Project acronym BRAINCELL
Project Charting the landscape of brain development by large-scale single-cell transcriptomics and phylogenetic lineage reconstruction
Researcher (PI) Sten Linnarsson
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Starting Grant (StG), LS2, ERC-2010-StG_20091118
Summary Embryogenesis is the temporal unfolding of cellular processes: proliferation, migration, differentiation, morphogenesis, apoptosis and functional specialization. These processes are well understood in specific tissues, and for specific cell types. Nevertheless, our systematic knowledge of the types of cells present in the developing and adult animal, and about their functional and lineage relationships, is limited. For example, there is no consensus on the number of cell types, and many important stem cells and progenitors remain to be discovered. Similarly, the lineage relationships between specific cell types are often poorly characterized. This is particularly true for the mammalian nervous system. We have developed (1) a reliable high-throghput method for sequencing all transcripts in 96 single cells at a time; and (2) a system for high-throughput phylogenetic lineage reconstruction. We now propose to characterize embryogenesis using a shotgun approach borrowed from genomics. Tissues will be dissected from multiple stages and dissociated to single cells. A total of 10,000 cells will be analyzed by RNA sequencing, revealing their functional cell type, their lineage relationships, and their current state (e.g. cell cycle phase). The novel approach proposed here will bring the powerful strategies pioneered in genomics into the field of developmental biology, including automation, digitization, and the random shotgun method. The data thus obtained will bring clarity to the concept of ‘cell type’; will provide a first catalog of mouse brain cell types with deep functional annotation; will provide markers for every cell type, including stem cells; and will serve as a basis for future comparative work, especially with human embryos.
Summary
Embryogenesis is the temporal unfolding of cellular processes: proliferation, migration, differentiation, morphogenesis, apoptosis and functional specialization. These processes are well understood in specific tissues, and for specific cell types. Nevertheless, our systematic knowledge of the types of cells present in the developing and adult animal, and about their functional and lineage relationships, is limited. For example, there is no consensus on the number of cell types, and many important stem cells and progenitors remain to be discovered. Similarly, the lineage relationships between specific cell types are often poorly characterized. This is particularly true for the mammalian nervous system. We have developed (1) a reliable high-throghput method for sequencing all transcripts in 96 single cells at a time; and (2) a system for high-throughput phylogenetic lineage reconstruction. We now propose to characterize embryogenesis using a shotgun approach borrowed from genomics. Tissues will be dissected from multiple stages and dissociated to single cells. A total of 10,000 cells will be analyzed by RNA sequencing, revealing their functional cell type, their lineage relationships, and their current state (e.g. cell cycle phase). The novel approach proposed here will bring the powerful strategies pioneered in genomics into the field of developmental biology, including automation, digitization, and the random shotgun method. The data thus obtained will bring clarity to the concept of ‘cell type’; will provide a first catalog of mouse brain cell types with deep functional annotation; will provide markers for every cell type, including stem cells; and will serve as a basis for future comparative work, especially with human embryos.
Max ERC Funding
1 496 032 €
Duration
Start date: 2010-11-01, End date: 2015-10-31
Project acronym BRAINGAIN
Project NOVEL STRATEGIES FOR BRAIN REGENERATION
Researcher (PI) Andras Simon
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Starting Grant (StG), LS3, ERC-2011-StG_20101109
Summary In contrast to mammals, newts possess exceptional capacities among vertebrates to rebuild complex structures, such as the brain. Our goal is to bridge the gap in the regenerative outcomes between newts and mammals. My group has made significant contributions towards this goal. We created a novel experimental system, which recapitulates central features of Parkinson’s disease in newts, and provides a unique model for understanding regeneration in the adult midbrain. We showed an unexpected but key feature of the newt brain that it is akin to the mammalian brain in terms of the extent of homeostatic cell turn over, but distinct in terms of its injury response, showing the regenerative capacity of the adult vertebrate brain by activating neurogenesis in normally quiescent regions. Further we established a critical role for the neurotransmitter dopamine in controlling quiescence in the midbrain, thereby preventing neurogenesis during homeostasis and terminating neurogenesis once the correct number of neurons has been produced during regeneration. Here we aim to identify key molecular pathways that regulate adult neurogenesis, to define lineage relationships between neuronal stem and progenitor cells, and to identify essential differences between newts and mammals. We will combine pharmacological modulation of neurotransmitter signaling with extensive cellular fate mapping approaches, and molecular manipulations. Ultimately we will test hypotheses derived from newt studies with mammalian systems including newt/mouse cross species complementation approaches. We expect that our findings will provide new regenerative strategies, and reveal fundamental aspects of cell fate determination, tissue growth, and tissue maintenance in normal and pathological conditions.
Summary
In contrast to mammals, newts possess exceptional capacities among vertebrates to rebuild complex structures, such as the brain. Our goal is to bridge the gap in the regenerative outcomes between newts and mammals. My group has made significant contributions towards this goal. We created a novel experimental system, which recapitulates central features of Parkinson’s disease in newts, and provides a unique model for understanding regeneration in the adult midbrain. We showed an unexpected but key feature of the newt brain that it is akin to the mammalian brain in terms of the extent of homeostatic cell turn over, but distinct in terms of its injury response, showing the regenerative capacity of the adult vertebrate brain by activating neurogenesis in normally quiescent regions. Further we established a critical role for the neurotransmitter dopamine in controlling quiescence in the midbrain, thereby preventing neurogenesis during homeostasis and terminating neurogenesis once the correct number of neurons has been produced during regeneration. Here we aim to identify key molecular pathways that regulate adult neurogenesis, to define lineage relationships between neuronal stem and progenitor cells, and to identify essential differences between newts and mammals. We will combine pharmacological modulation of neurotransmitter signaling with extensive cellular fate mapping approaches, and molecular manipulations. Ultimately we will test hypotheses derived from newt studies with mammalian systems including newt/mouse cross species complementation approaches. We expect that our findings will provide new regenerative strategies, and reveal fundamental aspects of cell fate determination, tissue growth, and tissue maintenance in normal and pathological conditions.
Max ERC Funding
1 500 000 €
Duration
Start date: 2012-02-01, End date: 2017-01-31
Project acronym CaBiS
Project Chemistry and Biology in Synergy - Studies of hydrogenases using a combination of synthetic chemistry and biological tools
Researcher (PI) Gustav Oskar BERGGREN
Host Institution (HI) UPPSALA UNIVERSITET
Call Details Starting Grant (StG), LS1, ERC-2016-STG
Summary My proposal aims to take advantage of my ground-breaking finding that it is possible to mature, or activate, the [FeFe] hydrogenase enzyme (HydA) using synthetic mimics of its catalytic [2Fe] cofactor. (Berggren et al, Nature, 2013) We will now explore the chemistry and (bio-)technological potential of the enzyme using an interdisciplinary approach ranging from in vivo biochemical studies all the way to synthetic model chemistry. Hydrogenases catalyse the interconversion between protons and H2 with remarkable efficiency. Consequently, they are intensively studied as alternatives to Pt-catalysts for these reactions, and are arguably of high (bio-) technological importance in the light of a future “hydrogen society”.
The project involves the preparation of novel “artificial” hydrogenases with the primary aim of designing spectroscopic model systems via modification(s) of the organometallic [2Fe] subsite. In parallel we will prepare in vitro loaded forms of the maturase HydF and study its interaction with apo-HydA in order to further elucidate the maturation process of HydA. Moreover we will develop the techniques necessary for in vivo application of the artificial activation concept, thereby paving the way for a multitude of studies including the reactivity of artificial hydrogenases inside a living cell, but also e.g. gain-of-function studies in combination with metabolomics and proteomics. Inspired by our work on the artificial maturation system we will also draw from our knowledge of Nature’s [FeS] cluster proteins in order to prepare a novel class of “miniaturized hydrogenases” combining synthetic [4Fe4S] binding oligopeptides with [2Fe] cofactor model compounds.
Our interdisciplinary approach is particularly appealing as it not only provides further insight into hydrogenase chemistry and the maturation of metalloproteins, but also involves the development of novel tools and concepts applicable to the wider field of bioinorganic chemistry.
Summary
My proposal aims to take advantage of my ground-breaking finding that it is possible to mature, or activate, the [FeFe] hydrogenase enzyme (HydA) using synthetic mimics of its catalytic [2Fe] cofactor. (Berggren et al, Nature, 2013) We will now explore the chemistry and (bio-)technological potential of the enzyme using an interdisciplinary approach ranging from in vivo biochemical studies all the way to synthetic model chemistry. Hydrogenases catalyse the interconversion between protons and H2 with remarkable efficiency. Consequently, they are intensively studied as alternatives to Pt-catalysts for these reactions, and are arguably of high (bio-) technological importance in the light of a future “hydrogen society”.
The project involves the preparation of novel “artificial” hydrogenases with the primary aim of designing spectroscopic model systems via modification(s) of the organometallic [2Fe] subsite. In parallel we will prepare in vitro loaded forms of the maturase HydF and study its interaction with apo-HydA in order to further elucidate the maturation process of HydA. Moreover we will develop the techniques necessary for in vivo application of the artificial activation concept, thereby paving the way for a multitude of studies including the reactivity of artificial hydrogenases inside a living cell, but also e.g. gain-of-function studies in combination with metabolomics and proteomics. Inspired by our work on the artificial maturation system we will also draw from our knowledge of Nature’s [FeS] cluster proteins in order to prepare a novel class of “miniaturized hydrogenases” combining synthetic [4Fe4S] binding oligopeptides with [2Fe] cofactor model compounds.
Our interdisciplinary approach is particularly appealing as it not only provides further insight into hydrogenase chemistry and the maturation of metalloproteins, but also involves the development of novel tools and concepts applicable to the wider field of bioinorganic chemistry.
Max ERC Funding
1 494 880 €
Duration
Start date: 2017-02-01, End date: 2022-01-31
Project acronym ChemBioAP
Project Elucidation of autophagy using novel chemical probes
Researcher (PI) Yaowen Wu
Host Institution (HI) UMEA UNIVERSITET
Call Details Starting Grant (StG), LS1, ERC-2015-STG
Summary The interest on autophagy, an evolutionarily conserved process in eukaryotes, has enormously increased in the last years, since autophagy is involved in many diseases such as cancer and neurodegenerative disorders. Autophagosome formation is the key process in autophagy. Despite extensive work, the model of autophagosome formation is not yet well established. Some important questions on autophagosome biogenesis remain to be elusive, such as where the bona fide marker protein of autophagosome, LC3, is lipidated, how lipidated LC3 functions in autophagosome formation, and how the proteins for LC3 lipidation and delipidation are involved in autophagosome formation. Although genetic approaches have been useful to identify genes involved in autophagy, they are chronic and thereby the dynamics of phenotypic change cannot be followed, making them not suited for study highly dynamic process such as autophagosome formation. Herein, I propose to develop and use novel chemical probes to address these issues. First, I plan to prepare semi-synthetic caged LC3 proteins and apply them to monitor dynamics of autophagosome formation in the cell in order to address those questions on autophagosome formation. The semi-synthetic LC3 proteins are expected to confer a temporal control and to realize manipulation of protein structure, which renders such studies possible. Second, I intend to develop a versatile approach targeting specific endogenous proteins using a reversible chemically induced dimerization (CID) system, termed as “knock on and off” strategy. I plan to use this approach to elucidate the function of two distinct PI3K complexes in autophagosome formation. On one hand, the establishment of novel approaches will open up a new avenue for studying biological processes. On the other hand, the use of the tool will reveal the mechanism of autophagy.
Summary
The interest on autophagy, an evolutionarily conserved process in eukaryotes, has enormously increased in the last years, since autophagy is involved in many diseases such as cancer and neurodegenerative disorders. Autophagosome formation is the key process in autophagy. Despite extensive work, the model of autophagosome formation is not yet well established. Some important questions on autophagosome biogenesis remain to be elusive, such as where the bona fide marker protein of autophagosome, LC3, is lipidated, how lipidated LC3 functions in autophagosome formation, and how the proteins for LC3 lipidation and delipidation are involved in autophagosome formation. Although genetic approaches have been useful to identify genes involved in autophagy, they are chronic and thereby the dynamics of phenotypic change cannot be followed, making them not suited for study highly dynamic process such as autophagosome formation. Herein, I propose to develop and use novel chemical probes to address these issues. First, I plan to prepare semi-synthetic caged LC3 proteins and apply them to monitor dynamics of autophagosome formation in the cell in order to address those questions on autophagosome formation. The semi-synthetic LC3 proteins are expected to confer a temporal control and to realize manipulation of protein structure, which renders such studies possible. Second, I intend to develop a versatile approach targeting specific endogenous proteins using a reversible chemically induced dimerization (CID) system, termed as “knock on and off” strategy. I plan to use this approach to elucidate the function of two distinct PI3K complexes in autophagosome formation. On one hand, the establishment of novel approaches will open up a new avenue for studying biological processes. On the other hand, the use of the tool will reveal the mechanism of autophagy.
Max ERC Funding
1 500 000 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym ChromatinRemodelling
Project Single-Molecule And Structural Studies Of ATP-Dependent Chromatin Remodelling
Researcher (PI) Sebastian DEINDL
Host Institution (HI) UPPSALA UNIVERSITET
Call Details Starting Grant (StG), LS1, ERC-2016-STG
Summary The packaging of genetic information into chromatin regulates a wide range of vital processes that depend on direct access to the DNA template. Many chromatin-interacting complexes impact chromatin structure and their aberrant regulation or dysfunction has been implicated in various cancers and severe developmental disorders. A better understanding of the roles of chromatin-interacting complexes in such disease states requires a detailed mechanistic study. Many chromatin-interacting complexes modify chromatin structure, yet understanding the underlying mechanisms remains a major challenge in the field. Furthermore, how chromatin-interacting complexes are regulated to enable their various functions is incompletely understood. We will address these longstanding questions in two specific aims. Aim I: Building on our expertise in single-molecule biology, we will develop powerful single-molecule imaging approaches to monitor the action of chromatin-interacting complexes in real time. We will further probe how the diverse activities of the chromatin-associated complexes are coordinated and coupled to conformational transitions. Aim II: Drawing on our expertise in structural biology, we will use a range of structural techniques in combination with biochemical approaches to study the vital regulation of chromatin-interacting complexes by their regulatory subunits as well as by chromatin features. We expect to obtain ground-breaking insights into the mechanisms and regulation of disease-related chromatin-associated complexes, which may open up new horizons for developing therapeutic intervention strategies. Furthermore, the approaches developed here will enable the investigation of a large number of chromatin-related processes.
Summary
The packaging of genetic information into chromatin regulates a wide range of vital processes that depend on direct access to the DNA template. Many chromatin-interacting complexes impact chromatin structure and their aberrant regulation or dysfunction has been implicated in various cancers and severe developmental disorders. A better understanding of the roles of chromatin-interacting complexes in such disease states requires a detailed mechanistic study. Many chromatin-interacting complexes modify chromatin structure, yet understanding the underlying mechanisms remains a major challenge in the field. Furthermore, how chromatin-interacting complexes are regulated to enable their various functions is incompletely understood. We will address these longstanding questions in two specific aims. Aim I: Building on our expertise in single-molecule biology, we will develop powerful single-molecule imaging approaches to monitor the action of chromatin-interacting complexes in real time. We will further probe how the diverse activities of the chromatin-associated complexes are coordinated and coupled to conformational transitions. Aim II: Drawing on our expertise in structural biology, we will use a range of structural techniques in combination with biochemical approaches to study the vital regulation of chromatin-interacting complexes by their regulatory subunits as well as by chromatin features. We expect to obtain ground-breaking insights into the mechanisms and regulation of disease-related chromatin-associated complexes, which may open up new horizons for developing therapeutic intervention strategies. Furthermore, the approaches developed here will enable the investigation of a large number of chromatin-related processes.
Max ERC Funding
1 498 954 €
Duration
Start date: 2017-03-01, End date: 2022-02-28
Project acronym FLOWGENE
Project Following the Genomic Footprints of Early Europeans
Researcher (PI) Bo Mattias Jakobsson
Host Institution (HI) UPPSALA UNIVERSITET
Call Details Starting Grant (StG), LS2, ERC-2012-StG_20111109
Summary Two of greatest challenges of the post-genomic era are to (i) develop a detailed understanding of the heritable variation in the human genome, and to (ii) determine which key events in human evolutionary history that are responsible for patterns of genomic variation. The recent genomic revolution will be instrumental in these quests and we will very soon have access to several thousand complete genomes from diverse populations.
Extracting genetic information from ancient material has for long been hampered by numerous difficulties after its first steps some two decades ago, but in the last few years, many of these problems have been solved and the use of ancient DNA is now beginning to show its full potential. The use of ancient DNA has been announced among the top-ten ‘insights of the decade’ by Science, and promises to transform our views on human origins and prehistory.
The demographic history of Europeans attracts great interest in archaeology, anthropology, and human genetics, and it has drawn extensive research focus for more than a century. The recent genomic revolution has opened up the time dimension for genomic analyses, however, to harness the full potential of genomic data from modern and ancient material, we need new population genetic theory and modern statistical analysis tools. I propose to conduct 3 Ancient Genome Projects to generate complete genomes for multiple individuals from 3 time epochs in the European prehistory; the Cro-Magnon-, the Mesolithic-, and the Neolithic-Genome project. These Genome Projects will proceed in concert with development a) new population genetic theory and novel tools for demographic inference, b) a novel, temporal based, framework for characterizing selection and local adaptation, and c) explore the evolutionary history of gene-variants associated with traits and diseases. Genomic data from temporal samples has the potential to revolutionize our understanding of human evolution and the demographic history of Europe.
Summary
Two of greatest challenges of the post-genomic era are to (i) develop a detailed understanding of the heritable variation in the human genome, and to (ii) determine which key events in human evolutionary history that are responsible for patterns of genomic variation. The recent genomic revolution will be instrumental in these quests and we will very soon have access to several thousand complete genomes from diverse populations.
Extracting genetic information from ancient material has for long been hampered by numerous difficulties after its first steps some two decades ago, but in the last few years, many of these problems have been solved and the use of ancient DNA is now beginning to show its full potential. The use of ancient DNA has been announced among the top-ten ‘insights of the decade’ by Science, and promises to transform our views on human origins and prehistory.
The demographic history of Europeans attracts great interest in archaeology, anthropology, and human genetics, and it has drawn extensive research focus for more than a century. The recent genomic revolution has opened up the time dimension for genomic analyses, however, to harness the full potential of genomic data from modern and ancient material, we need new population genetic theory and modern statistical analysis tools. I propose to conduct 3 Ancient Genome Projects to generate complete genomes for multiple individuals from 3 time epochs in the European prehistory; the Cro-Magnon-, the Mesolithic-, and the Neolithic-Genome project. These Genome Projects will proceed in concert with development a) new population genetic theory and novel tools for demographic inference, b) a novel, temporal based, framework for characterizing selection and local adaptation, and c) explore the evolutionary history of gene-variants associated with traits and diseases. Genomic data from temporal samples has the potential to revolutionize our understanding of human evolution and the demographic history of Europe.
Max ERC Funding
1 500 000 €
Duration
Start date: 2012-10-01, End date: 2017-09-30
Project acronym GAMETE RECOGNITION
Project Molecular Basis of Mammalian Egg-Sperm Interaction
Researcher (PI) Luca Vincenzo Luigi Jovine
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Starting Grant (StG), LS1, ERC-2010-StG_20091118
Summary At the dawn of the 21st century, our knowledge of the molecular mechanism of mammalian
fertilization remains very limited. Different lines of evidence indicate that initial gamete recognition
depends on interaction between a few distinct proteins on sperm and ZP3, a major component of the
extracellular coat of oocytes, the zona pellucida (ZP). On the other hand, recent findings suggest an
alternative mechanism in which cleavage of another ZP subunit, ZP2, regulates binding of gametes
by altering the global structure of the ZP. Progress in the field has been hindered by the paucity and
heterogeneity of native egg-sperm recognition proteins, so that novel approaches are needed to
reconcile all available data into a single consistent model of fertilization. Following our recent
determination of the structure of the most conserved domain of sperm receptor ZP3 by X-ray
crystallography, we will conclusively establish the basis of mammalian gamete recognition by
performing structural studies of homogeneous, biologically active recombinant proteins. First, we
will combine crystallographic studies of isolated ZP subunits with electron microscopy analysis of
their filaments to build a structural model of the ZP. Second, structures of key egg-sperm
recognition protein complexes will be determined. Third, we will investigate how proteolysis of
ZP2 triggers overall conformational changes of the ZP upon gamete fusion. Together with
functional analysis of mutant proteins, these studies will provide atomic resolution snapshots of the
most crucial step in the beginning of a new life, directly visualizing molecular determinants
responsible for species-restricted gamete interaction at fertilization. The progressive decrease of
births in the Western world and inadequacy of current contraceptive methods in developing
countries underscore an urgent need for a modern approach to reproductive welfare. This research
will not only shed light on a truly fundamental biological problem, but also constitute a solid
foundation for the reproductive medicine of the future.
Summary
At the dawn of the 21st century, our knowledge of the molecular mechanism of mammalian
fertilization remains very limited. Different lines of evidence indicate that initial gamete recognition
depends on interaction between a few distinct proteins on sperm and ZP3, a major component of the
extracellular coat of oocytes, the zona pellucida (ZP). On the other hand, recent findings suggest an
alternative mechanism in which cleavage of another ZP subunit, ZP2, regulates binding of gametes
by altering the global structure of the ZP. Progress in the field has been hindered by the paucity and
heterogeneity of native egg-sperm recognition proteins, so that novel approaches are needed to
reconcile all available data into a single consistent model of fertilization. Following our recent
determination of the structure of the most conserved domain of sperm receptor ZP3 by X-ray
crystallography, we will conclusively establish the basis of mammalian gamete recognition by
performing structural studies of homogeneous, biologically active recombinant proteins. First, we
will combine crystallographic studies of isolated ZP subunits with electron microscopy analysis of
their filaments to build a structural model of the ZP. Second, structures of key egg-sperm
recognition protein complexes will be determined. Third, we will investigate how proteolysis of
ZP2 triggers overall conformational changes of the ZP upon gamete fusion. Together with
functional analysis of mutant proteins, these studies will provide atomic resolution snapshots of the
most crucial step in the beginning of a new life, directly visualizing molecular determinants
responsible for species-restricted gamete interaction at fertilization. The progressive decrease of
births in the Western world and inadequacy of current contraceptive methods in developing
countries underscore an urgent need for a modern approach to reproductive welfare. This research
will not only shed light on a truly fundamental biological problem, but also constitute a solid
foundation for the reproductive medicine of the future.
Max ERC Funding
1 499 282 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym GENOMIC STABILITY
Project Genomic stability -chromosome segregation and repair
Researcher (PI) Camilla Björkegren Sjögren
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Starting Grant (StG), LS1, ERC-2007-StG
Summary The eukaryotic genome combines a highly dynamic nature with stable transmission of genetic information from mother to daughter cells. This is achieved by a plethora of protein networks regulating processes such as chromosome duplication, segregation and repair. The principal aim of our research is to determine the molecular interplay between chromosome segregation and repair. Accurate execution of these two events is crucial for the maintenance of genome stability, which in turn is essential for life. Additionally, erroneous segregation or repair leads to chromosomal aberrations that are linked to tumor formation and human developmental syndromes. Thus, our investigations are not only crucial in a basic research perspective, but important also for the understanding of the causes of human disease. The research is based on the budding yeast model system, and combines genome-wide analysis of protein-chromosome interactions with cell-based experimental systems. Our investigations have until now revealed that chromosome segregation and repair are directly linked through two evolutionary conserved SMC (Structural Maintenance of Chromosomes) protein complexes, Cohesin and the Smc5/6 complex. The project now further explores the molecular details of this connection, bringing light into this unexplored area of research, and deciphering the cellular defense against genomic alterations connected to cancer and developmental diseases.
Summary
The eukaryotic genome combines a highly dynamic nature with stable transmission of genetic information from mother to daughter cells. This is achieved by a plethora of protein networks regulating processes such as chromosome duplication, segregation and repair. The principal aim of our research is to determine the molecular interplay between chromosome segregation and repair. Accurate execution of these two events is crucial for the maintenance of genome stability, which in turn is essential for life. Additionally, erroneous segregation or repair leads to chromosomal aberrations that are linked to tumor formation and human developmental syndromes. Thus, our investigations are not only crucial in a basic research perspective, but important also for the understanding of the causes of human disease. The research is based on the budding yeast model system, and combines genome-wide analysis of protein-chromosome interactions with cell-based experimental systems. Our investigations have until now revealed that chromosome segregation and repair are directly linked through two evolutionary conserved SMC (Structural Maintenance of Chromosomes) protein complexes, Cohesin and the Smc5/6 complex. The project now further explores the molecular details of this connection, bringing light into this unexplored area of research, and deciphering the cellular defense against genomic alterations connected to cancer and developmental diseases.
Max ERC Funding
900 000 €
Duration
Start date: 2008-09-01, End date: 2013-08-31
Project acronym GENOMIS
Project Illuminating GENome Organization through integrated MIcroscopy and Sequencing
Researcher (PI) Marzena Magda BIENKO
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Starting Grant (StG), LS2, ERC-2016-STG
Summary In human cells, two meters of DNA sequence are compressed into a nucleus whose linear size is five orders of magnitude smaller. Deciphering how this amazing structural organization is achieved and how DNA functions can ensue in the environment of a cell’s nucleus represent central questions for contemporary biology.
Here, I embrace this challenge by establishing a comprehensive framework of microscopy and sequencing technologies coupled with advanced analytical approaches, aimed at addressing three fundamental highly-interconnected questions: 1) What are the design principles that govern DNA compaction? 2) How does genome structure vary between different cell types as well as among cells of the same type? 3) What is the link between genome structure and function? In preliminary experiments, we have devised a powerful method for Genomic loci Positioning by Sequencing (GPSeq) in fixed cells with optimally preserved nuclear morphology. In parallel, we are developing high-end microscopy tools for simultaneous localization of dozens of genomic locations at high resolution in thousands of single cells.
We will obtain first-ever genome-wide maps of radial positioning of DNA loci in the nucleus, and combine them with available DNA contact probability maps in order to build 3D models of the human genome structure in different cell types. Using microscopy, we will visualize chromosomal shapes at unprecedented resolution, and use these rich datasets to discover general DNA folding principles. Finally, by combining high-resolution chromosome visualization with gene expression profiling in single cells, we will explore the link between DNA structure and function. Our study shall illuminate the design principles that dictate how genetic information is packed and read in the human nucleus, while providing a comprehensive repertoire of tools for studying genome organization.
Summary
In human cells, two meters of DNA sequence are compressed into a nucleus whose linear size is five orders of magnitude smaller. Deciphering how this amazing structural organization is achieved and how DNA functions can ensue in the environment of a cell’s nucleus represent central questions for contemporary biology.
Here, I embrace this challenge by establishing a comprehensive framework of microscopy and sequencing technologies coupled with advanced analytical approaches, aimed at addressing three fundamental highly-interconnected questions: 1) What are the design principles that govern DNA compaction? 2) How does genome structure vary between different cell types as well as among cells of the same type? 3) What is the link between genome structure and function? In preliminary experiments, we have devised a powerful method for Genomic loci Positioning by Sequencing (GPSeq) in fixed cells with optimally preserved nuclear morphology. In parallel, we are developing high-end microscopy tools for simultaneous localization of dozens of genomic locations at high resolution in thousands of single cells.
We will obtain first-ever genome-wide maps of radial positioning of DNA loci in the nucleus, and combine them with available DNA contact probability maps in order to build 3D models of the human genome structure in different cell types. Using microscopy, we will visualize chromosomal shapes at unprecedented resolution, and use these rich datasets to discover general DNA folding principles. Finally, by combining high-resolution chromosome visualization with gene expression profiling in single cells, we will explore the link between DNA structure and function. Our study shall illuminate the design principles that dictate how genetic information is packed and read in the human nucleus, while providing a comprehensive repertoire of tools for studying genome organization.
Max ERC Funding
1 499 808 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym GENOVAR
Project Sequence based strategies to identify genetic variation associated with mental retardation and schizophrenia
Researcher (PI) Lars Feuk
Host Institution (HI) UPPSALA UNIVERSITET
Call Details Starting Grant (StG), LS2, ERC-2011-StG_20101109
Summary Mental retardation (MR) and schizophrenia (SCZ) are disorders of the brain that affect 2-3% and 1% of the population, respectively. Both disorders are considered to be highly heritable, but exhibit heterogeneous genetic etiology. Recent genetic studies have led to discoveries that the same variants that can give rise to different neuropsychiatric disorders, including MR and SCZ. In this proposal, sequencing will be used to identify novel genes involved in MR and SCZ, and to explore the potential overlap between these disorders. The specific goals of the research plan include:
1. Genetic characterization of patients from large pedigrees with SCZ and MR.
Five pedigrees have been collected in which multiple individuals are affected by SCZ or MR. The pedigrees vary in size, with the largest spanning 12 generations including 3,400 individuals. Exome and whole genome sequencing will be performed to identify the genetic variants associated with disease. Candidate genes identified will be screened in large independent cohorts of MR and SCZ patients. In addition, RNA sequencing will be performed on cell lines established for patients and controls from two of the pedigrees.
2. Screening of trios to identify novel genes causing MR
Mental retardation (MR) patients are typically referred for array-based analysis. With current genetic screening using microarray, a clinically significant rearrangement is identified in 15-20% of patients. I propose use high throughput sequencing to screen MR patients and their parents with the goal of identifying new MR genes and to investigate to what extent the diagnostic yield can be increased.
By combining sequencing, bioinformatics and carefully selected clinical material, the work presented in this proposal will lead to an increased understanding of disease mechanisms and enable the development of novel targets and strategies for molecular diagnostic screening.
Summary
Mental retardation (MR) and schizophrenia (SCZ) are disorders of the brain that affect 2-3% and 1% of the population, respectively. Both disorders are considered to be highly heritable, but exhibit heterogeneous genetic etiology. Recent genetic studies have led to discoveries that the same variants that can give rise to different neuropsychiatric disorders, including MR and SCZ. In this proposal, sequencing will be used to identify novel genes involved in MR and SCZ, and to explore the potential overlap between these disorders. The specific goals of the research plan include:
1. Genetic characterization of patients from large pedigrees with SCZ and MR.
Five pedigrees have been collected in which multiple individuals are affected by SCZ or MR. The pedigrees vary in size, with the largest spanning 12 generations including 3,400 individuals. Exome and whole genome sequencing will be performed to identify the genetic variants associated with disease. Candidate genes identified will be screened in large independent cohorts of MR and SCZ patients. In addition, RNA sequencing will be performed on cell lines established for patients and controls from two of the pedigrees.
2. Screening of trios to identify novel genes causing MR
Mental retardation (MR) patients are typically referred for array-based analysis. With current genetic screening using microarray, a clinically significant rearrangement is identified in 15-20% of patients. I propose use high throughput sequencing to screen MR patients and their parents with the goal of identifying new MR genes and to investigate to what extent the diagnostic yield can be increased.
By combining sequencing, bioinformatics and carefully selected clinical material, the work presented in this proposal will lead to an increased understanding of disease mechanisms and enable the development of novel targets and strategies for molecular diagnostic screening.
Max ERC Funding
1 496 574 €
Duration
Start date: 2012-08-01, End date: 2017-07-31
Project acronym GLOBALVISION
Project Global Optimization Methods in Computer Vision, Pattern Recognition and Medical Imaging
Researcher (PI) Fredrik Kahl
Host Institution (HI) LUNDS UNIVERSITET
Call Details Starting Grant (StG), PE5, ERC-2007-StG
Summary Computer vision concerns itself with understanding the real world through the analysis of images. Typical problems are object recognition, medical image segmentation, geometric reconstruction problems and navigation of autonomous vehicles. Such problems often lead to complicated optimization problems with a mixture of discrete and continuous variables, or even infinite dimensional variables in terms of curves and surfaces. Today, state-of-the-art in solving these problems generally relies on heuristic methods that generate only local optima of various qualities. During the last few years, work by the applicant, co-workers, and others has opened new possibilities. This research project builds on this. We will in this project focus on developing new global optimization methods for computing high-quality solutions for a broad class of problems. A guiding principle will be to relax the original, complicated problem to an approximate, simpler one to which globally optimal solutions can more easily be computed. Technically, this relaxed problem often is convex. A crucial point in this approach is to estimate the quality of the exact solution of the approximate problem compared to the (unknown) global optimum of the original problem. Preliminary results have been well received by the research community and we now wish to extend this work to more difficult and more general problem settings, resulting in thorough re-examination of algorithms used widely in different and trans-disciplinary fields. This project is to be considered as a basic research project with relevance to industry. The expected outcome is new knowledge spread to a wide community through scientific papers published at international journals and conferences as well as publicly available software.
Summary
Computer vision concerns itself with understanding the real world through the analysis of images. Typical problems are object recognition, medical image segmentation, geometric reconstruction problems and navigation of autonomous vehicles. Such problems often lead to complicated optimization problems with a mixture of discrete and continuous variables, or even infinite dimensional variables in terms of curves and surfaces. Today, state-of-the-art in solving these problems generally relies on heuristic methods that generate only local optima of various qualities. During the last few years, work by the applicant, co-workers, and others has opened new possibilities. This research project builds on this. We will in this project focus on developing new global optimization methods for computing high-quality solutions for a broad class of problems. A guiding principle will be to relax the original, complicated problem to an approximate, simpler one to which globally optimal solutions can more easily be computed. Technically, this relaxed problem often is convex. A crucial point in this approach is to estimate the quality of the exact solution of the approximate problem compared to the (unknown) global optimum of the original problem. Preliminary results have been well received by the research community and we now wish to extend this work to more difficult and more general problem settings, resulting in thorough re-examination of algorithms used widely in different and trans-disciplinary fields. This project is to be considered as a basic research project with relevance to industry. The expected outcome is new knowledge spread to a wide community through scientific papers published at international journals and conferences as well as publicly available software.
Max ERC Funding
1 440 000 €
Duration
Start date: 2008-07-01, End date: 2013-06-30
Project acronym K9GENES
Project Mapping canine genes and pathways to leverage personalized treatment options
Researcher (PI) Kerstin Lindblad-Toh
Host Institution (HI) UPPSALA UNIVERSITET
Call Details Starting Grant (StG), LS2, ERC-2012-StG_20111109
Summary The domestic dog encompasses hundreds of genetically isolated breeds, many of which show an increased risk for certain diseases. With the canine genome sequence, an understanding of the haplotype structure and availability of disease gene mapping tools, we are now in a unique position to map canine disease genes to inform human biology and medicine. So far we have mapped monogenic traits as well as >40 loci for >10 complex traits. We now propose to map genes for key diseases using many breeds to dissect a larger number of genes underlying the specific disease. We further plan to evaluate the functional consequences of mutations and pilot personalized treatment strategies based on genetic risk. The specific aims are:
1.Characterization of disease phenotypes, breed predisposition and sample acquisition. We are currently collecting samples from >20 diseases and will expand our phenotypic classification and sample collection to a larger number of breeds for some key diseases such as osteosarcoma, breast cancer, behavior and atopy or lymphocytic thyroiditis.
2.Identification and functional characterization of canine disease genes and pathways. We will perform genomewide association mapping followed by targeted resequencing for mutation detection. Pathway analysis will be performed to understand the disease mechanisms mostly contributing to the disease. For select mutations, we will use state of the art molecular biology to provide detailed functional characterization of selected genes revealed by our gene discovery platform.
3.Piloting canine personalized treatment strategies based on inherited risk factors.
For a few diseases we will pilot personalized treatment strategies based on inherited risk factors, utilizing the genetic information gathered in aim 2. Available or novel drugs acting on the identified pathways will be tested in dogs with specific risk factors using a veterinary network for clinical trials.
Knowledge gained should inform human personalized medicine.
Summary
The domestic dog encompasses hundreds of genetically isolated breeds, many of which show an increased risk for certain diseases. With the canine genome sequence, an understanding of the haplotype structure and availability of disease gene mapping tools, we are now in a unique position to map canine disease genes to inform human biology and medicine. So far we have mapped monogenic traits as well as >40 loci for >10 complex traits. We now propose to map genes for key diseases using many breeds to dissect a larger number of genes underlying the specific disease. We further plan to evaluate the functional consequences of mutations and pilot personalized treatment strategies based on genetic risk. The specific aims are:
1.Characterization of disease phenotypes, breed predisposition and sample acquisition. We are currently collecting samples from >20 diseases and will expand our phenotypic classification and sample collection to a larger number of breeds for some key diseases such as osteosarcoma, breast cancer, behavior and atopy or lymphocytic thyroiditis.
2.Identification and functional characterization of canine disease genes and pathways. We will perform genomewide association mapping followed by targeted resequencing for mutation detection. Pathway analysis will be performed to understand the disease mechanisms mostly contributing to the disease. For select mutations, we will use state of the art molecular biology to provide detailed functional characterization of selected genes revealed by our gene discovery platform.
3.Piloting canine personalized treatment strategies based on inherited risk factors.
For a few diseases we will pilot personalized treatment strategies based on inherited risk factors, utilizing the genetic information gathered in aim 2. Available or novel drugs acting on the identified pathways will be tested in dogs with specific risk factors using a veterinary network for clinical trials.
Knowledge gained should inform human personalized medicine.
Max ERC Funding
1 499 365 €
Duration
Start date: 2012-12-01, End date: 2017-11-30
Project acronym Meiotic telomere
Project Study of telomere function in germ cells, relevant to the regulations of homologous recombination and telomere length maintenance across generations
Researcher (PI) Hiroki Shibuya
Host Institution (HI) GOETEBORGS UNIVERSITET
Call Details Starting Grant (StG), LS1, ERC-2018-STG
Summary The length of telomeric DNA is a critical determinant factor for aging and cancer development. In germ cells, the activation of a telomerase-dependent telomere-lengthening pathway is thought to be important in order to maintain telomeric DNA across generations, but the molecular mechanisms involved in this pathway, i.e: how and when telomerase is activated in germ cells, are largely unknown.
A DNA-binding protein complex called shelterin constitutively binds telomeric DNA. However, my recent studies have suggested that a multi-subunit DNA-binding complex, TERB1-TERB2-MAJIN, takes over telomeric DNA from shelterin in mammalian germ cells in order to facilitate homologous recombination. These findings represent a hitherto unknown molecular mechanism at work on the telomeres in germ cells.
In this project, I hypothesize that the drastic reformation of telomere-binding complexes in germ cells contributes also to the telomere-lengthening pathway. The aim of this project is to test this hypothesis in order to reveal the mechanism underlying the transgenerational inheritance of telomeric DNA throughout meiosis. This work is divided into three work packages.
WP1: to determine the molecular rearrangements that take place at telomeres during meiosis.
WP2: to determine how and when telomeres are lengthened during germ cell production.
WP3: to determine how meiotic recombination is achieved.
The proposed project will reveal molecular mechanisms underlying the transgenerational inheritance of genetic information after meiosis, and this will increase our understanding of the etiology of numerous human diseases caused by meiotic errors, such as congenital birth defects and aneuploidy. Further, because the misregulation of telomerase is a leading cause of cancer development, the identification of telomerase-activating mechanisms in germ cells will have multidiscipline impacts in both cancer and reproductive biology fields and will be useful for developing novel cancer therapies.
Summary
The length of telomeric DNA is a critical determinant factor for aging and cancer development. In germ cells, the activation of a telomerase-dependent telomere-lengthening pathway is thought to be important in order to maintain telomeric DNA across generations, but the molecular mechanisms involved in this pathway, i.e: how and when telomerase is activated in germ cells, are largely unknown.
A DNA-binding protein complex called shelterin constitutively binds telomeric DNA. However, my recent studies have suggested that a multi-subunit DNA-binding complex, TERB1-TERB2-MAJIN, takes over telomeric DNA from shelterin in mammalian germ cells in order to facilitate homologous recombination. These findings represent a hitherto unknown molecular mechanism at work on the telomeres in germ cells.
In this project, I hypothesize that the drastic reformation of telomere-binding complexes in germ cells contributes also to the telomere-lengthening pathway. The aim of this project is to test this hypothesis in order to reveal the mechanism underlying the transgenerational inheritance of telomeric DNA throughout meiosis. This work is divided into three work packages.
WP1: to determine the molecular rearrangements that take place at telomeres during meiosis.
WP2: to determine how and when telomeres are lengthened during germ cell production.
WP3: to determine how meiotic recombination is achieved.
The proposed project will reveal molecular mechanisms underlying the transgenerational inheritance of genetic information after meiosis, and this will increase our understanding of the etiology of numerous human diseases caused by meiotic errors, such as congenital birth defects and aneuploidy. Further, because the misregulation of telomerase is a leading cause of cancer development, the identification of telomerase-activating mechanisms in germ cells will have multidiscipline impacts in both cancer and reproductive biology fields and will be useful for developing novel cancer therapies.
Max ERC Funding
1 500 000 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym miRCell
Project MicroRNA functions in single cells
Researcher (PI) Marc FRIEDLÄNDER
Host Institution (HI) STOCKHOLMS UNIVERSITET
Call Details Starting Grant (StG), LS2, ERC-2017-STG
Summary It is now becoming apparent that genes are regulated not only by transcription, but also by thousands of post-transcriptional regulators that can stabilize or degrade mRNAs. Some of the most important regulators are miRNAs, short RNA molecules that are deeply conserved in sequence and are involved in numerous biological processes, including human disease. Surprisingly, transcriptomic and proteomic studies show that most miRNAs only have subtle silencing effects on their targets, suggesting additional important, but yet undiscovered functions. Thus the question is raised: if the main function of miRNAs is not to silence targets, what is it?
I will test two novel hypotheses about miRNA function. The first hypothesis proposes that miRNAs can buffer gene expression noise. The second hypothesis is inspired by my preliminary results and proposes that miRNAs can synchronize expression of genes. If I validate either hypothesis, it would mean that miRNA functions can be investigated in entirely new ways, yielding important new biological insights relevant to both basic research and human health. However, these hypotheses can only be tested in individual cells, and the necessary single-cell technologies and computational tools are only maturing now.
I will apply my expertise in miRNA biology and in combined wet-lab and computational methods to design, develop and apply miRCell-seq to test these two hypotheses in cell cultures and in animals. This new method will for the first time measure miRNAs, their targets, and the interactions between them in single cells and transcriptome-wide. We will use mutant cells devoid of miRNAs and time course experiments to generate sufficient data to develop detailed models of the miRNA impact on their targets. We will then validate our findings with single cell proteomics. This project thus has the potential to reveal novel functions of miRNAs and substantially improve our general understanding of gene regulation.
Summary
It is now becoming apparent that genes are regulated not only by transcription, but also by thousands of post-transcriptional regulators that can stabilize or degrade mRNAs. Some of the most important regulators are miRNAs, short RNA molecules that are deeply conserved in sequence and are involved in numerous biological processes, including human disease. Surprisingly, transcriptomic and proteomic studies show that most miRNAs only have subtle silencing effects on their targets, suggesting additional important, but yet undiscovered functions. Thus the question is raised: if the main function of miRNAs is not to silence targets, what is it?
I will test two novel hypotheses about miRNA function. The first hypothesis proposes that miRNAs can buffer gene expression noise. The second hypothesis is inspired by my preliminary results and proposes that miRNAs can synchronize expression of genes. If I validate either hypothesis, it would mean that miRNA functions can be investigated in entirely new ways, yielding important new biological insights relevant to both basic research and human health. However, these hypotheses can only be tested in individual cells, and the necessary single-cell technologies and computational tools are only maturing now.
I will apply my expertise in miRNA biology and in combined wet-lab and computational methods to design, develop and apply miRCell-seq to test these two hypotheses in cell cultures and in animals. This new method will for the first time measure miRNAs, their targets, and the interactions between them in single cells and transcriptome-wide. We will use mutant cells devoid of miRNAs and time course experiments to generate sufficient data to develop detailed models of the miRNA impact on their targets. We will then validate our findings with single cell proteomics. This project thus has the potential to reveal novel functions of miRNAs and substantially improve our general understanding of gene regulation.
Max ERC Funding
1 497 650 €
Duration
Start date: 2018-03-01, End date: 2023-02-28
Project acronym MitoMethylome
Project Mitochondrial methylation and its role in health and disease
Researcher (PI) Anna Cecilia Elisabet VREDENBERG
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Starting Grant (StG), LS1, ERC-2016-STG
Summary Mitochondria and mitochondrial function have gained increased attention within a wide range of clinical and scientific specialities, but exactly how mitochondria impact the rest of the cell is less well understood. Not only are mitochondria implicated in a range of rare genetic disorders, but dysfunction of mitochondria or reduced bioenergetic capacity has been associated with common diseases including cancer, heart failure, neurodegeneration and diabetes mellitus, as well as natural ageing. It is becoming increasingly clear that mitochondrial dysfunction is not only a downstream event in these conditions, but plays an important role in disease progression and pathology.
S-adenosylmethionine (SAM) is the dominant methyl group donor within our cells, required for a diverse set of post-translational modifications, nucleotide methylations or the synthesis of co-factors and metabolites. Mitochondria play an important part in SAM synthesis, and mitochondrial function has recently been shown to influence cellular methylation. Approximately 30% of the cellular SAM pool is located within mitochondria, advocating a central role for mitochondria in cellular methylation. The advancements in genome sequencing techniques, unprecedented depth of modern mass spectrometry analyses and our possibility to efficiently generate model systems, provides a rare opportunity to comprehensively study the role of both SAM and mitochondria in health and disease.
This project plan describes the genetic, molecular, metabolic and proteomic analysis of fruit fly and mouse models with mitochondrial dysfunction and disrupted intra-mitochondrial SAM levels to identify the mitochondrial methylome, its relevance towards other cellular functions and its impact on the epigenetic control of gene regulation. My extensive research on mitochondrial function, as well as working as a physician with patients suffering from inborn errors of metabolism gives me a unique perspective in this project.
Summary
Mitochondria and mitochondrial function have gained increased attention within a wide range of clinical and scientific specialities, but exactly how mitochondria impact the rest of the cell is less well understood. Not only are mitochondria implicated in a range of rare genetic disorders, but dysfunction of mitochondria or reduced bioenergetic capacity has been associated with common diseases including cancer, heart failure, neurodegeneration and diabetes mellitus, as well as natural ageing. It is becoming increasingly clear that mitochondrial dysfunction is not only a downstream event in these conditions, but plays an important role in disease progression and pathology.
S-adenosylmethionine (SAM) is the dominant methyl group donor within our cells, required for a diverse set of post-translational modifications, nucleotide methylations or the synthesis of co-factors and metabolites. Mitochondria play an important part in SAM synthesis, and mitochondrial function has recently been shown to influence cellular methylation. Approximately 30% of the cellular SAM pool is located within mitochondria, advocating a central role for mitochondria in cellular methylation. The advancements in genome sequencing techniques, unprecedented depth of modern mass spectrometry analyses and our possibility to efficiently generate model systems, provides a rare opportunity to comprehensively study the role of both SAM and mitochondria in health and disease.
This project plan describes the genetic, molecular, metabolic and proteomic analysis of fruit fly and mouse models with mitochondrial dysfunction and disrupted intra-mitochondrial SAM levels to identify the mitochondrial methylome, its relevance towards other cellular functions and its impact on the epigenetic control of gene regulation. My extensive research on mitochondrial function, as well as working as a physician with patients suffering from inborn errors of metabolism gives me a unique perspective in this project.
Max ERC Funding
1 499 999 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym NAPOLI
Project Nanoporous Asymmetric Poly(Ionic Liquid) Membrane
Researcher (PI) Jiayin Yuan
Host Institution (HI) STOCKHOLMS UNIVERSITET
Call Details Starting Grant (StG), PE5, ERC-2014-STG
Summary Nanoporous polymer membranes (NPMs) play a crucial, irreplaceable role in fundamental research and industrial usage, including separation, filtration, water treatment and sustainable environment. The vast majority of advances concentrate on neutral or weakly charged polymers, such as the ongoing interest on self-assembled block copolymer NPMs. There is an urgent need to process polyelectrolytes into NPMs that critically combine a high charge density with nanoporous morphology. Additionally, engineering structural asymmetry/gradient simultaneously in the membrane is equally beneficial, as it would improve membrane performance by building up compartmentalized functionalities. For example, a gradient in pore size forms high pressure resistance coupled with improved selectivity. Nevertheless, developing such highly charged, nanoporous and gradient membranes has remained a challenge, owing to the water solubility and ionic nature of conventional polyelectrolytes, poorly processable into nanoporous state via common routes.
Recently, my group first reported an easy-to-perform production of nanoporous polyelectrolyte membranes. Building on this important but rather preliminary advance, I propose to develop the next generation of NPMs, nanoporous asymmetric poly(ionic liquid) membranes (NAPOLIs). The aim is to produce NAPOLIs bearing diverse gradients, understand the unique transport behavior, improve the membrane stability/sustainability/applicability, and finally apply them in the active fields of energy and environment. Both the currently established route and the newly proposed ones will be employed for the membrane fabrication.
This proposal is inherently interdisciplinary, as it must combine polymer chemistry/engineering, physical chemistry, membrane/materials science, and nanoscience for its success. This research will fundamentally advance nanoporous membrane design for a wide scope of applications and reveal unique physical processes in an asymmetric context.
Summary
Nanoporous polymer membranes (NPMs) play a crucial, irreplaceable role in fundamental research and industrial usage, including separation, filtration, water treatment and sustainable environment. The vast majority of advances concentrate on neutral or weakly charged polymers, such as the ongoing interest on self-assembled block copolymer NPMs. There is an urgent need to process polyelectrolytes into NPMs that critically combine a high charge density with nanoporous morphology. Additionally, engineering structural asymmetry/gradient simultaneously in the membrane is equally beneficial, as it would improve membrane performance by building up compartmentalized functionalities. For example, a gradient in pore size forms high pressure resistance coupled with improved selectivity. Nevertheless, developing such highly charged, nanoporous and gradient membranes has remained a challenge, owing to the water solubility and ionic nature of conventional polyelectrolytes, poorly processable into nanoporous state via common routes.
Recently, my group first reported an easy-to-perform production of nanoporous polyelectrolyte membranes. Building on this important but rather preliminary advance, I propose to develop the next generation of NPMs, nanoporous asymmetric poly(ionic liquid) membranes (NAPOLIs). The aim is to produce NAPOLIs bearing diverse gradients, understand the unique transport behavior, improve the membrane stability/sustainability/applicability, and finally apply them in the active fields of energy and environment. Both the currently established route and the newly proposed ones will be employed for the membrane fabrication.
This proposal is inherently interdisciplinary, as it must combine polymer chemistry/engineering, physical chemistry, membrane/materials science, and nanoscience for its success. This research will fundamentally advance nanoporous membrane design for a wide scope of applications and reveal unique physical processes in an asymmetric context.
Max ERC Funding
1 500 000 €
Duration
Start date: 2015-03-01, End date: 2021-01-31
Project acronym NEWIRES
Project Next Generation Semiconductor Nanowires
Researcher (PI) Kimberly Thelander
Host Institution (HI) LUNDS UNIVERSITET
Call Details Starting Grant (StG), PE5, ERC-2013-StG
Summary Semiconductor nanowires composed of III-V materials have enormous potential to add new functionality to electronics and optical applications. However, integration of these promising structures into applications is severely limited by the current near-universal reliance on gold nanoparticles as seeds for nanowire fabrication. Although highly controlled fabrication is achieved, this metal is entirely incompatible with the Si-based electronics industry. It also presents limitations for the extension of nanowire research towards novel materials not existing in bulk. To date, exploration of alternatives has been limited to selective-area and self-seeded processes, both of which have major limitations in terms of size and morphology control, potential to combine materials, and crystal structure tuning. There is also very little understanding of precisely why gold has proven so successful for nanowire growth, and which alternatives may yield comparable or better results. The aim of this project will be to explore alternative nanoparticle seed materials to go beyond the use of gold in III-V nanowire fabrication. This will be achieved using a unique and recently developed capability for aerosol-phase fabrication of highly controlled nanoparticles directly integrated with conventional nanowire fabrication equipment. The primary goal will be to deepen the understanding of the nanowire fabrication process, and the specific advantages (and limitations) of gold as a seed material, in order to develop and optimize alternatives. The use of a wide variety of seed particle materials in nanowire fabrication will greatly broaden the variety of novel structures that can be fabricated. The results will also transform the nanowire fabrication research field, in order to develop important connections between nanowire research and the semiconductor industry, and to greatly improve the viability of nanowire integration into future devices.
Summary
Semiconductor nanowires composed of III-V materials have enormous potential to add new functionality to electronics and optical applications. However, integration of these promising structures into applications is severely limited by the current near-universal reliance on gold nanoparticles as seeds for nanowire fabrication. Although highly controlled fabrication is achieved, this metal is entirely incompatible with the Si-based electronics industry. It also presents limitations for the extension of nanowire research towards novel materials not existing in bulk. To date, exploration of alternatives has been limited to selective-area and self-seeded processes, both of which have major limitations in terms of size and morphology control, potential to combine materials, and crystal structure tuning. There is also very little understanding of precisely why gold has proven so successful for nanowire growth, and which alternatives may yield comparable or better results. The aim of this project will be to explore alternative nanoparticle seed materials to go beyond the use of gold in III-V nanowire fabrication. This will be achieved using a unique and recently developed capability for aerosol-phase fabrication of highly controlled nanoparticles directly integrated with conventional nanowire fabrication equipment. The primary goal will be to deepen the understanding of the nanowire fabrication process, and the specific advantages (and limitations) of gold as a seed material, in order to develop and optimize alternatives. The use of a wide variety of seed particle materials in nanowire fabrication will greatly broaden the variety of novel structures that can be fabricated. The results will also transform the nanowire fabrication research field, in order to develop important connections between nanowire research and the semiconductor industry, and to greatly improve the viability of nanowire integration into future devices.
Max ERC Funding
1 496 246 €
Duration
Start date: 2013-09-01, End date: 2018-08-31
Project acronym NINA
Project Nitride-based nanostructured novel thermoelectric thin-film materials
Researcher (PI) Per Daniel Eklund
Host Institution (HI) LINKOPINGS UNIVERSITET
Call Details Starting Grant (StG), PE5, ERC-2013-StG
Summary My recent discovery of the anomalously high thermoelectric power factor of ScN thin films demonstrates that unexpected thermoelectric materials can be found among the early transition-metal and rare-earth nitrides. Corroborated by first-principles calculations, we have well-founded hypotheses that these properties stem from nitrogen vacancies, dopants, and alloying, which introduce controllable sharp features with a large slope at the Fermi level, causing a drastically increased Seebeck coefficient. In-depth fundamental studies are needed to enable property tuning and materials design in these systems, to timely exploit my discovery and break new ground.
The project concerns fundamental, primarily experimental, studies on scandium nitride-based and related single-phase and nanostructured films. The overall goal is to understand the complex correlations between electronic, thermal and thermoelectric properties and structural features such as layering, orientation, epitaxy, dopants and lattice defects. Ab initio calculations of band structures, mixing thermodynamics, and properties are integrated with the experimental activities. Novel mechanisms are proposed for drastic reduction of the thermal conductivity with retained high power factor. This will be realized by intentionally introduced secondary phases and artificial nanolaminates; the layering causing discontinuities in the phonon distribution and thus reducing thermal conductivity.
My expertise in thin-film processing and advanced materials characterization places me in a unique position to pursue this novel high-gain approach to thermoelectrics, and an ERC starting grant will be essential in achieving critical mass and consolidating an internationally leading research platform. The scientific impact and vision is in pioneering an understanding of a novel class of thermoelectric materials with potential for thermoelectric devices for widespread use in environmentally friendly energy applications.
Summary
My recent discovery of the anomalously high thermoelectric power factor of ScN thin films demonstrates that unexpected thermoelectric materials can be found among the early transition-metal and rare-earth nitrides. Corroborated by first-principles calculations, we have well-founded hypotheses that these properties stem from nitrogen vacancies, dopants, and alloying, which introduce controllable sharp features with a large slope at the Fermi level, causing a drastically increased Seebeck coefficient. In-depth fundamental studies are needed to enable property tuning and materials design in these systems, to timely exploit my discovery and break new ground.
The project concerns fundamental, primarily experimental, studies on scandium nitride-based and related single-phase and nanostructured films. The overall goal is to understand the complex correlations between electronic, thermal and thermoelectric properties and structural features such as layering, orientation, epitaxy, dopants and lattice defects. Ab initio calculations of band structures, mixing thermodynamics, and properties are integrated with the experimental activities. Novel mechanisms are proposed for drastic reduction of the thermal conductivity with retained high power factor. This will be realized by intentionally introduced secondary phases and artificial nanolaminates; the layering causing discontinuities in the phonon distribution and thus reducing thermal conductivity.
My expertise in thin-film processing and advanced materials characterization places me in a unique position to pursue this novel high-gain approach to thermoelectrics, and an ERC starting grant will be essential in achieving critical mass and consolidating an internationally leading research platform. The scientific impact and vision is in pioneering an understanding of a novel class of thermoelectric materials with potential for thermoelectric devices for widespread use in environmentally friendly energy applications.
Max ERC Funding
1 499 976 €
Duration
Start date: 2013-10-01, End date: 2018-09-30
Project acronym Orgasome
Project Protein synthesis in organelles
Researcher (PI) Alexey AMUNTS
Host Institution (HI) STOCKHOLMS UNIVERSITET
Call Details Starting Grant (StG), LS1, ERC-2018-STG
Summary Protein synthesis in mitochondria is essential for the bioenergetics, whereas its counterpart in chloroplasts is responsible for the synthesis of the core proteins that ultimately converts sunlight into the chemical energy that produces oxygen and organic matter. Recent insights into the mito- and chlororibosomes have provided the first glimpses into the distinct and specialized machineries that involved in synthesizing almost exclusively hydrophobic membrane proteins. Our findings showed: 1) mitoribosomes have different exit tunnels, intrinsic GTPase in the head of the small subunit, tRNA-Val incorporated into the central protuberance; 2) chlororibosomes have divaricate tunnels; 3) ribosomes from both organelles exhibit parallel evolution. This allows contemplation of questions regarding the next level of complexity: How these ribosomes work and evolve? How the ribosomal components imported from cytosol are assembled with the organellar rRNA into a functional unit being maturated in different compartments in organelles? Which trans-factors are involved in this process? How the chlororibosomal activity is spatiotemporally coupled to the synthesis and incorporation of functionally essential pigments? What are the specific regulatory mechanisms?
To address these questions, there is a need to first to characterize the process of translation in organelles on the structural level. To reveal molecular mechanisms of action, we will use antibiotics and mutants for pausing in different stages. To reconstitute the assembly, we will systematically pull-down pre-ribosomes and combine single particle with tomography to put the dynamic process in the context of the whole organelle. To understand co-translational operations, we will stall ribosomes and characterize their partner factors. To elucidate the evolution, we will analyze samples from different species.
Taken together, this will provide fundamental insights into the structural and functional dynamics of organelles.
Summary
Protein synthesis in mitochondria is essential for the bioenergetics, whereas its counterpart in chloroplasts is responsible for the synthesis of the core proteins that ultimately converts sunlight into the chemical energy that produces oxygen and organic matter. Recent insights into the mito- and chlororibosomes have provided the first glimpses into the distinct and specialized machineries that involved in synthesizing almost exclusively hydrophobic membrane proteins. Our findings showed: 1) mitoribosomes have different exit tunnels, intrinsic GTPase in the head of the small subunit, tRNA-Val incorporated into the central protuberance; 2) chlororibosomes have divaricate tunnels; 3) ribosomes from both organelles exhibit parallel evolution. This allows contemplation of questions regarding the next level of complexity: How these ribosomes work and evolve? How the ribosomal components imported from cytosol are assembled with the organellar rRNA into a functional unit being maturated in different compartments in organelles? Which trans-factors are involved in this process? How the chlororibosomal activity is spatiotemporally coupled to the synthesis and incorporation of functionally essential pigments? What are the specific regulatory mechanisms?
To address these questions, there is a need to first to characterize the process of translation in organelles on the structural level. To reveal molecular mechanisms of action, we will use antibiotics and mutants for pausing in different stages. To reconstitute the assembly, we will systematically pull-down pre-ribosomes and combine single particle with tomography to put the dynamic process in the context of the whole organelle. To understand co-translational operations, we will stall ribosomes and characterize their partner factors. To elucidate the evolution, we will analyze samples from different species.
Taken together, this will provide fundamental insights into the structural and functional dynamics of organelles.
Max ERC Funding
1 331 300 €
Duration
Start date: 2019-05-01, End date: 2024-04-30
Project acronym OXYGEN SENSING
Project Acute oxygen sensing and oxygen tolerance in C. elegans
Researcher (PI) Changchun CHEN
Host Institution (HI) UMEA UNIVERSITET
Call Details Starting Grant (StG), LS2, ERC-2018-STG
Summary Oxygen (O2) levels can vary enormously in the environment, which induces dramatic behavioral and physiological changes to resident animals. Adaptations to O2 variations can be either acute or sustained. How animals detect and respond to the changes of O2 availability remains elusive at the molecular level. In particular, what is the precise mechanism of acute O2 sensing, what are the primary sensor for acute hypoxia, and why do neurons of various species exhibit completely different sensitivity to hypoxic challenges? The research proposed here aims at addressing these intriguing but challenging questions in the model system nematode C. elegans, which offers unique advantages to systematically dissect O2 sensing at both genetic and neural circuit levels. C. elegans responds dramatically to acute O2 variations by altering its locomotory speed. We will make use of this robust behavioral response to O2 stimulation for high-throughput genetic screens, aiming to identify a collection of molecules critical for acute O2 sensing. These molecules will be subsequently characterized in the context of a well-described nervous system of C. elegans. Our findings will offer the opportunity to shed light on conserved principles of acute O2 sensing that are operating in the O2 sensing systems in humans such as carotid body. In addition to its robust responses to O2 variation, C. elegans exhibits remarkable tolerance to a complete lack of O2, anoxic exposure. My team will thoroughly investigate anoxia tolerance of C. elegans by performing a screen for anoxia-sensitive mutants that has previously been challenging. The discoveries will allow us to delineate the molecular underpinning of anoxia tolerance in C. elegans, and to inspire other researchers to develop better strategies to cope with hypoxic challenges caused by certain diseases such as stroke and ischemia, which are the most causes of human deaths in developed countries.
Summary
Oxygen (O2) levels can vary enormously in the environment, which induces dramatic behavioral and physiological changes to resident animals. Adaptations to O2 variations can be either acute or sustained. How animals detect and respond to the changes of O2 availability remains elusive at the molecular level. In particular, what is the precise mechanism of acute O2 sensing, what are the primary sensor for acute hypoxia, and why do neurons of various species exhibit completely different sensitivity to hypoxic challenges? The research proposed here aims at addressing these intriguing but challenging questions in the model system nematode C. elegans, which offers unique advantages to systematically dissect O2 sensing at both genetic and neural circuit levels. C. elegans responds dramatically to acute O2 variations by altering its locomotory speed. We will make use of this robust behavioral response to O2 stimulation for high-throughput genetic screens, aiming to identify a collection of molecules critical for acute O2 sensing. These molecules will be subsequently characterized in the context of a well-described nervous system of C. elegans. Our findings will offer the opportunity to shed light on conserved principles of acute O2 sensing that are operating in the O2 sensing systems in humans such as carotid body. In addition to its robust responses to O2 variation, C. elegans exhibits remarkable tolerance to a complete lack of O2, anoxic exposure. My team will thoroughly investigate anoxia tolerance of C. elegans by performing a screen for anoxia-sensitive mutants that has previously been challenging. The discoveries will allow us to delineate the molecular underpinning of anoxia tolerance in C. elegans, and to inspire other researchers to develop better strategies to cope with hypoxic challenges caused by certain diseases such as stroke and ischemia, which are the most causes of human deaths in developed countries.
Max ERC Funding
1 485 000 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym PATHOPROT
Project In vivo pathogen proteome profiling using selected reaction monitoring
Researcher (PI) Anders Johan Malmström
Host Institution (HI) LUNDS UNIVERSITET
Call Details Starting Grant (StG), LS2, ERC-2012-StG_20111109
Summary Bacterial infections represent a major and global health problem, which is further aggravated by the rapid and ongoing increase in antibiotic resistance. The limited success in the development of targeted therapies for particular invasive strains can be attributed to our limited knowledge how pathogens modulate their proteome homeostasis in vivo, knowledge that has so far remained elusive due to technical limitations.
Here I propose the use of proteome-wide selected reaction monitoring mass spectrometry (SRM-MS) for pathogen proteome profiling from samples obtained directly from in vivo using group A streptococci (GAS) as a model system. The proposal describes the use of SRM-MS to facilitate the construction of comprehensive and quantitative molecular anatomy knowledge models outlining spatial organization, pathway organization, absolute protein concentration estimations and interaction partners with host for complete microbial proteomes. Using the molecular anatomy as benchmark I intend compare how the proteome homeostasis is controlled in pathogens isolated directly from patients with different degree of disease severity to understand how disease severity, anatomical location and host dependencies effects the proteome homeostasis.
The outlined proposal describes a generic strategy to provide comprehensive understanding of the pathogen adaption directly in vivo and represents a paradigm shift in the field of bacterial infectious disease. This proposal addresses central aspects within the medical microbiology field that has been long sought for but never studied due to technology limitations and will influence the development of the next generation targeted vaccine and therapeutic development programs.
Summary
Bacterial infections represent a major and global health problem, which is further aggravated by the rapid and ongoing increase in antibiotic resistance. The limited success in the development of targeted therapies for particular invasive strains can be attributed to our limited knowledge how pathogens modulate their proteome homeostasis in vivo, knowledge that has so far remained elusive due to technical limitations.
Here I propose the use of proteome-wide selected reaction monitoring mass spectrometry (SRM-MS) for pathogen proteome profiling from samples obtained directly from in vivo using group A streptococci (GAS) as a model system. The proposal describes the use of SRM-MS to facilitate the construction of comprehensive and quantitative molecular anatomy knowledge models outlining spatial organization, pathway organization, absolute protein concentration estimations and interaction partners with host for complete microbial proteomes. Using the molecular anatomy as benchmark I intend compare how the proteome homeostasis is controlled in pathogens isolated directly from patients with different degree of disease severity to understand how disease severity, anatomical location and host dependencies effects the proteome homeostasis.
The outlined proposal describes a generic strategy to provide comprehensive understanding of the pathogen adaption directly in vivo and represents a paradigm shift in the field of bacterial infectious disease. This proposal addresses central aspects within the medical microbiology field that has been long sought for but never studied due to technology limitations and will influence the development of the next generation targeted vaccine and therapeutic development programs.
Max ERC Funding
1 498 699 €
Duration
Start date: 2013-05-01, End date: 2018-04-30
Project acronym RAPID
Project Chromatin dynamics resolved by rapid protein labeling and bioorthogonal capture
Researcher (PI) Simon ELSÄSSER
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Starting Grant (StG), LS1, ERC-2016-STG
Summary Histone proteins provide a dynamic packaging system for the eukaryotic genome. Chromatin integrates a multitude of signals to control gene expression, only some of which have the propensity to be maintained through replication and cell division. For our understanding of cellular memory and epigenetic inheritance we need to know what features characterize a stable, heritable chromatin state throughout the cell cycle. State-of-the-art methods such as ChIP-Seq provide population-based snapshots of the epigenomic landscape but little information on the stability and relative importance of each studied feature or modification. This project pioneers a rapid, sensitive and selective protein labeling method (termed RAPID) for capturing genome-wide chromatin dynamics resolved over a period of time ranging from minutes to days. RAPID introduces a flexible time dimension in the form of pulse or pulse-chase experiments for studying genome-wide occupancy of a protein of interest by next-gen sequencing. It can also be coupled to other readouts such as mass spectrometry or microscopy. RAPID is uniquely suited for studying cell cycle-linked processes, by defining when and where stable ‘marks’ are set in chromatin. I will employ mouse embryonic stem cell (mESC) as a model system for pluripotency and lineage specification. RAPID will define fundamental rules for inheritance of histone and other chromatin-associated proteins and how they are modulated by the fast cell cycle of pluripotent cells. Using RAPID in combination with other state-of-the art genetics and epigenomics, I will collect multi-dimensional descriptions of the dynamic evolution and propagation of functionally relevant chromatin states, such as interstitial heterochromatin and developmentally regulated Polycomb domains.
Summary
Histone proteins provide a dynamic packaging system for the eukaryotic genome. Chromatin integrates a multitude of signals to control gene expression, only some of which have the propensity to be maintained through replication and cell division. For our understanding of cellular memory and epigenetic inheritance we need to know what features characterize a stable, heritable chromatin state throughout the cell cycle. State-of-the-art methods such as ChIP-Seq provide population-based snapshots of the epigenomic landscape but little information on the stability and relative importance of each studied feature or modification. This project pioneers a rapid, sensitive and selective protein labeling method (termed RAPID) for capturing genome-wide chromatin dynamics resolved over a period of time ranging from minutes to days. RAPID introduces a flexible time dimension in the form of pulse or pulse-chase experiments for studying genome-wide occupancy of a protein of interest by next-gen sequencing. It can also be coupled to other readouts such as mass spectrometry or microscopy. RAPID is uniquely suited for studying cell cycle-linked processes, by defining when and where stable ‘marks’ are set in chromatin. I will employ mouse embryonic stem cell (mESC) as a model system for pluripotency and lineage specification. RAPID will define fundamental rules for inheritance of histone and other chromatin-associated proteins and how they are modulated by the fast cell cycle of pluripotent cells. Using RAPID in combination with other state-of-the art genetics and epigenomics, I will collect multi-dimensional descriptions of the dynamic evolution and propagation of functionally relevant chromatin states, such as interstitial heterochromatin and developmentally regulated Polycomb domains.
Max ERC Funding
1 846 360 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym REPMIT
Project THE ENZYMATIC MACHINERY OF HUMAN MITOCHONDRIAL DNA MAINTENANCE
Researcher (PI) Maria Gustafsson Falkenberg
Host Institution (HI) GOETEBORGS UNIVERSITET
Call Details Starting Grant (StG), LS1, ERC-2010-StG_20091118
Summary SUMMARY
Mitochondria are required to convert food into usable energy forms and every cell contains thousands of them. Unlike most other cellular compartments, mitochondria have their own genomes (mtDNA) that encode for 13 of the about 90 proteins present in the respiratory chain. All proteins necessary for mtDNA replication, as well as transcription and translation of mtDNA-encoded genes, are encoded in the nucleus. Mutations in nuclear-encoded proteins required for mtDNA maintenance is an important cause of neurodegeneration and muscle diseases. The common result of these defects is either mtDNA depletion or accumulation of multiple deletions of mtDNA in postmitotic tissues.
Research in my laboratory will elucidate the molecular mechanisms and regulation of mitochondrial DNA replication in human cells. We will establish how mtDNA is packaged into nucleoprotein complexes, a.k.a. nucleoids and establish how these nucleoids are selected for mtDNA replication. We will elucidate the molecular mechanisms by which specific mutations in the mtDNA replication machinery affect mtDNA maintenance and cause human disease.
Mitochondrial dysfunction is not limited to rare, genetic disorders, but also associated with age-associated common diseases as well as with the normal aging process. I will use my biochemical insights in combination with mouse genetics to address the hypothesis that increased mtDNA mutation load may be an important cause of normal aging.
My specific aims will be:
Aim 1. To define how initiation of mtDNA replication at OriH is regulated.
Aim 2. To identify and characterize regulators of mtDNA replication.
Aim 3. To characterize the structure and function of the mtDNA nucleoid in DNA replication.
Aim 4. To address the mitochondrial theory of ageing
Summary
SUMMARY
Mitochondria are required to convert food into usable energy forms and every cell contains thousands of them. Unlike most other cellular compartments, mitochondria have their own genomes (mtDNA) that encode for 13 of the about 90 proteins present in the respiratory chain. All proteins necessary for mtDNA replication, as well as transcription and translation of mtDNA-encoded genes, are encoded in the nucleus. Mutations in nuclear-encoded proteins required for mtDNA maintenance is an important cause of neurodegeneration and muscle diseases. The common result of these defects is either mtDNA depletion or accumulation of multiple deletions of mtDNA in postmitotic tissues.
Research in my laboratory will elucidate the molecular mechanisms and regulation of mitochondrial DNA replication in human cells. We will establish how mtDNA is packaged into nucleoprotein complexes, a.k.a. nucleoids and establish how these nucleoids are selected for mtDNA replication. We will elucidate the molecular mechanisms by which specific mutations in the mtDNA replication machinery affect mtDNA maintenance and cause human disease.
Mitochondrial dysfunction is not limited to rare, genetic disorders, but also associated with age-associated common diseases as well as with the normal aging process. I will use my biochemical insights in combination with mouse genetics to address the hypothesis that increased mtDNA mutation load may be an important cause of normal aging.
My specific aims will be:
Aim 1. To define how initiation of mtDNA replication at OriH is regulated.
Aim 2. To identify and characterize regulators of mtDNA replication.
Aim 3. To characterize the structure and function of the mtDNA nucleoid in DNA replication.
Aim 4. To address the mitochondrial theory of ageing
Max ERC Funding
1 492 684 €
Duration
Start date: 2011-04-01, End date: 2016-03-31
Project acronym SHINING
Project Stable and High-Efficiency Perovskite Light-Emitting Diodes
Researcher (PI) Feng GAO
Host Institution (HI) LINKOPINGS UNIVERSITET
Call Details Starting Grant (StG), PE5, ERC-2016-STG
Summary Light-emitting diodes (LEDs), which emit light by a solid-state process called electroluminescence, are considered as the most promising energy-efficient technology for future lighting and display. It has been demonstrated that optimal use of LEDs could significantly reduce the world’s electricity use for lighting from 20% to 4%. However, current LED technologies typically rely on expensive high-vacuum manufacturing processes, hampering their widespread applications. Therefore, it is highly desirable to develop low-cost LEDs based on solution-processed semiconductors.
A superstar in the family of solution-processed semiconductors is metal halide perovskites, which have shown great success in photovoltaic applications during the past few years. The same perovskites can also been applied in LEDs. Despite being at an early stage of development with associated challenges, metal halide perovskites provide great promise as a new generation of materials for low-cost LEDs.
This project aims to develop high-efficiency and stable perovskite LEDs based on solution-processed perovskites. Two different classes of low-dimensional perovskites will be investigated independently. These new perovskites materials will then be coupled with novel interface engineering to fabricate perovskite LEDs with the performance beyond the state of the art. At the core of the research is the synthesis of new perovskite nanostructures, combined with advanced spectroscopic characterization and device development. This project combines recent advances in perovskite optoelectronics and low-dimensional materials to create a new paradigm for perovskite LEDs. This research will also lead to the development of new perovskites materials which will serve future advances in photovoltaics, transistors, lasers, etc.
Summary
Light-emitting diodes (LEDs), which emit light by a solid-state process called electroluminescence, are considered as the most promising energy-efficient technology for future lighting and display. It has been demonstrated that optimal use of LEDs could significantly reduce the world’s electricity use for lighting from 20% to 4%. However, current LED technologies typically rely on expensive high-vacuum manufacturing processes, hampering their widespread applications. Therefore, it is highly desirable to develop low-cost LEDs based on solution-processed semiconductors.
A superstar in the family of solution-processed semiconductors is metal halide perovskites, which have shown great success in photovoltaic applications during the past few years. The same perovskites can also been applied in LEDs. Despite being at an early stage of development with associated challenges, metal halide perovskites provide great promise as a new generation of materials for low-cost LEDs.
This project aims to develop high-efficiency and stable perovskite LEDs based on solution-processed perovskites. Two different classes of low-dimensional perovskites will be investigated independently. These new perovskites materials will then be coupled with novel interface engineering to fabricate perovskite LEDs with the performance beyond the state of the art. At the core of the research is the synthesis of new perovskite nanostructures, combined with advanced spectroscopic characterization and device development. This project combines recent advances in perovskite optoelectronics and low-dimensional materials to create a new paradigm for perovskite LEDs. This research will also lead to the development of new perovskites materials which will serve future advances in photovoltaics, transistors, lasers, etc.
Max ERC Funding
1 499 759 €
Duration
Start date: 2017-03-01, End date: 2022-02-28
Project acronym SIMONE
Project Single Molecule Nano Electronics (SIMONE)
Researcher (PI) Kasper Moth-Poulsen
Host Institution (HI) CHALMERS TEKNISKA HOEGSKOLA AB
Call Details Starting Grant (StG), PE5, ERC-2013-StG
Summary "The development of micro fabrication and field effect transistors are key enabling technologies for todays information society. It is hard to imagine superfast and omnipresent electronic devices, information technology, the Internet and mobile communication technologies without access to continuously cheaper and miniaturized microprocessors. The giant leaps in performance of microprocessors from the first personal computing machines to todays mobile devices are to a large extent realized via miniaturization of the active components. The ultimate limit of miniaturization of electronic components is the realization of single molecule electronics. Due to fundamental physical limitations, single molecule resolution cannot be achieved using classical top-down lithographic techniques. At the same time, existing surface functionalization schemes do not provide any means of placing a single molecule with high precision at a specific location on a nanostructure. This project has the ambitious goal of establishing the first method ever allowing for self-assembly of multiple single molecule devices in a parallel way and thereby provide the first method ever allowing for multiple individual single molecule components to operate together in the same device.
The impact of the technology platforms described herein goes vastly beyond the field of single molecule electronics and utilization in ultra-sensitive plasmonic biosensors with a digital single molecule response will be explored in parallel with the main roadmaps of the project."
Summary
"The development of micro fabrication and field effect transistors are key enabling technologies for todays information society. It is hard to imagine superfast and omnipresent electronic devices, information technology, the Internet and mobile communication technologies without access to continuously cheaper and miniaturized microprocessors. The giant leaps in performance of microprocessors from the first personal computing machines to todays mobile devices are to a large extent realized via miniaturization of the active components. The ultimate limit of miniaturization of electronic components is the realization of single molecule electronics. Due to fundamental physical limitations, single molecule resolution cannot be achieved using classical top-down lithographic techniques. At the same time, existing surface functionalization schemes do not provide any means of placing a single molecule with high precision at a specific location on a nanostructure. This project has the ambitious goal of establishing the first method ever allowing for self-assembly of multiple single molecule devices in a parallel way and thereby provide the first method ever allowing for multiple individual single molecule components to operate together in the same device.
The impact of the technology platforms described herein goes vastly beyond the field of single molecule electronics and utilization in ultra-sensitive plasmonic biosensors with a digital single molecule response will be explored in parallel with the main roadmaps of the project."
Max ERC Funding
1 500 000 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym single-C
Project Automatized Catalysis and Single-Carbon Insertion
Researcher (PI) Abraham MENDOZA VALDERREY
Host Institution (HI) STOCKHOLMS UNIVERSITET
Call Details Starting Grant (StG), PE5, ERC-2016-STG
Summary This project is aimed at accelerating the synthesis of important organic molecules through key enabling technologies towards automatized catalysis and single-carbon insertion reactions. Transferring the simplest carbon units to organic molecules has the potential to change the way we approach synthesis planning through new asymmetric skeletal homologations and rearrangements of simple raw materials, for which only long workarounds exist now. These methods can reduce to half the manipulations required to access relevant medicines, organocatalysts, ligands, bio-molecular tools and photovoltaic devices. They target unreactive functions to introduce fundamental one-carbon units (CO or C) that are present in virtually any organic compound. New powerful reagents that resemble these basic single-carbon units in excited electronic configurations are to be developed for this purpose. The new catalytic methods needed are based on the solid grounds of carbene-transfer reactions and the recent advances of my group in the development of new homogeneous catalysts. Moreover, a new catalyst platform will be developed to complement our existing portfolio for success in the challenging processes targeted in this proposal. We aim to pioneer a fully automatized workflow for research in catalysis that devoid the synthesis of organic ligands replacing them by combinatorial assemblies built in situ from un-structured simple molecules. The new reactions arising from these new catalysts and reagents will expedite the valorization of raw materials (such as carbonyls, olefins and hydrocarbons) into important chiral molecules in a single transformation. This bold aim is a priority of the European Commission for the coming years as it will save time, protect the environment and reduce cost at once. Thus, these innovative technologies have the potential of transforming the research workflow in homogeneous catalysis and the logics of retrosynthesis of organic molecules at a fundamental level.
Summary
This project is aimed at accelerating the synthesis of important organic molecules through key enabling technologies towards automatized catalysis and single-carbon insertion reactions. Transferring the simplest carbon units to organic molecules has the potential to change the way we approach synthesis planning through new asymmetric skeletal homologations and rearrangements of simple raw materials, for which only long workarounds exist now. These methods can reduce to half the manipulations required to access relevant medicines, organocatalysts, ligands, bio-molecular tools and photovoltaic devices. They target unreactive functions to introduce fundamental one-carbon units (CO or C) that are present in virtually any organic compound. New powerful reagents that resemble these basic single-carbon units in excited electronic configurations are to be developed for this purpose. The new catalytic methods needed are based on the solid grounds of carbene-transfer reactions and the recent advances of my group in the development of new homogeneous catalysts. Moreover, a new catalyst platform will be developed to complement our existing portfolio for success in the challenging processes targeted in this proposal. We aim to pioneer a fully automatized workflow for research in catalysis that devoid the synthesis of organic ligands replacing them by combinatorial assemblies built in situ from un-structured simple molecules. The new reactions arising from these new catalysts and reagents will expedite the valorization of raw materials (such as carbonyls, olefins and hydrocarbons) into important chiral molecules in a single transformation. This bold aim is a priority of the European Commission for the coming years as it will save time, protect the environment and reduce cost at once. Thus, these innovative technologies have the potential of transforming the research workflow in homogeneous catalysis and the logics of retrosynthesis of organic molecules at a fundamental level.
Max ERC Funding
1 487 245 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym SINGLE-CELL GENOMICS
Project Single-cell Gene Regulation in Differentiation and Pluripotency
Researcher (PI) Thore Rickard Hakan Sandberg
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Starting Grant (StG), LS2, ERC-2009-StG
Summary We aim to study transcriptomes with single-cell resolution, a long-standing goal in biology, to answer fundamental questions about gene regulation. The main objective concerns gene regulation during in vivo differentiation and in pluripotent cells by studying single-cells from murine preimplantation embryos, a model system with natural single-cell resolution, important biology and medical potential. This would also allow us to explore general regulatory principles of gene expression programs of individual cells. This research program will be accomplished by novel deep sequencing technology of mRNAs (mRNA-Seq) to obtain quantitative, unbiased and genome-wide gene and isoform expression measurements. We are therefore developing new experimental and computational methods for genome-wide analyses of transcriptomes at single-cell resolution. The biological significances of the proposed research are unique insights into early embryonic development. Deep sequencing of transcriptomes will also reveal post-transcriptional gene regulation important for pluripotent cells and identified pluripotency-specific gene and isoform expressions will be important for future stem cell based therapies. The inherit single-cell nature of the model system together with its important biology makes it a model systems exceptionally well suited for a systems biology approach aiming to characterize gene regulation at single-cell resolution. The novel methodology has tremendous potential to enable complete mRNA characterization of individual cells. The deep sequencing approach with state-of-the-art computational analyses is both more quantitative than previous methods and it will give readouts on alternative isoforms generated by alternative promoters, splicing and polyadenylation.
Summary
We aim to study transcriptomes with single-cell resolution, a long-standing goal in biology, to answer fundamental questions about gene regulation. The main objective concerns gene regulation during in vivo differentiation and in pluripotent cells by studying single-cells from murine preimplantation embryos, a model system with natural single-cell resolution, important biology and medical potential. This would also allow us to explore general regulatory principles of gene expression programs of individual cells. This research program will be accomplished by novel deep sequencing technology of mRNAs (mRNA-Seq) to obtain quantitative, unbiased and genome-wide gene and isoform expression measurements. We are therefore developing new experimental and computational methods for genome-wide analyses of transcriptomes at single-cell resolution. The biological significances of the proposed research are unique insights into early embryonic development. Deep sequencing of transcriptomes will also reveal post-transcriptional gene regulation important for pluripotent cells and identified pluripotency-specific gene and isoform expressions will be important for future stem cell based therapies. The inherit single-cell nature of the model system together with its important biology makes it a model systems exceptionally well suited for a systems biology approach aiming to characterize gene regulation at single-cell resolution. The novel methodology has tremendous potential to enable complete mRNA characterization of individual cells. The deep sequencing approach with state-of-the-art computational analyses is both more quantitative than previous methods and it will give readouts on alternative isoforms generated by alternative promoters, splicing and polyadenylation.
Max ERC Funding
1 654 384 €
Duration
Start date: 2010-02-01, End date: 2015-01-31
Project acronym TF DYNAMICS IN VIVO
Project Transcription Factor Dynamics in Living Cells at the Single Molecule Level
Researcher (PI) Johan Elf
Host Institution (HI) UPPSALA UNIVERSITET
Call Details Starting Grant (StG), LS2, ERC-2007-StG
Summary Progress in bioengineering and biomedicine is limited by our inadequate understanding of genetic control systems in living cells. The lack of methods for studying kinetics and gene regulation in single cells seriously impairs our prospects to gain deeper insight to develop better quantitative models of such control systems. This project is focused on transcription factors (TFs), proteins that mediate gene regulation in all kingdoms of life. It aims at understanding how bacterial TFs coordinate the expression of genes at the level of single cells. The experimental challenge of studying TF mediated gene regulation directly is that it is a single molecule process where one or a few TF molecules bind one or a few binding sites on the bacterial chromosome. In addition studying TF kinetics poses two major theoretical challenges: its non-negligible spatial aspects and the stochastic nature of kinetics at the single molecule level. This proposal describes new state-of-the-art single molecule microscopy methods for studying kinetics and diffusion of TFs in living cells. The proposed experimental techniques will be accompanied by pioneering computational methods for stochastic reaction-diffusion modeling of intracellular kinetics. Only by the concomitant advancement of both methodologies will we gain understanding of how transcription factors operate in living cells, how their copy number is maintained, how different classes of TFs optimize their search for chromosomal targets, and how the location of TF genes and binding sites constrain genome evolution. Direct observation of TF dynamics will allow probing gene regulation with unprecedented time resolution. This makes it possible to test hypotheses about coordinated gene regulation which have so far been experimentally inaccessible. The unique combination of single molecule in vivo microscopy and spatially resolved stochastic modeling will advance Europe’s position at the frontier of systems biology.
Summary
Progress in bioengineering and biomedicine is limited by our inadequate understanding of genetic control systems in living cells. The lack of methods for studying kinetics and gene regulation in single cells seriously impairs our prospects to gain deeper insight to develop better quantitative models of such control systems. This project is focused on transcription factors (TFs), proteins that mediate gene regulation in all kingdoms of life. It aims at understanding how bacterial TFs coordinate the expression of genes at the level of single cells. The experimental challenge of studying TF mediated gene regulation directly is that it is a single molecule process where one or a few TF molecules bind one or a few binding sites on the bacterial chromosome. In addition studying TF kinetics poses two major theoretical challenges: its non-negligible spatial aspects and the stochastic nature of kinetics at the single molecule level. This proposal describes new state-of-the-art single molecule microscopy methods for studying kinetics and diffusion of TFs in living cells. The proposed experimental techniques will be accompanied by pioneering computational methods for stochastic reaction-diffusion modeling of intracellular kinetics. Only by the concomitant advancement of both methodologies will we gain understanding of how transcription factors operate in living cells, how their copy number is maintained, how different classes of TFs optimize their search for chromosomal targets, and how the location of TF genes and binding sites constrain genome evolution. Direct observation of TF dynamics will allow probing gene regulation with unprecedented time resolution. This makes it possible to test hypotheses about coordinated gene regulation which have so far been experimentally inaccessible. The unique combination of single molecule in vivo microscopy and spatially resolved stochastic modeling will advance Europe’s position at the frontier of systems biology.
Max ERC Funding
1 335 000 €
Duration
Start date: 2008-07-01, End date: 2013-06-30
Project acronym ThermoTex
Project Woven and 3D-Printed Thermoelectric Textiles
Researcher (PI) Christian Müller
Host Institution (HI) CHALMERS TEKNISKA HOEGSKOLA AB
Call Details Starting Grant (StG), PE5, ERC-2014-STG
Summary Imagine a world, in which countless embedded microelectronic components continuously monitor our health and allow us to seamlessly interact with our digital environment. One particularly promising platform for the realisation of this concept is based on wearable electronic textiles. In order for this technology to become truly pervasive, a myriad of devices will have to operate autonomously over an extended period of time without the need for additional maintenance, repair or battery replacement. The goal of this research programme is to realise textile-based thermoelectric generators that without additional cost can power built-in electronics by harvesting one of the most ubiquitous energy sources available to us: our body heat.
Current thermoelectric technologies rely on toxic inorganic materials that are both expensive to produce and fragile by design, which renders them unsuitable especially for wearable applications. Instead, in this programme we will use polymer semiconductors and nanocomposites. Initially, we will focus on the preparation of materials with a thermoelectric performance significantly beyond the state-of-the-art. Then, we will exploit the ease of shaping polymers into light-weight and flexible articles such as fibres, yarns and fabrics. We will explore both, traditional weaving methods as well as emerging 3D-printing techniques, in order to realise low-cost thermoelectric textiles.
Finally, within the scope of this programme we will demonstrate the ability of prototype thermoelectric textiles to harvest a small fraction of the wearer’s body heat under realistic conditions. We will achieve this through integration into clothing to power off-the-shelf sensors for health care and security applications. Eventually, it can be anticipated that the here interrogated thermoelectric design paradigms will be of significant benefit to the European textile and health care sector as well as society in general.
Summary
Imagine a world, in which countless embedded microelectronic components continuously monitor our health and allow us to seamlessly interact with our digital environment. One particularly promising platform for the realisation of this concept is based on wearable electronic textiles. In order for this technology to become truly pervasive, a myriad of devices will have to operate autonomously over an extended period of time without the need for additional maintenance, repair or battery replacement. The goal of this research programme is to realise textile-based thermoelectric generators that without additional cost can power built-in electronics by harvesting one of the most ubiquitous energy sources available to us: our body heat.
Current thermoelectric technologies rely on toxic inorganic materials that are both expensive to produce and fragile by design, which renders them unsuitable especially for wearable applications. Instead, in this programme we will use polymer semiconductors and nanocomposites. Initially, we will focus on the preparation of materials with a thermoelectric performance significantly beyond the state-of-the-art. Then, we will exploit the ease of shaping polymers into light-weight and flexible articles such as fibres, yarns and fabrics. We will explore both, traditional weaving methods as well as emerging 3D-printing techniques, in order to realise low-cost thermoelectric textiles.
Finally, within the scope of this programme we will demonstrate the ability of prototype thermoelectric textiles to harvest a small fraction of the wearer’s body heat under realistic conditions. We will achieve this through integration into clothing to power off-the-shelf sensors for health care and security applications. Eventually, it can be anticipated that the here interrogated thermoelectric design paradigms will be of significant benefit to the European textile and health care sector as well as society in general.
Max ERC Funding
1 500 000 €
Duration
Start date: 2015-06-01, End date: 2020-05-31
Project acronym Triploid Block
Project Mechanisms of polyploidy-mediated postzygotic reproductive isolation
Researcher (PI) Claudia Köhler
Host Institution (HI) SVERIGES LANTBRUKSUNIVERSITET
Call Details Starting Grant (StG), LS3, ERC-2011-StG_20101109
Summary Polyploidization is a widespread phenomenon among plants and is considered a major speciation mechanism. Before becoming evolutionary successful, newly formed polyploids often have to overcome fertility bottlenecks, because mating with partners of lower ploidy causes incompatibilities in the endosperm leading to the formation of mainly non-viable progeny. This reproductive barrier is called the triploid block. Nevertheless, the most frequent route to polyploid formation is probably through unreduced gametes, suggesting that the triploid block can be overcome. Recent work from our laboratory uncovered a genetic pathway leading to unreduced gamete formation at high frequency and revealed that the triploid block is mainly caused by malfunction of Polycomb group (PcG) proteins. PcG proteins are evolutionary conserved proteins, which assemble into multimeric complexes with chromatin-modifying enzymatic activity, implicating epigenetic regulatory mechanisms as an important element of speciation. Here, I propose to unravel the underlying molecular mechanism(s) of the triploid block by identifying the responsible genes causing endosperm failure upon deregulation and their mechanism of regulation in response to interploidy crosses. I also plan to investigate whether genes that contribute to the triploid block are as well responsible for establishing interspecies incompatibilities within the Arabidopsis genus. This project will combine genetics, genomics and epigenomics and will make extensive use of knowledge and tools that we have been established in my laboratory over the recent years, making it likely that the proposed objectives can be achieved. The results of this project will be of interest to a broad scientific community, including biologists with a strong interest in epigenetic mechanisms as well as ecologists interested to understand mechanisms of plant speciation.
Summary
Polyploidization is a widespread phenomenon among plants and is considered a major speciation mechanism. Before becoming evolutionary successful, newly formed polyploids often have to overcome fertility bottlenecks, because mating with partners of lower ploidy causes incompatibilities in the endosperm leading to the formation of mainly non-viable progeny. This reproductive barrier is called the triploid block. Nevertheless, the most frequent route to polyploid formation is probably through unreduced gametes, suggesting that the triploid block can be overcome. Recent work from our laboratory uncovered a genetic pathway leading to unreduced gamete formation at high frequency and revealed that the triploid block is mainly caused by malfunction of Polycomb group (PcG) proteins. PcG proteins are evolutionary conserved proteins, which assemble into multimeric complexes with chromatin-modifying enzymatic activity, implicating epigenetic regulatory mechanisms as an important element of speciation. Here, I propose to unravel the underlying molecular mechanism(s) of the triploid block by identifying the responsible genes causing endosperm failure upon deregulation and their mechanism of regulation in response to interploidy crosses. I also plan to investigate whether genes that contribute to the triploid block are as well responsible for establishing interspecies incompatibilities within the Arabidopsis genus. This project will combine genetics, genomics and epigenomics and will make extensive use of knowledge and tools that we have been established in my laboratory over the recent years, making it likely that the proposed objectives can be achieved. The results of this project will be of interest to a broad scientific community, including biologists with a strong interest in epigenetic mechanisms as well as ecologists interested to understand mechanisms of plant speciation.
Max ERC Funding
1 447 596 €
Duration
Start date: 2011-10-01, End date: 2016-09-30