Project acronym AWESoMeStars
Project Accretion, Winds, and Evolution of Spins and Magnetism of Stars
Researcher (PI) Sean Patrick Matt
Host Institution (HI) THE UNIVERSITY OF EXETER
Call Details Consolidator Grant (CoG), PE9, ERC-2015-CoG
Summary This project focuses on Sun-like stars, which possess convective envelopes and universally exhibit magnetic activity (in the mass range 0.1 to 1.3 MSun). The rotation of these stars influences their internal structure, energy and chemical transport, and magnetic field generation, as well as their external magnetic activity and environmental interactions. Due to the huge range of timescales, spatial scales, and physics involved, understanding how each of these processes relate to each other and to the long-term evolution remains an enormous challenge in astrophysics. To face this challenge, the AWESoMeStars project will develop a comprehensive, physical picture of the evolution of stellar rotation, magnetic activity, mass loss, and accretion.
In doing so, we will
(1) Discover how stars lose the vast majority of their angular momentum, which happens in the accretion phase
(2) Explain the observed rotation-activity relationship and saturation in terms of the evolution of magnetic properties & coronal physics
(3) Characterize coronal heating and mass loss across the full range of mass & age
(4) Explain the Skumanich (1972) relationship and distributions of spin rates observed in young clusters & old field stars
(5) Develop physics-based gyrochronology as a tool for using rotation rates to constrain stellar ages.
We will accomplish these goals using a fundamentally new and multi-faceted approach, which combines the power of multi-dimensional MHD simulations with long-timescale rotational-evolution models. Specifically, we will develop a next generation of MHD simulations of both star-disk interactions and stellar winds, to model stars over the full range of mass & age, and to characterize how magnetically active stars impact their environments. Simultaneously, we will create a new class of rotational-evolution models that include external torques derived from our simulations, compute the evolution of spin rates of entire star clusters, & compare with observations.
Summary
This project focuses on Sun-like stars, which possess convective envelopes and universally exhibit magnetic activity (in the mass range 0.1 to 1.3 MSun). The rotation of these stars influences their internal structure, energy and chemical transport, and magnetic field generation, as well as their external magnetic activity and environmental interactions. Due to the huge range of timescales, spatial scales, and physics involved, understanding how each of these processes relate to each other and to the long-term evolution remains an enormous challenge in astrophysics. To face this challenge, the AWESoMeStars project will develop a comprehensive, physical picture of the evolution of stellar rotation, magnetic activity, mass loss, and accretion.
In doing so, we will
(1) Discover how stars lose the vast majority of their angular momentum, which happens in the accretion phase
(2) Explain the observed rotation-activity relationship and saturation in terms of the evolution of magnetic properties & coronal physics
(3) Characterize coronal heating and mass loss across the full range of mass & age
(4) Explain the Skumanich (1972) relationship and distributions of spin rates observed in young clusters & old field stars
(5) Develop physics-based gyrochronology as a tool for using rotation rates to constrain stellar ages.
We will accomplish these goals using a fundamentally new and multi-faceted approach, which combines the power of multi-dimensional MHD simulations with long-timescale rotational-evolution models. Specifically, we will develop a next generation of MHD simulations of both star-disk interactions and stellar winds, to model stars over the full range of mass & age, and to characterize how magnetically active stars impact their environments. Simultaneously, we will create a new class of rotational-evolution models that include external torques derived from our simulations, compute the evolution of spin rates of entire star clusters, & compare with observations.
Max ERC Funding
2 206 205 €
Duration
Start date: 2016-07-01, End date: 2021-06-30
Project acronym AXONSURVIVAL
Project Axon survival: the role of protein synthesis
Researcher (PI) Christine Elizabeth Holt
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Advanced Grant (AdG), LS5, ERC-2012-ADG_20120314
Summary Neurons make long-distance connections with synaptic targets via axons. These axons survive throughout the lifetime of an organism, often many years in mammals, yet how axons are maintained is not fully understood. Recently, we provided in vivo evidence that local mRNA translation in mature axons is required for their maintenance. This new finding, along with in vitro work from other groups, indicates that promoting axonal protein synthesis is a key mechanism by which trophic factors act to prevent axon degeneration. Here we propose a program of research to investigate the importance of ribosomal proteins (RPs) in axon maintenance and degeneration. The rationale for this is fourfold. First, recent genome-wide studies of axonal transcriptomes have revealed that protein synthesis (including RP mRNAs) is the highest functional category in several neuronal types. Second, some RPs have evolved extra-ribosomal functions that include signalling, such as 67LR which acts both as a cell surface receptor for laminin and as a RP. Third, mutations in different RPs in vertebrates cause unexpectedly specific defects, such as the loss of optic axons. Fourth, preliminary results show that RP mRNAs are translated in optic axons in response to trophic factors. Collectively these findings lead us to propose that locally synthesized RPs play a role in axon maintenance through either ribosomal or extra-ribosomal function. To pursue this proposal, we will perform unbiased screens and functional assays using an array of experimental approaches and animal models. By gaining an understanding of how local RP synthesis contributes to axon survival, our studies have the potential to provide novel insights into how components conventionally associated with a housekeeping role (translation) are linked to axon degeneration. Our findings could provide new directions for developing therapeutic tools for neurodegenerative disorders and may have an impact on more diverse areas of biology and disease.
Summary
Neurons make long-distance connections with synaptic targets via axons. These axons survive throughout the lifetime of an organism, often many years in mammals, yet how axons are maintained is not fully understood. Recently, we provided in vivo evidence that local mRNA translation in mature axons is required for their maintenance. This new finding, along with in vitro work from other groups, indicates that promoting axonal protein synthesis is a key mechanism by which trophic factors act to prevent axon degeneration. Here we propose a program of research to investigate the importance of ribosomal proteins (RPs) in axon maintenance and degeneration. The rationale for this is fourfold. First, recent genome-wide studies of axonal transcriptomes have revealed that protein synthesis (including RP mRNAs) is the highest functional category in several neuronal types. Second, some RPs have evolved extra-ribosomal functions that include signalling, such as 67LR which acts both as a cell surface receptor for laminin and as a RP. Third, mutations in different RPs in vertebrates cause unexpectedly specific defects, such as the loss of optic axons. Fourth, preliminary results show that RP mRNAs are translated in optic axons in response to trophic factors. Collectively these findings lead us to propose that locally synthesized RPs play a role in axon maintenance through either ribosomal or extra-ribosomal function. To pursue this proposal, we will perform unbiased screens and functional assays using an array of experimental approaches and animal models. By gaining an understanding of how local RP synthesis contributes to axon survival, our studies have the potential to provide novel insights into how components conventionally associated with a housekeeping role (translation) are linked to axon degeneration. Our findings could provide new directions for developing therapeutic tools for neurodegenerative disorders and may have an impact on more diverse areas of biology and disease.
Max ERC Funding
2 426 573 €
Duration
Start date: 2013-03-01, End date: 2018-09-30
Project acronym B-Brighter
Project Enhancing OLED device performance using Fused Borylated Materials
Researcher (PI) Michael James Ingleson
Host Institution (HI) THE UNIVERSITY OF MANCHESTER
Call Details Proof of Concept (PoC), PC1, ERC-2015-PoC
Summary Organic Light Emitting Diodes (OLEDs) are attractive for use in high efficiency illumination and flexible displays. The current state of the art OLED materials use Ir or Pt based phosphorescent materials, which whilst achieving impressive efficiencies have significant cost, and supply issues associated with rare precious metals. Metal free OLEDs are preferable based on low relative cost and ease of fabrication but to date have not been competitive with Ir / Pt based OLEDs. This is because metal free OLEDs have relatively low efficiency as light emission is due to fluorescence inherently limiting the systems to 25% of excitons. A new approach has now enabled metal free OLEDs to break this efficiency barrier – using the phenomena of thermally activated delayed fluorescence (TADF). However, TADF emitters in the deep red / Near infra red (NIR) region of the spectra (desired for applications in optical communications, night vision devices and sensors) are rare and currently sub-optimal.
ERC funded research led us to discover a new methodology for forming fused pi conjugated materials that possess desirable properties for OLEDs this includes small band gaps, excellent emission in the deep red and NIR-region of the spectra and good stability. Whilst these materials exhibit excellent solid state photoluminescence quantum yields for emitters in the deep red and NIR region of the spectra their performance in OLED devices was only moderate. This is due to the absence of TADF in the materials studied to date. This work program will modify our current materials to maintain the desirable properties but to incorporate moieties that switch on TADF. Materials will be selected based on calculations (of relative S1/T1 energies), synthesised and assessed for TADF (lifetimes / effect of O2 etc.), with best in class used to fabricate OLED devices. This will lead to increases in OLED device efficiency hopefully to a level that is commercially viable.
Summary
Organic Light Emitting Diodes (OLEDs) are attractive for use in high efficiency illumination and flexible displays. The current state of the art OLED materials use Ir or Pt based phosphorescent materials, which whilst achieving impressive efficiencies have significant cost, and supply issues associated with rare precious metals. Metal free OLEDs are preferable based on low relative cost and ease of fabrication but to date have not been competitive with Ir / Pt based OLEDs. This is because metal free OLEDs have relatively low efficiency as light emission is due to fluorescence inherently limiting the systems to 25% of excitons. A new approach has now enabled metal free OLEDs to break this efficiency barrier – using the phenomena of thermally activated delayed fluorescence (TADF). However, TADF emitters in the deep red / Near infra red (NIR) region of the spectra (desired for applications in optical communications, night vision devices and sensors) are rare and currently sub-optimal.
ERC funded research led us to discover a new methodology for forming fused pi conjugated materials that possess desirable properties for OLEDs this includes small band gaps, excellent emission in the deep red and NIR-region of the spectra and good stability. Whilst these materials exhibit excellent solid state photoluminescence quantum yields for emitters in the deep red and NIR region of the spectra their performance in OLED devices was only moderate. This is due to the absence of TADF in the materials studied to date. This work program will modify our current materials to maintain the desirable properties but to incorporate moieties that switch on TADF. Materials will be selected based on calculations (of relative S1/T1 energies), synthesised and assessed for TADF (lifetimes / effect of O2 etc.), with best in class used to fabricate OLED devices. This will lead to increases in OLED device efficiency hopefully to a level that is commercially viable.
Max ERC Funding
149 662 €
Duration
Start date: 2016-08-01, End date: 2018-01-31
Project acronym BABYLON
Project By the Rivers of Babylon: New Perspectives on Second Temple Judaism from Cuneiform Texts
Researcher (PI) Caroline Waerzeggers
Host Institution (HI) UNIVERSITEIT LEIDEN
Call Details Starting Grant (StG), SH6, ERC-2009-StG
Summary This project has the potential to radically change current understanding of cultic and social transformation in the post-exilic temple community of Jerusalem (c. 6th-4th centuries BCE), an important formative phase of ancient Judaism. “BABYLON” draws on recent, ground-breaking advances in the study of cuneiform texts to illuminate the Babylonian environment of the Judean exile, the socio-historical context which gave rise to the transformative era in Second Temple Judaism. In particular, these new data show that the parallels between Babylonian and post-exilic forms of cultic and social organization were substantially more far-reaching than presently recognized in Biblical scholarship. “BABYLON” will study the extent of these similarities and explore the question how Babylonian models could have influenced the restoration effort in Jerusalem.
This goal will be achieved through four sub-projects. P1 will study the social dynamics and intellectual universe of the Babylonian priesthood. P2 will finalize the publication of cuneiform archives of Babylonian priests living in the time of the exile. P3 will identify the exact areas of change in the post-exilic temple community of Jerusalem. P4, the synthesis, will draw from each of these sub-projects to present a comparative study of the Second Temple and contemporary Babylonian models of cultic and social organization, and to propose a strategy of research into the possible routes of transmission between Babylonia and Jerusalem.
The research will be carried out by three team members: the PI (P1 and P4), a PhD in Assyriology (P2) and a post-doctoral researcher in Biblical Studies specialized in the Second Temple period (P3 and P4). The participation of the wider academic community will be invited at two moments in the course of the project, in the form of a workshop and an international conference.
“BABYLON” will adopt an interdisciplinary approach by bringing together Assyriologists and Biblical scholars for a much-needed dialogue, thereby exploding the artificial boundaries that currently exist in the academic landscape between these two fields.
Summary
This project has the potential to radically change current understanding of cultic and social transformation in the post-exilic temple community of Jerusalem (c. 6th-4th centuries BCE), an important formative phase of ancient Judaism. “BABYLON” draws on recent, ground-breaking advances in the study of cuneiform texts to illuminate the Babylonian environment of the Judean exile, the socio-historical context which gave rise to the transformative era in Second Temple Judaism. In particular, these new data show that the parallels between Babylonian and post-exilic forms of cultic and social organization were substantially more far-reaching than presently recognized in Biblical scholarship. “BABYLON” will study the extent of these similarities and explore the question how Babylonian models could have influenced the restoration effort in Jerusalem.
This goal will be achieved through four sub-projects. P1 will study the social dynamics and intellectual universe of the Babylonian priesthood. P2 will finalize the publication of cuneiform archives of Babylonian priests living in the time of the exile. P3 will identify the exact areas of change in the post-exilic temple community of Jerusalem. P4, the synthesis, will draw from each of these sub-projects to present a comparative study of the Second Temple and contemporary Babylonian models of cultic and social organization, and to propose a strategy of research into the possible routes of transmission between Babylonia and Jerusalem.
The research will be carried out by three team members: the PI (P1 and P4), a PhD in Assyriology (P2) and a post-doctoral researcher in Biblical Studies specialized in the Second Temple period (P3 and P4). The participation of the wider academic community will be invited at two moments in the course of the project, in the form of a workshop and an international conference.
“BABYLON” will adopt an interdisciplinary approach by bringing together Assyriologists and Biblical scholars for a much-needed dialogue, thereby exploding the artificial boundaries that currently exist in the academic landscape between these two fields.
Max ERC Funding
1 200 000 €
Duration
Start date: 2009-09-01, End date: 2015-08-31
Project acronym BABYRHYTHM
Project Oscillatory Rhythmic Entrainment and the Foundations of Language Acquisition
Researcher (PI) Usha Claire GOSWAMI
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Advanced Grant (AdG), SH4, ERC-2015-AdG
Summary Half of “late talkers”, infants who are not yet speaking by 2 years of age, will go on to develop language impairments. Currently, we have no reliable means of identifying these infants. Here we combine our developmental approach to phonology (psycholinguistic grain size theory), to the neural mechanisms underlying speech encoding (temporal sampling [TS] theory) and our work on the developmental importance of the speech amplitude envelope (AE) to open a new research front in the foundations of language acquisition. Recent adult research confirms our decade-long focus on the importance of sensitivity to AE ‘rise time’ in children’s language development, showing that rise times (‘auditory edges’) re-set the endogenous cortical oscillations that encode speech. Accordingly, we now apply our in-house state-of-the-art methods for measuring oscillatory rhythmic entrainment in children along with our recent theoretical and behavioural advances concerning AE processing to infant studies. Our core aim is to use the TS theoretical perspective and analysis methods to generate robust early neural and behavioural markers of phonological and morphological development: TS for infants. We have published the first-ever studies of oscillatory entrainment to speech rhythm by children and we have developed methods for technically-challenging EEG speech envelope reconstruction. We now apply these innovative methods to infant language learning and infant-directed speech. Using our cutting-edge EEG methods, we will deliver a novel and innovative road map for charting early language acquisition from a rhythmic entrainment perspective. Our recent 5-year study of rise time sensitivity in infants confirms the feasibility of a TS approach. As our focus is on prosody, syllable stress and syllable processing, our methods will apply across European languages.
Summary
Half of “late talkers”, infants who are not yet speaking by 2 years of age, will go on to develop language impairments. Currently, we have no reliable means of identifying these infants. Here we combine our developmental approach to phonology (psycholinguistic grain size theory), to the neural mechanisms underlying speech encoding (temporal sampling [TS] theory) and our work on the developmental importance of the speech amplitude envelope (AE) to open a new research front in the foundations of language acquisition. Recent adult research confirms our decade-long focus on the importance of sensitivity to AE ‘rise time’ in children’s language development, showing that rise times (‘auditory edges’) re-set the endogenous cortical oscillations that encode speech. Accordingly, we now apply our in-house state-of-the-art methods for measuring oscillatory rhythmic entrainment in children along with our recent theoretical and behavioural advances concerning AE processing to infant studies. Our core aim is to use the TS theoretical perspective and analysis methods to generate robust early neural and behavioural markers of phonological and morphological development: TS for infants. We have published the first-ever studies of oscillatory entrainment to speech rhythm by children and we have developed methods for technically-challenging EEG speech envelope reconstruction. We now apply these innovative methods to infant language learning and infant-directed speech. Using our cutting-edge EEG methods, we will deliver a novel and innovative road map for charting early language acquisition from a rhythmic entrainment perspective. Our recent 5-year study of rise time sensitivity in infants confirms the feasibility of a TS approach. As our focus is on prosody, syllable stress and syllable processing, our methods will apply across European languages.
Max ERC Funding
2 614 275 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym BabyVir
Project The role of the virome in shaping the gut ecosystem during the first year of life
Researcher (PI) Alexandra Petrovna ZHERNAKOVA
Host Institution (HI) ACADEMISCH ZIEKENHUIS GRONINGEN
Call Details Starting Grant (StG), LS8, ERC-2016-STG
Summary The role of intestinal bacteria in human health and disease has been intensively studied; however the viral composition of the microbiome, the virome, remains largely unknown. As many of the viruses are bacteriophages, they are expected to be a major factor shaping the human microbiome. The dynamics of the virome during early life, its interaction with host and environmental factors, is likely to have profound effects on human physiology. Therefore it is extremely timely to study the virome in depth and on a wide scale.
This ERC project aims at understanding how the gut virome develops during the first year of life and how that relates to the composition of the bacterial microbiome. In particular, we will determine which intrinsic and environmental factors, including genetics and the mother’s microbiome and diet, interact with the virome in shaping the early gut microbiome ecosystem. In a longitudinal study of 1,000 newborns followed at 7 time points from birth till age 12 months, I will investigate: (1) the composition and evolution of the virome and bacterial microbiome in the first year of life; (2) the role of factors coming from the mother and from the host genome on virome and bacterial microbiome development and their co-evolution; and (3) the role of environmental factors, like infectious diseases, vaccinations and diet habits, on establishing the virome and overall microbiome composition during the first year of life.
This project will provide crucial knowledge about composition and maturation of the virome during the first year of life, and its symbiotic relation with the bacterial microbiome. This longitudinal dataset will be instrumental for identification of microbiome markers of diseases and for the follow up analysis of the long-term effect of microbiota maturation later in life. Knowledge of the role of viruses in shaping the microbiota may promote future directions for manipulating the human gut microbiota in health and disease.
Summary
The role of intestinal bacteria in human health and disease has been intensively studied; however the viral composition of the microbiome, the virome, remains largely unknown. As many of the viruses are bacteriophages, they are expected to be a major factor shaping the human microbiome. The dynamics of the virome during early life, its interaction with host and environmental factors, is likely to have profound effects on human physiology. Therefore it is extremely timely to study the virome in depth and on a wide scale.
This ERC project aims at understanding how the gut virome develops during the first year of life and how that relates to the composition of the bacterial microbiome. In particular, we will determine which intrinsic and environmental factors, including genetics and the mother’s microbiome and diet, interact with the virome in shaping the early gut microbiome ecosystem. In a longitudinal study of 1,000 newborns followed at 7 time points from birth till age 12 months, I will investigate: (1) the composition and evolution of the virome and bacterial microbiome in the first year of life; (2) the role of factors coming from the mother and from the host genome on virome and bacterial microbiome development and their co-evolution; and (3) the role of environmental factors, like infectious diseases, vaccinations and diet habits, on establishing the virome and overall microbiome composition during the first year of life.
This project will provide crucial knowledge about composition and maturation of the virome during the first year of life, and its symbiotic relation with the bacterial microbiome. This longitudinal dataset will be instrumental for identification of microbiome markers of diseases and for the follow up analysis of the long-term effect of microbiota maturation later in life. Knowledge of the role of viruses in shaping the microbiota may promote future directions for manipulating the human gut microbiota in health and disease.
Max ERC Funding
1 499 881 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym BACKTOBACK
Project Engineering Solutions for Back Pain: Simulation of Patient Variance
Researcher (PI) Ruth Wilcox
Host Institution (HI) UNIVERSITY OF LEEDS
Call Details Starting Grant (StG), PE8, ERC-2012-StG_20111012
Summary Back pain affects eight out of ten adults during their lifetime. It a huge economic burden on society, estimated to cost as much as 1-2% of gross national product in several European countries. Treatments for back pain have lower levels of success and are not as technologically mature as those for other musculoskeletal disorders such as hip and knee replacement. This application proposes to tackle one of the major barriers to the development of better surgical treatments for back pain.
At present, new spinal devices are commonly assessed in isolation in the laboratory under standardised conditions that do not represent the variation across the patient population. Consequently many interventions have failed during clinical trials or have proved to have poor long term success rates.
Using a combination of computational and experimental models, a new testing methodology will be developed that will enable the variation between patients to be simulated for the first time. This will enable spinal implants and therapies to be more robustly evaluated across a virtual patient population prior to clinical trial. The tools developed will be used in collaboration with clinicians and basic scientists to develop and, crucially, optimise new treatments that reduce back pain whilst preserving the unique functions of the spine.
If successful, this approach could be translated to evaluate and optimise emerging minimally invasive treatments in other joints such as the hip and knee. Research in the spine could then, for the first time, lead rather than follow that undertaken in other branches of orthopaedics.
Summary
Back pain affects eight out of ten adults during their lifetime. It a huge economic burden on society, estimated to cost as much as 1-2% of gross national product in several European countries. Treatments for back pain have lower levels of success and are not as technologically mature as those for other musculoskeletal disorders such as hip and knee replacement. This application proposes to tackle one of the major barriers to the development of better surgical treatments for back pain.
At present, new spinal devices are commonly assessed in isolation in the laboratory under standardised conditions that do not represent the variation across the patient population. Consequently many interventions have failed during clinical trials or have proved to have poor long term success rates.
Using a combination of computational and experimental models, a new testing methodology will be developed that will enable the variation between patients to be simulated for the first time. This will enable spinal implants and therapies to be more robustly evaluated across a virtual patient population prior to clinical trial. The tools developed will be used in collaboration with clinicians and basic scientists to develop and, crucially, optimise new treatments that reduce back pain whilst preserving the unique functions of the spine.
If successful, this approach could be translated to evaluate and optimise emerging minimally invasive treatments in other joints such as the hip and knee. Research in the spine could then, for the first time, lead rather than follow that undertaken in other branches of orthopaedics.
Max ERC Funding
1 498 777 €
Duration
Start date: 2012-12-01, End date: 2018-11-30
Project acronym BADASS
Project Barrel Array Diagnostics And SenSing
Researcher (PI) Derek Neil WOOLFSON
Host Institution (HI) UNIVERSITY OF BRISTOL
Call Details Proof of Concept (PoC), ERC-2017-PoC
Summary In array-based sensing, synthetic receptors are appended with chromophores (reporters) and arrayed in various formats. The arrays are treated with analytes that displace the reporter to different extents and the outputs are interpreted by computers to identify the analyte. This has not been demonstrated for arrays of structured de novo designed peptides, which have many advantages over the synthetic small molecules currently used. Through an ERC Advanced Grant, ABEL (340764), we have designed peptides that form novel protein barrels.
We have proof of principle results that show that protein barrels can be used for this kind of array sensing. Through this award, we will employ an expert peptide design chemist to address technical issues needed to translate the protein barrels into a technology platform. They will: make and test many variants of the barrels in array formats; establish the best surfaces and attachment chemistries for barrel arrays; and develop algorithms for analysing the outputs. Second, we would employ an expert in biotechnology innovation and management to conduct customer discovery to understand better the market and potential route to exploitation for our technology.
Summary
In array-based sensing, synthetic receptors are appended with chromophores (reporters) and arrayed in various formats. The arrays are treated with analytes that displace the reporter to different extents and the outputs are interpreted by computers to identify the analyte. This has not been demonstrated for arrays of structured de novo designed peptides, which have many advantages over the synthetic small molecules currently used. Through an ERC Advanced Grant, ABEL (340764), we have designed peptides that form novel protein barrels.
We have proof of principle results that show that protein barrels can be used for this kind of array sensing. Through this award, we will employ an expert peptide design chemist to address technical issues needed to translate the protein barrels into a technology platform. They will: make and test many variants of the barrels in array formats; establish the best surfaces and attachment chemistries for barrel arrays; and develop algorithms for analysing the outputs. Second, we would employ an expert in biotechnology innovation and management to conduct customer discovery to understand better the market and potential route to exploitation for our technology.
Max ERC Funding
150 000 €
Duration
Start date: 2018-06-01, End date: 2019-11-30
Project acronym BAHAMAS
Project A holistic approach to large-scale structure cosmology
Researcher (PI) Ian MCCARTHY
Host Institution (HI) LIVERPOOL JOHN MOORES UNIVERSITY
Call Details Consolidator Grant (CoG), PE9, ERC-2017-COG
Summary The standard model of cosmology, the ɅCDM model, is remarkably successful at explaining a wide range of observations of our Universe. However, it is now being subjected to much more stringent tests than ever before, and recent large-scale structure (LSS) measurements appear to be in tension with its predictions. Is this tension signalling that new physics is required? For example, time-varying dark energy, or perhaps a modified theory of gravity? A contribution from massive neutrinos? Before coming to such bold conclusions we must be certain that all of the important systematic errors in the LSS tests have been accounted for.
Presently, the largest source of systematic uncertainty is from the modelling of complicated astrophysical phenomena associated with galaxy formation. In particular, energetic feedback processes associated with star formation and black hole growth can heat and expel gas from collapsed structures and modify the large-scale distribution of matter. Furthermore, the LSS field is presently separated into many sub-fields (each using different models, that usually neglect feedback), preventing a coherent analysis.
Cosmological hydrodynamical simulations (are the only method which) can follow all the relevant matter components and self-consistently capture the effects of feedback. I have been leading the development of large-scale simulations with physically-motivated prescriptions for feedback that are unrivalled in their ability to reproduce the observed properties of massive systems. With ERC support, I will build a team to exploit these developments, to produce a suite of simulations designed specifically for LSS cosmology applications with the effects of feedback realistically accounted for and which will allow us to unite the different LSS tests. My team and I will make the first self-consistent comparisons with the full range of LSS cosmology tests, and critically assess the evidence for physics beyond the standard model.
Summary
The standard model of cosmology, the ɅCDM model, is remarkably successful at explaining a wide range of observations of our Universe. However, it is now being subjected to much more stringent tests than ever before, and recent large-scale structure (LSS) measurements appear to be in tension with its predictions. Is this tension signalling that new physics is required? For example, time-varying dark energy, or perhaps a modified theory of gravity? A contribution from massive neutrinos? Before coming to such bold conclusions we must be certain that all of the important systematic errors in the LSS tests have been accounted for.
Presently, the largest source of systematic uncertainty is from the modelling of complicated astrophysical phenomena associated with galaxy formation. In particular, energetic feedback processes associated with star formation and black hole growth can heat and expel gas from collapsed structures and modify the large-scale distribution of matter. Furthermore, the LSS field is presently separated into many sub-fields (each using different models, that usually neglect feedback), preventing a coherent analysis.
Cosmological hydrodynamical simulations (are the only method which) can follow all the relevant matter components and self-consistently capture the effects of feedback. I have been leading the development of large-scale simulations with physically-motivated prescriptions for feedback that are unrivalled in their ability to reproduce the observed properties of massive systems. With ERC support, I will build a team to exploit these developments, to produce a suite of simulations designed specifically for LSS cosmology applications with the effects of feedback realistically accounted for and which will allow us to unite the different LSS tests. My team and I will make the first self-consistent comparisons with the full range of LSS cosmology tests, and critically assess the evidence for physics beyond the standard model.
Max ERC Funding
1 725 982 €
Duration
Start date: 2018-06-01, End date: 2023-05-31
Project acronym BALANCED LETHALS
Project Untangling the Evolution of a Balanced Lethal System
Researcher (PI) Biense WIELSTRA
Host Institution (HI) UNIVERSITEIT LEIDEN
Call Details Starting Grant (StG), LS8, ERC-2018-STG
Summary Natural selection is supposed to keep lethal alleles (dysfunctional or deleted copies of crucial genes) in check. Yet, in a balanced lethal system the frequency of lethal alleles is inflated. Because two forms of a chromosome carry distinct lethal alleles that are reciprocally compensated for by functional genes on the alternate chromosome form, both chromosome forms – and in effect their linked lethal alleles – are required for survival. The inability of natural selection to purge balanced lethal systems appears to defy evolutionary theory. How do balanced lethal systems originate and persist in nature? I suspect the answer to this pressing but neglected research question can be found in the context of supergenes in a balanced polymorphism – a current, hot topic in evolutionary biology. Chromosome rearrangements can lock distinct beneficial sets of alleles (i.e. supergenes) on two chromosome forms by suppressing recombination. Now, balancing selection would favour possession of both supergenes. However, as a consequence of suppressed recombination, unique lethal alleles could become fixed on each supergene, with natural selection powerless to prevent collapse of the arrangement into a balanced lethal system. I aim to explain the evolution of balanced lethal systems in nature. As empirical example I will use chromosome 1 syndrome, a balanced lethal system observed in newts of the genus Triturus. My research team will: Reconstruct the genomic architecture of this balanced lethal system at its point of origin [PI project]; Conduct comparative genomics with related, unaffected species [PhD project]; Determine gene order of the two supergenes involved [Postdoc project I]; and Model the conditions under which this balanced lethal system could theoretically have evolved [Postdoc project II]. Solving the paradox of chromosome 1 syndrome will allow us to understand balanced lethal systems in general and address the challenges they pose to evolutionary theory.
Summary
Natural selection is supposed to keep lethal alleles (dysfunctional or deleted copies of crucial genes) in check. Yet, in a balanced lethal system the frequency of lethal alleles is inflated. Because two forms of a chromosome carry distinct lethal alleles that are reciprocally compensated for by functional genes on the alternate chromosome form, both chromosome forms – and in effect their linked lethal alleles – are required for survival. The inability of natural selection to purge balanced lethal systems appears to defy evolutionary theory. How do balanced lethal systems originate and persist in nature? I suspect the answer to this pressing but neglected research question can be found in the context of supergenes in a balanced polymorphism – a current, hot topic in evolutionary biology. Chromosome rearrangements can lock distinct beneficial sets of alleles (i.e. supergenes) on two chromosome forms by suppressing recombination. Now, balancing selection would favour possession of both supergenes. However, as a consequence of suppressed recombination, unique lethal alleles could become fixed on each supergene, with natural selection powerless to prevent collapse of the arrangement into a balanced lethal system. I aim to explain the evolution of balanced lethal systems in nature. As empirical example I will use chromosome 1 syndrome, a balanced lethal system observed in newts of the genus Triturus. My research team will: Reconstruct the genomic architecture of this balanced lethal system at its point of origin [PI project]; Conduct comparative genomics with related, unaffected species [PhD project]; Determine gene order of the two supergenes involved [Postdoc project I]; and Model the conditions under which this balanced lethal system could theoretically have evolved [Postdoc project II]. Solving the paradox of chromosome 1 syndrome will allow us to understand balanced lethal systems in general and address the challenges they pose to evolutionary theory.
Max ERC Funding
1 499 869 €
Duration
Start date: 2019-02-01, End date: 2024-01-31
Project acronym BALDWINIAN_BEETLES
Project "The origin of the fittest: canalization, plasticity and selection as a consequence of provisioning during development"
Researcher (PI) Rebecca Kilner
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Starting Grant (StG), LS8, ERC-2012-StG_20111109
Summary "A major outstanding challenge for evolutionary biology is to explain how novel adaptations arise. We propose to test whether developmental plasticity initiates evolutionary change in morphological, behavioural and social traits, using laboratory experiments, fieldwork and comparative analyses.
Using burying beetles Nicrophorus spp as our model experimental system, we shall:
1) Test whether variation in parental provisioning during development induces correlated phenotypic change in adult body size and a suite of life history traits; whether these phenotypic changes can be genetically accommodated under experimental evolution (the Baldwin Effect); and whether changes induced by experimental evolution mimic natural variation in adult body size and life history strategy among Nicrophorus species;
2) Test whether parental provisioning has a canalizing effect on the developmental environment, potentially storing up cryptic genetic variation which might then be released as random new phenotypes, if offspring are exposed to a new developmental environment;
3) Investigate whether developmental trade-offs, induced by under-provisioning from parents, provide the first step towards the evolution of a novel interspecific mutualism. Is a second species recruited in adulthood to carry out the function of a structure that was under-nourished during development?
4) Using comparative analyses of data from the literature on insects, frogs, birds and mammals, we shall test whether the evolution of parental provisioning in a given lineage is positively correlated with the number of species in the lineage.
Our proposal is original in focusing on developmental plasticity induced by variation in parental provisioning. Given the diverse and numerous species that provision their young, including several whose genomes have now been sequenced, this potentially opens up a rich new area for future work on the developmental mechanisms underlying evolutionary innovations."
Summary
"A major outstanding challenge for evolutionary biology is to explain how novel adaptations arise. We propose to test whether developmental plasticity initiates evolutionary change in morphological, behavioural and social traits, using laboratory experiments, fieldwork and comparative analyses.
Using burying beetles Nicrophorus spp as our model experimental system, we shall:
1) Test whether variation in parental provisioning during development induces correlated phenotypic change in adult body size and a suite of life history traits; whether these phenotypic changes can be genetically accommodated under experimental evolution (the Baldwin Effect); and whether changes induced by experimental evolution mimic natural variation in adult body size and life history strategy among Nicrophorus species;
2) Test whether parental provisioning has a canalizing effect on the developmental environment, potentially storing up cryptic genetic variation which might then be released as random new phenotypes, if offspring are exposed to a new developmental environment;
3) Investigate whether developmental trade-offs, induced by under-provisioning from parents, provide the first step towards the evolution of a novel interspecific mutualism. Is a second species recruited in adulthood to carry out the function of a structure that was under-nourished during development?
4) Using comparative analyses of data from the literature on insects, frogs, birds and mammals, we shall test whether the evolution of parental provisioning in a given lineage is positively correlated with the number of species in the lineage.
Our proposal is original in focusing on developmental plasticity induced by variation in parental provisioning. Given the diverse and numerous species that provision their young, including several whose genomes have now been sequenced, this potentially opens up a rich new area for future work on the developmental mechanisms underlying evolutionary innovations."
Max ERC Funding
1 499 914 €
Duration
Start date: 2012-11-01, End date: 2017-10-31
Project acronym BAM
Project Becoming A Minority
Researcher (PI) Maurice CRUL
Host Institution (HI) STICHTING VU
Call Details Advanced Grant (AdG), SH3, ERC-2016-ADG
Summary In the last forty years, researchers in the Field of Migration and Ethnic Studies looked at the integration of migrants and their descendants. Concepts, methodological tools and theoretical frameworks have been developed to measure and predict integration outcomes both across different ethnic groups and in comparison with people of native descent. But are we also looking into the actual integration of the receiving group of native ‘white’ descent in city contexts where they have become a numerical minority themselves? In cities like Amsterdam, now only one in three youngsters under age fifteen is of native descent. This situation, referred to as a majority-minority context, is a new phenomenon in Western Europe and it presents itself as one of the most important societal and psychological transformations of our time. I argue that the field of migration and ethnic studies is stagnating because of the one-sided focus on migrants and their children. This is even more urgent given the increased ant-immigrant vote. These pressing scientific and societal reasons pushed me to develop the project BAM (Becoming A Minority). The project will be executed in three harbor cities, Rotterdam, Antwerp and Malmö, and three service sector cities, Amsterdam, Frankfurt and Vienna. BAM consists of 5 subprojects: (1) A meta-analysis of secondary data on people of native ‘white’ descent in the six research sites; (2) A newly developed survey for the target group; (3) An analysis of critical circumstances of encounter that trigger either positive or rather negative responses to increased ethnic diversity (4) Experimental diversity labs to test under which circumstances people will change their attitudes or their actions towards increased ethnic diversity; (5) The formulation of a new theory of integration that includes the changed position of the group of native ‘white’ descent as an important actor.
Summary
In the last forty years, researchers in the Field of Migration and Ethnic Studies looked at the integration of migrants and their descendants. Concepts, methodological tools and theoretical frameworks have been developed to measure and predict integration outcomes both across different ethnic groups and in comparison with people of native descent. But are we also looking into the actual integration of the receiving group of native ‘white’ descent in city contexts where they have become a numerical minority themselves? In cities like Amsterdam, now only one in three youngsters under age fifteen is of native descent. This situation, referred to as a majority-minority context, is a new phenomenon in Western Europe and it presents itself as one of the most important societal and psychological transformations of our time. I argue that the field of migration and ethnic studies is stagnating because of the one-sided focus on migrants and their children. This is even more urgent given the increased ant-immigrant vote. These pressing scientific and societal reasons pushed me to develop the project BAM (Becoming A Minority). The project will be executed in three harbor cities, Rotterdam, Antwerp and Malmö, and three service sector cities, Amsterdam, Frankfurt and Vienna. BAM consists of 5 subprojects: (1) A meta-analysis of secondary data on people of native ‘white’ descent in the six research sites; (2) A newly developed survey for the target group; (3) An analysis of critical circumstances of encounter that trigger either positive or rather negative responses to increased ethnic diversity (4) Experimental diversity labs to test under which circumstances people will change their attitudes or their actions towards increased ethnic diversity; (5) The formulation of a new theory of integration that includes the changed position of the group of native ‘white’ descent as an important actor.
Max ERC Funding
2 499 714 €
Duration
Start date: 2017-11-01, End date: 2022-10-31
Project acronym BANK-LASH
Project Banks, Popular Backlash, and the Post-Crisis Politics of Financial Regulation
Researcher (PI) Pepper CULPEPPER
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Advanced Grant (AdG), SH2, ERC-2017-ADG
Summary Driven by public outrage at bank bailouts during the financial crisis, many governments have since then tried to rewrite the rules governing finance. Yet the anger provoked by the bailouts has not subsided. In Europe and in North America, citizen fury against bankers continues to structure battles over financial regulation. It also affects broader perceptions of fairness in the political system and feeds anti-elite populism. Scholars of political economy have chronicled the clashes between states and large banks, and scholars of political behaviour have noted the failings of governments to respond to the will of democratic majorities. No one has explored the feedback loops between policies regulating banks, the public anger towards banking elites, and media discussions of finance. BANK-LASH fills this gap, using a cutting-edge, high-risk research design comprising three work packages to link policy outcomes with public opinion and media coverage. BANK-LASH 1will collect the first cross-nationally comparable data on public attitudes towards finance, including a series of innovative survey experiments that assess how different media frames affect emotions and preferences. BANK-LASH 2 will use supervised machine learning to measure the overall media environment of these countries for the last decade, assessing how much different national media systems discuss finance and how different national media systems frame the discussion of banking regulation. BANK-LASH 3 links the micro-level study of attitudes and macro-level media coverage with episodes of policy intervention in each country in order to determine when democracies have imposed significant new regulation on their banks. By harnessing these different intellectual tools within a single study, BANK-LASH brings together the concerns of political economy, behavioral research and policy studies to untangle the relationship between banks, public policy, and anti-elite sentiment in the wake of the financial crisis.
Summary
Driven by public outrage at bank bailouts during the financial crisis, many governments have since then tried to rewrite the rules governing finance. Yet the anger provoked by the bailouts has not subsided. In Europe and in North America, citizen fury against bankers continues to structure battles over financial regulation. It also affects broader perceptions of fairness in the political system and feeds anti-elite populism. Scholars of political economy have chronicled the clashes between states and large banks, and scholars of political behaviour have noted the failings of governments to respond to the will of democratic majorities. No one has explored the feedback loops between policies regulating banks, the public anger towards banking elites, and media discussions of finance. BANK-LASH fills this gap, using a cutting-edge, high-risk research design comprising three work packages to link policy outcomes with public opinion and media coverage. BANK-LASH 1will collect the first cross-nationally comparable data on public attitudes towards finance, including a series of innovative survey experiments that assess how different media frames affect emotions and preferences. BANK-LASH 2 will use supervised machine learning to measure the overall media environment of these countries for the last decade, assessing how much different national media systems discuss finance and how different national media systems frame the discussion of banking regulation. BANK-LASH 3 links the micro-level study of attitudes and macro-level media coverage with episodes of policy intervention in each country in order to determine when democracies have imposed significant new regulation on their banks. By harnessing these different intellectual tools within a single study, BANK-LASH brings together the concerns of political economy, behavioral research and policy studies to untangle the relationship between banks, public policy, and anti-elite sentiment in the wake of the financial crisis.
Max ERC Funding
2 454 198 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym BAPS
Project Bayesian Agent-based Population Studies: Transforming Simulation Models of Human Migration
Researcher (PI) Jakub KAZIMIERZ BIJAK
Host Institution (HI) UNIVERSITY OF SOUTHAMPTON
Call Details Consolidator Grant (CoG), SH3, ERC-2016-COG
Summary The aim of BAPS is to develop a ground-breaking simulation model of international migration, based on a population of intelligent, cognitive agents, their social networks and institutions, all interacting with one another. The project will transform the study of migration – one of the most uncertain population processes and a top-priority EU policy area – by offering a step change in the way it can be understood, predicted and managed. In this way, BAPS will effectively integrate behavioural and social theory with modelling.
To develop micro-foundations for migration studies, model design will follow cutting-edge developments in demography, statistics, cognitive psychology and computer science. BAPS will also offer a pioneering environment for applying the findings in practice through a bespoke modelling language. Bayesian statistical principles will be used to design innovative computer experiments, and learn about modelling the simulated individuals and the way they make decisions.
In BAPS, we will collate available information for migration models; build and test the simulations by applying experimental design principles to enhance our knowledge of migration processes; collect information on the underpinning decision-making mechanisms through psychological experiments; and design software for implementing Bayesian agent-based models in practice. The project will use various information sources to build models bottom-up, filling an important epistemological gap in demography.
BAPS will be carried out by the Allianz European Demographer 2015, recognised as a leader in the field for methodological innovation, directing an interdisciplinary team with expertise in demography, agent-based models, statistical analysis of uncertainty, meta-cognition, and computer simulations. The project will open up exciting research possibilities beyond demography, and will generate both academic and practical impact, offering methodological advice for policy-relevant simulations.
Summary
The aim of BAPS is to develop a ground-breaking simulation model of international migration, based on a population of intelligent, cognitive agents, their social networks and institutions, all interacting with one another. The project will transform the study of migration – one of the most uncertain population processes and a top-priority EU policy area – by offering a step change in the way it can be understood, predicted and managed. In this way, BAPS will effectively integrate behavioural and social theory with modelling.
To develop micro-foundations for migration studies, model design will follow cutting-edge developments in demography, statistics, cognitive psychology and computer science. BAPS will also offer a pioneering environment for applying the findings in practice through a bespoke modelling language. Bayesian statistical principles will be used to design innovative computer experiments, and learn about modelling the simulated individuals and the way they make decisions.
In BAPS, we will collate available information for migration models; build and test the simulations by applying experimental design principles to enhance our knowledge of migration processes; collect information on the underpinning decision-making mechanisms through psychological experiments; and design software for implementing Bayesian agent-based models in practice. The project will use various information sources to build models bottom-up, filling an important epistemological gap in demography.
BAPS will be carried out by the Allianz European Demographer 2015, recognised as a leader in the field for methodological innovation, directing an interdisciplinary team with expertise in demography, agent-based models, statistical analysis of uncertainty, meta-cognition, and computer simulations. The project will open up exciting research possibilities beyond demography, and will generate both academic and practical impact, offering methodological advice for policy-relevant simulations.
Max ERC Funding
1 455 590 €
Duration
Start date: 2017-06-01, End date: 2021-05-31
Project acronym BARCODE
Project The use of genetic profiling to guide prostate cancer targeted screening and cancer care
Researcher (PI) Rosalind Anne Eeles
Host Institution (HI) THE INSTITUTE OF CANCER RESEARCH: ROYAL CANCER HOSPITAL
Call Details Advanced Grant (AdG), LS7, ERC-2013-ADG
Summary "Prostate cancer is the commonest solid cancer in men in the European Community. There is evidence for genetic predisposition to the development of prostate cancer and our group has found the largest number of such genetic variants described to date worldwide. The next challenge is to harness these discoveries to advance the clinical care of populations and prostate cancer patients to improve screening and target treatments. This proposal, BARCODE, aims to be ground-breaking in this area. BARCODE has two components (1) to profile a population in England using the current 77 genetic variant profile and compare screening outcomes with those from population based screening studies to determine if genetics can target screening more effectively in this disease by identifying prostate cancer that more often needs treatment and (2) genetically profiling men with prostate cancer in the uro-oncology clinic for a panel of genes which predict for worse outcome so that these men can be offered more intensive staging and treatment within clinical trials. This will use next generation sequencing technology using a barcoding system which we have developed to speed up throughput and reduce costs. The PI will spend 35% of her time on this project and she will not charge for her time spent on this grant as she is funded by The University of London UK. The research team at The Institute Of Cancer Research, London, UK is a multidisciplinary team which leads the field of genetic predisposition to prostate cancer and its clinical application and so is well placed to deliver on this research. This application will have a dramatic impact on other researchers as it is ground –breaking and state of the art in its application of genetic findings to public health and cancer care. It will therefore influence the work being undertaken in both these areas to integrate genetic profiling and gene panel analysis into population screening and cancer care respectively."
Summary
"Prostate cancer is the commonest solid cancer in men in the European Community. There is evidence for genetic predisposition to the development of prostate cancer and our group has found the largest number of such genetic variants described to date worldwide. The next challenge is to harness these discoveries to advance the clinical care of populations and prostate cancer patients to improve screening and target treatments. This proposal, BARCODE, aims to be ground-breaking in this area. BARCODE has two components (1) to profile a population in England using the current 77 genetic variant profile and compare screening outcomes with those from population based screening studies to determine if genetics can target screening more effectively in this disease by identifying prostate cancer that more often needs treatment and (2) genetically profiling men with prostate cancer in the uro-oncology clinic for a panel of genes which predict for worse outcome so that these men can be offered more intensive staging and treatment within clinical trials. This will use next generation sequencing technology using a barcoding system which we have developed to speed up throughput and reduce costs. The PI will spend 35% of her time on this project and she will not charge for her time spent on this grant as she is funded by The University of London UK. The research team at The Institute Of Cancer Research, London, UK is a multidisciplinary team which leads the field of genetic predisposition to prostate cancer and its clinical application and so is well placed to deliver on this research. This application will have a dramatic impact on other researchers as it is ground –breaking and state of the art in its application of genetic findings to public health and cancer care. It will therefore influence the work being undertaken in both these areas to integrate genetic profiling and gene panel analysis into population screening and cancer care respectively."
Max ERC Funding
2 499 123 €
Duration
Start date: 2014-10-01, End date: 2019-09-30
Project acronym BARRIERS
Project The evolution of barriers to gene exchange
Researcher (PI) Roger BUTLIN
Host Institution (HI) THE UNIVERSITY OF SHEFFIELD
Call Details Advanced Grant (AdG), LS8, ERC-2015-AdG
Summary Speciation is a central process in evolution that involves the origin of barriers to gene flow between populations. Species are typically isolated by several barriers and assembly of multiple barriers separating the same populations seems to be critical to the evolution of strong reproductive isolation. Barriers resulting from direct selection can become coincident through a process of coupling while reinforcement can add barrier traits that are not under direct selection. In the presence of gene flow, these processes are opposed by recombination. While recent research using the latest sequencing technologies has provided much increased knowledge of patterns of differentiation and the genetic basis of local adaptation, it has so far added little to understanding of the coupling and reinforcement processes.
In this project, I will focus on the accumulation of barriers to gene exchange and the processes underlying increasing reproductive isolation. I will use the power of natural contact zones, combined with novel manipulative experiments, to separate the processes that underlie patterns of differentiation and introgression. The Littorina saxatilis model system allows me to do this with both local replication and a contrast between distinct spatial contexts on a larger geographic scale. I will use modelling to determine how processes interact and to investigate the conditions most likely to promote coupling and reinforcement. Overall, the project will provide major new insights into the speciation process, particularly revealing the requirements for progress towards complete reproductive isolation.
Summary
Speciation is a central process in evolution that involves the origin of barriers to gene flow between populations. Species are typically isolated by several barriers and assembly of multiple barriers separating the same populations seems to be critical to the evolution of strong reproductive isolation. Barriers resulting from direct selection can become coincident through a process of coupling while reinforcement can add barrier traits that are not under direct selection. In the presence of gene flow, these processes are opposed by recombination. While recent research using the latest sequencing technologies has provided much increased knowledge of patterns of differentiation and the genetic basis of local adaptation, it has so far added little to understanding of the coupling and reinforcement processes.
In this project, I will focus on the accumulation of barriers to gene exchange and the processes underlying increasing reproductive isolation. I will use the power of natural contact zones, combined with novel manipulative experiments, to separate the processes that underlie patterns of differentiation and introgression. The Littorina saxatilis model system allows me to do this with both local replication and a contrast between distinct spatial contexts on a larger geographic scale. I will use modelling to determine how processes interact and to investigate the conditions most likely to promote coupling and reinforcement. Overall, the project will provide major new insights into the speciation process, particularly revealing the requirements for progress towards complete reproductive isolation.
Max ERC Funding
2 499 927 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym BATNMR
Project Development and Application of New NMR Methods for Studying Interphases and Interfaces in Batteries
Researcher (PI) Clare GREY
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Advanced Grant (AdG), PE4, ERC-2018-ADG
Summary The development of longer lasting, higher energy density and cheaper rechargeable batteries represents one of the major technological challenges of our society, batteries representing the limiting components in the shift from gasoline-powered to electric vehicles. They are also required to enable the use of more (typically intermittent) renewable energy, to balance demand with generation. This proposal seeks to develop and apply new NMR metrologies to determine the structure and dynamics of the multiple electrode-electrolyte interfaces and interphases that are present in these batteries, and how they evolve during battery cycling. New dynamic nuclear polarization (DNP) techniques will be exploited to extract structural information about the interface between the battery electrode and the passivating layers that grow on the electrode materials (the solid electrolyte interphase, SEI) and that are inherent to the stability of the batteries. The role of the SEI (and ceramic interfaces) in controlling lithium metal dendrite growth will be determined in liquid based and all solid state batteries.
New DNP approaches will be developed that are compatible with the heterogeneous and reactive species that are present in conventional, all-solid state, Li-air and redox flow batteries. Method development will run in parallel with the use of DNP approaches to determine the structures of the various battery interfaces and interphases, testing the stability of conventional biradicals in these harsh oxidizing and reducing conditions, modifying the experimental approaches where appropriate. The final result will be a significantly improved understanding of the structures of these phases and how they evolve on cycling, coupled with strategies for designing improved SEI structures. The nature of the interface between a lithium metal dendrite and ceramic composite will be determined, providing much needed insight into how these (unwanted) dendrites grow in all solid state batteries. DNP approaches coupled with electron spin resonance will be use, where possible in situ, to determine the reaction mechanisms of organic molecules such as quinones in organic-based redox flow batteries in order to help prevent degradation of the electrochemically active species.
This proposal involves NMR method development specifically designed to explore a variety of battery chemistries. Thus, this proposal is interdisciplinary, containing both a strong emphasis on materials characterization, electrochemistry and electronic structures of materials, interfaces and nanoparticles, and on analytical and physical chemistry. Some of the methodology will be applicable to other materials and systems including (for example) other electrochemical technologies such as fuel cells and solar fuels and the study of catalysts (to probe surface structure).
Summary
The development of longer lasting, higher energy density and cheaper rechargeable batteries represents one of the major technological challenges of our society, batteries representing the limiting components in the shift from gasoline-powered to electric vehicles. They are also required to enable the use of more (typically intermittent) renewable energy, to balance demand with generation. This proposal seeks to develop and apply new NMR metrologies to determine the structure and dynamics of the multiple electrode-electrolyte interfaces and interphases that are present in these batteries, and how they evolve during battery cycling. New dynamic nuclear polarization (DNP) techniques will be exploited to extract structural information about the interface between the battery electrode and the passivating layers that grow on the electrode materials (the solid electrolyte interphase, SEI) and that are inherent to the stability of the batteries. The role of the SEI (and ceramic interfaces) in controlling lithium metal dendrite growth will be determined in liquid based and all solid state batteries.
New DNP approaches will be developed that are compatible with the heterogeneous and reactive species that are present in conventional, all-solid state, Li-air and redox flow batteries. Method development will run in parallel with the use of DNP approaches to determine the structures of the various battery interfaces and interphases, testing the stability of conventional biradicals in these harsh oxidizing and reducing conditions, modifying the experimental approaches where appropriate. The final result will be a significantly improved understanding of the structures of these phases and how they evolve on cycling, coupled with strategies for designing improved SEI structures. The nature of the interface between a lithium metal dendrite and ceramic composite will be determined, providing much needed insight into how these (unwanted) dendrites grow in all solid state batteries. DNP approaches coupled with electron spin resonance will be use, where possible in situ, to determine the reaction mechanisms of organic molecules such as quinones in organic-based redox flow batteries in order to help prevent degradation of the electrochemically active species.
This proposal involves NMR method development specifically designed to explore a variety of battery chemistries. Thus, this proposal is interdisciplinary, containing both a strong emphasis on materials characterization, electrochemistry and electronic structures of materials, interfaces and nanoparticles, and on analytical and physical chemistry. Some of the methodology will be applicable to other materials and systems including (for example) other electrochemical technologies such as fuel cells and solar fuels and the study of catalysts (to probe surface structure).
Max ERC Funding
3 498 219 €
Duration
Start date: 2019-10-01, End date: 2024-09-30
Project acronym BAYES OR BUST!
Project Bayes or Bust: Sensible Hypothesis Tests for Social Scientists
Researcher (PI) Eric-Jan Wagenmakers
Host Institution (HI) UNIVERSITEIT VAN AMSTERDAM
Call Details Starting Grant (StG), SH4, ERC-2011-StG_20101124
Summary The goal of this proposal is to develop and promote Bayesian hypothesis tests for social scientists. By and large, social scientists have ignored the Bayesian revolution in statistics, and, consequently, most social scientists still assess the veracity of experimental effects using the same methodology that was used by their advisors and the advisors before them. This state of affairs is undesirable: social scientists conduct groundbreaking, innovative research only to analyze their results using methods that are old-fashioned or even inappropriate. This imbalance between the science and the statistics has gradually increased the pressure on the field to change the way inferences are drawn from their data. However, three requirements need to be fulfilled before social scientists are ready to adopt Bayesian tests of hypotheses. First, the Bayesian tests need to be developed for problems that social scientists work with on a regular basis; second, the Bayesian tests need to be default or objective; and, third, the Bayesian tests need to be available in a user-friendly computer program. This proposal seeks to make major progress on all three fronts.
Concretely, the projects in this proposal build on recent developments in the field of statistics and use the default Jeffreys-Zellner-Siow priors to compute Bayesian hypothesis tests for regression, correlation, the t-test, and different versions of analysis of variance (ANOVA). A similar approach will be used to develop Bayesian hypothesis tests for logistic regression and the analysis of contingency tables, as well as for popular latent process methods such as factor analysis and structural equation modeling. We aim to implement the various tests in a new computer program, Bayes-SPSS, with a similar look and feel as the frequentist spreadsheet program SPSS (i.e., Statistical Package for the Social Sciences). Together, these projects may help revolutionize the way social scientists analyze their data.
Summary
The goal of this proposal is to develop and promote Bayesian hypothesis tests for social scientists. By and large, social scientists have ignored the Bayesian revolution in statistics, and, consequently, most social scientists still assess the veracity of experimental effects using the same methodology that was used by their advisors and the advisors before them. This state of affairs is undesirable: social scientists conduct groundbreaking, innovative research only to analyze their results using methods that are old-fashioned or even inappropriate. This imbalance between the science and the statistics has gradually increased the pressure on the field to change the way inferences are drawn from their data. However, three requirements need to be fulfilled before social scientists are ready to adopt Bayesian tests of hypotheses. First, the Bayesian tests need to be developed for problems that social scientists work with on a regular basis; second, the Bayesian tests need to be default or objective; and, third, the Bayesian tests need to be available in a user-friendly computer program. This proposal seeks to make major progress on all three fronts.
Concretely, the projects in this proposal build on recent developments in the field of statistics and use the default Jeffreys-Zellner-Siow priors to compute Bayesian hypothesis tests for regression, correlation, the t-test, and different versions of analysis of variance (ANOVA). A similar approach will be used to develop Bayesian hypothesis tests for logistic regression and the analysis of contingency tables, as well as for popular latent process methods such as factor analysis and structural equation modeling. We aim to implement the various tests in a new computer program, Bayes-SPSS, with a similar look and feel as the frequentist spreadsheet program SPSS (i.e., Statistical Package for the Social Sciences). Together, these projects may help revolutionize the way social scientists analyze their data.
Max ERC Funding
1 498 286 €
Duration
Start date: 2012-05-01, End date: 2017-04-30
Project acronym BAYES-KNOWLEDGE
Project Effective Bayesian Modelling with Knowledge before Data
Researcher (PI) Norman Fenton
Host Institution (HI) QUEEN MARY UNIVERSITY OF LONDON
Call Details Advanced Grant (AdG), PE6, ERC-2013-ADG
Summary This project aims to improve evidence-based decision-making. What makes it radical is that it plans to do this in situations (common for critical risk assessment problems) where there is little or even no data, and hence where traditional statistics cannot be used. To address this problem Bayesian analysis, which enables domain experts to supplement observed data with subjective probabilities, is normally used. As real-world problems typically involve multiple uncertain variables, Bayesian analysis is extended using a technique called Bayesian networks (BNs). But, despite many great benefits, BNs have been under-exploited, especially in areas where they offer the greatest potential for improvements (law, medicine and systems engineering). This is mainly because of widespread resistance to relying on subjective knowledge. To address this problem much current research assumes sufficient data are available to make the expert’s input minimal or even redundant; with such data it may be possible to ‘learn’ the underlying BN model. But this approach offers nothing when there is limited or no data. Even when ‘big’ data are available the resulting models may be superficially objective but fundamentally flawed as they fail to capture the underlying causal structure that only expert knowledge can provide.
Our solution is to develop a method to systemize the way expert driven causal BN models can be built and used effectively either in the absence of data or as a means of determining what future data is really required. The method involves a new way of framing problems and extensions to BN theory, notation and tools. Working with relevant domain experts, along with cognitive psychologists, our methods will be developed and tested experimentally on real-world critical decision-problems in medicine, law, forensics, and transport. As the work complements current data-driven approaches, it will lead to improved BN modelling both when there is extensive data as well as none.
Summary
This project aims to improve evidence-based decision-making. What makes it radical is that it plans to do this in situations (common for critical risk assessment problems) where there is little or even no data, and hence where traditional statistics cannot be used. To address this problem Bayesian analysis, which enables domain experts to supplement observed data with subjective probabilities, is normally used. As real-world problems typically involve multiple uncertain variables, Bayesian analysis is extended using a technique called Bayesian networks (BNs). But, despite many great benefits, BNs have been under-exploited, especially in areas where they offer the greatest potential for improvements (law, medicine and systems engineering). This is mainly because of widespread resistance to relying on subjective knowledge. To address this problem much current research assumes sufficient data are available to make the expert’s input minimal or even redundant; with such data it may be possible to ‘learn’ the underlying BN model. But this approach offers nothing when there is limited or no data. Even when ‘big’ data are available the resulting models may be superficially objective but fundamentally flawed as they fail to capture the underlying causal structure that only expert knowledge can provide.
Our solution is to develop a method to systemize the way expert driven causal BN models can be built and used effectively either in the absence of data or as a means of determining what future data is really required. The method involves a new way of framing problems and extensions to BN theory, notation and tools. Working with relevant domain experts, along with cognitive psychologists, our methods will be developed and tested experimentally on real-world critical decision-problems in medicine, law, forensics, and transport. As the work complements current data-driven approaches, it will lead to improved BN modelling both when there is extensive data as well as none.
Max ERC Funding
1 572 562 €
Duration
Start date: 2014-04-01, End date: 2018-03-31
Project acronym BayesianMarkets
Project Bayesian markets for unverifiable truths
Researcher (PI) Aurelien Baillon
Host Institution (HI) ERASMUS UNIVERSITEIT ROTTERDAM
Call Details Starting Grant (StG), SH1, ERC-2014-STG
Summary Subjective data play an increasing role in modern economics. For instance, new welfare measurements are based on people’s subjective assessments of their happiness or their life satisfaction. A problem of such measurements is that people have no incentives to tell the truth. To solve this problem and make those measurements incentive compatible, I will introduce a new market institution, called Bayesian markets.
Imagine we ask people whether they are happy with their life. On Bayesian markets, they will trade an asset whose value is the proportion of people answering Yes. Only those answering Yes will have the right to buy the asset and those answering No the right to sell it. Bayesian updating implies that “Yes” agents predict a higher value of the asset than “No” agents do and, consequently, “Yes” agents want to buy it while “No” agents want to sell it. I will show that truth-telling is then the optimal strategy.
Bayesian markets reward truth-telling the same way as prediction markets (betting markets) reward people for reporting their true subjective probabilities about observable events. Yet, unlike prediction markets, they do not require events to be objectively observable. Bayesian markets apply to any type of unverifiable truths, from one’s own happiness to beliefs about events that will never be observed.
The present research program will first establish the theoretical foundations of Bayesian markets. It will then develop the proper methodology to implement them. Finally, it will disseminate the use of Bayesian markets via applications.
The first application will demonstrate how degrees of expertise can be measured and will apply it to risks related to climate change and nuclear power plants. It will contribute to the political debate by shedding new light on what true experts think about these risks. The second application will provide the first incentivized measures of life satisfaction and happiness.
Summary
Subjective data play an increasing role in modern economics. For instance, new welfare measurements are based on people’s subjective assessments of their happiness or their life satisfaction. A problem of such measurements is that people have no incentives to tell the truth. To solve this problem and make those measurements incentive compatible, I will introduce a new market institution, called Bayesian markets.
Imagine we ask people whether they are happy with their life. On Bayesian markets, they will trade an asset whose value is the proportion of people answering Yes. Only those answering Yes will have the right to buy the asset and those answering No the right to sell it. Bayesian updating implies that “Yes” agents predict a higher value of the asset than “No” agents do and, consequently, “Yes” agents want to buy it while “No” agents want to sell it. I will show that truth-telling is then the optimal strategy.
Bayesian markets reward truth-telling the same way as prediction markets (betting markets) reward people for reporting their true subjective probabilities about observable events. Yet, unlike prediction markets, they do not require events to be objectively observable. Bayesian markets apply to any type of unverifiable truths, from one’s own happiness to beliefs about events that will never be observed.
The present research program will first establish the theoretical foundations of Bayesian markets. It will then develop the proper methodology to implement them. Finally, it will disseminate the use of Bayesian markets via applications.
The first application will demonstrate how degrees of expertise can be measured and will apply it to risks related to climate change and nuclear power plants. It will contribute to the political debate by shedding new light on what true experts think about these risks. The second application will provide the first incentivized measures of life satisfaction and happiness.
Max ERC Funding
1 500 000 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym BAYNET
Project Bayesian Networks and Non-Rational Expectations
Researcher (PI) Ran SPIEGLER
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Advanced Grant (AdG), SH1, ERC-2015-AdG
Summary "This project will develop a new framework for modeling economic agents having ""boundedly rational expectations"" (BRE). It is based on the concept of Bayesian networks (more generally, graphical models), borrowed from statistics and AI. In the framework's basic version, an agent is characterized by a directed acyclic graph (DAG) over the set of all relevant random variables. The DAG is the agent's ""type"" – it represents how he systematically distorts any objective probability distribution into a subjective belief. Technically, the distortion takes the form of the standard Bayesian-network factorization formula given by the agent's DAG. The agent's choice is modeled as a ""personal equilibrium"", because his subjective belief regarding the implications of his actions can vary with his own long-run behavior. The DAG representation unifies and simplifies existing models of BRE, subsuming them as special cases corresponding to distinct graphical representations. It captures hitherto-unmodeled fallacies such as reverse causation. The framework facilitates behavioral characterizations of general classes of models of BRE and expands their applicability. I will demonstrate this with applications to monetary policy, behavioral I.O., asset pricing, etc. I will extend the basic formalism to multi-agent environments, addressing issues beyond the reach of current models of BRE (e.g., formalizing the notion of ""high-order"" limited understanding of statistical regularities). Finally, I will seek a learning foundation for the graphical representation of BRE, in the sense that it will capture how the agent extrapolates his belief from a dataset (drawn from the objective distribution) containing ""missing values"", via some intuitive ""imputation method"". This part, too, borrows ideas from statistics and AI, further demonstrating the project's interdisciplinary nature."
Summary
"This project will develop a new framework for modeling economic agents having ""boundedly rational expectations"" (BRE). It is based on the concept of Bayesian networks (more generally, graphical models), borrowed from statistics and AI. In the framework's basic version, an agent is characterized by a directed acyclic graph (DAG) over the set of all relevant random variables. The DAG is the agent's ""type"" – it represents how he systematically distorts any objective probability distribution into a subjective belief. Technically, the distortion takes the form of the standard Bayesian-network factorization formula given by the agent's DAG. The agent's choice is modeled as a ""personal equilibrium"", because his subjective belief regarding the implications of his actions can vary with his own long-run behavior. The DAG representation unifies and simplifies existing models of BRE, subsuming them as special cases corresponding to distinct graphical representations. It captures hitherto-unmodeled fallacies such as reverse causation. The framework facilitates behavioral characterizations of general classes of models of BRE and expands their applicability. I will demonstrate this with applications to monetary policy, behavioral I.O., asset pricing, etc. I will extend the basic formalism to multi-agent environments, addressing issues beyond the reach of current models of BRE (e.g., formalizing the notion of ""high-order"" limited understanding of statistical regularities). Finally, I will seek a learning foundation for the graphical representation of BRE, in the sense that it will capture how the agent extrapolates his belief from a dataset (drawn from the objective distribution) containing ""missing values"", via some intuitive ""imputation method"". This part, too, borrows ideas from statistics and AI, further demonstrating the project's interdisciplinary nature."
Max ERC Funding
1 379 288 €
Duration
Start date: 2016-07-01, End date: 2021-06-30
Project acronym BBSG
Project Bosnian Bones, Spanish Ghosts: 'Transitional Justice' and the Legal Shaping of Memory after Two Modern Conflicts
Researcher (PI) Sarah Lynn Wastell (Born Haller)
Host Institution (HI) GOLDSMITHS' COLLEGE
Call Details Starting Grant (StG), SH2, ERC-2009-StG
Summary The proposed research entails an ethnographic study of two contemporary cases of post-conflict reconciliation: one, the Bosnian case, where international intervention ended conflict in a stalemate and went on to instigate a decade-long process of transition; and the other, the Spanish case, where a nationally-contrived pact of silence introduced an overnight transition after Franco's death a pact now being broken nearly seventy years after the country's civil war concluded. Both societies witnessed massive violations of international humanitarian law. Both societies are presently exhuming, identifying and re-burying their dead. But their trajectories of transitional justice could not have been more different. This project will investigate how Law shapes cultural memories of wartime atrocity in these contrasting scenarios. How do criminal prosecutions, constitutional reforms, and international rights mechanisms, provide or obfuscate the scales into which histories of violent conflict are framed? Does the systematic re-structuring of legislative and judicial infrastructure stifle recognition of past abuses or does it create the conditions through which such pasts can be confronted? How does Law shape or inflect the cultural politics of memory and memorialisation? And most importantly, how should legal activity be weighted, prioritised and sequenced with other, extra-legal components of peace-building initiatives? The ultimate goal of this project will be to mobilise the findings from the two field-sites to suggest a more nuanced assessment of Law s place in transitional justice. Arguing that disparate historical, cultural and legal contexts require equally distinct approaches towards social healing, the research aims to produce a Post-Conflict Action Framework an architecture of questions and concerns, which, once answered, would point towards context-specific designs for transitional justice programmes in the future.
Summary
The proposed research entails an ethnographic study of two contemporary cases of post-conflict reconciliation: one, the Bosnian case, where international intervention ended conflict in a stalemate and went on to instigate a decade-long process of transition; and the other, the Spanish case, where a nationally-contrived pact of silence introduced an overnight transition after Franco's death a pact now being broken nearly seventy years after the country's civil war concluded. Both societies witnessed massive violations of international humanitarian law. Both societies are presently exhuming, identifying and re-burying their dead. But their trajectories of transitional justice could not have been more different. This project will investigate how Law shapes cultural memories of wartime atrocity in these contrasting scenarios. How do criminal prosecutions, constitutional reforms, and international rights mechanisms, provide or obfuscate the scales into which histories of violent conflict are framed? Does the systematic re-structuring of legislative and judicial infrastructure stifle recognition of past abuses or does it create the conditions through which such pasts can be confronted? How does Law shape or inflect the cultural politics of memory and memorialisation? And most importantly, how should legal activity be weighted, prioritised and sequenced with other, extra-legal components of peace-building initiatives? The ultimate goal of this project will be to mobilise the findings from the two field-sites to suggest a more nuanced assessment of Law s place in transitional justice. Arguing that disparate historical, cultural and legal contexts require equally distinct approaches towards social healing, the research aims to produce a Post-Conflict Action Framework an architecture of questions and concerns, which, once answered, would point towards context-specific designs for transitional justice programmes in the future.
Max ERC Funding
1 420 000 €
Duration
Start date: 2009-09-01, End date: 2013-08-31
Project acronym BCELLMECHANICS
Project Regulation of antibody responses by B cell mechanical activity
Researcher (PI) Pavel Tolar
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Call Details Consolidator Grant (CoG), LS6, ERC-2014-CoG
Summary The production of antibodies against pathogens is an effective mechanism of protection against a wide range of infections. However, some pathogens evade antibody responses by rapidly changing their composition. Designing vaccines that elicit antibody responses against invariant parts of the pathogen is a rational strategy to combat existing and emerging pathogens. Production of antibodies is initiated by binding of B cell receptors (BCRs) to foreign antigens presented on the surfaces of antigen presenting cells. This binding induces B cell signalling and internalisation of the antigens for presentation to helper T cells. Although it is known that T cell help controls B cell expansion and differentiation into antibody-secreting and memory B cells, how the strength of antigen binding to the BCR regulates antigen internalisation remains poorly understood. As a result, the response and the affinity maturation of individual B cell clones are difficult to predict, posing a problem for the design of next-generation vaccines. My aim is to develop an understanding of the cellular mechanisms that underlie critical B cell activation steps. My laboratory has recently described that B cells use mechanical forces to extract antigens from antigen presenting cells. We hypothesise that application of mechanical forces tests BCR binding strength and thereby regulates B cell clonal selection during antibody affinity maturation and responses to pathogen evasion. We propose to test this hypothesis by (1) determining the magnitude and timing of the forces generated by B cells, and (2) determining the role of the mechanical properties of BCR-antigen bonds in affinity maturation and (3) in the development of broadly neutralising antibodies. We expect that the results of these studies will contribute to our understanding of the mechanisms that regulate the antibody repertoire in response to infections and have practical implications for the development of vaccines.
Summary
The production of antibodies against pathogens is an effective mechanism of protection against a wide range of infections. However, some pathogens evade antibody responses by rapidly changing their composition. Designing vaccines that elicit antibody responses against invariant parts of the pathogen is a rational strategy to combat existing and emerging pathogens. Production of antibodies is initiated by binding of B cell receptors (BCRs) to foreign antigens presented on the surfaces of antigen presenting cells. This binding induces B cell signalling and internalisation of the antigens for presentation to helper T cells. Although it is known that T cell help controls B cell expansion and differentiation into antibody-secreting and memory B cells, how the strength of antigen binding to the BCR regulates antigen internalisation remains poorly understood. As a result, the response and the affinity maturation of individual B cell clones are difficult to predict, posing a problem for the design of next-generation vaccines. My aim is to develop an understanding of the cellular mechanisms that underlie critical B cell activation steps. My laboratory has recently described that B cells use mechanical forces to extract antigens from antigen presenting cells. We hypothesise that application of mechanical forces tests BCR binding strength and thereby regulates B cell clonal selection during antibody affinity maturation and responses to pathogen evasion. We propose to test this hypothesis by (1) determining the magnitude and timing of the forces generated by B cells, and (2) determining the role of the mechanical properties of BCR-antigen bonds in affinity maturation and (3) in the development of broadly neutralising antibodies. We expect that the results of these studies will contribute to our understanding of the mechanisms that regulate the antibody repertoire in response to infections and have practical implications for the development of vaccines.
Max ERC Funding
1 999 386 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym BCOOL
Project Barocaloric materials for energy-efficient solid-state cooling
Researcher (PI) Javier Eduardo Moya Raposo
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Starting Grant (StG), PE8, ERC-2015-STG
Summary Cooling is essential for food and drinks, medicine, electronics and thermal comfort. Thermal changes due to pressure-driven phase transitions in fluids have long been used in vapour compression systems to achieve continuous refrigeration and air conditioning, but their energy efficiency is relatively low, and the working fluids that are employed harm the environment when released to the atmosphere. More recently, the discovery of large thermal changes due to pressure-driven phase transitions in magnetic solids has led to suggestions for environmentally friendly solid-state cooling applications. However, for this new cooling technology to succeed, it is still necessary to find suitable barocaloric (BC) materials that satisfy the demanding requirements set by applications, namely very large thermal changes in inexpensive materials that occur near room temperature in response to small applied pressures.
I aim to develop new BC materials by exploiting phase transitions in non-magnetic solids whose structural and thermal properties are strongly coupled, namely ferroelectric salts, molecular crystals and hybrid materials. These materials are normally made from cheap abundant elements, and display very large latent heats and volume changes at structural phase transitions, which make them ideal candidates to exhibit extremely large BC effects that outperform those observed in state-of-the-art BC magnetic materials, and that match applications.
My unique approach combines: i) materials science to identify materials with outstanding BC performance, ii) advanced experimental techniques to explore and exploit these novel materials, iii) materials engineering to create new composite materials with enhanced BC properties, and iv) fabrication of BC devices, using insight gained from modelling of materials and device parameters. If successful, my ambitious strategy will culminate in revolutionary solid-state cooling devices that are environmentally friendly and energy efficient.
Summary
Cooling is essential for food and drinks, medicine, electronics and thermal comfort. Thermal changes due to pressure-driven phase transitions in fluids have long been used in vapour compression systems to achieve continuous refrigeration and air conditioning, but their energy efficiency is relatively low, and the working fluids that are employed harm the environment when released to the atmosphere. More recently, the discovery of large thermal changes due to pressure-driven phase transitions in magnetic solids has led to suggestions for environmentally friendly solid-state cooling applications. However, for this new cooling technology to succeed, it is still necessary to find suitable barocaloric (BC) materials that satisfy the demanding requirements set by applications, namely very large thermal changes in inexpensive materials that occur near room temperature in response to small applied pressures.
I aim to develop new BC materials by exploiting phase transitions in non-magnetic solids whose structural and thermal properties are strongly coupled, namely ferroelectric salts, molecular crystals and hybrid materials. These materials are normally made from cheap abundant elements, and display very large latent heats and volume changes at structural phase transitions, which make them ideal candidates to exhibit extremely large BC effects that outperform those observed in state-of-the-art BC magnetic materials, and that match applications.
My unique approach combines: i) materials science to identify materials with outstanding BC performance, ii) advanced experimental techniques to explore and exploit these novel materials, iii) materials engineering to create new composite materials with enhanced BC properties, and iv) fabrication of BC devices, using insight gained from modelling of materials and device parameters. If successful, my ambitious strategy will culminate in revolutionary solid-state cooling devices that are environmentally friendly and energy efficient.
Max ERC Funding
1 467 521 €
Duration
Start date: 2016-04-01, End date: 2021-03-31
Project acronym BEACON
Project Hybrid Digital-Analog Networking under Extreme Energy and Latency Constraints
Researcher (PI) Deniz Gunduz
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Call Details Starting Grant (StG), PE7, ERC-2015-STG
Summary The objective of the BEACON project is to (re-)introduce analog communications into the design of modern wireless networks. We argue that the extreme energy and latency constraints imposed by the emerging Internet of Everything (IoE) paradigm can only be met within a hybrid digital-analog communications framework. Current network architectures separate source and channel coding, orthogonalize users, and employ long block-length digital source and channel codes, which are either suboptimal or not applicable under the aforementioned constraints. BEACON questions these well-established design principles, and proposes to replace them with a hybrid digital-analog communications framework, which will meet the required energy and latency constraints while simplifying the encoding and decoding processes. BEACON pushes the performance of the IoE to its theoretical limits by i) exploiting signal correlations that are abundant in IoE applications, given the foreseen density of deployed sensing devices, ii) taking into account the limited and stochastic nature of energy availability due to, for example, energy harvesting capabilities, iii) using feedback resources to improve the end-to-end signal distortion, and iv) deriving novel converse results to identify fundamental performance benchmarks.
The results of BEACON will not only shed light on the fundamental limits on the performance any coding scheme can achieve, but will also lead to the development of unconventional codes and communication protocols that can approach these limits, combining digital and analog communication techniques. The ultimate challenge for this project is to exploit the developed hybrid digital-analog networking theory for a complete overhaul of the physical layer design for emerging IoE applications, such as smart grids, tele-robotics and smart homes. For this purpose, a proof-of-concept implementation test-bed will also be built using software defined radios and sensor nodes.
Summary
The objective of the BEACON project is to (re-)introduce analog communications into the design of modern wireless networks. We argue that the extreme energy and latency constraints imposed by the emerging Internet of Everything (IoE) paradigm can only be met within a hybrid digital-analog communications framework. Current network architectures separate source and channel coding, orthogonalize users, and employ long block-length digital source and channel codes, which are either suboptimal or not applicable under the aforementioned constraints. BEACON questions these well-established design principles, and proposes to replace them with a hybrid digital-analog communications framework, which will meet the required energy and latency constraints while simplifying the encoding and decoding processes. BEACON pushes the performance of the IoE to its theoretical limits by i) exploiting signal correlations that are abundant in IoE applications, given the foreseen density of deployed sensing devices, ii) taking into account the limited and stochastic nature of energy availability due to, for example, energy harvesting capabilities, iii) using feedback resources to improve the end-to-end signal distortion, and iv) deriving novel converse results to identify fundamental performance benchmarks.
The results of BEACON will not only shed light on the fundamental limits on the performance any coding scheme can achieve, but will also lead to the development of unconventional codes and communication protocols that can approach these limits, combining digital and analog communication techniques. The ultimate challenge for this project is to exploit the developed hybrid digital-analog networking theory for a complete overhaul of the physical layer design for emerging IoE applications, such as smart grids, tele-robotics and smart homes. For this purpose, a proof-of-concept implementation test-bed will also be built using software defined radios and sensor nodes.
Max ERC Funding
1 496 350 €
Duration
Start date: 2016-10-01, End date: 2021-09-30
Project acronym BeadDiagnosis
Project Prognosis and Diagnosis of Protein Misfolding Diseases by Seeded Aggregation in Microspheres
Researcher (PI) Florian Hollfelder
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Proof of Concept (PoC), PC1, ERC-2014-PoC
Summary There is currently no early detection system for neurological protein misfolding disorders (such as Alzheimer's and Parkinson's diseases) that would satisfy the demands for rapid, quantitative, flexible, and reproducible assays to study amyloidogenesis in biological samples. We will explore the potential of aggregation assays in microdroplets that are formed in microfluidic devices. We have found that the readout of this assay reflects the disease progression, when samples of Drosophila fruit fly brains and mouse brain and serum are analysed. We will use this PoC project explore the utility of this technology to report on aggregation of amyloid precursors in human biological samples, to test whether the potential of this technology extends to patients diagnosis and prognosis. Such data would resolve the question whether our early diagnosis system is immediately useful in a medical context and strengthen the case for venture capital funding.
Summary
There is currently no early detection system for neurological protein misfolding disorders (such as Alzheimer's and Parkinson's diseases) that would satisfy the demands for rapid, quantitative, flexible, and reproducible assays to study amyloidogenesis in biological samples. We will explore the potential of aggregation assays in microdroplets that are formed in microfluidic devices. We have found that the readout of this assay reflects the disease progression, when samples of Drosophila fruit fly brains and mouse brain and serum are analysed. We will use this PoC project explore the utility of this technology to report on aggregation of amyloid precursors in human biological samples, to test whether the potential of this technology extends to patients diagnosis and prognosis. Such data would resolve the question whether our early diagnosis system is immediately useful in a medical context and strengthen the case for venture capital funding.
Max ERC Funding
149 972 €
Duration
Start date: 2015-08-01, End date: 2017-01-31
Project acronym BEAM-ME-UP
Project From Radio-Frequency to Giga-Bit
Optical- and Quantum-Wireless
Researcher (PI) Lajos Hanzo
Host Institution (HI) UNIVERSITY OF SOUTHAMPTON
Call Details Advanced Grant (AdG), PE7, ERC-2012-ADG_20120216
Summary The majority of the globe's population carries a mobile phone, but with the increasing proliferation of smart phones and tablet-computers the tele-traffic is predicted to grow 1000-fold over the next decade, especially, when aiming for creating the impression of ubiquitous and flawless 'tele-presence' based on crisp, three-dimensional (3D) video with its sense of joy and wonder. For tele-presence to become a reality requires a further quantum-leap from the popular 3G/4G smart phones and tablet-computers. This project will create the link-level enabling techniques of this transformational quantum leap to immersive Giga-bit 3D video communications, relying on Optical Wireless (OW) hotspots and their ad hoc networking.
As a result, the Beam-Me-Up project will contribute to job- and wealth-creation in numeorus ways, as exemplified by the often-quoted economic benefits of 3G/4G phones on businesses. From an environmental perspective, flawless tele-presence has the potential of eliminating millions of flights/trips and hence will considerably reduce CO2 emissions, whilst reducing the related business-costs as well as saving precious time for the work-force. However, the transfiguration of the voice-only phone into today's intelligent smart phone was facilitated by a 1000-fold transmission-rate increase, which would result in a proportionally increased power consumption, CO2 emissions and in a soaring energy-bill. Tele-presence based on crisp Avatar-style 3D video has even higher bitrates and energy consumption. These radically new high-rate 3D tele-presence services can no longer be accommodated in the severely congested Radio Frequency (RF) band.
Hence the project will create a suite of new OW system components, operating in the visible-light domain and will conceive low-power, low-complexity OW solutions to enable immersive Giga-bit 3D wireless video communications over heterogeneous networks.
Summary
The majority of the globe's population carries a mobile phone, but with the increasing proliferation of smart phones and tablet-computers the tele-traffic is predicted to grow 1000-fold over the next decade, especially, when aiming for creating the impression of ubiquitous and flawless 'tele-presence' based on crisp, three-dimensional (3D) video with its sense of joy and wonder. For tele-presence to become a reality requires a further quantum-leap from the popular 3G/4G smart phones and tablet-computers. This project will create the link-level enabling techniques of this transformational quantum leap to immersive Giga-bit 3D video communications, relying on Optical Wireless (OW) hotspots and their ad hoc networking.
As a result, the Beam-Me-Up project will contribute to job- and wealth-creation in numeorus ways, as exemplified by the often-quoted economic benefits of 3G/4G phones on businesses. From an environmental perspective, flawless tele-presence has the potential of eliminating millions of flights/trips and hence will considerably reduce CO2 emissions, whilst reducing the related business-costs as well as saving precious time for the work-force. However, the transfiguration of the voice-only phone into today's intelligent smart phone was facilitated by a 1000-fold transmission-rate increase, which would result in a proportionally increased power consumption, CO2 emissions and in a soaring energy-bill. Tele-presence based on crisp Avatar-style 3D video has even higher bitrates and energy consumption. These radically new high-rate 3D tele-presence services can no longer be accommodated in the severely congested Radio Frequency (RF) band.
Hence the project will create a suite of new OW system components, operating in the visible-light domain and will conceive low-power, low-complexity OW solutions to enable immersive Giga-bit 3D wireless video communications over heterogeneous networks.
Max ERC Funding
2 470 416 €
Duration
Start date: 2013-03-01, End date: 2018-02-28
Project acronym BEAUTY
Project Towards a comparative sociology of beauty The transnational modelling industry and the social shaping of beauty standards in six European countries
Researcher (PI) Giselinde Maniouschka Marije Kuipers
Host Institution (HI) UNIVERSITEIT VAN AMSTERDAM
Call Details Starting Grant (StG), SH2, ERC-2009-StG
Summary This project studies how beauty standards - perceptions of physical beauty in women and men - are socially shaped. It will focus on the transnational modelling industry, an institution centrally concerned with the production and dissemination of beauty standards. The project aims to develop a comparative sociology of beauty. By comparing beauty standards both within and across nations, it will identify central mechanisms and institutions through which such standards are developed and disseminated. In 4 subprojects this study investigates 1. How standards of female and male beauty are perceived, shaped, and disseminated by professionals in the transnational modelling field; 2. How female and male models perceive, represent and embody beauty standards in their work; 3. How female and male beauty has been portrayed by models in mainstream and high fashion magazines from 1980 till 2010; 4. How people of different backgrounds perceive female and male beauty, and how their beauty standards are related to the images disseminated in modelling. Each project will be done in France, Italy, the Netherlands, Poland, Turkey and the UK. This project is innovative in several ways. It is the first comprehensive study of the social shaping of beauty standards. The 4 subprojects will result in an extensive account of production, products, and reception of a contested cultural industry. Moreover, this project draws together in novel ways theories about media, cultural production and taste formation; gender and the body; and globalization. The project will make a major contribution to the study of globalization: it studies a transnational cultural industry, and its comparative and longitudinal design allows us to gauge the impact of globalization in different contexts. Finally, the project is innovative in its comparative, multi-method research design, in which the subprojects will follow the entire process of production and consumption in a transnational field.
Summary
This project studies how beauty standards - perceptions of physical beauty in women and men - are socially shaped. It will focus on the transnational modelling industry, an institution centrally concerned with the production and dissemination of beauty standards. The project aims to develop a comparative sociology of beauty. By comparing beauty standards both within and across nations, it will identify central mechanisms and institutions through which such standards are developed and disseminated. In 4 subprojects this study investigates 1. How standards of female and male beauty are perceived, shaped, and disseminated by professionals in the transnational modelling field; 2. How female and male models perceive, represent and embody beauty standards in their work; 3. How female and male beauty has been portrayed by models in mainstream and high fashion magazines from 1980 till 2010; 4. How people of different backgrounds perceive female and male beauty, and how their beauty standards are related to the images disseminated in modelling. Each project will be done in France, Italy, the Netherlands, Poland, Turkey and the UK. This project is innovative in several ways. It is the first comprehensive study of the social shaping of beauty standards. The 4 subprojects will result in an extensive account of production, products, and reception of a contested cultural industry. Moreover, this project draws together in novel ways theories about media, cultural production and taste formation; gender and the body; and globalization. The project will make a major contribution to the study of globalization: it studies a transnational cultural industry, and its comparative and longitudinal design allows us to gauge the impact of globalization in different contexts. Finally, the project is innovative in its comparative, multi-method research design, in which the subprojects will follow the entire process of production and consumption in a transnational field.
Max ERC Funding
1 202 611 €
Duration
Start date: 2010-05-01, End date: 2015-08-31
Project acronym BEBOP
Project Binaries Escorted By Orbiting Planets
Researcher (PI) Amaury TRIAUD
Host Institution (HI) THE UNIVERSITY OF BIRMINGHAM
Call Details Starting Grant (StG), PE9, ERC-2018-STG
Summary Planets orbiting both stars of a binary system -circumbinary planets- are challenging our understanding about how planets assemble, and how their orbits subsequently evolve. Long confined to science-fiction, circumbinary planets were confirmed by the Kepler spacecraft, in one of its most spectacular, and impactful result. Despite Kepler’s insights, a lot remains unknown about these planets. Kepler also suffered from intractable biases that the BEBOP project will solve.
BEBOP will revolutionise how we detect and study circumbinary planets. Conducting a Doppler survey, we will vastly improve the efficiency of circumbinary planet detection, and remove Kepler’s biases. BEBOP will construct a clearer picture of the circumbinary planet population, and free us from the inherent vagaries, and important costs of space-funding. Thanks to the Doppler method we will study dynamical effects unique to circumbinary planets, estimate their multiplicity, and compute their true occurrence rate.
Circumbinary planets are essential objects. Binaries disturbe planet formation. Any similarity, and any difference between the population of circumbinary planets and planets orbiting single stars, will bring novel information about how planets are produced. In addition, circumbinary planets have unique orbital properties that boost their probability to experience transits. BEBOP’s detections will open the door to atmospheric studies of colder worlds than presently available.
Based on already discovered systems, and on two successful proofs-of-concept, the BEBOP team will detect 15 circumbinary gas-giants, three times more than Kepler. BEBOP will provide an unambiguous measure of the efficiency of gas-giant formation in circumbinary environments. In addition the BEBOP project comes with an ambitious programme to combine three detection methods (Doppler, transits, and astrometry) in a holistic approach that will bolster investigations into circumbinary planets, and create a lasting legacy.
Summary
Planets orbiting both stars of a binary system -circumbinary planets- are challenging our understanding about how planets assemble, and how their orbits subsequently evolve. Long confined to science-fiction, circumbinary planets were confirmed by the Kepler spacecraft, in one of its most spectacular, and impactful result. Despite Kepler’s insights, a lot remains unknown about these planets. Kepler also suffered from intractable biases that the BEBOP project will solve.
BEBOP will revolutionise how we detect and study circumbinary planets. Conducting a Doppler survey, we will vastly improve the efficiency of circumbinary planet detection, and remove Kepler’s biases. BEBOP will construct a clearer picture of the circumbinary planet population, and free us from the inherent vagaries, and important costs of space-funding. Thanks to the Doppler method we will study dynamical effects unique to circumbinary planets, estimate their multiplicity, and compute their true occurrence rate.
Circumbinary planets are essential objects. Binaries disturbe planet formation. Any similarity, and any difference between the population of circumbinary planets and planets orbiting single stars, will bring novel information about how planets are produced. In addition, circumbinary planets have unique orbital properties that boost their probability to experience transits. BEBOP’s detections will open the door to atmospheric studies of colder worlds than presently available.
Based on already discovered systems, and on two successful proofs-of-concept, the BEBOP team will detect 15 circumbinary gas-giants, three times more than Kepler. BEBOP will provide an unambiguous measure of the efficiency of gas-giant formation in circumbinary environments. In addition the BEBOP project comes with an ambitious programme to combine three detection methods (Doppler, transits, and astrometry) in a holistic approach that will bolster investigations into circumbinary planets, and create a lasting legacy.
Max ERC Funding
1 186 313 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym Becoming Men
Project Becoming Men: Performing responsible masculinities in contemporary urban Africa
Researcher (PI) Eileen Marie Moyer
Host Institution (HI) UNIVERSITEIT VAN AMSTERDAM
Call Details Consolidator Grant (CoG), SH2, ERC-2014-CoG
Summary This anthropological study examines the reconfiguration of masculinities in urban Africa over the last 30 years. Focusing on how practices and discourses of empowerment and equality shape male subjectivities, this study builds upon a significant body of nuanced research on masculinities in Africa. Since the mid-1980s academic and public discourses have depicted African masculinity as both precarious and predatory. Economic insecurity, urbanization, shifting gender norms, and growing gender parity have accompanied claims that African masculinity is ‘in crisis’. More recently, new stories of urban men embracing responsible fatherhood, condemning intimate partner violence, and demanding homosexual rights have emerged as exemplars of progressive possibility. To disentangle these seemingly competing claims about African masculinities and shed light on the scientific, political, and economic projects that shape them, this research theorises that the discourses and practices that pathologise and politicise masculinity are simultaneously performing and producing gendered selves on multiple scales in the name of gender equality. Recently, ‘male involvement’ has become a rallying cry throughout the vast global development assemblage, around which governments, NGOs, research networks, activists, and local communities fight gender inequality to promote health, economic development, and human rights. In this research, a range of male-involvement initiatives provides a lens through which to study how masculinities are diversely imagined, (re)configured, and performed through men’s engagements with this assemblage, in both its local and global manifestations. Multi-sited ethnographic research will focus on six cities where the PI has active research ties: Nairobi and Kisumu, Kenya; Johannesburg and Durban, South Africa; and Dar es Salaam and Mwanza, Tanzania.
Summary
This anthropological study examines the reconfiguration of masculinities in urban Africa over the last 30 years. Focusing on how practices and discourses of empowerment and equality shape male subjectivities, this study builds upon a significant body of nuanced research on masculinities in Africa. Since the mid-1980s academic and public discourses have depicted African masculinity as both precarious and predatory. Economic insecurity, urbanization, shifting gender norms, and growing gender parity have accompanied claims that African masculinity is ‘in crisis’. More recently, new stories of urban men embracing responsible fatherhood, condemning intimate partner violence, and demanding homosexual rights have emerged as exemplars of progressive possibility. To disentangle these seemingly competing claims about African masculinities and shed light on the scientific, political, and economic projects that shape them, this research theorises that the discourses and practices that pathologise and politicise masculinity are simultaneously performing and producing gendered selves on multiple scales in the name of gender equality. Recently, ‘male involvement’ has become a rallying cry throughout the vast global development assemblage, around which governments, NGOs, research networks, activists, and local communities fight gender inequality to promote health, economic development, and human rights. In this research, a range of male-involvement initiatives provides a lens through which to study how masculinities are diversely imagined, (re)configured, and performed through men’s engagements with this assemblage, in both its local and global manifestations. Multi-sited ethnographic research will focus on six cities where the PI has active research ties: Nairobi and Kisumu, Kenya; Johannesburg and Durban, South Africa; and Dar es Salaam and Mwanza, Tanzania.
Max ERC Funding
1 999 830 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym Becoming Social
Project Social Interaction Perception and the Social Brain Across Typical and Atypical Development
Researcher (PI) Kami KOLDEWYN
Host Institution (HI) BANGOR UNIVERSITY
Call Details Starting Grant (StG), SH4, ERC-2016-STG
Summary Social interactions are multifaceted and subtle, yet we can almost instantaneously discern if two people are cooperating or competing, flirting or fighting, or helping or hindering each other. Surprisingly, the development and brain basis of this remarkable ability has remained largely unexplored. At the same time, understanding how we develop the ability to process and use social information from other people is widely recognized as a core challenge facing developmental cognitive neuroscience. The Becoming Social project meets this challenge by proposing the most complete investigation to date of the development of the behavioural and neurobiological systems that support complex social perception. To achieve this, we first systematically map how the social interactions we observe are coded in the brain by testing typical adults. Next, we investigate developmental change both behaviourally and neurally during a key stage in social development in typically developing children. Finally, we explore whether social interaction perception is clinically relevant by investigating it developmentally in autism spectrum disorder. The Becoming Social project is expected to lead to a novel conception of the neurocognitive architecture supporting the perception of social interactions. In addition, neuroimaging and behavioural tasks measured longitudinally during development will allow us to determine how individual differences in brain and behaviour are causally related to real-world social ability and social learning. The planned studies as well as those generated during the project will enable the Becoming Social team to become a world-leading group bridging social cognition, neuroscience and developmental psychology.
Summary
Social interactions are multifaceted and subtle, yet we can almost instantaneously discern if two people are cooperating or competing, flirting or fighting, or helping or hindering each other. Surprisingly, the development and brain basis of this remarkable ability has remained largely unexplored. At the same time, understanding how we develop the ability to process and use social information from other people is widely recognized as a core challenge facing developmental cognitive neuroscience. The Becoming Social project meets this challenge by proposing the most complete investigation to date of the development of the behavioural and neurobiological systems that support complex social perception. To achieve this, we first systematically map how the social interactions we observe are coded in the brain by testing typical adults. Next, we investigate developmental change both behaviourally and neurally during a key stage in social development in typically developing children. Finally, we explore whether social interaction perception is clinically relevant by investigating it developmentally in autism spectrum disorder. The Becoming Social project is expected to lead to a novel conception of the neurocognitive architecture supporting the perception of social interactions. In addition, neuroimaging and behavioural tasks measured longitudinally during development will allow us to determine how individual differences in brain and behaviour are causally related to real-world social ability and social learning. The planned studies as well as those generated during the project will enable the Becoming Social team to become a world-leading group bridging social cognition, neuroscience and developmental psychology.
Max ERC Funding
1 500 000 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym BeeDanceGap
Project Honeybee communication: animal social learning at the height of social complexity
Researcher (PI) Ellouise Leadbeater
Host Institution (HI) ROYAL HOLLOWAY AND BEDFORD NEW COLLEGE
Call Details Starting Grant (StG), LS8, ERC-2014-STG
Summary Learning from others is fundamental to ecological success across the animal kingdom, but a key theme to emerge from recent research is that individuals respond differently to social information. Understanding this diversity is an imposing challenge, because it is hard to replicate the overwhelming complexity of free-living groups within controlled laboratory conditions. Yet here I propose that one of the most complex social models that we know of— the sophisticated eusocial societies of honeybees— offer unrivaled and yet unrecognized potential to study social information flow through a natural group. The honeybee “dance language” is one of the most celebrated communication systems in the animal world, and central to a powerful information network that drives our most high-profile pollinator to food, but bee colonies are uniquely tractable for two reasons. Firstly, next-generation transcriptomics could allow us to delve deep into this complexity at the molecular level, on a scale that is simply not available in vertebrate social systems. I propose to track information flow through a natural group using brain gene expression profiles, to understand how dances elicit learning in the bee brain. Secondly, although bee foraging ranges are vast and diverse, social learning takes place in one centralized location (the hive). The social sciences now offer powerful new tools to analyze social networks, and I will use a cutting-edge network-based modelling approach to understand how the importance of social learning mechanisms shifts with ecology. In the face of global pollinator decline, understanding the contribution of foraging drivers to colony success has never been more pressing, but the importance of the dance language reaches far beyond food security concerns. This research integrates proximate and ultimate perspectives to produce a comprehensive, multi-disciplinary program; a high-risk, high-gain journey into new territory for understanding animal communication.
Summary
Learning from others is fundamental to ecological success across the animal kingdom, but a key theme to emerge from recent research is that individuals respond differently to social information. Understanding this diversity is an imposing challenge, because it is hard to replicate the overwhelming complexity of free-living groups within controlled laboratory conditions. Yet here I propose that one of the most complex social models that we know of— the sophisticated eusocial societies of honeybees— offer unrivaled and yet unrecognized potential to study social information flow through a natural group. The honeybee “dance language” is one of the most celebrated communication systems in the animal world, and central to a powerful information network that drives our most high-profile pollinator to food, but bee colonies are uniquely tractable for two reasons. Firstly, next-generation transcriptomics could allow us to delve deep into this complexity at the molecular level, on a scale that is simply not available in vertebrate social systems. I propose to track information flow through a natural group using brain gene expression profiles, to understand how dances elicit learning in the bee brain. Secondly, although bee foraging ranges are vast and diverse, social learning takes place in one centralized location (the hive). The social sciences now offer powerful new tools to analyze social networks, and I will use a cutting-edge network-based modelling approach to understand how the importance of social learning mechanisms shifts with ecology. In the face of global pollinator decline, understanding the contribution of foraging drivers to colony success has never been more pressing, but the importance of the dance language reaches far beyond food security concerns. This research integrates proximate and ultimate perspectives to produce a comprehensive, multi-disciplinary program; a high-risk, high-gain journey into new territory for understanding animal communication.
Max ERC Funding
1 422 010 €
Duration
Start date: 2016-02-01, End date: 2021-01-31
Project acronym BEEHIVE
Project Bridging the Evolution and Epidemiology of HIV in Europe
Researcher (PI) Christopher Fraser
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Advanced Grant (AdG), LS2, ERC-2013-ADG
Summary The aim of the BEEHIVE project is to generate novel insight into HIV biology, evolution and epidemiology, leveraging next-generation high-throughput sequencing and bioinformatics to produce and analyse whole-genomes of viruses from approximately 3,000 European HIV-1 infected patients. These patients have known dates of infection spread over the last 25 years, good clinical follow up, and a wide range of clinical prognostic indicators and outcomes. The primary objective is to discover the viral genetic determinants of severity of infection and set-point viral load. This primary objective is high-risk & blue-skies: there is ample indirect evidence of polymorphisms that alter virulence, but they have never been identified, and it is not known how easy they are to discover. However, the project is also high-reward: it could lead to a substantial shift in the understanding of HIV disease.
Technologically, the BEEHIVE project will deliver new approaches for undertaking whole genome association studies on RNA viruses, including delivering an innovative high-throughput bioinformatics pipeline for handling genetically diverse viral quasi-species data (with viral diversity both within and between infected patients).
The project also includes secondary and tertiary objectives that address critical open questions in HIV epidemiology and evolution. The secondary objective is to use viral genetic sequences allied to mathematical epidemic models to better understand the resurgent European epidemic amongst high-risk groups, especially men who have sex with men. The aim will not just be to establish who is at risk of infection, which is known from conventional epidemiological approaches, but also to characterise the risk factors for onwards transmission of the virus. Tertiary objectives involve understanding the relationship between the genetic diversity within viral samples, indicative of on-going evolution or dual infections, to clinical outcomes.
Summary
The aim of the BEEHIVE project is to generate novel insight into HIV biology, evolution and epidemiology, leveraging next-generation high-throughput sequencing and bioinformatics to produce and analyse whole-genomes of viruses from approximately 3,000 European HIV-1 infected patients. These patients have known dates of infection spread over the last 25 years, good clinical follow up, and a wide range of clinical prognostic indicators and outcomes. The primary objective is to discover the viral genetic determinants of severity of infection and set-point viral load. This primary objective is high-risk & blue-skies: there is ample indirect evidence of polymorphisms that alter virulence, but they have never been identified, and it is not known how easy they are to discover. However, the project is also high-reward: it could lead to a substantial shift in the understanding of HIV disease.
Technologically, the BEEHIVE project will deliver new approaches for undertaking whole genome association studies on RNA viruses, including delivering an innovative high-throughput bioinformatics pipeline for handling genetically diverse viral quasi-species data (with viral diversity both within and between infected patients).
The project also includes secondary and tertiary objectives that address critical open questions in HIV epidemiology and evolution. The secondary objective is to use viral genetic sequences allied to mathematical epidemic models to better understand the resurgent European epidemic amongst high-risk groups, especially men who have sex with men. The aim will not just be to establish who is at risk of infection, which is known from conventional epidemiological approaches, but also to characterise the risk factors for onwards transmission of the virus. Tertiary objectives involve understanding the relationship between the genetic diversity within viral samples, indicative of on-going evolution or dual infections, to clinical outcomes.
Max ERC Funding
2 499 739 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym BEHAVE
Project New discrete choice theory for understanding moral decision making behaviour
Researcher (PI) Caspar Gerard CHORUS
Host Institution (HI) TECHNISCHE UNIVERSITEIT DELFT
Call Details Consolidator Grant (CoG), SH2, ERC-2016-COG
Summary Discrete choice theory provides a mathematically rigorous framework to analyse and predict choice behaviour. While many of the theory’s key developments originate from the domain of transportation (mobility, travel behaviour), it is now widely used throughout the social sciences.
The theory has a blind spot for moral choice behaviour. It was designed to analyse situations where people make choices that are optimal given their consumer preferences, rather than situations where people attempt to make choices that are right, given their moral preferences. This neglect of the morality of choice is striking, in light of the fact that many of the most important choices people make, have a moral dimension.
This research program extends discrete choice theory to the domain of moral decision making.
It will produce a suite of new mathematical representations of choice behaviour (i.e., choice models), which are designed to capture the decision rules and decision weights that determine how individuals behave in moral choice situations. In these models, particular emphasis is given to heterogeneity in moral decision rules and to the role of social influences. Models will be estimated and validated using data obtained through a series of interviews, surveys and choice experiments. Empirical analyses will take place in the context of moral choice situations concerning i) co-operative road using and ii) unsafe driving practices. Estimation results will be used as input for agent based models, to identify how social interaction processes lead to the emergence, persistence or dissolution of moral (traffic) equilibria at larger spatio-temporal scales.
Together, these proposed research efforts promise to generate a major breakthrough in discrete choice theory. In addition, the program will result in important methodological contributions to the empirical study of moral decision making behaviour in general; and to new insights into the moral aspects of (travel) behaviour.
Summary
Discrete choice theory provides a mathematically rigorous framework to analyse and predict choice behaviour. While many of the theory’s key developments originate from the domain of transportation (mobility, travel behaviour), it is now widely used throughout the social sciences.
The theory has a blind spot for moral choice behaviour. It was designed to analyse situations where people make choices that are optimal given their consumer preferences, rather than situations where people attempt to make choices that are right, given their moral preferences. This neglect of the morality of choice is striking, in light of the fact that many of the most important choices people make, have a moral dimension.
This research program extends discrete choice theory to the domain of moral decision making.
It will produce a suite of new mathematical representations of choice behaviour (i.e., choice models), which are designed to capture the decision rules and decision weights that determine how individuals behave in moral choice situations. In these models, particular emphasis is given to heterogeneity in moral decision rules and to the role of social influences. Models will be estimated and validated using data obtained through a series of interviews, surveys and choice experiments. Empirical analyses will take place in the context of moral choice situations concerning i) co-operative road using and ii) unsafe driving practices. Estimation results will be used as input for agent based models, to identify how social interaction processes lead to the emergence, persistence or dissolution of moral (traffic) equilibria at larger spatio-temporal scales.
Together, these proposed research efforts promise to generate a major breakthrough in discrete choice theory. In addition, the program will result in important methodological contributions to the empirical study of moral decision making behaviour in general; and to new insights into the moral aspects of (travel) behaviour.
Max ERC Funding
1 998 750 €
Duration
Start date: 2017-08-01, End date: 2022-07-31
Project acronym BENDER
Project BiogENesis and Degradation of Endoplasmic Reticulum proteins
Researcher (PI) Friedrich Förster
Host Institution (HI) UNIVERSITEIT UTRECHT
Call Details Consolidator Grant (CoG), LS1, ERC-2016-COG
Summary The Endoplasmic Reticulum (ER) membrane in all eukaryotic cells has an intricate protein network that facilitates protein biogene-sis and homeostasis. The molecular complexity and sophisticated regulation of this machinery favours study-ing it in its native microenvironment by novel approaches. Cryo-electron tomography (CET) allows 3D im-aging of membrane-associated complexes in their native surrounding. Computational analysis of many sub-tomograms depicting the same type of macromolecule, a technology I pioneered, provides subnanometer resolution insights into different conformations of native complexes.
I propose to leverage CET of cellular and cell-free systems to reveal the molecular details of ER protein bio-genesis and homeostasis. In detail, I will study: (a) The structure of the ER translocon, the dynamic gateway for import of nascent proteins into the ER and their maturation. The largest component is the oligosaccharyl transferase complex. (b) Cotranslational ER import, N-glycosylation, chaperone-mediated stabilization and folding as well as oligomerization of established model substrate such a major histocompatibility complex (MHC) class I and II complexes. (c) The degradation of misfolded ER-residing proteins by the cytosolic 26S proteasome using cytomegalovirus-induced depletion of MHC class I as a model system. (d) The structural changes of the ER-bound translation machinery upon ER stress through IRE1-mediated degradation of mRNA that is specific for ER-targeted proteins. (e) The improved ‘in silico purification’ of different states of native macromolecules by maximum likelihood subtomogram classification and its application to a-d.
This project will be the blueprint for a new approach to structural biology of membrane-associated processes. It will contribute to our mechanistic understanding of viral immune evasion and glycosylation disorders as well as numerous diseases involving chronic ER stress including diabetes and neurodegenerative diseases.
Summary
The Endoplasmic Reticulum (ER) membrane in all eukaryotic cells has an intricate protein network that facilitates protein biogene-sis and homeostasis. The molecular complexity and sophisticated regulation of this machinery favours study-ing it in its native microenvironment by novel approaches. Cryo-electron tomography (CET) allows 3D im-aging of membrane-associated complexes in their native surrounding. Computational analysis of many sub-tomograms depicting the same type of macromolecule, a technology I pioneered, provides subnanometer resolution insights into different conformations of native complexes.
I propose to leverage CET of cellular and cell-free systems to reveal the molecular details of ER protein bio-genesis and homeostasis. In detail, I will study: (a) The structure of the ER translocon, the dynamic gateway for import of nascent proteins into the ER and their maturation. The largest component is the oligosaccharyl transferase complex. (b) Cotranslational ER import, N-glycosylation, chaperone-mediated stabilization and folding as well as oligomerization of established model substrate such a major histocompatibility complex (MHC) class I and II complexes. (c) The degradation of misfolded ER-residing proteins by the cytosolic 26S proteasome using cytomegalovirus-induced depletion of MHC class I as a model system. (d) The structural changes of the ER-bound translation machinery upon ER stress through IRE1-mediated degradation of mRNA that is specific for ER-targeted proteins. (e) The improved ‘in silico purification’ of different states of native macromolecules by maximum likelihood subtomogram classification and its application to a-d.
This project will be the blueprint for a new approach to structural biology of membrane-associated processes. It will contribute to our mechanistic understanding of viral immune evasion and glycosylation disorders as well as numerous diseases involving chronic ER stress including diabetes and neurodegenerative diseases.
Max ERC Funding
2 496 611 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym BENELEX
Project Benefit-sharing for an equitable transition to the green economy - the role of law
Researcher (PI) Elisa Morgera
Host Institution (HI) UNIVERSITY OF STRATHCLYDE
Call Details Starting Grant (StG), SH2, ERC-2013-StG
Summary Can benefit-sharing address the equity deficit within the green economy? This project aims to investigate benefit-sharing as an under-theorised and little-implemented regulatory approach to the equity concerns (disregard for the special circumstances of developing countries and of indigenous peoples and local communities) in transitioning to the green economy.
Although benefit-sharing is increasingly deployed in a variety of international environmental agreements and also in human rights and corporate accountability instruments, no comprehensive account exists of its conceptual and practical relevance to equitably address global environmental challenges. This project will be the first systematic evaluation of the conceptualisations and operationalisations of benefit-sharing as a tool for equitable change through the allocation among different stakeholders of economic and also socio-cultural and environmental advantages arising from natural resource use.
The project will combine a comparative study of international law with empirical legal research, and include an inter-disciplinary study integrating political sociology in a legal enquiry on the role of “biocultural community protocols” that articulate and implement benefit-sharing at the intersection of international, transnational, national and indigenous communities’ customary law (global environmental law).
The project aims to: 1. develop a comprehensive understanding of benefit-sharing in international law; 2. clarify whether and how benefit-sharing supports equity and the protection of human rights across key sectors of international environmental regulation (biodiversity, climate change, oceans, food and agriculture) that are seen as inter-related in the transition to the green economy; 3. understand the development of benefit-sharing in the context of global environmental law; and
4. clarify the role of transnational legal advisors (NGOs and bilateral cooperation partners) in the green economy.
Summary
Can benefit-sharing address the equity deficit within the green economy? This project aims to investigate benefit-sharing as an under-theorised and little-implemented regulatory approach to the equity concerns (disregard for the special circumstances of developing countries and of indigenous peoples and local communities) in transitioning to the green economy.
Although benefit-sharing is increasingly deployed in a variety of international environmental agreements and also in human rights and corporate accountability instruments, no comprehensive account exists of its conceptual and practical relevance to equitably address global environmental challenges. This project will be the first systematic evaluation of the conceptualisations and operationalisations of benefit-sharing as a tool for equitable change through the allocation among different stakeholders of economic and also socio-cultural and environmental advantages arising from natural resource use.
The project will combine a comparative study of international law with empirical legal research, and include an inter-disciplinary study integrating political sociology in a legal enquiry on the role of “biocultural community protocols” that articulate and implement benefit-sharing at the intersection of international, transnational, national and indigenous communities’ customary law (global environmental law).
The project aims to: 1. develop a comprehensive understanding of benefit-sharing in international law; 2. clarify whether and how benefit-sharing supports equity and the protection of human rights across key sectors of international environmental regulation (biodiversity, climate change, oceans, food and agriculture) that are seen as inter-related in the transition to the green economy; 3. understand the development of benefit-sharing in the context of global environmental law; and
4. clarify the role of transnational legal advisors (NGOs and bilateral cooperation partners) in the green economy.
Max ERC Funding
1 481 708 €
Duration
Start date: 2013-11-01, End date: 2018-10-31
Project acronym BESTDECISION
Project "Behavioural Economics and Strategic Decision Making: Theory, Empirics, and Experiments"
Researcher (PI) Vincent Paul Crawford
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Advanced Grant (AdG), SH1, ERC-2013-ADG
Summary "I will study questions of central microeconomic importance via interwoven theoretical, empirical, and experimental analyses, from a behavioural perspective combining standard methods with assumptions that better reflect evidence on behaviour and psychological insights. The contributions of behavioural economics have been widely recognized, but the benefits of its insights are far from fully realized. I propose four lines of inquiry that focus on how institutions interact with cognition and behaviour, chosen for their potential to reshape our understanding of important questions and their synergies across lines.
The first line will study nonparametric identification and estimation of reference-dependent versions of the standard microeconomic model of consumer demand or labour supply, the subject of hundreds of empirical studies and perhaps the single most important model in microeconomics. It will allow such studies to consider relevant behavioural factors without imposing structural assumptions as in previous work.
The second line will analyze history-dependent learning in financial crises theoretically and experimentally, with the goal of quantifying how market structure influences the likelihood of a crisis.
The third line will study strategic thinking experimentally, using a powerful new design that links subjects’ searches for hidden payoff information (“eye-movements”) much more directly to thinking.
The fourth line will significantly advance Myerson and Satterthwaite’s analyses of optimal design of bargaining rules and auctions, which first went beyond the analysis of given institutions to study what is possible by designing new institutions, replacing their equilibrium assumption with a nonequilibrium model that is well supported by experiments.
The synergies among these four lines’ theoretical analyses, empirical methods, and data analyses will accelerate progress on each line well beyond what would be possible in a piecemeal approach."
Summary
"I will study questions of central microeconomic importance via interwoven theoretical, empirical, and experimental analyses, from a behavioural perspective combining standard methods with assumptions that better reflect evidence on behaviour and psychological insights. The contributions of behavioural economics have been widely recognized, but the benefits of its insights are far from fully realized. I propose four lines of inquiry that focus on how institutions interact with cognition and behaviour, chosen for their potential to reshape our understanding of important questions and their synergies across lines.
The first line will study nonparametric identification and estimation of reference-dependent versions of the standard microeconomic model of consumer demand or labour supply, the subject of hundreds of empirical studies and perhaps the single most important model in microeconomics. It will allow such studies to consider relevant behavioural factors without imposing structural assumptions as in previous work.
The second line will analyze history-dependent learning in financial crises theoretically and experimentally, with the goal of quantifying how market structure influences the likelihood of a crisis.
The third line will study strategic thinking experimentally, using a powerful new design that links subjects’ searches for hidden payoff information (“eye-movements”) much more directly to thinking.
The fourth line will significantly advance Myerson and Satterthwaite’s analyses of optimal design of bargaining rules and auctions, which first went beyond the analysis of given institutions to study what is possible by designing new institutions, replacing their equilibrium assumption with a nonequilibrium model that is well supported by experiments.
The synergies among these four lines’ theoretical analyses, empirical methods, and data analyses will accelerate progress on each line well beyond what would be possible in a piecemeal approach."
Max ERC Funding
1 985 373 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym BEYONDENEMYLINES
Project Beyond Enemy Lines: Literature and Film in the British and American Zones of Occupied Germany, 1945-1949
Researcher (PI) Lara Feigel
Host Institution (HI) KING'S COLLEGE LONDON
Call Details Starting Grant (StG), SH5, ERC-2013-StG
Summary This project investigates the cross-fertilisation of Anglo/American and German literature and film during the Allied Occupation of Germany. It will be the first study to survey the cultural landscape of the British and American zones of Occupied Germany in any detail. By doing so it will offer a new interpretative framework for postwar culture, in particular in three areas: the history of the Allied Occupation of Germany; the history of postwar Anglophone and Germanophone literature (arguing the two were more intertwined than has previously been suggested); and the history of the relationship between postwar and Cold War. Combining Anglo-American and German literature and film history with critical analysis, cultural history and life-writing, this is a necessarily ambitious, multidisciplinary study which will open up a major new field of research.
Summary
This project investigates the cross-fertilisation of Anglo/American and German literature and film during the Allied Occupation of Germany. It will be the first study to survey the cultural landscape of the British and American zones of Occupied Germany in any detail. By doing so it will offer a new interpretative framework for postwar culture, in particular in three areas: the history of the Allied Occupation of Germany; the history of postwar Anglophone and Germanophone literature (arguing the two were more intertwined than has previously been suggested); and the history of the relationship between postwar and Cold War. Combining Anglo-American and German literature and film history with critical analysis, cultural history and life-writing, this is a necessarily ambitious, multidisciplinary study which will open up a major new field of research.
Max ERC Funding
1 414 601 €
Duration
Start date: 2013-09-01, End date: 2019-02-28
Project acronym BeyondOpposition
Project Opposing Sexual and Gender Rights and Equalities: Transforming Everyday Spaces
Researcher (PI) Katherine Browne
Host Institution (HI) NATIONAL UNIVERSITY OF IRELAND MAYNOOTH
Call Details Consolidator Grant (CoG), SH2, ERC-2018-COG
Summary OPPSEXRIGHTS will be the first large-scale, transnational study to consider the effects of recent Sexual and Gender Rights and Equalities (SGRE) on those who oppose them, by exploring opponents’ experiences of the transformation of everyday spaces. It will work beyond contemporary polarisations, creating new possibilities for social transformation. This cutting-edge research engages with the dramatically altered social and political landscapes in the late 20th and early 21st Century created through the development of lesbian, gay, bisexual, and trans, and women’s rights. Recent reactionary politics highlight the pressing need to understand the position of those who experience these new social orders as a loss. The backlash to SGRE has coalesced into various resistances that are tangibly different to the classic vilification of homosexuality, or those that are anti-woman. Some who oppose SGRE have found themselves the subject of public critique; in the workplace, their jobs threatened, while at home, engagements with schools can cause family conflicts. This is particularly visible in the case studies of Ireland, UK and Canada because of SGRE. A largescale transnational systematic database will be created using low risk (media and organisational discourses; participant observation at oppositional events) and higher risk (online data collection and interviews) methods. Experimenting with social transformation, OPPSEXRIGHTS will work to build bridges between ‘enemies’, including families and communities, through innovative discussion and arts-based workshops. This ambitious project has the potential to create tangible solutions that tackle contemporary societal issues, which are founded in polarisations that are seemingly insurmountable.
Summary
OPPSEXRIGHTS will be the first large-scale, transnational study to consider the effects of recent Sexual and Gender Rights and Equalities (SGRE) on those who oppose them, by exploring opponents’ experiences of the transformation of everyday spaces. It will work beyond contemporary polarisations, creating new possibilities for social transformation. This cutting-edge research engages with the dramatically altered social and political landscapes in the late 20th and early 21st Century created through the development of lesbian, gay, bisexual, and trans, and women’s rights. Recent reactionary politics highlight the pressing need to understand the position of those who experience these new social orders as a loss. The backlash to SGRE has coalesced into various resistances that are tangibly different to the classic vilification of homosexuality, or those that are anti-woman. Some who oppose SGRE have found themselves the subject of public critique; in the workplace, their jobs threatened, while at home, engagements with schools can cause family conflicts. This is particularly visible in the case studies of Ireland, UK and Canada because of SGRE. A largescale transnational systematic database will be created using low risk (media and organisational discourses; participant observation at oppositional events) and higher risk (online data collection and interviews) methods. Experimenting with social transformation, OPPSEXRIGHTS will work to build bridges between ‘enemies’, including families and communities, through innovative discussion and arts-based workshops. This ambitious project has the potential to create tangible solutions that tackle contemporary societal issues, which are founded in polarisations that are seemingly insurmountable.
Max ERC Funding
1 988 652 €
Duration
Start date: 2019-10-01, End date: 2024-09-30
Project acronym BG-BB-AS
Project Birational Geometry, B-branes and Artin Stacks
Researcher (PI) Edward Paul Segal
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Consolidator Grant (CoG), PE1, ERC-2016-COG
Summary Derived categories of coherent sheaves on a variety are a fundamental tool in algebraic geometry. They also arise in String Theory, as the category of B-branes in a quantum field theory whose target space is the variety. This connection to physics has been extraordinarily fruitful, providing deep insights and conjectures.
An Artin stack is a sophisticated generalization of a variety, they encode the idea of equivariant geometry. A simple example is a vector space carrying a linear action of a Lie group. In String Theory this data defines a Gauged Linear Sigma Model, which is a basic tool in the subject. A GLSM should also give rise to a category of B-branes, but surprisingly it is not yet understood what this should be. An overarching goal of this project is to develop an understanding of this category (more accurately, system of categories), and to extend this understanding to more general Artin stacks.
The basic importance of this question is that in certain limits a GLSM reduces to a sigma model, whose target is a quotient of the vector space by the group. This quotient must be taken using Geometric Invariant Theory. Thus this project is intimately connected with the question of how derived categories change under variation-of-GIT, and birational maps in general.
For GLSMs with abelian groups this approach has already produced spectacular results, in the non-abelian case we understand only a few remarkable examples. We will develop these examples into a wide-ranging general theory.
Our key objectives are to:
- Provide powerful new tools for controlling the behaviour of derived categories under birational maps.
- Understand the category of B-branes on a large class of Artin stacks.
- Prove and apply a striking new duality between GLSMs.
- Construct completely new symmetries of derived categories.
Summary
Derived categories of coherent sheaves on a variety are a fundamental tool in algebraic geometry. They also arise in String Theory, as the category of B-branes in a quantum field theory whose target space is the variety. This connection to physics has been extraordinarily fruitful, providing deep insights and conjectures.
An Artin stack is a sophisticated generalization of a variety, they encode the idea of equivariant geometry. A simple example is a vector space carrying a linear action of a Lie group. In String Theory this data defines a Gauged Linear Sigma Model, which is a basic tool in the subject. A GLSM should also give rise to a category of B-branes, but surprisingly it is not yet understood what this should be. An overarching goal of this project is to develop an understanding of this category (more accurately, system of categories), and to extend this understanding to more general Artin stacks.
The basic importance of this question is that in certain limits a GLSM reduces to a sigma model, whose target is a quotient of the vector space by the group. This quotient must be taken using Geometric Invariant Theory. Thus this project is intimately connected with the question of how derived categories change under variation-of-GIT, and birational maps in general.
For GLSMs with abelian groups this approach has already produced spectacular results, in the non-abelian case we understand only a few remarkable examples. We will develop these examples into a wide-ranging general theory.
Our key objectives are to:
- Provide powerful new tools for controlling the behaviour of derived categories under birational maps.
- Understand the category of B-branes on a large class of Artin stacks.
- Prove and apply a striking new duality between GLSMs.
- Construct completely new symmetries of derived categories.
Max ERC Funding
1 358 925 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym BHSandAADS
Project The Black Hole Stability Problem and the Analysis of asymptotically anti-de Sitter spacetimes
Researcher (PI) Gustav HOLZEGEL
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Call Details Consolidator Grant (CoG), PE1, ERC-2017-COG
Summary The present proposal is concerned with the analysis of the Einstein equations of general relativity, a non-linear system of geometric partial differential equations describing phenomena from the bending of light to the dynamics of black holes. The theory has recently been confirmed in a spectacular fashion with the detection of gravitational waves.
The main objective of the proposal is to consolidate my research group based at Imperial College by developing novel mathematical techniques that will fundamentally advance our understanding of the Einstein equations. Here the proposal builds on mathematical progress in the last decade resulting from achievements in the fields of partial differential equations, differential geometry, microlocal analysis and theoretical physics.
The Black Hole Stability Problem
A major open problem in general relativity is to prove the non-linear stability of the Kerr family of black hole solutions. Recent advances in the problem of linear stability made by the PI and collaborators open the door to finally address a complete resolution of the stability problem. In this proposal we will describe what non-linear techniques will need to be developed in addition to achieve this goal. A successful resolution of this program would conclude an almost 50-year-old problem.
The Analysis of asymptotically anti-de Sitter (aAdS) spacetimes
We propose to prove the stability of pure AdS if so-called dissipative boundary conditions are imposed at the boundary. This result would align with the well-known stability results for the other maximally-symmetric solutions of the Einstein equations, Minkowski space and de Sitter space.
As a second -- related -- theme we propose to formulate and prove a unique continuation principle for the full non-linear Einstein equations on aAdS spacetimes. This goal will be achieved by advancing techniques that have recently been developed by the PI and collaborators for non-linear wave equations on aAdS spacetimes.
Summary
The present proposal is concerned with the analysis of the Einstein equations of general relativity, a non-linear system of geometric partial differential equations describing phenomena from the bending of light to the dynamics of black holes. The theory has recently been confirmed in a spectacular fashion with the detection of gravitational waves.
The main objective of the proposal is to consolidate my research group based at Imperial College by developing novel mathematical techniques that will fundamentally advance our understanding of the Einstein equations. Here the proposal builds on mathematical progress in the last decade resulting from achievements in the fields of partial differential equations, differential geometry, microlocal analysis and theoretical physics.
The Black Hole Stability Problem
A major open problem in general relativity is to prove the non-linear stability of the Kerr family of black hole solutions. Recent advances in the problem of linear stability made by the PI and collaborators open the door to finally address a complete resolution of the stability problem. In this proposal we will describe what non-linear techniques will need to be developed in addition to achieve this goal. A successful resolution of this program would conclude an almost 50-year-old problem.
The Analysis of asymptotically anti-de Sitter (aAdS) spacetimes
We propose to prove the stability of pure AdS if so-called dissipative boundary conditions are imposed at the boundary. This result would align with the well-known stability results for the other maximally-symmetric solutions of the Einstein equations, Minkowski space and de Sitter space.
As a second -- related -- theme we propose to formulate and prove a unique continuation principle for the full non-linear Einstein equations on aAdS spacetimes. This goal will be achieved by advancing techniques that have recently been developed by the PI and collaborators for non-linear wave equations on aAdS spacetimes.
Max ERC Funding
1 999 755 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym BIAF
Project Bird Inspired Autonomous Flight
Researcher (PI) Shane Paul Windsor
Host Institution (HI) UNIVERSITY OF BRISTOL
Call Details Starting Grant (StG), PE8, ERC-2015-STG
Summary The agile and efficient flight of birds shows what flight performance is physically possible, and in theory could be achieved by unmanned air vehicles (UAVs) of the same size. The overall aim of this project is to enhance the performance of small scale UAVs by developing novel technologies inspired by understanding how birds are adapted to interact with airflows. Small UAVs have the potential to dramatically change current practices in many areas such as, search and rescue, surveillance, and environmental monitoring. Currently the utility of these systems is limited by their operational endurance and their inability to operate in strong turbulent winds, especially those that often occur in urban environments. Birds are adapted to be able to fly in these conditions and actually use them to their advantage to minimise their energy output.
This project is composed of three tracks which contain elements of technology development, as well as scientific investigation looking at bird flight behaviour and aerodynamics. The first track looks at developing path planning algorithms for UAVs in urban environments based on how birds fly in these areas, by using GPS tracking and computational fluid dynamics alongside trajectory optimization. The second track aims to develop artificial wings with improved gust tolerance inspired by the features of feathered wings. Here, high speed video measurements of birds flying through gusts will be used alongside wind tunnel testing of artificial wings to discover what features of a bird’s wing help to alleviate gusts. The third track develops novel force and flow sensor arrays for autonomous flight control based on the sensor arrays found in flying animals. These arrays will be used to make UAVs with increased agility and robustness. This unique bird inspired approach uses biology to show what is possible, and engineering to find the features that enable this performance and develop them into functional technologies.
Summary
The agile and efficient flight of birds shows what flight performance is physically possible, and in theory could be achieved by unmanned air vehicles (UAVs) of the same size. The overall aim of this project is to enhance the performance of small scale UAVs by developing novel technologies inspired by understanding how birds are adapted to interact with airflows. Small UAVs have the potential to dramatically change current practices in many areas such as, search and rescue, surveillance, and environmental monitoring. Currently the utility of these systems is limited by their operational endurance and their inability to operate in strong turbulent winds, especially those that often occur in urban environments. Birds are adapted to be able to fly in these conditions and actually use them to their advantage to minimise their energy output.
This project is composed of three tracks which contain elements of technology development, as well as scientific investigation looking at bird flight behaviour and aerodynamics. The first track looks at developing path planning algorithms for UAVs in urban environments based on how birds fly in these areas, by using GPS tracking and computational fluid dynamics alongside trajectory optimization. The second track aims to develop artificial wings with improved gust tolerance inspired by the features of feathered wings. Here, high speed video measurements of birds flying through gusts will be used alongside wind tunnel testing of artificial wings to discover what features of a bird’s wing help to alleviate gusts. The third track develops novel force and flow sensor arrays for autonomous flight control based on the sensor arrays found in flying animals. These arrays will be used to make UAVs with increased agility and robustness. This unique bird inspired approach uses biology to show what is possible, and engineering to find the features that enable this performance and develop them into functional technologies.
Max ERC Funding
1 998 546 €
Duration
Start date: 2016-04-01, End date: 2021-03-31
Project acronym Biblant
Project The Bible and Antiquity in the 19th-Century
Researcher (PI) Simon Goldhill
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Advanced Grant (AdG), SH5, ERC-2011-ADG_20110406
Summary This project will investigate the interface between the study of the bible and the study of antiquity in the nineteenth century. These two areas -- the bible and classics -- are central to the intellectual world of the 19th century, a source of knowledge, contention, and authority both as discrete topics, and, more importantly, in relation to and in competition with one another. It is impossible to understand Victorian society without appreciating the intellectual, social and institutional force of these concerns with the past. Yet modern disciplinary formation has not only separated them in the academy, but also marginalized both subject areas -- which has deeply attenuated comprehension of this foundational era. Our project will bring together scholars working on a range of fields including classics, history of education, cultural history, art history, literary history to bring back into view a fundamental but deeply misunderstood and underexplored aspect of the nineteenth century, which continues to have a significant impact on the contemporary world.
Summary
This project will investigate the interface between the study of the bible and the study of antiquity in the nineteenth century. These two areas -- the bible and classics -- are central to the intellectual world of the 19th century, a source of knowledge, contention, and authority both as discrete topics, and, more importantly, in relation to and in competition with one another. It is impossible to understand Victorian society without appreciating the intellectual, social and institutional force of these concerns with the past. Yet modern disciplinary formation has not only separated them in the academy, but also marginalized both subject areas -- which has deeply attenuated comprehension of this foundational era. Our project will bring together scholars working on a range of fields including classics, history of education, cultural history, art history, literary history to bring back into view a fundamental but deeply misunderstood and underexplored aspect of the nineteenth century, which continues to have a significant impact on the contemporary world.
Max ERC Funding
2 497 046 €
Duration
Start date: 2012-06-01, End date: 2017-05-31
Project acronym BIG_IDEA
Project Building an Integrated Genetic Infectious Disease Epidemiology Approach
Researcher (PI) Francois Balloux
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Starting Grant (StG), LS8, ERC-2010-StG_20091118
Summary Epidemiology and public health planning will increasingly rely on the analysis of genetic sequence data. The recent swine-derived influenza A/H1N1 pandemic may represent a tipping point in this trend, as it is arguably the first time when multiple strains of a human pathogen have been sequenced essentially in real time from the very beginning of its spread. However, the full potential of genetic information cannot be fully exploited to infer the spread of epidemics due to the lack of statistical methodologies capable of reconstructing transmission routes from genetic data structured both in time and space. To address this urgent need, we propose to develop a methodological framework for the reconstruction of the spatiotemporal dynamics of disease outbreaks and epidemics based on genetic sequence data. Rather than reconstructing most recent common ancestors as in phylogenetics, we will directly infer the most likely ancestries among the sampled isolates. This represents an entirely novel paradigm and allows for the development of statistically coherent and powerful inference software within a Bayesian framework. The methodological framework will be developed in parallel with the analysis of real genetic/genomic data from important human pathogens. We will in particular focus on the 2009 A/H1N1 pandemic influenza, methicilin-resistant Staphylococcus aureus clones (MRSAs), Batrachochytrium dendrobatidis, a fungus currently devastating amphibian populations worldwide. The tools we are proposing to develop are likely to impact radically on the field of infectious disease epidemiology and affect the way infectious emerging pathogens are monitored by biologists and public health professionals.
Summary
Epidemiology and public health planning will increasingly rely on the analysis of genetic sequence data. The recent swine-derived influenza A/H1N1 pandemic may represent a tipping point in this trend, as it is arguably the first time when multiple strains of a human pathogen have been sequenced essentially in real time from the very beginning of its spread. However, the full potential of genetic information cannot be fully exploited to infer the spread of epidemics due to the lack of statistical methodologies capable of reconstructing transmission routes from genetic data structured both in time and space. To address this urgent need, we propose to develop a methodological framework for the reconstruction of the spatiotemporal dynamics of disease outbreaks and epidemics based on genetic sequence data. Rather than reconstructing most recent common ancestors as in phylogenetics, we will directly infer the most likely ancestries among the sampled isolates. This represents an entirely novel paradigm and allows for the development of statistically coherent and powerful inference software within a Bayesian framework. The methodological framework will be developed in parallel with the analysis of real genetic/genomic data from important human pathogens. We will in particular focus on the 2009 A/H1N1 pandemic influenza, methicilin-resistant Staphylococcus aureus clones (MRSAs), Batrachochytrium dendrobatidis, a fungus currently devastating amphibian populations worldwide. The tools we are proposing to develop are likely to impact radically on the field of infectious disease epidemiology and affect the way infectious emerging pathogens are monitored by biologists and public health professionals.
Max ERC Funding
1 483 080 €
Duration
Start date: 2010-11-01, End date: 2015-10-31
Project acronym BIGBAYES
Project Rich, Structured and Efficient Learning of Big Bayesian Models
Researcher (PI) Yee Whye Teh
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Consolidator Grant (CoG), PE6, ERC-2013-CoG
Summary As datasets grow ever larger in scale, complexity and variety, there is an increasing need for powerful machine learning and statistical techniques that are capable of learning from such data. Bayesian nonparametrics is a promising approach to data analysis that is increasingly popular in machine learning and statistics. Bayesian nonparametric models are highly flexible models with infinite-dimensional parameter spaces that can be used to directly parameterise and learn about functions, densities, conditional distributions etc, and have been successfully applied to regression, survival analysis, language modelling, time series analysis, and visual scene analysis among others. However, to successfully use Bayesian nonparametric models to analyse the high-dimensional and structured datasets now commonly encountered in the age of Big Data, we will have to overcome a number of challenges. Namely, we need to develop Bayesian nonparametric models that can learn rich representations from structured data, and we need computational methodologies that can scale effectively to the large and complex models of the future. We will ground our developments in relevant applications, particularly to natural language processing (learning distributed representations for language modelling and compositional semantics) and genetics (modelling genetic variations arising from population, genealogical and spatial structures).
Summary
As datasets grow ever larger in scale, complexity and variety, there is an increasing need for powerful machine learning and statistical techniques that are capable of learning from such data. Bayesian nonparametrics is a promising approach to data analysis that is increasingly popular in machine learning and statistics. Bayesian nonparametric models are highly flexible models with infinite-dimensional parameter spaces that can be used to directly parameterise and learn about functions, densities, conditional distributions etc, and have been successfully applied to regression, survival analysis, language modelling, time series analysis, and visual scene analysis among others. However, to successfully use Bayesian nonparametric models to analyse the high-dimensional and structured datasets now commonly encountered in the age of Big Data, we will have to overcome a number of challenges. Namely, we need to develop Bayesian nonparametric models that can learn rich representations from structured data, and we need computational methodologies that can scale effectively to the large and complex models of the future. We will ground our developments in relevant applications, particularly to natural language processing (learning distributed representations for language modelling and compositional semantics) and genetics (modelling genetic variations arising from population, genealogical and spatial structures).
Max ERC Funding
1 918 092 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym BIGlobal
Project Firm Growth and Market Power in the Global Economy
Researcher (PI) Swati DHINGRA
Host Institution (HI) LONDON SCHOOL OF ECONOMICS AND POLITICAL SCIENCE
Call Details Starting Grant (StG), SH1, ERC-2017-STG
Summary According to the European Commission, to design effective policies for ensuring a “more dynamic, innovative and competitive” economy, it is essential to understand the decision-making process of firms as they differ a lot in terms of their capacities and policy responses (EC 2007). The objective of my future research is to provide such an analysis. BIGlobal will examine the sources of firm growth and market power to provide new insights into welfare and policy in a globalized world.
Much of analysis of the global economy is set in the paradigm of markets that allocate resources efficiently and there is little role for policy. But big firms dominate economic activity, especially across borders. How do firms grow and what is the effect of their market power on the welfare impact of globalization? This project will determine how firm decisions matter for the aggregate gains from globalization, the division of these gains across different individuals and their implications for policy design.
Over the next five years, I will incorporate richer firms behaviour in models of international trade to understand how trade and industrial policies impact the growth process, especially in less developed markets. The specific questions I will address include: how can trade and competition policy ensure consumers benefit from globalization when firms engaged in international trade have market power, how do domestic policies to encourage agribusiness firms affect the extent to which small farmers gain from trade, how do industrial policies affect firm growth through input linkages, and what is the impact of banking globalization on the growth of firms in the real sector.
Each project will combine theoretical work with rich data from developing economies to expand the frontier of knowledge on trade and industrial policy, and to provide a basis for informed policymaking.
Summary
According to the European Commission, to design effective policies for ensuring a “more dynamic, innovative and competitive” economy, it is essential to understand the decision-making process of firms as they differ a lot in terms of their capacities and policy responses (EC 2007). The objective of my future research is to provide such an analysis. BIGlobal will examine the sources of firm growth and market power to provide new insights into welfare and policy in a globalized world.
Much of analysis of the global economy is set in the paradigm of markets that allocate resources efficiently and there is little role for policy. But big firms dominate economic activity, especially across borders. How do firms grow and what is the effect of their market power on the welfare impact of globalization? This project will determine how firm decisions matter for the aggregate gains from globalization, the division of these gains across different individuals and their implications for policy design.
Over the next five years, I will incorporate richer firms behaviour in models of international trade to understand how trade and industrial policies impact the growth process, especially in less developed markets. The specific questions I will address include: how can trade and competition policy ensure consumers benefit from globalization when firms engaged in international trade have market power, how do domestic policies to encourage agribusiness firms affect the extent to which small farmers gain from trade, how do industrial policies affect firm growth through input linkages, and what is the impact of banking globalization on the growth of firms in the real sector.
Each project will combine theoretical work with rich data from developing economies to expand the frontier of knowledge on trade and industrial policy, and to provide a basis for informed policymaking.
Max ERC Funding
1 313 103 €
Duration
Start date: 2017-12-01, End date: 2022-11-30
Project acronym BIMPC
Project Biologically-Inspired Massively-Parallel Computation
Researcher (PI) Stephen Byram Furber
Host Institution (HI) THE UNIVERSITY OF MANCHESTER
Call Details Advanced Grant (AdG), PE6, ERC-2012-ADG_20120216
Summary "We aim to establish a world-leading research capability in Europe for advancing novel models of asynchronous computation based upon principles inspired by brain function. This work will accelerate progress towards an understanding of how the potential of brain-inspired many-core architectures may be harnessed. The results will include new brain-inspired models of asynchronous computation and new brain- inspired approaches to fault-tolerance and reliability in complex computer systems.
Many-core processors are now established as the way forward for computing from embedded systems to supercomputers. An emerging problem with leading-edge silicon technology is a reduction in the yield and reliability of modern processors due to high variability in the manufacture of the components and interconnect as transistor geometries shrink towards atomic scales. We are faced with the longstanding problem of how to make use of a potentially large array of parallel processors, but with the new constraint that the individual elements are the system are inherently unreliable.
The human brain remains as one of the great frontiers of science – how does this organ upon which we all depend so critically actually do its job? A great deal is known about the underlying technology – the neuron – and we can observe large-scale brain activity through techniques such as magnetic resonance imaging, but this knowledge barely starts to tell us how the brain works. Something is happening at the intermediate levels of processing that we have yet to begin to understand, but the essence of the brain's massively-parallel information processing capabilities and robustness to component failure lies in these intermediate levels.
These two issues draws us towards two high-level research questions:
• Can our growing understanding of brain function point the way to more efficient parallel, fault-tolerant computing?
• Can massively parallel computing resources accelerate our understanding of brain function"
Summary
"We aim to establish a world-leading research capability in Europe for advancing novel models of asynchronous computation based upon principles inspired by brain function. This work will accelerate progress towards an understanding of how the potential of brain-inspired many-core architectures may be harnessed. The results will include new brain-inspired models of asynchronous computation and new brain- inspired approaches to fault-tolerance and reliability in complex computer systems.
Many-core processors are now established as the way forward for computing from embedded systems to supercomputers. An emerging problem with leading-edge silicon technology is a reduction in the yield and reliability of modern processors due to high variability in the manufacture of the components and interconnect as transistor geometries shrink towards atomic scales. We are faced with the longstanding problem of how to make use of a potentially large array of parallel processors, but with the new constraint that the individual elements are the system are inherently unreliable.
The human brain remains as one of the great frontiers of science – how does this organ upon which we all depend so critically actually do its job? A great deal is known about the underlying technology – the neuron – and we can observe large-scale brain activity through techniques such as magnetic resonance imaging, but this knowledge barely starts to tell us how the brain works. Something is happening at the intermediate levels of processing that we have yet to begin to understand, but the essence of the brain's massively-parallel information processing capabilities and robustness to component failure lies in these intermediate levels.
These two issues draws us towards two high-level research questions:
• Can our growing understanding of brain function point the way to more efficient parallel, fault-tolerant computing?
• Can massively parallel computing resources accelerate our understanding of brain function"
Max ERC Funding
2 399 761 €
Duration
Start date: 2013-03-01, End date: 2018-02-28
Project acronym BinCosmos
Project The Impact of Massive Binaries Through Cosmic Time
Researcher (PI) Selma DE MINK
Host Institution (HI) UNIVERSITEIT VAN AMSTERDAM
Call Details Starting Grant (StG), PE9, ERC-2016-STG
Summary Massive stars play many key roles in Astrophysics. As COSMIC ENGINES they transformed the pristine Universe left after the Big Bang into our modern Universe. We use massive stars, their explosions and products as COSMIC PROBES to study the conditions in the distant Universe and the extreme physics inaccessible at earth. Models of massive stars are thus widely applied. A central common assumption is that massive stars are non-rotating single objects, in stark contrast with new data. Recent studies show that majority (70% according to our data) will experience severe interaction with a companion (Sana, de Mink et al. Science 2012).
I propose to conduct the most ambitious and extensive exploration to date of the effects of binarity and rotation on the lives and fates of massive stars to (I) transform our understanding of the complex physical processes and how they operate in the vast parameter space and (II) explore the cosmological implications after calibrating and verifying the models. To achieve this ambitious objective I will use an innovative computational approach that combines the strength of two highly complementary codes and seek direct confrontation with observations to overcome the computational challenges that inhibited previous work.
This timely project will provide the urgent theory framework needed for interpretation and guiding of observing programs with the new facilities (JWST, LSST, aLIGO/VIRGO). Public release of the model grids and code will ensure wide impact of this project. I am in the unique position to successfully lead this project because of my (i) extensive experience modeling the complex physical processes, (ii) leading role in introducing large statistical simulations in the massive star community and (iii) direct involvement in surveys that will be used in this project.
Summary
Massive stars play many key roles in Astrophysics. As COSMIC ENGINES they transformed the pristine Universe left after the Big Bang into our modern Universe. We use massive stars, their explosions and products as COSMIC PROBES to study the conditions in the distant Universe and the extreme physics inaccessible at earth. Models of massive stars are thus widely applied. A central common assumption is that massive stars are non-rotating single objects, in stark contrast with new data. Recent studies show that majority (70% according to our data) will experience severe interaction with a companion (Sana, de Mink et al. Science 2012).
I propose to conduct the most ambitious and extensive exploration to date of the effects of binarity and rotation on the lives and fates of massive stars to (I) transform our understanding of the complex physical processes and how they operate in the vast parameter space and (II) explore the cosmological implications after calibrating and verifying the models. To achieve this ambitious objective I will use an innovative computational approach that combines the strength of two highly complementary codes and seek direct confrontation with observations to overcome the computational challenges that inhibited previous work.
This timely project will provide the urgent theory framework needed for interpretation and guiding of observing programs with the new facilities (JWST, LSST, aLIGO/VIRGO). Public release of the model grids and code will ensure wide impact of this project. I am in the unique position to successfully lead this project because of my (i) extensive experience modeling the complex physical processes, (ii) leading role in introducing large statistical simulations in the massive star community and (iii) direct involvement in surveys that will be used in this project.
Max ERC Funding
1 926 634 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym BIO-H-BORROW
Project Biocatalytic Amine Synthesis via Hydrogen Borrowing
Researcher (PI) Nicholas TURNER
Host Institution (HI) THE UNIVERSITY OF MANCHESTER
Call Details Advanced Grant (AdG), PE5, ERC-2016-ADG
Summary Amine containing compounds are ubiquitous in everyday life and find applications ranging from polymers to pharmaceuticals. The vast majority of amines are synthetic and manufactured on large scale which creates waste as well as requiring high temperatures and pressures. The increasing availability of biocatalysts, together with an understanding of how they can be used in organic synthesis (biocatalytic retrosynthesis), has stimulated chemists to consider new ways of making target molecules. In this context, the iterative construction of C-N bonds via biocatalytic hydrogen borrowing represents a powerful and unexplored way to synthesise a wide range of target amine molecules in an efficient manner. Hydrogen borrowing involves telescoping redox neutral reactions together using only catalytic amounts of hydrogen.
In this project we will engineer the three key target biocatalysts (reductive aminase, amine dehydrogenase, alcohol dehydrogenase) required for biocatalytic hydrogen borrowing such that they possess the required regio-, chemo- and stereo-selectivity for practical application. Recently discovered reductive aminases (RedAms) and amine dehydrogenases (AmDHs) will be engineered for enantioselective coupling of alcohols (1o, 2o) with ammonia/amines (1o, 2o, 3o) under redox neutral conditions. Alcohol dehydrogenases will be engineered for low enantioselectivity. Hydrogen borrowing requires mutually compatible cofactors shared by two enzymes and in some cases will require redesign of cofactor specificity. Thereafter we shall develop conditions for the combined use of these biocatalysts under hydrogen borrowing conditions (catalytic NADH, NADPH), to enable the conversion of simple and sustainable feedstocks (alcohols) into amines using ammonia as the nitrogen source.
The main deliverables of BIO-H-BORROW will be a set of novel engineered biocatalysts together with redox neutral cascades for the synthesis of amine products from inexpensive and renewable precursors.
Summary
Amine containing compounds are ubiquitous in everyday life and find applications ranging from polymers to pharmaceuticals. The vast majority of amines are synthetic and manufactured on large scale which creates waste as well as requiring high temperatures and pressures. The increasing availability of biocatalysts, together with an understanding of how they can be used in organic synthesis (biocatalytic retrosynthesis), has stimulated chemists to consider new ways of making target molecules. In this context, the iterative construction of C-N bonds via biocatalytic hydrogen borrowing represents a powerful and unexplored way to synthesise a wide range of target amine molecules in an efficient manner. Hydrogen borrowing involves telescoping redox neutral reactions together using only catalytic amounts of hydrogen.
In this project we will engineer the three key target biocatalysts (reductive aminase, amine dehydrogenase, alcohol dehydrogenase) required for biocatalytic hydrogen borrowing such that they possess the required regio-, chemo- and stereo-selectivity for practical application. Recently discovered reductive aminases (RedAms) and amine dehydrogenases (AmDHs) will be engineered for enantioselective coupling of alcohols (1o, 2o) with ammonia/amines (1o, 2o, 3o) under redox neutral conditions. Alcohol dehydrogenases will be engineered for low enantioselectivity. Hydrogen borrowing requires mutually compatible cofactors shared by two enzymes and in some cases will require redesign of cofactor specificity. Thereafter we shall develop conditions for the combined use of these biocatalysts under hydrogen borrowing conditions (catalytic NADH, NADPH), to enable the conversion of simple and sustainable feedstocks (alcohols) into amines using ammonia as the nitrogen source.
The main deliverables of BIO-H-BORROW will be a set of novel engineered biocatalysts together with redox neutral cascades for the synthesis of amine products from inexpensive and renewable precursors.
Max ERC Funding
2 337 548 €
Duration
Start date: 2017-06-01, End date: 2022-05-31
Project acronym Bio-ICD
Project Biological auto-detection and termination of heart rhythm disturbances
Researcher (PI) Daniël Antonie PIJNAPPELS
Host Institution (HI) ACADEMISCH ZIEKENHUIS LEIDEN
Call Details Starting Grant (StG), LS7, ERC-2016-STG
Summary Imagine a heart that could no longer suffer from life-threatening rhythm disturbances, and not because of pills or traumatizing electroshocks from an Implantable Cardioverter Defibrillator (ICD) device. Instead, this heart has become able to rapidly detect & terminate these malignant arrhythmias fully on its own, after gene transfer. In order to explore this novel concept of biological auto-detection & termination of arrhythmias, I will investigate how forced expression of particular engineered proteins could i) allow cardiac tissue to become a detector of arrhythmias through rapid sensing of acute physiological changes upon their initiation. And how after detection, ii) this cardiac tissue (now as effector), could terminate the arrhythmia by generating a painless electroshock through these proteins.
To this purpose, I will first explore the requirements for such detection & termination by studying arrhythmia initiation and termination in rat models of atrial & ventricular arrhythmias using optical probes and light-gated ion channels. These insights will guide computer-based screening of proteins to identify those properties allowing effective arrhythmia detection & termination. These data will be used for rational engineering of the proteins with the desired properties, followed by their forced expression in cardiac cells and slices to assess anti-arrhythmic potential & safety. Promising proteins will be expressed in whole hearts to study their anti-arrhythmic effects and mechanisms, after which the most effective ones will be studied in awake rats.
This unexplored concept of self-resetting an acutely disturbed physiological state by establishing a biological detector-effector system may yield unique insight into arrhythmia management. Hence, this could provide distinctively innovative therapeutic rationales in which a diseased organ begets its own remedy, e.g. a Biologically-Integrated Cardiac Defibrillator (Bio-ICD).
Summary
Imagine a heart that could no longer suffer from life-threatening rhythm disturbances, and not because of pills or traumatizing electroshocks from an Implantable Cardioverter Defibrillator (ICD) device. Instead, this heart has become able to rapidly detect & terminate these malignant arrhythmias fully on its own, after gene transfer. In order to explore this novel concept of biological auto-detection & termination of arrhythmias, I will investigate how forced expression of particular engineered proteins could i) allow cardiac tissue to become a detector of arrhythmias through rapid sensing of acute physiological changes upon their initiation. And how after detection, ii) this cardiac tissue (now as effector), could terminate the arrhythmia by generating a painless electroshock through these proteins.
To this purpose, I will first explore the requirements for such detection & termination by studying arrhythmia initiation and termination in rat models of atrial & ventricular arrhythmias using optical probes and light-gated ion channels. These insights will guide computer-based screening of proteins to identify those properties allowing effective arrhythmia detection & termination. These data will be used for rational engineering of the proteins with the desired properties, followed by their forced expression in cardiac cells and slices to assess anti-arrhythmic potential & safety. Promising proteins will be expressed in whole hearts to study their anti-arrhythmic effects and mechanisms, after which the most effective ones will be studied in awake rats.
This unexplored concept of self-resetting an acutely disturbed physiological state by establishing a biological detector-effector system may yield unique insight into arrhythmia management. Hence, this could provide distinctively innovative therapeutic rationales in which a diseased organ begets its own remedy, e.g. a Biologically-Integrated Cardiac Defibrillator (Bio-ICD).
Max ERC Funding
1 485 028 €
Duration
Start date: 2017-03-01, End date: 2022-02-28
Project acronym BIO-ORIGAMI
Project Meta-biomaterials: 3D printing meets Origami
Researcher (PI) Amir Abbas Zadpoor
Host Institution (HI) TECHNISCHE UNIVERSITEIT DELFT
Call Details Starting Grant (StG), PE8, ERC-2015-STG
Summary Meta-materials, best known for their extraordinary properties (e.g. negative stiffness), are halfway from both materials and structures: their unusual properties are direct results of their complex 3D structures. This project introduces a new class of meta-materials called meta-biomaterials. Meta-biomaterials go beyond meta-materials by adding an extra dimension to the complex 3D structure, i.e. complex and precisely controlled surface nano-patterns. The 3D structure gives rise to unprecedented or rare combination of mechanical (e.g. stiffness), mass transport (e.g. permeability, diffusivity), and biological (e.g. tissue regeneration rate) properties. Those properties optimize the distribution of mechanical loads and the transport of nutrients and oxygen while providing geometrical shapes preferable for tissue regeneration (e.g. higher curvatures). Surface nano-patterns communicate with (stem) cells, control their differentiation behavior, and enhance tissue regeneration.
There is one important problem: meta-biomaterials cannot be manufactured with current technology. 3D printing can create complex shapes while nanolithography creates complex surface nano-patterns down to a few nanometers but only on flat surfaces. There is, however, no way of combining complex shapes with complex surface nano-patterns. The groundbreaking nature of this project is in solving that deadlock using the Origami concept (the ancient Japanese art of paper folding). In this approach, I first decorate flat 3D-printed sheets with nano-patterns. Then, I apply Origami techniques to fold the decorated flat sheet and create complex 3D shapes. The sheet knows how to self-fold to the desired structure when subjected to compression, owing to pre-designed joints, crease patterns, and thickness/material distributions that control its mechanical instability. I will demonstrate the added value of meta-biomaterials in improving bone tissue regeneration using in vitro cell culture assays and animal models
Summary
Meta-materials, best known for their extraordinary properties (e.g. negative stiffness), are halfway from both materials and structures: their unusual properties are direct results of their complex 3D structures. This project introduces a new class of meta-materials called meta-biomaterials. Meta-biomaterials go beyond meta-materials by adding an extra dimension to the complex 3D structure, i.e. complex and precisely controlled surface nano-patterns. The 3D structure gives rise to unprecedented or rare combination of mechanical (e.g. stiffness), mass transport (e.g. permeability, diffusivity), and biological (e.g. tissue regeneration rate) properties. Those properties optimize the distribution of mechanical loads and the transport of nutrients and oxygen while providing geometrical shapes preferable for tissue regeneration (e.g. higher curvatures). Surface nano-patterns communicate with (stem) cells, control their differentiation behavior, and enhance tissue regeneration.
There is one important problem: meta-biomaterials cannot be manufactured with current technology. 3D printing can create complex shapes while nanolithography creates complex surface nano-patterns down to a few nanometers but only on flat surfaces. There is, however, no way of combining complex shapes with complex surface nano-patterns. The groundbreaking nature of this project is in solving that deadlock using the Origami concept (the ancient Japanese art of paper folding). In this approach, I first decorate flat 3D-printed sheets with nano-patterns. Then, I apply Origami techniques to fold the decorated flat sheet and create complex 3D shapes. The sheet knows how to self-fold to the desired structure when subjected to compression, owing to pre-designed joints, crease patterns, and thickness/material distributions that control its mechanical instability. I will demonstrate the added value of meta-biomaterials in improving bone tissue regeneration using in vitro cell culture assays and animal models
Max ERC Funding
1 499 600 €
Duration
Start date: 2016-02-01, End date: 2021-01-31
Project acronym Bio-Phononics
Project Advanced Microfluidics & Diagnostics using Acoustic Holograms – Bio-Phononics
Researcher (PI) Jonathan Cooper
Host Institution (HI) UNIVERSITY OF GLASGOW
Call Details Advanced Grant (AdG), LS7, ERC-2013-ADG
Summary This proposal seeks to develop a novel technique for fluid and particle manipulations, based upon exploiting the mechanical interactions between acoustic waves and phononic. The new platform involves generating surface acoustic waves (SAWs) on piezoelectric chips, but, unlike previous work, the ultrasonic waves are first coupled into a phononic lattice, which is placed in the path of the ultrasonic wave. The phononic lattice comprises a miniaturised array of mechanical elements which modulates the sound in a manner analogous to how light is “patterned” using a hologram. However, whilst in an optical hologram, the pattern is created by exploiting the differences in refractive indices of the elements of the structure, here the ultrasonic field is modulated both by the elastic contrast between the elements in the array, as well as by the dimensions of the array and its surrounding matrix (including the size and pitch of the features within the array). The result of passing the acoustic wave through a phononic crystal is the formation of new and complex ultrasonic landscapes.
As part of the proposed work we aim to understand the physics of this technology and to exploit its development in a range of medical devices. We will show that by using phononic crystals it is possible to create highly controllable patterns of acoustic field intensities, which propagate into the fluid, creating pressure differences that result in unique flow patterns to enable a new platform for including biological sample processing, medical diagnostics, drug delivery and blood clotting devices – all on low cost disposable devices. Different frequencies of ultrasound will interact with different phononic structures to give different functions, providing a toolbox of different functions. Just as in electronics, where discrete components are combined to create circuits, so we propose to combine different phononic lattices to create fluidic microcircuits with important new applications.
Summary
This proposal seeks to develop a novel technique for fluid and particle manipulations, based upon exploiting the mechanical interactions between acoustic waves and phononic. The new platform involves generating surface acoustic waves (SAWs) on piezoelectric chips, but, unlike previous work, the ultrasonic waves are first coupled into a phononic lattice, which is placed in the path of the ultrasonic wave. The phononic lattice comprises a miniaturised array of mechanical elements which modulates the sound in a manner analogous to how light is “patterned” using a hologram. However, whilst in an optical hologram, the pattern is created by exploiting the differences in refractive indices of the elements of the structure, here the ultrasonic field is modulated both by the elastic contrast between the elements in the array, as well as by the dimensions of the array and its surrounding matrix (including the size and pitch of the features within the array). The result of passing the acoustic wave through a phononic crystal is the formation of new and complex ultrasonic landscapes.
As part of the proposed work we aim to understand the physics of this technology and to exploit its development in a range of medical devices. We will show that by using phononic crystals it is possible to create highly controllable patterns of acoustic field intensities, which propagate into the fluid, creating pressure differences that result in unique flow patterns to enable a new platform for including biological sample processing, medical diagnostics, drug delivery and blood clotting devices – all on low cost disposable devices. Different frequencies of ultrasound will interact with different phononic structures to give different functions, providing a toolbox of different functions. Just as in electronics, where discrete components are combined to create circuits, so we propose to combine different phononic lattices to create fluidic microcircuits with important new applications.
Max ERC Funding
2 208 594 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym Bio-Plan
Project Bio-Inspired Microfluidics Platform for Biomechanical Analysis
Researcher (PI) Jacob Marinus Jan DEN TOONDER
Host Institution (HI) TECHNISCHE UNIVERSITEIT EINDHOVEN
Call Details Advanced Grant (AdG), PE8, ERC-2018-ADG
Summary Biomechanical interactions between cells and their environment are essential in almost any biological process, from embryonic development to organ function to diseases. Hence, biomechanical interactions are crucial for health and disease. Examples are hydrodynamic interactions through fluid flow, and forces acting directly on cells. Existing methods to analyze and understand these interactions are limited however, since they do not offer the required combination of precisely controlled flow and accurate applying and sensing of forces. Also, they often lack a physiological environment. A breakthrough in biomechanical analysis is therefore highly needed. We will realize a novel microfluidic platform for biomechanical analysis with unprecedented possibilities of controlling fluid flow and applying and sensing time-dependent forces at subcellular scales in controlled environments. The platform will be uniquely based on bio-inspired magnetic artificial cilia, rather than on conventional microfluidic valves and pumps. Cilia are microscopic hairs ubiquitously present in nature, acting both as actuators and sensors, essential for swimming of microorganisms, transport of dirt out of our airways, and sensing of sound, i.e. they exactly fulfill functions needed in biomechanical analysis. We will develop novel materials and fabrication methods to realize microscopic polymeric artificial cilia, and integrate these in microfluidic devices. Magnetic actuation and optical readout systems complete the platform. We will apply the novel platform to address three fundamental and unresolved biomechanical questions: 1. How do hydrodynamic interactions with actuated cilia steer cellular and particle transport? 2. How do local and dynamic mechanical forces on cells fundamentally influence their motility and differentiation? 3. How do hydrodynamic interactions between cilia steer embryonic development? This unique platform will enable to address many other future biomechanical questions.
Summary
Biomechanical interactions between cells and their environment are essential in almost any biological process, from embryonic development to organ function to diseases. Hence, biomechanical interactions are crucial for health and disease. Examples are hydrodynamic interactions through fluid flow, and forces acting directly on cells. Existing methods to analyze and understand these interactions are limited however, since they do not offer the required combination of precisely controlled flow and accurate applying and sensing of forces. Also, they often lack a physiological environment. A breakthrough in biomechanical analysis is therefore highly needed. We will realize a novel microfluidic platform for biomechanical analysis with unprecedented possibilities of controlling fluid flow and applying and sensing time-dependent forces at subcellular scales in controlled environments. The platform will be uniquely based on bio-inspired magnetic artificial cilia, rather than on conventional microfluidic valves and pumps. Cilia are microscopic hairs ubiquitously present in nature, acting both as actuators and sensors, essential for swimming of microorganisms, transport of dirt out of our airways, and sensing of sound, i.e. they exactly fulfill functions needed in biomechanical analysis. We will develop novel materials and fabrication methods to realize microscopic polymeric artificial cilia, and integrate these in microfluidic devices. Magnetic actuation and optical readout systems complete the platform. We will apply the novel platform to address three fundamental and unresolved biomechanical questions: 1. How do hydrodynamic interactions with actuated cilia steer cellular and particle transport? 2. How do local and dynamic mechanical forces on cells fundamentally influence their motility and differentiation? 3. How do hydrodynamic interactions between cilia steer embryonic development? This unique platform will enable to address many other future biomechanical questions.
Max ERC Funding
3 083 625 €
Duration
Start date: 2019-10-01, End date: 2024-09-30
Project acronym BioAqua
Project Water as cosubstrate for biocatalytic redox reactions
Researcher (PI) Frank Hollmann
Host Institution (HI) TECHNISCHE UNIVERSITEIT DELFT
Call Details Consolidator Grant (CoG), LS9, ERC-2014-CoG
Summary The research proposed in BioAqua aims at breaking new ground in the area of catalysis by enabling water-driven biocatalytic redox reactions.
Oxidoreductases are a class of enzymes with a very high potential for preparative organic synthesis, which is why they are increasingly used also on industrial scale. The current state-of-the-art, however, utilises valuable high-energy cosubstrates (such as glucose and alcohols) to promote oxidoreductases. Thereby valuable (and edible) building blocks are wasted as sacrificial electron donors which will have significant ethical (food for chemistry), economic and environmental consequences once redox biocatalysis is applied at scale.
I envision utilizing water as sacrificial electron donor. Hence, a simple and abundant cosubstrate will be used instead of the valuable cosubstrates mentioned above. This will be a completely new approach in (bio)catalysis.
However, activating water for this purpose water is extremely difficult due to its kinetic and thermodynamic inertness. To solve this problem, I propose using visible light as external energy source and advanced chemical catalysts to facilitate water oxidation. The electrons liberated in this process will be made available (for the first time) to promote oxidoreductases-catalysed transformations.
BioAqua represents an entirely new paradigm in catalysis as I will bridge the gap between photocatalysis and biocatalysis enabling cleaner and more efficient reaction schemes.
Summary
The research proposed in BioAqua aims at breaking new ground in the area of catalysis by enabling water-driven biocatalytic redox reactions.
Oxidoreductases are a class of enzymes with a very high potential for preparative organic synthesis, which is why they are increasingly used also on industrial scale. The current state-of-the-art, however, utilises valuable high-energy cosubstrates (such as glucose and alcohols) to promote oxidoreductases. Thereby valuable (and edible) building blocks are wasted as sacrificial electron donors which will have significant ethical (food for chemistry), economic and environmental consequences once redox biocatalysis is applied at scale.
I envision utilizing water as sacrificial electron donor. Hence, a simple and abundant cosubstrate will be used instead of the valuable cosubstrates mentioned above. This will be a completely new approach in (bio)catalysis.
However, activating water for this purpose water is extremely difficult due to its kinetic and thermodynamic inertness. To solve this problem, I propose using visible light as external energy source and advanced chemical catalysts to facilitate water oxidation. The electrons liberated in this process will be made available (for the first time) to promote oxidoreductases-catalysed transformations.
BioAqua represents an entirely new paradigm in catalysis as I will bridge the gap between photocatalysis and biocatalysis enabling cleaner and more efficient reaction schemes.
Max ERC Funding
1 998 020 €
Duration
Start date: 2015-07-01, End date: 2020-06-30
Project acronym BioBlood
Project Development of a Bio-Inspired Blood Factory for Personalised Healthcare
Researcher (PI) Athanasios Mantalaris
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Call Details Advanced Grant (AdG), PE8, ERC-2013-ADG
Summary Personalized medicine is a medical model that proposes the customization of healthcare, with decisions and practices being tailored to the individual patient by use of patient-specific information and/or application of patient-specific cell-based therapies. BioBlood aims to deliver personalised healthcare through a “step change” in the clinical field of haemato-oncology. BioBlood represents an engineered bio-inspired integrated experimental/modelling platform for normal and abnormal haematopoiesis that receives disease & patient input (patient primary cells & patient/disease-specific data) and will produce cellular (red blood cell product) and drug (optimal drug treatment) therapies as its output. Blood supply to meet demand is the primary challenge for Blood Banks and requires significant resources to avoid shortages and ensure safety. An alternative, practical and cost-effective solution to conventional donated blood is essential to reduce patient morbidity and mortality, stabilise and guarantee the donor supply, limit multiple donor exposures, reduce risk of infection of known or as yet unidentified pathogens, and ensure a robust and safe turn-around for blood supply management. BioBlood aims to meet this challenge by developing a novel in vitro platform for the mass production of RBCs for clinical use. More than £32b/year is spent to develop and bring new drugs to market, which takes 14 years. Most patients diagnosed with leukaemias are unable to tolerate treatment and would benefit from novel agents. There is a need to optimise current treatment schedules for cancers such as AML to limit toxicities and improve clinical trial pathways for new drugs to enable personalised healthcare. BioBlood’s in vitro & in silico platform would be a powerful tool to tailor treatments in a patient- and leukaemia-specific chemotherapy schedule by considering the level of toxicity to the specific individual and treatment efficiency for the specific leukaemia a priori.
Summary
Personalized medicine is a medical model that proposes the customization of healthcare, with decisions and practices being tailored to the individual patient by use of patient-specific information and/or application of patient-specific cell-based therapies. BioBlood aims to deliver personalised healthcare through a “step change” in the clinical field of haemato-oncology. BioBlood represents an engineered bio-inspired integrated experimental/modelling platform for normal and abnormal haematopoiesis that receives disease & patient input (patient primary cells & patient/disease-specific data) and will produce cellular (red blood cell product) and drug (optimal drug treatment) therapies as its output. Blood supply to meet demand is the primary challenge for Blood Banks and requires significant resources to avoid shortages and ensure safety. An alternative, practical and cost-effective solution to conventional donated blood is essential to reduce patient morbidity and mortality, stabilise and guarantee the donor supply, limit multiple donor exposures, reduce risk of infection of known or as yet unidentified pathogens, and ensure a robust and safe turn-around for blood supply management. BioBlood aims to meet this challenge by developing a novel in vitro platform for the mass production of RBCs for clinical use. More than £32b/year is spent to develop and bring new drugs to market, which takes 14 years. Most patients diagnosed with leukaemias are unable to tolerate treatment and would benefit from novel agents. There is a need to optimise current treatment schedules for cancers such as AML to limit toxicities and improve clinical trial pathways for new drugs to enable personalised healthcare. BioBlood’s in vitro & in silico platform would be a powerful tool to tailor treatments in a patient- and leukaemia-specific chemotherapy schedule by considering the level of toxicity to the specific individual and treatment efficiency for the specific leukaemia a priori.
Max ERC Funding
2 498 903 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym BiocatSusChem
Project Biocatalysis for Sustainable Chemistry – Understanding Oxidation/Reduction of Small Molecules by Redox Metalloenzymes via a Suite of Steady State and Transient Infrared Electrochemical Methods
Researcher (PI) Kylie VINCENT
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Consolidator Grant (CoG), PE4, ERC-2018-COG
Summary Many significant global challenges in catalysis for energy and sustainable chemistry have already been solved in nature. Metalloenzymes within microorganisms catalyse the transformation of carbon dioxide into simple carbon building blocks or fuels, the reduction of dinitrogen to ammonia under ambient conditions and the production and utilisation of dihydrogen. Catalytic sites for these reactions are necessarily based on metals that are abundant in the environment, including iron, nickel and molybdenum. However, attempts to generate biomimetic catalysts have largely failed to reproduce the high activity, stability and selectivity of enzymes. Proton and electron transfer and substrate binding are all finely choreographed, and we do not yet understand how this is achieved. This project develops a suite of new experimental infrared (IR) spectroscopy tools to probe and understand mechanisms of redox metalloenzymes in situ during electrochemically-controlled steady state turnover, and during electron-transfer-triggered transient studies. The ability of IR spectroscopy to report on the nature and strength of chemical bonds makes it ideally suited to follow the activation and transformation of small molecule reactants at metalloenzyme catalytic sites, binding of inhibitors, and protonation of specific sites. By extending to the far-IR, or introducing mid-IR-active probe amino acids, redox and structural changes in biological electron relay chains also become accessible. Taking as models the enzymes nitrogenase, hydrogenase, carbon monoxide dehydrogenase and formate dehydrogenase, the project sets out to establish a unified understanding of central concepts in small molecule activation in biology. It will reveal precise ways in which chemical events are coordinated inside complex multicentre metalloenzymes, propelling a new generation of bio-inspired catalysts and uncovering new chemistry of enzymes.
Summary
Many significant global challenges in catalysis for energy and sustainable chemistry have already been solved in nature. Metalloenzymes within microorganisms catalyse the transformation of carbon dioxide into simple carbon building blocks or fuels, the reduction of dinitrogen to ammonia under ambient conditions and the production and utilisation of dihydrogen. Catalytic sites for these reactions are necessarily based on metals that are abundant in the environment, including iron, nickel and molybdenum. However, attempts to generate biomimetic catalysts have largely failed to reproduce the high activity, stability and selectivity of enzymes. Proton and electron transfer and substrate binding are all finely choreographed, and we do not yet understand how this is achieved. This project develops a suite of new experimental infrared (IR) spectroscopy tools to probe and understand mechanisms of redox metalloenzymes in situ during electrochemically-controlled steady state turnover, and during electron-transfer-triggered transient studies. The ability of IR spectroscopy to report on the nature and strength of chemical bonds makes it ideally suited to follow the activation and transformation of small molecule reactants at metalloenzyme catalytic sites, binding of inhibitors, and protonation of specific sites. By extending to the far-IR, or introducing mid-IR-active probe amino acids, redox and structural changes in biological electron relay chains also become accessible. Taking as models the enzymes nitrogenase, hydrogenase, carbon monoxide dehydrogenase and formate dehydrogenase, the project sets out to establish a unified understanding of central concepts in small molecule activation in biology. It will reveal precise ways in which chemical events are coordinated inside complex multicentre metalloenzymes, propelling a new generation of bio-inspired catalysts and uncovering new chemistry of enzymes.
Max ERC Funding
1 997 286 €
Duration
Start date: 2019-03-01, End date: 2024-02-29
Project acronym BIOCCORA
Project Full biomechanical characterization of the coronary atherosclerotic plaque: biomechanics meets imaging
Researcher (PI) Jolanda Wentzel
Host Institution (HI) ERASMUS UNIVERSITAIR MEDISCH CENTRUM ROTTERDAM
Call Details Starting Grant (StG), LS7, ERC-2012-StG_20111109
Summary Myocardial infarction is responsible for nearly 40% of the mortality in the western world and is mainly triggered by rupture of vulnerable atherosclerotic plaques in the coronary arteries. Biomechanical parameters play a major role in the generation and rupture of vulnerable plaques. I was the first to show the relationship between shear stress – one of the biomechanical parameters - and plaque formation in human coronary arteries in vivo. This accomplishment was achieved by the development of a new 3D reconstruction technique for (human) coronary arteries in vivo. This reconstruction technique allowed assessment of shear stress by computational fluid dynamics and thereby opened new avenues for serial studies on the role of biomechanical parameters in cardiovascular disease. However, these reconstructions lack information on the vessel wall composition, which is essential for stress computations in the vessel wall. Recent developments in intravascular image technologies allow visualization of one or more of the different plaque components. Therefore, advances in image fusion are required to merge the different plaque components into one single 3D vulnerable plaque reconstruction. I will go beyond the state-of-the art in image based modeling by developing novel technology to 3D reconstruct coronary lumen and vessel wall, including plaque composition and assess biomechanical tissue properties allowing for full biomechanical characterization (shear stress and wall stress) of the coronary plaque. The developed technology will be applied to study 1) vulnerable plaque progression, destabilization and rupture, to improve identification of risk on myocardial infarction and 2) predicting treatment outcome of stent implantation by simulating stent deployment, thereby opening a whole new direction in cardiovascular research.
Summary
Myocardial infarction is responsible for nearly 40% of the mortality in the western world and is mainly triggered by rupture of vulnerable atherosclerotic plaques in the coronary arteries. Biomechanical parameters play a major role in the generation and rupture of vulnerable plaques. I was the first to show the relationship between shear stress – one of the biomechanical parameters - and plaque formation in human coronary arteries in vivo. This accomplishment was achieved by the development of a new 3D reconstruction technique for (human) coronary arteries in vivo. This reconstruction technique allowed assessment of shear stress by computational fluid dynamics and thereby opened new avenues for serial studies on the role of biomechanical parameters in cardiovascular disease. However, these reconstructions lack information on the vessel wall composition, which is essential for stress computations in the vessel wall. Recent developments in intravascular image technologies allow visualization of one or more of the different plaque components. Therefore, advances in image fusion are required to merge the different plaque components into one single 3D vulnerable plaque reconstruction. I will go beyond the state-of-the art in image based modeling by developing novel technology to 3D reconstruct coronary lumen and vessel wall, including plaque composition and assess biomechanical tissue properties allowing for full biomechanical characterization (shear stress and wall stress) of the coronary plaque. The developed technology will be applied to study 1) vulnerable plaque progression, destabilization and rupture, to improve identification of risk on myocardial infarction and 2) predicting treatment outcome of stent implantation by simulating stent deployment, thereby opening a whole new direction in cardiovascular research.
Max ERC Funding
1 877 000 €
Duration
Start date: 2013-05-01, End date: 2019-04-30
Project acronym BioCHANGE
Project Biodiversity Change: an open access data resource supporting societal responses to the biodiversity crisis
Researcher (PI) Anne Elizabeth MAGURRAN
Host Institution (HI) THE UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS
Call Details Proof of Concept (PoC), ERC-2016-PoC, ERC-2016-PoC
Summary Biodiversity CHANGE is a major, but still underappreciated, threat to humanity. It arises when there is unprecedented turnover in the identities of species that comprise ecological assemblages. To understand, monitor and ameliorate this CHANGE, and to enable appropriate societal responses, policy makers and conservation managers urgently need access to the best possible data. At present the ability of practitioners to elucidate ecosystem responses to anthropogenic impacts is hampered by data availability. Building on ERC AdvG BioTIME, BioCHANGE will provide a proof of concept that existing fragmented data can be assembled into an open access, authoritative database to form a crucial resource for addressing societal challenges arising from the biodiversity crisis.
Summary
Biodiversity CHANGE is a major, but still underappreciated, threat to humanity. It arises when there is unprecedented turnover in the identities of species that comprise ecological assemblages. To understand, monitor and ameliorate this CHANGE, and to enable appropriate societal responses, policy makers and conservation managers urgently need access to the best possible data. At present the ability of practitioners to elucidate ecosystem responses to anthropogenic impacts is hampered by data availability. Building on ERC AdvG BioTIME, BioCHANGE will provide a proof of concept that existing fragmented data can be assembled into an open access, authoritative database to form a crucial resource for addressing societal challenges arising from the biodiversity crisis.
Max ERC Funding
149 428 €
Duration
Start date: 2016-11-01, End date: 2018-04-30
Project acronym BioCircuit
Project Programmable BioMolecular Circuits: Emulating Regulatory Functions in Living Cells Using a Bottom-Up Approach
Researcher (PI) Tom Antonius Franciscus De greef
Host Institution (HI) TECHNISCHE UNIVERSITEIT EINDHOVEN
Call Details Starting Grant (StG), PE4, ERC-2015-STG
Summary Programmable biomolecular circuits have received increasing attention in recent years as the scope of chemistry expands from the synthesis of individual molecules to the construction of chemical networks that can perform sophisticated functions such as logic operations and feedback control. Rationally engineered biomolecular circuits that robustly execute higher-order spatiotemporal behaviours typically associated with intracellular regulatory functions present a unique and uncharted platform to systematically explore the molecular logic and physical design principles of the cell. The experience gained by in-vitro construction of artificial cells displaying advanced system-level functions deepens our understanding of regulatory networks in living cells and allows theoretical assumptions and models to be refined in a controlled setting. This proposal combines elements from systems chemistry, in-vitro synthetic biology and micro-engineering and explores generic strategies to investigate the molecular logic of biology’s regulatory circuits by applying a physical chemistry-driven bottom-up approach. Progress in this field requires 1) proof-of-principle systems where in-vitro biomolecular circuits are designed to emulate characteristic system-level functions of regulatory circuits in living cells and 2) novel experimental tools to operate biochemical networks under out-of-equilibrium conditions. Here, a comprehensive research program is proposed that addresses these challenges by engineering three biochemical model systems that display elementary signal transduction and information processing capabilities. In addition, an open microfluidic droplet reactor is developed that will allow, for the first time, high-throughput analysis of biomolecular circuits encapsulated in water-in-oil droplets. An integral part of the research program is to combine the computational design of in-vitro circuits with novel biochemistry and innovative micro-engineering tools.
Summary
Programmable biomolecular circuits have received increasing attention in recent years as the scope of chemistry expands from the synthesis of individual molecules to the construction of chemical networks that can perform sophisticated functions such as logic operations and feedback control. Rationally engineered biomolecular circuits that robustly execute higher-order spatiotemporal behaviours typically associated with intracellular regulatory functions present a unique and uncharted platform to systematically explore the molecular logic and physical design principles of the cell. The experience gained by in-vitro construction of artificial cells displaying advanced system-level functions deepens our understanding of regulatory networks in living cells and allows theoretical assumptions and models to be refined in a controlled setting. This proposal combines elements from systems chemistry, in-vitro synthetic biology and micro-engineering and explores generic strategies to investigate the molecular logic of biology’s regulatory circuits by applying a physical chemistry-driven bottom-up approach. Progress in this field requires 1) proof-of-principle systems where in-vitro biomolecular circuits are designed to emulate characteristic system-level functions of regulatory circuits in living cells and 2) novel experimental tools to operate biochemical networks under out-of-equilibrium conditions. Here, a comprehensive research program is proposed that addresses these challenges by engineering three biochemical model systems that display elementary signal transduction and information processing capabilities. In addition, an open microfluidic droplet reactor is developed that will allow, for the first time, high-throughput analysis of biomolecular circuits encapsulated in water-in-oil droplets. An integral part of the research program is to combine the computational design of in-vitro circuits with novel biochemistry and innovative micro-engineering tools.
Max ERC Funding
1 887 180 €
Duration
Start date: 2016-08-01, End date: 2021-07-31
Project acronym BIOCOMPLEX
Project Physical Aspects of the Evolution of Biological Complexity
Researcher (PI) Raymond Ethan Goldstein
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Advanced Grant (AdG), PE3, ERC-2009-AdG
Summary One of the most fundamental issues in evolutionary biology is the nature of transitions from single cell organisms to multicellular ones, with accompanying cellular differentiation and specialization. Not surprisingly for microscopic life in fluid environments, many of the relevant physical considerations involve diffusion, mixing, and sensing, for the efficient exchange of nutrients and metabolites with the environment is one of the most basic features of life. This proposal describes a combination of experimental and theoretical research aimed at some of the key mysteries surrounding transport and sensing by and in complex, multicellular organisms, and the implications of those findings for the explanation of driving forces behind transitions to multicellularity. There are two main components of the research. The first involves studies of single and multicellular algae which serves as model systems for allometric scaling laws in evolution. Of particular importance are the synchronization dynamics of the eukaryotic flagella that provide motility, enhance nutrient transport, and allow phototaxis in these organisms. The second thrust involves investigation of the ubiquitous phenomenon of cytoplasmic streaming in aquatic and terrestrial plants. Despite decades of research, there is no clear consensus on the metabolic role of this persistent circulation of the fluid contents of cell. Building on recent theoretical developmnts we will study its implications for internal transport and mixing, homeostasis, and development in large cells. In each case, state-of-the art experimental methods from physics, fluid dynamics, and cell biology will be used in combination with advanced theoretical methods for the study of the stochastic nonlinear PDEs that form the natural description of these systems.
Summary
One of the most fundamental issues in evolutionary biology is the nature of transitions from single cell organisms to multicellular ones, with accompanying cellular differentiation and specialization. Not surprisingly for microscopic life in fluid environments, many of the relevant physical considerations involve diffusion, mixing, and sensing, for the efficient exchange of nutrients and metabolites with the environment is one of the most basic features of life. This proposal describes a combination of experimental and theoretical research aimed at some of the key mysteries surrounding transport and sensing by and in complex, multicellular organisms, and the implications of those findings for the explanation of driving forces behind transitions to multicellularity. There are two main components of the research. The first involves studies of single and multicellular algae which serves as model systems for allometric scaling laws in evolution. Of particular importance are the synchronization dynamics of the eukaryotic flagella that provide motility, enhance nutrient transport, and allow phototaxis in these organisms. The second thrust involves investigation of the ubiquitous phenomenon of cytoplasmic streaming in aquatic and terrestrial plants. Despite decades of research, there is no clear consensus on the metabolic role of this persistent circulation of the fluid contents of cell. Building on recent theoretical developmnts we will study its implications for internal transport and mixing, homeostasis, and development in large cells. In each case, state-of-the art experimental methods from physics, fluid dynamics, and cell biology will be used in combination with advanced theoretical methods for the study of the stochastic nonlinear PDEs that form the natural description of these systems.
Max ERC Funding
2 500 000 €
Duration
Start date: 2010-01-01, End date: 2015-12-31
Project acronym BioDisOrder
Project Order and Disorder at the Surface of Biological Membranes.
Researcher (PI) Alfonso DE SIMONE
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Call Details Consolidator Grant (CoG), PE4, ERC-2018-COG
Summary Heterogeneous biomolecular mechanisms at the surface of cellular membranes are often fundamental to generate function and dysfunction in living systems. These processes are governed by transient and dynamical macromolecular interactions that pose tremendous challenges to current analytical tools, as the majority of these methods perform best in the study of well-defined and poorly dynamical systems. This proposal aims at a radical innovation in the characterisation of complex processes that are dominated by structural order and disorder, including those occurring at the surface of biological membranes such as cellular signalling, the assembly of molecular machinery, or the regulation vesicular trafficking.
I outline a programme to realise a vision where the combination of experiments and theory can delineate a new analytical platform to study complex biochemical mechanisms at a multiscale level, and to elucidate their role in physiological and pathological contexts. To achieve this ambitious goal, my research team will develop tools based on the combination of nuclear magnetic resonance (NMR) spectroscopy and molecular simulations, which will enable probing the structure, dynamics, thermodynamics and kinetics of complex protein-protein and protein-membrane interactions occurring at the surface of cellular membranes. The ability to advance both the experimental and theoretical sides, and their combination, is fundamental to define the next generation of methods to achieve our transformative aims. We will provide evidence of the innovative nature of the proposed multiscale approach by addressing some of the great questions in neuroscience and elucidate the details of how functional and aberrant biological complexity is achieved via the fine tuning between structural order and disorder at the neuronal synapse.
Summary
Heterogeneous biomolecular mechanisms at the surface of cellular membranes are often fundamental to generate function and dysfunction in living systems. These processes are governed by transient and dynamical macromolecular interactions that pose tremendous challenges to current analytical tools, as the majority of these methods perform best in the study of well-defined and poorly dynamical systems. This proposal aims at a radical innovation in the characterisation of complex processes that are dominated by structural order and disorder, including those occurring at the surface of biological membranes such as cellular signalling, the assembly of molecular machinery, or the regulation vesicular trafficking.
I outline a programme to realise a vision where the combination of experiments and theory can delineate a new analytical platform to study complex biochemical mechanisms at a multiscale level, and to elucidate their role in physiological and pathological contexts. To achieve this ambitious goal, my research team will develop tools based on the combination of nuclear magnetic resonance (NMR) spectroscopy and molecular simulations, which will enable probing the structure, dynamics, thermodynamics and kinetics of complex protein-protein and protein-membrane interactions occurring at the surface of cellular membranes. The ability to advance both the experimental and theoretical sides, and their combination, is fundamental to define the next generation of methods to achieve our transformative aims. We will provide evidence of the innovative nature of the proposed multiscale approach by addressing some of the great questions in neuroscience and elucidate the details of how functional and aberrant biological complexity is achieved via the fine tuning between structural order and disorder at the neuronal synapse.
Max ERC Funding
1 999 945 €
Duration
Start date: 2019-06-01, End date: 2024-05-31
Project acronym BIOELE
Project Functional Biointerface Elements via Biomicrofabrication
Researcher (PI) YANYAN HUANG
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Starting Grant (StG), PE8, ERC-2017-STG
Summary Imagine in the future, bionic devices that can merge device and biology which can perform molecular sensing, simulate the functions of grown-organs in the lab, or even replace or improve parts of the organ as smart implants? Such bionic devices is set to transform a number of emerging fields, including synthetic biotechnology, regenerative medicine, and human-machine interfaces. Merging biology and man-made devices also mean that materials of vastly different properties need to be seamlessly integrated. One of the promising strategies to manufacture these devices is through 3D printing, which can structure different materials into functional devices, and simultaneously intertwining with biological matters. However, the requirement for biocompatibility, miniaturisation, portability and high performance in bionic devices pushes the current limit for micro- nanoscale 3D printing.
This proposal aims to develop a new multi-material, cross-length scale biofabrication platform, with specific focus in making future smart bionic devices. In particular, a new mechanism is proposed to smoothly interface diverse classes of materials, such that an active device component can be ‘shrunk’ into a single small fibre. This mechanism utilises the polymeric materials’ flow property under applied tensile forces, and their abilities to combine with other classes of materials, such as semi-conductors and metals to impart further functionalities. This smart device fibre can be custom-made to perform different tasks, such as light emission or energy harvesting, to bridge 3D bioprinting for the future creation of high performance, compact, and cell-friendly bionic and medical devices.
Summary
Imagine in the future, bionic devices that can merge device and biology which can perform molecular sensing, simulate the functions of grown-organs in the lab, or even replace or improve parts of the organ as smart implants? Such bionic devices is set to transform a number of emerging fields, including synthetic biotechnology, regenerative medicine, and human-machine interfaces. Merging biology and man-made devices also mean that materials of vastly different properties need to be seamlessly integrated. One of the promising strategies to manufacture these devices is through 3D printing, which can structure different materials into functional devices, and simultaneously intertwining with biological matters. However, the requirement for biocompatibility, miniaturisation, portability and high performance in bionic devices pushes the current limit for micro- nanoscale 3D printing.
This proposal aims to develop a new multi-material, cross-length scale biofabrication platform, with specific focus in making future smart bionic devices. In particular, a new mechanism is proposed to smoothly interface diverse classes of materials, such that an active device component can be ‘shrunk’ into a single small fibre. This mechanism utilises the polymeric materials’ flow property under applied tensile forces, and their abilities to combine with other classes of materials, such as semi-conductors and metals to impart further functionalities. This smart device fibre can be custom-made to perform different tasks, such as light emission or energy harvesting, to bridge 3D bioprinting for the future creation of high performance, compact, and cell-friendly bionic and medical devices.
Max ERC Funding
1 486 938 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym BIOELECPRO
Project Frontier Research on the Dielectric Properties of Biological Tissue
Researcher (PI) Martin James O'Halloran
Host Institution (HI) NATIONAL UNIVERSITY OF IRELAND GALWAY
Call Details Starting Grant (StG), LS7, ERC-2014-STG
Summary The dielectric properties of biological tissues are of fundamental importance to the understanding of the interaction of electromagnetic fields with the human body. These properties are used to determine the safety of electronic devices, and in the design, development and refinement of electromagnetic medical imaging and therapeutic devices. Many historical studies have aimed to establish the dielectric properties of a broad range of tissues. A growing number of recent studies have sought to more accurately estimate these dielectric properties by standardising measurement procedures, and in some cases, measuring the dielectric properties in-vivo. However, these studies have often produced results in direct conflict with historical studies, casting doubt on the accuracy of the currently utilised dielectric properties. At best, this uncertainty could significantly delay the development of electromagnetic imaging or therapeutic medical devices. At worst, the health dangers of electromagnetic radiation could be under-estimated. The applicant will embark upon frontier research to develop improved methods and standards for the measurement of the dielectric properties of biological tissue. The research programme will accelerate the design and development of electromagnetic imaging and therapeutic devices, at a time when the technology is gaining significant momentum. The primary objective of the research is to develop a deep understanding of the fundamental factors which contribute to errors in dielectric property measurement. These factors will include in-vivo/ex-vivo measurements and dielectric measurement method used, amongst many others. Secondly, a new open-access repository of dielectric measurements will be created based on a greatly enhanced understanding of the mechanisms underlying dielectric property measurement. Finally, new electromagnetic-based imaging and therapeutic medical devices will be investigated, based on the solid foundation of dielectric data.
Summary
The dielectric properties of biological tissues are of fundamental importance to the understanding of the interaction of electromagnetic fields with the human body. These properties are used to determine the safety of electronic devices, and in the design, development and refinement of electromagnetic medical imaging and therapeutic devices. Many historical studies have aimed to establish the dielectric properties of a broad range of tissues. A growing number of recent studies have sought to more accurately estimate these dielectric properties by standardising measurement procedures, and in some cases, measuring the dielectric properties in-vivo. However, these studies have often produced results in direct conflict with historical studies, casting doubt on the accuracy of the currently utilised dielectric properties. At best, this uncertainty could significantly delay the development of electromagnetic imaging or therapeutic medical devices. At worst, the health dangers of electromagnetic radiation could be under-estimated. The applicant will embark upon frontier research to develop improved methods and standards for the measurement of the dielectric properties of biological tissue. The research programme will accelerate the design and development of electromagnetic imaging and therapeutic devices, at a time when the technology is gaining significant momentum. The primary objective of the research is to develop a deep understanding of the fundamental factors which contribute to errors in dielectric property measurement. These factors will include in-vivo/ex-vivo measurements and dielectric measurement method used, amongst many others. Secondly, a new open-access repository of dielectric measurements will be created based on a greatly enhanced understanding of the mechanisms underlying dielectric property measurement. Finally, new electromagnetic-based imaging and therapeutic medical devices will be investigated, based on the solid foundation of dielectric data.
Max ERC Funding
1 499 329 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym BIOGRAPHENE
Project Sequencing biological molecules with graphene
Researcher (PI) Gregory Schneider
Host Institution (HI) UNIVERSITEIT LEIDEN
Call Details Starting Grant (StG), PE4, ERC-2013-StG
Summary Graphene – a one atom thin material – has the potential to act as a sensor, primarily the surface and the edges of graphene. This proposal aims at exploring new biosensing routes by exploiting the unique surface and edge chemistry of graphene.
Summary
Graphene – a one atom thin material – has the potential to act as a sensor, primarily the surface and the edges of graphene. This proposal aims at exploring new biosensing routes by exploiting the unique surface and edge chemistry of graphene.
Max ERC Funding
1 499 996 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym BIOINCMED
Project Bioinorganic Chemistry for the Design of New Medicines
Researcher (PI) Peter John Sadler
Host Institution (HI) THE UNIVERSITY OF WARWICK
Call Details Advanced Grant (AdG), PE5, ERC-2009-AdG
Summary Bioinorganic chemistry is a rapidly expanding area of research, but the potential for the therapeutic application of metal complexes is highly underdeveloped. The basic principles required to guide the development of metal-containing therapeutic agents are lacking, despite the unique therapeutic opportunities which they offer. It is the goal of the proposed research to establish basic principles of medicinal coordination chemistry of metals that will allow the rational screening of future metallopharmaceuticals. We propose to utilize the power of inorganic chemistry to provide new knowledge of and new approaches for intervention in biological systems. This will be based on improved understanding of reactions of metal complexes under physiological conditions, on improving the specificity of their interactions, and gaining control over the potential toxicity of synthetic metal complexes. The research programme is highly interdisciplinary involving chemistry, physics, biology and pharmacology, with potential for the discovery of truly novel medicines, especially for the treatment of diseases and conditions which are currently intractable, such as cancer. The challenging and ambitious goals of the present work involve transition metal complexes with novel chemical and biochemical mechanisms of action. They will contain novel features which allow them (i) to be selectively activated by light in cells, or (ii) to be activated by a structural transition, or (ii) exhibit catalytic activity in cells. This ground-breaking research potentially has a very high impact and is based on recent discoveries in the applicant s laboratory. A feature of the programme is the use of state-of-the-art-and-beyond methodology to advance knowledge of medicinal metal coordination chemistry.
Summary
Bioinorganic chemistry is a rapidly expanding area of research, but the potential for the therapeutic application of metal complexes is highly underdeveloped. The basic principles required to guide the development of metal-containing therapeutic agents are lacking, despite the unique therapeutic opportunities which they offer. It is the goal of the proposed research to establish basic principles of medicinal coordination chemistry of metals that will allow the rational screening of future metallopharmaceuticals. We propose to utilize the power of inorganic chemistry to provide new knowledge of and new approaches for intervention in biological systems. This will be based on improved understanding of reactions of metal complexes under physiological conditions, on improving the specificity of their interactions, and gaining control over the potential toxicity of synthetic metal complexes. The research programme is highly interdisciplinary involving chemistry, physics, biology and pharmacology, with potential for the discovery of truly novel medicines, especially for the treatment of diseases and conditions which are currently intractable, such as cancer. The challenging and ambitious goals of the present work involve transition metal complexes with novel chemical and biochemical mechanisms of action. They will contain novel features which allow them (i) to be selectively activated by light in cells, or (ii) to be activated by a structural transition, or (ii) exhibit catalytic activity in cells. This ground-breaking research potentially has a very high impact and is based on recent discoveries in the applicant s laboratory. A feature of the programme is the use of state-of-the-art-and-beyond methodology to advance knowledge of medicinal metal coordination chemistry.
Max ERC Funding
1 565 397 €
Duration
Start date: 2010-07-01, End date: 2015-12-31
Project acronym BIOIONS
Project Biological ions in the gas-phase: New techniques for structural characterization of isolated biomolecular ions
Researcher (PI) Caroline Dessent
Host Institution (HI) UNIVERSITY OF YORK
Call Details Starting Grant (StG), PE4, ERC-2007-StG
Summary Recent intensive research on the laser spectroscopy of neutral gas-phase biomolecules has yielded a detailed picture of their structures and conformational preferences away from the complications of the bulk environment. In contrast, work on ionic systems has been sparse despite the fact that many important molecular groups are charged under physiological conditions. To address this probelm, we have developed a custom-built laser spectrometer, which incorporates a distincitive electrospray ionisation (ESI) cluster ion source, dedicated to producing biological anions (ATP,oligonucleotides) and their microsolvated clusters for structural characterization. Many previous laser spectrometers with ESI sources have suffered from producing "hot" congested spectra as the ions were produced at ambient temperatures. This is a particularly serious limitation for spectroscopic studies of biomolecules, since these systems can possess high internal energies due tothe presence of numerous low frequency modes. Our spectrometer overcomes this problem by exploiting the newly developed physics technique of "buffer gas cooling" to produce cold ESI molecular ions. In this proposal, we now seek to exploit the new laser-spectrometer to perform detailed spectroscopic interrogations of ESI generated biomolecular anions and clusters. In addition to traditional ion-dissociation spectroscopies, we propose to develop two new laser spectroscopy techniques (Two-color tuneable IR spectroscopy and Dipole-bound excited state spectroscopy) to give the broadest possible structural characterizations of the systems of interest. Studies will focus on ATP/GTP-anions, olignonucleotides, and sulphated and carboxylated sugars. These methodologies will provide a general approach for performing temperature-controlled spectroscopic characterizations of isolated biological ions, with measurements on the corresponding micro-solvated clusters providing details of how the molecules are perturbed by solvent.
Summary
Recent intensive research on the laser spectroscopy of neutral gas-phase biomolecules has yielded a detailed picture of their structures and conformational preferences away from the complications of the bulk environment. In contrast, work on ionic systems has been sparse despite the fact that many important molecular groups are charged under physiological conditions. To address this probelm, we have developed a custom-built laser spectrometer, which incorporates a distincitive electrospray ionisation (ESI) cluster ion source, dedicated to producing biological anions (ATP,oligonucleotides) and their microsolvated clusters for structural characterization. Many previous laser spectrometers with ESI sources have suffered from producing "hot" congested spectra as the ions were produced at ambient temperatures. This is a particularly serious limitation for spectroscopic studies of biomolecules, since these systems can possess high internal energies due tothe presence of numerous low frequency modes. Our spectrometer overcomes this problem by exploiting the newly developed physics technique of "buffer gas cooling" to produce cold ESI molecular ions. In this proposal, we now seek to exploit the new laser-spectrometer to perform detailed spectroscopic interrogations of ESI generated biomolecular anions and clusters. In addition to traditional ion-dissociation spectroscopies, we propose to develop two new laser spectroscopy techniques (Two-color tuneable IR spectroscopy and Dipole-bound excited state spectroscopy) to give the broadest possible structural characterizations of the systems of interest. Studies will focus on ATP/GTP-anions, olignonucleotides, and sulphated and carboxylated sugars. These methodologies will provide a general approach for performing temperature-controlled spectroscopic characterizations of isolated biological ions, with measurements on the corresponding micro-solvated clusters providing details of how the molecules are perturbed by solvent.
Max ERC Funding
1 250 000 €
Duration
Start date: 2008-10-01, End date: 2015-06-30
Project acronym BioMagMat
Project Functional magnetic materials for biomedical applications
Researcher (PI) Russell COWBURN
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Proof of Concept (PoC), ERC-2017-PoC
Summary A range of new medical therapies and diagnostics based on magnetic nanomaterials have recently been proposed. These include cancer therapies, stem cell therapies, microfluidic diagnostic devices and immunoassays. However, very few biotechnology magnetic nanomaterials are currently available commercially; most investigators fabricate their own. This is a serious limitation to the development of this emerging area within nanomedicine. This proposal aims to transfer a number of magnetic nanomaterials from the University physics laboratory where they were developed as part of an ERC AdG grant into an existing small company where they can then be made available to researchers across the world on a commercial basis.
Summary
A range of new medical therapies and diagnostics based on magnetic nanomaterials have recently been proposed. These include cancer therapies, stem cell therapies, microfluidic diagnostic devices and immunoassays. However, very few biotechnology magnetic nanomaterials are currently available commercially; most investigators fabricate their own. This is a serious limitation to the development of this emerging area within nanomedicine. This proposal aims to transfer a number of magnetic nanomaterials from the University physics laboratory where they were developed as part of an ERC AdG grant into an existing small company where they can then be made available to researchers across the world on a commercial basis.
Max ERC Funding
149 997 €
Duration
Start date: 2017-12-01, End date: 2019-05-31
Project acronym BIOMATE
Project Soft Biomade Materials: Modular Protein Polymers and their nano-assemblies
Researcher (PI) Martinus Abraham Cohen Stuart
Host Institution (HI) WAGENINGEN UNIVERSITY
Call Details Advanced Grant (AdG), PE5, ERC-2010-AdG_20100224
Summary From a polymer chemistry perspective, the way in which nature produces its plethora of different proteins is a miracle of precision: the synthesis of each single molecule is directed by the sequence information chemically coded in DNA. The present state of recombinant DNA technology should in principle allow us to make genes that code for entirely new, very sophisticated amino acid polymers, which are chosen and designed by man to serve as new polymer materials. It has been shown that it is indeed possible to make use of the protein biosynthetic machinery and produce such de novo protein polymers, but it is not clear what their potentials are in terms of new materials with desired functionalities.
I propose to develop a new class of protein polymers, chosen such that they form nanostructured materials by triggered folding and multimolecular assembly. The plan is based on three innovative ideas: (i) each new protein polymer will be constructed from a limited set of selected amino acid sequences, called modules (hence the term modular protein polymers) (ii) new, high-yield fermentation strategies will be developed so that polymers will become available in significant quantities for evaluation and application; (iii) the design of modular protein polymers is carried out as a cyclic process in which sequence selection, construction of artificial genes, optimisation of fermentation for high yield, studying polymer folding and assembly, and modelling of the nanostructure by molecular simulation are all logically connected, allowing efficient selection of target sequences.
This project is a cross-road. It brings together biotechnology and polymer science, creating a unique set of biomaterials for medical and pharmaceutical use, that can be easily extended into a manifold of biofunctional materials. Moreover, it will provide us with fresh tools and valuable insights to tackle the subtle relations between protein sequence and folding.
Summary
From a polymer chemistry perspective, the way in which nature produces its plethora of different proteins is a miracle of precision: the synthesis of each single molecule is directed by the sequence information chemically coded in DNA. The present state of recombinant DNA technology should in principle allow us to make genes that code for entirely new, very sophisticated amino acid polymers, which are chosen and designed by man to serve as new polymer materials. It has been shown that it is indeed possible to make use of the protein biosynthetic machinery and produce such de novo protein polymers, but it is not clear what their potentials are in terms of new materials with desired functionalities.
I propose to develop a new class of protein polymers, chosen such that they form nanostructured materials by triggered folding and multimolecular assembly. The plan is based on three innovative ideas: (i) each new protein polymer will be constructed from a limited set of selected amino acid sequences, called modules (hence the term modular protein polymers) (ii) new, high-yield fermentation strategies will be developed so that polymers will become available in significant quantities for evaluation and application; (iii) the design of modular protein polymers is carried out as a cyclic process in which sequence selection, construction of artificial genes, optimisation of fermentation for high yield, studying polymer folding and assembly, and modelling of the nanostructure by molecular simulation are all logically connected, allowing efficient selection of target sequences.
This project is a cross-road. It brings together biotechnology and polymer science, creating a unique set of biomaterials for medical and pharmaceutical use, that can be easily extended into a manifold of biofunctional materials. Moreover, it will provide us with fresh tools and valuable insights to tackle the subtle relations between protein sequence and folding.
Max ERC Funding
2 497 044 €
Duration
Start date: 2011-05-01, End date: 2016-04-30
Project acronym BioMechMeniscus
Project A biomechanically driven, patient specific pre-planning and surgical tool to optimize placement of a novel meniscus prosthesis
Researcher (PI) Nicolaas Jacobus Joseph VERDONSCHOT
Host Institution (HI) STICHTING KATHOLIEKE UNIVERSITEIT
Call Details Proof of Concept (PoC), ERC-2017-PoC
Summary In this BioMechMeniscus project we will develop a workflow for optimal placement of a novel meniscus implant. The medial meniscus implant (named ‘Trammpolin’) has been developed using methods developed during the BioMechTools project such as 1) principle component analyses based on MRI-segmented image to assess the anatomical shape of the meniscus, 2) assessing sensitivity of cartilage stresses and implant strains on size and design-parameters using finite element techniques and 3) utilizing load-predictions from our award-winning musculoskeletal models.
All data shows that the biomechanical behaviour of Trammpolin in the knee will be sensitive to appropriate sizing and positioning within the knee. Therefore, this BioMechMeniscus project focuses on developing a surgeon-friendly platform to pre-plan the size and position and to execute the surgery as accurately as possible.
The software will automatically perform MRI-segmentation of the tibia, femur and meniscus insertion sites. Subsequently, the best meniscus implant size and position (leading to the lowest cartilage stress and acceptable implant strains) is proposed by the program. The surgeon can adapt the proposal and gets feedback about the expected changes in biomechanical performance.
After the pre-plan is accepted a patient-specific arthroscopic surgical guide is 3-D printed which will be used as an aiming device for an external (standard) surgical guide for fixation of the horns.
The project is subdivided in four Tasks and will last for 18 months. An experienced team will supervise a post-doc during the various activities. A project scheme is made and a risk and contingency plan is defined. A detailed competitor and commercial analysis has been made and we are convinced that with the BioMechMeniscus project we have a unique opportunity to bring a novel implant to the market and support it with a distinct pre-planning and surgical assistance tool to optimize clinical performance.
Summary
In this BioMechMeniscus project we will develop a workflow for optimal placement of a novel meniscus implant. The medial meniscus implant (named ‘Trammpolin’) has been developed using methods developed during the BioMechTools project such as 1) principle component analyses based on MRI-segmented image to assess the anatomical shape of the meniscus, 2) assessing sensitivity of cartilage stresses and implant strains on size and design-parameters using finite element techniques and 3) utilizing load-predictions from our award-winning musculoskeletal models.
All data shows that the biomechanical behaviour of Trammpolin in the knee will be sensitive to appropriate sizing and positioning within the knee. Therefore, this BioMechMeniscus project focuses on developing a surgeon-friendly platform to pre-plan the size and position and to execute the surgery as accurately as possible.
The software will automatically perform MRI-segmentation of the tibia, femur and meniscus insertion sites. Subsequently, the best meniscus implant size and position (leading to the lowest cartilage stress and acceptable implant strains) is proposed by the program. The surgeon can adapt the proposal and gets feedback about the expected changes in biomechanical performance.
After the pre-plan is accepted a patient-specific arthroscopic surgical guide is 3-D printed which will be used as an aiming device for an external (standard) surgical guide for fixation of the horns.
The project is subdivided in four Tasks and will last for 18 months. An experienced team will supervise a post-doc during the various activities. A project scheme is made and a risk and contingency plan is defined. A detailed competitor and commercial analysis has been made and we are convinced that with the BioMechMeniscus project we have a unique opportunity to bring a novel implant to the market and support it with a distinct pre-planning and surgical assistance tool to optimize clinical performance.
Max ERC Funding
150 000 €
Duration
Start date: 2017-11-01, End date: 2019-04-30
Project acronym BIOMECHTOOLS
Project Biomechanical diagnostic, pre-planning and outcome tools to improve musculoskeletal surgery
Researcher (PI) Nicolaas Verdonschot
Host Institution (HI) STICHTING KATHOLIEKE UNIVERSITEIT
Call Details Advanced Grant (AdG), LS7, ERC-2012-ADG_20120314
Summary The aetiology of many musculoskeletal (MS) diseases is related to biomechanical factors. However, the tools to assess the biomechanical condition of patients used by clinicians and researchers are often crude and subjective leading to non-optimal patient analyses and care. In this project innovations related to imaging, sensor technology and biomechanical modelling are utilized to generate versatile, accurate and objective methods to quantify the (pathological) MS condition of the lower extremity of patients in a unique manner. The project will produce advanced diagnostic, pre-planning and outcome tools which allow clinicians and researchers for detailed biomechanical analysis about abnormal tissue deformations, pathological loading of the joints, abnormal stresses in the hard and soft tissues, and aberrant joint kinematics.
The key objectives of this proposal are:
1) Develop and validate image-based 3-D volumetric elastographic diagnostic methods that can quantify normal and pathological conditions under dynamic loading and which can be linked to biomechanical modelling tools.
2) Create an ultrasound (US)-based system to assess internal joint kinematics which can be used as a diagnostic tool for clinicians and researchers and is a validation tool for biomechanical modelling.
3) Generate and validate an ambulant functional (force and kinematic) diagnostic system which is easy to use and which can be used to provide input data for biomechanical models.
4) Create and validate a new modelling approach that integrates muscle-models with finite element models at a highly personalized level.
5) Generate biomechanical models which have personalized mechanical properties of the hard and soft tissues.
6) Demonstrate the applicability of the personalized diagnostic and pre-planning platform by application to healthy individuals and patient subjects.
Support from the ERC will open new research fields related to biomechanical patient assessment and modeling of MS pathologies.
Summary
The aetiology of many musculoskeletal (MS) diseases is related to biomechanical factors. However, the tools to assess the biomechanical condition of patients used by clinicians and researchers are often crude and subjective leading to non-optimal patient analyses and care. In this project innovations related to imaging, sensor technology and biomechanical modelling are utilized to generate versatile, accurate and objective methods to quantify the (pathological) MS condition of the lower extremity of patients in a unique manner. The project will produce advanced diagnostic, pre-planning and outcome tools which allow clinicians and researchers for detailed biomechanical analysis about abnormal tissue deformations, pathological loading of the joints, abnormal stresses in the hard and soft tissues, and aberrant joint kinematics.
The key objectives of this proposal are:
1) Develop and validate image-based 3-D volumetric elastographic diagnostic methods that can quantify normal and pathological conditions under dynamic loading and which can be linked to biomechanical modelling tools.
2) Create an ultrasound (US)-based system to assess internal joint kinematics which can be used as a diagnostic tool for clinicians and researchers and is a validation tool for biomechanical modelling.
3) Generate and validate an ambulant functional (force and kinematic) diagnostic system which is easy to use and which can be used to provide input data for biomechanical models.
4) Create and validate a new modelling approach that integrates muscle-models with finite element models at a highly personalized level.
5) Generate biomechanical models which have personalized mechanical properties of the hard and soft tissues.
6) Demonstrate the applicability of the personalized diagnostic and pre-planning platform by application to healthy individuals and patient subjects.
Support from the ERC will open new research fields related to biomechanical patient assessment and modeling of MS pathologies.
Max ERC Funding
2 456 400 €
Duration
Start date: 2013-05-01, End date: 2018-04-30
Project acronym BIOMOF
Project Biomineral-inspired growth and processing of metal-organic frameworks
Researcher (PI) Darren Bradshaw
Host Institution (HI) UNIVERSITY OF SOUTHAMPTON
Call Details Starting Grant (StG), PE5, ERC-2010-StG_20091028
Summary This ERC-StG proposal, BIOMOF, outlines a dual strategy for the growth and processing of porous metal-organic framework (MOF) materials, inspired by the interfacial interactions that characterise highly controlled biomineralisation processes. The aim is to prepare MOF (bio)-composite materials of hierarchical structure and multi-modal functionality to address key societal challenges in healthcare, catalysis and energy. In order for MOFs to reach their full potential, a transformative approach to their growth, and in particular their processability, is required since the insoluble macroscopic micron-sized crystals resulting from conventional syntheses are unsuitable for many applications. The BIOMOF project defines chemically flexible routes to MOFs under mild conditions, where the added value with respect to wide-ranging experimental procedures for the growth and processing of crystalline controllably nanoscale MOF materials with tunable structure and functionality that display significant porosity for wide-ranging applications is extremely high. Theme 1 exploits protein vesicles and abundant biopolymer matrices for the confined growth of soluble nanoscale MOFs for high-end biomedical applications such as cell imaging and targeted drug delivery, whereas theme 2 focuses on the cost-effective preparation of hierarchically porous MOF composites over several length scales, of relevance to bulk industrial applications such as sustainable catalysis, separations and gas-storage. This diverse yet complementary range of applications arising simply from the way the MOF is processed, coupled with the versatile structural and physical properties of MOFs themselves indicates strongly that the BIOMOF concept is a powerful convergent new approach to applied materials chemistry.
Summary
This ERC-StG proposal, BIOMOF, outlines a dual strategy for the growth and processing of porous metal-organic framework (MOF) materials, inspired by the interfacial interactions that characterise highly controlled biomineralisation processes. The aim is to prepare MOF (bio)-composite materials of hierarchical structure and multi-modal functionality to address key societal challenges in healthcare, catalysis and energy. In order for MOFs to reach their full potential, a transformative approach to their growth, and in particular their processability, is required since the insoluble macroscopic micron-sized crystals resulting from conventional syntheses are unsuitable for many applications. The BIOMOF project defines chemically flexible routes to MOFs under mild conditions, where the added value with respect to wide-ranging experimental procedures for the growth and processing of crystalline controllably nanoscale MOF materials with tunable structure and functionality that display significant porosity for wide-ranging applications is extremely high. Theme 1 exploits protein vesicles and abundant biopolymer matrices for the confined growth of soluble nanoscale MOFs for high-end biomedical applications such as cell imaging and targeted drug delivery, whereas theme 2 focuses on the cost-effective preparation of hierarchically porous MOF composites over several length scales, of relevance to bulk industrial applications such as sustainable catalysis, separations and gas-storage. This diverse yet complementary range of applications arising simply from the way the MOF is processed, coupled with the versatile structural and physical properties of MOFs themselves indicates strongly that the BIOMOF concept is a powerful convergent new approach to applied materials chemistry.
Max ERC Funding
1 492 970 €
Duration
Start date: 2010-11-01, End date: 2015-10-31
Project acronym BIOMORPHIC
Project Brain-Inspired Organic Modular Lab-on-a-Chip for Cell Classification
Researcher (PI) Yoeri Bertin VAN DE BURGT
Host Institution (HI) TECHNISCHE UNIVERSITEIT EINDHOVEN
Call Details Starting Grant (StG), PE8, ERC-2018-STG
Summary Brain-inspired (neuromorphic) computing has recently demonstrated advancements in pattern and image recognition as well as classification of unstructured (big) data. However, the volatility and energy required for neuromorphic devices presented to date significantly complicate the path to achieve the interconnectivity and efficiency of the brain. In previous work, recently published in Nature Materials, the PI has demonstrated a low-cost solution to these drawbacks: an organic artificial synapse as a building-block for organic neuromorphics. The conductance of this single synapse can be accurately tuned by controlled ion injection in the conductive polymer, which could trigger unprecedented low-energy analogue computing.
Hence, the major challenge in the largely unexplored field of organic neuromorphics, is to create an interconnected network of these synapses to obtain a true neuromorphic array which will not only be exceptionally pioneering in materials research for neuromorphics and machine-learning, but can also be adopted in a multitude of vital medical research devices. BIOMORPHIC will develop a unique brain-inspired organic lab-on-a-chip in which microfluidics integrated with sensors, collecting characteristics of biological cells, will serve as input to the neuromorphic array. BIOMORPHIC will combine modular microfluidics and machine-learning to develop a novel platform for low-cost lab-on-a-chip devices capable of on-chip cell classification.
In particular, BIOMORPHIC will focus on the detection of circulating tumour cells (CTC). Current methods for the detection of cancer are generally invasive, whereas analysing CTCs in blood offers a highly desired alternative. However, accurately detecting and isolating these cells remains a challenge due to their low prevalence and large variability. The strength of neuromorphics precisely lies in finding patterns in such variable data, which will result in a ground-breaking CTC classification lab-on-a-chip.
Summary
Brain-inspired (neuromorphic) computing has recently demonstrated advancements in pattern and image recognition as well as classification of unstructured (big) data. However, the volatility and energy required for neuromorphic devices presented to date significantly complicate the path to achieve the interconnectivity and efficiency of the brain. In previous work, recently published in Nature Materials, the PI has demonstrated a low-cost solution to these drawbacks: an organic artificial synapse as a building-block for organic neuromorphics. The conductance of this single synapse can be accurately tuned by controlled ion injection in the conductive polymer, which could trigger unprecedented low-energy analogue computing.
Hence, the major challenge in the largely unexplored field of organic neuromorphics, is to create an interconnected network of these synapses to obtain a true neuromorphic array which will not only be exceptionally pioneering in materials research for neuromorphics and machine-learning, but can also be adopted in a multitude of vital medical research devices. BIOMORPHIC will develop a unique brain-inspired organic lab-on-a-chip in which microfluidics integrated with sensors, collecting characteristics of biological cells, will serve as input to the neuromorphic array. BIOMORPHIC will combine modular microfluidics and machine-learning to develop a novel platform for low-cost lab-on-a-chip devices capable of on-chip cell classification.
In particular, BIOMORPHIC will focus on the detection of circulating tumour cells (CTC). Current methods for the detection of cancer are generally invasive, whereas analysing CTCs in blood offers a highly desired alternative. However, accurately detecting and isolating these cells remains a challenge due to their low prevalence and large variability. The strength of neuromorphics precisely lies in finding patterns in such variable data, which will result in a ground-breaking CTC classification lab-on-a-chip.
Max ERC Funding
1 498 726 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym BioMusic
Project BioMusical Instrument
Researcher (PI) Atau TANAKA
Host Institution (HI) GOLDSMITHS' COLLEGE
Call Details Proof of Concept (PoC), ERC-2017-PoC
Summary The BioMusical Instrument project will create a product prototype of a wearable digital musical instrument based on biosignals from the performer’s muscles. It will allow musicians to perform electronic sounds from bodily gestures. Muscle tension will be sensed by innovative new electromyogram sensing hardware packaged in an ergonomic housing and coupled to wireless communication. Sophisticated machine learning methods developed in the ERC MetaGesture Music and H2020 Rapid-Mix projects will track musician gesture and create meaningful relationships with computer-based synthesized sound. The BioMusical Instrument will be marketed to three distinct application areas: First, it will enable “hands-free” performance of electronic music. Second, the visualization of body states will make it a useful training tool in traditional musical instrument pedagogy. Finally, the sonification of physiological signals will allow the instrument to be used in the health sector in physical rehabilitation exercises. The BioMusical Instrument will be the first product to combine EMG sensing, machine learning, and advanced audio signal processing. We have identified partners in the biomedical hardware field, the music technology industry, and rehabilitation research with whom we will benchmark and evaluate the product prototype.
Summary
The BioMusical Instrument project will create a product prototype of a wearable digital musical instrument based on biosignals from the performer’s muscles. It will allow musicians to perform electronic sounds from bodily gestures. Muscle tension will be sensed by innovative new electromyogram sensing hardware packaged in an ergonomic housing and coupled to wireless communication. Sophisticated machine learning methods developed in the ERC MetaGesture Music and H2020 Rapid-Mix projects will track musician gesture and create meaningful relationships with computer-based synthesized sound. The BioMusical Instrument will be marketed to three distinct application areas: First, it will enable “hands-free” performance of electronic music. Second, the visualization of body states will make it a useful training tool in traditional musical instrument pedagogy. Finally, the sonification of physiological signals will allow the instrument to be used in the health sector in physical rehabilitation exercises. The BioMusical Instrument will be the first product to combine EMG sensing, machine learning, and advanced audio signal processing. We have identified partners in the biomedical hardware field, the music technology industry, and rehabilitation research with whom we will benchmark and evaluate the product prototype.
Max ERC Funding
149 901 €
Duration
Start date: 2018-05-01, End date: 2019-10-31
Project acronym BioNanoPattern
Project Protein nano-patterning using DNA nanotechnology; control of surface-based immune system activation
Researcher (PI) Thomas Harry SHARP
Host Institution (HI) ACADEMISCH ZIEKENHUIS LEIDEN
Call Details Starting Grant (StG), LS9, ERC-2017-STG
Summary Protein nanopatterning concerns the geometric arrangement of individual proteins with nanometre accuracy. It is becoming apparent that protein nanopatterns are essential for cellular function, and have roles in cell signalling and protection, phagocytosis and stem cell differentiation. Recent research indicates that our immune system is activated by nanopatterned antibody platforms, which initiate the classical Complement pathway by binding to the first component of Complement, the C1 complex. DNA nanotechnology can be used to form self-assembled nanoscale structures, which are ideal for use as templates to pattern proteins with specific geometries and nanometre accuracy. I propose to use DNA to nanopattern antigens and agonistic aptamers with defined geometry to study and control Complement pathway activation by the C1 complex.
To develop and demonstrate the potential use of DNA to nanopattern proteins, the first aim of this proposal is to design DNA nanotemplates suitable for patterning antibody-binding sites. Antibodies and C1 will bind with specific geometry, and the relationship between antibody geometry and Complement activation will be assessed using novel liposome assays. Using DNA to mimic antigenic surfaces will enable high-resolution structure determination of DNA-antibody-C1 complexes, both in solution and on lipid bilayer surfaces, using phase plate cryo-electron microscopy to elucidate the structure-activation relationship of C1.
The second aim of this proposal is to evolve agonistic aptamers that directly bind to and activate C1, and incorporate these into DNA nanotemplates. These nanopatterned aptamers will enable further study of C1 activation, and allow direct targeting of Complement activation to specific cells within a population of cell types to demonstrate targeted cell killing. This may open up new and highly efficient ways to activate our immune system in vivo, with potential for targeted anti-tumour immunotherapies.
Summary
Protein nanopatterning concerns the geometric arrangement of individual proteins with nanometre accuracy. It is becoming apparent that protein nanopatterns are essential for cellular function, and have roles in cell signalling and protection, phagocytosis and stem cell differentiation. Recent research indicates that our immune system is activated by nanopatterned antibody platforms, which initiate the classical Complement pathway by binding to the first component of Complement, the C1 complex. DNA nanotechnology can be used to form self-assembled nanoscale structures, which are ideal for use as templates to pattern proteins with specific geometries and nanometre accuracy. I propose to use DNA to nanopattern antigens and agonistic aptamers with defined geometry to study and control Complement pathway activation by the C1 complex.
To develop and demonstrate the potential use of DNA to nanopattern proteins, the first aim of this proposal is to design DNA nanotemplates suitable for patterning antibody-binding sites. Antibodies and C1 will bind with specific geometry, and the relationship between antibody geometry and Complement activation will be assessed using novel liposome assays. Using DNA to mimic antigenic surfaces will enable high-resolution structure determination of DNA-antibody-C1 complexes, both in solution and on lipid bilayer surfaces, using phase plate cryo-electron microscopy to elucidate the structure-activation relationship of C1.
The second aim of this proposal is to evolve agonistic aptamers that directly bind to and activate C1, and incorporate these into DNA nanotemplates. These nanopatterned aptamers will enable further study of C1 activation, and allow direct targeting of Complement activation to specific cells within a population of cell types to demonstrate targeted cell killing. This may open up new and highly efficient ways to activate our immune system in vivo, with potential for targeted anti-tumour immunotherapies.
Max ERC Funding
1 499 850 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym BIONET
Project Network Topology Complements Genome as a Source of Biological Information
Researcher (PI) Natasa Przulj
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Starting Grant (StG), PE6, ERC-2011-StG_20101014
Summary Genetic sequences have had an enormous impact on our understanding of biology. The expectation is that biological network data will have a similar impact. However, progress is hindered by a lack of sophisticated graph theoretic tools that will mine these large networked datasets.
In recent breakthrough work at the boundary of computer science and biology supported by my USA NSF CAREER award, I developed sensitive network analysis, comparison and embedding tools which demonstrated that protein-protein interaction networks of eukaryotes are best modeled by geometric graphs. Also, they established phenotypically validated, unprecedented link between network topology and biological function and disease. Now I propose to substantially extend these preliminary results and design sensitive and robust network alignment methods that will lead to uncovering unknown biology and evolutionary relationships. The potential ground-breaking impact of such network alignment tools could be parallel to the impact the BLAST family of sequence alignment tools that have revolutionized our understanding of biological systems and therapeutics. Furthermore, I propose to develop additional sophisticated graph theoretic techniques to mine network data and hence complement biological information that can be extracted from sequence. I propose to exploit these new techniques for biological applications in collaboration with experimentalists at Imperial College London: 1. aligning biological networks of species whose genomes are closely related, but that have very different phenotypes, in order to uncover systems-level factors that contribute to pronounced differences; 2. compare and contrast stress response pathways and metabolic pathways in bacteria in a unified systems-level framework and exploit the findings for: (a) bioengineering of micro-organisms for industrial applications (production of bio-fuels, bioremediation, production of biopolymers); (b) biomedical applications.
Summary
Genetic sequences have had an enormous impact on our understanding of biology. The expectation is that biological network data will have a similar impact. However, progress is hindered by a lack of sophisticated graph theoretic tools that will mine these large networked datasets.
In recent breakthrough work at the boundary of computer science and biology supported by my USA NSF CAREER award, I developed sensitive network analysis, comparison and embedding tools which demonstrated that protein-protein interaction networks of eukaryotes are best modeled by geometric graphs. Also, they established phenotypically validated, unprecedented link between network topology and biological function and disease. Now I propose to substantially extend these preliminary results and design sensitive and robust network alignment methods that will lead to uncovering unknown biology and evolutionary relationships. The potential ground-breaking impact of such network alignment tools could be parallel to the impact the BLAST family of sequence alignment tools that have revolutionized our understanding of biological systems and therapeutics. Furthermore, I propose to develop additional sophisticated graph theoretic techniques to mine network data and hence complement biological information that can be extracted from sequence. I propose to exploit these new techniques for biological applications in collaboration with experimentalists at Imperial College London: 1. aligning biological networks of species whose genomes are closely related, but that have very different phenotypes, in order to uncover systems-level factors that contribute to pronounced differences; 2. compare and contrast stress response pathways and metabolic pathways in bacteria in a unified systems-level framework and exploit the findings for: (a) bioengineering of micro-organisms for industrial applications (production of bio-fuels, bioremediation, production of biopolymers); (b) biomedical applications.
Max ERC Funding
1 638 175 €
Duration
Start date: 2012-01-01, End date: 2017-12-31
Project acronym BioNet
Project Dynamical Redesign of Biomolecular Networks
Researcher (PI) Edina ROSTA
Host Institution (HI) KING'S COLLEGE LONDON
Call Details Starting Grant (StG), PE4, ERC-2017-STG
Summary Enzymes created by Nature are still more selective and can be orders of magnitude more efficient than man-made catalysts, in spite of recent advances in the design of de novo catalysts and in enzyme redesign. The optimal engineering of either small molecular or of complex biological catalysts requires both (i) accurate quantitative computational methods capable of a priori assessing catalytic efficiency, and (ii) molecular design principles and corresponding algorithms to achieve, understand and control biomolecular catalytic function and mechanisms. Presently, the computational design of biocatalysts is challenging due to the need for accurate yet computationally-intensive quantum mechanical calculations of bond formation and cleavage, as well as to the requirement for proper statistical sampling over very many degrees of freedom. Pioneering enhanced sampling and analysis methods have been developed to address crucial challenges bridging the gap between the available simulation length and the biologically relevant timescales. However, biased simulations do not generally permit the direct calculation of kinetic information. Recently, I and others pioneered simulation tools that can enable not only accurate calculations of free energies, but also of the intrinsic molecular kinetics and the underlying reaction mechanisms as well. I propose to develop more robust, automatic, and system-tailored sampling algorithms that are optimal in each case. I will use our kinetics-based methods to develop a novel theoretical framework to address catalytic efficiency and to establish molecular design principles to key design problems for new bio-inspired nanocatalysts, and to identify and characterize small molecule modulators of enzyme activity. This is a highly interdisciplinary project that will enable fundamental advances in molecular simulations and will unveil the physical principles that will lead to design and control of catalysis with Nature-like efficiency.
Summary
Enzymes created by Nature are still more selective and can be orders of magnitude more efficient than man-made catalysts, in spite of recent advances in the design of de novo catalysts and in enzyme redesign. The optimal engineering of either small molecular or of complex biological catalysts requires both (i) accurate quantitative computational methods capable of a priori assessing catalytic efficiency, and (ii) molecular design principles and corresponding algorithms to achieve, understand and control biomolecular catalytic function and mechanisms. Presently, the computational design of biocatalysts is challenging due to the need for accurate yet computationally-intensive quantum mechanical calculations of bond formation and cleavage, as well as to the requirement for proper statistical sampling over very many degrees of freedom. Pioneering enhanced sampling and analysis methods have been developed to address crucial challenges bridging the gap between the available simulation length and the biologically relevant timescales. However, biased simulations do not generally permit the direct calculation of kinetic information. Recently, I and others pioneered simulation tools that can enable not only accurate calculations of free energies, but also of the intrinsic molecular kinetics and the underlying reaction mechanisms as well. I propose to develop more robust, automatic, and system-tailored sampling algorithms that are optimal in each case. I will use our kinetics-based methods to develop a novel theoretical framework to address catalytic efficiency and to establish molecular design principles to key design problems for new bio-inspired nanocatalysts, and to identify and characterize small molecule modulators of enzyme activity. This is a highly interdisciplinary project that will enable fundamental advances in molecular simulations and will unveil the physical principles that will lead to design and control of catalysis with Nature-like efficiency.
Max ERC Funding
1 499 999 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym Bionetworking
Project Bionetworking in Asia – A social science approach to international collaboration, informal exchanges, and responsible innovation in the life sciences
Researcher (PI) Margaret Elizabeth Sleeboom-Faulkner
Host Institution (HI) THE UNIVERSITY OF SUSSEX
Call Details Starting Grant (StG), SH2, ERC-2011-StG_20101124
Summary Bio-medical innovation makes a substantial contribution to Western societies and economies. But leading research organisations in the West are increasingly reliant on clinical research conducted beyond the West. Such initiatives are challenged by uncertainties about research quality and therapeutic practices in Asian countries. These only partly justified uncertainties are augmented by unfamiliar conditions. This study examines how to create responsible innovation in the life sciences by looking for ways to overcome existing obstacles to safe, just and ethical international science collaborations.
Building on observations of scientists, managers and patients and supported by Asian language expertise, biology background, and experience with science and technology policy-making, we examine the roles of regional differences and inequalities in the networks used for patient recruitment and international research agreements. Profit-motivated networks in the life sciences also occur underground and at an informal, unregulated level, which we call bionetworking. Bionetworking is a social entrepreneurial activity involving biomedical research, healthcare and patient networks that are maintained by taking advantage of regionally differences in levels of science and technology, healthcare, education and regulatory regimes.
Using novel social-science methods, the project studies two main themes. Theme 1 examines patient recruitment networks for experimental stem cell therapies and cooperation between research and health institutions involving exchanges of patients against other resources. Theme 2 maps and analyses exchanges of biomaterials of human derivation, and forms of ‘ownership’ rights, benefits and burdens associated with their donation, possession, maintenance, and application. Integral analysis of the project nodes incorporates an analysis of public health policy and patient preference in relation to Responsible innovation, Good governance and Global assemblages.
Summary
Bio-medical innovation makes a substantial contribution to Western societies and economies. But leading research organisations in the West are increasingly reliant on clinical research conducted beyond the West. Such initiatives are challenged by uncertainties about research quality and therapeutic practices in Asian countries. These only partly justified uncertainties are augmented by unfamiliar conditions. This study examines how to create responsible innovation in the life sciences by looking for ways to overcome existing obstacles to safe, just and ethical international science collaborations.
Building on observations of scientists, managers and patients and supported by Asian language expertise, biology background, and experience with science and technology policy-making, we examine the roles of regional differences and inequalities in the networks used for patient recruitment and international research agreements. Profit-motivated networks in the life sciences also occur underground and at an informal, unregulated level, which we call bionetworking. Bionetworking is a social entrepreneurial activity involving biomedical research, healthcare and patient networks that are maintained by taking advantage of regionally differences in levels of science and technology, healthcare, education and regulatory regimes.
Using novel social-science methods, the project studies two main themes. Theme 1 examines patient recruitment networks for experimental stem cell therapies and cooperation between research and health institutions involving exchanges of patients against other resources. Theme 2 maps and analyses exchanges of biomaterials of human derivation, and forms of ‘ownership’ rights, benefits and burdens associated with their donation, possession, maintenance, and application. Integral analysis of the project nodes incorporates an analysis of public health policy and patient preference in relation to Responsible innovation, Good governance and Global assemblages.
Max ERC Funding
1 497 711 €
Duration
Start date: 2012-02-01, End date: 2017-01-31
Project acronym BioNLight
Project Targeting the biological imaging market with multifunctional fluorescent nanoparticles
Researcher (PI) Lucas BRUNSVELD
Host Institution (HI) TECHNISCHE UNIVERSITEIT EINDHOVEN
Call Details Proof of Concept (PoC), PC1, ERC-2011-PoC
Summary BioNLight has been designed to investigate the prospective of commercially exploiting our multimodal nanoparticle technology in the biological imaging market. The introduction of this technology will open up an entirely-new window of molecular imaging possibilities, thereby supporting advances in biology, drug discovery & development and diagnostics.
Funded by ERC, Prof. Brunsveld and colleagues have developed modular nanoparticles that exactly address the needs of the molecular imaging field. These nanoparticles of organic nature can be produced in a reproducible one-step method by self-assembly in water. The result is a highly-robust and biocompatible nanoparticle that can be modulated to emit any desirable colour frequency with long-term emission and high photostability. Moreover, they can be functionalised with multiple ligands thanks to great control over surface functionality and can be prepared not only for fluorescent studies, but also for other imaging technologies. In practise this implies that the technology platform can be used to advance a wide range of in-vitro and in-vivo assays and to visualise yet-uncovered processes.
It is the objective of BioNLight to select the most interesting applications for commercialisation and to build up a prospectus that can be used to convince future customers of the practicability and the imaging power of our technology platform. Besides, we aim to construct a sound business model and strategy for commercialisation. This will be done by external validation of the nanoparticles by industry followed by final optimisation, by means of an extensive market study, by building a strong IP position and by setting up a business plan with detailed financial feasibility projections. The ERC Proof of Concept Grant will enable us to take the ERC Starting Grant results to a sound business proposition.
Summary
BioNLight has been designed to investigate the prospective of commercially exploiting our multimodal nanoparticle technology in the biological imaging market. The introduction of this technology will open up an entirely-new window of molecular imaging possibilities, thereby supporting advances in biology, drug discovery & development and diagnostics.
Funded by ERC, Prof. Brunsveld and colleagues have developed modular nanoparticles that exactly address the needs of the molecular imaging field. These nanoparticles of organic nature can be produced in a reproducible one-step method by self-assembly in water. The result is a highly-robust and biocompatible nanoparticle that can be modulated to emit any desirable colour frequency with long-term emission and high photostability. Moreover, they can be functionalised with multiple ligands thanks to great control over surface functionality and can be prepared not only for fluorescent studies, but also for other imaging technologies. In practise this implies that the technology platform can be used to advance a wide range of in-vitro and in-vivo assays and to visualise yet-uncovered processes.
It is the objective of BioNLight to select the most interesting applications for commercialisation and to build up a prospectus that can be used to convince future customers of the practicability and the imaging power of our technology platform. Besides, we aim to construct a sound business model and strategy for commercialisation. This will be done by external validation of the nanoparticles by industry followed by final optimisation, by means of an extensive market study, by building a strong IP position and by setting up a business plan with detailed financial feasibility projections. The ERC Proof of Concept Grant will enable us to take the ERC Starting Grant results to a sound business proposition.
Max ERC Funding
149 990 €
Duration
Start date: 2012-08-01, End date: 2013-07-31
Project acronym BIOPROPERTY
Project Biomedical Research and the Future of Property Rights
Researcher (PI) Javier Lezaun Barreras
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Starting Grant (StG), SH2, ERC-2010-StG_20091209
Summary This research project investigates the dynamics of private and public property in contemporary biomedical research. It will develop an analytical framework combining insights from science and technology studies, economic sociology, and legal and political philosophy, and pursues a social scientific investigation of the evolution of intellectual property rights in three fields of bioscientific research: 1) the use of transgenic research mice; 2) the legal status of totipotent and pluripotent stem cell lines; and 3) modes of collaboration for research and development on neglected diseases. These three domains, and their attendant modes of appropriation, will be compared across three general research themes: a) the production of public scientific goods; b) categories of appropriation; and c) the moral economy of research. The project rests on close observation of research practices in these three domains. The BioProperty research programme will track the trajectories of property rights and property objects in each of the three fields of biomedical research.
Summary
This research project investigates the dynamics of private and public property in contemporary biomedical research. It will develop an analytical framework combining insights from science and technology studies, economic sociology, and legal and political philosophy, and pursues a social scientific investigation of the evolution of intellectual property rights in three fields of bioscientific research: 1) the use of transgenic research mice; 2) the legal status of totipotent and pluripotent stem cell lines; and 3) modes of collaboration for research and development on neglected diseases. These three domains, and their attendant modes of appropriation, will be compared across three general research themes: a) the production of public scientific goods; b) categories of appropriation; and c) the moral economy of research. The project rests on close observation of research practices in these three domains. The BioProperty research programme will track the trajectories of property rights and property objects in each of the three fields of biomedical research.
Max ERC Funding
887 602 €
Duration
Start date: 2011-03-01, End date: 2014-12-31
Project acronym BioREAD
Project BioREAD; a Continuous Barrier Quality Monitoring System for Organs-on-Chip
Researcher (PI) Albert Van den Berg
Host Institution (HI) UNIVERSITEIT TWENTE
Call Details Proof of Concept (PoC), ERC-2016-PoC, ERC-2016-PoC
Summary Organs-on-chip are expected to play a crucial role in the pharmaceutical industry for drug development and study of organs and diseases. We propose the development of an electrical detector that enables simple, versatile and continuous quality monitoring of these devices and is essential for commercialization. Combined with recent advances in stem cell technology, Organ-on-Chips can be used to do drug screening on an individual level. Therefore it can serve as instrument for personalized medicine, by determining the effectiveness of selected compounds, as well as possible side-effects to determine safe drug doses on a person-specific level. Moreover, Organs-on-Chip will greatly contribute to a further reduction in the need for animal testing. Besides the pharmaceutical industry, Organs-on-Chip hold great promise for the food and cosmetics industry to test the safety of products.
Organ-on-Chip systems need continuous monitoring of the quality of the cell barrier to guarantee reliable outcomes of the drug development tests. State-of-the-art methods, such as fluorescence and commercially available Trans-Endothelial Electrical Resistance (TEER) measurement apparatus are discontinuous, inaccurate and/or harmful for the cells and therefore unsuitable for pharmaceutical applications. Our innovation overcomes these disadvantages. It enables continuous quality monitoring of the barrier function of the organ, which is essential for the commercialization of Organs-on-Chip. The BIOS-Lab on Chip group holds an excellent record in high-quality TEER measurements, demonstrating direct current (DC) TEER-measurements in a gut-on-a-chip in a top-15 of most cited research papers in the journal Lab-on-Chip in 2015 and has ample experience in the development of a blood-brain barrier on chip. This proposal is part of the ERC-project Vascular Engineering on-chip using differentiated Stem Cells (VESCEL).
Summary
Organs-on-chip are expected to play a crucial role in the pharmaceutical industry for drug development and study of organs and diseases. We propose the development of an electrical detector that enables simple, versatile and continuous quality monitoring of these devices and is essential for commercialization. Combined with recent advances in stem cell technology, Organ-on-Chips can be used to do drug screening on an individual level. Therefore it can serve as instrument for personalized medicine, by determining the effectiveness of selected compounds, as well as possible side-effects to determine safe drug doses on a person-specific level. Moreover, Organs-on-Chip will greatly contribute to a further reduction in the need for animal testing. Besides the pharmaceutical industry, Organs-on-Chip hold great promise for the food and cosmetics industry to test the safety of products.
Organ-on-Chip systems need continuous monitoring of the quality of the cell barrier to guarantee reliable outcomes of the drug development tests. State-of-the-art methods, such as fluorescence and commercially available Trans-Endothelial Electrical Resistance (TEER) measurement apparatus are discontinuous, inaccurate and/or harmful for the cells and therefore unsuitable for pharmaceutical applications. Our innovation overcomes these disadvantages. It enables continuous quality monitoring of the barrier function of the organ, which is essential for the commercialization of Organs-on-Chip. The BIOS-Lab on Chip group holds an excellent record in high-quality TEER measurements, demonstrating direct current (DC) TEER-measurements in a gut-on-a-chip in a top-15 of most cited research papers in the journal Lab-on-Chip in 2015 and has ample experience in the development of a blood-brain barrier on chip. This proposal is part of the ERC-project Vascular Engineering on-chip using differentiated Stem Cells (VESCEL).
Max ERC Funding
150 000 €
Duration
Start date: 2017-01-01, End date: 2018-06-30
Project acronym BIOSEC
Project Biodiversity and Security: understanding environmental crime, illegal wildlife trade and threat finance.
Researcher (PI) Rosaleen DUFFY
Host Institution (HI) THE UNIVERSITY OF SHEFFIELD
Call Details Advanced Grant (AdG), SH3, ERC-2015-AdG
Summary The core intellectual aim of BIOSEC is to explore whether concerns about biodiversity protection and global security are becoming integrated, and if so, in what ways. It will do so via building new theoretical approaches for political ecology.
Achim Steiner, UN Under-Secretary General and Executive Director of UNEP recently stated ‘the scale and role of wildlife and forest crime in threat finance calls for much wider policy attention’. The argument that wildlife trafficking constitutes a significant source of ‘threat finance’ takes two forms: first as a lucrative business for organised crime networks in Europe and Asia, and second as a source of finance for militias and terrorist networks, most notably Al Shabaab, Lord’s Resistance Army and Janjaweed.
BIOSEC is a four year project designed to lead debates on these emerging challenges. It will build pioneering theoretical approaches and generate new empirical data. BIOSEC takes a fully integrated approach: it will produce a better conceptual understanding of the role of illegal wildlife trade in generating threat finance; it will examine the links between source and end user countries for wildlife products; and it will investigate and analyse the emerging responses of NGOs, government agencies and international organisations to these challenges.
BIOSEC goes beyond the ‘state-of-the art’ because biodiversity protection and global security currently inhabit distinctive intellectual ‘silos’; however, they need to be analysed via an interdisciplinary research agenda that cuts across human geography, politics and international relations, criminology and conservation biology. This research is timely because in the last two years, the idea that the illegal wildlife trade constitutes a major security threat has become more prevalent in academic and policy circles, yet it is an area that is under researched and poorly understood. These recent shifts demand urgent conceptual and empirical interrogation.
Summary
The core intellectual aim of BIOSEC is to explore whether concerns about biodiversity protection and global security are becoming integrated, and if so, in what ways. It will do so via building new theoretical approaches for political ecology.
Achim Steiner, UN Under-Secretary General and Executive Director of UNEP recently stated ‘the scale and role of wildlife and forest crime in threat finance calls for much wider policy attention’. The argument that wildlife trafficking constitutes a significant source of ‘threat finance’ takes two forms: first as a lucrative business for organised crime networks in Europe and Asia, and second as a source of finance for militias and terrorist networks, most notably Al Shabaab, Lord’s Resistance Army and Janjaweed.
BIOSEC is a four year project designed to lead debates on these emerging challenges. It will build pioneering theoretical approaches and generate new empirical data. BIOSEC takes a fully integrated approach: it will produce a better conceptual understanding of the role of illegal wildlife trade in generating threat finance; it will examine the links between source and end user countries for wildlife products; and it will investigate and analyse the emerging responses of NGOs, government agencies and international organisations to these challenges.
BIOSEC goes beyond the ‘state-of-the art’ because biodiversity protection and global security currently inhabit distinctive intellectual ‘silos’; however, they need to be analysed via an interdisciplinary research agenda that cuts across human geography, politics and international relations, criminology and conservation biology. This research is timely because in the last two years, the idea that the illegal wildlife trade constitutes a major security threat has become more prevalent in academic and policy circles, yet it is an area that is under researched and poorly understood. These recent shifts demand urgent conceptual and empirical interrogation.
Max ERC Funding
1 822 729 €
Duration
Start date: 2016-09-01, End date: 2020-08-31
Project acronym BIOSPACE
Project Monitoring Biodiversity from Space
Researcher (PI) Andrew Kerr Skidmore
Host Institution (HI) UNIVERSITEIT TWENTE
Call Details Advanced Grant (AdG), SH2, ERC-2018-ADG
Summary Life, with all its diversity, is in crisis. As humans increasingly encroach on biologically complex semi- natural landscapes, no organism, place or ecological function remains unaffected. While all 196 parties (195 countries plus the European Union) to the UN Convention on Biodiversity (CBD) have agreed to monitor the state of biodiversity, the currently available methods to do so leave much to be desired. Traditional monitoring involves the field observation of species by trained specialists, aided by skilled volunteers, whose expertise is restricted to specific biotic groupings. In a process that is both time consuming and inconsistent across time and space, botanists identify and record the presence of plant species and ornithologists the bird biota, resulting in 'unpopular' biotic groups such as fungi, bacteria and insects being under-observed or escaping identification altogether. In this project, a fundamentally different approach to terrestrial biodiversity monitoring couples next generation satellite remote sensing with environmental DNA (eDNA) profiling, complemented where available by legacy human-observed datasets. Satellite remote sensing is able to survey the environment as a single, continuous, fine-resolution map, while eDNA profiling can rapidly quantify much greater taxonomical and functional breadth and depth than human field observation. This project combines, for the first time, these two powerful, cutting-edge techniques for monitoring biodiversity at the global level in a consistent manner. Following from this, another key innovation will be the deepening of our scientific understanding of how biodiversity is impacted by anthropogenic pressure as well as by natural environmental gradients. In concert, these scientific developments will enable the accurate and fine grain monitoring of biodiversity from space – a ground-breaking contribution to the quest to meet the UN Sustainable Development Goals and CBD Aichi targets.
Summary
Life, with all its diversity, is in crisis. As humans increasingly encroach on biologically complex semi- natural landscapes, no organism, place or ecological function remains unaffected. While all 196 parties (195 countries plus the European Union) to the UN Convention on Biodiversity (CBD) have agreed to monitor the state of biodiversity, the currently available methods to do so leave much to be desired. Traditional monitoring involves the field observation of species by trained specialists, aided by skilled volunteers, whose expertise is restricted to specific biotic groupings. In a process that is both time consuming and inconsistent across time and space, botanists identify and record the presence of plant species and ornithologists the bird biota, resulting in 'unpopular' biotic groups such as fungi, bacteria and insects being under-observed or escaping identification altogether. In this project, a fundamentally different approach to terrestrial biodiversity monitoring couples next generation satellite remote sensing with environmental DNA (eDNA) profiling, complemented where available by legacy human-observed datasets. Satellite remote sensing is able to survey the environment as a single, continuous, fine-resolution map, while eDNA profiling can rapidly quantify much greater taxonomical and functional breadth and depth than human field observation. This project combines, for the first time, these two powerful, cutting-edge techniques for monitoring biodiversity at the global level in a consistent manner. Following from this, another key innovation will be the deepening of our scientific understanding of how biodiversity is impacted by anthropogenic pressure as well as by natural environmental gradients. In concert, these scientific developments will enable the accurate and fine grain monitoring of biodiversity from space – a ground-breaking contribution to the quest to meet the UN Sustainable Development Goals and CBD Aichi targets.
Max ERC Funding
2 470 315 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym BioStealth
Project Explore the potentialities of biostealth coatings for tissue engineering and reconstructive medicine
Researcher (PI) Pascal Jonkheijm
Host Institution (HI) UNIVERSITEIT TWENTE
Call Details Proof of Concept (PoC), PC1, ERC-2014-PoC
Summary BioStealth production of implant coatings provides an exciting business opportunity. BioStealth offers unique advantages of societal and economic importance, such as public health and sick leave.
Biocompatible materials, i.e. materials with proper cell response upon implantation, are attractive for restoring body function. Conventional implant coating methods lack in quality and therefore the majority, if not all, bio-coatings fail in proper interaction with host tissue, either caused by absence of biological triggers, biofouling or unwanted chemistry. This lack of proper interaction occurs fast upon implantation and disturbs specific cell interaction, eventually causing infections. Mostly, patients need rehospitalization which increase health care costs.
BioStealth produces easy and cheap implant coatings by dipping or spraying lipids. BioStealth lipid coatings are air-stable and suitable for in-vivo use. BioStealth can be applied to FDA approved implant materials without changing the mechanical properties, which is key for tissue engineering and reconstructive medicine. BioStealth coatings have a tunable composition which makes them an ideal coating to improve interactions with cells. These factors greatly enhance application potential.
Non-fouling lipids were suggested before, but as hydrogels are used for preconditioning implants, air-stability, fast procedures, tunable capability and the range of materials that can be coated and used in-vivo is very limited. In BioStealth innovative, robust conditioning of implants with plasma is used for lipid attachment, creating a breakthrough in integration of implants with tissue.
A business case will be developed for BioStealth, covering different markets and routes for market introduction. Results of market analysis and financing needs will be combined with science-based technology comparison and used for discussions with potential industry partners. Several companies have already expressed interest in BioStealth.
Summary
BioStealth production of implant coatings provides an exciting business opportunity. BioStealth offers unique advantages of societal and economic importance, such as public health and sick leave.
Biocompatible materials, i.e. materials with proper cell response upon implantation, are attractive for restoring body function. Conventional implant coating methods lack in quality and therefore the majority, if not all, bio-coatings fail in proper interaction with host tissue, either caused by absence of biological triggers, biofouling or unwanted chemistry. This lack of proper interaction occurs fast upon implantation and disturbs specific cell interaction, eventually causing infections. Mostly, patients need rehospitalization which increase health care costs.
BioStealth produces easy and cheap implant coatings by dipping or spraying lipids. BioStealth lipid coatings are air-stable and suitable for in-vivo use. BioStealth can be applied to FDA approved implant materials without changing the mechanical properties, which is key for tissue engineering and reconstructive medicine. BioStealth coatings have a tunable composition which makes them an ideal coating to improve interactions with cells. These factors greatly enhance application potential.
Non-fouling lipids were suggested before, but as hydrogels are used for preconditioning implants, air-stability, fast procedures, tunable capability and the range of materials that can be coated and used in-vivo is very limited. In BioStealth innovative, robust conditioning of implants with plasma is used for lipid attachment, creating a breakthrough in integration of implants with tissue.
A business case will be developed for BioStealth, covering different markets and routes for market introduction. Results of market analysis and financing needs will be combined with science-based technology comparison and used for discussions with potential industry partners. Several companies have already expressed interest in BioStealth.
Max ERC Funding
150 000 €
Duration
Start date: 2015-02-01, End date: 2016-07-31
Project acronym BIOSUSAMIN
Project The design and development of efficient biocatalytic cascades and biosynthetic pathways for the sustainable production of amines
Researcher (PI) Francesco Mutti
Host Institution (HI) UNIVERSITEIT VAN AMSTERDAM
Call Details Starting Grant (StG), LS9, ERC-2014-STG
Summary The objective of this project is to design and develop biocatalytic cascades, using purified enzymes in vitro, as well as biosynthetic pathways in whole cell microbial organisms. These biocatalytic cascades and biosynthetic pathways will be developed for the synthesis of chiral and achiral amines that are of particular interest for the chemical industry. The amine functionality will be introduced using amine dehydrogenases (AmDHs) as biocatalysts in the pivotal core enzymatic step. AmDHs are a new class of enzymes that have recently been obtained by protein engineering of wild-type amino acid dehydrogenases. However, only two AmDHs have been generated so far and, moreover, they show a limited substrate scope. Therefore protein engineering will be undertaken in order to expand the substrate scope of the already existing AmDHs. In addition, novel AmDHs will be generated starting from different wild-type amino acid dehydrogenases as scaffolds, whose amino acid and DNA sequences are available in databases, literature, libraries, etc. In particular, protein engineering will be focused on the specific chemical targets that are the objectives of the designed biocatalytic cascades and in addition, screening for more diverse substrates will also be carried out. Finally, the AmDHs will be used in combination with other enzymes such as alcohol dehydrogenases, oxidases, alkane monooxygenases, etc., to deliver variously functionalised amines and derivatives as final products with elevated yields, perfect chemo- regio- and stereoselectivity, enhanced atom efficiency and minimum environmental impact. Such an approach will be realised through the design of new pathways that will convert inexpensive starting materials from renewable resources, encompassing the internal recycling of redox equivalents, the use of inorganic ammonia as nitrogen source and, if necessary, only molecular oxygen as the innocuous additional oxidant. Water will be the sole by-product.
Summary
The objective of this project is to design and develop biocatalytic cascades, using purified enzymes in vitro, as well as biosynthetic pathways in whole cell microbial organisms. These biocatalytic cascades and biosynthetic pathways will be developed for the synthesis of chiral and achiral amines that are of particular interest for the chemical industry. The amine functionality will be introduced using amine dehydrogenases (AmDHs) as biocatalysts in the pivotal core enzymatic step. AmDHs are a new class of enzymes that have recently been obtained by protein engineering of wild-type amino acid dehydrogenases. However, only two AmDHs have been generated so far and, moreover, they show a limited substrate scope. Therefore protein engineering will be undertaken in order to expand the substrate scope of the already existing AmDHs. In addition, novel AmDHs will be generated starting from different wild-type amino acid dehydrogenases as scaffolds, whose amino acid and DNA sequences are available in databases, literature, libraries, etc. In particular, protein engineering will be focused on the specific chemical targets that are the objectives of the designed biocatalytic cascades and in addition, screening for more diverse substrates will also be carried out. Finally, the AmDHs will be used in combination with other enzymes such as alcohol dehydrogenases, oxidases, alkane monooxygenases, etc., to deliver variously functionalised amines and derivatives as final products with elevated yields, perfect chemo- regio- and stereoselectivity, enhanced atom efficiency and minimum environmental impact. Such an approach will be realised through the design of new pathways that will convert inexpensive starting materials from renewable resources, encompassing the internal recycling of redox equivalents, the use of inorganic ammonia as nitrogen source and, if necessary, only molecular oxygen as the innocuous additional oxidant. Water will be the sole by-product.
Max ERC Funding
1 497 270 €
Duration
Start date: 2015-05-01, End date: 2020-04-30
Project acronym BIOSYNCEN
Project Dissection of centromeric chromatin and components: A biosynthetic approach
Researcher (PI) Patrick Heun
Host Institution (HI) THE UNIVERSITY OF EDINBURGH
Call Details Starting Grant (StG), LS2, ERC-2012-StG_20111109
Summary The centromere is one of the most important chromosomal elements. It is required for proper chromosome segregation in mitosis and meiosis and readily recognizable as the primary constriction of mitotic chromosomes. Proper centromere function is essential to ensure genome stability; therefore understanding centromere identity is directly relevant to cancer biology and gene therapy. How centromeres are established and maintained is however still an open question in the field. In most organisms this appears to be regulated by an epigenetic mechanism. The key candidate for such an epigenetic mark is CENH3 (CENP-A in mammals, CID in Drosophila), a centromere-specific histone H3 variant that is essential for centromere function and exclusively found in the nucleosomes of centromeric chromatin. Using a biosynthetic approach of force-targeting CENH3 in Drosophila to non-centromeric DNA, we were able to induce centromere function and demonstrate that CENH3 is sufficient to determine centromere identity. Here we propose to move this experimental setup across evolutionary boundaries into human cells to develop improved human artificial chromosomes (HACs). We will make further use of this unique setup to dissect the function of targeted CENH3 both in Drosophila and human cells. Contributing centromeric components and histone modifications of centromeric chromatin will be characterized in detail by mass spectroscopy in Drosophila. Finally we are proposing to develop a technique that allows high-resolution mapping of proteins on repetitive DNA to help further characterizing known and novel centromere components. This will be achieved by combining two independently established techniques: DNA methylation and DNA fiber combing. This ambitious proposal will significantly advance our understanding of how centromeres are determined and help the development of improved HACs for therapeutic applications in the future.
Summary
The centromere is one of the most important chromosomal elements. It is required for proper chromosome segregation in mitosis and meiosis and readily recognizable as the primary constriction of mitotic chromosomes. Proper centromere function is essential to ensure genome stability; therefore understanding centromere identity is directly relevant to cancer biology and gene therapy. How centromeres are established and maintained is however still an open question in the field. In most organisms this appears to be regulated by an epigenetic mechanism. The key candidate for such an epigenetic mark is CENH3 (CENP-A in mammals, CID in Drosophila), a centromere-specific histone H3 variant that is essential for centromere function and exclusively found in the nucleosomes of centromeric chromatin. Using a biosynthetic approach of force-targeting CENH3 in Drosophila to non-centromeric DNA, we were able to induce centromere function and demonstrate that CENH3 is sufficient to determine centromere identity. Here we propose to move this experimental setup across evolutionary boundaries into human cells to develop improved human artificial chromosomes (HACs). We will make further use of this unique setup to dissect the function of targeted CENH3 both in Drosophila and human cells. Contributing centromeric components and histone modifications of centromeric chromatin will be characterized in detail by mass spectroscopy in Drosophila. Finally we are proposing to develop a technique that allows high-resolution mapping of proteins on repetitive DNA to help further characterizing known and novel centromere components. This will be achieved by combining two independently established techniques: DNA methylation and DNA fiber combing. This ambitious proposal will significantly advance our understanding of how centromeres are determined and help the development of improved HACs for therapeutic applications in the future.
Max ERC Funding
1 755 960 €
Duration
Start date: 2013-02-01, End date: 2019-01-31
Project acronym BIOTIME
Project Biological diversity in an inconstant world: temporal turnover in modified ecosystems
Researcher (PI) Anne Elizabeth Magurran
Host Institution (HI) THE UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS
Call Details Advanced Grant (AdG), LS8, ERC-2009-AdG
Summary This project addresses a key issue in fundamental research - one that has challenged ecologists ever since Darwin s time that is why some species are common, and others rare, and why, despite marked turnover at the level of individual species abundances, the structure of a community is generally conserved through time. Its aim is to examine the temporal dynamics of species abundance distributions (SADs), and to assess the capacity of these distributions to withstand change (resistance) and to recover from change (resilience). These are topical and important questions given the increasing impact that humans are having on the natural world. There are three components to the research. First, we will model SADs and predict responses to a range of events including climate change and the arrival of invasive species. A range of modeling approaches (including neutral, niche and statistical) will be adopted; by incorporating temporal turnover in hitherto static models we will advance the field. Second, we will test predictions concerning the resistance and resilience of SADs by a comparative analysis of existing data sets (that encompass communities in terrestrial, freshwater and marine environments for ecosystems extending from the poles to the tropics) and through a new field experiment that quantifies temporal turnover across a community (unicellular organisms to vertebrates) in relation to factors both natural (dispersal limitation) and anthropogenic (human disturbance) thought to shape SADs. In the final part of the project we will apply these new insights into the temporal dynamics of SADs to two important conservation challenges. These are 1) the conservation of biodiversity in a heavily utilized European landscape (Fife, Scotland) and 2) the conservation of biodiversity in Mamirauá and Amaña reserves in Amazonian flooded forest. Taken together this research will not only shed new light on the structure of ecological communities but will also aid conservation.
Summary
This project addresses a key issue in fundamental research - one that has challenged ecologists ever since Darwin s time that is why some species are common, and others rare, and why, despite marked turnover at the level of individual species abundances, the structure of a community is generally conserved through time. Its aim is to examine the temporal dynamics of species abundance distributions (SADs), and to assess the capacity of these distributions to withstand change (resistance) and to recover from change (resilience). These are topical and important questions given the increasing impact that humans are having on the natural world. There are three components to the research. First, we will model SADs and predict responses to a range of events including climate change and the arrival of invasive species. A range of modeling approaches (including neutral, niche and statistical) will be adopted; by incorporating temporal turnover in hitherto static models we will advance the field. Second, we will test predictions concerning the resistance and resilience of SADs by a comparative analysis of existing data sets (that encompass communities in terrestrial, freshwater and marine environments for ecosystems extending from the poles to the tropics) and through a new field experiment that quantifies temporal turnover across a community (unicellular organisms to vertebrates) in relation to factors both natural (dispersal limitation) and anthropogenic (human disturbance) thought to shape SADs. In the final part of the project we will apply these new insights into the temporal dynamics of SADs to two important conservation challenges. These are 1) the conservation of biodiversity in a heavily utilized European landscape (Fife, Scotland) and 2) the conservation of biodiversity in Mamirauá and Amaña reserves in Amazonian flooded forest. Taken together this research will not only shed new light on the structure of ecological communities but will also aid conservation.
Max ERC Funding
1 812 782 €
Duration
Start date: 2010-08-01, End date: 2016-01-31
Project acronym BioWater
Project Development of new chemical imaging techniques to understand the function of water in biocompatibility, biodegradation and biofouling
Researcher (PI) Aoife Ann Gowen
Host Institution (HI) UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN
Call Details Starting Grant (StG), PE8, ERC-2013-StG
Summary Water is the first molecule to come into contact with biomaterials in biological systems and thus essential to the processes of biodegradation, biocompatibility and biofouling. Despite this fact, little is currently known about how biomaterials interact with water. This knowledge is crucial for the development and optimisation of novel functional biomaterials for human health (e.g. biosensing devices, erodible biomaterials, drug release carriers, wound dressings). BioWater will develop near and mid infrared chemical imaging (NIR-MIR-CI) techniques to investigate the fundamental interaction between biomaterials and water in order to understand the key processes of biodegradation, biocompatibility and biofouling. This ambitious yet achievable project will focus on two major categories of biomaterials relevant to human health: extracellular collagens and synthetic biopolymers. Initially, interactions between these biomaterials and water will be investigated; subsequently interactions with more complicated matrices (e.g. protein solutions and cellular systems) will be studied. CI data will be correlated with standard surface characterization, biocompatibility and biodegradation measurements. Molecular dynamic simulations will complement this work to identify the most probable molecular structures of water at different biomaterial interfaces.
Advanced understanding of the role of water in biocompatibility, biofouling and biodegradation processes will facilitate the optimization of biomaterials tailored to specific cellular environments with a broad range of therapeutic applications (e.g. drug eluting stents, tissue engineering, wound healing). The new NIR-MIR-CI/chemometric methodologies developed in BioWater will allow for the rapid characterization and monitoring of novel biomaterials at pre-clinical stages, improving process control by overcoming the laborious and time consuming large-scale sampling methods currently required in biomaterials development.
Summary
Water is the first molecule to come into contact with biomaterials in biological systems and thus essential to the processes of biodegradation, biocompatibility and biofouling. Despite this fact, little is currently known about how biomaterials interact with water. This knowledge is crucial for the development and optimisation of novel functional biomaterials for human health (e.g. biosensing devices, erodible biomaterials, drug release carriers, wound dressings). BioWater will develop near and mid infrared chemical imaging (NIR-MIR-CI) techniques to investigate the fundamental interaction between biomaterials and water in order to understand the key processes of biodegradation, biocompatibility and biofouling. This ambitious yet achievable project will focus on two major categories of biomaterials relevant to human health: extracellular collagens and synthetic biopolymers. Initially, interactions between these biomaterials and water will be investigated; subsequently interactions with more complicated matrices (e.g. protein solutions and cellular systems) will be studied. CI data will be correlated with standard surface characterization, biocompatibility and biodegradation measurements. Molecular dynamic simulations will complement this work to identify the most probable molecular structures of water at different biomaterial interfaces.
Advanced understanding of the role of water in biocompatibility, biofouling and biodegradation processes will facilitate the optimization of biomaterials tailored to specific cellular environments with a broad range of therapeutic applications (e.g. drug eluting stents, tissue engineering, wound healing). The new NIR-MIR-CI/chemometric methodologies developed in BioWater will allow for the rapid characterization and monitoring of novel biomaterials at pre-clinical stages, improving process control by overcoming the laborious and time consuming large-scale sampling methods currently required in biomaterials development.
Max ERC Funding
1 487 682 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym BLACKHOLECAM
Project Imaging the Event Horizon of Black Holes
Researcher (PI) Michael Kramer
Host Institution (HI) STICHTING KATHOLIEKE UNIVERSITEIT
Call Details Synergy Grants (SyG), SYG6, ERC-2013-SyG
Summary Gravity is successfully described by Einstein’s theory of general relativity (GR), governing the structure of our entire universe. Yet it remains the least understood of all forces in nature, resisting unification with quantum physics. One of the most fundamental predictions of GR are black holes (BHs). Their defining feature is the event horizon, the surface that light cannot escape and where time and space exchange their nature. However, while there are many convincing BH candidates in the universe, there is no experimental proof for the existence of an event horizon yet. So, does GR really hold in its most extreme limit? Do BHs exist or are alternatives needed? Here we propose to build a Black Hole Camera that for the first time will take an actual picture of a BH and image the shadow of its event horizon. We will do this by providing the equipment and software needed to turn a network of existing mm-wave radio telescopes into a global interferometer. This virtual telescope, when supplemented with the new Atacama Large Millimetre Array (ALMA), has the power to finally resolve the supermassive BH in the centre of our Milky Way – the best-measured BH candidate we know of. In order to compare the image with the theoretical predictions we will need to perform numerical modelling and ray tracing in GR and alternative theories. In addition, we will need to determine accurately the two basic parameters of the BH: its mass and spin. This will become possible by precisely measuring orbits of stars with optical interferometry on ESO’s VLTI. Moreover, our equipment at ALMA will allow for the first detection of pulsars around the BH. Already a single pulsar will independently determine the BH’s mass to one part in a million and its spin to a few per cent. This unique combination will not only produce the first-ever image of a BH, but also turn our Galactic Centre into a fundamental-physics laboratory to measure the fabric of space and time with unprecedented precision.
Summary
Gravity is successfully described by Einstein’s theory of general relativity (GR), governing the structure of our entire universe. Yet it remains the least understood of all forces in nature, resisting unification with quantum physics. One of the most fundamental predictions of GR are black holes (BHs). Their defining feature is the event horizon, the surface that light cannot escape and where time and space exchange their nature. However, while there are many convincing BH candidates in the universe, there is no experimental proof for the existence of an event horizon yet. So, does GR really hold in its most extreme limit? Do BHs exist or are alternatives needed? Here we propose to build a Black Hole Camera that for the first time will take an actual picture of a BH and image the shadow of its event horizon. We will do this by providing the equipment and software needed to turn a network of existing mm-wave radio telescopes into a global interferometer. This virtual telescope, when supplemented with the new Atacama Large Millimetre Array (ALMA), has the power to finally resolve the supermassive BH in the centre of our Milky Way – the best-measured BH candidate we know of. In order to compare the image with the theoretical predictions we will need to perform numerical modelling and ray tracing in GR and alternative theories. In addition, we will need to determine accurately the two basic parameters of the BH: its mass and spin. This will become possible by precisely measuring orbits of stars with optical interferometry on ESO’s VLTI. Moreover, our equipment at ALMA will allow for the first detection of pulsars around the BH. Already a single pulsar will independently determine the BH’s mass to one part in a million and its spin to a few per cent. This unique combination will not only produce the first-ever image of a BH, but also turn our Galactic Centre into a fundamental-physics laboratory to measure the fabric of space and time with unprecedented precision.
Max ERC Funding
13 975 744 €
Duration
Start date: 2014-10-01, End date: 2020-09-30
Project acronym BlackHoleMaps
Project Mapping gravitational waves from collisions of black holes
Researcher (PI) Mark Douglas Hannam
Host Institution (HI) CARDIFF UNIVERSITY
Call Details Consolidator Grant (CoG), PE2, ERC-2014-CoG
Summary Breakthroughs in numerical relativity in 2005 gave us unprecedented access to the strong-field regime of general relativity, making possible solutions of the full nonlinear Einstein equations for the merger of two black holes. Numerical relativity is also crucial to study fundamental physics with gravitational-wave (GW) observations: numerical solutions allow us to construct models that will be essential to extract physical information from observations in data from Advanced LIGO and Virgo, which will operate from late 2015. Complete signal models will allow us to follow up our first theoretical predictions of the nature of black-hole mergers with their first observational measurements.
The goal of this project is to advance numerical-relativity methods, deepen our understanding of black-hole mergers, and map the parameter space of binary configurations with the most comprehensive and systematic set of numerical calculations performed to date, in order to produce a complete GW signal model. Central to this problem is the purely general-relativistic effect of orbital precession. The inclusion of precession in waveform models is the most challenging and urgent theoretical problem in the build-up to GW astronomy. Simulations must cover a seven-dimensional parameter space of binary configurations, but their computational cost makes a naive covering unfeasible. This project capitalizes on a breakthrough preliminary model produced by my team in 2013, with the pragmatic goal of focussing on the physics that will be measurable with GW detectors over the next five years.
My team at Cardiff is uniquely placed to tackle this problem. Since 2005 I have been at the forefront of black-hole simulations and waveform modelling, and the Cardiff group is a world leader in analysis of GW detector data. This project will consolidate my team to make breakthroughs in strong-field gravity, astrophysics, fundamental physics and cosmology using GW observations.
Summary
Breakthroughs in numerical relativity in 2005 gave us unprecedented access to the strong-field regime of general relativity, making possible solutions of the full nonlinear Einstein equations for the merger of two black holes. Numerical relativity is also crucial to study fundamental physics with gravitational-wave (GW) observations: numerical solutions allow us to construct models that will be essential to extract physical information from observations in data from Advanced LIGO and Virgo, which will operate from late 2015. Complete signal models will allow us to follow up our first theoretical predictions of the nature of black-hole mergers with their first observational measurements.
The goal of this project is to advance numerical-relativity methods, deepen our understanding of black-hole mergers, and map the parameter space of binary configurations with the most comprehensive and systematic set of numerical calculations performed to date, in order to produce a complete GW signal model. Central to this problem is the purely general-relativistic effect of orbital precession. The inclusion of precession in waveform models is the most challenging and urgent theoretical problem in the build-up to GW astronomy. Simulations must cover a seven-dimensional parameter space of binary configurations, but their computational cost makes a naive covering unfeasible. This project capitalizes on a breakthrough preliminary model produced by my team in 2013, with the pragmatic goal of focussing on the physics that will be measurable with GW detectors over the next five years.
My team at Cardiff is uniquely placed to tackle this problem. Since 2005 I have been at the forefront of black-hole simulations and waveform modelling, and the Cardiff group is a world leader in analysis of GW detector data. This project will consolidate my team to make breakthroughs in strong-field gravity, astrophysics, fundamental physics and cosmology using GW observations.
Max ERC Funding
1 998 009 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym BLASTOFF
Project Retooling plant immunity for resistance to blast fungi
Researcher (PI) Sophien KAMOUN
Host Institution (HI) THE SAINSBURY LABORATORY
Call Details Advanced Grant (AdG), LS9, ERC-2016-ADG
Summary Plant NLR-type immune receptors tend to have a narrow spectrum of pathogen recognition, which is currently limiting their value in agriculture. NLRs can recognize pathogen effectors through unconventional domains that have evolved by duplication of an effector target followed by fusion into the NLR. One NLR with an integrated domain is the rice resistance protein Pik-1, which binds an effector of the blast fungus Magnaporthe oryzae via its Heavy-Metal Associated (HMA) domain. We solved the crystal structure of the HMA domain of Pik-1 in complex with a blast fungus effector and gained an unprecedented level of detail of the molecular interactions that define pathogen recognition. This led to the overall aim of this proposal to generate a complete picture of the biophysical interactions between blast fungus effectors and HMA-containing cereal proteins to guide the retooling of the plant immune system towards resistance to blast diseases. M. oryzae is a general cereal killer that infects wheat, barley and rice, which are staple food for a majority of the world population. The central hypothesis of the proposed research is that mutations in cereal HMA-containing proteins will result in broad-spectrum resistance to blast fungi.
To achieve our goal, we will pursue the following objectives:
1. BIOPHYSICS. Define the biophysical properties that underpin binding of M. oryzae effectors to HMA-containing proteins of cereal crops.
2. RECEPTOR ENGINEERING. Develop Pik-1 receptors that respond to a wide-spectrum of M. oryzae effectors.
3. GENOME EDITING. Mutate HMA domain-containing genes in cereal genomes to confer broad-spectrum blast resistance.
At the completion of this project, we will generate a thorough understanding of the biophysical properties of pathogen effector binding to cereal HMA proteins, and deliver traits and non-transgenic cultivars for breeding blast disease resistance in cereal crops.
Summary
Plant NLR-type immune receptors tend to have a narrow spectrum of pathogen recognition, which is currently limiting their value in agriculture. NLRs can recognize pathogen effectors through unconventional domains that have evolved by duplication of an effector target followed by fusion into the NLR. One NLR with an integrated domain is the rice resistance protein Pik-1, which binds an effector of the blast fungus Magnaporthe oryzae via its Heavy-Metal Associated (HMA) domain. We solved the crystal structure of the HMA domain of Pik-1 in complex with a blast fungus effector and gained an unprecedented level of detail of the molecular interactions that define pathogen recognition. This led to the overall aim of this proposal to generate a complete picture of the biophysical interactions between blast fungus effectors and HMA-containing cereal proteins to guide the retooling of the plant immune system towards resistance to blast diseases. M. oryzae is a general cereal killer that infects wheat, barley and rice, which are staple food for a majority of the world population. The central hypothesis of the proposed research is that mutations in cereal HMA-containing proteins will result in broad-spectrum resistance to blast fungi.
To achieve our goal, we will pursue the following objectives:
1. BIOPHYSICS. Define the biophysical properties that underpin binding of M. oryzae effectors to HMA-containing proteins of cereal crops.
2. RECEPTOR ENGINEERING. Develop Pik-1 receptors that respond to a wide-spectrum of M. oryzae effectors.
3. GENOME EDITING. Mutate HMA domain-containing genes in cereal genomes to confer broad-spectrum blast resistance.
At the completion of this project, we will generate a thorough understanding of the biophysical properties of pathogen effector binding to cereal HMA proteins, and deliver traits and non-transgenic cultivars for breeding blast disease resistance in cereal crops.
Max ERC Funding
2 491 893 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym BLENDS
Project Between Direct and Indirect Discourse: Shifting Perspective in Blended Discourse
Researcher (PI) Emar Maier
Host Institution (HI) RIJKSUNIVERSITEIT GRONINGEN
Call Details Starting Grant (StG), SH4, ERC-2010-StG_20091209
Summary A fundamental feature of language is that it allows us to reproduce what others have said. It is traditionally assumed that there
are two ways of doing this: direct discourse, where you preserve the original speech act verbatim, and indirect discourse,
where you paraphrase it in your own words. In accordance with this dichotomy, linguists have posited a number of universal
characteristics to distinguish the two modes. At the same time, we are seeing more and more examples that seem to fall
somewhere in between. I reject the direct indirect distinction and replace it with a new paradigm of blended discourse.
Combining insights from philosophy and linguistics, my framework has only one kind of speech reporting, in which a speaker
always attempts to convey the content of the reported words from her own perspective, but can quote certain parts verbatim,
thereby effectively switching to the reported perspective.
To explain why some languages are shiftier than others, I hypothesize that a greater distance from face-to-face
communication, with the possibility of extra- and paralinguistic perspective marking, necessitated the introduction of
an artificial direct indirect separation. I test this hypothesis by investigating languages that are closely tied to direct
communication: Dutch child language, as recent studies hint at a very late acquisition of the direct indirect distinction; Dutch
Sign Language, which has a special role shift marker that bears a striking resemblance to the quotational shift of blended
discourse; and Ancient Greek, where philologists have long been observing perspective shifts.
In sum, my research combines a new philosophical insight on the nature of reported speech with formal semantic rigor and
linguistic data from child language experiments, native signers, and Greek philology.
Summary
A fundamental feature of language is that it allows us to reproduce what others have said. It is traditionally assumed that there
are two ways of doing this: direct discourse, where you preserve the original speech act verbatim, and indirect discourse,
where you paraphrase it in your own words. In accordance with this dichotomy, linguists have posited a number of universal
characteristics to distinguish the two modes. At the same time, we are seeing more and more examples that seem to fall
somewhere in between. I reject the direct indirect distinction and replace it with a new paradigm of blended discourse.
Combining insights from philosophy and linguistics, my framework has only one kind of speech reporting, in which a speaker
always attempts to convey the content of the reported words from her own perspective, but can quote certain parts verbatim,
thereby effectively switching to the reported perspective.
To explain why some languages are shiftier than others, I hypothesize that a greater distance from face-to-face
communication, with the possibility of extra- and paralinguistic perspective marking, necessitated the introduction of
an artificial direct indirect separation. I test this hypothesis by investigating languages that are closely tied to direct
communication: Dutch child language, as recent studies hint at a very late acquisition of the direct indirect distinction; Dutch
Sign Language, which has a special role shift marker that bears a striking resemblance to the quotational shift of blended
discourse; and Ancient Greek, where philologists have long been observing perspective shifts.
In sum, my research combines a new philosophical insight on the nature of reported speech with formal semantic rigor and
linguistic data from child language experiments, native signers, and Greek philology.
Max ERC Funding
677 254 €
Duration
Start date: 2011-03-01, End date: 2016-08-31
Project acronym BLINDSPOT
Project Diversity and Performance: Networks of Cognition in Markets and Teams
Researcher (PI) David STARK
Host Institution (HI) THE UNIVERSITY OF WARWICK
Call Details Advanced Grant (AdG), SH2, ERC-2015-AdG
Summary Contemporary organizations face three interrelated, but analytically distinguishable, challenges. First, they should be alert to mistakes that could be catastrophic. Second, they need to allocate attention, especially to correct past mistakes and to make accurate predictions about future developments. Third, they should be innovative, able to stand out from existing categories while being recognized as outstanding. This project investigates these cognitive challenges with the aim of developing a comprehensive sociological approach to study the social properties of cognition. Research on error detection, attention allocation, and recognizant innovation will be conducted in three distinct settings strategically chosen so the scale and complexity of the performance challenges increases across the cases. The research question that cuts across the socio-cognitive challenges asks whether and how diversity contributes to performance. 1) We first test whether social context, understood at the most basic level as the composition of a small collectivity, affects the cognitive activity of pricing. To do so, I use experimental market methods to test whether ethnic and gender diversity deflate price bubbles by disrupting herding behaviour. 2) The second study tests how the social structure of attention affects valuation. The activities involve error correction and accuracy of prediction in estimates by securities analysts; the method is two-mode network analysis; and the timing, intensity, and diversity of attention networks are the effects to be tested. 3) Whereas my first two tests examine relations among competitors, my third examines relations within and across collaborative teams. In studying the network properties of creativity, the challenge is recognizant innovation, the activity involves recording sessions in the field of music, the method is cultural network analysis, and the effects to be tested are the combined effects of stylistic diversity and social structure.
Summary
Contemporary organizations face three interrelated, but analytically distinguishable, challenges. First, they should be alert to mistakes that could be catastrophic. Second, they need to allocate attention, especially to correct past mistakes and to make accurate predictions about future developments. Third, they should be innovative, able to stand out from existing categories while being recognized as outstanding. This project investigates these cognitive challenges with the aim of developing a comprehensive sociological approach to study the social properties of cognition. Research on error detection, attention allocation, and recognizant innovation will be conducted in three distinct settings strategically chosen so the scale and complexity of the performance challenges increases across the cases. The research question that cuts across the socio-cognitive challenges asks whether and how diversity contributes to performance. 1) We first test whether social context, understood at the most basic level as the composition of a small collectivity, affects the cognitive activity of pricing. To do so, I use experimental market methods to test whether ethnic and gender diversity deflate price bubbles by disrupting herding behaviour. 2) The second study tests how the social structure of attention affects valuation. The activities involve error correction and accuracy of prediction in estimates by securities analysts; the method is two-mode network analysis; and the timing, intensity, and diversity of attention networks are the effects to be tested. 3) Whereas my first two tests examine relations among competitors, my third examines relations within and across collaborative teams. In studying the network properties of creativity, the challenge is recognizant innovation, the activity involves recording sessions in the field of music, the method is cultural network analysis, and the effects to be tested are the combined effects of stylistic diversity and social structure.
Max ERC Funding
2 492 033 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym BLOCKCHAINSOCIETY
Project The Disrupted Society: mapping the societal effects of blockchain technology diffusion
Researcher (PI) Balazs BODO
Host Institution (HI) UNIVERSITEIT VAN AMSTERDAM
Call Details Starting Grant (StG), SH3, ERC-2017-STG
Summary Recent advances in cryptography yielded the blockchain technology, which enables a radically new and decentralized method to maintain authoritative records, without the need of trusted intermediaries. Bitcoin, a cryptocurrency blockchain application has already demonstrated that it is possible to operate a purely cryptography-based, global, distributed, decentralized, anonymous financial network, independent from central and commercial banks, regulators and the state.
The same technology is now being applied to other social domains (e.g. public registries of ownership and deeds, voting systems, the internet domain name registry). But research on the societal impact of blockchain innovation is scant, and we cannot properly assess its risks and promises. In addition, crucial knowledge is missing on how blockchain technologies can and should be regulated by law.
The BlockchainSociety project focuses on three research questions. (1) What internal factors contribute to the success of a blockchain application? (2) How does society adopt blockchain? (3) How to regulate blockchain? It breaks new ground as it (1) maps the most important blockchain projects, their governance, and assesses their disruptive potential; (2) documents and analyses the social diffusion of the technology, and builds scenarios about the potential impact of blockchain diffusion; and (3) it creates an inventory of emerging policy responses, compares and assesses policy tools in terms of efficiency and impact. The project will (1) build the conceptual and methodological bridges between information law, the study of the self-governance of technological systems via Science and Technology Studies, and the study of collective control efforts of complex socio-technological assemblages via Internet Governance studies; (2) address the most pressing blockchain-specific regulatory challenges via the analysis of emerging policies, and the development of new proposals.
Summary
Recent advances in cryptography yielded the blockchain technology, which enables a radically new and decentralized method to maintain authoritative records, without the need of trusted intermediaries. Bitcoin, a cryptocurrency blockchain application has already demonstrated that it is possible to operate a purely cryptography-based, global, distributed, decentralized, anonymous financial network, independent from central and commercial banks, regulators and the state.
The same technology is now being applied to other social domains (e.g. public registries of ownership and deeds, voting systems, the internet domain name registry). But research on the societal impact of blockchain innovation is scant, and we cannot properly assess its risks and promises. In addition, crucial knowledge is missing on how blockchain technologies can and should be regulated by law.
The BlockchainSociety project focuses on three research questions. (1) What internal factors contribute to the success of a blockchain application? (2) How does society adopt blockchain? (3) How to regulate blockchain? It breaks new ground as it (1) maps the most important blockchain projects, their governance, and assesses their disruptive potential; (2) documents and analyses the social diffusion of the technology, and builds scenarios about the potential impact of blockchain diffusion; and (3) it creates an inventory of emerging policy responses, compares and assesses policy tools in terms of efficiency and impact. The project will (1) build the conceptual and methodological bridges between information law, the study of the self-governance of technological systems via Science and Technology Studies, and the study of collective control efforts of complex socio-technological assemblages via Internet Governance studies; (2) address the most pressing blockchain-specific regulatory challenges via the analysis of emerging policies, and the development of new proposals.
Max ERC Funding
1 499 631 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym BLUELEAF
Project The adaptive advantages, evolution and development of iridescence in leaves
Researcher (PI) Heather Whitney
Host Institution (HI) UNIVERSITY OF BRISTOL
Call Details Starting Grant (StG), LS8, ERC-2010-StG_20091118
Summary Iridescence is a form of structural colour which changes hue according to the angle from which it is viewed. Blue iridescence caused by multilayers has been described on the leaves of taxonomically diverse species such as the lycophyte Selaginella uncinata and the angiosperm Begonia pavonina. While much is known about the role of leaf pigment colour, the adaptive role of leaf iridescence is unknown. Hypotheses have been put forward including 1) iridescence acts as disruptive camouflage against herbivores 2) it enhances light sensing and capture in low light conditions 3) it is a photoprotective mechanism to protect shade-adapted plants against high light levels. These hypotheses are not mutually exclusive: each function may be of varying importance in different environments. To understand any one function, we need a interdisciplinary approach considering all three potential functions and their interactions. The objective of my research would be to test these hypotheses, using animal behavioural and plant physiological methods, to determine the functions of leaf iridescence and how the plant has adapted to the reflection of developmentally vital wavelengths. Use of molecular and bioinformatics methods will elucidate the genes that control the production of this potentially multifunctional optical phenomenon. This research will provide a pioneering study into the generation, developmental impact and adaptive significance of iridescence in leaves. It would also answer questions at the frontiers of several fields including those of plant evolution, insect vision, methods of camouflage, the generation and role of animal iridescence, and could also potentially inspire synthetic biomimetic applications.
Summary
Iridescence is a form of structural colour which changes hue according to the angle from which it is viewed. Blue iridescence caused by multilayers has been described on the leaves of taxonomically diverse species such as the lycophyte Selaginella uncinata and the angiosperm Begonia pavonina. While much is known about the role of leaf pigment colour, the adaptive role of leaf iridescence is unknown. Hypotheses have been put forward including 1) iridescence acts as disruptive camouflage against herbivores 2) it enhances light sensing and capture in low light conditions 3) it is a photoprotective mechanism to protect shade-adapted plants against high light levels. These hypotheses are not mutually exclusive: each function may be of varying importance in different environments. To understand any one function, we need a interdisciplinary approach considering all three potential functions and their interactions. The objective of my research would be to test these hypotheses, using animal behavioural and plant physiological methods, to determine the functions of leaf iridescence and how the plant has adapted to the reflection of developmentally vital wavelengths. Use of molecular and bioinformatics methods will elucidate the genes that control the production of this potentially multifunctional optical phenomenon. This research will provide a pioneering study into the generation, developmental impact and adaptive significance of iridescence in leaves. It would also answer questions at the frontiers of several fields including those of plant evolution, insect vision, methods of camouflage, the generation and role of animal iridescence, and could also potentially inspire synthetic biomimetic applications.
Max ERC Funding
1 118 378 €
Duration
Start date: 2011-01-01, End date: 2016-07-31
Project acronym BM
Project Becoming Muslim: Conversion to Islam and Islamisation in Eastern Ethiopia
Researcher (PI) Timothy Insoll
Host Institution (HI) THE UNIVERSITY OF EXETER
Call Details Advanced Grant (AdG), SH6, ERC-2015-AdG
Summary "
Why do people convert to Islam? The contemporary relevance of this question is immediately apparent.""Becoming Muslim"" will transform our knowledge about Islamisation processes and contexts through archaeological research in Harar, Eastern Ethiopia, and examine this in comparison to other regions in sub-Saharan Africa via publication and a major conference. Assessing genuine belief is difficult, but the impact of trade, Saints, Sufis and Holy men, proselytisation, benefits gained from Arabic literacy and administration systems, enhanced power, prestige, warfare, and belonging to the larger Muslim community have all been suggested. Equally significant is the context of conversion. Why were certain sub-Saharan African cities key points for conversion to Islam, e.g. Gao and Timbuktu in the Western Sahel, and Harar in Ethiopia? Archaeological engagement with Islamisation processes and contexts of conversion in Africa is variable, and in parts of the continent research is static. This exciting 4-year project explores, for the first time, Islamic conversion and Islamisation through focusing on Harar, the most important living Islamic centre in the Horn of Africa, and its surrounding region.
Islamic archaeology has been neglected in Ethiopia, and is wholly non-existent in Harar. Excavation at 5 key sites: 2 shrines, 2 abandoned settlements, 1 urban site, will permit evaluation of urban Islam, the veneration of saints, pilgrimage and shrine based practices, rural Islam, architecture and jihad, changes in lifeways, and early and comparative evidence for Islam and long-distance trade, through analysis of, e.g. architecture, epigraphy, burial orientation, imported artifacts, and faunal and botanical remains. Although it is fully acknowledged that conversion to Islam and Islamisation processes are not universal, my project is groundbreaking in developing and applying a transferable methodology for the archaeological explanation of ""Becoming Muslim"" in sub-Saharan Africa."
Summary
"
Why do people convert to Islam? The contemporary relevance of this question is immediately apparent.""Becoming Muslim"" will transform our knowledge about Islamisation processes and contexts through archaeological research in Harar, Eastern Ethiopia, and examine this in comparison to other regions in sub-Saharan Africa via publication and a major conference. Assessing genuine belief is difficult, but the impact of trade, Saints, Sufis and Holy men, proselytisation, benefits gained from Arabic literacy and administration systems, enhanced power, prestige, warfare, and belonging to the larger Muslim community have all been suggested. Equally significant is the context of conversion. Why were certain sub-Saharan African cities key points for conversion to Islam, e.g. Gao and Timbuktu in the Western Sahel, and Harar in Ethiopia? Archaeological engagement with Islamisation processes and contexts of conversion in Africa is variable, and in parts of the continent research is static. This exciting 4-year project explores, for the first time, Islamic conversion and Islamisation through focusing on Harar, the most important living Islamic centre in the Horn of Africa, and its surrounding region.
Islamic archaeology has been neglected in Ethiopia, and is wholly non-existent in Harar. Excavation at 5 key sites: 2 shrines, 2 abandoned settlements, 1 urban site, will permit evaluation of urban Islam, the veneration of saints, pilgrimage and shrine based practices, rural Islam, architecture and jihad, changes in lifeways, and early and comparative evidence for Islam and long-distance trade, through analysis of, e.g. architecture, epigraphy, burial orientation, imported artifacts, and faunal and botanical remains. Although it is fully acknowledged that conversion to Islam and Islamisation processes are not universal, my project is groundbreaking in developing and applying a transferable methodology for the archaeological explanation of ""Becoming Muslim"" in sub-Saharan Africa."
Max ERC Funding
1 031 105 €
Duration
Start date: 2016-09-01, End date: 2020-08-31
Project acronym BMP4EAC
Project Targeting BMP4 and BMPR1a for imaging of esophageal adenocarcinoma
Researcher (PI) Kausilia Krishnawatie KRISHNADATH
Host Institution (HI) ACADEMISCH MEDISCH CENTRUM BIJ DE UNIVERSITEIT VAN AMSTERDAM
Call Details Proof of Concept (PoC), PC1, ERC-2013-PoC
Summary Within BMP4EAC we aim to investigate the commercial feasibility of our newly discovered and highly specific antibodies against BMP4 and one of its receptors, BMPR1a, for imaging applications in oncology. BMP4 and BMPR1a are highly expressed in esophageal adenocarcinoma (EAC) and other tumors as well as their metastases. The specificity, strong binding capacity, rapid clearance, high tissue penetration level, and flexibility of our antibodies is unprecedented and makes them highly suitable for in vivo imaging applications.
The opportunity: The current methods for evaluation of disease stage consist of diverse modalities, including, CT and PET-CT scans, and ultrasonography. These techniques have major limitations to accurately detect metastasis and are inadequate for monitoring disease response. In the clinical setting we foresee applications of our proprietary technology in the non-invasive diagnosis of tumors and metastases with high expression of BMP4 and/or BMPR1a (e.g. EAC), identification of patients with high chance to respond to BMP4 inhibitors, follow tumor progression during treatment, and facilitated localization of small metastases during surgical treatment. Furthermore, the labeled antibodies can be used to investigate the efficacy of novel therapeutic agents by following tumor progression in animal models in a research setting.
The project and expected outcomes: Within the ERC PoC we will explore the commercial feasibility by in vivo validation experiments as well as by performing essential research for the formulation of a business proposition, strengthening our IP position, and developing a sound business plan. These activities will result in a proposition package that will be used to present the commercial potential to investors and other strategic partners to attract funding after completion of the ERC PoC and potentially even initiate licensing and partnership deals.
Summary
Within BMP4EAC we aim to investigate the commercial feasibility of our newly discovered and highly specific antibodies against BMP4 and one of its receptors, BMPR1a, for imaging applications in oncology. BMP4 and BMPR1a are highly expressed in esophageal adenocarcinoma (EAC) and other tumors as well as their metastases. The specificity, strong binding capacity, rapid clearance, high tissue penetration level, and flexibility of our antibodies is unprecedented and makes them highly suitable for in vivo imaging applications.
The opportunity: The current methods for evaluation of disease stage consist of diverse modalities, including, CT and PET-CT scans, and ultrasonography. These techniques have major limitations to accurately detect metastasis and are inadequate for monitoring disease response. In the clinical setting we foresee applications of our proprietary technology in the non-invasive diagnosis of tumors and metastases with high expression of BMP4 and/or BMPR1a (e.g. EAC), identification of patients with high chance to respond to BMP4 inhibitors, follow tumor progression during treatment, and facilitated localization of small metastases during surgical treatment. Furthermore, the labeled antibodies can be used to investigate the efficacy of novel therapeutic agents by following tumor progression in animal models in a research setting.
The project and expected outcomes: Within the ERC PoC we will explore the commercial feasibility by in vivo validation experiments as well as by performing essential research for the formulation of a business proposition, strengthening our IP position, and developing a sound business plan. These activities will result in a proposition package that will be used to present the commercial potential to investors and other strategic partners to attract funding after completion of the ERC PoC and potentially even initiate licensing and partnership deals.
Max ERC Funding
149 840 €
Duration
Start date: 2014-09-01, End date: 2016-02-29
Project acronym BODILY SELF
Project Embodied Minds and Mentalised Bodies
Researcher (PI) Aikaterini (Katerina) Fotopoulou
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Starting Grant (StG), SH4, ERC-2012-StG_20111124
Summary How does our acting, sensing and feeling body shape our mind? The mechanisms by which bodily signals are integrated and re-represented in the brain, as well as the relation between these processes and body awareness remain unknown. To this date, neuropsychological disorders of body awareness represent an indispensible window of insight into phenomenally rich states of body unawareness. Unfortunately, only few experimental studies have been conducted in these disorders. The BODILY SELF will aim to apply methods from cognitive neuroscience to experimental and neuroimaging studies in healthy volunteers, as well as in patients with neuropsychological disorders of body awareness. A first subproject will assess which combination of deficits in sensorimotor afferent and efferent signals leads to unawareness. The second subproject will attempt to use experimental, psychophysical interventions to treat unawareness and measure the corresponding, dynamic changes in the brain. The third subproject will assess how some bodily signals and their integration is influenced by social mechanisms. The planned studies surpass the existing state-of-the-art in the relevant fields in five ground-breaking ways, ultimately allowing us to (1) acquire an unprecedented ‘on-line’ experimental ‘handle’ over dynamic changes in body awareness; (2) restore awareness and improve health outcomes (3) understand the brain’s potential for reorganisation and plasticity in relation to higher-order processes such as awareness; (4) understand how our own body experience is modulated by our interactions and relations with others; (5) address in a genuinely interdisciplinary manner some of the oldest questions in psychology, philosophy and medicine; how embodiment influences the mind, how others influence the self and how mind–body processes affect healing.
Summary
How does our acting, sensing and feeling body shape our mind? The mechanisms by which bodily signals are integrated and re-represented in the brain, as well as the relation between these processes and body awareness remain unknown. To this date, neuropsychological disorders of body awareness represent an indispensible window of insight into phenomenally rich states of body unawareness. Unfortunately, only few experimental studies have been conducted in these disorders. The BODILY SELF will aim to apply methods from cognitive neuroscience to experimental and neuroimaging studies in healthy volunteers, as well as in patients with neuropsychological disorders of body awareness. A first subproject will assess which combination of deficits in sensorimotor afferent and efferent signals leads to unawareness. The second subproject will attempt to use experimental, psychophysical interventions to treat unawareness and measure the corresponding, dynamic changes in the brain. The third subproject will assess how some bodily signals and their integration is influenced by social mechanisms. The planned studies surpass the existing state-of-the-art in the relevant fields in five ground-breaking ways, ultimately allowing us to (1) acquire an unprecedented ‘on-line’ experimental ‘handle’ over dynamic changes in body awareness; (2) restore awareness and improve health outcomes (3) understand the brain’s potential for reorganisation and plasticity in relation to higher-order processes such as awareness; (4) understand how our own body experience is modulated by our interactions and relations with others; (5) address in a genuinely interdisciplinary manner some of the oldest questions in psychology, philosophy and medicine; how embodiment influences the mind, how others influence the self and how mind–body processes affect healing.
Max ERC Funding
1 453 284 €
Duration
Start date: 2013-04-01, End date: 2018-09-30
Project acronym BODYBUILDING
Project Building body representations: An investigation of the formation and maintenance of body representations
Researcher (PI) Matthew Ryan Longo
Host Institution (HI) BIRKBECK COLLEGE - UNIVERSITY OF LONDON
Call Details Starting Grant (StG), SH4, ERC-2013-StG
Summary "The body is ubiquitous in perceptual experience and is central to our sense of self and personal identity. Disordered body representations are central to several serious psychiatric and neurological disorders. Thus, identifying factors which contribute to the formation and maintenance of body representations is crucial for understanding how body representation goes awry in disease, and how it might be corrected by potential novel therapeutic interventions. Several types of sensory signals provide information about the body, making the body the multisensory object, par excellence. Little is known, however, about how information from somatosensation and from vision is integrated to construct the rich body representations we all experience. This project fills this gap in current understanding by determining how the brain builds body representations (BODYBUILDING). A hierarchical model of body representation is proposed, providing a novel theoretical framework for understanding the diversity of body representations and how they interact. The key motivating hypothesis is that body representation is determined by the dialectic between two major cognitive processes. First, from the bottom-up, somatosensation represents the body surface as a mosaic of discrete receptive fields, which become progressively agglomerated into larger and larger units of organisation, a process I call fusion. Second, from the top-down, vision starts out depicting the body as an undifferentiated whole, which is progressively broken into smaller parts, a process I call segmentation. Thus, body representation operates from the bottom-up as a process of fusion of primitive elements into larger complexes, as well as from the top-down as a process of segmentation of an initially undifferentiated whole into more basic parts. This project uses a combination of psychophysical, electrophysiological, and neuroimaging methods to provide fundamental insight into how we come to represent our body."
Summary
"The body is ubiquitous in perceptual experience and is central to our sense of self and personal identity. Disordered body representations are central to several serious psychiatric and neurological disorders. Thus, identifying factors which contribute to the formation and maintenance of body representations is crucial for understanding how body representation goes awry in disease, and how it might be corrected by potential novel therapeutic interventions. Several types of sensory signals provide information about the body, making the body the multisensory object, par excellence. Little is known, however, about how information from somatosensation and from vision is integrated to construct the rich body representations we all experience. This project fills this gap in current understanding by determining how the brain builds body representations (BODYBUILDING). A hierarchical model of body representation is proposed, providing a novel theoretical framework for understanding the diversity of body representations and how they interact. The key motivating hypothesis is that body representation is determined by the dialectic between two major cognitive processes. First, from the bottom-up, somatosensation represents the body surface as a mosaic of discrete receptive fields, which become progressively agglomerated into larger and larger units of organisation, a process I call fusion. Second, from the top-down, vision starts out depicting the body as an undifferentiated whole, which is progressively broken into smaller parts, a process I call segmentation. Thus, body representation operates from the bottom-up as a process of fusion of primitive elements into larger complexes, as well as from the top-down as a process of segmentation of an initially undifferentiated whole into more basic parts. This project uses a combination of psychophysical, electrophysiological, and neuroimaging methods to provide fundamental insight into how we come to represent our body."
Max ERC Funding
1 497 715 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym BONDS
Project Bilayered ON-Demand Scaffolds: On-Demand Delivery from induced Pluripotent Stem Cell Derived Scaffolds for Diabetic Foot Ulcers
Researcher (PI) Cathal KEARNEY
Host Institution (HI) ROYAL COLLEGE OF SURGEONS IN IRELAND
Call Details Starting Grant (StG), PE8, ERC-2017-STG
Summary This program’s goal is to develop a scaffold using a new biomaterial source that is functionalised with on-demand delivery of genes for coordinated healing of diabetic foot ulcers (DFUs). DFUs are chronic wounds that are often recalcitrant to treatment, which devastatingly results in lower leg amputation. This project builds on the PI’s experience growing matrix from induced-pluripotent stem cell derived (iPS)-fibroblasts and in developing on-demand drug delivery technologies. The aim of this project is to first develop a SiPS: a scaffold from iPS-fibroblast grown matrix, which has never been tested as a source material for scaffolds. iPS-fibroblasts grow a more pro-repair and angiogenic matrix than (non-iPS) adult fibroblasts. The SiPS structure will be bilayered to mimic native skin: dermis made mostly by fibroblasts and epidermis made by keratinocytes. The dermal layer will consist of a porous scaffold with optimised pore size and mechanical properties and the epidermal layer will be film-like, optimised for keratinisation.
Second, the SiPS will be functionalised with delivery of plasmid-DNA (platelet derived growth factor gene, pPDGF) to direct angiogenesis on-demand. As DFUs undergo uncoordinated healing, timed pPDGF delivery will guide them through angiogenesis and healing. To achieve this, alginate microparticles, designed to respond to ultrasound by releasing pPDGF, will be interspersed throughout the SiPS. This BONDS will be tested in an in vivo pre-clinical DFU model to confirm its ability to heal wounds by providing cells with the appropriate biomimetic scaffold environment and timed directions for healing. With >100 million current diabetics expected to get a DFU, the BONDS would have a powerful clinical impact.
This research program combines a disruptive technology, the SiPS, with a new platform for on-demand delivery of pDNA to heal DFUs. The PI will build his lab around these innovative platforms, adapting them for treatment of diverse complex wounds.
Summary
This program’s goal is to develop a scaffold using a new biomaterial source that is functionalised with on-demand delivery of genes for coordinated healing of diabetic foot ulcers (DFUs). DFUs are chronic wounds that are often recalcitrant to treatment, which devastatingly results in lower leg amputation. This project builds on the PI’s experience growing matrix from induced-pluripotent stem cell derived (iPS)-fibroblasts and in developing on-demand drug delivery technologies. The aim of this project is to first develop a SiPS: a scaffold from iPS-fibroblast grown matrix, which has never been tested as a source material for scaffolds. iPS-fibroblasts grow a more pro-repair and angiogenic matrix than (non-iPS) adult fibroblasts. The SiPS structure will be bilayered to mimic native skin: dermis made mostly by fibroblasts and epidermis made by keratinocytes. The dermal layer will consist of a porous scaffold with optimised pore size and mechanical properties and the epidermal layer will be film-like, optimised for keratinisation.
Second, the SiPS will be functionalised with delivery of plasmid-DNA (platelet derived growth factor gene, pPDGF) to direct angiogenesis on-demand. As DFUs undergo uncoordinated healing, timed pPDGF delivery will guide them through angiogenesis and healing. To achieve this, alginate microparticles, designed to respond to ultrasound by releasing pPDGF, will be interspersed throughout the SiPS. This BONDS will be tested in an in vivo pre-clinical DFU model to confirm its ability to heal wounds by providing cells with the appropriate biomimetic scaffold environment and timed directions for healing. With >100 million current diabetics expected to get a DFU, the BONDS would have a powerful clinical impact.
This research program combines a disruptive technology, the SiPS, with a new platform for on-demand delivery of pDNA to heal DFUs. The PI will build his lab around these innovative platforms, adapting them for treatment of diverse complex wounds.
Max ERC Funding
1 372 135 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym BoneMalar
Project Mechanisms of bone marrow sequestration during malaria infection
Researcher (PI) Matthias Marti
Host Institution (HI) UNIVERSITY OF GLASGOW
Call Details Consolidator Grant (CoG), LS6, ERC-2015-CoG
Summary Malaria remains a major problem of public health in developing countries. It is responsible for about 600000 deaths per year, predominantly children in sub-Saharan Africa. There is an urgent need for novel therapies as resistance against current treatments is widespread. The complex parasite biology requires a multifaceted approach targeting multiple life cycle stages and virulence pathways. The pathogenesis of the most deadly of human malaria parasites, Plasmodium falciparum, is related to the capability of infected red blood cells to sequester in deep tissues. Sequestration is critical for the completion of the red blood cell cycle because the release of parasites into the blood circulation allows recognition by surveillance macrophages and clearance in the spleen. A series of studies have since led to the understanding that sequestration of asexually replicating parasites is caused by the adherence of parasite infected red blood cells to the vascular endothelium of various tissues in the body.
We have recently demonstrated that gametocytes, the only stage capable of transmission to the mosquito vector, develop in the extravascular environment of the human bone marrow. Preliminary studies in the mouse model have confirmed this finding and also suggest existence of an asexual reservoir in the bone marrow. In this innovative multidiscipinary proposal we aim to investigate the host pathogen interactions at the interface between infected red blood cell and bone marrow vasculature. Specifically we will focus on the following questions: how do parasites home to bone marrow? What are the changes in the bone marrow endothelium upon infection? How do parasites adhere with and transmigrate across the vascular endothelium in the bone marrow? The proposed studies initiate detailed characterization of a new paradigm in malaria parasite interaction with the host vasculature and provide a compelling new avenue for intervention strategies.
Summary
Malaria remains a major problem of public health in developing countries. It is responsible for about 600000 deaths per year, predominantly children in sub-Saharan Africa. There is an urgent need for novel therapies as resistance against current treatments is widespread. The complex parasite biology requires a multifaceted approach targeting multiple life cycle stages and virulence pathways. The pathogenesis of the most deadly of human malaria parasites, Plasmodium falciparum, is related to the capability of infected red blood cells to sequester in deep tissues. Sequestration is critical for the completion of the red blood cell cycle because the release of parasites into the blood circulation allows recognition by surveillance macrophages and clearance in the spleen. A series of studies have since led to the understanding that sequestration of asexually replicating parasites is caused by the adherence of parasite infected red blood cells to the vascular endothelium of various tissues in the body.
We have recently demonstrated that gametocytes, the only stage capable of transmission to the mosquito vector, develop in the extravascular environment of the human bone marrow. Preliminary studies in the mouse model have confirmed this finding and also suggest existence of an asexual reservoir in the bone marrow. In this innovative multidiscipinary proposal we aim to investigate the host pathogen interactions at the interface between infected red blood cell and bone marrow vasculature. Specifically we will focus on the following questions: how do parasites home to bone marrow? What are the changes in the bone marrow endothelium upon infection? How do parasites adhere with and transmigrate across the vascular endothelium in the bone marrow? The proposed studies initiate detailed characterization of a new paradigm in malaria parasite interaction with the host vasculature and provide a compelling new avenue for intervention strategies.
Max ERC Funding
2 298 557 €
Duration
Start date: 2016-06-01, End date: 2021-05-31