Project acronym 2DNanoSpec
Project Nanoscale Vibrational Spectroscopy of Sensitive 2D Molecular Materials
Researcher (PI) Renato ZENOBI
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Advanced Grant (AdG), PE4, ERC-2016-ADG
Summary I propose to investigate the nanometer scale organization of delicate 2-dimensional molecular materials using nanoscale vibrational spectroscopy. 2D structures are of great scientific and technological importance, for example as novel materials (graphene, MoS2, WS2, etc.), and in the form of biological membranes and synthetic 2D-polymers. Powerful methods for their analysis and imaging with molecular selectivity and sufficient spatial resolution, however, are lacking. Tip-enhanced Raman spectroscopy (TERS) allows label-free spectroscopic identification of molecular species, with ≈10 nm spatial resolution, and with single molecule sensitivity for strong Raman scatterers. So far, however, TERS is not being carried out in liquids, which is the natural environment for membranes, and its application to poor Raman scatterers such as components of 2D polymers, lipids, or other membrane compounds (proteins, sugars) is difficult. TERS has the potential to overcome the restrictions of other optical/spectroscopic methods to study 2D materials, namely (i) insufficient spatial resolution of diffraction-limited optical methods; (ii) the need for labelling for all methods relying on fluorescence; and (iii) the inability of some methods to work in liquids. I propose to address a number of scientific questions associated with the spatial organization, and the occurrence of defects in sensitive 2D molecular materials. The success of these studies will also rely critically on technical innovations of TERS that notably address the problem of energy dissipation. This will for the first time allow its application to study of complex, delicate 2D molecular systems without photochemical damage.
Summary
I propose to investigate the nanometer scale organization of delicate 2-dimensional molecular materials using nanoscale vibrational spectroscopy. 2D structures are of great scientific and technological importance, for example as novel materials (graphene, MoS2, WS2, etc.), and in the form of biological membranes and synthetic 2D-polymers. Powerful methods for their analysis and imaging with molecular selectivity and sufficient spatial resolution, however, are lacking. Tip-enhanced Raman spectroscopy (TERS) allows label-free spectroscopic identification of molecular species, with ≈10 nm spatial resolution, and with single molecule sensitivity for strong Raman scatterers. So far, however, TERS is not being carried out in liquids, which is the natural environment for membranes, and its application to poor Raman scatterers such as components of 2D polymers, lipids, or other membrane compounds (proteins, sugars) is difficult. TERS has the potential to overcome the restrictions of other optical/spectroscopic methods to study 2D materials, namely (i) insufficient spatial resolution of diffraction-limited optical methods; (ii) the need for labelling for all methods relying on fluorescence; and (iii) the inability of some methods to work in liquids. I propose to address a number of scientific questions associated with the spatial organization, and the occurrence of defects in sensitive 2D molecular materials. The success of these studies will also rely critically on technical innovations of TERS that notably address the problem of energy dissipation. This will for the first time allow its application to study of complex, delicate 2D molecular systems without photochemical damage.
Max ERC Funding
2 311 696 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym 2D–SYNETRA
Project Two-dimensional colloidal nanostructures - Synthesis and electrical transport
Researcher (PI) Christian Klinke
Host Institution (HI) UNIVERSITAET HAMBURG
Call Details Starting Grant (StG), PE4, ERC-2012-StG_20111012
Summary We propose to develop truly two-dimensional continuous materials and two-dimensional monolayer films composed of individual nanocrystals by the comparatively fast, inexpensive, and scalable colloidal synthesis method. The materials’ properties will be studied in detail, especially regarding their (photo-) electrical transport. This will allow developing new types of device structures, such as Coulomb blockade and field enhancement based transistors.
Recently, we demonstrated the possibility to synthesize in a controlled manner truly two-dimensional colloidal nanostructures. We will investigate their formation mechanism, synthesize further materials as “nanosheets”, develop methodologies to tune their geometrical properties, and study their (photo-) electrical properties.
Furthermore, we will use the Langmuir-Blodgett method to deposit highly ordered monolayers of monodisperse nanoparticles. Such structures show interesting transport properties governed by Coulomb blockade effects known from individual nanoparticles. This leads to semiconductor-like behavior in metal nanoparticle films. The understanding of the electric transport in such “multi-tunnel devices” is still very limited. Thus, we will investigate this concept in detail and take it to its limits. Beside improvement of quality and exchange of material we will tune the nanoparticles’ size and shape in order to gain a deeper understanding of the electrical properties of supercrystallographic assemblies. Furthermore, we will develop device concepts for diode and transistor structures which take into account the novel properties of the low-dimensional assemblies.
Nanosheets and monolayers of nanoparticles truly follow the principle of building devices by the bottom-up approach and allow electric transport measurements in a 2D regime. Highly ordered nanomaterial systems possess easy and reliably to manipulate electronic properties what make them interesting for future (inexpensive) electronic devices.
Summary
We propose to develop truly two-dimensional continuous materials and two-dimensional monolayer films composed of individual nanocrystals by the comparatively fast, inexpensive, and scalable colloidal synthesis method. The materials’ properties will be studied in detail, especially regarding their (photo-) electrical transport. This will allow developing new types of device structures, such as Coulomb blockade and field enhancement based transistors.
Recently, we demonstrated the possibility to synthesize in a controlled manner truly two-dimensional colloidal nanostructures. We will investigate their formation mechanism, synthesize further materials as “nanosheets”, develop methodologies to tune their geometrical properties, and study their (photo-) electrical properties.
Furthermore, we will use the Langmuir-Blodgett method to deposit highly ordered monolayers of monodisperse nanoparticles. Such structures show interesting transport properties governed by Coulomb blockade effects known from individual nanoparticles. This leads to semiconductor-like behavior in metal nanoparticle films. The understanding of the electric transport in such “multi-tunnel devices” is still very limited. Thus, we will investigate this concept in detail and take it to its limits. Beside improvement of quality and exchange of material we will tune the nanoparticles’ size and shape in order to gain a deeper understanding of the electrical properties of supercrystallographic assemblies. Furthermore, we will develop device concepts for diode and transistor structures which take into account the novel properties of the low-dimensional assemblies.
Nanosheets and monolayers of nanoparticles truly follow the principle of building devices by the bottom-up approach and allow electric transport measurements in a 2D regime. Highly ordered nanomaterial systems possess easy and reliably to manipulate electronic properties what make them interesting for future (inexpensive) electronic devices.
Max ERC Funding
1 497 200 €
Duration
Start date: 2013-02-01, End date: 2019-01-31
Project acronym 2F4BIODYN
Project Two-Field Nuclear Magnetic Resonance Spectroscopy for the Exploration of Biomolecular Dynamics
Researcher (PI) Fabien Ferrage
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE4, ERC-2011-StG_20101014
Summary The paradigm of the structure-function relationship in proteins is outdated. Biological macromolecules and supramolecular assemblies are highly dynamic objects. Evidence that their motions are of utmost importance to their functions is regularly identified. The understanding of the physical chemistry of biological processes at an atomic level has to rely not only on the description of structure but also on the characterization of molecular motions.
The investigation of protein motions will be undertaken with a very innovative methodological approach in nuclear magnetic resonance relaxation. In order to widen the ranges of frequencies at which local motions in proteins are probed, we will first use and develop new techniques for a prototype shuttle system for the measurement of relaxation at low fields on a high-field NMR spectrometer. Second, we will develop a novel system: a set of low-field NMR spectrometers designed as accessories for high-field spectrometers. Used in conjunction with the shuttle, this system will offer (i) the sensitivity and resolution (i.e. atomic level information) of a high-field spectrometer (ii) the access to low fields of a relaxometer and (iii) the ability to measure a wide variety of relaxation rates with high accuracy. This system will benefit from the latest technology in homogeneous permanent magnet development to allow a control of spin systems identical to that of a high-resolution probe. This new apparatus will open the way to the use of NMR relaxation at low fields for the refinement of protein motions at an atomic scale.
Applications of this novel approach will focus on the bright side of protein dynamics: (i) the largely unexplored dynamics of intrinsically disordered proteins, and (ii) domain motions in large proteins. In both cases, we will investigate a series of diverse protein systems with implications in development, cancer and immunity.
Summary
The paradigm of the structure-function relationship in proteins is outdated. Biological macromolecules and supramolecular assemblies are highly dynamic objects. Evidence that their motions are of utmost importance to their functions is regularly identified. The understanding of the physical chemistry of biological processes at an atomic level has to rely not only on the description of structure but also on the characterization of molecular motions.
The investigation of protein motions will be undertaken with a very innovative methodological approach in nuclear magnetic resonance relaxation. In order to widen the ranges of frequencies at which local motions in proteins are probed, we will first use and develop new techniques for a prototype shuttle system for the measurement of relaxation at low fields on a high-field NMR spectrometer. Second, we will develop a novel system: a set of low-field NMR spectrometers designed as accessories for high-field spectrometers. Used in conjunction with the shuttle, this system will offer (i) the sensitivity and resolution (i.e. atomic level information) of a high-field spectrometer (ii) the access to low fields of a relaxometer and (iii) the ability to measure a wide variety of relaxation rates with high accuracy. This system will benefit from the latest technology in homogeneous permanent magnet development to allow a control of spin systems identical to that of a high-resolution probe. This new apparatus will open the way to the use of NMR relaxation at low fields for the refinement of protein motions at an atomic scale.
Applications of this novel approach will focus on the bright side of protein dynamics: (i) the largely unexplored dynamics of intrinsically disordered proteins, and (ii) domain motions in large proteins. In both cases, we will investigate a series of diverse protein systems with implications in development, cancer and immunity.
Max ERC Funding
1 462 080 €
Duration
Start date: 2012-01-01, End date: 2017-12-31
Project acronym 2SEXES_1GENOME
Project Sex-specific genetic effects on fitness and human disease
Researcher (PI) Edward Hugh Morrow
Host Institution (HI) THE UNIVERSITY OF SUSSEX
Call Details Starting Grant (StG), LS8, ERC-2011-StG_20101109
Summary Darwin’s theory of natural selection rests on the principle that fitness variation in natural populations has a heritable component, on which selection acts, thereby leading to evolutionary change. A fundamental and so far unresolved question for the field of evolutionary biology is to identify the genetic loci responsible for this fitness variation, thereby coming closer to an understanding of how variation is maintained in the face of continual selection. One important complicating factor in the search for fitness related genes however is the existence of separate sexes – theoretical expectations and empirical data both suggest that sexually antagonistic genes are common. The phrase “two sexes, one genome” nicely sums up the problem; selection may favour alleles in one sex, even if they have detrimental effects on the fitness of the opposite sex, since it is their net effect across both sexes that determine the likelihood that alleles persist in a population. This theoretical framework raises an interesting, and so far entirely unexplored issue: that in one sex the functional performance of some alleles is predicted to be compromised and this effect may account for some common human diseases and conditions which show genotype-sex interactions. I propose to explore the genetic basis of sex-specific fitness in a model organism in both laboratory and natural conditions and to test whether those genes identified as having sexually antagonistic effects can help explain the incidence of human diseases that display sexual dimorphism in prevalence, age of onset or severity. This multidisciplinary project directly addresses some fundamental unresolved questions in evolutionary biology: the genetic basis and maintenance of fitness variation; the evolution of sexual dimorphism; and aims to provide novel insights into the genetic basis of some common human diseases.
Summary
Darwin’s theory of natural selection rests on the principle that fitness variation in natural populations has a heritable component, on which selection acts, thereby leading to evolutionary change. A fundamental and so far unresolved question for the field of evolutionary biology is to identify the genetic loci responsible for this fitness variation, thereby coming closer to an understanding of how variation is maintained in the face of continual selection. One important complicating factor in the search for fitness related genes however is the existence of separate sexes – theoretical expectations and empirical data both suggest that sexually antagonistic genes are common. The phrase “two sexes, one genome” nicely sums up the problem; selection may favour alleles in one sex, even if they have detrimental effects on the fitness of the opposite sex, since it is their net effect across both sexes that determine the likelihood that alleles persist in a population. This theoretical framework raises an interesting, and so far entirely unexplored issue: that in one sex the functional performance of some alleles is predicted to be compromised and this effect may account for some common human diseases and conditions which show genotype-sex interactions. I propose to explore the genetic basis of sex-specific fitness in a model organism in both laboratory and natural conditions and to test whether those genes identified as having sexually antagonistic effects can help explain the incidence of human diseases that display sexual dimorphism in prevalence, age of onset or severity. This multidisciplinary project directly addresses some fundamental unresolved questions in evolutionary biology: the genetic basis and maintenance of fitness variation; the evolution of sexual dimorphism; and aims to provide novel insights into the genetic basis of some common human diseases.
Max ERC Funding
1 500 000 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym 3DIMAGE
Project 3D Imaging Across Lengthscales: From Atoms to Grains
Researcher (PI) Paul Anthony Midgley
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Advanced Grant (AdG), PE4, ERC-2011-ADG_20110209
Summary "Understanding structure-property relationships across lengthscales is key to the design of functional and structural materials and devices. Moreover, the complexity of modern devices extends to three dimensions and as such 3D characterization is required across those lengthscales to provide a complete understanding and enable improvement in the material’s physical and chemical behaviour. 3D imaging and analysis from the atomic scale through to granular microstructure is proposed through the development of electron tomography using (S)TEM, and ‘dual beam’ SEM-FIB, techniques offering complementary approaches to 3D imaging across lengthscales stretching over 5 orders of magnitude.
We propose to extend tomography to include novel methods to determine atom positions in 3D with approaches incorporating new reconstruction algorithms, image processing and complementary nano-diffraction techniques. At the nanoscale, true 3D nano-metrology of morphology and composition is a key objective of the project, minimizing reconstruction and visualization artefacts. Mapping strain and optical properties in 3D are ambitious and exciting challenges that will yield new information at the nanoscale. Using the SEM-FIB, 3D ‘mesoscale’ structures will be revealed: morphology, crystallography and composition can be mapped simultaneously, with ~5nm resolution and over volumes too large to tackle by (S)TEM and too small for most x-ray techniques. In parallel, we will apply 3D imaging to a wide variety of key materials including heterogeneous catalysts, aerospace alloys, biomaterials, photovoltaic materials, and novel semiconductors.
We will collaborate with many departments in Cambridge and institutes worldwide. The personnel on the proposal will cover all aspects of the tomography proposed using high-end TEMs, including an aberration-corrected Titan, and a Helios dual beam. Importantly, a postdoc is dedicated to developing new algorithms for reconstruction, image and spectral processing."
Summary
"Understanding structure-property relationships across lengthscales is key to the design of functional and structural materials and devices. Moreover, the complexity of modern devices extends to three dimensions and as such 3D characterization is required across those lengthscales to provide a complete understanding and enable improvement in the material’s physical and chemical behaviour. 3D imaging and analysis from the atomic scale through to granular microstructure is proposed through the development of electron tomography using (S)TEM, and ‘dual beam’ SEM-FIB, techniques offering complementary approaches to 3D imaging across lengthscales stretching over 5 orders of magnitude.
We propose to extend tomography to include novel methods to determine atom positions in 3D with approaches incorporating new reconstruction algorithms, image processing and complementary nano-diffraction techniques. At the nanoscale, true 3D nano-metrology of morphology and composition is a key objective of the project, minimizing reconstruction and visualization artefacts. Mapping strain and optical properties in 3D are ambitious and exciting challenges that will yield new information at the nanoscale. Using the SEM-FIB, 3D ‘mesoscale’ structures will be revealed: morphology, crystallography and composition can be mapped simultaneously, with ~5nm resolution and over volumes too large to tackle by (S)TEM and too small for most x-ray techniques. In parallel, we will apply 3D imaging to a wide variety of key materials including heterogeneous catalysts, aerospace alloys, biomaterials, photovoltaic materials, and novel semiconductors.
We will collaborate with many departments in Cambridge and institutes worldwide. The personnel on the proposal will cover all aspects of the tomography proposed using high-end TEMs, including an aberration-corrected Titan, and a Helios dual beam. Importantly, a postdoc is dedicated to developing new algorithms for reconstruction, image and spectral processing."
Max ERC Funding
2 337 330 €
Duration
Start date: 2012-01-01, End date: 2017-12-31
Project acronym 3DNANOMECH
Project Three-dimensional molecular resolution mapping of soft matter-liquid interfaces
Researcher (PI) Ricardo Garcia
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Advanced Grant (AdG), PE4, ERC-2013-ADG
Summary Optical, electron and probe microscopes are enabling tools for discoveries and knowledge generation in nanoscale sicence and technology. High resolution –nanoscale or molecular-, noninvasive and label-free imaging of three-dimensional soft matter-liquid interfaces has not been achieved by any microscopy method.
Force microscopy (AFM) is considered the second most relevant advance in materials science since 1960. Despite its impressive range of applications, the technique has some key limitations. Force microscopy has not three dimensional depth. What lies above or in the subsurface is not readily characterized.
3DNanoMech proposes to design, build and operate a high speed force-based method for the three-dimensional characterization soft matter-liquid interfaces (3D AFM). The microscope will combine a detection method based on force perturbations, adaptive algorithms, high speed piezo actuators and quantitative-oriented multifrequency approaches. The development of the microscope cannot be separated from its applications: imaging the error-free DNA repair and to understand the relationship existing between the nanomechanical properties and the malignancy of cancer cells. Those problems encompass the different spatial –molecular-nano-mesoscopic- and time –milli to seconds- scales of the instrument.
In short, 3DNanoMech aims to image, map and measure with picoNewton, millisecond and angstrom resolution soft matter surfaces and interfaces in liquid. The long-term vision of 3DNanoMech is to replace models or computer animations of bimolecular-liquid interfaces by real time, molecular resolution maps of properties and processes.
Summary
Optical, electron and probe microscopes are enabling tools for discoveries and knowledge generation in nanoscale sicence and technology. High resolution –nanoscale or molecular-, noninvasive and label-free imaging of three-dimensional soft matter-liquid interfaces has not been achieved by any microscopy method.
Force microscopy (AFM) is considered the second most relevant advance in materials science since 1960. Despite its impressive range of applications, the technique has some key limitations. Force microscopy has not three dimensional depth. What lies above or in the subsurface is not readily characterized.
3DNanoMech proposes to design, build and operate a high speed force-based method for the three-dimensional characterization soft matter-liquid interfaces (3D AFM). The microscope will combine a detection method based on force perturbations, adaptive algorithms, high speed piezo actuators and quantitative-oriented multifrequency approaches. The development of the microscope cannot be separated from its applications: imaging the error-free DNA repair and to understand the relationship existing between the nanomechanical properties and the malignancy of cancer cells. Those problems encompass the different spatial –molecular-nano-mesoscopic- and time –milli to seconds- scales of the instrument.
In short, 3DNanoMech aims to image, map and measure with picoNewton, millisecond and angstrom resolution soft matter surfaces and interfaces in liquid. The long-term vision of 3DNanoMech is to replace models or computer animations of bimolecular-liquid interfaces by real time, molecular resolution maps of properties and processes.
Max ERC Funding
2 499 928 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym 3MC
Project 3D Model Catalysts to explore new routes to sustainable fuels
Researcher (PI) Petra Elisabeth De jongh
Host Institution (HI) UNIVERSITEIT UTRECHT
Call Details Consolidator Grant (CoG), PE4, ERC-2014-CoG
Summary Currently fuels, plastics, and drugs are predominantly manufactured from oil. A transition towards renewable resources critically depends on new catalysts, for instance to convert small molecules (such as solar or biomass derived hydrogen, carbon monoxide, water and carbon dioxide) into more complex ones (such as oxygenates, containing oxygen atoms in their structure). Catalyst development now often depends on trial and error rather than rational design, as the heterogeneity of these composite systems hampers detailed understanding of the role of each of the components.
I propose 3D model catalysts as a novel enabling tool to overcome this problem. Their well-defined nature allows unprecedented precision in the variation of structural parameters (morphology, spatial distribution) of the individual components, while at the same time they mimic real catalysts closely enough to allow testing under industrially relevant conditions. Using this approach I will address fundamental questions, such as:
* What are the mechanisms (structural, electronic, chemical) by which non-metal promoters influence the functionality of copper-based catalysts?
* Which nanoalloys can be formed, how does their composition influence the surface active sites and catalytic functionality under reaction conditions?
* Which size and interface effects occur, and how can we use them to tune the actitivity and selectivity towards desired products?
Our 3D model catalysts will be assembled from ordered mesoporous silica and carbon support materials and Cu-based promoted and bimetallic nanoparticles. The combination with high resolution characterization and testing under realistic conditions allows detailed insight into the role of the different components; critical for the rational design of novel catalysts for a future more sustainable production of chemicals and fuels from renewable resources.
Summary
Currently fuels, plastics, and drugs are predominantly manufactured from oil. A transition towards renewable resources critically depends on new catalysts, for instance to convert small molecules (such as solar or biomass derived hydrogen, carbon monoxide, water and carbon dioxide) into more complex ones (such as oxygenates, containing oxygen atoms in their structure). Catalyst development now often depends on trial and error rather than rational design, as the heterogeneity of these composite systems hampers detailed understanding of the role of each of the components.
I propose 3D model catalysts as a novel enabling tool to overcome this problem. Their well-defined nature allows unprecedented precision in the variation of structural parameters (morphology, spatial distribution) of the individual components, while at the same time they mimic real catalysts closely enough to allow testing under industrially relevant conditions. Using this approach I will address fundamental questions, such as:
* What are the mechanisms (structural, electronic, chemical) by which non-metal promoters influence the functionality of copper-based catalysts?
* Which nanoalloys can be formed, how does their composition influence the surface active sites and catalytic functionality under reaction conditions?
* Which size and interface effects occur, and how can we use them to tune the actitivity and selectivity towards desired products?
Our 3D model catalysts will be assembled from ordered mesoporous silica and carbon support materials and Cu-based promoted and bimetallic nanoparticles. The combination with high resolution characterization and testing under realistic conditions allows detailed insight into the role of the different components; critical for the rational design of novel catalysts for a future more sustainable production of chemicals and fuels from renewable resources.
Max ERC Funding
1 999 625 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym a SMILE
Project analyse Soluble + Membrane complexes with Improved LILBID Experiments
Researcher (PI) Nina Morgner
Host Institution (HI) JOHANN WOLFGANG GOETHE-UNIVERSITATFRANKFURT AM MAIN
Call Details Starting Grant (StG), PE4, ERC-2013-StG
Summary Crucial processes within cells depend on specific non-covalent interactions which mediate the assembly of proteins and other biomolecules. Deriving structural information to understand the function of these complex systems is the primary goal of Structural Biology.
In this application, the recently developed LILBID method (Laser Induced Liquid Bead Ion Desorption) will be optimized for investigation of macromolecular complexes with a mass accuracy two orders of magnitude better than in 1st generation spectrometers.
Controlled disassembly of the multiprotein complexes in the mass spectrometric analysis while keeping the 3D structure intact, will allow for the determination of complex stoichiometry and connectivity of the constituting proteins. Methods for such controlled disassembly will be developed in two separate units of the proposed LILBID spectrometer, in a collision chamber and in a laser dissociation chamber, enabling gas phase dissociation of protein complexes and removal of excess water/buffer molecules. As a third unit, a chamber allowing determination of ion mobility (IM) will be integrated to determine collisional cross sections (CCS). From CCS, unique information regarding the spatial arrangement of proteins in complexes or subcomplexes will then be obtainable from LILBID.
The proposed design of the new spectrometer will offer fundamentally new possibilities for the investigation of non-covalent RNA, soluble and membrane protein complexes, as well as broadening the applicability of non-covalent MS towards supercomplexes.
Summary
Crucial processes within cells depend on specific non-covalent interactions which mediate the assembly of proteins and other biomolecules. Deriving structural information to understand the function of these complex systems is the primary goal of Structural Biology.
In this application, the recently developed LILBID method (Laser Induced Liquid Bead Ion Desorption) will be optimized for investigation of macromolecular complexes with a mass accuracy two orders of magnitude better than in 1st generation spectrometers.
Controlled disassembly of the multiprotein complexes in the mass spectrometric analysis while keeping the 3D structure intact, will allow for the determination of complex stoichiometry and connectivity of the constituting proteins. Methods for such controlled disassembly will be developed in two separate units of the proposed LILBID spectrometer, in a collision chamber and in a laser dissociation chamber, enabling gas phase dissociation of protein complexes and removal of excess water/buffer molecules. As a third unit, a chamber allowing determination of ion mobility (IM) will be integrated to determine collisional cross sections (CCS). From CCS, unique information regarding the spatial arrangement of proteins in complexes or subcomplexes will then be obtainable from LILBID.
The proposed design of the new spectrometer will offer fundamentally new possibilities for the investigation of non-covalent RNA, soluble and membrane protein complexes, as well as broadening the applicability of non-covalent MS towards supercomplexes.
Max ERC Funding
1 264 477 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym A-LIFE
Project The asymmetry of life: towards a unified view of the emergence of biological homochirality
Researcher (PI) Cornelia MEINERT
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE4, ERC-2018-STG
Summary What is responsible for the emergence of homochirality, the almost exclusive use of one enantiomer over its mirror image? And what led to the evolution of life’s homochiral biopolymers, DNA/RNA, proteins and lipids, where all the constituent monomers exhibit the same handedness?
Based on in-situ observations and laboratory studies, we propose that this handedness occurs when chiral biomolecules are synthesized asymmetrically through interaction with circularly polarized photons in interstellar space. The ultimate goal of this project will be to demonstrate how the diverse set of heterogeneous enantioenriched molecules, available from meteoritic impact, assembles into homochiral pre-biopolymers, by simulating the evolutionary stages on early Earth. My recent research has shown that the central chiral unit of RNA, ribose, forms readily under simulated comet conditions and this has provided valuable new insights into the accessibility of precursors of genetic material in interstellar environments. The significance of this project arises due to the current lack of experimental demonstration that amino acids, sugars and lipids can simultaneously and asymmetrically be synthesized by a universal physical selection process.
A synergistic methodology will be developed to build a unified theory for the origin of all chiral biological building blocks and their assembly into homochiral supramolecular entities. For the first time, advanced analyses of astrophysical-relevant samples, asymmetric photochemistry triggered by circularly polarized synchrotron and laser sources, and chiral amplification due to polymerization processes will be combined. Intermediates and autocatalytic reaction kinetics will be monitored and supported by quantum calculations to understand the underlying processes. A unified theory on the asymmetric formation and self-assembly of life’s biopolymers is groundbreaking and will impact the whole conceptual foundation of the origin of life.
Summary
What is responsible for the emergence of homochirality, the almost exclusive use of one enantiomer over its mirror image? And what led to the evolution of life’s homochiral biopolymers, DNA/RNA, proteins and lipids, where all the constituent monomers exhibit the same handedness?
Based on in-situ observations and laboratory studies, we propose that this handedness occurs when chiral biomolecules are synthesized asymmetrically through interaction with circularly polarized photons in interstellar space. The ultimate goal of this project will be to demonstrate how the diverse set of heterogeneous enantioenriched molecules, available from meteoritic impact, assembles into homochiral pre-biopolymers, by simulating the evolutionary stages on early Earth. My recent research has shown that the central chiral unit of RNA, ribose, forms readily under simulated comet conditions and this has provided valuable new insights into the accessibility of precursors of genetic material in interstellar environments. The significance of this project arises due to the current lack of experimental demonstration that amino acids, sugars and lipids can simultaneously and asymmetrically be synthesized by a universal physical selection process.
A synergistic methodology will be developed to build a unified theory for the origin of all chiral biological building blocks and their assembly into homochiral supramolecular entities. For the first time, advanced analyses of astrophysical-relevant samples, asymmetric photochemistry triggered by circularly polarized synchrotron and laser sources, and chiral amplification due to polymerization processes will be combined. Intermediates and autocatalytic reaction kinetics will be monitored and supported by quantum calculations to understand the underlying processes. A unified theory on the asymmetric formation and self-assembly of life’s biopolymers is groundbreaking and will impact the whole conceptual foundation of the origin of life.
Max ERC Funding
1 500 000 €
Duration
Start date: 2019-04-01, End date: 2024-03-31
Project acronym ABACUS
Project Ab-initio adiabatic-connection curves for density-functional analysis and construction
Researcher (PI) Trygve Ulf Helgaker
Host Institution (HI) UNIVERSITETET I OSLO
Call Details Advanced Grant (AdG), PE4, ERC-2010-AdG_20100224
Summary Quantum chemistry provides two approaches to molecular electronic-structure calculations: the systematically refinable but expensive many-body wave-function methods and the inexpensive but not systematically refinable Kohn Sham method of density-functional theory (DFT). The accuracy of Kohn Sham calculations is determined by the quality of the exchange correlation functional, from which the effects of exchange and correlation among the electrons are extracted using the density rather than the wave function. However, the exact exchange correlation functional is unknown—instead, many approximate forms have been developed, by fitting to experimental data or by satisfying exact relations. Here, a new approach to density-functional analysis and construction is proposed: the Lieb variation principle, usually regarded as conceptually important but impracticable. By invoking the Lieb principle, it becomes possible to approach the development of approximate functionals in a novel manner, being directly guided by the behaviour of exact functional, accurately calculated for a wide variety of chemical systems. In particular, this principle will be used to calculate ab-initio adiabatic connection curves, studying the exchange correlation functional for a fixed density as the electronic interactions are turned on from zero to one. Pilot calculations have indicated the feasibility of this approach in simple cases—here, a comprehensive set of adiabatic-connection curves will be generated and utilized for calibration, construction, and analysis of density functionals, the objective being to produce improved functionals for Kohn Sham calculations by modelling or fitting such curves. The ABACUS approach will be particularly important in cases where little experimental information is available—for example, for understanding and modelling the behaviour of the exchange correlation functional in electromagnetic fields.
Summary
Quantum chemistry provides two approaches to molecular electronic-structure calculations: the systematically refinable but expensive many-body wave-function methods and the inexpensive but not systematically refinable Kohn Sham method of density-functional theory (DFT). The accuracy of Kohn Sham calculations is determined by the quality of the exchange correlation functional, from which the effects of exchange and correlation among the electrons are extracted using the density rather than the wave function. However, the exact exchange correlation functional is unknown—instead, many approximate forms have been developed, by fitting to experimental data or by satisfying exact relations. Here, a new approach to density-functional analysis and construction is proposed: the Lieb variation principle, usually regarded as conceptually important but impracticable. By invoking the Lieb principle, it becomes possible to approach the development of approximate functionals in a novel manner, being directly guided by the behaviour of exact functional, accurately calculated for a wide variety of chemical systems. In particular, this principle will be used to calculate ab-initio adiabatic connection curves, studying the exchange correlation functional for a fixed density as the electronic interactions are turned on from zero to one. Pilot calculations have indicated the feasibility of this approach in simple cases—here, a comprehensive set of adiabatic-connection curves will be generated and utilized for calibration, construction, and analysis of density functionals, the objective being to produce improved functionals for Kohn Sham calculations by modelling or fitting such curves. The ABACUS approach will be particularly important in cases where little experimental information is available—for example, for understanding and modelling the behaviour of the exchange correlation functional in electromagnetic fields.
Max ERC Funding
2 017 932 €
Duration
Start date: 2011-03-01, End date: 2016-02-29
Project acronym ABIOS
Project ABIOtic Synthesis of RNA: an investigation on how life started before biology existed
Researcher (PI) Guillaume STIRNEMANN
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE4, ERC-2017-STG
Summary The emergence of life is one of the most fascinating and yet largely unsolved questions in the natural sciences, and thus a significant challenge for scientists from many disciplines. There is growing evidence that ribonucleic acid (RNA) polymers, which are capable of genetic information storage and self-catalysis, were involved in the early forms of life. But despite recent progress, RNA synthesis without biological machineries is very challenging. The current project aims at understanding how to synthesize RNA in abiotic conditions. I will solve problems associated with three critical aspects of RNA formation that I will rationalize at a molecular level: (i) accumulation of precursors, (ii) formation of a chemical bond between RNA monomers, and (iii) tolerance for alternative backbone sugars or linkages. Because I will study problems ranging from the formation of chemical bonds up to the stability of large biopolymers, I propose an original computational multi-scale approach combining techniques that range from quantum calculations to large-scale all-atom simulations, employed together with efficient enhanced-sampling algorithms, forcefield improvement, cutting-edge analysis methods and model development.
My objectives are the following:
1 • To explain why the poorly-understood thermally-driven process of thermophoresis can contribute to the accumulation of dilute precursors.
2 • To understand why linking RNA monomers with phosphoester bonds is so difficult, to understand the molecular mechanism of possible catalysts and to suggest key improvements.
3 • To rationalize the molecular basis for RNA tolerance for alternative backbone sugars or linkages that have probably been incorporated in abiotic conditions.
This unique in-silico laboratory setup should significantly impact our comprehension of life’s origin by overcoming major obstacles to RNA abiotic formation, and in addition will reveal significant orthogonal outcomes for (bio)technological applications.
Summary
The emergence of life is one of the most fascinating and yet largely unsolved questions in the natural sciences, and thus a significant challenge for scientists from many disciplines. There is growing evidence that ribonucleic acid (RNA) polymers, which are capable of genetic information storage and self-catalysis, were involved in the early forms of life. But despite recent progress, RNA synthesis without biological machineries is very challenging. The current project aims at understanding how to synthesize RNA in abiotic conditions. I will solve problems associated with three critical aspects of RNA formation that I will rationalize at a molecular level: (i) accumulation of precursors, (ii) formation of a chemical bond between RNA monomers, and (iii) tolerance for alternative backbone sugars or linkages. Because I will study problems ranging from the formation of chemical bonds up to the stability of large biopolymers, I propose an original computational multi-scale approach combining techniques that range from quantum calculations to large-scale all-atom simulations, employed together with efficient enhanced-sampling algorithms, forcefield improvement, cutting-edge analysis methods and model development.
My objectives are the following:
1 • To explain why the poorly-understood thermally-driven process of thermophoresis can contribute to the accumulation of dilute precursors.
2 • To understand why linking RNA monomers with phosphoester bonds is so difficult, to understand the molecular mechanism of possible catalysts and to suggest key improvements.
3 • To rationalize the molecular basis for RNA tolerance for alternative backbone sugars or linkages that have probably been incorporated in abiotic conditions.
This unique in-silico laboratory setup should significantly impact our comprehension of life’s origin by overcoming major obstacles to RNA abiotic formation, and in addition will reveal significant orthogonal outcomes for (bio)technological applications.
Max ERC Funding
1 497 031 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym ABYSS
Project ABYSS - Assessment of bacterial life and matter cycling in deep-sea surface sediments
Researcher (PI) Antje Boetius
Host Institution (HI) ALFRED-WEGENER-INSTITUT HELMHOLTZ-ZENTRUM FUR POLAR- UND MEERESFORSCHUNG
Call Details Advanced Grant (AdG), LS8, ERC-2011-ADG_20110310
Summary The deep-sea floor hosts a distinct microbial biome covering 67% of the Earth’s surface, characterized by cold temperatures, permanent darkness, high pressure and food limitation. The surface sediments are dominated by bacteria, with on average a billion cells per ml. Benthic bacteria are highly relevant to the Earth’s element cycles as they remineralize most of the organic matter sinking from the productive surface ocean, and return nutrients, thereby promoting ocean primary production. What passes the bacterial filter is a relevant sink for carbon on geological time scales, influencing global oxygen and carbon budgets, and fueling the deep subsurface biosphere. Despite the relevance of deep-sea sediment bacteria to climate, geochemical cycles and ecology of the seafloor, their genetic and functional diversity, niche differentiation and biological interactions remain unknown. Our preliminary work in a global survey of deep-sea sediments enables us now to target specific genes for the quantification of abyssal bacteria. We can trace isotope-labeled elements into communities and single cells, and analyze the molecular alteration of organic matter during microbial degradation, all in context with environmental dynamics recorded at the only long-term deep-sea ecosystem observatory in the Arctic that we maintain. I propose to bridge biogeochemistry, ecology, microbiology and marine biology to develop a systematic understanding of abyssal sediment bacterial community distribution, diversity, function and interactions, by combining in situ flux studies and different visualization techniques with a wide range of molecular tools. Substantial progress is expected in understanding I) identity and function of the dominant types of indigenous benthic bacteria, II) dynamics in bacterial activity and diversity caused by variations in particle flux, III) interactions with different types and ages of organic matter, and other biological factors.
Summary
The deep-sea floor hosts a distinct microbial biome covering 67% of the Earth’s surface, characterized by cold temperatures, permanent darkness, high pressure and food limitation. The surface sediments are dominated by bacteria, with on average a billion cells per ml. Benthic bacteria are highly relevant to the Earth’s element cycles as they remineralize most of the organic matter sinking from the productive surface ocean, and return nutrients, thereby promoting ocean primary production. What passes the bacterial filter is a relevant sink for carbon on geological time scales, influencing global oxygen and carbon budgets, and fueling the deep subsurface biosphere. Despite the relevance of deep-sea sediment bacteria to climate, geochemical cycles and ecology of the seafloor, their genetic and functional diversity, niche differentiation and biological interactions remain unknown. Our preliminary work in a global survey of deep-sea sediments enables us now to target specific genes for the quantification of abyssal bacteria. We can trace isotope-labeled elements into communities and single cells, and analyze the molecular alteration of organic matter during microbial degradation, all in context with environmental dynamics recorded at the only long-term deep-sea ecosystem observatory in the Arctic that we maintain. I propose to bridge biogeochemistry, ecology, microbiology and marine biology to develop a systematic understanding of abyssal sediment bacterial community distribution, diversity, function and interactions, by combining in situ flux studies and different visualization techniques with a wide range of molecular tools. Substantial progress is expected in understanding I) identity and function of the dominant types of indigenous benthic bacteria, II) dynamics in bacterial activity and diversity caused by variations in particle flux, III) interactions with different types and ages of organic matter, and other biological factors.
Max ERC Funding
3 375 693 €
Duration
Start date: 2012-06-01, End date: 2018-05-31
Project acronym ADAPT
Project Origins and factors governing adaptation: Insights from experimental evolution and population genomic data
Researcher (PI) Thomas, Martin Jean Bataillon
Host Institution (HI) AARHUS UNIVERSITET
Call Details Starting Grant (StG), LS8, ERC-2012-StG_20111109
Summary "I propose a systematic study of the type of genetic variation enabling adaptation and factors that limit rates of adaptation in natural populations. New methods will be developed for analysing data from experimental evolution and population genomics. The methods will be applied to state of the art data from both fields. Adaptation is generated by natural selection sieving through heritable variation. Examples of adaptation are available from the fossil record and from extant populations. Genomic studies have supplied many instances of genomic regions exhibiting footprint of natural selection favouring new variants. Despite ample proof that adaptation happens, we know little about beneficial mutations– the raw stuff enabling adaptation. Is adaptation mediated by genetic variation pre-existing in the population, or by variation supplied de novo through mutations? We know even less about what factors limit rates of adaptation. Answers to these questions are crucial for Evolutionary Biology, but also for believable quantifications of the evolutionary potential of populations. Population genetic theory makes predictions and allows inference from the patterns of polymorphism within species and divergence between species. Yet models specifying the fitness effects of mutations are often missing. Fitness landscape models will be mobilized to fill this gap and develop methods for inferring the distribution of fitness effects and factors governing rates of adaptation. Insights into the processes underlying adaptation will thus be gained from experimental evolution and population genomics data. The applicability of insights gained from experimental evolution to comprehend adaptation in nature will be scrutinized. We will unite two very different approaches for studying adaptation. The project will boost our understanding of how selection shapes genomes and open the way for further quantitative tests of theories of adaptation."
Summary
"I propose a systematic study of the type of genetic variation enabling adaptation and factors that limit rates of adaptation in natural populations. New methods will be developed for analysing data from experimental evolution and population genomics. The methods will be applied to state of the art data from both fields. Adaptation is generated by natural selection sieving through heritable variation. Examples of adaptation are available from the fossil record and from extant populations. Genomic studies have supplied many instances of genomic regions exhibiting footprint of natural selection favouring new variants. Despite ample proof that adaptation happens, we know little about beneficial mutations– the raw stuff enabling adaptation. Is adaptation mediated by genetic variation pre-existing in the population, or by variation supplied de novo through mutations? We know even less about what factors limit rates of adaptation. Answers to these questions are crucial for Evolutionary Biology, but also for believable quantifications of the evolutionary potential of populations. Population genetic theory makes predictions and allows inference from the patterns of polymorphism within species and divergence between species. Yet models specifying the fitness effects of mutations are often missing. Fitness landscape models will be mobilized to fill this gap and develop methods for inferring the distribution of fitness effects and factors governing rates of adaptation. Insights into the processes underlying adaptation will thus be gained from experimental evolution and population genomics data. The applicability of insights gained from experimental evolution to comprehend adaptation in nature will be scrutinized. We will unite two very different approaches for studying adaptation. The project will boost our understanding of how selection shapes genomes and open the way for further quantitative tests of theories of adaptation."
Max ERC Funding
1 159 857 €
Duration
Start date: 2013-04-01, End date: 2018-03-31
Project acronym ADaPTIVE
Project Analysing Diversity with a Phenomic approach: Trends in Vertebrate Evolution
Researcher (PI) Anjali Goswami
Host Institution (HI) NATURAL HISTORY MUSEUM
Call Details Starting Grant (StG), LS8, ERC-2014-STG
Summary What processes shape vertebrate diversity through deep time? Approaches to this question can focus on many different factors, from life history and ecology to large-scale environmental change and extinction. To date, the majority of studies on the evolution of vertebrate diversity have focused on relatively simple metrics, specifically taxon counts or univariate measures, such as body size. However, multivariate morphological data provides a more complete picture of evolutionary and palaeoecological change. Morphological data can also bridge deep-time palaeobiological analyses with studies of the genetic and developmental factors that shape variation and must also influence large-scale patterns of evolutionary change. Thus, accurately reconstructing the patterns and processes underlying evolution requires an approach that can fully represent an organism’s phenome, the sum total of their observable traits.
Recent advances in imaging and data analysis allow large-scale study of phenomic evolution. In this project, I propose to quantitatively analyse the deep-time evolutionary diversity of tetrapods (amphibians, reptiles, birds, and mammals). Specifically, I will apply and extend new imaging, morphometric, and analytical tools to construct a multivariate phenomic dataset for living and extinct tetrapods from 3-D scans. I will use these data to rigorously compare extinction selectivity, timing, pace, and shape of adaptive radiations, and ecomorphological response to large-scale climatic shifts across all tetrapod clades. To do so, I will quantify morphological diversity (disparity) and rates of evolution spanning over 300 million years of tetrapod history. I will further analyse the evolution of phenotypic integration by quantifying not just the traits themselves, but changes in the relationships among traits, which reflect the genetic, developmental, and functional interactions that shape variation, the raw material for natural selection.
Summary
What processes shape vertebrate diversity through deep time? Approaches to this question can focus on many different factors, from life history and ecology to large-scale environmental change and extinction. To date, the majority of studies on the evolution of vertebrate diversity have focused on relatively simple metrics, specifically taxon counts or univariate measures, such as body size. However, multivariate morphological data provides a more complete picture of evolutionary and palaeoecological change. Morphological data can also bridge deep-time palaeobiological analyses with studies of the genetic and developmental factors that shape variation and must also influence large-scale patterns of evolutionary change. Thus, accurately reconstructing the patterns and processes underlying evolution requires an approach that can fully represent an organism’s phenome, the sum total of their observable traits.
Recent advances in imaging and data analysis allow large-scale study of phenomic evolution. In this project, I propose to quantitatively analyse the deep-time evolutionary diversity of tetrapods (amphibians, reptiles, birds, and mammals). Specifically, I will apply and extend new imaging, morphometric, and analytical tools to construct a multivariate phenomic dataset for living and extinct tetrapods from 3-D scans. I will use these data to rigorously compare extinction selectivity, timing, pace, and shape of adaptive radiations, and ecomorphological response to large-scale climatic shifts across all tetrapod clades. To do so, I will quantify morphological diversity (disparity) and rates of evolution spanning over 300 million years of tetrapod history. I will further analyse the evolution of phenotypic integration by quantifying not just the traits themselves, but changes in the relationships among traits, which reflect the genetic, developmental, and functional interactions that shape variation, the raw material for natural selection.
Max ERC Funding
1 482 818 €
Duration
Start date: 2015-06-01, End date: 2020-05-31
Project acronym AdaptiveResponse
Project The evolution of adaptive response mechanisms
Researcher (PI) Franz WEISSING
Host Institution (HI) RIJKSUNIVERSITEIT GRONINGEN
Call Details Advanced Grant (AdG), LS8, ERC-2017-ADG
Summary In an era of rapid climate change there is a pressing need to understand whether and how organisms are able to adapt to novel environments. Such understanding is hampered by a major divide in the life sciences. Disciplines like systems biology or neurobiology make rapid progress in unravelling the mechanisms underlying the responses of organisms to their environment, but this knowledge is insufficiently integrated in eco-evolutionary theory. Current eco-evolutionary models focus on the response patterns themselves, largely neglecting the structures and mechanisms producing these patterns. Here I propose a new, mechanism-oriented framework that views the architecture of adaptation, rather than the resulting responses, as the primary target of natural selection. I am convinced that this change in perspective will yield fundamentally new insights, necessitating the re-evaluation of many seemingly well-established eco-evolutionary principles.
My aim is to develop a comprehensive theory of the eco-evolutionary causes and consequences of the architecture underlying adaptive responses. In three parallel lines of investigation, I will study how architecture is shaped by selection, how evolved response strategies reflect the underlying architecture, and how these responses affect the eco-evolutionary dynamics and the capacity to adapt to novel conditions. All three lines have the potential of making ground-breaking contributions to eco-evolutionary theory, including: the specification of evolutionary tipping points; resolving the puzzle that real organisms evolve much faster than predicted by current theory; a new and general explanation for the evolutionary emergence of individual variation; and a framework for studying the evolution of learning and other general-purpose mechanisms. By making use of concepts from information theory and artificial intelligence, the project will also introduce various methodological innovations.
Summary
In an era of rapid climate change there is a pressing need to understand whether and how organisms are able to adapt to novel environments. Such understanding is hampered by a major divide in the life sciences. Disciplines like systems biology or neurobiology make rapid progress in unravelling the mechanisms underlying the responses of organisms to their environment, but this knowledge is insufficiently integrated in eco-evolutionary theory. Current eco-evolutionary models focus on the response patterns themselves, largely neglecting the structures and mechanisms producing these patterns. Here I propose a new, mechanism-oriented framework that views the architecture of adaptation, rather than the resulting responses, as the primary target of natural selection. I am convinced that this change in perspective will yield fundamentally new insights, necessitating the re-evaluation of many seemingly well-established eco-evolutionary principles.
My aim is to develop a comprehensive theory of the eco-evolutionary causes and consequences of the architecture underlying adaptive responses. In three parallel lines of investigation, I will study how architecture is shaped by selection, how evolved response strategies reflect the underlying architecture, and how these responses affect the eco-evolutionary dynamics and the capacity to adapt to novel conditions. All three lines have the potential of making ground-breaking contributions to eco-evolutionary theory, including: the specification of evolutionary tipping points; resolving the puzzle that real organisms evolve much faster than predicted by current theory; a new and general explanation for the evolutionary emergence of individual variation; and a framework for studying the evolution of learning and other general-purpose mechanisms. By making use of concepts from information theory and artificial intelligence, the project will also introduce various methodological innovations.
Max ERC Funding
2 500 000 €
Duration
Start date: 2018-12-01, End date: 2023-11-30
Project acronym AdaptoSCOPE
Project Using cis-regulatory mutations to highlight polygenic adaptation in natural plant systems
Researcher (PI) Juliette de Meaux
Host Institution (HI) UNIVERSITAET ZU KOELN
Call Details Consolidator Grant (CoG), LS8, ERC-2014-CoG
Summary The goal of this project is to demonstrate that novel aspects of the molecular basis of Darwinian adaptation can be discovered if the polygenic basis of adaptation is taken into account. This project will use the genome-wide distribution of cis-regulatory variants to discover the molecular pathways that are optimized during adaptation via accumulation of small effect mutations. Current approaches include scans for outlier genes with strong population genetics signatures of selection, or large effect QTL associating with fitness. They can only reveal a small subset of the molecular changes recruited along adaptive paths. Here, instead, the distribution of small effect mutations will be used to make inferences on the targets of polygenic adaptation across divergent populations in each of the two closely related species, A. thaliana and A. lyrata. These species are both found at diverse latitudes and show sign of local adaptation to climatic differences. Mutations affecting cis-regulation will be identified in leaves of plants exposed to various temperature regimes triggering phenotypic responses of adaptive relevance. Their distribution in clusters of functionally connected genes will be quantified. The phylogeographic differences in the distribution of the mutations will be used to disentangle neutral from adaptive clusters of functionally connected genes in each of the two species. This project will identify the molecular pathways subjected collectively to natural selection and provide a completely novel view on adaptive landscapes. It will further examine whether local adaptation occurs by convergent evolution of molecular systems in plants. This approach has the potential to find broad applications in ecology and agriculture.
Summary
The goal of this project is to demonstrate that novel aspects of the molecular basis of Darwinian adaptation can be discovered if the polygenic basis of adaptation is taken into account. This project will use the genome-wide distribution of cis-regulatory variants to discover the molecular pathways that are optimized during adaptation via accumulation of small effect mutations. Current approaches include scans for outlier genes with strong population genetics signatures of selection, or large effect QTL associating with fitness. They can only reveal a small subset of the molecular changes recruited along adaptive paths. Here, instead, the distribution of small effect mutations will be used to make inferences on the targets of polygenic adaptation across divergent populations in each of the two closely related species, A. thaliana and A. lyrata. These species are both found at diverse latitudes and show sign of local adaptation to climatic differences. Mutations affecting cis-regulation will be identified in leaves of plants exposed to various temperature regimes triggering phenotypic responses of adaptive relevance. Their distribution in clusters of functionally connected genes will be quantified. The phylogeographic differences in the distribution of the mutations will be used to disentangle neutral from adaptive clusters of functionally connected genes in each of the two species. This project will identify the molecular pathways subjected collectively to natural selection and provide a completely novel view on adaptive landscapes. It will further examine whether local adaptation occurs by convergent evolution of molecular systems in plants. This approach has the potential to find broad applications in ecology and agriculture.
Max ERC Funding
1 683 120 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym AFTERTHEGOLDRUSH
Project Addressing global sustainability challenges by changing perceptions in catalyst design
Researcher (PI) Graham John Hutchings
Host Institution (HI) CARDIFF UNIVERSITY
Call Details Advanced Grant (AdG), PE4, ERC-2011-ADG_20110209
Summary One of the greatest challenges facing society is the sustainability of resources. At present, a step change in the sustainable use of resources is needed and catalysis lies at the heart of the solution by providing new routes to carbon dioxide mitigation, energy security and water conservation. It is clear that new high efficiency game-changing catalysts are required to meet the challenge. This proposal will focus on excellence in catalyst design by learning from recent step change advances in gold catalysis by challenging perceptions. Intense interest in gold catalysts over the past two decades has accelerated our understanding of gold particle-size effects, gold-support and gold-metal interactions, the interchange between atomic and ionic gold species, and the role of the gold-support interface in creating and maintaining catalytic activity. The field has also driven the development of cutting-edge techniques, particularly in microscopy and transient kinetics, providing detailed structural characterisation on the nano-scale and probing the short-range and often short-lived interactions. By comparison, our understanding of other metal catalysts has remained relatively static.
The proposed programme will engender a step change in the design of supported-metal catalysts, by exploiting the learning and the techniques emerging from gold catalysis. The research will be set out in two themes. In Theme 1 two established key grand challenges will be attacked; namely, energy vectors and greenhouse gas control. Theme 2 will address two new and emerging grand challenges in catalysis namely the effective low temperature activation of primary carbon hydrogen bonds and CO2 utilisation where instead of treating CO2 as a thermodynamic endpoint, the aim will be to re-use it as a feedstock for bulk chemical and fuel production. The legacy of the research will be the development of a new catalyst design approach that will provide a tool box for future catalyst development.
Summary
One of the greatest challenges facing society is the sustainability of resources. At present, a step change in the sustainable use of resources is needed and catalysis lies at the heart of the solution by providing new routes to carbon dioxide mitigation, energy security and water conservation. It is clear that new high efficiency game-changing catalysts are required to meet the challenge. This proposal will focus on excellence in catalyst design by learning from recent step change advances in gold catalysis by challenging perceptions. Intense interest in gold catalysts over the past two decades has accelerated our understanding of gold particle-size effects, gold-support and gold-metal interactions, the interchange between atomic and ionic gold species, and the role of the gold-support interface in creating and maintaining catalytic activity. The field has also driven the development of cutting-edge techniques, particularly in microscopy and transient kinetics, providing detailed structural characterisation on the nano-scale and probing the short-range and often short-lived interactions. By comparison, our understanding of other metal catalysts has remained relatively static.
The proposed programme will engender a step change in the design of supported-metal catalysts, by exploiting the learning and the techniques emerging from gold catalysis. The research will be set out in two themes. In Theme 1 two established key grand challenges will be attacked; namely, energy vectors and greenhouse gas control. Theme 2 will address two new and emerging grand challenges in catalysis namely the effective low temperature activation of primary carbon hydrogen bonds and CO2 utilisation where instead of treating CO2 as a thermodynamic endpoint, the aim will be to re-use it as a feedstock for bulk chemical and fuel production. The legacy of the research will be the development of a new catalyst design approach that will provide a tool box for future catalyst development.
Max ERC Funding
2 279 785 €
Duration
Start date: 2012-04-01, End date: 2017-03-31
Project acronym AGINGSEXDIFF
Project Aging Differently: Understanding Sex Differences in Reproductive, Demographic and Functional Senescence
Researcher (PI) Alexei Maklakov
Host Institution (HI) Uppsala University
Call Details Starting Grant (StG), LS8, ERC-2010-StG_20091118
Summary Sex differences in life span and aging are ubiquitous across the animal kingdom and represent a
long-standing challenge in evolutionary biology. In most species, including humans, sexes differ not
only in how long they live and when they start to senesce, but also in how they react to
environmental interventions aimed at prolonging their life span or decelerating the onset of aging.
Therefore, sex differences in life span and aging have important implications beyond the questions
posed by fundamental science. Both evolutionary reasons and medical implications of sex
differences in demographic, reproductive and physiological senescence are and will be crucial
targets of present and future research in the biology of aging. Here I propose a two-step approach
that can provide a significant breakthrough in our understanding of the biological basis of sex
differences in aging. First, I propose to resolve the age-old conundrum regarding the role of sexspecific
mortality rate in sex differences in aging by developing a series of targeted experimental
evolution studies in a novel model organism – the nematode, Caenorhabditis remanei. Second, I
address the role of intra-locus sexual conflict in the evolution of aging by combining novel
methodology from nutritional ecology – the Geometric Framework – with artificial selection
approach using the cricket Teleogryllus commodus and the fruitfly Drosophila melanogaster. I will
directly test the hypothesis that intra-locus sexual conflict mediates aging by restricting the
adaptive evolution of diet choice. By combining techniques from evolutionary biology and
nutritional ecology, this proposal will raise EU’s profile in integrative research, and contribute to
the training of young scientists in this rapidly developing field.
Summary
Sex differences in life span and aging are ubiquitous across the animal kingdom and represent a
long-standing challenge in evolutionary biology. In most species, including humans, sexes differ not
only in how long they live and when they start to senesce, but also in how they react to
environmental interventions aimed at prolonging their life span or decelerating the onset of aging.
Therefore, sex differences in life span and aging have important implications beyond the questions
posed by fundamental science. Both evolutionary reasons and medical implications of sex
differences in demographic, reproductive and physiological senescence are and will be crucial
targets of present and future research in the biology of aging. Here I propose a two-step approach
that can provide a significant breakthrough in our understanding of the biological basis of sex
differences in aging. First, I propose to resolve the age-old conundrum regarding the role of sexspecific
mortality rate in sex differences in aging by developing a series of targeted experimental
evolution studies in a novel model organism – the nematode, Caenorhabditis remanei. Second, I
address the role of intra-locus sexual conflict in the evolution of aging by combining novel
methodology from nutritional ecology – the Geometric Framework – with artificial selection
approach using the cricket Teleogryllus commodus and the fruitfly Drosophila melanogaster. I will
directly test the hypothesis that intra-locus sexual conflict mediates aging by restricting the
adaptive evolution of diet choice. By combining techniques from evolutionary biology and
nutritional ecology, this proposal will raise EU’s profile in integrative research, and contribute to
the training of young scientists in this rapidly developing field.
Max ERC Funding
1 391 904 €
Duration
Start date: 2010-12-01, End date: 2016-05-31
Project acronym ALH
Project Alternative life histories: linking genes to phenotypes to demography
Researcher (PI) Thomas Eric Reed
Host Institution (HI) UNIVERSITY COLLEGE CORK - NATIONAL UNIVERSITY OF IRELAND, CORK
Call Details Starting Grant (StG), LS8, ERC-2014-STG
Summary Understanding how and why individuals develop strikingly different life histories is a major goal in evolutionary biology. It is also a prerequisite for conserving important biodiversity within species and predicting the impacts of environmental change on populations. The aim of my study is to examine a key threshold phenotypic trait (alternative migratory tactics) in a series of large scale laboratory and field experiments, integrating several previously independent perspectives from evolutionary ecology, ecophysiology and genomics, to produce a downstream predictive model. My chosen study species, the brown trout Salmo trutta, has an extensive history of genetic and experimental work and exhibits ‘partial migration’: individuals either migrate to sea (‘sea trout’) or remain in freshwater their whole lives. Recent advances in molecular parentage assignment, quantitative genetics and genomics (next generation sequencing and bioinformatics) will allow unprecedented insight into how alternative life history phenotypes are moulded by the interaction between genes and environment. To provide additional mechanistic understanding of these processes, the balance between metabolic requirements during growth and available extrinsic resources will be investigated as the major physiological driver of migratory behaviour. Together these results will be used to develop a predictive model to explore the consequences of rapid environmental change, accounting for the effects of genetics and environment on phenotype and on population demographics. In addition to their value for conservation and management of an iconic and key species in European freshwaters and coastal seas, these results will generate novel insight into the evolution of migratory behaviour generally, providing a text book example of how alternative life histories are shaped and maintained in wild populations.
Summary
Understanding how and why individuals develop strikingly different life histories is a major goal in evolutionary biology. It is also a prerequisite for conserving important biodiversity within species and predicting the impacts of environmental change on populations. The aim of my study is to examine a key threshold phenotypic trait (alternative migratory tactics) in a series of large scale laboratory and field experiments, integrating several previously independent perspectives from evolutionary ecology, ecophysiology and genomics, to produce a downstream predictive model. My chosen study species, the brown trout Salmo trutta, has an extensive history of genetic and experimental work and exhibits ‘partial migration’: individuals either migrate to sea (‘sea trout’) or remain in freshwater their whole lives. Recent advances in molecular parentage assignment, quantitative genetics and genomics (next generation sequencing and bioinformatics) will allow unprecedented insight into how alternative life history phenotypes are moulded by the interaction between genes and environment. To provide additional mechanistic understanding of these processes, the balance between metabolic requirements during growth and available extrinsic resources will be investigated as the major physiological driver of migratory behaviour. Together these results will be used to develop a predictive model to explore the consequences of rapid environmental change, accounting for the effects of genetics and environment on phenotype and on population demographics. In addition to their value for conservation and management of an iconic and key species in European freshwaters and coastal seas, these results will generate novel insight into the evolution of migratory behaviour generally, providing a text book example of how alternative life histories are shaped and maintained in wild populations.
Max ERC Funding
1 499 202 €
Duration
Start date: 2015-05-01, End date: 2020-04-30
Project acronym Amitochondriates
Project Life without mitochondrion
Researcher (PI) Vladimir HAMPL
Host Institution (HI) UNIVERZITA KARLOVA
Call Details Consolidator Grant (CoG), LS8, ERC-2017-COG
Summary Mitochondria are often referred to as the “power houses” of eukaryotic cells. All eukaryotes were thought to have mitochondria of some form until 2016, when the first eukaryote thriving without mitochondria was discovered by our laboratory – a flagellate Monocercomonoides. Understanding cellular functions of these cells, which represent a new functional type of eukaryotes, and understanding the circumstances of the unique event of mitochondrial loss are motivations for this proposal. The first objective focuses on the cell physiology. We will perform a metabolomic study revealing major metabolic pathways and concentrate further on elucidating its unique system of iron-sulphur cluster assembly. In the second objective, we will investigate in details the unique case of mitochondrial loss. We will examine two additional potentially amitochondriate lineages by means of genomics and transcriptomics, conduct experiments simulating the moments of mitochondrial loss and try to induce the mitochondrial loss in vitro by knocking out or down genes for mitochondrial biogenesis. We have chosen Giardia intestinalis and Entamoeba histolytica as models for the latter experiments, because their mitochondria are already reduced to minimalistic “mitosomes” and because some genetic tools are already available for them. Successful mitochondrial knock-outs would enable us to study mitochondrial loss in ‘real time’ and in vivo. In the third objective, we will focus on transforming Monocercomonoides into a tractable laboratory model by developing methods of axenic cultivation and genetic manipulation. This will open new possibilities in the studies of this organism and create a cell culture representing an amitochondriate model for cell biological studies enabling the dissection of mitochondrial effects from those of other compartments. The team is composed of the laboratory of PI and eight invited experts and we hope it has the ability to address these challenging questions.
Summary
Mitochondria are often referred to as the “power houses” of eukaryotic cells. All eukaryotes were thought to have mitochondria of some form until 2016, when the first eukaryote thriving without mitochondria was discovered by our laboratory – a flagellate Monocercomonoides. Understanding cellular functions of these cells, which represent a new functional type of eukaryotes, and understanding the circumstances of the unique event of mitochondrial loss are motivations for this proposal. The first objective focuses on the cell physiology. We will perform a metabolomic study revealing major metabolic pathways and concentrate further on elucidating its unique system of iron-sulphur cluster assembly. In the second objective, we will investigate in details the unique case of mitochondrial loss. We will examine two additional potentially amitochondriate lineages by means of genomics and transcriptomics, conduct experiments simulating the moments of mitochondrial loss and try to induce the mitochondrial loss in vitro by knocking out or down genes for mitochondrial biogenesis. We have chosen Giardia intestinalis and Entamoeba histolytica as models for the latter experiments, because their mitochondria are already reduced to minimalistic “mitosomes” and because some genetic tools are already available for them. Successful mitochondrial knock-outs would enable us to study mitochondrial loss in ‘real time’ and in vivo. In the third objective, we will focus on transforming Monocercomonoides into a tractable laboratory model by developing methods of axenic cultivation and genetic manipulation. This will open new possibilities in the studies of this organism and create a cell culture representing an amitochondriate model for cell biological studies enabling the dissection of mitochondrial effects from those of other compartments. The team is composed of the laboratory of PI and eight invited experts and we hope it has the ability to address these challenging questions.
Max ERC Funding
1 935 500 €
Duration
Start date: 2018-05-01, End date: 2023-04-30
Project acronym AMPERE
Project Accounting for Metallicity, Polarization of the Electrolyte, and Redox reactions in computational Electrochemistry
Researcher (PI) Mathieu Eric Salanne
Host Institution (HI) SORBONNE UNIVERSITE
Call Details Consolidator Grant (CoG), PE4, ERC-2017-COG
Summary Applied electrochemistry plays a key role in many technologies, such as batteries, fuel cells, supercapacitors or solar cells. It is therefore at the core of many research programs all over the world. Yet, fundamental electrochemical investigations remain scarce. In particular, electrochemistry is among the fields for which the gap between theory and experiment is the largest. From the computational point of view, there is no molecular dynamics (MD) software devoted to the simulation of electrochemical systems while other fields such as biochemistry (GROMACS) or material science (LAMMPS) have dedicated tools. This is due to the difficulty of accounting for complex effects arising from (i) the degree of metallicity of the electrode (i.e. from semimetals to perfect conductors), (ii) the mutual polarization occurring at the electrode/electrolyte interface and (iii) the redox reactivity through explicit electron transfers. Current understanding therefore relies on standard theories that derive from an inaccurate molecular-scale picture. My objective is to fill this gap by introducing a whole set of new methods for simulating electrochemical systems. They will be provided to the computational electrochemistry community as a cutting-edge MD software adapted to supercomputers. First applications will aim at the discovery of new electrolytes for energy storage. Here I will focus on (1) ‘‘water-in-salts’’ to understand why these revolutionary liquids enable much higher voltage than conventional solutions (2) redox reactions inside a nanoporous electrode to support the development of future capacitive energy storage devices. These selected applications are timely and rely on collaborations with leading experimental partners. The results are expected to shed an unprecedented light on the importance of polarization effects on the structure and the reactivity of electrode/electrolyte interfaces, establishing MD as a prominent tool for solving complex electrochemistry problems.
Summary
Applied electrochemistry plays a key role in many technologies, such as batteries, fuel cells, supercapacitors or solar cells. It is therefore at the core of many research programs all over the world. Yet, fundamental electrochemical investigations remain scarce. In particular, electrochemistry is among the fields for which the gap between theory and experiment is the largest. From the computational point of view, there is no molecular dynamics (MD) software devoted to the simulation of electrochemical systems while other fields such as biochemistry (GROMACS) or material science (LAMMPS) have dedicated tools. This is due to the difficulty of accounting for complex effects arising from (i) the degree of metallicity of the electrode (i.e. from semimetals to perfect conductors), (ii) the mutual polarization occurring at the electrode/electrolyte interface and (iii) the redox reactivity through explicit electron transfers. Current understanding therefore relies on standard theories that derive from an inaccurate molecular-scale picture. My objective is to fill this gap by introducing a whole set of new methods for simulating electrochemical systems. They will be provided to the computational electrochemistry community as a cutting-edge MD software adapted to supercomputers. First applications will aim at the discovery of new electrolytes for energy storage. Here I will focus on (1) ‘‘water-in-salts’’ to understand why these revolutionary liquids enable much higher voltage than conventional solutions (2) redox reactions inside a nanoporous electrode to support the development of future capacitive energy storage devices. These selected applications are timely and rely on collaborations with leading experimental partners. The results are expected to shed an unprecedented light on the importance of polarization effects on the structure and the reactivity of electrode/electrolyte interfaces, establishing MD as a prominent tool for solving complex electrochemistry problems.
Max ERC Funding
1 588 769 €
Duration
Start date: 2018-04-01, End date: 2023-03-31
Project acronym AMSEL
Project Atomic Force Microscopy for Molecular Structure Elucidation
Researcher (PI) Leo Gross
Host Institution (HI) IBM RESEARCH GMBH
Call Details Consolidator Grant (CoG), PE4, ERC-2015-CoG
Summary Molecular structure elucidation is of great importance in synthetic chemistry, pharmacy, life sciences, energy and environmental sciences, and technology applications. To date structure elucidation by atomic force microscopy (AFM) has been demonstrated for a few, small and mainly planar molecules. In this project high-risk, high-impact scientific questions will be solved using structure elucidation with the AFM employing a novel tool and novel methodologies.
A combined low-temperature scanning tunneling microscope/atomic force microscope (LT-STM/AFM) with high throughput and in situ electrospray deposition method will be developed. Chemical resolution will be achieved by novel measurement techniques, in particular the usage of different and novel tip functionalizations and combination with Kelvin probe force microscopy. Elements will be identified using substructure recognition provided by a database that will be erected and by refined theory and simulations.
The developed tools and techniques will be applied to molecules of increasing fragility, complexity, size, and three-dimensionality. In particular samples that are challenging to characterize with conventional methods will be studied. Complex molecular mixtures will be investigated molecule-by-molecule taking advantage of the single-molecule sensitivity. The absolute stereochemistry of molecules will be determined, resolving molecules with multiple stereocenters. The operation of single molecular machines as nanocars and molecular gears will be investigated. Reactive intermediates generated with atomic manipulation will be characterized and their on-surface reactivity will be studied by AFM.
Summary
Molecular structure elucidation is of great importance in synthetic chemistry, pharmacy, life sciences, energy and environmental sciences, and technology applications. To date structure elucidation by atomic force microscopy (AFM) has been demonstrated for a few, small and mainly planar molecules. In this project high-risk, high-impact scientific questions will be solved using structure elucidation with the AFM employing a novel tool and novel methodologies.
A combined low-temperature scanning tunneling microscope/atomic force microscope (LT-STM/AFM) with high throughput and in situ electrospray deposition method will be developed. Chemical resolution will be achieved by novel measurement techniques, in particular the usage of different and novel tip functionalizations and combination with Kelvin probe force microscopy. Elements will be identified using substructure recognition provided by a database that will be erected and by refined theory and simulations.
The developed tools and techniques will be applied to molecules of increasing fragility, complexity, size, and three-dimensionality. In particular samples that are challenging to characterize with conventional methods will be studied. Complex molecular mixtures will be investigated molecule-by-molecule taking advantage of the single-molecule sensitivity. The absolute stereochemistry of molecules will be determined, resolving molecules with multiple stereocenters. The operation of single molecular machines as nanocars and molecular gears will be investigated. Reactive intermediates generated with atomic manipulation will be characterized and their on-surface reactivity will be studied by AFM.
Max ERC Funding
2 000 000 €
Duration
Start date: 2016-06-01, End date: 2021-05-31
Project acronym ANAMMOX
Project Anaerobic ammonium oxidizing bacteria: unique prokayotes with exceptional properties
Researcher (PI) Michael Silvester Maria Jetten
Host Institution (HI) STICHTING KATHOLIEKE UNIVERSITEIT
Call Details Advanced Grant (AdG), LS8, ERC-2008-AdG
Summary For over a century it was believed that ammonium could only be oxidized by microbes in the presence of oxygen. The possibility of anaerobic ammonium oxidation (anammox) was considered impossible. However, about 10 years ago the microbes responsible for the anammox reaction were discovered in a wastewater plant. This was followed by the identification of the responsible bacteria. Recently, the widespread environmental occurrence of the anammox bacteria was demonstrated leading to the realization that anammox bacteria may play a major role in biological nitrogen cycling. The anammox bacteria are unique microbes with many unusual properties. These include the biological turn-over of hydrazine, a well known rocket fuel, the biological synthesis of ladderane lipids, and the presence of a prokaryotic organelle in the cytoplasma of anammox bacteria. The aim of this project is to obtain a fundamental understanding of the metabolism and ecological importance of the anammox bacteria. Such understanding contributes directly to our environment and economy because the anammox bacteria form a new opportunity for nitrogen removal from wastewater, cheaper, with lower carbon dioxide emissions than existing technology. Scientifically the results will contribute to the understanding how hydrazine and dinitrogen gas are made by the anammox bacteria. The research will show which gene products are responsible for the anammox reaction, and how their expression is regulated. Furthermore, the experiments proposed will show if the prokaryotic organelle in anammox bacteria is involved in energy generation. Together the environmental and metabolic data will help to understand why anammox bacteria are so successful in the biogeochemical nitrogen cycle and thus shape our planets atmosphere. The different research lines will employ state of the art microbial and molecular methods to unravel the exceptional properties of these highly unusual and important anammox bacteria.
Summary
For over a century it was believed that ammonium could only be oxidized by microbes in the presence of oxygen. The possibility of anaerobic ammonium oxidation (anammox) was considered impossible. However, about 10 years ago the microbes responsible for the anammox reaction were discovered in a wastewater plant. This was followed by the identification of the responsible bacteria. Recently, the widespread environmental occurrence of the anammox bacteria was demonstrated leading to the realization that anammox bacteria may play a major role in biological nitrogen cycling. The anammox bacteria are unique microbes with many unusual properties. These include the biological turn-over of hydrazine, a well known rocket fuel, the biological synthesis of ladderane lipids, and the presence of a prokaryotic organelle in the cytoplasma of anammox bacteria. The aim of this project is to obtain a fundamental understanding of the metabolism and ecological importance of the anammox bacteria. Such understanding contributes directly to our environment and economy because the anammox bacteria form a new opportunity for nitrogen removal from wastewater, cheaper, with lower carbon dioxide emissions than existing technology. Scientifically the results will contribute to the understanding how hydrazine and dinitrogen gas are made by the anammox bacteria. The research will show which gene products are responsible for the anammox reaction, and how their expression is regulated. Furthermore, the experiments proposed will show if the prokaryotic organelle in anammox bacteria is involved in energy generation. Together the environmental and metabolic data will help to understand why anammox bacteria are so successful in the biogeochemical nitrogen cycle and thus shape our planets atmosphere. The different research lines will employ state of the art microbial and molecular methods to unravel the exceptional properties of these highly unusual and important anammox bacteria.
Max ERC Funding
2 500 000 €
Duration
Start date: 2009-01-01, End date: 2013-12-31
Project acronym ANGI
Project Adaptive significance of Non Genetic Inheritance
Researcher (PI) Benoit François Pujol
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Consolidator Grant (CoG), LS8, ERC-2015-CoG
Summary Our ability to predict adaptation and the response of populations to selection is limited. Solving this issue is a fundamental challenge of evolutionary ecology with implications for applied sciences such as conservation, and agronomy. Non genetic inheritance (NGI; e.g., ecological niche transmission) is suspected to play a foremost role in adaptive evolution but such hypothesis remains untested. Using quantitative genetics in wild plant populations, experimental evolution, and epigenetics, we will assess the role of NGI in the adaptive response to selection of plant populations. The ANGI project will follow the subsequent research program: (1) Using long-term survey data, we will measure natural selection in wild populations of Antirrhinum majus within its heterogeneous array of micro-habitats. We will calculate the fitness gain provided by multiple traits and stem elongation to plants growing in bushes where they compete for light. Stem elongation is known to depend on epigenetic variation. (2) Using a statistical approach that we developed, we will estimate the quantitative genetic and non genetic heritability of traits. (3) We will identify phenotypic changes caused by fitness that are based on genetic variation and NGI and assess their respective roles in adaptive evolution. (4) In controlled conditions, we will artificially select for increased stem elongation in clonal lineages, thereby excluding DNA variation. We will quantify the non genetic response to selection and test for a quantitative epigenetic signature of selection. (5) We will build on our results to generate an inclusive theory of genetic and non genetic natural selection. ANGI builds on a confirmed expertise in selection experiments, quantitative genetics and NGI. In addition, the availability of survey data provides a solid foundation for the achievement of this project. Our ambition is to shed light on original mechanisms underlying adaptation that are an alternative to genetic selection.
Summary
Our ability to predict adaptation and the response of populations to selection is limited. Solving this issue is a fundamental challenge of evolutionary ecology with implications for applied sciences such as conservation, and agronomy. Non genetic inheritance (NGI; e.g., ecological niche transmission) is suspected to play a foremost role in adaptive evolution but such hypothesis remains untested. Using quantitative genetics in wild plant populations, experimental evolution, and epigenetics, we will assess the role of NGI in the adaptive response to selection of plant populations. The ANGI project will follow the subsequent research program: (1) Using long-term survey data, we will measure natural selection in wild populations of Antirrhinum majus within its heterogeneous array of micro-habitats. We will calculate the fitness gain provided by multiple traits and stem elongation to plants growing in bushes where they compete for light. Stem elongation is known to depend on epigenetic variation. (2) Using a statistical approach that we developed, we will estimate the quantitative genetic and non genetic heritability of traits. (3) We will identify phenotypic changes caused by fitness that are based on genetic variation and NGI and assess their respective roles in adaptive evolution. (4) In controlled conditions, we will artificially select for increased stem elongation in clonal lineages, thereby excluding DNA variation. We will quantify the non genetic response to selection and test for a quantitative epigenetic signature of selection. (5) We will build on our results to generate an inclusive theory of genetic and non genetic natural selection. ANGI builds on a confirmed expertise in selection experiments, quantitative genetics and NGI. In addition, the availability of survey data provides a solid foundation for the achievement of this project. Our ambition is to shed light on original mechanisms underlying adaptation that are an alternative to genetic selection.
Max ERC Funding
1 999 970 €
Duration
Start date: 2016-03-01, End date: 2021-02-28
Project acronym ANGLE
Project Accelerated design and discovery of novel molecular materials via global lattice energy minimisation
Researcher (PI) Graeme Matthew Day
Host Institution (HI) UNIVERSITY OF SOUTHAMPTON
Call Details Starting Grant (StG), PE4, ERC-2012-StG_20111012
Summary The goal of crystal engineering is the design of functional crystalline materials in which the arrangement of basic structural building blocks imparts desired properties. The engineering of organic molecular crystals has, to date, relied largely on empirical rules governing the intermolecular association of functional groups in the solid state. However, many materials properties depend intricately on the complete crystal structure, i.e. the unit cell, space group and atomic positions, which cannot be predicted solely using such rules. Therefore, the development of computational methods for crystal structure prediction (CSP) from first principles has been a goal of computational chemistry that could significantly accelerate the design of new materials. It is only recently that the necessary advances in the modelling of intermolecular interactions and developments in algorithms for identifying all relevant crystal structures have come together to provide predictive methods that are becoming reliable and affordable on a timescale that could usefully complement an experimental research programme. The principle aim of the proposed work is to establish the use of state-of-the-art crystal structure prediction methods as a means of guiding the discovery and design of novel molecular materials.
This research proposal both continues the development of the computational methods for CSP and, by developing a computational framework for screening of potential molecules, develops the application of these methods for materials design. The areas on which we will focus are organic molecular semiconductors with high charge carrier mobilities and, building on our recently published results in Nature [1], the development of porous organic molecular materials. The project will both deliver novel materials, as well as improvements in the reliability of computational methods that will find widespread applications in materials chemistry.
[1] Nature 2011, 474, 367-371.
Summary
The goal of crystal engineering is the design of functional crystalline materials in which the arrangement of basic structural building blocks imparts desired properties. The engineering of organic molecular crystals has, to date, relied largely on empirical rules governing the intermolecular association of functional groups in the solid state. However, many materials properties depend intricately on the complete crystal structure, i.e. the unit cell, space group and atomic positions, which cannot be predicted solely using such rules. Therefore, the development of computational methods for crystal structure prediction (CSP) from first principles has been a goal of computational chemistry that could significantly accelerate the design of new materials. It is only recently that the necessary advances in the modelling of intermolecular interactions and developments in algorithms for identifying all relevant crystal structures have come together to provide predictive methods that are becoming reliable and affordable on a timescale that could usefully complement an experimental research programme. The principle aim of the proposed work is to establish the use of state-of-the-art crystal structure prediction methods as a means of guiding the discovery and design of novel molecular materials.
This research proposal both continues the development of the computational methods for CSP and, by developing a computational framework for screening of potential molecules, develops the application of these methods for materials design. The areas on which we will focus are organic molecular semiconductors with high charge carrier mobilities and, building on our recently published results in Nature [1], the development of porous organic molecular materials. The project will both deliver novel materials, as well as improvements in the reliability of computational methods that will find widespread applications in materials chemistry.
[1] Nature 2011, 474, 367-371.
Max ERC Funding
1 499 906 €
Duration
Start date: 2012-10-01, End date: 2017-09-30
Project acronym ANICOLEVO
Project Animal coloration through deep time: evolutionary novelty, homology and taphonomy
Researcher (PI) Maria McNamara
Host Institution (HI) UNIVERSITY COLLEGE CORK - NATIONAL UNIVERSITY OF IRELAND, CORK
Call Details Starting Grant (StG), LS8, ERC-2014-STG
Summary What does the fossil record tell us about the evolution of colour in animals through deep time? Evidence of colour in fossils can inform on the visual signalling strategies used by ancient animals. Research to date often has a narrow focus, lacks a broad phylogenetic and temporal context, and rarely incorporates information on taphonomy. This proposal represents a bold new holistic approach to the study of fossil colour: it will couple powerful imaging- and chemical analytical techniques with a rigorous programme of fossilisation experiments simulating decay, burial, and transport, and analysis of fossils and their sedimentary context, to construct the first robust models for the evolution of colour in animals through deep time. The research will resolve the original integumentary colours of fossil higher vertebrates, and the original colours of fossil hair; the fossil record of non-melanin pigments in feathers and insects; the biological significance of monotonal patterning in fossil insects; and the evolutionary history of scales and 3D photonic crystals in insects. Critically, the research will test, for the first time, whether evidence of fossil colour can solve broader evolutionary questions, e.g. the true affinities of enigmatic Cambrian chordate-like metazoans, and feather-like integumentary filaments in dinosaurs. The proposal entails construction of a dedicated experimental maturation laboratory for simulating the impact of burial on tissues. This laboratory will form the core of the world’s first integrated ‘experimental fossilisation facility’, consolidating the PI’s team as the global hub for fossil colour research. The research team comprises the PI, three postdoctoral researchers, and three PhD students, and will form an extensive research network via collaborations with 13 researchers from Europe and beyond. The project will reach out to diverse scientists and will inspire a positive attitude to science among the general public and policymakers alike.
Summary
What does the fossil record tell us about the evolution of colour in animals through deep time? Evidence of colour in fossils can inform on the visual signalling strategies used by ancient animals. Research to date often has a narrow focus, lacks a broad phylogenetic and temporal context, and rarely incorporates information on taphonomy. This proposal represents a bold new holistic approach to the study of fossil colour: it will couple powerful imaging- and chemical analytical techniques with a rigorous programme of fossilisation experiments simulating decay, burial, and transport, and analysis of fossils and their sedimentary context, to construct the first robust models for the evolution of colour in animals through deep time. The research will resolve the original integumentary colours of fossil higher vertebrates, and the original colours of fossil hair; the fossil record of non-melanin pigments in feathers and insects; the biological significance of monotonal patterning in fossil insects; and the evolutionary history of scales and 3D photonic crystals in insects. Critically, the research will test, for the first time, whether evidence of fossil colour can solve broader evolutionary questions, e.g. the true affinities of enigmatic Cambrian chordate-like metazoans, and feather-like integumentary filaments in dinosaurs. The proposal entails construction of a dedicated experimental maturation laboratory for simulating the impact of burial on tissues. This laboratory will form the core of the world’s first integrated ‘experimental fossilisation facility’, consolidating the PI’s team as the global hub for fossil colour research. The research team comprises the PI, three postdoctoral researchers, and three PhD students, and will form an extensive research network via collaborations with 13 researchers from Europe and beyond. The project will reach out to diverse scientists and will inspire a positive attitude to science among the general public and policymakers alike.
Max ERC Funding
1 562 000 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym ANTS
Project Attine ANT SymbiomeS
Researcher (PI) Jacobus Jan Boomsma
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Advanced Grant (AdG), LS8, ERC-2012-ADG_20120314
Summary "The attine fungus-growing ants are prime models for understanding phenotypic adaptations in social evolution and symbiosis. The mutualism has many hallmarks of advanced cooperation in its mating system commitments and functional complementarity between multiple symbiont partners, but potential conflicts between sexes and castes over reproductive priorities, and between hosts and symbionts over symbiont mixing have also been documented. With collaborators at BGI-Shenzhen and the Smithsonian Institution my group has obtained six reference genomes representing all genus-level branches of the higher attine ants and a lower attine outgroup. With collaborators in Denmark and Australia we have pioneered proteomic approaches to understand the preservation of sperm viability in spite of sperm competition and the enzymatic decomposition of plant substrates that the ants use to make their fungus gardens grow.
Here, I propose an integrated study focusing on four major areas of attine ant biology that are particularly inviting for in depth molecular approaches: 1. The protein-level networks that secure life-time (up to 20 years) sperm storage in specialized ant-queen organs and the genetic mechanisms that shape and adjust these “sexual symbiome” networks. 2. The ant-fungal symbiome, i.e. the dynamics of fungal enzyme production for plant substrate degradation and the redistribution of these enzymes in fungus gardens through fecal deposition after they are ingested but not digested by the ants. 3. The microbial symbiome of ant guts and other tissues with obligate bacterial mutualists, of which we have identified some and will characterize a wider collection across the different branches of the attine ant phylogeny. 4. The genome-wide frequency of genomic imprinting and the significance of these imprints for the expression of caste phenotypes and the regulation of potential reproductive conflicts."
Summary
"The attine fungus-growing ants are prime models for understanding phenotypic adaptations in social evolution and symbiosis. The mutualism has many hallmarks of advanced cooperation in its mating system commitments and functional complementarity between multiple symbiont partners, but potential conflicts between sexes and castes over reproductive priorities, and between hosts and symbionts over symbiont mixing have also been documented. With collaborators at BGI-Shenzhen and the Smithsonian Institution my group has obtained six reference genomes representing all genus-level branches of the higher attine ants and a lower attine outgroup. With collaborators in Denmark and Australia we have pioneered proteomic approaches to understand the preservation of sperm viability in spite of sperm competition and the enzymatic decomposition of plant substrates that the ants use to make their fungus gardens grow.
Here, I propose an integrated study focusing on four major areas of attine ant biology that are particularly inviting for in depth molecular approaches: 1. The protein-level networks that secure life-time (up to 20 years) sperm storage in specialized ant-queen organs and the genetic mechanisms that shape and adjust these “sexual symbiome” networks. 2. The ant-fungal symbiome, i.e. the dynamics of fungal enzyme production for plant substrate degradation and the redistribution of these enzymes in fungus gardens through fecal deposition after they are ingested but not digested by the ants. 3. The microbial symbiome of ant guts and other tissues with obligate bacterial mutualists, of which we have identified some and will characterize a wider collection across the different branches of the attine ant phylogeny. 4. The genome-wide frequency of genomic imprinting and the significance of these imprints for the expression of caste phenotypes and the regulation of potential reproductive conflicts."
Max ERC Funding
2 290 102 €
Duration
Start date: 2013-05-01, End date: 2018-04-30
Project acronym ANTSolve
Project A multi-scale perspective into collective problem solving in ants
Researcher (PI) Ofer Feinerman
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Consolidator Grant (CoG), LS8, ERC-2017-COG
Summary Cognition improves an animal’s ability to tune its responses to environmental conditions. In group living animals, communication works to form a collective cognition that expands the group’s abilities beyond those of individuals. Despite much research, to date, there is little understanding of how collective cognition emerges within biological ensembles. A major obstacle towards such an understanding is the rarity of comprehensive multi-scale empirical data of these complex systems.
We have demonstrated cooperative load transport by ants to be an ideal system to study the emergence of cognition. Similar to other complex cognitive systems, the ants employ high levels of emergence to achieve efficient problem solving over a large range of scenarios. Unique to this system, is its extreme amenability to experimental measurement and manipulation where internal conflicts map to forces, abstract decision making is reflected in direction changes, and future planning manifested in pheromone trails. This allows for an unprecedentedly detailed, multi-scale empirical description of the moment-to-moment unfolding of sophisticated cognitive processes.
This proposal is aimed at materializing this potential to the full. We will examine the ants’ problem solving capabilities under a variety of environmental challenges. We will expose the underpinning rules on the different organizational scales, the flow of information between them, and their relative contributions to collective performance. This will allow for empirical comparisons between the ‘group’ and the ‘sum of its parts’ from which we will quantify the level of emergence in this system. Using the language of information, we will map the boundaries of this group’s collective cognition and relate them to the range of habitable environmental niches. Moreover, we will generalize these insights to formulate a new paradigm of emergence in biological groups opening new horizons in the study of cognitive processes in general.
Summary
Cognition improves an animal’s ability to tune its responses to environmental conditions. In group living animals, communication works to form a collective cognition that expands the group’s abilities beyond those of individuals. Despite much research, to date, there is little understanding of how collective cognition emerges within biological ensembles. A major obstacle towards such an understanding is the rarity of comprehensive multi-scale empirical data of these complex systems.
We have demonstrated cooperative load transport by ants to be an ideal system to study the emergence of cognition. Similar to other complex cognitive systems, the ants employ high levels of emergence to achieve efficient problem solving over a large range of scenarios. Unique to this system, is its extreme amenability to experimental measurement and manipulation where internal conflicts map to forces, abstract decision making is reflected in direction changes, and future planning manifested in pheromone trails. This allows for an unprecedentedly detailed, multi-scale empirical description of the moment-to-moment unfolding of sophisticated cognitive processes.
This proposal is aimed at materializing this potential to the full. We will examine the ants’ problem solving capabilities under a variety of environmental challenges. We will expose the underpinning rules on the different organizational scales, the flow of information between them, and their relative contributions to collective performance. This will allow for empirical comparisons between the ‘group’ and the ‘sum of its parts’ from which we will quantify the level of emergence in this system. Using the language of information, we will map the boundaries of this group’s collective cognition and relate them to the range of habitable environmental niches. Moreover, we will generalize these insights to formulate a new paradigm of emergence in biological groups opening new horizons in the study of cognitive processes in general.
Max ERC Funding
2 000 000 €
Duration
Start date: 2018-06-01, End date: 2023-05-31
Project acronym APES
Project Accuracy and precision for molecular solids
Researcher (PI) Jiri KLIMES
Host Institution (HI) UNIVERZITA KARLOVA
Call Details Starting Grant (StG), PE4, ERC-2017-STG
Summary The description of high pressure phases or polymorphism of molecular solids represents a significant scientific challenge both for experiment and theory. Theoretical methods that are currently used struggle to describe the tiny energy differences between different phases. It is the aim of this project to develop a scheme that would allow accurate and reliable predictions of the binding energies of molecular solids and of the energy differences between different phases.
To reach the required accuracy, we will combine the coupled cluster approach, widely used for reference quality calculations for molecules, with the random phase approximation (RPA) within periodic boundary conditions. As I have recently shown, RPA-based approaches are already some of the most accurate and practically usable methods for the description of extended systems. However, reliability is not only a question of accuracy. Reliable data need to be precise, that is, converged with the numerical parameters so that they are reproducible by other researchers.
Reproducibility is already a growing concern in the field. It is likely to become a considerable issue for highly accurate methods as the calculated energies have a stronger dependence on the simulation parameters such as the basis set size. Two main approaches will be explored to assure precision. First, we will develop the so-called asymptotic correction scheme to speed-up the convergence of the correlation energies with the basis set size. Second, we will directly compare the lattice energies from periodic and finite cluster based calculations. Both should yield identical answers, but if and how the agreement can be reached for general system is currently far from being understood for methods such as coupled cluster. Reliable data will allow us to answer some of the open questions regarding the stability of polymorphs and high pressure phases, such as the possibility of existence of high pressure ionic phases of water and ammonia.
Summary
The description of high pressure phases or polymorphism of molecular solids represents a significant scientific challenge both for experiment and theory. Theoretical methods that are currently used struggle to describe the tiny energy differences between different phases. It is the aim of this project to develop a scheme that would allow accurate and reliable predictions of the binding energies of molecular solids and of the energy differences between different phases.
To reach the required accuracy, we will combine the coupled cluster approach, widely used for reference quality calculations for molecules, with the random phase approximation (RPA) within periodic boundary conditions. As I have recently shown, RPA-based approaches are already some of the most accurate and practically usable methods for the description of extended systems. However, reliability is not only a question of accuracy. Reliable data need to be precise, that is, converged with the numerical parameters so that they are reproducible by other researchers.
Reproducibility is already a growing concern in the field. It is likely to become a considerable issue for highly accurate methods as the calculated energies have a stronger dependence on the simulation parameters such as the basis set size. Two main approaches will be explored to assure precision. First, we will develop the so-called asymptotic correction scheme to speed-up the convergence of the correlation energies with the basis set size. Second, we will directly compare the lattice energies from periodic and finite cluster based calculations. Both should yield identical answers, but if and how the agreement can be reached for general system is currently far from being understood for methods such as coupled cluster. Reliable data will allow us to answer some of the open questions regarding the stability of polymorphs and high pressure phases, such as the possibility of existence of high pressure ionic phases of water and ammonia.
Max ERC Funding
924 375 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym APGREID
Project Ancient Pathogen Genomics of Re-Emerging Infectious Disease
Researcher (PI) Johannes Krause
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), LS8, ERC-2012-StG_20111109
Summary Here we propose a first step toward a direct reconstruction of the evolutionary history of human infectious disease agents by obtaining genome wide data of historic pathogens. Through an extensive screening of skeletal collections from well-characterized catastrophe, or emergency, mass burials we plan to detect and sequence pathogen DNA from various historic pandemics spanning at least 2,500 years using a general purpose molecular capture method that will screen for hundreds of pathogens in a single assay. Subsequent experiments will attempt to reconstruct full genomes from all pathogenic species identified. The molecular fossil record of human pathogens will provide insights into host adaptation and evolutionary rates of infectious disease. In addition, human genomic regions relating to disease susceptibility and immunity will be characterized in the skeletal material in order to observe the direct effect that pathogens have made on the genetic makeup of human populations over time. The results of this project will allow a multidisciplinary interpretation of historical pandemics that have influenced the course of human history. It will provide priceless information for the field of history, evolutionary biology, anthropology as well as medicine and will have direct consequences on how we manage emerging and re-emerging infectious disease in the future.
Summary
Here we propose a first step toward a direct reconstruction of the evolutionary history of human infectious disease agents by obtaining genome wide data of historic pathogens. Through an extensive screening of skeletal collections from well-characterized catastrophe, or emergency, mass burials we plan to detect and sequence pathogen DNA from various historic pandemics spanning at least 2,500 years using a general purpose molecular capture method that will screen for hundreds of pathogens in a single assay. Subsequent experiments will attempt to reconstruct full genomes from all pathogenic species identified. The molecular fossil record of human pathogens will provide insights into host adaptation and evolutionary rates of infectious disease. In addition, human genomic regions relating to disease susceptibility and immunity will be characterized in the skeletal material in order to observe the direct effect that pathogens have made on the genetic makeup of human populations over time. The results of this project will allow a multidisciplinary interpretation of historical pandemics that have influenced the course of human history. It will provide priceless information for the field of history, evolutionary biology, anthropology as well as medicine and will have direct consequences on how we manage emerging and re-emerging infectious disease in the future.
Max ERC Funding
1 474 560 €
Duration
Start date: 2013-01-01, End date: 2017-12-31
Project acronym AQUARAMAN
Project Pipet Based Scanning Probe Microscopy Tip-Enhanced Raman Spectroscopy: A Novel Approach for TERS in Liquids
Researcher (PI) Aleix Garcia Guell
Host Institution (HI) ECOLE POLYTECHNIQUE
Call Details Starting Grant (StG), PE4, ERC-2016-STG
Summary Tip-enhanced Raman spectroscopy (TERS) is often described as the most powerful tool for optical characterization of surfaces and their proximities. It combines the intrinsic spatial resolution of scanning probe techniques (AFM or STM) with the chemical information content of vibrational Raman spectroscopy. Capable to reveal surface heterogeneity at the nanoscale, TERS is currently playing a fundamental role in the understanding of interfacial physicochemical processes in key areas of science and technology such as chemistry, biology and material science.
Unfortunately, the undeniable potential of TERS as a label-free tool for nanoscale chemical and structural characterization is, nowadays, limited to air and vacuum environments, with it failing to operate in a reliable and systematic manner in liquid. The reasons are more technical than fundamental, as what is hindering the application of TERS in water is, among other issues, the low stability of the probes and their consistency. Fields of science and technology where the presence of water/electrolyte is unavoidable, such as biology and electrochemistry, remain unexplored with this powerful technique.
We propose a revolutionary approach for TERS in liquids founded on the employment of pipet-based scanning probe microscopy techniques (pb-SPM) as an alternative to AFM and STM. The use of recent but well established pb-SPM brings the opportunity to develop unprecedented pipet-based TERS probes (beyond the classic and limited metallized solid probes from AFM and STM), together with the implementation of ingenious and innovative measures to enhance tip stability, sensitivity and reliability, unattainable with the current techniques.
We will be in possession of a unique nano-spectroscopy platform capable of experiments in liquids, to follow dynamic processes in-situ, addressing fundamental questions and bringing insight into interfacial phenomena spanning from materials science, physics, chemistry and biology.
Summary
Tip-enhanced Raman spectroscopy (TERS) is often described as the most powerful tool for optical characterization of surfaces and their proximities. It combines the intrinsic spatial resolution of scanning probe techniques (AFM or STM) with the chemical information content of vibrational Raman spectroscopy. Capable to reveal surface heterogeneity at the nanoscale, TERS is currently playing a fundamental role in the understanding of interfacial physicochemical processes in key areas of science and technology such as chemistry, biology and material science.
Unfortunately, the undeniable potential of TERS as a label-free tool for nanoscale chemical and structural characterization is, nowadays, limited to air and vacuum environments, with it failing to operate in a reliable and systematic manner in liquid. The reasons are more technical than fundamental, as what is hindering the application of TERS in water is, among other issues, the low stability of the probes and their consistency. Fields of science and technology where the presence of water/electrolyte is unavoidable, such as biology and electrochemistry, remain unexplored with this powerful technique.
We propose a revolutionary approach for TERS in liquids founded on the employment of pipet-based scanning probe microscopy techniques (pb-SPM) as an alternative to AFM and STM. The use of recent but well established pb-SPM brings the opportunity to develop unprecedented pipet-based TERS probes (beyond the classic and limited metallized solid probes from AFM and STM), together with the implementation of ingenious and innovative measures to enhance tip stability, sensitivity and reliability, unattainable with the current techniques.
We will be in possession of a unique nano-spectroscopy platform capable of experiments in liquids, to follow dynamic processes in-situ, addressing fundamental questions and bringing insight into interfacial phenomena spanning from materials science, physics, chemistry and biology.
Max ERC Funding
1 528 442 €
Duration
Start date: 2017-07-01, End date: 2022-06-30
Project acronym ARBODYNAMIC
Project Coupling dynamic population immunity profiles and host behaviours to arboviral spread
Researcher (PI) Henrik SALJE
Host Institution (HI) INSTITUT PASTEUR
Call Details Starting Grant (StG), LS8, ERC-2018-STG
Summary Arboviruses infect millions of people each year, however, mechanisms that drive viral emergence and maintenance remain largely unknown. A combination of host factors (e.g., human mobility), mosquito factors (e.g., abundance) and viral factors (e.g., transmissibility) interconnect to drive spread. Further, for endemic arboviruses, complex patterns of population immunity, built up over many years, appear key to the emergence of particular lineages. To disentangle the contribution of these different drivers, we need detailed data from the same pathogen system over a long time period from the same location. In addition, we need new methods, which can integrate these different data sources and allow appropriate mechanistic inferences.
In this project, I will use the most globally prevalent arbovirus, dengue virus, as a case study. I will focus on Thailand where all four dengue serotypes have circulated endemically for decades and excellent long-term data and isolates exist, to address two fundamental questions:
i) How do population-level patterns of immunity evolve over time and what is their impact on strain dynamics? I will use mechanistic models applied to historic serotype-specific case data to reconstruct the evolving immune profile of the population and explore the impact of immunity on viral diversity using sequences from archived isolates from each year over a 50-year period.
ii) How do human behaviors, vector densities interact with immunity to dictate spread? I will work with geolocated full genome sequences from across Thailand and use detailed data on how people move, their contact patterns, their immunity profiles and mosquito distributions to study competing hypotheses of how arboviruses spread. I will compare the key drivers of dengue spread with that found for outbreaks of Zika and chikungunya.
This proposal addresses fundamental questions about the mechanisms that drive arboviral emergence and spread that will be relevant across disease systems.
Summary
Arboviruses infect millions of people each year, however, mechanisms that drive viral emergence and maintenance remain largely unknown. A combination of host factors (e.g., human mobility), mosquito factors (e.g., abundance) and viral factors (e.g., transmissibility) interconnect to drive spread. Further, for endemic arboviruses, complex patterns of population immunity, built up over many years, appear key to the emergence of particular lineages. To disentangle the contribution of these different drivers, we need detailed data from the same pathogen system over a long time period from the same location. In addition, we need new methods, which can integrate these different data sources and allow appropriate mechanistic inferences.
In this project, I will use the most globally prevalent arbovirus, dengue virus, as a case study. I will focus on Thailand where all four dengue serotypes have circulated endemically for decades and excellent long-term data and isolates exist, to address two fundamental questions:
i) How do population-level patterns of immunity evolve over time and what is their impact on strain dynamics? I will use mechanistic models applied to historic serotype-specific case data to reconstruct the evolving immune profile of the population and explore the impact of immunity on viral diversity using sequences from archived isolates from each year over a 50-year period.
ii) How do human behaviors, vector densities interact with immunity to dictate spread? I will work with geolocated full genome sequences from across Thailand and use detailed data on how people move, their contact patterns, their immunity profiles and mosquito distributions to study competing hypotheses of how arboviruses spread. I will compare the key drivers of dengue spread with that found for outbreaks of Zika and chikungunya.
This proposal addresses fundamental questions about the mechanisms that drive arboviral emergence and spread that will be relevant across disease systems.
Max ERC Funding
1 499 896 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym ARCHADAPT
Project The architecture of adaptation to novel environments
Researcher (PI) Christian Werner Schlötterer
Host Institution (HI) VETERINAERMEDIZINISCHE UNIVERSITAET WIEN
Call Details Advanced Grant (AdG), LS8, ERC-2011-ADG_20110310
Summary One of the central goals in evolutionary biology is to understand adaptation. Experimental evolution represents a highly promising approach to study adaptation. In this proposal, a freshly collected D. simulans population will be allowed to adapt to laboratory conditions under two different temperature regimes: hot (27°C) and cold (18°C). The trajectories of adaptation to these novel environments will be monitored on three levels: 1) genomic, 2) transcriptomic, 3) phenotypic. Allele frequency changes during the experiment will be measured by next generation sequencing of DNA pools (Pool-Seq) to identify targets of selection. RNA-Seq will be used to trace adaptation on the transcriptomic level during three developmental stages. Eight different phenotypes will be scored to measure the phenotypic consequences of adaptation. Combining the adaptive trajectories on these three levels will provide a picture of adaptation for a multicellular, outcrossing organism that is far more detailed than any previous results.
Furthermore, the proposal addresses the question of how adaptation on these three levels is reversible if the environment reverts to ancestral conditions. The third aspect of adaptation covered in the proposal is the question of repeatability of adaptation. Again, this question will be addressed on the three levels: genomic, transcriptomic and phenotypic. Using replicates with different degrees of genetic similarity, as well as closely related species, we will test how similar the adaptive response is.
This large-scale study will provide new insights into the importance of standing variation for the adaptation to novel environments. Hence, apart from providing significant evolutionary insights on the trajectories of adaptation, the results we will obtain will have important implications for conservation genetics and commercial breeding.
Summary
One of the central goals in evolutionary biology is to understand adaptation. Experimental evolution represents a highly promising approach to study adaptation. In this proposal, a freshly collected D. simulans population will be allowed to adapt to laboratory conditions under two different temperature regimes: hot (27°C) and cold (18°C). The trajectories of adaptation to these novel environments will be monitored on three levels: 1) genomic, 2) transcriptomic, 3) phenotypic. Allele frequency changes during the experiment will be measured by next generation sequencing of DNA pools (Pool-Seq) to identify targets of selection. RNA-Seq will be used to trace adaptation on the transcriptomic level during three developmental stages. Eight different phenotypes will be scored to measure the phenotypic consequences of adaptation. Combining the adaptive trajectories on these three levels will provide a picture of adaptation for a multicellular, outcrossing organism that is far more detailed than any previous results.
Furthermore, the proposal addresses the question of how adaptation on these three levels is reversible if the environment reverts to ancestral conditions. The third aspect of adaptation covered in the proposal is the question of repeatability of adaptation. Again, this question will be addressed on the three levels: genomic, transcriptomic and phenotypic. Using replicates with different degrees of genetic similarity, as well as closely related species, we will test how similar the adaptive response is.
This large-scale study will provide new insights into the importance of standing variation for the adaptation to novel environments. Hence, apart from providing significant evolutionary insights on the trajectories of adaptation, the results we will obtain will have important implications for conservation genetics and commercial breeding.
Max ERC Funding
2 452 084 €
Duration
Start date: 2012-07-01, End date: 2018-06-30
Project acronym ARCHAIC ADAPT
Project Admixture accelerated adaptation: signals from modern, ancient and archaic DNA.
Researcher (PI) Emilia HUERTA-SANCHEZ
Host Institution (HI) THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN
Call Details Starting Grant (StG), LS8, ERC-2018-STG
Summary With the advent of new sequencing technologies, population geneticists now have access to more data than ever before. We have access to thousands of human genomes from a diverse set of populations around the globe, and, thanks to advances in DNA extraction and library preparation, we now are beginning to have access to ancient DNA sequence data. These data have greatly improved our knowledge of human history, human adaptation to different environments and human disease. Genome-wide studies have highlighted many genes or genomic loci that may play a role in adaptive or disease related phenotypes of biological importance.
With these collections of modern and ancient sequence data we want to answer a key evolutionary question: how do human adaptations arise? We strongly believe that the state-of-the-art methodologies for uncovering signatures of adaptation are blind to potential modes of adaptation because they are lacking two critical components – more complete integration of multiple population haplotype data (including archaic, ancient and modern samples), and an account of population interactions that facilitate adaptation.
Therefore I plan to develop new methods to detect shared selective events across populations by creating novel statistical summaries, and to detect admixture-facilitated adaptation which we believe is likely a common mode of natural selection. We will apply these tools to new datasets to characterize the interplay of natural selection, archaic and modern admixture in populations in the Americas and make a comparative analysis of modern and ancient European samples to understand the origin and changing profile of adaptive archaic alleles. As a result our work will reveal evolutionary processes that have played an important role in human evolution and disease.
Summary
With the advent of new sequencing technologies, population geneticists now have access to more data than ever before. We have access to thousands of human genomes from a diverse set of populations around the globe, and, thanks to advances in DNA extraction and library preparation, we now are beginning to have access to ancient DNA sequence data. These data have greatly improved our knowledge of human history, human adaptation to different environments and human disease. Genome-wide studies have highlighted many genes or genomic loci that may play a role in adaptive or disease related phenotypes of biological importance.
With these collections of modern and ancient sequence data we want to answer a key evolutionary question: how do human adaptations arise? We strongly believe that the state-of-the-art methodologies for uncovering signatures of adaptation are blind to potential modes of adaptation because they are lacking two critical components – more complete integration of multiple population haplotype data (including archaic, ancient and modern samples), and an account of population interactions that facilitate adaptation.
Therefore I plan to develop new methods to detect shared selective events across populations by creating novel statistical summaries, and to detect admixture-facilitated adaptation which we believe is likely a common mode of natural selection. We will apply these tools to new datasets to characterize the interplay of natural selection, archaic and modern admixture in populations in the Americas and make a comparative analysis of modern and ancient European samples to understand the origin and changing profile of adaptive archaic alleles. As a result our work will reveal evolutionary processes that have played an important role in human evolution and disease.
Max ERC Funding
1 500 000 €
Duration
Start date: 2020-01-01, End date: 2024-12-31
Project acronym ARISE
Project The Ecology of Antibiotic Resistance
Researcher (PI) Roy Kishony
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Starting Grant (StG), LS8, ERC-2011-StG_20101109
Summary Main goal. We aim to understand the puzzling coexistence of antibiotic-resistant and antibiotic-sensitive species in natural soil environments, using novel quantitative experimental techniques and mathematical analysis. The ecological insights gained will be translated into novel treatment strategies for combating antibiotic resistance.
Background. Microbial soil ecosystems comprise communities of species interacting through copious secretion of antibiotics and other chemicals. Defence mechanisms, i.e. resistance to antibiotics, are ubiquitous in these wild communities. However, in sharp contrast to clinical settings, resistance does not take over the population. Our hypothesis is that the ecological setting provides natural mechanisms that keep antibiotic resistance in check. We are motivated by our recent finding that specific antibiotic combinations can generate selection against resistance and that soil microbial strains produce compounds that directly target antibiotic resistant mechanisms.
Approaches. We will: (1) Isolate natural bacterial species from individual grains of soil, characterize their ability to produce and resist antibiotics and identify the spatial scale for correlations between resistance and production. (2) Systematically measure interactions between species and identify interaction patterns enriched in co-existing communities derived from the same grain of soil. (3) Introducing fluorescently-labelled resistant and sensitive strains into natural soil, we will measure the fitness cost and benefit of antibiotic resistance in situ and identify natural compounds that select against resistance. (4) Test whether such “selection-inverting” compounds can slow evolution of resistance to antibiotics in continuous culture experiments.
Conclusions. These findings will provide insights into the ecological processes that keep antibiotic resistance in check, and will suggest novel antimicrobial treatment strategies.
Summary
Main goal. We aim to understand the puzzling coexistence of antibiotic-resistant and antibiotic-sensitive species in natural soil environments, using novel quantitative experimental techniques and mathematical analysis. The ecological insights gained will be translated into novel treatment strategies for combating antibiotic resistance.
Background. Microbial soil ecosystems comprise communities of species interacting through copious secretion of antibiotics and other chemicals. Defence mechanisms, i.e. resistance to antibiotics, are ubiquitous in these wild communities. However, in sharp contrast to clinical settings, resistance does not take over the population. Our hypothesis is that the ecological setting provides natural mechanisms that keep antibiotic resistance in check. We are motivated by our recent finding that specific antibiotic combinations can generate selection against resistance and that soil microbial strains produce compounds that directly target antibiotic resistant mechanisms.
Approaches. We will: (1) Isolate natural bacterial species from individual grains of soil, characterize their ability to produce and resist antibiotics and identify the spatial scale for correlations between resistance and production. (2) Systematically measure interactions between species and identify interaction patterns enriched in co-existing communities derived from the same grain of soil. (3) Introducing fluorescently-labelled resistant and sensitive strains into natural soil, we will measure the fitness cost and benefit of antibiotic resistance in situ and identify natural compounds that select against resistance. (4) Test whether such “selection-inverting” compounds can slow evolution of resistance to antibiotics in continuous culture experiments.
Conclusions. These findings will provide insights into the ecological processes that keep antibiotic resistance in check, and will suggest novel antimicrobial treatment strategies.
Max ERC Funding
1 900 000 €
Duration
Start date: 2012-09-01, End date: 2018-08-31
Project acronym ASC3
Project Asymmetric Cluster Catalysis & Chemistry
Researcher (PI) Ulrich Kaspar Heiz
Host Institution (HI) TECHNISCHE UNIVERSITAET MUENCHEN
Call Details Advanced Grant (AdG), PE4, ERC-2009-AdG
Summary The objective of the present scientific proposal is the implementation of a novel approach in selective and asymmetric heterogeneous catalysis. We aim to exploit the structure and chirality of small, supported metal and bimetal clusters for triggering selective and enantioselective reactions. Our Ansatz is beyond doubt of fundamental nature. Although chemistry and in particular catalysis evolved on a largely empirical basis in the past, we strongly believe the complexity of the challenges at hand to make this a less ideal approach. In consequence, developing selective and asymmetric cluster catalysis will be based on a detailed molecular understanding and will not only require intense methodological developments for the synthesis and characterization of asymmetric catalysts and the detection of chiral and isomeric product molecules but also make use of innovative basic science in the fields of surface chemistry, cluster science, spectroscopy and kinetics. As complex as the involved challenges are, we aim at mastering the following ground-breaking steps: (a) development of cutting-edge spectroscopic methodologies for the isomer and enantiomer sensitive in situ detection of product molecules. (b) preparation and characterization of isomer- and enantioselective heterogeneous catalysts based on chiral metal clusters or molecule-cluster-complexes. (c) investigations of the selectivity and enantioselectivity of cluster based heterogeneous catalysts and formulation of concepts for understanding the observed selective and asymmetric chemistry.
Besides the importance of the science carried out within this proposal, the proposed experimental methodology will also open up opportunities in other fields of chemistry like catalysis, analytical chemistry, spectroscopy, surface science, and nanomaterials.
Summary
The objective of the present scientific proposal is the implementation of a novel approach in selective and asymmetric heterogeneous catalysis. We aim to exploit the structure and chirality of small, supported metal and bimetal clusters for triggering selective and enantioselective reactions. Our Ansatz is beyond doubt of fundamental nature. Although chemistry and in particular catalysis evolved on a largely empirical basis in the past, we strongly believe the complexity of the challenges at hand to make this a less ideal approach. In consequence, developing selective and asymmetric cluster catalysis will be based on a detailed molecular understanding and will not only require intense methodological developments for the synthesis and characterization of asymmetric catalysts and the detection of chiral and isomeric product molecules but also make use of innovative basic science in the fields of surface chemistry, cluster science, spectroscopy and kinetics. As complex as the involved challenges are, we aim at mastering the following ground-breaking steps: (a) development of cutting-edge spectroscopic methodologies for the isomer and enantiomer sensitive in situ detection of product molecules. (b) preparation and characterization of isomer- and enantioselective heterogeneous catalysts based on chiral metal clusters or molecule-cluster-complexes. (c) investigations of the selectivity and enantioselectivity of cluster based heterogeneous catalysts and formulation of concepts for understanding the observed selective and asymmetric chemistry.
Besides the importance of the science carried out within this proposal, the proposed experimental methodology will also open up opportunities in other fields of chemistry like catalysis, analytical chemistry, spectroscopy, surface science, and nanomaterials.
Max ERC Funding
2 301 600 €
Duration
Start date: 2010-04-01, End date: 2015-03-31
Project acronym ASES
Project "Advancing computational chemistry with new accurate, robust and scalable electronic structure methods"
Researcher (PI) Hans-Joachim Werner
Host Institution (HI) UNIVERSITAET STUTTGART
Call Details Advanced Grant (AdG), PE4, ERC-2012-ADG_20120216
Summary "The objective of this proposal is to tackle two of the greatest challenges in quantum chemistry: (i) extending the applicability of highly accurate wave function methods to large molecular systems, and (ii) developing accurate and robust multi-reference methods that can be used for studying important but very difficult problems in transition metal chemistry, catalysis, and photochemistry. Solutions to these problems have now come within reach due to three advances we recently reported: first, the steep scaling of the computational cost with molecular size can be reduced to linear by exploiting the short-range character of electron correlation (local correlation methods). Second, the accuracy, efficiency, and robustness of these local correlation methods can be strongly improved by new tensor decomposition approaches and the inclusion of terms depending explicitly on the inter-electronic distances (F12 methods). Third, the development of highly complex electronic structure theories can be greatly facilitated and accelerated by new automated tensor network evaluation techniques. We are certain that by combining and generalizing these advances the long-standing problems (i) and (ii) can be solved. We will focus especially on highly scalable algorithms in order to use massively parallel computer systems efficiently. For linear-scaling methods this means that the size of the molecules that can be treated in a fixed time will grow linearly with the number of available processors. We will furthermore explore new multi-reference ansätze and implement analytical energy gradients and response properties for local methods. Hybrid and embedding methods to account for solvent and environment effects will also be investigated. It is our priority to make our new methods as easy to use, robust, and widely applicable as possible. We believe that they will open entirely new horizons for innumerable applications in chemistry, physics, biology, and materials science."
Summary
"The objective of this proposal is to tackle two of the greatest challenges in quantum chemistry: (i) extending the applicability of highly accurate wave function methods to large molecular systems, and (ii) developing accurate and robust multi-reference methods that can be used for studying important but very difficult problems in transition metal chemistry, catalysis, and photochemistry. Solutions to these problems have now come within reach due to three advances we recently reported: first, the steep scaling of the computational cost with molecular size can be reduced to linear by exploiting the short-range character of electron correlation (local correlation methods). Second, the accuracy, efficiency, and robustness of these local correlation methods can be strongly improved by new tensor decomposition approaches and the inclusion of terms depending explicitly on the inter-electronic distances (F12 methods). Third, the development of highly complex electronic structure theories can be greatly facilitated and accelerated by new automated tensor network evaluation techniques. We are certain that by combining and generalizing these advances the long-standing problems (i) and (ii) can be solved. We will focus especially on highly scalable algorithms in order to use massively parallel computer systems efficiently. For linear-scaling methods this means that the size of the molecules that can be treated in a fixed time will grow linearly with the number of available processors. We will furthermore explore new multi-reference ansätze and implement analytical energy gradients and response properties for local methods. Hybrid and embedding methods to account for solvent and environment effects will also be investigated. It is our priority to make our new methods as easy to use, robust, and widely applicable as possible. We believe that they will open entirely new horizons for innumerable applications in chemistry, physics, biology, and materials science."
Max ERC Funding
2 454 000 €
Duration
Start date: 2013-02-01, End date: 2018-01-31
Project acronym ASSIMILES
Project Advanced Spectroscopy and Spectrometry for Imaging Metabolism using Isotopically-Labeled Endogenous Substrates
Researcher (PI) Arnaud Comment
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Consolidator Grant (CoG), PE4, ERC-2015-CoG
Summary A technological revolution is currently taking place making it possible to noninvasively study metabolism in mammals (incl. humans) in vivo with unprecedented temporal and spatial resolution. Central to these developments is the phenomenon of hyperpolarization, which transiently enhances the magnetic resonance (MR) signals so much that real-time metabolic imaging and spectroscopy becomes possible. The first clinical translation of hyperpolarization MR technology has recently been demonstrated with prostate cancer patients.
I have played an active role in these exciting developments, through design and construction of hyperpolarization MR setups that are defining the cutting-edge for in vivo preclinical metabolic studies. However, important obstacles still exist for the technology to fulfill its enormous potential.
With this highly interdisciplinary proposal, I will overcome the principal drawbacks of current hyperpolarization technology, namely: 1) A limited time window for hyperpolarized MR detection; 2) The conventional use of potentially toxic polarizing agents; 3) The necessity to use supra-physiological doses of metabolic substrates to reach detectable MR signal
I will develop a novel hyperpolarization instrument making use of photoexcited compounds as polarizing agents to produce hyperpolarized solutions containing exclusively endogenous compounds. It will become possible to deliver hyperpolarized solutions in a quasi-continuous manner, permitting infusion of physiological doses and greatly increasing sensitivity. I will also use a complementary isotope imaging technique, the so-called CryoNanoSIMS (developed at my institution over the last year), which can image isotopic distributions in frozen tissue sections and reveal the localization of injected substrates and their metabolites with subcellular spatial resolution. Case studies will include liver and brain cancer mouse models. This work is pioneering and will create a new frontier in molecular imaging.
Summary
A technological revolution is currently taking place making it possible to noninvasively study metabolism in mammals (incl. humans) in vivo with unprecedented temporal and spatial resolution. Central to these developments is the phenomenon of hyperpolarization, which transiently enhances the magnetic resonance (MR) signals so much that real-time metabolic imaging and spectroscopy becomes possible. The first clinical translation of hyperpolarization MR technology has recently been demonstrated with prostate cancer patients.
I have played an active role in these exciting developments, through design and construction of hyperpolarization MR setups that are defining the cutting-edge for in vivo preclinical metabolic studies. However, important obstacles still exist for the technology to fulfill its enormous potential.
With this highly interdisciplinary proposal, I will overcome the principal drawbacks of current hyperpolarization technology, namely: 1) A limited time window for hyperpolarized MR detection; 2) The conventional use of potentially toxic polarizing agents; 3) The necessity to use supra-physiological doses of metabolic substrates to reach detectable MR signal
I will develop a novel hyperpolarization instrument making use of photoexcited compounds as polarizing agents to produce hyperpolarized solutions containing exclusively endogenous compounds. It will become possible to deliver hyperpolarized solutions in a quasi-continuous manner, permitting infusion of physiological doses and greatly increasing sensitivity. I will also use a complementary isotope imaging technique, the so-called CryoNanoSIMS (developed at my institution over the last year), which can image isotopic distributions in frozen tissue sections and reveal the localization of injected substrates and their metabolites with subcellular spatial resolution. Case studies will include liver and brain cancer mouse models. This work is pioneering and will create a new frontier in molecular imaging.
Max ERC Funding
2 199 146 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym ASTROROT
Project Unraveling interstellar chemistry with broadband microwave spectroscopy and next-generation telescope arrays
Researcher (PI) Melanie Schnell-Küpper
Host Institution (HI) STIFTUNG DEUTSCHES ELEKTRONEN-SYNCHROTRON DESY
Call Details Starting Grant (StG), PE4, ERC-2014-STG
Summary The goal of the research program, ASTROROT, is to significantly advance the knowledge of astrochemistry by exploring its molecular complexity and by discovering new molecule classes and key chemical processes in space. So far, mostly physical reasons were investigated for the observed variations in molecular abundances. We here propose to study the influence of chemistry on the molecular composition of the universe by combining unprecedentedly high-quality laboratory spectroscopy and pioneering telescope observations. Array telescopes provide new observations of rotational molecular emission, leading to an urgent need for microwave spectroscopic data of exotic molecules. We will use newly developed, unique broadband microwave spectrometers with the cold conditions of a molecular jet and the higher temperatures of a waveguide to mimic different interstellar conditions. Their key advantages are accurate transition intensities, tremendously reduced measurement times, and unique mixture compatibility.
Our laboratory experiments will motivate and guide astronomic observations, and enable their interpretation. The expected results are
• the exploration of molecular complexity by discovering new classes of molecules in space,
• the detection of isotopologues that provide information about the stage of chemical evolution,
• the generation of abundance maps of highly excited molecules to learn about their environment,
• the identification of key intermediates in astrochemical reactions.
The results will significantly foster and likely revolutionize our understanding of astrochemistry. The proposed research will go far beyond the state-of-the-art: We will use cutting-edge techniques both in the laboratory and at the telescope to greatly improve and speed the process of identifying molecular fingerprints. These techniques now enable studies at this important frontier of physics and chemistry that previously would have been prohibitively time-consuming or even impossible.
Summary
The goal of the research program, ASTROROT, is to significantly advance the knowledge of astrochemistry by exploring its molecular complexity and by discovering new molecule classes and key chemical processes in space. So far, mostly physical reasons were investigated for the observed variations in molecular abundances. We here propose to study the influence of chemistry on the molecular composition of the universe by combining unprecedentedly high-quality laboratory spectroscopy and pioneering telescope observations. Array telescopes provide new observations of rotational molecular emission, leading to an urgent need for microwave spectroscopic data of exotic molecules. We will use newly developed, unique broadband microwave spectrometers with the cold conditions of a molecular jet and the higher temperatures of a waveguide to mimic different interstellar conditions. Their key advantages are accurate transition intensities, tremendously reduced measurement times, and unique mixture compatibility.
Our laboratory experiments will motivate and guide astronomic observations, and enable their interpretation. The expected results are
• the exploration of molecular complexity by discovering new classes of molecules in space,
• the detection of isotopologues that provide information about the stage of chemical evolution,
• the generation of abundance maps of highly excited molecules to learn about their environment,
• the identification of key intermediates in astrochemical reactions.
The results will significantly foster and likely revolutionize our understanding of astrochemistry. The proposed research will go far beyond the state-of-the-art: We will use cutting-edge techniques both in the laboratory and at the telescope to greatly improve and speed the process of identifying molecular fingerprints. These techniques now enable studies at this important frontier of physics and chemistry that previously would have been prohibitively time-consuming or even impossible.
Max ERC Funding
1 499 904 €
Duration
Start date: 2015-05-01, End date: 2020-04-30
Project acronym ATOMICAR
Project ATOMic Insight Cavity Array Reactor
Researcher (PI) Peter Christian Kjærgaard VESBORG
Host Institution (HI) DANMARKS TEKNISKE UNIVERSITET
Call Details Starting Grant (StG), PE4, ERC-2017-STG
Summary The goal of ATOMICAR is to achieve the ultimate sensitivity limit in heterogeneous catalysis:
Quantitative measurement of chemical turnover on a single catalytic nanoparticle.
Most heterogeneous catalysis occurs on metal nanoparticle in the size range of 3 nm - 10 nm. Model studies have established that there is often a strong coupling between nanoparticle size & shape - and catalytic activity. The strong structure-activity coupling renders it probable that “super-active” nanoparticles exist. However, since there is no way to measure catalytic activity of less than ca 1 million nanoparticles at a time, any super-activity will always be hidden by “ensemble smearing” since one million nanoparticles of exactly identical size and shape cannot be made. The state-of-the-art in catalysis benchmarking is microfabricated flow reactors with mass-spectrometric detection, but the sensitivity of this approach cannot be incrementally improved by six orders of magnitude. This calls for a new measurement paradigm where the activity of a single nanoparticle can be benchmarked – the ultimate limit for catalytic measurement.
A tiny batch reactor is the solution, but there are three key problems: How to seal it; how to track catalytic turnover inside it; and how to see the nanoparticle inside it? Graphene solves all three problems: A microfabricated cavity with a thin SixNy bottom window, a single catalytic nanoparticle inside, and a graphene seal forms a gas tight batch reactor since graphene has zero gas permeability. Catalysis is then tracked as an internal pressure change via the stress & deflection of the graphene seal. Crucially, the electron-transparency of graphene and SixNy enables subsequent transmission electron microscope access with atomic resolution so that active nanoparticles can be studied in full detail.
ATOMICAR will re-define the experimental limits of catalyst benchmarking and lift the field of basic catalysis research into the single-nanoparticle age.
Summary
The goal of ATOMICAR is to achieve the ultimate sensitivity limit in heterogeneous catalysis:
Quantitative measurement of chemical turnover on a single catalytic nanoparticle.
Most heterogeneous catalysis occurs on metal nanoparticle in the size range of 3 nm - 10 nm. Model studies have established that there is often a strong coupling between nanoparticle size & shape - and catalytic activity. The strong structure-activity coupling renders it probable that “super-active” nanoparticles exist. However, since there is no way to measure catalytic activity of less than ca 1 million nanoparticles at a time, any super-activity will always be hidden by “ensemble smearing” since one million nanoparticles of exactly identical size and shape cannot be made. The state-of-the-art in catalysis benchmarking is microfabricated flow reactors with mass-spectrometric detection, but the sensitivity of this approach cannot be incrementally improved by six orders of magnitude. This calls for a new measurement paradigm where the activity of a single nanoparticle can be benchmarked – the ultimate limit for catalytic measurement.
A tiny batch reactor is the solution, but there are three key problems: How to seal it; how to track catalytic turnover inside it; and how to see the nanoparticle inside it? Graphene solves all three problems: A microfabricated cavity with a thin SixNy bottom window, a single catalytic nanoparticle inside, and a graphene seal forms a gas tight batch reactor since graphene has zero gas permeability. Catalysis is then tracked as an internal pressure change via the stress & deflection of the graphene seal. Crucially, the electron-transparency of graphene and SixNy enables subsequent transmission electron microscope access with atomic resolution so that active nanoparticles can be studied in full detail.
ATOMICAR will re-define the experimental limits of catalyst benchmarking and lift the field of basic catalysis research into the single-nanoparticle age.
Max ERC Funding
1 496 000 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym ATTOLIQ
Project Attosecond X-ray spectroscopy of liquids
Researcher (PI) Hans Jakob WÖRNER
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Consolidator Grant (CoG), PE4, ERC-2017-COG
Summary Charge and energy transfer are the key steps underlying most chemical reactions and biological transformations. The purely electronic dynamics that control such processes take place on attosecond time scales. A complete understanding of these dynamics on the electronic level therefore calls for new experimental methods with attosecond resolution that are applicable to aqueous environments. We propose to combine the element sensitivity of X-ray spectroscopy with attosecond temporal resolution and ultrathin liquid microjets to study electronic dynamics of relevance to chemical, biological and photovoltaic processes. We will build on our recent achievements in demonstrating femtosecond time-resolved measurements in the water, attosecond pho-toelectron spectroscopy on a liquid microjet and measuring and controlling attosecond charge migration in isolated molecules. We will first concentrate on liquid water to study its electronic dynamics following outer-valence ionization, the formation pathway of the solvated electron and the time scales and intermolecular Coulombic decay following inner-valence or core-level ionization. Second, we will turn to solvated species and measure electronic dynamics and charge migration in solvated molecules, transition-metal complexes and pho-toexcited nanoparticles. These goals will be achieved by developing several innovative experimental tech-niques. We will develop a source of isolated attosecond pulses covering the water window (285-538 eV) and combine it with a flat liquid microjet to realize attosecond transient absorption in liquids. We will complement these measurements with attosecond X-ray emission spectroscopy, Auger spectroscopy and a novel hetero-dyne-detected variant of resonant inelastic Raman scattering, exploiting the large bandwidth that is naturally available from attosecond X-ray sources.
Summary
Charge and energy transfer are the key steps underlying most chemical reactions and biological transformations. The purely electronic dynamics that control such processes take place on attosecond time scales. A complete understanding of these dynamics on the electronic level therefore calls for new experimental methods with attosecond resolution that are applicable to aqueous environments. We propose to combine the element sensitivity of X-ray spectroscopy with attosecond temporal resolution and ultrathin liquid microjets to study electronic dynamics of relevance to chemical, biological and photovoltaic processes. We will build on our recent achievements in demonstrating femtosecond time-resolved measurements in the water, attosecond pho-toelectron spectroscopy on a liquid microjet and measuring and controlling attosecond charge migration in isolated molecules. We will first concentrate on liquid water to study its electronic dynamics following outer-valence ionization, the formation pathway of the solvated electron and the time scales and intermolecular Coulombic decay following inner-valence or core-level ionization. Second, we will turn to solvated species and measure electronic dynamics and charge migration in solvated molecules, transition-metal complexes and pho-toexcited nanoparticles. These goals will be achieved by developing several innovative experimental tech-niques. We will develop a source of isolated attosecond pulses covering the water window (285-538 eV) and combine it with a flat liquid microjet to realize attosecond transient absorption in liquids. We will complement these measurements with attosecond X-ray emission spectroscopy, Auger spectroscopy and a novel hetero-dyne-detected variant of resonant inelastic Raman scattering, exploiting the large bandwidth that is naturally available from attosecond X-ray sources.
Max ERC Funding
2 750 000 €
Duration
Start date: 2018-04-01, End date: 2023-03-31
Project acronym ATTOSCOPE
Project Measuring attosecond electron dynamics in molecules
Researcher (PI) Hans Jakob Wörner
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Starting Grant (StG), PE4, ERC-2012-StG_20111012
Summary "The goal of the present proposal is to realize measurements of electronic dynamics in polyatomic
molecules with attosecond temporal resolution (1 as = 10^-18s). We propose to study electronic
rearrangements following photoexcitation, charge migration in a molecular chain induced by
ionization and non-adiabatic multi-electron dynamics in an intense laser field. The grand question
addressed by this research is the characterization of electron correlations which control the shape, properties and function of molecules. In all three proposed projects, a time-domain approach appears to be the most suitable since it reduces complex molecular dynamics to the purely electronic dynamics by exploiting the hierarchy of motional time scales. Experimentally, we propose to realize an innovative experimental setup. A few-cycle infrared (IR) pulse will be used to generate attosecond pulses in the extreme-ultraviolet (XUV) by high-harmonic generation. The IR pulse will be separated from the XUV by means of an innovative interferometer. Additionally, it will permit the introduction of a controlled attosecond delay between the two pulses. We propose to use the attosecond pulses as a tool to look inside individual IR- or UV-field cycles to better understand light-matter interactions. Time-resolved pump-probe experiments will be carried out on polyatomic molecules by detecting the energy and angular distribution of photoelectrons in a velocity-map imaging spectrometer. These experiments are expected to provide new insights
into the dynamics of multi-electron systems along with new results for the validation and
improvement of theoretical models. Multi-electron dynamics is indeed a very complex subject
on its own and even more so in the presence of strong laser fields. The proposed experiments
directly address theses challenges and are expected to provide new insights that will be beneficial to a wide range of scientific research areas."
Summary
"The goal of the present proposal is to realize measurements of electronic dynamics in polyatomic
molecules with attosecond temporal resolution (1 as = 10^-18s). We propose to study electronic
rearrangements following photoexcitation, charge migration in a molecular chain induced by
ionization and non-adiabatic multi-electron dynamics in an intense laser field. The grand question
addressed by this research is the characterization of electron correlations which control the shape, properties and function of molecules. In all three proposed projects, a time-domain approach appears to be the most suitable since it reduces complex molecular dynamics to the purely electronic dynamics by exploiting the hierarchy of motional time scales. Experimentally, we propose to realize an innovative experimental setup. A few-cycle infrared (IR) pulse will be used to generate attosecond pulses in the extreme-ultraviolet (XUV) by high-harmonic generation. The IR pulse will be separated from the XUV by means of an innovative interferometer. Additionally, it will permit the introduction of a controlled attosecond delay between the two pulses. We propose to use the attosecond pulses as a tool to look inside individual IR- or UV-field cycles to better understand light-matter interactions. Time-resolved pump-probe experiments will be carried out on polyatomic molecules by detecting the energy and angular distribution of photoelectrons in a velocity-map imaging spectrometer. These experiments are expected to provide new insights
into the dynamics of multi-electron systems along with new results for the validation and
improvement of theoretical models. Multi-electron dynamics is indeed a very complex subject
on its own and even more so in the presence of strong laser fields. The proposed experiments
directly address theses challenges and are expected to provide new insights that will be beneficial to a wide range of scientific research areas."
Max ERC Funding
1 999 992 €
Duration
Start date: 2012-09-01, End date: 2017-08-31
Project acronym AVIAN DIMORPHISM
Project The genomic and transcriptomic locus of sex-specific selection in birds
Researcher (PI) Judith Elizabeth Mank
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Starting Grant (StG), LS8, ERC-2010-StG_20091118
Summary It has long been understood that genes contribute to phenotypes that are then the basis of selection. However, the nature and process of this relationship remains largely theoretical, and the relative contribution of change in gene expression and coding sequence to phenotypic diversification is unclear. The aim of this proposal is to fuse information about sexually dimorphic phenotypes, the mating systems and sexually antagonistic selective agents that shape sexual dimorphism, and the sex-biased gene expression patterns that encode sexual dimorphisms, in order to create a cohesive integrated understanding of the relationship between evolution, the genome, and the animal form. The primary approach of this project is to harnesses emergent DNA sequencing technologies in order to measure evolutionary change in gene expression and coding sequence in response to different sex-specific selection regimes in a clade of birds with divergent mating systems. Sex-specific selection pressures arise in large part as a consequence of mating system, however males and females share nearly identical genomes, especially in the vertebrates where the sex chromosomes house very small proportions of the overall transcriptome. This single shared genome creates sex-specific phenotypes via different gene expression levels in females and males, and these sex-biased genes connect sexual dimorphisms, and the sexually antagonistic selection pressures that shape them, with the regions of the genome that encode them.
The Galloanserae (fowl and waterfowl) will be used to in the proposed project, as this clade combines the necessary requirements of both variation in mating systems and a well-conserved reference genome (chicken). The study species selected from within the Galloanserae for the proposal exhibit a range of sexual dimorphism and sperm competition, and this will be exploited with next generation (454 and Illumina) genomic and transcriptomic data to study the gene expression patterns that underlie sexual dimorphisms, and the evolutionary pressures acting on them. This work will be complemented by the development of mathematical models of sex-specific evolution that will be tested against the gene expression and gene sequence data in order to understand the mechanisms by which sex-specific selection regimes, arising largely from mating systems, shape the phenotype via the genome.
Summary
It has long been understood that genes contribute to phenotypes that are then the basis of selection. However, the nature and process of this relationship remains largely theoretical, and the relative contribution of change in gene expression and coding sequence to phenotypic diversification is unclear. The aim of this proposal is to fuse information about sexually dimorphic phenotypes, the mating systems and sexually antagonistic selective agents that shape sexual dimorphism, and the sex-biased gene expression patterns that encode sexual dimorphisms, in order to create a cohesive integrated understanding of the relationship between evolution, the genome, and the animal form. The primary approach of this project is to harnesses emergent DNA sequencing technologies in order to measure evolutionary change in gene expression and coding sequence in response to different sex-specific selection regimes in a clade of birds with divergent mating systems. Sex-specific selection pressures arise in large part as a consequence of mating system, however males and females share nearly identical genomes, especially in the vertebrates where the sex chromosomes house very small proportions of the overall transcriptome. This single shared genome creates sex-specific phenotypes via different gene expression levels in females and males, and these sex-biased genes connect sexual dimorphisms, and the sexually antagonistic selection pressures that shape them, with the regions of the genome that encode them.
The Galloanserae (fowl and waterfowl) will be used to in the proposed project, as this clade combines the necessary requirements of both variation in mating systems and a well-conserved reference genome (chicken). The study species selected from within the Galloanserae for the proposal exhibit a range of sexual dimorphism and sperm competition, and this will be exploited with next generation (454 and Illumina) genomic and transcriptomic data to study the gene expression patterns that underlie sexual dimorphisms, and the evolutionary pressures acting on them. This work will be complemented by the development of mathematical models of sex-specific evolution that will be tested against the gene expression and gene sequence data in order to understand the mechanisms by which sex-specific selection regimes, arising largely from mating systems, shape the phenotype via the genome.
Max ERC Funding
1 350 804 €
Duration
Start date: 2011-01-01, End date: 2016-07-31
Project acronym BABE
Project Why is the world green: testing top-down control of plant-herbivore food webs by experiments with birds, bats and ants
Researcher (PI) Katerina SAM
Host Institution (HI) Biologicke centrum AV CR, v. v. i.
Call Details Starting Grant (StG), LS8, ERC-2018-STG
Summary Why is the world green? Because predators control herbivores, allowing plants to flourish. This >50 years old answer to the deceptively simple question remains controversial. After all, plants are also protected from herbivores physically and by secondary chemistry. My goal is to test novel aspects of the “green world hypothesis”: ● How the importance of top-down effects varies with forest diversity and productivity along a latitudinal gradient? ● How the key predators, birds, bats and ants, contribute to top-down effects individually and in synergy? I strive to understand this because: ● While there is evidence that predators reduce herbivore abundance and enhance plant growth, the importance of top-down control is poorly understood across a range of forests. ● The importance of key predatory groups, and their antagonistic and synergic interactions, have been rarely studied, despite their potential impact on ecosystem dynamics in changing world. I wish to achieve my goals by: ● Factorial manipulations of key insectivorous predators (birds, bats, ants) to measure their effects on lower trophic levels in forest understories and canopies, accessed by canopy cranes, along latitudinal gradient spanning 75o from Australia to Japan. ● Studying compensatory effects among predatory taxa on herbivore and plant performance. Why this has not been done before: ● Factorial experimental exclusion of predatory groups replicated on a large spatial scale is logistically difficult. ● Canopy crane network along a latitudinal gradient has only recently become available. I am in excellent position to succeed as I have experience with ● foodweb experiments along an elevation gradient in New Guinea rainforests, ● study of bird, bat and arthropod communities. If the project is successful, it will: ● Allow understanding the importance of predators from temperate to tropical forests. ● Establish a network of experimental sites along a network of canopy cranes open for follow-up research.
Summary
Why is the world green? Because predators control herbivores, allowing plants to flourish. This >50 years old answer to the deceptively simple question remains controversial. After all, plants are also protected from herbivores physically and by secondary chemistry. My goal is to test novel aspects of the “green world hypothesis”: ● How the importance of top-down effects varies with forest diversity and productivity along a latitudinal gradient? ● How the key predators, birds, bats and ants, contribute to top-down effects individually and in synergy? I strive to understand this because: ● While there is evidence that predators reduce herbivore abundance and enhance plant growth, the importance of top-down control is poorly understood across a range of forests. ● The importance of key predatory groups, and their antagonistic and synergic interactions, have been rarely studied, despite their potential impact on ecosystem dynamics in changing world. I wish to achieve my goals by: ● Factorial manipulations of key insectivorous predators (birds, bats, ants) to measure their effects on lower trophic levels in forest understories and canopies, accessed by canopy cranes, along latitudinal gradient spanning 75o from Australia to Japan. ● Studying compensatory effects among predatory taxa on herbivore and plant performance. Why this has not been done before: ● Factorial experimental exclusion of predatory groups replicated on a large spatial scale is logistically difficult. ● Canopy crane network along a latitudinal gradient has only recently become available. I am in excellent position to succeed as I have experience with ● foodweb experiments along an elevation gradient in New Guinea rainforests, ● study of bird, bat and arthropod communities. If the project is successful, it will: ● Allow understanding the importance of predators from temperate to tropical forests. ● Establish a network of experimental sites along a network of canopy cranes open for follow-up research.
Max ERC Funding
1 455 032 €
Duration
Start date: 2018-12-01, End date: 2023-11-30
Project acronym BabyVir
Project The role of the virome in shaping the gut ecosystem during the first year of life
Researcher (PI) Alexandra Petrovna ZHERNAKOVA
Host Institution (HI) ACADEMISCH ZIEKENHUIS GRONINGEN
Call Details Starting Grant (StG), LS8, ERC-2016-STG
Summary The role of intestinal bacteria in human health and disease has been intensively studied; however the viral composition of the microbiome, the virome, remains largely unknown. As many of the viruses are bacteriophages, they are expected to be a major factor shaping the human microbiome. The dynamics of the virome during early life, its interaction with host and environmental factors, is likely to have profound effects on human physiology. Therefore it is extremely timely to study the virome in depth and on a wide scale.
This ERC project aims at understanding how the gut virome develops during the first year of life and how that relates to the composition of the bacterial microbiome. In particular, we will determine which intrinsic and environmental factors, including genetics and the mother’s microbiome and diet, interact with the virome in shaping the early gut microbiome ecosystem. In a longitudinal study of 1,000 newborns followed at 7 time points from birth till age 12 months, I will investigate: (1) the composition and evolution of the virome and bacterial microbiome in the first year of life; (2) the role of factors coming from the mother and from the host genome on virome and bacterial microbiome development and their co-evolution; and (3) the role of environmental factors, like infectious diseases, vaccinations and diet habits, on establishing the virome and overall microbiome composition during the first year of life.
This project will provide crucial knowledge about composition and maturation of the virome during the first year of life, and its symbiotic relation with the bacterial microbiome. This longitudinal dataset will be instrumental for identification of microbiome markers of diseases and for the follow up analysis of the long-term effect of microbiota maturation later in life. Knowledge of the role of viruses in shaping the microbiota may promote future directions for manipulating the human gut microbiota in health and disease.
Summary
The role of intestinal bacteria in human health and disease has been intensively studied; however the viral composition of the microbiome, the virome, remains largely unknown. As many of the viruses are bacteriophages, they are expected to be a major factor shaping the human microbiome. The dynamics of the virome during early life, its interaction with host and environmental factors, is likely to have profound effects on human physiology. Therefore it is extremely timely to study the virome in depth and on a wide scale.
This ERC project aims at understanding how the gut virome develops during the first year of life and how that relates to the composition of the bacterial microbiome. In particular, we will determine which intrinsic and environmental factors, including genetics and the mother’s microbiome and diet, interact with the virome in shaping the early gut microbiome ecosystem. In a longitudinal study of 1,000 newborns followed at 7 time points from birth till age 12 months, I will investigate: (1) the composition and evolution of the virome and bacterial microbiome in the first year of life; (2) the role of factors coming from the mother and from the host genome on virome and bacterial microbiome development and their co-evolution; and (3) the role of environmental factors, like infectious diseases, vaccinations and diet habits, on establishing the virome and overall microbiome composition during the first year of life.
This project will provide crucial knowledge about composition and maturation of the virome during the first year of life, and its symbiotic relation with the bacterial microbiome. This longitudinal dataset will be instrumental for identification of microbiome markers of diseases and for the follow up analysis of the long-term effect of microbiota maturation later in life. Knowledge of the role of viruses in shaping the microbiota may promote future directions for manipulating the human gut microbiota in health and disease.
Max ERC Funding
1 499 881 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym BactInd
Project Bacterial cooperation at the individual cell level
Researcher (PI) Rolf Kümmerli
Host Institution (HI) UNIVERSITAT ZURICH
Call Details Consolidator Grant (CoG), LS8, ERC-2015-CoG
Summary All levels of life entail cooperation and conflict. Genes cooperate to build up a functional genome, which can yet be undermined by selfish genetic elements. Humans and animals cooperate to build up societies, which can yet be subverted by cheats. There is a long-standing interest among biologists to comprehend the tug-of-war between cooperation and conflict. Recently, research on bacteria was successful in identifying key factors that can tip the balance in favour or against cooperation. Bacteria cooperate through the formation of protective biofilms, cell-to-cell communication, and the secretion of shareable public goods. However, the advantage of bacteria being fast replicating units, easily cultivatable in high numbers, is also their disadvantage: they are small and imperceptible, such that measures of cooperation typically rely on averaged responses across millions of cells. Thus, we still know very little about bacterial cooperation at the biological relevant scale: the individual cell level. Here, I present research using the secretion of public goods in the opportunistic human pathogen Pseudomonas aeruginosa, to tackle this issue. I will explore new dimensions of bacterial cooperation by asking whether bacteria engage in collective-decision making to find optimal group-level solutions; whether bacteria show division of labour to split up work efficiently; and whether bacteria can distinguish between trustworthy and cheating partners. The proposed research will make two significant contributions. First, it will reveal whether bacteria engage in complex forms of cooperation (collective decision-making, division of labour, partner recognition), which have traditionally been associated with higher organisms. Second, it will provide insights into the evolutionary stability of cooperation – key knowledge for designing therapies that interfere with virulence-inducing public goods in infections, and the design of stable public-good based remediation processes.
Summary
All levels of life entail cooperation and conflict. Genes cooperate to build up a functional genome, which can yet be undermined by selfish genetic elements. Humans and animals cooperate to build up societies, which can yet be subverted by cheats. There is a long-standing interest among biologists to comprehend the tug-of-war between cooperation and conflict. Recently, research on bacteria was successful in identifying key factors that can tip the balance in favour or against cooperation. Bacteria cooperate through the formation of protective biofilms, cell-to-cell communication, and the secretion of shareable public goods. However, the advantage of bacteria being fast replicating units, easily cultivatable in high numbers, is also their disadvantage: they are small and imperceptible, such that measures of cooperation typically rely on averaged responses across millions of cells. Thus, we still know very little about bacterial cooperation at the biological relevant scale: the individual cell level. Here, I present research using the secretion of public goods in the opportunistic human pathogen Pseudomonas aeruginosa, to tackle this issue. I will explore new dimensions of bacterial cooperation by asking whether bacteria engage in collective-decision making to find optimal group-level solutions; whether bacteria show division of labour to split up work efficiently; and whether bacteria can distinguish between trustworthy and cheating partners. The proposed research will make two significant contributions. First, it will reveal whether bacteria engage in complex forms of cooperation (collective decision-making, division of labour, partner recognition), which have traditionally been associated with higher organisms. Second, it will provide insights into the evolutionary stability of cooperation – key knowledge for designing therapies that interfere with virulence-inducing public goods in infections, and the design of stable public-good based remediation processes.
Max ERC Funding
1 994 981 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym BALANCE
Project Mapping Dispersion Spectroscopically in Large Gas-Phase Molecular Ions
Researcher (PI) Peter CHEN
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Advanced Grant (AdG), PE4, ERC-2018-ADG
Summary We use IR spectroscopy of trapped ions in a cryogenic FT-ICR spectrometer to probe non-covalent, “dispersion” interactions in large, gas-phase molecular ions. We will measure conformational equilibria by N-H frequency shifts, and correlate gas-phase IR frequency to the N-H-N bond angle in an ionic H-bond. Substituents on “onium” cations can adopt various conformations, whose energies map interaction potentials. Substituents on their proton-bound dimers interact non-covalently through dispersion forces, whose quantitative evaluation in large molecules has remained difficult despite dispersion becoming increasingly cited as a design principle in the construction of catalysts and materials. The non-covalent interactions bend the N-H-N bond, leading to large shifts in the IR frequency. The proton-bound dimer acts like a molecular balance where the non-covalent interaction, is set against the bending potential in an ionic hydrogen bond. Despite encouragingly accurate calculations for small molecules, experimental benchmarks for large molecules in the gas phase remain scarce, and there is evidence that the good results for small molecules may not extrapolate reliably to large molecules. The present proposal introduces a new experimental probe of non-covalent interactions, providing a sensitive test of the diverging results coming from various computational methods and other experiments. The experiment must be done on isolated molecules in the gas phase, as previous work has shown that solvation substantially cancels out the attractive potential. Accordingly, the proposed experimental design, which involves a custom-built spectrometer, newly available tunable IR sources, chemical synthesis of custom substrates, and quantum calculations up to coupled-cluster levels of theory, showcases how an interdisciplinary approach combining physical and organic chemistry can solve a fundamental problem that impacts how we understand steric effects in organic chemistry.
Summary
We use IR spectroscopy of trapped ions in a cryogenic FT-ICR spectrometer to probe non-covalent, “dispersion” interactions in large, gas-phase molecular ions. We will measure conformational equilibria by N-H frequency shifts, and correlate gas-phase IR frequency to the N-H-N bond angle in an ionic H-bond. Substituents on “onium” cations can adopt various conformations, whose energies map interaction potentials. Substituents on their proton-bound dimers interact non-covalently through dispersion forces, whose quantitative evaluation in large molecules has remained difficult despite dispersion becoming increasingly cited as a design principle in the construction of catalysts and materials. The non-covalent interactions bend the N-H-N bond, leading to large shifts in the IR frequency. The proton-bound dimer acts like a molecular balance where the non-covalent interaction, is set against the bending potential in an ionic hydrogen bond. Despite encouragingly accurate calculations for small molecules, experimental benchmarks for large molecules in the gas phase remain scarce, and there is evidence that the good results for small molecules may not extrapolate reliably to large molecules. The present proposal introduces a new experimental probe of non-covalent interactions, providing a sensitive test of the diverging results coming from various computational methods and other experiments. The experiment must be done on isolated molecules in the gas phase, as previous work has shown that solvation substantially cancels out the attractive potential. Accordingly, the proposed experimental design, which involves a custom-built spectrometer, newly available tunable IR sources, chemical synthesis of custom substrates, and quantum calculations up to coupled-cluster levels of theory, showcases how an interdisciplinary approach combining physical and organic chemistry can solve a fundamental problem that impacts how we understand steric effects in organic chemistry.
Max ERC Funding
2 446 125 €
Duration
Start date: 2019-05-01, End date: 2024-04-30
Project acronym BALANCED LETHALS
Project Untangling the Evolution of a Balanced Lethal System
Researcher (PI) Biense WIELSTRA
Host Institution (HI) UNIVERSITEIT LEIDEN
Call Details Starting Grant (StG), LS8, ERC-2018-STG
Summary Natural selection is supposed to keep lethal alleles (dysfunctional or deleted copies of crucial genes) in check. Yet, in a balanced lethal system the frequency of lethal alleles is inflated. Because two forms of a chromosome carry distinct lethal alleles that are reciprocally compensated for by functional genes on the alternate chromosome form, both chromosome forms – and in effect their linked lethal alleles – are required for survival. The inability of natural selection to purge balanced lethal systems appears to defy evolutionary theory. How do balanced lethal systems originate and persist in nature? I suspect the answer to this pressing but neglected research question can be found in the context of supergenes in a balanced polymorphism – a current, hot topic in evolutionary biology. Chromosome rearrangements can lock distinct beneficial sets of alleles (i.e. supergenes) on two chromosome forms by suppressing recombination. Now, balancing selection would favour possession of both supergenes. However, as a consequence of suppressed recombination, unique lethal alleles could become fixed on each supergene, with natural selection powerless to prevent collapse of the arrangement into a balanced lethal system. I aim to explain the evolution of balanced lethal systems in nature. As empirical example I will use chromosome 1 syndrome, a balanced lethal system observed in newts of the genus Triturus. My research team will: Reconstruct the genomic architecture of this balanced lethal system at its point of origin [PI project]; Conduct comparative genomics with related, unaffected species [PhD project]; Determine gene order of the two supergenes involved [Postdoc project I]; and Model the conditions under which this balanced lethal system could theoretically have evolved [Postdoc project II]. Solving the paradox of chromosome 1 syndrome will allow us to understand balanced lethal systems in general and address the challenges they pose to evolutionary theory.
Summary
Natural selection is supposed to keep lethal alleles (dysfunctional or deleted copies of crucial genes) in check. Yet, in a balanced lethal system the frequency of lethal alleles is inflated. Because two forms of a chromosome carry distinct lethal alleles that are reciprocally compensated for by functional genes on the alternate chromosome form, both chromosome forms – and in effect their linked lethal alleles – are required for survival. The inability of natural selection to purge balanced lethal systems appears to defy evolutionary theory. How do balanced lethal systems originate and persist in nature? I suspect the answer to this pressing but neglected research question can be found in the context of supergenes in a balanced polymorphism – a current, hot topic in evolutionary biology. Chromosome rearrangements can lock distinct beneficial sets of alleles (i.e. supergenes) on two chromosome forms by suppressing recombination. Now, balancing selection would favour possession of both supergenes. However, as a consequence of suppressed recombination, unique lethal alleles could become fixed on each supergene, with natural selection powerless to prevent collapse of the arrangement into a balanced lethal system. I aim to explain the evolution of balanced lethal systems in nature. As empirical example I will use chromosome 1 syndrome, a balanced lethal system observed in newts of the genus Triturus. My research team will: Reconstruct the genomic architecture of this balanced lethal system at its point of origin [PI project]; Conduct comparative genomics with related, unaffected species [PhD project]; Determine gene order of the two supergenes involved [Postdoc project I]; and Model the conditions under which this balanced lethal system could theoretically have evolved [Postdoc project II]. Solving the paradox of chromosome 1 syndrome will allow us to understand balanced lethal systems in general and address the challenges they pose to evolutionary theory.
Max ERC Funding
1 499 869 €
Duration
Start date: 2019-02-01, End date: 2024-01-31
Project acronym BALDWINIAN_BEETLES
Project "The origin of the fittest: canalization, plasticity and selection as a consequence of provisioning during development"
Researcher (PI) Rebecca Kilner
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Starting Grant (StG), LS8, ERC-2012-StG_20111109
Summary "A major outstanding challenge for evolutionary biology is to explain how novel adaptations arise. We propose to test whether developmental plasticity initiates evolutionary change in morphological, behavioural and social traits, using laboratory experiments, fieldwork and comparative analyses.
Using burying beetles Nicrophorus spp as our model experimental system, we shall:
1) Test whether variation in parental provisioning during development induces correlated phenotypic change in adult body size and a suite of life history traits; whether these phenotypic changes can be genetically accommodated under experimental evolution (the Baldwin Effect); and whether changes induced by experimental evolution mimic natural variation in adult body size and life history strategy among Nicrophorus species;
2) Test whether parental provisioning has a canalizing effect on the developmental environment, potentially storing up cryptic genetic variation which might then be released as random new phenotypes, if offspring are exposed to a new developmental environment;
3) Investigate whether developmental trade-offs, induced by under-provisioning from parents, provide the first step towards the evolution of a novel interspecific mutualism. Is a second species recruited in adulthood to carry out the function of a structure that was under-nourished during development?
4) Using comparative analyses of data from the literature on insects, frogs, birds and mammals, we shall test whether the evolution of parental provisioning in a given lineage is positively correlated with the number of species in the lineage.
Our proposal is original in focusing on developmental plasticity induced by variation in parental provisioning. Given the diverse and numerous species that provision their young, including several whose genomes have now been sequenced, this potentially opens up a rich new area for future work on the developmental mechanisms underlying evolutionary innovations."
Summary
"A major outstanding challenge for evolutionary biology is to explain how novel adaptations arise. We propose to test whether developmental plasticity initiates evolutionary change in morphological, behavioural and social traits, using laboratory experiments, fieldwork and comparative analyses.
Using burying beetles Nicrophorus spp as our model experimental system, we shall:
1) Test whether variation in parental provisioning during development induces correlated phenotypic change in adult body size and a suite of life history traits; whether these phenotypic changes can be genetically accommodated under experimental evolution (the Baldwin Effect); and whether changes induced by experimental evolution mimic natural variation in adult body size and life history strategy among Nicrophorus species;
2) Test whether parental provisioning has a canalizing effect on the developmental environment, potentially storing up cryptic genetic variation which might then be released as random new phenotypes, if offspring are exposed to a new developmental environment;
3) Investigate whether developmental trade-offs, induced by under-provisioning from parents, provide the first step towards the evolution of a novel interspecific mutualism. Is a second species recruited in adulthood to carry out the function of a structure that was under-nourished during development?
4) Using comparative analyses of data from the literature on insects, frogs, birds and mammals, we shall test whether the evolution of parental provisioning in a given lineage is positively correlated with the number of species in the lineage.
Our proposal is original in focusing on developmental plasticity induced by variation in parental provisioning. Given the diverse and numerous species that provision their young, including several whose genomes have now been sequenced, this potentially opens up a rich new area for future work on the developmental mechanisms underlying evolutionary innovations."
Max ERC Funding
1 499 914 €
Duration
Start date: 2012-11-01, End date: 2017-10-31
Project acronym BARRIERS
Project The evolution of barriers to gene exchange
Researcher (PI) Roger BUTLIN
Host Institution (HI) THE UNIVERSITY OF SHEFFIELD
Call Details Advanced Grant (AdG), LS8, ERC-2015-AdG
Summary Speciation is a central process in evolution that involves the origin of barriers to gene flow between populations. Species are typically isolated by several barriers and assembly of multiple barriers separating the same populations seems to be critical to the evolution of strong reproductive isolation. Barriers resulting from direct selection can become coincident through a process of coupling while reinforcement can add barrier traits that are not under direct selection. In the presence of gene flow, these processes are opposed by recombination. While recent research using the latest sequencing technologies has provided much increased knowledge of patterns of differentiation and the genetic basis of local adaptation, it has so far added little to understanding of the coupling and reinforcement processes.
In this project, I will focus on the accumulation of barriers to gene exchange and the processes underlying increasing reproductive isolation. I will use the power of natural contact zones, combined with novel manipulative experiments, to separate the processes that underlie patterns of differentiation and introgression. The Littorina saxatilis model system allows me to do this with both local replication and a contrast between distinct spatial contexts on a larger geographic scale. I will use modelling to determine how processes interact and to investigate the conditions most likely to promote coupling and reinforcement. Overall, the project will provide major new insights into the speciation process, particularly revealing the requirements for progress towards complete reproductive isolation.
Summary
Speciation is a central process in evolution that involves the origin of barriers to gene flow between populations. Species are typically isolated by several barriers and assembly of multiple barriers separating the same populations seems to be critical to the evolution of strong reproductive isolation. Barriers resulting from direct selection can become coincident through a process of coupling while reinforcement can add barrier traits that are not under direct selection. In the presence of gene flow, these processes are opposed by recombination. While recent research using the latest sequencing technologies has provided much increased knowledge of patterns of differentiation and the genetic basis of local adaptation, it has so far added little to understanding of the coupling and reinforcement processes.
In this project, I will focus on the accumulation of barriers to gene exchange and the processes underlying increasing reproductive isolation. I will use the power of natural contact zones, combined with novel manipulative experiments, to separate the processes that underlie patterns of differentiation and introgression. The Littorina saxatilis model system allows me to do this with both local replication and a contrast between distinct spatial contexts on a larger geographic scale. I will use modelling to determine how processes interact and to investigate the conditions most likely to promote coupling and reinforcement. Overall, the project will provide major new insights into the speciation process, particularly revealing the requirements for progress towards complete reproductive isolation.
Max ERC Funding
2 499 927 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym BathyBiome
Project The Symbiome of Bathymodiolus Mussels from Hydrothermal Vents: From the Genome
to the Environment
Researcher (PI) Nicole Dubilier
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Advanced Grant (AdG), LS8, ERC-2013-ADG
Summary The discovery of deep-sea hydrothermal vents in 1977 was one of the most profound findings of the 20th century, revolutionizing our perception of energy sources fueling primary productivity on Earth. These ecosystems are based on chemosynthesis, that is the fixation of carbon dioxide into organic compounds as in photosynthesis, but using inorganic compounds such as sulfide, methane or hydrogen, as energy sources instead of sunlight. Hydrothermal vents support tremendous biomass and productivity of which the majority is generated through symbiotic microbe-animal associations. Bathymodiolus mussels are able to build extraordinarily large and productive communities at hydrothermal vents because they harbor symbiotic bacteria that use inorganic energy sources from the vent fluids to feed their hosts via carbon fixation. In addition to their beneficial symbionts, the mussels are infected by a novel bacterial parasite that exclusively invades and multiplies in their nuclei. In the work proposed here, I will use a wide array of tools that range from deep-sea in situ instruments to sophisticated molecular, 'omic' and imaging analyses to study the microbiome associated with Bathymodiolus mussels. The proposed
research bridges biogeochemistry, ecological and evolutionary biology, and molecular microbiology to develop a systematic understanding of the symbiotic interactions between microbes, their hosts, and their environment in one of the most extreme and fascinating habitats on Earth, hydrothermal vents.
Summary
The discovery of deep-sea hydrothermal vents in 1977 was one of the most profound findings of the 20th century, revolutionizing our perception of energy sources fueling primary productivity on Earth. These ecosystems are based on chemosynthesis, that is the fixation of carbon dioxide into organic compounds as in photosynthesis, but using inorganic compounds such as sulfide, methane or hydrogen, as energy sources instead of sunlight. Hydrothermal vents support tremendous biomass and productivity of which the majority is generated through symbiotic microbe-animal associations. Bathymodiolus mussels are able to build extraordinarily large and productive communities at hydrothermal vents because they harbor symbiotic bacteria that use inorganic energy sources from the vent fluids to feed their hosts via carbon fixation. In addition to their beneficial symbionts, the mussels are infected by a novel bacterial parasite that exclusively invades and multiplies in their nuclei. In the work proposed here, I will use a wide array of tools that range from deep-sea in situ instruments to sophisticated molecular, 'omic' and imaging analyses to study the microbiome associated with Bathymodiolus mussels. The proposed
research bridges biogeochemistry, ecological and evolutionary biology, and molecular microbiology to develop a systematic understanding of the symbiotic interactions between microbes, their hosts, and their environment in one of the most extreme and fascinating habitats on Earth, hydrothermal vents.
Max ERC Funding
2 499 122 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym BATNMR
Project Development and Application of New NMR Methods for Studying Interphases and Interfaces in Batteries
Researcher (PI) Clare GREY
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Advanced Grant (AdG), PE4, ERC-2018-ADG
Summary The development of longer lasting, higher energy density and cheaper rechargeable batteries represents one of the major technological challenges of our society, batteries representing the limiting components in the shift from gasoline-powered to electric vehicles. They are also required to enable the use of more (typically intermittent) renewable energy, to balance demand with generation. This proposal seeks to develop and apply new NMR metrologies to determine the structure and dynamics of the multiple electrode-electrolyte interfaces and interphases that are present in these batteries, and how they evolve during battery cycling. New dynamic nuclear polarization (DNP) techniques will be exploited to extract structural information about the interface between the battery electrode and the passivating layers that grow on the electrode materials (the solid electrolyte interphase, SEI) and that are inherent to the stability of the batteries. The role of the SEI (and ceramic interfaces) in controlling lithium metal dendrite growth will be determined in liquid based and all solid state batteries.
New DNP approaches will be developed that are compatible with the heterogeneous and reactive species that are present in conventional, all-solid state, Li-air and redox flow batteries. Method development will run in parallel with the use of DNP approaches to determine the structures of the various battery interfaces and interphases, testing the stability of conventional biradicals in these harsh oxidizing and reducing conditions, modifying the experimental approaches where appropriate. The final result will be a significantly improved understanding of the structures of these phases and how they evolve on cycling, coupled with strategies for designing improved SEI structures. The nature of the interface between a lithium metal dendrite and ceramic composite will be determined, providing much needed insight into how these (unwanted) dendrites grow in all solid state batteries. DNP approaches coupled with electron spin resonance will be use, where possible in situ, to determine the reaction mechanisms of organic molecules such as quinones in organic-based redox flow batteries in order to help prevent degradation of the electrochemically active species.
This proposal involves NMR method development specifically designed to explore a variety of battery chemistries. Thus, this proposal is interdisciplinary, containing both a strong emphasis on materials characterization, electrochemistry and electronic structures of materials, interfaces and nanoparticles, and on analytical and physical chemistry. Some of the methodology will be applicable to other materials and systems including (for example) other electrochemical technologies such as fuel cells and solar fuels and the study of catalysts (to probe surface structure).
Summary
The development of longer lasting, higher energy density and cheaper rechargeable batteries represents one of the major technological challenges of our society, batteries representing the limiting components in the shift from gasoline-powered to electric vehicles. They are also required to enable the use of more (typically intermittent) renewable energy, to balance demand with generation. This proposal seeks to develop and apply new NMR metrologies to determine the structure and dynamics of the multiple electrode-electrolyte interfaces and interphases that are present in these batteries, and how they evolve during battery cycling. New dynamic nuclear polarization (DNP) techniques will be exploited to extract structural information about the interface between the battery electrode and the passivating layers that grow on the electrode materials (the solid electrolyte interphase, SEI) and that are inherent to the stability of the batteries. The role of the SEI (and ceramic interfaces) in controlling lithium metal dendrite growth will be determined in liquid based and all solid state batteries.
New DNP approaches will be developed that are compatible with the heterogeneous and reactive species that are present in conventional, all-solid state, Li-air and redox flow batteries. Method development will run in parallel with the use of DNP approaches to determine the structures of the various battery interfaces and interphases, testing the stability of conventional biradicals in these harsh oxidizing and reducing conditions, modifying the experimental approaches where appropriate. The final result will be a significantly improved understanding of the structures of these phases and how they evolve on cycling, coupled with strategies for designing improved SEI structures. The nature of the interface between a lithium metal dendrite and ceramic composite will be determined, providing much needed insight into how these (unwanted) dendrites grow in all solid state batteries. DNP approaches coupled with electron spin resonance will be use, where possible in situ, to determine the reaction mechanisms of organic molecules such as quinones in organic-based redox flow batteries in order to help prevent degradation of the electrochemically active species.
This proposal involves NMR method development specifically designed to explore a variety of battery chemistries. Thus, this proposal is interdisciplinary, containing both a strong emphasis on materials characterization, electrochemistry and electronic structures of materials, interfaces and nanoparticles, and on analytical and physical chemistry. Some of the methodology will be applicable to other materials and systems including (for example) other electrochemical technologies such as fuel cells and solar fuels and the study of catalysts (to probe surface structure).
Max ERC Funding
3 498 219 €
Duration
Start date: 2019-10-01, End date: 2024-09-30
Project acronym BeadsOnString
Project Beads on String Genomics: Experimental Toolbox for Unmasking Genetic / Epigenetic Variation in Genomic DNA and Chromatin
Researcher (PI) Yuval Ebenstein
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Starting Grant (StG), PE4, ERC-2013-StG
Summary Next generation sequencing (NGS) is revolutionizing all fields of biological research but it fails to extract the full range of information associated with genetic material and is lacking in its ability to resolve variations between genomes. The high degree of genome variation exhibited both on the population level as well as between genetically “identical” cells (even in the same organ) makes genetic and epigenetic analysis on the single cell and single genome level a necessity.
Chromosomes may be conceptually represented as a linear one-dimensional barcode. However, in contrast to a traditional binary barcode approach that considers only two possible bits of information (1 & 0), I will use colour and molecular structure to expand the variety of information represented in the barcode. Like colourful beads threaded on a string, where each bead represents a distinct type of observable, I will label each type of genomic information with a different chemical moiety thus expanding the repertoire of information that can be simultaneously measured. A major effort in this proposal is invested in the development of unique chemistries to enable this labelling.
I specifically address three types of genomic variation: Variations in genomic layout (including DNA repeats, structural and copy number variations), variations in the patterns of chemical DNA modifications (such as methylation of cytosine bases) and variations in the chromatin composition (including nucleosome and transcription factor distributions). I will use physical extension of long DNA molecules on surfaces and in nanofluidic channels to reveal this information visually in the form of a linear, fluorescent “barcode” that is read-out by advanced imaging techniques. Similarly, DNA molecules will be threaded through a nanopore where the sequential position of “bulky” molecular groups attached to the DNA may be inferred from temporal modulation of an ionic current measured across the pore.
Summary
Next generation sequencing (NGS) is revolutionizing all fields of biological research but it fails to extract the full range of information associated with genetic material and is lacking in its ability to resolve variations between genomes. The high degree of genome variation exhibited both on the population level as well as between genetically “identical” cells (even in the same organ) makes genetic and epigenetic analysis on the single cell and single genome level a necessity.
Chromosomes may be conceptually represented as a linear one-dimensional barcode. However, in contrast to a traditional binary barcode approach that considers only two possible bits of information (1 & 0), I will use colour and molecular structure to expand the variety of information represented in the barcode. Like colourful beads threaded on a string, where each bead represents a distinct type of observable, I will label each type of genomic information with a different chemical moiety thus expanding the repertoire of information that can be simultaneously measured. A major effort in this proposal is invested in the development of unique chemistries to enable this labelling.
I specifically address three types of genomic variation: Variations in genomic layout (including DNA repeats, structural and copy number variations), variations in the patterns of chemical DNA modifications (such as methylation of cytosine bases) and variations in the chromatin composition (including nucleosome and transcription factor distributions). I will use physical extension of long DNA molecules on surfaces and in nanofluidic channels to reveal this information visually in the form of a linear, fluorescent “barcode” that is read-out by advanced imaging techniques. Similarly, DNA molecules will be threaded through a nanopore where the sequential position of “bulky” molecular groups attached to the DNA may be inferred from temporal modulation of an ionic current measured across the pore.
Max ERC Funding
1 627 600 €
Duration
Start date: 2013-10-01, End date: 2018-09-30
Project acronym BEAL
Project Bioenergetics in microalgae : regulation modes of mitochondrial respiration, photosynthesis, and fermentative pathways, and their interactions in secondary algae
Researcher (PI) Pierre Antoine Georges Cardol
Host Institution (HI) UNIVERSITE DE LIEGE
Call Details Consolidator Grant (CoG), LS8, ERC-2015-CoG
Summary During the course of eukaryote evolution, photosynthesis was propagated from primary eukaryotic algae to non-photosynthetic organisms through multiple secondary endosymbiotic events. Collectively referred to as “secondary algae”, these photosynthetic organisms account for only 1-2% of the total global biomass, but produce a far larger part of the global annual fixation of carbon on Earth.
ATP is the universal chemical energy carrier in living cells. In photosynthetic eukaryotes, it is produced by two major cellular processes: photosynthesis and respiration taking place in chloroplasts and mitochondria, respectively. Both processes support the production of biomass and govern gas (O2 and CO2) exchanges. On the other hand, anaerobic fermentative enzymes have also been identified in several primary and secondary algae. The regulation modes and interactions of respiration, photosynthesis and fermentation are fairly well understood in primary green algae. Conversely, the complex evolutionary history of secondary algae implies a great variety of original regulatory mechanisms that have been barely investigated to date.
Over the last years my laboratory has developed and optimized a range of multidisciplinary approaches that now allow us, within the frame of the BEAL (BioEnergetics in microALgae) project, to (i) characterize and compare the photosynthetic regulation modes by biophysical approaches, (ii) use genetic and biochemical approaches to gain fundamental knowledge on aerobic respiration and anaerobic fermentative pathways, and (iii) investigate and compare interconnections between respiration, photosynthesis, and fermentation in organisms resulting from distinct evolutionary scenarios. On a long term, these developments will be instrumental to unravel bioenergetics constraints on growth in microalgae, a required knowledge to exploit the microalgal diversity in a biotechnological perspective, and to understand the complexity of the marine phytoplankton.
Summary
During the course of eukaryote evolution, photosynthesis was propagated from primary eukaryotic algae to non-photosynthetic organisms through multiple secondary endosymbiotic events. Collectively referred to as “secondary algae”, these photosynthetic organisms account for only 1-2% of the total global biomass, but produce a far larger part of the global annual fixation of carbon on Earth.
ATP is the universal chemical energy carrier in living cells. In photosynthetic eukaryotes, it is produced by two major cellular processes: photosynthesis and respiration taking place in chloroplasts and mitochondria, respectively. Both processes support the production of biomass and govern gas (O2 and CO2) exchanges. On the other hand, anaerobic fermentative enzymes have also been identified in several primary and secondary algae. The regulation modes and interactions of respiration, photosynthesis and fermentation are fairly well understood in primary green algae. Conversely, the complex evolutionary history of secondary algae implies a great variety of original regulatory mechanisms that have been barely investigated to date.
Over the last years my laboratory has developed and optimized a range of multidisciplinary approaches that now allow us, within the frame of the BEAL (BioEnergetics in microALgae) project, to (i) characterize and compare the photosynthetic regulation modes by biophysical approaches, (ii) use genetic and biochemical approaches to gain fundamental knowledge on aerobic respiration and anaerobic fermentative pathways, and (iii) investigate and compare interconnections between respiration, photosynthesis, and fermentation in organisms resulting from distinct evolutionary scenarios. On a long term, these developments will be instrumental to unravel bioenergetics constraints on growth in microalgae, a required knowledge to exploit the microalgal diversity in a biotechnological perspective, and to understand the complexity of the marine phytoplankton.
Max ERC Funding
1 837 625 €
Duration
Start date: 2016-06-01, End date: 2021-05-31
Project acronym BeeDanceGap
Project Honeybee communication: animal social learning at the height of social complexity
Researcher (PI) Ellouise Leadbeater
Host Institution (HI) ROYAL HOLLOWAY AND BEDFORD NEW COLLEGE
Call Details Starting Grant (StG), LS8, ERC-2014-STG
Summary Learning from others is fundamental to ecological success across the animal kingdom, but a key theme to emerge from recent research is that individuals respond differently to social information. Understanding this diversity is an imposing challenge, because it is hard to replicate the overwhelming complexity of free-living groups within controlled laboratory conditions. Yet here I propose that one of the most complex social models that we know of— the sophisticated eusocial societies of honeybees— offer unrivaled and yet unrecognized potential to study social information flow through a natural group. The honeybee “dance language” is one of the most celebrated communication systems in the animal world, and central to a powerful information network that drives our most high-profile pollinator to food, but bee colonies are uniquely tractable for two reasons. Firstly, next-generation transcriptomics could allow us to delve deep into this complexity at the molecular level, on a scale that is simply not available in vertebrate social systems. I propose to track information flow through a natural group using brain gene expression profiles, to understand how dances elicit learning in the bee brain. Secondly, although bee foraging ranges are vast and diverse, social learning takes place in one centralized location (the hive). The social sciences now offer powerful new tools to analyze social networks, and I will use a cutting-edge network-based modelling approach to understand how the importance of social learning mechanisms shifts with ecology. In the face of global pollinator decline, understanding the contribution of foraging drivers to colony success has never been more pressing, but the importance of the dance language reaches far beyond food security concerns. This research integrates proximate and ultimate perspectives to produce a comprehensive, multi-disciplinary program; a high-risk, high-gain journey into new territory for understanding animal communication.
Summary
Learning from others is fundamental to ecological success across the animal kingdom, but a key theme to emerge from recent research is that individuals respond differently to social information. Understanding this diversity is an imposing challenge, because it is hard to replicate the overwhelming complexity of free-living groups within controlled laboratory conditions. Yet here I propose that one of the most complex social models that we know of— the sophisticated eusocial societies of honeybees— offer unrivaled and yet unrecognized potential to study social information flow through a natural group. The honeybee “dance language” is one of the most celebrated communication systems in the animal world, and central to a powerful information network that drives our most high-profile pollinator to food, but bee colonies are uniquely tractable for two reasons. Firstly, next-generation transcriptomics could allow us to delve deep into this complexity at the molecular level, on a scale that is simply not available in vertebrate social systems. I propose to track information flow through a natural group using brain gene expression profiles, to understand how dances elicit learning in the bee brain. Secondly, although bee foraging ranges are vast and diverse, social learning takes place in one centralized location (the hive). The social sciences now offer powerful new tools to analyze social networks, and I will use a cutting-edge network-based modelling approach to understand how the importance of social learning mechanisms shifts with ecology. In the face of global pollinator decline, understanding the contribution of foraging drivers to colony success has never been more pressing, but the importance of the dance language reaches far beyond food security concerns. This research integrates proximate and ultimate perspectives to produce a comprehensive, multi-disciplinary program; a high-risk, high-gain journey into new territory for understanding animal communication.
Max ERC Funding
1 422 010 €
Duration
Start date: 2016-02-01, End date: 2021-01-31
Project acronym BeStMo
Project Beyond Static Molecules: Modeling Quantum Fluctuations in Complex Molecular Environments
Researcher (PI) Alexandre TKATCHENKO
Host Institution (HI) UNIVERSITE DU LUXEMBOURG
Call Details Consolidator Grant (CoG), PE4, ERC-2016-COG
Summary We propose focused theory developments and applications, which aim to substantially advance our ability to model and understand the behavior of molecules in complex environments. From a large repertoire of possible environments, we have chosen to concentrate on experimentally-relevant situations, including molecular fluctuations in electric and optical fields, disordered molecular crystals, solvated (bio)molecules, and molecular interactions at/through low-dimensional nanostructures. A challenging aspect of modeling such realistic environments is that both molecular electronic and nuclear fluctuations have to be treated efficiently at a robust quantum-mechanical level of theory for systems with 1000s of atoms. In contrast, the current state of the art in the modeling of complex molecular systems typically consists of Newtonian molecular dynamics employing classical force fields. We will develop radically new approaches for electronic and nuclear fluctuations that unify concepts and merge techniques from quantum-mechanical many-body Hamiltonians, statistical mechanics, density-functional theory, and machine learning. Our developments will be benchmarked using experimental measurements with terahertz (THz) spectroscopy, atomic-force and scanning tunneling microscopy (AFM/STM), time-of-flight (TOF) measurements, and molecular interferometry.
Our final goal is to bridge the accuracy of quantum mechanics with the efficiency of force fields, enabling large-scale predictive quantum molecular dynamics simulations for complex systems containing 1000s of atoms, and leading to novel conceptual insights into quantum-mechanical fluctuations in large molecular systems. The project goes well beyond the presently possible applications and once successful will pave the road towards having a suite of first-principles-based modeling tools for a wide range of realistic materials, such as biomolecules, nanostructures, disordered solids, and organic/inorganic interfaces.
Summary
We propose focused theory developments and applications, which aim to substantially advance our ability to model and understand the behavior of molecules in complex environments. From a large repertoire of possible environments, we have chosen to concentrate on experimentally-relevant situations, including molecular fluctuations in electric and optical fields, disordered molecular crystals, solvated (bio)molecules, and molecular interactions at/through low-dimensional nanostructures. A challenging aspect of modeling such realistic environments is that both molecular electronic and nuclear fluctuations have to be treated efficiently at a robust quantum-mechanical level of theory for systems with 1000s of atoms. In contrast, the current state of the art in the modeling of complex molecular systems typically consists of Newtonian molecular dynamics employing classical force fields. We will develop radically new approaches for electronic and nuclear fluctuations that unify concepts and merge techniques from quantum-mechanical many-body Hamiltonians, statistical mechanics, density-functional theory, and machine learning. Our developments will be benchmarked using experimental measurements with terahertz (THz) spectroscopy, atomic-force and scanning tunneling microscopy (AFM/STM), time-of-flight (TOF) measurements, and molecular interferometry.
Our final goal is to bridge the accuracy of quantum mechanics with the efficiency of force fields, enabling large-scale predictive quantum molecular dynamics simulations for complex systems containing 1000s of atoms, and leading to novel conceptual insights into quantum-mechanical fluctuations in large molecular systems. The project goes well beyond the presently possible applications and once successful will pave the road towards having a suite of first-principles-based modeling tools for a wide range of realistic materials, such as biomolecules, nanostructures, disordered solids, and organic/inorganic interfaces.
Max ERC Funding
1 811 650 €
Duration
Start date: 2017-03-01, End date: 2022-02-28
Project acronym BIG_IDEA
Project Building an Integrated Genetic Infectious Disease Epidemiology Approach
Researcher (PI) Francois Balloux
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Starting Grant (StG), LS8, ERC-2010-StG_20091118
Summary Epidemiology and public health planning will increasingly rely on the analysis of genetic sequence data. The recent swine-derived influenza A/H1N1 pandemic may represent a tipping point in this trend, as it is arguably the first time when multiple strains of a human pathogen have been sequenced essentially in real time from the very beginning of its spread. However, the full potential of genetic information cannot be fully exploited to infer the spread of epidemics due to the lack of statistical methodologies capable of reconstructing transmission routes from genetic data structured both in time and space. To address this urgent need, we propose to develop a methodological framework for the reconstruction of the spatiotemporal dynamics of disease outbreaks and epidemics based on genetic sequence data. Rather than reconstructing most recent common ancestors as in phylogenetics, we will directly infer the most likely ancestries among the sampled isolates. This represents an entirely novel paradigm and allows for the development of statistically coherent and powerful inference software within a Bayesian framework. The methodological framework will be developed in parallel with the analysis of real genetic/genomic data from important human pathogens. We will in particular focus on the 2009 A/H1N1 pandemic influenza, methicilin-resistant Staphylococcus aureus clones (MRSAs), Batrachochytrium dendrobatidis, a fungus currently devastating amphibian populations worldwide. The tools we are proposing to develop are likely to impact radically on the field of infectious disease epidemiology and affect the way infectious emerging pathogens are monitored by biologists and public health professionals.
Summary
Epidemiology and public health planning will increasingly rely on the analysis of genetic sequence data. The recent swine-derived influenza A/H1N1 pandemic may represent a tipping point in this trend, as it is arguably the first time when multiple strains of a human pathogen have been sequenced essentially in real time from the very beginning of its spread. However, the full potential of genetic information cannot be fully exploited to infer the spread of epidemics due to the lack of statistical methodologies capable of reconstructing transmission routes from genetic data structured both in time and space. To address this urgent need, we propose to develop a methodological framework for the reconstruction of the spatiotemporal dynamics of disease outbreaks and epidemics based on genetic sequence data. Rather than reconstructing most recent common ancestors as in phylogenetics, we will directly infer the most likely ancestries among the sampled isolates. This represents an entirely novel paradigm and allows for the development of statistically coherent and powerful inference software within a Bayesian framework. The methodological framework will be developed in parallel with the analysis of real genetic/genomic data from important human pathogens. We will in particular focus on the 2009 A/H1N1 pandemic influenza, methicilin-resistant Staphylococcus aureus clones (MRSAs), Batrachochytrium dendrobatidis, a fungus currently devastating amphibian populations worldwide. The tools we are proposing to develop are likely to impact radically on the field of infectious disease epidemiology and affect the way infectious emerging pathogens are monitored by biologists and public health professionals.
Max ERC Funding
1 483 080 €
Duration
Start date: 2010-11-01, End date: 2015-10-31
Project acronym BIMOC
Project Biomimetic Organocatalysis – Development of Novel Synthetic Catalytic Methodology and Technology
Researcher (PI) Magnus Rueping
Host Institution (HI) RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN
Call Details Starting Grant (StG), PE4, ERC-2007-StG
Summary Biomimetic Organocatalysis – Development of Novel Synthetic Catalytic Methodology and Technology The objective of the proposed research is the design and development of unprecedented preassembled, modular, molecular factories. Inspiration comes from nature’s non-ribosomal peptide synthetases (NRPSs) and polyketide synthetases (PKSs). These large multifunctional enzymes possess catalytic modules with the capacity for recognition, activation and modification required for sequential biosynthesis of complex peptides and polyketides. Using nature as a role model we intend to design and prepare such catalyst “factories” synthetically and apply them in novel cascade reaction sequences. The single catalytic modules employed will be based on organocatalytic procedures, including enamine-, iminium-, as well as hydrogen bonding activation processes, but the potential scope is limitless. Organocatalysts have so far never been applied in a combined fashion utilizing their different activation mechanisms in multiple reaction cascades. Therefore, it is our intention to firstly demonstrate that such a production line approach is feasible and that these new catalyst systems can be applied in the synthesis of valuable enantiopure, biologically active, building blocks and natural products. Additionally, the extensive possibilities to vary organocatalyst modules in sequence will lead to science mimicking nature in its diversity.
Summary
Biomimetic Organocatalysis – Development of Novel Synthetic Catalytic Methodology and Technology The objective of the proposed research is the design and development of unprecedented preassembled, modular, molecular factories. Inspiration comes from nature’s non-ribosomal peptide synthetases (NRPSs) and polyketide synthetases (PKSs). These large multifunctional enzymes possess catalytic modules with the capacity for recognition, activation and modification required for sequential biosynthesis of complex peptides and polyketides. Using nature as a role model we intend to design and prepare such catalyst “factories” synthetically and apply them in novel cascade reaction sequences. The single catalytic modules employed will be based on organocatalytic procedures, including enamine-, iminium-, as well as hydrogen bonding activation processes, but the potential scope is limitless. Organocatalysts have so far never been applied in a combined fashion utilizing their different activation mechanisms in multiple reaction cascades. Therefore, it is our intention to firstly demonstrate that such a production line approach is feasible and that these new catalyst systems can be applied in the synthesis of valuable enantiopure, biologically active, building blocks and natural products. Additionally, the extensive possibilities to vary organocatalyst modules in sequence will lead to science mimicking nature in its diversity.
Max ERC Funding
999 960 €
Duration
Start date: 2008-09-01, End date: 2012-08-31
Project acronym BIO2CHEM-D
Project Biomass to chemicals: Catalysis design from first principles for a sustainable chemical industry
Researcher (PI) Nuria Lopez
Host Institution (HI) FUNDACIO PRIVADA INSTITUT CATALA D'INVESTIGACIO QUIMICA
Call Details Starting Grant (StG), PE4, ERC-2010-StG_20091028
Summary The use of renewable feedstocks by the chemical industry is fundamental due to both the depletion of fossil
resources and the increasing pressure of environmental concerns. Biomass can act as a sustainable source of
organic industrial chemicals; however, the establishment of a renewable chemical industry that is
economically competitive with the present oil-based one requires the development of new processes to
convert biomass-derived compounds into useful industrial materials following the principles of green
chemistry. To achieve these goals, developments in several fields including heterogeneous catalysis are
needed. One of the ways to accelerate the discovery of new potentially active, selective and stable catalysts is
the massive use of computational chemistry. Recent advances have demonstrated that Density Functional
Theory coupled to ab initio thermodynamics, transition state theory and microkinetic analysis can provide a
full view of the catalytic phenomena.
The aim of the present project is thus to employ these well-tested computational techniques to the
development of a theoretical framework that can accelerate the identification of new catalysts for the
conversion of biomass derived target compounds into useful chemicals. Since compared to petroleum-based
materials-biomass derived ones are multifuncionalized, the search for new catalytic materials and processes
has a strong requirement in the selectivity of the chemical transformations. The main challenges in the
project are related to the high functionalization of the molecules, their liquid nature and the large number of
potentially competitive reaction paths. The requirements of specificity and selectivity in the chemical
transformations while keeping a reasonably flexible framework constitute a major objective. The work will
be divided in three main work packages, one devoted to the properties of small molecules or fragments
containing a single functional group; the second addresses competition in multiple functionalized molecules;
and third is dedicated to the specific transformations of two molecules that have already been identified as
potential platform generators. The goal is to identify suitable candidates that could be synthetized and tested
in the Institute facilities.
Summary
The use of renewable feedstocks by the chemical industry is fundamental due to both the depletion of fossil
resources and the increasing pressure of environmental concerns. Biomass can act as a sustainable source of
organic industrial chemicals; however, the establishment of a renewable chemical industry that is
economically competitive with the present oil-based one requires the development of new processes to
convert biomass-derived compounds into useful industrial materials following the principles of green
chemistry. To achieve these goals, developments in several fields including heterogeneous catalysis are
needed. One of the ways to accelerate the discovery of new potentially active, selective and stable catalysts is
the massive use of computational chemistry. Recent advances have demonstrated that Density Functional
Theory coupled to ab initio thermodynamics, transition state theory and microkinetic analysis can provide a
full view of the catalytic phenomena.
The aim of the present project is thus to employ these well-tested computational techniques to the
development of a theoretical framework that can accelerate the identification of new catalysts for the
conversion of biomass derived target compounds into useful chemicals. Since compared to petroleum-based
materials-biomass derived ones are multifuncionalized, the search for new catalytic materials and processes
has a strong requirement in the selectivity of the chemical transformations. The main challenges in the
project are related to the high functionalization of the molecules, their liquid nature and the large number of
potentially competitive reaction paths. The requirements of specificity and selectivity in the chemical
transformations while keeping a reasonably flexible framework constitute a major objective. The work will
be divided in three main work packages, one devoted to the properties of small molecules or fragments
containing a single functional group; the second addresses competition in multiple functionalized molecules;
and third is dedicated to the specific transformations of two molecules that have already been identified as
potential platform generators. The goal is to identify suitable candidates that could be synthetized and tested
in the Institute facilities.
Max ERC Funding
1 496 200 €
Duration
Start date: 2010-10-01, End date: 2015-09-30
Project acronym BiocatSusChem
Project Biocatalysis for Sustainable Chemistry – Understanding Oxidation/Reduction of Small Molecules by Redox Metalloenzymes via a Suite of Steady State and Transient Infrared Electrochemical Methods
Researcher (PI) Kylie VINCENT
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Consolidator Grant (CoG), PE4, ERC-2018-COG
Summary Many significant global challenges in catalysis for energy and sustainable chemistry have already been solved in nature. Metalloenzymes within microorganisms catalyse the transformation of carbon dioxide into simple carbon building blocks or fuels, the reduction of dinitrogen to ammonia under ambient conditions and the production and utilisation of dihydrogen. Catalytic sites for these reactions are necessarily based on metals that are abundant in the environment, including iron, nickel and molybdenum. However, attempts to generate biomimetic catalysts have largely failed to reproduce the high activity, stability and selectivity of enzymes. Proton and electron transfer and substrate binding are all finely choreographed, and we do not yet understand how this is achieved. This project develops a suite of new experimental infrared (IR) spectroscopy tools to probe and understand mechanisms of redox metalloenzymes in situ during electrochemically-controlled steady state turnover, and during electron-transfer-triggered transient studies. The ability of IR spectroscopy to report on the nature and strength of chemical bonds makes it ideally suited to follow the activation and transformation of small molecule reactants at metalloenzyme catalytic sites, binding of inhibitors, and protonation of specific sites. By extending to the far-IR, or introducing mid-IR-active probe amino acids, redox and structural changes in biological electron relay chains also become accessible. Taking as models the enzymes nitrogenase, hydrogenase, carbon monoxide dehydrogenase and formate dehydrogenase, the project sets out to establish a unified understanding of central concepts in small molecule activation in biology. It will reveal precise ways in which chemical events are coordinated inside complex multicentre metalloenzymes, propelling a new generation of bio-inspired catalysts and uncovering new chemistry of enzymes.
Summary
Many significant global challenges in catalysis for energy and sustainable chemistry have already been solved in nature. Metalloenzymes within microorganisms catalyse the transformation of carbon dioxide into simple carbon building blocks or fuels, the reduction of dinitrogen to ammonia under ambient conditions and the production and utilisation of dihydrogen. Catalytic sites for these reactions are necessarily based on metals that are abundant in the environment, including iron, nickel and molybdenum. However, attempts to generate biomimetic catalysts have largely failed to reproduce the high activity, stability and selectivity of enzymes. Proton and electron transfer and substrate binding are all finely choreographed, and we do not yet understand how this is achieved. This project develops a suite of new experimental infrared (IR) spectroscopy tools to probe and understand mechanisms of redox metalloenzymes in situ during electrochemically-controlled steady state turnover, and during electron-transfer-triggered transient studies. The ability of IR spectroscopy to report on the nature and strength of chemical bonds makes it ideally suited to follow the activation and transformation of small molecule reactants at metalloenzyme catalytic sites, binding of inhibitors, and protonation of specific sites. By extending to the far-IR, or introducing mid-IR-active probe amino acids, redox and structural changes in biological electron relay chains also become accessible. Taking as models the enzymes nitrogenase, hydrogenase, carbon monoxide dehydrogenase and formate dehydrogenase, the project sets out to establish a unified understanding of central concepts in small molecule activation in biology. It will reveal precise ways in which chemical events are coordinated inside complex multicentre metalloenzymes, propelling a new generation of bio-inspired catalysts and uncovering new chemistry of enzymes.
Max ERC Funding
1 997 286 €
Duration
Start date: 2019-03-01, End date: 2024-02-29
Project acronym BioCircuit
Project Programmable BioMolecular Circuits: Emulating Regulatory Functions in Living Cells Using a Bottom-Up Approach
Researcher (PI) Tom Antonius Franciscus De greef
Host Institution (HI) TECHNISCHE UNIVERSITEIT EINDHOVEN
Call Details Starting Grant (StG), PE4, ERC-2015-STG
Summary Programmable biomolecular circuits have received increasing attention in recent years as the scope of chemistry expands from the synthesis of individual molecules to the construction of chemical networks that can perform sophisticated functions such as logic operations and feedback control. Rationally engineered biomolecular circuits that robustly execute higher-order spatiotemporal behaviours typically associated with intracellular regulatory functions present a unique and uncharted platform to systematically explore the molecular logic and physical design principles of the cell. The experience gained by in-vitro construction of artificial cells displaying advanced system-level functions deepens our understanding of regulatory networks in living cells and allows theoretical assumptions and models to be refined in a controlled setting. This proposal combines elements from systems chemistry, in-vitro synthetic biology and micro-engineering and explores generic strategies to investigate the molecular logic of biology’s regulatory circuits by applying a physical chemistry-driven bottom-up approach. Progress in this field requires 1) proof-of-principle systems where in-vitro biomolecular circuits are designed to emulate characteristic system-level functions of regulatory circuits in living cells and 2) novel experimental tools to operate biochemical networks under out-of-equilibrium conditions. Here, a comprehensive research program is proposed that addresses these challenges by engineering three biochemical model systems that display elementary signal transduction and information processing capabilities. In addition, an open microfluidic droplet reactor is developed that will allow, for the first time, high-throughput analysis of biomolecular circuits encapsulated in water-in-oil droplets. An integral part of the research program is to combine the computational design of in-vitro circuits with novel biochemistry and innovative micro-engineering tools.
Summary
Programmable biomolecular circuits have received increasing attention in recent years as the scope of chemistry expands from the synthesis of individual molecules to the construction of chemical networks that can perform sophisticated functions such as logic operations and feedback control. Rationally engineered biomolecular circuits that robustly execute higher-order spatiotemporal behaviours typically associated with intracellular regulatory functions present a unique and uncharted platform to systematically explore the molecular logic and physical design principles of the cell. The experience gained by in-vitro construction of artificial cells displaying advanced system-level functions deepens our understanding of regulatory networks in living cells and allows theoretical assumptions and models to be refined in a controlled setting. This proposal combines elements from systems chemistry, in-vitro synthetic biology and micro-engineering and explores generic strategies to investigate the molecular logic of biology’s regulatory circuits by applying a physical chemistry-driven bottom-up approach. Progress in this field requires 1) proof-of-principle systems where in-vitro biomolecular circuits are designed to emulate characteristic system-level functions of regulatory circuits in living cells and 2) novel experimental tools to operate biochemical networks under out-of-equilibrium conditions. Here, a comprehensive research program is proposed that addresses these challenges by engineering three biochemical model systems that display elementary signal transduction and information processing capabilities. In addition, an open microfluidic droplet reactor is developed that will allow, for the first time, high-throughput analysis of biomolecular circuits encapsulated in water-in-oil droplets. An integral part of the research program is to combine the computational design of in-vitro circuits with novel biochemistry and innovative micro-engineering tools.
Max ERC Funding
1 887 180 €
Duration
Start date: 2016-08-01, End date: 2021-07-31
Project acronym BIOCOM
Project Biotic community attributes and ecosystem functioning: implications for predicting and mitigating global change impacts
Researcher (PI) Fernando Tomás Maestre Gil
Host Institution (HI) UNIVERSIDAD REY JUAN CARLOS
Call Details Starting Grant (StG), LS8, ERC-2009-StG
Summary Increases in nutrient availability and temperature, and changes in precipitation patterns and biodiversity are important components of global environmental change. Thus, it is imperative to understand their impacts on the functioning of natural ecosystems. Substantial research efforts are being currently devoted to predict how biodiversity will respond to global change. However, little is known on the relative importance of biodiversity against other attributes of biotic communities, such as species cover and spatial pattern, as a driver of ecosystem processes. Furthermore, the effects of global change on the relationships between these attributes and ecosystem functioning are virtually unknown. This project aims to evaluate the relationships between community attributes (species richness, composition, evenness, cover, and spatial pattern) and key processes related to ecosystem functioning under different global change scenarios. Its specific objectives are to: i) evaluate the relative importance of community attributes as drivers of ecosystem functioning, ii) assess how multiple global change drivers will affect key ecosystem processes, iii) test whether global change drivers modify observed community attributes-ecosystem functioning relationships, iv) develop models to forecast global change effects on ecosystem functioning, and v) set up protocols for the establishment of mitigation actions based on the results obtained. They will be achieved by integrating experimental and modeling approaches conducted with multiple biotic communities at different spatial scales. Such integrated framework has not been tackled before, and constitutes a ground breaking advance over current research efforts on global change. This proposal will also open the door to new research lines exploring the functional role of community attributes and their importance as modulators of ecosystem responses to global change.
Summary
Increases in nutrient availability and temperature, and changes in precipitation patterns and biodiversity are important components of global environmental change. Thus, it is imperative to understand their impacts on the functioning of natural ecosystems. Substantial research efforts are being currently devoted to predict how biodiversity will respond to global change. However, little is known on the relative importance of biodiversity against other attributes of biotic communities, such as species cover and spatial pattern, as a driver of ecosystem processes. Furthermore, the effects of global change on the relationships between these attributes and ecosystem functioning are virtually unknown. This project aims to evaluate the relationships between community attributes (species richness, composition, evenness, cover, and spatial pattern) and key processes related to ecosystem functioning under different global change scenarios. Its specific objectives are to: i) evaluate the relative importance of community attributes as drivers of ecosystem functioning, ii) assess how multiple global change drivers will affect key ecosystem processes, iii) test whether global change drivers modify observed community attributes-ecosystem functioning relationships, iv) develop models to forecast global change effects on ecosystem functioning, and v) set up protocols for the establishment of mitigation actions based on the results obtained. They will be achieved by integrating experimental and modeling approaches conducted with multiple biotic communities at different spatial scales. Such integrated framework has not been tackled before, and constitutes a ground breaking advance over current research efforts on global change. This proposal will also open the door to new research lines exploring the functional role of community attributes and their importance as modulators of ecosystem responses to global change.
Max ERC Funding
1 463 374 €
Duration
Start date: 2010-01-01, End date: 2015-09-30
Project acronym BIODESERT
Project Biological feedbacks and ecosystem resilience under global change: a new perspective on dryland desertification
Researcher (PI) Fernando Tomás Maestre Gil
Host Institution (HI) UNIVERSIDAD DE ALICANTE
Call Details Consolidator Grant (CoG), LS8, ERC-2014-CoG
Summary Changes in climate and land use (e.g., increased grazing pressure), are two main global change components that also act as major desertification drivers. Understanding how drylands will respond to these drivers is crucial because they occupy 41% of the terrestrial surface and are home to over 38% of the world’s human population. Land degradation already affects ~250 million people in the developing world, which rely upon the provision of many ecosystem processes (multifunctionality). This proposal aims to develop a better understanding of the functioning and resilience of drylands (i.e. their ability to respond to and recover from disturbances) to major desertification drivers. Its objectives are to: 1) test how changes in climate and grazing pressure determine spatiotemporal patterns in multifunctionality in global drylands, 2) assess how biotic attributes (e.g., biodiversity, cover) modulate ecosystem resilience to climate change and grazing pressure at various spatial scales, 3) test and develop early warning indicators of desertification, and 4) forecast the onset of desertification and its ecological consequences under different climate and grazing scenarios. I will use various biotic communities/attributes, ecosystem services and spatial scales (from local to global), and will combine approaches from several disciplines. Such comprehensive and highly integrated research endeavor is novel and constitutes a ground breaking advance over current research efforts on desertification. This project will provide a mechanistic understanding on the processes driving multifunctionality under different global change scenarios, as well as key insights to forecast future scenarios for the provisioning of ecosystem services in drylands, and to test and develop early warning indicators of desertification. This is of major importance to attain global sustainability and key Millennium Development Goals, such as the eradication of poverty.
Summary
Changes in climate and land use (e.g., increased grazing pressure), are two main global change components that also act as major desertification drivers. Understanding how drylands will respond to these drivers is crucial because they occupy 41% of the terrestrial surface and are home to over 38% of the world’s human population. Land degradation already affects ~250 million people in the developing world, which rely upon the provision of many ecosystem processes (multifunctionality). This proposal aims to develop a better understanding of the functioning and resilience of drylands (i.e. their ability to respond to and recover from disturbances) to major desertification drivers. Its objectives are to: 1) test how changes in climate and grazing pressure determine spatiotemporal patterns in multifunctionality in global drylands, 2) assess how biotic attributes (e.g., biodiversity, cover) modulate ecosystem resilience to climate change and grazing pressure at various spatial scales, 3) test and develop early warning indicators of desertification, and 4) forecast the onset of desertification and its ecological consequences under different climate and grazing scenarios. I will use various biotic communities/attributes, ecosystem services and spatial scales (from local to global), and will combine approaches from several disciplines. Such comprehensive and highly integrated research endeavor is novel and constitutes a ground breaking advance over current research efforts on desertification. This project will provide a mechanistic understanding on the processes driving multifunctionality under different global change scenarios, as well as key insights to forecast future scenarios for the provisioning of ecosystem services in drylands, and to test and develop early warning indicators of desertification. This is of major importance to attain global sustainability and key Millennium Development Goals, such as the eradication of poverty.
Max ERC Funding
1 894 450 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym BioDisOrder
Project Order and Disorder at the Surface of Biological Membranes.
Researcher (PI) Alfonso DE SIMONE
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Call Details Consolidator Grant (CoG), PE4, ERC-2018-COG
Summary Heterogeneous biomolecular mechanisms at the surface of cellular membranes are often fundamental to generate function and dysfunction in living systems. These processes are governed by transient and dynamical macromolecular interactions that pose tremendous challenges to current analytical tools, as the majority of these methods perform best in the study of well-defined and poorly dynamical systems. This proposal aims at a radical innovation in the characterisation of complex processes that are dominated by structural order and disorder, including those occurring at the surface of biological membranes such as cellular signalling, the assembly of molecular machinery, or the regulation vesicular trafficking.
I outline a programme to realise a vision where the combination of experiments and theory can delineate a new analytical platform to study complex biochemical mechanisms at a multiscale level, and to elucidate their role in physiological and pathological contexts. To achieve this ambitious goal, my research team will develop tools based on the combination of nuclear magnetic resonance (NMR) spectroscopy and molecular simulations, which will enable probing the structure, dynamics, thermodynamics and kinetics of complex protein-protein and protein-membrane interactions occurring at the surface of cellular membranes. The ability to advance both the experimental and theoretical sides, and their combination, is fundamental to define the next generation of methods to achieve our transformative aims. We will provide evidence of the innovative nature of the proposed multiscale approach by addressing some of the great questions in neuroscience and elucidate the details of how functional and aberrant biological complexity is achieved via the fine tuning between structural order and disorder at the neuronal synapse.
Summary
Heterogeneous biomolecular mechanisms at the surface of cellular membranes are often fundamental to generate function and dysfunction in living systems. These processes are governed by transient and dynamical macromolecular interactions that pose tremendous challenges to current analytical tools, as the majority of these methods perform best in the study of well-defined and poorly dynamical systems. This proposal aims at a radical innovation in the characterisation of complex processes that are dominated by structural order and disorder, including those occurring at the surface of biological membranes such as cellular signalling, the assembly of molecular machinery, or the regulation vesicular trafficking.
I outline a programme to realise a vision where the combination of experiments and theory can delineate a new analytical platform to study complex biochemical mechanisms at a multiscale level, and to elucidate their role in physiological and pathological contexts. To achieve this ambitious goal, my research team will develop tools based on the combination of nuclear magnetic resonance (NMR) spectroscopy and molecular simulations, which will enable probing the structure, dynamics, thermodynamics and kinetics of complex protein-protein and protein-membrane interactions occurring at the surface of cellular membranes. The ability to advance both the experimental and theoretical sides, and their combination, is fundamental to define the next generation of methods to achieve our transformative aims. We will provide evidence of the innovative nature of the proposed multiscale approach by addressing some of the great questions in neuroscience and elucidate the details of how functional and aberrant biological complexity is achieved via the fine tuning between structural order and disorder at the neuronal synapse.
Max ERC Funding
1 999 945 €
Duration
Start date: 2019-06-01, End date: 2024-05-31
Project acronym BIOFAGE
Project Interaction Dynamics of Bacterial Biofilms with Bacteriophages
Researcher (PI) Knut DRESCHER
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), LS8, ERC-2016-STG
Summary Biofilms are antibiotic-resistant, sessile bacterial communities that occupy most moist surfaces on Earth and represent a major mode of bacterial life. Another common feature of bacterial life is exposure to viral parasites (termed phages), which are a dominant force in bacterial population control throughout nature. Surprisingly, almost nothing is known about the interactions between biofilm-dwelling bacteria and phages. This proposal is designed to fill this gap using a combination of novel methodology, experimental systems, and mathematical modeling. We have recently developed a new microscopic imaging technique that allows us to image and track all individual cells and their gene expression inside biofilms. First, we will use this technique for tracking the population dynamics of bacteria and phages within biofilms at single cell resolution. By genetically manipulating bacterial hosts and their phages, and by varying environmental conditions, we will investigate the fundamental biological and physical determinants of phage spread within biofilm communities. Second, we will study how biofilms respond to phage attack on both intra-generational and evolutionary time scales, focusing in particular on proximate response mechanisms and the population dynamics of phage-resistant and phage-susceptible cells as a function of biofilm spatial structure. Lastly, we will combine our novel insights to engineer phages that manipulate the composition of biofilm communities, either by subtraction of particular bacterial species or by addition of novel phenotypes to existing biofilm community members. Altogether, the proposed research promises to uncover the major mechanistic and evolutionary elements of biofilm-phage interactions. This combined work will greatly enrich our knowledge of microbial ecology and motivate novel strategies for bacterial biofilm control, an increasingly urgent priority in light of widespread antibiotic resistance.
Summary
Biofilms are antibiotic-resistant, sessile bacterial communities that occupy most moist surfaces on Earth and represent a major mode of bacterial life. Another common feature of bacterial life is exposure to viral parasites (termed phages), which are a dominant force in bacterial population control throughout nature. Surprisingly, almost nothing is known about the interactions between biofilm-dwelling bacteria and phages. This proposal is designed to fill this gap using a combination of novel methodology, experimental systems, and mathematical modeling. We have recently developed a new microscopic imaging technique that allows us to image and track all individual cells and their gene expression inside biofilms. First, we will use this technique for tracking the population dynamics of bacteria and phages within biofilms at single cell resolution. By genetically manipulating bacterial hosts and their phages, and by varying environmental conditions, we will investigate the fundamental biological and physical determinants of phage spread within biofilm communities. Second, we will study how biofilms respond to phage attack on both intra-generational and evolutionary time scales, focusing in particular on proximate response mechanisms and the population dynamics of phage-resistant and phage-susceptible cells as a function of biofilm spatial structure. Lastly, we will combine our novel insights to engineer phages that manipulate the composition of biofilm communities, either by subtraction of particular bacterial species or by addition of novel phenotypes to existing biofilm community members. Altogether, the proposed research promises to uncover the major mechanistic and evolutionary elements of biofilm-phage interactions. This combined work will greatly enrich our knowledge of microbial ecology and motivate novel strategies for bacterial biofilm control, an increasingly urgent priority in light of widespread antibiotic resistance.
Max ERC Funding
1 494 963 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym BIOFUNCTION
Project Self assembly into biofunctional molecules, translating instructions into function
Researcher (PI) Nicolas Winssinger
Host Institution (HI) UNIVERSITE DE STRASBOURG
Call Details Starting Grant (StG), PE4, ERC-2007-StG
Summary The overall objective of the proposal is to develop enabling chemical technologies to address two important problems in biology: detect in a nondestructive fashion gene expression or microRNA sequences in vivo and, secondly, study the role of multivalency and spatial organization in carbohydrate recognition. Both of these projects exploit the programmable pre-organization of peptide nucleic acid (PNA) to induce a chemical reaction in the first case or modulate a ligand-receptor interaction in the second case. For nucleic acid detection, a DNA or RNA fragment will be utilized to bring two PNA fragments bearing reactive functionalities in close proximity thereby promoting a reaction. Two types of reactions are proposed, the first one to release a fluorophore for imaging purposes and the second one to release a drug as an “intelligent” therapeutic. If affinities are programmed such that hybridization is reversible, the template can work catalytically leading to large amplifications. As a proof of concept, this method will be used to measure the transcription level of genes implicated in stem cell differentiation and detect mutations in oncogenes. For the purpose of studying multivalent carbohydrate ligand architectures, the challenge of chemical synthesis has been a limiting factor. A supramolecular approach is proposed herein where different arrangements of carbohydrates can be displayed in a well organized fashion by hybridizing PNA-tagged carbohydrates to DNA templates. This will be used not only to control the distance between multiple ligands or to create combinatorial arrangements of hetero ligands but also to access more complex architectures such as Hollyday junctions. The oligosaccharide units will be prepared using de novo organoctalytic reactions. This technology will be first applied to probe the recognition events between HIV and dendritic cells which promote HIV infection.
Summary
The overall objective of the proposal is to develop enabling chemical technologies to address two important problems in biology: detect in a nondestructive fashion gene expression or microRNA sequences in vivo and, secondly, study the role of multivalency and spatial organization in carbohydrate recognition. Both of these projects exploit the programmable pre-organization of peptide nucleic acid (PNA) to induce a chemical reaction in the first case or modulate a ligand-receptor interaction in the second case. For nucleic acid detection, a DNA or RNA fragment will be utilized to bring two PNA fragments bearing reactive functionalities in close proximity thereby promoting a reaction. Two types of reactions are proposed, the first one to release a fluorophore for imaging purposes and the second one to release a drug as an “intelligent” therapeutic. If affinities are programmed such that hybridization is reversible, the template can work catalytically leading to large amplifications. As a proof of concept, this method will be used to measure the transcription level of genes implicated in stem cell differentiation and detect mutations in oncogenes. For the purpose of studying multivalent carbohydrate ligand architectures, the challenge of chemical synthesis has been a limiting factor. A supramolecular approach is proposed herein where different arrangements of carbohydrates can be displayed in a well organized fashion by hybridizing PNA-tagged carbohydrates to DNA templates. This will be used not only to control the distance between multiple ligands or to create combinatorial arrangements of hetero ligands but also to access more complex architectures such as Hollyday junctions. The oligosaccharide units will be prepared using de novo organoctalytic reactions. This technology will be first applied to probe the recognition events between HIV and dendritic cells which promote HIV infection.
Max ERC Funding
1 249 980 €
Duration
Start date: 2008-07-01, End date: 2013-06-30
Project acronym BIOGRAPHENE
Project Sequencing biological molecules with graphene
Researcher (PI) Gregory Schneider
Host Institution (HI) UNIVERSITEIT LEIDEN
Call Details Starting Grant (StG), PE4, ERC-2013-StG
Summary Graphene – a one atom thin material – has the potential to act as a sensor, primarily the surface and the edges of graphene. This proposal aims at exploring new biosensing routes by exploiting the unique surface and edge chemistry of graphene.
Summary
Graphene – a one atom thin material – has the potential to act as a sensor, primarily the surface and the edges of graphene. This proposal aims at exploring new biosensing routes by exploiting the unique surface and edge chemistry of graphene.
Max ERC Funding
1 499 996 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym BIOIONS
Project Biological ions in the gas-phase: New techniques for structural characterization of isolated biomolecular ions
Researcher (PI) Caroline Dessent
Host Institution (HI) UNIVERSITY OF YORK
Call Details Starting Grant (StG), PE4, ERC-2007-StG
Summary Recent intensive research on the laser spectroscopy of neutral gas-phase biomolecules has yielded a detailed picture of their structures and conformational preferences away from the complications of the bulk environment. In contrast, work on ionic systems has been sparse despite the fact that many important molecular groups are charged under physiological conditions. To address this probelm, we have developed a custom-built laser spectrometer, which incorporates a distincitive electrospray ionisation (ESI) cluster ion source, dedicated to producing biological anions (ATP,oligonucleotides) and their microsolvated clusters for structural characterization. Many previous laser spectrometers with ESI sources have suffered from producing "hot" congested spectra as the ions were produced at ambient temperatures. This is a particularly serious limitation for spectroscopic studies of biomolecules, since these systems can possess high internal energies due tothe presence of numerous low frequency modes. Our spectrometer overcomes this problem by exploiting the newly developed physics technique of "buffer gas cooling" to produce cold ESI molecular ions. In this proposal, we now seek to exploit the new laser-spectrometer to perform detailed spectroscopic interrogations of ESI generated biomolecular anions and clusters. In addition to traditional ion-dissociation spectroscopies, we propose to develop two new laser spectroscopy techniques (Two-color tuneable IR spectroscopy and Dipole-bound excited state spectroscopy) to give the broadest possible structural characterizations of the systems of interest. Studies will focus on ATP/GTP-anions, olignonucleotides, and sulphated and carboxylated sugars. These methodologies will provide a general approach for performing temperature-controlled spectroscopic characterizations of isolated biological ions, with measurements on the corresponding micro-solvated clusters providing details of how the molecules are perturbed by solvent.
Summary
Recent intensive research on the laser spectroscopy of neutral gas-phase biomolecules has yielded a detailed picture of their structures and conformational preferences away from the complications of the bulk environment. In contrast, work on ionic systems has been sparse despite the fact that many important molecular groups are charged under physiological conditions. To address this probelm, we have developed a custom-built laser spectrometer, which incorporates a distincitive electrospray ionisation (ESI) cluster ion source, dedicated to producing biological anions (ATP,oligonucleotides) and their microsolvated clusters for structural characterization. Many previous laser spectrometers with ESI sources have suffered from producing "hot" congested spectra as the ions were produced at ambient temperatures. This is a particularly serious limitation for spectroscopic studies of biomolecules, since these systems can possess high internal energies due tothe presence of numerous low frequency modes. Our spectrometer overcomes this problem by exploiting the newly developed physics technique of "buffer gas cooling" to produce cold ESI molecular ions. In this proposal, we now seek to exploit the new laser-spectrometer to perform detailed spectroscopic interrogations of ESI generated biomolecular anions and clusters. In addition to traditional ion-dissociation spectroscopies, we propose to develop two new laser spectroscopy techniques (Two-color tuneable IR spectroscopy and Dipole-bound excited state spectroscopy) to give the broadest possible structural characterizations of the systems of interest. Studies will focus on ATP/GTP-anions, olignonucleotides, and sulphated and carboxylated sugars. These methodologies will provide a general approach for performing temperature-controlled spectroscopic characterizations of isolated biological ions, with measurements on the corresponding micro-solvated clusters providing details of how the molecules are perturbed by solvent.
Max ERC Funding
1 250 000 €
Duration
Start date: 2008-10-01, End date: 2015-06-30
Project acronym BIOMOFS
Project Bioapplications of Metal Organic Frameworks
Researcher (PI) Christian Serre
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE4, ERC-2007-StG
Summary This project will focus on the use of nanoporous metal organic frameworks (Fe, Zn, Ti) for bioapplications. These systems are exciting porous solids, built up from inorganic clusters and polycarboxylates. This results in open-framework solids with different pore shapes and dimensions, and applications such as catalysis, separation and storage of gases. I have recently initiated the synthesis of new trivalent transition metal carboxylates. Among them, the metal carboxylates MIL-100 and MIL-101 (MIL: Materials of Institut Lavoisier) are spectacular solids with giant pores (25-34 Å), accessible metal sites and huge surface areas (3100-5900 m2.g-1). Recently, it was shown that these solids could be used for drug delivery with a loading of 1.4 g of Ibuprofen per gram of MIL-101 solid and a total release in six days. This project will concentrate on the implication of MOFs for drug release and other bioapplications. Whereas research on drug delivery is currently focused either on the use of bio-compatible polymers or mesoporous materials, our method will combine advantages of both routes including a high loading and a slow release of therapeutic molecules. A second application will use solids with accessible metal sites to coordinate NO for its controlled delivery. This would provide exogenous NO for prophylactic and therapeutic processes, anti-thrombogenic medical devices, improved dressings for wounds and ulcers, and the treatment of fungal and bacterial infections. Finally, other applications will be envisaged such as the purification of physiological fluids. The project, which will consist of a systematic study of the relation between these properties and both the composition and structure of the hybrid solids, will be assisted by a strong modelling effort including top of the art computational methods (QSAR and QSPKR). This highly impact project will be realised by assembling experienced researchers in multidisplinary areas including materials science, biology and modelling. It will involve P. Horcajada (Institut Lavoisier), whose background in pharmaceutical science will fit with my experience in inorganic chemistry and G. Maurin (Institut Gerhardt, Montpellier) expert in computational chemistry.
Summary
This project will focus on the use of nanoporous metal organic frameworks (Fe, Zn, Ti) for bioapplications. These systems are exciting porous solids, built up from inorganic clusters and polycarboxylates. This results in open-framework solids with different pore shapes and dimensions, and applications such as catalysis, separation and storage of gases. I have recently initiated the synthesis of new trivalent transition metal carboxylates. Among them, the metal carboxylates MIL-100 and MIL-101 (MIL: Materials of Institut Lavoisier) are spectacular solids with giant pores (25-34 Å), accessible metal sites and huge surface areas (3100-5900 m2.g-1). Recently, it was shown that these solids could be used for drug delivery with a loading of 1.4 g of Ibuprofen per gram of MIL-101 solid and a total release in six days. This project will concentrate on the implication of MOFs for drug release and other bioapplications. Whereas research on drug delivery is currently focused either on the use of bio-compatible polymers or mesoporous materials, our method will combine advantages of both routes including a high loading and a slow release of therapeutic molecules. A second application will use solids with accessible metal sites to coordinate NO for its controlled delivery. This would provide exogenous NO for prophylactic and therapeutic processes, anti-thrombogenic medical devices, improved dressings for wounds and ulcers, and the treatment of fungal and bacterial infections. Finally, other applications will be envisaged such as the purification of physiological fluids. The project, which will consist of a systematic study of the relation between these properties and both the composition and structure of the hybrid solids, will be assisted by a strong modelling effort including top of the art computational methods (QSAR and QSPKR). This highly impact project will be realised by assembling experienced researchers in multidisplinary areas including materials science, biology and modelling. It will involve P. Horcajada (Institut Lavoisier), whose background in pharmaceutical science will fit with my experience in inorganic chemistry and G. Maurin (Institut Gerhardt, Montpellier) expert in computational chemistry.
Max ERC Funding
1 250 000 €
Duration
Start date: 2008-06-01, End date: 2013-05-31
Project acronym BIOMOL. SIMULATION
Project Development of multi-scale molecular models, force fields and computer software for biomolecular simulation
Researcher (PI) Willem Frederik Van Gunsteren
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Advanced Grant (AdG), PE4, ERC-2008-AdG
Summary During the past decades the PI has helped shape the research field of computer simulation of biomolecular systems at the atomic level. He has carried out one of the first molecular dynamics (MD) simulations of proteins, and has since then contributed many different methodological improvements and developed one of the major atomic-level force fields for simulations of proteins, carbohydrates, nucleotides and lipids. Methodology and force field have been implemented in a set of programs called GROMOS (GROningen MOlecular Simulation package), which is currently used in hundreds of academic and industrial research groups from over 50 countries on all continents. It is proposed to develop a next generation of molecular models, force fields, multi-scaling simulation methodology and software for biomolecular simulations which is at least an order of magnitude more accurate in terms of energetics, and which is 1000 times more efficient through the use of coarse-grained molecular models than the currently available software and models.
Summary
During the past decades the PI has helped shape the research field of computer simulation of biomolecular systems at the atomic level. He has carried out one of the first molecular dynamics (MD) simulations of proteins, and has since then contributed many different methodological improvements and developed one of the major atomic-level force fields for simulations of proteins, carbohydrates, nucleotides and lipids. Methodology and force field have been implemented in a set of programs called GROMOS (GROningen MOlecular Simulation package), which is currently used in hundreds of academic and industrial research groups from over 50 countries on all continents. It is proposed to develop a next generation of molecular models, force fields, multi-scaling simulation methodology and software for biomolecular simulations which is at least an order of magnitude more accurate in terms of energetics, and which is 1000 times more efficient through the use of coarse-grained molecular models than the currently available software and models.
Max ERC Funding
1 320 000 €
Duration
Start date: 2008-11-01, End date: 2014-09-30
Project acronym BioNet
Project Dynamical Redesign of Biomolecular Networks
Researcher (PI) Edina ROSTA
Host Institution (HI) KING'S COLLEGE LONDON
Call Details Starting Grant (StG), PE4, ERC-2017-STG
Summary Enzymes created by Nature are still more selective and can be orders of magnitude more efficient than man-made catalysts, in spite of recent advances in the design of de novo catalysts and in enzyme redesign. The optimal engineering of either small molecular or of complex biological catalysts requires both (i) accurate quantitative computational methods capable of a priori assessing catalytic efficiency, and (ii) molecular design principles and corresponding algorithms to achieve, understand and control biomolecular catalytic function and mechanisms. Presently, the computational design of biocatalysts is challenging due to the need for accurate yet computationally-intensive quantum mechanical calculations of bond formation and cleavage, as well as to the requirement for proper statistical sampling over very many degrees of freedom. Pioneering enhanced sampling and analysis methods have been developed to address crucial challenges bridging the gap between the available simulation length and the biologically relevant timescales. However, biased simulations do not generally permit the direct calculation of kinetic information. Recently, I and others pioneered simulation tools that can enable not only accurate calculations of free energies, but also of the intrinsic molecular kinetics and the underlying reaction mechanisms as well. I propose to develop more robust, automatic, and system-tailored sampling algorithms that are optimal in each case. I will use our kinetics-based methods to develop a novel theoretical framework to address catalytic efficiency and to establish molecular design principles to key design problems for new bio-inspired nanocatalysts, and to identify and characterize small molecule modulators of enzyme activity. This is a highly interdisciplinary project that will enable fundamental advances in molecular simulations and will unveil the physical principles that will lead to design and control of catalysis with Nature-like efficiency.
Summary
Enzymes created by Nature are still more selective and can be orders of magnitude more efficient than man-made catalysts, in spite of recent advances in the design of de novo catalysts and in enzyme redesign. The optimal engineering of either small molecular or of complex biological catalysts requires both (i) accurate quantitative computational methods capable of a priori assessing catalytic efficiency, and (ii) molecular design principles and corresponding algorithms to achieve, understand and control biomolecular catalytic function and mechanisms. Presently, the computational design of biocatalysts is challenging due to the need for accurate yet computationally-intensive quantum mechanical calculations of bond formation and cleavage, as well as to the requirement for proper statistical sampling over very many degrees of freedom. Pioneering enhanced sampling and analysis methods have been developed to address crucial challenges bridging the gap between the available simulation length and the biologically relevant timescales. However, biased simulations do not generally permit the direct calculation of kinetic information. Recently, I and others pioneered simulation tools that can enable not only accurate calculations of free energies, but also of the intrinsic molecular kinetics and the underlying reaction mechanisms as well. I propose to develop more robust, automatic, and system-tailored sampling algorithms that are optimal in each case. I will use our kinetics-based methods to develop a novel theoretical framework to address catalytic efficiency and to establish molecular design principles to key design problems for new bio-inspired nanocatalysts, and to identify and characterize small molecule modulators of enzyme activity. This is a highly interdisciplinary project that will enable fundamental advances in molecular simulations and will unveil the physical principles that will lead to design and control of catalysis with Nature-like efficiency.
Max ERC Funding
1 499 999 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym bioPCET
Project Functional Proton-Electron Transfer Elements in Biological Energy Conversion
Researcher (PI) Ville KAILA
Host Institution (HI) TECHNISCHE UNIVERSITAET MUENCHEN
Call Details Starting Grant (StG), PE4, ERC-2016-STG
Summary Primary energy conversion in nature is powered by highly efficient enzymes that capture chemical or light energy and transduce it into other energy forms. These processes are catalyzed by coupled transfers of protons and electrons (PCET), but their fundamental mechanistic principles are not well understood. In order to obtain a molecular-level understanding of the functional elements powering biological energy conversion processes, we will study the catalytic machinery of one of the largest and most intricate enzymes in mitochondria and bacteria, the respiratory complex I. This gigantic redox-driven proton-pump functions as the entry point for electrons into aerobic respiratory chains, and it employs the energy released from a chemical reduction process to transport protons up to 200 Å away from its active site. Its molecular structure from bacteria and eukaryotes was recently resolved, but the origin of this remarkable action-at-a-distance effect still remains unclear. We employ and develop multi-scale quantum and classical molecular simulation techniques in combination with de novo-protein design methodology to identify and isolate the functional elements that catalyze the long-range PCET reactions in complex I. To fully understand the natural PCET-elements, we will further engineer central parts of this machinery into artificial protein frameworks, with the goal of designing modules for redox-driven proton pumps from first principles. The project aims to establish a fundamental understanding of nature's toolbox of catalytic elements, to elucidate how the complex biochemical environment contributes to the catalytic effects, and to provide blueprints that can guide the design of man-made enzymes for sustainable energy technology.
Summary
Primary energy conversion in nature is powered by highly efficient enzymes that capture chemical or light energy and transduce it into other energy forms. These processes are catalyzed by coupled transfers of protons and electrons (PCET), but their fundamental mechanistic principles are not well understood. In order to obtain a molecular-level understanding of the functional elements powering biological energy conversion processes, we will study the catalytic machinery of one of the largest and most intricate enzymes in mitochondria and bacteria, the respiratory complex I. This gigantic redox-driven proton-pump functions as the entry point for electrons into aerobic respiratory chains, and it employs the energy released from a chemical reduction process to transport protons up to 200 Å away from its active site. Its molecular structure from bacteria and eukaryotes was recently resolved, but the origin of this remarkable action-at-a-distance effect still remains unclear. We employ and develop multi-scale quantum and classical molecular simulation techniques in combination with de novo-protein design methodology to identify and isolate the functional elements that catalyze the long-range PCET reactions in complex I. To fully understand the natural PCET-elements, we will further engineer central parts of this machinery into artificial protein frameworks, with the goal of designing modules for redox-driven proton pumps from first principles. The project aims to establish a fundamental understanding of nature's toolbox of catalytic elements, to elucidate how the complex biochemical environment contributes to the catalytic effects, and to provide blueprints that can guide the design of man-made enzymes for sustainable energy technology.
Max ERC Funding
1 494 368 €
Duration
Start date: 2017-02-01, End date: 2022-01-31
Project acronym BIOSTASES
Project BIOdiversity, STAbility and sustainability in Spatial Ecological and social-ecological Systems
Researcher (PI) Michel Loreau
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), LS8, ERC-2014-ADG
Summary Biodiversity loss is one of the greatest environmental challenges of our time. There is mounting evidence that biodiversity increases the stability of ecosystem functions and services, suggesting that it may be critical to the sustainability of ecosystems and human societies in the face of environmental changes. Classical ecological theory, however, has focused on measures of stability that cannot explain and predict these stabilizing effects, especially in spatial systems.
The goal of BIOSTASES is to develop a coherent body of new theory on the stability of ecosystems and coupled social–ecological systems and its relationships with biodiversity at multiple spatial scales that can better inform empirical research. BIOSTASES will reach this goal through four complementary objectives. First, it will propose a mathematical framework focused on temporal variability as an empirically relevant measure of stability, and use this framework to build robust early warning signals for critical transitions. Second, it will use dynamical metacommunity models to explore a wide range of novel questions related to ecosystem stability and diversity–stability relationships across scales. Third, it will study the stability of complex meta-ecosystems to provide new perspectives on the stability of food webs and on synergies and trade-offs between multiple ecosystem services across space. Fourth, it will develop novel theory to study the long-term dynamics and sustainability of coupled social–ecological systems.
BIOSTASES proposes an ambitious innovative research programme that will provide new perspectives on the stability and sustainability of ecological and coupled social–ecological systems in the face of environmental changes. It will contribute to bridging the gaps between theoretical and empirical ecology and between ecology and social sciences, and to developing new approaches in biodiversity conservation, landscape management, and sustainable development.
Summary
Biodiversity loss is one of the greatest environmental challenges of our time. There is mounting evidence that biodiversity increases the stability of ecosystem functions and services, suggesting that it may be critical to the sustainability of ecosystems and human societies in the face of environmental changes. Classical ecological theory, however, has focused on measures of stability that cannot explain and predict these stabilizing effects, especially in spatial systems.
The goal of BIOSTASES is to develop a coherent body of new theory on the stability of ecosystems and coupled social–ecological systems and its relationships with biodiversity at multiple spatial scales that can better inform empirical research. BIOSTASES will reach this goal through four complementary objectives. First, it will propose a mathematical framework focused on temporal variability as an empirically relevant measure of stability, and use this framework to build robust early warning signals for critical transitions. Second, it will use dynamical metacommunity models to explore a wide range of novel questions related to ecosystem stability and diversity–stability relationships across scales. Third, it will study the stability of complex meta-ecosystems to provide new perspectives on the stability of food webs and on synergies and trade-offs between multiple ecosystem services across space. Fourth, it will develop novel theory to study the long-term dynamics and sustainability of coupled social–ecological systems.
BIOSTASES proposes an ambitious innovative research programme that will provide new perspectives on the stability and sustainability of ecological and coupled social–ecological systems in the face of environmental changes. It will contribute to bridging the gaps between theoretical and empirical ecology and between ecology and social sciences, and to developing new approaches in biodiversity conservation, landscape management, and sustainable development.
Max ERC Funding
2 092 644 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym BIOTIME
Project Biological diversity in an inconstant world: temporal turnover in modified ecosystems
Researcher (PI) Anne Elizabeth Magurran
Host Institution (HI) THE UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS
Call Details Advanced Grant (AdG), LS8, ERC-2009-AdG
Summary This project addresses a key issue in fundamental research - one that has challenged ecologists ever since Darwin s time that is why some species are common, and others rare, and why, despite marked turnover at the level of individual species abundances, the structure of a community is generally conserved through time. Its aim is to examine the temporal dynamics of species abundance distributions (SADs), and to assess the capacity of these distributions to withstand change (resistance) and to recover from change (resilience). These are topical and important questions given the increasing impact that humans are having on the natural world. There are three components to the research. First, we will model SADs and predict responses to a range of events including climate change and the arrival of invasive species. A range of modeling approaches (including neutral, niche and statistical) will be adopted; by incorporating temporal turnover in hitherto static models we will advance the field. Second, we will test predictions concerning the resistance and resilience of SADs by a comparative analysis of existing data sets (that encompass communities in terrestrial, freshwater and marine environments for ecosystems extending from the poles to the tropics) and through a new field experiment that quantifies temporal turnover across a community (unicellular organisms to vertebrates) in relation to factors both natural (dispersal limitation) and anthropogenic (human disturbance) thought to shape SADs. In the final part of the project we will apply these new insights into the temporal dynamics of SADs to two important conservation challenges. These are 1) the conservation of biodiversity in a heavily utilized European landscape (Fife, Scotland) and 2) the conservation of biodiversity in Mamirauá and Amaña reserves in Amazonian flooded forest. Taken together this research will not only shed new light on the structure of ecological communities but will also aid conservation.
Summary
This project addresses a key issue in fundamental research - one that has challenged ecologists ever since Darwin s time that is why some species are common, and others rare, and why, despite marked turnover at the level of individual species abundances, the structure of a community is generally conserved through time. Its aim is to examine the temporal dynamics of species abundance distributions (SADs), and to assess the capacity of these distributions to withstand change (resistance) and to recover from change (resilience). These are topical and important questions given the increasing impact that humans are having on the natural world. There are three components to the research. First, we will model SADs and predict responses to a range of events including climate change and the arrival of invasive species. A range of modeling approaches (including neutral, niche and statistical) will be adopted; by incorporating temporal turnover in hitherto static models we will advance the field. Second, we will test predictions concerning the resistance and resilience of SADs by a comparative analysis of existing data sets (that encompass communities in terrestrial, freshwater and marine environments for ecosystems extending from the poles to the tropics) and through a new field experiment that quantifies temporal turnover across a community (unicellular organisms to vertebrates) in relation to factors both natural (dispersal limitation) and anthropogenic (human disturbance) thought to shape SADs. In the final part of the project we will apply these new insights into the temporal dynamics of SADs to two important conservation challenges. These are 1) the conservation of biodiversity in a heavily utilized European landscape (Fife, Scotland) and 2) the conservation of biodiversity in Mamirauá and Amaña reserves in Amazonian flooded forest. Taken together this research will not only shed new light on the structure of ecological communities but will also aid conservation.
Max ERC Funding
1 812 782 €
Duration
Start date: 2010-08-01, End date: 2016-01-31
Project acronym BIOVIB
Project Electric Interactions and Structural Dynamics of Hydrated Biomolecules Mapped by Ultrafast Vibrational Probes
Researcher (PI) Thomas ELSAESSER
Host Institution (HI) FORSCHUNGSVERBUND BERLIN EV
Call Details Advanced Grant (AdG), PE4, ERC-2018-ADG
Summary Biomolecules exist in an aqueous environment of dipolar water molecules and solvated ions. Their structure and biological function are strongly influenced by electric interactions with the fluctuating water shell and ion atmosphere. Understanding such interactions at the molecular level is a major scientific challenge; presently, their strengths, spatial range and interplay with other non-covalent interactions are barely known. Going far beyond existing methods, this project introduces the new paradigm of a direct time-resolved mapping of molecular electric forces on sub-nanometer length scales and at the genuine terahertz (THz) fluctuation frequencies. Vibrational excitations of biomolecules at the interface to the water shell act as sensitive noninvasive probes of charge dynamics and local electric fields. The new method of time resolved vibrational Stark shift spectroscopy with THz external fields calibrates vibrational frequencies as a function of absolute field strength and separates instantaneous from retarded environment fields. Based on this knowledge, multidimensional vibrational spectroscopy gives quantitative insight in the biomolecular response to electric fields, discerning contributions from water and ions in a site-specific way. The experiments and theoretical analysis focus on single- and double-stranded RNA and DNA structures at different hydration levels and with ion atmospheres of controlled composition, structurally characterized by x-ray scattering. As a ground-breaking open problem, the role of magnesium and other ions in RNA structure definition and folding will be addressed by following RNA folding processes with vibrational probes up to milliseconds. The impact of site-bound versus outer ions will be dynamically separated to unravel mechanisms stabilizing secondary and tertiary RNA structures. Beyond RNA research, the present approach holds strong potential for fundamental insight in transmembrane ion channels and channel rhodopsins.
Summary
Biomolecules exist in an aqueous environment of dipolar water molecules and solvated ions. Their structure and biological function are strongly influenced by electric interactions with the fluctuating water shell and ion atmosphere. Understanding such interactions at the molecular level is a major scientific challenge; presently, their strengths, spatial range and interplay with other non-covalent interactions are barely known. Going far beyond existing methods, this project introduces the new paradigm of a direct time-resolved mapping of molecular electric forces on sub-nanometer length scales and at the genuine terahertz (THz) fluctuation frequencies. Vibrational excitations of biomolecules at the interface to the water shell act as sensitive noninvasive probes of charge dynamics and local electric fields. The new method of time resolved vibrational Stark shift spectroscopy with THz external fields calibrates vibrational frequencies as a function of absolute field strength and separates instantaneous from retarded environment fields. Based on this knowledge, multidimensional vibrational spectroscopy gives quantitative insight in the biomolecular response to electric fields, discerning contributions from water and ions in a site-specific way. The experiments and theoretical analysis focus on single- and double-stranded RNA and DNA structures at different hydration levels and with ion atmospheres of controlled composition, structurally characterized by x-ray scattering. As a ground-breaking open problem, the role of magnesium and other ions in RNA structure definition and folding will be addressed by following RNA folding processes with vibrational probes up to milliseconds. The impact of site-bound versus outer ions will be dynamically separated to unravel mechanisms stabilizing secondary and tertiary RNA structures. Beyond RNA research, the present approach holds strong potential for fundamental insight in transmembrane ion channels and channel rhodopsins.
Max ERC Funding
2 330 493 €
Duration
Start date: 2019-05-01, End date: 2024-04-30
Project acronym BIVAQUM
Project Bivariational Approximations in Quantum Mechanics and Applications to Quantum Chemistry
Researcher (PI) Simen Kvaal
Host Institution (HI) UNIVERSITETET I OSLO
Call Details Starting Grant (StG), PE4, ERC-2014-STG
Summary The standard variational principles (VPs) are cornerstones of quantum mechanics, and one can hardly overestimate their usefulness as tools for generating approximations to the time-independent and
time-dependent Schröodinger equations. The aim of the proposal is to study and apply a generalization of these, the bivariational principles (BIVPs), which arise naturally when one does not assume a priori that the system Hamiltonian is Hermitian. This unconventional approach may have transformative impact on development of ab initio methodology, both for electronic structure and dynamics.
The first objective is to establish the mathematical foundation for the BIVPs. This opens up a whole new axis of method development for ab initio approaches. For instance, it is a largely ignored fact that the popular traditional coupled cluster (TCC) method can be neatly formulated with the BIVPs, and TCC is both polynomially scaling with the number of electrons and size-consistent. No “variational” method enjoys these properties simultaneously, indeed this seems to be incompatible with the standard VPs.
Armed with the BIVPs, the project aims to develop new and understand existing ab initio methods. The second objective is thus a systematic multireference coupled cluster theory (MRCC) based on the BIVPs. This
is in itself a novel approach that carries large potential benefits and impact. The third and last objective is an implementation of a new coupled-cluster type method where the orbitals are bivariational
parameters. This gives a size-consistent hierarchy of approximations to multiconfiguration
Hartree--Fock.
The PI's broad contact with and background in scientific disciplines such as applied mathematics and nuclear physics in addition to quantum chemistry increases the feasibility of the project.
Summary
The standard variational principles (VPs) are cornerstones of quantum mechanics, and one can hardly overestimate their usefulness as tools for generating approximations to the time-independent and
time-dependent Schröodinger equations. The aim of the proposal is to study and apply a generalization of these, the bivariational principles (BIVPs), which arise naturally when one does not assume a priori that the system Hamiltonian is Hermitian. This unconventional approach may have transformative impact on development of ab initio methodology, both for electronic structure and dynamics.
The first objective is to establish the mathematical foundation for the BIVPs. This opens up a whole new axis of method development for ab initio approaches. For instance, it is a largely ignored fact that the popular traditional coupled cluster (TCC) method can be neatly formulated with the BIVPs, and TCC is both polynomially scaling with the number of electrons and size-consistent. No “variational” method enjoys these properties simultaneously, indeed this seems to be incompatible with the standard VPs.
Armed with the BIVPs, the project aims to develop new and understand existing ab initio methods. The second objective is thus a systematic multireference coupled cluster theory (MRCC) based on the BIVPs. This
is in itself a novel approach that carries large potential benefits and impact. The third and last objective is an implementation of a new coupled-cluster type method where the orbitals are bivariational
parameters. This gives a size-consistent hierarchy of approximations to multiconfiguration
Hartree--Fock.
The PI's broad contact with and background in scientific disciplines such as applied mathematics and nuclear physics in addition to quantum chemistry increases the feasibility of the project.
Max ERC Funding
1 499 572 €
Duration
Start date: 2015-04-01, End date: 2020-03-31
Project acronym BLUELEAF
Project The adaptive advantages, evolution and development of iridescence in leaves
Researcher (PI) Heather Whitney
Host Institution (HI) UNIVERSITY OF BRISTOL
Call Details Starting Grant (StG), LS8, ERC-2010-StG_20091118
Summary Iridescence is a form of structural colour which changes hue according to the angle from which it is viewed. Blue iridescence caused by multilayers has been described on the leaves of taxonomically diverse species such as the lycophyte Selaginella uncinata and the angiosperm Begonia pavonina. While much is known about the role of leaf pigment colour, the adaptive role of leaf iridescence is unknown. Hypotheses have been put forward including 1) iridescence acts as disruptive camouflage against herbivores 2) it enhances light sensing and capture in low light conditions 3) it is a photoprotective mechanism to protect shade-adapted plants against high light levels. These hypotheses are not mutually exclusive: each function may be of varying importance in different environments. To understand any one function, we need a interdisciplinary approach considering all three potential functions and their interactions. The objective of my research would be to test these hypotheses, using animal behavioural and plant physiological methods, to determine the functions of leaf iridescence and how the plant has adapted to the reflection of developmentally vital wavelengths. Use of molecular and bioinformatics methods will elucidate the genes that control the production of this potentially multifunctional optical phenomenon. This research will provide a pioneering study into the generation, developmental impact and adaptive significance of iridescence in leaves. It would also answer questions at the frontiers of several fields including those of plant evolution, insect vision, methods of camouflage, the generation and role of animal iridescence, and could also potentially inspire synthetic biomimetic applications.
Summary
Iridescence is a form of structural colour which changes hue according to the angle from which it is viewed. Blue iridescence caused by multilayers has been described on the leaves of taxonomically diverse species such as the lycophyte Selaginella uncinata and the angiosperm Begonia pavonina. While much is known about the role of leaf pigment colour, the adaptive role of leaf iridescence is unknown. Hypotheses have been put forward including 1) iridescence acts as disruptive camouflage against herbivores 2) it enhances light sensing and capture in low light conditions 3) it is a photoprotective mechanism to protect shade-adapted plants against high light levels. These hypotheses are not mutually exclusive: each function may be of varying importance in different environments. To understand any one function, we need a interdisciplinary approach considering all three potential functions and their interactions. The objective of my research would be to test these hypotheses, using animal behavioural and plant physiological methods, to determine the functions of leaf iridescence and how the plant has adapted to the reflection of developmentally vital wavelengths. Use of molecular and bioinformatics methods will elucidate the genes that control the production of this potentially multifunctional optical phenomenon. This research will provide a pioneering study into the generation, developmental impact and adaptive significance of iridescence in leaves. It would also answer questions at the frontiers of several fields including those of plant evolution, insect vision, methods of camouflage, the generation and role of animal iridescence, and could also potentially inspire synthetic biomimetic applications.
Max ERC Funding
1 118 378 €
Duration
Start date: 2011-01-01, End date: 2016-07-31
Project acronym BONE SCAN
Project Traces in the bones: reconstructing the lost soft anatomy of the earliest vertebrates through ultra-high resolution synchrotron scanning
Researcher (PI) Per Erik Ahlberg
Host Institution (HI) Uppsala University
Call Details Advanced Grant (AdG), LS8, ERC-2008-AdG
Summary Early vertebrate evolution involved a series of drastic structural reorganisations as new features were added and elaborated. The fossil record illuminates this evolutionary history more directly than inferences from the diversity of living forms, but the fossils usually consist only of bones whereas many of the most important and interesting changes occurred in the soft anatomy. Traditional approaches to reconstructing the musculature and other soft tissues of fossil vertebrates rely on subjective tools, like the visual identification of rough bone textures thought to indicate muscle attachments, and generally leave a lot to be desired. Here I propose a wholly novel and radically more objective approach to the identification of soft-tissue contacts, using holotomographic synchrotron CT at sub-micron resolutions to identify these contacts by the three-dimensional micro-architecture of the bone. A pilot study has already shown that such scans (performed at the ESRF synchrotron facility in Grenoble) are capable of imaging key features such as arrested growth surfaces and probable Sharpey s fibres in 380 million year old fossils. We will undertake a systematic review of the three-dimensional bone micro-architectures associated with different soft-tissue contacts in living vertebrates, and the use this as a key to reconstruct the soft-tissue contacts on fossil bones with unprecedented accuracy. This will permit us to produce far more reliable reconstructions of the soft anatomy than has hitherto been possible. Our findings will inform other areas of palaentology, particularly functional morphology, and will also be of great importance to evolutionary developmental biology.
Summary
Early vertebrate evolution involved a series of drastic structural reorganisations as new features were added and elaborated. The fossil record illuminates this evolutionary history more directly than inferences from the diversity of living forms, but the fossils usually consist only of bones whereas many of the most important and interesting changes occurred in the soft anatomy. Traditional approaches to reconstructing the musculature and other soft tissues of fossil vertebrates rely on subjective tools, like the visual identification of rough bone textures thought to indicate muscle attachments, and generally leave a lot to be desired. Here I propose a wholly novel and radically more objective approach to the identification of soft-tissue contacts, using holotomographic synchrotron CT at sub-micron resolutions to identify these contacts by the three-dimensional micro-architecture of the bone. A pilot study has already shown that such scans (performed at the ESRF synchrotron facility in Grenoble) are capable of imaging key features such as arrested growth surfaces and probable Sharpey s fibres in 380 million year old fossils. We will undertake a systematic review of the three-dimensional bone micro-architectures associated with different soft-tissue contacts in living vertebrates, and the use this as a key to reconstruct the soft-tissue contacts on fossil bones with unprecedented accuracy. This will permit us to produce far more reliable reconstructions of the soft anatomy than has hitherto been possible. Our findings will inform other areas of palaentology, particularly functional morphology, and will also be of great importance to evolutionary developmental biology.
Max ERC Funding
1 046 782 €
Duration
Start date: 2009-04-01, End date: 2014-03-31
Project acronym C3ENV
Project Combinatorial Computational Chemistry A new field to tackle environmental problems
Researcher (PI) Thomas Heine
Host Institution (HI) JACOBS UNIVERSITY BREMEN GGMBH
Call Details Starting Grant (StG), PE4, ERC-2010-StG_20091028
Summary Combinatorial Computational Chemistry is developed as a standard tool to tackle complex problems in chemistry and materials science. The method employs a series of state-of-the-art methods, ranging from empirical molecular mechanics to first principles calculations, as well as of mathematical (graph theoretical and combinatorial) methods. The process is similar as in experimental combinatorial chemistry: First, a large set of candidate structures is generated which is complete in the sense that the best possible structure for a particular purpose must be found among the set. This structure is then identified using computational chemistry. We will apply methodologies at different stages in hierarchical order and successively screen the set of candidate structures. Screening criteria are based on the computer simulations and include geometry, stability and properties of the candidate structures. Detailed characteristics of the final materials will be simulated, including the X-ray diffraction pattern, the electronic structure, and the target properties. We will apply C3 to two important problems of environmental science. (i) We will optimise nanoporous materials to act as molecular sieves to separate water from ethanol, an important task for the production of biofuels. Here, materials are optimised to transport ethanol, but not water (or vice versa). The tuning parameters are the channel size of the material and its polarity. (ii) We will optimise nanoporous materials to transport protons, an important task for the design of energy-efficient fuel cells, by distributing flexible functional groups, acting as hopping sites for the protons, in the framework.
Summary
Combinatorial Computational Chemistry is developed as a standard tool to tackle complex problems in chemistry and materials science. The method employs a series of state-of-the-art methods, ranging from empirical molecular mechanics to first principles calculations, as well as of mathematical (graph theoretical and combinatorial) methods. The process is similar as in experimental combinatorial chemistry: First, a large set of candidate structures is generated which is complete in the sense that the best possible structure for a particular purpose must be found among the set. This structure is then identified using computational chemistry. We will apply methodologies at different stages in hierarchical order and successively screen the set of candidate structures. Screening criteria are based on the computer simulations and include geometry, stability and properties of the candidate structures. Detailed characteristics of the final materials will be simulated, including the X-ray diffraction pattern, the electronic structure, and the target properties. We will apply C3 to two important problems of environmental science. (i) We will optimise nanoporous materials to act as molecular sieves to separate water from ethanol, an important task for the production of biofuels. Here, materials are optimised to transport ethanol, but not water (or vice versa). The tuning parameters are the channel size of the material and its polarity. (ii) We will optimise nanoporous materials to transport protons, an important task for the design of energy-efficient fuel cells, by distributing flexible functional groups, acting as hopping sites for the protons, in the framework.
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-02-01, End date: 2016-04-30
Project acronym Ca2Coral
Project Elucidating the molecular and biophysical mechanism of coral calcification in view of the future acidified ocean
Researcher (PI) Tali Mass
Host Institution (HI) UNIVERSITY OF HAIFA
Call Details Starting Grant (StG), LS8, ERC-2017-STG
Summary Although various aspects of biomineralisation in corals have been studied for decades, the basic mechanism of precipitation of the aragonite skeleton remains enigmatic. Two parallel lines of inquiry have emerged: geochemist models of calcification that are directly related to seawater carbonate chemistry at thermodynamic equilibrium. Here, the role of the organisms in the precipitation reaction is largely ignored. The second line is based on biological considerations of the biomineralisation process, which focuses on models of biophysical processes far from thermodynamic equilibrium that concentrate calcium ions, anions and proteins responsible for nucleation in specific compartments. Recently, I identified and cloned a group of highly acidic proteins derived the common stony coral, Stylophora pistillata. All of the cloned proteins precipitate aragonite in seawater at pH 8.2 and 7.6 in-vitro. However, it is not at all clear if the expression of these proteins in-vivo is sufficient for the formation of an aragonite skeleton at seawater pH values below ~7.8. Here using a combination of molecular, biophysical, genomic, and cell biological approaches, we proposed to test the core hypothesis that, unless wounded or otherwise having skeletal material exposed directly to seawater, stony zooxanthellate corals will continue to calcify at pH values projected for the CO2 emissions scenarios for 2100.
Specifically, the objectives of Ca2Coral are to:
1) Use functional genomics to identify the key genes and proteins involved both in the organic matrix and skeleton formation in the adult holobiont and during its larval development.
2) Use a genetics approach to elucidate the roles of specific proteins in the biomineralisation process.
3) Use ultra-high resolution imaging and spectroscopic analysis at different pH levels to elucidate the biomineralisation pathways and mineral precursor in corals in the adult holobiont and during its larval development.
Summary
Although various aspects of biomineralisation in corals have been studied for decades, the basic mechanism of precipitation of the aragonite skeleton remains enigmatic. Two parallel lines of inquiry have emerged: geochemist models of calcification that are directly related to seawater carbonate chemistry at thermodynamic equilibrium. Here, the role of the organisms in the precipitation reaction is largely ignored. The second line is based on biological considerations of the biomineralisation process, which focuses on models of biophysical processes far from thermodynamic equilibrium that concentrate calcium ions, anions and proteins responsible for nucleation in specific compartments. Recently, I identified and cloned a group of highly acidic proteins derived the common stony coral, Stylophora pistillata. All of the cloned proteins precipitate aragonite in seawater at pH 8.2 and 7.6 in-vitro. However, it is not at all clear if the expression of these proteins in-vivo is sufficient for the formation of an aragonite skeleton at seawater pH values below ~7.8. Here using a combination of molecular, biophysical, genomic, and cell biological approaches, we proposed to test the core hypothesis that, unless wounded or otherwise having skeletal material exposed directly to seawater, stony zooxanthellate corals will continue to calcify at pH values projected for the CO2 emissions scenarios for 2100.
Specifically, the objectives of Ca2Coral are to:
1) Use functional genomics to identify the key genes and proteins involved both in the organic matrix and skeleton formation in the adult holobiont and during its larval development.
2) Use a genetics approach to elucidate the roles of specific proteins in the biomineralisation process.
3) Use ultra-high resolution imaging and spectroscopic analysis at different pH levels to elucidate the biomineralisation pathways and mineral precursor in corals in the adult holobiont and during its larval development.
Max ERC Funding
1 499 741 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym CAMERA
Project Characterizing Adaptation and Migration Events with Modern and Ancient Genomes
Researcher (PI) Anna-Sapfo Malaspinas
Host Institution (HI) UNIVERSITAET BERN
Call Details Starting Grant (StG), LS8, ERC-2015-STG
Summary BACKGROUND Ancient DNA research has recently entered the genomics era. Performing “ancient population genomics” is now technically possible. Utilizing the temporal aspect of this new data, we can address fundamental evolutionary questions such as the amount of selection acting on the genome or the mode and tempo of the colonization of the world. AIMS The overall goal of the proposed research is to (i) generate and analyse data to answer two long standing questions in human evolution: understanding the molecular basis of human adaptation to high altitude and investigating the timing of the Polynesian-South American contact, (ii) develop statistical approaches that combine ancient and modern genetic data to estimate the timing and the intensity of a selective sweep and an admixture event. METHODOLOGY Application: We will collect, date and DNA sequence human remains. Combining the ancient genetic data, 14C dates with existing modern genomic data will allow us to increase the resolution as to the timing of the adaptive and the admixture event, respectively, while generating unique datasets. Theory: We will build on existing methods based on one-locus classical population genetic models to develop tools to analyse whole genome time serial data. RELEVANCE Ecological: The results will address the fundamental question of how much of the human genome is undergoing selection, better characterize one of the textbook examples of adaptation in humans and contribute to our understanding of the peopling of the Americas. Medical: We will gain insights into the fundamental stress physiology experienced at high altitude and therefore into altitude-related illnesses. Methodological: The methods developed in this project will not only benefit the growing field of ancient genomics but also other fields where data is collected in a temporal manner, such as experimental evolution and epidemiology
Summary
BACKGROUND Ancient DNA research has recently entered the genomics era. Performing “ancient population genomics” is now technically possible. Utilizing the temporal aspect of this new data, we can address fundamental evolutionary questions such as the amount of selection acting on the genome or the mode and tempo of the colonization of the world. AIMS The overall goal of the proposed research is to (i) generate and analyse data to answer two long standing questions in human evolution: understanding the molecular basis of human adaptation to high altitude and investigating the timing of the Polynesian-South American contact, (ii) develop statistical approaches that combine ancient and modern genetic data to estimate the timing and the intensity of a selective sweep and an admixture event. METHODOLOGY Application: We will collect, date and DNA sequence human remains. Combining the ancient genetic data, 14C dates with existing modern genomic data will allow us to increase the resolution as to the timing of the adaptive and the admixture event, respectively, while generating unique datasets. Theory: We will build on existing methods based on one-locus classical population genetic models to develop tools to analyse whole genome time serial data. RELEVANCE Ecological: The results will address the fundamental question of how much of the human genome is undergoing selection, better characterize one of the textbook examples of adaptation in humans and contribute to our understanding of the peopling of the Americas. Medical: We will gain insights into the fundamental stress physiology experienced at high altitude and therefore into altitude-related illnesses. Methodological: The methods developed in this project will not only benefit the growing field of ancient genomics but also other fields where data is collected in a temporal manner, such as experimental evolution and epidemiology
Max ERC Funding
1 498 478 €
Duration
Start date: 2016-08-01, End date: 2021-07-31
Project acronym CAPRI
Project Chemical and photochemical dynamics of reactions in solution
Researcher (PI) Andrew John Orr-Ewing
Host Institution (HI) UNIVERSITY OF BRISTOL
Call Details Advanced Grant (AdG), PE4, ERC-2011-ADG_20110209
Summary Ultrafast laser methods will be employed to examine the dynamics of chemical and photochemical reactions in liquid solutions. By contrasting the solution phase dynamics with those observed for isolated collisions in the gas phase, the fundamental role of solvent on chemical pathways will be explored at a molecular level. The experimental studies will be complemented by computational simulations that explicitly include treatment of the effects of solvent on reaction energy pathways and reactant and product motions.
The research addresses a major challenge in Chemistry to understand the role of solvent on the mechanisms of chemical reactions. Questions that will be examined include how the solvent modifies reaction barriers and other regions of the reaction potential energy surface (PESs), alters the couplings between PESs, most importantly at conical intersections between electronic states, influences and constrains the dynamical stereochemistry of passage through transition states, and dissipates excess product energy.
The experimental strategy will be to obtain absorption spectra of transient species with lifetimes of ~100 fs – 1000 ps using broad bandwidth light sources in the infrared, visible and ultraviolet regions. Time-evolutions of such spectra reveal the formation and decay of short-lived species that might be highly reactive radicals or internally (vibrationally and electronically) excited molecules. The transient species decay by reaction or energy loss to the solvent. Statistical mechanical theories of reactions in solution treat such processes using linear response theory, but the experimental data will challenge this paradigm by seeking evidence for breakdown of the linear response interaction of solvent and solute on short timescales because of microscopic chemical dynamics that perturb the solvent structure. The work will build on our pioneering experiments at the Rutherford Appleton Laboratory that prove the feasilbility of the methods.
Summary
Ultrafast laser methods will be employed to examine the dynamics of chemical and photochemical reactions in liquid solutions. By contrasting the solution phase dynamics with those observed for isolated collisions in the gas phase, the fundamental role of solvent on chemical pathways will be explored at a molecular level. The experimental studies will be complemented by computational simulations that explicitly include treatment of the effects of solvent on reaction energy pathways and reactant and product motions.
The research addresses a major challenge in Chemistry to understand the role of solvent on the mechanisms of chemical reactions. Questions that will be examined include how the solvent modifies reaction barriers and other regions of the reaction potential energy surface (PESs), alters the couplings between PESs, most importantly at conical intersections between electronic states, influences and constrains the dynamical stereochemistry of passage through transition states, and dissipates excess product energy.
The experimental strategy will be to obtain absorption spectra of transient species with lifetimes of ~100 fs – 1000 ps using broad bandwidth light sources in the infrared, visible and ultraviolet regions. Time-evolutions of such spectra reveal the formation and decay of short-lived species that might be highly reactive radicals or internally (vibrationally and electronically) excited molecules. The transient species decay by reaction or energy loss to the solvent. Statistical mechanical theories of reactions in solution treat such processes using linear response theory, but the experimental data will challenge this paradigm by seeking evidence for breakdown of the linear response interaction of solvent and solute on short timescales because of microscopic chemical dynamics that perturb the solvent structure. The work will build on our pioneering experiments at the Rutherford Appleton Laboratory that prove the feasilbility of the methods.
Max ERC Funding
2 666 684 €
Duration
Start date: 2012-02-01, End date: 2017-01-31
Project acronym CARBENZYMES
Project Probing the relevance of carbene binding motifs in enzyme reactivity
Researcher (PI) Martin Albrecht
Host Institution (HI) UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN
Call Details Starting Grant (StG), PE4, ERC-2007-StG
Summary Histidine (His) is an ubiquitous ligand in the active site of metalloenzymes that is assumed by default to bind the metal center through one of its nitrogen atoms. However, protonation of His, which is likely to occur in locally slightly acidic environment, gives imidazolium sites that can bind a metal in a carbene-type structure as found in N-heterocyclic carbene complexes. Such carbene bonding has a dramatic effect on the properties of the metal center and may provide a rational for the mode of action of metalloenzymes that are still lacking a solid understanding. Up to now, the possibility of carbene bonding has been completely overlooked. Hence, any evidence for such His coordination via carbon will induce a shift of paradigm in classical peptide chemistry and will be directly included in basic textbooks. Moreover, this unprecedented bonding mode will provide access to unique and hitherto unknown reactivity patterns for artificial enzyme mimics. Undoubtedly, such a break-through will set a new stage in modern metalloenzyme research. A multicentered approach is proposed to identify for the first time carbene bonding in enzymes. This approach unconventionally combines the current frontiers of organometallic and biochemical knowledge and hence crosses traditional boarders. Specifically, we aim at probing carbene bonding of His by identifying reactivity patterns that are selective for metal-carbenes but not for metal-imine complexes. This will allow for efficient screening of large classes of metalloenzymes. In parallel, active site models will be constructed in which the His ligand is substituted by a heterocyclic carbene as a rigidly C-bonding His analog. For this purpose chemical synthesis will be considered as well as enzyme mutagenesis and subsequent carbene coordination. While such new bioorganometallic entities will be highly attractive to probe the influence of C-bound His on the metal site, they also provide conceputally new types of versatile catalysts.
Summary
Histidine (His) is an ubiquitous ligand in the active site of metalloenzymes that is assumed by default to bind the metal center through one of its nitrogen atoms. However, protonation of His, which is likely to occur in locally slightly acidic environment, gives imidazolium sites that can bind a metal in a carbene-type structure as found in N-heterocyclic carbene complexes. Such carbene bonding has a dramatic effect on the properties of the metal center and may provide a rational for the mode of action of metalloenzymes that are still lacking a solid understanding. Up to now, the possibility of carbene bonding has been completely overlooked. Hence, any evidence for such His coordination via carbon will induce a shift of paradigm in classical peptide chemistry and will be directly included in basic textbooks. Moreover, this unprecedented bonding mode will provide access to unique and hitherto unknown reactivity patterns for artificial enzyme mimics. Undoubtedly, such a break-through will set a new stage in modern metalloenzyme research. A multicentered approach is proposed to identify for the first time carbene bonding in enzymes. This approach unconventionally combines the current frontiers of organometallic and biochemical knowledge and hence crosses traditional boarders. Specifically, we aim at probing carbene bonding of His by identifying reactivity patterns that are selective for metal-carbenes but not for metal-imine complexes. This will allow for efficient screening of large classes of metalloenzymes. In parallel, active site models will be constructed in which the His ligand is substituted by a heterocyclic carbene as a rigidly C-bonding His analog. For this purpose chemical synthesis will be considered as well as enzyme mutagenesis and subsequent carbene coordination. While such new bioorganometallic entities will be highly attractive to probe the influence of C-bound His on the metal site, they also provide conceputally new types of versatile catalysts.
Max ERC Funding
1 249 808 €
Duration
Start date: 2008-07-01, End date: 2013-06-30
Project acronym CARBONICE
Project Carbon – Ice Composite Materials: Water Structure and Dynamics at the Carbon Interface
Researcher (PI) Christoph Günter SALZMANN
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Consolidator Grant (CoG), PE4, ERC-2016-COG
Summary Carbon and water in its various states of matter make up a substantial proportion of our Universe. The two materials are highly dissimilar with respect to their chemical and physical properties. Elemental carbon is even often referred to as a hydrophobic, ‘water-hating’ material. Yet, the two materials often coexist and critical processes take place at the interface between these unlike chemical species. This includes the hydration shells of hydrophobic moieties in biomolecules, clathrate hydrate materials where water molecules crystallise around hydrophobic guest species as well as icy comets which are often black due to the presence of carbon at their surfaces.
The aim of the CARBONICE project is to investigate the interface and interplay between water and carbon in detail. Using new and innovative experimental strategies, the water molecule will be placed in a variety of different yet highly relevant carbon environments. This will give us unprecedented insights into how water hydrates hydrophobic species which is highly important in the context of hydrophobic interactions. Investigations into how carbon species influence phase transitions of ice will give new insights into crystallisation phenomena but will also reveal the factors that lead to the formation of either ferro- or antiferroelectric ices. Creating carbon – ice composites in the lab as they exist on comets will enable us to understand the complex weather cycles on comets and may help explaining the unusual surface features recently identified by the Rosetta space probe.
In summary, this truly multidisciplinary project opens up a new spyhole to critically important processes at the water – carbon interface. The results will have an impact on the space, atmospheric and general materials sciences but will also be highly relevant with respect to further optimising the computer models of water as well as understanding the properties of water in nano-confinements and how it drives biological processes.
Summary
Carbon and water in its various states of matter make up a substantial proportion of our Universe. The two materials are highly dissimilar with respect to their chemical and physical properties. Elemental carbon is even often referred to as a hydrophobic, ‘water-hating’ material. Yet, the two materials often coexist and critical processes take place at the interface between these unlike chemical species. This includes the hydration shells of hydrophobic moieties in biomolecules, clathrate hydrate materials where water molecules crystallise around hydrophobic guest species as well as icy comets which are often black due to the presence of carbon at their surfaces.
The aim of the CARBONICE project is to investigate the interface and interplay between water and carbon in detail. Using new and innovative experimental strategies, the water molecule will be placed in a variety of different yet highly relevant carbon environments. This will give us unprecedented insights into how water hydrates hydrophobic species which is highly important in the context of hydrophobic interactions. Investigations into how carbon species influence phase transitions of ice will give new insights into crystallisation phenomena but will also reveal the factors that lead to the formation of either ferro- or antiferroelectric ices. Creating carbon – ice composites in the lab as they exist on comets will enable us to understand the complex weather cycles on comets and may help explaining the unusual surface features recently identified by the Rosetta space probe.
In summary, this truly multidisciplinary project opens up a new spyhole to critically important processes at the water – carbon interface. The results will have an impact on the space, atmospheric and general materials sciences but will also be highly relevant with respect to further optimising the computer models of water as well as understanding the properties of water in nano-confinements and how it drives biological processes.
Max ERC Funding
1 999 806 €
Duration
Start date: 2017-06-01, End date: 2022-05-31
Project acronym CartiLube
Project Lubricating Cartilage: exploring the relation between lubrication and gene-regulation to alleviate osteoarthritis
Researcher (PI) Jacob KLEIN
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Advanced Grant (AdG), PE4, ERC-2016-ADG
Summary Can we exploit insights from the remarkably lubricated surfaces of articular cartilage, to create lubricants that may alleviate osteoarthritis (OA), the most widespread joint disease, affecting millions? These, succinctly, are the challenges of the present proposal. They are driven by our recent finding that lubrication of destabilised joints leads to changes in gene-regulation of the cartilage-embedded chondrocytes to protect against development of the disease. OA alleviation is known to arise through orthopedically suppressing shear-stresses on the cartilage, and a central premise of this project is that, by reducing friction at the articulating cartilage through suitable lubrication, we may achieve the same beneficial effect on the disease. The objectives of this project are to better understand the origins of cartilage boundary lubrication through examination of friction-reduction by its main molecular components, and exploit that understanding to create lubricants that, on intra-articular injection, will lubricate cartilage sufficiently well to achieve alleviation of OA via gene regulation. The project will examine, via both nanotribometric and macroscopic measurements, how the main molecular species implicated in cartilage lubrication, lipids, hyaluronan and lubricin, and their combinations, act together to form optimally lubricating boundary layers on model surfaces as well as on excised cartilage. Based on this, we shall develop suitable materials to lubricate cartilage in joints, using mouse models. Lubricants will further be optimized with respect to their retention in the joint and cartilage targeting, both in model studies and in vivo. The effect of the lubricants in regulating gene expression, in reducing pain and cartilage degradation, and in promoting stem-cell adhesion to the cartilage will be studied in a mouse model in which OA has been induced. Our results will have implications for treatment of a common, debilitating disease.
Summary
Can we exploit insights from the remarkably lubricated surfaces of articular cartilage, to create lubricants that may alleviate osteoarthritis (OA), the most widespread joint disease, affecting millions? These, succinctly, are the challenges of the present proposal. They are driven by our recent finding that lubrication of destabilised joints leads to changes in gene-regulation of the cartilage-embedded chondrocytes to protect against development of the disease. OA alleviation is known to arise through orthopedically suppressing shear-stresses on the cartilage, and a central premise of this project is that, by reducing friction at the articulating cartilage through suitable lubrication, we may achieve the same beneficial effect on the disease. The objectives of this project are to better understand the origins of cartilage boundary lubrication through examination of friction-reduction by its main molecular components, and exploit that understanding to create lubricants that, on intra-articular injection, will lubricate cartilage sufficiently well to achieve alleviation of OA via gene regulation. The project will examine, via both nanotribometric and macroscopic measurements, how the main molecular species implicated in cartilage lubrication, lipids, hyaluronan and lubricin, and their combinations, act together to form optimally lubricating boundary layers on model surfaces as well as on excised cartilage. Based on this, we shall develop suitable materials to lubricate cartilage in joints, using mouse models. Lubricants will further be optimized with respect to their retention in the joint and cartilage targeting, both in model studies and in vivo. The effect of the lubricants in regulating gene expression, in reducing pain and cartilage degradation, and in promoting stem-cell adhesion to the cartilage will be studied in a mouse model in which OA has been induced. Our results will have implications for treatment of a common, debilitating disease.
Max ERC Funding
2 499 944 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym CASCAT
Project Catalytic cascade reactions. From fundamentals of nanozymes to applications based on gas-diffusion electrodes
Researcher (PI) Wolfgang Werner SCHUHMANN
Host Institution (HI) RUHR-UNIVERSITAET BOCHUM
Call Details Advanced Grant (AdG), PE4, ERC-2018-ADG
Summary Nanoparticles with etched substrate channels are proposed as a simplified enzyme mimic, nanozymes, for electrocatalysis providing concave catalytically active sites together with the local modulation of electrolyte composition. This concept will be extended to bimetallic core-shell structures with etched channels to provide locally confined catalyst surfaces with varying selectivity. The first catalytic reaction at the channel entrance selectively generates a product, which is further converted in a follow-up reaction catalysed at the core material at the bottom of the channel. The endeavour to locally assemble catalysts with different properties in nano-confined reaction volumes to actualise cascade reaction pathways will be extended to layered nanoparticle structures. Together with an anisotropic provision of a gaseous reactant through a hydrophobic/hydrophilic phase boundary of specifically designed gas diffusion electrodes multi-step catalytic cascade reactions become feasible. The development and extensive evaluation of multi-catalyst gas-diffusion electrodes using operando electrochemistry/spectroscopy and nano-electrochemical tools as well as multi flow-through electrolysers will provide the fundamental knowledge concerning the relative location of different catalyst particles, which synergistically perform chemical cascade reaction with high selectivity and at high current densities. These gas-diffusion electrodes will be integrated in novel electrolyser concepts targeting CO2 recycling at high current density in alkaline solution under suppression of H2 competition with previously unprecedented selectivity for the formation of higher hydrocarbons envisioning contributions to a closed carbon cycle economy and a substantial decrease of CO2 emission. Additionally, a novel tree-type rotating electrolyser design is proposed for the removal of hazardous gaseous pollutants from air e.g. at street crossings in cities as exemplified by NOx reduction to N2 or NH3.
Summary
Nanoparticles with etched substrate channels are proposed as a simplified enzyme mimic, nanozymes, for electrocatalysis providing concave catalytically active sites together with the local modulation of electrolyte composition. This concept will be extended to bimetallic core-shell structures with etched channels to provide locally confined catalyst surfaces with varying selectivity. The first catalytic reaction at the channel entrance selectively generates a product, which is further converted in a follow-up reaction catalysed at the core material at the bottom of the channel. The endeavour to locally assemble catalysts with different properties in nano-confined reaction volumes to actualise cascade reaction pathways will be extended to layered nanoparticle structures. Together with an anisotropic provision of a gaseous reactant through a hydrophobic/hydrophilic phase boundary of specifically designed gas diffusion electrodes multi-step catalytic cascade reactions become feasible. The development and extensive evaluation of multi-catalyst gas-diffusion electrodes using operando electrochemistry/spectroscopy and nano-electrochemical tools as well as multi flow-through electrolysers will provide the fundamental knowledge concerning the relative location of different catalyst particles, which synergistically perform chemical cascade reaction with high selectivity and at high current densities. These gas-diffusion electrodes will be integrated in novel electrolyser concepts targeting CO2 recycling at high current density in alkaline solution under suppression of H2 competition with previously unprecedented selectivity for the formation of higher hydrocarbons envisioning contributions to a closed carbon cycle economy and a substantial decrease of CO2 emission. Additionally, a novel tree-type rotating electrolyser design is proposed for the removal of hazardous gaseous pollutants from air e.g. at street crossings in cities as exemplified by NOx reduction to N2 or NH3.
Max ERC Funding
2 499 462 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym CASTECON
Project SHARING A GENOME: CASTE ANTAGONISM AND COADAPTATION IN SOCIAL INSECTS
Researcher (PI) Jeremy FIELD
Host Institution (HI) THE UNIVERSITY OF EXETER
Call Details Advanced Grant (AdG), LS8, ERC-2015-AdG
Summary Eusociality, in which workers sacrifice their own reproduction to rear the offspring of queens, is a major focus of interest in evolutionary biology. A key aim during recent decades has been to understand the conflicts of interest within eusocial groups. In contrast, however, little is known about the underlying genetic architecture. In this proposal, we will use a mixture of field experiments and transcriptomics to address novel questions about the evolutionary dynamics of queen-worker interactions. Borrowing concepts from the field of sexual conflict, we will investigate a new idea: that the productivity of social groups is limited because castes are constrained by inter-caste genetic correlations from simultaneously reaching their optimal (dimorphic) phenotypes. We will also quantify caste dimorphism across an environmental gradient, and investigate the plasticity of dimorphism using transplants and social manipulations. In addition, we will cross-foster individuals between nests to test for coadaptation between queens and workers. And we will test a long-standing hypothesis experimentally for the first time: that queens manipulate worker phenotype in their own interests.
The proposed research will force us to look at eusociality in a completely new way. How caste dimorphism can evolve, the possibility that its evolution could be limited by genetic constraints, and the processes that could resolve those constraints, are topics that have hardly been considered. Recent research has strongly emphasized conflict between queens and workers, but the coadaptation of complementary phenotypes may be just as important. Our approach will be multidisciplinary: we will capitalize on state-of-the-art transcriptomic technology in combination with innovative field methods, and use study systems that allow exceptional sample sizes to be obtained in the wild, where natural selection operates. The overall result will be a new and exciting perspective on queen-worker coevolution.
Summary
Eusociality, in which workers sacrifice their own reproduction to rear the offspring of queens, is a major focus of interest in evolutionary biology. A key aim during recent decades has been to understand the conflicts of interest within eusocial groups. In contrast, however, little is known about the underlying genetic architecture. In this proposal, we will use a mixture of field experiments and transcriptomics to address novel questions about the evolutionary dynamics of queen-worker interactions. Borrowing concepts from the field of sexual conflict, we will investigate a new idea: that the productivity of social groups is limited because castes are constrained by inter-caste genetic correlations from simultaneously reaching their optimal (dimorphic) phenotypes. We will also quantify caste dimorphism across an environmental gradient, and investigate the plasticity of dimorphism using transplants and social manipulations. In addition, we will cross-foster individuals between nests to test for coadaptation between queens and workers. And we will test a long-standing hypothesis experimentally for the first time: that queens manipulate worker phenotype in their own interests.
The proposed research will force us to look at eusociality in a completely new way. How caste dimorphism can evolve, the possibility that its evolution could be limited by genetic constraints, and the processes that could resolve those constraints, are topics that have hardly been considered. Recent research has strongly emphasized conflict between queens and workers, but the coadaptation of complementary phenotypes may be just as important. Our approach will be multidisciplinary: we will capitalize on state-of-the-art transcriptomic technology in combination with innovative field methods, and use study systems that allow exceptional sample sizes to be obtained in the wild, where natural selection operates. The overall result will be a new and exciting perspective on queen-worker coevolution.
Max ERC Funding
2 424 263 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym CATCIR
Project Catalytic Carbene Insertion Reactions; Creating Diversity in (Material) Synthesis
Researcher (PI) Bastiaan (Bas) De Bruin
Host Institution (HI) UNIVERSITEIT VAN AMSTERDAM
Call Details Starting Grant (StG), PE4, ERC-2007-StG
Summary With this proposal the PI capitalises on his recent breakthroughs in transition metal catalysed carbene (migratory) insertion reactions to build up a new research line for controlled catalytic preparation of a variety of new functionalised (co)polymers with expected special material properties. Metallo-carbenes are well-known intermediates in olefin cyclopropanation and olefin metathesis, but the PI recently discovered that their chemistry is far richer. He demonstrated for the first time that metallo-carbenoids can be used in transition metal catalysed insertion polymerisation to arrive at completely new types of stereoregular carbon-chain polymers functionalised at each carbon of the polymer backbone. Rhodium mediated polymerisation of carbenes provides the means to prepare new materials with yet unknown properties. It also provides a valuable alternative to prepare practically identical polymers as in the desirable (but still unachievable) highly stereo-selective (co)polymerisation of functionalised olefins, representing the ‘holey-grail’ in world-wide TM polymerisation catalysis research. The mechanism and scope of this remarkable new discovery will be investigated and new, improved catalysts will be developed for the preparation of novel materials based on homo- and copolymerisation of a variety of carbene precursors. Copolymerisation of carbenes and other reactive monomers will also be investigated and the properties of all new materials will be investigated. In addition the team will try to uncover new reactions in which carbene insertion reactions play a central role. DFT calculations suggest that the transition state (TS) of the new carbene polymerisation reaction is very similar to the TS’s of a variety of carbonyl insertion reactions. Based on this analogy, the team will investigate several new carbene insertion reactions, potentially leading to new, useful polymeric materials and new synthetic routes to prepare small functional organic molecules.
Summary
With this proposal the PI capitalises on his recent breakthroughs in transition metal catalysed carbene (migratory) insertion reactions to build up a new research line for controlled catalytic preparation of a variety of new functionalised (co)polymers with expected special material properties. Metallo-carbenes are well-known intermediates in olefin cyclopropanation and olefin metathesis, but the PI recently discovered that their chemistry is far richer. He demonstrated for the first time that metallo-carbenoids can be used in transition metal catalysed insertion polymerisation to arrive at completely new types of stereoregular carbon-chain polymers functionalised at each carbon of the polymer backbone. Rhodium mediated polymerisation of carbenes provides the means to prepare new materials with yet unknown properties. It also provides a valuable alternative to prepare practically identical polymers as in the desirable (but still unachievable) highly stereo-selective (co)polymerisation of functionalised olefins, representing the ‘holey-grail’ in world-wide TM polymerisation catalysis research. The mechanism and scope of this remarkable new discovery will be investigated and new, improved catalysts will be developed for the preparation of novel materials based on homo- and copolymerisation of a variety of carbene precursors. Copolymerisation of carbenes and other reactive monomers will also be investigated and the properties of all new materials will be investigated. In addition the team will try to uncover new reactions in which carbene insertion reactions play a central role. DFT calculations suggest that the transition state (TS) of the new carbene polymerisation reaction is very similar to the TS’s of a variety of carbonyl insertion reactions. Based on this analogy, the team will investigate several new carbene insertion reactions, potentially leading to new, useful polymeric materials and new synthetic routes to prepare small functional organic molecules.
Max ERC Funding
1 250 000 €
Duration
Start date: 2008-08-01, End date: 2013-07-31
Project acronym CAtMolChip
Project Cold Atmospheric Molecules on a Chip
Researcher (PI) Stephen Dermot Hogan
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Consolidator Grant (CoG), PE4, ERC-2015-CoG
Summary Highly excited electronic states of small atmospheric molecules play an important, but as yet little explored, role in the reactivity, and in the evolution of plasmas, including the Aurora Borealis, in the upper atmosphere of the Earth. Processes involving these highly excited states are very challenging to investigate theoretically because of the high density of states close to the ionization limits where they lie. Therefore, experimental input is essential for the identification of the reaction and decay mechanisms, and the quantum states of importance in future studies. However, experimental techniques that can be exploited to provide this input have only become available very recently. These techniques permit gas-phase molecular samples in these highly excited states to be confined in traps for sufficient lengths of time (e.g. 1 ms – 10 ms) for detailed studies to be performed in a controlled laboratory environment. They include resonance-enhanced and non-resonance-enhanced multiphoton excitation of long-lived high angular momentum Rydberg states of small molecules, and chip-based devices for efficiently decelerating, transporting and trapping these samples.
With the support of this Consolidator Grant a new experimental research program will be developed in the Department of Physics and Astronomy at University College London involving laboratory based studies of (1) inelastic scattering processes, and (2) the decay mechanisms of gas-phase atmospheric molecules, including N2, O2 and NO, and their constituent atoms, in high Rydberg states. The planned experiments will be directed toward understanding the effects of static and time-dependent electric and magnetic fields, and blackbody radiation fields on slow dissociation processes that occur in highly excited states of N2, O2 and NO, investigations of collisional energy transfer processes, and studies of the role that these excited electronic states play in the evolution and reactivity of atmospheric plasmas incl
Summary
Highly excited electronic states of small atmospheric molecules play an important, but as yet little explored, role in the reactivity, and in the evolution of plasmas, including the Aurora Borealis, in the upper atmosphere of the Earth. Processes involving these highly excited states are very challenging to investigate theoretically because of the high density of states close to the ionization limits where they lie. Therefore, experimental input is essential for the identification of the reaction and decay mechanisms, and the quantum states of importance in future studies. However, experimental techniques that can be exploited to provide this input have only become available very recently. These techniques permit gas-phase molecular samples in these highly excited states to be confined in traps for sufficient lengths of time (e.g. 1 ms – 10 ms) for detailed studies to be performed in a controlled laboratory environment. They include resonance-enhanced and non-resonance-enhanced multiphoton excitation of long-lived high angular momentum Rydberg states of small molecules, and chip-based devices for efficiently decelerating, transporting and trapping these samples.
With the support of this Consolidator Grant a new experimental research program will be developed in the Department of Physics and Astronomy at University College London involving laboratory based studies of (1) inelastic scattering processes, and (2) the decay mechanisms of gas-phase atmospheric molecules, including N2, O2 and NO, and their constituent atoms, in high Rydberg states. The planned experiments will be directed toward understanding the effects of static and time-dependent electric and magnetic fields, and blackbody radiation fields on slow dissociation processes that occur in highly excited states of N2, O2 and NO, investigations of collisional energy transfer processes, and studies of the role that these excited electronic states play in the evolution and reactivity of atmospheric plasmas incl
Max ERC Funding
1 985 553 €
Duration
Start date: 2016-06-01, End date: 2021-05-31
Project acronym CCCAN
Project Characterizing and Controlling Carbon Nanomaterials
Researcher (PI) Janina Maultzsch
Host Institution (HI) TECHNISCHE UNIVERSITAT BERLIN
Call Details Starting Grant (StG), PE4, ERC-2010-StG_20091028
Summary The aim of this project is to understand and control the fundamental physical properties of novel carbon nanomaterials:
carbon nanotubes and graphene. By a combination of complementary methods, i.e. vibrational spectroscopy, scanning probe microscopy, and theoretical modelling, a comprehensive understanding of the electronic, vibrational, optical properties, and their connection with the material’s structure will be obtained. A diagnostics “toolbox” will be established on the materials in
their most unperturbed, ideal states. Taking the results as reference, the materials will be studied under conditions relevant when incorporated into devices. These include imperfections of the materials and interaction with different environments, with other carbon nanotubes/graphene, and with extrinsic materials introduced during device processing. The gained insight and understanding on a fundamental level will also advance technological routes for scaling up carbon-nanomaterial electronic device fabrication, which is still lacking sufficient control over selectivity towards the desired physical properties. Control over the electronic and optical properties will be sought through deliberately induced interactions and chemical functionalization
of the materials. The project benefits from close collaborations between experimental and theoretical physics, chemistry, and materials science.
Summary
The aim of this project is to understand and control the fundamental physical properties of novel carbon nanomaterials:
carbon nanotubes and graphene. By a combination of complementary methods, i.e. vibrational spectroscopy, scanning probe microscopy, and theoretical modelling, a comprehensive understanding of the electronic, vibrational, optical properties, and their connection with the material’s structure will be obtained. A diagnostics “toolbox” will be established on the materials in
their most unperturbed, ideal states. Taking the results as reference, the materials will be studied under conditions relevant when incorporated into devices. These include imperfections of the materials and interaction with different environments, with other carbon nanotubes/graphene, and with extrinsic materials introduced during device processing. The gained insight and understanding on a fundamental level will also advance technological routes for scaling up carbon-nanomaterial electronic device fabrication, which is still lacking sufficient control over selectivity towards the desired physical properties. Control over the electronic and optical properties will be sought through deliberately induced interactions and chemical functionalization
of the materials. The project benefits from close collaborations between experimental and theoretical physics, chemistry, and materials science.
Max ERC Funding
1 468 960 €
Duration
Start date: 2010-12-01, End date: 2015-11-30
Project acronym CDREG
Project Carbon dioxide regulation of Earth’s ecological weathering engine: from microorganisms to ecosystems
Researcher (PI) David Beerling
Host Institution (HI) THE UNIVERSITY OF SHEFFIELD
Call Details Advanced Grant (AdG), LS8, ERC-2012-ADG_20120314
Summary CDREG develops the major new Earth system science research hypothesis that tectonic-related variations in Earth’s atmospheric CO2 concentration ([CO2]a) drive negative ecological feedbacks on terrestrial silicate weathering rates that stabilise further [CO2]a change and regulate climate. This paradigm-changing hypothesis integrates ecological and abiotic controls on silicate weathering to understand how terrestrial ecosystems have shaped past Earth system dynamics. The proposed ecological feedbacks are mechanistically linked to the extent and activities of forested ecosystems and their symbiotic fungal partners as the primary engines of biological weathering.
CDREG’s core hypothesis establishes an exciting cross-disciplinary Research Programme that offers novel opportunities for major breakthroughs implemented through four linked hypothesis-driven work packages (WPs) employing experimental, geochemical and numerical modelling approaches. WP1 quantitatively characterises [CO2]a-driven tree/grass-fungal mineral weathering by coupling metabolic profiling with advanced nanometre scale surface metrological techniques for investigating hyphal-mineral interactions. WP2 quantifies the role [CO2]a-drought interactions on savanna tree mortality and C4 grass survivorship, plus symbiotic fungal-driven mineral weathering. WP3 exploits the past 8 Ma of marine sediment archives to investigate the links between forest to savanna transition, terrestrial weathering, fire, and climate in Africa. WP4 integrates findings from WP1-3 into a new Earth system modelling framework to rigorously investigate the biogeochemical feedbacks of [CO2]a-regulated ecological weathering on [CO2]a via marine carbonate deposition and organic C burial.
The ultimate goal is to provide a new synthesis in which the role of [CO2]a in regulating the ecological weathering engine across scales from root-associated microorganisms to terrestrial ecosystems is mechanistically understood and assessed.
Summary
CDREG develops the major new Earth system science research hypothesis that tectonic-related variations in Earth’s atmospheric CO2 concentration ([CO2]a) drive negative ecological feedbacks on terrestrial silicate weathering rates that stabilise further [CO2]a change and regulate climate. This paradigm-changing hypothesis integrates ecological and abiotic controls on silicate weathering to understand how terrestrial ecosystems have shaped past Earth system dynamics. The proposed ecological feedbacks are mechanistically linked to the extent and activities of forested ecosystems and their symbiotic fungal partners as the primary engines of biological weathering.
CDREG’s core hypothesis establishes an exciting cross-disciplinary Research Programme that offers novel opportunities for major breakthroughs implemented through four linked hypothesis-driven work packages (WPs) employing experimental, geochemical and numerical modelling approaches. WP1 quantitatively characterises [CO2]a-driven tree/grass-fungal mineral weathering by coupling metabolic profiling with advanced nanometre scale surface metrological techniques for investigating hyphal-mineral interactions. WP2 quantifies the role [CO2]a-drought interactions on savanna tree mortality and C4 grass survivorship, plus symbiotic fungal-driven mineral weathering. WP3 exploits the past 8 Ma of marine sediment archives to investigate the links between forest to savanna transition, terrestrial weathering, fire, and climate in Africa. WP4 integrates findings from WP1-3 into a new Earth system modelling framework to rigorously investigate the biogeochemical feedbacks of [CO2]a-regulated ecological weathering on [CO2]a via marine carbonate deposition and organic C burial.
The ultimate goal is to provide a new synthesis in which the role of [CO2]a in regulating the ecological weathering engine across scales from root-associated microorganisms to terrestrial ecosystems is mechanistically understood and assessed.
Max ERC Funding
2 271 980 €
Duration
Start date: 2013-06-01, End date: 2018-05-31
Project acronym CELL-in-CELL
Project Understanding host cellular systems that drive an endosymbiotic interaction
Researcher (PI) Thomas RICHARDS
Host Institution (HI) THE UNIVERSITY OF EXETER
Call Details Consolidator Grant (CoG), LS8, ERC-2018-COG
Summary Endosymbiosis is a key phenomenon that has played a critical role in shaping biological diversity, driving gene transfer and generating cellular complexity. During the process of endosymbiosis, one cell is integrated within another to become a critical component of the recipient, changing its characteristics and allowing it to chart a distinct evolutionary trajectory. Endosymbiosis was fundamentally important to the origin and evolution of eukaryotic cellular complexity, because an endosymbiotic event roots the diversification of all known eukaryotes and endosymbiosis has continually driven the diversification of huge sections of the eukaryotic tree of life. Little is known about how nascent endosymbioses are established or how they go on to form novel cellular compartments known as endosymbiotic organelles. Paramecium bursaria is a single celled protist that harbours multiple green algae within to form a phototrophic endosymbiosis. This relationship is nascent as the partners can be separated, grown separately, and the endosymbiosis reinitiated. This project will identify, for the first time, the gene functions that enable one cell to incubate another within to form a stable endosymbiotic interaction. To identify and explore which host genes control endosymbiosis in P. bursaria we have developed RNAi silencing technology. In the proposed project we will conduct genome sequencing, followed by a large-scale RNAi knockdown screening experiment, to identify host genes that when silenced perturb the endosymbiont population. Having identified candidate genes, we will investigate the localisation and function of the host encoded proteins. This project will significantly change our current understanding of the evolutionary phenomenon of endosymbiosis by identifying the cellular adaptations that drive these interactions, advancing our understanding of how these important moments in evolution occur and how core cellular systems can diversify in function.
Summary
Endosymbiosis is a key phenomenon that has played a critical role in shaping biological diversity, driving gene transfer and generating cellular complexity. During the process of endosymbiosis, one cell is integrated within another to become a critical component of the recipient, changing its characteristics and allowing it to chart a distinct evolutionary trajectory. Endosymbiosis was fundamentally important to the origin and evolution of eukaryotic cellular complexity, because an endosymbiotic event roots the diversification of all known eukaryotes and endosymbiosis has continually driven the diversification of huge sections of the eukaryotic tree of life. Little is known about how nascent endosymbioses are established or how they go on to form novel cellular compartments known as endosymbiotic organelles. Paramecium bursaria is a single celled protist that harbours multiple green algae within to form a phototrophic endosymbiosis. This relationship is nascent as the partners can be separated, grown separately, and the endosymbiosis reinitiated. This project will identify, for the first time, the gene functions that enable one cell to incubate another within to form a stable endosymbiotic interaction. To identify and explore which host genes control endosymbiosis in P. bursaria we have developed RNAi silencing technology. In the proposed project we will conduct genome sequencing, followed by a large-scale RNAi knockdown screening experiment, to identify host genes that when silenced perturb the endosymbiont population. Having identified candidate genes, we will investigate the localisation and function of the host encoded proteins. This project will significantly change our current understanding of the evolutionary phenomenon of endosymbiosis by identifying the cellular adaptations that drive these interactions, advancing our understanding of how these important moments in evolution occur and how core cellular systems can diversify in function.
Max ERC Funding
2 602 483 €
Duration
Start date: 2019-06-01, End date: 2024-05-31
Project acronym CHEMAGEB
Project CHEMometric and High-throughput Omics Analytical Methods for Assessment of Global Change Effects on Environmental and Biological Systems
Researcher (PI) Roman Tauler Ferrer
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Advanced Grant (AdG), PE4, ERC-2012-ADG_20120216
Summary We propose to develop new chemometric and high-throughput analytical methods to assess the effects of environmental and climate changes on target biological systems which are representative of ecosystems. This project will combine powerful chemometric and analytical high-throughput methodologies with toxicological tests to examine the effects of environmental stressors (like chemical pollution) and of climate change (like temperature, water scarcity or food shortage), on genomic and metabonomic profiles of target biological systems. The complex nature of experimental data produced by high-throughput analytical techniques, such as DNA microarrays, hyphenated chromatography-mass spectrometry or multi-dimensional nuclear magnetic resonance spectroscopy, requires powerful data analysis tools to extract, summarize and interpret the large amount of information that such megavariate data sets may contain. There is a need to improve and automate every step in the analysis of the data generated from genomic and metabonomic studies using new chemometric and multi- and megavariate tools. The main purpose of this project is to develop such tools. As a result of the whole study, a detailed report on the effects of global change and chemical pollution on the genomic and metabonomic profiles of a selected set of representative target biological systems will be delivered and used for global risk assessment. The information acquired, data sets and computer software will be stored in public data bases using modern data compression and data management technologies. And all the methodologies developed in the project will be published.
Summary
We propose to develop new chemometric and high-throughput analytical methods to assess the effects of environmental and climate changes on target biological systems which are representative of ecosystems. This project will combine powerful chemometric and analytical high-throughput methodologies with toxicological tests to examine the effects of environmental stressors (like chemical pollution) and of climate change (like temperature, water scarcity or food shortage), on genomic and metabonomic profiles of target biological systems. The complex nature of experimental data produced by high-throughput analytical techniques, such as DNA microarrays, hyphenated chromatography-mass spectrometry or multi-dimensional nuclear magnetic resonance spectroscopy, requires powerful data analysis tools to extract, summarize and interpret the large amount of information that such megavariate data sets may contain. There is a need to improve and automate every step in the analysis of the data generated from genomic and metabonomic studies using new chemometric and multi- and megavariate tools. The main purpose of this project is to develop such tools. As a result of the whole study, a detailed report on the effects of global change and chemical pollution on the genomic and metabonomic profiles of a selected set of representative target biological systems will be delivered and used for global risk assessment. The information acquired, data sets and computer software will be stored in public data bases using modern data compression and data management technologies. And all the methodologies developed in the project will be published.
Max ERC Funding
2 454 280 €
Duration
Start date: 2013-04-01, End date: 2018-03-31
Project acronym CHEMBIOMECH
Project Exploring mechanism in chemical biology by high-throughput approaches
Researcher (PI) Florian Hollfelder
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Starting Grant (StG), PE4, ERC-2007-StG
Summary In the biomedical sciences, where endless combinatorial diversity of genes, proteins and synthetic molecules is involved, miniaturisation has not simply allowed an increase in the speed at which experiment can be performed: it has given birth to new areas such as combinatorial chemistry and biology, proteomics, genomics, and more recently, systems and synthetic biology. In all these areas, the synthesis, assay and analysis of large molecular ensembles has become the essence of experimental progress. However, it is the systematic analysis of the enormous amounts of data generated that will ultimately lead to an understanding of fundamental chemical and biological problems. This proposal deals with approaches in which libraries of molecules are employed to give such mechanistic insight – into how enzyme catalysis is brought about in proteins and polymeric enzyme models and into the molecular recognition and cell biology of drug delivery reagents. In each case considerable technical challenges are involved in the way diversity is brought about and probed: ranging from either using the tools of synthetic chemistry to using gene repertoires in emulsion microdroplet reactors with femtolitre volumes, handled in microfluidic devices.
Summary
In the biomedical sciences, where endless combinatorial diversity of genes, proteins and synthetic molecules is involved, miniaturisation has not simply allowed an increase in the speed at which experiment can be performed: it has given birth to new areas such as combinatorial chemistry and biology, proteomics, genomics, and more recently, systems and synthetic biology. In all these areas, the synthesis, assay and analysis of large molecular ensembles has become the essence of experimental progress. However, it is the systematic analysis of the enormous amounts of data generated that will ultimately lead to an understanding of fundamental chemical and biological problems. This proposal deals with approaches in which libraries of molecules are employed to give such mechanistic insight – into how enzyme catalysis is brought about in proteins and polymeric enzyme models and into the molecular recognition and cell biology of drug delivery reagents. In each case considerable technical challenges are involved in the way diversity is brought about and probed: ranging from either using the tools of synthetic chemistry to using gene repertoires in emulsion microdroplet reactors with femtolitre volumes, handled in microfluidic devices.
Max ERC Funding
563 848 €
Duration
Start date: 2008-09-01, End date: 2013-08-31
Project acronym CHEMHEAT
Project Chemical Control of Heating and Cooling in Molecular Junctions: Optimizing Function and Stability
Researcher (PI) Gemma Solomon
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), PE4, ERC-2010-StG_20091028
Summary Nanoscale systems binding single molecules, or small numbers of molecules, in conducting junctions show considerable promise for a range of technological applications, from photovoltaics to rectifiers to sensors. These environments differ significantly from the traditional domain of chemical studies involving molecules in solution and the gas phase, necessitating renewed efforts to understand the physical properties of these systems. The objective of this proposal concerns one particular class of physical processes: understanding and controlling local heating in molecular junctions in terms of excitation, dissipation and transfer.
Local heating and dissipation in molecular junctions has long been a concern due to the possibly detrimental impact on device stability and function. More recently there has been increased interest, as these processes underlie both spectroscopic techniques and potential technological applications. Together these issues make an investigation of ways to chemically control local heating in molecular junctions timely and important.
The proposal objective will be addressed through the investigation of three challenges:
- Developing chemical control of local heating in molecular junctions.
- Developing chemical control of heat dissipation in molecular junctions.
- Design of optimal thermoelectric materials.
These three challenges constitute distinct, yet complementary, avenues for investigation with progress in each area supporting the other two. All three challenges build on existing theoretical methods, with the important shift of focus to methods to achieve chemical control. The combination of state-of-the-art computational methods with careful chemical studies promises significant new developments for the area.
Summary
Nanoscale systems binding single molecules, or small numbers of molecules, in conducting junctions show considerable promise for a range of technological applications, from photovoltaics to rectifiers to sensors. These environments differ significantly from the traditional domain of chemical studies involving molecules in solution and the gas phase, necessitating renewed efforts to understand the physical properties of these systems. The objective of this proposal concerns one particular class of physical processes: understanding and controlling local heating in molecular junctions in terms of excitation, dissipation and transfer.
Local heating and dissipation in molecular junctions has long been a concern due to the possibly detrimental impact on device stability and function. More recently there has been increased interest, as these processes underlie both spectroscopic techniques and potential technological applications. Together these issues make an investigation of ways to chemically control local heating in molecular junctions timely and important.
The proposal objective will be addressed through the investigation of three challenges:
- Developing chemical control of local heating in molecular junctions.
- Developing chemical control of heat dissipation in molecular junctions.
- Design of optimal thermoelectric materials.
These three challenges constitute distinct, yet complementary, avenues for investigation with progress in each area supporting the other two. All three challenges build on existing theoretical methods, with the important shift of focus to methods to achieve chemical control. The combination of state-of-the-art computational methods with careful chemical studies promises significant new developments for the area.
Max ERC Funding
1 499 999 €
Duration
Start date: 2010-12-01, End date: 2015-11-30
Project acronym ChemNav
Project Magnetic sensing by molecules, birds, and devices
Researcher (PI) Peter John Hore
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Advanced Grant (AdG), PE4, ERC-2013-ADG
Summary The sensory mechanisms that allow birds to perceive the direction of the Earth’s magnetic field for the purpose of navigation are only now beginning to be understood. One of the two leading hypotheses is founded on magnetically sensitive photochemical reactions in the retina. It is thought that transient photo-induced radical pairs in cryptochrome, a blue-light photoreceptor protein, act as the primary magnetic sensor. Experimental and theoretical support for this mechanism has been accumulating over the last few years, qualifying chemical magnetoreception for a place in the emerging field of Quantum Biology.
In this proposal, we aim to determine the detailed principles of efficient chemical sensing of weak magnetic fields, to elucidate the biophysics of animal compass magnetoreception, and to explore the possibilities of magnetic sensing technologies inspired by the coherent dynamics of entangled electron spins in cryptochrome-based radical pairs.
We will:
(a) Establish the fundamental structural, kinetic, dynamic and magnetic properties that allow efficient chemical sensing of Earth-strength magnetic fields in cryptochromes.
(b) Devise new, sensitive forms of optical spectroscopy for this purpose.
(c) Design, construct and iteratively refine non-natural proteins (maquettes) as versatile model systems for testing and optimising molecular magnetoreceptors.
(d) Characterise the spin dynamics and magnetic sensitivity of maquette magnetoreceptors using specialised magnetic resonance and optical spectroscopic techniques.
(e) Develop efficient and accurate methods for simulating the coherent spin dynamics of realistic radical pairs in order to interpret experimental data, guide the implementation of new experiments, test concepts of magnetoreceptor function, and guide the design of efficient sensors.
(f) Explore the feasibility of electronically addressable, organic semiconductor sensors inspired by radical pair magnetoreception.
Summary
The sensory mechanisms that allow birds to perceive the direction of the Earth’s magnetic field for the purpose of navigation are only now beginning to be understood. One of the two leading hypotheses is founded on magnetically sensitive photochemical reactions in the retina. It is thought that transient photo-induced radical pairs in cryptochrome, a blue-light photoreceptor protein, act as the primary magnetic sensor. Experimental and theoretical support for this mechanism has been accumulating over the last few years, qualifying chemical magnetoreception for a place in the emerging field of Quantum Biology.
In this proposal, we aim to determine the detailed principles of efficient chemical sensing of weak magnetic fields, to elucidate the biophysics of animal compass magnetoreception, and to explore the possibilities of magnetic sensing technologies inspired by the coherent dynamics of entangled electron spins in cryptochrome-based radical pairs.
We will:
(a) Establish the fundamental structural, kinetic, dynamic and magnetic properties that allow efficient chemical sensing of Earth-strength magnetic fields in cryptochromes.
(b) Devise new, sensitive forms of optical spectroscopy for this purpose.
(c) Design, construct and iteratively refine non-natural proteins (maquettes) as versatile model systems for testing and optimising molecular magnetoreceptors.
(d) Characterise the spin dynamics and magnetic sensitivity of maquette magnetoreceptors using specialised magnetic resonance and optical spectroscopic techniques.
(e) Develop efficient and accurate methods for simulating the coherent spin dynamics of realistic radical pairs in order to interpret experimental data, guide the implementation of new experiments, test concepts of magnetoreceptor function, and guide the design of efficient sensors.
(f) Explore the feasibility of electronically addressable, organic semiconductor sensors inspired by radical pair magnetoreception.
Max ERC Funding
2 997 062 €
Duration
Start date: 2013-12-01, End date: 2018-11-30
Project acronym CHEMO-RISK
Project Chemometers for in situ risk assessment of mixtures of pollutants
Researcher (PI) Annika Jahnke Berger
Host Institution (HI) HELMHOLTZ-ZENTRUM FUR UMWELTFORSCHUNG GMBH - UFZ
Call Details Starting Grant (StG), PE4, ERC-2016-STG
Summary CHEMO-RISK aims for a novel scientifically sound chemical risk assessment paradigm that integrates exposure and effect assessment of a broad range of chemicals into a single procedure and provides information relevant to ecosystem and human health. The key innovation is polymer “chemometers” that will be equilibrated with their surroundings and deliver information on the pollutant’s chemical activity in the environment, biota, and humans. A chemometer functions analogously to a thermometer, but instead of the temperature, it yields a measure of chemical activity. Chemical activity in turn indicates the thermodynamic potential for, e.g., partitioning, biouptake and toxicity. CHEMO-RISK aims at breaking the current paradigm in environmental risk assessment of single chemicals that disregards bioavailability, ignores mixture effects, lacks site-specificity and is difficult to extrapolate to human health.
The chemometer extracts will be investigated using top-notch (a) GC and LC/Orbitrap chemical analysis to characterise the pollutant mixtures and (b) cell-based reporter gene bioassays to determine mixture effects covering baseline toxicity, specific (e.g., endocrine disruption) and reactive (e.g., genotoxicity) modes of toxic action and adaptive stress responses. Within CHEMO-RISK, the following important research questions will be tackled: (A) Which processes drive the enrichment of pollutants in aquatic biota on a thermodynamic basis? (B) How do pollutants distribute within an organism, and which effects do they elicit at the key target sites? (C) Can we apply everyday-life items such as eyeglass-nose pads to replace invasive sampling in human health risk assessment? (D) To which degree can non-target analysis of chemometer extracts explain the observed toxicity profiles across media? By combining all these research efforts, CHEMO-RISK will provide a unified risk assessment paradigm with risk-based trigger values distinguishing acceptable from unacceptable effects.
Summary
CHEMO-RISK aims for a novel scientifically sound chemical risk assessment paradigm that integrates exposure and effect assessment of a broad range of chemicals into a single procedure and provides information relevant to ecosystem and human health. The key innovation is polymer “chemometers” that will be equilibrated with their surroundings and deliver information on the pollutant’s chemical activity in the environment, biota, and humans. A chemometer functions analogously to a thermometer, but instead of the temperature, it yields a measure of chemical activity. Chemical activity in turn indicates the thermodynamic potential for, e.g., partitioning, biouptake and toxicity. CHEMO-RISK aims at breaking the current paradigm in environmental risk assessment of single chemicals that disregards bioavailability, ignores mixture effects, lacks site-specificity and is difficult to extrapolate to human health.
The chemometer extracts will be investigated using top-notch (a) GC and LC/Orbitrap chemical analysis to characterise the pollutant mixtures and (b) cell-based reporter gene bioassays to determine mixture effects covering baseline toxicity, specific (e.g., endocrine disruption) and reactive (e.g., genotoxicity) modes of toxic action and adaptive stress responses. Within CHEMO-RISK, the following important research questions will be tackled: (A) Which processes drive the enrichment of pollutants in aquatic biota on a thermodynamic basis? (B) How do pollutants distribute within an organism, and which effects do they elicit at the key target sites? (C) Can we apply everyday-life items such as eyeglass-nose pads to replace invasive sampling in human health risk assessment? (D) To which degree can non-target analysis of chemometer extracts explain the observed toxicity profiles across media? By combining all these research efforts, CHEMO-RISK will provide a unified risk assessment paradigm with risk-based trigger values distinguishing acceptable from unacceptable effects.
Max ERC Funding
1 496 030 €
Duration
Start date: 2017-05-01, End date: 2022-04-30
Project acronym chemREPEAT
Project Structure and Dynamics of Low-Complexity Regions in Proteins: The Huntingtin Case
Researcher (PI) Pau Bernado Pereto
Host Institution (HI) INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
Call Details Consolidator Grant (CoG), PE4, ERC-2014-CoG
Summary Proteins hosting regions highly enriched in one or few amino acids, the so-called Low-Complexity Regions (LCR), are very common in eukaryotes and play crucial roles in biology. Homorepeats, a subfamily of LCR that present stretches of the same amino acid, perform very specialized functions facilitated by the localized enrichment of the same physicochemical property. In contrast, numerous severe pathologies have been associated to abnormally long repetitions. Despite the relevance of homorepeats, their high-resolution characterization by traditional structural biology techniques is hampered by the degeneracy of the amino acid environments and their intrinsic flexibility. In chemREPEAT, I will develop strategies to incorporate isotopically labelled and unnatural amino acids at specific positions within homorepeats that will overcome present limitations. These labelled positions will be unique probes to investigate for first time the structure and dynamics of homorepeats at atomic level using complementary biophysical techniques. Computational tools will be specifically developed to derive three-dimensional conformational ensembles of homorepeats by synergistically integrating experimental data.
chemREPEAT strategies will be developed on huntingtin (Htt), the prototype of repetitive protein. Htt hosts a glutamine tract that is linked with Huntington’s disease (HD), a deadly neuropathology appearing in individuals with more than 35 consecutive Glutamine residues that represent a pathological threshold. The application of the developed approaches to several Htt constructions with different number of Glutamines will reveal the structural bases of the pathological threshold in HD and the role played by the regions flanking the Glutamine tract.
The strategies designed in chemREPEAT will expand present frontiers of structural biology to unveil the structure/function relationships for LCRs. This capacity will pave the way for a rational intervention in associated diseases.
Summary
Proteins hosting regions highly enriched in one or few amino acids, the so-called Low-Complexity Regions (LCR), are very common in eukaryotes and play crucial roles in biology. Homorepeats, a subfamily of LCR that present stretches of the same amino acid, perform very specialized functions facilitated by the localized enrichment of the same physicochemical property. In contrast, numerous severe pathologies have been associated to abnormally long repetitions. Despite the relevance of homorepeats, their high-resolution characterization by traditional structural biology techniques is hampered by the degeneracy of the amino acid environments and their intrinsic flexibility. In chemREPEAT, I will develop strategies to incorporate isotopically labelled and unnatural amino acids at specific positions within homorepeats that will overcome present limitations. These labelled positions will be unique probes to investigate for first time the structure and dynamics of homorepeats at atomic level using complementary biophysical techniques. Computational tools will be specifically developed to derive three-dimensional conformational ensembles of homorepeats by synergistically integrating experimental data.
chemREPEAT strategies will be developed on huntingtin (Htt), the prototype of repetitive protein. Htt hosts a glutamine tract that is linked with Huntington’s disease (HD), a deadly neuropathology appearing in individuals with more than 35 consecutive Glutamine residues that represent a pathological threshold. The application of the developed approaches to several Htt constructions with different number of Glutamines will reveal the structural bases of the pathological threshold in HD and the role played by the regions flanking the Glutamine tract.
The strategies designed in chemREPEAT will expand present frontiers of structural biology to unveil the structure/function relationships for LCRs. This capacity will pave the way for a rational intervention in associated diseases.
Max ERC Funding
1 999 844 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym CHIRALMICROBOTS
Project Chiral Nanostructured Surfaces and Colloidal Microbots
Researcher (PI) Peer Fischer
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), PE4, ERC-2011-StG_20101014
Summary "From scientific publications to the popular media, there have been numerous speculations about wirelessly controlled microrobots (microbots) navigating the human body. Microbots have the potential to revolutionize analytics, targeted drug delivery, and microsurgery, but until now there has not been any untethered microscopic system that could be properly moved let alone controlled in fluidic environments. Using glancing angle (physical vapor deposition) we will grow billions of micron-sized colloidal screw-propellers on a wafer. These chiral mesoscopic screws can be magnetized and moved through solution under computer control. The screw-propellers resemble artificial flagella and are the only ‘microbots’ to date that can be fully controlled in solution at micron length scales. The proposed work will advance the fabrication so that active microbots can be applied in rheological measurements and analytics. We will use these novel probes in bio-microrheology with the potential to probe the viscoelastic properties of membranes and tissues, and to explore questions of micro-hydrodynamics. At the same time we will develop these structures as ""colloidal molecules"" and grow asymmetric mesoscopic particles with tailored shapes and properties. We propose experiments that allow the observation of fundamental effects, such as chiral Brownian motion, something that exist at the molecular scale, but has never been observed to date. Similarly, we will be able to demonstrate for the first time chiral separations based purely on physical fields. The proposed technical advances of the growth of nanostructured surfaces will at the same time permit wafer-scale 3-D nano-structuring for photonic and plasmonic applications, which we plan to demonstrate. We will develop a system for targeted drug delivery, study the interaction of swarms of microbots and devise techniques to control and image these swarms."
Summary
"From scientific publications to the popular media, there have been numerous speculations about wirelessly controlled microrobots (microbots) navigating the human body. Microbots have the potential to revolutionize analytics, targeted drug delivery, and microsurgery, but until now there has not been any untethered microscopic system that could be properly moved let alone controlled in fluidic environments. Using glancing angle (physical vapor deposition) we will grow billions of micron-sized colloidal screw-propellers on a wafer. These chiral mesoscopic screws can be magnetized and moved through solution under computer control. The screw-propellers resemble artificial flagella and are the only ‘microbots’ to date that can be fully controlled in solution at micron length scales. The proposed work will advance the fabrication so that active microbots can be applied in rheological measurements and analytics. We will use these novel probes in bio-microrheology with the potential to probe the viscoelastic properties of membranes and tissues, and to explore questions of micro-hydrodynamics. At the same time we will develop these structures as ""colloidal molecules"" and grow asymmetric mesoscopic particles with tailored shapes and properties. We propose experiments that allow the observation of fundamental effects, such as chiral Brownian motion, something that exist at the molecular scale, but has never been observed to date. Similarly, we will be able to demonstrate for the first time chiral separations based purely on physical fields. The proposed technical advances of the growth of nanostructured surfaces will at the same time permit wafer-scale 3-D nano-structuring for photonic and plasmonic applications, which we plan to demonstrate. We will develop a system for targeted drug delivery, study the interaction of swarms of microbots and devise techniques to control and image these swarms."
Max ERC Funding
1 479 760 €
Duration
Start date: 2012-02-01, End date: 2018-01-31
Project acronym ChloroMito
Project Chloroplast and Mitochondria interactions for microalgal acclimation
Researcher (PI) Giovanni Finazzi
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), LS8, ERC-2018-ADG
Summary Photosynthesis emerged as an energy-harvesting process at least 3.5 billion years ago, first in anoxygenic bacteria and then in oxygen-producing organisms, which led to the evolution of complex life forms with oxygen-based metabolisms (e.g. humans). Oxygenic photosynthesis produces ATP and NADPH, and the correct balance between these energy-rich molecules allows assimilation of CO2 into organic matter. Although the mechanisms of ATP/NADPH synthesis are well understood, less is known about how CO2 assimilation was optimised. This process was essential to the successful phototrophic colonisation of land (by Plantae) and the oceans (by phytoplankton). Plants optimised CO2 assimilation using chloroplast-localised ATP-generating processes to control the ATP/NADPH ratio, but the strategies developed by phytoplankton are poorly understood. However, diatoms—ecologically successful ocean organisms—are known to control this ratio by exchanging energy between plastids and mitochondria. Is this mechanism a paradigm for optimisation of photosynthesis in the ocean? The ChloroMito project aims to first decipher the mechanism(s) behind plastid-mitochondria interactions. Thanks to a novel combination of whole-cell approaches, including (opto)genetics, cellular tomography and single-cell spectroscopy, we will identify the nature of the exchanges occurring in diatoms and assess their contribution to dynamic responses to environmental stimuli (light, temperature, nutrients). We will then assess conservation of this mechanism in ecologically relevant phytoplankton taxa, test its role in supporting different lifestyles (autotrophy, mixotrophy, photosymbiosis) encountered in the ocean, and track transitions between these different lifestyles as part of an unprecedented effort to visualise ocean dynamics. Overall, the ChloroMito project will alter our understanding of ocean photosynthesis, challenging textbook concepts which are often inferred from plant-based concepts
Summary
Photosynthesis emerged as an energy-harvesting process at least 3.5 billion years ago, first in anoxygenic bacteria and then in oxygen-producing organisms, which led to the evolution of complex life forms with oxygen-based metabolisms (e.g. humans). Oxygenic photosynthesis produces ATP and NADPH, and the correct balance between these energy-rich molecules allows assimilation of CO2 into organic matter. Although the mechanisms of ATP/NADPH synthesis are well understood, less is known about how CO2 assimilation was optimised. This process was essential to the successful phototrophic colonisation of land (by Plantae) and the oceans (by phytoplankton). Plants optimised CO2 assimilation using chloroplast-localised ATP-generating processes to control the ATP/NADPH ratio, but the strategies developed by phytoplankton are poorly understood. However, diatoms—ecologically successful ocean organisms—are known to control this ratio by exchanging energy between plastids and mitochondria. Is this mechanism a paradigm for optimisation of photosynthesis in the ocean? The ChloroMito project aims to first decipher the mechanism(s) behind plastid-mitochondria interactions. Thanks to a novel combination of whole-cell approaches, including (opto)genetics, cellular tomography and single-cell spectroscopy, we will identify the nature of the exchanges occurring in diatoms and assess their contribution to dynamic responses to environmental stimuli (light, temperature, nutrients). We will then assess conservation of this mechanism in ecologically relevant phytoplankton taxa, test its role in supporting different lifestyles (autotrophy, mixotrophy, photosymbiosis) encountered in the ocean, and track transitions between these different lifestyles as part of an unprecedented effort to visualise ocean dynamics. Overall, the ChloroMito project will alter our understanding of ocean photosynthesis, challenging textbook concepts which are often inferred from plant-based concepts
Max ERC Funding
2 498 207 €
Duration
Start date: 2020-01-01, End date: 2024-12-31