Project acronym 2D-PnictoChem
Project Chemistry and Interface Control of Novel 2D-Pnictogen Nanomaterials
Researcher (PI) Gonzalo ABELLAN SAEZ
Host Institution (HI) UNIVERSITAT DE VALENCIA
Call Details Starting Grant (StG), PE5, ERC-2018-STG
Summary 2D-PnictoChem aims at exploring the Chemistry of a novel class of graphene-like 2D layered
elemental materials of group 15, the pnictogens: P, As, Sb, and Bi. In the last few years, these materials
have taken the field of Materials Science by storm since they can outperform and/or complement graphene
properties. Their strongly layer-dependent unique properties range from semiconducting to metallic,
including high carrier mobilities, tunable bandgaps, strong spin-orbit coupling or transparency. However,
the Chemistry of pnictogens is still in its infancy, remaining largely unexplored. This is the niche that
2D-PnictoChem aims to fill. By mastering the interface chemistry, we will develop the assembly of 2Dpnictogens
in complex hybrid heterostructures for the first time. Success will rely on a cross-disciplinary
approach combining both Inorganic- and Organic Chemistry with Solid-state Physics, including: 1)
Synthetizing and exfoliating high quality ultra-thin layer pnictogens, providing reliable access down to
the monolayer limit. 2) Achieving their chemical functionalization via both non-covalent and covalent
approaches in order to tailor at will their properties, decipher reactivity patterns and enable controlled
doping avenues. 3) Developing hybrid architectures through a precise chemical control of the interface,
in order to promote unprecedented access to novel heterostructures. 4) Exploring novel applications
concepts achieving outstanding performances. These are all priorities in the European Union agenda
aimed at securing an affordable, clean energy future by developing more efficient hybrid systems for
batteries, electronic devices or applications in catalysis. The opportunity is unique to reduce Europe’s
dependence on external technology and the PI’s background is ideally suited to tackle these objectives,
counting as well on a multidisciplinary team of international collaborators.
Summary
2D-PnictoChem aims at exploring the Chemistry of a novel class of graphene-like 2D layered
elemental materials of group 15, the pnictogens: P, As, Sb, and Bi. In the last few years, these materials
have taken the field of Materials Science by storm since they can outperform and/or complement graphene
properties. Their strongly layer-dependent unique properties range from semiconducting to metallic,
including high carrier mobilities, tunable bandgaps, strong spin-orbit coupling or transparency. However,
the Chemistry of pnictogens is still in its infancy, remaining largely unexplored. This is the niche that
2D-PnictoChem aims to fill. By mastering the interface chemistry, we will develop the assembly of 2Dpnictogens
in complex hybrid heterostructures for the first time. Success will rely on a cross-disciplinary
approach combining both Inorganic- and Organic Chemistry with Solid-state Physics, including: 1)
Synthetizing and exfoliating high quality ultra-thin layer pnictogens, providing reliable access down to
the monolayer limit. 2) Achieving their chemical functionalization via both non-covalent and covalent
approaches in order to tailor at will their properties, decipher reactivity patterns and enable controlled
doping avenues. 3) Developing hybrid architectures through a precise chemical control of the interface,
in order to promote unprecedented access to novel heterostructures. 4) Exploring novel applications
concepts achieving outstanding performances. These are all priorities in the European Union agenda
aimed at securing an affordable, clean energy future by developing more efficient hybrid systems for
batteries, electronic devices or applications in catalysis. The opportunity is unique to reduce Europe’s
dependence on external technology and the PI’s background is ideally suited to tackle these objectives,
counting as well on a multidisciplinary team of international collaborators.
Max ERC Funding
1 499 419 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym 2D-TOPSENSE
Project Tunable optoelectronic devices by strain engineering of 2D semiconductors
Researcher (PI) Andres CASTELLANOS
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Starting Grant (StG), PE7, ERC-2017-STG
Summary The goal of 2D-TOPSENSE is to exploit the remarkable stretchability of two-dimensional semiconductors to fabricate optoelectronic devices where strain is used as an external knob to tune their properties.
While bulk semiconductors tend to break under strains larger than 1.5%, 2D semiconductors (such as MoS2) can withstand deformations of up to 10-20% before rupture. This large breaking strength promises a great potential of 2D semiconductors as ‘straintronic’ materials, whose properties can be adjusted by applying a deformation to their lattice. In fact, recent theoretical works predicted an interesting physical phenomenon: a tensile strain-induced semiconductor-to-metal transition in 2D semiconductors. By tensioning single-layer MoS2 from 0% up to 10%, its electronic band structure is expected to undergo a continuous transition from a wide direct band-gap of 1.8 eV to a metallic behavior. This unprecedented large strain-tunability will undoubtedly have a strong impact in a wide range of optoelectronic applications such as photodetectors whose cut-off wavelength is tuned by varying the applied strain or atomically thin light modulators.
To date, experimental works on strain engineering have been mostly focused on fundamental studies, demonstrating part of the potential of 2D semiconductors in straintronics, but they have failed to exploit strain engineering to add extra functionalities to optoelectronic devices. In 2D-TOPSENSE I will go beyond the state of the art in straintronics by designing and fabricating optoelectronic devices whose properties and performance can be tuned by means of applying strain. 2D-TOPSENSE will focus on photodetectors with a tunable bandwidth and detectivity, light emitting devices whose emission wavelength can be adjusted, light modulators based on 2D semiconductors such as transition metal dichalcogenides or black phosphorus and solar funnels capable of directing the photogenerated charge carriers towards a specific position.
Summary
The goal of 2D-TOPSENSE is to exploit the remarkable stretchability of two-dimensional semiconductors to fabricate optoelectronic devices where strain is used as an external knob to tune their properties.
While bulk semiconductors tend to break under strains larger than 1.5%, 2D semiconductors (such as MoS2) can withstand deformations of up to 10-20% before rupture. This large breaking strength promises a great potential of 2D semiconductors as ‘straintronic’ materials, whose properties can be adjusted by applying a deformation to their lattice. In fact, recent theoretical works predicted an interesting physical phenomenon: a tensile strain-induced semiconductor-to-metal transition in 2D semiconductors. By tensioning single-layer MoS2 from 0% up to 10%, its electronic band structure is expected to undergo a continuous transition from a wide direct band-gap of 1.8 eV to a metallic behavior. This unprecedented large strain-tunability will undoubtedly have a strong impact in a wide range of optoelectronic applications such as photodetectors whose cut-off wavelength is tuned by varying the applied strain or atomically thin light modulators.
To date, experimental works on strain engineering have been mostly focused on fundamental studies, demonstrating part of the potential of 2D semiconductors in straintronics, but they have failed to exploit strain engineering to add extra functionalities to optoelectronic devices. In 2D-TOPSENSE I will go beyond the state of the art in straintronics by designing and fabricating optoelectronic devices whose properties and performance can be tuned by means of applying strain. 2D-TOPSENSE will focus on photodetectors with a tunable bandwidth and detectivity, light emitting devices whose emission wavelength can be adjusted, light modulators based on 2D semiconductors such as transition metal dichalcogenides or black phosphorus and solar funnels capable of directing the photogenerated charge carriers towards a specific position.
Max ERC Funding
1 930 437 €
Duration
Start date: 2018-03-01, End date: 2023-02-28
Project acronym 2DNANOPTICA
Project Nano-optics on flatland: from quantum nanotechnology to nano-bio-photonics
Researcher (PI) Pablo Alonso-González
Host Institution (HI) UNIVERSIDAD DE OVIEDO
Call Details Starting Grant (StG), PE3, ERC-2016-STG
Summary Ubiquitous in nature, light-matter interactions are of fundamental importance in science and all optical technologies. Understanding and controlling them has been a long-pursued objective in modern physics. However, so far, related experiments have relied on traditional optical schemes where, owing to the classical diffraction limit, control of optical fields to length scales below the wavelength of light is prevented. Importantly, this limitation impedes to exploit the extraordinary fundamental and scaling potentials of nanoscience and nanotechnology. A solution to concentrate optical fields into sub-diffracting volumes is the excitation of surface polaritons –coupled excitations of photons and mobile/bound charges in metals/polar materials (plasmons/phonons)-. However, their initial promises have been hindered by either strong optical losses or lack of electrical control in metals, and difficulties to fabricate high optical quality nanostructures in polar materials.
With the advent of two-dimensional (2D) materials and their extraordinary optical properties, during the last 2-3 years the visualization of both low-loss and electrically tunable (active) plasmons in graphene and high optical quality phonons in monolayer and multilayer h-BN nanostructures have been demonstrated in the mid-infrared spectral range, thus introducing a very encouraging arena for scientifically ground-breaking discoveries in nano-optics. Inspired by these extraordinary prospects, this ERC project aims to make use of our knowledge and unique expertise in 2D nanoplasmonics, and the recent advances in nanophononics, to establish a technological platform that, including coherent sources, waveguides, routers, and efficient detectors, permits an unprecedented active control and manipulation (at room temperature) of light and light-matter interactions on the nanoscale, thus laying experimentally the foundations of a 2D nano-optics field.
Summary
Ubiquitous in nature, light-matter interactions are of fundamental importance in science and all optical technologies. Understanding and controlling them has been a long-pursued objective in modern physics. However, so far, related experiments have relied on traditional optical schemes where, owing to the classical diffraction limit, control of optical fields to length scales below the wavelength of light is prevented. Importantly, this limitation impedes to exploit the extraordinary fundamental and scaling potentials of nanoscience and nanotechnology. A solution to concentrate optical fields into sub-diffracting volumes is the excitation of surface polaritons –coupled excitations of photons and mobile/bound charges in metals/polar materials (plasmons/phonons)-. However, their initial promises have been hindered by either strong optical losses or lack of electrical control in metals, and difficulties to fabricate high optical quality nanostructures in polar materials.
With the advent of two-dimensional (2D) materials and their extraordinary optical properties, during the last 2-3 years the visualization of both low-loss and electrically tunable (active) plasmons in graphene and high optical quality phonons in monolayer and multilayer h-BN nanostructures have been demonstrated in the mid-infrared spectral range, thus introducing a very encouraging arena for scientifically ground-breaking discoveries in nano-optics. Inspired by these extraordinary prospects, this ERC project aims to make use of our knowledge and unique expertise in 2D nanoplasmonics, and the recent advances in nanophononics, to establish a technological platform that, including coherent sources, waveguides, routers, and efficient detectors, permits an unprecedented active control and manipulation (at room temperature) of light and light-matter interactions on the nanoscale, thus laying experimentally the foundations of a 2D nano-optics field.
Max ERC Funding
1 459 219 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym 2DTHERMS
Project Design of new thermoelectric devices based on layered and field modulated nanostructures of strongly correlated electron systems
Researcher (PI) Jose Francisco Rivadulla Fernandez
Host Institution (HI) UNIVERSIDAD DE SANTIAGO DE COMPOSTELA
Call Details Starting Grant (StG), PE3, ERC-2010-StG_20091028
Summary Design of new thermoelectric devices based on layered and field modulated nanostructures of strongly correlated electron systems
Summary
Design of new thermoelectric devices based on layered and field modulated nanostructures of strongly correlated electron systems
Max ERC Funding
1 427 190 €
Duration
Start date: 2010-11-01, End date: 2015-10-31
Project acronym 3D-FIREFLUC
Project Taming the particle transport in magnetized plasmas via perturbative fields
Researcher (PI) Eleonora VIEZZER
Host Institution (HI) UNIVERSIDAD DE SEVILLA
Call Details Starting Grant (StG), PE2, ERC-2018-STG
Summary Wave-particle interactions are ubiquitous in nature and play a fundamental role in astrophysical and fusion plasmas. In solar plasmas, magnetohydrodynamic (MHD) fluctuations are thought to be responsible for the heating of the solar corona and the generation of the solar wind. In magnetically confined fusion (MCF) devices, enhanced particle transport induced by MHD fluctuations can deteriorate the plasma confinement, and also endanger the device integrity. MCF devices are an ideal testbed to verify current models and develop mitigation / protection techniques.
The proposed project paves the way for providing active control techniques to tame the MHD induced particle transport in a fusion plasma. A solid understanding of the interaction between energetic particles and MHD instabilities in the presence of electric fields and plasma currents is required to develop such techniques. I will pursue this goal through innovative diagnosis techniques with unprecedented spatio-temporal resolution. Combined with state-of-the-art hybrid MHD codes, a deep insight into the underlying physics mechanism will be gained. The outcome of this research project will have a major impact for next-step MCF devices as I will provide ground-breaking control techniques for mitigating MHD induced particle transport in magnetized plasmas.
The project consists of 3 research lines which follow a bottom-up approach:
(1) Cutting-edge instrumentation, aiming at the new generation of energetic particle and edge current diagnostics.
(2) Unravel the dynamics of energetic particles, electric fields, edge currents and MHD fluctuations.
(3) From lab to space weather: The developed models will revolutionize our understanding of the observed particle acceleration and transport in the solar corona.
Based on this approach, the project represents a gateway between the fusion, astrophysics and space communities opening new avenues for a common basic understanding.
Summary
Wave-particle interactions are ubiquitous in nature and play a fundamental role in astrophysical and fusion plasmas. In solar plasmas, magnetohydrodynamic (MHD) fluctuations are thought to be responsible for the heating of the solar corona and the generation of the solar wind. In magnetically confined fusion (MCF) devices, enhanced particle transport induced by MHD fluctuations can deteriorate the plasma confinement, and also endanger the device integrity. MCF devices are an ideal testbed to verify current models and develop mitigation / protection techniques.
The proposed project paves the way for providing active control techniques to tame the MHD induced particle transport in a fusion plasma. A solid understanding of the interaction between energetic particles and MHD instabilities in the presence of electric fields and plasma currents is required to develop such techniques. I will pursue this goal through innovative diagnosis techniques with unprecedented spatio-temporal resolution. Combined with state-of-the-art hybrid MHD codes, a deep insight into the underlying physics mechanism will be gained. The outcome of this research project will have a major impact for next-step MCF devices as I will provide ground-breaking control techniques for mitigating MHD induced particle transport in magnetized plasmas.
The project consists of 3 research lines which follow a bottom-up approach:
(1) Cutting-edge instrumentation, aiming at the new generation of energetic particle and edge current diagnostics.
(2) Unravel the dynamics of energetic particles, electric fields, edge currents and MHD fluctuations.
(3) From lab to space weather: The developed models will revolutionize our understanding of the observed particle acceleration and transport in the solar corona.
Based on this approach, the project represents a gateway between the fusion, astrophysics and space communities opening new avenues for a common basic understanding.
Max ERC Funding
1 512 250 €
Duration
Start date: 2019-05-01, End date: 2024-04-30
Project acronym 3DNANOMECH
Project Three-dimensional molecular resolution mapping of soft matter-liquid interfaces
Researcher (PI) Ricardo Garcia
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Advanced Grant (AdG), PE4, ERC-2013-ADG
Summary Optical, electron and probe microscopes are enabling tools for discoveries and knowledge generation in nanoscale sicence and technology. High resolution –nanoscale or molecular-, noninvasive and label-free imaging of three-dimensional soft matter-liquid interfaces has not been achieved by any microscopy method.
Force microscopy (AFM) is considered the second most relevant advance in materials science since 1960. Despite its impressive range of applications, the technique has some key limitations. Force microscopy has not three dimensional depth. What lies above or in the subsurface is not readily characterized.
3DNanoMech proposes to design, build and operate a high speed force-based method for the three-dimensional characterization soft matter-liquid interfaces (3D AFM). The microscope will combine a detection method based on force perturbations, adaptive algorithms, high speed piezo actuators and quantitative-oriented multifrequency approaches. The development of the microscope cannot be separated from its applications: imaging the error-free DNA repair and to understand the relationship existing between the nanomechanical properties and the malignancy of cancer cells. Those problems encompass the different spatial –molecular-nano-mesoscopic- and time –milli to seconds- scales of the instrument.
In short, 3DNanoMech aims to image, map and measure with picoNewton, millisecond and angstrom resolution soft matter surfaces and interfaces in liquid. The long-term vision of 3DNanoMech is to replace models or computer animations of bimolecular-liquid interfaces by real time, molecular resolution maps of properties and processes.
Summary
Optical, electron and probe microscopes are enabling tools for discoveries and knowledge generation in nanoscale sicence and technology. High resolution –nanoscale or molecular-, noninvasive and label-free imaging of three-dimensional soft matter-liquid interfaces has not been achieved by any microscopy method.
Force microscopy (AFM) is considered the second most relevant advance in materials science since 1960. Despite its impressive range of applications, the technique has some key limitations. Force microscopy has not three dimensional depth. What lies above or in the subsurface is not readily characterized.
3DNanoMech proposes to design, build and operate a high speed force-based method for the three-dimensional characterization soft matter-liquid interfaces (3D AFM). The microscope will combine a detection method based on force perturbations, adaptive algorithms, high speed piezo actuators and quantitative-oriented multifrequency approaches. The development of the microscope cannot be separated from its applications: imaging the error-free DNA repair and to understand the relationship existing between the nanomechanical properties and the malignancy of cancer cells. Those problems encompass the different spatial –molecular-nano-mesoscopic- and time –milli to seconds- scales of the instrument.
In short, 3DNanoMech aims to image, map and measure with picoNewton, millisecond and angstrom resolution soft matter surfaces and interfaces in liquid. The long-term vision of 3DNanoMech is to replace models or computer animations of bimolecular-liquid interfaces by real time, molecular resolution maps of properties and processes.
Max ERC Funding
2 499 928 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym 4DBIOSERS
Project Four-Dimensional Monitoring of Tumour Growth by Surface Enhanced Raman Scattering
Researcher (PI) Luis LIZ-MARZAN
Host Institution (HI) ASOCIACION CENTRO DE INVESTIGACION COOPERATIVA EN BIOMATERIALES- CIC biomaGUNE
Call Details Advanced Grant (AdG), PE5, ERC-2017-ADG
Summary Optical bioimaging is limited by visible light penetration depth and stability of fluorescent dyes over extended periods of time. Surface enhanced Raman scattering (SERS) offers the possibility to overcome these drawbacks, through SERS-encoded nanoparticle tags, which can be excited with near-IR light (within the biological transparency window), providing high intensity, stable, multiplexed signals. SERS can also be used to monitor relevant bioanalytes within cells and tissues, during the development of diseases, such as tumours. In 4DBIOSERS we shall combine both capabilities of SERS, to go well beyond the current state of the art, by building three-dimensional scaffolds that support tissue (tumour) growth within a controlled environment, so that not only the fate of each (SERS-labelled) cell within the tumour can be monitored in real time (thus adding a fourth dimension to SERS bioimaging), but also recording the release of tumour metabolites and other indicators of cellular activity. Although 4DBIOSERS can be applied to a variety of diseases, we shall focus on cancer, melanoma and breast cancer in particular, as these are readily accessible by optical methods. We aim at acquiring a better understanding of tumour growth and dynamics, while avoiding animal experimentation. 3D printing will be used to generate hybrid scaffolds where tumour and healthy cells will be co-incubated to simulate a more realistic environment, thus going well beyond the potential of 2D cell cultures. Each cell type will be encoded with ultra-bright SERS tags, so that real-time monitoring can be achieved by confocal SERS microscopy. Tumour development will be correlated with simultaneous detection of various cancer biomarkers, during standard conditions and upon addition of selected drugs. The scope of 4DBIOSERS is multidisciplinary, as it involves the design of high-end nanocomposites, development of 3D cell culture models and optimization of emerging SERS tomography methods.
Summary
Optical bioimaging is limited by visible light penetration depth and stability of fluorescent dyes over extended periods of time. Surface enhanced Raman scattering (SERS) offers the possibility to overcome these drawbacks, through SERS-encoded nanoparticle tags, which can be excited with near-IR light (within the biological transparency window), providing high intensity, stable, multiplexed signals. SERS can also be used to monitor relevant bioanalytes within cells and tissues, during the development of diseases, such as tumours. In 4DBIOSERS we shall combine both capabilities of SERS, to go well beyond the current state of the art, by building three-dimensional scaffolds that support tissue (tumour) growth within a controlled environment, so that not only the fate of each (SERS-labelled) cell within the tumour can be monitored in real time (thus adding a fourth dimension to SERS bioimaging), but also recording the release of tumour metabolites and other indicators of cellular activity. Although 4DBIOSERS can be applied to a variety of diseases, we shall focus on cancer, melanoma and breast cancer in particular, as these are readily accessible by optical methods. We aim at acquiring a better understanding of tumour growth and dynamics, while avoiding animal experimentation. 3D printing will be used to generate hybrid scaffolds where tumour and healthy cells will be co-incubated to simulate a more realistic environment, thus going well beyond the potential of 2D cell cultures. Each cell type will be encoded with ultra-bright SERS tags, so that real-time monitoring can be achieved by confocal SERS microscopy. Tumour development will be correlated with simultaneous detection of various cancer biomarkers, during standard conditions and upon addition of selected drugs. The scope of 4DBIOSERS is multidisciplinary, as it involves the design of high-end nanocomposites, development of 3D cell culture models and optimization of emerging SERS tomography methods.
Max ERC Funding
2 410 771 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym 4SUNS
Project 4-Colours/2-Junctions of III-V semiconductors on Si to use in electronics devices and solar cells
Researcher (PI) María Nair LOPEZ MARTINEZ
Host Institution (HI) UNIVERSIDAD AUTONOMA DE MADRID
Call Details Starting Grant (StG), PE7, ERC-2017-STG
Summary It was early predicted by M. Green and coeval colleagues that dividing the solar spectrum into narrow ranges of colours is the most efficient manner to convert solar energy into electrical power. Multijunction solar cells are the current solution to this challenge, which have reached over 30% conversion efficiencies by stacking 3 junctions together. However, the large fabrication costs and time hinders their use in everyday life. It has been shown that highly mismatched alloy (HMA) materials provide a powerful playground to achieve at least 3 different colour absorption regions that enable optimised energy conversion with just one junction. Combining HMA-based junctions with standard Silicon solar cells will rocket solar conversion efficiency at a reduced price. To turn this ambition into marketable devices, several efforts are still needed and few challenges must be overcome.
4SUNS is a revolutionary approach for the development of HMA materials on Silicon technology, which will bring highly efficient multi-colour solar cells costs below current multijunction devices. The project will develop the technology of HMA materials on Silicon via material synthesis opening a new technology for the future. The understanding and optimization of highly mismatched alloy materials-using GaAsNP alloy- will provide building blocks for the fabrication of laboratory-size 4-colours/2-junctions solar cells.
Using a molecular beam epitaxy system, 4SUNS will grow 4-colours/2-junctions structure as well as it will manufacture the final devices. Structural and optoelectronic characterizations will carry out to determine the quality of the materials and the solar cells characteristic to obtain a competitive product. These new solar cells are competitive products to breakthrough on the solar energy sector solar cells and allowing Europe to take leadership on high efficiency solar cells.
Summary
It was early predicted by M. Green and coeval colleagues that dividing the solar spectrum into narrow ranges of colours is the most efficient manner to convert solar energy into electrical power. Multijunction solar cells are the current solution to this challenge, which have reached over 30% conversion efficiencies by stacking 3 junctions together. However, the large fabrication costs and time hinders their use in everyday life. It has been shown that highly mismatched alloy (HMA) materials provide a powerful playground to achieve at least 3 different colour absorption regions that enable optimised energy conversion with just one junction. Combining HMA-based junctions with standard Silicon solar cells will rocket solar conversion efficiency at a reduced price. To turn this ambition into marketable devices, several efforts are still needed and few challenges must be overcome.
4SUNS is a revolutionary approach for the development of HMA materials on Silicon technology, which will bring highly efficient multi-colour solar cells costs below current multijunction devices. The project will develop the technology of HMA materials on Silicon via material synthesis opening a new technology for the future. The understanding and optimization of highly mismatched alloy materials-using GaAsNP alloy- will provide building blocks for the fabrication of laboratory-size 4-colours/2-junctions solar cells.
Using a molecular beam epitaxy system, 4SUNS will grow 4-colours/2-junctions structure as well as it will manufacture the final devices. Structural and optoelectronic characterizations will carry out to determine the quality of the materials and the solar cells characteristic to obtain a competitive product. These new solar cells are competitive products to breakthrough on the solar energy sector solar cells and allowing Europe to take leadership on high efficiency solar cells.
Max ERC Funding
1 499 719 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym ADJUV-ANT VACCINES
Project Elucidating the Molecular Mechanisms of Synthetic Saponin Adjuvants and Development of Novel Self-Adjuvanting Vaccines
Researcher (PI) Alberto FERNANDEZ TEJADA
Host Institution (HI) ASOCIACION CENTRO DE INVESTIGACION COOPERATIVA EN BIOCIENCIAS
Call Details Starting Grant (StG), PE5, ERC-2016-STG
Summary The clinical success of anticancer and antiviral vaccines often requires the use of an adjuvant, a substance that helps stimulate the body’s immune response to the vaccine, making it work better. However, few adjuvants are sufficiently potent and non-toxic for clinical use; moreover, it is not really known how they work. Current vaccine approaches based on weak carbohydrate and glycopeptide antigens are not being particularly effective to induce the human immune system to mount an effective fight against cancer. Despite intensive research and several clinical trials, no such carbohydrate-based antitumor vaccine has yet been approved for public use. In this context, the proposed project has a double, ultimate goal based on applying chemistry to address the above clear gaps in the adjuvant-vaccine field. First, I will develop new improved adjuvants and novel chemical strategies towards more effective, self-adjuvanting synthetic vaccines. Second, I will probe deeply into the molecular mechanisms of the synthetic constructs by combining extensive immunological evaluations with molecular target identification and detailed conformational studies. Thus, the singularity of this multidisciplinary proposal stems from the integration of its main objectives and approaches connecting chemical synthesis and chemical/structural biology with cellular and molecular immunology. This ground-breaking project at the chemistry-biology frontier will allow me to establish my own independent research group and explore key unresolved mechanistic questions in the adjuvant/vaccine arena with extraordinary chemical precision. Therefore, with this transformative and timely research program I aim to (a) develop novel synthetic antitumor and antiviral vaccines with improved properties and efficacy for their prospective translation into the clinic and (b) gain new critical insights into the molecular basis and three-dimensional structure underlying the biological activity of these constructs.
Summary
The clinical success of anticancer and antiviral vaccines often requires the use of an adjuvant, a substance that helps stimulate the body’s immune response to the vaccine, making it work better. However, few adjuvants are sufficiently potent and non-toxic for clinical use; moreover, it is not really known how they work. Current vaccine approaches based on weak carbohydrate and glycopeptide antigens are not being particularly effective to induce the human immune system to mount an effective fight against cancer. Despite intensive research and several clinical trials, no such carbohydrate-based antitumor vaccine has yet been approved for public use. In this context, the proposed project has a double, ultimate goal based on applying chemistry to address the above clear gaps in the adjuvant-vaccine field. First, I will develop new improved adjuvants and novel chemical strategies towards more effective, self-adjuvanting synthetic vaccines. Second, I will probe deeply into the molecular mechanisms of the synthetic constructs by combining extensive immunological evaluations with molecular target identification and detailed conformational studies. Thus, the singularity of this multidisciplinary proposal stems from the integration of its main objectives and approaches connecting chemical synthesis and chemical/structural biology with cellular and molecular immunology. This ground-breaking project at the chemistry-biology frontier will allow me to establish my own independent research group and explore key unresolved mechanistic questions in the adjuvant/vaccine arena with extraordinary chemical precision. Therefore, with this transformative and timely research program I aim to (a) develop novel synthetic antitumor and antiviral vaccines with improved properties and efficacy for their prospective translation into the clinic and (b) gain new critical insights into the molecular basis and three-dimensional structure underlying the biological activity of these constructs.
Max ERC Funding
1 499 219 €
Duration
Start date: 2017-03-01, End date: 2022-02-28
Project acronym ANGEOM
Project Geometric analysis in the Euclidean space
Researcher (PI) Xavier Tolsa Domenech
Host Institution (HI) UNIVERSITAT AUTONOMA DE BARCELONA
Call Details Advanced Grant (AdG), PE1, ERC-2012-ADG_20120216
Summary "We propose to study different questions in the area of the so called geometric analysis. Most of the topics we are interested in deal with the connection between the behavior of singular integrals and the geometry of sets and measures. The study of this connection has been shown to be extremely helpful in the solution of certain long standing problems in the last years, such as the solution of the Painlev\'e problem or the obtaining of the optimal distortion bounds for quasiconformal mappings by Astala.
More specifically, we would like to study the relationship between the L^2 boundedness of singular integrals associated with Riesz and other related kernels, and rectifiability and other geometric notions. The so called David-Semmes problem is probably the main open problem in this area. Up to now, the techniques used to deal with this problem come from multiscale analysis and involve ideas from Littlewood-Paley theory and quantitative techniques of rectifiability. We propose to apply new ideas that combine variational arguments with other techniques which have connections with mass transportation. Further, we think that it is worth to explore in more detail the connection among mass transportation, singular integrals, and uniform rectifiability.
We are also interested in the field of quasiconformal mappings. We plan to study a problem regarding the quasiconformal distortion of quasicircles. This problem consists in proving that the bounds obtained recently by S. Smirnov on the dimension of K-quasicircles are optimal. We want to apply techniques from quantitative geometric measure theory to deal with this question.
Another question that we intend to explore lies in the interplay of harmonic analysis, geometric measure theory and partial differential equations. This concerns an old problem on the unique continuation of harmonic functions at the boundary open C^1 or Lipschitz domain. All the results known by now deal with smoother Dini domains."
Summary
"We propose to study different questions in the area of the so called geometric analysis. Most of the topics we are interested in deal with the connection between the behavior of singular integrals and the geometry of sets and measures. The study of this connection has been shown to be extremely helpful in the solution of certain long standing problems in the last years, such as the solution of the Painlev\'e problem or the obtaining of the optimal distortion bounds for quasiconformal mappings by Astala.
More specifically, we would like to study the relationship between the L^2 boundedness of singular integrals associated with Riesz and other related kernels, and rectifiability and other geometric notions. The so called David-Semmes problem is probably the main open problem in this area. Up to now, the techniques used to deal with this problem come from multiscale analysis and involve ideas from Littlewood-Paley theory and quantitative techniques of rectifiability. We propose to apply new ideas that combine variational arguments with other techniques which have connections with mass transportation. Further, we think that it is worth to explore in more detail the connection among mass transportation, singular integrals, and uniform rectifiability.
We are also interested in the field of quasiconformal mappings. We plan to study a problem regarding the quasiconformal distortion of quasicircles. This problem consists in proving that the bounds obtained recently by S. Smirnov on the dimension of K-quasicircles are optimal. We want to apply techniques from quantitative geometric measure theory to deal with this question.
Another question that we intend to explore lies in the interplay of harmonic analysis, geometric measure theory and partial differential equations. This concerns an old problem on the unique continuation of harmonic functions at the boundary open C^1 or Lipschitz domain. All the results known by now deal with smoother Dini domains."
Max ERC Funding
1 105 930 €
Duration
Start date: 2013-05-01, End date: 2018-04-30
Project acronym ANIMETRICS
Project Measurement-Based Modeling and Animation of Complex Mechanical Phenomena
Researcher (PI) Miguel Angel Otaduy Tristan
Host Institution (HI) UNIVERSIDAD REY JUAN CARLOS
Call Details Starting Grant (StG), PE6, ERC-2011-StG_20101014
Summary Computer animation has traditionally been associated with applications in virtual-reality-based training, video games or feature films. However, interactive animation is gaining relevance in a more general scope, as a tool for early-stage analysis, design and planning in many applications in science and engineering. The user can get quick and visual feedback of the results, and then proceed by refining the experiments or designs. Potential applications include nanodesign, e-commerce or tactile telecommunication, but they also reach as far as, e.g., the analysis of ecological, climate, biological or physiological processes.
The application of computer animation is extremely limited in comparison to its potential outreach due to a trade-off between accuracy and computational efficiency. Such trade-off is induced by inherent complexity sources such as nonlinear or anisotropic behaviors, heterogeneous properties, or high dynamic ranges of effects.
The Animetrics project proposes a modeling and animation methodology, which consists of a multi-scale decomposition of complex processes, the description of the process at each scale through combination of simple local models, and fitting the parameters of those local models using large amounts of data from example effects. The modeling and animation methodology will be explored on specific problems arising in complex mechanical phenomena, including viscoelasticity of solids and thin shells, multi-body contact, granular and liquid flow, and fracture of solids.
Summary
Computer animation has traditionally been associated with applications in virtual-reality-based training, video games or feature films. However, interactive animation is gaining relevance in a more general scope, as a tool for early-stage analysis, design and planning in many applications in science and engineering. The user can get quick and visual feedback of the results, and then proceed by refining the experiments or designs. Potential applications include nanodesign, e-commerce or tactile telecommunication, but they also reach as far as, e.g., the analysis of ecological, climate, biological or physiological processes.
The application of computer animation is extremely limited in comparison to its potential outreach due to a trade-off between accuracy and computational efficiency. Such trade-off is induced by inherent complexity sources such as nonlinear or anisotropic behaviors, heterogeneous properties, or high dynamic ranges of effects.
The Animetrics project proposes a modeling and animation methodology, which consists of a multi-scale decomposition of complex processes, the description of the process at each scale through combination of simple local models, and fitting the parameters of those local models using large amounts of data from example effects. The modeling and animation methodology will be explored on specific problems arising in complex mechanical phenomena, including viscoelasticity of solids and thin shells, multi-body contact, granular and liquid flow, and fracture of solids.
Max ERC Funding
1 277 969 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym APACHE
Project Atmospheric Pressure plAsma meets biomaterials for bone Cancer HEaling
Researcher (PI) Cristina CANAL BARNILS
Host Institution (HI) UNIVERSITAT POLITECNICA DE CATALUNYA
Call Details Starting Grant (StG), PE8, ERC-2016-STG
Summary Cold atmospheric pressure plasmas (APP) have been reported to selectively kill cancer cells without damaging the surrounding tissues. Studies have been conducted on a variety of cancer types but to the best of our knowledge not on any kind of bone cancer. Treatment options for bone cancer include surgery, chemotherapy, etc. and may involve the use of bone grafting biomaterials to replace the surgically removed bone.
APACHE brings a totally different and ground-breaking approach in the design of a novel therapy for bone cancer by taking advantage of the active species generated by APP in combination with biomaterials to deliver the active species locally in the diseased site. The feasibility of this approach is rooted in the evidence that the cellular effects of APP appear to strongly involve the suite of reactive species created by plasmas, which can be derived from a) direct treatment of the malignant cells by APP or b) indirect treatment of the liquid media by APP which is then put in contact with the cancer cells.
In APACHE we aim to investigate the fundamentals involved in the lethal effects of cold plasmas on bone cancer cells, and to develop improved bone cancer therapies. To achieve this we will take advantage of the highly reactive species generated by APP in the liquid media, which we will use in an incremental strategy: i) to investigate the effects of APP treated liquid on bone cancer cells, ii) to evaluate the potential of combining APP treated liquid in a hydrogel vehicle with/wo CaP biomaterials and iii) to ascertain the potential three directional interactions between APP reactive species in liquid medium with biomaterials and with chemotherapeutic drugs.
The methodological approach will involve an interdisciplinary team, dealing with plasma diagnostics in gas and liquid media; with cell biology and the effects of APP treated with bone tumor cells and its combination with biomaterials and/or with anticancer drugs.
Summary
Cold atmospheric pressure plasmas (APP) have been reported to selectively kill cancer cells without damaging the surrounding tissues. Studies have been conducted on a variety of cancer types but to the best of our knowledge not on any kind of bone cancer. Treatment options for bone cancer include surgery, chemotherapy, etc. and may involve the use of bone grafting biomaterials to replace the surgically removed bone.
APACHE brings a totally different and ground-breaking approach in the design of a novel therapy for bone cancer by taking advantage of the active species generated by APP in combination with biomaterials to deliver the active species locally in the diseased site. The feasibility of this approach is rooted in the evidence that the cellular effects of APP appear to strongly involve the suite of reactive species created by plasmas, which can be derived from a) direct treatment of the malignant cells by APP or b) indirect treatment of the liquid media by APP which is then put in contact with the cancer cells.
In APACHE we aim to investigate the fundamentals involved in the lethal effects of cold plasmas on bone cancer cells, and to develop improved bone cancer therapies. To achieve this we will take advantage of the highly reactive species generated by APP in the liquid media, which we will use in an incremental strategy: i) to investigate the effects of APP treated liquid on bone cancer cells, ii) to evaluate the potential of combining APP treated liquid in a hydrogel vehicle with/wo CaP biomaterials and iii) to ascertain the potential three directional interactions between APP reactive species in liquid medium with biomaterials and with chemotherapeutic drugs.
The methodological approach will involve an interdisciplinary team, dealing with plasma diagnostics in gas and liquid media; with cell biology and the effects of APP treated with bone tumor cells and its combination with biomaterials and/or with anticancer drugs.
Max ERC Funding
1 499 887 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym AQUMET
Project Atomic Quantum Metrology
Researcher (PI) Morgan Wilfred Mitchell
Host Institution (HI) FUNDACIO INSTITUT DE CIENCIES FOTONIQUES
Call Details Starting Grant (StG), PE2, ERC-2011-StG_20101014
Summary This project aims to detect magnetic fields with high spatial and temporal resolution and unprecedented sensitivity using ultra-cold atoms as interferometric sensors. The project will, on the one hand, test and demonstrate the most advanced concepts in the dynamic field of quantum metrology, and on the other hand, develop measurement techniques with the potential to transform existing fields and open new ones to study.
Quantum metrology is in an exciting phase: on the one hand, a long-held goal of improving gravita- tional wave detection appears near at hand. At the same time, atomic instruments including atomic clocks, atomic gravimeters and atomic magnetometers are setting records in detection of time, ac- celeration, and fields, with revolutionary potential in several areas. This has stimulated new theory, including remarkable proposals suggesting that long-established “ultimate” limits can in fact be sur- passed.
This project will study quantum metrology applied to atomic sensors by developing a versatile and highly sensitive cold atom magnetometer. We set an ambitious goal: to demonstrate record sensi- tivity, and then to improve on that sensitivity using quantum entanglement. This ground-breaking accomplishment will show the way to super-precise measurements in many fields.
Fundamental topics in quantum metrology will be explored using the advanced magnetometry sys- tem. Nonlinear quantum metrology proposes to surpass the Heisenberg limit using inter-particle interactions. Compressed sensing aims to surpass the Nyquist limit, obtaining more information than normally allowed.
Summary
This project aims to detect magnetic fields with high spatial and temporal resolution and unprecedented sensitivity using ultra-cold atoms as interferometric sensors. The project will, on the one hand, test and demonstrate the most advanced concepts in the dynamic field of quantum metrology, and on the other hand, develop measurement techniques with the potential to transform existing fields and open new ones to study.
Quantum metrology is in an exciting phase: on the one hand, a long-held goal of improving gravita- tional wave detection appears near at hand. At the same time, atomic instruments including atomic clocks, atomic gravimeters and atomic magnetometers are setting records in detection of time, ac- celeration, and fields, with revolutionary potential in several areas. This has stimulated new theory, including remarkable proposals suggesting that long-established “ultimate” limits can in fact be sur- passed.
This project will study quantum metrology applied to atomic sensors by developing a versatile and highly sensitive cold atom magnetometer. We set an ambitious goal: to demonstrate record sensi- tivity, and then to improve on that sensitivity using quantum entanglement. This ground-breaking accomplishment will show the way to super-precise measurements in many fields.
Fundamental topics in quantum metrology will be explored using the advanced magnetometry sys- tem. Nonlinear quantum metrology proposes to surpass the Heisenberg limit using inter-particle interactions. Compressed sensing aims to surpass the Nyquist limit, obtaining more information than normally allowed.
Max ERC Funding
1 387 000 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym AUTAR
Project A Unified Theory of Algorithmic Relaxations
Researcher (PI) Albert Atserias Peri
Host Institution (HI) UNIVERSITAT POLITECNICA DE CATALUNYA
Call Details Consolidator Grant (CoG), PE6, ERC-2014-CoG
Summary For a large family of computational problems collectively known as constrained optimization and satisfaction problems (CSPs), four decades of research in algorithms and computational complexity have led to a theory that tries to classify them as algorithmically tractable vs. intractable, i.e. polynomial-time solvable vs. NP-hard. However, there remains an important gap in our knowledge in that many CSPs of interest resist classification by this theory. Some such problems of practical relevance include fundamental partition problems in graph theory, isomorphism problems in combinatorics, and strategy-design problems in mathematical game theory. To tackle this gap in our knowledge, the research of the last decade has been driven either by finding hard instances for algorithms that solve tighter and tighter relaxations of the original problem, or by formulating new hardness-hypotheses that are stronger but admittedly less robust than NP-hardness.
The ultimate goal of this project is closing the gap between the partial progress that these approaches represent and the original classification project into tractable vs. intractable problems. Our thesis is that the field has reached a point where, in many cases of interest, the analysis of the current candidate algorithms that appear to solve all instances could suffice to classify the problem one way or the other, without the need for alternative hardness-hypotheses. The novelty in our approach is a program to develop our recent discovery that, in some cases of interest, two methods from different areas match in strength: indistinguishability pebble games from mathematical logic, and hierarchies of convex relaxations from mathematical programming. Thus, we aim at making significant advances in the status of important algorithmic problems by looking for a general theory that unifies and goes beyond the current understanding of its components.
Summary
For a large family of computational problems collectively known as constrained optimization and satisfaction problems (CSPs), four decades of research in algorithms and computational complexity have led to a theory that tries to classify them as algorithmically tractable vs. intractable, i.e. polynomial-time solvable vs. NP-hard. However, there remains an important gap in our knowledge in that many CSPs of interest resist classification by this theory. Some such problems of practical relevance include fundamental partition problems in graph theory, isomorphism problems in combinatorics, and strategy-design problems in mathematical game theory. To tackle this gap in our knowledge, the research of the last decade has been driven either by finding hard instances for algorithms that solve tighter and tighter relaxations of the original problem, or by formulating new hardness-hypotheses that are stronger but admittedly less robust than NP-hardness.
The ultimate goal of this project is closing the gap between the partial progress that these approaches represent and the original classification project into tractable vs. intractable problems. Our thesis is that the field has reached a point where, in many cases of interest, the analysis of the current candidate algorithms that appear to solve all instances could suffice to classify the problem one way or the other, without the need for alternative hardness-hypotheses. The novelty in our approach is a program to develop our recent discovery that, in some cases of interest, two methods from different areas match in strength: indistinguishability pebble games from mathematical logic, and hierarchies of convex relaxations from mathematical programming. Thus, we aim at making significant advances in the status of important algorithmic problems by looking for a general theory that unifies and goes beyond the current understanding of its components.
Max ERC Funding
1 725 656 €
Duration
Start date: 2015-06-01, End date: 2020-05-31
Project acronym BACCO
Project Bias and Clustering Calculations Optimised: Maximising discovery with galaxy surveys
Researcher (PI) Raúl Esteban ANGULO de la Fuente
Host Institution (HI) FUNDACION CENTRO DE ESTUDIOS DE FISICA DEL COSMOS DE ARAGON
Call Details Starting Grant (StG), PE9, ERC-2016-STG
Summary A new generation of galaxy surveys will soon start measuring the spatial distribution of millions of galaxies over a broad range of redshifts, offering an imminent opportunity to discover new physics. A detailed comparison of these measurements with theoretical models of galaxy clustering may reveal a new fundamental particle, a breakdown of General Relativity, or a hint on the nature of cosmic acceleration. Despite a large progress in the analytic treatment of structure formation in recent years, traditional clustering models still suffer from large uncertainties. This limits cosmological analyses to a very restricted range of scales and statistics, which will be one of the main obstacles to reach a comprehensive exploitation of future surveys.
Here I propose to develop a novel simulation--based approach to predict galaxy clustering. Combining recent advances in computational cosmology, from cosmological N--body calculations to physically-motivated galaxy formation models, I will develop a unified framework to directly predict the position and velocity of individual dark matter structures and galaxies as function of cosmological and astrophysical parameters. In this formulation, galaxy clustering will be a prediction of a set of physical assumptions in a given cosmological setting. The new theoretical framework will be flexible, accurate and fast: it will provide predictions for any clustering statistic, down to scales 100 times smaller than in state-of-the-art perturbation--theory--based models, and in less than 1 minute of CPU time. These advances will enable major improvements in future cosmological constraints, which will significantly increase the overall power of future surveys maximising our potential to discover new physics.
Summary
A new generation of galaxy surveys will soon start measuring the spatial distribution of millions of galaxies over a broad range of redshifts, offering an imminent opportunity to discover new physics. A detailed comparison of these measurements with theoretical models of galaxy clustering may reveal a new fundamental particle, a breakdown of General Relativity, or a hint on the nature of cosmic acceleration. Despite a large progress in the analytic treatment of structure formation in recent years, traditional clustering models still suffer from large uncertainties. This limits cosmological analyses to a very restricted range of scales and statistics, which will be one of the main obstacles to reach a comprehensive exploitation of future surveys.
Here I propose to develop a novel simulation--based approach to predict galaxy clustering. Combining recent advances in computational cosmology, from cosmological N--body calculations to physically-motivated galaxy formation models, I will develop a unified framework to directly predict the position and velocity of individual dark matter structures and galaxies as function of cosmological and astrophysical parameters. In this formulation, galaxy clustering will be a prediction of a set of physical assumptions in a given cosmological setting. The new theoretical framework will be flexible, accurate and fast: it will provide predictions for any clustering statistic, down to scales 100 times smaller than in state-of-the-art perturbation--theory--based models, and in less than 1 minute of CPU time. These advances will enable major improvements in future cosmological constraints, which will significantly increase the overall power of future surveys maximising our potential to discover new physics.
Max ERC Funding
1 484 240 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym BePreSysE
Project Beyond Precision Cosmology: dealing with Systematic Errors
Researcher (PI) Licia VERDE
Host Institution (HI) UNIVERSITAT DE BARCELONA
Call Details Consolidator Grant (CoG), PE9, ERC-2016-COG
Summary Over the past 20 years cosmology has made the transition to a precision science: the standard cosmological model has been established and its parameters are now measured with unprecedented precision. But precision is not enough: accuracy is also crucial. Accuracy accounts for systematic errors which can be both on the observational and on the theory/modelling side (and everywhere in between). While there is a well-defined and developed framework for treating statistical errors, there is no established approach for systematic errors. The next decade will see the era of large surveys; a large coordinated effort of the scientific community in the field is on-going to map the cosmos producing an exponentially growing amount of data. This will shrink the statistical errors, making mitigation and control of systematics of the utmost importance. While there are isolated and targeted efforts to quantify systematic errors and propagate them through all the way to the final results, there is no well-established, self-consistent methodology. To go beyond precision cosmology and reap the benefits of the forthcoming observational program, a systematic approach to systematics is needed. Systematics should be interpreted in the most general sense as shifts between the recovered measured values and true values of physical quantities. I propose to develop a comprehensive approach to tackle systematic errors with the goal to uncover and quantify otherwise unknown differences between the interpretation of a measurement and reality. This will require to fully develop, combine and systematize all approaches proposed so far (many pioneered by the PI), develop new ones to fill the gaps, study and explore their interplay and finally test and validate the procedure. Beyond Precision Cosmology: Dealing with Systematic Errors (BePreSysE) will develop a framework to deal with systematics in forthcoming Cosmological surveys which, could, in principle, be applied beyond Cosmology.
Summary
Over the past 20 years cosmology has made the transition to a precision science: the standard cosmological model has been established and its parameters are now measured with unprecedented precision. But precision is not enough: accuracy is also crucial. Accuracy accounts for systematic errors which can be both on the observational and on the theory/modelling side (and everywhere in between). While there is a well-defined and developed framework for treating statistical errors, there is no established approach for systematic errors. The next decade will see the era of large surveys; a large coordinated effort of the scientific community in the field is on-going to map the cosmos producing an exponentially growing amount of data. This will shrink the statistical errors, making mitigation and control of systematics of the utmost importance. While there are isolated and targeted efforts to quantify systematic errors and propagate them through all the way to the final results, there is no well-established, self-consistent methodology. To go beyond precision cosmology and reap the benefits of the forthcoming observational program, a systematic approach to systematics is needed. Systematics should be interpreted in the most general sense as shifts between the recovered measured values and true values of physical quantities. I propose to develop a comprehensive approach to tackle systematic errors with the goal to uncover and quantify otherwise unknown differences between the interpretation of a measurement and reality. This will require to fully develop, combine and systematize all approaches proposed so far (many pioneered by the PI), develop new ones to fill the gaps, study and explore their interplay and finally test and validate the procedure. Beyond Precision Cosmology: Dealing with Systematic Errors (BePreSysE) will develop a framework to deal with systematics in forthcoming Cosmological surveys which, could, in principle, be applied beyond Cosmology.
Max ERC Funding
1 835 220 €
Duration
Start date: 2017-06-01, End date: 2022-05-31
Project acronym BETTERSENSE
Project Nanodevice Engineering for a Better Chemical Gas Sensing Technology
Researcher (PI) Juan Daniel Prades Garcia
Host Institution (HI) UNIVERSITAT DE BARCELONA
Call Details Starting Grant (StG), PE7, ERC-2013-StG
Summary BetterSense aims to solve the two main problems in current gas sensor technologies: the high power consumption and the poor selectivity. For the former, we propose a radically new approach: to integrate the sensing components and the energy sources intimately, at the nanoscale, in order to achieve a new kind of sensor concept featuring zero power consumption. For the latter, we will mimic the biological receptors designing a kit of gas-specific molecular organic functionalizations to reach ultra-high gas selectivity figures, comparable to those of biological processes. Both cutting-edge concepts will be developed in parallel an integrated together to render a totally new gas sensing technology that surpasses the state-of-the-art.
As a matter of fact, the project will enable, for the first time, the integration of gas detectors in energetically autonomous sensors networks. Additionally, BetterSense will provide an integral solution to the gas sensing challenge by producing a full set of gas-specific sensors over the same platform to ease their integration in multi-analyte systems. Moreover, the project approach will certainly open opportunities in adjacent fields in which power consumption, specificity and nano/micro integration are a concern, such as liquid chemical and biological sensing.
In spite of the promising evidences that demonstrate the feasibility of this proposal, there are still many scientific and technological issues to solve, most of them in the edge of what is known and what is possible today in nano-fabrication and nano/micro integration. For this reason, BetterSense also aims to contribute to the global challenge of making nanodevices compatible with scalable, cost-effective, microelectronic technologies.
For all this, addressing this challenging proposal in full requires a funding scheme compatible with a high-risk/high-gain vision to finance the full dedication of a highly motivated research team with multidisciplinary skill
Summary
BetterSense aims to solve the two main problems in current gas sensor technologies: the high power consumption and the poor selectivity. For the former, we propose a radically new approach: to integrate the sensing components and the energy sources intimately, at the nanoscale, in order to achieve a new kind of sensor concept featuring zero power consumption. For the latter, we will mimic the biological receptors designing a kit of gas-specific molecular organic functionalizations to reach ultra-high gas selectivity figures, comparable to those of biological processes. Both cutting-edge concepts will be developed in parallel an integrated together to render a totally new gas sensing technology that surpasses the state-of-the-art.
As a matter of fact, the project will enable, for the first time, the integration of gas detectors in energetically autonomous sensors networks. Additionally, BetterSense will provide an integral solution to the gas sensing challenge by producing a full set of gas-specific sensors over the same platform to ease their integration in multi-analyte systems. Moreover, the project approach will certainly open opportunities in adjacent fields in which power consumption, specificity and nano/micro integration are a concern, such as liquid chemical and biological sensing.
In spite of the promising evidences that demonstrate the feasibility of this proposal, there are still many scientific and technological issues to solve, most of them in the edge of what is known and what is possible today in nano-fabrication and nano/micro integration. For this reason, BetterSense also aims to contribute to the global challenge of making nanodevices compatible with scalable, cost-effective, microelectronic technologies.
For all this, addressing this challenging proposal in full requires a funding scheme compatible with a high-risk/high-gain vision to finance the full dedication of a highly motivated research team with multidisciplinary skill
Max ERC Funding
1 498 452 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym BIDECASEOX
Project Bio-inspired Design of Catalysts for Selective Oxidations of C-H and C=C Bonds
Researcher (PI) Miguel Costas Salgueiro
Host Institution (HI) UNIVERSITAT DE GIRONA
Call Details Starting Grant (StG), PE5, ERC-2009-StG
Summary The selective functionalization of C-H and C=C bonds remains a formidable unsolved problem, owing to their inert nature. Novel alkane and alkene oxidation reactions exhibiting good and/or unprecedented selectivities will have a big impact on bulk and fine chemistry by opening novel methodologies that will allow removal of protection-deprotection sequences, thus streamlining synthetic strategies. These goals are targeted in this project via design of iron and manganese catalysts inspired by structural elements of the active site of non-heme enzymes of the Rieske Dioxygenase family. Selectivity is pursued via rational design of catalysts that will exploit substrate recognition-exclusion phenomena, and control over proton and electron affinity of the active species. Moreover, these catalysts will employ H2O2 as oxidant, and will operate under mild conditions (pressure and temperature). The fundamental mechanistic aspects of the catalytic reactions, and the species implicated in C-H and C=C oxidation events will also be studied with the aim of building on the necessary knowledge to design future generations of catalysts, and provide models to understand the chemistry taking place in non-heme iron and manganese-dependent oxygenases.
Summary
The selective functionalization of C-H and C=C bonds remains a formidable unsolved problem, owing to their inert nature. Novel alkane and alkene oxidation reactions exhibiting good and/or unprecedented selectivities will have a big impact on bulk and fine chemistry by opening novel methodologies that will allow removal of protection-deprotection sequences, thus streamlining synthetic strategies. These goals are targeted in this project via design of iron and manganese catalysts inspired by structural elements of the active site of non-heme enzymes of the Rieske Dioxygenase family. Selectivity is pursued via rational design of catalysts that will exploit substrate recognition-exclusion phenomena, and control over proton and electron affinity of the active species. Moreover, these catalysts will employ H2O2 as oxidant, and will operate under mild conditions (pressure and temperature). The fundamental mechanistic aspects of the catalytic reactions, and the species implicated in C-H and C=C oxidation events will also be studied with the aim of building on the necessary knowledge to design future generations of catalysts, and provide models to understand the chemistry taking place in non-heme iron and manganese-dependent oxygenases.
Max ERC Funding
1 299 998 €
Duration
Start date: 2009-11-01, End date: 2015-10-31
Project acronym BIGSEA
Project Biogeochemical and ecosystem interactions with socio-economic activity in the global ocean
Researcher (PI) Eric Douglas Galbraith
Host Institution (HI) UNIVERSITAT AUTONOMA DE BARCELONA
Call Details Consolidator Grant (CoG), PE10, ERC-2015-CoG
Summary The global marine ecosystem is being deeply altered by human activity. On the one hand, rising concentrations of atmospheric greenhouse gases are changing the physical and chemical state of the ocean, exerting pressure from the bottom up. Meanwhile, the global fishery has provided large economic benefits, but in so doing has restructured ecosystems by removing most of the large animal biomass, a major top-down change. Although there has been a tremendous amount of research into isolated aspects of these impacts, the development of a holistic understanding of the full interactions between physics, chemistry, ecology and economic activity might appear impossible, given the myriad complexities. This proposal lays out a strategy to assemble a team of trans-disciplinary expertise, that will develop a unified, data-constrained, grid-based modeling framework to represent the most important interactions of the global human-ocean system. Building this framework requires solving a series of fundamental problems that currently hinder the development of the full model. If these problems can be solved, the resulting model will reveal novel emergent properties and open the doors to a range of previously unexplored questions of high impact across a range of disciplines. Key questions include the ways in which animals interact with oxygen minimum zones with implications for fisheries, the impacts fish harvesting may have on nutrient recycling, spatio-temporal interactions between managed and unmanaged fisheries, and fundamental questions about the relationships between fish price, fishing cost, and multiple markets in a changing world. Just as the first coupled ocean-atmosphere models revealed a wealth of new behaviours, the coupled human-ocean model proposed here has the potential to launch multiple new fields of enquiry. It is hoped that the novel approach will contribute to a paradigm shift that treats human activity as one component within the framework of the Earth System.
Summary
The global marine ecosystem is being deeply altered by human activity. On the one hand, rising concentrations of atmospheric greenhouse gases are changing the physical and chemical state of the ocean, exerting pressure from the bottom up. Meanwhile, the global fishery has provided large economic benefits, but in so doing has restructured ecosystems by removing most of the large animal biomass, a major top-down change. Although there has been a tremendous amount of research into isolated aspects of these impacts, the development of a holistic understanding of the full interactions between physics, chemistry, ecology and economic activity might appear impossible, given the myriad complexities. This proposal lays out a strategy to assemble a team of trans-disciplinary expertise, that will develop a unified, data-constrained, grid-based modeling framework to represent the most important interactions of the global human-ocean system. Building this framework requires solving a series of fundamental problems that currently hinder the development of the full model. If these problems can be solved, the resulting model will reveal novel emergent properties and open the doors to a range of previously unexplored questions of high impact across a range of disciplines. Key questions include the ways in which animals interact with oxygen minimum zones with implications for fisheries, the impacts fish harvesting may have on nutrient recycling, spatio-temporal interactions between managed and unmanaged fisheries, and fundamental questions about the relationships between fish price, fishing cost, and multiple markets in a changing world. Just as the first coupled ocean-atmosphere models revealed a wealth of new behaviours, the coupled human-ocean model proposed here has the potential to launch multiple new fields of enquiry. It is hoped that the novel approach will contribute to a paradigm shift that treats human activity as one component within the framework of the Earth System.
Max ERC Funding
1 600 000 €
Duration
Start date: 2016-07-01, End date: 2021-06-30
Project acronym BIO2CHEM-D
Project Biomass to chemicals: Catalysis design from first principles for a sustainable chemical industry
Researcher (PI) Nuria Lopez
Host Institution (HI) FUNDACIO PRIVADA INSTITUT CATALA D'INVESTIGACIO QUIMICA
Call Details Starting Grant (StG), PE4, ERC-2010-StG_20091028
Summary The use of renewable feedstocks by the chemical industry is fundamental due to both the depletion of fossil
resources and the increasing pressure of environmental concerns. Biomass can act as a sustainable source of
organic industrial chemicals; however, the establishment of a renewable chemical industry that is
economically competitive with the present oil-based one requires the development of new processes to
convert biomass-derived compounds into useful industrial materials following the principles of green
chemistry. To achieve these goals, developments in several fields including heterogeneous catalysis are
needed. One of the ways to accelerate the discovery of new potentially active, selective and stable catalysts is
the massive use of computational chemistry. Recent advances have demonstrated that Density Functional
Theory coupled to ab initio thermodynamics, transition state theory and microkinetic analysis can provide a
full view of the catalytic phenomena.
The aim of the present project is thus to employ these well-tested computational techniques to the
development of a theoretical framework that can accelerate the identification of new catalysts for the
conversion of biomass derived target compounds into useful chemicals. Since compared to petroleum-based
materials-biomass derived ones are multifuncionalized, the search for new catalytic materials and processes
has a strong requirement in the selectivity of the chemical transformations. The main challenges in the
project are related to the high functionalization of the molecules, their liquid nature and the large number of
potentially competitive reaction paths. The requirements of specificity and selectivity in the chemical
transformations while keeping a reasonably flexible framework constitute a major objective. The work will
be divided in three main work packages, one devoted to the properties of small molecules or fragments
containing a single functional group; the second addresses competition in multiple functionalized molecules;
and third is dedicated to the specific transformations of two molecules that have already been identified as
potential platform generators. The goal is to identify suitable candidates that could be synthetized and tested
in the Institute facilities.
Summary
The use of renewable feedstocks by the chemical industry is fundamental due to both the depletion of fossil
resources and the increasing pressure of environmental concerns. Biomass can act as a sustainable source of
organic industrial chemicals; however, the establishment of a renewable chemical industry that is
economically competitive with the present oil-based one requires the development of new processes to
convert biomass-derived compounds into useful industrial materials following the principles of green
chemistry. To achieve these goals, developments in several fields including heterogeneous catalysis are
needed. One of the ways to accelerate the discovery of new potentially active, selective and stable catalysts is
the massive use of computational chemistry. Recent advances have demonstrated that Density Functional
Theory coupled to ab initio thermodynamics, transition state theory and microkinetic analysis can provide a
full view of the catalytic phenomena.
The aim of the present project is thus to employ these well-tested computational techniques to the
development of a theoretical framework that can accelerate the identification of new catalysts for the
conversion of biomass derived target compounds into useful chemicals. Since compared to petroleum-based
materials-biomass derived ones are multifuncionalized, the search for new catalytic materials and processes
has a strong requirement in the selectivity of the chemical transformations. The main challenges in the
project are related to the high functionalization of the molecules, their liquid nature and the large number of
potentially competitive reaction paths. The requirements of specificity and selectivity in the chemical
transformations while keeping a reasonably flexible framework constitute a major objective. The work will
be divided in three main work packages, one devoted to the properties of small molecules or fragments
containing a single functional group; the second addresses competition in multiple functionalized molecules;
and third is dedicated to the specific transformations of two molecules that have already been identified as
potential platform generators. The goal is to identify suitable candidates that could be synthetized and tested
in the Institute facilities.
Max ERC Funding
1 496 200 €
Duration
Start date: 2010-10-01, End date: 2015-09-30
Project acronym BioInspired_SolarH2
Project Engineering Bio-Inspired Systems for the Conversion of Solar Energy to Hydrogen
Researcher (PI) Elisabet ROMERO MESA
Host Institution (HI) FUNDACIO PRIVADA INSTITUT CATALA D'INVESTIGACIO QUIMICA
Call Details Starting Grant (StG), PE3, ERC-2018-STG
Summary With this proposal, I aim to achieve the efficient conversion of solar energy to hydrogen. The overall objective is to engineer bio-inspired systems able to convert solar energy into a separation of charges and to construct devices by coupling these systems to catalysts in order to drive sustainable and effective water oxidation and hydrogen production.
The global energy crisis requires an urgent solution, we must replace fossil fuels for a renewable energy source: Solar energy. However, the efficient and inexpensive conversion and storage of solar energy into fuel remains a fundamental challenge. Currently, solar-energy conversion devices suffer from energy losses mainly caused by disorder in the materials used. The solution to this problem is to learn from nature. In photosynthesis, the photosystem II reaction centre (PSII RC) is a pigment-protein complex able to overcome disorder and convert solar photons into a separation of charges with near 100% efficiency. Crucially, the generated charges have enough potential to drive water oxidation and hydrogen production.
Previously, I have investigated the charge separation process in the PSII RC by a collection of spectroscopic techniques, which allowed me to formulate the design principles of photosynthetic charge separation, where coherence plays a crucial role. Here I will put these knowledge into action to design efficient and robust chromophore-protein assemblies for the collection and conversion of solar energy, employ organic chemistry and synthetic biology tools to construct these well defined and fully controllable assemblies, and apply a complete set of spectroscopic methods to investigate these engineered systems.
Following the approach Understand, Engineer, Implement, I will create a new generation of bio-inspired devices based on abundant and biodegradable materials that will drive the transformation of solar energy and water into hydrogen, an energy-rich molecule that can be stored and transported.
Summary
With this proposal, I aim to achieve the efficient conversion of solar energy to hydrogen. The overall objective is to engineer bio-inspired systems able to convert solar energy into a separation of charges and to construct devices by coupling these systems to catalysts in order to drive sustainable and effective water oxidation and hydrogen production.
The global energy crisis requires an urgent solution, we must replace fossil fuels for a renewable energy source: Solar energy. However, the efficient and inexpensive conversion and storage of solar energy into fuel remains a fundamental challenge. Currently, solar-energy conversion devices suffer from energy losses mainly caused by disorder in the materials used. The solution to this problem is to learn from nature. In photosynthesis, the photosystem II reaction centre (PSII RC) is a pigment-protein complex able to overcome disorder and convert solar photons into a separation of charges with near 100% efficiency. Crucially, the generated charges have enough potential to drive water oxidation and hydrogen production.
Previously, I have investigated the charge separation process in the PSII RC by a collection of spectroscopic techniques, which allowed me to formulate the design principles of photosynthetic charge separation, where coherence plays a crucial role. Here I will put these knowledge into action to design efficient and robust chromophore-protein assemblies for the collection and conversion of solar energy, employ organic chemistry and synthetic biology tools to construct these well defined and fully controllable assemblies, and apply a complete set of spectroscopic methods to investigate these engineered systems.
Following the approach Understand, Engineer, Implement, I will create a new generation of bio-inspired devices based on abundant and biodegradable materials that will drive the transformation of solar energy and water into hydrogen, an energy-rich molecule that can be stored and transported.
Max ERC Funding
1 500 000 €
Duration
Start date: 2019-04-01, End date: 2024-03-31
Project acronym BIOUNCERTAINTY
Project Deep uncertainties in bioethics: genetic research, preventive medicine, reproductive decisions
Researcher (PI) Tomasz ZURADZKI
Host Institution (HI) UNIWERSYTET JAGIELLONSKI
Call Details Starting Grant (StG), SH5, ERC-2018-STG
Summary Uncertainty is everywhere, as the saying goes, but rarely considered in ethical reflections. This project aims to reinterpret ethical discussions on current advances in biomedicine: instead of understanding bioethical positions as extensions of classical normative views in ethics (consequentialism, deontologism, contractualism etc.), my project interprets them more accurately as involving various normative approaches to decision making under uncertainty. The following hard cases in bioethics provide the motivation for research:
1) Regulating scientific research under uncertainty about the ontological/moral status (e.g. parthenogenetic stem cells derived from human parthenotes) in the context of meta-reasoning under normative uncertainty.
2) The value of preventive medicine in healthcare (e.g. vaccinations) in the context of decision-making under metaphysical indeterminacy.
3) Population or reproductive decisions (e.g. preimplantation genetic diagnosis) in the context of valuing mere existence.
The main drive behind this project is the rapid progress in biomedical research combined with new kinds of uncertainties. These new and “deep” uncertainties trigger specific forms of emotions and cognitions that influence normative judgments and decisions. The main research questions that will be addressed by conceptual analysis, new psychological experiments, and case studies are the following: how do the heuristics and biases (H&B) documented by behavioral scientists influence the formation of normative judgments in bioethical contexts; how to demarcate between distorted and undistorted value judgments; to what extent is it permissible for individuals or policy makers to yield to H&B. The hypothesis is that many existing bioethical rules, regulations, practices seem to have emerged from unreliable reactions, rather than by means of deliberation on the possible justifications for alternative ways to decide about them under several layers and types of uncertainty.
Summary
Uncertainty is everywhere, as the saying goes, but rarely considered in ethical reflections. This project aims to reinterpret ethical discussions on current advances in biomedicine: instead of understanding bioethical positions as extensions of classical normative views in ethics (consequentialism, deontologism, contractualism etc.), my project interprets them more accurately as involving various normative approaches to decision making under uncertainty. The following hard cases in bioethics provide the motivation for research:
1) Regulating scientific research under uncertainty about the ontological/moral status (e.g. parthenogenetic stem cells derived from human parthenotes) in the context of meta-reasoning under normative uncertainty.
2) The value of preventive medicine in healthcare (e.g. vaccinations) in the context of decision-making under metaphysical indeterminacy.
3) Population or reproductive decisions (e.g. preimplantation genetic diagnosis) in the context of valuing mere existence.
The main drive behind this project is the rapid progress in biomedical research combined with new kinds of uncertainties. These new and “deep” uncertainties trigger specific forms of emotions and cognitions that influence normative judgments and decisions. The main research questions that will be addressed by conceptual analysis, new psychological experiments, and case studies are the following: how do the heuristics and biases (H&B) documented by behavioral scientists influence the formation of normative judgments in bioethical contexts; how to demarcate between distorted and undistorted value judgments; to what extent is it permissible for individuals or policy makers to yield to H&B. The hypothesis is that many existing bioethical rules, regulations, practices seem to have emerged from unreliable reactions, rather than by means of deliberation on the possible justifications for alternative ways to decide about them under several layers and types of uncertainty.
Max ERC Funding
1 499 625 €
Duration
Start date: 2019-02-01, End date: 2024-01-31
Project acronym BLAST
Project Eclipsing binary stars as cutting edge laboratories for astrophysics of stellar
structure, stellar evolution and planet formation
Researcher (PI) Maciej Konacki
Host Institution (HI) CENTRUM ASTRONOMICZNE IM. MIKOLAJAKOPERNIKA POLSKIEJ AKADEMII NAUK
Call Details Starting Grant (StG), PE9, ERC-2010-StG_20091028
Summary Spectroscopic binary stars (SB2s) and in particular spectroscopic eclipsing binaries are one of the most useful objects in astrophysics. Their photometric and spectroscopic observations allow one to determine basic parameters of stars and carry out a wide range of tests of stellar structure, evolution and dynamics. Perhaps somewhat surprisingly, they can also contribute to our understanding of the formation and evolution of (extrasolar) planets. We will study eclipsing binary stars by combining the classic - stellar astronomy - and the modern - extrasolar planets - subjects into a cutting edge project.
We propose to search for and subsequently characterize circumbinary planets around ~350 eclipsing SB2s using our own novel cutting edge radial velocity technique for binary stars and a modern version of the photometry based eclipse timing of eclipsing binary stars employing 0.5-m robotic telescopes. We will also derive basic parameters of up to ~700 stars (~350 binaries) with an unprecedented precision. In particular for about 50% of our sample we expect to deliver masses of the components with an accuracy ~10-100 times better than the current state of the art.
Our project will provide unique constraints for the theories of planet formation and evolution and an unprecedented in quality set of the basic parameters of stars to test the theories of the stellar structure and evolution.
Summary
Spectroscopic binary stars (SB2s) and in particular spectroscopic eclipsing binaries are one of the most useful objects in astrophysics. Their photometric and spectroscopic observations allow one to determine basic parameters of stars and carry out a wide range of tests of stellar structure, evolution and dynamics. Perhaps somewhat surprisingly, they can also contribute to our understanding of the formation and evolution of (extrasolar) planets. We will study eclipsing binary stars by combining the classic - stellar astronomy - and the modern - extrasolar planets - subjects into a cutting edge project.
We propose to search for and subsequently characterize circumbinary planets around ~350 eclipsing SB2s using our own novel cutting edge radial velocity technique for binary stars and a modern version of the photometry based eclipse timing of eclipsing binary stars employing 0.5-m robotic telescopes. We will also derive basic parameters of up to ~700 stars (~350 binaries) with an unprecedented precision. In particular for about 50% of our sample we expect to deliver masses of the components with an accuracy ~10-100 times better than the current state of the art.
Our project will provide unique constraints for the theories of planet formation and evolution and an unprecedented in quality set of the basic parameters of stars to test the theories of the stellar structure and evolution.
Max ERC Funding
1 500 000 €
Duration
Start date: 2010-12-01, End date: 2016-11-30
Project acronym BSD
Project Euler systems and the conjectures of Birch and Swinnerton-Dyer, Bloch and Kato
Researcher (PI) Victor Rotger cerdà
Host Institution (HI) UNIVERSITAT POLITECNICA DE CATALUNYA
Call Details Consolidator Grant (CoG), PE1, ERC-2015-CoG
Summary In order to celebrate mathematics in the new millennium, the Clay Mathematics Institute established seven $1.000.000 Prize Problems. One of these is the conjecture of Birch and Swinnerton-Dyer (BSD), widely open since the 1960's. The main object of this proposal is developing innovative and unconventional strategies for proving groundbreaking results towards the resolution of this problem and their generalizations by Bloch and Kato (BK).
Breakthroughs on BSD were achieved by Coates-Wiles, Gross, Zagier and Kolyvagin, and Kato. Since then, there have been nearly no new ideas on how to tackle BSD. Only very recently, three independent revolutionary approaches have seen the light: the works of (1) the Fields medalist Bhargava, (2) Skinner and Urban, and (3) myself and my collaborators. In spite of that, our knowledge of BSD is rather poor. In my proposal I suggest innovating strategies for approaching new horizons in BSD and BK that I aim to develop with the team of PhD and postdoctoral researchers that the CoG may allow me to consolidate. The results I plan to prove represent a departure from the achievements obtained with my coauthors during the past years:
I. BSD over totally real number fields. I plan to prove new ground-breaking instances of BSD in rank 0 for elliptic curves over totally real number fields, generalizing the theorem of Kato (by providing a new proof) and covering many new scenarios that have never been considered before.
II. BSD in rank r=2. Most of the literature on BSD applies when r=0 or 1. I expect to prove p-adic versions of the theorems of Gross-Zagier and Kolyvagin in rank 2.
III. Darmon's 2000 conjecture on Stark-Heegner points. I plan to prove Darmon’s striking conjecture announced at the ICM2000 by recasting it in terms of special values of p-adic L-functions.
Summary
In order to celebrate mathematics in the new millennium, the Clay Mathematics Institute established seven $1.000.000 Prize Problems. One of these is the conjecture of Birch and Swinnerton-Dyer (BSD), widely open since the 1960's. The main object of this proposal is developing innovative and unconventional strategies for proving groundbreaking results towards the resolution of this problem and their generalizations by Bloch and Kato (BK).
Breakthroughs on BSD were achieved by Coates-Wiles, Gross, Zagier and Kolyvagin, and Kato. Since then, there have been nearly no new ideas on how to tackle BSD. Only very recently, three independent revolutionary approaches have seen the light: the works of (1) the Fields medalist Bhargava, (2) Skinner and Urban, and (3) myself and my collaborators. In spite of that, our knowledge of BSD is rather poor. In my proposal I suggest innovating strategies for approaching new horizons in BSD and BK that I aim to develop with the team of PhD and postdoctoral researchers that the CoG may allow me to consolidate. The results I plan to prove represent a departure from the achievements obtained with my coauthors during the past years:
I. BSD over totally real number fields. I plan to prove new ground-breaking instances of BSD in rank 0 for elliptic curves over totally real number fields, generalizing the theorem of Kato (by providing a new proof) and covering many new scenarios that have never been considered before.
II. BSD in rank r=2. Most of the literature on BSD applies when r=0 or 1. I expect to prove p-adic versions of the theorems of Gross-Zagier and Kolyvagin in rank 2.
III. Darmon's 2000 conjecture on Stark-Heegner points. I plan to prove Darmon’s striking conjecture announced at the ICM2000 by recasting it in terms of special values of p-adic L-functions.
Max ERC Funding
1 428 588 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym BSMFLEET
Project Challenging the Standard Model using an extended Physics program in LHCb
Researcher (PI) Diego Martinez Santos
Host Institution (HI) UNIVERSIDAD DE SANTIAGO DE COMPOSTELA
Call Details Starting Grant (StG), PE2, ERC-2014-STG
Summary We know that the Standard Model (SM) of Particle Physics is not the ultimate theory of Nature. It misses a quantum description of gravity, it does not offer any explanation to the composition of Dark Matter, and the matter-antimatter unbalance of the Universe is predicted to be significantly smaller than what we actually see. Those are fundamental questions that still need an answer. Alternative models to SM exist, based on ideas such as SuperSymmetry or extra dimensions, and are currently being tested at the Large Hadron Collider (LHC) at CERN. But after the first run of the LHC the SM is yet unbeaten at accelerators, which imposes severe constraints in Physics beyond the SM (BSM). From this point, I see two further working directions: on one side, we must increase our precision in the previous measurements in order to access smaller BSM effects. On the other hand; we should attack the SM with a new fleet of observables sensitive to different BSM scenarios, and make sure that we are making full use of what the LHC offers to us. I propose to create a team at Universidade de Santiago de Compostela that will expand the use of LHCb beyond its original design, while also reinforcing the core LHCb analyses in which I played a leading role so far. LHCb has up to now collected world-leading samples of decays of b and c quarks. My proposal implies to use LHCb for collecting and analysing also world-leading samples of rare s quarks complementary to those of NA62. In the rare s decays the SM sources of Flavour Violation have a stronger suppression than anywhere else, and therefore those decays are excellent places to search for new Flavour Violating sources that otherwise would be hidden behind the SM contributions. It is very important to do this now, since we may not have a similar opportunity in years. In addition, the team will also exploit LHCb to search for μμ resonances predicted in models like NMSSM, and for which LHCb also offers a unique potential that must be used.
Summary
We know that the Standard Model (SM) of Particle Physics is not the ultimate theory of Nature. It misses a quantum description of gravity, it does not offer any explanation to the composition of Dark Matter, and the matter-antimatter unbalance of the Universe is predicted to be significantly smaller than what we actually see. Those are fundamental questions that still need an answer. Alternative models to SM exist, based on ideas such as SuperSymmetry or extra dimensions, and are currently being tested at the Large Hadron Collider (LHC) at CERN. But after the first run of the LHC the SM is yet unbeaten at accelerators, which imposes severe constraints in Physics beyond the SM (BSM). From this point, I see two further working directions: on one side, we must increase our precision in the previous measurements in order to access smaller BSM effects. On the other hand; we should attack the SM with a new fleet of observables sensitive to different BSM scenarios, and make sure that we are making full use of what the LHC offers to us. I propose to create a team at Universidade de Santiago de Compostela that will expand the use of LHCb beyond its original design, while also reinforcing the core LHCb analyses in which I played a leading role so far. LHCb has up to now collected world-leading samples of decays of b and c quarks. My proposal implies to use LHCb for collecting and analysing also world-leading samples of rare s quarks complementary to those of NA62. In the rare s decays the SM sources of Flavour Violation have a stronger suppression than anywhere else, and therefore those decays are excellent places to search for new Flavour Violating sources that otherwise would be hidden behind the SM contributions. It is very important to do this now, since we may not have a similar opportunity in years. In addition, the team will also exploit LHCb to search for μμ resonances predicted in models like NMSSM, and for which LHCb also offers a unique potential that must be used.
Max ERC Funding
1 499 855 €
Duration
Start date: 2015-04-01, End date: 2020-03-31
Project acronym CADENCE
Project Catalytic Dual-Function Devices Against Cancer
Researcher (PI) Jesus Santamaria
Host Institution (HI) UNIVERSIDAD DE ZARAGOZA
Call Details Advanced Grant (AdG), PE8, ERC-2016-ADG
Summary Despite intense research efforts in almost every branch of the natural sciences, cancer continues to be one of the leading causes of death worldwide. It is thus remarkable that little or no therapeutic use has been made of a whole discipline, heterogeneous catalysis, which is noted for its specificity and for enabling chemical reactions in otherwise passive environments. At least in part, this could be attributed to practical difficulties: the selective delivery of a catalyst to a tumour and the remote activation of its catalytic function only after it has reached its target are highly challenging objectives. Only recently, the necessary tools to overcome these problems seem within reach.
CADENCE aims for a breakthrough in cancer therapy by developing a new therapeutic concept. The central hypothesis is that a growing tumour can be treated as a special type of reactor in which reaction conditions can be tailored to achieve two objectives: i) molecules essential to tumour growth are locally depleted and ii) toxic, short-lived products are generated in situ.
To implement this novel approach we will make use of core concepts of reactor engineering (kinetics, heat and mass transfer, catalyst design), as well as of ideas borrowed from other areas, mainly those of bio-orthogonal chemistry and controlled drug delivery. We will explore two different strategies (classical EPR effect and stem cells as Trojan Horses) to deliver optimized catalysts to the tumour. Once the catalysts have reached the tumour they will be remotely activated using near-infrared (NIR) light, that affords the highest penetration into body tissues.
This is an ambitious project, addressing all the key steps from catalyst design to in vivo studies. Given the novel perspective provided by CADENCE, even partial success in any of the approaches to be tested would have a significant impact on the therapeutic toolbox available to treat cancer.
Summary
Despite intense research efforts in almost every branch of the natural sciences, cancer continues to be one of the leading causes of death worldwide. It is thus remarkable that little or no therapeutic use has been made of a whole discipline, heterogeneous catalysis, which is noted for its specificity and for enabling chemical reactions in otherwise passive environments. At least in part, this could be attributed to practical difficulties: the selective delivery of a catalyst to a tumour and the remote activation of its catalytic function only after it has reached its target are highly challenging objectives. Only recently, the necessary tools to overcome these problems seem within reach.
CADENCE aims for a breakthrough in cancer therapy by developing a new therapeutic concept. The central hypothesis is that a growing tumour can be treated as a special type of reactor in which reaction conditions can be tailored to achieve two objectives: i) molecules essential to tumour growth are locally depleted and ii) toxic, short-lived products are generated in situ.
To implement this novel approach we will make use of core concepts of reactor engineering (kinetics, heat and mass transfer, catalyst design), as well as of ideas borrowed from other areas, mainly those of bio-orthogonal chemistry and controlled drug delivery. We will explore two different strategies (classical EPR effect and stem cells as Trojan Horses) to deliver optimized catalysts to the tumour. Once the catalysts have reached the tumour they will be remotely activated using near-infrared (NIR) light, that affords the highest penetration into body tissues.
This is an ambitious project, addressing all the key steps from catalyst design to in vivo studies. Given the novel perspective provided by CADENCE, even partial success in any of the approaches to be tested would have a significant impact on the therapeutic toolbox available to treat cancer.
Max ERC Funding
2 483 136 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym CAMAP
Project CAMAP: Computer Aided Modeling for Astrophysical Plasmas
Researcher (PI) Miguel-Ángel Aloy-Torás
Host Institution (HI) UNIVERSITAT DE VALENCIA
Call Details Starting Grant (StG), PE9, ERC-2010-StG_20091028
Summary This project will be aimed at obtaining a deeper insight into the physical processes taking place in astrophysical magnetized plasmas. To study these scenarios I will employ different numerical codes as virtual tools that enable me to experiment on computers (virtual labs) with distinct initial and boundary conditions. Among the kind of sources I am interested to consider, I outline the following: Gamma-Ray Bursts (GRBs), extragalactic jets from Active Galactic Nuclei (AGN), magnetars and collapsing stellar cores. A number of important questions are still open regarding the fundamental properties of these astrophysical sources (e.g., collimation, acceleration mechanism, composition, high-energy emission, gravitational wave signature). Additionally, there are analytical issues on the formalism in relativistic dynamics not resolved yet, e.g., the covariant extension of resistive magnetohydrodynamics (MHD). All these problems are so complex that only a computational approach is feasible. I plan to study them by means of relativistic and Newtonian MHD numerical simulations. A principal focus of the project will be to assess the relevance of magnetic fields in the generation, collimation and ulterior propagation of relativistic jets from the GRB progenitors and from AGNs. More generally, I will pursue the goal of understanding the process of amplification of seed magnetic fields until they become dynamically relevant, e.g., using semi-global and local simulations of representative boxes of collapsed stellar cores. A big emphasis will be put on including all the relevant microphysics (e.g. neutrino physics), non-ideal effects (particularly, reconnection physics) and energy transport due to neutrinos and photons to account for the relevant processes in the former systems. A milestone of this project will be to end up with a numerical tool that enables us to deal with General Relativistic Radiation Magnetohydrodynamics problems in Astrophysics.
Summary
This project will be aimed at obtaining a deeper insight into the physical processes taking place in astrophysical magnetized plasmas. To study these scenarios I will employ different numerical codes as virtual tools that enable me to experiment on computers (virtual labs) with distinct initial and boundary conditions. Among the kind of sources I am interested to consider, I outline the following: Gamma-Ray Bursts (GRBs), extragalactic jets from Active Galactic Nuclei (AGN), magnetars and collapsing stellar cores. A number of important questions are still open regarding the fundamental properties of these astrophysical sources (e.g., collimation, acceleration mechanism, composition, high-energy emission, gravitational wave signature). Additionally, there are analytical issues on the formalism in relativistic dynamics not resolved yet, e.g., the covariant extension of resistive magnetohydrodynamics (MHD). All these problems are so complex that only a computational approach is feasible. I plan to study them by means of relativistic and Newtonian MHD numerical simulations. A principal focus of the project will be to assess the relevance of magnetic fields in the generation, collimation and ulterior propagation of relativistic jets from the GRB progenitors and from AGNs. More generally, I will pursue the goal of understanding the process of amplification of seed magnetic fields until they become dynamically relevant, e.g., using semi-global and local simulations of representative boxes of collapsed stellar cores. A big emphasis will be put on including all the relevant microphysics (e.g. neutrino physics), non-ideal effects (particularly, reconnection physics) and energy transport due to neutrinos and photons to account for the relevant processes in the former systems. A milestone of this project will be to end up with a numerical tool that enables us to deal with General Relativistic Radiation Magnetohydrodynamics problems in Astrophysics.
Max ERC Funding
1 497 000 €
Duration
Start date: 2011-03-01, End date: 2017-02-28
Project acronym CAMBAT
Project Calcium and magnesium metal anode based batteries
Researcher (PI) Alexandre PONROUCH
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Starting Grant (StG), PE8, ERC-2016-STG
Summary Li-ion battery is ubiquitous and has emerged as the major contender to power electric vehicles, yet Li-ion is slowly but surely reaching its limits and controversial debates on lithium supply cannot be ignored. New sustainable battery chemistries must be developed and the most appealing alternatives are to use Ca or Mg metal anodes which would bring a breakthrough in terms of energy density relying on much more abundant elements. Since Mg and Ca do not appear to be plagued by dendrite formation like Li, metal anodes could thus safely be used. While standard electrolytes forming stable passivation layers at the electrode/electrolyte interfaces enabled the success of the Li-ion technology, the migration of divalent cations through a passivation layer was thought to be impossible. Thus, all research efforts to date have been devoted to the formulation of electrolytes that do not form such layer. This approach comes with complex electrolyte, highly corrosive and with narrow electrochemical stability window leading to incompatibility with high voltage cathodes thus penalizing energy density.
The applicant demonstrated that calcium can be reversibly plated and stripped through a stable passivation layer when transport properties within the electrolyte are tuned (decreasing ion pair formation). CAMBAT aims at developing new electrolytes forming stable passivation layers and allowing the migration of Ca2+ and Mg2+. Such a dramatic shift in the methodology would allow considering a completely new family of electrolytes enabling the evaluation of high voltage cathode materials that cannot be tested in the electrolytes available nowadays. 1Ah prototype cells will be assembled as proof of concept, targets for energy density and cost being ca. 300 Wh/kg and 250 $/kWh, respectively, thus doubling the energy density while dividing by at least a factor of 2 the price when compared to state of the art Li-ion batteries and having the potential for being SAFER (absence of dendrite).
Summary
Li-ion battery is ubiquitous and has emerged as the major contender to power electric vehicles, yet Li-ion is slowly but surely reaching its limits and controversial debates on lithium supply cannot be ignored. New sustainable battery chemistries must be developed and the most appealing alternatives are to use Ca or Mg metal anodes which would bring a breakthrough in terms of energy density relying on much more abundant elements. Since Mg and Ca do not appear to be plagued by dendrite formation like Li, metal anodes could thus safely be used. While standard electrolytes forming stable passivation layers at the electrode/electrolyte interfaces enabled the success of the Li-ion technology, the migration of divalent cations through a passivation layer was thought to be impossible. Thus, all research efforts to date have been devoted to the formulation of electrolytes that do not form such layer. This approach comes with complex electrolyte, highly corrosive and with narrow electrochemical stability window leading to incompatibility with high voltage cathodes thus penalizing energy density.
The applicant demonstrated that calcium can be reversibly plated and stripped through a stable passivation layer when transport properties within the electrolyte are tuned (decreasing ion pair formation). CAMBAT aims at developing new electrolytes forming stable passivation layers and allowing the migration of Ca2+ and Mg2+. Such a dramatic shift in the methodology would allow considering a completely new family of electrolytes enabling the evaluation of high voltage cathode materials that cannot be tested in the electrolytes available nowadays. 1Ah prototype cells will be assembled as proof of concept, targets for energy density and cost being ca. 300 Wh/kg and 250 $/kWh, respectively, thus doubling the energy density while dividing by at least a factor of 2 the price when compared to state of the art Li-ion batteries and having the potential for being SAFER (absence of dendrite).
Max ERC Funding
1 688 705 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym CARBONLIGHT
Project Tunable light tightly bound to a single sheet of carbon atoms:
graphene as a novel platform for nano-optoelectronics
Researcher (PI) Frank Henricus Louis Koppens
Host Institution (HI) FUNDACIO INSTITUT DE CIENCIES FOTONIQUES
Call Details Starting Grant (StG), PE3, ERC-2012-StG_20111012
Summary Graphene, a one-atom-thick layer of carbon, has attracted enormous attention in diverse areas of applied and fundamental physics. Due to its unique crystal structure, charge carriers have an effective mass of zero and a very high mobility, even at room temperature. While graphene-based devices have an enormous potential for high-speed electronics, graphene has recently been recognized as a photonic material for novel optoelectronic applications.
Interestingly, graphene is also a promising host material for light that is confined to nanoscale dimensions, more than 100 times below the diffraction limit. Due to its ultra-small thickness and extremely high purity, graphene can support strongly confined propagating light fields coupled to the charge carriers in the material: surface plasmons. The properties of these plasmons are controllable by electrostatic gates, holding promise for in-situ tunability of light-matter interactions at a length scale far below the wavelength.
This project will experimentally investigate the new and virtually unexplored field of graphene surface plasmonics, and combine this with other appealing properties of graphene to demonstrate the unique potential of carbon-based nano-optoelectronics. The aim is to explore the limits of unprecedented light concentration, manipulation and detection at the nanoscale, to dramatically intensify nonlinear interactions between photons towards the quantum regime, and to reveal the subtle effects of cavity quantum electrodynamics on graphene-emitter systems. This research will reveal the far-reaching potential of a single sheet of carbon atoms as a host for light and electrons at the nanoscale, with prospects for novel nanoscale optical circuits and detectors, nano-optomechanical systems and tunable artificial quantum emitters.
Summary
Graphene, a one-atom-thick layer of carbon, has attracted enormous attention in diverse areas of applied and fundamental physics. Due to its unique crystal structure, charge carriers have an effective mass of zero and a very high mobility, even at room temperature. While graphene-based devices have an enormous potential for high-speed electronics, graphene has recently been recognized as a photonic material for novel optoelectronic applications.
Interestingly, graphene is also a promising host material for light that is confined to nanoscale dimensions, more than 100 times below the diffraction limit. Due to its ultra-small thickness and extremely high purity, graphene can support strongly confined propagating light fields coupled to the charge carriers in the material: surface plasmons. The properties of these plasmons are controllable by electrostatic gates, holding promise for in-situ tunability of light-matter interactions at a length scale far below the wavelength.
This project will experimentally investigate the new and virtually unexplored field of graphene surface plasmonics, and combine this with other appealing properties of graphene to demonstrate the unique potential of carbon-based nano-optoelectronics. The aim is to explore the limits of unprecedented light concentration, manipulation and detection at the nanoscale, to dramatically intensify nonlinear interactions between photons towards the quantum regime, and to reveal the subtle effects of cavity quantum electrodynamics on graphene-emitter systems. This research will reveal the far-reaching potential of a single sheet of carbon atoms as a host for light and electrons at the nanoscale, with prospects for novel nanoscale optical circuits and detectors, nano-optomechanical systems and tunable artificial quantum emitters.
Max ERC Funding
1 466 000 €
Duration
Start date: 2012-11-01, End date: 2017-10-31
Project acronym CARBONNEMS
Project NanoElectroMechanical Systems based on Carbon Nanotube and Graphene
Researcher (PI) Adrian Bachtold
Host Institution (HI) FUNDACIO INSTITUT DE CIENCIES FOTONIQUES
Call Details Starting Grant (StG), PE3, ERC-2011-StG_20101014
Summary Carbon nanotubes and graphene form a class of nanoscale objects with exceptional electrical, mechanical and structural properties. I propose to exploit these unique properties to fabricate and study various nanoelectromechanical systems (NEMS) based on graphene and nanotubes. Specifically, I will address two directions with major scientific interests:
1- I propose to study electromechanical resonators based on an individual nanotube or on a single layer of graphene. My group has a leading position in this recent research field and the idea is to take advantage of our expertise for two sets of experiments, one on inertial mass sensing and one on the exploration of quantum motion. These two topics are generating at present an intense activity in the NEMS community. Experiments are usually carried out using microfabricated silicon resonators but the ultra low mass of nanotubes and graphene has here an enormous asset. It drastically improves the sensitivity of mass sensing and it dramatically enhances the amplitude of the motion in the quantum regime.
2- My team will fabricate and exploit nanomotors based on nanotube and graphene. Only few man-made nanomotors have been demonstrated so far. Reasons are multiple. For instance, the fabrication of nanomotors is technically challenging. In addition, friction forces are often so strong that they hinder motion. Because of their unique properties, nanotubes and graphene represent a material of choice for the development of new nanomotors. We will construct nanomotors with different layouts and address how electrical, thermal or chemical energy can be transformed into mechanical energy in order to drive motion at the nanoscale.
Summary
Carbon nanotubes and graphene form a class of nanoscale objects with exceptional electrical, mechanical and structural properties. I propose to exploit these unique properties to fabricate and study various nanoelectromechanical systems (NEMS) based on graphene and nanotubes. Specifically, I will address two directions with major scientific interests:
1- I propose to study electromechanical resonators based on an individual nanotube or on a single layer of graphene. My group has a leading position in this recent research field and the idea is to take advantage of our expertise for two sets of experiments, one on inertial mass sensing and one on the exploration of quantum motion. These two topics are generating at present an intense activity in the NEMS community. Experiments are usually carried out using microfabricated silicon resonators but the ultra low mass of nanotubes and graphene has here an enormous asset. It drastically improves the sensitivity of mass sensing and it dramatically enhances the amplitude of the motion in the quantum regime.
2- My team will fabricate and exploit nanomotors based on nanotube and graphene. Only few man-made nanomotors have been demonstrated so far. Reasons are multiple. For instance, the fabrication of nanomotors is technically challenging. In addition, friction forces are often so strong that they hinder motion. Because of their unique properties, nanotubes and graphene represent a material of choice for the development of new nanomotors. We will construct nanomotors with different layouts and address how electrical, thermal or chemical energy can be transformed into mechanical energy in order to drive motion at the nanoscale.
Max ERC Funding
1 996 789 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym CATA-LUX
Project Light-Driven Asymmetric Organocatalysis
Researcher (PI) Paolo Melchiorre
Host Institution (HI) FUNDACIO PRIVADA INSTITUT CATALA D'INVESTIGACIO QUIMICA
Call Details Consolidator Grant (CoG), PE5, ERC-2015-CoG
Summary Visible light photocatalysis and metal-free organocatalytic processes are powerful strategies of modern chemical research with extraordinary potential for the sustainable preparation of organic molecules. However, these environmentally respectful approaches have to date remained largely unrelated. The proposed research seeks to merge these fields of molecule activation to redefine their synthetic potential.
Light-driven processes considerably enrich the modern synthetic repertoire, offering a potent way to build complex organic frameworks. In contrast, it is extremely challenging to develop asymmetric catalytic photoreactions that can create chiral molecules with a well-defined three-dimensional arrangement. By developing innovative methodologies to effectively address this issue, I will provide a novel reactivity framework for conceiving light-driven enantioselective organocatalytic processes.
I will translate the effective tools governing the success of ground state asymmetric organocatalysis into the realm of photochemical reactivity, exploiting the potential of key organocatalytic intermediates to directly participate in the photoexcitation of substrates. At the same time, the chiral organocatalyst will ensure effective stereochemical control. This single catalyst system, where stereoinduction and photoactivation merge in a sole organocatalyst, will serve for developing novel enantioselective photoreactions. In a complementary dual catalytic approach, the synergistic activities of an organocatalyst and a metal-free photosensitiser will combine to realise asymmetric variants of venerable photochemical processes, which have never before succumbed to a stereocontrolled approach.
This proposal challenges the current perception that photochemistry is too unselective to parallel the impressive levels of efficiency reached by the asymmetric catalysis of thermal reactions, expanding the way chemists think about making chiral molecules
Summary
Visible light photocatalysis and metal-free organocatalytic processes are powerful strategies of modern chemical research with extraordinary potential for the sustainable preparation of organic molecules. However, these environmentally respectful approaches have to date remained largely unrelated. The proposed research seeks to merge these fields of molecule activation to redefine their synthetic potential.
Light-driven processes considerably enrich the modern synthetic repertoire, offering a potent way to build complex organic frameworks. In contrast, it is extremely challenging to develop asymmetric catalytic photoreactions that can create chiral molecules with a well-defined three-dimensional arrangement. By developing innovative methodologies to effectively address this issue, I will provide a novel reactivity framework for conceiving light-driven enantioselective organocatalytic processes.
I will translate the effective tools governing the success of ground state asymmetric organocatalysis into the realm of photochemical reactivity, exploiting the potential of key organocatalytic intermediates to directly participate in the photoexcitation of substrates. At the same time, the chiral organocatalyst will ensure effective stereochemical control. This single catalyst system, where stereoinduction and photoactivation merge in a sole organocatalyst, will serve for developing novel enantioselective photoreactions. In a complementary dual catalytic approach, the synergistic activities of an organocatalyst and a metal-free photosensitiser will combine to realise asymmetric variants of venerable photochemical processes, which have never before succumbed to a stereocontrolled approach.
This proposal challenges the current perception that photochemistry is too unselective to parallel the impressive levels of efficiency reached by the asymmetric catalysis of thermal reactions, expanding the way chemists think about making chiral molecules
Max ERC Funding
2 000 000 €
Duration
Start date: 2016-11-01, End date: 2021-10-31
Project acronym CATGOLD
Project ADVANCING GOLD CATALYSIS
Researcher (PI) Antonio María Echavarren Pablos
Host Institution (HI) FUNDACIO PRIVADA INSTITUT CATALA D'INVESTIGACIO QUIMICA
Call Details Advanced Grant (AdG), PE5, ERC-2012-ADG_20120216
Summary We plan to chase new goals by exploring the limits of gold chemistry and organic synthesis. A major goal is to promote copper to the level of gold as the catalyst of choice for the activation of alkynes under homogeneous conditions. Another major goal is to develop enantioselective reactions based on a new chiral catalyst design to overcome the inherent limitations of the linear coordination of d10 M(I) coinage metals. We whish to contribute to bridge the gap between homogeneous and heterogeneous gold catalysis discovering new reactions for C-C bond formation via cross-coupling and C-H activation. We will apply new methods based on Au catalysis to fill the gap that exists between chemical synthesis and physical methods such as graphite exfoliation or laser ablation for the synthesis of nanographenes and other large acenes.
Summary
We plan to chase new goals by exploring the limits of gold chemistry and organic synthesis. A major goal is to promote copper to the level of gold as the catalyst of choice for the activation of alkynes under homogeneous conditions. Another major goal is to develop enantioselective reactions based on a new chiral catalyst design to overcome the inherent limitations of the linear coordination of d10 M(I) coinage metals. We whish to contribute to bridge the gap between homogeneous and heterogeneous gold catalysis discovering new reactions for C-C bond formation via cross-coupling and C-H activation. We will apply new methods based on Au catalysis to fill the gap that exists between chemical synthesis and physical methods such as graphite exfoliation or laser ablation for the synthesis of nanographenes and other large acenes.
Max ERC Funding
2 499 060 €
Duration
Start date: 2013-03-01, End date: 2018-02-28
Project acronym CDSIF
Project Contour dynamics and singularities in incompressible flows
Researcher (PI) Diego Cordoba
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Starting Grant (StG), PE1, ERC-2007-StG
Summary The search of singularities in incompressible flows has become a major challenge in the area of non-linear partial differential equations and is relevant in applied mathematics, physics and engineering. The existence of such singularities would have important consequences for the understanding of turbulence. One way to make progress in this direction, is to study plausible scenarios for the singularities supported by experiments or numerical analysis. With the more sophisticated numerical tools now available, the subject has recently gained considerable momentum. The main goal of this project is to study analytically several incompressible fluid models. In particular solutions that involve the possible formation of singularities or quasi-singular structures.
Summary
The search of singularities in incompressible flows has become a major challenge in the area of non-linear partial differential equations and is relevant in applied mathematics, physics and engineering. The existence of such singularities would have important consequences for the understanding of turbulence. One way to make progress in this direction, is to study plausible scenarios for the singularities supported by experiments or numerical analysis. With the more sophisticated numerical tools now available, the subject has recently gained considerable momentum. The main goal of this project is to study analytically several incompressible fluid models. In particular solutions that involve the possible formation of singularities or quasi-singular structures.
Max ERC Funding
650 000 €
Duration
Start date: 2008-09-01, End date: 2013-08-31
Project acronym CepBin
Project A sub-percent distance scale from binaries and Cepheids
Researcher (PI) Grzegorz PIETRZYNSKI
Host Institution (HI) CENTRUM ASTRONOMICZNE IM. MIKOLAJAKOPERNIKA POLSKIEJ AKADEMII NAUK
Call Details Advanced Grant (AdG), PE9, ERC-2015-AdG
Summary We propose to carry out a project which will produce a decisive step towards improving the accuracy of the Hubble constant as determined from the Cepheid-SN Ia method to 1%, by using 28 extremely rare eclipsing binary systems in the LMC which offer the potential to determine their distances to 1%. To achieve this accuracy we will reduce the main error in the binary method by interferometric angular diameter measurements of a sample of red clump stars which resemble the stars in our binary systems. We will check on our calibration with similar binary systems close enough to determine their orbits from interferometry. We already showed the feasibility of our method which yielded the best-ever distance determination to the LMC of 2.2% from 8 such binary systems. With 28 systems and the improved angular diameter calibration we will push the LMC distance uncertainty down to 1% which will allow to set the zero point of the Cepheid PL relation with the same accuracy using the large available LMC Cepheid sample. We will determine the metallicity effect on Cepheid luminosities by a) determining a 2% distance to the more metal-poor SMC with our binary method, and by b) measuring the distances to LMC and SMC with an improved Baade-Wesselink (BW) method. We will achieve this improvement by analyzing 9 unique Cepheids in eclipsing binaries in the LMC our group has discovered which allow factor- of-ten improvements in the determination of all basic physical parameters of Cepheids. These studies will also increase our confidence in the Cepheid-based H0 determination. Our project bears strong synergy to the Gaia mission by providing the best checks on possible systematic uncertainties on Gaia parallaxes with 200 binary systems whose distances we will measure to 1-2%. We will provide two unique tools for 1-3 % distance determinations to individual objects in a volume of 1 Mpc, being competitive to Gaia already at a distance of 1 kpc from the Sun.
Summary
We propose to carry out a project which will produce a decisive step towards improving the accuracy of the Hubble constant as determined from the Cepheid-SN Ia method to 1%, by using 28 extremely rare eclipsing binary systems in the LMC which offer the potential to determine their distances to 1%. To achieve this accuracy we will reduce the main error in the binary method by interferometric angular diameter measurements of a sample of red clump stars which resemble the stars in our binary systems. We will check on our calibration with similar binary systems close enough to determine their orbits from interferometry. We already showed the feasibility of our method which yielded the best-ever distance determination to the LMC of 2.2% from 8 such binary systems. With 28 systems and the improved angular diameter calibration we will push the LMC distance uncertainty down to 1% which will allow to set the zero point of the Cepheid PL relation with the same accuracy using the large available LMC Cepheid sample. We will determine the metallicity effect on Cepheid luminosities by a) determining a 2% distance to the more metal-poor SMC with our binary method, and by b) measuring the distances to LMC and SMC with an improved Baade-Wesselink (BW) method. We will achieve this improvement by analyzing 9 unique Cepheids in eclipsing binaries in the LMC our group has discovered which allow factor- of-ten improvements in the determination of all basic physical parameters of Cepheids. These studies will also increase our confidence in the Cepheid-based H0 determination. Our project bears strong synergy to the Gaia mission by providing the best checks on possible systematic uncertainties on Gaia parallaxes with 200 binary systems whose distances we will measure to 1-2%. We will provide two unique tools for 1-3 % distance determinations to individual objects in a volume of 1 Mpc, being competitive to Gaia already at a distance of 1 kpc from the Sun.
Max ERC Funding
2 360 500 €
Duration
Start date: 2016-11-01, End date: 2021-10-31
Project acronym CERQUTE
Project Certification of quantum technologies
Researcher (PI) Antonio Acín
Host Institution (HI) FUNDACIO INSTITUT DE CIENCIES FOTONIQUES
Call Details Advanced Grant (AdG), PE2, ERC-2018-ADG
Summary Given a quantum system, how can one ensure that it (i) is entangled? (ii) random? (iii) secure? (iv) performs a computation correctly? The concept of quantum certification embraces all these questions and CERQUTE’s main goal is to provide the tools to achieve such certification. The need of a new paradigm for quantum certification has emerged as a consequence of the impressive advances on the control of quantum systems. On the one hand, complex many-body quantum systems are prepared in many labs worldwide. On the other hand, quantum information technologies are making the transition to real applications. Quantum certification is a highly transversal concept that covers a broad range of scenarios –from many-body systems to protocols employing few devices– and questions –from theoretical results and experimental demonstrations to commercial products–. CERQUTE is organized along three research lines that reflect this broadness and inter-disciplinary character: (A) many-body quantum systems: the objective is to provide the tools to identify quantum properties of many-body quantum systems; (B) quantum networks: the objective is to characterize networks in the quantum regime; (C) quantum cryptographic protocols: the objective is to construct cryptography protocols offering certified security. Crucial to achieve these objectives is the development of radically new methods to deal with quantum systems in an efficient way. Expected outcomes are: (i) new methods to detect quantum phenomena in the many-body regime, (ii) new protocols to benchmark quantum simulators and annealers, (iii) first methods to characterize quantum causality, (iv) new protocols exploiting simple network geometries (v) experimentally-friendly cryptographic protocols offering certified security. CERQUTE goes at the heart of the fundamental question of what distinguishes quantum from classical physics and will provide the concepts and protocols for the certification of quantum phenomena and technologies.
Summary
Given a quantum system, how can one ensure that it (i) is entangled? (ii) random? (iii) secure? (iv) performs a computation correctly? The concept of quantum certification embraces all these questions and CERQUTE’s main goal is to provide the tools to achieve such certification. The need of a new paradigm for quantum certification has emerged as a consequence of the impressive advances on the control of quantum systems. On the one hand, complex many-body quantum systems are prepared in many labs worldwide. On the other hand, quantum information technologies are making the transition to real applications. Quantum certification is a highly transversal concept that covers a broad range of scenarios –from many-body systems to protocols employing few devices– and questions –from theoretical results and experimental demonstrations to commercial products–. CERQUTE is organized along three research lines that reflect this broadness and inter-disciplinary character: (A) many-body quantum systems: the objective is to provide the tools to identify quantum properties of many-body quantum systems; (B) quantum networks: the objective is to characterize networks in the quantum regime; (C) quantum cryptographic protocols: the objective is to construct cryptography protocols offering certified security. Crucial to achieve these objectives is the development of radically new methods to deal with quantum systems in an efficient way. Expected outcomes are: (i) new methods to detect quantum phenomena in the many-body regime, (ii) new protocols to benchmark quantum simulators and annealers, (iii) first methods to characterize quantum causality, (iv) new protocols exploiting simple network geometries (v) experimentally-friendly cryptographic protocols offering certified security. CERQUTE goes at the heart of the fundamental question of what distinguishes quantum from classical physics and will provide the concepts and protocols for the certification of quantum phenomena and technologies.
Max ERC Funding
1 735 044 €
Duration
Start date: 2020-01-01, End date: 2024-12-31
Project acronym CHAMELEON
Project Intuitive editing of visual appearance from real-world datasets
Researcher (PI) Diego Gutierrez Pérez
Host Institution (HI) UNIVERSIDAD DE ZARAGOZA
Call Details Consolidator Grant (CoG), PE6, ERC-2015-CoG
Summary Computer-generated imagery is now ubiquitous in our society, spanning fields such as games and movies, architecture, engineering, or virtual prototyping, while also helping create novel ones such as computational materials. With the increase in computational power and the improvement of acquisition techniques, there has been a paradigm shift in the field towards data-driven techniques, which has yielded an unprecedented level of realism in visual appearance. Unfortunately, this leads to a series of problems, identified in this proposal: First, there is a disconnect between the mathematical representation of the data and any meaningful parameters that humans understand; the captured data is machine-friendly, but not human friendly. Second, the many different acquisition systems lead to heterogeneous formats and very large datasets. And third, real-world appearance functions are usually nonlinear and high-dimensional. As a result, visual appearance datasets are increasingly unfit to editing operations, which limits the creative process for scientists, engineers, artists and practitioners in general. There is an immense gap between the complexity, realism and richness of the captured data, and the flexibility to edit such data.
We believe that the current research path leads to a fragmented space of isolated solutions, each tailored to a particular dataset and problem. We propose a research plan at the theoretical, algorithmic and application levels, putting the user at the core. We will learn key relevant appearance features in terms humans understand, from which intuitive, predictable editing spaces, algorithms, and workflows will be defined. In order to ensure usability and foster creativity, we will also extend our research to efficient simulation of visual appearance, exploiting the extra dimensionality of the captured datasets. Achieving our goals will finally enable us to reach the true potential of real-world captured datasets in many aspects of society.
Summary
Computer-generated imagery is now ubiquitous in our society, spanning fields such as games and movies, architecture, engineering, or virtual prototyping, while also helping create novel ones such as computational materials. With the increase in computational power and the improvement of acquisition techniques, there has been a paradigm shift in the field towards data-driven techniques, which has yielded an unprecedented level of realism in visual appearance. Unfortunately, this leads to a series of problems, identified in this proposal: First, there is a disconnect between the mathematical representation of the data and any meaningful parameters that humans understand; the captured data is machine-friendly, but not human friendly. Second, the many different acquisition systems lead to heterogeneous formats and very large datasets. And third, real-world appearance functions are usually nonlinear and high-dimensional. As a result, visual appearance datasets are increasingly unfit to editing operations, which limits the creative process for scientists, engineers, artists and practitioners in general. There is an immense gap between the complexity, realism and richness of the captured data, and the flexibility to edit such data.
We believe that the current research path leads to a fragmented space of isolated solutions, each tailored to a particular dataset and problem. We propose a research plan at the theoretical, algorithmic and application levels, putting the user at the core. We will learn key relevant appearance features in terms humans understand, from which intuitive, predictable editing spaces, algorithms, and workflows will be defined. In order to ensure usability and foster creativity, we will also extend our research to efficient simulation of visual appearance, exploiting the extra dimensionality of the captured datasets. Achieving our goals will finally enable us to reach the true potential of real-world captured datasets in many aspects of society.
Max ERC Funding
1 629 519 €
Duration
Start date: 2016-11-01, End date: 2021-10-31
Project acronym chem-fs-MOF
Project Chemical Engineering of Functional Stable Metal-Organic Frameworks: Porous Crystals and Thin Film Devices
Researcher (PI) Carlos MARTI-GASTALDO
Host Institution (HI) UNIVERSITAT DE VALENCIA
Call Details Starting Grant (StG), PE5, ERC-2016-STG
Summary Metal-Organic-Frameworks (MOFs) offer appealing advantages over classical solids from combination of high surface areas with the crystallinity of inorganic materials and the synthetic versatility (unlimited combination of metals and linkers for fine tuning of properties) and processability of organic materials. Provided chemical stability, I expect combination of porosity with manipulable electrical and optical properties to open a new world of possibilities, with MOFs playing an emerging role in fields of key environmental value like photovoltaics, photocatalysis or electrocatalysis. The conventional insulating character of MOFs and their poor chemical stability (only a minimum fraction are hydrolytically stable) are arguably the two key limitations hindering further development in this context.
With chem-fs-MOF I expect to deliver:
1. New synthetic routes specifically designed for producing new, hydrolytically stable Fe(III) and Ti(IV)-MOFs (new synthetic platforms for new materials).
2. More advanced crystalline materials to feature tunable function by chemical manipulation of MOF’s optical/electrical properties and pore activity (function-led chemical engineering).
3. High-quality ultrathin films, reliant on the transfer of single-layers, alongside establishing the techniques required for evaluating their electric properties (key to device integration). Recent works on graphene and layered dichalcogenides anticipate the benefits of nanostructuration for more efficient optoelectronic devices. Notwithstanding great potential, this possibility remains still unexplored for MOFs.
Overall, I seek to exploit MOFs’ unparalleled chemical/structural flexibility to produce advanced crystalline materials that combine hydrolytical stability and tunable performance to be used in environmentally relevant applications like visible light photocatalysis. This is an emerging research front that holds great potential for influencing future R&D in Chemistry and Materials Science.
Summary
Metal-Organic-Frameworks (MOFs) offer appealing advantages over classical solids from combination of high surface areas with the crystallinity of inorganic materials and the synthetic versatility (unlimited combination of metals and linkers for fine tuning of properties) and processability of organic materials. Provided chemical stability, I expect combination of porosity with manipulable electrical and optical properties to open a new world of possibilities, with MOFs playing an emerging role in fields of key environmental value like photovoltaics, photocatalysis or electrocatalysis. The conventional insulating character of MOFs and their poor chemical stability (only a minimum fraction are hydrolytically stable) are arguably the two key limitations hindering further development in this context.
With chem-fs-MOF I expect to deliver:
1. New synthetic routes specifically designed for producing new, hydrolytically stable Fe(III) and Ti(IV)-MOFs (new synthetic platforms for new materials).
2. More advanced crystalline materials to feature tunable function by chemical manipulation of MOF’s optical/electrical properties and pore activity (function-led chemical engineering).
3. High-quality ultrathin films, reliant on the transfer of single-layers, alongside establishing the techniques required for evaluating their electric properties (key to device integration). Recent works on graphene and layered dichalcogenides anticipate the benefits of nanostructuration for more efficient optoelectronic devices. Notwithstanding great potential, this possibility remains still unexplored for MOFs.
Overall, I seek to exploit MOFs’ unparalleled chemical/structural flexibility to produce advanced crystalline materials that combine hydrolytical stability and tunable performance to be used in environmentally relevant applications like visible light photocatalysis. This is an emerging research front that holds great potential for influencing future R&D in Chemistry and Materials Science.
Max ERC Funding
1 527 351 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym CHEMAGEB
Project CHEMometric and High-throughput Omics Analytical Methods for Assessment of Global Change Effects on Environmental and Biological Systems
Researcher (PI) Roman Tauler Ferrer
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Advanced Grant (AdG), PE4, ERC-2012-ADG_20120216
Summary We propose to develop new chemometric and high-throughput analytical methods to assess the effects of environmental and climate changes on target biological systems which are representative of ecosystems. This project will combine powerful chemometric and analytical high-throughput methodologies with toxicological tests to examine the effects of environmental stressors (like chemical pollution) and of climate change (like temperature, water scarcity or food shortage), on genomic and metabonomic profiles of target biological systems. The complex nature of experimental data produced by high-throughput analytical techniques, such as DNA microarrays, hyphenated chromatography-mass spectrometry or multi-dimensional nuclear magnetic resonance spectroscopy, requires powerful data analysis tools to extract, summarize and interpret the large amount of information that such megavariate data sets may contain. There is a need to improve and automate every step in the analysis of the data generated from genomic and metabonomic studies using new chemometric and multi- and megavariate tools. The main purpose of this project is to develop such tools. As a result of the whole study, a detailed report on the effects of global change and chemical pollution on the genomic and metabonomic profiles of a selected set of representative target biological systems will be delivered and used for global risk assessment. The information acquired, data sets and computer software will be stored in public data bases using modern data compression and data management technologies. And all the methodologies developed in the project will be published.
Summary
We propose to develop new chemometric and high-throughput analytical methods to assess the effects of environmental and climate changes on target biological systems which are representative of ecosystems. This project will combine powerful chemometric and analytical high-throughput methodologies with toxicological tests to examine the effects of environmental stressors (like chemical pollution) and of climate change (like temperature, water scarcity or food shortage), on genomic and metabonomic profiles of target biological systems. The complex nature of experimental data produced by high-throughput analytical techniques, such as DNA microarrays, hyphenated chromatography-mass spectrometry or multi-dimensional nuclear magnetic resonance spectroscopy, requires powerful data analysis tools to extract, summarize and interpret the large amount of information that such megavariate data sets may contain. There is a need to improve and automate every step in the analysis of the data generated from genomic and metabonomic studies using new chemometric and multi- and megavariate tools. The main purpose of this project is to develop such tools. As a result of the whole study, a detailed report on the effects of global change and chemical pollution on the genomic and metabonomic profiles of a selected set of representative target biological systems will be delivered and used for global risk assessment. The information acquired, data sets and computer software will be stored in public data bases using modern data compression and data management technologies. And all the methodologies developed in the project will be published.
Max ERC Funding
2 454 280 €
Duration
Start date: 2013-04-01, End date: 2018-03-31
Project acronym CHEMCOMP
Project Building-up Chemical Complexity
into Multifunctional Molecule-based Hybrid Materials
Researcher (PI) Jose Ramon Galan Mascaros
Host Institution (HI) FUNDACIO PRIVADA INSTITUT CATALA D'INVESTIGACIO QUIMICA
Call Details Starting Grant (StG), PE5, ERC-2011-StG_20101014
Summary Molecular sciences offer unparalleled opportunities for the development of tailor-made materials. By chemical design, molecules with the desired features can be prepared and incorporated into hybrid systems to yield molecule-based materials with novel chemical and/or physical properties. The CHEMCOMP project aims to develop new hybrid materials targeting the study of new physical phenomena that have already been theoretically predicted or experimentally hinted. The main goals will be:
i) Molecules with memory: Memory effect at the molecular scale is of great interest because it represents the size limit in the miniaturization of information storage media. My goal will be to develop spin crossover molecules with bulk-like hysteretic behavior where the switching between the low spin ground state and the high spin metastable state can be controlled through external stimuli.
ii) Bistable organic conductors: Bistable molecules could also be embedded into hybrid organic conductors to induce structural phase transitions. This strategy will allow for the transport properties to be controlled through external stimuli in unprecedented switchable conducting media.
iii) Hybrid conducting magnets: Combination of magnetism and electrical conductivity has given rise to new phenomena in the past, such as spin glass behavior or giant magnetoresistance. We propose to incorporate Single Molecule Magnets (molecules with magnet-like behavior) into organic (super)conductors to understand and optimize the synergy between these two physical properties.
iv) Chiral magnets and conductors: New phenomena is expected to appear in optically active media. Experimental evidence for the so-called MagnetoChiral Dichroism has already been found. Electrical Magnetochiral Anisotropy has been predicted. I will develop systematic strategies for the preparation of hybrid chiral materials to understand and optimize the synergy between chirality and bulk physical properties.
Summary
Molecular sciences offer unparalleled opportunities for the development of tailor-made materials. By chemical design, molecules with the desired features can be prepared and incorporated into hybrid systems to yield molecule-based materials with novel chemical and/or physical properties. The CHEMCOMP project aims to develop new hybrid materials targeting the study of new physical phenomena that have already been theoretically predicted or experimentally hinted. The main goals will be:
i) Molecules with memory: Memory effect at the molecular scale is of great interest because it represents the size limit in the miniaturization of information storage media. My goal will be to develop spin crossover molecules with bulk-like hysteretic behavior where the switching between the low spin ground state and the high spin metastable state can be controlled through external stimuli.
ii) Bistable organic conductors: Bistable molecules could also be embedded into hybrid organic conductors to induce structural phase transitions. This strategy will allow for the transport properties to be controlled through external stimuli in unprecedented switchable conducting media.
iii) Hybrid conducting magnets: Combination of magnetism and electrical conductivity has given rise to new phenomena in the past, such as spin glass behavior or giant magnetoresistance. We propose to incorporate Single Molecule Magnets (molecules with magnet-like behavior) into organic (super)conductors to understand and optimize the synergy between these two physical properties.
iv) Chiral magnets and conductors: New phenomena is expected to appear in optically active media. Experimental evidence for the so-called MagnetoChiral Dichroism has already been found. Electrical Magnetochiral Anisotropy has been predicted. I will develop systematic strategies for the preparation of hybrid chiral materials to understand and optimize the synergy between chirality and bulk physical properties.
Max ERC Funding
1 940 396 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym CHIRALLCARBON
Project Chiral Allotropes of Carbon
Researcher (PI) Nazario Martín
Host Institution (HI) UNIVERSIDAD COMPLUTENSE DE MADRID
Call Details Advanced Grant (AdG), PE5, ERC-2012-ADG_20120216
Summary The aim of the present project is to answer fundamental questions about how to introduce chirality into a variety of carbon nanostructures and how it modifies the properties in the search for new applications in materials science and nanotecnology. Thus, it describes a fundamental and technological research program designed to gain new knowledge for the development of novel covalent and supramolecular chiral carbon nanoforms, and their further chemical modification for the preparation of sophisticated supramolecular 3D nanoarchitectures. Our research activity should reinforce and integrate the strong position of Europe in the knowledge of carbon nanoforms.
This important scientific challenge has not been properly addressed so far due to the inherent difficulties to work on these materials and, particularly, to the lack of an efficient chemical protocol to prepare chiral carbon nanoforms.
Summary
The aim of the present project is to answer fundamental questions about how to introduce chirality into a variety of carbon nanostructures and how it modifies the properties in the search for new applications in materials science and nanotecnology. Thus, it describes a fundamental and technological research program designed to gain new knowledge for the development of novel covalent and supramolecular chiral carbon nanoforms, and their further chemical modification for the preparation of sophisticated supramolecular 3D nanoarchitectures. Our research activity should reinforce and integrate the strong position of Europe in the knowledge of carbon nanoforms.
This important scientific challenge has not been properly addressed so far due to the inherent difficulties to work on these materials and, particularly, to the lack of an efficient chemical protocol to prepare chiral carbon nanoforms.
Max ERC Funding
2 235 000 €
Duration
Start date: 2013-04-01, End date: 2019-03-31
Project acronym CLIMAHAL
Project Climate dimension of natural halogens in the Earth system: Past, present, future
Researcher (PI) Alfonso SAIZ LOPEZ
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Consolidator Grant (CoG), PE10, ERC-2016-COG
Summary Naturally-emitted very short-lived halogens (VSLH) have a profound impact on the chemistry and composition of the atmosphere, destroying greenhouse gases and altering aerosol production, which together can change the Earth´s radiative balance. Therefore, natural halogens possess leverage to influence climate, although their contribution to climate change is not well established and most climate models have yet to consider their effects. Also, there is increasing evidence that natural halogens i) impact on the air quality of coastal cities, ii) accelerates the atmospheric deposition of mercury (a toxic heavy metal) and iii) that their natural ocean and ice emissions are controlled by biological and photochemical mechanisms that may respond to climate changes. Motivated by the above, this project aims to quantify the so far unrecognized natural halogen-climate feedbacks and the impact of these feedbacks on global atmospheric oxidizing capacity (AOC) and radiative forcing (RF) across pre-industrial, present and future climates. Answering these questions is essential to predict if these climate-mediated feedbacks can reduce or amplify future climate change. To this end we will develop a multidisciplinary research approach using laboratory and field observations and models interactively that will allow us to peel apart the detailed physical processes behind the contribution of natural halogens to global climate change. Furthermore, the work plan also involves examining past-future climate impacts of natural halogens within a holistic Earth System model, where we will develop the multidirectional halogen interactions in the land-ocean-ice-biosphere-atmosphere coupled system. This will provide a breakthrough in our understanding of the importance of these natural processes for the composition and oxidation capacity of the Earth´s atmosphere and climate, both in the presence and absence of human influence.
Summary
Naturally-emitted very short-lived halogens (VSLH) have a profound impact on the chemistry and composition of the atmosphere, destroying greenhouse gases and altering aerosol production, which together can change the Earth´s radiative balance. Therefore, natural halogens possess leverage to influence climate, although their contribution to climate change is not well established and most climate models have yet to consider their effects. Also, there is increasing evidence that natural halogens i) impact on the air quality of coastal cities, ii) accelerates the atmospheric deposition of mercury (a toxic heavy metal) and iii) that their natural ocean and ice emissions are controlled by biological and photochemical mechanisms that may respond to climate changes. Motivated by the above, this project aims to quantify the so far unrecognized natural halogen-climate feedbacks and the impact of these feedbacks on global atmospheric oxidizing capacity (AOC) and radiative forcing (RF) across pre-industrial, present and future climates. Answering these questions is essential to predict if these climate-mediated feedbacks can reduce or amplify future climate change. To this end we will develop a multidisciplinary research approach using laboratory and field observations and models interactively that will allow us to peel apart the detailed physical processes behind the contribution of natural halogens to global climate change. Furthermore, the work plan also involves examining past-future climate impacts of natural halogens within a holistic Earth System model, where we will develop the multidirectional halogen interactions in the land-ocean-ice-biosphere-atmosphere coupled system. This will provide a breakthrough in our understanding of the importance of these natural processes for the composition and oxidation capacity of the Earth´s atmosphere and climate, both in the presence and absence of human influence.
Max ERC Funding
1 979 112 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym CLOTHILDE
Project CLOTH manIpulation Learning from DEmonstrations
Researcher (PI) Carmen TORRAS GENIS
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Advanced Grant (AdG), PE7, ERC-2016-ADG
Summary Textile objects pervade human environments and their versatile manipulation by robots would open up a whole range of
possibilities, from increasing the autonomy of elderly and disabled people, housekeeping and hospital logistics, to novel
automation in the clothing internet business and upholstered product manufacturing. Although efficient procedures exist for
the robotic handling of rigid objects and the virtual rendering of deformable objects, cloth manipulation in the real world has
proven elusive, because the vast number of degrees of freedom involved in non-rigid deformations leads to unbearable
uncertainties in perception and action outcomes.
This proposal aims at developing a theory of cloth manipulation and carrying it all the way down to prototype implementation in our Lab. By combining powerful recent tools from computational topology and machine learning, we plan to characterize the state of textile objects and their transformations under given actions in a compact operational way (i.e., encoding task-relevant topological changes), which would permit probabilistic planning of actions (first one handed, then bimanual) that ensure reaching a desired cloth configuration despite noisy perceptions and inaccurate actions.
In our approach, the robot will learn manipulation skills from an initial human demonstration, subsequently refined through
reinforcement learning, plus occasional requests for user advice. The skills will be encoded as parameterised dynamical
systems, and safe interaction with humans will be guaranteed by using a predictive controller based on a model of the robot
dynamics. Prototypes will be developed for 3 envisaged applications: recognizing and folding clothes, putting an elastic
cover on a mattress or a car seat, and helping elderly and disabled people to dress. The broad Robotics and AI background
of the PI and the project narrow focus on clothing seem most appropriate to obtain a breakthrough in this hard fundamental
research topic.
Summary
Textile objects pervade human environments and their versatile manipulation by robots would open up a whole range of
possibilities, from increasing the autonomy of elderly and disabled people, housekeeping and hospital logistics, to novel
automation in the clothing internet business and upholstered product manufacturing. Although efficient procedures exist for
the robotic handling of rigid objects and the virtual rendering of deformable objects, cloth manipulation in the real world has
proven elusive, because the vast number of degrees of freedom involved in non-rigid deformations leads to unbearable
uncertainties in perception and action outcomes.
This proposal aims at developing a theory of cloth manipulation and carrying it all the way down to prototype implementation in our Lab. By combining powerful recent tools from computational topology and machine learning, we plan to characterize the state of textile objects and their transformations under given actions in a compact operational way (i.e., encoding task-relevant topological changes), which would permit probabilistic planning of actions (first one handed, then bimanual) that ensure reaching a desired cloth configuration despite noisy perceptions and inaccurate actions.
In our approach, the robot will learn manipulation skills from an initial human demonstration, subsequently refined through
reinforcement learning, plus occasional requests for user advice. The skills will be encoded as parameterised dynamical
systems, and safe interaction with humans will be guaranteed by using a predictive controller based on a model of the robot
dynamics. Prototypes will be developed for 3 envisaged applications: recognizing and folding clothes, putting an elastic
cover on a mattress or a car seat, and helping elderly and disabled people to dress. The broad Robotics and AI background
of the PI and the project narrow focus on clothing seem most appropriate to obtain a breakthrough in this hard fundamental
research topic.
Max ERC Funding
2 499 149 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym CNTM
Project Cryptography on Non-Trusted Machines
Researcher (PI) Stefan Dziembowski
Host Institution (HI) UNIWERSYTET WARSZAWSKI
Call Details Starting Grant (StG), PE5, ERC-2007-StG
Summary This project is about the design of cryptographic schemes that are secure even if implemented on not-secure devices. The motivation for this problem comes from an observation that most of the real-life attacks on cryptographic devices do not break their mathematical foundations, but exploit vulnerabilities of their implementations. This concerns both the cryptographic software executed on PCs (that can be attacked by viruses), and the implementations on hardware (that can be subject to the side-channel attacks). Traditionally fixing this problem was left to the practitioners, since it was a common belief that theory cannot be of any help here. However, new exciting results in cryptography suggest that this view was too pessimistic: there exist methods to design cryptographic protocols in such a way that they are secure even if the hardware on which they are executed cannot be fully trusted. The goal of this project is to investigate these methods further, unify them in a solid mathematical theory (many of them were developed independently), and propose new ideas in this area. The project will be mostly theoretical (although some practical experiments may be performed). Our main interest lies within the theory of private circuits, bounded-retrieval model, physically-observable cryptography, and human-assisted cryptography. We view these theories just as the departing points, since the area is very fresh and we expect to soon witness completely new ideas in this field.
Summary
This project is about the design of cryptographic schemes that are secure even if implemented on not-secure devices. The motivation for this problem comes from an observation that most of the real-life attacks on cryptographic devices do not break their mathematical foundations, but exploit vulnerabilities of their implementations. This concerns both the cryptographic software executed on PCs (that can be attacked by viruses), and the implementations on hardware (that can be subject to the side-channel attacks). Traditionally fixing this problem was left to the practitioners, since it was a common belief that theory cannot be of any help here. However, new exciting results in cryptography suggest that this view was too pessimistic: there exist methods to design cryptographic protocols in such a way that they are secure even if the hardware on which they are executed cannot be fully trusted. The goal of this project is to investigate these methods further, unify them in a solid mathematical theory (many of them were developed independently), and propose new ideas in this area. The project will be mostly theoretical (although some practical experiments may be performed). Our main interest lies within the theory of private circuits, bounded-retrieval model, physically-observable cryptography, and human-assisted cryptography. We view these theories just as the departing points, since the area is very fresh and we expect to soon witness completely new ideas in this field.
Max ERC Funding
872 550 €
Duration
Start date: 2008-11-01, End date: 2013-10-31
Project acronym CoCoUnit
Project CoCoUnit: An Energy-Efficient Processing Unit for Cognitive Computing
Researcher (PI) Antonio Maria Gonzalez Colas
Host Institution (HI) UNIVERSITAT POLITECNICA DE CATALUNYA
Call Details Advanced Grant (AdG), PE6, ERC-2018-ADG
Summary There is a fast-growing interest in extending the capabilities of computing systems to perform human-like tasks in an intelligent way. These technologies are usually referred to as cognitive computing. We envision a next revolution in computing in the forthcoming years that will be driven by deploying many “intelligent” devices around us in all kind of environments (work, entertainment, transportation, health care, etc.) backed up by “intelligent” servers in the cloud. These cognitive computing systems will provide new user experiences by delivering new services or improving the operational efficiency of existing ones, and altogether will enrich our lives and our economy.
A key characteristic of cognitive computing systems will be their capability to process in real time large amounts of data coming from audio and vision devices, and other type of sensors. This will demand a very high computing power but at the same time an extremely low energy consumption. This very challenging energy-efficiency requirement is a sine qua non to success not only for mobile and wearable systems, where power dissipation and cost budgets are very low, but also for large data centers where energy consumption is a main component of the total cost of ownership.
Current processor architectures (including general-purpose cores and GPUs) are not a good fit for this type of systems since they keep the same basic organization as early computers, which were mainly optimized for “number crunching”. CoCoUnit will take a disruptive direction by investigating unconventional architectures that can offer orders of magnitude better efficiency in terms of performance per energy and cost for cognitive computing tasks. The ultimate goal of this project is to devise a novel processing unit that will be integrated with the existing units of a processor (general-purpose cores and GPUs) and altogether will be able to deliver cognitive computing user experiences with extremely high energy-efficiency.
Summary
There is a fast-growing interest in extending the capabilities of computing systems to perform human-like tasks in an intelligent way. These technologies are usually referred to as cognitive computing. We envision a next revolution in computing in the forthcoming years that will be driven by deploying many “intelligent” devices around us in all kind of environments (work, entertainment, transportation, health care, etc.) backed up by “intelligent” servers in the cloud. These cognitive computing systems will provide new user experiences by delivering new services or improving the operational efficiency of existing ones, and altogether will enrich our lives and our economy.
A key characteristic of cognitive computing systems will be their capability to process in real time large amounts of data coming from audio and vision devices, and other type of sensors. This will demand a very high computing power but at the same time an extremely low energy consumption. This very challenging energy-efficiency requirement is a sine qua non to success not only for mobile and wearable systems, where power dissipation and cost budgets are very low, but also for large data centers where energy consumption is a main component of the total cost of ownership.
Current processor architectures (including general-purpose cores and GPUs) are not a good fit for this type of systems since they keep the same basic organization as early computers, which were mainly optimized for “number crunching”. CoCoUnit will take a disruptive direction by investigating unconventional architectures that can offer orders of magnitude better efficiency in terms of performance per energy and cost for cognitive computing tasks. The ultimate goal of this project is to devise a novel processing unit that will be integrated with the existing units of a processor (general-purpose cores and GPUs) and altogether will be able to deliver cognitive computing user experiences with extremely high energy-efficiency.
Max ERC Funding
2 498 661 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym COMFUS
Project Computational Methods for Fusion Technology
Researcher (PI) Santiago Ignacio Badia Rodríguez
Host Institution (HI) CENTRE INTERNACIONAL DE METODES NUMERICS EN ENGINYERIA
Call Details Starting Grant (StG), PE8, ERC-2010-StG_20091028
Summary The simulation of multidisciplinary applications use very often a combination of heterogeneous and disjoint numerical techniques that are hard to put together by the user, and whose mathematical foundation is obscure. An example of this situation is the numerical modeling of the physical processes taking place in nuclear fusion reactors. This problem, which can be modeled by a set of partial differential equations, is extremely challenging. It involves (essentially) fluid mechanics, electromagnetics, thermal radiation and neutronics. The most common numerical approaches to each of these problems separately are very different and their coupling is a hard and inefficient task.
Our main objective in this proposal is to develop and analyze a unified numerical framework based on stabilized finite element methods based on multi-scale decompositions capable to simulate all the physical processes taking place in nuclear fusion technology. The project aims at giving a substantial contribution to the numerical approximation of every physical process as well as efficient coupling techniques for the multiphysics problems.
The development of the numerical formulations we propose and their application require mastering different physics, designing numerical approximations for these different physical problems, analyzing mathematically the resulting methods, implementing them in an efficient way in parallel platforms and understanding the results and drawing conclusions, both from a physical and from an engineering perspective. Advanced research in physical modeling, numerical approximations, mathematical analysis and computer implementation are the keys to meeting these objectives.
The successful implementation of the project will provide advanced numerical techniques for the simulation of the processes taking place in a fusion reactor. A deliverable product of the project will be a unified finite element software package that will be an extremely valuable tool.
Summary
The simulation of multidisciplinary applications use very often a combination of heterogeneous and disjoint numerical techniques that are hard to put together by the user, and whose mathematical foundation is obscure. An example of this situation is the numerical modeling of the physical processes taking place in nuclear fusion reactors. This problem, which can be modeled by a set of partial differential equations, is extremely challenging. It involves (essentially) fluid mechanics, electromagnetics, thermal radiation and neutronics. The most common numerical approaches to each of these problems separately are very different and their coupling is a hard and inefficient task.
Our main objective in this proposal is to develop and analyze a unified numerical framework based on stabilized finite element methods based on multi-scale decompositions capable to simulate all the physical processes taking place in nuclear fusion technology. The project aims at giving a substantial contribution to the numerical approximation of every physical process as well as efficient coupling techniques for the multiphysics problems.
The development of the numerical formulations we propose and their application require mastering different physics, designing numerical approximations for these different physical problems, analyzing mathematically the resulting methods, implementing them in an efficient way in parallel platforms and understanding the results and drawing conclusions, both from a physical and from an engineering perspective. Advanced research in physical modeling, numerical approximations, mathematical analysis and computer implementation are the keys to meeting these objectives.
The successful implementation of the project will provide advanced numerical techniques for the simulation of the processes taking place in a fusion reactor. A deliverable product of the project will be a unified finite element software package that will be an extremely valuable tool.
Max ERC Funding
1 320 000 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym COMIET
Project Engineering Complex Intestinal Epithelial Tissue Models
Researcher (PI) Elena Martínez Fraiz
Host Institution (HI) FUNDACIO INSTITUT DE BIOENGINYERIA DE CATALUNYA
Call Details Consolidator Grant (CoG), PE8, ERC-2014-CoG
Summary Epithelial barriers protect the body against physical, chemical, and microbial insults. Intestinal epithelium is one of the most actively renewing tissues in the body and a major site of carcinogenesis. Functional in vitro models of intestinal epithelium have been pursued for a long time. They are key elements in basic research, disease modelling, drug discovery, and tissue replacing and have become prime models for adult stem cell research. By taking advantage of the self-organizing properties of intestinal stem cells, intestinal organoids have been recently established, showing cell renewal’s kinetics resembling to the one found in vivo. However, the development of in vitro 3D tissue equivalents accounting for the dimensions, architecture and access to the luminal contents of the in vivo human intestinal tissue together with its self-renewal properties and cell complexity, remains a challenge. The goal of this project is to engineer intestinal epithelial tissue models that mimic physiological characteristics found in in vivo human intestinal tissue, to open up new areas of research on human intestinal diseases. The proposed models will address the in vivo intestinal epithelial cell renewal and migration, the multicell-type differentiation and the epithelial cell interactions with the underlying basement membrane while providing access to the luminal content to go beyond the state-of-the-art organoid models. To do this, we propose to develop an experimental setup that combines microfabrication techniques, tissue engineering components and recent advances in intestinal stem cell research, exploiting stem cell self-organizing characteristics. We anticipate this setup to recapitulate the 3D morphology, the spatio-chemical gradients and the dynamic microenvironment of the living tissue. We expect the new device to prove useful in understanding cell physiology, adult stem cell behaviour, and organ development as well as in modelling human intestinal diseases.
Summary
Epithelial barriers protect the body against physical, chemical, and microbial insults. Intestinal epithelium is one of the most actively renewing tissues in the body and a major site of carcinogenesis. Functional in vitro models of intestinal epithelium have been pursued for a long time. They are key elements in basic research, disease modelling, drug discovery, and tissue replacing and have become prime models for adult stem cell research. By taking advantage of the self-organizing properties of intestinal stem cells, intestinal organoids have been recently established, showing cell renewal’s kinetics resembling to the one found in vivo. However, the development of in vitro 3D tissue equivalents accounting for the dimensions, architecture and access to the luminal contents of the in vivo human intestinal tissue together with its self-renewal properties and cell complexity, remains a challenge. The goal of this project is to engineer intestinal epithelial tissue models that mimic physiological characteristics found in in vivo human intestinal tissue, to open up new areas of research on human intestinal diseases. The proposed models will address the in vivo intestinal epithelial cell renewal and migration, the multicell-type differentiation and the epithelial cell interactions with the underlying basement membrane while providing access to the luminal content to go beyond the state-of-the-art organoid models. To do this, we propose to develop an experimental setup that combines microfabrication techniques, tissue engineering components and recent advances in intestinal stem cell research, exploiting stem cell self-organizing characteristics. We anticipate this setup to recapitulate the 3D morphology, the spatio-chemical gradients and the dynamic microenvironment of the living tissue. We expect the new device to prove useful in understanding cell physiology, adult stem cell behaviour, and organ development as well as in modelling human intestinal diseases.
Max ERC Funding
1 997 190 €
Duration
Start date: 2015-12-01, End date: 2020-11-30
Project acronym COMP-DES-MAT
Project Advanced tools for computational design of engineering materials
Researcher (PI) Francisco Javier (Xavier) Oliver Olivella
Host Institution (HI) CENTRE INTERNACIONAL DE METODES NUMERICS EN ENGINYERIA
Call Details Advanced Grant (AdG), PE8, ERC-2012-ADG_20120216
Summary The overall goal of the project is to contribute to the consolidation of the nascent and revolutionary philosophy of “Materials by Design” by resorting to the enormous power provided by the nowadays-available computational techniques. Limitations of current procedures for developing material-based innovative technologies in engineering, are often made manifest; many times only a catalog, or a data basis, of materials is available and these new technologies have to adapt to them, in the same way that the users of ready-to-wear have to take from the shop the costume that fits them better, but not the one that fits them properly. This constitutes an enormous limitation for the intended goals and scope. Certainly, availability of materials specifically designed by goal-oriented methods could eradicate that limitation, but this purpose faces the bounds of experimental procedures of material design, commonly based on trial and error procedures.
Computational mechanics, with the emerging Computational Materials Design (CMD) research field, has much to offer in this respect. The increasing power of the new computer processors and, most importantly, development of new methods and strategies of computational simulation, opens new ways to face the problem. The project intends breaking through the barriers that presently hinder the development and application of computational materials design, by means of the synergic exploration and development of three supplementary families of methods: 1) computational multiscale material modeling (CMM) based on the bottom-up, one-way coupled, description of the material structure in different representative scales, 2) development of a new generation of high performance reduced-order-modeling techniques (HP-ROM), in order to bring down the associated computational costs to affordable levels, and 3) new computational strategies and methods for the optimal design of the material meso/micro structure arrangement and topology (MATO) .
Summary
The overall goal of the project is to contribute to the consolidation of the nascent and revolutionary philosophy of “Materials by Design” by resorting to the enormous power provided by the nowadays-available computational techniques. Limitations of current procedures for developing material-based innovative technologies in engineering, are often made manifest; many times only a catalog, or a data basis, of materials is available and these new technologies have to adapt to them, in the same way that the users of ready-to-wear have to take from the shop the costume that fits them better, but not the one that fits them properly. This constitutes an enormous limitation for the intended goals and scope. Certainly, availability of materials specifically designed by goal-oriented methods could eradicate that limitation, but this purpose faces the bounds of experimental procedures of material design, commonly based on trial and error procedures.
Computational mechanics, with the emerging Computational Materials Design (CMD) research field, has much to offer in this respect. The increasing power of the new computer processors and, most importantly, development of new methods and strategies of computational simulation, opens new ways to face the problem. The project intends breaking through the barriers that presently hinder the development and application of computational materials design, by means of the synergic exploration and development of three supplementary families of methods: 1) computational multiscale material modeling (CMM) based on the bottom-up, one-way coupled, description of the material structure in different representative scales, 2) development of a new generation of high performance reduced-order-modeling techniques (HP-ROM), in order to bring down the associated computational costs to affordable levels, and 3) new computational strategies and methods for the optimal design of the material meso/micro structure arrangement and topology (MATO) .
Max ERC Funding
2 372 973 €
Duration
Start date: 2013-02-01, End date: 2018-01-31
Project acronym COMPMUSIC
Project Computational models for the discovery of the world's music
Researcher (PI) Francesc Xavier Serra Casals
Host Institution (HI) UNIVERSIDAD POMPEU FABRA
Call Details Advanced Grant (AdG), PE6, ERC-2010-AdG_20100224
Summary Current IT research does not respond to the world's multi-cultural reality. It could be argued that we are imposing the paradigms of our market-driven western culture also on IT and that current IT research results will only facilitate the access of a small part of the world’s information to a small part of the world's population. Most IT research is being carried out with a western centred approach and as a result, our data models, cognition models, user models, interaction models, ontologies, … are all culturally biased. This fact is quite evident in music information research, since, despite the world's richness in musical cultures, most of the research is centred on CDs and metadata of our western commercial music. CompMusic wants to break this huge research bias. By approaching musical information modelling from a multicultural perspective it aims at advancing our state of the art while facilitating the discovery and reuse of the music produced outside the western commercial context. But the development of computational models to address the world’s music information richness cannot be done from the West looking out; we have to involve researchers and musical experts immersed in the different cultures. Their contribution is fundamental to develop the appropriate multicultural musicological and cognitive frameworks from which we should then carry our research on finding appropriate musical features, ontologies, data representations, user interfaces and user centred approaches. CompMusic will investigate some of the most consolidated non-western classical music traditions, Indian (hindustani, carnatic), Turkish-Arab (ottoman, andalusian), and Chinese (han), developing the needed computational models to bring their music into the current globalized information framework. Using these music cultures as case studies, cultures that are alive and have a strong influence in current society, we can develop rich information models that can take advantage of the existing information coming from musicological and cultural studies, from mature performance practice traditions and from active social contexts. With this approach we aim at challenging the current western centred information paradigms, advance our IT research, and contribute to our rich multicultural society.
Summary
Current IT research does not respond to the world's multi-cultural reality. It could be argued that we are imposing the paradigms of our market-driven western culture also on IT and that current IT research results will only facilitate the access of a small part of the world’s information to a small part of the world's population. Most IT research is being carried out with a western centred approach and as a result, our data models, cognition models, user models, interaction models, ontologies, … are all culturally biased. This fact is quite evident in music information research, since, despite the world's richness in musical cultures, most of the research is centred on CDs and metadata of our western commercial music. CompMusic wants to break this huge research bias. By approaching musical information modelling from a multicultural perspective it aims at advancing our state of the art while facilitating the discovery and reuse of the music produced outside the western commercial context. But the development of computational models to address the world’s music information richness cannot be done from the West looking out; we have to involve researchers and musical experts immersed in the different cultures. Their contribution is fundamental to develop the appropriate multicultural musicological and cognitive frameworks from which we should then carry our research on finding appropriate musical features, ontologies, data representations, user interfaces and user centred approaches. CompMusic will investigate some of the most consolidated non-western classical music traditions, Indian (hindustani, carnatic), Turkish-Arab (ottoman, andalusian), and Chinese (han), developing the needed computational models to bring their music into the current globalized information framework. Using these music cultures as case studies, cultures that are alive and have a strong influence in current society, we can develop rich information models that can take advantage of the existing information coming from musicological and cultural studies, from mature performance practice traditions and from active social contexts. With this approach we aim at challenging the current western centred information paradigms, advance our IT research, and contribute to our rich multicultural society.
Max ERC Funding
2 443 200 €
Duration
Start date: 2011-07-01, End date: 2017-06-30
Project acronym CONCERT
Project Description of information transfer across macromolecules by concerted conformational changes
Researcher (PI) Xavier Salvatella Giralt
Host Institution (HI) FUNDACIO INSTITUT DE RECERCA BIOMEDICA (IRB BARCELONA)
Call Details Consolidator Grant (CoG), PE4, ERC-2014-CoG
Summary Signal transduction in biology relies on the transfer of information across biomolecules by concerted conformational changes that cannot currently be characterized experimentally at high resolution. In CONCERT we will develop a method based on the use of nuclear magnetic resonance spectroscopy in solution that will provide very detailed descriptions of such changes by using the information about structural heterogeneity contained in a parameter that is exquisitely sensitive to molecular shape called residual dipolar coupling measured in steric alignment. To show how this new method will allow the study of information transfer we will determine conformational ensembles that will report on the intra and inter-domain concerted conformational changes that activate the androgen receptor, a large allosteric multi-domain protein that regulates the male phenotype and is a therapeutic target for castration resistant prostate cancer, the condition suffered by prostate cancer patients that have become refractory to hormone therapy, the first line of treatment for this disease. To complement the structural information obtained by nuclear magnetic resonance and, especially, measure the rate of information transfer across the androgen receptor we will carry out in a collaborative fashion high precision single molecule Förster resonance energy transfer and fluorescence correlation spectroscopy experiments on AR constructs labelled with fluorescent dyes. In summary we will develop a method that will make it possible to describe some of the most fascinating biological phenomena, such as allostery and signal transduction, and will, in the long term, be an instrument for the discovery of drugs to treat castration resistant prostate cancer, a late stage of prostate cancer that is incurable and kills ca. 70.000 European men every year.
Summary
Signal transduction in biology relies on the transfer of information across biomolecules by concerted conformational changes that cannot currently be characterized experimentally at high resolution. In CONCERT we will develop a method based on the use of nuclear magnetic resonance spectroscopy in solution that will provide very detailed descriptions of such changes by using the information about structural heterogeneity contained in a parameter that is exquisitely sensitive to molecular shape called residual dipolar coupling measured in steric alignment. To show how this new method will allow the study of information transfer we will determine conformational ensembles that will report on the intra and inter-domain concerted conformational changes that activate the androgen receptor, a large allosteric multi-domain protein that regulates the male phenotype and is a therapeutic target for castration resistant prostate cancer, the condition suffered by prostate cancer patients that have become refractory to hormone therapy, the first line of treatment for this disease. To complement the structural information obtained by nuclear magnetic resonance and, especially, measure the rate of information transfer across the androgen receptor we will carry out in a collaborative fashion high precision single molecule Förster resonance energy transfer and fluorescence correlation spectroscopy experiments on AR constructs labelled with fluorescent dyes. In summary we will develop a method that will make it possible to describe some of the most fascinating biological phenomena, such as allostery and signal transduction, and will, in the long term, be an instrument for the discovery of drugs to treat castration resistant prostate cancer, a late stage of prostate cancer that is incurable and kills ca. 70.000 European men every year.
Max ERC Funding
1 950 000 €
Duration
Start date: 2015-07-01, End date: 2020-06-30
Project acronym CoopCat
Project Cooperative Catalysis: Using Interdisciplinary Chemical Systems to Develop New Cooperative Catalysts
Researcher (PI) Jesus CAMPOS MANZANO
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Starting Grant (StG), PE5, ERC-2017-STG
Summary Catalysis, a multidisciplinary science at the heart of many industrial processes, is crucial to deliver future growth and minimize anthropogenic environmental impact, thus being critical to our quality of life. Thus, the development and fundamental understanding of innovative new catalyst systems has clear, direct and long-term benefits to the chemical manufacturing sector and to the broader knowledge-based economy.
In this ERC project I will develop novel innovative cooperative catalysts using interdisciplinary chemical systems based on main group elements, transition metals and molecular clusters to achieve better efficiency and improve chemical scope and sustainability of key chemical transformations.
This will be achieved through 3 complementary and original strategies based on catalytic cooperation: (i) Transition-Metal Frustrated Lewis Pairs (TM-FLPs); (ii) hybrid systems combining low-valent heavier main group elements with transition metals (Hybrid TM/MGs); and (iii) intercluster compounds (ICCs) as versatile heterogeneized materials for Green Catalysis.
These systems, of high synthetic feasibility, combine fundamental concepts from independent areas, e.g. FLPs and low-valent heavier main group elements with transition metal chemistry, and homogeneous with heterogeneous catalysis. The overall approach will be pivotal in discovering novel reactions that rely on the activation of otherwise unreactive substrates. The experience and knowledge gained from (i)-(iii) will be used to inform the design of a second generation of ICC materials in which at least one of the nanoscale bricks is based on polymetallic TM-FLPs or Hybrid TM/MG systems.
Delivering ground-breaking new fundamental science, this pioneering project will lay the foundation for future broad ranging benefits to a number of EU priority areas dependant on innovations in catalysis: innovative and sustainable future energy systems, solar technologies, sustainable chemistry, manufacturing, and healthcare.
Summary
Catalysis, a multidisciplinary science at the heart of many industrial processes, is crucial to deliver future growth and minimize anthropogenic environmental impact, thus being critical to our quality of life. Thus, the development and fundamental understanding of innovative new catalyst systems has clear, direct and long-term benefits to the chemical manufacturing sector and to the broader knowledge-based economy.
In this ERC project I will develop novel innovative cooperative catalysts using interdisciplinary chemical systems based on main group elements, transition metals and molecular clusters to achieve better efficiency and improve chemical scope and sustainability of key chemical transformations.
This will be achieved through 3 complementary and original strategies based on catalytic cooperation: (i) Transition-Metal Frustrated Lewis Pairs (TM-FLPs); (ii) hybrid systems combining low-valent heavier main group elements with transition metals (Hybrid TM/MGs); and (iii) intercluster compounds (ICCs) as versatile heterogeneized materials for Green Catalysis.
These systems, of high synthetic feasibility, combine fundamental concepts from independent areas, e.g. FLPs and low-valent heavier main group elements with transition metal chemistry, and homogeneous with heterogeneous catalysis. The overall approach will be pivotal in discovering novel reactions that rely on the activation of otherwise unreactive substrates. The experience and knowledge gained from (i)-(iii) will be used to inform the design of a second generation of ICC materials in which at least one of the nanoscale bricks is based on polymetallic TM-FLPs or Hybrid TM/MG systems.
Delivering ground-breaking new fundamental science, this pioneering project will lay the foundation for future broad ranging benefits to a number of EU priority areas dependant on innovations in catalysis: innovative and sustainable future energy systems, solar technologies, sustainable chemistry, manufacturing, and healthcare.
Max ERC Funding
1 445 000 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym COSMOS
Project Computational Simulations of MOFs for Gas Separations
Researcher (PI) Seda Keskin Avci
Host Institution (HI) KOC UNIVERSITY
Call Details Starting Grant (StG), PE8, ERC-2017-STG
Summary Metal organic frameworks (MOFs) are recently considered as new fascinating nanoporous materials. MOFs have very large surface areas, high porosities, various pore sizes/shapes, chemical functionalities and good thermal/chemical stabilities. These properties make MOFs highly promising for gas separation applications. Thousands of MOFs have been synthesized in the last decade. The large number of available MOFs creates excellent opportunities to develop energy-efficient gas separation technologies. On the other hand, it is very challenging to identify the best materials for each gas separation of interest. Considering the continuous rapid increase in the number of synthesized materials, it is practically not possible to test each MOF using purely experimental manners. Highly accurate computational methods are required to identify the most promising MOFs to direct experimental efforts, time and resources to those materials. In this project, I will build a complete MOF library and use molecular simulations to assess adsorption and diffusion properties of gas mixtures in MOFs. Results of simulations will be used to predict adsorbent and membrane properties of MOFs for scientifically and technologically important gas separation processes such as CO2/CH4 (natural gas purification), CO2/N2 (flue gas separation), CO2/H2, CH4/H2 and N2/H2 (hydrogen recovery). I will obtain the fundamental, atomic-level insights into the common features of the top-performing MOFs and establish structure-performance relations. These relations will be used as guidelines to computationally design new MOFs with outstanding separation performances for CO2 capture and H2 recovery. These new MOFs will be finally synthesized in the lab scale and tested as adsorbents and membranes under practical operating conditions for each gas separation of interest. Combining a multi-stage computational approach with experiments, this project will lead to novel, efficient gas separation technologies based on MOFs.
Summary
Metal organic frameworks (MOFs) are recently considered as new fascinating nanoporous materials. MOFs have very large surface areas, high porosities, various pore sizes/shapes, chemical functionalities and good thermal/chemical stabilities. These properties make MOFs highly promising for gas separation applications. Thousands of MOFs have been synthesized in the last decade. The large number of available MOFs creates excellent opportunities to develop energy-efficient gas separation technologies. On the other hand, it is very challenging to identify the best materials for each gas separation of interest. Considering the continuous rapid increase in the number of synthesized materials, it is practically not possible to test each MOF using purely experimental manners. Highly accurate computational methods are required to identify the most promising MOFs to direct experimental efforts, time and resources to those materials. In this project, I will build a complete MOF library and use molecular simulations to assess adsorption and diffusion properties of gas mixtures in MOFs. Results of simulations will be used to predict adsorbent and membrane properties of MOFs for scientifically and technologically important gas separation processes such as CO2/CH4 (natural gas purification), CO2/N2 (flue gas separation), CO2/H2, CH4/H2 and N2/H2 (hydrogen recovery). I will obtain the fundamental, atomic-level insights into the common features of the top-performing MOFs and establish structure-performance relations. These relations will be used as guidelines to computationally design new MOFs with outstanding separation performances for CO2 capture and H2 recovery. These new MOFs will be finally synthesized in the lab scale and tested as adsorbents and membranes under practical operating conditions for each gas separation of interest. Combining a multi-stage computational approach with experiments, this project will lead to novel, efficient gas separation technologies based on MOFs.
Max ERC Funding
1 500 000 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym COTURB
Project Coherent Structures in Wall-bounded Turbulence
Researcher (PI) Javier Jiménez Sendín
Host Institution (HI) UNIVERSIDAD POLITECNICA DE MADRID
Call Details Advanced Grant (AdG), PE8, ERC-2014-ADG
Summary Turbulence is a multiscale phenomenon for which control efforts have often failed because the dimension of the attractor is large. However, kinetic energy and drag are controlled by relatively few slowly evolving large structures that sit on top of a multiscale cascade of smaller eddies. They are essentially single-scale phenomena whose evolution can be described using less information than for the full flow. In evolutionary terms they are punctuated ‘equilibria’ for which chaotic evolution is only intermittent. The rest of the time they can be considered coherent and predictable for relatively long periods. Coherent structures studied in the 1970s in free-shear flows (e.g. jets) eventually led to increased understanding and to industrial applications. In wall-bounded cases (e.g. boundary layers), proposed structures range from exact permanent waves and orbits to qualitative observations such as hairpins or ejections. Although most of them have been described at low Reynolds numbers, there are reasons to believe that they persist at higher ones in the ‘LES’ sense in which small scales are treated statistically. Recent computational and experimental advances provide enough temporally and spatially resolved data to quantify the relevance of such models to fully developed flows. We propose to use mostly existing numerical data bases to test the various models of wall-bounded coherent structures, to quantify how often and how closely the flow approaches them, and to develop moderate-time predictions. Existing solutions will be extended to the LES equations, methods will be sought to identify them in fully turbulent flows, and reduced-order models will be developed and tested. In practical situations, the idea is to be able to detect large eddies and to predict them ‘most of the time’. If simple enough models are found, the process will be implemented in the laboratory and used to suggest control strategies.
Summary
Turbulence is a multiscale phenomenon for which control efforts have often failed because the dimension of the attractor is large. However, kinetic energy and drag are controlled by relatively few slowly evolving large structures that sit on top of a multiscale cascade of smaller eddies. They are essentially single-scale phenomena whose evolution can be described using less information than for the full flow. In evolutionary terms they are punctuated ‘equilibria’ for which chaotic evolution is only intermittent. The rest of the time they can be considered coherent and predictable for relatively long periods. Coherent structures studied in the 1970s in free-shear flows (e.g. jets) eventually led to increased understanding and to industrial applications. In wall-bounded cases (e.g. boundary layers), proposed structures range from exact permanent waves and orbits to qualitative observations such as hairpins or ejections. Although most of them have been described at low Reynolds numbers, there are reasons to believe that they persist at higher ones in the ‘LES’ sense in which small scales are treated statistically. Recent computational and experimental advances provide enough temporally and spatially resolved data to quantify the relevance of such models to fully developed flows. We propose to use mostly existing numerical data bases to test the various models of wall-bounded coherent structures, to quantify how often and how closely the flow approaches them, and to develop moderate-time predictions. Existing solutions will be extended to the LES equations, methods will be sought to identify them in fully turbulent flows, and reduced-order models will be developed and tested. In practical situations, the idea is to be able to detect large eddies and to predict them ‘most of the time’. If simple enough models are found, the process will be implemented in the laboratory and used to suggest control strategies.
Max ERC Funding
2 497 000 €
Duration
Start date: 2016-02-01, End date: 2021-01-31
Project acronym CUHL
Project Controlling Ultrafast Heat in Layered materials
Researcher (PI) Klaas-Jan TIELROOIJ
Host Institution (HI) FUNDACIO INSTITUT CATALA DE NANOCIENCIA I NANOTECNOLOGIA
Call Details Starting Grant (StG), PE3, ERC-2018-STG
Summary In this project I propose to take advantage of the enormous potential created by the recent material science revolution based on two-dimensional (2D) layered materials, by bringing it to the arena of nanoscale heat transport, where heat transport occurs on ultrafast timescales. This opens up a new research field of controllable ultrafast heat transport in layered materials. In particular, I will take advantage of the myriad of possibilities for miniature material and device design, with unprecedented controllability and versatility, offered by Van der Waals (VdW) heterostructures – stacks of different layered materials assembled on top of each other – and 1D systems of layered materials.
Specifically, I will introduce novel device geometries based on VdW heterostructures for passively and actively controlling phonon modes and thermal transport. This will be measured mainly using time-domain thermoreflectance measurements. I will also develop novel time-resolved measurement techniques to follow heat spreading and coupling between different heat carriers: light, phonons, and electrons. These techniques will be mainly based on time-resolved infrared/Raman spectroscopy and photocurrent scanning microscopy. Moreover, I will study one-dimensional layered materials and assess their thermoelectric properties using electrical measurements. And finally, I will combine these results into hybrid devices with a photoactive layer, in order to demonstrate how phonon control allows for tuning of electrical and optoelectronic properties.
The results of this project will have an impact on the major research fields of phononics, electronics and photonics, revealing novel physical phenomena. Additionally, the results are likely to be useful towards applications such as thermal management, thermoelectrics, photovoltaics and photodetection.
Summary
In this project I propose to take advantage of the enormous potential created by the recent material science revolution based on two-dimensional (2D) layered materials, by bringing it to the arena of nanoscale heat transport, where heat transport occurs on ultrafast timescales. This opens up a new research field of controllable ultrafast heat transport in layered materials. In particular, I will take advantage of the myriad of possibilities for miniature material and device design, with unprecedented controllability and versatility, offered by Van der Waals (VdW) heterostructures – stacks of different layered materials assembled on top of each other – and 1D systems of layered materials.
Specifically, I will introduce novel device geometries based on VdW heterostructures for passively and actively controlling phonon modes and thermal transport. This will be measured mainly using time-domain thermoreflectance measurements. I will also develop novel time-resolved measurement techniques to follow heat spreading and coupling between different heat carriers: light, phonons, and electrons. These techniques will be mainly based on time-resolved infrared/Raman spectroscopy and photocurrent scanning microscopy. Moreover, I will study one-dimensional layered materials and assess their thermoelectric properties using electrical measurements. And finally, I will combine these results into hybrid devices with a photoactive layer, in order to demonstrate how phonon control allows for tuning of electrical and optoelectronic properties.
The results of this project will have an impact on the major research fields of phononics, electronics and photonics, revealing novel physical phenomena. Additionally, the results are likely to be useful towards applications such as thermal management, thermoelectrics, photovoltaics and photodetection.
Max ERC Funding
1 475 000 €
Duration
Start date: 2018-12-01, End date: 2023-11-30
Project acronym CUTACOMBS
Project Cuts and decompositions: algorithms and combinatorial properties
Researcher (PI) Marcin PILIPCZUK
Host Institution (HI) UNIWERSYTET WARSZAWSKI
Call Details Starting Grant (StG), PE6, ERC-2016-STG
Summary In this proposal we plan to extend mathematical foundations of algorithms for various variants of the minimum cut problem within theoretical computer science.
Recent advances in understanding the structure of small cuts and tractability of cut problems resulted in a mature algorithmic toolbox for undirected graphs under the paradigm of parameterized complexity. In this position, we now aim at a full understanding of the tractability of cut problems in the more challenging case of directed graphs, and see opportunities to apply the aforementioned successful structural approach to advance on major open problems in other paradigms in theoretical computer science.
The specific goals of the project are grouped in the following three themes.
Directed graphs. Chart the parameterized complexity of graph separation problems in directed graphs and provide a fixed-parameter tractability toolbox, equally deep as the one in undirected graphs. Provide tractability foundations for routing problems in directed graphs, such as the disjoint paths problem with symmetric demands.
Planar graphs. Resolve main open problems with respect to network design and graph separation problems in planar graphs under the following three paradigms: parameterized complexity, approximation schemes, and cut/flow/distance sparsifiers. Recently discovered connections uncover significant potential in synergy between these three algorithmic approaches.
Tree decompositions. Show improved tractability of graph isomorphism testing in sparse graph classes. Combine the algorithmic toolbox of parameterized complexity with the theory of minimal triangulations to advance our knowledge in structural graph theory, both pure (focused on the Erdos-Hajnal conjecture) and algorithmic (focused on the tractability of Maximum Independent Set and 3-Coloring).
Summary
In this proposal we plan to extend mathematical foundations of algorithms for various variants of the minimum cut problem within theoretical computer science.
Recent advances in understanding the structure of small cuts and tractability of cut problems resulted in a mature algorithmic toolbox for undirected graphs under the paradigm of parameterized complexity. In this position, we now aim at a full understanding of the tractability of cut problems in the more challenging case of directed graphs, and see opportunities to apply the aforementioned successful structural approach to advance on major open problems in other paradigms in theoretical computer science.
The specific goals of the project are grouped in the following three themes.
Directed graphs. Chart the parameterized complexity of graph separation problems in directed graphs and provide a fixed-parameter tractability toolbox, equally deep as the one in undirected graphs. Provide tractability foundations for routing problems in directed graphs, such as the disjoint paths problem with symmetric demands.
Planar graphs. Resolve main open problems with respect to network design and graph separation problems in planar graphs under the following three paradigms: parameterized complexity, approximation schemes, and cut/flow/distance sparsifiers. Recently discovered connections uncover significant potential in synergy between these three algorithmic approaches.
Tree decompositions. Show improved tractability of graph isomorphism testing in sparse graph classes. Combine the algorithmic toolbox of parameterized complexity with the theory of minimal triangulations to advance our knowledge in structural graph theory, both pure (focused on the Erdos-Hajnal conjecture) and algorithmic (focused on the tractability of Maximum Independent Set and 3-Coloring).
Max ERC Funding
1 228 250 €
Duration
Start date: 2017-03-01, End date: 2022-02-28
Project acronym CZOSQP
Project Noncommutative Calderón-Zygmund theory, operator space geometry and quantum probability
Researcher (PI) Javier Parcet Hernandez
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Starting Grant (StG), PE1, ERC-2010-StG_20091028
Summary Von Neumann's concept of quantization goes back to the foundations of quantum mechanics
and provides a noncommutative model of integration. Over the years, von Neumann algebras
have shown a profound structure and set the right framework for quantizing portions of algebra,
analysis, geometry and probability. A fundamental part of my research is devoted to develop a
very much expected Calderón-Zygmund theory for von Neumann algebras. The lack of natural
metrics partly justifies this long standing gap in the theory. Key new ingredients come from
recent results on noncommutative martingale inequalities, operator space theory and quantum
probability. This is an ambitious research project and applications include new estimates for
noncommutative Riesz transforms, Fourier and Schur multipliers on arbitrary discrete groups
or noncommutative ergodic theorems. Other related objectives of this project include Rubio
de Francia's conjecture on the almost everywhere convergence of Fourier series for matrix
valued functions or a formulation of Fefferman-Stein's maximal inequality for noncommutative
martingales. Reciprocally, I will also apply new techniques from quantum probability in
noncommutative Lp embedding theory and the local theory of operator spaces. I have already
obtained major results in this field, which might be useful towards a noncommutative form of
weighted harmonic analysis and new challenging results on quantum information theory.
Summary
Von Neumann's concept of quantization goes back to the foundations of quantum mechanics
and provides a noncommutative model of integration. Over the years, von Neumann algebras
have shown a profound structure and set the right framework for quantizing portions of algebra,
analysis, geometry and probability. A fundamental part of my research is devoted to develop a
very much expected Calderón-Zygmund theory for von Neumann algebras. The lack of natural
metrics partly justifies this long standing gap in the theory. Key new ingredients come from
recent results on noncommutative martingale inequalities, operator space theory and quantum
probability. This is an ambitious research project and applications include new estimates for
noncommutative Riesz transforms, Fourier and Schur multipliers on arbitrary discrete groups
or noncommutative ergodic theorems. Other related objectives of this project include Rubio
de Francia's conjecture on the almost everywhere convergence of Fourier series for matrix
valued functions or a formulation of Fefferman-Stein's maximal inequality for noncommutative
martingales. Reciprocally, I will also apply new techniques from quantum probability in
noncommutative Lp embedding theory and the local theory of operator spaces. I have already
obtained major results in this field, which might be useful towards a noncommutative form of
weighted harmonic analysis and new challenging results on quantum information theory.
Max ERC Funding
1 090 925 €
Duration
Start date: 2010-10-01, End date: 2015-09-30
Project acronym DAMOC
Project Diabetes Approach by Multi-Organ-on-a-Chip
Researcher (PI) Javier RAMON
Host Institution (HI) FUNDACIO INSTITUT DE BIOENGINYERIA DE CATALUNYA
Call Details Starting Grant (StG), PE8, ERC-2016-STG
Summary Insulin secretion and insulin action are critical for normal glucose homeostasis. Defects in both of these processes lead to type 2 diabetes (T2D). Unravelling the mechanisms that lead to T2D is fundamental in the search of new molecular drugs to prevent and control this disease. Organ-on-a-chip devices offer new approaches for T2D disease modelling and drug discovery by providing biologically relevant models of tissues and organs in vitro integrated with biosensors. As such, organ-on-a-chip devices have the potential to revolutionize the pharmaceutical industry by enabling reliable and high predictive in vitro testing of drug candidates. The capability to miniaturize biosensor systems and advanced tissue fabrication procedures have enabled researchers to create multiple tissues on a chip with a high degree of control over experimental variables for high-content screening applications. The goal of this project is the fabrication of a biomimetic multi organ-on-a-chip integrated device composed of skeletal muscle and pancreatic islets for studying metabolism glucose diseases and for drug screening applications. Engineered muscle tissues and pancreatic islets are integrated with the technology to detect the glucose consumption, contraction induced glucose metabolism, insulin secretion and protein biomarker secretion of cells. We aim to design a novel therapeutic tool to test drugs with a multi organ-on-a-chip device. Such finding would improve drug test approaches and would provide for new therapies to prevent the loss of beta cell mass associated with T2D and defects in the glucose uptake in skeletal muscle.
Summary
Insulin secretion and insulin action are critical for normal glucose homeostasis. Defects in both of these processes lead to type 2 diabetes (T2D). Unravelling the mechanisms that lead to T2D is fundamental in the search of new molecular drugs to prevent and control this disease. Organ-on-a-chip devices offer new approaches for T2D disease modelling and drug discovery by providing biologically relevant models of tissues and organs in vitro integrated with biosensors. As such, organ-on-a-chip devices have the potential to revolutionize the pharmaceutical industry by enabling reliable and high predictive in vitro testing of drug candidates. The capability to miniaturize biosensor systems and advanced tissue fabrication procedures have enabled researchers to create multiple tissues on a chip with a high degree of control over experimental variables for high-content screening applications. The goal of this project is the fabrication of a biomimetic multi organ-on-a-chip integrated device composed of skeletal muscle and pancreatic islets for studying metabolism glucose diseases and for drug screening applications. Engineered muscle tissues and pancreatic islets are integrated with the technology to detect the glucose consumption, contraction induced glucose metabolism, insulin secretion and protein biomarker secretion of cells. We aim to design a novel therapeutic tool to test drugs with a multi organ-on-a-chip device. Such finding would improve drug test approaches and would provide for new therapies to prevent the loss of beta cell mass associated with T2D and defects in the glucose uptake in skeletal muscle.
Max ERC Funding
1 499 554 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym DAUBOR
Project Design and Applications of Unconventional Borylation Reactions
Researcher (PI) Mariola Tortosa Manzanares
Host Institution (HI) UNIVERSIDAD AUTONOMA DE MADRID
Call Details Starting Grant (StG), PE5, ERC-2013-StG
Summary "Boronic esters are versatile synthetic intermediates for the preparation of a wide range of organic molecules. The recent approval of the anti-cancer agent Velcade, the first boronic acid containing drug commercialized, further confirms the status of boronic acid derivatives as an important class of compounds in chemistry and medicine. This proposal aims to develop three new unconventional approaches for the synthesis of boronic esters.
The first one is based on the use of copper (low price and low toxicity) to promote unknown borylation reactions. Our method is an important step forward in that it proceeds using catalytic quantities of copper and allows the formation of a C-B bond along with a C-C or a C-N bond in a single catalytic cycle. Additionally, a copper-catalyzed borylation reaction is proposed as the key tool to solve the total synthesis of nigricanoside A, a potent antimitotic agent. The total synthesis of this natural product could have an impact in cancer research similar to that found for taxol or epothilones.
The second approach deals with the development of borylation reactions under metal-free conditions. I propose to use bifunctional catalysts to promote the dual activation of B-B bonds and suitable electrophiles. This approach constitutes an unconventional way to synthesize boronic esters and has no precedent in the literature.
Finally, the third section of this proposal branches into riskier territory. I propose to use Lewis-base/diboron adducts to generate organoboryl radicals. If successful, the potential impact will be very high and will certainly open unexplored ways in boron chemistry.
The copper-catalyzed, metal-free, and radical approaches proceed by mechanistically distinct pathways and can give rise to complementary reactivity and selectivity partners. New findings in these areas would represent a significant step in the industrial and academic synthesis of boronic esters."
Summary
"Boronic esters are versatile synthetic intermediates for the preparation of a wide range of organic molecules. The recent approval of the anti-cancer agent Velcade, the first boronic acid containing drug commercialized, further confirms the status of boronic acid derivatives as an important class of compounds in chemistry and medicine. This proposal aims to develop three new unconventional approaches for the synthesis of boronic esters.
The first one is based on the use of copper (low price and low toxicity) to promote unknown borylation reactions. Our method is an important step forward in that it proceeds using catalytic quantities of copper and allows the formation of a C-B bond along with a C-C or a C-N bond in a single catalytic cycle. Additionally, a copper-catalyzed borylation reaction is proposed as the key tool to solve the total synthesis of nigricanoside A, a potent antimitotic agent. The total synthesis of this natural product could have an impact in cancer research similar to that found for taxol or epothilones.
The second approach deals with the development of borylation reactions under metal-free conditions. I propose to use bifunctional catalysts to promote the dual activation of B-B bonds and suitable electrophiles. This approach constitutes an unconventional way to synthesize boronic esters and has no precedent in the literature.
Finally, the third section of this proposal branches into riskier territory. I propose to use Lewis-base/diboron adducts to generate organoboryl radicals. If successful, the potential impact will be very high and will certainly open unexplored ways in boron chemistry.
The copper-catalyzed, metal-free, and radical approaches proceed by mechanistically distinct pathways and can give rise to complementary reactivity and selectivity partners. New findings in these areas would represent a significant step in the industrial and academic synthesis of boronic esters."
Max ERC Funding
1 495 200 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym DECRESIM
Project A Chemical Approach to Molecular Spin Qubits: Decoherence and Organisation of Rare Earth Single Ion Magnets
Researcher (PI) Alejandro Gaita Ariño
Host Institution (HI) UNIVERSITAT DE VALENCIA
Call Details Consolidator Grant (CoG), PE5, ERC-2014-CoG
Summary "Coordination Chemistry and Molecular Magnetism are in an ideal position for the rational design of Single-Molecule Magnets which can be used as molecular spin qubits, the irreducible components of any quantum technology. Indeed, a major advantage of molecular spin qubits over other candidates stems from the power of Chemistry for a tailored and inexpensive synthesis of systems for their experimental study. In particular, the so-called Lanthanoid-based Single-Ion Magnets, which are currently the hottest topic in Molecular Magnetism, have the potential to be chemically designed, tuning both their single-molecule properties and their crystalline environment. This will allow the independent study of the different quantum processes that cause the loss of quantum information, collectively known as decoherence. The study of quantum decoherence processes in the solid state is necessary both to lay the foundations for next-generation quantum technologies and to answer some fundamental questions.
The goals of this project are:
#1 To unravel the mechanistic details of decoherence in molecular spin qubits based on mononuclear lanthanoid complexes. This study will stablish criteria for the rational design of single spin qubits.
#2 To extend this study to the coupling between two or more spin qubits. This will allow us to explore the use of polynuclear lanthanoid complexes to achieve quantum gates or simple algorithms.
#3 To extrapolate to infinite systems formed by the complex organization of spin qubits. This exploratory goal will permit us to move beyond zero-dimensional systems, thus facilitating the advance towards complex quantum functions.
"
Summary
"Coordination Chemistry and Molecular Magnetism are in an ideal position for the rational design of Single-Molecule Magnets which can be used as molecular spin qubits, the irreducible components of any quantum technology. Indeed, a major advantage of molecular spin qubits over other candidates stems from the power of Chemistry for a tailored and inexpensive synthesis of systems for their experimental study. In particular, the so-called Lanthanoid-based Single-Ion Magnets, which are currently the hottest topic in Molecular Magnetism, have the potential to be chemically designed, tuning both their single-molecule properties and their crystalline environment. This will allow the independent study of the different quantum processes that cause the loss of quantum information, collectively known as decoherence. The study of quantum decoherence processes in the solid state is necessary both to lay the foundations for next-generation quantum technologies and to answer some fundamental questions.
The goals of this project are:
#1 To unravel the mechanistic details of decoherence in molecular spin qubits based on mononuclear lanthanoid complexes. This study will stablish criteria for the rational design of single spin qubits.
#2 To extend this study to the coupling between two or more spin qubits. This will allow us to explore the use of polynuclear lanthanoid complexes to achieve quantum gates or simple algorithms.
#3 To extrapolate to infinite systems formed by the complex organization of spin qubits. This exploratory goal will permit us to move beyond zero-dimensional systems, thus facilitating the advance towards complex quantum functions.
"
Max ERC Funding
1 827 375 €
Duration
Start date: 2015-08-01, End date: 2020-07-31
Project acronym DIDONE
Project The Sources of Absolute Music: Mapping Emotions in Eighteenth-Century Italian Opera
Researcher (PI) Álvaro TORRENTE SANCHEZ GUISANDE
Host Institution (HI) UNIVERSIDAD COMPLUTENSE DE MADRID
Call Details Advanced Grant (AdG), SH5, ERC-2017-ADG
Summary The belief that ‘the end of music is to move human affections’ (Descartes, Compendium musicae) has been a central issue in European musical thought since Plato. Opera was invented to recover the power of Ancient music to move the human heart, and its history is a permanent exploration of the capacity of action, words and music to convey emotions.
In the eighteenth century a new type of opera consolidated with the chief concern of expressing the character’s emotions as they changed throughout the drama, inspired by Descartes’ theory of human passions. The key expressive medium was the aria col da capo, where a single, distinct passion was represented, like a concentrated pill of emotional meaning. The ideal corpus to study this issue are the 900 operas set to music by 300 composers on the 27 dramas by Pietro Metastasio (1698-1782). It contains a comprehensive catalogue of emotions in music, a unique window of opportunity to scrutinize conventions that defined music expression and meaning for over a century, paving the way for the emergence of ‘absolute’ instrumental music, autonomous from any other art form.
DIDONE presents an innovative approach to unveil these conventions: the creation of a corpus of 4,000 digitized arias from 200 opera scores based on Metastasio’s eight most popular dramas, to be analysed using traditional methods and big data computer technology. The comparative scrutiny of dozens of different musical settings of the same librettos will reveal how composers correlate specific dramatic circumstances and emotions with distinct poetic and musical features. The results will be applicable to three main fields: (i) opera performance; (ii) analysis and interpretation of other types of music; and (iii) composition in several scenarios, from film soundtracks to creation by Artificial Intelligence. An opera festival will be designed to recover and disseminate this hitherto ignored repertoire, which was essential to define the European musical identity.
Summary
The belief that ‘the end of music is to move human affections’ (Descartes, Compendium musicae) has been a central issue in European musical thought since Plato. Opera was invented to recover the power of Ancient music to move the human heart, and its history is a permanent exploration of the capacity of action, words and music to convey emotions.
In the eighteenth century a new type of opera consolidated with the chief concern of expressing the character’s emotions as they changed throughout the drama, inspired by Descartes’ theory of human passions. The key expressive medium was the aria col da capo, where a single, distinct passion was represented, like a concentrated pill of emotional meaning. The ideal corpus to study this issue are the 900 operas set to music by 300 composers on the 27 dramas by Pietro Metastasio (1698-1782). It contains a comprehensive catalogue of emotions in music, a unique window of opportunity to scrutinize conventions that defined music expression and meaning for over a century, paving the way for the emergence of ‘absolute’ instrumental music, autonomous from any other art form.
DIDONE presents an innovative approach to unveil these conventions: the creation of a corpus of 4,000 digitized arias from 200 opera scores based on Metastasio’s eight most popular dramas, to be analysed using traditional methods and big data computer technology. The comparative scrutiny of dozens of different musical settings of the same librettos will reveal how composers correlate specific dramatic circumstances and emotions with distinct poetic and musical features. The results will be applicable to three main fields: (i) opera performance; (ii) analysis and interpretation of other types of music; and (iii) composition in several scenarios, from film soundtracks to creation by Artificial Intelligence. An opera festival will be designed to recover and disseminate this hitherto ignored repertoire, which was essential to define the European musical identity.
Max ERC Funding
2 498 690 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym DYCON
Project Dynamic Control and Numerics of Partial Differential Equations
Researcher (PI) Enrique Zuazua
Host Institution (HI) FUNDACION DEUSTO
Call Details Advanced Grant (AdG), PE1, ERC-2015-AdG
Summary This project aims at making a breakthrough contribution in the broad area of Control of Partial Differential Equations (PDE) and their numerical approximation methods by addressing key unsolved issues appearing systematically in real-life applications.
To this end, we pursue three objectives: 1) to contribute with new key theoretical methods and results, 2) to develop the corresponding numerical tools, and 3) to build up new computational software, the DYCON-COMP computational platform, thereby bridging the gap to applications.
The field of PDEs, together with numerical approximation and simulation methods and control theory, have evolved significantly in the last decades in a cross-fertilization process, to address the challenging demands of industrial and cross-disciplinary applications such as, for instance, the management of natural resources, meteorology, aeronautics, oil industry, biomedicine, human and animal collective behaviour, etc. Despite these efforts, some of the key issues still remain unsolved, either because of a lack of analytical understanding, of the absence of efficient numerical solvers, or of a combination of both.
This project identifies and focuses on six key topics that play a central role in most of the processes arising in applications, but which are still poorly understood: control of parameter dependent problems; long time horizon control; control under constraints; inverse design of time-irreversible models; memory models and hybrid PDE/ODE models, and finite versus infinite-dimensional dynamical systems.
These topics cannot be handled by superposing the state of the art in the various disciplines, due to the unexpected interactive phenomena that may emerge, for instance, in the fine numerical approximation of control problems. The coordinated and focused effort that we aim at developing is timely and much needed in order to solve these issues and bridge the gap from modelling to control, computer simulations and applications.
Summary
This project aims at making a breakthrough contribution in the broad area of Control of Partial Differential Equations (PDE) and their numerical approximation methods by addressing key unsolved issues appearing systematically in real-life applications.
To this end, we pursue three objectives: 1) to contribute with new key theoretical methods and results, 2) to develop the corresponding numerical tools, and 3) to build up new computational software, the DYCON-COMP computational platform, thereby bridging the gap to applications.
The field of PDEs, together with numerical approximation and simulation methods and control theory, have evolved significantly in the last decades in a cross-fertilization process, to address the challenging demands of industrial and cross-disciplinary applications such as, for instance, the management of natural resources, meteorology, aeronautics, oil industry, biomedicine, human and animal collective behaviour, etc. Despite these efforts, some of the key issues still remain unsolved, either because of a lack of analytical understanding, of the absence of efficient numerical solvers, or of a combination of both.
This project identifies and focuses on six key topics that play a central role in most of the processes arising in applications, but which are still poorly understood: control of parameter dependent problems; long time horizon control; control under constraints; inverse design of time-irreversible models; memory models and hybrid PDE/ODE models, and finite versus infinite-dimensional dynamical systems.
These topics cannot be handled by superposing the state of the art in the various disciplines, due to the unexpected interactive phenomena that may emerge, for instance, in the fine numerical approximation of control problems. The coordinated and focused effort that we aim at developing is timely and much needed in order to solve these issues and bridge the gap from modelling to control, computer simulations and applications.
Max ERC Funding
2 065 125 €
Duration
Start date: 2016-10-01, End date: 2021-09-30
Project acronym DYNAMO
Project Dynamical processes in open quantum systems: pushing the frontiers of theoretical spectroscopy
Researcher (PI) Angel Secades Rubio
Host Institution (HI) UNIVERSIDAD DEL PAIS VASCO/ EUSKAL HERRIKO UNIBERTSITATEA
Call Details Advanced Grant (AdG), PE4, ERC-2010-AdG_20100224
Summary "Scope ""Energy Materials. In this project we develop new concepts for building a novel theoretical framework (the ab-initio non-equilibrium dynamical modelling tool”) for understanding, identifying, and quantifying the different contributions to energy harvesting and storage as well as describing transport mechanisms in natural light harvesting complexes, photovoltaic materials, fluorescent proteins and artificial (nanostructured) devices by means of theories of open quantum systems, non-equilibrium processes and electronic structure. We address cutting-edge applications along three major scientific challenges: i) characterize matter out of equilibrium, ii) control material processes at the electronic level and tailor material properties, iii) master energy and information on the nanoscale. The long-term goal is developing a set of theoretical tools for the quantitative prediction of energy transfer phenomena in real systems.
We will provide answers to the following questions: What are the design principles from the environment-assisted quantum transport in photosynthetic organisms that can be transferred to nanostructured materials such as organic photovoltaic materials and biomimetic materials? What are the fundamental limits of excitonic transport properties such as exciton diffusion lengths and recombination rates? What is the role of quantum coherence in the energy transport in photosynthetic complexes and photovoltaic materials? What is the role of spatial confinement in water and proton transfer through porous membranes (nano-capillarity)?
The ground-breaking nature of the project lies in being the first systematic development and application of the theories of open quantum systems and quantum optimal control within an ab-initio framework (time-dependent-density functional theory). The project will open new methodological, applicative and theoretical horizons of research."
Summary
"Scope ""Energy Materials. In this project we develop new concepts for building a novel theoretical framework (the ab-initio non-equilibrium dynamical modelling tool”) for understanding, identifying, and quantifying the different contributions to energy harvesting and storage as well as describing transport mechanisms in natural light harvesting complexes, photovoltaic materials, fluorescent proteins and artificial (nanostructured) devices by means of theories of open quantum systems, non-equilibrium processes and electronic structure. We address cutting-edge applications along three major scientific challenges: i) characterize matter out of equilibrium, ii) control material processes at the electronic level and tailor material properties, iii) master energy and information on the nanoscale. The long-term goal is developing a set of theoretical tools for the quantitative prediction of energy transfer phenomena in real systems.
We will provide answers to the following questions: What are the design principles from the environment-assisted quantum transport in photosynthetic organisms that can be transferred to nanostructured materials such as organic photovoltaic materials and biomimetic materials? What are the fundamental limits of excitonic transport properties such as exciton diffusion lengths and recombination rates? What is the role of quantum coherence in the energy transport in photosynthetic complexes and photovoltaic materials? What is the role of spatial confinement in water and proton transfer through porous membranes (nano-capillarity)?
The ground-breaking nature of the project lies in being the first systematic development and application of the theories of open quantum systems and quantum optimal control within an ab-initio framework (time-dependent-density functional theory). The project will open new methodological, applicative and theoretical horizons of research."
Max ERC Funding
1 877 497 €
Duration
Start date: 2011-04-01, End date: 2016-03-31
Project acronym DYNAMO
Project Dynamics and assemblies of colloidal particles
under Magnetic and Optical forces
Researcher (PI) Pietro Tierno
Host Institution (HI) UNIVERSITAT DE BARCELONA
Call Details Starting Grant (StG), PE3, ERC-2013-StG
Summary Control of microscale matter through selective manipulation of colloidal building blocks will unveil novel scientific and technological avenues expanding current frontiers of knowledge in Soft Matter systems. I propose to combine state-of-the-art micromanipulation techniques based on magnetic and optical forces to transport, probe and assemble colloidal matter with single particle resolution in real time/space and otherwise unreachable capabilities. In the first part of the project, I will use paramagnetic colloids as externally controllable magnetic inclusions to probe the structural and rheological properties of optically assembled colloid crystals and glasses. In the second part, I will realize a new class of anisotropy patchy magnetic colloids, characterized by selective, directional and reversible interactions and employ these remotely addressable units to realize gels and frustrated crystals (static case), active jamming and synchronization via hydrodynamic coupling (dynamic case).
DynaMO project will power a basic experimental research embracing a variety of apparently different systems ranging from deterministic ratchets, viscoelastic crystals, glasses, patchy colloidal gels, frustrated crystals, active jamming, and hydrodynamic waves. The ERC grant will allow me to establish a young and dynamic research group of interdisciplinary nature focused on these issues and aimed at performing high quality research and training/inspiring talented researchers in innovative and challenging scientific projects.
Summary
Control of microscale matter through selective manipulation of colloidal building blocks will unveil novel scientific and technological avenues expanding current frontiers of knowledge in Soft Matter systems. I propose to combine state-of-the-art micromanipulation techniques based on magnetic and optical forces to transport, probe and assemble colloidal matter with single particle resolution in real time/space and otherwise unreachable capabilities. In the first part of the project, I will use paramagnetic colloids as externally controllable magnetic inclusions to probe the structural and rheological properties of optically assembled colloid crystals and glasses. In the second part, I will realize a new class of anisotropy patchy magnetic colloids, characterized by selective, directional and reversible interactions and employ these remotely addressable units to realize gels and frustrated crystals (static case), active jamming and synchronization via hydrodynamic coupling (dynamic case).
DynaMO project will power a basic experimental research embracing a variety of apparently different systems ranging from deterministic ratchets, viscoelastic crystals, glasses, patchy colloidal gels, frustrated crystals, active jamming, and hydrodynamic waves. The ERC grant will allow me to establish a young and dynamic research group of interdisciplinary nature focused on these issues and aimed at performing high quality research and training/inspiring talented researchers in innovative and challenging scientific projects.
Max ERC Funding
1 309 320 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym DYNAP
Project Dynamic Penetrating Peptide Adaptamers
Researcher (PI) Javier Montenegro Garcia
Host Institution (HI) UNIVERSIDAD DE SANTIAGO DE COMPOSTELA
Call Details Starting Grant (StG), PE5, ERC-2015-STG
Summary The aim of this proposal is to identify, at the molecular level, the minimal topological and structural motifs that govern the membrane translocation of short peptides. A covalent reversible bond strategy will be developed for the synthesis of self-adaptive penetrating peptides (adaptamers) for targeted delivery.
It is known that the recently developed therapeutic technologies (i.e. gene therapy, chemotherapy, hyperthermia, etc.) cannot reach their expected potential due to limitations in the current delivery strategies, which hinder the efficient targeting of the appropriate tissues, cells and organelles. Despite the enormous therapeutic potential of short penetrating peptides, these molecules suffer from drawbacks such as toxicity, instability to protease digestion and lack of specificity.
Dynamic covalent chemistry has significant synthetic advantages. In the proposed research, peptide scaffolds with clickable reversible groups (e.g. hydrazide) will be conjugated with collections of aldehydes to afford self-adaptive biomimetic transporters, whose secondary structure and penetrating properties will be systematically characterized by biophysical, cell-biology and pattern recognition techniques.
The versatility of dynamic supramolecular “peptide adaptamers” with precisely positioned protein ligands will be explored for multivalent specific recognition, protein transport, cell targeting of drugs and probes and membrane epitoping.
Additionally, we propose to synthesise dynamic and environmentally sensitive fluorescent probes for biocompatible membrane labelling and uptake signalling.
The resulting discoveries of this research will allow the formulation of novel transfecting reagents for gene therapy, selective platforms for drug-delivery and the development of dynamic fluorescent membrane probes. The potential results of this proposal will shake the fields of drug-delivery and non-viral gene transfection and will resolve the limitations of the current approaches.
Summary
The aim of this proposal is to identify, at the molecular level, the minimal topological and structural motifs that govern the membrane translocation of short peptides. A covalent reversible bond strategy will be developed for the synthesis of self-adaptive penetrating peptides (adaptamers) for targeted delivery.
It is known that the recently developed therapeutic technologies (i.e. gene therapy, chemotherapy, hyperthermia, etc.) cannot reach their expected potential due to limitations in the current delivery strategies, which hinder the efficient targeting of the appropriate tissues, cells and organelles. Despite the enormous therapeutic potential of short penetrating peptides, these molecules suffer from drawbacks such as toxicity, instability to protease digestion and lack of specificity.
Dynamic covalent chemistry has significant synthetic advantages. In the proposed research, peptide scaffolds with clickable reversible groups (e.g. hydrazide) will be conjugated with collections of aldehydes to afford self-adaptive biomimetic transporters, whose secondary structure and penetrating properties will be systematically characterized by biophysical, cell-biology and pattern recognition techniques.
The versatility of dynamic supramolecular “peptide adaptamers” with precisely positioned protein ligands will be explored for multivalent specific recognition, protein transport, cell targeting of drugs and probes and membrane epitoping.
Additionally, we propose to synthesise dynamic and environmentally sensitive fluorescent probes for biocompatible membrane labelling and uptake signalling.
The resulting discoveries of this research will allow the formulation of novel transfecting reagents for gene therapy, selective platforms for drug-delivery and the development of dynamic fluorescent membrane probes. The potential results of this proposal will shake the fields of drug-delivery and non-viral gene transfection and will resolve the limitations of the current approaches.
Max ERC Funding
1 492 525 €
Duration
Start date: 2016-02-01, End date: 2021-01-31
Project acronym E-GAMES
Project Surface Self-Assembled Molecular Electronic Devices: Logic Gates, Memories and Sensors
Researcher (PI) Marta Mas Torrent
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Starting Grant (StG), PE5, ERC-2012-StG_20111012
Summary Organic electronic devices, such as organic field-effect transistors (OFETs), are raising an increasing interest for their potential in large area coverage and low cost applications. Also, the use of single molecules as active electronic components offers great prospects for the miniaturization of devices and for their compatibility with biological systems. Within this framework, e-GAMES goals are:
1) Molecular logic gates for the storage and transmission of magnetic and optical information and for locally controlling surface wettability. The two huge limitations that hinder the application of molecules in logic gates are: i) Fabrication of devices on a solid support, ii) Concatenation of logic gates. I plan to overcome these drawbacks employing self-assembled monolayers of bistable electroactive molecules. These systems could also be used in the fabrication of surfaces with tunable wettability properties, of high interest in microfluidics and for biosensors.
2) Ambipolar organic field-effect transistors with donor-acceptor systems and their exploitation in light, temperature or pressure sensors, and/or memory devices.
Intramolecular electron transfer in organic semiconductors designed for preparing ambipolar OFETs will be explored for the first time. This phenomenon will be exploited for the fabrication of light, pressure or temperature stimuli-responsive OFETs bringing innovative perspectives to the field.
3) Organic/inorganic hybrid devices based on field-effect transistors for sensing environmentally hazardous carbon nanoparticles.
Carbon-based nanoparticles are being increasingly used in many applications despite their recognized toxicity. The grounds for the development of a new generation of nanotechnological low-cost and selective sensors based on transistors functionalized with organic sensing molecular monolayers for the detection of such materials will be developed, contributing towards the improvement of citizens’ safety and environmental preservation.
Summary
Organic electronic devices, such as organic field-effect transistors (OFETs), are raising an increasing interest for their potential in large area coverage and low cost applications. Also, the use of single molecules as active electronic components offers great prospects for the miniaturization of devices and for their compatibility with biological systems. Within this framework, e-GAMES goals are:
1) Molecular logic gates for the storage and transmission of magnetic and optical information and for locally controlling surface wettability. The two huge limitations that hinder the application of molecules in logic gates are: i) Fabrication of devices on a solid support, ii) Concatenation of logic gates. I plan to overcome these drawbacks employing self-assembled monolayers of bistable electroactive molecules. These systems could also be used in the fabrication of surfaces with tunable wettability properties, of high interest in microfluidics and for biosensors.
2) Ambipolar organic field-effect transistors with donor-acceptor systems and their exploitation in light, temperature or pressure sensors, and/or memory devices.
Intramolecular electron transfer in organic semiconductors designed for preparing ambipolar OFETs will be explored for the first time. This phenomenon will be exploited for the fabrication of light, pressure or temperature stimuli-responsive OFETs bringing innovative perspectives to the field.
3) Organic/inorganic hybrid devices based on field-effect transistors for sensing environmentally hazardous carbon nanoparticles.
Carbon-based nanoparticles are being increasingly used in many applications despite their recognized toxicity. The grounds for the development of a new generation of nanotechnological low-cost and selective sensors based on transistors functionalized with organic sensing molecular monolayers for the detection of such materials will be developed, contributing towards the improvement of citizens’ safety and environmental preservation.
Max ERC Funding
1 499 675 €
Duration
Start date: 2012-12-01, End date: 2018-09-30
Project acronym e-Sequence
Project e-Sequence: a sequential approach to engineer heteroatom doped graphene nanoribbons for electronic applications
Researcher (PI) Aurelio MATEO ALONSO
Host Institution (HI) UNIVERSIDAD DEL PAIS VASCO/ EUSKAL HERRIKO UNIBERTSITATEA
Call Details Consolidator Grant (CoG), PE5, ERC-2016-COG
Summary Graphene nanoribbons (NR) are quasi-1D nanostructures with discrete band gaps, ballistic conduction, and one-atom thickness. Such properties make them ideal candidates to develop low-dimensional semiconductors, which are essential components in nanoelectronics. Atomically-precise control over the structure of NR (width, length, edge, doping) is crucial to fully exploit their potential. However, current approaches for the synthesis of NR suffer from several drawbacks that do not allow attaining such level of precision, therefore alternative methods need to be sought.
e-Sequence will develop an unprecedented approach that assembles stepwise small molecular building blocks into NR to specifically target the most important challenges in NR synthesis. Such approach will enable the preparation of an unlimited number of NR with atomically-precise control over their structure and with almost no synthetic and purification effort, exceeding the limits of existing methods.
The impact of e-Sequence will not be limited to NR synthesis but it will also extend to other disciplines, since NR are promising candidates to develop new technologies with applications in electronics, sensing, photonics, energy storage and conversion, spintronics, etc.
e-Sequence ambitious research programme will be orchestrated by an independent scientist with an excellent track record of achievements in low-dimensional carbon nanostructures, and who has already established a fledgling and internationally competitive research group. Building on this and on his recent permanent appointment as Research Professor, the award of this ERC project will enable him to consolidate his group, build a portfolio of excellent research, and produce results that compete on the world stage.
Summary
Graphene nanoribbons (NR) are quasi-1D nanostructures with discrete band gaps, ballistic conduction, and one-atom thickness. Such properties make them ideal candidates to develop low-dimensional semiconductors, which are essential components in nanoelectronics. Atomically-precise control over the structure of NR (width, length, edge, doping) is crucial to fully exploit their potential. However, current approaches for the synthesis of NR suffer from several drawbacks that do not allow attaining such level of precision, therefore alternative methods need to be sought.
e-Sequence will develop an unprecedented approach that assembles stepwise small molecular building blocks into NR to specifically target the most important challenges in NR synthesis. Such approach will enable the preparation of an unlimited number of NR with atomically-precise control over their structure and with almost no synthetic and purification effort, exceeding the limits of existing methods.
The impact of e-Sequence will not be limited to NR synthesis but it will also extend to other disciplines, since NR are promising candidates to develop new technologies with applications in electronics, sensing, photonics, energy storage and conversion, spintronics, etc.
e-Sequence ambitious research programme will be orchestrated by an independent scientist with an excellent track record of achievements in low-dimensional carbon nanostructures, and who has already established a fledgling and internationally competitive research group. Building on this and on his recent permanent appointment as Research Professor, the award of this ERC project will enable him to consolidate his group, build a portfolio of excellent research, and produce results that compete on the world stage.
Max ERC Funding
2 000 000 €
Duration
Start date: 2017-11-01, End date: 2022-10-31
Project acronym eAXON
Project Electronic AXONs: wireless microstimulators based on electronic rectification of epidermically applied currents
Researcher (PI) Antonio IVORRA Cano
Host Institution (HI) UNIVERSIDAD POMPEU FABRA
Call Details Consolidator Grant (CoG), PE7, ERC-2016-COG
Summary To build interfaces between the electronic domain and the human nervous system is one of the most demanding challenges of nowadays engineering. Fascinating developments have already been performed such as visual cortical implants for the blind and cochlear implants for the deaf. Yet implantation of most electrical stimulation systems requires complex surgeries which hamper their use for the development of so-called electroceuticals. More importantly, previously developed systems based on central stimulation units are not adequate for applications in which a large number of sites must be individually stimulated over large and mobile body parts, thus hindering neuroprosthetic solutions for patients suffering paralysis due to spinal cord injury or other neurological disorders. A solution to these challenges could consist in developing addressable single-channel wireless microstimulators which could be implanted with simple procedures such as injection. And, indeed, such solution was proposed and tried in the past. However, previous attempts did not achieve satisfactory success because the developed implants were stiff and too large. Further miniaturization was prevented because of the use of inductive coupling and batteries as energy sources. Here I propose to explore an innovative method for performing electrical stimulation in which the implanted microstimulators will operate as rectifiers of bursts of innocuous high frequency current supplied through skin electrodes shaped as garments. This approach has the potential to reduce the diameter of the implants to one-fifth the diameter of current microstimulators and, more significantly, to allow that most of the implants’ volume consists of materials whose density and flexibility match those of neighbouring living tissues for minimizing invasiveness. In fact, implants based on the proposed method will look like short pieces of flexible thread.
Summary
To build interfaces between the electronic domain and the human nervous system is one of the most demanding challenges of nowadays engineering. Fascinating developments have already been performed such as visual cortical implants for the blind and cochlear implants for the deaf. Yet implantation of most electrical stimulation systems requires complex surgeries which hamper their use for the development of so-called electroceuticals. More importantly, previously developed systems based on central stimulation units are not adequate for applications in which a large number of sites must be individually stimulated over large and mobile body parts, thus hindering neuroprosthetic solutions for patients suffering paralysis due to spinal cord injury or other neurological disorders. A solution to these challenges could consist in developing addressable single-channel wireless microstimulators which could be implanted with simple procedures such as injection. And, indeed, such solution was proposed and tried in the past. However, previous attempts did not achieve satisfactory success because the developed implants were stiff and too large. Further miniaturization was prevented because of the use of inductive coupling and batteries as energy sources. Here I propose to explore an innovative method for performing electrical stimulation in which the implanted microstimulators will operate as rectifiers of bursts of innocuous high frequency current supplied through skin electrodes shaped as garments. This approach has the potential to reduce the diameter of the implants to one-fifth the diameter of current microstimulators and, more significantly, to allow that most of the implants’ volume consists of materials whose density and flexibility match those of neighbouring living tissues for minimizing invasiveness. In fact, implants based on the proposed method will look like short pieces of flexible thread.
Max ERC Funding
1 999 813 €
Duration
Start date: 2017-05-01, End date: 2022-04-30
Project acronym ECHO
Project Extending Coherence for Hardware-Driven Optimizations in Multicore Architectures
Researcher (PI) Alberto ROS BARDISA
Host Institution (HI) UNIVERSIDAD DE MURCIA
Call Details Consolidator Grant (CoG), PE6, ERC-2018-COG
Summary Multicore processors are present nowadays in most digital devices, from smartphones to high-performance
servers. The increasing computational power of these processors is essential for enabling many important
emerging application domains such as big-data, media, medical, or scientific modeling. A fundamental
technique to improve performance is speculation, a technique that consists in executing work before it is
known if it is actually needed. In hardware, speculation significantly increases energy consumption by
performing unnecessary operations, while speculation in software (e.g., compilers) is not the default thus
preventing performance optimizations. Since performance in current multicores is limited by their power
budget, it is imperative to make multicores as energy-efficient as possible to increase performance even
further.
In a multicore architecture, the cache coherence protocol is an essential component since its unique but
challenging role is to offer a simple and unified view of the memory hierarchy. This project envisions that
extending the role of the coherence protocol to simplify other system components will be the key to
overcome the performance and energy limitations of current multicores. In particular, ECHO proposes to
add simple but effective extensions to the cache coherence protocol in order to (i) reduce and even
eliminate misspeculations at the processing cores and synchronization mechanisms and to (ii) enable
speculative optimizations at compile time. The goal of this innovative approach is to improve the
performance and energy efficiency of future multicore architectures. To accomplish the objectives
proposed in this project, I will build on my 14 years expertise in cache coherence, documented in over 40
publications of high impact.
Summary
Multicore processors are present nowadays in most digital devices, from smartphones to high-performance
servers. The increasing computational power of these processors is essential for enabling many important
emerging application domains such as big-data, media, medical, or scientific modeling. A fundamental
technique to improve performance is speculation, a technique that consists in executing work before it is
known if it is actually needed. In hardware, speculation significantly increases energy consumption by
performing unnecessary operations, while speculation in software (e.g., compilers) is not the default thus
preventing performance optimizations. Since performance in current multicores is limited by their power
budget, it is imperative to make multicores as energy-efficient as possible to increase performance even
further.
In a multicore architecture, the cache coherence protocol is an essential component since its unique but
challenging role is to offer a simple and unified view of the memory hierarchy. This project envisions that
extending the role of the coherence protocol to simplify other system components will be the key to
overcome the performance and energy limitations of current multicores. In particular, ECHO proposes to
add simple but effective extensions to the cache coherence protocol in order to (i) reduce and even
eliminate misspeculations at the processing cores and synchronization mechanisms and to (ii) enable
speculative optimizations at compile time. The goal of this innovative approach is to improve the
performance and energy efficiency of future multicore architectures. To accomplish the objectives
proposed in this project, I will build on my 14 years expertise in cache coherence, documented in over 40
publications of high impact.
Max ERC Funding
1 999 955 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym ELECNANO
Project Electrically Tunable Functional Lanthanide Nanoarchitectures on Surfaces
Researcher (PI) DAVID ECIJA FERNANDEZ
Host Institution (HI) FUNDACION IMDEA NANOCIENCIA
Call Details Consolidator Grant (CoG), PE4, ERC-2017-COG
Summary Lanthanide metals are ubiquitous nowadays, finding use in luminescent materials, optical amplifiers and waveguides, lasers, photovoltaics, rechargeable batteries, catalysts, alloys, magnets, bio-probes, and therapeutic agents. In addition, they bear potential for high temperature superconductivity, magnetic refrigeration, molecular magnetic storage, spintronics and quantum information.
Surprisingly, the study of lanthanide physico-chemical properties on surfaces is at its infancy, particularly at the nanoscale. To address this extraordinary scientific opportunity, I will research the foundations and prospects of lanthanide elements to design functional nanoarchitectures on surfaces and I will study their inherent physico-chemical phenomena in distinct coordination environments, targeting novel approaches for sensing, nanomagnetism and electroluminescence. Importantly, our studies will encompass both metal substrates and decoupling surfaces including ultra-thin film insulators and graphene. Nurturing from these studies and in parallel, we will focus on graphene voltage back-gated supports, thus surpassing the seminal knowledge on electrically-inert substrates and enhancing the scope of our research to address the overarching objective of the proposal, i.e., the design of electrically tunable functional lanthanide nanomaterials.
The culmination of ELECNANO project will provide strategies for:
1.-Design of functional nanomaterials on high-technological supports.
2.-Development of advanced coordination chemistry on surfaces.
3.-Rationale of the physico-chemical properties of lanthanide-coordination environments.
4.-Engineering of lanthanide nanoarchitectures for ultimate sensing, nanomagnetism and electroluminescence.
5.-In-situ atomistic views of electrically tunable materials and unprecedented fundamental studies of charge-molecule/metal physics on devices.
Summary
Lanthanide metals are ubiquitous nowadays, finding use in luminescent materials, optical amplifiers and waveguides, lasers, photovoltaics, rechargeable batteries, catalysts, alloys, magnets, bio-probes, and therapeutic agents. In addition, they bear potential for high temperature superconductivity, magnetic refrigeration, molecular magnetic storage, spintronics and quantum information.
Surprisingly, the study of lanthanide physico-chemical properties on surfaces is at its infancy, particularly at the nanoscale. To address this extraordinary scientific opportunity, I will research the foundations and prospects of lanthanide elements to design functional nanoarchitectures on surfaces and I will study their inherent physico-chemical phenomena in distinct coordination environments, targeting novel approaches for sensing, nanomagnetism and electroluminescence. Importantly, our studies will encompass both metal substrates and decoupling surfaces including ultra-thin film insulators and graphene. Nurturing from these studies and in parallel, we will focus on graphene voltage back-gated supports, thus surpassing the seminal knowledge on electrically-inert substrates and enhancing the scope of our research to address the overarching objective of the proposal, i.e., the design of electrically tunable functional lanthanide nanomaterials.
The culmination of ELECNANO project will provide strategies for:
1.-Design of functional nanomaterials on high-technological supports.
2.-Development of advanced coordination chemistry on surfaces.
3.-Rationale of the physico-chemical properties of lanthanide-coordination environments.
4.-Engineering of lanthanide nanoarchitectures for ultimate sensing, nanomagnetism and electroluminescence.
5.-In-situ atomistic views of electrically tunable materials and unprecedented fundamental studies of charge-molecule/metal physics on devices.
Max ERC Funding
1 994 713 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym ELECTRON4WATER
Project Three-dimensional nanoelectrochemical systems based on low-cost reduced graphene oxide: the next generation of water treatment systems
Researcher (PI) Jelena RADJENOVIC
Host Institution (HI) FUNDACIO INSTITUT CATALA DE RECERCA DE L'AIGUA
Call Details Starting Grant (StG), PE8, ERC-2016-STG
Summary The ever-increasing environmental input of toxic chemicals is rapidly deteriorating the health of our ecosystems and, above all, jeopardizing human health. Overcoming the challenge of water pollution requires novel water treatment technologies that are sustainable, robust and energy efficient. ELECTRON4WATER proposes a pioneering, chemical-free water purification technology: a three-dimensional (3D) nanoelectrochemical system equipped with low-cost reduced graphene oxide (RGO)-based electrodes. Existing research on graphene-based electrodes has been focused on supercapacitor applications and synthesis of defect-free, superconductive graphene. I will, on the contrary, use the defective structure of RGO to induce the production of reactive oxygen species and enhance electrocatalytic degradation of pollutants. I will investigate for the first time the electrolysis reactions at 3D electrochemically polarized RGO-coated material, which offers high catalytic activity and high surface area available for electrolysis. This breakthrough approach in electrochemical reactor design is expected to greatly enhance the current efficiency and achieve complete removal of persistent contaminants and pathogens from water without using any chemicals, just by applying the current. Also, high capacitance of RGO-based material can enable further energy savings and allow using intermittent energy sources such as photovoltaic panels. These features make 3D nanoelectrochemical systems particularly interesting for distributed, small-scale applications. This project will aim at: i) designing the optimum RGO-based material for specific treatment goals, ii) mechanistic understanding of (electro)catalysis and (electro)sorption of persistent pollutants at RGO and electrochemically polarized RGO, iii) understanding the role of inorganic and organic matrix and recognizing potential process limitations, and iv) developing tailored, adaptable solutions for the treatment of contaminated water.
Summary
The ever-increasing environmental input of toxic chemicals is rapidly deteriorating the health of our ecosystems and, above all, jeopardizing human health. Overcoming the challenge of water pollution requires novel water treatment technologies that are sustainable, robust and energy efficient. ELECTRON4WATER proposes a pioneering, chemical-free water purification technology: a three-dimensional (3D) nanoelectrochemical system equipped with low-cost reduced graphene oxide (RGO)-based electrodes. Existing research on graphene-based electrodes has been focused on supercapacitor applications and synthesis of defect-free, superconductive graphene. I will, on the contrary, use the defective structure of RGO to induce the production of reactive oxygen species and enhance electrocatalytic degradation of pollutants. I will investigate for the first time the electrolysis reactions at 3D electrochemically polarized RGO-coated material, which offers high catalytic activity and high surface area available for electrolysis. This breakthrough approach in electrochemical reactor design is expected to greatly enhance the current efficiency and achieve complete removal of persistent contaminants and pathogens from water without using any chemicals, just by applying the current. Also, high capacitance of RGO-based material can enable further energy savings and allow using intermittent energy sources such as photovoltaic panels. These features make 3D nanoelectrochemical systems particularly interesting for distributed, small-scale applications. This project will aim at: i) designing the optimum RGO-based material for specific treatment goals, ii) mechanistic understanding of (electro)catalysis and (electro)sorption of persistent pollutants at RGO and electrochemically polarized RGO, iii) understanding the role of inorganic and organic matrix and recognizing potential process limitations, and iv) developing tailored, adaptable solutions for the treatment of contaminated water.
Max ERC Funding
1 493 734 €
Duration
Start date: 2017-05-01, End date: 2022-04-30
Project acronym eLightning
Project Lightning propagation and high-energy emissions within coupled multi-model simulations
Researcher (PI) Alejandro Luque Estepa
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Consolidator Grant (CoG), PE10, ERC-2015-CoG
Summary More than 250 years after establishing the electrical nature of the lightning flash, we still do not understand how a lightning channel advances. Most of these channels progress not continuously but in a series of sudden jumps and, as they jump, they emit bursts of energetic radiation. Despite increasingly accurate observations, there is no accepted explanation for this stepped progression.
This proposal addresses this open question. First, we propose a methodological breakthrough that will allow us to tackle the main bottleneck in the theoretical understanding of lightning: the wide disparity between length-scales within a lightning flash. We plan to apply techniques that have succeeded in other fields, such as multi-model coupled simulations and moving-mesh finite elements methods. Acting as a computational microscope, these techniques will reveal the small-scale electrodynamics around a lightning channel.
We will then apply these techniques to elucidate the intertwined problems of lightning channel stepping and thunderstorm-related high-energy emissions. The main hypothesis that we will test is that stepping is due to the formation of low-conductivity spots within the filamentary-discharge region that surrounds a lightning channel. This idea is motivated by observations from high-altitude atmospheric discharges. By resolving the small-scale dynamics, with our numerical method, we will also test hypothesis for high-energy emissions from the lighting channel, which crucially depend on the microscopic distribution of electric fields.
This interdisciplinary proposal, straddling between geophysics and gas discharge physics, seeks a double breakthrough: the methodological one of building multi-scale lightning simulations and the hypothesis-driven one of finding out the reason for stepping. If it succeeds, it will achieve a leap forward in our knowledge of lightning, undoubtedly one of the greatest spectacles in our planet's repertoire.
Summary
More than 250 years after establishing the electrical nature of the lightning flash, we still do not understand how a lightning channel advances. Most of these channels progress not continuously but in a series of sudden jumps and, as they jump, they emit bursts of energetic radiation. Despite increasingly accurate observations, there is no accepted explanation for this stepped progression.
This proposal addresses this open question. First, we propose a methodological breakthrough that will allow us to tackle the main bottleneck in the theoretical understanding of lightning: the wide disparity between length-scales within a lightning flash. We plan to apply techniques that have succeeded in other fields, such as multi-model coupled simulations and moving-mesh finite elements methods. Acting as a computational microscope, these techniques will reveal the small-scale electrodynamics around a lightning channel.
We will then apply these techniques to elucidate the intertwined problems of lightning channel stepping and thunderstorm-related high-energy emissions. The main hypothesis that we will test is that stepping is due to the formation of low-conductivity spots within the filamentary-discharge region that surrounds a lightning channel. This idea is motivated by observations from high-altitude atmospheric discharges. By resolving the small-scale dynamics, with our numerical method, we will also test hypothesis for high-energy emissions from the lighting channel, which crucially depend on the microscopic distribution of electric fields.
This interdisciplinary proposal, straddling between geophysics and gas discharge physics, seeks a double breakthrough: the methodological one of building multi-scale lightning simulations and the hypothesis-driven one of finding out the reason for stepping. If it succeeds, it will achieve a leap forward in our knowledge of lightning, undoubtedly one of the greatest spectacles in our planet's repertoire.
Max ERC Funding
1 960 826 €
Duration
Start date: 2016-06-01, End date: 2021-05-31
Project acronym EMAGIN2D
Project Electrical control of magnetism in multiferroic 2D materials
Researcher (PI) Efrén NAVARRO-MORATALLA
Host Institution (HI) UNIVERSITAT DE VALENCIA
Call Details Starting Grant (StG), PE5, ERC-2018-STG
Summary The avenue of magnetism in the field of 2D materials has marked the ultimate milestone in the discovery of one-atom-thick classes of materials. Bulk ferromagnets and antiferomagnets now have their 2D counterparts and are at one’s provision for the realization of imagination-limited artificial layered structures. At the same time, this awaited breakthrough has brought in new conundrums that demand investigation. This project is driven by the exploration of the limits of van der Waals 2D magnets from both a fundamental physics and a materials science and devices point of view. Firstly, it addresses fundamental key questions regarding spin order at the true 2D limit, which remain a mystery to the date. Here, the great variety of magnetic anisotropies exhibited by the transition metal halides will shed new light to the subtle equilibrium of interactions in few-layer magnets. Secondly, the project will invoke the control of the magnetic ground states and spin textures in true 2D magnets via electrical manipulation. Electric fields will assist in tuning the magnetic coupling and critical behaviour and the spatial manipulation of spin topologies. Anticipated breakthroughs will be the enhancement of the critical temperature in semiconducting single layer magnets towards room temperature 2D magnetism and the realization of single-layer multiferroic 2D materials. Thirdly, the field effect electrical control of magnetism in designer van der Waals and lateral heterostructures will allow for an enhanced magneto-electric coupling, yielding functional devices for effective charge-to-spin transduction that hold promise in spintronics. The proposal will achieve success by an integral approach to research, through the combination of the study of solid-state growth techniques together with the implementation of state-of-the-art deterministic manipulation of 2D materials in inert conditions and the use high resolution magnetism probes to test hybrid magnetic-optoelectronic devices.
Summary
The avenue of magnetism in the field of 2D materials has marked the ultimate milestone in the discovery of one-atom-thick classes of materials. Bulk ferromagnets and antiferomagnets now have their 2D counterparts and are at one’s provision for the realization of imagination-limited artificial layered structures. At the same time, this awaited breakthrough has brought in new conundrums that demand investigation. This project is driven by the exploration of the limits of van der Waals 2D magnets from both a fundamental physics and a materials science and devices point of view. Firstly, it addresses fundamental key questions regarding spin order at the true 2D limit, which remain a mystery to the date. Here, the great variety of magnetic anisotropies exhibited by the transition metal halides will shed new light to the subtle equilibrium of interactions in few-layer magnets. Secondly, the project will invoke the control of the magnetic ground states and spin textures in true 2D magnets via electrical manipulation. Electric fields will assist in tuning the magnetic coupling and critical behaviour and the spatial manipulation of spin topologies. Anticipated breakthroughs will be the enhancement of the critical temperature in semiconducting single layer magnets towards room temperature 2D magnetism and the realization of single-layer multiferroic 2D materials. Thirdly, the field effect electrical control of magnetism in designer van der Waals and lateral heterostructures will allow for an enhanced magneto-electric coupling, yielding functional devices for effective charge-to-spin transduction that hold promise in spintronics. The proposal will achieve success by an integral approach to research, through the combination of the study of solid-state growth techniques together with the implementation of state-of-the-art deterministic manipulation of 2D materials in inert conditions and the use high resolution magnetism probes to test hybrid magnetic-optoelectronic devices.
Max ERC Funding
1 500 000 €
Duration
Start date: 2018-12-01, End date: 2023-11-30
Project acronym eNANO
Project FREE ELECTRONS AS ULTRAFAST NANOSCALE PROBES
Researcher (PI) Javier Garcia de Abajo
Host Institution (HI) FUNDACIO INSTITUT DE CIENCIES FOTONIQUES
Call Details Advanced Grant (AdG), PE3, ERC-2017-ADG
Summary With eNANO I will introduce a disruptive approach toward controlling and understanding the dynamical response of material nanostructures, expanding nanoscience and nanotechnology in unprecedented directions. Specifically, I intend to inaugurate the field of free-electron nanoelectronics, whereby electrons evolving in the vacuum regions defined by nanostructures will be generated, guided, and sampled at the nanoscale, thus acting as probes to excite, detect, image, and spectrally resolve polaritonic modes (e.g., plasmons, optical phonons, and excitons) with atomic precision over sub-femtosecond timescales. I will exploit the wave nature of electrons, extending the principles of nanophotonics from photons to electrons, therefore gaining in spatial resolution (by relying on the large reduction in wavelength) and strength of interaction (mediated by Coulomb fields, which in contrast to photons render nonlinear interactions ubiquitous when using free electrons). I will develop the theoretical and computational tools required to investigate this unexplored scenario, covering a wide range of free-electron energies, their elastic interactions with the material atomic structures, and their inelastic coupling to nanoscale dynamical excitations. Equipped with these techniques, I will further address four challenges of major scientific interest: (i) the fundamental limits to the space, time, and energy resolutions achievable with free electrons; (ii) the foundations and feasibility of pump-probe spectral microscopy at the single-electron level; (iii) the exploration of quantum-optics phenomena by means of free electrons; and (iv) the unique perspectives and potential offered by vertically confined free-electrons in 2D crystals. I will face these research frontiers by combining knowledge from different areas through a multidisciplinary theory group, in close collaboration with leading experimentalists, pursuing a radically new approach to study and control the nanoworld.
Summary
With eNANO I will introduce a disruptive approach toward controlling and understanding the dynamical response of material nanostructures, expanding nanoscience and nanotechnology in unprecedented directions. Specifically, I intend to inaugurate the field of free-electron nanoelectronics, whereby electrons evolving in the vacuum regions defined by nanostructures will be generated, guided, and sampled at the nanoscale, thus acting as probes to excite, detect, image, and spectrally resolve polaritonic modes (e.g., plasmons, optical phonons, and excitons) with atomic precision over sub-femtosecond timescales. I will exploit the wave nature of electrons, extending the principles of nanophotonics from photons to electrons, therefore gaining in spatial resolution (by relying on the large reduction in wavelength) and strength of interaction (mediated by Coulomb fields, which in contrast to photons render nonlinear interactions ubiquitous when using free electrons). I will develop the theoretical and computational tools required to investigate this unexplored scenario, covering a wide range of free-electron energies, their elastic interactions with the material atomic structures, and their inelastic coupling to nanoscale dynamical excitations. Equipped with these techniques, I will further address four challenges of major scientific interest: (i) the fundamental limits to the space, time, and energy resolutions achievable with free electrons; (ii) the foundations and feasibility of pump-probe spectral microscopy at the single-electron level; (iii) the exploration of quantum-optics phenomena by means of free electrons; and (iv) the unique perspectives and potential offered by vertically confined free-electrons in 2D crystals. I will face these research frontiers by combining knowledge from different areas through a multidisciplinary theory group, in close collaboration with leading experimentalists, pursuing a radically new approach to study and control the nanoworld.
Max ERC Funding
1 899 788 €
Duration
Start date: 2018-12-01, End date: 2023-11-30
Project acronym ENFORCE
Project ENgineering FrustratiOn in aRtificial Colloidal icEs:degeneracy, exotic lattices and 3D states
Researcher (PI) pietro TIERNO
Host Institution (HI) UNIVERSITAT DE BARCELONA
Call Details Consolidator Grant (CoG), PE3, ERC-2018-COG
Summary Geometric frustration, namely the impossibility of satisfying competing interactions on a lattice, has recently
become a topic of considerable interest as it engenders emergent, fundamentally new phenomena and holds
the exciting promise of delivering a new class of nanoscale devices based on the motion of magnetic charges.
With ENFORCE, I propose to realize two and three dimensional artificial colloidal ices and investigate the
fascinating manybody physics of geometric frustration in these mesoscopic structures. I will use these soft
matter systems to engineer novel frustrated states through independent control of the single particle
positions, lattice topology and collective magnetic coupling. The three project work packages (WPs) will
present increasing levels of complexity, challenge and ambition:
(i) In WP1, I will demonstrate a way to restore the residual entropy in the square ice, a fundamental longstanding
problem in the field. Furthermore, I will miniaturize the square and the honeycomb geometries and investigate the dynamics of thermally excited topological defects and the formation of grain boundaries.
(ii) In WP2, I will decimate both lattices and realize mixed coordination geometries, where the similarity
between the colloidal and spin ice systems breaks down. I will then develop a novel annealing protocol based
on the simultaneous system visualization and magnetic actuation control.
(iii) In WP3, I will realize a three dimensional artificial colloidal ice, in which interacting ferromagnetic
inclusions will be located in the voids of an inverse opal, and arranged to form the FCC or the pyrochlore
lattices. External fields will be used to align, bias and stir these magnetic inclusions while monitoring in situ
their orientation and dynamics via laser scanning confocal microscopy.
ENFORCE will exploit the accessible time and length scales of the colloidal ice to shed new light on the
exciting and interdisciplinary field of geometric frustration.
Summary
Geometric frustration, namely the impossibility of satisfying competing interactions on a lattice, has recently
become a topic of considerable interest as it engenders emergent, fundamentally new phenomena and holds
the exciting promise of delivering a new class of nanoscale devices based on the motion of magnetic charges.
With ENFORCE, I propose to realize two and three dimensional artificial colloidal ices and investigate the
fascinating manybody physics of geometric frustration in these mesoscopic structures. I will use these soft
matter systems to engineer novel frustrated states through independent control of the single particle
positions, lattice topology and collective magnetic coupling. The three project work packages (WPs) will
present increasing levels of complexity, challenge and ambition:
(i) In WP1, I will demonstrate a way to restore the residual entropy in the square ice, a fundamental longstanding
problem in the field. Furthermore, I will miniaturize the square and the honeycomb geometries and investigate the dynamics of thermally excited topological defects and the formation of grain boundaries.
(ii) In WP2, I will decimate both lattices and realize mixed coordination geometries, where the similarity
between the colloidal and spin ice systems breaks down. I will then develop a novel annealing protocol based
on the simultaneous system visualization and magnetic actuation control.
(iii) In WP3, I will realize a three dimensional artificial colloidal ice, in which interacting ferromagnetic
inclusions will be located in the voids of an inverse opal, and arranged to form the FCC or the pyrochlore
lattices. External fields will be used to align, bias and stir these magnetic inclusions while monitoring in situ
their orientation and dynamics via laser scanning confocal microscopy.
ENFORCE will exploit the accessible time and length scales of the colloidal ice to shed new light on the
exciting and interdisciplinary field of geometric frustration.
Max ERC Funding
1 850 298 €
Duration
Start date: 2020-01-01, End date: 2024-12-31
Project acronym ENLIGHTMENT
Project Photonic Electrodes for Enhanced Light Management in Optoelectronic Devices
Researcher (PI) Antonio Agustin Mihi Cervelló
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Starting Grant (StG), PE5, ERC-2014-STG
Summary Nanostructured dielectric and metallic photonic architectures can concentrate the electric field through resonances, increase the light optical path by strong diffraction and exhibit many other interesting optical phenomena that cannot be achieved with traditional lenses and mirrors. The use of these structures within actual devices will be most beneficial for enhanced light absorption in thin solar cells, photodetectors and to develop new sensors and light emitters. However, emerging optoelectronic devices rely on large area and low cost fabrication routes such as roll to roll or solution processing, to cut manufacturing costs and increase the production throughput. If the exciting properties exhibited by the photonic structures are to be implemented in these devices, then they too have to be processed in a similar fashion as the devices they intend to improve. This research plan is aimed to develop photonic electrodes that will enhance light matter interaction based on wave optics phenomena while being fabricated with techniques fully compatible with today’s mass production approaches, allowing seamless integration of wave optics components in current devices. The objectives of this proposal are: 1) to investigate the fundaments of the enhanced light-matter interaction observed in devices that use wave optics elements. 2) To develop fabrication routes for large area and low cost photonic and plasmonic structures using techniques similar to those employed in industry, so they could be easily incorporated in technologies such as roll to roll. 3) To fabricate prototype solar cells, photodetectors and sensors on top of photonic electrodes, demonstrating improved performance without deterioration of other figures of merit in the device. The results of the research plan will advance the state of the art in nanophotonics structures, providing the path towards a new generation of large-scale and low-cost photonic architectures.
Summary
Nanostructured dielectric and metallic photonic architectures can concentrate the electric field through resonances, increase the light optical path by strong diffraction and exhibit many other interesting optical phenomena that cannot be achieved with traditional lenses and mirrors. The use of these structures within actual devices will be most beneficial for enhanced light absorption in thin solar cells, photodetectors and to develop new sensors and light emitters. However, emerging optoelectronic devices rely on large area and low cost fabrication routes such as roll to roll or solution processing, to cut manufacturing costs and increase the production throughput. If the exciting properties exhibited by the photonic structures are to be implemented in these devices, then they too have to be processed in a similar fashion as the devices they intend to improve. This research plan is aimed to develop photonic electrodes that will enhance light matter interaction based on wave optics phenomena while being fabricated with techniques fully compatible with today’s mass production approaches, allowing seamless integration of wave optics components in current devices. The objectives of this proposal are: 1) to investigate the fundaments of the enhanced light-matter interaction observed in devices that use wave optics elements. 2) To develop fabrication routes for large area and low cost photonic and plasmonic structures using techniques similar to those employed in industry, so they could be easily incorporated in technologies such as roll to roll. 3) To fabricate prototype solar cells, photodetectors and sensors on top of photonic electrodes, demonstrating improved performance without deterioration of other figures of merit in the device. The results of the research plan will advance the state of the art in nanophotonics structures, providing the path towards a new generation of large-scale and low-cost photonic architectures.
Max ERC Funding
1 500 000 €
Duration
Start date: 2015-12-01, End date: 2020-11-30
Project acronym EpiMech
Project Epithelial cell sheets as engineering materials: mechanics, resilience and malleability
Researcher (PI) Marino Arroyo Balaguer
Host Institution (HI) UNIVERSITAT POLITECNICA DE CATALUNYA
Call Details Consolidator Grant (CoG), PE8, ERC-2015-CoG
Summary The epithelium is a cohesive two-dimensional layer of cells attached to a fluid-filled fibrous matrix, which lines most free surfaces and cavities of the body. It serves as a protective barrier with tunable permeability, which must retain integrity in a mechanically active environment. Paradoxically, it must also be malleable enough to self-heal and remodel into functional 3D structures such as villi in our guts or tubular networks. Intrigued by these conflicting material properties, the main idea of this proposal is to view epithelial monolayers as living engineering materials. Unlike lipid bilayers or hydrogels, widely used in biotechnology, cultured epithelia are only starting to be integrated in organ-on-chip microdevices. As for any complex inert material, this program requires a fundamental understanding of the structure-property relationships. (1) Regarding their effective in-plane rheology, at short time-scales epithelia exhibit solid-like behavior while at longer times they flow as a consequence of the only qualitatively understood dynamics of the cell-cell junctional network. (2) As for material failure, excessive tension can lead to epithelial fracture, but as we have recently shown, matrix poroelasticity can also cause hydraulic fracture under stretch. However, it is largely unknown how adhesion molecules, membrane, cytoskeleton and matrix interact to give epithelia their robust and flaw-tolerant resilience. (3) Regarding shaping 3D epithelial structures, besides the classical view of chemical patterning, mechanical buckling is emerging as a major morphogenetic driving force, suggesting that it may be possible design 3D epithelial structures in vitro by mechanical self-assembly. Towards understanding (1,2,3), we will combine a broad range of theoretical, computational and experimental methods. Besides providing fundamental mechanobiological understanding, this project will provide a framework to manipulate epithelia in bioinspired technologies.
Summary
The epithelium is a cohesive two-dimensional layer of cells attached to a fluid-filled fibrous matrix, which lines most free surfaces and cavities of the body. It serves as a protective barrier with tunable permeability, which must retain integrity in a mechanically active environment. Paradoxically, it must also be malleable enough to self-heal and remodel into functional 3D structures such as villi in our guts or tubular networks. Intrigued by these conflicting material properties, the main idea of this proposal is to view epithelial monolayers as living engineering materials. Unlike lipid bilayers or hydrogels, widely used in biotechnology, cultured epithelia are only starting to be integrated in organ-on-chip microdevices. As for any complex inert material, this program requires a fundamental understanding of the structure-property relationships. (1) Regarding their effective in-plane rheology, at short time-scales epithelia exhibit solid-like behavior while at longer times they flow as a consequence of the only qualitatively understood dynamics of the cell-cell junctional network. (2) As for material failure, excessive tension can lead to epithelial fracture, but as we have recently shown, matrix poroelasticity can also cause hydraulic fracture under stretch. However, it is largely unknown how adhesion molecules, membrane, cytoskeleton and matrix interact to give epithelia their robust and flaw-tolerant resilience. (3) Regarding shaping 3D epithelial structures, besides the classical view of chemical patterning, mechanical buckling is emerging as a major morphogenetic driving force, suggesting that it may be possible design 3D epithelial structures in vitro by mechanical self-assembly. Towards understanding (1,2,3), we will combine a broad range of theoretical, computational and experimental methods. Besides providing fundamental mechanobiological understanding, this project will provide a framework to manipulate epithelia in bioinspired technologies.
Max ERC Funding
1 989 875 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym FeMiT
Project Ferrites-by-design for Millimeter-wave and Terahertz Technologies
Researcher (PI) Martí GICH
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Consolidator Grant (CoG), PE8, ERC-2018-COG
Summary Robust disruptive materials will be essential for the “wireless everywhere” to become a reality. This is because we need a paradigm shift in mobile communications to meet the challenges of such an ambitious evolution. In particular, some of these emerging technologies will trigger the replacement of the magnetic microwave ferrites in use today. This will namely occur with the forecasted shift to high frequency mm-wave and THz bands and in novel antennas that can simultaneously transmit and receive data on the same frequency. In both cases, operating with state-of-the-art ferrites would require large external magnetic fields incompatible with future needs of smaller, power-efficient devices.
To overcome these issues, we target ferrites featuring the so far unmet combinations of low magnetic loss and large values of magnetocrystalline anisotropy, magnetostriction or magnetoelectric coupling.
The objective of FeMiT is developing a novel family of orthorhombic ferrites based on ε-Fe2O3, a room-temperature multiferroic with large magnetocrystalline anisotropy. Those properties and unique structural features make it an excellent platform to develop the sought-after functional materials for future compact and energy-efficient wireless devices.
In the first part of FeMiT we will explore the limits and diversity of this new family by exploiting rational chemical substitutions, high pressures and strain engineering. Soft chemistry and physical deposition methods will be both considered at this stage.
The second part of FeMiT entails a characterization of functional properties and selection of the best candidates to be integrated in composite and epitaxial films suitable for application. The expected outcomes will provide proof-of-concept self-biased or voltage-controlled signal-processing devices with low losses in the mm-wave to THz bands, with high potential impact in the development of future wireless technologies.
Summary
Robust disruptive materials will be essential for the “wireless everywhere” to become a reality. This is because we need a paradigm shift in mobile communications to meet the challenges of such an ambitious evolution. In particular, some of these emerging technologies will trigger the replacement of the magnetic microwave ferrites in use today. This will namely occur with the forecasted shift to high frequency mm-wave and THz bands and in novel antennas that can simultaneously transmit and receive data on the same frequency. In both cases, operating with state-of-the-art ferrites would require large external magnetic fields incompatible with future needs of smaller, power-efficient devices.
To overcome these issues, we target ferrites featuring the so far unmet combinations of low magnetic loss and large values of magnetocrystalline anisotropy, magnetostriction or magnetoelectric coupling.
The objective of FeMiT is developing a novel family of orthorhombic ferrites based on ε-Fe2O3, a room-temperature multiferroic with large magnetocrystalline anisotropy. Those properties and unique structural features make it an excellent platform to develop the sought-after functional materials for future compact and energy-efficient wireless devices.
In the first part of FeMiT we will explore the limits and diversity of this new family by exploiting rational chemical substitutions, high pressures and strain engineering. Soft chemistry and physical deposition methods will be both considered at this stage.
The second part of FeMiT entails a characterization of functional properties and selection of the best candidates to be integrated in composite and epitaxial films suitable for application. The expected outcomes will provide proof-of-concept self-biased or voltage-controlled signal-processing devices with low losses in the mm-wave to THz bands, with high potential impact in the development of future wireless technologies.
Max ERC Funding
1 989 967 €
Duration
Start date: 2019-05-01, End date: 2024-04-30
Project acronym FIELDS-KNOTS
Project Quantum fields and knot homologies
Researcher (PI) Piotr Sulkowski
Host Institution (HI) UNIWERSYTET WARSZAWSKI
Call Details Starting Grant (StG), PE2, ERC-2013-StG
Summary This project is concerned with fundamental problems arising at the interface of quantum field theory, knot theory, and the theory of random matrices. The main aim of the project is to understand two of the most profound phenomena in physics and mathematics, namely quantization and categorification, and to establish an explicit and rigorous framework where they come into play in an interrelated fashion. The project and its aims focus on the following areas:
- Knot homologies and superpolynomials. The aim of the project in this area is to determine homological knot invariants and to derive an explicit form of colored superpolynomials for a large class of knots and links.
- Super-A-polynomial. The aim of the project in this area is to develop a theory of the super-A-polynomial, to find an explicit form of the super-A-polynomial for a large class of knots, and to understand its properties.
- Three-dimensional supersymmetric N=2 theories. This project aims to find and understand dualities between theories in this class, in particular theories related to knots by 3d-3d duality, and to generalize this duality to the level of homological knot invariants.
- Topological recursion and quantization. The project aims to develop a quantization procedure based on the topological recursion, to demonstrate its consistency with knot-theoretic quantization of A-polynomials, and to generalize this quantization scheme to super-A-polynomials.
All these research areas are connected via remarkable dualities unraveled very recently by physicists and mathematicians. The project is interdisciplinary and aims to reach the above goals by taking advantage of these dualities, and through simultaneous and complementary development in quantum field theory, knot theory, and random matrix theory, in collaboration with renowned experts in each of those fields.
Summary
This project is concerned with fundamental problems arising at the interface of quantum field theory, knot theory, and the theory of random matrices. The main aim of the project is to understand two of the most profound phenomena in physics and mathematics, namely quantization and categorification, and to establish an explicit and rigorous framework where they come into play in an interrelated fashion. The project and its aims focus on the following areas:
- Knot homologies and superpolynomials. The aim of the project in this area is to determine homological knot invariants and to derive an explicit form of colored superpolynomials for a large class of knots and links.
- Super-A-polynomial. The aim of the project in this area is to develop a theory of the super-A-polynomial, to find an explicit form of the super-A-polynomial for a large class of knots, and to understand its properties.
- Three-dimensional supersymmetric N=2 theories. This project aims to find and understand dualities between theories in this class, in particular theories related to knots by 3d-3d duality, and to generalize this duality to the level of homological knot invariants.
- Topological recursion and quantization. The project aims to develop a quantization procedure based on the topological recursion, to demonstrate its consistency with knot-theoretic quantization of A-polynomials, and to generalize this quantization scheme to super-A-polynomials.
All these research areas are connected via remarkable dualities unraveled very recently by physicists and mathematicians. The project is interdisciplinary and aims to reach the above goals by taking advantage of these dualities, and through simultaneous and complementary development in quantum field theory, knot theory, and random matrix theory, in collaboration with renowned experts in each of those fields.
Max ERC Funding
1 345 080 €
Duration
Start date: 2013-12-01, End date: 2018-11-30
Project acronym FLAMENCO
Project A Fully-Implantable MEMS-Based Autonomous Cochlear Implant
Researcher (PI) Kulah Haluk
Host Institution (HI) MIDDLE EAST TECHNICAL UNIVERSITY
Call Details Consolidator Grant (CoG), PE7, ERC-2015-CoG
Summary Sensorineural impairment, representing the majority of the profound deafness, can be restored using cochlear implants (CIs), which electrically stimulates the auditory nerve to repair hearing in people with severe-to-profound hearing loss. A conventional CI consists of an external microphone, a sound processor, a battery, an RF transceiver pair, and a cochlear electrode. The major drawback of conventional CIs is that, they replace the entire natural hearing mechanism with electronic hearing, even though most parts of the middle ear are operational. Also, the power hungry units such as microphone and RF transceiver cause limitations in continuous access to sound due to battery problems. Besides, damage risk of external components especially if exposed to water and aesthetic concerns are other critical problems. Limited volume of the middle ear is the main obstacle for developing fully implantable CIs.
FLAMENCO proposes a fully implantable, autonomous, and low-power CI, exploiting the functional parts of the middle ear and mimicking the hair cells via a set of piezoelectric cantilevers to cover the daily acoustic band. FLAMENCO has a groundbreaking nature as it revolutionizes the operation principle of CIs. The implant has five main units: i) piezoelectric transducers for sound detection and energy harvesting, ii) electronics for signal processing and battery charging, iii) an RF coil for tuning the electronics to allow customization, iv) rechargeable battery, and v) cochlear electrode for neural stimulation. The utilization of internal energy harvesting together with the elimination of continuous RF transmission, microphone, and front-end filters makes this system a perfect candidate for next generation autonomous CIs. In this project, a multi-frequency self-powered implant for in vivo operation will be implemented, and the feasibility will be proven through animal tests.
Summary
Sensorineural impairment, representing the majority of the profound deafness, can be restored using cochlear implants (CIs), which electrically stimulates the auditory nerve to repair hearing in people with severe-to-profound hearing loss. A conventional CI consists of an external microphone, a sound processor, a battery, an RF transceiver pair, and a cochlear electrode. The major drawback of conventional CIs is that, they replace the entire natural hearing mechanism with electronic hearing, even though most parts of the middle ear are operational. Also, the power hungry units such as microphone and RF transceiver cause limitations in continuous access to sound due to battery problems. Besides, damage risk of external components especially if exposed to water and aesthetic concerns are other critical problems. Limited volume of the middle ear is the main obstacle for developing fully implantable CIs.
FLAMENCO proposes a fully implantable, autonomous, and low-power CI, exploiting the functional parts of the middle ear and mimicking the hair cells via a set of piezoelectric cantilevers to cover the daily acoustic band. FLAMENCO has a groundbreaking nature as it revolutionizes the operation principle of CIs. The implant has five main units: i) piezoelectric transducers for sound detection and energy harvesting, ii) electronics for signal processing and battery charging, iii) an RF coil for tuning the electronics to allow customization, iv) rechargeable battery, and v) cochlear electrode for neural stimulation. The utilization of internal energy harvesting together with the elimination of continuous RF transmission, microphone, and front-end filters makes this system a perfect candidate for next generation autonomous CIs. In this project, a multi-frequency self-powered implant for in vivo operation will be implemented, and the feasibility will be proven through animal tests.
Max ERC Funding
1 993 750 €
Duration
Start date: 2016-07-01, End date: 2021-06-30
Project acronym FlexAnalytics
Project Advanced Analytics to Empower the Small Flexible Consumers of Electricity
Researcher (PI) Juan Miguel MORALES
Host Institution (HI) UNIVERSIDAD DE MALAGA
Call Details Starting Grant (StG), PE7, ERC-2017-STG
Summary David against Goliath: Could small consumers of electricity compete in the wholesale markets on equal footing with the other market agents? Yes, they can and FlexAnalytics will show how.
Activating the demand response, although a major challenge, may also bring tremendous benefits to society, with potential cost savings in the billions of euros. This project will exploit methods of inverse problems, multi-level programming and machine learning to develop a pioneering system that enables the active participation of a group of price-responsive consumers of electricity in the wholesale electricity markets. Through this, they will be able to make the most out of their flexible consumption. FlexAnalytics proposes a generalized scheme for so-called inverse optimization that materializes into a novel data-driven approach to the market bidding problem that, unlike existing approaches, combines the tasks of forecasting, model formulation and estimation, and decision-making in an original unified theoretical framework. The project will also address big-data challenges, as the proposed system will leverage weather, market, and demand information to capture the many factors that may affect the price-response of a pool of flexible consumers. On a fundamental level, FlexAnalytics will produce a novel mathematical framework for data-driven decision making. On a practical level, FlexAnalytics will show that this framework can facilitate the best use of a large amount and a wide variety of data to efficiently operate the sustainable energy systems of the future.
Summary
David against Goliath: Could small consumers of electricity compete in the wholesale markets on equal footing with the other market agents? Yes, they can and FlexAnalytics will show how.
Activating the demand response, although a major challenge, may also bring tremendous benefits to society, with potential cost savings in the billions of euros. This project will exploit methods of inverse problems, multi-level programming and machine learning to develop a pioneering system that enables the active participation of a group of price-responsive consumers of electricity in the wholesale electricity markets. Through this, they will be able to make the most out of their flexible consumption. FlexAnalytics proposes a generalized scheme for so-called inverse optimization that materializes into a novel data-driven approach to the market bidding problem that, unlike existing approaches, combines the tasks of forecasting, model formulation and estimation, and decision-making in an original unified theoretical framework. The project will also address big-data challenges, as the proposed system will leverage weather, market, and demand information to capture the many factors that may affect the price-response of a pool of flexible consumers. On a fundamental level, FlexAnalytics will produce a novel mathematical framework for data-driven decision making. On a practical level, FlexAnalytics will show that this framework can facilitate the best use of a large amount and a wide variety of data to efficiently operate the sustainable energy systems of the future.
Max ERC Funding
1 203 125 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym FLEXOCOMP
Project Enabling flexoelectric engineering through modeling and computation
Researcher (PI) Irene Arias Vicente
Host Institution (HI) UNIVERSITAT POLITECNICA DE CATALUNYA
Call Details Starting Grant (StG), PE7, ERC-2015-STG
Summary Piezoelectric materials transduce electrical voltage into mechanical strain and vice-versa, which makes them ubiquitous in sensors, actuators, and energy harvesting systems. Flexoelectricity is a related but different effect, by which electric polarization is coupled to strain gradients, i.e. it requires inhomogeneous deformation. Flexoelectricity is present in a much wider variety of materials, including non-polar dielectrics and polymers, but is only significant at small length-scales. Flexoelectricity has demonstrated its potential in information technologies, by flexoelectric-mediated mechanical writing in ferroelectric thin films at the nanoscale, or in flexoelectric electromechanical transducers. It has been suggested that flexoelectricity could enable piezoelectric composites made out of non-piezoelectric components, including soft materials, which could be used in biocompatible and self-powered small-scale devices. Flexoelectricity is a nascent field with major open questions. Furthermore, experimental devices and material designs are limited by what we can understand and analyze, and unfortunately, we lack general engineering analysis tools for flexoelectricity. As a result, current flexoelectric devices are only minimal variations of configurations conceived within the uniform-strain mindset of piezoelectricity. Our main objective in this proposal is to develop an advanced computational infrastructure to quantify flexoelectricity in solids, focusing on continuum models but also exploring multiscale aspects. We plan to use it to (1) analyze accurately flexoelectricity accounting for general geometries, electrode configurations, and material behavior, (2) identify new physics emerging flexoelectricity, and (3) propose, build and test a new generation of thin-film devices, composites and metamaterials for electromechanical transduction, genuinely designed to exploit small-scale flexoelectricity and make it available at macroscopic scales.
Summary
Piezoelectric materials transduce electrical voltage into mechanical strain and vice-versa, which makes them ubiquitous in sensors, actuators, and energy harvesting systems. Flexoelectricity is a related but different effect, by which electric polarization is coupled to strain gradients, i.e. it requires inhomogeneous deformation. Flexoelectricity is present in a much wider variety of materials, including non-polar dielectrics and polymers, but is only significant at small length-scales. Flexoelectricity has demonstrated its potential in information technologies, by flexoelectric-mediated mechanical writing in ferroelectric thin films at the nanoscale, or in flexoelectric electromechanical transducers. It has been suggested that flexoelectricity could enable piezoelectric composites made out of non-piezoelectric components, including soft materials, which could be used in biocompatible and self-powered small-scale devices. Flexoelectricity is a nascent field with major open questions. Furthermore, experimental devices and material designs are limited by what we can understand and analyze, and unfortunately, we lack general engineering analysis tools for flexoelectricity. As a result, current flexoelectric devices are only minimal variations of configurations conceived within the uniform-strain mindset of piezoelectricity. Our main objective in this proposal is to develop an advanced computational infrastructure to quantify flexoelectricity in solids, focusing on continuum models but also exploring multiscale aspects. We plan to use it to (1) analyze accurately flexoelectricity accounting for general geometries, electrode configurations, and material behavior, (2) identify new physics emerging flexoelectricity, and (3) propose, build and test a new generation of thin-film devices, composites and metamaterials for electromechanical transduction, genuinely designed to exploit small-scale flexoelectricity and make it available at macroscopic scales.
Max ERC Funding
1 500 000 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym FLEXOELECTRICITY
Project Flexoelectricity
Researcher (PI) Gustavo Catalan Bernabe
Host Institution (HI) FUNDACIO INSTITUT CATALA DE NANOCIENCIA I NANOTECNOLOGIA
Call Details Starting Grant (StG), PE3, ERC-2012-StG_20111012
Summary "Flexoelectricity is a general property of all insulators whereby they generate a voltage when subjected to an inhomogeneous deformation such as bending. Research on this property has taken off with the observation that, due to the large gradients they can accommodate, devices operating in the nanoscale display colossal flexoelectric effects. The present proposal aims to set up Euroe’s first laboratory specialized on the exploration and exploitation of flexoelectricity. It shall focus on three areas with specific targets:
1) Flexoelectricity for energy harvesting: the inverse relationship between flexoelectricity and device size means that, at the nanoscale, flexoelectric energy harvesting can deliver electromechanical performances superior to the current state of the art. We aim to demonstrate record-high effective piezoelectric coefficients through the use of flexoelectricity.
2) Flexoelectricity for information technologies: Flexoelectricity affords mechanical control of polarity. This opens the door to novel memory device concepts where polarization (and magnetization) can be controlled by pushing with the tip of a scanning probe. We aim to achieve flexoelectric writing of domains under electrodes, and also to demonstrate the indirect coupling between flexoelectricity and magnetization (“flexomagnetism”).
3) Bioflexoelectricity: Flexoelectricity participates in human hearing, and is expected to participate in other bioelectric phenomena. In particular, bones are known to generate electricity in response to stress, and it has been hypothesised that this is due to strain gradients; if demonstrated, this would represent a significant step towards osteogenetic implants. Determining the role of flexoelectricity in in bone piezoelectricty will be the third aim of this project."
Summary
"Flexoelectricity is a general property of all insulators whereby they generate a voltage when subjected to an inhomogeneous deformation such as bending. Research on this property has taken off with the observation that, due to the large gradients they can accommodate, devices operating in the nanoscale display colossal flexoelectric effects. The present proposal aims to set up Euroe’s first laboratory specialized on the exploration and exploitation of flexoelectricity. It shall focus on three areas with specific targets:
1) Flexoelectricity for energy harvesting: the inverse relationship between flexoelectricity and device size means that, at the nanoscale, flexoelectric energy harvesting can deliver electromechanical performances superior to the current state of the art. We aim to demonstrate record-high effective piezoelectric coefficients through the use of flexoelectricity.
2) Flexoelectricity for information technologies: Flexoelectricity affords mechanical control of polarity. This opens the door to novel memory device concepts where polarization (and magnetization) can be controlled by pushing with the tip of a scanning probe. We aim to achieve flexoelectric writing of domains under electrodes, and also to demonstrate the indirect coupling between flexoelectricity and magnetization (“flexomagnetism”).
3) Bioflexoelectricity: Flexoelectricity participates in human hearing, and is expected to participate in other bioelectric phenomena. In particular, bones are known to generate electricity in response to stress, and it has been hypothesised that this is due to strain gradients; if demonstrated, this would represent a significant step towards osteogenetic implants. Determining the role of flexoelectricity in in bone piezoelectricty will be the third aim of this project."
Max ERC Funding
1 478 400 €
Duration
Start date: 2013-01-01, End date: 2017-12-31
Project acronym FLINT
Project Finite-Length Information Theory
Researcher (PI) Albert Guillen I Fabregas
Host Institution (HI) UNIVERSIDAD POMPEU FABRA
Call Details Starting Grant (StG), PE7, ERC-2010-StG_20091028
Summary Shannon's Information Theory establishes the fundamental limits of information processing systems. A concept that is hidden in the mathematical proofs most of the Information Theory literature, is that in order to achieve the fundamental limits we need sequences of infinite duration. Practical information processing systems have strict limitations in terms of length, induced by system constraints on delay and complexity. The vast majority of the Information Theory literature ignores these constraints and theoretical studies that provide a finite-length treatment of information processing are hence urgently needed. When finite-lengths are employed, asymptotic techniques (laws of large numbers, large deviations) cannot be invoked and new techniques must be sought. A fundamental understanding of the impact of finite-lengths is crucial to harvesting the potential gains in practice. This project is aimed at contributing towards the ambitious goal of providing a unified framework for the study of finite-length Information Theory. The approach in this project will be based on information-spectrum combined with tight bounding techniques. A comprehensive study of finite-length information theory will represent a major step forward in Information Theory, with the potential to provide new tools and techniques to solve open problems in multiple disciplines. This unconventional and challenging treatment of Information Theory will advance the area and will contribute to disciplines where Information Theory is relevant. Therefore, the results of this project will be of benefit to areas such as communication theory, probability theory, statistics, physics, computer science, mathematics, economics, bioinformatics and computational neuroscience.
Summary
Shannon's Information Theory establishes the fundamental limits of information processing systems. A concept that is hidden in the mathematical proofs most of the Information Theory literature, is that in order to achieve the fundamental limits we need sequences of infinite duration. Practical information processing systems have strict limitations in terms of length, induced by system constraints on delay and complexity. The vast majority of the Information Theory literature ignores these constraints and theoretical studies that provide a finite-length treatment of information processing are hence urgently needed. When finite-lengths are employed, asymptotic techniques (laws of large numbers, large deviations) cannot be invoked and new techniques must be sought. A fundamental understanding of the impact of finite-lengths is crucial to harvesting the potential gains in practice. This project is aimed at contributing towards the ambitious goal of providing a unified framework for the study of finite-length Information Theory. The approach in this project will be based on information-spectrum combined with tight bounding techniques. A comprehensive study of finite-length information theory will represent a major step forward in Information Theory, with the potential to provide new tools and techniques to solve open problems in multiple disciplines. This unconventional and challenging treatment of Information Theory will advance the area and will contribute to disciplines where Information Theory is relevant. Therefore, the results of this project will be of benefit to areas such as communication theory, probability theory, statistics, physics, computer science, mathematics, economics, bioinformatics and computational neuroscience.
Max ERC Funding
1 303 606 €
Duration
Start date: 2011-08-01, End date: 2017-07-31
Project acronym FLUID-INTERFACE
Project Analysis of moving incompressible fluid interfaces
Researcher (PI) Francisco de Asís Gancedo García
Host Institution (HI) UNIVERSIDAD DE SEVILLA
Call Details Starting Grant (StG), PE1, ERC-2014-STG
Summary The research of this proposal is focused on solving problems that involve the evolution of fluid interfaces. The project will investigate the dynamics of free boundaries arising between incompressible fluids of different nature. The main concern is well-posed scenarios which include the possible formation of singularities in finite time or existence of solutions for all time. These contour dynamics issues are governed by fundamental fluid mechanics equations such as the Euler, Navier-Stokes, Darcy and quasi-geostrophic systems. They model important problems such as water waves, viscous waves, Muskat, interface Hele-Shaw and SQG sharp front evolution. All these contour dynamics frameworks will be studied with emphasis on singularity formation and global existence results, not only for their importance in mathematical physics, but also for their mathematical interest. This presents huge challenges which will in particular require the use of different tools and methods from several areas of mathematics. A new technique, introduced to the field by the Principal Investigator, has already enabled the analysis of several singularity formations for the water waves and Muskat problems, as well as to obtain global existence results for Muskat. The main goal of this proposal is to develop upon this work, going far beyond the state of the art in these contour dynamics problems for incompressible fluids.
Summary
The research of this proposal is focused on solving problems that involve the evolution of fluid interfaces. The project will investigate the dynamics of free boundaries arising between incompressible fluids of different nature. The main concern is well-posed scenarios which include the possible formation of singularities in finite time or existence of solutions for all time. These contour dynamics issues are governed by fundamental fluid mechanics equations such as the Euler, Navier-Stokes, Darcy and quasi-geostrophic systems. They model important problems such as water waves, viscous waves, Muskat, interface Hele-Shaw and SQG sharp front evolution. All these contour dynamics frameworks will be studied with emphasis on singularity formation and global existence results, not only for their importance in mathematical physics, but also for their mathematical interest. This presents huge challenges which will in particular require the use of different tools and methods from several areas of mathematics. A new technique, introduced to the field by the Principal Investigator, has already enabled the analysis of several singularity formations for the water waves and Muskat problems, as well as to obtain global existence results for Muskat. The main goal of this proposal is to develop upon this work, going far beyond the state of the art in these contour dynamics problems for incompressible fluids.
Max ERC Funding
1 106 936 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym Foldmetcat
Project Bioinspired Catalytic Metallofoldamers
Researcher (PI) ANTONIO M ECHAVARREN PABLOS
Host Institution (HI) FUNDACIO PRIVADA INSTITUT CATALA D'INVESTIGACIO QUIMICA
Call Details Advanced Grant (AdG), PE5, ERC-2018-ADG
Summary Inspired by mimicking the characteristics of terpenoid cyclase enzymes, the goal of this proposal is to design new types of catalysts containing electrophilic transition metal centers that could simultaneously fold and activate polyunsaturated substrates promoting non-inherent cyclization modes. Our goal is unprecedented, although it is rooted on fundamental organometallic chemistry, in particular, on the known activation of polyunsaturated substrates by highly electrophilic transition metals. These unconventional cyclizations cascades challenge the paradigm that the intrinsic reactivity of the substrate is the relevant factor in carbocation-initiated processes and would provide access to large carbocyclic skeletons such as those present in taxol and ophiobolin enantioselectively in a single step under catalytic conditions. Although the initial work will be carried out with gold catalysts, a major goal of this research is to develop other general-purpose efficient chiral electrophilic catalysts based on zinc. To attain our goal, we will study more simple catalysts to delineate the factors that control the folding of polyenynes and polyenes. Thus, we will prepare new series of C2-chiral catalysts in which the stereogenic elements are close to the reaction site. Related C2-chiral systems will be generated by supramolecular hydrogen-bond pairing. A similar chiral arrangement could also be achieved by an intramolecular chiral anion translocation from the metal to a distant hydrogen-bond donor site. In addition, we will explore larger systems based on structurally well-defined metallic clusters to generate highly electrophilic chiral reactive sites. The folding and activation of polyunsaturated substrates will be studied first with a series of catalytic prototypes based on digold or heterobimetallic complexes with N-heterocyclic carbenes, diphosphines, mixed ligands of these types, as well as resorcinarene-phosphonite cavitant ligands.
Summary
Inspired by mimicking the characteristics of terpenoid cyclase enzymes, the goal of this proposal is to design new types of catalysts containing electrophilic transition metal centers that could simultaneously fold and activate polyunsaturated substrates promoting non-inherent cyclization modes. Our goal is unprecedented, although it is rooted on fundamental organometallic chemistry, in particular, on the known activation of polyunsaturated substrates by highly electrophilic transition metals. These unconventional cyclizations cascades challenge the paradigm that the intrinsic reactivity of the substrate is the relevant factor in carbocation-initiated processes and would provide access to large carbocyclic skeletons such as those present in taxol and ophiobolin enantioselectively in a single step under catalytic conditions. Although the initial work will be carried out with gold catalysts, a major goal of this research is to develop other general-purpose efficient chiral electrophilic catalysts based on zinc. To attain our goal, we will study more simple catalysts to delineate the factors that control the folding of polyenynes and polyenes. Thus, we will prepare new series of C2-chiral catalysts in which the stereogenic elements are close to the reaction site. Related C2-chiral systems will be generated by supramolecular hydrogen-bond pairing. A similar chiral arrangement could also be achieved by an intramolecular chiral anion translocation from the metal to a distant hydrogen-bond donor site. In addition, we will explore larger systems based on structurally well-defined metallic clusters to generate highly electrophilic chiral reactive sites. The folding and activation of polyunsaturated substrates will be studied first with a series of catalytic prototypes based on digold or heterobimetallic complexes with N-heterocyclic carbenes, diphosphines, mixed ligands of these types, as well as resorcinarene-phosphonite cavitant ligands.
Max ERC Funding
2 500 000 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym FoQAL
Project Frontiers of Quantum Atom-Light Interactions
Researcher (PI) Darrick Chang
Host Institution (HI) FUNDACIO INSTITUT DE CIENCIES FOTONIQUES
Call Details Starting Grant (StG), PE2, ERC-2014-STG
Summary FoQAL aims to completely re-define our ability to control light-matter interactions at the quantum level. This potential revolution will make use of cold atoms interfaced with nanophotonic systems, exploiting unique features such as control over the dimensionality and dispersion of light, the engineering of quantum vacuum forces, and strong optical fields and forces associated with light confined to the nanoscale. We will develop powerful and fundamentally new paradigms for atomic trapping, tailoring atomic interactions, and quantum nonlinear optics, which cannot be duplicated in macroscopic systems even in principle. Targeted breakthroughs include:
1) Nanoscale traps using quantum vacuum forces. Nanophotonic structures enable strong quantum vacuum forces acting on atoms near dielectric surfaces to be harnessed for novel “vacuum traps.” Their figures of merit (e.g., trap depth and spatial confinement) will exceed what is possible with conventional trapping techniques by 1-2 orders of magnitude.
2) Strong long-range spin-photon-phonon interactions. We will show that nanophotonic systems enable the formation of new “quasi-particles” consisting of atoms dressed by localized photonic clouds. These clouds produce strong multi-physics coupling between photons and atomic spins and motion, facilitating novel long-range interactions and the generation of exotic quantum states of light and matter.
3) New routes to single-photon nonlinear optics. We will develop novel techniques to attain strong interactions between individual photons, which are not based upon the saturation of atomic transitions. These approaches will take advantage of engineered long-range interactions between atoms, and “atom-optomechanics” in which the optical response of atoms and their motion strongly couple. Significantly, our protocols will enable a growth in nonlinearities for moderate atom number N, in contrast to conventional cavity QED where the optimal operating point is N=1.
Summary
FoQAL aims to completely re-define our ability to control light-matter interactions at the quantum level. This potential revolution will make use of cold atoms interfaced with nanophotonic systems, exploiting unique features such as control over the dimensionality and dispersion of light, the engineering of quantum vacuum forces, and strong optical fields and forces associated with light confined to the nanoscale. We will develop powerful and fundamentally new paradigms for atomic trapping, tailoring atomic interactions, and quantum nonlinear optics, which cannot be duplicated in macroscopic systems even in principle. Targeted breakthroughs include:
1) Nanoscale traps using quantum vacuum forces. Nanophotonic structures enable strong quantum vacuum forces acting on atoms near dielectric surfaces to be harnessed for novel “vacuum traps.” Their figures of merit (e.g., trap depth and spatial confinement) will exceed what is possible with conventional trapping techniques by 1-2 orders of magnitude.
2) Strong long-range spin-photon-phonon interactions. We will show that nanophotonic systems enable the formation of new “quasi-particles” consisting of atoms dressed by localized photonic clouds. These clouds produce strong multi-physics coupling between photons and atomic spins and motion, facilitating novel long-range interactions and the generation of exotic quantum states of light and matter.
3) New routes to single-photon nonlinear optics. We will develop novel techniques to attain strong interactions between individual photons, which are not based upon the saturation of atomic transitions. These approaches will take advantage of engineered long-range interactions between atoms, and “atom-optomechanics” in which the optical response of atoms and their motion strongly couple. Significantly, our protocols will enable a growth in nonlinearities for moderate atom number N, in contrast to conventional cavity QED where the optimal operating point is N=1.
Max ERC Funding
1 340 873 €
Duration
Start date: 2015-03-01, End date: 2020-02-29
Project acronym FOREMAT
Project Finding a needle in a haystack: efficient identification of high performing organic energy materials
Researcher (PI) Mariano Campoy Quiles
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Consolidator Grant (CoG), PE8, ERC-2014-CoG
Summary Following promising early breakthroughs, progress in the development of high-performance multicomponent organic energy materials has stalled due to a bottleneck in device optimization. FOREMAT will develop a breakthrough technology to overcome this bottleneck by shifting from fabrication-intense to measurement-intense assessment methods, enabling rapid multi-parameter optimization of novel systems. Our goal is to deliver organic material systems with a step-change in performance, bringing them close to the expected market turn point, including panchromatic organic photovoltaics with ca 15% efficiencies and thermoelectric devices that could revolutionize waste heat recovery by their flexibility, lightweight and high power factor.
The development of multicomponent materials promises to dramatically improve the cost, efficiency and stability of organic energy devices. For example, they allow to engineer broad-band absorption in photovoltaics matched to the sun’s spectrum, or to create composites that conduct electricity like metals while thermally insulate like cotton yielding thermoelectric devices beyond the state-of-the-art. Despite these advantages, the long time required to evaluate promising organic multinaries currently limits their development.
We will circumvent this problem by developing a high-throughput technology that will allow evaluation times up to two orders of magnitude faster saving, at the same time, around 90% of material. To meet these ambitious goals, we will advance novel fabrication tools and create samples bearing a high density of information arising from 2-dimensional gradual variations in relevant parameters that will be sequentially tested with increasing resolution in order to determine optimum values with high precision. This quantitative step will enable a disruptive qualitative change as in depth multidimensional studies will lead to design rationales for multicomponent systems with step-change performance in energy applications.
Summary
Following promising early breakthroughs, progress in the development of high-performance multicomponent organic energy materials has stalled due to a bottleneck in device optimization. FOREMAT will develop a breakthrough technology to overcome this bottleneck by shifting from fabrication-intense to measurement-intense assessment methods, enabling rapid multi-parameter optimization of novel systems. Our goal is to deliver organic material systems with a step-change in performance, bringing them close to the expected market turn point, including panchromatic organic photovoltaics with ca 15% efficiencies and thermoelectric devices that could revolutionize waste heat recovery by their flexibility, lightweight and high power factor.
The development of multicomponent materials promises to dramatically improve the cost, efficiency and stability of organic energy devices. For example, they allow to engineer broad-band absorption in photovoltaics matched to the sun’s spectrum, or to create composites that conduct electricity like metals while thermally insulate like cotton yielding thermoelectric devices beyond the state-of-the-art. Despite these advantages, the long time required to evaluate promising organic multinaries currently limits their development.
We will circumvent this problem by developing a high-throughput technology that will allow evaluation times up to two orders of magnitude faster saving, at the same time, around 90% of material. To meet these ambitious goals, we will advance novel fabrication tools and create samples bearing a high density of information arising from 2-dimensional gradual variations in relevant parameters that will be sequentially tested with increasing resolution in order to determine optimum values with high precision. This quantitative step will enable a disruptive qualitative change as in depth multidimensional studies will lead to design rationales for multicomponent systems with step-change performance in energy applications.
Max ERC Funding
2 423 894 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym FRAGMENT
Project FRontiers in dust minerAloGical coMposition and its Effects upoN climaTe
Researcher (PI) Carlos Perez Garcia-Pando
Host Institution (HI) BARCELONA SUPERCOMPUTING CENTER - CENTRO NACIONAL DE SUPERCOMPUTACION
Call Details Consolidator Grant (CoG), PE10, ERC-2017-COG
Summary Soil dust aerosols are mixtures of different minerals, whose relative abundances, particle size distribution (PSD), shape, surface topography and mixing state influence their effect upon climate. However, Earth System Models typically assume that dust aerosols have a globally uniform composition, neglecting the known regional variations in the mineralogy of the sources. The goal of FRAGMENT is to understand and constrain the global mineralogical composition of dust along with its effects upon climate. The representation of the global dust mineralogy is hindered by our limited knowledge of the global soil mineral content and our incomplete understanding of the emitted dust PSD in terms of its constituent minerals that results from the fragmentation of soil aggregates during wind erosion. The emitted PSD affects the duration of particle transport and thus each mineral’s global distribution, along with its specific effect upon climate. Coincident observations of the emitted dust and soil PSD are scarce and do not characterize the mineralogy. In addition, the existing theoretical paradigms disagree fundamentally on multiple aspects. We will contribute new fundamental understanding of the size-resolved mineralogy of dust at emission and its relationship with the parent soil, based on an unprecedented ensemble of measurement campaigns that have been designed to thoroughly test our theoretical hypotheses. To improve knowledge of the global soil mineral content, we will evaluate and use available remote hyperspectral imaging, which is unprecedented in the context of dust modelling. Our new methods will anticipate the coming innovation of retrieving soil mineralogy through high-quality spaceborne hyperspectral measurements. Finally, we will generate integrated and quantitative knowledge of the role of dust mineralogy in dust-radiation, dust-chemistry and dust-cloud interactions based on modeling experiments constrained with our theoretical innovations and field measurements.
Summary
Soil dust aerosols are mixtures of different minerals, whose relative abundances, particle size distribution (PSD), shape, surface topography and mixing state influence their effect upon climate. However, Earth System Models typically assume that dust aerosols have a globally uniform composition, neglecting the known regional variations in the mineralogy of the sources. The goal of FRAGMENT is to understand and constrain the global mineralogical composition of dust along with its effects upon climate. The representation of the global dust mineralogy is hindered by our limited knowledge of the global soil mineral content and our incomplete understanding of the emitted dust PSD in terms of its constituent minerals that results from the fragmentation of soil aggregates during wind erosion. The emitted PSD affects the duration of particle transport and thus each mineral’s global distribution, along with its specific effect upon climate. Coincident observations of the emitted dust and soil PSD are scarce and do not characterize the mineralogy. In addition, the existing theoretical paradigms disagree fundamentally on multiple aspects. We will contribute new fundamental understanding of the size-resolved mineralogy of dust at emission and its relationship with the parent soil, based on an unprecedented ensemble of measurement campaigns that have been designed to thoroughly test our theoretical hypotheses. To improve knowledge of the global soil mineral content, we will evaluate and use available remote hyperspectral imaging, which is unprecedented in the context of dust modelling. Our new methods will anticipate the coming innovation of retrieving soil mineralogy through high-quality spaceborne hyperspectral measurements. Finally, we will generate integrated and quantitative knowledge of the role of dust mineralogy in dust-radiation, dust-chemistry and dust-cloud interactions based on modeling experiments constrained with our theoretical innovations and field measurements.
Max ERC Funding
2 000 000 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym FunCBonds
Project Chasing a Fundamental Challenge in Catalysis: A Combined Cleavage of Carbon-Carbon Bonds and Carbon Dioxide for Preparing Functionalized Molecules
Researcher (PI) Ruben Francisco Martin Romo
Host Institution (HI) FUNDACIO PRIVADA INSTITUT CATALA D'INVESTIGACIO QUIMICA
Call Details Starting Grant (StG), PE5, ERC-2011-StG_20101014
Summary FunCBonds offers a novel perspective to relevant scientific synthetic problems via a synergistic dual catalytic activation of carbon-carbon bonds and CO2, a topic of major interest not only for basic research science but also from an industrial and social point of view. As the use of alternative feedstocks such as CO2 is still one of the most fundamental gaps in catalytic technologies, I believe that FunCBonds project provides an alternative vision and strategy for the preparation of pharmaceutically relevant carboxylic acid derivatives using inexpensive raw materials in a catalytic fashion. In contrast to the well-established methodology based on carbon-carbon bond formation using either ruthenium or palladium catalysts (recently awarded with the Nobel Prize in Chemistry 2005 and 2010, respectively), the main challenge of this project is the discovery of a non-expensive and non-toxic catalyst that allows the cleavage of C-C bonds and CO2 following the principles of the atom economy. FunCBonds will meet these challenges by offering an innovative approach that will unlock the potential of a combined functionalization of inert C-C and C-O bonds. The project will provide the necessary understanding behind the factors influencing both C-C bond cleavage and the subsequent CO2 insertion event, thus opening up new horizons in preparative organic chemistry as well as offering solutions to a social and industrial problem such as the use of CO2 as chemical feedstock.
Summary
FunCBonds offers a novel perspective to relevant scientific synthetic problems via a synergistic dual catalytic activation of carbon-carbon bonds and CO2, a topic of major interest not only for basic research science but also from an industrial and social point of view. As the use of alternative feedstocks such as CO2 is still one of the most fundamental gaps in catalytic technologies, I believe that FunCBonds project provides an alternative vision and strategy for the preparation of pharmaceutically relevant carboxylic acid derivatives using inexpensive raw materials in a catalytic fashion. In contrast to the well-established methodology based on carbon-carbon bond formation using either ruthenium or palladium catalysts (recently awarded with the Nobel Prize in Chemistry 2005 and 2010, respectively), the main challenge of this project is the discovery of a non-expensive and non-toxic catalyst that allows the cleavage of C-C bonds and CO2 following the principles of the atom economy. FunCBonds will meet these challenges by offering an innovative approach that will unlock the potential of a combined functionalization of inert C-C and C-O bonds. The project will provide the necessary understanding behind the factors influencing both C-C bond cleavage and the subsequent CO2 insertion event, thus opening up new horizons in preparative organic chemistry as well as offering solutions to a social and industrial problem such as the use of CO2 as chemical feedstock.
Max ERC Funding
1 423 800 €
Duration
Start date: 2011-12-01, End date: 2016-11-30
Project acronym FUNCMOLQIP
Project Design and Preparation of Functional Molecules for Quantum Computing and Information Processing
Researcher (PI) Guillem Aromi
Host Institution (HI) UNIVERSITAT DE BARCELONA
Call Details Starting Grant (StG), PE5, ERC-2010-StG_20091028
Summary The future of Nanotechnology depends inevitably on the creation of molecular devices capable of performing crucial functions. We propose new strategies for the design and synthesis of molecular functional materials based on coordination chemistry, as well as the study of their physico-chemical properties in order to evaluate their relevance in the context of molecular spintronics and electronics. The main rationale underlying these strategies stems from the conviction that the unlimited potential of coordination compounds may be greatly exploited if the processes of self assembly leading to these systems are controlled and manipulated through the careful design of the ligands that will shape their structure and properties. We have designed the synthesis of new families of multinucleating ligands intended to form polynuclear coordination molecules with predetermined structures. Preliminary analysis of their performance has served to identify entries into novel categories of Single Molecule Magnets, SMMs, and Molecular Cluster Pairs, MCPs. The latter are stable molecules that exhibit two quasi independent metallic clusters, which fulfil many of the requirements necessary to act as 2qbit quantum gates for processors in quantum computing. We propose a full synthetic programme aimed at exploiting and expanding this promising avenue toward the fabrication of molecular systems that will be exploited in the context of Quantum Information Processing, QIP. In particular, we have identified from our previous work three classes of MCPs with promising features towards that end. We aim at exploiting the tools that we have created and develop new synthetic resources for the synthesis of robust molecules with the ability to act as 2qbits in QIP based on magnetic nanoclusters.
Summary
The future of Nanotechnology depends inevitably on the creation of molecular devices capable of performing crucial functions. We propose new strategies for the design and synthesis of molecular functional materials based on coordination chemistry, as well as the study of their physico-chemical properties in order to evaluate their relevance in the context of molecular spintronics and electronics. The main rationale underlying these strategies stems from the conviction that the unlimited potential of coordination compounds may be greatly exploited if the processes of self assembly leading to these systems are controlled and manipulated through the careful design of the ligands that will shape their structure and properties. We have designed the synthesis of new families of multinucleating ligands intended to form polynuclear coordination molecules with predetermined structures. Preliminary analysis of their performance has served to identify entries into novel categories of Single Molecule Magnets, SMMs, and Molecular Cluster Pairs, MCPs. The latter are stable molecules that exhibit two quasi independent metallic clusters, which fulfil many of the requirements necessary to act as 2qbit quantum gates for processors in quantum computing. We propose a full synthetic programme aimed at exploiting and expanding this promising avenue toward the fabrication of molecular systems that will be exploited in the context of Quantum Information Processing, QIP. In particular, we have identified from our previous work three classes of MCPs with promising features towards that end. We aim at exploiting the tools that we have created and develop new synthetic resources for the synthesis of robust molecules with the ability to act as 2qbits in QIP based on magnetic nanoclusters.
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-07-01, End date: 2016-06-30
Project acronym FUNDMS
Project Functionalisation of Diluted Magnetic Semiconductors
Researcher (PI) Tomasz Dietl
Host Institution (HI) INSTYTUT FIZYKI POLSKIEJ AKADEMII NAUK
Call Details Advanced Grant (AdG), PE3, ERC-2008-AdG
Summary Low-temperature studies of transition metal doped III-V and II-VI compounds carried out over the last decade have demonstrated the unprecedented opportunity offered by these systems for exploring physical phenomena and device concepts in previously unavailable combinations of quantum structures and ferromagnetism in semiconductors. The work proposed here aims at combining and at advancing epitaxial methods, spatially-resolved nano-characterisation tools, and theoretical modelling in order to understand the intricate interplay between carrier localisation, magnetism, and magnetic ion distribution in DMS, and to develop functional DMS structures. To accomplish these goals we will take advantage of two recent breakthroughs in materials engineering. First, the attainment of high-k oxides makes now possible to generate interfacial hole densities up to 10^21 cm-3. We will exploit gated thin layers of DMS phosphides, nitrides, and oxides, in which hole delocalization and thus high temperature ferromagnetism is to be expected under gate bias. Furthermore we will systematically investigate how the Curie temperature of (Ga,Mn)As can be risen above 180 K. Second, the progress in nanoscale chemical analysis has allowed demonstrating that high temperature ferromagnetism of semiconductors results from nanoscale crystallographic or chemical phase separations into regions containing a large concentration of the magnetic constituent. We will elaborate experimentally and theoretically epitaxy and co-doping protocols for controlling the self-organised growth of magnetic nanostructures, utilizing broadly synchrotron radiation and nanoscopic characterisation tools. The established methods will allow us to obtain on demand either magnetic nano-dots or magnetic nano-columns embedded in a semiconductor host, for which we predict, and will demonstrate, ground-breaking functionalities. We will also assess reports on the possibility of high-temperature ferromagnetism without magnetic ions.
Summary
Low-temperature studies of transition metal doped III-V and II-VI compounds carried out over the last decade have demonstrated the unprecedented opportunity offered by these systems for exploring physical phenomena and device concepts in previously unavailable combinations of quantum structures and ferromagnetism in semiconductors. The work proposed here aims at combining and at advancing epitaxial methods, spatially-resolved nano-characterisation tools, and theoretical modelling in order to understand the intricate interplay between carrier localisation, magnetism, and magnetic ion distribution in DMS, and to develop functional DMS structures. To accomplish these goals we will take advantage of two recent breakthroughs in materials engineering. First, the attainment of high-k oxides makes now possible to generate interfacial hole densities up to 10^21 cm-3. We will exploit gated thin layers of DMS phosphides, nitrides, and oxides, in which hole delocalization and thus high temperature ferromagnetism is to be expected under gate bias. Furthermore we will systematically investigate how the Curie temperature of (Ga,Mn)As can be risen above 180 K. Second, the progress in nanoscale chemical analysis has allowed demonstrating that high temperature ferromagnetism of semiconductors results from nanoscale crystallographic or chemical phase separations into regions containing a large concentration of the magnetic constituent. We will elaborate experimentally and theoretically epitaxy and co-doping protocols for controlling the self-organised growth of magnetic nanostructures, utilizing broadly synchrotron radiation and nanoscopic characterisation tools. The established methods will allow us to obtain on demand either magnetic nano-dots or magnetic nano-columns embedded in a semiconductor host, for which we predict, and will demonstrate, ground-breaking functionalities. We will also assess reports on the possibility of high-temperature ferromagnetism without magnetic ions.
Max ERC Funding
2 440 000 €
Duration
Start date: 2009-01-01, End date: 2013-12-31
Project acronym GALACTICNUCLEUS
Project The Fingerprint of a Galactic Nucleus: A Multi-Wavelength, High-Angular Resolution, Near-Infrared Study of the Centre of the Milky Way
Researcher (PI) Rainer Schödel
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Consolidator Grant (CoG), PE9, ERC-2013-CoG
Summary Galactic stellar nuclei are very common in all types of galaxies and are marked by the presence of nuclear star clusters, the densest and most massive star clusters in the present-day Universe. Their formation is still an unresolved puzzle. The centre of the Milky Way contains a massive black hole and a stellar nucleus and is orders of magnitude closer than any comparable target. It is the only galactic nucleus and the most extreme astrophysical environment that we can examine on scales of milli-parsecs. It is therefore a crucial laboratory for studying galactic nuclei and their role in the context of galaxy evolution. Yet, suitable data that would allow us to examine the stellar component of the Galactic Centre exist for less than 1% of its projected area. Moreover, the well-explored regions are extraordinary, like the central parsec around the massive black hole, and therefore probably not representative for the overall environment. Fundamental questions on the stellar population, structure and assembly history of the Galactic Centre remain therefore unanswered. This project aims at addressing the open questions by obtaining accurate, high-angular resolution, multi-wavelength near-infrared photometry for an area of several 100 pc^2, a more than ten-fold increase compared to the current state of affairs. The Galactic Centre presents unique observational challenges because of a combination of high extinction and extreme stellar crowding. It is therefore not adequately covered by existing or upcoming imaging surveys. I present a project that is specifically tailored to overcome these observational challenges. In particular, I have developed a key technique to obtain the necessary sensitive, high-angular resolution images with a stable point spread function over large, crowded fields. It works with a range of existing ground-based instruments and will serve to complement existing data to provide a global and detailed picture of the stellar nucleus of the Milky Way.
Summary
Galactic stellar nuclei are very common in all types of galaxies and are marked by the presence of nuclear star clusters, the densest and most massive star clusters in the present-day Universe. Their formation is still an unresolved puzzle. The centre of the Milky Way contains a massive black hole and a stellar nucleus and is orders of magnitude closer than any comparable target. It is the only galactic nucleus and the most extreme astrophysical environment that we can examine on scales of milli-parsecs. It is therefore a crucial laboratory for studying galactic nuclei and their role in the context of galaxy evolution. Yet, suitable data that would allow us to examine the stellar component of the Galactic Centre exist for less than 1% of its projected area. Moreover, the well-explored regions are extraordinary, like the central parsec around the massive black hole, and therefore probably not representative for the overall environment. Fundamental questions on the stellar population, structure and assembly history of the Galactic Centre remain therefore unanswered. This project aims at addressing the open questions by obtaining accurate, high-angular resolution, multi-wavelength near-infrared photometry for an area of several 100 pc^2, a more than ten-fold increase compared to the current state of affairs. The Galactic Centre presents unique observational challenges because of a combination of high extinction and extreme stellar crowding. It is therefore not adequately covered by existing or upcoming imaging surveys. I present a project that is specifically tailored to overcome these observational challenges. In particular, I have developed a key technique to obtain the necessary sensitive, high-angular resolution images with a stable point spread function over large, crowded fields. It works with a range of existing ground-based instruments and will serve to complement existing data to provide a global and detailed picture of the stellar nucleus of the Milky Way.
Max ERC Funding
1 547 657 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym GAPS
Project Spectral gaps in interacting quantum systems
Researcher (PI) David Perez Garcia
Host Institution (HI) UNIVERSIDAD COMPLUTENSE DE MADRID
Call Details Consolidator Grant (CoG), PE1, ERC-2014-CoG
Summary Interactions in a many body quantum system are encoded in a Hamiltonian, where the physical intuition that particles can only interact with those which are closeby is formally imposed as a local structure in the Hamiltonian, and homogeneity in space is imposed by a translational invariant structure on a given regular lattice in one, two or three dimensions. The first main aim of this proposal is to characterize the existence of a uniform (with the system size) lower bound on the gap between the two lowest eigenvalues of a given local translational invariant Hamiltonian.
There are many reasons which motivate this study, coming from different fields, and hence many potential applications. We will concentrate here on those coming from quantum information theory and from condensed matter physics and mainly, as the second main aim of this proposal, on classifying the different possible quantum phases arising in this type of models.
Summary
Interactions in a many body quantum system are encoded in a Hamiltonian, where the physical intuition that particles can only interact with those which are closeby is formally imposed as a local structure in the Hamiltonian, and homogeneity in space is imposed by a translational invariant structure on a given regular lattice in one, two or three dimensions. The first main aim of this proposal is to characterize the existence of a uniform (with the system size) lower bound on the gap between the two lowest eigenvalues of a given local translational invariant Hamiltonian.
There are many reasons which motivate this study, coming from different fields, and hence many potential applications. We will concentrate here on those coming from quantum information theory and from condensed matter physics and mainly, as the second main aim of this proposal, on classifying the different possible quantum phases arising in this type of models.
Max ERC Funding
1 462 750 €
Duration
Start date: 2015-09-01, End date: 2021-08-31
Project acronym GEDENTQOPT
Project Generation and detection of many-particle entanglement in quantum optical systems
Researcher (PI) Geza Toth
Host Institution (HI) UNIVERSIDAD DEL PAIS VASCO/ EUSKAL HERRIKO UNIBERTSITATEA
Call Details Starting Grant (StG), PE2, ERC-2010-StG_20091028
Summary During the last decade, quantum entanglement has been intensively studied within quantum information science and has also appeared as a natural goal of recent quantum experiments. Because of that the theoretical background of detecting entanglement has been rapidly developing. However, most of this development concentrated on bipartite or few-party entanglement, while today's experiments typically involve many particles. Thus, as one of the most interesting part of quantum optics and quantum information, I chose to study multi-partite entanglement theory, with a stress on creation and generation of many-particle entanglement. There are two main system types in today's experiments. In some systems all particles are individually accessible, such as trapped ions or photons. In such systems entanglement detection is still a challenge as the number of local measurements is limited. I propose to study efficient methods for detecting entanglement in such systems. In other physical systems, such as cold ensembles of a million atoms, particles are not accessible individually and only collective measurements are possible. To obtain useful information about the quantum state is a challenge. I propose to study entanglement creation and detection also in such systems. The latter topic is naturally connected to the efficient modeling of large quantum systems, since exact modeling is not possible for such system sizes.
Summary
During the last decade, quantum entanglement has been intensively studied within quantum information science and has also appeared as a natural goal of recent quantum experiments. Because of that the theoretical background of detecting entanglement has been rapidly developing. However, most of this development concentrated on bipartite or few-party entanglement, while today's experiments typically involve many particles. Thus, as one of the most interesting part of quantum optics and quantum information, I chose to study multi-partite entanglement theory, with a stress on creation and generation of many-particle entanglement. There are two main system types in today's experiments. In some systems all particles are individually accessible, such as trapped ions or photons. In such systems entanglement detection is still a challenge as the number of local measurements is limited. I propose to study efficient methods for detecting entanglement in such systems. In other physical systems, such as cold ensembles of a million atoms, particles are not accessible individually and only collective measurements are possible. To obtain useful information about the quantum state is a challenge. I propose to study entanglement creation and detection also in such systems. The latter topic is naturally connected to the efficient modeling of large quantum systems, since exact modeling is not possible for such system sizes.
Max ERC Funding
1 294 350 €
Duration
Start date: 2011-03-01, End date: 2017-02-28
Project acronym GEOFLUIDS
Project Geometric problems in PDEs with applications to fluid mechanics
Researcher (PI) Alberto Enciso Carrasco
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Starting Grant (StG), PE1, ERC-2014-STG
Summary There are many high-profile problems in PDEs that ultimately boil down to assertions of a strongly geometric or topological nature. One feature that makes these problems both very difficult and extremely appealing is that there is not a standard set of techniques that one can routinely resort to in order to attack them. Indeed, the very nature of these questions makes them strongly interdisciplinary, so successful approaches require finely tailored combinations of ideas and techniques coming from different branches of mathematics (analysis, geometry and topology), often interspersed with some physical intuition. In this project I aim at going significantly beyond the state of the art in a wide class of geometric questions in PDEs, with an emphasis on problems in fluid mechanics and encompassing long-standing questions that can be traced back to leading analysts and geometers such as Arnold, De Giorgi and Yau. The project is divided in three interrelated blocks, respectively devoted to the study of Beltrami fields in steady incompressible fluids, to geometric evolution problems and to global approximation theorems. Key to the proposal is a versatile new approach to a number of geometric problems in PDEs that I have pioneered and applied in several seemingly unrelated contexts. The power of this technique is laid bare by my recent proofs of a well-known conjecture on knotted vortex lines in topological fluid mechanics that was popularized by Arnold and Moffatt in the 1960s and of a long-standing conjecture on the existence of thin vortex tubes in steady solutions to the Euler equation that dates back to Lord Kelvin in 1875. The award of a Starting Grant will enable me to establish a top-level research group on these topics.
Summary
There are many high-profile problems in PDEs that ultimately boil down to assertions of a strongly geometric or topological nature. One feature that makes these problems both very difficult and extremely appealing is that there is not a standard set of techniques that one can routinely resort to in order to attack them. Indeed, the very nature of these questions makes them strongly interdisciplinary, so successful approaches require finely tailored combinations of ideas and techniques coming from different branches of mathematics (analysis, geometry and topology), often interspersed with some physical intuition. In this project I aim at going significantly beyond the state of the art in a wide class of geometric questions in PDEs, with an emphasis on problems in fluid mechanics and encompassing long-standing questions that can be traced back to leading analysts and geometers such as Arnold, De Giorgi and Yau. The project is divided in three interrelated blocks, respectively devoted to the study of Beltrami fields in steady incompressible fluids, to geometric evolution problems and to global approximation theorems. Key to the proposal is a versatile new approach to a number of geometric problems in PDEs that I have pioneered and applied in several seemingly unrelated contexts. The power of this technique is laid bare by my recent proofs of a well-known conjecture on knotted vortex lines in topological fluid mechanics that was popularized by Arnold and Moffatt in the 1960s and of a long-standing conjecture on the existence of thin vortex tubes in steady solutions to the Euler equation that dates back to Lord Kelvin in 1875. The award of a Starting Grant will enable me to establish a top-level research group on these topics.
Max ERC Funding
1 256 375 €
Duration
Start date: 2015-03-01, End date: 2020-02-29
Project acronym GEoREST
Project predictinG EaRthquakES induced by fluid injecTion
Researcher (PI) Victor VILARRASA
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Starting Grant (StG), PE8, ERC-2018-STG
Summary Fluid injection related to underground resources has become widespread, causing numerous cases of induced seismicity. If felt, induced seismicity has a negative effect on public perception and may jeopardise wellbore stability, which has led to the cancellation of several projects. Forecasting injection-induced earthquakes is a big challenge that must be overcome to deploy geo-energies to significantly reduce CO2 emissions and thus mitigate climate change and reduce related health issues. The basic conjecture is that, while initial (micro)seisms are caused by well-known mechanisms that could be predicted, subsequent activity is caused by harder to understand and, at present, unpredictable coupled thermo-hydro-mechanical-seismic (THMS) processes, which is the reason why available models fail to forecast induced seismicity. The objective of this project is to develop a novel methodology to predict and mitigate induced seismicity. We propose an interdisciplinary approach that integrates the THMS processes that occur in the subsurface as a result of fluid injection. The methodology, based on new analytical and numerical solutions, will concentrate on (1) understanding the processes that lead to induced seismicity by model testing of specific conjectures, (2) improving and extending subsurface characterization by using industrial fluid injection operations as a long-term continuous characterization methodology, so as to reduce prediction uncertainty, and (3) using the resulting understanding and site specific knowledge to predict and mitigate induced seismicity. Project developments will be tested and verified against fluid-induced seismicity at field sites that present diverse characteristics. Arguably, the successful development of this project will provide operators with concepts and tools to perform pressure management to reduce the risk of inducing seismicity to acceptable levels and thus, improve safety and reverse public perception on fluid injection activities.
Summary
Fluid injection related to underground resources has become widespread, causing numerous cases of induced seismicity. If felt, induced seismicity has a negative effect on public perception and may jeopardise wellbore stability, which has led to the cancellation of several projects. Forecasting injection-induced earthquakes is a big challenge that must be overcome to deploy geo-energies to significantly reduce CO2 emissions and thus mitigate climate change and reduce related health issues. The basic conjecture is that, while initial (micro)seisms are caused by well-known mechanisms that could be predicted, subsequent activity is caused by harder to understand and, at present, unpredictable coupled thermo-hydro-mechanical-seismic (THMS) processes, which is the reason why available models fail to forecast induced seismicity. The objective of this project is to develop a novel methodology to predict and mitigate induced seismicity. We propose an interdisciplinary approach that integrates the THMS processes that occur in the subsurface as a result of fluid injection. The methodology, based on new analytical and numerical solutions, will concentrate on (1) understanding the processes that lead to induced seismicity by model testing of specific conjectures, (2) improving and extending subsurface characterization by using industrial fluid injection operations as a long-term continuous characterization methodology, so as to reduce prediction uncertainty, and (3) using the resulting understanding and site specific knowledge to predict and mitigate induced seismicity. Project developments will be tested and verified against fluid-induced seismicity at field sites that present diverse characteristics. Arguably, the successful development of this project will provide operators with concepts and tools to perform pressure management to reduce the risk of inducing seismicity to acceptable levels and thus, improve safety and reverse public perception on fluid injection activities.
Max ERC Funding
1 438 201 €
Duration
Start date: 2019-02-01, End date: 2024-01-31
Project acronym GFTIPFD
Project Geometric function theory, inverse problems and fluid dinamics
Researcher (PI) Daniel Faraco Hurtado
Host Institution (HI) UNIVERSIDAD AUTONOMA DE MADRID
Call Details Starting Grant (StG), PE1, ERC-2012-StG_20111012
Summary The project will strike for conquering frontier results in three capital areas in partial differential equations and mathematical analysis: Elliptic equations and systems, fluid dynamics and inverse problems.
I propose to tackle the central problems in these areas with a new perspective based on the theory of differential inclusions. A thorough study of oscillating div-curl couples in this framework will lead us to the long expected higher dimensional version of the Tartar conjecture. The corresponding analysis of differential inclusions for gradient fields will lead to new results respect to the existence, uniqueness and regularity theory on the so far intractable theory of higher dimensional Beltrami systems. Next we will concentrate in weak solutions to the classical non linear equations governing fluid dynamics. A reformulation of these equations as differential inclusions enables a much more rich theory of weak solutions than the classical one. With this new tool at hand,we will close several long standing questions about existence, uniqueness and contour dynamics. The third part of the project is devoted to inverse problems in p.d.e. The most famous inverse problem is Calderón conductivity problem which asks whether the Dirichlet to Neumann map of an elliptic equation determines the coefficients. The problem is still open in three or more dimensions but a new formulation as a differential inclusion will allow us to close the 1980 Calderón conjecture by constructing new invisible materials. In dimension n=2 the recent approach based on quasiconformal theory will lead to the first regularization scheme valid for discontinuous conductivities and first results for non linear equations. For the stationary Schrödinger equation I propose to exploit a fascinating connection with the convergence to initial data of the non elliptic time dependent Schrödinger equation.
Summary
The project will strike for conquering frontier results in three capital areas in partial differential equations and mathematical analysis: Elliptic equations and systems, fluid dynamics and inverse problems.
I propose to tackle the central problems in these areas with a new perspective based on the theory of differential inclusions. A thorough study of oscillating div-curl couples in this framework will lead us to the long expected higher dimensional version of the Tartar conjecture. The corresponding analysis of differential inclusions for gradient fields will lead to new results respect to the existence, uniqueness and regularity theory on the so far intractable theory of higher dimensional Beltrami systems. Next we will concentrate in weak solutions to the classical non linear equations governing fluid dynamics. A reformulation of these equations as differential inclusions enables a much more rich theory of weak solutions than the classical one. With this new tool at hand,we will close several long standing questions about existence, uniqueness and contour dynamics. The third part of the project is devoted to inverse problems in p.d.e. The most famous inverse problem is Calderón conductivity problem which asks whether the Dirichlet to Neumann map of an elliptic equation determines the coefficients. The problem is still open in three or more dimensions but a new formulation as a differential inclusion will allow us to close the 1980 Calderón conjecture by constructing new invisible materials. In dimension n=2 the recent approach based on quasiconformal theory will lead to the first regularization scheme valid for discontinuous conductivities and first results for non linear equations. For the stationary Schrödinger equation I propose to exploit a fascinating connection with the convergence to initial data of the non elliptic time dependent Schrödinger equation.
Max ERC Funding
1 121 400 €
Duration
Start date: 2012-10-01, End date: 2018-09-30
Project acronym GravBHs
Project A New Strategy for Gravity and Black Holes
Researcher (PI) ROBERTO ALEJANDRO EMPARAN GARCIA DE SALAZAR
Host Institution (HI) UNIVERSITAT DE BARCELONA
Call Details Advanced Grant (AdG), PE2, ERC-2015-AdG
Summary General Relativity (GR) encompasses a huge variety of physical phenomena, from the collision of astrophysical black holes, to the dynamics (via holography) of strongly-coupled plasmas and the spontaneous symmetry-breaking in superconductors. Black holes play a central role in all this. However, their equations are exceedingly hard to solve. The apparent lack of a generic tunable parameter that allows to solve the theory perturbatively (like the electric coupling constant in electrodynamics, or the rank of the gauge group in large-N Yang-Mills theory) is arguably the single most important obstacle for generic efficient approaches to the physics of strong gravity and black holes. I argue that one natural parameter suggests itself: GR can be defined in an arbitrary number of dimensions D. Recently I have demonstrated that the limit of large D is optimally tailored for the investigation of black holes, classical and potentially also quantum. Explicit preliminary studies have proved that the concept is sound, powerful, and applicable even in four dimensions.
This encourages the pursuit of a full-scale program with two major goals:
(A) Reformulating GR and Black Hole physics around the large-D limit in terms of an effective membrane theory of black holes, coupled (non-perturbatively in 1/D) to an effective theory for gravitational radiation.
(B) Resolution of outstanding problems in gravitational physics, in particular of problems of direct relevance to cosmic censorship (critical collapse, endpoint of black brane instabilities), and of the quantum theory of black holes.
With the new tools of (A), a large number of additional problems in black hole physics and in holographic duality can be solved, which guarantee very substantial fallback objectives. These include black hole collisions, black hole phase diagrams, instabilities, holographic dynamics of finite-temperature systems, and potentially any problem that can be formulated in an arbitrary number of dimensions.
Summary
General Relativity (GR) encompasses a huge variety of physical phenomena, from the collision of astrophysical black holes, to the dynamics (via holography) of strongly-coupled plasmas and the spontaneous symmetry-breaking in superconductors. Black holes play a central role in all this. However, their equations are exceedingly hard to solve. The apparent lack of a generic tunable parameter that allows to solve the theory perturbatively (like the electric coupling constant in electrodynamics, or the rank of the gauge group in large-N Yang-Mills theory) is arguably the single most important obstacle for generic efficient approaches to the physics of strong gravity and black holes. I argue that one natural parameter suggests itself: GR can be defined in an arbitrary number of dimensions D. Recently I have demonstrated that the limit of large D is optimally tailored for the investigation of black holes, classical and potentially also quantum. Explicit preliminary studies have proved that the concept is sound, powerful, and applicable even in four dimensions.
This encourages the pursuit of a full-scale program with two major goals:
(A) Reformulating GR and Black Hole physics around the large-D limit in terms of an effective membrane theory of black holes, coupled (non-perturbatively in 1/D) to an effective theory for gravitational radiation.
(B) Resolution of outstanding problems in gravitational physics, in particular of problems of direct relevance to cosmic censorship (critical collapse, endpoint of black brane instabilities), and of the quantum theory of black holes.
With the new tools of (A), a large number of additional problems in black hole physics and in holographic duality can be solved, which guarantee very substantial fallback objectives. These include black hole collisions, black hole phase diagrams, instabilities, holographic dynamics of finite-temperature systems, and potentially any problem that can be formulated in an arbitrary number of dimensions.
Max ERC Funding
2 138 825 €
Duration
Start date: 2016-10-01, End date: 2021-09-30
Project acronym GREENLIGHT_REDCAT
Project Towards a Greener Reduction Chemistry by Using Cobalt Coordination Complexes as Catalysts and Light-driven Water Reduction as a Source of Reductive Equivalents
Researcher (PI) Julio Lloret Fillol
Host Institution (HI) FUNDACIO PRIVADA INSTITUT CATALA D'INVESTIGACIO QUIMICA
Call Details Consolidator Grant (CoG), PE5, ERC-2014-CoG
Summary The development of alternative greener synthetic methods to transform renewable feedstocks into elaborated chemical structures mediated by solar light is a prerequisite for a future sustainable society. In this regard, this project entails the use of visible light as driving force and water as a source of hydrides for the synthesis of high-value chemicals.
The project merges photoredox catalysis with 1st row transition coordination complexes catalysis to open a new avenue for greener selective catalytic reduction processes for organic substrates. The ground-breaking nature of the project is:
A) Develop light-driven region- and/or enantioselective catalytic reductions using well-defined cobalt coordination complexes with aminopyridine ligands, initially developed for water reduction. Sterics, electronics and supramolecular interactions (apolar cavities and chiral pockets) will be studied to proper control of the selectivity in the reduction of i) C=E and C=C bonds and ii) in the C-C inter- and intramolecular reductive homo- or heterocouplings.
B) Fundamental understanding of the light-driven cobalt catalysed reductions characterizing intermediates that are involved in the reactivity, kinetics and labelling studies as well as performing computational modelling of reaction mechanisms. The basic understanding of operative mechanisms will expedite a new methodology for electrophile-electrophile umpolung couplings.
C) Enhance catalytic performance of the light-driven cobalt catalysed reductions by self-assembling of catalyst-photosensitizer into carbon based pi-conjugated materials through noncovalent supramolecular interactions. Likewise, it will allow electrode immobilization for electrocatalysed reductions using water as a source of protons and electrons.
As a proof of concept, cobalt catalysts based on aminopyridine ligands have been shown highly active in the light-driven reduction of ketones and aldehydes to alcohols, using water as the source of hydrogen atom.
Summary
The development of alternative greener synthetic methods to transform renewable feedstocks into elaborated chemical structures mediated by solar light is a prerequisite for a future sustainable society. In this regard, this project entails the use of visible light as driving force and water as a source of hydrides for the synthesis of high-value chemicals.
The project merges photoredox catalysis with 1st row transition coordination complexes catalysis to open a new avenue for greener selective catalytic reduction processes for organic substrates. The ground-breaking nature of the project is:
A) Develop light-driven region- and/or enantioselective catalytic reductions using well-defined cobalt coordination complexes with aminopyridine ligands, initially developed for water reduction. Sterics, electronics and supramolecular interactions (apolar cavities and chiral pockets) will be studied to proper control of the selectivity in the reduction of i) C=E and C=C bonds and ii) in the C-C inter- and intramolecular reductive homo- or heterocouplings.
B) Fundamental understanding of the light-driven cobalt catalysed reductions characterizing intermediates that are involved in the reactivity, kinetics and labelling studies as well as performing computational modelling of reaction mechanisms. The basic understanding of operative mechanisms will expedite a new methodology for electrophile-electrophile umpolung couplings.
C) Enhance catalytic performance of the light-driven cobalt catalysed reductions by self-assembling of catalyst-photosensitizer into carbon based pi-conjugated materials through noncovalent supramolecular interactions. Likewise, it will allow electrode immobilization for electrocatalysed reductions using water as a source of protons and electrons.
As a proof of concept, cobalt catalysts based on aminopyridine ligands have been shown highly active in the light-driven reduction of ketones and aldehydes to alcohols, using water as the source of hydrogen atom.
Max ERC Funding
1 999 063 €
Duration
Start date: 2015-07-01, End date: 2020-06-30
Project acronym GRIFFIN
Project General compliant aerial Robotic manipulation system Integrating Fixed and Flapping wings to INcrease range and safety
Researcher (PI) Anibal OLLERO
Host Institution (HI) UNIVERSIDAD DE SEVILLA
Call Details Advanced Grant (AdG), PE7, ERC-2017-ADG
Summary The goal of GRIFFIN is the derivation of a unified framework with methods, tools and technologies for the development of flying robots with dexterous manipulation capabilities. The robots will be able to fly minimizing energy consumption, to perch on curved surfaces and to perform dexterous manipulation. Flying will be based on foldable wings with flapping capabilities. They will be able to safely operate in sites where rotorcrafts cannot do it and physically interact with people. Dexterous manipulation will be performed maintaining fixed contact with a surface, such as a pole or a pipe, by means of one or more limbs and manipulating with others overcoming the limitations of dexterous manipulation in free flying of existing aerial manipulators. Compliance will play an important role in these robots and in their flight and manipulation control methods. The control systems will be based on appropriate kinematic, dynamic and aerodynamic models. The GRIFFIN robots will have autonomous perception, reactivity and planning based on these models. They will be also able to associate with others to perform cooperative manipulation tasks. New software tools will be developed to facilitate the design and implementation of these complex robotic systems. Thus, configurations with different complexity could be derived depending on the requirements of flight endurance and manipulation tasks from simple grasping to more complex dexterous manipulation. The implementation will be based on additive and shape deposition manufacturing to fabricate multi-material parts and parts with embedded electronics and sensors. In GRIFFIN we will develop a small flapping wings proof of concept prototype which will be able to land autonomously on a small surface by using computer vision, a manipulation system with the body attached to a pole, and finally full size prototypes which will demonstrate flying, landing and manipulation, including cooperative manipulation, by maintaining the equilibrium.
Summary
The goal of GRIFFIN is the derivation of a unified framework with methods, tools and technologies for the development of flying robots with dexterous manipulation capabilities. The robots will be able to fly minimizing energy consumption, to perch on curved surfaces and to perform dexterous manipulation. Flying will be based on foldable wings with flapping capabilities. They will be able to safely operate in sites where rotorcrafts cannot do it and physically interact with people. Dexterous manipulation will be performed maintaining fixed contact with a surface, such as a pole or a pipe, by means of one or more limbs and manipulating with others overcoming the limitations of dexterous manipulation in free flying of existing aerial manipulators. Compliance will play an important role in these robots and in their flight and manipulation control methods. The control systems will be based on appropriate kinematic, dynamic and aerodynamic models. The GRIFFIN robots will have autonomous perception, reactivity and planning based on these models. They will be also able to associate with others to perform cooperative manipulation tasks. New software tools will be developed to facilitate the design and implementation of these complex robotic systems. Thus, configurations with different complexity could be derived depending on the requirements of flight endurance and manipulation tasks from simple grasping to more complex dexterous manipulation. The implementation will be based on additive and shape deposition manufacturing to fabricate multi-material parts and parts with embedded electronics and sensors. In GRIFFIN we will develop a small flapping wings proof of concept prototype which will be able to land autonomously on a small surface by using computer vision, a manipulation system with the body attached to a pole, and finally full size prototypes which will demonstrate flying, landing and manipulation, including cooperative manipulation, by maintaining the equilibrium.
Max ERC Funding
2 499 750 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym HADE
Project Harmonic Analysis and Differential Equations: New Challenges
Researcher (PI) Luis Vega
Host Institution (HI) UNIVERSIDAD DEL PAIS VASCO/ EUSKAL HERRIKO UNIBERTSITATEA
Call Details Advanced Grant (AdG), PE1, ERC-2014-ADG
Summary This project sets forth cutting-edge challenges in the field of Mathematical Physics that will be solved within a common framework by making novel use of classical tools of Harmonic Analysis such as Oscillatory Integrals and Trigonometric Sums, the Cauchy operator, and the so-called Carleman estimates. Three aspects will be covered:
1. Vortex Filament Equation (VFE).
2. Relativistic and Non-relativistic Critical Electromagnetic Hamiltonians.
3. Uncertainty Principles (UPs) and Applications.
The interaction of vortex filaments is considered a key issue in order to understand turbulence which is seen by many as the most relevant unsolved problem of classical physics. VFE first appeared as an approximation of the dynamics of isolated vortex filaments. I want to understand what happens when at time zero the filament is a regular polygon. Preliminary theoretical arguments together with some numerical experiments suggest that the different corners behave like different vortex filaments that interact with each other in such a way that the dynamics seem chaotic. I will prove the so-called Frisch-Parisi conjecture, showing that behind this chaotic behavior there is an underlying algebraic structure that controls the dynamics.
The Dirac equation, despite being one of the basic equations of Mathematical Physics, is very poorly understood from an analytical point of view. I will use the classical Cauchy operator in a modern way to explain some key Hamiltonian systems such as the MIT bag model for quark confinement.
UPs are at the heart of different fields like Quantum Mechanics, Harmonic Analysis, and Information Theory. We want to use a new approach to analyze modern versions of UPs that are not well understood. In order to do this, I will look at the problem from the point of view of partial differential equations making novel use of the Carleman estimates. This analysis will also be extended to the discrete setting where even classical UPs such the one by Hardy are not solved yet
Summary
This project sets forth cutting-edge challenges in the field of Mathematical Physics that will be solved within a common framework by making novel use of classical tools of Harmonic Analysis such as Oscillatory Integrals and Trigonometric Sums, the Cauchy operator, and the so-called Carleman estimates. Three aspects will be covered:
1. Vortex Filament Equation (VFE).
2. Relativistic and Non-relativistic Critical Electromagnetic Hamiltonians.
3. Uncertainty Principles (UPs) and Applications.
The interaction of vortex filaments is considered a key issue in order to understand turbulence which is seen by many as the most relevant unsolved problem of classical physics. VFE first appeared as an approximation of the dynamics of isolated vortex filaments. I want to understand what happens when at time zero the filament is a regular polygon. Preliminary theoretical arguments together with some numerical experiments suggest that the different corners behave like different vortex filaments that interact with each other in such a way that the dynamics seem chaotic. I will prove the so-called Frisch-Parisi conjecture, showing that behind this chaotic behavior there is an underlying algebraic structure that controls the dynamics.
The Dirac equation, despite being one of the basic equations of Mathematical Physics, is very poorly understood from an analytical point of view. I will use the classical Cauchy operator in a modern way to explain some key Hamiltonian systems such as the MIT bag model for quark confinement.
UPs are at the heart of different fields like Quantum Mechanics, Harmonic Analysis, and Information Theory. We want to use a new approach to analyze modern versions of UPs that are not well understood. In order to do this, I will look at the problem from the point of view of partial differential equations making novel use of the Carleman estimates. This analysis will also be extended to the discrete setting where even classical UPs such the one by Hardy are not solved yet
Max ERC Funding
1 672 103 €
Duration
Start date: 2015-12-01, End date: 2020-11-30