achieve this, we are developing several innovative SSDs which encode the most crucial aspects of vision and increase their accessibility the blind, along with targeted, structured training protocols both in virtual environments and in real life. For instance, the “EyeMusic”, encodes colored complex images using pleasant musical scales and instruments, and the “EyeCane”, a palm-size cane, which encodes distance and depth in several directions accurately and efficiently. We provide preliminary but compelling evidence that following such training, SSDs can enable almost blind to recognize daily objects, colors, faces and facial expressions, read street signs, and aiding mobility and navigation. SSDs can also be used in conjunction with (any) invasive approach for visual rehabilitation. We are developing a novel hybrid Visual Rehabilitation Device which combines SSD and bionic eyes. In this set up, the SSDs is used in training the brain to “see” prior to surgery, in providing explanatory signal after surgery and in augmenting the capabilities of the bionic-eyes using information arriving from the same image. We will chart the dynamics of the plastic changes in the brain by performing unprecedented longitudinal Neuroimaging, Electrophysiological and Neurodisruptive approaches while individuals learn to ‘see’ using each of the visual rehabilitation approaches suggested here.
Max ERC Funding
1 499 900 €
Duration
Start date: 2013-09-01, End date: 2018-08-31
Project acronym BRASILIAE
Project Indigenous Knowledge in the Making of Science: Historia Naturalis Brasiliae (1648)
Researcher (PI) Mariana DE CAMPOS FRANCOZO
Host Institution (HI) UNIVERSITEIT LEIDEN
Call Details Starting Grant (StG), SH6, ERC-2016-STG
Summary This project is an interdisciplinary study of the role of indigenous knowledge in the making of science. Situated at the intersection of history and anthropology, its main research objective is to understand the transformation of information and practices of South American indigenous peoples into a body of knowledge that became part of the Western scholarly canon. It aims to explore, by means of a distinctive case-study, how European science is constructed in intercultural settings.
This project takes the book Historia Naturalis Brasiliae (HNB), published in 1648 by Piso and Marcgraf, as its central focus. The HNB is the first product of the encounter between early modern European scholarship and South American indigenous knowledge. In an encyclopedic format, it brings together information about the natural world, linguistics, and geography of South America as understood and experienced by indigenous peoples as well as enslaved Africans. Its method of construction embodies the intercultural connections that shaped practices of knowledge production in colonial settings across the globe, and is the earliest example of such in South America. With my research team, I will investigate how indigenous knowledge was appropriated and transformed into European science by focusing on ethnobotanics, ethnozoology, and indigenous material culture.
Since the HNB and its associated materials are kept in European museums and archives, this project is timely and relevant in light of the growing concern for the democratization of heritage. The current debate about the societal role of publicly-funded cultural institutions across Europe argues for the importance of multi-vocality in cultural and political processes. This project proposes a more inclusive interpretation and use of the materials in these institutions and thereby sets an example of how European heritage institutions can use their historical collections to reconnect the past with present-day societal concerns.
Summary
This project is an interdisciplinary study of the role of indigenous knowledge in the making of science. Situated at the intersection of history and anthropology, its main research objective is to understand the transformation of information and practices of South American indigenous peoples into a body of knowledge that became part of the Western scholarly canon. It aims to explore, by means of a distinctive case-study, how European science is constructed in intercultural settings.
This project takes the book Historia Naturalis Brasiliae (HNB), published in 1648 by Piso and Marcgraf, as its central focus. The HNB is the first product of the encounter between early modern European scholarship and South American indigenous knowledge. In an encyclopedic format, it brings together information about the natural world, linguistics, and geography of South America as understood and experienced by indigenous peoples as well as enslaved Africans. Its method of construction embodies the intercultural connections that shaped practices of knowledge production in colonial settings across the globe, and is the earliest example of such in South America. With my research team, I will investigate how indigenous knowledge was appropriated and transformed into European science by focusing on ethnobotanics, ethnozoology, and indigenous material culture.
Since the HNB and its associated materials are kept in European museums and archives, this project is timely and relevant in light of the growing concern for the democratization of heritage. The current debate about the societal role of publicly-funded cultural institutions across Europe argues for the importance of multi-vocality in cultural and political processes. This project proposes a more inclusive interpretation and use of the materials in these institutions and thereby sets an example of how European heritage institutions can use their historical collections to reconnect the past with present-day societal concerns.
Max ERC Funding
1 475 565 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym BUCOPHSYS
Project Bottom-up hybrid control and planning synthesis with application to multi-robot multi-human coordination
Researcher (PI) DIMOS Dimarogonas
Host Institution (HI) KUNGLIGA TEKNISKA HOEGSKOLAN
Call Details Starting Grant (StG), PE7, ERC-2014-STG
Summary Current control applications necessitate the treatment of systems with multiple interconnected components, rather than the traditional single component paradigm that has been studied extensively. The individual subsystems may need to fulfil different and possibly conflicting specifications in a real-time manner. At the same time, they may need to fulfill coupled constraints that are defined as relations between their states. Towards this end, the need for methods for decentralized control at the continuous level and planning at the task level becomes apparent. We aim here towards unification of these two complementary approaches. Existing solutions rely on a top down centralized approach. We instead consider here a decentralized, bottom-up solution to the problem. The approach relies on three layers of interaction. In the first layer, agents aim at coordinating in order to fulfil their coupled constraints with limited communication exchange of their state information and design of appropriate feedback controllers; in the second layer, agents coordinate in order to mutually satisfy their discrete tasks through exchange of the corresponding plans in the form of automata; in the third and most challenging layer, the communication exchange for coordination now includes both continuous state and discrete plan/abstraction information. The results will be demonstrated in a scenario involving multiple (possibly human) users and multiple robots.
The unification will yield a completely decentralized system, in which the bottom up approach to define tasks, the consideration of coupled constraints and their combination towards distributed hybrid control and planning in a coordinated fashion require for
new ways of thinking and approaches to analysis and constitute the proposal a beyond the SoA and groundbreaking approach to the fields of control and computer science.
Summary
Current control applications necessitate the treatment of systems with multiple interconnected components, rather than the traditional single component paradigm that has been studied extensively. The individual subsystems may need to fulfil different and possibly conflicting specifications in a real-time manner. At the same time, they may need to fulfill coupled constraints that are defined as relations between their states. Towards this end, the need for methods for decentralized control at the continuous level and planning at the task level becomes apparent. We aim here towards unification of these two complementary approaches. Existing solutions rely on a top down centralized approach. We instead consider here a decentralized, bottom-up solution to the problem. The approach relies on three layers of interaction. In the first layer, agents aim at coordinating in order to fulfil their coupled constraints with limited communication exchange of their state information and design of appropriate feedback controllers; in the second layer, agents coordinate in order to mutually satisfy their discrete tasks through exchange of the corresponding plans in the form of automata; in the third and most challenging layer, the communication exchange for coordination now includes both continuous state and discrete plan/abstraction information. The results will be demonstrated in a scenario involving multiple (possibly human) users and multiple robots.
The unification will yield a completely decentralized system, in which the bottom up approach to define tasks, the consideration of coupled constraints and their combination towards distributed hybrid control and planning in a coordinated fashion require for
new ways of thinking and approaches to analysis and constitute the proposal a beyond the SoA and groundbreaking approach to the fields of control and computer science.
Max ERC Funding
1 498 729 €
Duration
Start date: 2015-03-01, End date: 2020-02-29
Project acronym BuildNet
Project Smart Building Networks
Researcher (PI) Colin Jones
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Starting Grant (StG), PE7, ERC-2012-StG_20111012
Summary The Smart Building Networks (BuildNet) program will develop optimizing controllers capable of coordinating the flow of power to and from large networks of smart buildings in order to offer critical services to the power grid. The network will make use of the thermal storage of the structures and on-site micro generation capabilities of next-generation buildings, as well as the electrical capacity of attached electric vehicles in order to intelligently control the interaction between the network of buildings and the grid. The wide range of electric utility applications, such as wind capacity firming or congestion relief, that will be possible as a result of this coordinated control will in turn allow a significant increase in the percentage of European power generated from destabilizing renewable sources.
Technologically, BuildNet will be built around optimization-based or model predictive control (MPC), a paradigm that is ideally suited to the task of incorporating the current network state and forward-looking information into an optimal decision-making process. The project team will develop novel distributed MPC controllers that utilize the flexibility in the consumption, storage and generation of a distributed network of buildings by exploiting the extensive experience of the PI in optimization-based control and MPC for energy efficient buildings.
Because of its theoretically grounded optimization-based control approach, holistic view of building systems and connected networks, as well as a future-looking technological scope, BuildNet's outputs will deliver impact and be relevant to researchers and practitioners alike.
Summary
The Smart Building Networks (BuildNet) program will develop optimizing controllers capable of coordinating the flow of power to and from large networks of smart buildings in order to offer critical services to the power grid. The network will make use of the thermal storage of the structures and on-site micro generation capabilities of next-generation buildings, as well as the electrical capacity of attached electric vehicles in order to intelligently control the interaction between the network of buildings and the grid. The wide range of electric utility applications, such as wind capacity firming or congestion relief, that will be possible as a result of this coordinated control will in turn allow a significant increase in the percentage of European power generated from destabilizing renewable sources.
Technologically, BuildNet will be built around optimization-based or model predictive control (MPC), a paradigm that is ideally suited to the task of incorporating the current network state and forward-looking information into an optimal decision-making process. The project team will develop novel distributed MPC controllers that utilize the flexibility in the consumption, storage and generation of a distributed network of buildings by exploiting the extensive experience of the PI in optimization-based control and MPC for energy efficient buildings.
Because of its theoretically grounded optimization-based control approach, holistic view of building systems and connected networks, as well as a future-looking technological scope, BuildNet's outputs will deliver impact and be relevant to researchers and practitioners alike.
Max ERC Funding
1 460 232 €
Duration
Start date: 2012-12-01, End date: 2017-11-30
Project acronym C.o.C.O.
Project Circuits of con-specific observation
Researcher (PI) Marta De Aragao Pacheco Moita
Host Institution (HI) FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD
Call Details Starting Grant (StG), LS5, ERC-2013-StG
Summary A great deal is known about the neural basis of associative fear learning. However, many animal species are able to use social cues to recognize threats, a defence mechanism that may be less costly than learning from self-experience. We have previously shown that rats perceive the cessation of movement-evoked sound as a signal of danger and its resumption as a signal of safety. To study transmission of fear between rats we assessed the behavior of an observer while witnessing a demonstrator rat display fear responses. With this paradigm we will take advantage of the accumulated knowledge on learned fear to investigate the neural mechanisms by which the social environment regulates defense behaviors. We will unravel the neural circuits involved in detecting the transition from movement-evoked sound to silence. Moreover, since observer rats previously exposed to shock display observational freezing, but naive observer rats do not, we will determine the mechanism by which prior experience contribute to observational freezing. To this end, we will focus on the amygdala, crucial for fear learning and expression, and its auditory inputs, combining immunohistochemistry, pharmacology and optogenetics. Finally, as the detection of and responses to threat are often inherently social, we will study these behaviors in the context of large groups of individuals. To circumvent the serious limitations in using large populations of rats, we will resort to a different model system. The fruit fly is the ideal model system, as it is both amenable to the search for the neural mechanism of behavior, while at the same time allowing the study of the behavior of large groups of individuals. We will develop behavioral tasks, where conditioned demonstrator flies signal danger to other naïve ones. These experiments unravel how the brain uses defense behaviors as signals of danger and how it contributes to defense mechanisms at the population level.
Summary
A great deal is known about the neural basis of associative fear learning. However, many animal species are able to use social cues to recognize threats, a defence mechanism that may be less costly than learning from self-experience. We have previously shown that rats perceive the cessation of movement-evoked sound as a signal of danger and its resumption as a signal of safety. To study transmission of fear between rats we assessed the behavior of an observer while witnessing a demonstrator rat display fear responses. With this paradigm we will take advantage of the accumulated knowledge on learned fear to investigate the neural mechanisms by which the social environment regulates defense behaviors. We will unravel the neural circuits involved in detecting the transition from movement-evoked sound to silence. Moreover, since observer rats previously exposed to shock display observational freezing, but naive observer rats do not, we will determine the mechanism by which prior experience contribute to observational freezing. To this end, we will focus on the amygdala, crucial for fear learning and expression, and its auditory inputs, combining immunohistochemistry, pharmacology and optogenetics. Finally, as the detection of and responses to threat are often inherently social, we will study these behaviors in the context of large groups of individuals. To circumvent the serious limitations in using large populations of rats, we will resort to a different model system. The fruit fly is the ideal model system, as it is both amenable to the search for the neural mechanism of behavior, while at the same time allowing the study of the behavior of large groups of individuals. We will develop behavioral tasks, where conditioned demonstrator flies signal danger to other naïve ones. These experiments unravel how the brain uses defense behaviors as signals of danger and how it contributes to defense mechanisms at the population level.
Max ERC Funding
1 412 376 €
Duration
Start date: 2013-12-01, End date: 2018-11-30
Project acronym CALENDS
Project Clusters And LENsing of Distant Sources
Researcher (PI) Johan Pierre Richard
Host Institution (HI) UNIVERSITE LYON 1 CLAUDE BERNARD
Call Details Starting Grant (StG), PE9, ERC-2013-StG
Summary Some of the primary questions in extragalactic astronomy concern the formation and evolution of galaxies in the distant Universe. In particular, little is known about the less luminous (and therefore less massive) galaxy populations, which are currently missed from large observing surveys and could contribute significantly to the overall star formation happening at early times. One way to overcome the current observing limitations prior to the arrival of the future James Webb Space Telescope or the European Extremely Large Telescopes is to use the natural magnification of strong lensing clusters to look at distant sources with an improved sensitivity and resolution.
The aim of CALENDS is to build and study in great details a large sample of accurately-modelled, strongly lensed galaxies at high redshift (1<z<5) selected in the fields of massive clusters, and compare them with the more luminous or lower redshift populations. We will develop novel techniques in this process, in order to improve the accuracy of strong-lensing models and precisely determine the mass content of these clusters. By performing a systematic modelling of the cluster sample we will look into the relative distribution of baryons and dark matter as well as the amount of substructure in cluster cores. Regarding the population of lensed galaxies, we will study their global properties through a multiwavelength analysis covering the optical to millimeter domains, including spectroscopic information from MUSE and KMOS on the VLT, and ALMA.
We will look for scaling relations between the stellar, gas and dust parameters, and compare them with known relations for lower redshift and more massive galaxy samples. For the most extended sources, we will be able to spatially resolve their inner properties, and compare the results of individual regions with predictions from simulations. We will look into key physical processes: star formation, gas accretion, inflows and outflows, in these distant sources.
Summary
Some of the primary questions in extragalactic astronomy concern the formation and evolution of galaxies in the distant Universe. In particular, little is known about the less luminous (and therefore less massive) galaxy populations, which are currently missed from large observing surveys and could contribute significantly to the overall star formation happening at early times. One way to overcome the current observing limitations prior to the arrival of the future James Webb Space Telescope or the European Extremely Large Telescopes is to use the natural magnification of strong lensing clusters to look at distant sources with an improved sensitivity and resolution.
The aim of CALENDS is to build and study in great details a large sample of accurately-modelled, strongly lensed galaxies at high redshift (1<z<5) selected in the fields of massive clusters, and compare them with the more luminous or lower redshift populations. We will develop novel techniques in this process, in order to improve the accuracy of strong-lensing models and precisely determine the mass content of these clusters. By performing a systematic modelling of the cluster sample we will look into the relative distribution of baryons and dark matter as well as the amount of substructure in cluster cores. Regarding the population of lensed galaxies, we will study their global properties through a multiwavelength analysis covering the optical to millimeter domains, including spectroscopic information from MUSE and KMOS on the VLT, and ALMA.
We will look for scaling relations between the stellar, gas and dust parameters, and compare them with known relations for lower redshift and more massive galaxy samples. For the most extended sources, we will be able to spatially resolve their inner properties, and compare the results of individual regions with predictions from simulations. We will look into key physical processes: star formation, gas accretion, inflows and outflows, in these distant sources.
Max ERC Funding
1 450 992 €
Duration
Start date: 2013-09-01, End date: 2019-08-31
Project acronym CALI
Project The Cambodian Archaeological Lidar Initiative: Exploring Resilience in the Engineered Landscapes of Early SE Asia
Researcher (PI) Damian Evans
Host Institution (HI) ECOLE FRANCAISE D'EXTREME-ORIENT
Call Details Starting Grant (StG), SH6, ERC-2014-STG
Summary For over half a millennium, the great medieval capital of Angkor lay at the heart of a vast empire stretching across much of mainland SE Asia. Recent research has revealed that the famous monuments of Angkor were merely the epicentre of an immense settlement complex, with highly elaborate engineering works designed to manage water and mitigate the uncertainty of monsoon rains. Compelling evidence is now emerging that other temple complexes of the medieval Khmer Empire may also have formed the urban cores of dispersed, low-density settlements with similar systems of hydraulic engineering.
Using innovative airborne laser scanning (‘lidar’) technology, CALI will uncover, map and compare archaeological landscapes around all the major temple complexes of Cambodia, with a view to understanding what role these complex and vulnerable water management schemes played in the growth and decline of early civilisations in SE Asia. CALI will evaluate the hypothesis that the Khmer civilisation, in a bid to overcome the inherent constraints of a monsoon environment, became locked into rigid and inflexible traditions of urban development and large-scale hydraulic engineering that constrained their ability to adapt to rapidly-changing social, political and environmental circumstances.
By integrating data and techniques from fast-developing archaeological sciences like remote sensing, palaeoclimatology and geoinformatics, this work will provide important insights into the reasons for the collapse of inland agrarian empires in the middle of the second millennium AD, a transition that marks the emergence of modern mainland SE Asia. The lidar data will provide a comprehensive and internally-consistent archive of urban form at a regional scale, and offer a unique experimental space for evaluating socio-ecological resilience, persistence and transformation over two thousand years of human history, with clear implications for our understanding of contemporary urbanism and of urban futures.
Summary
For over half a millennium, the great medieval capital of Angkor lay at the heart of a vast empire stretching across much of mainland SE Asia. Recent research has revealed that the famous monuments of Angkor were merely the epicentre of an immense settlement complex, with highly elaborate engineering works designed to manage water and mitigate the uncertainty of monsoon rains. Compelling evidence is now emerging that other temple complexes of the medieval Khmer Empire may also have formed the urban cores of dispersed, low-density settlements with similar systems of hydraulic engineering.
Using innovative airborne laser scanning (‘lidar’) technology, CALI will uncover, map and compare archaeological landscapes around all the major temple complexes of Cambodia, with a view to understanding what role these complex and vulnerable water management schemes played in the growth and decline of early civilisations in SE Asia. CALI will evaluate the hypothesis that the Khmer civilisation, in a bid to overcome the inherent constraints of a monsoon environment, became locked into rigid and inflexible traditions of urban development and large-scale hydraulic engineering that constrained their ability to adapt to rapidly-changing social, political and environmental circumstances.
By integrating data and techniques from fast-developing archaeological sciences like remote sensing, palaeoclimatology and geoinformatics, this work will provide important insights into the reasons for the collapse of inland agrarian empires in the middle of the second millennium AD, a transition that marks the emergence of modern mainland SE Asia. The lidar data will provide a comprehensive and internally-consistent archive of urban form at a regional scale, and offer a unique experimental space for evaluating socio-ecological resilience, persistence and transformation over two thousand years of human history, with clear implications for our understanding of contemporary urbanism and of urban futures.
Max ERC Funding
1 482 844 €
Duration
Start date: 2015-03-01, End date: 2020-02-29
Project acronym CAMAP
Project CAMAP: Computer Aided Modeling for Astrophysical Plasmas
Researcher (PI) Miguel-Ángel Aloy-Torás
Host Institution (HI) UNIVERSITAT DE VALENCIA
Call Details Starting Grant (StG), PE9, ERC-2010-StG_20091028
Summary This project will be aimed at obtaining a deeper insight into the physical processes taking place in astrophysical magnetized plasmas. To study these scenarios I will employ different numerical codes as virtual tools that enable me to experiment on computers (virtual labs) with distinct initial and boundary conditions. Among the kind of sources I am interested to consider, I outline the following: Gamma-Ray Bursts (GRBs), extragalactic jets from Active Galactic Nuclei (AGN), magnetars and collapsing stellar cores. A number of important questions are still open regarding the fundamental properties of these astrophysical sources (e.g., collimation, acceleration mechanism, composition, high-energy emission, gravitational wave signature). Additionally, there are analytical issues on the formalism in relativistic dynamics not resolved yet, e.g., the covariant extension of resistive magnetohydrodynamics (MHD). All these problems are so complex that only a computational approach is feasible. I plan to study them by means of relativistic and Newtonian MHD numerical simulations. A principal focus of the project will be to assess the relevance of magnetic fields in the generation, collimation and ulterior propagation of relativistic jets from the GRB progenitors and from AGNs. More generally, I will pursue the goal of understanding the process of amplification of seed magnetic fields until they become dynamically relevant, e.g., using semi-global and local simulations of representative boxes of collapsed stellar cores. A big emphasis will be put on including all the relevant microphysics (e.g. neutrino physics), non-ideal effects (particularly, reconnection physics) and energy transport due to neutrinos and photons to account for the relevant processes in the former systems. A milestone of this project will be to end up with a numerical tool that enables us to deal with General Relativistic Radiation Magnetohydrodynamics problems in Astrophysics.
Summary
This project will be aimed at obtaining a deeper insight into the physical processes taking place in astrophysical magnetized plasmas. To study these scenarios I will employ different numerical codes as virtual tools that enable me to experiment on computers (virtual labs) with distinct initial and boundary conditions. Among the kind of sources I am interested to consider, I outline the following: Gamma-Ray Bursts (GRBs), extragalactic jets from Active Galactic Nuclei (AGN), magnetars and collapsing stellar cores. A number of important questions are still open regarding the fundamental properties of these astrophysical sources (e.g., collimation, acceleration mechanism, composition, high-energy emission, gravitational wave signature). Additionally, there are analytical issues on the formalism in relativistic dynamics not resolved yet, e.g., the covariant extension of resistive magnetohydrodynamics (MHD). All these problems are so complex that only a computational approach is feasible. I plan to study them by means of relativistic and Newtonian MHD numerical simulations. A principal focus of the project will be to assess the relevance of magnetic fields in the generation, collimation and ulterior propagation of relativistic jets from the GRB progenitors and from AGNs. More generally, I will pursue the goal of understanding the process of amplification of seed magnetic fields until they become dynamically relevant, e.g., using semi-global and local simulations of representative boxes of collapsed stellar cores. A big emphasis will be put on including all the relevant microphysics (e.g. neutrino physics), non-ideal effects (particularly, reconnection physics) and energy transport due to neutrinos and photons to account for the relevant processes in the former systems. A milestone of this project will be to end up with a numerical tool that enables us to deal with General Relativistic Radiation Magnetohydrodynamics problems in Astrophysics.
Max ERC Funding
1 497 000 €
Duration
Start date: 2011-03-01, End date: 2017-02-28
Project acronym CArchipelago
Project The Carceral Archipelago: transnational circulations in global perspective, 1415-1960
Researcher (PI) Clare Anderson
Host Institution (HI) UNIVERSITY OF LEICESTER
Call Details Starting Grant (StG), SH6, ERC-2012-StG_20111124
Summary This project centres ‘the carceral archipelago’ in the history of the making of the modern world. It analyses the relationships and circulations between and across convict transportation, penal colonies and labour, migration, coercion and confinement. It incorporates all the global powers engaged in transportation for the purpose of expansion and colonization - Europe, Russia, Latin America, China, Japan – over the period from Portugal’s first use of convicts in North Africa in 1415 to the dissolution of Stalin’s gulags in 1960. It uses an innovative theoretical base to shift convict transportation out of the history of crime and punishment into the new questions being raised by global and postcolonial history.
The project maps for the first time global networks of transportation and penal colonies. It undertakes case study archival research on relatively unexplored convict flows, and on the mobility of ideas and practices around transportation and other modes of confinement. It analyses its findings within the broader literature, including on transportation but also debates around the definition of freedom/ unfreedom, the importance of circulating labour, and global divergence and convergence. It redefines what we mean by ‘transportation,’ explores penal transportation as an engine of global change, de-centres Europe in historical analysis, and defines long-term impacts on economy, society and identity. It places special stress on investigating whether a transnational approach to the topic gives us a fresh theoretical starting point for studying global history that moves beyond ‘nation’ or ‘empire.’
The project lies at the intersections of national, colonial and global history, and economic, social and cultural history. It will be of wide interest to scholars of labour, migration, punishment and confinement; comparative and global history; diaspora, creolization and cultural translation; and museum and heritage studies.
Summary
This project centres ‘the carceral archipelago’ in the history of the making of the modern world. It analyses the relationships and circulations between and across convict transportation, penal colonies and labour, migration, coercion and confinement. It incorporates all the global powers engaged in transportation for the purpose of expansion and colonization - Europe, Russia, Latin America, China, Japan – over the period from Portugal’s first use of convicts in North Africa in 1415 to the dissolution of Stalin’s gulags in 1960. It uses an innovative theoretical base to shift convict transportation out of the history of crime and punishment into the new questions being raised by global and postcolonial history.
The project maps for the first time global networks of transportation and penal colonies. It undertakes case study archival research on relatively unexplored convict flows, and on the mobility of ideas and practices around transportation and other modes of confinement. It analyses its findings within the broader literature, including on transportation but also debates around the definition of freedom/ unfreedom, the importance of circulating labour, and global divergence and convergence. It redefines what we mean by ‘transportation,’ explores penal transportation as an engine of global change, de-centres Europe in historical analysis, and defines long-term impacts on economy, society and identity. It places special stress on investigating whether a transnational approach to the topic gives us a fresh theoretical starting point for studying global history that moves beyond ‘nation’ or ‘empire.’
The project lies at the intersections of national, colonial and global history, and economic, social and cultural history. It will be of wide interest to scholars of labour, migration, punishment and confinement; comparative and global history; diaspora, creolization and cultural translation; and museum and heritage studies.
Max ERC Funding
1 492 870 €
Duration
Start date: 2013-03-01, End date: 2018-02-28
Project acronym CartographY
Project Mapping Stellar Helium
Researcher (PI) Guy DAVIES
Host Institution (HI) THE UNIVERSITY OF BIRMINGHAM
Call Details Starting Grant (StG), PE9, ERC-2018-STG
Summary In the epoch of Gaia, fundamental stellar properties will be made widely available for large numbers of stars. These properties are expected to unleash a new wave of discovery in the field of astrophysics. But while many properties of stars are measurable, meaningful Helium abundances (Y) remain elusive and as a result fundamental properties are not accurate.
Helium enrichment laws, which underpin most stellar properties, link initial Y to initial metallicity, but these relations are very uncertain with gradients (dY/dZ) spanning the range 1 to 3. This uncertainty is the initial Y problem and this is a bottleneck that must be overcome to unleash the true potential of Gaia.
Without measurements of initial Y for all stars we need to find alternative observables that trace out the evolution of initial Y. We will search for better tracers using the power of asteroseismology as a calibrator.
Asteroseismic measures of Helium will be used to construct a map from observable properties (fundamental, chemical or even dynamical) back to initial Helium. This is a challenge that can only be solved through the use of the latest asteroseismic techniques coupled to a rigorous yet flexible statistical scheme. I am uniquely qualified in the cutting edge methods of asteroseismology and the application of advanced multi-level statistical models. The intersection of these two skill sets will allow me to solve the initial Helium problem.
The motivation for a timely solution to this problem could not be stronger. We have just entered an age of large asteroseismic datasets, vast spectroscopic surveys, and the billion star program of Gaia. The next wave of scientific breakthroughs in stellar physics, exoplanetary science, and Galactic archeology will be held back unless accurate fundamental stellar properties are available. We can only produce these accurate properties with a reliable map of stellar Helium.
Summary
In the epoch of Gaia, fundamental stellar properties will be made widely available for large numbers of stars. These properties are expected to unleash a new wave of discovery in the field of astrophysics. But while many properties of stars are measurable, meaningful Helium abundances (Y) remain elusive and as a result fundamental properties are not accurate.
Helium enrichment laws, which underpin most stellar properties, link initial Y to initial metallicity, but these relations are very uncertain with gradients (dY/dZ) spanning the range 1 to 3. This uncertainty is the initial Y problem and this is a bottleneck that must be overcome to unleash the true potential of Gaia.
Without measurements of initial Y for all stars we need to find alternative observables that trace out the evolution of initial Y. We will search for better tracers using the power of asteroseismology as a calibrator.
Asteroseismic measures of Helium will be used to construct a map from observable properties (fundamental, chemical or even dynamical) back to initial Helium. This is a challenge that can only be solved through the use of the latest asteroseismic techniques coupled to a rigorous yet flexible statistical scheme. I am uniquely qualified in the cutting edge methods of asteroseismology and the application of advanced multi-level statistical models. The intersection of these two skill sets will allow me to solve the initial Helium problem.
The motivation for a timely solution to this problem could not be stronger. We have just entered an age of large asteroseismic datasets, vast spectroscopic surveys, and the billion star program of Gaia. The next wave of scientific breakthroughs in stellar physics, exoplanetary science, and Galactic archeology will be held back unless accurate fundamental stellar properties are available. We can only produce these accurate properties with a reliable map of stellar Helium.
Max ERC Funding
1 496 203 €
Duration
Start date: 2019-04-01, End date: 2024-03-31
Project acronym CASTELLANY ACCOUNTS
Project Record-keeping, fiscal reform, and the rise of institutional accountability in late-medieval Savoy: a source-oriented approach
Researcher (PI) Ionut Epurescu-Pascovici
Host Institution (HI) UNIVERSITATEA DIN BUCURESTI
Call Details Starting Grant (StG), SH6, ERC-2014-STG
Summary The present research project focuses on an unjustly neglected corpus of late-medieval sources, the administrative and fiscal accounts (‘computi’) of the castellanies – basic administrative units – of the county of Savoy. I propose a holistic model of analysis that can fully capitalise on the unusual wealth of detail of the Savoyard source material, in order to illuminate some key topics in late-medieval institutional and socio-economic history, from the development of state institutions through administrative and fiscal reform – with particular attention to the transition from personal to institutional accountability – to the question of socio-economic growth, decline, and recovery during the turbulent period of the late-thirteenth to the late-fourteenth century. More broadly, my research into these topics aims to contribute to our understanding of the late-medieval origins of European modernity. The advances of pragmatic literacy, record-keeping, and auditing practices will be analysed with the aid of anthropological and social scientific theories of practice. By comparing the Savoyard ‘computi’ with their sources of inspiration, from the Anglo-Norman pipe rolls to the Catalan fiscal records, the project aims to highlight the creative adaptation of imported administrative models, and thus to contribute to our knowledge of institutional transfers in European history. The project will develop an inclusive frame of analysis in which the ‘computi’ will be read against the evidence from enfeoffment charters, castellany surveys (‘extente’), and the records of direct taxation (‘subsidia’). The serial data will be analysed by building a database; the findings of quantitative analysis will be verified by case studies of the individuals and families (many from the middle social strata) that surface in the fiscal records.
Summary
The present research project focuses on an unjustly neglected corpus of late-medieval sources, the administrative and fiscal accounts (‘computi’) of the castellanies – basic administrative units – of the county of Savoy. I propose a holistic model of analysis that can fully capitalise on the unusual wealth of detail of the Savoyard source material, in order to illuminate some key topics in late-medieval institutional and socio-economic history, from the development of state institutions through administrative and fiscal reform – with particular attention to the transition from personal to institutional accountability – to the question of socio-economic growth, decline, and recovery during the turbulent period of the late-thirteenth to the late-fourteenth century. More broadly, my research into these topics aims to contribute to our understanding of the late-medieval origins of European modernity. The advances of pragmatic literacy, record-keeping, and auditing practices will be analysed with the aid of anthropological and social scientific theories of practice. By comparing the Savoyard ‘computi’ with their sources of inspiration, from the Anglo-Norman pipe rolls to the Catalan fiscal records, the project aims to highlight the creative adaptation of imported administrative models, and thus to contribute to our knowledge of institutional transfers in European history. The project will develop an inclusive frame of analysis in which the ‘computi’ will be read against the evidence from enfeoffment charters, castellany surveys (‘extente’), and the records of direct taxation (‘subsidia’). The serial data will be analysed by building a database; the findings of quantitative analysis will be verified by case studies of the individuals and families (many from the middle social strata) that surface in the fiscal records.
Max ERC Funding
671 875 €
Duration
Start date: 2015-05-01, End date: 2020-04-30
Project acronym CAstRA
Project Comet and Asteroid Re-Shaping through Activity
Researcher (PI) Jessica AGARWAL
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), PE9, ERC-2017-STG
Summary The proposed project will significantly improve the insight in the processes that have changed a comet nucleus or asteroid since their formation. These processes typically go along with activity, the observable release of gas and/or dust. Understanding the evolutionary processes of comets and asteroids will allow us to answer the crucial question which aspects of these present-day bodies still provide essential clues to their formation in the protoplanetary disc of the early solar system.
Ground-breaking progress in understanding these fundamental questions can now be made thanks to the huge and unprecedented data set returned between 2014 and 2016 by the European Space Agency’s Rosetta mission to comet 67P/Churyumov-Gerasimenko, and by recent major advances in the observational study of active asteroids facilitated by the increased availability of sky surveys and follow-on observations with world-class telescopes.
The key aims of this proposal are to
- Obtain a unified quantitative picture of the different erosion processes active in comets and asteroids,
- Investigate how ice is stored in comets and asteroids,
- Characterize the ejected dust (size distribution, optical and thermal properties) and relate it to dust around other stars,
- Understand in which respects comet 67P can be considered as representative of a wider sample of comets or even asteroids.
We will follow a highly multi-disciplinary approach analyzing data from many Rosetta instruments, ground- and space-based telescopes, and connect these through numerical models of the dust dynamics and thermal properties.
Summary
The proposed project will significantly improve the insight in the processes that have changed a comet nucleus or asteroid since their formation. These processes typically go along with activity, the observable release of gas and/or dust. Understanding the evolutionary processes of comets and asteroids will allow us to answer the crucial question which aspects of these present-day bodies still provide essential clues to their formation in the protoplanetary disc of the early solar system.
Ground-breaking progress in understanding these fundamental questions can now be made thanks to the huge and unprecedented data set returned between 2014 and 2016 by the European Space Agency’s Rosetta mission to comet 67P/Churyumov-Gerasimenko, and by recent major advances in the observational study of active asteroids facilitated by the increased availability of sky surveys and follow-on observations with world-class telescopes.
The key aims of this proposal are to
- Obtain a unified quantitative picture of the different erosion processes active in comets and asteroids,
- Investigate how ice is stored in comets and asteroids,
- Characterize the ejected dust (size distribution, optical and thermal properties) and relate it to dust around other stars,
- Understand in which respects comet 67P can be considered as representative of a wider sample of comets or even asteroids.
We will follow a highly multi-disciplinary approach analyzing data from many Rosetta instruments, ground- and space-based telescopes, and connect these through numerical models of the dust dynamics and thermal properties.
Max ERC Funding
1 484 688 €
Duration
Start date: 2018-03-01, End date: 2023-02-28
Project acronym Cat-In-hAT
Project Catastrophic Interactions of Binary Stars and the Associated Transients
Researcher (PI) Ondrej PEJCHA
Host Institution (HI) UNIVERZITA KARLOVA
Call Details Starting Grant (StG), PE9, ERC-2018-STG
Summary "One of the crucial formation channels of compact object binaries, including sources of gravitational waves, critically depends on catastrophic binary interactions accompanied by the loss of mass, angular momentum, and energy (""common envelope"" evolution - CEE). Despite its importance, CEE is perhaps the least understood major phase of binary star evolution and progress in this area is urgently needed to interpret observations from the new facilities (gravitational wave detectors, time-domain surveys).
Recently, the dynamical phase of the CEE has been associated with a class of transient brightenings exhibiting slow expansion velocities and copious formation of dust and molecules (red transients - RT). A number of RT features, especially the long timescale of mass loss, challenge the existing CEE paradigm.
Motivated by RT, I will use a new variant of magnetohydrodynamics to comprehensively examine the 3D evolution of CEE from the moment when the mass loss commences to the remnant phase. I expect to resolve the long timescales observed in RT, characterize binary stability in 3D with detailed microphysics, illuminate the fundamental problem of how is orbital energy used to unbind the common envelope in a regime that was inaccessible before, and break new ground on the amplification of magnetic fields during CEE.
I will establish RT as an entirely new probe of the CEE physics by comparing my detailed theoretical predictions of light curves from different viewing angles, spectra, line profiles, and polarimetric signatures with observations of RT. I will accomplish this by coupling multi-dimensional moving mesh hydrodynamics with radiation, dust formation, and chemical reactions. Finally, I will examine the physical processes in RT remnants on timescales of years to centuries after the outburst to connect RT with the proposed merger products and to identify them in time-domain surveys.
"
Summary
"One of the crucial formation channels of compact object binaries, including sources of gravitational waves, critically depends on catastrophic binary interactions accompanied by the loss of mass, angular momentum, and energy (""common envelope"" evolution - CEE). Despite its importance, CEE is perhaps the least understood major phase of binary star evolution and progress in this area is urgently needed to interpret observations from the new facilities (gravitational wave detectors, time-domain surveys).
Recently, the dynamical phase of the CEE has been associated with a class of transient brightenings exhibiting slow expansion velocities and copious formation of dust and molecules (red transients - RT). A number of RT features, especially the long timescale of mass loss, challenge the existing CEE paradigm.
Motivated by RT, I will use a new variant of magnetohydrodynamics to comprehensively examine the 3D evolution of CEE from the moment when the mass loss commences to the remnant phase. I expect to resolve the long timescales observed in RT, characterize binary stability in 3D with detailed microphysics, illuminate the fundamental problem of how is orbital energy used to unbind the common envelope in a regime that was inaccessible before, and break new ground on the amplification of magnetic fields during CEE.
I will establish RT as an entirely new probe of the CEE physics by comparing my detailed theoretical predictions of light curves from different viewing angles, spectra, line profiles, and polarimetric signatures with observations of RT. I will accomplish this by coupling multi-dimensional moving mesh hydrodynamics with radiation, dust formation, and chemical reactions. Finally, I will examine the physical processes in RT remnants on timescales of years to centuries after the outburst to connect RT with the proposed merger products and to identify them in time-domain surveys.
"
Max ERC Funding
1 243 219 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym CDMAN
Project Control of Spatially Distributed Complex Multi-Agent Networks
Researcher (PI) Ming Cao
Host Institution (HI) RIJKSUNIVERSITEIT GRONINGEN
Call Details Starting Grant (StG), PE7, ERC-2012-StG_20111012
Summary "Spatially distributed multi-agent networks have been used successfully to model a wide range of natural, social and engineered complex systems, such as animal groups, online communities and electric power grids. In various contexts, it is crucial to introduce control actions into such networks to either achieve desired collective dynamics or test the understanding of the systems’ behavior. However, controlling such systems is extremely challenging due to agents’ complicated sensing, communication and control interactions that are distributed in space. Systematic methodologies to attack this challenge are in urgent need, especially when vast efforts are being made in multiple disciplines to apply the model of complex multi-agent networks.
The goal of the project is twofold. First, understand whether a complex multi-agent network can be controlled effectively when the agents can only sense and communicate locally. Second, provide methodologies to implement distributed control in typical spatially distributed complex multi-agent networks. The project requires integrated skills since both rigorous theoretical analysis and novel empirical explorations are necessary.
The research methods that I plan to adopt have two distinguishing features. First, I use tools from algebraic graph theory and complex network theory to investigate the impact of network topologies on the systems’ controller performances characterized by mathematical control theory. Second, I utilize a homemade robotic-fish testbed to implement various multi-agent control algorithms. The unique combination of theoretical and empirical studies is expected to lead to breakthroughs in developing an integrated set of principles and techniques to control effectively spatially distributed multi-agent networks. The expected results will make original contributions to control engineering and robotics, and inspire innovative research methods in theoretical biology and theoretical sociology."
Summary
"Spatially distributed multi-agent networks have been used successfully to model a wide range of natural, social and engineered complex systems, such as animal groups, online communities and electric power grids. In various contexts, it is crucial to introduce control actions into such networks to either achieve desired collective dynamics or test the understanding of the systems’ behavior. However, controlling such systems is extremely challenging due to agents’ complicated sensing, communication and control interactions that are distributed in space. Systematic methodologies to attack this challenge are in urgent need, especially when vast efforts are being made in multiple disciplines to apply the model of complex multi-agent networks.
The goal of the project is twofold. First, understand whether a complex multi-agent network can be controlled effectively when the agents can only sense and communicate locally. Second, provide methodologies to implement distributed control in typical spatially distributed complex multi-agent networks. The project requires integrated skills since both rigorous theoretical analysis and novel empirical explorations are necessary.
The research methods that I plan to adopt have two distinguishing features. First, I use tools from algebraic graph theory and complex network theory to investigate the impact of network topologies on the systems’ controller performances characterized by mathematical control theory. Second, I utilize a homemade robotic-fish testbed to implement various multi-agent control algorithms. The unique combination of theoretical and empirical studies is expected to lead to breakthroughs in developing an integrated set of principles and techniques to control effectively spatially distributed multi-agent networks. The expected results will make original contributions to control engineering and robotics, and inspire innovative research methods in theoretical biology and theoretical sociology."
Max ERC Funding
1 495 444 €
Duration
Start date: 2013-01-01, End date: 2017-12-31
Project acronym CEIDNFSTTAIS
Project Controlling excitability in developing neurons: from synapses to the axon initial segment
Researcher (PI) Juan Burrone
Host Institution (HI) KING'S COLLEGE LONDON
Call Details Starting Grant (StG), LS5, ERC-2011-StG_20101109
Summary A critical question in neuroscience is to understand how neurons wire up to form a functional network. During the wiring of the brain it is important to establish mechanisms that act as safeguards to control and stabilize neuronal excitability in the face of large, chronic changes in neuronal or network activity. This is especially true for developing systems that undergo rapid and large scale forms of plasticity, which could easily lead to large imbalances in activity. If left unchecked, they could lead the network to its extremes: a complete loss of signal or epileptic-like activity. For this reason neurons employ different strategies to maintain their excitability within reasonable bounds. This proposal will focus on two crucial sites for neuronal information processing and integration: the synapse and the axon initial segment (AIS). Both sites undergo important structural and functional rearrangements in response to chronic activity changes, thus controlling the input-output function of a neuron and allowing the network to function efficiently. This proposal will explore novel forms of plasticity that occur during development and which are key to establishing a functional network. They range from understanding the role of activity during synapse formation to how pre- and postsynaptic structure and function become matched during development. Finally, it tackles a novel form of plasticity that lies downstream of synaptic inputs and is responsible for setting the threshold of action potential firing: the axon initial segment. Here, chronic changes in network activity results in a physical relocation of the AIS along the axon, which in turn alters the excitability of the neuron. This proposal will focus on the central issue of how a neuron alters both its input (synapses) and output (AIS) during development to maintain its activity levels within a set range and allow a functional network to form.
Summary
A critical question in neuroscience is to understand how neurons wire up to form a functional network. During the wiring of the brain it is important to establish mechanisms that act as safeguards to control and stabilize neuronal excitability in the face of large, chronic changes in neuronal or network activity. This is especially true for developing systems that undergo rapid and large scale forms of plasticity, which could easily lead to large imbalances in activity. If left unchecked, they could lead the network to its extremes: a complete loss of signal or epileptic-like activity. For this reason neurons employ different strategies to maintain their excitability within reasonable bounds. This proposal will focus on two crucial sites for neuronal information processing and integration: the synapse and the axon initial segment (AIS). Both sites undergo important structural and functional rearrangements in response to chronic activity changes, thus controlling the input-output function of a neuron and allowing the network to function efficiently. This proposal will explore novel forms of plasticity that occur during development and which are key to establishing a functional network. They range from understanding the role of activity during synapse formation to how pre- and postsynaptic structure and function become matched during development. Finally, it tackles a novel form of plasticity that lies downstream of synaptic inputs and is responsible for setting the threshold of action potential firing: the axon initial segment. Here, chronic changes in network activity results in a physical relocation of the AIS along the axon, which in turn alters the excitability of the neuron. This proposal will focus on the central issue of how a neuron alters both its input (synapses) and output (AIS) during development to maintain its activity levels within a set range and allow a functional network to form.
Max ERC Funding
1 500 000 €
Duration
Start date: 2012-03-01, End date: 2017-02-28
Project acronym CELLTYPESANDCIRCUITS
Project Neural circuit function in the retina of mice and humans
Researcher (PI) Botond Roska
Host Institution (HI) FRIEDRICH MIESCHER INSTITUTE FOR BIOMEDICAL RESEARCH FONDATION
Call Details Starting Grant (StG), LS5, ERC-2010-StG_20091118
Summary The mammalian brain is assembled from thousands of neuronal cell types that are organized into distinct circuits to perform behaviourally relevant computations. To gain mechanistic insights about brain function and to treat specific diseases of the nervous system it is crucial to understand what these local circuits are computing and how they achieve these computations. By examining the structure and function of a few genetically identified and experimentally accessible neural circuits we plan to address fundamental questions about the functional architecture of neural circuits. First, are cell types assigned to a unique functional circuit with a well-defined function or do they participate in multiple circuits (multitasking cell types), adjusting their role depending on the state of these circuits? Second, does a neural circuit perform a single computation or depending on the information content of its inputs can it carry out radically different functions? Third, how, among the large number of other cell types, do the cells belonging to the same functional circuit connect together during development? We use the mouse retina as a model system to address these questions. Finally, we will study the structure and function of a specialised neural circuit in the human fovea that enables humans to read. We predict that our insights into the mechanism of multitasking, network switches and the development of selective connectivity will be instructive to study similar phenomena in other brain circuits. Knowledge of the structure and function of the human fovea will open up new opportunities to correlate human retinal function with human visual behaviour and our genetic technologies to study human foveal function will allow us and others to design better strategies for restoring vision for the blind.
Summary
The mammalian brain is assembled from thousands of neuronal cell types that are organized into distinct circuits to perform behaviourally relevant computations. To gain mechanistic insights about brain function and to treat specific diseases of the nervous system it is crucial to understand what these local circuits are computing and how they achieve these computations. By examining the structure and function of a few genetically identified and experimentally accessible neural circuits we plan to address fundamental questions about the functional architecture of neural circuits. First, are cell types assigned to a unique functional circuit with a well-defined function or do they participate in multiple circuits (multitasking cell types), adjusting their role depending on the state of these circuits? Second, does a neural circuit perform a single computation or depending on the information content of its inputs can it carry out radically different functions? Third, how, among the large number of other cell types, do the cells belonging to the same functional circuit connect together during development? We use the mouse retina as a model system to address these questions. Finally, we will study the structure and function of a specialised neural circuit in the human fovea that enables humans to read. We predict that our insights into the mechanism of multitasking, network switches and the development of selective connectivity will be instructive to study similar phenomena in other brain circuits. Knowledge of the structure and function of the human fovea will open up new opportunities to correlate human retinal function with human visual behaviour and our genetic technologies to study human foveal function will allow us and others to design better strategies for restoring vision for the blind.
Max ERC Funding
1 499 000 €
Duration
Start date: 2010-11-01, End date: 2015-10-31
Project acronym CeMoMagneto
Project The Cellular and Molecular Basis of Magnetoreception
Researcher (PI) David Anthony Keays
Host Institution (HI) FORSCHUNGSINSTITUT FUR MOLEKULARE PATHOLOGIE GESELLSCHAFT MBH
Call Details Starting Grant (StG), LS5, ERC-2013-StG
Summary Each year millions of animals undertake remarkable migratory journeys, across oceans and through hemispheres, guided by the Earth’s magnetic field. The cellular and molecular basis of this enigmatic sense, known as magnetoreception, remains an unsolved scientific mystery. One hypothesis that attempts to explain the basis of this sensory faculty is known as the magnetite theory of magnetoreception. It argues that magnetic information is transduced into a neuronal impulse by employing the iron oxide magnetite (Fe3O4). Current evidence indicates that pigeons employ a magnetoreceptor that is associated with the ophthalmic branch of the trigeminal nerve and the vestibular system, but the sensory cells remain undiscovered. The goal of this ambitious proposal is to discover the cells and molecules that mediate magnetoreception. This overall objective can be divided into three specific aims: (1) the identification of putative magnetoreceptive cells (PMCs); (2) the cellular characterisation of PMCs; and (3) the discovery and functional ablation of molecules specific to PMCs. In tackling these three aims this proposal adopts a reductionist mindset, employing and developing the latest imaging, subcellular, and molecular technologies.
Summary
Each year millions of animals undertake remarkable migratory journeys, across oceans and through hemispheres, guided by the Earth’s magnetic field. The cellular and molecular basis of this enigmatic sense, known as magnetoreception, remains an unsolved scientific mystery. One hypothesis that attempts to explain the basis of this sensory faculty is known as the magnetite theory of magnetoreception. It argues that magnetic information is transduced into a neuronal impulse by employing the iron oxide magnetite (Fe3O4). Current evidence indicates that pigeons employ a magnetoreceptor that is associated with the ophthalmic branch of the trigeminal nerve and the vestibular system, but the sensory cells remain undiscovered. The goal of this ambitious proposal is to discover the cells and molecules that mediate magnetoreception. This overall objective can be divided into three specific aims: (1) the identification of putative magnetoreceptive cells (PMCs); (2) the cellular characterisation of PMCs; and (3) the discovery and functional ablation of molecules specific to PMCs. In tackling these three aims this proposal adopts a reductionist mindset, employing and developing the latest imaging, subcellular, and molecular technologies.
Max ERC Funding
1 499 752 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym CERDEV
Project Transcriptional controls over cerebellar neuron differentiation and circuit assembly
Researcher (PI) Ludovic TELLEY
Host Institution (HI) UNIVERSITE DE LAUSANNE
Call Details Starting Grant (StG), LS5, ERC-2017-STG
Summary The cerebellum is a critical regulator of motor function, which acts to integrate ongoing body states, sensory inputs and desired outcomes to adjust motor output. This motor control is achieved by a relatively small number of neuron types receiving two main sources of inputs and forming a single output pathway, the axons of Purkinje cells. Although the cerebellum is one of the first structures of the brain to differentiate, it undergoes a prolonged differentiation period such that mature cellular and circuit configuration is achieved only late after birth. Despite the functional importance of this structure, the molecular mechanisms that control type-specific cerebellar neurons generation, differentiation, and circuit assembly are poorly understood and are the topic of the present study.
In my research program, I propose to investigate the transcriptional programs that control the generation of distinct subtypes of cerebellar neurons from progenitors, including Purkinje cells, granule cells and molecular layer interneurons (Work Package 1); the diversity of Purkinje cells across cerebellar regions (Work Package 2) and the postnatal differentiation and circuit integration of granule cells and molecular layer interneurons (Work Package 3). The general bases of the approach I propose consist in: i) specifically label cerebellar neuron progenitors and their progeny at sequential developmental time points pre- and post-natally using birthdate-based tagging, ii) FAC-sort these distinct cell types, iii) isolate these cells and identify their transcriptional signatures with single-cell resolution, iv) functionally interrogate top candidate genes and associated transcriptional programs using in vivo gain- and loss-of-function approaches. Together, these experiments aim at deciphering the cell-intrinsic processes controlling cerebellar circuit formation, towards a better understanding of the molecular mechanisms underlying cerebellar function and dysfunction.
Summary
The cerebellum is a critical regulator of motor function, which acts to integrate ongoing body states, sensory inputs and desired outcomes to adjust motor output. This motor control is achieved by a relatively small number of neuron types receiving two main sources of inputs and forming a single output pathway, the axons of Purkinje cells. Although the cerebellum is one of the first structures of the brain to differentiate, it undergoes a prolonged differentiation period such that mature cellular and circuit configuration is achieved only late after birth. Despite the functional importance of this structure, the molecular mechanisms that control type-specific cerebellar neurons generation, differentiation, and circuit assembly are poorly understood and are the topic of the present study.
In my research program, I propose to investigate the transcriptional programs that control the generation of distinct subtypes of cerebellar neurons from progenitors, including Purkinje cells, granule cells and molecular layer interneurons (Work Package 1); the diversity of Purkinje cells across cerebellar regions (Work Package 2) and the postnatal differentiation and circuit integration of granule cells and molecular layer interneurons (Work Package 3). The general bases of the approach I propose consist in: i) specifically label cerebellar neuron progenitors and their progeny at sequential developmental time points pre- and post-natally using birthdate-based tagging, ii) FAC-sort these distinct cell types, iii) isolate these cells and identify their transcriptional signatures with single-cell resolution, iv) functionally interrogate top candidate genes and associated transcriptional programs using in vivo gain- and loss-of-function approaches. Together, these experiments aim at deciphering the cell-intrinsic processes controlling cerebellar circuit formation, towards a better understanding of the molecular mechanisms underlying cerebellar function and dysfunction.
Max ERC Funding
1 499 885 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym CerebralHominoids
Project Evolutionary biology of human and great ape brain development in cerebral organoids
Researcher (PI) Madeline LANCASTER
Host Institution (HI) UNITED KINGDOM RESEARCH AND INNOVATION
Call Details Starting Grant (StG), LS5, ERC-2017-STG
Summary Humans are endowed with a number of advanced cognitive abilities not seen in other species. So what allows the human brain to stand out from the rest in these capabilities? In general, the brains of primates, including humans, have more neurons per unit volume than other mammals. But humans are also in the fortunate position of having the largest of the primate brains, making the number of neurons in the human cerebral cortex greatly expanded. Thus, the difference seems to be a matter of quantity, not quality. My laboratory is interested in understanding how neuron number, and thus brain size, is determined in human brain development.
The research proposed here is aimed at taking an evolutionary approach to this question and comparing brain development in an in vitro 3D model system, cerebral organoids. This method, which relies on self-organization from differentiating pluripotent stem cells, recapitulates remarkably well the endogenous developmental program of the human brain. Having previously established the brain organoid approach, and more recently improved upon it with the application of bioengineering, my laboratory is in a unique position to carry out functional studies of human brain development. I propose to use this approach to compare developing human brain tissue to that of other hominid species and tease apart unique features of human neural stem cells and progenitors that allow them to generate more neurons and therefore a greater cerebral cortical size. Furthermore, we will perform transcriptomic and functional screening to identify factors underlying this expansion, followed by careful genetic substitution to test the contributions of putative evolutionary changes. In this way, we will functionally test putative human evolutionary changes in a manner not previously possible.
Summary
Humans are endowed with a number of advanced cognitive abilities not seen in other species. So what allows the human brain to stand out from the rest in these capabilities? In general, the brains of primates, including humans, have more neurons per unit volume than other mammals. But humans are also in the fortunate position of having the largest of the primate brains, making the number of neurons in the human cerebral cortex greatly expanded. Thus, the difference seems to be a matter of quantity, not quality. My laboratory is interested in understanding how neuron number, and thus brain size, is determined in human brain development.
The research proposed here is aimed at taking an evolutionary approach to this question and comparing brain development in an in vitro 3D model system, cerebral organoids. This method, which relies on self-organization from differentiating pluripotent stem cells, recapitulates remarkably well the endogenous developmental program of the human brain. Having previously established the brain organoid approach, and more recently improved upon it with the application of bioengineering, my laboratory is in a unique position to carry out functional studies of human brain development. I propose to use this approach to compare developing human brain tissue to that of other hominid species and tease apart unique features of human neural stem cells and progenitors that allow them to generate more neurons and therefore a greater cerebral cortical size. Furthermore, we will perform transcriptomic and functional screening to identify factors underlying this expansion, followed by careful genetic substitution to test the contributions of putative evolutionary changes. In this way, we will functionally test putative human evolutionary changes in a manner not previously possible.
Max ERC Funding
1 444 911 €
Duration
Start date: 2018-07-01, End date: 2023-06-30
Project acronym CFRONTIERS
Project Coastal Frontiers: Water, Power, and the Boundaries of South Asia
Researcher (PI) Sunil Amrith
Host Institution (HI) BIRKBECK COLLEGE - UNIVERSITY OF LONDON
Call Details Starting Grant (StG), SH6, ERC-2011-StG_20101124
Summary 'Coastal Frontiers' will involve the Principal Investigator, Dr Sunil Amrith, and a post-doctoral research assistant, in a study of the Bay of Bengal’s coastal rim from the late-nineteenth century to the present. This project will illuminate the entangled political and ecological history of the coastal arc stretching from India’s southern tip to the edge of the Malay Peninsula. It will combine macro-level perspectives on environmental change, contingent histories of transformations in political sovereignty, and local histories of coastal peoples. It seeks to examine how people have actually inhabited the coastal borderlands of Asia, and the contrasting ways these worlds appear through the eyes of states, or in the minds of coastal ecologists. It will focus on key coastal sites at the frontiers of ecological change, at the frontiers between empires and nations, at the frontiers between terrestrial and maritime law. The project will examine the deeper history of environmental change and political conflict in a region that is now particularly vulnerable to climate change, and at the fault-lines of strategic conflict between India and China.
The project will build on the Principal Investigator’s recent work at the frontiers of scholarship in Asian history, through his studies of the links between South and Southeast Asia’s histories of migration and oceanic connection. It is time, now, to root this re-conceptualization of Asia’s regional frontiers in a closer study of environmental change, but to do so in a way that does not lose sight of the experiences and consciousness of individuals. This represents a new departure in scholarship, combining environmental history with the history of transnational flows, bridging insights from the humanities and ecological science. This ambitious project seeks new ways for historians to engage with questions of planetary change, without losing the fine-grained detail and hard archival research that has characterised our discipline.
Summary
'Coastal Frontiers' will involve the Principal Investigator, Dr Sunil Amrith, and a post-doctoral research assistant, in a study of the Bay of Bengal’s coastal rim from the late-nineteenth century to the present. This project will illuminate the entangled political and ecological history of the coastal arc stretching from India’s southern tip to the edge of the Malay Peninsula. It will combine macro-level perspectives on environmental change, contingent histories of transformations in political sovereignty, and local histories of coastal peoples. It seeks to examine how people have actually inhabited the coastal borderlands of Asia, and the contrasting ways these worlds appear through the eyes of states, or in the minds of coastal ecologists. It will focus on key coastal sites at the frontiers of ecological change, at the frontiers between empires and nations, at the frontiers between terrestrial and maritime law. The project will examine the deeper history of environmental change and political conflict in a region that is now particularly vulnerable to climate change, and at the fault-lines of strategic conflict between India and China.
The project will build on the Principal Investigator’s recent work at the frontiers of scholarship in Asian history, through his studies of the links between South and Southeast Asia’s histories of migration and oceanic connection. It is time, now, to root this re-conceptualization of Asia’s regional frontiers in a closer study of environmental change, but to do so in a way that does not lose sight of the experiences and consciousness of individuals. This represents a new departure in scholarship, combining environmental history with the history of transnational flows, bridging insights from the humanities and ecological science. This ambitious project seeks new ways for historians to engage with questions of planetary change, without losing the fine-grained detail and hard archival research that has characterised our discipline.
Max ERC Funding
606 655 €
Duration
Start date: 2012-01-01, End date: 2015-06-30
Project acronym CHAOSNETS
Project "Building Scalable, Secure, and Reliable ""Chaotic"" Wireless Networks"
Researcher (PI) Kyle Andrew Stuart Jamieson
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Starting Grant (StG), PE7, ERC-2011-StG_20101014
Summary As a result of their unplanned, license-free nature, WiFi networks have grown quickly in recent years, giving users unprecedented improvements in wireless access to the Internet. But being “chaotic,” i.e. unplanned, they have grown to be victims of their own success: when eager users set up too many wireless access points in a densely-populated area, the resulting noise and interference hurt everyones throughput and connectivity. Cellular mobile telephone networks are planned carefully, but in order to expand coverage indoors, providers are turning to customer-deployed femtocells, thus incuring the drawbacks of chaotic WiFi networks. We propose a ground-up redesign of chaotic wireless networks, with new architectural contributions focusing on what information the physical layer should pass up to higher layers. We propose a new physical layer interface called SoftAoA that passes angle-of-arrival (AoA) information from the physical layer up to higher layers. Using this expanded physical layer interface, we will first investigate fountain coding and receiver-based rate adaptation methods to improve wireless capacity in the vagaries of the “grey zone” of marginal coverage. Second, we will investigate improvements to security and localization that can be made based on the profiling of incoming packets’ AoA at an access point. Finally, we will investigate how a chaotically-deployed network can mitigate the interference it experiences from networks not under the same administrative control, and manage the interference it causes to those networks. The result will be more scalable, secure, and reliable chaotic wireless networks that play an even more prominent role in our lives.
Summary
As a result of their unplanned, license-free nature, WiFi networks have grown quickly in recent years, giving users unprecedented improvements in wireless access to the Internet. But being “chaotic,” i.e. unplanned, they have grown to be victims of their own success: when eager users set up too many wireless access points in a densely-populated area, the resulting noise and interference hurt everyones throughput and connectivity. Cellular mobile telephone networks are planned carefully, but in order to expand coverage indoors, providers are turning to customer-deployed femtocells, thus incuring the drawbacks of chaotic WiFi networks. We propose a ground-up redesign of chaotic wireless networks, with new architectural contributions focusing on what information the physical layer should pass up to higher layers. We propose a new physical layer interface called SoftAoA that passes angle-of-arrival (AoA) information from the physical layer up to higher layers. Using this expanded physical layer interface, we will first investigate fountain coding and receiver-based rate adaptation methods to improve wireless capacity in the vagaries of the “grey zone” of marginal coverage. Second, we will investigate improvements to security and localization that can be made based on the profiling of incoming packets’ AoA at an access point. Finally, we will investigate how a chaotically-deployed network can mitigate the interference it experiences from networks not under the same administrative control, and manage the interference it causes to those networks. The result will be more scalable, secure, and reliable chaotic wireless networks that play an even more prominent role in our lives.
Max ERC Funding
1 457 675 €
Duration
Start date: 2011-11-01, End date: 2016-10-31
Project acronym CHASM
Project Convective Heat Transport and Stellar Magnetism
Researcher (PI) Matthew Keith Morris Browning
Host Institution (HI) THE UNIVERSITY OF EXETER
Call Details Starting Grant (StG), PE9, ERC-2013-StG
Summary "Magnetism plays a profound role in stars and planets. In the Sun, magnetic fields are ultimately responsible for solar flares and coronal mass ejections that can impact our technological society. Earth's own magnetic field partly shields us from these events, but solar storms can still interrupt satellite communications, disrupt power grids, and pose a danger to astronauts on spacewalks. More generally, magnetic fields partly control the rotational evolution of stars, likely impact the habitability of extrasolar planets, and may modify the sizes and internal structures of
low-mass stars and gaseous planets. In all cases, the magnetism is generally thought to arise from a convective dynamo -- but a detailed theoretical understanding of this process, and its influence on the overall evolution of stars and planets, has remained elusive. Particularly fascinating observational puzzles have recently come from the study of low-mass M-dwarf stars: the most numerous type of stars in our galaxy and perhaps the most likely to host habitable planets.
We therefore propose to study how stars and sub-stellar objects build magnetic fields using 3-D magnetohydrodynamic simulations, and to quantify the effects of those fields on stellar structure and evolution. Using the Anelastic Spherical Harmonic (ASH) and Compressible Spherical Segment (CSS) codes, we will examine (a) how global magnetic field generation in these stars depends upon parameters like stellar mass, rotation rate, and the presence of a stable core, and (b) how the deep convection and magnetism imprints through (and is shaped by) the near-surface layers of these objects. We will (c) determine the impact of the resulting fields on the convective transport of heat and angular momentum, incorporate our results into state of the art 1-D evolutionary models of stars, and explore the consequences for stellar evolution. Separately, we will (d) develop and maintain a public database of 3-D convective dynamo models."
Summary
"Magnetism plays a profound role in stars and planets. In the Sun, magnetic fields are ultimately responsible for solar flares and coronal mass ejections that can impact our technological society. Earth's own magnetic field partly shields us from these events, but solar storms can still interrupt satellite communications, disrupt power grids, and pose a danger to astronauts on spacewalks. More generally, magnetic fields partly control the rotational evolution of stars, likely impact the habitability of extrasolar planets, and may modify the sizes and internal structures of
low-mass stars and gaseous planets. In all cases, the magnetism is generally thought to arise from a convective dynamo -- but a detailed theoretical understanding of this process, and its influence on the overall evolution of stars and planets, has remained elusive. Particularly fascinating observational puzzles have recently come from the study of low-mass M-dwarf stars: the most numerous type of stars in our galaxy and perhaps the most likely to host habitable planets.
We therefore propose to study how stars and sub-stellar objects build magnetic fields using 3-D magnetohydrodynamic simulations, and to quantify the effects of those fields on stellar structure and evolution. Using the Anelastic Spherical Harmonic (ASH) and Compressible Spherical Segment (CSS) codes, we will examine (a) how global magnetic field generation in these stars depends upon parameters like stellar mass, rotation rate, and the presence of a stable core, and (b) how the deep convection and magnetism imprints through (and is shaped by) the near-surface layers of these objects. We will (c) determine the impact of the resulting fields on the convective transport of heat and angular momentum, incorporate our results into state of the art 1-D evolutionary models of stars, and explore the consequences for stellar evolution. Separately, we will (d) develop and maintain a public database of 3-D convective dynamo models."
Max ERC Funding
1 469 070 €
Duration
Start date: 2013-12-01, End date: 2018-11-30
Project acronym CHEMOSENSORYCIRCUITS
Project Function of Chemosensory Circuits
Researcher (PI) Emre Yaksi
Host Institution (HI) NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET NTNU
Call Details Starting Grant (StG), LS5, ERC-2013-StG
Summary Smell and taste are the least studied of all senses. Very little is known about chemosensory information processing beyond the level of receptor neurons. Every morning we enjoy our coffee thanks to our brains ability to combine and process multiple sensory modalities. Meanwhile, we can still review a document on our desk by adjusting the weights of numerous sensory inputs that constantly bombard our brains. Yet, the smell of our coffee may remind us that pleasant weekend breakfast through associative learning and memory. In the proposed project we will explore the function and the architecture of neural circuits that are involved in olfactory and gustatory information processing, namely habenula and brainstem. Moreover we will investigate the fundamental principles underlying multimodal sensory integration and the neural basis of behavior in these highly conserved brain areas.
To achieve these goals we will take an innovative approach by combining two-photon calcium imaging, optogenetics and electrophysiology with the expanding genetic toolbox of a small vertebrate, the zebrafish. This pioneering approach will enable us to design new types of experiments that were unthinkable only a few years ago. Using this unique combination of methods, we will monitor and perturb the activity of functionally distinct elements of habenular and brainstem circuits, in vivo. The habenula and brainstem are important in mediating stress/anxiety and eating habits respectively. Therefore, understanding the neural computations in these brain regions is important for comprehending the neural mechanisms underlying psychological conditions related to anxiety and eating disorders. We anticipate that our results will go beyond chemical senses and contribute new insights to the understanding of how brain circuits work and interact with the sensory world to shape neural activity and behavioral outputs of animals.
Summary
Smell and taste are the least studied of all senses. Very little is known about chemosensory information processing beyond the level of receptor neurons. Every morning we enjoy our coffee thanks to our brains ability to combine and process multiple sensory modalities. Meanwhile, we can still review a document on our desk by adjusting the weights of numerous sensory inputs that constantly bombard our brains. Yet, the smell of our coffee may remind us that pleasant weekend breakfast through associative learning and memory. In the proposed project we will explore the function and the architecture of neural circuits that are involved in olfactory and gustatory information processing, namely habenula and brainstem. Moreover we will investigate the fundamental principles underlying multimodal sensory integration and the neural basis of behavior in these highly conserved brain areas.
To achieve these goals we will take an innovative approach by combining two-photon calcium imaging, optogenetics and electrophysiology with the expanding genetic toolbox of a small vertebrate, the zebrafish. This pioneering approach will enable us to design new types of experiments that were unthinkable only a few years ago. Using this unique combination of methods, we will monitor and perturb the activity of functionally distinct elements of habenular and brainstem circuits, in vivo. The habenula and brainstem are important in mediating stress/anxiety and eating habits respectively. Therefore, understanding the neural computations in these brain regions is important for comprehending the neural mechanisms underlying psychological conditions related to anxiety and eating disorders. We anticipate that our results will go beyond chemical senses and contribute new insights to the understanding of how brain circuits work and interact with the sensory world to shape neural activity and behavioral outputs of animals.
Max ERC Funding
1 499 471 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym CHIME
Project The Role of Cortico-Hippocampal Interactions during Memory Encoding
Researcher (PI) Daniel (Ari) Bendor
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Starting Grant (StG), LS5, ERC-2014-STG
Summary This research proposal’s goal is to investigate the role of cortico-hippocampal interactions during the encoding and consolidation of a memory. Current memory consolidation models postulate that memory storage in our brains occurs by a dynamic process- a recent episodic experience is initially encoded in the hippocampus, and during off-line states such as sleep, the encoded memory is gradually transferred to neocortex for long-term storage. One potential neural mechanism by which this could occur is replay, a phenomenon where neural activity patterns in the hippocampus evoked by a previous experience reactivate spontaneously during non-REM sleep, leading to coordinated cortical reactivation. While previous work suggests that hippocampal replay is important for encoding new memories, how memory consolidation is accomplished through cortico-hippocampal interactions is not well understood.
This research project has three major aims- 1) examine how cortical feedback influences which spatial trajectory is replayed by the hippocampus, 2) investigate how the hippocampal replay of a behavioural episode modifies cortical circuits, 3) measure the causal role of cortico-hippocampal interactions in consolidating memories. We will record ensemble activity from freely moving rats during an auditory-spatial association task and during post-behavioural sleep sessions. We will focus our ensemble recordings on two brain regions: 1) the dorsal CA1 region of the hippocampus, where the phenomenon of sleep replay has been most extensively examined, and 2) auditory cortex, a region of the brain critical for both auditory perception and long-term memory storage. This work will use behavioral and molecular-genetic techniques in combination with large-scale electrophysiological recordings, to help elucidate the role of cortico-hippocampal interactions in memory encoding and consolidation.
Summary
This research proposal’s goal is to investigate the role of cortico-hippocampal interactions during the encoding and consolidation of a memory. Current memory consolidation models postulate that memory storage in our brains occurs by a dynamic process- a recent episodic experience is initially encoded in the hippocampus, and during off-line states such as sleep, the encoded memory is gradually transferred to neocortex for long-term storage. One potential neural mechanism by which this could occur is replay, a phenomenon where neural activity patterns in the hippocampus evoked by a previous experience reactivate spontaneously during non-REM sleep, leading to coordinated cortical reactivation. While previous work suggests that hippocampal replay is important for encoding new memories, how memory consolidation is accomplished through cortico-hippocampal interactions is not well understood.
This research project has three major aims- 1) examine how cortical feedback influences which spatial trajectory is replayed by the hippocampus, 2) investigate how the hippocampal replay of a behavioural episode modifies cortical circuits, 3) measure the causal role of cortico-hippocampal interactions in consolidating memories. We will record ensemble activity from freely moving rats during an auditory-spatial association task and during post-behavioural sleep sessions. We will focus our ensemble recordings on two brain regions: 1) the dorsal CA1 region of the hippocampus, where the phenomenon of sleep replay has been most extensively examined, and 2) auditory cortex, a region of the brain critical for both auditory perception and long-term memory storage. This work will use behavioral and molecular-genetic techniques in combination with large-scale electrophysiological recordings, to help elucidate the role of cortico-hippocampal interactions in memory encoding and consolidation.
Max ERC Funding
1 500 000 €
Duration
Start date: 2015-04-01, End date: 2021-03-31
Project acronym CHINESE EMPIRE
Project China and the Historical Sociology of Empire
Researcher (PI) Hilde Godelieve Dominique Ghislena De Weerdt
Host Institution (HI) UNIVERSITEIT LEIDEN
Call Details Starting Grant (StG), SH6, ERC-2011-StG_20101124
Summary This project revisits a major question in world history: how can we explain the continuity of the Chinese Empire. Moving beyond the comparison of early world empires (China and Rome) to explain the different courses Chinese and European history have taken, this project aims to assess the importance of political communication in the maintenance of empire in the last millennium. The core questions are twofold: 1) How can the continuity of empire in the Chinese case be best explained? 2) Does the nature and extent of political communication networks, measured through the frequency and multiplexity of information exchange ties, play a critical role in the reconstitution and maintenance of empire? Its methodology is based on the conviction that an investigation of the nature and extent of political communication in imperial Chinese society should include a systematic quantitative and qualitative analysis of the rich commentary on current affairs in correspondence and notebooks. By combining multi-faceted digital analyses of relatively large corpora of texts with an intellectually ambitious research agenda, this project will both radically transform our understanding of the history of Chinese political culture and inspire wide-ranging methodological innovation across the humanities.
Summary
This project revisits a major question in world history: how can we explain the continuity of the Chinese Empire. Moving beyond the comparison of early world empires (China and Rome) to explain the different courses Chinese and European history have taken, this project aims to assess the importance of political communication in the maintenance of empire in the last millennium. The core questions are twofold: 1) How can the continuity of empire in the Chinese case be best explained? 2) Does the nature and extent of political communication networks, measured through the frequency and multiplexity of information exchange ties, play a critical role in the reconstitution and maintenance of empire? Its methodology is based on the conviction that an investigation of the nature and extent of political communication in imperial Chinese society should include a systematic quantitative and qualitative analysis of the rich commentary on current affairs in correspondence and notebooks. By combining multi-faceted digital analyses of relatively large corpora of texts with an intellectually ambitious research agenda, this project will both radically transform our understanding of the history of Chinese political culture and inspire wide-ranging methodological innovation across the humanities.
Max ERC Funding
1 432 797 €
Duration
Start date: 2012-04-01, End date: 2017-08-31
Project acronym CholAminCo
Project Synergy and antagonism of cholinergic and dopaminergic systems in associative learning
Researcher (PI) Balazs Gyoergy HANGYA
Host Institution (HI) INSTITUTE OF EXPERIMENTAL MEDICINE - HUNGARIAN ACADEMY OF SCIENCES
Call Details Starting Grant (StG), LS5, ERC-2016-STG
Summary Neuromodulators such as acetylcholine and dopamine are able to rapidly reprogram neuronal information processing and dynamically change brain states. Degeneration or dysfunction of cholinergic and dopaminergic neurons can lead to neuropsychiatric conditions like schizophrenia and addiction or cognitive diseases such as Alzheimer’s. Neuromodulatory systems control overlapping cognitive processes and often have similar modes of action; therefore it is important to reveal cooperation and competition between different systems to understand their unique contributions to cognitive functions like learning, memory and attention. This is only possible by direct comparison, which necessitates monitoring multiple neuromodulatory systems under identical experimental conditions. Moreover, simultaneous recording of different neuromodulatory cell types goes beyond phenomenological description of similarities and differences by revealing the underlying correlation structure at the level of action potential timing. However, such data allowing direct comparison of neuromodulatory actions are still sparse. As a first step to bridge this gap, I propose to elucidate the unique versus complementary roles of two “classical” neuromodulatory systems, the cholinergic and dopaminergic projection system implicated in various cognitive functions including associative learning and plasticity. First, we will record optogenetically identified cholinergic and dopaminergic neurons simultaneously using chronic extracellular recording in mice undergoing classical and operant conditioning. Second, we will determine the postsynaptic impact of cholinergic and dopaminergic neurons by manipulating them both separately and simultaneously while recording consequential changes in cortical neuronal activity and learning behaviour. These experiments will reveal how major neuromodulatory systems interact to mediate similar or different aspects of the same cognitive functions.
Summary
Neuromodulators such as acetylcholine and dopamine are able to rapidly reprogram neuronal information processing and dynamically change brain states. Degeneration or dysfunction of cholinergic and dopaminergic neurons can lead to neuropsychiatric conditions like schizophrenia and addiction or cognitive diseases such as Alzheimer’s. Neuromodulatory systems control overlapping cognitive processes and often have similar modes of action; therefore it is important to reveal cooperation and competition between different systems to understand their unique contributions to cognitive functions like learning, memory and attention. This is only possible by direct comparison, which necessitates monitoring multiple neuromodulatory systems under identical experimental conditions. Moreover, simultaneous recording of different neuromodulatory cell types goes beyond phenomenological description of similarities and differences by revealing the underlying correlation structure at the level of action potential timing. However, such data allowing direct comparison of neuromodulatory actions are still sparse. As a first step to bridge this gap, I propose to elucidate the unique versus complementary roles of two “classical” neuromodulatory systems, the cholinergic and dopaminergic projection system implicated in various cognitive functions including associative learning and plasticity. First, we will record optogenetically identified cholinergic and dopaminergic neurons simultaneously using chronic extracellular recording in mice undergoing classical and operant conditioning. Second, we will determine the postsynaptic impact of cholinergic and dopaminergic neurons by manipulating them both separately and simultaneously while recording consequential changes in cortical neuronal activity and learning behaviour. These experiments will reveal how major neuromodulatory systems interact to mediate similar or different aspects of the same cognitive functions.
Max ERC Funding
1 499 463 €
Duration
Start date: 2017-05-01, End date: 2022-04-30
Project acronym CIRCUITASSEMBLY
Project Development of functional organization of the visual circuits in mice
Researcher (PI) Keisuke Yonehara
Host Institution (HI) AARHUS UNIVERSITET
Call Details Starting Grant (StG), LS5, ERC-2014-STG
Summary The key organizing principles that characterize neuronal systems include asymmetric, parallel, and topographic connectivity of the neural circuits. The main aim of my research is to elucidate the key principles underlying functional development of neural circuits by focusing on those organizing principles. I choose mouse visual system as my model since it contains all of these principles and provides sophisticated genetic tools to label and manipulate individual circuit components. My research is based on the central hypothesis that the mechanisms of brain development cannot be fully understood without first identifying individual functional cell types in adults, and then understanding how the functions of these cell types become established, using cell-type-specific molecular and synaptic mechanisms in developing animals. Recently, I have identified several transgenic mouse lines in which specific cell types in a visual center, the superior colliculus, are labeled with Cre recombinase in both developing and adult animals. Here I will take advantage of these mouse lines to ask fundamental questions about the functional development of neural circuits. First, how are distinct sensory features processed by the parallel topographic neuronal pathways, and how do they contribute to behavior? Second, what are the molecular and synaptic mechanisms that underlie developmental circuit plasticity for forming parallel topographic neuronal maps in the brain? Third, what are the molecular mechanisms that set up spatially asymmetric circuit connectivity without the need for sensory experience? I predict that my insights into the developmental mechanism of asymmetric, parallel, and topographic connectivity and circuit plasticity will be instructive when studying other brain circuits which contain similar organizing principles.
Summary
The key organizing principles that characterize neuronal systems include asymmetric, parallel, and topographic connectivity of the neural circuits. The main aim of my research is to elucidate the key principles underlying functional development of neural circuits by focusing on those organizing principles. I choose mouse visual system as my model since it contains all of these principles and provides sophisticated genetic tools to label and manipulate individual circuit components. My research is based on the central hypothesis that the mechanisms of brain development cannot be fully understood without first identifying individual functional cell types in adults, and then understanding how the functions of these cell types become established, using cell-type-specific molecular and synaptic mechanisms in developing animals. Recently, I have identified several transgenic mouse lines in which specific cell types in a visual center, the superior colliculus, are labeled with Cre recombinase in both developing and adult animals. Here I will take advantage of these mouse lines to ask fundamental questions about the functional development of neural circuits. First, how are distinct sensory features processed by the parallel topographic neuronal pathways, and how do they contribute to behavior? Second, what are the molecular and synaptic mechanisms that underlie developmental circuit plasticity for forming parallel topographic neuronal maps in the brain? Third, what are the molecular mechanisms that set up spatially asymmetric circuit connectivity without the need for sensory experience? I predict that my insights into the developmental mechanism of asymmetric, parallel, and topographic connectivity and circuit plasticity will be instructive when studying other brain circuits which contain similar organizing principles.
Max ERC Funding
1 500 000 €
Duration
Start date: 2015-04-01, End date: 2020-03-31
Project acronym CLaSS
Project Climate, Landscape, Settlement and Society: Exploring Human-Environment Interaction in the Ancient Near East
Researcher (PI) Daniel LAWRENCE
Host Institution (HI) UNIVERSITY OF DURHAM
Call Details Starting Grant (StG), SH6, ERC-2018-STG
Summary Over the last 8000 years, the Fertile Crescent of the Near East has seen the emergence of cities, states and empires. Climate fluctuations are generally considered to be a significant factor in these changes because in pre-industrial societies they directly relate to food production and security. In the short term, ‘collapse’ events brought about by extreme weather changes such as droughts have been blamed for declines in population, social complexity and political systems. More broadly, the relationships between environment, settlement and surplus drive most models for the development of urbanism and hierarchical political systems.
Studies seeking to correlate social and climatic changes in the past tend either to focus on highly localised analyses of specific sites and surveys or to take a more synthetic overview at much larger, even continental, scales. The CLaSS project will take a ground breaking hybrid approach using archaeological data science (or ‘big data’) to construct detailed, empirical datasets at unprecedented scales. Archaeological settlement data and archaeobotanical data (plant and tree remains) will be collated for the entire Fertile Crescent and combined with climate simulations derived from General Circulation Models using cutting edge techniques. The resulting datasets will represent the largest of their kind ever compiled, covering the period between 8000BP and 2000BP and an area of 600,000km2.
Collecting data at this scale will enable us to compare population densities and distribution, subsistence practices and landscape management strategies to investigate the question: What factors have allowed for the differential persistence of societies in the face of changing climatic and environmental conditions? This ambitious project will provide insights into the sustainability and resilience of societies through both abrupt and longer term climate changes, leveraging the deep time perspective only available to archaeology.
Summary
Over the last 8000 years, the Fertile Crescent of the Near East has seen the emergence of cities, states and empires. Climate fluctuations are generally considered to be a significant factor in these changes because in pre-industrial societies they directly relate to food production and security. In the short term, ‘collapse’ events brought about by extreme weather changes such as droughts have been blamed for declines in population, social complexity and political systems. More broadly, the relationships between environment, settlement and surplus drive most models for the development of urbanism and hierarchical political systems.
Studies seeking to correlate social and climatic changes in the past tend either to focus on highly localised analyses of specific sites and surveys or to take a more synthetic overview at much larger, even continental, scales. The CLaSS project will take a ground breaking hybrid approach using archaeological data science (or ‘big data’) to construct detailed, empirical datasets at unprecedented scales. Archaeological settlement data and archaeobotanical data (plant and tree remains) will be collated for the entire Fertile Crescent and combined with climate simulations derived from General Circulation Models using cutting edge techniques. The resulting datasets will represent the largest of their kind ever compiled, covering the period between 8000BP and 2000BP and an area of 600,000km2.
Collecting data at this scale will enable us to compare population densities and distribution, subsistence practices and landscape management strategies to investigate the question: What factors have allowed for the differential persistence of societies in the face of changing climatic and environmental conditions? This ambitious project will provide insights into the sustainability and resilience of societies through both abrupt and longer term climate changes, leveraging the deep time perspective only available to archaeology.
Max ERC Funding
1 498 650 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym CLUSTERS
Project Galaxy formation through the eyes of globular clusters
Researcher (PI) Mark Gieles
Host Institution (HI) UNIVERSITY OF SURREY
Call Details Starting Grant (StG), PE9, ERC-2013-StG
Summary "Globular clusters (GCs) are among the first baryonic structures to form at a redshift of 10 and they witnessed the earliest phases of galaxy formation. Despite their ubiquity and importance for our understanding of the stellar initial mass function, star formation and chemical evolution in the early Universe, their origin is shrouded in mystery. They could have formed in gas rich discs, similarly to young massive clusters (YMCs) that we see forming today in starburst environments; or they could require a more exotic environment such as the centre of dark matter ``mini-haloes"".
The Milky Way GCs are resolved into their constituent stellar population making them the obvious place to look for clues. Their pristine properties are, however, affected by a Hubble time of dynamical evolution within an evolving Milky Way. In this proposal I present three projects to determine the initial properties of GCs, allowing them to be used as robust probes of early star formation, stellar evolution and cosmology. Specifically, I will: (1) dynamically evolve YMCs on a star-by-star basis and achieve a complete census of the fate of the clusters and their debris (``cold"" streams) within the framework of the hierarchical assembly of the Milky Way; (2) I will develop an extremely fast cluster evolution algorithm to do population synthesis of (globular) star clusters which will uniquely establish their initial masses, densities and the corresponding distributions; and (3) I will break the degeneracy of a dark matter halo, tidal heating and alternative gravity laws on the kinematics of GCs and determine whether Milky Way GCs contain dark matter, or not.
Galactic archaeology is entering a Golden Age. ALMA is operational and already putting constraints on the formation of YMCs and Gaia is due to fly next year. The three novel projects presented here will pave the way and prepare for the wealth of unprecedented data."
Summary
"Globular clusters (GCs) are among the first baryonic structures to form at a redshift of 10 and they witnessed the earliest phases of galaxy formation. Despite their ubiquity and importance for our understanding of the stellar initial mass function, star formation and chemical evolution in the early Universe, their origin is shrouded in mystery. They could have formed in gas rich discs, similarly to young massive clusters (YMCs) that we see forming today in starburst environments; or they could require a more exotic environment such as the centre of dark matter ``mini-haloes"".
The Milky Way GCs are resolved into their constituent stellar population making them the obvious place to look for clues. Their pristine properties are, however, affected by a Hubble time of dynamical evolution within an evolving Milky Way. In this proposal I present three projects to determine the initial properties of GCs, allowing them to be used as robust probes of early star formation, stellar evolution and cosmology. Specifically, I will: (1) dynamically evolve YMCs on a star-by-star basis and achieve a complete census of the fate of the clusters and their debris (``cold"" streams) within the framework of the hierarchical assembly of the Milky Way; (2) I will develop an extremely fast cluster evolution algorithm to do population synthesis of (globular) star clusters which will uniquely establish their initial masses, densities and the corresponding distributions; and (3) I will break the degeneracy of a dark matter halo, tidal heating and alternative gravity laws on the kinematics of GCs and determine whether Milky Way GCs contain dark matter, or not.
Galactic archaeology is entering a Golden Age. ALMA is operational and already putting constraints on the formation of YMCs and Gaia is due to fly next year. The three novel projects presented here will pave the way and prepare for the wealth of unprecedented data."
Max ERC Funding
1 499 863 €
Duration
Start date: 2013-11-01, End date: 2018-10-31
Project acronym ClustersXCosmo
Project Fundamental physics, Cosmology and Astrophysics: Galaxy Clusters at the Cross-roads
Researcher (PI) Alexandro SARO
Host Institution (HI) UNIVERSITA DEGLI STUDI DI TRIESTE
Call Details Starting Grant (StG), PE9, ERC-2016-STG
Summary The ClustersXCosmo ERC Starting Grant proposal has the goal of investigating the role of Galaxy Clusters as a cosmological probe and of exploiting the strong synergies between observational cosmology, galaxy formation and fundamental physics related to the tracers of the extreme peaks in the matter density field. In the last decade, astronomical data-sets have started to be widely and quantitatively used by the scientific community to address important physical questions such as: the nature of the dark matter and dark energy components and their evolution; the physical properties of the baryonic matter; the variation of fundamental constants over cosmic time; the sum of neutrino masses; the interplay between the galaxy population and the intergalactic medium; the nature of gravity over megaparsec scales and over cosmic times; the temperature evolution of the Universe. Most of these results are based on well-established geometrical cosmological probes (e.g., galaxies, supernovae, cosmic microwave background). Galaxy clusters provide a complementary and necessary approach, as their distribution as a function of time and observables is sensitive to both the geometrical and the dynamical evolution of the Universe, driven by the growth of structures. Among different cluster surveys, Sunyaev Zel'Dovich effect (SZE) detected catalogs have registered the most dramatic improvement over the last ~5 years, yielding samples extending up to the earliest times these systems appeared. This proposal aims at using a combination of the best available SZE cluster surveys and to interpret them by means of state-of-the-art computational facilities in order to firmly establish the yet controversial role of Galaxy Clusters as a probe for cosmology, fundamental physics and astrophysics. The timely convergence of current and next generation multi-wavelength surveys (DES/SPT/Planck/eRosita/Euclid) will be important to establish the role of Galaxy Clusters as a cosmological tool.
Summary
The ClustersXCosmo ERC Starting Grant proposal has the goal of investigating the role of Galaxy Clusters as a cosmological probe and of exploiting the strong synergies between observational cosmology, galaxy formation and fundamental physics related to the tracers of the extreme peaks in the matter density field. In the last decade, astronomical data-sets have started to be widely and quantitatively used by the scientific community to address important physical questions such as: the nature of the dark matter and dark energy components and their evolution; the physical properties of the baryonic matter; the variation of fundamental constants over cosmic time; the sum of neutrino masses; the interplay between the galaxy population and the intergalactic medium; the nature of gravity over megaparsec scales and over cosmic times; the temperature evolution of the Universe. Most of these results are based on well-established geometrical cosmological probes (e.g., galaxies, supernovae, cosmic microwave background). Galaxy clusters provide a complementary and necessary approach, as their distribution as a function of time and observables is sensitive to both the geometrical and the dynamical evolution of the Universe, driven by the growth of structures. Among different cluster surveys, Sunyaev Zel'Dovich effect (SZE) detected catalogs have registered the most dramatic improvement over the last ~5 years, yielding samples extending up to the earliest times these systems appeared. This proposal aims at using a combination of the best available SZE cluster surveys and to interpret them by means of state-of-the-art computational facilities in order to firmly establish the yet controversial role of Galaxy Clusters as a probe for cosmology, fundamental physics and astrophysics. The timely convergence of current and next generation multi-wavelength surveys (DES/SPT/Planck/eRosita/Euclid) will be important to establish the role of Galaxy Clusters as a cosmological tool.
Max ERC Funding
1 230 403 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym ClusterWeb
Project Unravelling the physics of particle acceleration and feedback in galaxy clusters and the cosmic web
Researcher (PI) Reinout Johannes VAN WEEREN
Host Institution (HI) UNIVERSITEIT LEIDEN
Call Details Starting Grant (StG), PE9, ERC-2018-STG
Summary We will unravel the origin of cosmic magnetic fields, the physics of particle acceleration in dilute plasmas, and the nature of AGN feedback with state-of-the-art radio telescopes. With the enormous gains in sensitivity, survey speed, and resolution of these telescopes – combined with recent breakthroughs that correct for phased-arrays and the Earth’s distorting ionosphere – we can now take the next big step in this field.
Cosmic web filaments and galaxy clusters are the Universe’s largest structures. Clusters grow by a sequence of mergers, generating shock waves and turbulence which heat the cluster plasma. In merging clusters, cosmic rays are accelerated to extreme energies, producing Mpc-size diffuse synchrotron emitting sources. However, these acceleration processes are still poorly understood. Clusters are also heated by AGN feedback from radio galaxies, but the total energy input by feedback and its evolution over cosmic time are unknown. We will construct the largest low-frequency sample of galaxy clusters to (1) establish how particles are accelerated in cluster plasmas, (2) quantify how the cosmic ray content scales with cluster mass, (3) determine the importance of AGN fossil plasma in the acceleration processes, (4) characterize current and past episodes of AGN feedback, and (5) determine the evolution of feedback up to the epoch of cluster formation (z=1-2). These results will be essential to understand cluster formation and its associated energy budget.
As in clusters, cosmic web accretion shocks should also accelerate particles producing radio emission. Based on the deepest low-frequency images ever produced, we will (5) carry out the first studies of these giant accelerators, opening up a new window on the elusive warm-hot intergalactic medium, where many of the cosmic baryons reside. Even more important, (6) we aim to obtain measurements of the intergalactic magnetic field, providing key constraints on the origin of our Universe’s magnetic fields.
Summary
We will unravel the origin of cosmic magnetic fields, the physics of particle acceleration in dilute plasmas, and the nature of AGN feedback with state-of-the-art radio telescopes. With the enormous gains in sensitivity, survey speed, and resolution of these telescopes – combined with recent breakthroughs that correct for phased-arrays and the Earth’s distorting ionosphere – we can now take the next big step in this field.
Cosmic web filaments and galaxy clusters are the Universe’s largest structures. Clusters grow by a sequence of mergers, generating shock waves and turbulence which heat the cluster plasma. In merging clusters, cosmic rays are accelerated to extreme energies, producing Mpc-size diffuse synchrotron emitting sources. However, these acceleration processes are still poorly understood. Clusters are also heated by AGN feedback from radio galaxies, but the total energy input by feedback and its evolution over cosmic time are unknown. We will construct the largest low-frequency sample of galaxy clusters to (1) establish how particles are accelerated in cluster plasmas, (2) quantify how the cosmic ray content scales with cluster mass, (3) determine the importance of AGN fossil plasma in the acceleration processes, (4) characterize current and past episodes of AGN feedback, and (5) determine the evolution of feedback up to the epoch of cluster formation (z=1-2). These results will be essential to understand cluster formation and its associated energy budget.
As in clusters, cosmic web accretion shocks should also accelerate particles producing radio emission. Based on the deepest low-frequency images ever produced, we will (5) carry out the first studies of these giant accelerators, opening up a new window on the elusive warm-hot intergalactic medium, where many of the cosmic baryons reside. Even more important, (6) we aim to obtain measurements of the intergalactic magnetic field, providing key constraints on the origin of our Universe’s magnetic fields.
Max ERC Funding
1 487 755 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym CoDisEASe
Project Communicable Disease in the Age of Seafaring
Researcher (PI) Kirsten BOS
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), SH6, ERC-2018-STG
Summary Infectious diseases have had an intimate history with humans and have shaped our genetic makeup through generating strong selective pressures. Although disease emergence and epidemics occur on a local scale, human interrelationships formed through travel and trade can lead to exchanges of pathogenic communities. While such transfers were common among the interconnected Eurasian and North African cultures throughout most of human history, the rest of the world experienced relative ecological autonomy. The terminal Pleistocene witnessed the colonisation of vast territory on the American continents, after which interactions between New and Old World peoples were limited for millennia by geographical barriers. These ecological worlds collided at the end of the fifteenth century, when improvements in navigation and the discovery of the Americas by Europeans permitted regular contact and plentiful opportunities for biological interchange. The identities of most diseases that played leading roles during this period of exchange are known, though details on the directions of their movement and temporal introductions remain the subject of scholarly debate. The work programme presented here will use an underexplored data source – ancient pathogen genomes – to identify infectious insults in pre- and post-contact New and Old World skeletal series, thus enabling an evaluation of changing disease landscapes at contact. Complementary to this goal, genomic loci for human immunity genes will be interrogated, thus permitting quantitative evaluations of disease adaptation. Ancient molecular data will be acquired through use of the most sensitive and up to date methods in the field of ancient DNA with the aim of bringing diseases not easily seen from skeletal morphology or historical documents to light in clear detail. This will permit an unprecedented resolution of past disease experience and host-pathogen interactions during this dynamic period of global ecological unification.
Summary
Infectious diseases have had an intimate history with humans and have shaped our genetic makeup through generating strong selective pressures. Although disease emergence and epidemics occur on a local scale, human interrelationships formed through travel and trade can lead to exchanges of pathogenic communities. While such transfers were common among the interconnected Eurasian and North African cultures throughout most of human history, the rest of the world experienced relative ecological autonomy. The terminal Pleistocene witnessed the colonisation of vast territory on the American continents, after which interactions between New and Old World peoples were limited for millennia by geographical barriers. These ecological worlds collided at the end of the fifteenth century, when improvements in navigation and the discovery of the Americas by Europeans permitted regular contact and plentiful opportunities for biological interchange. The identities of most diseases that played leading roles during this period of exchange are known, though details on the directions of their movement and temporal introductions remain the subject of scholarly debate. The work programme presented here will use an underexplored data source – ancient pathogen genomes – to identify infectious insults in pre- and post-contact New and Old World skeletal series, thus enabling an evaluation of changing disease landscapes at contact. Complementary to this goal, genomic loci for human immunity genes will be interrogated, thus permitting quantitative evaluations of disease adaptation. Ancient molecular data will be acquired through use of the most sensitive and up to date methods in the field of ancient DNA with the aim of bringing diseases not easily seen from skeletal morphology or historical documents to light in clear detail. This will permit an unprecedented resolution of past disease experience and host-pathogen interactions during this dynamic period of global ecological unification.
Max ERC Funding
1 490 043 €
Duration
Start date: 2018-12-01, End date: 2023-11-30
Project acronym COEVOLUTION
Project Black holes and their host galaxies: coevolution across cosmic time
Researcher (PI) Debora Sijacki
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Starting Grant (StG), PE9, ERC-2014-STG
Summary Galaxy formation is one of the most fascinating yet challenging fields of astrophysics. The desire to understand
galaxy formation has led to the design of ever more sophisticated telescopes which show a bewildering variety
of galaxies in the Universe. However, the degree to which an interpretation of this wealth of data can succeed
depends critically on having accurate and realistic theoretical models of galaxy formation. While cosmological
simulations of galaxy formation provide the most powerful technique for calculating the non-linear evolution of
cosmic structures, the enormous dynamic range and poorly understood baryonic physics are main uncertainties
of present simulations. This impacts on their predictive power and is the major obstacle to our understanding of
observational data. The objective of this proposal is to drastically improve upon the current state-of-the-art by i)
including more realistic physical processes, such as those occurring at the sphere of influence of a galaxy’s central
black hole and ii) greatly extending spatial dynamical range with the aid of a novel technique I have developed.
With this technique I want to address one of the major unsolved issues of galaxy formation: “How do galaxies and
their central black holes coevolve?” Specifically, I want to focus on three crucial areas of galaxy formation: a) How
and where the very first black holes form, what are their observational signatures, and when is the coevolution with
host galaxies established? b) Is black hole heating solely responsible for the morphological transformation and
quenching of massive galaxies, or are other processes important as well? c) What is the impact of supermassive
black holes on galaxy clusters and can we calibrate baryonic physics in clusters to use them as high precision
cosmological probes? The requested funding is for 50% of the PI’s time and three postdoctoral researchers to
establish an independent research group at the KICC and IoA, Cambridge.
Summary
Galaxy formation is one of the most fascinating yet challenging fields of astrophysics. The desire to understand
galaxy formation has led to the design of ever more sophisticated telescopes which show a bewildering variety
of galaxies in the Universe. However, the degree to which an interpretation of this wealth of data can succeed
depends critically on having accurate and realistic theoretical models of galaxy formation. While cosmological
simulations of galaxy formation provide the most powerful technique for calculating the non-linear evolution of
cosmic structures, the enormous dynamic range and poorly understood baryonic physics are main uncertainties
of present simulations. This impacts on their predictive power and is the major obstacle to our understanding of
observational data. The objective of this proposal is to drastically improve upon the current state-of-the-art by i)
including more realistic physical processes, such as those occurring at the sphere of influence of a galaxy’s central
black hole and ii) greatly extending spatial dynamical range with the aid of a novel technique I have developed.
With this technique I want to address one of the major unsolved issues of galaxy formation: “How do galaxies and
their central black holes coevolve?” Specifically, I want to focus on three crucial areas of galaxy formation: a) How
and where the very first black holes form, what are their observational signatures, and when is the coevolution with
host galaxies established? b) Is black hole heating solely responsible for the morphological transformation and
quenching of massive galaxies, or are other processes important as well? c) What is the impact of supermassive
black holes on galaxy clusters and can we calibrate baryonic physics in clusters to use them as high precision
cosmological probes? The requested funding is for 50% of the PI’s time and three postdoctoral researchers to
establish an independent research group at the KICC and IoA, Cambridge.
Max ERC Funding
1 975 062 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym COFBMIX
Project Cortical feedback in figure background segregation of odors.
Researcher (PI) Dan ROKNI
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Starting Grant (StG), LS5, ERC-2017-STG
Summary A key question in neuroscience is how information is processed by sensory systems to guide behavior. Most of our knowledge about sensory processing is based on presentation of simple isolated stimuli and recording corresponding neural activity in relevant brain areas. Yet sensory stimuli in real life are never isolated and typically not simple. How the brain processes complex stimuli, simultaneously arising from multiple objects is unknown. Our daily experience (as well as well-controlled experiments) shows that only parts of a complex sensory scene can be perceived - we cannot listen to more than one speaker in a party. Importantly, one can easily choose what is important and should be processed and what can be ignored as background. These observations lead to the prevalent hypothesis that feedback projections from ‘higher’ brain areas to more peripheral sensory areas are involved in processing of complex stimuli. However experimental analysis of signals conveyed by feedback projections in behaving animals is scarce. The nature of these signals and how they relate to behavior is unknown.
Here I propose a cutting edge approach to directly record feedback signals in the olfactory system of behaving mice. We will use chronically implanted electrodes to record the modulation of olfactory bulb (OB) principal neurons by task related context. Additionally, we will record from piriform cortical (PC) neurons that project back to the OB. These will be tagged with channelrhodopsin-2 and identified by light sensitivity. Finally, we will express the spectrally distinct Ca++ indicators GCaMP6 and RCaMP2 in PC neurons and in olfactory sensory neurons, respectively, and use 2-photon microscopy to analyze the spatio-temporal relationship between feedforward and feedback inputs in the OB. This comprehensive approach will provide an explanation of how feedforward and feedback inputs are integrated to process complex stimuli.
Summary
A key question in neuroscience is how information is processed by sensory systems to guide behavior. Most of our knowledge about sensory processing is based on presentation of simple isolated stimuli and recording corresponding neural activity in relevant brain areas. Yet sensory stimuli in real life are never isolated and typically not simple. How the brain processes complex stimuli, simultaneously arising from multiple objects is unknown. Our daily experience (as well as well-controlled experiments) shows that only parts of a complex sensory scene can be perceived - we cannot listen to more than one speaker in a party. Importantly, one can easily choose what is important and should be processed and what can be ignored as background. These observations lead to the prevalent hypothesis that feedback projections from ‘higher’ brain areas to more peripheral sensory areas are involved in processing of complex stimuli. However experimental analysis of signals conveyed by feedback projections in behaving animals is scarce. The nature of these signals and how they relate to behavior is unknown.
Here I propose a cutting edge approach to directly record feedback signals in the olfactory system of behaving mice. We will use chronically implanted electrodes to record the modulation of olfactory bulb (OB) principal neurons by task related context. Additionally, we will record from piriform cortical (PC) neurons that project back to the OB. These will be tagged with channelrhodopsin-2 and identified by light sensitivity. Finally, we will express the spectrally distinct Ca++ indicators GCaMP6 and RCaMP2 in PC neurons and in olfactory sensory neurons, respectively, and use 2-photon microscopy to analyze the spatio-temporal relationship between feedforward and feedback inputs in the OB. This comprehensive approach will provide an explanation of how feedforward and feedback inputs are integrated to process complex stimuli.
Max ERC Funding
1 500 000 €
Duration
Start date: 2018-04-01, End date: 2023-03-31
Project acronym COGOPTO
Project The role of parvalbumin interneurons in cognition and behavior
Researcher (PI) Eva Marie Carlen
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Starting Grant (StG), LS5, ERC-2013-StG
Summary Cognition is a collective term for complex but sophisticated mental processes such as attention, learning, social interaction, language production, decision making and other executive functions. For normal brain function, these higher-order functions need to be aptly regulated and controlled, and the physiology and cellular substrates for cognitive functions are under intense investigation. The loss of cognitive control is intricately related to pathological states such as schizophrenia, depression, attention deficit hyperactive disorder and addiction.
Synchronized neural activity can be observed when the brain performs several important functions, including cognitive processes. As an example, gamma activity (30-80 Hz) predicts the allocation of attention and theta activity (4-12 Hz) is tightly linked to memory processes. A large body of work indicates that the integrity of local and global neural synchrony is mediated by interneuron networks and actuated by the balance of different neuromodulators.
However, much knowledge is still needed on the functional role interneurons play in cognitive processes, i.e. how the interneurons contribute to local and global network processes subserving cognition, and ultimately play a role in behavior. In addition, we need to understand how neuro-modulators, such as dopamine, regulate interneuron function.
The proposed project aims to functionally determine the specific role the parvalbumin interneurons and the neuromodulator dopamine in aspects of cognition, and in behavior. In addition, we ask the question if cognition can be enhanced.
We are employing a true multidisciplinary approach where brain activity is recorded in conjunctions with optogenetic manipulations of parvalbumin interneurons in animals performing cognitive tasks. In one set of experiments knock-down of dopamine receptors specifically in parvalbumin interneurons is employed to probe how this neuromodulator regulate network functions.
Summary
Cognition is a collective term for complex but sophisticated mental processes such as attention, learning, social interaction, language production, decision making and other executive functions. For normal brain function, these higher-order functions need to be aptly regulated and controlled, and the physiology and cellular substrates for cognitive functions are under intense investigation. The loss of cognitive control is intricately related to pathological states such as schizophrenia, depression, attention deficit hyperactive disorder and addiction.
Synchronized neural activity can be observed when the brain performs several important functions, including cognitive processes. As an example, gamma activity (30-80 Hz) predicts the allocation of attention and theta activity (4-12 Hz) is tightly linked to memory processes. A large body of work indicates that the integrity of local and global neural synchrony is mediated by interneuron networks and actuated by the balance of different neuromodulators.
However, much knowledge is still needed on the functional role interneurons play in cognitive processes, i.e. how the interneurons contribute to local and global network processes subserving cognition, and ultimately play a role in behavior. In addition, we need to understand how neuro-modulators, such as dopamine, regulate interneuron function.
The proposed project aims to functionally determine the specific role the parvalbumin interneurons and the neuromodulator dopamine in aspects of cognition, and in behavior. In addition, we ask the question if cognition can be enhanced.
We are employing a true multidisciplinary approach where brain activity is recorded in conjunctions with optogenetic manipulations of parvalbumin interneurons in animals performing cognitive tasks. In one set of experiments knock-down of dopamine receptors specifically in parvalbumin interneurons is employed to probe how this neuromodulator regulate network functions.
Max ERC Funding
1 400 000 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym COGS
Project Capitalizing on Gravitational Shear
Researcher (PI) Sarah Louise Bridle
Host Institution (HI) THE UNIVERSITY OF MANCHESTER
Call Details Starting Grant (StG), PE9, ERC-2009-StG
Summary Our Universe appears to be filled with mysterious ingredients: 25 per cent appears to be dark matter, perhaps an as-yet undiscovered particle, and 70 per cent seems to be a bizarre fluid, dubbed dark energy, for which there is no satisfactory theory. Solving the dark energy problem is the most pressing question in cosmology today. It is possible that dark energy does not exist at all, and instead Einstein s theory of General Relativity is flawed. Cosmologists hope to measure the properties of the dark energy using the next generation of cosmological observations, in which I am playing a leading role. I believe the most promising technique to crack the dark energy problem is gravitational shear, in which images of distant galaxies are distorted as they pass through the intervening dark matter distribution. Analysis of the distortions allows a map of the dark matter to be reconstructed; by examining the dark matter distribution we uncover the nature of the apparent dark energy. However to capitalize on the great potential of gravitational shear we must measure incredibly small image distortions in the presence of much larger image modifications that occur in the measurement process. I am proposing a fresh look at this problem using an inter-disciplinary approach in collaboration with computer scientists. This grant would enable my team to play a central role in the key results from the upcoming Dark Energy Survey. We would further capitalize on the gravitational shear signal by moving away from the current dark energy bandwagon by instead focusing on testing General Relativity using novel approaches. Our work will produce results which will lead the next Einstein to solve the biggest puzzle in cosmology, and arguably physics.
Summary
Our Universe appears to be filled with mysterious ingredients: 25 per cent appears to be dark matter, perhaps an as-yet undiscovered particle, and 70 per cent seems to be a bizarre fluid, dubbed dark energy, for which there is no satisfactory theory. Solving the dark energy problem is the most pressing question in cosmology today. It is possible that dark energy does not exist at all, and instead Einstein s theory of General Relativity is flawed. Cosmologists hope to measure the properties of the dark energy using the next generation of cosmological observations, in which I am playing a leading role. I believe the most promising technique to crack the dark energy problem is gravitational shear, in which images of distant galaxies are distorted as they pass through the intervening dark matter distribution. Analysis of the distortions allows a map of the dark matter to be reconstructed; by examining the dark matter distribution we uncover the nature of the apparent dark energy. However to capitalize on the great potential of gravitational shear we must measure incredibly small image distortions in the presence of much larger image modifications that occur in the measurement process. I am proposing a fresh look at this problem using an inter-disciplinary approach in collaboration with computer scientists. This grant would enable my team to play a central role in the key results from the upcoming Dark Energy Survey. We would further capitalize on the gravitational shear signal by moving away from the current dark energy bandwagon by instead focusing on testing General Relativity using novel approaches. Our work will produce results which will lead the next Einstein to solve the biggest puzzle in cosmology, and arguably physics.
Max ERC Funding
1 400 000 €
Duration
Start date: 2010-04-01, End date: 2016-03-31
Project acronym COLDNANO
Project UltraCOLD ion and electron beams for NANOscience
Researcher (PI) Daniel Comparat
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE7, ERC-2011-StG_20101014
Summary COLDNANO (UltraCOLD ion and electron beams for NANOscience), aspires to build novel ion and electron sources with superior performance in terms of brightness, energy spread and minimum achievable spot size. Such monochromatic, spatially focused and well controlled electron and ion beams are expected to open many research possibilities in material sciences, in surface investigations (imaging, lithography) and in semiconductor diagnostics. The proposed project intends to develop sources with the best beam quality ever produced and to assess them in some advanced surface science research domains. Laterally, I will develop expertise exchange with one Small and Medium Enterprise who will exploit industrial prototypes.
The novel concept is to create ion and electron sources using advanced laser cooling techniques combined with the particular ionization properties of cold atoms. It would then be first time that “laser cooling” would lead to a real industrial development.
A cesium magneto-optical trap will first be used. The atoms will then be excited by lasers and ionized in order to provide the electron source. The specific extraction optics for the electrons will be developed. This source will be compact and portable to be used for several applications such as Low Energy Electron Microscopy, functionalization of semi-conducting surfaces or high resolution Electron Energy Loss Spectrometry by coupling to a Scanning Transmission Electron Microscope.
Based on the knowledge developed with the first experiment, a second ambitious xenon dual ion and electron beam machine will then be realized and used to study the scattering of ion and electron at low energy.
Finally, I present a very innovative scheme to control the time, position and velocity of individual particles in the beams. Such a machine providing ions or electrons on demand would open the way for the “ultimate” resolution in time and space for surface analysis, lithography, microscopy or implantation.
Summary
COLDNANO (UltraCOLD ion and electron beams for NANOscience), aspires to build novel ion and electron sources with superior performance in terms of brightness, energy spread and minimum achievable spot size. Such monochromatic, spatially focused and well controlled electron and ion beams are expected to open many research possibilities in material sciences, in surface investigations (imaging, lithography) and in semiconductor diagnostics. The proposed project intends to develop sources with the best beam quality ever produced and to assess them in some advanced surface science research domains. Laterally, I will develop expertise exchange with one Small and Medium Enterprise who will exploit industrial prototypes.
The novel concept is to create ion and electron sources using advanced laser cooling techniques combined with the particular ionization properties of cold atoms. It would then be first time that “laser cooling” would lead to a real industrial development.
A cesium magneto-optical trap will first be used. The atoms will then be excited by lasers and ionized in order to provide the electron source. The specific extraction optics for the electrons will be developed. This source will be compact and portable to be used for several applications such as Low Energy Electron Microscopy, functionalization of semi-conducting surfaces or high resolution Electron Energy Loss Spectrometry by coupling to a Scanning Transmission Electron Microscope.
Based on the knowledge developed with the first experiment, a second ambitious xenon dual ion and electron beam machine will then be realized and used to study the scattering of ion and electron at low energy.
Finally, I present a very innovative scheme to control the time, position and velocity of individual particles in the beams. Such a machine providing ions or electrons on demand would open the way for the “ultimate” resolution in time and space for surface analysis, lithography, microscopy or implantation.
Max ERC Funding
1 944 000 €
Duration
Start date: 2012-02-01, End date: 2017-01-31