Project acronym 1st-principles-discs
Project A First Principles Approach to Accretion Discs
Researcher (PI) Martin Elias Pessah
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), PE9, ERC-2012-StG_20111012
Summary Most celestial bodies, from planets, to stars, to black holes; gain mass during their lives by means of an accretion disc. Understanding the physical processes that determine the rate at which matter accretes and energy is radiated in these discs is vital for unraveling the formation, evolution, and fate of almost every type of object in the Universe. Despite the fact that magnetic fields have been known to be crucial in accretion discs since the early 90’s, the majority of astrophysical questions that depend on the details of how disc accretion proceeds are still being addressed using the “standard” accretion disc model (developed in the early 70’s), where magnetic fields do not play an explicit role. This has prevented us from fully exploring the astrophysical consequences and observational signatures of realistic accretion disc models, leading to a profound disconnect between observations (usually interpreted with the standard paradigm) and modern accretion disc theory and numerical simulations (where magnetic turbulence is crucial). The goal of this proposal is to use several complementary approaches in order to finally move beyond the standard paradigm. This program has two main objectives: 1) Develop the theoretical framework to incorporate magnetic fields, and the ensuing turbulence, into self-consistent accretion disc models, and investigate their observational implications. 2) Investigate transport and radiative processes in collision-less disc regions, where non-thermal radiation originates, by employing a kinetic particle description of the plasma. In order to achieve these goals, we will use, and build upon, state-of-the-art magnetohydrodynamic and particle-in-cell codes in conjunction with theoretical modeling. This framework will make it possible to address fundamental questions on stellar and planet formation, binary systems with a compact object, and supermassive black hole feedback in a way that has no counterpart within the standard paradigm.
Summary
Most celestial bodies, from planets, to stars, to black holes; gain mass during their lives by means of an accretion disc. Understanding the physical processes that determine the rate at which matter accretes and energy is radiated in these discs is vital for unraveling the formation, evolution, and fate of almost every type of object in the Universe. Despite the fact that magnetic fields have been known to be crucial in accretion discs since the early 90’s, the majority of astrophysical questions that depend on the details of how disc accretion proceeds are still being addressed using the “standard” accretion disc model (developed in the early 70’s), where magnetic fields do not play an explicit role. This has prevented us from fully exploring the astrophysical consequences and observational signatures of realistic accretion disc models, leading to a profound disconnect between observations (usually interpreted with the standard paradigm) and modern accretion disc theory and numerical simulations (where magnetic turbulence is crucial). The goal of this proposal is to use several complementary approaches in order to finally move beyond the standard paradigm. This program has two main objectives: 1) Develop the theoretical framework to incorporate magnetic fields, and the ensuing turbulence, into self-consistent accretion disc models, and investigate their observational implications. 2) Investigate transport and radiative processes in collision-less disc regions, where non-thermal radiation originates, by employing a kinetic particle description of the plasma. In order to achieve these goals, we will use, and build upon, state-of-the-art magnetohydrodynamic and particle-in-cell codes in conjunction with theoretical modeling. This framework will make it possible to address fundamental questions on stellar and planet formation, binary systems with a compact object, and supermassive black hole feedback in a way that has no counterpart within the standard paradigm.
Max ERC Funding
1 793 697 €
Duration
Start date: 2013-02-01, End date: 2018-01-31
Project acronym 2D-4-CO2
Project DESIGNING 2D NANOSHEETS FOR CO2 REDUCTION AND INTEGRATION INTO vdW HETEROSTRUCTURES FOR ARTIFICIAL PHOTOSYNTHESIS
Researcher (PI) Damien VOIRY
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE8, ERC-2018-STG
Summary CO2 reduction reaction (CO2RR) holds great promise for conversion of the green-house gas carbon dioxide into chemical fuels. The absence of catalytic materials demonstrating high performance and high selectivity currently hampers practical demonstration. CO2RR is also limited by the low solubility of CO2 in the electrolyte solution and therefore electrocatalytic reactions in gas phase using gas diffusion electrodes would be preferred. 2D materials have recently emerged as a novel class of electrocatalytic materials thanks to their rich structures and electronic properties. The synthesis of novel 2D catalysts and their implementation into photocatalytic systems would be a major step towards the development of devices for storing solar energy in the form of chemical fuels. With 2D-4-CO2, I propose to: 1) develop novel class of CO2RR catalysts based on conducting 2D nanosheets and 2) demonstrate photocatalytic conversion of CO2 into chemical fuels using structure engineered gas diffusion electrodes made of 2D conducting catalysts. To reach this goal, the first objective of 2D-4-CO2 is to provide guidelines for the development of novel cutting-edge 2D catalysts towards CO2 conversion into chemical fuel. This will be possible by using a multidisciplinary approach based on 2D materials engineering, advanced methods of characterization and novel designs of gas diffusion electrodes for the reduction of CO2 in gas phase. The second objective is to develop practical photocatalytic systems using van der Waals (vdW) heterostructures for the efficient conversion of CO2 into chemical fuels. vdW heterostructures will consist in rational designs of 2D materials and 2D-like materials deposited by atomic layer deposition in order to achieve highly efficient light conversion and prolonged stability. This project will not only enable a deeper understanding of the CO2RR but it will also provide practical strategies for large-scale application of CO2RR for solar fuel production.
Summary
CO2 reduction reaction (CO2RR) holds great promise for conversion of the green-house gas carbon dioxide into chemical fuels. The absence of catalytic materials demonstrating high performance and high selectivity currently hampers practical demonstration. CO2RR is also limited by the low solubility of CO2 in the electrolyte solution and therefore electrocatalytic reactions in gas phase using gas diffusion electrodes would be preferred. 2D materials have recently emerged as a novel class of electrocatalytic materials thanks to their rich structures and electronic properties. The synthesis of novel 2D catalysts and their implementation into photocatalytic systems would be a major step towards the development of devices for storing solar energy in the form of chemical fuels. With 2D-4-CO2, I propose to: 1) develop novel class of CO2RR catalysts based on conducting 2D nanosheets and 2) demonstrate photocatalytic conversion of CO2 into chemical fuels using structure engineered gas diffusion electrodes made of 2D conducting catalysts. To reach this goal, the first objective of 2D-4-CO2 is to provide guidelines for the development of novel cutting-edge 2D catalysts towards CO2 conversion into chemical fuel. This will be possible by using a multidisciplinary approach based on 2D materials engineering, advanced methods of characterization and novel designs of gas diffusion electrodes for the reduction of CO2 in gas phase. The second objective is to develop practical photocatalytic systems using van der Waals (vdW) heterostructures for the efficient conversion of CO2 into chemical fuels. vdW heterostructures will consist in rational designs of 2D materials and 2D-like materials deposited by atomic layer deposition in order to achieve highly efficient light conversion and prolonged stability. This project will not only enable a deeper understanding of the CO2RR but it will also provide practical strategies for large-scale application of CO2RR for solar fuel production.
Max ERC Funding
1 499 931 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym 2DNANOCAPS
Project Next Generation of 2D-Nanomaterials: Enabling Supercapacitor Development
Researcher (PI) Valeria Nicolosi
Host Institution (HI) THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN
Call Details Starting Grant (StG), PE8, ERC-2011-StG_20101014
Summary Climate change and the decreasing availability of fossil fuels require society to move towards sustainable and renewable resources. 2DNanoCaps will focus on electrochemical energy storage, specifically supercapacitors. In terms of performance supercapacitors fill up the gap between batteries and the classical capacitors. Whereas batteries possess a high energy density but low power density, supercapacitors possess high power density but low energy density. Efforts are currently dedicated to move supercapacitors towards high energy density and high power density performance. Improvements have been achieved in the last few years due to the use of new electrode nanomaterials and the design of new hybrid faradic/capacitive systems. We recognize, however, that we are reaching a newer limit beyond which we will only see small incremental improvements. The main reason for this being the intrinsic difficulty in handling and processing materials at the nano-scale and the lack of communication across different scientific disciplines. I plan to use a multidisciplinary approach, where novel nanomaterials, existing knowledge on nano-scale processing and established expertise in device fabrication and testing will be brought together to focus on creating more efficient supercapacitor technologies. 2DNanoCaps will exploit liquid phase exfoliated two-dimensional nanomaterials such as transition metal oxides, layered metal chalcogenides and graphene as electrode materials. Electrodes will be ultra-thin (capacitance and thickness of the electrodes are inversely proportional), conductive, with high dielectric constants. Intercalation of ions between the assembled 2D flakes will be also achievable, providing pseudo-capacitance. The research here proposed will be initially based on fundamental laboratory studies, recognising that this holds the key to achieving step-change in supercapacitors, but also includes scaling-up and hybridisation as final objectives.
Summary
Climate change and the decreasing availability of fossil fuels require society to move towards sustainable and renewable resources. 2DNanoCaps will focus on electrochemical energy storage, specifically supercapacitors. In terms of performance supercapacitors fill up the gap between batteries and the classical capacitors. Whereas batteries possess a high energy density but low power density, supercapacitors possess high power density but low energy density. Efforts are currently dedicated to move supercapacitors towards high energy density and high power density performance. Improvements have been achieved in the last few years due to the use of new electrode nanomaterials and the design of new hybrid faradic/capacitive systems. We recognize, however, that we are reaching a newer limit beyond which we will only see small incremental improvements. The main reason for this being the intrinsic difficulty in handling and processing materials at the nano-scale and the lack of communication across different scientific disciplines. I plan to use a multidisciplinary approach, where novel nanomaterials, existing knowledge on nano-scale processing and established expertise in device fabrication and testing will be brought together to focus on creating more efficient supercapacitor technologies. 2DNanoCaps will exploit liquid phase exfoliated two-dimensional nanomaterials such as transition metal oxides, layered metal chalcogenides and graphene as electrode materials. Electrodes will be ultra-thin (capacitance and thickness of the electrodes are inversely proportional), conductive, with high dielectric constants. Intercalation of ions between the assembled 2D flakes will be also achievable, providing pseudo-capacitance. The research here proposed will be initially based on fundamental laboratory studies, recognising that this holds the key to achieving step-change in supercapacitors, but also includes scaling-up and hybridisation as final objectives.
Max ERC Funding
1 501 296 €
Duration
Start date: 2011-10-01, End date: 2016-09-30
Project acronym 2D–SYNETRA
Project Two-dimensional colloidal nanostructures - Synthesis and electrical transport
Researcher (PI) Christian Klinke
Host Institution (HI) UNIVERSITAET HAMBURG
Call Details Starting Grant (StG), PE4, ERC-2012-StG_20111012
Summary We propose to develop truly two-dimensional continuous materials and two-dimensional monolayer films composed of individual nanocrystals by the comparatively fast, inexpensive, and scalable colloidal synthesis method. The materials’ properties will be studied in detail, especially regarding their (photo-) electrical transport. This will allow developing new types of device structures, such as Coulomb blockade and field enhancement based transistors.
Recently, we demonstrated the possibility to synthesize in a controlled manner truly two-dimensional colloidal nanostructures. We will investigate their formation mechanism, synthesize further materials as “nanosheets”, develop methodologies to tune their geometrical properties, and study their (photo-) electrical properties.
Furthermore, we will use the Langmuir-Blodgett method to deposit highly ordered monolayers of monodisperse nanoparticles. Such structures show interesting transport properties governed by Coulomb blockade effects known from individual nanoparticles. This leads to semiconductor-like behavior in metal nanoparticle films. The understanding of the electric transport in such “multi-tunnel devices” is still very limited. Thus, we will investigate this concept in detail and take it to its limits. Beside improvement of quality and exchange of material we will tune the nanoparticles’ size and shape in order to gain a deeper understanding of the electrical properties of supercrystallographic assemblies. Furthermore, we will develop device concepts for diode and transistor structures which take into account the novel properties of the low-dimensional assemblies.
Nanosheets and monolayers of nanoparticles truly follow the principle of building devices by the bottom-up approach and allow electric transport measurements in a 2D regime. Highly ordered nanomaterial systems possess easy and reliably to manipulate electronic properties what make them interesting for future (inexpensive) electronic devices.
Summary
We propose to develop truly two-dimensional continuous materials and two-dimensional monolayer films composed of individual nanocrystals by the comparatively fast, inexpensive, and scalable colloidal synthesis method. The materials’ properties will be studied in detail, especially regarding their (photo-) electrical transport. This will allow developing new types of device structures, such as Coulomb blockade and field enhancement based transistors.
Recently, we demonstrated the possibility to synthesize in a controlled manner truly two-dimensional colloidal nanostructures. We will investigate their formation mechanism, synthesize further materials as “nanosheets”, develop methodologies to tune their geometrical properties, and study their (photo-) electrical properties.
Furthermore, we will use the Langmuir-Blodgett method to deposit highly ordered monolayers of monodisperse nanoparticles. Such structures show interesting transport properties governed by Coulomb blockade effects known from individual nanoparticles. This leads to semiconductor-like behavior in metal nanoparticle films. The understanding of the electric transport in such “multi-tunnel devices” is still very limited. Thus, we will investigate this concept in detail and take it to its limits. Beside improvement of quality and exchange of material we will tune the nanoparticles’ size and shape in order to gain a deeper understanding of the electrical properties of supercrystallographic assemblies. Furthermore, we will develop device concepts for diode and transistor structures which take into account the novel properties of the low-dimensional assemblies.
Nanosheets and monolayers of nanoparticles truly follow the principle of building devices by the bottom-up approach and allow electric transport measurements in a 2D regime. Highly ordered nanomaterial systems possess easy and reliably to manipulate electronic properties what make them interesting for future (inexpensive) electronic devices.
Max ERC Funding
1 497 200 €
Duration
Start date: 2013-02-01, End date: 2019-01-31
Project acronym 2F4BIODYN
Project Two-Field Nuclear Magnetic Resonance Spectroscopy for the Exploration of Biomolecular Dynamics
Researcher (PI) Fabien Ferrage
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE4, ERC-2011-StG_20101014
Summary The paradigm of the structure-function relationship in proteins is outdated. Biological macromolecules and supramolecular assemblies are highly dynamic objects. Evidence that their motions are of utmost importance to their functions is regularly identified. The understanding of the physical chemistry of biological processes at an atomic level has to rely not only on the description of structure but also on the characterization of molecular motions.
The investigation of protein motions will be undertaken with a very innovative methodological approach in nuclear magnetic resonance relaxation. In order to widen the ranges of frequencies at which local motions in proteins are probed, we will first use and develop new techniques for a prototype shuttle system for the measurement of relaxation at low fields on a high-field NMR spectrometer. Second, we will develop a novel system: a set of low-field NMR spectrometers designed as accessories for high-field spectrometers. Used in conjunction with the shuttle, this system will offer (i) the sensitivity and resolution (i.e. atomic level information) of a high-field spectrometer (ii) the access to low fields of a relaxometer and (iii) the ability to measure a wide variety of relaxation rates with high accuracy. This system will benefit from the latest technology in homogeneous permanent magnet development to allow a control of spin systems identical to that of a high-resolution probe. This new apparatus will open the way to the use of NMR relaxation at low fields for the refinement of protein motions at an atomic scale.
Applications of this novel approach will focus on the bright side of protein dynamics: (i) the largely unexplored dynamics of intrinsically disordered proteins, and (ii) domain motions in large proteins. In both cases, we will investigate a series of diverse protein systems with implications in development, cancer and immunity.
Summary
The paradigm of the structure-function relationship in proteins is outdated. Biological macromolecules and supramolecular assemblies are highly dynamic objects. Evidence that their motions are of utmost importance to their functions is regularly identified. The understanding of the physical chemistry of biological processes at an atomic level has to rely not only on the description of structure but also on the characterization of molecular motions.
The investigation of protein motions will be undertaken with a very innovative methodological approach in nuclear magnetic resonance relaxation. In order to widen the ranges of frequencies at which local motions in proteins are probed, we will first use and develop new techniques for a prototype shuttle system for the measurement of relaxation at low fields on a high-field NMR spectrometer. Second, we will develop a novel system: a set of low-field NMR spectrometers designed as accessories for high-field spectrometers. Used in conjunction with the shuttle, this system will offer (i) the sensitivity and resolution (i.e. atomic level information) of a high-field spectrometer (ii) the access to low fields of a relaxometer and (iii) the ability to measure a wide variety of relaxation rates with high accuracy. This system will benefit from the latest technology in homogeneous permanent magnet development to allow a control of spin systems identical to that of a high-resolution probe. This new apparatus will open the way to the use of NMR relaxation at low fields for the refinement of protein motions at an atomic scale.
Applications of this novel approach will focus on the bright side of protein dynamics: (i) the largely unexplored dynamics of intrinsically disordered proteins, and (ii) domain motions in large proteins. In both cases, we will investigate a series of diverse protein systems with implications in development, cancer and immunity.
Max ERC Funding
1 462 080 €
Duration
Start date: 2012-01-01, End date: 2017-12-31
Project acronym 3D-FABRIC
Project 3D Flow Analysis in Bijels Reconfigured for Interfacial Catalysis
Researcher (PI) Martin F. HAASE
Host Institution (HI) UNIVERSITEIT UTRECHT
Call Details Starting Grant (StG), PE8, ERC-2018-STG
Summary The objective of this proposal is to determine the unknown criteria for convective cross-flow in bicontinuous interfacially jammed emulsion gels (bijels). Based on this, we will answer the question: Can continuously operated interfacial catalysis be realized in bijel cross-flow reactors? Demonstrating this potential will introduce a broadly applicable chemical technology, replacing wasteful chemical processes that require organic solvents. We will achieve our objective in three steps:
(a) Control over bijel structure and properties. Bijels will be formed with a selection of functional inorganic colloidal particles. Nanoparticle surface modifications will be developed and extensively characterized. General principles for the parameters determining bijel structures and properties will be established based on confocal and electron microscopy characterization. These principles will enable unprecedented control over bijel formation and will allow for designing desired properties.
(b) Convective flow in bijels. The mechanical strength of bijels will be tailored and measured. With mechanically robust bijels, the influence of size and organization of oil/water channels on convective mass transfer in bijels will be investigated. To this end, a bijel mass transfer apparatus fabricated by 3d-printing of bijel fibers and soft photolithography will be introduced. In conjunction with the following objective, the analysis of convective flows in bijels will facilitate a thorough description of their structure/function relationships.
(c) Biphasic chemical reactions in STrIPS bijel cross-flow reactors. First, continuous extraction in bijels will be realized. Next, conditions to carry out continuously-operated, phase transfer catalysis of well-known model reactions in bijels will be determined. Both processes will be characterized in-situ and in 3-dimensions by confocal microscopy of fluorescent phase transfer reactions in transparent bijels.
Summary
The objective of this proposal is to determine the unknown criteria for convective cross-flow in bicontinuous interfacially jammed emulsion gels (bijels). Based on this, we will answer the question: Can continuously operated interfacial catalysis be realized in bijel cross-flow reactors? Demonstrating this potential will introduce a broadly applicable chemical technology, replacing wasteful chemical processes that require organic solvents. We will achieve our objective in three steps:
(a) Control over bijel structure and properties. Bijels will be formed with a selection of functional inorganic colloidal particles. Nanoparticle surface modifications will be developed and extensively characterized. General principles for the parameters determining bijel structures and properties will be established based on confocal and electron microscopy characterization. These principles will enable unprecedented control over bijel formation and will allow for designing desired properties.
(b) Convective flow in bijels. The mechanical strength of bijels will be tailored and measured. With mechanically robust bijels, the influence of size and organization of oil/water channels on convective mass transfer in bijels will be investigated. To this end, a bijel mass transfer apparatus fabricated by 3d-printing of bijel fibers and soft photolithography will be introduced. In conjunction with the following objective, the analysis of convective flows in bijels will facilitate a thorough description of their structure/function relationships.
(c) Biphasic chemical reactions in STrIPS bijel cross-flow reactors. First, continuous extraction in bijels will be realized. Next, conditions to carry out continuously-operated, phase transfer catalysis of well-known model reactions in bijels will be determined. Both processes will be characterized in-situ and in 3-dimensions by confocal microscopy of fluorescent phase transfer reactions in transparent bijels.
Max ERC Funding
1 905 000 €
Duration
Start date: 2019-06-01, End date: 2024-05-31
Project acronym 3DICE
Project 3D Interstellar Chemo-physical Evolution
Researcher (PI) Valentine Wakelam
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE9, ERC-2013-StG
Summary At the end of their life, stars spread their inner material into the diffuse interstellar medium. This diffuse medium gets locally denser and form dark clouds (also called dense or molecular clouds) whose innermost part is shielded from the external UV field by the dust, allowing for molecules to grow and get more complex. Gravitational collapse occurs inside these dense clouds, forming protostars and their surrounding disks, and eventually planetary systems like (or unlike) our solar system. The formation and evolution of molecules, minerals, ices and organics from the diffuse medium to planetary bodies, their alteration or preservation throughout this cosmic chemical history set the initial conditions for building planets, atmospheres and possibly the first bricks of life. The current view of interstellar chemistry is based on fragmental works on key steps of the sequence that are observed. The objective of this proposal is to follow the fractionation of the elements between the gas-phase and the interstellar grains, from the most diffuse medium to protoplanetary disks, in order to constrain the chemical composition of the material in which planets are formed. The potential outcome of this project is to get a consistent and more accurate description of the chemical evolution of interstellar matter. To achieve this objective, I will improve our chemical model by adding new processes on grain surfaces relevant under the diffuse medium conditions. This upgraded gas-grain model will be coupled to 3D dynamical models of the formation of dense clouds from diffuse medium and of protoplanetary disks from dense clouds. The computed chemical composition will also be used with 3D radiative transfer codes to study the chemical tracers of the physics of protoplanetary disk formation. The robustness of the model predictions will be studied with sensitivity analyses. Finally, model results will be confronted to observations to address some of the current challenges.
Summary
At the end of their life, stars spread their inner material into the diffuse interstellar medium. This diffuse medium gets locally denser and form dark clouds (also called dense or molecular clouds) whose innermost part is shielded from the external UV field by the dust, allowing for molecules to grow and get more complex. Gravitational collapse occurs inside these dense clouds, forming protostars and their surrounding disks, and eventually planetary systems like (or unlike) our solar system. The formation and evolution of molecules, minerals, ices and organics from the diffuse medium to planetary bodies, their alteration or preservation throughout this cosmic chemical history set the initial conditions for building planets, atmospheres and possibly the first bricks of life. The current view of interstellar chemistry is based on fragmental works on key steps of the sequence that are observed. The objective of this proposal is to follow the fractionation of the elements between the gas-phase and the interstellar grains, from the most diffuse medium to protoplanetary disks, in order to constrain the chemical composition of the material in which planets are formed. The potential outcome of this project is to get a consistent and more accurate description of the chemical evolution of interstellar matter. To achieve this objective, I will improve our chemical model by adding new processes on grain surfaces relevant under the diffuse medium conditions. This upgraded gas-grain model will be coupled to 3D dynamical models of the formation of dense clouds from diffuse medium and of protoplanetary disks from dense clouds. The computed chemical composition will also be used with 3D radiative transfer codes to study the chemical tracers of the physics of protoplanetary disk formation. The robustness of the model predictions will be studied with sensitivity analyses. Finally, model results will be confronted to observations to address some of the current challenges.
Max ERC Funding
1 166 231 €
Duration
Start date: 2013-09-01, End date: 2018-08-31
Project acronym a SMILE
Project analyse Soluble + Membrane complexes with Improved LILBID Experiments
Researcher (PI) Nina Morgner
Host Institution (HI) JOHANN WOLFGANG GOETHE-UNIVERSITATFRANKFURT AM MAIN
Call Details Starting Grant (StG), PE4, ERC-2013-StG
Summary Crucial processes within cells depend on specific non-covalent interactions which mediate the assembly of proteins and other biomolecules. Deriving structural information to understand the function of these complex systems is the primary goal of Structural Biology.
In this application, the recently developed LILBID method (Laser Induced Liquid Bead Ion Desorption) will be optimized for investigation of macromolecular complexes with a mass accuracy two orders of magnitude better than in 1st generation spectrometers.
Controlled disassembly of the multiprotein complexes in the mass spectrometric analysis while keeping the 3D structure intact, will allow for the determination of complex stoichiometry and connectivity of the constituting proteins. Methods for such controlled disassembly will be developed in two separate units of the proposed LILBID spectrometer, in a collision chamber and in a laser dissociation chamber, enabling gas phase dissociation of protein complexes and removal of excess water/buffer molecules. As a third unit, a chamber allowing determination of ion mobility (IM) will be integrated to determine collisional cross sections (CCS). From CCS, unique information regarding the spatial arrangement of proteins in complexes or subcomplexes will then be obtainable from LILBID.
The proposed design of the new spectrometer will offer fundamentally new possibilities for the investigation of non-covalent RNA, soluble and membrane protein complexes, as well as broadening the applicability of non-covalent MS towards supercomplexes.
Summary
Crucial processes within cells depend on specific non-covalent interactions which mediate the assembly of proteins and other biomolecules. Deriving structural information to understand the function of these complex systems is the primary goal of Structural Biology.
In this application, the recently developed LILBID method (Laser Induced Liquid Bead Ion Desorption) will be optimized for investigation of macromolecular complexes with a mass accuracy two orders of magnitude better than in 1st generation spectrometers.
Controlled disassembly of the multiprotein complexes in the mass spectrometric analysis while keeping the 3D structure intact, will allow for the determination of complex stoichiometry and connectivity of the constituting proteins. Methods for such controlled disassembly will be developed in two separate units of the proposed LILBID spectrometer, in a collision chamber and in a laser dissociation chamber, enabling gas phase dissociation of protein complexes and removal of excess water/buffer molecules. As a third unit, a chamber allowing determination of ion mobility (IM) will be integrated to determine collisional cross sections (CCS). From CCS, unique information regarding the spatial arrangement of proteins in complexes or subcomplexes will then be obtainable from LILBID.
The proposed design of the new spectrometer will offer fundamentally new possibilities for the investigation of non-covalent RNA, soluble and membrane protein complexes, as well as broadening the applicability of non-covalent MS towards supercomplexes.
Max ERC Funding
1 264 477 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym A-LIFE
Project The asymmetry of life: towards a unified view of the emergence of biological homochirality
Researcher (PI) Cornelia MEINERT
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE4, ERC-2018-STG
Summary What is responsible for the emergence of homochirality, the almost exclusive use of one enantiomer over its mirror image? And what led to the evolution of life’s homochiral biopolymers, DNA/RNA, proteins and lipids, where all the constituent monomers exhibit the same handedness?
Based on in-situ observations and laboratory studies, we propose that this handedness occurs when chiral biomolecules are synthesized asymmetrically through interaction with circularly polarized photons in interstellar space. The ultimate goal of this project will be to demonstrate how the diverse set of heterogeneous enantioenriched molecules, available from meteoritic impact, assembles into homochiral pre-biopolymers, by simulating the evolutionary stages on early Earth. My recent research has shown that the central chiral unit of RNA, ribose, forms readily under simulated comet conditions and this has provided valuable new insights into the accessibility of precursors of genetic material in interstellar environments. The significance of this project arises due to the current lack of experimental demonstration that amino acids, sugars and lipids can simultaneously and asymmetrically be synthesized by a universal physical selection process.
A synergistic methodology will be developed to build a unified theory for the origin of all chiral biological building blocks and their assembly into homochiral supramolecular entities. For the first time, advanced analyses of astrophysical-relevant samples, asymmetric photochemistry triggered by circularly polarized synchrotron and laser sources, and chiral amplification due to polymerization processes will be combined. Intermediates and autocatalytic reaction kinetics will be monitored and supported by quantum calculations to understand the underlying processes. A unified theory on the asymmetric formation and self-assembly of life’s biopolymers is groundbreaking and will impact the whole conceptual foundation of the origin of life.
Summary
What is responsible for the emergence of homochirality, the almost exclusive use of one enantiomer over its mirror image? And what led to the evolution of life’s homochiral biopolymers, DNA/RNA, proteins and lipids, where all the constituent monomers exhibit the same handedness?
Based on in-situ observations and laboratory studies, we propose that this handedness occurs when chiral biomolecules are synthesized asymmetrically through interaction with circularly polarized photons in interstellar space. The ultimate goal of this project will be to demonstrate how the diverse set of heterogeneous enantioenriched molecules, available from meteoritic impact, assembles into homochiral pre-biopolymers, by simulating the evolutionary stages on early Earth. My recent research has shown that the central chiral unit of RNA, ribose, forms readily under simulated comet conditions and this has provided valuable new insights into the accessibility of precursors of genetic material in interstellar environments. The significance of this project arises due to the current lack of experimental demonstration that amino acids, sugars and lipids can simultaneously and asymmetrically be synthesized by a universal physical selection process.
A synergistic methodology will be developed to build a unified theory for the origin of all chiral biological building blocks and their assembly into homochiral supramolecular entities. For the first time, advanced analyses of astrophysical-relevant samples, asymmetric photochemistry triggered by circularly polarized synchrotron and laser sources, and chiral amplification due to polymerization processes will be combined. Intermediates and autocatalytic reaction kinetics will be monitored and supported by quantum calculations to understand the underlying processes. A unified theory on the asymmetric formation and self-assembly of life’s biopolymers is groundbreaking and will impact the whole conceptual foundation of the origin of life.
Max ERC Funding
1 500 000 €
Duration
Start date: 2019-04-01, End date: 2024-03-31
Project acronym AArteMIS
Project Aneurysmal Arterial Mechanics: Into the Structure
Researcher (PI) Pierre Joseph Badel
Host Institution (HI) ASSOCIATION POUR LA RECHERCHE ET LE DEVELOPPEMENT DES METHODES ET PROCESSUS INDUSTRIELS
Call Details Starting Grant (StG), PE8, ERC-2014-STG
Summary The rupture of an Aortic Aneurysm (AA), which is often lethal, is a mechanical phenomenon that occurs when the wall stress state exceeds the local strength of the tissue. Our current understanding of arterial rupture mechanisms is poor, and the physics taking place at the microscopic scale in these collagenous structures remains an open area of research. Understanding, modelling, and quantifying the micro-mechanisms which drive the mechanical response of such tissue and locally trigger rupture represents the most challenging and promising pathway towards predictive diagnosis and personalized care of AA.
The PI's group was recently able to detect, in advance, at the macro-scale, rupture-prone areas in bulging arterial tissues. The next step is to get into the details of the arterial microstructure to elucidate the underlying mechanisms.
Through the achievements of AArteMIS, the local mechanical state of the fibrous microstructure of the tissue, especially close to its rupture state, will be quantitatively analyzed from multi-photon confocal microscopy and numerically reconstructed to establish quantitative micro-scale rupture criteria. AArteMIS will also address developing micro-macro models which are based on the collected quantitative data.
The entire project will be completed through collaboration with medical doctors and engineers, experts in all required fields for the success of AArteMIS.
AArteMIS is expected to open longed-for pathways for research in soft tissue mechanobiology which focuses on cell environment and to enable essential clinical applications for the quantitative assessment of AA rupture risk. It will significantly contribute to understanding fatal vascular events and improving cardiovascular treatments. It will provide a tremendous source of data and inspiration for subsequent applications and research by answering the most fundamental questions on AA rupture behaviour enabling ground-breaking clinical changes to take place.
Summary
The rupture of an Aortic Aneurysm (AA), which is often lethal, is a mechanical phenomenon that occurs when the wall stress state exceeds the local strength of the tissue. Our current understanding of arterial rupture mechanisms is poor, and the physics taking place at the microscopic scale in these collagenous structures remains an open area of research. Understanding, modelling, and quantifying the micro-mechanisms which drive the mechanical response of such tissue and locally trigger rupture represents the most challenging and promising pathway towards predictive diagnosis and personalized care of AA.
The PI's group was recently able to detect, in advance, at the macro-scale, rupture-prone areas in bulging arterial tissues. The next step is to get into the details of the arterial microstructure to elucidate the underlying mechanisms.
Through the achievements of AArteMIS, the local mechanical state of the fibrous microstructure of the tissue, especially close to its rupture state, will be quantitatively analyzed from multi-photon confocal microscopy and numerically reconstructed to establish quantitative micro-scale rupture criteria. AArteMIS will also address developing micro-macro models which are based on the collected quantitative data.
The entire project will be completed through collaboration with medical doctors and engineers, experts in all required fields for the success of AArteMIS.
AArteMIS is expected to open longed-for pathways for research in soft tissue mechanobiology which focuses on cell environment and to enable essential clinical applications for the quantitative assessment of AA rupture risk. It will significantly contribute to understanding fatal vascular events and improving cardiovascular treatments. It will provide a tremendous source of data and inspiration for subsequent applications and research by answering the most fundamental questions on AA rupture behaviour enabling ground-breaking clinical changes to take place.
Max ERC Funding
1 499 783 €
Duration
Start date: 2015-04-01, End date: 2020-03-31
Project acronym ABIOS
Project ABIOtic Synthesis of RNA: an investigation on how life started before biology existed
Researcher (PI) Guillaume STIRNEMANN
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE4, ERC-2017-STG
Summary The emergence of life is one of the most fascinating and yet largely unsolved questions in the natural sciences, and thus a significant challenge for scientists from many disciplines. There is growing evidence that ribonucleic acid (RNA) polymers, which are capable of genetic information storage and self-catalysis, were involved in the early forms of life. But despite recent progress, RNA synthesis without biological machineries is very challenging. The current project aims at understanding how to synthesize RNA in abiotic conditions. I will solve problems associated with three critical aspects of RNA formation that I will rationalize at a molecular level: (i) accumulation of precursors, (ii) formation of a chemical bond between RNA monomers, and (iii) tolerance for alternative backbone sugars or linkages. Because I will study problems ranging from the formation of chemical bonds up to the stability of large biopolymers, I propose an original computational multi-scale approach combining techniques that range from quantum calculations to large-scale all-atom simulations, employed together with efficient enhanced-sampling algorithms, forcefield improvement, cutting-edge analysis methods and model development.
My objectives are the following:
1 • To explain why the poorly-understood thermally-driven process of thermophoresis can contribute to the accumulation of dilute precursors.
2 • To understand why linking RNA monomers with phosphoester bonds is so difficult, to understand the molecular mechanism of possible catalysts and to suggest key improvements.
3 • To rationalize the molecular basis for RNA tolerance for alternative backbone sugars or linkages that have probably been incorporated in abiotic conditions.
This unique in-silico laboratory setup should significantly impact our comprehension of life’s origin by overcoming major obstacles to RNA abiotic formation, and in addition will reveal significant orthogonal outcomes for (bio)technological applications.
Summary
The emergence of life is one of the most fascinating and yet largely unsolved questions in the natural sciences, and thus a significant challenge for scientists from many disciplines. There is growing evidence that ribonucleic acid (RNA) polymers, which are capable of genetic information storage and self-catalysis, were involved in the early forms of life. But despite recent progress, RNA synthesis without biological machineries is very challenging. The current project aims at understanding how to synthesize RNA in abiotic conditions. I will solve problems associated with three critical aspects of RNA formation that I will rationalize at a molecular level: (i) accumulation of precursors, (ii) formation of a chemical bond between RNA monomers, and (iii) tolerance for alternative backbone sugars or linkages. Because I will study problems ranging from the formation of chemical bonds up to the stability of large biopolymers, I propose an original computational multi-scale approach combining techniques that range from quantum calculations to large-scale all-atom simulations, employed together with efficient enhanced-sampling algorithms, forcefield improvement, cutting-edge analysis methods and model development.
My objectives are the following:
1 • To explain why the poorly-understood thermally-driven process of thermophoresis can contribute to the accumulation of dilute precursors.
2 • To understand why linking RNA monomers with phosphoester bonds is so difficult, to understand the molecular mechanism of possible catalysts and to suggest key improvements.
3 • To rationalize the molecular basis for RNA tolerance for alternative backbone sugars or linkages that have probably been incorporated in abiotic conditions.
This unique in-silico laboratory setup should significantly impact our comprehension of life’s origin by overcoming major obstacles to RNA abiotic formation, and in addition will reveal significant orthogonal outcomes for (bio)technological applications.
Max ERC Funding
1 497 031 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym ABRSEIST
Project Antibiotic Resistance: Socio-Economic Determinants and the Role of Information and Salience in Treatment Choice
Researcher (PI) Hannes ULLRICH
Host Institution (HI) DEUTSCHES INSTITUT FUR WIRTSCHAFTSFORSCHUNG DIW (INSTITUT FUR KONJUNKTURFORSCHUNG) EV
Call Details Starting Grant (StG), SH1, ERC-2018-STG
Summary Antibiotics have contributed to a tremendous increase in human well-being, saving many millions of lives. However, antibiotics become obsolete the more they are used as selection pressure promotes the development of resistant bacteria. The World Health Organization has proclaimed antibiotic resistance as a major global threat to public health. Today, 700,000 deaths per year are due to untreatable infections. To win the battle against antibiotic resistance, new policies affecting the supply and demand of existing and new drugs must be designed. I propose new research to identify and evaluate feasible and effective demand-side policy interventions targeting the relevant decision makers: physicians and patients. ABRSEIST will make use of a broad econometric toolset to identify mechanisms linking antibiotic resistance and consumption exploiting a unique combination of physician-patient-level antibiotic resistance, treatment, and socio-economic data. Using machine learning methods adapted for causal inference, theory-driven structural econometric analysis, and randomization in the field it will provide rigorous evidence on effective intervention designs. This research will improve our understanding of how prescribing, resistance, and the effect of antibiotic use on resistance, are distributed in the general population which has important implications for the design of targeted interventions. It will then estimate a structural model of general practitioners’ acquisition and use of information under uncertainty about resistance in prescription choice, allowing counterfactual analysis of information-improving policies such as mandatory diagnostic testing. The large-scale and structural econometric analyses allow flexible identification of physician heterogeneity, which ABRSEIST will exploit to design and evaluate targeted, randomized information nudges in the field. The result will be improved rational use and a toolset applicable in contexts of antibiotic prescribing.
Summary
Antibiotics have contributed to a tremendous increase in human well-being, saving many millions of lives. However, antibiotics become obsolete the more they are used as selection pressure promotes the development of resistant bacteria. The World Health Organization has proclaimed antibiotic resistance as a major global threat to public health. Today, 700,000 deaths per year are due to untreatable infections. To win the battle against antibiotic resistance, new policies affecting the supply and demand of existing and new drugs must be designed. I propose new research to identify and evaluate feasible and effective demand-side policy interventions targeting the relevant decision makers: physicians and patients. ABRSEIST will make use of a broad econometric toolset to identify mechanisms linking antibiotic resistance and consumption exploiting a unique combination of physician-patient-level antibiotic resistance, treatment, and socio-economic data. Using machine learning methods adapted for causal inference, theory-driven structural econometric analysis, and randomization in the field it will provide rigorous evidence on effective intervention designs. This research will improve our understanding of how prescribing, resistance, and the effect of antibiotic use on resistance, are distributed in the general population which has important implications for the design of targeted interventions. It will then estimate a structural model of general practitioners’ acquisition and use of information under uncertainty about resistance in prescription choice, allowing counterfactual analysis of information-improving policies such as mandatory diagnostic testing. The large-scale and structural econometric analyses allow flexible identification of physician heterogeneity, which ABRSEIST will exploit to design and evaluate targeted, randomized information nudges in the field. The result will be improved rational use and a toolset applicable in contexts of antibiotic prescribing.
Max ERC Funding
1 498 920 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym ACAP
Project Acency Costs and Asset Pricing
Researcher (PI) Thomas Mariotti
Host Institution (HI) FONDATION JEAN-JACQUES LAFFONT,TOULOUSE SCIENCES ECONOMIQUES
Call Details Starting Grant (StG), SH1, ERC-2007-StG
Summary The main objective of this research project is to contribute at bridging the gap between the two main branches of financial theory, namely corporate finance and asset pricing. It is motivated by the conviction that these two aspects of financial activity should and can be analyzed within a unified framework. This research will borrow from these two approaches in order to construct theoretical models that allow one to analyze the design and issuance of financial securities, as well as the dynamics of their valuations. Unlike asset pricing, which takes as given the price of the fundamentals, the goal is to derive security price processes from a precise description of firm’s operations and internal frictions. Regarding the latter, and in line with traditional corporate finance theory, the analysis will emphasize the role of agency costs within the firm for the design of its securities. But the analysis will be pushed one step further by studying the impact of these agency costs on key financial variables such as stock and bond prices, leverage, book-to-market ratios, default risk, or the holding of liquidities by firms. One of the contributions of this research project is to show how these variables are interrelated when firms and investors agree upon optimal financial arrangements. The final objective is to derive a rich set of testable asset pricing implications that would eventually be brought to the data.
Summary
The main objective of this research project is to contribute at bridging the gap between the two main branches of financial theory, namely corporate finance and asset pricing. It is motivated by the conviction that these two aspects of financial activity should and can be analyzed within a unified framework. This research will borrow from these two approaches in order to construct theoretical models that allow one to analyze the design and issuance of financial securities, as well as the dynamics of their valuations. Unlike asset pricing, which takes as given the price of the fundamentals, the goal is to derive security price processes from a precise description of firm’s operations and internal frictions. Regarding the latter, and in line with traditional corporate finance theory, the analysis will emphasize the role of agency costs within the firm for the design of its securities. But the analysis will be pushed one step further by studying the impact of these agency costs on key financial variables such as stock and bond prices, leverage, book-to-market ratios, default risk, or the holding of liquidities by firms. One of the contributions of this research project is to show how these variables are interrelated when firms and investors agree upon optimal financial arrangements. The final objective is to derive a rich set of testable asset pricing implications that would eventually be brought to the data.
Max ERC Funding
1 000 000 €
Duration
Start date: 2008-11-01, End date: 2014-10-31
Project acronym ACOULOMODE
Project Advanced coupling of low order combustor simulations with thermoacoustic modelling and controller design
Researcher (PI) Aimee Morgans
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Call Details Starting Grant (StG), PE8, ERC-2012-StG_20111012
Summary "Combustion is essential to the world’s energy generation and transport needs, and will remain so for the foreseeable future. Mitigating its impact on the climate and human health, by reducing its associated emissions, is thus a priority. One significant challenge for gas-turbine combustion is combustion instability, which is currently inhibiting reductions in NOx emissions (these damage human health via a deterioration in air quality). Combustion instability is caused by a two-way coupling between unsteady combustion and acoustic waves - the large pressure oscillations that result can cause substantial mechanical damage. Currently, the lack of fast, accurate modelling tools for combustion instability, and the lack of reliable ways of suppressing it are severely hindering reductions in NOx emissions.
This proposal aims to make step improvements in both fast, accurate modelling of combustion instability, and in developing reliable active control strategies for its suppression. It will achieve this by coupling low order combustor models (these are fast, simplified models for simulating combustion instability) with advances in analytical modelling, CFD simulation, reduced order modelling and control theory tools. In particular:
* important advances in accurately incorporating the effect of entropy waves (temperature variations resulting from unsteady combustion) and non-linear flame models will be made;
* new active control strategies for achieving reliable suppression of combustion instability, including from within limit cycle oscillations, will be developed;
* an open-source low order combustor modelling tool will be developed and widely disseminated, opening access to researchers worldwide and improving communications between the fields of thermoacoustics and control theory.
Thus the proposal aims to use analytical and computational methods to contribute to achieving low NOx gas-turbine combustion, without the penalty of damaging combustion instability."
Summary
"Combustion is essential to the world’s energy generation and transport needs, and will remain so for the foreseeable future. Mitigating its impact on the climate and human health, by reducing its associated emissions, is thus a priority. One significant challenge for gas-turbine combustion is combustion instability, which is currently inhibiting reductions in NOx emissions (these damage human health via a deterioration in air quality). Combustion instability is caused by a two-way coupling between unsteady combustion and acoustic waves - the large pressure oscillations that result can cause substantial mechanical damage. Currently, the lack of fast, accurate modelling tools for combustion instability, and the lack of reliable ways of suppressing it are severely hindering reductions in NOx emissions.
This proposal aims to make step improvements in both fast, accurate modelling of combustion instability, and in developing reliable active control strategies for its suppression. It will achieve this by coupling low order combustor models (these are fast, simplified models for simulating combustion instability) with advances in analytical modelling, CFD simulation, reduced order modelling and control theory tools. In particular:
* important advances in accurately incorporating the effect of entropy waves (temperature variations resulting from unsteady combustion) and non-linear flame models will be made;
* new active control strategies for achieving reliable suppression of combustion instability, including from within limit cycle oscillations, will be developed;
* an open-source low order combustor modelling tool will be developed and widely disseminated, opening access to researchers worldwide and improving communications between the fields of thermoacoustics and control theory.
Thus the proposal aims to use analytical and computational methods to contribute to achieving low NOx gas-turbine combustion, without the penalty of damaging combustion instability."
Max ERC Funding
1 489 309 €
Duration
Start date: 2013-01-01, End date: 2017-12-31
Project acronym ActiveWindFarms
Project Active Wind Farms: Optimization and Control of Atmospheric Energy Extraction in Gigawatt Wind Farms
Researcher (PI) Johan Meyers
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Starting Grant (StG), PE8, ERC-2012-StG_20111012
Summary With the recognition that wind energy will become an important contributor to the world’s energy portfolio, several wind farms with a capacity of over 1 gigawatt are in planning phase. In the past, engineering of wind farms focused on a bottom-up approach, in which atmospheric wind availability was considered to be fixed by climate and weather. However, farms of gigawatt size slow down the Atmospheric Boundary Layer (ABL) as a whole, reducing the availability of wind at turbine hub height. In Denmark’s large off-shore farms, this leads to underperformance of turbines which can reach levels of 40%–50% compared to the same turbine in a lone-standing case. For large wind farms, the vertical structure and turbulence physics of the flow in the ABL become crucial ingredients in their design and operation. This introduces a new set of scientific challenges related to the design and control of large wind farms. The major ambition of the present research proposal is to employ optimal control techniques to control the interaction between large wind farms and the ABL, and optimize overall farm-power extraction. Individual turbines are used as flow actuators by dynamically pitching their blades using time scales ranging between 10 to 500 seconds. The application of such control efforts on the atmospheric boundary layer has never been attempted before, and introduces flow control on a physical scale which is currently unprecedented. The PI possesses a unique combination of expertise and tools enabling these developments: efficient parallel large-eddy simulations of wind farms, multi-scale turbine modeling, and gradient-based optimization in large optimization-parameter spaces using adjoint formulations. To ensure a maximum impact on the wind-engineering field, the project aims at optimal control, experimental wind-tunnel validation, and at including multi-disciplinary aspects, related to structural mechanics, power quality, and controller design.
Summary
With the recognition that wind energy will become an important contributor to the world’s energy portfolio, several wind farms with a capacity of over 1 gigawatt are in planning phase. In the past, engineering of wind farms focused on a bottom-up approach, in which atmospheric wind availability was considered to be fixed by climate and weather. However, farms of gigawatt size slow down the Atmospheric Boundary Layer (ABL) as a whole, reducing the availability of wind at turbine hub height. In Denmark’s large off-shore farms, this leads to underperformance of turbines which can reach levels of 40%–50% compared to the same turbine in a lone-standing case. For large wind farms, the vertical structure and turbulence physics of the flow in the ABL become crucial ingredients in their design and operation. This introduces a new set of scientific challenges related to the design and control of large wind farms. The major ambition of the present research proposal is to employ optimal control techniques to control the interaction between large wind farms and the ABL, and optimize overall farm-power extraction. Individual turbines are used as flow actuators by dynamically pitching their blades using time scales ranging between 10 to 500 seconds. The application of such control efforts on the atmospheric boundary layer has never been attempted before, and introduces flow control on a physical scale which is currently unprecedented. The PI possesses a unique combination of expertise and tools enabling these developments: efficient parallel large-eddy simulations of wind farms, multi-scale turbine modeling, and gradient-based optimization in large optimization-parameter spaces using adjoint formulations. To ensure a maximum impact on the wind-engineering field, the project aims at optimal control, experimental wind-tunnel validation, and at including multi-disciplinary aspects, related to structural mechanics, power quality, and controller design.
Max ERC Funding
1 499 241 €
Duration
Start date: 2012-10-01, End date: 2017-09-30
Project acronym ADULT
Project Analysis of the Dark Universe through Lensing Tomography
Researcher (PI) Hendrik Hoekstra
Host Institution (HI) UNIVERSITEIT LEIDEN
Call Details Starting Grant (StG), PE9, ERC-2011-StG_20101014
Summary The discoveries that the expansion of the universe is accelerating due to an unknown “dark energy”
and that most of the matter is invisible, highlight our lack of understanding of the major constituents
of the universe. These surprising findings set the stage for research in cosmology at the start of the
21st century. The objective of this proposal is to advance observational constraints to a level where we can distinguish between physical mechanisms that aim to explain the properties of dark energy and the observed distribution of dark matter throughout the universe. We use a relatively new technique called weak gravitational lensing: the accurate measurement of correlations in the orientations of distant galaxies enables us to map the dark matter distribution directly and to extract the cosmological information that is encoded by the large-scale structure.
To study the dark universe we will analyse data from a new state-of-the-art imaging survey: the Kilo-
Degree Survey (KiDS) will cover 1500 square degrees in 9 filters. The combination of its large survey
area and the availability of exquisite photometric redshifts for the sources makes KiDS the first
project that can place interesting constraints on the dark energy equation-of-state using lensing data
alone. Combined with complementary results from Planck, our measurements will provide one of the
best views of the dark side of the universe before much larger space-based projects commence.
To reach the desired accuracy we need to carefully measure the shapes of distant background galaxies. We also need to account for any intrinsic alignments that arise due to tidal interactions, rather than through lensing. Reducing these observational and physical biases to negligible levels is a necessarystep to ensure the success of KiDS and an important part of our preparation for more challenging projects such as the European-led space mission Euclid.
Summary
The discoveries that the expansion of the universe is accelerating due to an unknown “dark energy”
and that most of the matter is invisible, highlight our lack of understanding of the major constituents
of the universe. These surprising findings set the stage for research in cosmology at the start of the
21st century. The objective of this proposal is to advance observational constraints to a level where we can distinguish between physical mechanisms that aim to explain the properties of dark energy and the observed distribution of dark matter throughout the universe. We use a relatively new technique called weak gravitational lensing: the accurate measurement of correlations in the orientations of distant galaxies enables us to map the dark matter distribution directly and to extract the cosmological information that is encoded by the large-scale structure.
To study the dark universe we will analyse data from a new state-of-the-art imaging survey: the Kilo-
Degree Survey (KiDS) will cover 1500 square degrees in 9 filters. The combination of its large survey
area and the availability of exquisite photometric redshifts for the sources makes KiDS the first
project that can place interesting constraints on the dark energy equation-of-state using lensing data
alone. Combined with complementary results from Planck, our measurements will provide one of the
best views of the dark side of the universe before much larger space-based projects commence.
To reach the desired accuracy we need to carefully measure the shapes of distant background galaxies. We also need to account for any intrinsic alignments that arise due to tidal interactions, rather than through lensing. Reducing these observational and physical biases to negligible levels is a necessarystep to ensure the success of KiDS and an important part of our preparation for more challenging projects such as the European-led space mission Euclid.
Max ERC Funding
1 316 880 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym AEROFLEX
Project AEROelastic instabilities and control of FLEXible Structures
Researcher (PI) Olivier Pierre MARQUET
Host Institution (HI) OFFICE NATIONAL D'ETUDES ET DE RECHERCHES AEROSPATIALES
Call Details Starting Grant (StG), PE8, ERC-2014-STG
Summary Aeroelastic instabilities are at the origin of large deformations of structures and are limiting the capacities of products in various industrial branches such as aeronautics, marine industry, or wind electricity production. If suppressing aeroelastic instabilities is an ultimate goal, a paradigm shift in the technological development is to take advantage of these instabilities to achieve others objectives, as reducing the drag of these flexible structures. The ground-breaking challenges addressed in this project are to design fundamentally new theoretical methodologies for (i) describing mathematically aeroelastic instabilities, (ii) suppressing them and (iii) using them to reduce mean drag of structures at a low energetic cost. To that aim, two types of aeroelastic phenomena will be specifically studied: the flutter, which arises as a result of an unstable coupling instability between two stable dynamics, that of the structures and that the flow, and vortex-induced vibrations which appear when the fluid dynamics is unstable. An aeroelastic global stability analysis will be first developed and applied to problems of increasing complexity, starting from two-dimensional free-vibrating rigid structures and progressing towards three-dimensional free-deforming elastic structures. The control of these aeroelastic instabilities will be then addressed with two different objectives: their suppression or their use for flow control. A theoretical passive control methodology will be established for suppressing linear aeroelastic instabilities, and extended to high Reynolds number flows and experimental configurations. New perturbation methods for solving strongly nonlinear problems and adjoint-based control algorithm will allow to use these aeroelastic instabilities for drag reduction. This project will allow innovative control solutions to emerge, not only in flutter or vortex-induced vibrations problems, but also in a much broader class of fluid-structure problems.
Summary
Aeroelastic instabilities are at the origin of large deformations of structures and are limiting the capacities of products in various industrial branches such as aeronautics, marine industry, or wind electricity production. If suppressing aeroelastic instabilities is an ultimate goal, a paradigm shift in the technological development is to take advantage of these instabilities to achieve others objectives, as reducing the drag of these flexible structures. The ground-breaking challenges addressed in this project are to design fundamentally new theoretical methodologies for (i) describing mathematically aeroelastic instabilities, (ii) suppressing them and (iii) using them to reduce mean drag of structures at a low energetic cost. To that aim, two types of aeroelastic phenomena will be specifically studied: the flutter, which arises as a result of an unstable coupling instability between two stable dynamics, that of the structures and that the flow, and vortex-induced vibrations which appear when the fluid dynamics is unstable. An aeroelastic global stability analysis will be first developed and applied to problems of increasing complexity, starting from two-dimensional free-vibrating rigid structures and progressing towards three-dimensional free-deforming elastic structures. The control of these aeroelastic instabilities will be then addressed with two different objectives: their suppression or their use for flow control. A theoretical passive control methodology will be established for suppressing linear aeroelastic instabilities, and extended to high Reynolds number flows and experimental configurations. New perturbation methods for solving strongly nonlinear problems and adjoint-based control algorithm will allow to use these aeroelastic instabilities for drag reduction. This project will allow innovative control solutions to emerge, not only in flutter or vortex-induced vibrations problems, but also in a much broader class of fluid-structure problems.
Max ERC Funding
1 377 290 €
Duration
Start date: 2015-07-01, End date: 2020-06-30
Project acronym AEROSPACEPHYS
Project Multiphysics models and simulations for reacting and plasma flows applied to the space exploration program
Researcher (PI) Thierry Edouard Bertrand Magin
Host Institution (HI) INSTITUT VON KARMAN DE DYNAMIQUE DES FLUIDES
Call Details Starting Grant (StG), PE8, ERC-2010-StG_20091028
Summary Space exploration is one of boldest and most exciting endeavors that humanity has undertaken, and it holds enormous promise for the future. Our next challenges for the spatial conquest include bringing back samples to Earth by means of robotic missions and continuing the manned exploration program, which aims at sending human beings to Mars and bring them home safely. Inaccurate prediction of the heat-flux to the surface of the spacecraft heat shield can be fatal for the crew or the success of a robotic mission. This quantity is estimated during the design phase. An accurate prediction is a particularly complex task, regarding modelling of the following phenomena that are potential “mission killers:” 1) Radiation of the plasma in the shock layer, 2) Complex surface chemistry on the thermal protection material, 3) Flow transition from laminar to turbulent. Our poor understanding of the coupled mechanisms of radiation, ablation, and transition leads to the difficulties in flux prediction. To avoid failure and ensure safety of the astronauts and payload, engineers resort to “safety factors” to determine the thickness of the heat shield, at the expense of the mass of embarked payload. Thinking out of the box and basic research are thus necessary for advancements of the models that will better define the environment and requirements for the design and safe operation of tomorrow’s space vehicles and planetary probes for the manned space exploration. The three basic ingredients for predictive science are: 1) Physico-chemical models, 2) Computational methods, 3) Experimental data. We propose to follow a complementary approach for prediction. The proposed research aims at: “Integrating new advanced physico-chemical models and computational methods, based on a multidisciplinary approach developed together with physicists, chemists, and applied mathematicians, to create a top-notch multiphysics and multiscale numerical platform for simulations of planetary atmosphere entries, crucial to the new challenges of the manned space exploration program. Experimental data will also be used for validation, following state-of-the-art uncertainty quantification methods.”
Summary
Space exploration is one of boldest and most exciting endeavors that humanity has undertaken, and it holds enormous promise for the future. Our next challenges for the spatial conquest include bringing back samples to Earth by means of robotic missions and continuing the manned exploration program, which aims at sending human beings to Mars and bring them home safely. Inaccurate prediction of the heat-flux to the surface of the spacecraft heat shield can be fatal for the crew or the success of a robotic mission. This quantity is estimated during the design phase. An accurate prediction is a particularly complex task, regarding modelling of the following phenomena that are potential “mission killers:” 1) Radiation of the plasma in the shock layer, 2) Complex surface chemistry on the thermal protection material, 3) Flow transition from laminar to turbulent. Our poor understanding of the coupled mechanisms of radiation, ablation, and transition leads to the difficulties in flux prediction. To avoid failure and ensure safety of the astronauts and payload, engineers resort to “safety factors” to determine the thickness of the heat shield, at the expense of the mass of embarked payload. Thinking out of the box and basic research are thus necessary for advancements of the models that will better define the environment and requirements for the design and safe operation of tomorrow’s space vehicles and planetary probes for the manned space exploration. The three basic ingredients for predictive science are: 1) Physico-chemical models, 2) Computational methods, 3) Experimental data. We propose to follow a complementary approach for prediction. The proposed research aims at: “Integrating new advanced physico-chemical models and computational methods, based on a multidisciplinary approach developed together with physicists, chemists, and applied mathematicians, to create a top-notch multiphysics and multiscale numerical platform for simulations of planetary atmosphere entries, crucial to the new challenges of the manned space exploration program. Experimental data will also be used for validation, following state-of-the-art uncertainty quantification methods.”
Max ERC Funding
1 494 892 €
Duration
Start date: 2010-09-01, End date: 2015-08-31
Project acronym AFFINITY
Project Actuation of Ferromagnetic Fibre Networks to improve Implant Longevity
Researcher (PI) Athina Markaki
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Starting Grant (StG), PE8, ERC-2009-StG
Summary This proposal is for an exploratory study into a radical new approach to the problem of orthopaedic implant loosening. Such loosening commonly occurs because the joint between the implant and the surrounding bone is insufficiently strong and durable. It is a serious problem both for implants cemented to the bone and for those dependent on bone in-growth into a rough/porous implant surface. In the latter case, the main problem is commonly that bone in-growth is insufficiently rapid or deep for a strong bond to be established. The idea proposed in this work is that the implant should have a highly porous surface layer, made by bonding ferromagnetic fibres together, into which bone tissue growth would occur. During the post-operative period, application of a magnetic field will cause the fibre network to deform elastically, as individual fibres tend to align with the field. This will impose strains on the bone tissue as it grows into the fibre network. Such mechanical deformation is known to be highly beneficial in promoting bone growth, providing the associated strain lies in a certain range (~0.1%). Preliminary work, involving both model development and experimental studies on the effect of magnetic fields on fibre networks, has suggested that beneficial therapeutic effects can be induced using field strengths no greater than those already employed for diagnostic purposes. A comprehensive 5-year, highly inter-disciplinary programme is planned, encompassing processing, network architecture characterisation, magneto-mechanical response investigations, various modelling activities and systematic in vitro experimentation to establish whether magneto-mechanical Actuation of Ferromagnetic Fibre Networks shows promise as a new therapeutic approach to improve implant longevity.
Summary
This proposal is for an exploratory study into a radical new approach to the problem of orthopaedic implant loosening. Such loosening commonly occurs because the joint between the implant and the surrounding bone is insufficiently strong and durable. It is a serious problem both for implants cemented to the bone and for those dependent on bone in-growth into a rough/porous implant surface. In the latter case, the main problem is commonly that bone in-growth is insufficiently rapid or deep for a strong bond to be established. The idea proposed in this work is that the implant should have a highly porous surface layer, made by bonding ferromagnetic fibres together, into which bone tissue growth would occur. During the post-operative period, application of a magnetic field will cause the fibre network to deform elastically, as individual fibres tend to align with the field. This will impose strains on the bone tissue as it grows into the fibre network. Such mechanical deformation is known to be highly beneficial in promoting bone growth, providing the associated strain lies in a certain range (~0.1%). Preliminary work, involving both model development and experimental studies on the effect of magnetic fields on fibre networks, has suggested that beneficial therapeutic effects can be induced using field strengths no greater than those already employed for diagnostic purposes. A comprehensive 5-year, highly inter-disciplinary programme is planned, encompassing processing, network architecture characterisation, magneto-mechanical response investigations, various modelling activities and systematic in vitro experimentation to establish whether magneto-mechanical Actuation of Ferromagnetic Fibre Networks shows promise as a new therapeutic approach to improve implant longevity.
Max ERC Funding
1 442 756 €
Duration
Start date: 2010-01-01, End date: 2015-11-30
Project acronym AFFIRM
Project Analysis of Biofilm Mediated Fouling of Nanofiltration Membranes
Researcher (PI) Eoin Casey
Host Institution (HI) UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN
Call Details Starting Grant (StG), PE8, ERC-2011-StG_20101014
Summary 1.2 billion people worldwide lack access to safe drinking water. Drinking water quality is threatened by newly emerging organic micro-pollutants (pesticides, pharmaceuticals, industrial chemicals) in source waters. Nanofiltration is a technology that is expected to play a key role in future water treatment processes due to its effectiveness in removal of micropollutants. However, the loss of membrane flux due to fouling is one of the main impediments in the development of membrane processes for use in drinking water treatment. Currently there is a wholly inadequate mechanistic understanding of the role of biofilm on the fouling of nanofiltration membranes.
Applying techniques including confocal microscopy, force spectroscopy, and infrared spectroscopy using an experimental programme informed by a technique known as scale-down together with mathematical modelling, it is confidently expected that significant advances will be gained in the mechanistic understanding of nanofiltration biofouling.
The specific objectives are 1. How is the rate of formation and extent of such biofilms influenced by the biological response to the local microenvironment? 2 Elucidate the effect of extracellular polysaccharide substances on physical properties, composition and structure of these biofilms. 3: Investigate mechanisms to enhance biofilm removal by a physical detachment process complemented by techniques that alter biofilm material properties.
A more fundamental insight into the mechanisms of nanofiltration operation will help in further development of this treatment method in future water treatment processes.
Summary
1.2 billion people worldwide lack access to safe drinking water. Drinking water quality is threatened by newly emerging organic micro-pollutants (pesticides, pharmaceuticals, industrial chemicals) in source waters. Nanofiltration is a technology that is expected to play a key role in future water treatment processes due to its effectiveness in removal of micropollutants. However, the loss of membrane flux due to fouling is one of the main impediments in the development of membrane processes for use in drinking water treatment. Currently there is a wholly inadequate mechanistic understanding of the role of biofilm on the fouling of nanofiltration membranes.
Applying techniques including confocal microscopy, force spectroscopy, and infrared spectroscopy using an experimental programme informed by a technique known as scale-down together with mathematical modelling, it is confidently expected that significant advances will be gained in the mechanistic understanding of nanofiltration biofouling.
The specific objectives are 1. How is the rate of formation and extent of such biofilms influenced by the biological response to the local microenvironment? 2 Elucidate the effect of extracellular polysaccharide substances on physical properties, composition and structure of these biofilms. 3: Investigate mechanisms to enhance biofilm removal by a physical detachment process complemented by techniques that alter biofilm material properties.
A more fundamental insight into the mechanisms of nanofiltration operation will help in further development of this treatment method in future water treatment processes.
Max ERC Funding
1 468 987 €
Duration
Start date: 2011-10-01, End date: 2016-09-30
Project acronym AfricanWomen
Project Women in Africa
Researcher (PI) catherine GUIRKINGER
Host Institution (HI) UNIVERSITE DE NAMUR ASBL
Call Details Starting Grant (StG), SH1, ERC-2017-STG
Summary Rates of domestic violence and the relative risk of premature death for women are higher in sub-Saharan Africa than in any other region. Yet we know remarkably little about the economic forces, incentives and constraints that drive discrimination against women in this region, making it hard to identify policy levers to address the problem. This project will help fill this gap.
I will investigate gender discrimination from two complementary perspectives. First, through the lens of economic history, I will investigate the forces driving trends in women’s relative well-being since slavery. To quantify the evolution of well-being of sub-Saharan women relative to men, I will use three types of historical data: anthropometric indicators (relative height), vital statistics (to compute numbers of missing women), and outcomes of formal and informal family law disputes. I will then investigate how major economic developments and changes in family laws differentially affected women’s welfare across ethnic groups with different norms on women’s roles and rights.
Second, using intra-household economic models, I will provide new insights into domestic violence and gender bias in access to crucial resources in present-day Africa. I will develop a new household model that incorporates gender identity and endogenous outside options to explore the relationship between women’s empowerment and the use of violence. Using the notion of strategic delegation, I will propose a new rationale for the separation of budgets often observed in African households and generate predictions of how improvements in women’s outside options affect welfare. Finally, with first hand data, I will investigate intra-household differences in nutrition and work effort in times of food shortage from the points of view of efficiency and equity. I will use activity trackers as an innovative means of collecting high quality data on work effort and thus overcome data limitations restricting the existing literature
Summary
Rates of domestic violence and the relative risk of premature death for women are higher in sub-Saharan Africa than in any other region. Yet we know remarkably little about the economic forces, incentives and constraints that drive discrimination against women in this region, making it hard to identify policy levers to address the problem. This project will help fill this gap.
I will investigate gender discrimination from two complementary perspectives. First, through the lens of economic history, I will investigate the forces driving trends in women’s relative well-being since slavery. To quantify the evolution of well-being of sub-Saharan women relative to men, I will use three types of historical data: anthropometric indicators (relative height), vital statistics (to compute numbers of missing women), and outcomes of formal and informal family law disputes. I will then investigate how major economic developments and changes in family laws differentially affected women’s welfare across ethnic groups with different norms on women’s roles and rights.
Second, using intra-household economic models, I will provide new insights into domestic violence and gender bias in access to crucial resources in present-day Africa. I will develop a new household model that incorporates gender identity and endogenous outside options to explore the relationship between women’s empowerment and the use of violence. Using the notion of strategic delegation, I will propose a new rationale for the separation of budgets often observed in African households and generate predictions of how improvements in women’s outside options affect welfare. Finally, with first hand data, I will investigate intra-household differences in nutrition and work effort in times of food shortage from the points of view of efficiency and equity. I will use activity trackers as an innovative means of collecting high quality data on work effort and thus overcome data limitations restricting the existing literature
Max ERC Funding
1 499 313 €
Duration
Start date: 2018-08-01, End date: 2023-07-31
Project acronym AFRODITE
Project Advanced Fluid Research On Drag reduction In Turbulence Experiments
Researcher (PI) Jens Henrik Mikael Fransson
Host Institution (HI) KUNGLIGA TEKNISKA HOEGSKOLAN
Call Details Starting Grant (StG), PE8, ERC-2010-StG_20091028
Summary A hot topic in today's debate on global warming is drag reduction in aeronautics. The most beneficial concept for drag reduction is to maintain the major portion of the airfoil laminar. Estimations show that the potential drag reduction can be as much as 15%, which would give a significant reduction of NOx and CO emissions in the atmosphere considering that the number of aircraft take offs, only in the EU, is over 19 million per year. An important element for successful flow control, which can lead to a reduced aerodynamic drag, is enhanced physical understanding of the transition to turbulence process.
In previous wind tunnel measurements we have shown that roughness elements can be used to sensibly delay transition to turbulence. The result is revolutionary, since the common belief has been that surface roughness causes earlier transition and in turn increases the drag, and is a proof of concept of the passive control method per se. The beauty with a passive control technique is that no external energy has to be added to the flow system in order to perform the control, instead one uses the existing energy in the flow.
In this project proposal, AFRODITE, we will take this passive control method to the next level by making it twofold, more persistent and more robust. Transition prevention is the goal rather than transition delay and the method will be extended to simultaneously control separation, which is another unwanted flow phenomenon especially during airplane take offs. AFRODITE will be a catalyst for innovative research, which will lead to a cleaner sky.
Summary
A hot topic in today's debate on global warming is drag reduction in aeronautics. The most beneficial concept for drag reduction is to maintain the major portion of the airfoil laminar. Estimations show that the potential drag reduction can be as much as 15%, which would give a significant reduction of NOx and CO emissions in the atmosphere considering that the number of aircraft take offs, only in the EU, is over 19 million per year. An important element for successful flow control, which can lead to a reduced aerodynamic drag, is enhanced physical understanding of the transition to turbulence process.
In previous wind tunnel measurements we have shown that roughness elements can be used to sensibly delay transition to turbulence. The result is revolutionary, since the common belief has been that surface roughness causes earlier transition and in turn increases the drag, and is a proof of concept of the passive control method per se. The beauty with a passive control technique is that no external energy has to be added to the flow system in order to perform the control, instead one uses the existing energy in the flow.
In this project proposal, AFRODITE, we will take this passive control method to the next level by making it twofold, more persistent and more robust. Transition prevention is the goal rather than transition delay and the method will be extended to simultaneously control separation, which is another unwanted flow phenomenon especially during airplane take offs. AFRODITE will be a catalyst for innovative research, which will lead to a cleaner sky.
Max ERC Funding
1 418 399 €
Duration
Start date: 2010-11-01, End date: 2015-10-31
Project acronym AGGLONANOCOAT
Project The interplay between agglomeration and coating of nanoparticles in the gas phase
Researcher (PI) Jan Rudolf Van Ommen
Host Institution (HI) TECHNISCHE UNIVERSITEIT DELFT
Call Details Starting Grant (StG), PE8, ERC-2011-StG_20101014
Summary This proposal aims to develop a generic synthesis approach for core-shell nanoparticles by unravelling the relevant mechanisms. Core-shell nanoparticles have high potential in heterogeneous catalysis, energy storage, and medical applications. However, on a fundamental level there is currently a poor understanding of how to produce such nanostructured particles in a controllable and scalable manner.
The main barriers to achieving this goal are understanding how nanoparticles agglomerate to loose dynamic clusters and controlling the agglomeration process in gas flows during coating, such that uniform coatings can be made. This is very challenging because of the two-way coupling between agglomeration and coating. During the coating we change the particle surfaces and thus the way the particles stick together. Correspondingly, the stickiness of particles determines how easy reactants can reach the surface.
Innovatively the project will be the first systematic study into this multi-scale phenomenon with investigations at all relevant length scales. Current synthesis approaches – mostly carried out in the liquid phase – are typically developed case by case. I will coat nanoparticles in the gas phase with atomic layer deposition (ALD): a technique from the semi-conductor industry that can deposit a wide range of materials. ALD applied to flat substrates offers excellent control over layer thickness. I will investigate the modification of single particle surfaces, particle-particle interaction, the structure of agglomerates, and the flow behaviour of large number of agglomerates. To this end, I will apply a multidisciplinary approach, combining disciplines as physical chemistry, fluid dynamics, and reaction engineering.
Summary
This proposal aims to develop a generic synthesis approach for core-shell nanoparticles by unravelling the relevant mechanisms. Core-shell nanoparticles have high potential in heterogeneous catalysis, energy storage, and medical applications. However, on a fundamental level there is currently a poor understanding of how to produce such nanostructured particles in a controllable and scalable manner.
The main barriers to achieving this goal are understanding how nanoparticles agglomerate to loose dynamic clusters and controlling the agglomeration process in gas flows during coating, such that uniform coatings can be made. This is very challenging because of the two-way coupling between agglomeration and coating. During the coating we change the particle surfaces and thus the way the particles stick together. Correspondingly, the stickiness of particles determines how easy reactants can reach the surface.
Innovatively the project will be the first systematic study into this multi-scale phenomenon with investigations at all relevant length scales. Current synthesis approaches – mostly carried out in the liquid phase – are typically developed case by case. I will coat nanoparticles in the gas phase with atomic layer deposition (ALD): a technique from the semi-conductor industry that can deposit a wide range of materials. ALD applied to flat substrates offers excellent control over layer thickness. I will investigate the modification of single particle surfaces, particle-particle interaction, the structure of agglomerates, and the flow behaviour of large number of agglomerates. To this end, I will apply a multidisciplinary approach, combining disciplines as physical chemistry, fluid dynamics, and reaction engineering.
Max ERC Funding
1 409 952 €
Duration
Start date: 2011-12-01, End date: 2016-11-30
Project acronym AIDA
Project An Illumination of the Dark Ages: modeling reionization and interpreting observations
Researcher (PI) Andrei Albert Mesinger
Host Institution (HI) SCUOLA NORMALE SUPERIORE
Call Details Starting Grant (StG), PE9, ERC-2014-STG
Summary "Understanding the dawn of the first galaxies and how their light permeated the early Universe is at the very frontier of modern astrophysical cosmology. Generous resources, including ambitions observational programs, are being devoted to studying these epochs of Cosmic Dawn (CD) and Reionization (EoR). In order to interpret these observations, we propose to build on our widely-used, semi-numeric simulation tool, 21cmFAST, and apply it to observations. Using sub-grid, semi-analytic models, we will incorporate additional physical processes governing the evolution of sources and sinks of ionizing photons. The resulting state-of-the-art simulations will be well poised to interpret topical observations of quasar spectra and the cosmic 21cm signal. They would be both physically-motivated and fast, allowing us to rapidly explore astrophysical parameter space. We will statistically quantify the resulting degeneracies and constraints, providing a robust answer to the question, ""What can we learn from EoR/CD observations?"" As an end goal, these investigations will help us understand when the first generations of galaxies formed, how they drove the EoR, and what are the associated large-scale observational signatures."
Summary
"Understanding the dawn of the first galaxies and how their light permeated the early Universe is at the very frontier of modern astrophysical cosmology. Generous resources, including ambitions observational programs, are being devoted to studying these epochs of Cosmic Dawn (CD) and Reionization (EoR). In order to interpret these observations, we propose to build on our widely-used, semi-numeric simulation tool, 21cmFAST, and apply it to observations. Using sub-grid, semi-analytic models, we will incorporate additional physical processes governing the evolution of sources and sinks of ionizing photons. The resulting state-of-the-art simulations will be well poised to interpret topical observations of quasar spectra and the cosmic 21cm signal. They would be both physically-motivated and fast, allowing us to rapidly explore astrophysical parameter space. We will statistically quantify the resulting degeneracies and constraints, providing a robust answer to the question, ""What can we learn from EoR/CD observations?"" As an end goal, these investigations will help us understand when the first generations of galaxies formed, how they drove the EoR, and what are the associated large-scale observational signatures."
Max ERC Funding
1 468 750 €
Duration
Start date: 2015-05-01, End date: 2021-01-31
Project acronym ALMP_ECON
Project Effective evaluation of active labour market policies in social insurance programs - improving the interaction between econometric evaluation estimators and economic theory
Researcher (PI) Bas Van Der Klaauw
Host Institution (HI) STICHTING VU
Call Details Starting Grant (StG), SH1, ERC-2007-StG
Summary In most European countries social insurance programs, like welfare, unemployment insurance and disability insurance are characterized by low reemployment rates. Therefore, governments spend huge amounts of money on active labour market programs, which should help individuals in finding work. Recent surveys indicate that programs which aim at intensifying job search behaviour are much more effective than schooling programs for improving human capital. A second conclusion from these surveys is that despite the size of the spendings on these programs, evidence on its effectiveness is limited. This research proposal aims at developing an economic framework that will be used to evaluate the effectiveness of popular programs like offering reemployment bonuses, fraud detection, workfare and job search monitoring. The main innovation is that I will combine economic theory with recently developed econometric techniques and detailed administrative data sets, which have not been explored before. While most of the literature only focuses on short-term outcomes, the available data allow me to also consider the long-term effectiveness of programs. The key advantage of an economic model is that I can compare the effectiveness of the different programs, consider modifications of programs and combinations of programs. Furthermore, using an economic model I can construct profiling measures to improve the targeting of programs to subsamples of the population. This is particularly relevant if the effectiveness of programs differs between individuals or depends on the moment in time the program is offered. Therefore, the results from this research will not only be of scientific interest, but will also be of great value to policymakers.
Summary
In most European countries social insurance programs, like welfare, unemployment insurance and disability insurance are characterized by low reemployment rates. Therefore, governments spend huge amounts of money on active labour market programs, which should help individuals in finding work. Recent surveys indicate that programs which aim at intensifying job search behaviour are much more effective than schooling programs for improving human capital. A second conclusion from these surveys is that despite the size of the spendings on these programs, evidence on its effectiveness is limited. This research proposal aims at developing an economic framework that will be used to evaluate the effectiveness of popular programs like offering reemployment bonuses, fraud detection, workfare and job search monitoring. The main innovation is that I will combine economic theory with recently developed econometric techniques and detailed administrative data sets, which have not been explored before. While most of the literature only focuses on short-term outcomes, the available data allow me to also consider the long-term effectiveness of programs. The key advantage of an economic model is that I can compare the effectiveness of the different programs, consider modifications of programs and combinations of programs. Furthermore, using an economic model I can construct profiling measures to improve the targeting of programs to subsamples of the population. This is particularly relevant if the effectiveness of programs differs between individuals or depends on the moment in time the program is offered. Therefore, the results from this research will not only be of scientific interest, but will also be of great value to policymakers.
Max ERC Funding
550 000 €
Duration
Start date: 2008-07-01, End date: 2013-06-30
Project acronym ALORS
Project Advanced Lagrangian Optimization, Receptivity and Sensitivity analysis applied to industrial situations
Researcher (PI) Matthew Pudan Juniper
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Starting Grant (StG), PE8, ERC-2010-StG_20091028
Summary In the last ten years there has been a surge of interest in non-modal analysis applied to canonical problems in fundamental fluid mechanics. Even in simple flows, the stability behaviour predicted by non-modal analysis can be completely different from and far more accurate than that predicted by conventional eigenvalue analysis.
As well as being more accurate, the tools of non-modal analysis, such as Lagrangian optimization, are very versatile. Furthermore, the outputs, such as receptivity and sensitivity maps of a flow, provide powerful insight for engineers. They describe where a flow is most receptive to forcing or where the flow is most sensitive to modification.
The application of non-modal analysis to canonical problems has set the scene for step changes in engineering practice in fluid mechanics and thermoacoustics. The technical objectives of this proposal are to apply non-modal analysis to high Reynolds number flows, reacting flows and thermoacoustic systems, to compare theoretical predictions with experimental measurements and to embed these techniques within an industrial design tool that has already been developed by the group.
This research group s vision is that future generations of engineering CFD tools will contain modules that can perform non-modal analysis. The generalized approach proposed here, combined with challenging scientific and engineering examples that are backed up by experimental evidence, will make this possible and demonstrate it to a wider engineering community.
Summary
In the last ten years there has been a surge of interest in non-modal analysis applied to canonical problems in fundamental fluid mechanics. Even in simple flows, the stability behaviour predicted by non-modal analysis can be completely different from and far more accurate than that predicted by conventional eigenvalue analysis.
As well as being more accurate, the tools of non-modal analysis, such as Lagrangian optimization, are very versatile. Furthermore, the outputs, such as receptivity and sensitivity maps of a flow, provide powerful insight for engineers. They describe where a flow is most receptive to forcing or where the flow is most sensitive to modification.
The application of non-modal analysis to canonical problems has set the scene for step changes in engineering practice in fluid mechanics and thermoacoustics. The technical objectives of this proposal are to apply non-modal analysis to high Reynolds number flows, reacting flows and thermoacoustic systems, to compare theoretical predictions with experimental measurements and to embed these techniques within an industrial design tool that has already been developed by the group.
This research group s vision is that future generations of engineering CFD tools will contain modules that can perform non-modal analysis. The generalized approach proposed here, combined with challenging scientific and engineering examples that are backed up by experimental evidence, will make this possible and demonstrate it to a wider engineering community.
Max ERC Funding
1 301 196 €
Duration
Start date: 2010-12-01, End date: 2016-06-30
Project acronym ALUFIX
Project Friction stir processing based local damage mitigation and healing in aluminium alloys
Researcher (PI) Aude SIMAR
Host Institution (HI) UNIVERSITE CATHOLIQUE DE LOUVAIN
Call Details Starting Grant (StG), PE8, ERC-2016-STG
Summary ALUFIX proposes an original strategy for the development of aluminium-based materials involving damage mitigation and extrinsic self-healing concepts exploiting the new opportunities of the solid-state friction stir process. Friction stir processing locally extrudes and drags material from the front to the back and around the tool pin. It involves short duration at moderate temperatures (typically 80% of the melting temperature), fast cooling rates and large plastic deformations leading to far out-of-equilibrium microstructures. The idea is that commercial aluminium alloys can be locally improved and healed in regions of stress concentration where damage is likely to occur. Self-healing in metal-based materials is still in its infancy and existing strategies can hardly be extended to applications. Friction stir processing can enhance the damage and fatigue resistance of aluminium alloys by microstructure homogenisation and refinement. In parallel, friction stir processing can be used to integrate secondary phases in an aluminium matrix. In the ALUFIX project, healing phases will thus be integrated in aluminium in addition to refining and homogenising the microstructure. The “local stress management strategy” favours crack closure and crack deviation at the sub-millimetre scale thanks to a controlled residual stress field. The “transient liquid healing agent” strategy involves the in-situ generation of an out-of-equilibrium compositionally graded microstructure at the aluminium/healing agent interface capable of liquid-phase healing after a thermal treatment. Along the road, a variety of new scientific questions concerning the damage mechanisms will have to be addressed.
Summary
ALUFIX proposes an original strategy for the development of aluminium-based materials involving damage mitigation and extrinsic self-healing concepts exploiting the new opportunities of the solid-state friction stir process. Friction stir processing locally extrudes and drags material from the front to the back and around the tool pin. It involves short duration at moderate temperatures (typically 80% of the melting temperature), fast cooling rates and large plastic deformations leading to far out-of-equilibrium microstructures. The idea is that commercial aluminium alloys can be locally improved and healed in regions of stress concentration where damage is likely to occur. Self-healing in metal-based materials is still in its infancy and existing strategies can hardly be extended to applications. Friction stir processing can enhance the damage and fatigue resistance of aluminium alloys by microstructure homogenisation and refinement. In parallel, friction stir processing can be used to integrate secondary phases in an aluminium matrix. In the ALUFIX project, healing phases will thus be integrated in aluminium in addition to refining and homogenising the microstructure. The “local stress management strategy” favours crack closure and crack deviation at the sub-millimetre scale thanks to a controlled residual stress field. The “transient liquid healing agent” strategy involves the in-situ generation of an out-of-equilibrium compositionally graded microstructure at the aluminium/healing agent interface capable of liquid-phase healing after a thermal treatment. Along the road, a variety of new scientific questions concerning the damage mechanisms will have to be addressed.
Max ERC Funding
1 497 447 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym ANAMORPHISM
Project Asymptotic and Numerical Analysis of MOdels of Resonant Physics Involving Structured Materials
Researcher (PI) Sebastien Roger Louis Guenneau
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE8, ERC-2011-StG_20101014
Summary One already available method to expand the range of material properties is to adjust the composition of materials at the molecular level using chemistry. We would like to develop the alternative approach of homogenization which broadens the definition of a material to include artificially structured media (fluids and solids) in which the effective electromagnetic, hydrodynamic or elastic responses result from a macroscopic patterning or arrangement of two or more distinct materials. This project will explore the latter avenue in order to markedly enhance control of surface water waves and elastodynamic waves propagating within artificially structured fluids and solid materials, thereafter called acoustic metamaterials.
Pendry's perfect lens, the paradigm of electromagnetic metamaterials, is a slab of negative refractive index material that takes rays of light and causes them to converge with unprecedented resolution. This flat lens is a combination of periodically arranged resonant electric and magnetic elements. We will draw systematic analogies with resonant mechanical systems in order to achieve similar control of hydrodynamic and elastic waves. This will allow us to extend the design of metamaterials to acoustics to go beyond the scope of Snell-Descartes' laws of optics and Newton's laws of mechanics.
Acoustic metamaterials allow the construction of invisibility cloaks for non-linear surface water waves (e.g. tsunamis) propagating in structured fluids, as well as seismic waves propagating in thin structured elastic plates.
Maritime and civil engineering applications are in the protection of harbours, off-shore platforms and anti-earthquake passive systems. Acoustic cloaks for an enhanced control of pressure waves in fluids will be also designed for underwater camouflaging.
Light and sound interplay will be finally analysed in order to design controllable metamaterials with a special emphasis on undetectable microstructured fibres (acoustic wormholes).
Summary
One already available method to expand the range of material properties is to adjust the composition of materials at the molecular level using chemistry. We would like to develop the alternative approach of homogenization which broadens the definition of a material to include artificially structured media (fluids and solids) in which the effective electromagnetic, hydrodynamic or elastic responses result from a macroscopic patterning or arrangement of two or more distinct materials. This project will explore the latter avenue in order to markedly enhance control of surface water waves and elastodynamic waves propagating within artificially structured fluids and solid materials, thereafter called acoustic metamaterials.
Pendry's perfect lens, the paradigm of electromagnetic metamaterials, is a slab of negative refractive index material that takes rays of light and causes them to converge with unprecedented resolution. This flat lens is a combination of periodically arranged resonant electric and magnetic elements. We will draw systematic analogies with resonant mechanical systems in order to achieve similar control of hydrodynamic and elastic waves. This will allow us to extend the design of metamaterials to acoustics to go beyond the scope of Snell-Descartes' laws of optics and Newton's laws of mechanics.
Acoustic metamaterials allow the construction of invisibility cloaks for non-linear surface water waves (e.g. tsunamis) propagating in structured fluids, as well as seismic waves propagating in thin structured elastic plates.
Maritime and civil engineering applications are in the protection of harbours, off-shore platforms and anti-earthquake passive systems. Acoustic cloaks for an enhanced control of pressure waves in fluids will be also designed for underwater camouflaging.
Light and sound interplay will be finally analysed in order to design controllable metamaterials with a special emphasis on undetectable microstructured fibres (acoustic wormholes).
Max ERC Funding
1 280 391 €
Duration
Start date: 2011-10-01, End date: 2016-09-30
Project acronym ANGLE
Project Accelerated design and discovery of novel molecular materials via global lattice energy minimisation
Researcher (PI) Graeme Matthew Day
Host Institution (HI) UNIVERSITY OF SOUTHAMPTON
Call Details Starting Grant (StG), PE4, ERC-2012-StG_20111012
Summary The goal of crystal engineering is the design of functional crystalline materials in which the arrangement of basic structural building blocks imparts desired properties. The engineering of organic molecular crystals has, to date, relied largely on empirical rules governing the intermolecular association of functional groups in the solid state. However, many materials properties depend intricately on the complete crystal structure, i.e. the unit cell, space group and atomic positions, which cannot be predicted solely using such rules. Therefore, the development of computational methods for crystal structure prediction (CSP) from first principles has been a goal of computational chemistry that could significantly accelerate the design of new materials. It is only recently that the necessary advances in the modelling of intermolecular interactions and developments in algorithms for identifying all relevant crystal structures have come together to provide predictive methods that are becoming reliable and affordable on a timescale that could usefully complement an experimental research programme. The principle aim of the proposed work is to establish the use of state-of-the-art crystal structure prediction methods as a means of guiding the discovery and design of novel molecular materials.
This research proposal both continues the development of the computational methods for CSP and, by developing a computational framework for screening of potential molecules, develops the application of these methods for materials design. The areas on which we will focus are organic molecular semiconductors with high charge carrier mobilities and, building on our recently published results in Nature [1], the development of porous organic molecular materials. The project will both deliver novel materials, as well as improvements in the reliability of computational methods that will find widespread applications in materials chemistry.
[1] Nature 2011, 474, 367-371.
Summary
The goal of crystal engineering is the design of functional crystalline materials in which the arrangement of basic structural building blocks imparts desired properties. The engineering of organic molecular crystals has, to date, relied largely on empirical rules governing the intermolecular association of functional groups in the solid state. However, many materials properties depend intricately on the complete crystal structure, i.e. the unit cell, space group and atomic positions, which cannot be predicted solely using such rules. Therefore, the development of computational methods for crystal structure prediction (CSP) from first principles has been a goal of computational chemistry that could significantly accelerate the design of new materials. It is only recently that the necessary advances in the modelling of intermolecular interactions and developments in algorithms for identifying all relevant crystal structures have come together to provide predictive methods that are becoming reliable and affordable on a timescale that could usefully complement an experimental research programme. The principle aim of the proposed work is to establish the use of state-of-the-art crystal structure prediction methods as a means of guiding the discovery and design of novel molecular materials.
This research proposal both continues the development of the computational methods for CSP and, by developing a computational framework for screening of potential molecules, develops the application of these methods for materials design. The areas on which we will focus are organic molecular semiconductors with high charge carrier mobilities and, building on our recently published results in Nature [1], the development of porous organic molecular materials. The project will both deliver novel materials, as well as improvements in the reliability of computational methods that will find widespread applications in materials chemistry.
[1] Nature 2011, 474, 367-371.
Max ERC Funding
1 499 906 €
Duration
Start date: 2012-10-01, End date: 2017-09-30
Project acronym ANISOGEL
Project Injectable anisotropic microgel-in-hydrogel matrices for spinal cord repair
Researcher (PI) Laura De Laporte
Host Institution (HI) DWI LEIBNIZ-INSTITUT FUR INTERAKTIVE MATERIALIEN EV
Call Details Starting Grant (StG), PE8, ERC-2014-STG
Summary This project will engineer an injectable biomaterial that forms an anisotropic microheterogeneous structure in vivo. Injectable hydrogels enable a minimal invasive in situ generation of matrices for the regeneration of tissues and organs, but currently lack structural organization and unidirectional orientation. The anisotropic, injectable hydrogels to be developed will mimic local extracellular matrix architectures that cells encounter in complex tissues (e.g. nerves, muscles). This project aims for the development of a biomimetic scaffold for spinal cord regeneration.
To realize such a major breakthrough, my group will focus on three research objectives. i) Poly(ethylene glycol) microgel-in-hydrogel matrices will be fabricated with the ability to create macroscopic order due to microgel shape anisotropy and magnetic alignment. Barrel-like microgels will be prepared using an in-mold polymerization technique. Their ability to self-assemble will be investigated in function of their dimensions, aspect ratio, crosslinking density, and volume fraction. Superparamagnetic nanoparticles will be included into the microgels to enable unidirectional orientation by means of a magnetic field. Subsequently, the oriented microgels will be interlocked within a master hydrogel. ii) The microgel-in-hydrogel matrices will be equipped with (bio)functional properties for spinal cord regeneration, i.e., to control and optimize mechanical anisotropy and biological signaling by in vitro cell growth experiments. iii) Selected hydrogel composites will be injected after rat spinal cord injury and directional tissue growth and animal functional behavior will be analyzed.
Succesful fabrication of the proposed microgel-in-hydrogel matrix will provide a new type of biomaterial, which enables investigating the effect of an anisotropic structure on physiological and pathological processes in vivo. This is a decisive step towards creating a clinical healing matrix for anisotropic tissue repair.
Summary
This project will engineer an injectable biomaterial that forms an anisotropic microheterogeneous structure in vivo. Injectable hydrogels enable a minimal invasive in situ generation of matrices for the regeneration of tissues and organs, but currently lack structural organization and unidirectional orientation. The anisotropic, injectable hydrogels to be developed will mimic local extracellular matrix architectures that cells encounter in complex tissues (e.g. nerves, muscles). This project aims for the development of a biomimetic scaffold for spinal cord regeneration.
To realize such a major breakthrough, my group will focus on three research objectives. i) Poly(ethylene glycol) microgel-in-hydrogel matrices will be fabricated with the ability to create macroscopic order due to microgel shape anisotropy and magnetic alignment. Barrel-like microgels will be prepared using an in-mold polymerization technique. Their ability to self-assemble will be investigated in function of their dimensions, aspect ratio, crosslinking density, and volume fraction. Superparamagnetic nanoparticles will be included into the microgels to enable unidirectional orientation by means of a magnetic field. Subsequently, the oriented microgels will be interlocked within a master hydrogel. ii) The microgel-in-hydrogel matrices will be equipped with (bio)functional properties for spinal cord regeneration, i.e., to control and optimize mechanical anisotropy and biological signaling by in vitro cell growth experiments. iii) Selected hydrogel composites will be injected after rat spinal cord injury and directional tissue growth and animal functional behavior will be analyzed.
Succesful fabrication of the proposed microgel-in-hydrogel matrix will provide a new type of biomaterial, which enables investigating the effect of an anisotropic structure on physiological and pathological processes in vivo. This is a decisive step towards creating a clinical healing matrix for anisotropic tissue repair.
Max ERC Funding
1 435 396 €
Duration
Start date: 2015-03-01, End date: 2020-02-29
Project acronym ANISOTROPIC UNIVERSE
Project The anisotropic universe -- a reality or fluke?
Researcher (PI) Hans Kristian Kamfjord Eriksen
Host Institution (HI) UNIVERSITETET I OSLO
Call Details Starting Grant (StG), PE9, ERC-2010-StG_20091028
Summary "During the last decade, a strikingly successful cosmological concordance model has been established. With only six free parameters, nearly all observables, comprising millions of data points, may be fitted with outstanding precision. However, in this beautiful picture a few ""blemishes"" have turned up, apparently not consistent with the standard model: While the model predicts that the universe is isotropic (i.e., looks the same in all directions) and homogeneous (i.e., the statistical properties are the same everywhere), subtle hints of the contrary are now seen. For instance, peculiar preferred directions and correlations are observed in the cosmic microwave background; some studies considering nearby galaxies suggest the existence of anomalous large-scale cosmic flows; a study of distant quasars hints towards unexpected large-scale correlations. All of these reports are individually highly intriguing, and together they hint toward a more complicated and interesting universe than previously imagined -- but none of the reports can be considered decisive. One major obstacle in many cases has been the relatively poor data quality.
This is currently about to change, as the next generation of new and far more powerful experiments are coming online. Of special interest to me are Planck, an ESA-funded CMB satellite currently taking data; QUIET, a ground-based CMB polarization experiment located in Chile; and various large-scale structure (LSS) data sets, such as the SDSS and 2dF surveys, and in the future Euclid, a proposed galaxy survey satellite also funded by ESA. By combining the world s best data from both CMB and LSS measurements, I will in the proposed project attempt to settle this question: Is our universe really anisotropic? Or are these recent claims only the results of systematic errors or statistical flukes? If the claims turn out to hold against this tide of new and high-quality data, then cosmology as a whole may need to be re-written."
Summary
"During the last decade, a strikingly successful cosmological concordance model has been established. With only six free parameters, nearly all observables, comprising millions of data points, may be fitted with outstanding precision. However, in this beautiful picture a few ""blemishes"" have turned up, apparently not consistent with the standard model: While the model predicts that the universe is isotropic (i.e., looks the same in all directions) and homogeneous (i.e., the statistical properties are the same everywhere), subtle hints of the contrary are now seen. For instance, peculiar preferred directions and correlations are observed in the cosmic microwave background; some studies considering nearby galaxies suggest the existence of anomalous large-scale cosmic flows; a study of distant quasars hints towards unexpected large-scale correlations. All of these reports are individually highly intriguing, and together they hint toward a more complicated and interesting universe than previously imagined -- but none of the reports can be considered decisive. One major obstacle in many cases has been the relatively poor data quality.
This is currently about to change, as the next generation of new and far more powerful experiments are coming online. Of special interest to me are Planck, an ESA-funded CMB satellite currently taking data; QUIET, a ground-based CMB polarization experiment located in Chile; and various large-scale structure (LSS) data sets, such as the SDSS and 2dF surveys, and in the future Euclid, a proposed galaxy survey satellite also funded by ESA. By combining the world s best data from both CMB and LSS measurements, I will in the proposed project attempt to settle this question: Is our universe really anisotropic? Or are these recent claims only the results of systematic errors or statistical flukes? If the claims turn out to hold against this tide of new and high-quality data, then cosmology as a whole may need to be re-written."
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym APACHE
Project Atmospheric Pressure plAsma meets biomaterials for bone Cancer HEaling
Researcher (PI) Cristina CANAL BARNILS
Host Institution (HI) UNIVERSITAT POLITECNICA DE CATALUNYA
Call Details Starting Grant (StG), PE8, ERC-2016-STG
Summary Cold atmospheric pressure plasmas (APP) have been reported to selectively kill cancer cells without damaging the surrounding tissues. Studies have been conducted on a variety of cancer types but to the best of our knowledge not on any kind of bone cancer. Treatment options for bone cancer include surgery, chemotherapy, etc. and may involve the use of bone grafting biomaterials to replace the surgically removed bone.
APACHE brings a totally different and ground-breaking approach in the design of a novel therapy for bone cancer by taking advantage of the active species generated by APP in combination with biomaterials to deliver the active species locally in the diseased site. The feasibility of this approach is rooted in the evidence that the cellular effects of APP appear to strongly involve the suite of reactive species created by plasmas, which can be derived from a) direct treatment of the malignant cells by APP or b) indirect treatment of the liquid media by APP which is then put in contact with the cancer cells.
In APACHE we aim to investigate the fundamentals involved in the lethal effects of cold plasmas on bone cancer cells, and to develop improved bone cancer therapies. To achieve this we will take advantage of the highly reactive species generated by APP in the liquid media, which we will use in an incremental strategy: i) to investigate the effects of APP treated liquid on bone cancer cells, ii) to evaluate the potential of combining APP treated liquid in a hydrogel vehicle with/wo CaP biomaterials and iii) to ascertain the potential three directional interactions between APP reactive species in liquid medium with biomaterials and with chemotherapeutic drugs.
The methodological approach will involve an interdisciplinary team, dealing with plasma diagnostics in gas and liquid media; with cell biology and the effects of APP treated with bone tumor cells and its combination with biomaterials and/or with anticancer drugs.
Summary
Cold atmospheric pressure plasmas (APP) have been reported to selectively kill cancer cells without damaging the surrounding tissues. Studies have been conducted on a variety of cancer types but to the best of our knowledge not on any kind of bone cancer. Treatment options for bone cancer include surgery, chemotherapy, etc. and may involve the use of bone grafting biomaterials to replace the surgically removed bone.
APACHE brings a totally different and ground-breaking approach in the design of a novel therapy for bone cancer by taking advantage of the active species generated by APP in combination with biomaterials to deliver the active species locally in the diseased site. The feasibility of this approach is rooted in the evidence that the cellular effects of APP appear to strongly involve the suite of reactive species created by plasmas, which can be derived from a) direct treatment of the malignant cells by APP or b) indirect treatment of the liquid media by APP which is then put in contact with the cancer cells.
In APACHE we aim to investigate the fundamentals involved in the lethal effects of cold plasmas on bone cancer cells, and to develop improved bone cancer therapies. To achieve this we will take advantage of the highly reactive species generated by APP in the liquid media, which we will use in an incremental strategy: i) to investigate the effects of APP treated liquid on bone cancer cells, ii) to evaluate the potential of combining APP treated liquid in a hydrogel vehicle with/wo CaP biomaterials and iii) to ascertain the potential three directional interactions between APP reactive species in liquid medium with biomaterials and with chemotherapeutic drugs.
The methodological approach will involve an interdisciplinary team, dealing with plasma diagnostics in gas and liquid media; with cell biology and the effects of APP treated with bone tumor cells and its combination with biomaterials and/or with anticancer drugs.
Max ERC Funding
1 499 887 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym APES
Project Accuracy and precision for molecular solids
Researcher (PI) Jiri KLIMES
Host Institution (HI) UNIVERZITA KARLOVA
Call Details Starting Grant (StG), PE4, ERC-2017-STG
Summary The description of high pressure phases or polymorphism of molecular solids represents a significant scientific challenge both for experiment and theory. Theoretical methods that are currently used struggle to describe the tiny energy differences between different phases. It is the aim of this project to develop a scheme that would allow accurate and reliable predictions of the binding energies of molecular solids and of the energy differences between different phases.
To reach the required accuracy, we will combine the coupled cluster approach, widely used for reference quality calculations for molecules, with the random phase approximation (RPA) within periodic boundary conditions. As I have recently shown, RPA-based approaches are already some of the most accurate and practically usable methods for the description of extended systems. However, reliability is not only a question of accuracy. Reliable data need to be precise, that is, converged with the numerical parameters so that they are reproducible by other researchers.
Reproducibility is already a growing concern in the field. It is likely to become a considerable issue for highly accurate methods as the calculated energies have a stronger dependence on the simulation parameters such as the basis set size. Two main approaches will be explored to assure precision. First, we will develop the so-called asymptotic correction scheme to speed-up the convergence of the correlation energies with the basis set size. Second, we will directly compare the lattice energies from periodic and finite cluster based calculations. Both should yield identical answers, but if and how the agreement can be reached for general system is currently far from being understood for methods such as coupled cluster. Reliable data will allow us to answer some of the open questions regarding the stability of polymorphs and high pressure phases, such as the possibility of existence of high pressure ionic phases of water and ammonia.
Summary
The description of high pressure phases or polymorphism of molecular solids represents a significant scientific challenge both for experiment and theory. Theoretical methods that are currently used struggle to describe the tiny energy differences between different phases. It is the aim of this project to develop a scheme that would allow accurate and reliable predictions of the binding energies of molecular solids and of the energy differences between different phases.
To reach the required accuracy, we will combine the coupled cluster approach, widely used for reference quality calculations for molecules, with the random phase approximation (RPA) within periodic boundary conditions. As I have recently shown, RPA-based approaches are already some of the most accurate and practically usable methods for the description of extended systems. However, reliability is not only a question of accuracy. Reliable data need to be precise, that is, converged with the numerical parameters so that they are reproducible by other researchers.
Reproducibility is already a growing concern in the field. It is likely to become a considerable issue for highly accurate methods as the calculated energies have a stronger dependence on the simulation parameters such as the basis set size. Two main approaches will be explored to assure precision. First, we will develop the so-called asymptotic correction scheme to speed-up the convergence of the correlation energies with the basis set size. Second, we will directly compare the lattice energies from periodic and finite cluster based calculations. Both should yield identical answers, but if and how the agreement can be reached for general system is currently far from being understood for methods such as coupled cluster. Reliable data will allow us to answer some of the open questions regarding the stability of polymorphs and high pressure phases, such as the possibility of existence of high pressure ionic phases of water and ammonia.
Max ERC Funding
924 375 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym AQUARAMAN
Project Pipet Based Scanning Probe Microscopy Tip-Enhanced Raman Spectroscopy: A Novel Approach for TERS in Liquids
Researcher (PI) Aleix Garcia Guell
Host Institution (HI) ECOLE POLYTECHNIQUE
Call Details Starting Grant (StG), PE4, ERC-2016-STG
Summary Tip-enhanced Raman spectroscopy (TERS) is often described as the most powerful tool for optical characterization of surfaces and their proximities. It combines the intrinsic spatial resolution of scanning probe techniques (AFM or STM) with the chemical information content of vibrational Raman spectroscopy. Capable to reveal surface heterogeneity at the nanoscale, TERS is currently playing a fundamental role in the understanding of interfacial physicochemical processes in key areas of science and technology such as chemistry, biology and material science.
Unfortunately, the undeniable potential of TERS as a label-free tool for nanoscale chemical and structural characterization is, nowadays, limited to air and vacuum environments, with it failing to operate in a reliable and systematic manner in liquid. The reasons are more technical than fundamental, as what is hindering the application of TERS in water is, among other issues, the low stability of the probes and their consistency. Fields of science and technology where the presence of water/electrolyte is unavoidable, such as biology and electrochemistry, remain unexplored with this powerful technique.
We propose a revolutionary approach for TERS in liquids founded on the employment of pipet-based scanning probe microscopy techniques (pb-SPM) as an alternative to AFM and STM. The use of recent but well established pb-SPM brings the opportunity to develop unprecedented pipet-based TERS probes (beyond the classic and limited metallized solid probes from AFM and STM), together with the implementation of ingenious and innovative measures to enhance tip stability, sensitivity and reliability, unattainable with the current techniques.
We will be in possession of a unique nano-spectroscopy platform capable of experiments in liquids, to follow dynamic processes in-situ, addressing fundamental questions and bringing insight into interfacial phenomena spanning from materials science, physics, chemistry and biology.
Summary
Tip-enhanced Raman spectroscopy (TERS) is often described as the most powerful tool for optical characterization of surfaces and their proximities. It combines the intrinsic spatial resolution of scanning probe techniques (AFM or STM) with the chemical information content of vibrational Raman spectroscopy. Capable to reveal surface heterogeneity at the nanoscale, TERS is currently playing a fundamental role in the understanding of interfacial physicochemical processes in key areas of science and technology such as chemistry, biology and material science.
Unfortunately, the undeniable potential of TERS as a label-free tool for nanoscale chemical and structural characterization is, nowadays, limited to air and vacuum environments, with it failing to operate in a reliable and systematic manner in liquid. The reasons are more technical than fundamental, as what is hindering the application of TERS in water is, among other issues, the low stability of the probes and their consistency. Fields of science and technology where the presence of water/electrolyte is unavoidable, such as biology and electrochemistry, remain unexplored with this powerful technique.
We propose a revolutionary approach for TERS in liquids founded on the employment of pipet-based scanning probe microscopy techniques (pb-SPM) as an alternative to AFM and STM. The use of recent but well established pb-SPM brings the opportunity to develop unprecedented pipet-based TERS probes (beyond the classic and limited metallized solid probes from AFM and STM), together with the implementation of ingenious and innovative measures to enhance tip stability, sensitivity and reliability, unattainable with the current techniques.
We will be in possession of a unique nano-spectroscopy platform capable of experiments in liquids, to follow dynamic processes in-situ, addressing fundamental questions and bringing insight into interfacial phenomena spanning from materials science, physics, chemistry and biology.
Max ERC Funding
1 528 442 €
Duration
Start date: 2017-07-01, End date: 2022-06-30
Project acronym ASTROLAB
Project Cold Collisions and the Pathways Toward Life in Interstellar Space
Researcher (PI) Holger Kreckel
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), PE9, ERC-2012-StG_20111012
Summary Modern telescopes like Herschel and ALMA open up a new window into molecular astrophysics to investigate a surprisingly rich chemistry that operates even at low densities and low temperatures. Observations with these instruments have the potential of unraveling key questions of astrobiology, like the accumulation of water and pre-biotic organic molecules on (exo)planets from asteroids and comets. Hand-in-hand with the heightened observational activities comes a strong demand for a thorough understanding of the molecular formation mechanisms. The vast majority of interstellar molecules are formed in ion-neutral reactions that remain efficient even at low temperatures. Unfortunately, the unusual nature of these processes under terrestrial conditions makes their laboratory study extremely difficult.
To address these issues, I propose to build a versatile merged beams setup for laboratory studies of ion-neutral collisions at the Cryogenic Storage Ring (CSR), the most ambitious of the next-generation storage devices under development worldwide. With this experimental setup, I will make use of a low-temperature and low-density environment that is ideal to simulate the conditions prevailing in interstellar space. The cryogenic surrounding, in combination with laser-generated ground state atom beams, will allow me to perform precise energy-resolved rate coefficient measurements for reactions between cold molecular ions (like, e.g., H2+, H3+, HCO+, CH2+, CH3+, etc.) and neutral atoms (H, D, C or O) in order to shed light on long-standing problems of astrochemistry and the formation of organic molecules in space.
With the large variability of the collision energy (corresponding to 40-40000 K), I will be able to provide data that are crucial for the interpretation of molecular observations in a variety of objects, ranging from cold molecular clouds to warm layers in protoplanetary disks.
Summary
Modern telescopes like Herschel and ALMA open up a new window into molecular astrophysics to investigate a surprisingly rich chemistry that operates even at low densities and low temperatures. Observations with these instruments have the potential of unraveling key questions of astrobiology, like the accumulation of water and pre-biotic organic molecules on (exo)planets from asteroids and comets. Hand-in-hand with the heightened observational activities comes a strong demand for a thorough understanding of the molecular formation mechanisms. The vast majority of interstellar molecules are formed in ion-neutral reactions that remain efficient even at low temperatures. Unfortunately, the unusual nature of these processes under terrestrial conditions makes their laboratory study extremely difficult.
To address these issues, I propose to build a versatile merged beams setup for laboratory studies of ion-neutral collisions at the Cryogenic Storage Ring (CSR), the most ambitious of the next-generation storage devices under development worldwide. With this experimental setup, I will make use of a low-temperature and low-density environment that is ideal to simulate the conditions prevailing in interstellar space. The cryogenic surrounding, in combination with laser-generated ground state atom beams, will allow me to perform precise energy-resolved rate coefficient measurements for reactions between cold molecular ions (like, e.g., H2+, H3+, HCO+, CH2+, CH3+, etc.) and neutral atoms (H, D, C or O) in order to shed light on long-standing problems of astrochemistry and the formation of organic molecules in space.
With the large variability of the collision energy (corresponding to 40-40000 K), I will be able to provide data that are crucial for the interpretation of molecular observations in a variety of objects, ranging from cold molecular clouds to warm layers in protoplanetary disks.
Max ERC Funding
1 486 800 €
Duration
Start date: 2012-09-01, End date: 2017-11-30
Project acronym ASTROROT
Project Unraveling interstellar chemistry with broadband microwave spectroscopy and next-generation telescope arrays
Researcher (PI) Melanie Schnell-Küpper
Host Institution (HI) STIFTUNG DEUTSCHES ELEKTRONEN-SYNCHROTRON DESY
Call Details Starting Grant (StG), PE4, ERC-2014-STG
Summary The goal of the research program, ASTROROT, is to significantly advance the knowledge of astrochemistry by exploring its molecular complexity and by discovering new molecule classes and key chemical processes in space. So far, mostly physical reasons were investigated for the observed variations in molecular abundances. We here propose to study the influence of chemistry on the molecular composition of the universe by combining unprecedentedly high-quality laboratory spectroscopy and pioneering telescope observations. Array telescopes provide new observations of rotational molecular emission, leading to an urgent need for microwave spectroscopic data of exotic molecules. We will use newly developed, unique broadband microwave spectrometers with the cold conditions of a molecular jet and the higher temperatures of a waveguide to mimic different interstellar conditions. Their key advantages are accurate transition intensities, tremendously reduced measurement times, and unique mixture compatibility.
Our laboratory experiments will motivate and guide astronomic observations, and enable their interpretation. The expected results are
• the exploration of molecular complexity by discovering new classes of molecules in space,
• the detection of isotopologues that provide information about the stage of chemical evolution,
• the generation of abundance maps of highly excited molecules to learn about their environment,
• the identification of key intermediates in astrochemical reactions.
The results will significantly foster and likely revolutionize our understanding of astrochemistry. The proposed research will go far beyond the state-of-the-art: We will use cutting-edge techniques both in the laboratory and at the telescope to greatly improve and speed the process of identifying molecular fingerprints. These techniques now enable studies at this important frontier of physics and chemistry that previously would have been prohibitively time-consuming or even impossible.
Summary
The goal of the research program, ASTROROT, is to significantly advance the knowledge of astrochemistry by exploring its molecular complexity and by discovering new molecule classes and key chemical processes in space. So far, mostly physical reasons were investigated for the observed variations in molecular abundances. We here propose to study the influence of chemistry on the molecular composition of the universe by combining unprecedentedly high-quality laboratory spectroscopy and pioneering telescope observations. Array telescopes provide new observations of rotational molecular emission, leading to an urgent need for microwave spectroscopic data of exotic molecules. We will use newly developed, unique broadband microwave spectrometers with the cold conditions of a molecular jet and the higher temperatures of a waveguide to mimic different interstellar conditions. Their key advantages are accurate transition intensities, tremendously reduced measurement times, and unique mixture compatibility.
Our laboratory experiments will motivate and guide astronomic observations, and enable their interpretation. The expected results are
• the exploration of molecular complexity by discovering new classes of molecules in space,
• the detection of isotopologues that provide information about the stage of chemical evolution,
• the generation of abundance maps of highly excited molecules to learn about their environment,
• the identification of key intermediates in astrochemical reactions.
The results will significantly foster and likely revolutionize our understanding of astrochemistry. The proposed research will go far beyond the state-of-the-art: We will use cutting-edge techniques both in the laboratory and at the telescope to greatly improve and speed the process of identifying molecular fingerprints. These techniques now enable studies at this important frontier of physics and chemistry that previously would have been prohibitively time-consuming or even impossible.
Max ERC Funding
1 499 904 €
Duration
Start date: 2015-05-01, End date: 2020-04-30
Project acronym ATMO
Project Atmospheres across the Universe
Researcher (PI) Pascal TREMBLIN
Host Institution (HI) COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
Call Details Starting Grant (StG), PE9, ERC-2017-STG
Summary Which molecules are present in the atmosphere of exoplanets? What are their mass, radius and age? Do they have clouds, convection (atmospheric turbulence), fingering convection, or a circulation induced by irradiation? These questions are fundamental in exoplanetology in order to study issues such as planet formation and exoplanet habitability.
Yet, the impact of fingering convection and circulation induced by irradiation remain poorly understood:
- Fingering convection (triggered by gradients of mean-molecular-weight) has already been suggested to happen in stars (accumulation of heavy elements) and in brown dwarfs and exoplanets (chemical transition e.g. CO/CH4). A large-scale efficient turbulent transport of energy through the fingering instability can reduce the temperature gradient in the atmosphere and explain many observed spectral properties of brown dwarfs and exoplanets. Nonetheless, this large-scale efficiency is not yet characterized and standard approximations (Boussinesq) cannot be used to achieve this goal.
- The interaction between atmospheric circulation and the fingering instability is an open question in the case of irradiated exoplanets. Fingering convection can change the location and magnitude of the hot spot induced by irradiation, whereas the hot deep atmosphere induced by irradiation can change the location of the chemical transitions that trigger the fingering instability.
This project will characterize the impact of fingering convection in the atmosphere of stars, brown dwarfs, and exoplanets and its interaction with the circulation in the case of irradiated planets. By developing innovative numerical models, we will characterize the reduction of the temperature gradient of the atmosphere induced by the instability and study the impact of the circulation. We will then predict and interpret the mass, radius, and chemical composition of exoplanets that will be observed with future missions such as the James Webb Space Telescope (JWST).
Summary
Which molecules are present in the atmosphere of exoplanets? What are their mass, radius and age? Do they have clouds, convection (atmospheric turbulence), fingering convection, or a circulation induced by irradiation? These questions are fundamental in exoplanetology in order to study issues such as planet formation and exoplanet habitability.
Yet, the impact of fingering convection and circulation induced by irradiation remain poorly understood:
- Fingering convection (triggered by gradients of mean-molecular-weight) has already been suggested to happen in stars (accumulation of heavy elements) and in brown dwarfs and exoplanets (chemical transition e.g. CO/CH4). A large-scale efficient turbulent transport of energy through the fingering instability can reduce the temperature gradient in the atmosphere and explain many observed spectral properties of brown dwarfs and exoplanets. Nonetheless, this large-scale efficiency is not yet characterized and standard approximations (Boussinesq) cannot be used to achieve this goal.
- The interaction between atmospheric circulation and the fingering instability is an open question in the case of irradiated exoplanets. Fingering convection can change the location and magnitude of the hot spot induced by irradiation, whereas the hot deep atmosphere induced by irradiation can change the location of the chemical transitions that trigger the fingering instability.
This project will characterize the impact of fingering convection in the atmosphere of stars, brown dwarfs, and exoplanets and its interaction with the circulation in the case of irradiated planets. By developing innovative numerical models, we will characterize the reduction of the temperature gradient of the atmosphere induced by the instability and study the impact of the circulation. We will then predict and interpret the mass, radius, and chemical composition of exoplanets that will be observed with future missions such as the James Webb Space Telescope (JWST).
Max ERC Funding
1 500 000 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym ATOMICAR
Project ATOMic Insight Cavity Array Reactor
Researcher (PI) Peter Christian Kjærgaard VESBORG
Host Institution (HI) DANMARKS TEKNISKE UNIVERSITET
Call Details Starting Grant (StG), PE4, ERC-2017-STG
Summary The goal of ATOMICAR is to achieve the ultimate sensitivity limit in heterogeneous catalysis:
Quantitative measurement of chemical turnover on a single catalytic nanoparticle.
Most heterogeneous catalysis occurs on metal nanoparticle in the size range of 3 nm - 10 nm. Model studies have established that there is often a strong coupling between nanoparticle size & shape - and catalytic activity. The strong structure-activity coupling renders it probable that “super-active” nanoparticles exist. However, since there is no way to measure catalytic activity of less than ca 1 million nanoparticles at a time, any super-activity will always be hidden by “ensemble smearing” since one million nanoparticles of exactly identical size and shape cannot be made. The state-of-the-art in catalysis benchmarking is microfabricated flow reactors with mass-spectrometric detection, but the sensitivity of this approach cannot be incrementally improved by six orders of magnitude. This calls for a new measurement paradigm where the activity of a single nanoparticle can be benchmarked – the ultimate limit for catalytic measurement.
A tiny batch reactor is the solution, but there are three key problems: How to seal it; how to track catalytic turnover inside it; and how to see the nanoparticle inside it? Graphene solves all three problems: A microfabricated cavity with a thin SixNy bottom window, a single catalytic nanoparticle inside, and a graphene seal forms a gas tight batch reactor since graphene has zero gas permeability. Catalysis is then tracked as an internal pressure change via the stress & deflection of the graphene seal. Crucially, the electron-transparency of graphene and SixNy enables subsequent transmission electron microscope access with atomic resolution so that active nanoparticles can be studied in full detail.
ATOMICAR will re-define the experimental limits of catalyst benchmarking and lift the field of basic catalysis research into the single-nanoparticle age.
Summary
The goal of ATOMICAR is to achieve the ultimate sensitivity limit in heterogeneous catalysis:
Quantitative measurement of chemical turnover on a single catalytic nanoparticle.
Most heterogeneous catalysis occurs on metal nanoparticle in the size range of 3 nm - 10 nm. Model studies have established that there is often a strong coupling between nanoparticle size & shape - and catalytic activity. The strong structure-activity coupling renders it probable that “super-active” nanoparticles exist. However, since there is no way to measure catalytic activity of less than ca 1 million nanoparticles at a time, any super-activity will always be hidden by “ensemble smearing” since one million nanoparticles of exactly identical size and shape cannot be made. The state-of-the-art in catalysis benchmarking is microfabricated flow reactors with mass-spectrometric detection, but the sensitivity of this approach cannot be incrementally improved by six orders of magnitude. This calls for a new measurement paradigm where the activity of a single nanoparticle can be benchmarked – the ultimate limit for catalytic measurement.
A tiny batch reactor is the solution, but there are three key problems: How to seal it; how to track catalytic turnover inside it; and how to see the nanoparticle inside it? Graphene solves all three problems: A microfabricated cavity with a thin SixNy bottom window, a single catalytic nanoparticle inside, and a graphene seal forms a gas tight batch reactor since graphene has zero gas permeability. Catalysis is then tracked as an internal pressure change via the stress & deflection of the graphene seal. Crucially, the electron-transparency of graphene and SixNy enables subsequent transmission electron microscope access with atomic resolution so that active nanoparticles can be studied in full detail.
ATOMICAR will re-define the experimental limits of catalyst benchmarking and lift the field of basic catalysis research into the single-nanoparticle age.
Max ERC Funding
1 496 000 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym ATTOSCOPE
Project Measuring attosecond electron dynamics in molecules
Researcher (PI) Hans Jakob Wörner
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Starting Grant (StG), PE4, ERC-2012-StG_20111012
Summary "The goal of the present proposal is to realize measurements of electronic dynamics in polyatomic
molecules with attosecond temporal resolution (1 as = 10^-18s). We propose to study electronic
rearrangements following photoexcitation, charge migration in a molecular chain induced by
ionization and non-adiabatic multi-electron dynamics in an intense laser field. The grand question
addressed by this research is the characterization of electron correlations which control the shape, properties and function of molecules. In all three proposed projects, a time-domain approach appears to be the most suitable since it reduces complex molecular dynamics to the purely electronic dynamics by exploiting the hierarchy of motional time scales. Experimentally, we propose to realize an innovative experimental setup. A few-cycle infrared (IR) pulse will be used to generate attosecond pulses in the extreme-ultraviolet (XUV) by high-harmonic generation. The IR pulse will be separated from the XUV by means of an innovative interferometer. Additionally, it will permit the introduction of a controlled attosecond delay between the two pulses. We propose to use the attosecond pulses as a tool to look inside individual IR- or UV-field cycles to better understand light-matter interactions. Time-resolved pump-probe experiments will be carried out on polyatomic molecules by detecting the energy and angular distribution of photoelectrons in a velocity-map imaging spectrometer. These experiments are expected to provide new insights
into the dynamics of multi-electron systems along with new results for the validation and
improvement of theoretical models. Multi-electron dynamics is indeed a very complex subject
on its own and even more so in the presence of strong laser fields. The proposed experiments
directly address theses challenges and are expected to provide new insights that will be beneficial to a wide range of scientific research areas."
Summary
"The goal of the present proposal is to realize measurements of electronic dynamics in polyatomic
molecules with attosecond temporal resolution (1 as = 10^-18s). We propose to study electronic
rearrangements following photoexcitation, charge migration in a molecular chain induced by
ionization and non-adiabatic multi-electron dynamics in an intense laser field. The grand question
addressed by this research is the characterization of electron correlations which control the shape, properties and function of molecules. In all three proposed projects, a time-domain approach appears to be the most suitable since it reduces complex molecular dynamics to the purely electronic dynamics by exploiting the hierarchy of motional time scales. Experimentally, we propose to realize an innovative experimental setup. A few-cycle infrared (IR) pulse will be used to generate attosecond pulses in the extreme-ultraviolet (XUV) by high-harmonic generation. The IR pulse will be separated from the XUV by means of an innovative interferometer. Additionally, it will permit the introduction of a controlled attosecond delay between the two pulses. We propose to use the attosecond pulses as a tool to look inside individual IR- or UV-field cycles to better understand light-matter interactions. Time-resolved pump-probe experiments will be carried out on polyatomic molecules by detecting the energy and angular distribution of photoelectrons in a velocity-map imaging spectrometer. These experiments are expected to provide new insights
into the dynamics of multi-electron systems along with new results for the validation and
improvement of theoretical models. Multi-electron dynamics is indeed a very complex subject
on its own and even more so in the presence of strong laser fields. The proposed experiments
directly address theses challenges and are expected to provide new insights that will be beneficial to a wide range of scientific research areas."
Max ERC Funding
1 999 992 €
Duration
Start date: 2012-09-01, End date: 2017-08-31
Project acronym AUTOMATION
Project AUTOMATION AND INCOME DISTRIBUTION: A QUANTITATIVE ASSESSMENT
Researcher (PI) David Hémous
Host Institution (HI) UNIVERSITAT ZURICH
Call Details Starting Grant (StG), SH1, ERC-2018-STG
Summary Since the invention of the spinning frame, automation has been one of the drivers of economic growth. Yet, workers, economist or the general public have been concerned that automation may destroy jobs or create inequality. This concern is particularly prevalent today with the sustained rise in economic inequality and fast technological progress in IT, robotics or self-driving cars. The empirical literature has showed the impact of automation on income distribution. Yet, the level of wages itself should also affect the incentives to undertake automation innovations. Understanding this feedback is key to assess the long-term effect of policies. My project aims to provide the first quantitative account of the two-way relationship between automation and the income distribution.
It is articulated around three parts. First, I will use patent data to study empirically the causal effect of wages on automation innovations. To do so, I will build firm-level variation in the wages of the customers of innovating firms by exploiting variations in firms’ exposure to international markets. Second, I will study empirically the causal effect of automation innovations on wages. There, I will focus on local labour market and use the patent data to build exogenous variations in local knowledge. Third, I will calibrate an endogenous growth model with firm dynamics and automation using Danish firm-level data. The model will replicate stylized facts on the labour share distribution across firms. It will be used to compute the contribution of automation to economic growth or the decline of the labour share. Moreover, as a whole, the project will use two different methods (regression analysis and calibrated model) and two different types of data, to answer questions of crucial policy importance such as: Taking into account the response of automation, what are the long-term effects on wages of an increase in the minimum wage, a reduction in labour costs, or a robot tax?
Summary
Since the invention of the spinning frame, automation has been one of the drivers of economic growth. Yet, workers, economist or the general public have been concerned that automation may destroy jobs or create inequality. This concern is particularly prevalent today with the sustained rise in economic inequality and fast technological progress in IT, robotics or self-driving cars. The empirical literature has showed the impact of automation on income distribution. Yet, the level of wages itself should also affect the incentives to undertake automation innovations. Understanding this feedback is key to assess the long-term effect of policies. My project aims to provide the first quantitative account of the two-way relationship between automation and the income distribution.
It is articulated around three parts. First, I will use patent data to study empirically the causal effect of wages on automation innovations. To do so, I will build firm-level variation in the wages of the customers of innovating firms by exploiting variations in firms’ exposure to international markets. Second, I will study empirically the causal effect of automation innovations on wages. There, I will focus on local labour market and use the patent data to build exogenous variations in local knowledge. Third, I will calibrate an endogenous growth model with firm dynamics and automation using Danish firm-level data. The model will replicate stylized facts on the labour share distribution across firms. It will be used to compute the contribution of automation to economic growth or the decline of the labour share. Moreover, as a whole, the project will use two different methods (regression analysis and calibrated model) and two different types of data, to answer questions of crucial policy importance such as: Taking into account the response of automation, what are the long-term effects on wages of an increase in the minimum wage, a reduction in labour costs, or a robot tax?
Max ERC Funding
1 295 890 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym BACCO
Project Bias and Clustering Calculations Optimised: Maximising discovery with galaxy surveys
Researcher (PI) Raúl Esteban ANGULO de la Fuente
Host Institution (HI) FUNDACION CENTRO DE ESTUDIOS DE FISICA DEL COSMOS DE ARAGON
Call Details Starting Grant (StG), PE9, ERC-2016-STG
Summary A new generation of galaxy surveys will soon start measuring the spatial distribution of millions of galaxies over a broad range of redshifts, offering an imminent opportunity to discover new physics. A detailed comparison of these measurements with theoretical models of galaxy clustering may reveal a new fundamental particle, a breakdown of General Relativity, or a hint on the nature of cosmic acceleration. Despite a large progress in the analytic treatment of structure formation in recent years, traditional clustering models still suffer from large uncertainties. This limits cosmological analyses to a very restricted range of scales and statistics, which will be one of the main obstacles to reach a comprehensive exploitation of future surveys.
Here I propose to develop a novel simulation--based approach to predict galaxy clustering. Combining recent advances in computational cosmology, from cosmological N--body calculations to physically-motivated galaxy formation models, I will develop a unified framework to directly predict the position and velocity of individual dark matter structures and galaxies as function of cosmological and astrophysical parameters. In this formulation, galaxy clustering will be a prediction of a set of physical assumptions in a given cosmological setting. The new theoretical framework will be flexible, accurate and fast: it will provide predictions for any clustering statistic, down to scales 100 times smaller than in state-of-the-art perturbation--theory--based models, and in less than 1 minute of CPU time. These advances will enable major improvements in future cosmological constraints, which will significantly increase the overall power of future surveys maximising our potential to discover new physics.
Summary
A new generation of galaxy surveys will soon start measuring the spatial distribution of millions of galaxies over a broad range of redshifts, offering an imminent opportunity to discover new physics. A detailed comparison of these measurements with theoretical models of galaxy clustering may reveal a new fundamental particle, a breakdown of General Relativity, or a hint on the nature of cosmic acceleration. Despite a large progress in the analytic treatment of structure formation in recent years, traditional clustering models still suffer from large uncertainties. This limits cosmological analyses to a very restricted range of scales and statistics, which will be one of the main obstacles to reach a comprehensive exploitation of future surveys.
Here I propose to develop a novel simulation--based approach to predict galaxy clustering. Combining recent advances in computational cosmology, from cosmological N--body calculations to physically-motivated galaxy formation models, I will develop a unified framework to directly predict the position and velocity of individual dark matter structures and galaxies as function of cosmological and astrophysical parameters. In this formulation, galaxy clustering will be a prediction of a set of physical assumptions in a given cosmological setting. The new theoretical framework will be flexible, accurate and fast: it will provide predictions for any clustering statistic, down to scales 100 times smaller than in state-of-the-art perturbation--theory--based models, and in less than 1 minute of CPU time. These advances will enable major improvements in future cosmological constraints, which will significantly increase the overall power of future surveys maximising our potential to discover new physics.
Max ERC Funding
1 484 240 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym BACKTOBACK
Project Engineering Solutions for Back Pain: Simulation of Patient Variance
Researcher (PI) Ruth Wilcox
Host Institution (HI) UNIVERSITY OF LEEDS
Call Details Starting Grant (StG), PE8, ERC-2012-StG_20111012
Summary Back pain affects eight out of ten adults during their lifetime. It a huge economic burden on society, estimated to cost as much as 1-2% of gross national product in several European countries. Treatments for back pain have lower levels of success and are not as technologically mature as those for other musculoskeletal disorders such as hip and knee replacement. This application proposes to tackle one of the major barriers to the development of better surgical treatments for back pain.
At present, new spinal devices are commonly assessed in isolation in the laboratory under standardised conditions that do not represent the variation across the patient population. Consequently many interventions have failed during clinical trials or have proved to have poor long term success rates.
Using a combination of computational and experimental models, a new testing methodology will be developed that will enable the variation between patients to be simulated for the first time. This will enable spinal implants and therapies to be more robustly evaluated across a virtual patient population prior to clinical trial. The tools developed will be used in collaboration with clinicians and basic scientists to develop and, crucially, optimise new treatments that reduce back pain whilst preserving the unique functions of the spine.
If successful, this approach could be translated to evaluate and optimise emerging minimally invasive treatments in other joints such as the hip and knee. Research in the spine could then, for the first time, lead rather than follow that undertaken in other branches of orthopaedics.
Summary
Back pain affects eight out of ten adults during their lifetime. It a huge economic burden on society, estimated to cost as much as 1-2% of gross national product in several European countries. Treatments for back pain have lower levels of success and are not as technologically mature as those for other musculoskeletal disorders such as hip and knee replacement. This application proposes to tackle one of the major barriers to the development of better surgical treatments for back pain.
At present, new spinal devices are commonly assessed in isolation in the laboratory under standardised conditions that do not represent the variation across the patient population. Consequently many interventions have failed during clinical trials or have proved to have poor long term success rates.
Using a combination of computational and experimental models, a new testing methodology will be developed that will enable the variation between patients to be simulated for the first time. This will enable spinal implants and therapies to be more robustly evaluated across a virtual patient population prior to clinical trial. The tools developed will be used in collaboration with clinicians and basic scientists to develop and, crucially, optimise new treatments that reduce back pain whilst preserving the unique functions of the spine.
If successful, this approach could be translated to evaluate and optimise emerging minimally invasive treatments in other joints such as the hip and knee. Research in the spine could then, for the first time, lead rather than follow that undertaken in other branches of orthopaedics.
Max ERC Funding
1 498 777 €
Duration
Start date: 2012-12-01, End date: 2018-11-30
Project acronym BATMAN
Project Development of Quantitative Metrologies to Guide Lithium Ion Battery Manufacturing
Researcher (PI) Vanessa Wood
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Starting Grant (StG), PE8, ERC-2015-STG
Summary Lithium ion batteries offer tremendous potential as an enabling technology for sustainable transportation and development. However, their widespread usage as the energy storage solution for electric mobility and grid-level integration of renewables is impeded by the fact that current state-of-the-art lithium ion batteries have energy densities that are too small, charge- and discharge rates that are too low, and costs that are too high. Highly publicized instances of catastrophic failure of lithium ion batteries raise questions of safety. Understanding the limitations to battery performance and origins of the degradation and failure is highly complex due to the difficulties in studying interrelated processes that take place at different length and time scales in a corrosive environment. In the project, we will (1) develop and implement quantitative methods to study the complex interrelations between structure and electrochemistry occurring at the nano-, micron-, and milli-scales in lithium ion battery active materials and electrodes, (2) conduct systematic experimental studies with our new techniques to understand the origins of performance limitations and to develop design guidelines for achieving high performance and safe batteries, and (3) investigate economically viable engineering solutions based on these guidelines to achieve high performance and safe lithium ion batteries.
Summary
Lithium ion batteries offer tremendous potential as an enabling technology for sustainable transportation and development. However, their widespread usage as the energy storage solution for electric mobility and grid-level integration of renewables is impeded by the fact that current state-of-the-art lithium ion batteries have energy densities that are too small, charge- and discharge rates that are too low, and costs that are too high. Highly publicized instances of catastrophic failure of lithium ion batteries raise questions of safety. Understanding the limitations to battery performance and origins of the degradation and failure is highly complex due to the difficulties in studying interrelated processes that take place at different length and time scales in a corrosive environment. In the project, we will (1) develop and implement quantitative methods to study the complex interrelations between structure and electrochemistry occurring at the nano-, micron-, and milli-scales in lithium ion battery active materials and electrodes, (2) conduct systematic experimental studies with our new techniques to understand the origins of performance limitations and to develop design guidelines for achieving high performance and safe batteries, and (3) investigate economically viable engineering solutions based on these guidelines to achieve high performance and safe lithium ion batteries.
Max ERC Funding
1 500 000 €
Duration
Start date: 2016-05-01, End date: 2021-04-30
Project acronym BayesianMarkets
Project Bayesian markets for unverifiable truths
Researcher (PI) Aurelien Baillon
Host Institution (HI) ERASMUS UNIVERSITEIT ROTTERDAM
Call Details Starting Grant (StG), SH1, ERC-2014-STG
Summary Subjective data play an increasing role in modern economics. For instance, new welfare measurements are based on people’s subjective assessments of their happiness or their life satisfaction. A problem of such measurements is that people have no incentives to tell the truth. To solve this problem and make those measurements incentive compatible, I will introduce a new market institution, called Bayesian markets.
Imagine we ask people whether they are happy with their life. On Bayesian markets, they will trade an asset whose value is the proportion of people answering Yes. Only those answering Yes will have the right to buy the asset and those answering No the right to sell it. Bayesian updating implies that “Yes” agents predict a higher value of the asset than “No” agents do and, consequently, “Yes” agents want to buy it while “No” agents want to sell it. I will show that truth-telling is then the optimal strategy.
Bayesian markets reward truth-telling the same way as prediction markets (betting markets) reward people for reporting their true subjective probabilities about observable events. Yet, unlike prediction markets, they do not require events to be objectively observable. Bayesian markets apply to any type of unverifiable truths, from one’s own happiness to beliefs about events that will never be observed.
The present research program will first establish the theoretical foundations of Bayesian markets. It will then develop the proper methodology to implement them. Finally, it will disseminate the use of Bayesian markets via applications.
The first application will demonstrate how degrees of expertise can be measured and will apply it to risks related to climate change and nuclear power plants. It will contribute to the political debate by shedding new light on what true experts think about these risks. The second application will provide the first incentivized measures of life satisfaction and happiness.
Summary
Subjective data play an increasing role in modern economics. For instance, new welfare measurements are based on people’s subjective assessments of their happiness or their life satisfaction. A problem of such measurements is that people have no incentives to tell the truth. To solve this problem and make those measurements incentive compatible, I will introduce a new market institution, called Bayesian markets.
Imagine we ask people whether they are happy with their life. On Bayesian markets, they will trade an asset whose value is the proportion of people answering Yes. Only those answering Yes will have the right to buy the asset and those answering No the right to sell it. Bayesian updating implies that “Yes” agents predict a higher value of the asset than “No” agents do and, consequently, “Yes” agents want to buy it while “No” agents want to sell it. I will show that truth-telling is then the optimal strategy.
Bayesian markets reward truth-telling the same way as prediction markets (betting markets) reward people for reporting their true subjective probabilities about observable events. Yet, unlike prediction markets, they do not require events to be objectively observable. Bayesian markets apply to any type of unverifiable truths, from one’s own happiness to beliefs about events that will never be observed.
The present research program will first establish the theoretical foundations of Bayesian markets. It will then develop the proper methodology to implement them. Finally, it will disseminate the use of Bayesian markets via applications.
The first application will demonstrate how degrees of expertise can be measured and will apply it to risks related to climate change and nuclear power plants. It will contribute to the political debate by shedding new light on what true experts think about these risks. The second application will provide the first incentivized measures of life satisfaction and happiness.
Max ERC Funding
1 500 000 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym BCOOL
Project Barocaloric materials for energy-efficient solid-state cooling
Researcher (PI) Javier Eduardo Moya Raposo
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Starting Grant (StG), PE8, ERC-2015-STG
Summary Cooling is essential for food and drinks, medicine, electronics and thermal comfort. Thermal changes due to pressure-driven phase transitions in fluids have long been used in vapour compression systems to achieve continuous refrigeration and air conditioning, but their energy efficiency is relatively low, and the working fluids that are employed harm the environment when released to the atmosphere. More recently, the discovery of large thermal changes due to pressure-driven phase transitions in magnetic solids has led to suggestions for environmentally friendly solid-state cooling applications. However, for this new cooling technology to succeed, it is still necessary to find suitable barocaloric (BC) materials that satisfy the demanding requirements set by applications, namely very large thermal changes in inexpensive materials that occur near room temperature in response to small applied pressures.
I aim to develop new BC materials by exploiting phase transitions in non-magnetic solids whose structural and thermal properties are strongly coupled, namely ferroelectric salts, molecular crystals and hybrid materials. These materials are normally made from cheap abundant elements, and display very large latent heats and volume changes at structural phase transitions, which make them ideal candidates to exhibit extremely large BC effects that outperform those observed in state-of-the-art BC magnetic materials, and that match applications.
My unique approach combines: i) materials science to identify materials with outstanding BC performance, ii) advanced experimental techniques to explore and exploit these novel materials, iii) materials engineering to create new composite materials with enhanced BC properties, and iv) fabrication of BC devices, using insight gained from modelling of materials and device parameters. If successful, my ambitious strategy will culminate in revolutionary solid-state cooling devices that are environmentally friendly and energy efficient.
Summary
Cooling is essential for food and drinks, medicine, electronics and thermal comfort. Thermal changes due to pressure-driven phase transitions in fluids have long been used in vapour compression systems to achieve continuous refrigeration and air conditioning, but their energy efficiency is relatively low, and the working fluids that are employed harm the environment when released to the atmosphere. More recently, the discovery of large thermal changes due to pressure-driven phase transitions in magnetic solids has led to suggestions for environmentally friendly solid-state cooling applications. However, for this new cooling technology to succeed, it is still necessary to find suitable barocaloric (BC) materials that satisfy the demanding requirements set by applications, namely very large thermal changes in inexpensive materials that occur near room temperature in response to small applied pressures.
I aim to develop new BC materials by exploiting phase transitions in non-magnetic solids whose structural and thermal properties are strongly coupled, namely ferroelectric salts, molecular crystals and hybrid materials. These materials are normally made from cheap abundant elements, and display very large latent heats and volume changes at structural phase transitions, which make them ideal candidates to exhibit extremely large BC effects that outperform those observed in state-of-the-art BC magnetic materials, and that match applications.
My unique approach combines: i) materials science to identify materials with outstanding BC performance, ii) advanced experimental techniques to explore and exploit these novel materials, iii) materials engineering to create new composite materials with enhanced BC properties, and iv) fabrication of BC devices, using insight gained from modelling of materials and device parameters. If successful, my ambitious strategy will culminate in revolutionary solid-state cooling devices that are environmentally friendly and energy efficient.
Max ERC Funding
1 467 521 €
Duration
Start date: 2016-04-01, End date: 2021-03-31
Project acronym Beacon
Project Beacons in the Dark
Researcher (PI) Paulo César Carvalho Freire
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), PE9, ERC-2011-StG_20101014
Summary BEACON aims at performing an ambitious multi-disciplinary (optical, radio astronomy and theoretical physics) study to enable a fundamentally improved understanding of gravitation and space-time. For almost a century Einstein's general relativity has been the last word on gravity. However, superstring theory predicts new gravitational phenomena beyond relativity. In this proposal I will attempt to detect these new phenomena, with a sensitivity 20 times better than state-of-the-art attempts. A successful detection would take physics beyond its current understanding of the Universe.
These new gravitational phenomena are emission of dipolar gravitational waves and the violation of the strong equivalence principle (SEP). I plan to look for them by timing newly discovered binary pulsars. I will improve upon the best current limits on dipolar gravitational wave emission by a factor of 20 within the time of this proposal. I also plan to develop a test of the Strong Equivalence Principle using a new pulsar/main-sequence star binary. The precision of this test is likely to surpass the current best limits within the time frame of this proposal and then keep improving indefinitely with time. This happens because this is the cleanest gravitational experiment ever carried out.
In order to further these goals, I plan to build the ultimate pulsar observing system. By taking advantage of recent technological advances in microwave engineering (particularly sensitive ultra-wide band receivers) digital electronics (fast analogue-to-digital converters and digital spectrometers) and computing, my team and me will be able to greatly improve the sensitivity and precision for pulsar timing experiments and exploit the capabilities of modern radio telescopes to their limits.
Pulsars are the beacons that will guide me in these new, uncharted seas.
Summary
BEACON aims at performing an ambitious multi-disciplinary (optical, radio astronomy and theoretical physics) study to enable a fundamentally improved understanding of gravitation and space-time. For almost a century Einstein's general relativity has been the last word on gravity. However, superstring theory predicts new gravitational phenomena beyond relativity. In this proposal I will attempt to detect these new phenomena, with a sensitivity 20 times better than state-of-the-art attempts. A successful detection would take physics beyond its current understanding of the Universe.
These new gravitational phenomena are emission of dipolar gravitational waves and the violation of the strong equivalence principle (SEP). I plan to look for them by timing newly discovered binary pulsars. I will improve upon the best current limits on dipolar gravitational wave emission by a factor of 20 within the time of this proposal. I also plan to develop a test of the Strong Equivalence Principle using a new pulsar/main-sequence star binary. The precision of this test is likely to surpass the current best limits within the time frame of this proposal and then keep improving indefinitely with time. This happens because this is the cleanest gravitational experiment ever carried out.
In order to further these goals, I plan to build the ultimate pulsar observing system. By taking advantage of recent technological advances in microwave engineering (particularly sensitive ultra-wide band receivers) digital electronics (fast analogue-to-digital converters and digital spectrometers) and computing, my team and me will be able to greatly improve the sensitivity and precision for pulsar timing experiments and exploit the capabilities of modern radio telescopes to their limits.
Pulsars are the beacons that will guide me in these new, uncharted seas.
Max ERC Funding
1 892 376 €
Duration
Start date: 2011-09-01, End date: 2016-08-31
Project acronym BeadsOnString
Project Beads on String Genomics: Experimental Toolbox for Unmasking Genetic / Epigenetic Variation in Genomic DNA and Chromatin
Researcher (PI) Yuval Ebenstein
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Starting Grant (StG), PE4, ERC-2013-StG
Summary Next generation sequencing (NGS) is revolutionizing all fields of biological research but it fails to extract the full range of information associated with genetic material and is lacking in its ability to resolve variations between genomes. The high degree of genome variation exhibited both on the population level as well as between genetically “identical” cells (even in the same organ) makes genetic and epigenetic analysis on the single cell and single genome level a necessity.
Chromosomes may be conceptually represented as a linear one-dimensional barcode. However, in contrast to a traditional binary barcode approach that considers only two possible bits of information (1 & 0), I will use colour and molecular structure to expand the variety of information represented in the barcode. Like colourful beads threaded on a string, where each bead represents a distinct type of observable, I will label each type of genomic information with a different chemical moiety thus expanding the repertoire of information that can be simultaneously measured. A major effort in this proposal is invested in the development of unique chemistries to enable this labelling.
I specifically address three types of genomic variation: Variations in genomic layout (including DNA repeats, structural and copy number variations), variations in the patterns of chemical DNA modifications (such as methylation of cytosine bases) and variations in the chromatin composition (including nucleosome and transcription factor distributions). I will use physical extension of long DNA molecules on surfaces and in nanofluidic channels to reveal this information visually in the form of a linear, fluorescent “barcode” that is read-out by advanced imaging techniques. Similarly, DNA molecules will be threaded through a nanopore where the sequential position of “bulky” molecular groups attached to the DNA may be inferred from temporal modulation of an ionic current measured across the pore.
Summary
Next generation sequencing (NGS) is revolutionizing all fields of biological research but it fails to extract the full range of information associated with genetic material and is lacking in its ability to resolve variations between genomes. The high degree of genome variation exhibited both on the population level as well as between genetically “identical” cells (even in the same organ) makes genetic and epigenetic analysis on the single cell and single genome level a necessity.
Chromosomes may be conceptually represented as a linear one-dimensional barcode. However, in contrast to a traditional binary barcode approach that considers only two possible bits of information (1 & 0), I will use colour and molecular structure to expand the variety of information represented in the barcode. Like colourful beads threaded on a string, where each bead represents a distinct type of observable, I will label each type of genomic information with a different chemical moiety thus expanding the repertoire of information that can be simultaneously measured. A major effort in this proposal is invested in the development of unique chemistries to enable this labelling.
I specifically address three types of genomic variation: Variations in genomic layout (including DNA repeats, structural and copy number variations), variations in the patterns of chemical DNA modifications (such as methylation of cytosine bases) and variations in the chromatin composition (including nucleosome and transcription factor distributions). I will use physical extension of long DNA molecules on surfaces and in nanofluidic channels to reveal this information visually in the form of a linear, fluorescent “barcode” that is read-out by advanced imaging techniques. Similarly, DNA molecules will be threaded through a nanopore where the sequential position of “bulky” molecular groups attached to the DNA may be inferred from temporal modulation of an ionic current measured across the pore.
Max ERC Funding
1 627 600 €
Duration
Start date: 2013-10-01, End date: 2018-09-30
Project acronym BEBOP
Project Bacterial biofilms in porous structures: from biomechanics to control
Researcher (PI) Yohan, Jean-Michel, Louis DAVIT
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE8, ERC-2018-STG
Summary The key ideas motivating this project are that: 1) precise control of the properties of porous systems can be obtained by exploiting bacteria and their fantastic abilities; 2) conversely, porous media (large surface to volume ratios, complex structures) could be a major part of bacterial synthetic biology, as a scaffold for growing large quantities of microorganisms in controlled bioreactors.
The main scientific obstacle to precise control of such processes is the lack of understanding of biophysical mechanisms in complex porous structures, even in the case of single-strain biofilms. The central hypothesis of this project is that a better fundamental understanding of biofilm biomechanics and physical ecology will yield a novel theoretical basis for engineering and control.
The first scientific objective is thus to gain insight into how fluid flow, transport phenomena and biofilms interact within connected multiscale heterogeneous structures - a major scientific challenge with wide-ranging implications. To this end, we will combine microfluidic and 3D printed micro-bioreactor experiments; fluorescence and X-ray imaging; high performance computing blending CFD, individual-based models and pore network approaches.
The second scientific objective is to create the primary building blocks toward a control theory of bacteria in porous media and innovative designs of microbial bioreactors. Building upon the previous objective, we first aim to extract from the complexity of biological responses the most universal engineering principles applying to such systems. We will then design a novel porous micro-bioreactor to demonstrate how the permeability and solute residence times can be controlled in a dynamic, reversible and stable way - an initial step toward controlling reaction rates.
We envision that this will unlock a new generation of biotechnologies and novel bioreactor designs enabling translation from proof-of-concept synthetic microbiology to industrial processes.
Summary
The key ideas motivating this project are that: 1) precise control of the properties of porous systems can be obtained by exploiting bacteria and their fantastic abilities; 2) conversely, porous media (large surface to volume ratios, complex structures) could be a major part of bacterial synthetic biology, as a scaffold for growing large quantities of microorganisms in controlled bioreactors.
The main scientific obstacle to precise control of such processes is the lack of understanding of biophysical mechanisms in complex porous structures, even in the case of single-strain biofilms. The central hypothesis of this project is that a better fundamental understanding of biofilm biomechanics and physical ecology will yield a novel theoretical basis for engineering and control.
The first scientific objective is thus to gain insight into how fluid flow, transport phenomena and biofilms interact within connected multiscale heterogeneous structures - a major scientific challenge with wide-ranging implications. To this end, we will combine microfluidic and 3D printed micro-bioreactor experiments; fluorescence and X-ray imaging; high performance computing blending CFD, individual-based models and pore network approaches.
The second scientific objective is to create the primary building blocks toward a control theory of bacteria in porous media and innovative designs of microbial bioreactors. Building upon the previous objective, we first aim to extract from the complexity of biological responses the most universal engineering principles applying to such systems. We will then design a novel porous micro-bioreactor to demonstrate how the permeability and solute residence times can be controlled in a dynamic, reversible and stable way - an initial step toward controlling reaction rates.
We envision that this will unlock a new generation of biotechnologies and novel bioreactor designs enabling translation from proof-of-concept synthetic microbiology to industrial processes.
Max ERC Funding
1 649 861 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym BEBOP
Project Binaries Escorted By Orbiting Planets
Researcher (PI) Amaury TRIAUD
Host Institution (HI) THE UNIVERSITY OF BIRMINGHAM
Call Details Starting Grant (StG), PE9, ERC-2018-STG
Summary Planets orbiting both stars of a binary system -circumbinary planets- are challenging our understanding about how planets assemble, and how their orbits subsequently evolve. Long confined to science-fiction, circumbinary planets were confirmed by the Kepler spacecraft, in one of its most spectacular, and impactful result. Despite Kepler’s insights, a lot remains unknown about these planets. Kepler also suffered from intractable biases that the BEBOP project will solve.
BEBOP will revolutionise how we detect and study circumbinary planets. Conducting a Doppler survey, we will vastly improve the efficiency of circumbinary planet detection, and remove Kepler’s biases. BEBOP will construct a clearer picture of the circumbinary planet population, and free us from the inherent vagaries, and important costs of space-funding. Thanks to the Doppler method we will study dynamical effects unique to circumbinary planets, estimate their multiplicity, and compute their true occurrence rate.
Circumbinary planets are essential objects. Binaries disturbe planet formation. Any similarity, and any difference between the population of circumbinary planets and planets orbiting single stars, will bring novel information about how planets are produced. In addition, circumbinary planets have unique orbital properties that boost their probability to experience transits. BEBOP’s detections will open the door to atmospheric studies of colder worlds than presently available.
Based on already discovered systems, and on two successful proofs-of-concept, the BEBOP team will detect 15 circumbinary gas-giants, three times more than Kepler. BEBOP will provide an unambiguous measure of the efficiency of gas-giant formation in circumbinary environments. In addition the BEBOP project comes with an ambitious programme to combine three detection methods (Doppler, transits, and astrometry) in a holistic approach that will bolster investigations into circumbinary planets, and create a lasting legacy.
Summary
Planets orbiting both stars of a binary system -circumbinary planets- are challenging our understanding about how planets assemble, and how their orbits subsequently evolve. Long confined to science-fiction, circumbinary planets were confirmed by the Kepler spacecraft, in one of its most spectacular, and impactful result. Despite Kepler’s insights, a lot remains unknown about these planets. Kepler also suffered from intractable biases that the BEBOP project will solve.
BEBOP will revolutionise how we detect and study circumbinary planets. Conducting a Doppler survey, we will vastly improve the efficiency of circumbinary planet detection, and remove Kepler’s biases. BEBOP will construct a clearer picture of the circumbinary planet population, and free us from the inherent vagaries, and important costs of space-funding. Thanks to the Doppler method we will study dynamical effects unique to circumbinary planets, estimate their multiplicity, and compute their true occurrence rate.
Circumbinary planets are essential objects. Binaries disturbe planet formation. Any similarity, and any difference between the population of circumbinary planets and planets orbiting single stars, will bring novel information about how planets are produced. In addition, circumbinary planets have unique orbital properties that boost their probability to experience transits. BEBOP’s detections will open the door to atmospheric studies of colder worlds than presently available.
Based on already discovered systems, and on two successful proofs-of-concept, the BEBOP team will detect 15 circumbinary gas-giants, three times more than Kepler. BEBOP will provide an unambiguous measure of the efficiency of gas-giant formation in circumbinary environments. In addition the BEBOP project comes with an ambitious programme to combine three detection methods (Doppler, transits, and astrometry) in a holistic approach that will bolster investigations into circumbinary planets, and create a lasting legacy.
Max ERC Funding
1 186 313 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym BEHAVIORAL THEORY
Project Behavioral Theory and Economic Applications
Researcher (PI) Botond Koszegi
Host Institution (HI) KOZEP-EUROPAI EGYETEM
Call Details Starting Grant (StG), SH1, ERC-2012-StG_20111124
Summary "This proposal outlines projects to develop robust and portable theories studying the impact of psychological phenomena in economic settings. The proposed work falls in three broad research agendas.
My first main agenda is to formally model and economically apply a simple observation: that when people make decisions, they do not focus equally on all attributes of their available options, and overweight the attributes they focus on. I will build a set of portable models of focusing in attribute-based choice and risky choice based on the idea that a person focuses more on attributes in which her options differ more. I will also use the framework to develop novel, focus-based, theories of intertemporal choice and social preferences, as well as analyze the implications of focusing for product design, principal-agent relationships, and other economic questions.
My second main agenda is to explore some implications for market outcomes, welfare, and policy of the possibility that consumers misperceive certain aspects of products. I will investigate the circumstances that facilitate the profitable deception of consumers; firms' incentives for ""innovating"" deceptive products, including novel financial products aimed at exploiting investors; how firms' ability to distinguish naive and sophisticated consumers affects the consequences of deception; whether learning on the part of consumers will help them to avoid making mistakes; and how regulators and other observers can detect consumer mistakes from market data.
Two further projects apply the model of reference-dependent utility I have developed in earlier work to understand the pricing and advertising behavior of firms. I will also aim to disseminate some of my work, along with other cutting-edge research in psychology and economics, in a Journal of Economic Literature survey on ""Behavioral Contract Theory."""
Summary
"This proposal outlines projects to develop robust and portable theories studying the impact of psychological phenomena in economic settings. The proposed work falls in three broad research agendas.
My first main agenda is to formally model and economically apply a simple observation: that when people make decisions, they do not focus equally on all attributes of their available options, and overweight the attributes they focus on. I will build a set of portable models of focusing in attribute-based choice and risky choice based on the idea that a person focuses more on attributes in which her options differ more. I will also use the framework to develop novel, focus-based, theories of intertemporal choice and social preferences, as well as analyze the implications of focusing for product design, principal-agent relationships, and other economic questions.
My second main agenda is to explore some implications for market outcomes, welfare, and policy of the possibility that consumers misperceive certain aspects of products. I will investigate the circumstances that facilitate the profitable deception of consumers; firms' incentives for ""innovating"" deceptive products, including novel financial products aimed at exploiting investors; how firms' ability to distinguish naive and sophisticated consumers affects the consequences of deception; whether learning on the part of consumers will help them to avoid making mistakes; and how regulators and other observers can detect consumer mistakes from market data.
Two further projects apply the model of reference-dependent utility I have developed in earlier work to understand the pricing and advertising behavior of firms. I will also aim to disseminate some of my work, along with other cutting-edge research in psychology and economics, in a Journal of Economic Literature survey on ""Behavioral Contract Theory."""
Max ERC Funding
1 275 448 €
Duration
Start date: 2012-11-01, End date: 2018-10-31
Project acronym BIAF
Project Bird Inspired Autonomous Flight
Researcher (PI) Shane Paul Windsor
Host Institution (HI) UNIVERSITY OF BRISTOL
Call Details Starting Grant (StG), PE8, ERC-2015-STG
Summary The agile and efficient flight of birds shows what flight performance is physically possible, and in theory could be achieved by unmanned air vehicles (UAVs) of the same size. The overall aim of this project is to enhance the performance of small scale UAVs by developing novel technologies inspired by understanding how birds are adapted to interact with airflows. Small UAVs have the potential to dramatically change current practices in many areas such as, search and rescue, surveillance, and environmental monitoring. Currently the utility of these systems is limited by their operational endurance and their inability to operate in strong turbulent winds, especially those that often occur in urban environments. Birds are adapted to be able to fly in these conditions and actually use them to their advantage to minimise their energy output.
This project is composed of three tracks which contain elements of technology development, as well as scientific investigation looking at bird flight behaviour and aerodynamics. The first track looks at developing path planning algorithms for UAVs in urban environments based on how birds fly in these areas, by using GPS tracking and computational fluid dynamics alongside trajectory optimization. The second track aims to develop artificial wings with improved gust tolerance inspired by the features of feathered wings. Here, high speed video measurements of birds flying through gusts will be used alongside wind tunnel testing of artificial wings to discover what features of a bird’s wing help to alleviate gusts. The third track develops novel force and flow sensor arrays for autonomous flight control based on the sensor arrays found in flying animals. These arrays will be used to make UAVs with increased agility and robustness. This unique bird inspired approach uses biology to show what is possible, and engineering to find the features that enable this performance and develop them into functional technologies.
Summary
The agile and efficient flight of birds shows what flight performance is physically possible, and in theory could be achieved by unmanned air vehicles (UAVs) of the same size. The overall aim of this project is to enhance the performance of small scale UAVs by developing novel technologies inspired by understanding how birds are adapted to interact with airflows. Small UAVs have the potential to dramatically change current practices in many areas such as, search and rescue, surveillance, and environmental monitoring. Currently the utility of these systems is limited by their operational endurance and their inability to operate in strong turbulent winds, especially those that often occur in urban environments. Birds are adapted to be able to fly in these conditions and actually use them to their advantage to minimise their energy output.
This project is composed of three tracks which contain elements of technology development, as well as scientific investigation looking at bird flight behaviour and aerodynamics. The first track looks at developing path planning algorithms for UAVs in urban environments based on how birds fly in these areas, by using GPS tracking and computational fluid dynamics alongside trajectory optimization. The second track aims to develop artificial wings with improved gust tolerance inspired by the features of feathered wings. Here, high speed video measurements of birds flying through gusts will be used alongside wind tunnel testing of artificial wings to discover what features of a bird’s wing help to alleviate gusts. The third track develops novel force and flow sensor arrays for autonomous flight control based on the sensor arrays found in flying animals. These arrays will be used to make UAVs with increased agility and robustness. This unique bird inspired approach uses biology to show what is possible, and engineering to find the features that enable this performance and develop them into functional technologies.
Max ERC Funding
1 998 546 €
Duration
Start date: 2016-04-01, End date: 2021-03-31
Project acronym BIGlobal
Project Firm Growth and Market Power in the Global Economy
Researcher (PI) Swati DHINGRA
Host Institution (HI) LONDON SCHOOL OF ECONOMICS AND POLITICAL SCIENCE
Call Details Starting Grant (StG), SH1, ERC-2017-STG
Summary According to the European Commission, to design effective policies for ensuring a “more dynamic, innovative and competitive” economy, it is essential to understand the decision-making process of firms as they differ a lot in terms of their capacities and policy responses (EC 2007). The objective of my future research is to provide such an analysis. BIGlobal will examine the sources of firm growth and market power to provide new insights into welfare and policy in a globalized world.
Much of analysis of the global economy is set in the paradigm of markets that allocate resources efficiently and there is little role for policy. But big firms dominate economic activity, especially across borders. How do firms grow and what is the effect of their market power on the welfare impact of globalization? This project will determine how firm decisions matter for the aggregate gains from globalization, the division of these gains across different individuals and their implications for policy design.
Over the next five years, I will incorporate richer firms behaviour in models of international trade to understand how trade and industrial policies impact the growth process, especially in less developed markets. The specific questions I will address include: how can trade and competition policy ensure consumers benefit from globalization when firms engaged in international trade have market power, how do domestic policies to encourage agribusiness firms affect the extent to which small farmers gain from trade, how do industrial policies affect firm growth through input linkages, and what is the impact of banking globalization on the growth of firms in the real sector.
Each project will combine theoretical work with rich data from developing economies to expand the frontier of knowledge on trade and industrial policy, and to provide a basis for informed policymaking.
Summary
According to the European Commission, to design effective policies for ensuring a “more dynamic, innovative and competitive” economy, it is essential to understand the decision-making process of firms as they differ a lot in terms of their capacities and policy responses (EC 2007). The objective of my future research is to provide such an analysis. BIGlobal will examine the sources of firm growth and market power to provide new insights into welfare and policy in a globalized world.
Much of analysis of the global economy is set in the paradigm of markets that allocate resources efficiently and there is little role for policy. But big firms dominate economic activity, especially across borders. How do firms grow and what is the effect of their market power on the welfare impact of globalization? This project will determine how firm decisions matter for the aggregate gains from globalization, the division of these gains across different individuals and their implications for policy design.
Over the next five years, I will incorporate richer firms behaviour in models of international trade to understand how trade and industrial policies impact the growth process, especially in less developed markets. The specific questions I will address include: how can trade and competition policy ensure consumers benefit from globalization when firms engaged in international trade have market power, how do domestic policies to encourage agribusiness firms affect the extent to which small farmers gain from trade, how do industrial policies affect firm growth through input linkages, and what is the impact of banking globalization on the growth of firms in the real sector.
Each project will combine theoretical work with rich data from developing economies to expand the frontier of knowledge on trade and industrial policy, and to provide a basis for informed policymaking.
Max ERC Funding
1 313 103 €
Duration
Start date: 2017-12-01, End date: 2022-11-30
Project acronym BIHSNAM
Project Bio-inspired Hierarchical Super Nanomaterials
Researcher (PI) Nicola Pugno
Host Institution (HI) UNIVERSITA DEGLI STUDI DI TRENTO
Call Details Starting Grant (StG), PE8, ERC-2011-StG_20101014
Summary "Nanomaterials such as carbon nanotubes or graphene sheets represent the future of material science, due to their potentially exceptional mechanical properties. One great drawback of all artificial materials, however, is the decrease of strength with increasing toughness, and viceversa. This problem is not encountered in many biological nanomaterials (e.g. spider silk, bone, nacre). Other biological materials display exceptional adhesion or damping properties, and can be self-cleaning or self-healing. The “secret” of biomaterials seems to lie in “hierarchy”: several levels can often be identified (2 in nacre, up to 7 in bone and dentine), from nano- to micro-scale.
The idea of this project is to combine Nature and Nanotechnology to design hierarchical composites with tailor made characteristics, optimized with respect to both strength and toughness, as well as materials with strong adhesion/easy detachment, smart damping, self-healing/-cleaning properties or controlled energy dissipation. For example, one possible objective is to design the “world’s toughest composite material”. The potential impact and importance of these goals on materials science, the high-tech industry and ultimately the quality of human life could be considerable.
In order to tackle such a challenging design process, the PI proposes to adopt ultimate nanomechanics theoretical tools corroborated by continuum or atomistic simulations, multi-scale numerical parametric simulations and Finite Element optimization procedures, starting from characterization experiments on biological- or nano-materials, from the macroscale to the nanoscale. Results from theoretical, numerical and experimental work packages will be applied to a specific case study in an engineering field of particular interest to demonstrate importance and feasibility, e.g. an airplane wing with a considerably enhanced fatigue resistance and reduced ice-layer adhesion, leading to a 10 fold reduction in wasted fuel."
Summary
"Nanomaterials such as carbon nanotubes or graphene sheets represent the future of material science, due to their potentially exceptional mechanical properties. One great drawback of all artificial materials, however, is the decrease of strength with increasing toughness, and viceversa. This problem is not encountered in many biological nanomaterials (e.g. spider silk, bone, nacre). Other biological materials display exceptional adhesion or damping properties, and can be self-cleaning or self-healing. The “secret” of biomaterials seems to lie in “hierarchy”: several levels can often be identified (2 in nacre, up to 7 in bone and dentine), from nano- to micro-scale.
The idea of this project is to combine Nature and Nanotechnology to design hierarchical composites with tailor made characteristics, optimized with respect to both strength and toughness, as well as materials with strong adhesion/easy detachment, smart damping, self-healing/-cleaning properties or controlled energy dissipation. For example, one possible objective is to design the “world’s toughest composite material”. The potential impact and importance of these goals on materials science, the high-tech industry and ultimately the quality of human life could be considerable.
In order to tackle such a challenging design process, the PI proposes to adopt ultimate nanomechanics theoretical tools corroborated by continuum or atomistic simulations, multi-scale numerical parametric simulations and Finite Element optimization procedures, starting from characterization experiments on biological- or nano-materials, from the macroscale to the nanoscale. Results from theoretical, numerical and experimental work packages will be applied to a specific case study in an engineering field of particular interest to demonstrate importance and feasibility, e.g. an airplane wing with a considerably enhanced fatigue resistance and reduced ice-layer adhesion, leading to a 10 fold reduction in wasted fuel."
Max ERC Funding
1 004 400 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym BIMOC
Project Biomimetic Organocatalysis – Development of Novel Synthetic Catalytic Methodology and Technology
Researcher (PI) Magnus Rueping
Host Institution (HI) RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN
Call Details Starting Grant (StG), PE4, ERC-2007-StG
Summary Biomimetic Organocatalysis – Development of Novel Synthetic Catalytic Methodology and Technology The objective of the proposed research is the design and development of unprecedented preassembled, modular, molecular factories. Inspiration comes from nature’s non-ribosomal peptide synthetases (NRPSs) and polyketide synthetases (PKSs). These large multifunctional enzymes possess catalytic modules with the capacity for recognition, activation and modification required for sequential biosynthesis of complex peptides and polyketides. Using nature as a role model we intend to design and prepare such catalyst “factories” synthetically and apply them in novel cascade reaction sequences. The single catalytic modules employed will be based on organocatalytic procedures, including enamine-, iminium-, as well as hydrogen bonding activation processes, but the potential scope is limitless. Organocatalysts have so far never been applied in a combined fashion utilizing their different activation mechanisms in multiple reaction cascades. Therefore, it is our intention to firstly demonstrate that such a production line approach is feasible and that these new catalyst systems can be applied in the synthesis of valuable enantiopure, biologically active, building blocks and natural products. Additionally, the extensive possibilities to vary organocatalyst modules in sequence will lead to science mimicking nature in its diversity.
Summary
Biomimetic Organocatalysis – Development of Novel Synthetic Catalytic Methodology and Technology The objective of the proposed research is the design and development of unprecedented preassembled, modular, molecular factories. Inspiration comes from nature’s non-ribosomal peptide synthetases (NRPSs) and polyketide synthetases (PKSs). These large multifunctional enzymes possess catalytic modules with the capacity for recognition, activation and modification required for sequential biosynthesis of complex peptides and polyketides. Using nature as a role model we intend to design and prepare such catalyst “factories” synthetically and apply them in novel cascade reaction sequences. The single catalytic modules employed will be based on organocatalytic procedures, including enamine-, iminium-, as well as hydrogen bonding activation processes, but the potential scope is limitless. Organocatalysts have so far never been applied in a combined fashion utilizing their different activation mechanisms in multiple reaction cascades. Therefore, it is our intention to firstly demonstrate that such a production line approach is feasible and that these new catalyst systems can be applied in the synthesis of valuable enantiopure, biologically active, building blocks and natural products. Additionally, the extensive possibilities to vary organocatalyst modules in sequence will lead to science mimicking nature in its diversity.
Max ERC Funding
999 960 €
Duration
Start date: 2008-09-01, End date: 2012-08-31
Project acronym BinCosmos
Project The Impact of Massive Binaries Through Cosmic Time
Researcher (PI) Selma DE MINK
Host Institution (HI) UNIVERSITEIT VAN AMSTERDAM
Call Details Starting Grant (StG), PE9, ERC-2016-STG
Summary Massive stars play many key roles in Astrophysics. As COSMIC ENGINES they transformed the pristine Universe left after the Big Bang into our modern Universe. We use massive stars, their explosions and products as COSMIC PROBES to study the conditions in the distant Universe and the extreme physics inaccessible at earth. Models of massive stars are thus widely applied. A central common assumption is that massive stars are non-rotating single objects, in stark contrast with new data. Recent studies show that majority (70% according to our data) will experience severe interaction with a companion (Sana, de Mink et al. Science 2012).
I propose to conduct the most ambitious and extensive exploration to date of the effects of binarity and rotation on the lives and fates of massive stars to (I) transform our understanding of the complex physical processes and how they operate in the vast parameter space and (II) explore the cosmological implications after calibrating and verifying the models. To achieve this ambitious objective I will use an innovative computational approach that combines the strength of two highly complementary codes and seek direct confrontation with observations to overcome the computational challenges that inhibited previous work.
This timely project will provide the urgent theory framework needed for interpretation and guiding of observing programs with the new facilities (JWST, LSST, aLIGO/VIRGO). Public release of the model grids and code will ensure wide impact of this project. I am in the unique position to successfully lead this project because of my (i) extensive experience modeling the complex physical processes, (ii) leading role in introducing large statistical simulations in the massive star community and (iii) direct involvement in surveys that will be used in this project.
Summary
Massive stars play many key roles in Astrophysics. As COSMIC ENGINES they transformed the pristine Universe left after the Big Bang into our modern Universe. We use massive stars, their explosions and products as COSMIC PROBES to study the conditions in the distant Universe and the extreme physics inaccessible at earth. Models of massive stars are thus widely applied. A central common assumption is that massive stars are non-rotating single objects, in stark contrast with new data. Recent studies show that majority (70% according to our data) will experience severe interaction with a companion (Sana, de Mink et al. Science 2012).
I propose to conduct the most ambitious and extensive exploration to date of the effects of binarity and rotation on the lives and fates of massive stars to (I) transform our understanding of the complex physical processes and how they operate in the vast parameter space and (II) explore the cosmological implications after calibrating and verifying the models. To achieve this ambitious objective I will use an innovative computational approach that combines the strength of two highly complementary codes and seek direct confrontation with observations to overcome the computational challenges that inhibited previous work.
This timely project will provide the urgent theory framework needed for interpretation and guiding of observing programs with the new facilities (JWST, LSST, aLIGO/VIRGO). Public release of the model grids and code will ensure wide impact of this project. I am in the unique position to successfully lead this project because of my (i) extensive experience modeling the complex physical processes, (ii) leading role in introducing large statistical simulations in the massive star community and (iii) direct involvement in surveys that will be used in this project.
Max ERC Funding
1 926 634 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym BIO-ORIGAMI
Project Meta-biomaterials: 3D printing meets Origami
Researcher (PI) Amir Abbas Zadpoor
Host Institution (HI) TECHNISCHE UNIVERSITEIT DELFT
Call Details Starting Grant (StG), PE8, ERC-2015-STG
Summary Meta-materials, best known for their extraordinary properties (e.g. negative stiffness), are halfway from both materials and structures: their unusual properties are direct results of their complex 3D structures. This project introduces a new class of meta-materials called meta-biomaterials. Meta-biomaterials go beyond meta-materials by adding an extra dimension to the complex 3D structure, i.e. complex and precisely controlled surface nano-patterns. The 3D structure gives rise to unprecedented or rare combination of mechanical (e.g. stiffness), mass transport (e.g. permeability, diffusivity), and biological (e.g. tissue regeneration rate) properties. Those properties optimize the distribution of mechanical loads and the transport of nutrients and oxygen while providing geometrical shapes preferable for tissue regeneration (e.g. higher curvatures). Surface nano-patterns communicate with (stem) cells, control their differentiation behavior, and enhance tissue regeneration.
There is one important problem: meta-biomaterials cannot be manufactured with current technology. 3D printing can create complex shapes while nanolithography creates complex surface nano-patterns down to a few nanometers but only on flat surfaces. There is, however, no way of combining complex shapes with complex surface nano-patterns. The groundbreaking nature of this project is in solving that deadlock using the Origami concept (the ancient Japanese art of paper folding). In this approach, I first decorate flat 3D-printed sheets with nano-patterns. Then, I apply Origami techniques to fold the decorated flat sheet and create complex 3D shapes. The sheet knows how to self-fold to the desired structure when subjected to compression, owing to pre-designed joints, crease patterns, and thickness/material distributions that control its mechanical instability. I will demonstrate the added value of meta-biomaterials in improving bone tissue regeneration using in vitro cell culture assays and animal models
Summary
Meta-materials, best known for their extraordinary properties (e.g. negative stiffness), are halfway from both materials and structures: their unusual properties are direct results of their complex 3D structures. This project introduces a new class of meta-materials called meta-biomaterials. Meta-biomaterials go beyond meta-materials by adding an extra dimension to the complex 3D structure, i.e. complex and precisely controlled surface nano-patterns. The 3D structure gives rise to unprecedented or rare combination of mechanical (e.g. stiffness), mass transport (e.g. permeability, diffusivity), and biological (e.g. tissue regeneration rate) properties. Those properties optimize the distribution of mechanical loads and the transport of nutrients and oxygen while providing geometrical shapes preferable for tissue regeneration (e.g. higher curvatures). Surface nano-patterns communicate with (stem) cells, control their differentiation behavior, and enhance tissue regeneration.
There is one important problem: meta-biomaterials cannot be manufactured with current technology. 3D printing can create complex shapes while nanolithography creates complex surface nano-patterns down to a few nanometers but only on flat surfaces. There is, however, no way of combining complex shapes with complex surface nano-patterns. The groundbreaking nature of this project is in solving that deadlock using the Origami concept (the ancient Japanese art of paper folding). In this approach, I first decorate flat 3D-printed sheets with nano-patterns. Then, I apply Origami techniques to fold the decorated flat sheet and create complex 3D shapes. The sheet knows how to self-fold to the desired structure when subjected to compression, owing to pre-designed joints, crease patterns, and thickness/material distributions that control its mechanical instability. I will demonstrate the added value of meta-biomaterials in improving bone tissue regeneration using in vitro cell culture assays and animal models
Max ERC Funding
1 499 600 €
Duration
Start date: 2016-02-01, End date: 2021-01-31
Project acronym BIO2CHEM-D
Project Biomass to chemicals: Catalysis design from first principles for a sustainable chemical industry
Researcher (PI) Nuria Lopez
Host Institution (HI) FUNDACIO PRIVADA INSTITUT CATALA D'INVESTIGACIO QUIMICA
Call Details Starting Grant (StG), PE4, ERC-2010-StG_20091028
Summary The use of renewable feedstocks by the chemical industry is fundamental due to both the depletion of fossil
resources and the increasing pressure of environmental concerns. Biomass can act as a sustainable source of
organic industrial chemicals; however, the establishment of a renewable chemical industry that is
economically competitive with the present oil-based one requires the development of new processes to
convert biomass-derived compounds into useful industrial materials following the principles of green
chemistry. To achieve these goals, developments in several fields including heterogeneous catalysis are
needed. One of the ways to accelerate the discovery of new potentially active, selective and stable catalysts is
the massive use of computational chemistry. Recent advances have demonstrated that Density Functional
Theory coupled to ab initio thermodynamics, transition state theory and microkinetic analysis can provide a
full view of the catalytic phenomena.
The aim of the present project is thus to employ these well-tested computational techniques to the
development of a theoretical framework that can accelerate the identification of new catalysts for the
conversion of biomass derived target compounds into useful chemicals. Since compared to petroleum-based
materials-biomass derived ones are multifuncionalized, the search for new catalytic materials and processes
has a strong requirement in the selectivity of the chemical transformations. The main challenges in the
project are related to the high functionalization of the molecules, their liquid nature and the large number of
potentially competitive reaction paths. The requirements of specificity and selectivity in the chemical
transformations while keeping a reasonably flexible framework constitute a major objective. The work will
be divided in three main work packages, one devoted to the properties of small molecules or fragments
containing a single functional group; the second addresses competition in multiple functionalized molecules;
and third is dedicated to the specific transformations of two molecules that have already been identified as
potential platform generators. The goal is to identify suitable candidates that could be synthetized and tested
in the Institute facilities.
Summary
The use of renewable feedstocks by the chemical industry is fundamental due to both the depletion of fossil
resources and the increasing pressure of environmental concerns. Biomass can act as a sustainable source of
organic industrial chemicals; however, the establishment of a renewable chemical industry that is
economically competitive with the present oil-based one requires the development of new processes to
convert biomass-derived compounds into useful industrial materials following the principles of green
chemistry. To achieve these goals, developments in several fields including heterogeneous catalysis are
needed. One of the ways to accelerate the discovery of new potentially active, selective and stable catalysts is
the massive use of computational chemistry. Recent advances have demonstrated that Density Functional
Theory coupled to ab initio thermodynamics, transition state theory and microkinetic analysis can provide a
full view of the catalytic phenomena.
The aim of the present project is thus to employ these well-tested computational techniques to the
development of a theoretical framework that can accelerate the identification of new catalysts for the
conversion of biomass derived target compounds into useful chemicals. Since compared to petroleum-based
materials-biomass derived ones are multifuncionalized, the search for new catalytic materials and processes
has a strong requirement in the selectivity of the chemical transformations. The main challenges in the
project are related to the high functionalization of the molecules, their liquid nature and the large number of
potentially competitive reaction paths. The requirements of specificity and selectivity in the chemical
transformations while keeping a reasonably flexible framework constitute a major objective. The work will
be divided in three main work packages, one devoted to the properties of small molecules or fragments
containing a single functional group; the second addresses competition in multiple functionalized molecules;
and third is dedicated to the specific transformations of two molecules that have already been identified as
potential platform generators. The goal is to identify suitable candidates that could be synthetized and tested
in the Institute facilities.
Max ERC Funding
1 496 200 €
Duration
Start date: 2010-10-01, End date: 2015-09-30
Project acronym BioCircuit
Project Programmable BioMolecular Circuits: Emulating Regulatory Functions in Living Cells Using a Bottom-Up Approach
Researcher (PI) Tom Antonius Franciscus De greef
Host Institution (HI) TECHNISCHE UNIVERSITEIT EINDHOVEN
Call Details Starting Grant (StG), PE4, ERC-2015-STG
Summary Programmable biomolecular circuits have received increasing attention in recent years as the scope of chemistry expands from the synthesis of individual molecules to the construction of chemical networks that can perform sophisticated functions such as logic operations and feedback control. Rationally engineered biomolecular circuits that robustly execute higher-order spatiotemporal behaviours typically associated with intracellular regulatory functions present a unique and uncharted platform to systematically explore the molecular logic and physical design principles of the cell. The experience gained by in-vitro construction of artificial cells displaying advanced system-level functions deepens our understanding of regulatory networks in living cells and allows theoretical assumptions and models to be refined in a controlled setting. This proposal combines elements from systems chemistry, in-vitro synthetic biology and micro-engineering and explores generic strategies to investigate the molecular logic of biology’s regulatory circuits by applying a physical chemistry-driven bottom-up approach. Progress in this field requires 1) proof-of-principle systems where in-vitro biomolecular circuits are designed to emulate characteristic system-level functions of regulatory circuits in living cells and 2) novel experimental tools to operate biochemical networks under out-of-equilibrium conditions. Here, a comprehensive research program is proposed that addresses these challenges by engineering three biochemical model systems that display elementary signal transduction and information processing capabilities. In addition, an open microfluidic droplet reactor is developed that will allow, for the first time, high-throughput analysis of biomolecular circuits encapsulated in water-in-oil droplets. An integral part of the research program is to combine the computational design of in-vitro circuits with novel biochemistry and innovative micro-engineering tools.
Summary
Programmable biomolecular circuits have received increasing attention in recent years as the scope of chemistry expands from the synthesis of individual molecules to the construction of chemical networks that can perform sophisticated functions such as logic operations and feedback control. Rationally engineered biomolecular circuits that robustly execute higher-order spatiotemporal behaviours typically associated with intracellular regulatory functions present a unique and uncharted platform to systematically explore the molecular logic and physical design principles of the cell. The experience gained by in-vitro construction of artificial cells displaying advanced system-level functions deepens our understanding of regulatory networks in living cells and allows theoretical assumptions and models to be refined in a controlled setting. This proposal combines elements from systems chemistry, in-vitro synthetic biology and micro-engineering and explores generic strategies to investigate the molecular logic of biology’s regulatory circuits by applying a physical chemistry-driven bottom-up approach. Progress in this field requires 1) proof-of-principle systems where in-vitro biomolecular circuits are designed to emulate characteristic system-level functions of regulatory circuits in living cells and 2) novel experimental tools to operate biochemical networks under out-of-equilibrium conditions. Here, a comprehensive research program is proposed that addresses these challenges by engineering three biochemical model systems that display elementary signal transduction and information processing capabilities. In addition, an open microfluidic droplet reactor is developed that will allow, for the first time, high-throughput analysis of biomolecular circuits encapsulated in water-in-oil droplets. An integral part of the research program is to combine the computational design of in-vitro circuits with novel biochemistry and innovative micro-engineering tools.
Max ERC Funding
1 887 180 €
Duration
Start date: 2016-08-01, End date: 2021-07-31
Project acronym BIOELE
Project Functional Biointerface Elements via Biomicrofabrication
Researcher (PI) YANYAN HUANG
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Starting Grant (StG), PE8, ERC-2017-STG
Summary Imagine in the future, bionic devices that can merge device and biology which can perform molecular sensing, simulate the functions of grown-organs in the lab, or even replace or improve parts of the organ as smart implants? Such bionic devices is set to transform a number of emerging fields, including synthetic biotechnology, regenerative medicine, and human-machine interfaces. Merging biology and man-made devices also mean that materials of vastly different properties need to be seamlessly integrated. One of the promising strategies to manufacture these devices is through 3D printing, which can structure different materials into functional devices, and simultaneously intertwining with biological matters. However, the requirement for biocompatibility, miniaturisation, portability and high performance in bionic devices pushes the current limit for micro- nanoscale 3D printing.
This proposal aims to develop a new multi-material, cross-length scale biofabrication platform, with specific focus in making future smart bionic devices. In particular, a new mechanism is proposed to smoothly interface diverse classes of materials, such that an active device component can be ‘shrunk’ into a single small fibre. This mechanism utilises the polymeric materials’ flow property under applied tensile forces, and their abilities to combine with other classes of materials, such as semi-conductors and metals to impart further functionalities. This smart device fibre can be custom-made to perform different tasks, such as light emission or energy harvesting, to bridge 3D bioprinting for the future creation of high performance, compact, and cell-friendly bionic and medical devices.
Summary
Imagine in the future, bionic devices that can merge device and biology which can perform molecular sensing, simulate the functions of grown-organs in the lab, or even replace or improve parts of the organ as smart implants? Such bionic devices is set to transform a number of emerging fields, including synthetic biotechnology, regenerative medicine, and human-machine interfaces. Merging biology and man-made devices also mean that materials of vastly different properties need to be seamlessly integrated. One of the promising strategies to manufacture these devices is through 3D printing, which can structure different materials into functional devices, and simultaneously intertwining with biological matters. However, the requirement for biocompatibility, miniaturisation, portability and high performance in bionic devices pushes the current limit for micro- nanoscale 3D printing.
This proposal aims to develop a new multi-material, cross-length scale biofabrication platform, with specific focus in making future smart bionic devices. In particular, a new mechanism is proposed to smoothly interface diverse classes of materials, such that an active device component can be ‘shrunk’ into a single small fibre. This mechanism utilises the polymeric materials’ flow property under applied tensile forces, and their abilities to combine with other classes of materials, such as semi-conductors and metals to impart further functionalities. This smart device fibre can be custom-made to perform different tasks, such as light emission or energy harvesting, to bridge 3D bioprinting for the future creation of high performance, compact, and cell-friendly bionic and medical devices.
Max ERC Funding
1 486 938 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym BIOFUNCTION
Project Self assembly into biofunctional molecules, translating instructions into function
Researcher (PI) Nicolas Winssinger
Host Institution (HI) UNIVERSITE DE STRASBOURG
Call Details Starting Grant (StG), PE4, ERC-2007-StG
Summary The overall objective of the proposal is to develop enabling chemical technologies to address two important problems in biology: detect in a nondestructive fashion gene expression or microRNA sequences in vivo and, secondly, study the role of multivalency and spatial organization in carbohydrate recognition. Both of these projects exploit the programmable pre-organization of peptide nucleic acid (PNA) to induce a chemical reaction in the first case or modulate a ligand-receptor interaction in the second case. For nucleic acid detection, a DNA or RNA fragment will be utilized to bring two PNA fragments bearing reactive functionalities in close proximity thereby promoting a reaction. Two types of reactions are proposed, the first one to release a fluorophore for imaging purposes and the second one to release a drug as an “intelligent” therapeutic. If affinities are programmed such that hybridization is reversible, the template can work catalytically leading to large amplifications. As a proof of concept, this method will be used to measure the transcription level of genes implicated in stem cell differentiation and detect mutations in oncogenes. For the purpose of studying multivalent carbohydrate ligand architectures, the challenge of chemical synthesis has been a limiting factor. A supramolecular approach is proposed herein where different arrangements of carbohydrates can be displayed in a well organized fashion by hybridizing PNA-tagged carbohydrates to DNA templates. This will be used not only to control the distance between multiple ligands or to create combinatorial arrangements of hetero ligands but also to access more complex architectures such as Hollyday junctions. The oligosaccharide units will be prepared using de novo organoctalytic reactions. This technology will be first applied to probe the recognition events between HIV and dendritic cells which promote HIV infection.
Summary
The overall objective of the proposal is to develop enabling chemical technologies to address two important problems in biology: detect in a nondestructive fashion gene expression or microRNA sequences in vivo and, secondly, study the role of multivalency and spatial organization in carbohydrate recognition. Both of these projects exploit the programmable pre-organization of peptide nucleic acid (PNA) to induce a chemical reaction in the first case or modulate a ligand-receptor interaction in the second case. For nucleic acid detection, a DNA or RNA fragment will be utilized to bring two PNA fragments bearing reactive functionalities in close proximity thereby promoting a reaction. Two types of reactions are proposed, the first one to release a fluorophore for imaging purposes and the second one to release a drug as an “intelligent” therapeutic. If affinities are programmed such that hybridization is reversible, the template can work catalytically leading to large amplifications. As a proof of concept, this method will be used to measure the transcription level of genes implicated in stem cell differentiation and detect mutations in oncogenes. For the purpose of studying multivalent carbohydrate ligand architectures, the challenge of chemical synthesis has been a limiting factor. A supramolecular approach is proposed herein where different arrangements of carbohydrates can be displayed in a well organized fashion by hybridizing PNA-tagged carbohydrates to DNA templates. This will be used not only to control the distance between multiple ligands or to create combinatorial arrangements of hetero ligands but also to access more complex architectures such as Hollyday junctions. The oligosaccharide units will be prepared using de novo organoctalytic reactions. This technology will be first applied to probe the recognition events between HIV and dendritic cells which promote HIV infection.
Max ERC Funding
1 249 980 €
Duration
Start date: 2008-07-01, End date: 2013-06-30
Project acronym BIOGRAPHENE
Project Sequencing biological molecules with graphene
Researcher (PI) Gregory Schneider
Host Institution (HI) UNIVERSITEIT LEIDEN
Call Details Starting Grant (StG), PE4, ERC-2013-StG
Summary Graphene – a one atom thin material – has the potential to act as a sensor, primarily the surface and the edges of graphene. This proposal aims at exploring new biosensing routes by exploiting the unique surface and edge chemistry of graphene.
Summary
Graphene – a one atom thin material – has the potential to act as a sensor, primarily the surface and the edges of graphene. This proposal aims at exploring new biosensing routes by exploiting the unique surface and edge chemistry of graphene.
Max ERC Funding
1 499 996 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym BIOIONS
Project Biological ions in the gas-phase: New techniques for structural characterization of isolated biomolecular ions
Researcher (PI) Caroline Dessent
Host Institution (HI) UNIVERSITY OF YORK
Call Details Starting Grant (StG), PE4, ERC-2007-StG
Summary Recent intensive research on the laser spectroscopy of neutral gas-phase biomolecules has yielded a detailed picture of their structures and conformational preferences away from the complications of the bulk environment. In contrast, work on ionic systems has been sparse despite the fact that many important molecular groups are charged under physiological conditions. To address this probelm, we have developed a custom-built laser spectrometer, which incorporates a distincitive electrospray ionisation (ESI) cluster ion source, dedicated to producing biological anions (ATP,oligonucleotides) and their microsolvated clusters for structural characterization. Many previous laser spectrometers with ESI sources have suffered from producing "hot" congested spectra as the ions were produced at ambient temperatures. This is a particularly serious limitation for spectroscopic studies of biomolecules, since these systems can possess high internal energies due tothe presence of numerous low frequency modes. Our spectrometer overcomes this problem by exploiting the newly developed physics technique of "buffer gas cooling" to produce cold ESI molecular ions. In this proposal, we now seek to exploit the new laser-spectrometer to perform detailed spectroscopic interrogations of ESI generated biomolecular anions and clusters. In addition to traditional ion-dissociation spectroscopies, we propose to develop two new laser spectroscopy techniques (Two-color tuneable IR spectroscopy and Dipole-bound excited state spectroscopy) to give the broadest possible structural characterizations of the systems of interest. Studies will focus on ATP/GTP-anions, olignonucleotides, and sulphated and carboxylated sugars. These methodologies will provide a general approach for performing temperature-controlled spectroscopic characterizations of isolated biological ions, with measurements on the corresponding micro-solvated clusters providing details of how the molecules are perturbed by solvent.
Summary
Recent intensive research on the laser spectroscopy of neutral gas-phase biomolecules has yielded a detailed picture of their structures and conformational preferences away from the complications of the bulk environment. In contrast, work on ionic systems has been sparse despite the fact that many important molecular groups are charged under physiological conditions. To address this probelm, we have developed a custom-built laser spectrometer, which incorporates a distincitive electrospray ionisation (ESI) cluster ion source, dedicated to producing biological anions (ATP,oligonucleotides) and their microsolvated clusters for structural characterization. Many previous laser spectrometers with ESI sources have suffered from producing "hot" congested spectra as the ions were produced at ambient temperatures. This is a particularly serious limitation for spectroscopic studies of biomolecules, since these systems can possess high internal energies due tothe presence of numerous low frequency modes. Our spectrometer overcomes this problem by exploiting the newly developed physics technique of "buffer gas cooling" to produce cold ESI molecular ions. In this proposal, we now seek to exploit the new laser-spectrometer to perform detailed spectroscopic interrogations of ESI generated biomolecular anions and clusters. In addition to traditional ion-dissociation spectroscopies, we propose to develop two new laser spectroscopy techniques (Two-color tuneable IR spectroscopy and Dipole-bound excited state spectroscopy) to give the broadest possible structural characterizations of the systems of interest. Studies will focus on ATP/GTP-anions, olignonucleotides, and sulphated and carboxylated sugars. These methodologies will provide a general approach for performing temperature-controlled spectroscopic characterizations of isolated biological ions, with measurements on the corresponding micro-solvated clusters providing details of how the molecules are perturbed by solvent.
Max ERC Funding
1 250 000 €
Duration
Start date: 2008-10-01, End date: 2015-06-30
Project acronym BIOMOFS
Project Bioapplications of Metal Organic Frameworks
Researcher (PI) Christian Serre
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE4, ERC-2007-StG
Summary This project will focus on the use of nanoporous metal organic frameworks (Fe, Zn, Ti) for bioapplications. These systems are exciting porous solids, built up from inorganic clusters and polycarboxylates. This results in open-framework solids with different pore shapes and dimensions, and applications such as catalysis, separation and storage of gases. I have recently initiated the synthesis of new trivalent transition metal carboxylates. Among them, the metal carboxylates MIL-100 and MIL-101 (MIL: Materials of Institut Lavoisier) are spectacular solids with giant pores (25-34 Å), accessible metal sites and huge surface areas (3100-5900 m2.g-1). Recently, it was shown that these solids could be used for drug delivery with a loading of 1.4 g of Ibuprofen per gram of MIL-101 solid and a total release in six days. This project will concentrate on the implication of MOFs for drug release and other bioapplications. Whereas research on drug delivery is currently focused either on the use of bio-compatible polymers or mesoporous materials, our method will combine advantages of both routes including a high loading and a slow release of therapeutic molecules. A second application will use solids with accessible metal sites to coordinate NO for its controlled delivery. This would provide exogenous NO for prophylactic and therapeutic processes, anti-thrombogenic medical devices, improved dressings for wounds and ulcers, and the treatment of fungal and bacterial infections. Finally, other applications will be envisaged such as the purification of physiological fluids. The project, which will consist of a systematic study of the relation between these properties and both the composition and structure of the hybrid solids, will be assisted by a strong modelling effort including top of the art computational methods (QSAR and QSPKR). This highly impact project will be realised by assembling experienced researchers in multidisplinary areas including materials science, biology and modelling. It will involve P. Horcajada (Institut Lavoisier), whose background in pharmaceutical science will fit with my experience in inorganic chemistry and G. Maurin (Institut Gerhardt, Montpellier) expert in computational chemistry.
Summary
This project will focus on the use of nanoporous metal organic frameworks (Fe, Zn, Ti) for bioapplications. These systems are exciting porous solids, built up from inorganic clusters and polycarboxylates. This results in open-framework solids with different pore shapes and dimensions, and applications such as catalysis, separation and storage of gases. I have recently initiated the synthesis of new trivalent transition metal carboxylates. Among them, the metal carboxylates MIL-100 and MIL-101 (MIL: Materials of Institut Lavoisier) are spectacular solids with giant pores (25-34 Å), accessible metal sites and huge surface areas (3100-5900 m2.g-1). Recently, it was shown that these solids could be used for drug delivery with a loading of 1.4 g of Ibuprofen per gram of MIL-101 solid and a total release in six days. This project will concentrate on the implication of MOFs for drug release and other bioapplications. Whereas research on drug delivery is currently focused either on the use of bio-compatible polymers or mesoporous materials, our method will combine advantages of both routes including a high loading and a slow release of therapeutic molecules. A second application will use solids with accessible metal sites to coordinate NO for its controlled delivery. This would provide exogenous NO for prophylactic and therapeutic processes, anti-thrombogenic medical devices, improved dressings for wounds and ulcers, and the treatment of fungal and bacterial infections. Finally, other applications will be envisaged such as the purification of physiological fluids. The project, which will consist of a systematic study of the relation between these properties and both the composition and structure of the hybrid solids, will be assisted by a strong modelling effort including top of the art computational methods (QSAR and QSPKR). This highly impact project will be realised by assembling experienced researchers in multidisplinary areas including materials science, biology and modelling. It will involve P. Horcajada (Institut Lavoisier), whose background in pharmaceutical science will fit with my experience in inorganic chemistry and G. Maurin (Institut Gerhardt, Montpellier) expert in computational chemistry.
Max ERC Funding
1 250 000 €
Duration
Start date: 2008-06-01, End date: 2013-05-31
Project acronym BIOMORPHIC
Project Brain-Inspired Organic Modular Lab-on-a-Chip for Cell Classification
Researcher (PI) Yoeri Bertin VAN DE BURGT
Host Institution (HI) TECHNISCHE UNIVERSITEIT EINDHOVEN
Call Details Starting Grant (StG), PE8, ERC-2018-STG
Summary Brain-inspired (neuromorphic) computing has recently demonstrated advancements in pattern and image recognition as well as classification of unstructured (big) data. However, the volatility and energy required for neuromorphic devices presented to date significantly complicate the path to achieve the interconnectivity and efficiency of the brain. In previous work, recently published in Nature Materials, the PI has demonstrated a low-cost solution to these drawbacks: an organic artificial synapse as a building-block for organic neuromorphics. The conductance of this single synapse can be accurately tuned by controlled ion injection in the conductive polymer, which could trigger unprecedented low-energy analogue computing.
Hence, the major challenge in the largely unexplored field of organic neuromorphics, is to create an interconnected network of these synapses to obtain a true neuromorphic array which will not only be exceptionally pioneering in materials research for neuromorphics and machine-learning, but can also be adopted in a multitude of vital medical research devices. BIOMORPHIC will develop a unique brain-inspired organic lab-on-a-chip in which microfluidics integrated with sensors, collecting characteristics of biological cells, will serve as input to the neuromorphic array. BIOMORPHIC will combine modular microfluidics and machine-learning to develop a novel platform for low-cost lab-on-a-chip devices capable of on-chip cell classification.
In particular, BIOMORPHIC will focus on the detection of circulating tumour cells (CTC). Current methods for the detection of cancer are generally invasive, whereas analysing CTCs in blood offers a highly desired alternative. However, accurately detecting and isolating these cells remains a challenge due to their low prevalence and large variability. The strength of neuromorphics precisely lies in finding patterns in such variable data, which will result in a ground-breaking CTC classification lab-on-a-chip.
Summary
Brain-inspired (neuromorphic) computing has recently demonstrated advancements in pattern and image recognition as well as classification of unstructured (big) data. However, the volatility and energy required for neuromorphic devices presented to date significantly complicate the path to achieve the interconnectivity and efficiency of the brain. In previous work, recently published in Nature Materials, the PI has demonstrated a low-cost solution to these drawbacks: an organic artificial synapse as a building-block for organic neuromorphics. The conductance of this single synapse can be accurately tuned by controlled ion injection in the conductive polymer, which could trigger unprecedented low-energy analogue computing.
Hence, the major challenge in the largely unexplored field of organic neuromorphics, is to create an interconnected network of these synapses to obtain a true neuromorphic array which will not only be exceptionally pioneering in materials research for neuromorphics and machine-learning, but can also be adopted in a multitude of vital medical research devices. BIOMORPHIC will develop a unique brain-inspired organic lab-on-a-chip in which microfluidics integrated with sensors, collecting characteristics of biological cells, will serve as input to the neuromorphic array. BIOMORPHIC will combine modular microfluidics and machine-learning to develop a novel platform for low-cost lab-on-a-chip devices capable of on-chip cell classification.
In particular, BIOMORPHIC will focus on the detection of circulating tumour cells (CTC). Current methods for the detection of cancer are generally invasive, whereas analysing CTCs in blood offers a highly desired alternative. However, accurately detecting and isolating these cells remains a challenge due to their low prevalence and large variability. The strength of neuromorphics precisely lies in finding patterns in such variable data, which will result in a ground-breaking CTC classification lab-on-a-chip.
Max ERC Funding
1 498 726 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym BioNet
Project Dynamical Redesign of Biomolecular Networks
Researcher (PI) Edina ROSTA
Host Institution (HI) KING'S COLLEGE LONDON
Call Details Starting Grant (StG), PE4, ERC-2017-STG
Summary Enzymes created by Nature are still more selective and can be orders of magnitude more efficient than man-made catalysts, in spite of recent advances in the design of de novo catalysts and in enzyme redesign. The optimal engineering of either small molecular or of complex biological catalysts requires both (i) accurate quantitative computational methods capable of a priori assessing catalytic efficiency, and (ii) molecular design principles and corresponding algorithms to achieve, understand and control biomolecular catalytic function and mechanisms. Presently, the computational design of biocatalysts is challenging due to the need for accurate yet computationally-intensive quantum mechanical calculations of bond formation and cleavage, as well as to the requirement for proper statistical sampling over very many degrees of freedom. Pioneering enhanced sampling and analysis methods have been developed to address crucial challenges bridging the gap between the available simulation length and the biologically relevant timescales. However, biased simulations do not generally permit the direct calculation of kinetic information. Recently, I and others pioneered simulation tools that can enable not only accurate calculations of free energies, but also of the intrinsic molecular kinetics and the underlying reaction mechanisms as well. I propose to develop more robust, automatic, and system-tailored sampling algorithms that are optimal in each case. I will use our kinetics-based methods to develop a novel theoretical framework to address catalytic efficiency and to establish molecular design principles to key design problems for new bio-inspired nanocatalysts, and to identify and characterize small molecule modulators of enzyme activity. This is a highly interdisciplinary project that will enable fundamental advances in molecular simulations and will unveil the physical principles that will lead to design and control of catalysis with Nature-like efficiency.
Summary
Enzymes created by Nature are still more selective and can be orders of magnitude more efficient than man-made catalysts, in spite of recent advances in the design of de novo catalysts and in enzyme redesign. The optimal engineering of either small molecular or of complex biological catalysts requires both (i) accurate quantitative computational methods capable of a priori assessing catalytic efficiency, and (ii) molecular design principles and corresponding algorithms to achieve, understand and control biomolecular catalytic function and mechanisms. Presently, the computational design of biocatalysts is challenging due to the need for accurate yet computationally-intensive quantum mechanical calculations of bond formation and cleavage, as well as to the requirement for proper statistical sampling over very many degrees of freedom. Pioneering enhanced sampling and analysis methods have been developed to address crucial challenges bridging the gap between the available simulation length and the biologically relevant timescales. However, biased simulations do not generally permit the direct calculation of kinetic information. Recently, I and others pioneered simulation tools that can enable not only accurate calculations of free energies, but also of the intrinsic molecular kinetics and the underlying reaction mechanisms as well. I propose to develop more robust, automatic, and system-tailored sampling algorithms that are optimal in each case. I will use our kinetics-based methods to develop a novel theoretical framework to address catalytic efficiency and to establish molecular design principles to key design problems for new bio-inspired nanocatalysts, and to identify and characterize small molecule modulators of enzyme activity. This is a highly interdisciplinary project that will enable fundamental advances in molecular simulations and will unveil the physical principles that will lead to design and control of catalysis with Nature-like efficiency.
Max ERC Funding
1 499 999 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym bioPCET
Project Functional Proton-Electron Transfer Elements in Biological Energy Conversion
Researcher (PI) Ville KAILA
Host Institution (HI) TECHNISCHE UNIVERSITAET MUENCHEN
Call Details Starting Grant (StG), PE4, ERC-2016-STG
Summary Primary energy conversion in nature is powered by highly efficient enzymes that capture chemical or light energy and transduce it into other energy forms. These processes are catalyzed by coupled transfers of protons and electrons (PCET), but their fundamental mechanistic principles are not well understood. In order to obtain a molecular-level understanding of the functional elements powering biological energy conversion processes, we will study the catalytic machinery of one of the largest and most intricate enzymes in mitochondria and bacteria, the respiratory complex I. This gigantic redox-driven proton-pump functions as the entry point for electrons into aerobic respiratory chains, and it employs the energy released from a chemical reduction process to transport protons up to 200 Å away from its active site. Its molecular structure from bacteria and eukaryotes was recently resolved, but the origin of this remarkable action-at-a-distance effect still remains unclear. We employ and develop multi-scale quantum and classical molecular simulation techniques in combination with de novo-protein design methodology to identify and isolate the functional elements that catalyze the long-range PCET reactions in complex I. To fully understand the natural PCET-elements, we will further engineer central parts of this machinery into artificial protein frameworks, with the goal of designing modules for redox-driven proton pumps from first principles. The project aims to establish a fundamental understanding of nature's toolbox of catalytic elements, to elucidate how the complex biochemical environment contributes to the catalytic effects, and to provide blueprints that can guide the design of man-made enzymes for sustainable energy technology.
Summary
Primary energy conversion in nature is powered by highly efficient enzymes that capture chemical or light energy and transduce it into other energy forms. These processes are catalyzed by coupled transfers of protons and electrons (PCET), but their fundamental mechanistic principles are not well understood. In order to obtain a molecular-level understanding of the functional elements powering biological energy conversion processes, we will study the catalytic machinery of one of the largest and most intricate enzymes in mitochondria and bacteria, the respiratory complex I. This gigantic redox-driven proton-pump functions as the entry point for electrons into aerobic respiratory chains, and it employs the energy released from a chemical reduction process to transport protons up to 200 Å away from its active site. Its molecular structure from bacteria and eukaryotes was recently resolved, but the origin of this remarkable action-at-a-distance effect still remains unclear. We employ and develop multi-scale quantum and classical molecular simulation techniques in combination with de novo-protein design methodology to identify and isolate the functional elements that catalyze the long-range PCET reactions in complex I. To fully understand the natural PCET-elements, we will further engineer central parts of this machinery into artificial protein frameworks, with the goal of designing modules for redox-driven proton pumps from first principles. The project aims to establish a fundamental understanding of nature's toolbox of catalytic elements, to elucidate how the complex biochemical environment contributes to the catalytic effects, and to provide blueprints that can guide the design of man-made enzymes for sustainable energy technology.
Max ERC Funding
1 494 368 €
Duration
Start date: 2017-02-01, End date: 2022-01-31
Project acronym BioWater
Project Development of new chemical imaging techniques to understand the function of water in biocompatibility, biodegradation and biofouling
Researcher (PI) Aoife Ann Gowen
Host Institution (HI) UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN
Call Details Starting Grant (StG), PE8, ERC-2013-StG
Summary Water is the first molecule to come into contact with biomaterials in biological systems and thus essential to the processes of biodegradation, biocompatibility and biofouling. Despite this fact, little is currently known about how biomaterials interact with water. This knowledge is crucial for the development and optimisation of novel functional biomaterials for human health (e.g. biosensing devices, erodible biomaterials, drug release carriers, wound dressings). BioWater will develop near and mid infrared chemical imaging (NIR-MIR-CI) techniques to investigate the fundamental interaction between biomaterials and water in order to understand the key processes of biodegradation, biocompatibility and biofouling. This ambitious yet achievable project will focus on two major categories of biomaterials relevant to human health: extracellular collagens and synthetic biopolymers. Initially, interactions between these biomaterials and water will be investigated; subsequently interactions with more complicated matrices (e.g. protein solutions and cellular systems) will be studied. CI data will be correlated with standard surface characterization, biocompatibility and biodegradation measurements. Molecular dynamic simulations will complement this work to identify the most probable molecular structures of water at different biomaterial interfaces.
Advanced understanding of the role of water in biocompatibility, biofouling and biodegradation processes will facilitate the optimization of biomaterials tailored to specific cellular environments with a broad range of therapeutic applications (e.g. drug eluting stents, tissue engineering, wound healing). The new NIR-MIR-CI/chemometric methodologies developed in BioWater will allow for the rapid characterization and monitoring of novel biomaterials at pre-clinical stages, improving process control by overcoming the laborious and time consuming large-scale sampling methods currently required in biomaterials development.
Summary
Water is the first molecule to come into contact with biomaterials in biological systems and thus essential to the processes of biodegradation, biocompatibility and biofouling. Despite this fact, little is currently known about how biomaterials interact with water. This knowledge is crucial for the development and optimisation of novel functional biomaterials for human health (e.g. biosensing devices, erodible biomaterials, drug release carriers, wound dressings). BioWater will develop near and mid infrared chemical imaging (NIR-MIR-CI) techniques to investigate the fundamental interaction between biomaterials and water in order to understand the key processes of biodegradation, biocompatibility and biofouling. This ambitious yet achievable project will focus on two major categories of biomaterials relevant to human health: extracellular collagens and synthetic biopolymers. Initially, interactions between these biomaterials and water will be investigated; subsequently interactions with more complicated matrices (e.g. protein solutions and cellular systems) will be studied. CI data will be correlated with standard surface characterization, biocompatibility and biodegradation measurements. Molecular dynamic simulations will complement this work to identify the most probable molecular structures of water at different biomaterial interfaces.
Advanced understanding of the role of water in biocompatibility, biofouling and biodegradation processes will facilitate the optimization of biomaterials tailored to specific cellular environments with a broad range of therapeutic applications (e.g. drug eluting stents, tissue engineering, wound healing). The new NIR-MIR-CI/chemometric methodologies developed in BioWater will allow for the rapid characterization and monitoring of novel biomaterials at pre-clinical stages, improving process control by overcoming the laborious and time consuming large-scale sampling methods currently required in biomaterials development.
Max ERC Funding
1 487 682 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym BIVAQUM
Project Bivariational Approximations in Quantum Mechanics and Applications to Quantum Chemistry
Researcher (PI) Simen Kvaal
Host Institution (HI) UNIVERSITETET I OSLO
Call Details Starting Grant (StG), PE4, ERC-2014-STG
Summary The standard variational principles (VPs) are cornerstones of quantum mechanics, and one can hardly overestimate their usefulness as tools for generating approximations to the time-independent and
time-dependent Schröodinger equations. The aim of the proposal is to study and apply a generalization of these, the bivariational principles (BIVPs), which arise naturally when one does not assume a priori that the system Hamiltonian is Hermitian. This unconventional approach may have transformative impact on development of ab initio methodology, both for electronic structure and dynamics.
The first objective is to establish the mathematical foundation for the BIVPs. This opens up a whole new axis of method development for ab initio approaches. For instance, it is a largely ignored fact that the popular traditional coupled cluster (TCC) method can be neatly formulated with the BIVPs, and TCC is both polynomially scaling with the number of electrons and size-consistent. No “variational” method enjoys these properties simultaneously, indeed this seems to be incompatible with the standard VPs.
Armed with the BIVPs, the project aims to develop new and understand existing ab initio methods. The second objective is thus a systematic multireference coupled cluster theory (MRCC) based on the BIVPs. This
is in itself a novel approach that carries large potential benefits and impact. The third and last objective is an implementation of a new coupled-cluster type method where the orbitals are bivariational
parameters. This gives a size-consistent hierarchy of approximations to multiconfiguration
Hartree--Fock.
The PI's broad contact with and background in scientific disciplines such as applied mathematics and nuclear physics in addition to quantum chemistry increases the feasibility of the project.
Summary
The standard variational principles (VPs) are cornerstones of quantum mechanics, and one can hardly overestimate their usefulness as tools for generating approximations to the time-independent and
time-dependent Schröodinger equations. The aim of the proposal is to study and apply a generalization of these, the bivariational principles (BIVPs), which arise naturally when one does not assume a priori that the system Hamiltonian is Hermitian. This unconventional approach may have transformative impact on development of ab initio methodology, both for electronic structure and dynamics.
The first objective is to establish the mathematical foundation for the BIVPs. This opens up a whole new axis of method development for ab initio approaches. For instance, it is a largely ignored fact that the popular traditional coupled cluster (TCC) method can be neatly formulated with the BIVPs, and TCC is both polynomially scaling with the number of electrons and size-consistent. No “variational” method enjoys these properties simultaneously, indeed this seems to be incompatible with the standard VPs.
Armed with the BIVPs, the project aims to develop new and understand existing ab initio methods. The second objective is thus a systematic multireference coupled cluster theory (MRCC) based on the BIVPs. This
is in itself a novel approach that carries large potential benefits and impact. The third and last objective is an implementation of a new coupled-cluster type method where the orbitals are bivariational
parameters. This gives a size-consistent hierarchy of approximations to multiconfiguration
Hartree--Fock.
The PI's broad contact with and background in scientific disciplines such as applied mathematics and nuclear physics in addition to quantum chemistry increases the feasibility of the project.
Max ERC Funding
1 499 572 €
Duration
Start date: 2015-04-01, End date: 2020-03-31
Project acronym BLAST
Project Eclipsing binary stars as cutting edge laboratories for astrophysics of stellar
structure, stellar evolution and planet formation
Researcher (PI) Maciej Konacki
Host Institution (HI) CENTRUM ASTRONOMICZNE IM. MIKOLAJAKOPERNIKA POLSKIEJ AKADEMII NAUK
Call Details Starting Grant (StG), PE9, ERC-2010-StG_20091028
Summary Spectroscopic binary stars (SB2s) and in particular spectroscopic eclipsing binaries are one of the most useful objects in astrophysics. Their photometric and spectroscopic observations allow one to determine basic parameters of stars and carry out a wide range of tests of stellar structure, evolution and dynamics. Perhaps somewhat surprisingly, they can also contribute to our understanding of the formation and evolution of (extrasolar) planets. We will study eclipsing binary stars by combining the classic - stellar astronomy - and the modern - extrasolar planets - subjects into a cutting edge project.
We propose to search for and subsequently characterize circumbinary planets around ~350 eclipsing SB2s using our own novel cutting edge radial velocity technique for binary stars and a modern version of the photometry based eclipse timing of eclipsing binary stars employing 0.5-m robotic telescopes. We will also derive basic parameters of up to ~700 stars (~350 binaries) with an unprecedented precision. In particular for about 50% of our sample we expect to deliver masses of the components with an accuracy ~10-100 times better than the current state of the art.
Our project will provide unique constraints for the theories of planet formation and evolution and an unprecedented in quality set of the basic parameters of stars to test the theories of the stellar structure and evolution.
Summary
Spectroscopic binary stars (SB2s) and in particular spectroscopic eclipsing binaries are one of the most useful objects in astrophysics. Their photometric and spectroscopic observations allow one to determine basic parameters of stars and carry out a wide range of tests of stellar structure, evolution and dynamics. Perhaps somewhat surprisingly, they can also contribute to our understanding of the formation and evolution of (extrasolar) planets. We will study eclipsing binary stars by combining the classic - stellar astronomy - and the modern - extrasolar planets - subjects into a cutting edge project.
We propose to search for and subsequently characterize circumbinary planets around ~350 eclipsing SB2s using our own novel cutting edge radial velocity technique for binary stars and a modern version of the photometry based eclipse timing of eclipsing binary stars employing 0.5-m robotic telescopes. We will also derive basic parameters of up to ~700 stars (~350 binaries) with an unprecedented precision. In particular for about 50% of our sample we expect to deliver masses of the components with an accuracy ~10-100 times better than the current state of the art.
Our project will provide unique constraints for the theories of planet formation and evolution and an unprecedented in quality set of the basic parameters of stars to test the theories of the stellar structure and evolution.
Max ERC Funding
1 500 000 €
Duration
Start date: 2010-12-01, End date: 2016-11-30
Project acronym BONDS
Project Bilayered ON-Demand Scaffolds: On-Demand Delivery from induced Pluripotent Stem Cell Derived Scaffolds for Diabetic Foot Ulcers
Researcher (PI) Cathal KEARNEY
Host Institution (HI) ROYAL COLLEGE OF SURGEONS IN IRELAND
Call Details Starting Grant (StG), PE8, ERC-2017-STG
Summary This program’s goal is to develop a scaffold using a new biomaterial source that is functionalised with on-demand delivery of genes for coordinated healing of diabetic foot ulcers (DFUs). DFUs are chronic wounds that are often recalcitrant to treatment, which devastatingly results in lower leg amputation. This project builds on the PI’s experience growing matrix from induced-pluripotent stem cell derived (iPS)-fibroblasts and in developing on-demand drug delivery technologies. The aim of this project is to first develop a SiPS: a scaffold from iPS-fibroblast grown matrix, which has never been tested as a source material for scaffolds. iPS-fibroblasts grow a more pro-repair and angiogenic matrix than (non-iPS) adult fibroblasts. The SiPS structure will be bilayered to mimic native skin: dermis made mostly by fibroblasts and epidermis made by keratinocytes. The dermal layer will consist of a porous scaffold with optimised pore size and mechanical properties and the epidermal layer will be film-like, optimised for keratinisation.
Second, the SiPS will be functionalised with delivery of plasmid-DNA (platelet derived growth factor gene, pPDGF) to direct angiogenesis on-demand. As DFUs undergo uncoordinated healing, timed pPDGF delivery will guide them through angiogenesis and healing. To achieve this, alginate microparticles, designed to respond to ultrasound by releasing pPDGF, will be interspersed throughout the SiPS. This BONDS will be tested in an in vivo pre-clinical DFU model to confirm its ability to heal wounds by providing cells with the appropriate biomimetic scaffold environment and timed directions for healing. With >100 million current diabetics expected to get a DFU, the BONDS would have a powerful clinical impact.
This research program combines a disruptive technology, the SiPS, with a new platform for on-demand delivery of pDNA to heal DFUs. The PI will build his lab around these innovative platforms, adapting them for treatment of diverse complex wounds.
Summary
This program’s goal is to develop a scaffold using a new biomaterial source that is functionalised with on-demand delivery of genes for coordinated healing of diabetic foot ulcers (DFUs). DFUs are chronic wounds that are often recalcitrant to treatment, which devastatingly results in lower leg amputation. This project builds on the PI’s experience growing matrix from induced-pluripotent stem cell derived (iPS)-fibroblasts and in developing on-demand drug delivery technologies. The aim of this project is to first develop a SiPS: a scaffold from iPS-fibroblast grown matrix, which has never been tested as a source material for scaffolds. iPS-fibroblasts grow a more pro-repair and angiogenic matrix than (non-iPS) adult fibroblasts. The SiPS structure will be bilayered to mimic native skin: dermis made mostly by fibroblasts and epidermis made by keratinocytes. The dermal layer will consist of a porous scaffold with optimised pore size and mechanical properties and the epidermal layer will be film-like, optimised for keratinisation.
Second, the SiPS will be functionalised with delivery of plasmid-DNA (platelet derived growth factor gene, pPDGF) to direct angiogenesis on-demand. As DFUs undergo uncoordinated healing, timed pPDGF delivery will guide them through angiogenesis and healing. To achieve this, alginate microparticles, designed to respond to ultrasound by releasing pPDGF, will be interspersed throughout the SiPS. This BONDS will be tested in an in vivo pre-clinical DFU model to confirm its ability to heal wounds by providing cells with the appropriate biomimetic scaffold environment and timed directions for healing. With >100 million current diabetics expected to get a DFU, the BONDS would have a powerful clinical impact.
This research program combines a disruptive technology, the SiPS, with a new platform for on-demand delivery of pDNA to heal DFUs. The PI will build his lab around these innovative platforms, adapting them for treatment of diverse complex wounds.
Max ERC Funding
1 372 135 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym BONEMECHBIO
Project Frontier research in bone mechanobiology during normal physiology, disease and for tissue regeneration
Researcher (PI) Laoise Maria Cunningham
Host Institution (HI) NATIONAL UNIVERSITY OF IRELAND GALWAY
Call Details Starting Grant (StG), PE8, ERC-2010-StG_20091028
Summary While previous studies have investigated cell-signalling pathways that facilitate mechanotransduction and have provided a wealth of data, to date, in vivo mechanobiology is not fully understood. In the research study proposed the applicant will embark upon frontier research to delineate these specific aspects of bone mechanotransduction during normal physiology, disease and for tissue regeneration purposes. If these quantities were better understood the proposed research program will deliver significant advances in the understanding of the mechanical regulation of bone remodelling during normal physiology and osteoporosis, and will enhance approaches for regeneration of bone tissue for treatment of bone pathologies. The primary objective is to delineate the normal mechanosensory and signalling mechanisms of bone cells. The secondary objective is to determine whether the regulatory role of bone cells is inhibited or impaired during bone diseases such as osteoporosis. The final objective of this project is to develop an in vitro mechanical loading device that can enhance bone tissue regeneration and thereby advance current treatment approaches for bone pathologies. To address these objectives, five hypotheses have been defined, each of which will underpin the research of five work packages. A combination of experimental studies, using animal models and in vitro cell culture, and computational modelling will be taken to test each of these hypotheses. Answering these hypotheses will bring us closer to an understanding of the origins of bone mechanobiology and diseases such as osteoporosis. Furthermore, the results of these studies will facilitate development of novel approaches to enhance bone regeneration in vitro.
Summary
While previous studies have investigated cell-signalling pathways that facilitate mechanotransduction and have provided a wealth of data, to date, in vivo mechanobiology is not fully understood. In the research study proposed the applicant will embark upon frontier research to delineate these specific aspects of bone mechanotransduction during normal physiology, disease and for tissue regeneration purposes. If these quantities were better understood the proposed research program will deliver significant advances in the understanding of the mechanical regulation of bone remodelling during normal physiology and osteoporosis, and will enhance approaches for regeneration of bone tissue for treatment of bone pathologies. The primary objective is to delineate the normal mechanosensory and signalling mechanisms of bone cells. The secondary objective is to determine whether the regulatory role of bone cells is inhibited or impaired during bone diseases such as osteoporosis. The final objective of this project is to develop an in vitro mechanical loading device that can enhance bone tissue regeneration and thereby advance current treatment approaches for bone pathologies. To address these objectives, five hypotheses have been defined, each of which will underpin the research of five work packages. A combination of experimental studies, using animal models and in vitro cell culture, and computational modelling will be taken to test each of these hypotheses. Answering these hypotheses will bring us closer to an understanding of the origins of bone mechanobiology and diseases such as osteoporosis. Furthermore, the results of these studies will facilitate development of novel approaches to enhance bone regeneration in vitro.
Max ERC Funding
1 499 911 €
Duration
Start date: 2011-02-01, End date: 2016-01-31
Project acronym Boom & Bust Cycles
Project Boom and Bust Cycles in Asset Prices: Real Implications and Monetary Policy Options
Researcher (PI) Klaus Adam
Host Institution (HI) UNIVERSITAET MANNHEIM
Call Details Starting Grant (StG), SH1, ERC-2011-StG_20101124
Summary I seek increasing our understanding of the origin of asset price booms and bust cycles and propose constructing structural dynamic equilibrium models that allow formalizing their interaction with the dynamics of consumption, hours worked, the current account, stock market trading activity, and monetary policy. For this purpose I propose developing macroeconomic models that relax the assumption of common knowledge of beliefs and preferences, incorporating instead subjective beliefs and learning about market behavior. These features allow for sustained deviations of asset prices from fundamentals in a setting where all agents behave individually rational.
The first research project derives the derivative price implications of asset price models with learning agents and determines the limits to arbitrage required so that learning models are consistent with the existence of only weak incentives for improving forecasts and beliefs. The second project introduces housing, collateral constraints and open economy features into existing asset pricing models under learning to explain a range of cross-sectional facts about the behavior of the current account that have been observed in the recent housing boom and bust cycle. The third project constructs quantitatively plausible macro asset pricing models that can explain the dynamics of consumption and hours worked jointly with the occurrence of asset price boom and busts cycles. The forth project develops a set of monetary policy models allowing to study the interaction between monetary policies, the real economy and asset prices, and determines how monetary policy should optimally react to asset price movements. The last project explains the aggregate trading patterns on stock exchanges over boom and bust cycles and improves our understanding of the forces supporting the large cross-sectional heterogeneity in return expectations revealed in survey data.
Summary
I seek increasing our understanding of the origin of asset price booms and bust cycles and propose constructing structural dynamic equilibrium models that allow formalizing their interaction with the dynamics of consumption, hours worked, the current account, stock market trading activity, and monetary policy. For this purpose I propose developing macroeconomic models that relax the assumption of common knowledge of beliefs and preferences, incorporating instead subjective beliefs and learning about market behavior. These features allow for sustained deviations of asset prices from fundamentals in a setting where all agents behave individually rational.
The first research project derives the derivative price implications of asset price models with learning agents and determines the limits to arbitrage required so that learning models are consistent with the existence of only weak incentives for improving forecasts and beliefs. The second project introduces housing, collateral constraints and open economy features into existing asset pricing models under learning to explain a range of cross-sectional facts about the behavior of the current account that have been observed in the recent housing boom and bust cycle. The third project constructs quantitatively plausible macro asset pricing models that can explain the dynamics of consumption and hours worked jointly with the occurrence of asset price boom and busts cycles. The forth project develops a set of monetary policy models allowing to study the interaction between monetary policies, the real economy and asset prices, and determines how monetary policy should optimally react to asset price movements. The last project explains the aggregate trading patterns on stock exchanges over boom and bust cycles and improves our understanding of the forces supporting the large cross-sectional heterogeneity in return expectations revealed in survey data.
Max ERC Funding
769 440 €
Duration
Start date: 2011-09-01, End date: 2017-04-30
Project acronym BRAIN MICRO SNOOPER
Project A mimetic implant for low perturbation, stable stimulation and recording of neural units inside the brain.
Researcher (PI) Gaelle Offranc piret
Host Institution (HI) INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
Call Details Starting Grant (StG), PE8, ERC-2014-STG
Summary Developing brain implants is crucial to better decipher the neuronal information and intervene in a very thin way on neural networks using microstimulations. This project aims to address two major challenges: to achieve the realization of a highly mechanically stable implant, allowing long term connection between neurons and microelectrodes and to provide neural implants with a high temporal and spatial resolution. To do so, the present project will develop implants with structural and mechanical properties that resemble those of the natural brain environment. According to the literature, using electrodes and electric leads with a size of a few microns allows for a better neural tissue reconstruction around the implant. Also, the mechanical mismatch between the usually stiff implant material and the soft brain tissue affects the adhesion between tissue cells and electrodes. With the objective to implant a highly flexible free-floating microelectrode array in the brain tissue, we will develop a new method using micro-nanotechnology steps as well as a combination of polymers. Moreover, the literature and preliminary studies indicate that some surface chemistries and nanotopographies can promote neurite outgrowth while limiting glial cell proliferation. Implants will be nanostructured so as to help the neural tissue growth and to be provided with a highly adhesive property, which will ensure its stable contact with the brain neural tissue over time. Implants with different microelectrode configurations and number will be tested in vitro and in vivo for their biocompatibility and their ability to record and stimulate neurons with high stability. This project will produce high-performance generic implants that can be used for various fundamental studies and applications, including neural prostheses and brain machine interfaces.
Summary
Developing brain implants is crucial to better decipher the neuronal information and intervene in a very thin way on neural networks using microstimulations. This project aims to address two major challenges: to achieve the realization of a highly mechanically stable implant, allowing long term connection between neurons and microelectrodes and to provide neural implants with a high temporal and spatial resolution. To do so, the present project will develop implants with structural and mechanical properties that resemble those of the natural brain environment. According to the literature, using electrodes and electric leads with a size of a few microns allows for a better neural tissue reconstruction around the implant. Also, the mechanical mismatch between the usually stiff implant material and the soft brain tissue affects the adhesion between tissue cells and electrodes. With the objective to implant a highly flexible free-floating microelectrode array in the brain tissue, we will develop a new method using micro-nanotechnology steps as well as a combination of polymers. Moreover, the literature and preliminary studies indicate that some surface chemistries and nanotopographies can promote neurite outgrowth while limiting glial cell proliferation. Implants will be nanostructured so as to help the neural tissue growth and to be provided with a highly adhesive property, which will ensure its stable contact with the brain neural tissue over time. Implants with different microelectrode configurations and number will be tested in vitro and in vivo for their biocompatibility and their ability to record and stimulate neurons with high stability. This project will produce high-performance generic implants that can be used for various fundamental studies and applications, including neural prostheses and brain machine interfaces.
Max ERC Funding
1 499 850 €
Duration
Start date: 2015-08-01, End date: 2021-07-31
Project acronym BRIDGE
Project Biomimetic process design for tissue regeneration:
from bench to bedside via in silico modelling
Researcher (PI) Liesbet Geris
Host Institution (HI) UNIVERSITE DE LIEGE
Call Details Starting Grant (StG), PE8, ERC-2011-StG_20101014
Summary "Tissue engineering (TE), the interdisciplinary field combining biomedical and engineering sciences in the search for functional man-made organ replacements, has key issues with the quantity and quality of the generated products. Protocols followed in the lab are mainly trial and error based, requiring a huge amount of manual interventions and lacking clear early time-point quality criteria to guide the process. As a result, these processes are very hard to scale up to industrial production levels. BRIDGE aims to fortify the engineering aspects of the TE field by adding a higher level of understanding and control to the manufacturing process (MP) through the use of in silico models. BRIDGE will focus on the bone TE field to provide proof of concept for its in silico approach.
The combination of the applicant's well-received published and ongoing work on a wide range of modelling tools in the bone field combined with the state-of-the-art experimental techniques present in the TE lab of the additional participant allows envisaging following innovation and impact:
1. proof-of-concept of the use of an in silico blue-print for the design and control of a robust modular TE MP;
2. model-derived optimised culture conditions for patient derived cell populations increasing modular robustness of in vitro chondrogenesis/endochondral ossification;
3. in silico identification of a limited set of in vitro biomarkers that is predictive of the in vivo outcome;
4. model-derived optimised culture conditions increasing quantity and quality of the in vivo outcome of the TE MP;
5. incorporation of congenital defects in the in silico MP design, constituting a further validation of BRIDGE’s in silico approach and a necessary step towards personalised medical care.
We believe that the systematic – and unprecedented – integration of (bone) TE and mathematical modelling, as proposed in BRIDGE, is required to come to a rationalized, engineering approach to design and control bone TE MPs."
Summary
"Tissue engineering (TE), the interdisciplinary field combining biomedical and engineering sciences in the search for functional man-made organ replacements, has key issues with the quantity and quality of the generated products. Protocols followed in the lab are mainly trial and error based, requiring a huge amount of manual interventions and lacking clear early time-point quality criteria to guide the process. As a result, these processes are very hard to scale up to industrial production levels. BRIDGE aims to fortify the engineering aspects of the TE field by adding a higher level of understanding and control to the manufacturing process (MP) through the use of in silico models. BRIDGE will focus on the bone TE field to provide proof of concept for its in silico approach.
The combination of the applicant's well-received published and ongoing work on a wide range of modelling tools in the bone field combined with the state-of-the-art experimental techniques present in the TE lab of the additional participant allows envisaging following innovation and impact:
1. proof-of-concept of the use of an in silico blue-print for the design and control of a robust modular TE MP;
2. model-derived optimised culture conditions for patient derived cell populations increasing modular robustness of in vitro chondrogenesis/endochondral ossification;
3. in silico identification of a limited set of in vitro biomarkers that is predictive of the in vivo outcome;
4. model-derived optimised culture conditions increasing quantity and quality of the in vivo outcome of the TE MP;
5. incorporation of congenital defects in the in silico MP design, constituting a further validation of BRIDGE’s in silico approach and a necessary step towards personalised medical care.
We believe that the systematic – and unprecedented – integration of (bone) TE and mathematical modelling, as proposed in BRIDGE, is required to come to a rationalized, engineering approach to design and control bone TE MPs."
Max ERC Funding
1 191 440 €
Duration
Start date: 2011-12-01, End date: 2016-11-30
Project acronym C3ENV
Project Combinatorial Computational Chemistry A new field to tackle environmental problems
Researcher (PI) Thomas Heine
Host Institution (HI) JACOBS UNIVERSITY BREMEN GGMBH
Call Details Starting Grant (StG), PE4, ERC-2010-StG_20091028
Summary Combinatorial Computational Chemistry is developed as a standard tool to tackle complex problems in chemistry and materials science. The method employs a series of state-of-the-art methods, ranging from empirical molecular mechanics to first principles calculations, as well as of mathematical (graph theoretical and combinatorial) methods. The process is similar as in experimental combinatorial chemistry: First, a large set of candidate structures is generated which is complete in the sense that the best possible structure for a particular purpose must be found among the set. This structure is then identified using computational chemistry. We will apply methodologies at different stages in hierarchical order and successively screen the set of candidate structures. Screening criteria are based on the computer simulations and include geometry, stability and properties of the candidate structures. Detailed characteristics of the final materials will be simulated, including the X-ray diffraction pattern, the electronic structure, and the target properties. We will apply C3 to two important problems of environmental science. (i) We will optimise nanoporous materials to act as molecular sieves to separate water from ethanol, an important task for the production of biofuels. Here, materials are optimised to transport ethanol, but not water (or vice versa). The tuning parameters are the channel size of the material and its polarity. (ii) We will optimise nanoporous materials to transport protons, an important task for the design of energy-efficient fuel cells, by distributing flexible functional groups, acting as hopping sites for the protons, in the framework.
Summary
Combinatorial Computational Chemistry is developed as a standard tool to tackle complex problems in chemistry and materials science. The method employs a series of state-of-the-art methods, ranging from empirical molecular mechanics to first principles calculations, as well as of mathematical (graph theoretical and combinatorial) methods. The process is similar as in experimental combinatorial chemistry: First, a large set of candidate structures is generated which is complete in the sense that the best possible structure for a particular purpose must be found among the set. This structure is then identified using computational chemistry. We will apply methodologies at different stages in hierarchical order and successively screen the set of candidate structures. Screening criteria are based on the computer simulations and include geometry, stability and properties of the candidate structures. Detailed characteristics of the final materials will be simulated, including the X-ray diffraction pattern, the electronic structure, and the target properties. We will apply C3 to two important problems of environmental science. (i) We will optimise nanoporous materials to act as molecular sieves to separate water from ethanol, an important task for the production of biofuels. Here, materials are optimised to transport ethanol, but not water (or vice versa). The tuning parameters are the channel size of the material and its polarity. (ii) We will optimise nanoporous materials to transport protons, an important task for the design of energy-efficient fuel cells, by distributing flexible functional groups, acting as hopping sites for the protons, in the framework.
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-02-01, End date: 2016-04-30
Project acronym CA2PVM
Project Multi-field and multi-scale Computational Approach to design and durability of PhotoVoltaic Modules
Researcher (PI) Marco Paggi
Host Institution (HI) SCUOLA IMT (ISTITUZIONI, MERCATI, TECNOLOGIE) ALTI STUDI DI LUCCA
Call Details Starting Grant (StG), PE8, ERC-2012-StG_20111012
Summary "Photovoltaics (PV) based on Silicon (Si) semiconductors is one the most growing technology in the World for renewable, sustainable, non-polluting, widely available clean energy sources. Theoretical and applied research aims at increasing the conversion efficiency of PV modules and their lifetime. The Si crystalline microstructure has an important role on both issues. Grain boundaries introduce additional resistance and reduce the conversion efficiency. Moreover, they are prone to microcracking, thus influencing the lifetime. At present, the existing standard qualification tests are not sufficient to provide a quantitative definition of lifetime, since all the possible failure mechanisms are not accounted for. In this proposal, an innovative computational approach to design and durability assessment of PV modules is put forward. The aim is to complement real tests by virtual (numerical) simulations. To achieve a predictive stage, a challenging multi-field (multi-physics) computational approach is proposed, coupling the nonlinear elastic field, the thermal field and the electric field. To model real PV modules, an adaptive multi-scale and multi-field strategy will be proposed by introducing error indicators based on the gradients of the involved fields. This numerical approach will be applied to determine the upper bound to the probability of failure of the system. This statistical assessment will involve an optimization analysis that will be efficiently handled by a Mathematica-based hybrid symbolic-numerical framework. Standard and non-standard experimental testing on Si cells and PV modules will also be performed to complement and validate the numerical approach. The new methodology based on the challenging integration of advanced physical and mathematical modelling, innovative computational methods and non-standard experimental techniques is expected to have a significant impact on the design, qualification and lifetime assessment of complex PV systems."
Summary
"Photovoltaics (PV) based on Silicon (Si) semiconductors is one the most growing technology in the World for renewable, sustainable, non-polluting, widely available clean energy sources. Theoretical and applied research aims at increasing the conversion efficiency of PV modules and their lifetime. The Si crystalline microstructure has an important role on both issues. Grain boundaries introduce additional resistance and reduce the conversion efficiency. Moreover, they are prone to microcracking, thus influencing the lifetime. At present, the existing standard qualification tests are not sufficient to provide a quantitative definition of lifetime, since all the possible failure mechanisms are not accounted for. In this proposal, an innovative computational approach to design and durability assessment of PV modules is put forward. The aim is to complement real tests by virtual (numerical) simulations. To achieve a predictive stage, a challenging multi-field (multi-physics) computational approach is proposed, coupling the nonlinear elastic field, the thermal field and the electric field. To model real PV modules, an adaptive multi-scale and multi-field strategy will be proposed by introducing error indicators based on the gradients of the involved fields. This numerical approach will be applied to determine the upper bound to the probability of failure of the system. This statistical assessment will involve an optimization analysis that will be efficiently handled by a Mathematica-based hybrid symbolic-numerical framework. Standard and non-standard experimental testing on Si cells and PV modules will also be performed to complement and validate the numerical approach. The new methodology based on the challenging integration of advanced physical and mathematical modelling, innovative computational methods and non-standard experimental techniques is expected to have a significant impact on the design, qualification and lifetime assessment of complex PV systems."
Max ERC Funding
1 483 980 €
Duration
Start date: 2012-12-01, End date: 2017-11-30
Project acronym CAD4FACE
Project Computational modelling for personalised treatment of congenital craniofacial abnormalities
Researcher (PI) Silvia SCHIEVANO
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Starting Grant (StG), PE8, ERC-2017-STG
Summary Craniosynostosis is a group of congenital craniofacial abnormalities consisting in premature fusion (ossification) of one or more cranial sutures during infancy. This results in growth restriction perpendicular to the axis of the suture and promotes growth parallel to it, causing physical deformation of the cranial and facial skeleton, as well as distortion of the underling brain, with potential detrimental effects on its function: visual loss, sleep apnoea, feeding and breathing difficulties, and neurodevelopment delay. Conventional management of craniosynostosis involves craniofacial surgery delivered by excision of the prematurely fused sutures, multiple bone cuts and remodelling of the skull deformities, with the primary goal of improving patient function, while normalising their appearance. Cranial vault remodelling surgical procedures, aided by internal and external devices, have proven functionally and aesthetically effective in correcting skull deformities, but final results remain unpredictable and often suboptimal because of an incomplete understanding of the biomechanical interaction between the device and the skull.
The overall aim of this grant is to create a validated and robust computational framework that integrates patient information and device design to deliver personalised care in paediatric craniofacial surgery in order to improve clinical outcomes. A virtual model of the infant skull with craniosynostosis, including viscoelastic properties and mechano-biology regulation, will be developed to simulate device implantation and performance over time, and will be validated using clinical data from patient populations treated with current devices. Bespoke new devices will be designed allowing for pre-programmed 3D shapes to be delivered with continuous force during the implantation period. Patient specific skull models will be used to virtually test and optimise the personalised devices, and to tailor the surgical approach for each individual case.
Summary
Craniosynostosis is a group of congenital craniofacial abnormalities consisting in premature fusion (ossification) of one or more cranial sutures during infancy. This results in growth restriction perpendicular to the axis of the suture and promotes growth parallel to it, causing physical deformation of the cranial and facial skeleton, as well as distortion of the underling brain, with potential detrimental effects on its function: visual loss, sleep apnoea, feeding and breathing difficulties, and neurodevelopment delay. Conventional management of craniosynostosis involves craniofacial surgery delivered by excision of the prematurely fused sutures, multiple bone cuts and remodelling of the skull deformities, with the primary goal of improving patient function, while normalising their appearance. Cranial vault remodelling surgical procedures, aided by internal and external devices, have proven functionally and aesthetically effective in correcting skull deformities, but final results remain unpredictable and often suboptimal because of an incomplete understanding of the biomechanical interaction between the device and the skull.
The overall aim of this grant is to create a validated and robust computational framework that integrates patient information and device design to deliver personalised care in paediatric craniofacial surgery in order to improve clinical outcomes. A virtual model of the infant skull with craniosynostosis, including viscoelastic properties and mechano-biology regulation, will be developed to simulate device implantation and performance over time, and will be validated using clinical data from patient populations treated with current devices. Bespoke new devices will be designed allowing for pre-programmed 3D shapes to be delivered with continuous force during the implantation period. Patient specific skull models will be used to virtually test and optimise the personalised devices, and to tailor the surgical approach for each individual case.
Max ERC Funding
1 498 772 €
Duration
Start date: 2018-03-01, End date: 2023-02-28
Project acronym CALENDS
Project Clusters And LENsing of Distant Sources
Researcher (PI) Johan Pierre Richard
Host Institution (HI) UNIVERSITE LYON 1 CLAUDE BERNARD
Call Details Starting Grant (StG), PE9, ERC-2013-StG
Summary Some of the primary questions in extragalactic astronomy concern the formation and evolution of galaxies in the distant Universe. In particular, little is known about the less luminous (and therefore less massive) galaxy populations, which are currently missed from large observing surveys and could contribute significantly to the overall star formation happening at early times. One way to overcome the current observing limitations prior to the arrival of the future James Webb Space Telescope or the European Extremely Large Telescopes is to use the natural magnification of strong lensing clusters to look at distant sources with an improved sensitivity and resolution.
The aim of CALENDS is to build and study in great details a large sample of accurately-modelled, strongly lensed galaxies at high redshift (1<z<5) selected in the fields of massive clusters, and compare them with the more luminous or lower redshift populations. We will develop novel techniques in this process, in order to improve the accuracy of strong-lensing models and precisely determine the mass content of these clusters. By performing a systematic modelling of the cluster sample we will look into the relative distribution of baryons and dark matter as well as the amount of substructure in cluster cores. Regarding the population of lensed galaxies, we will study their global properties through a multiwavelength analysis covering the optical to millimeter domains, including spectroscopic information from MUSE and KMOS on the VLT, and ALMA.
We will look for scaling relations between the stellar, gas and dust parameters, and compare them with known relations for lower redshift and more massive galaxy samples. For the most extended sources, we will be able to spatially resolve their inner properties, and compare the results of individual regions with predictions from simulations. We will look into key physical processes: star formation, gas accretion, inflows and outflows, in these distant sources.
Summary
Some of the primary questions in extragalactic astronomy concern the formation and evolution of galaxies in the distant Universe. In particular, little is known about the less luminous (and therefore less massive) galaxy populations, which are currently missed from large observing surveys and could contribute significantly to the overall star formation happening at early times. One way to overcome the current observing limitations prior to the arrival of the future James Webb Space Telescope or the European Extremely Large Telescopes is to use the natural magnification of strong lensing clusters to look at distant sources with an improved sensitivity and resolution.
The aim of CALENDS is to build and study in great details a large sample of accurately-modelled, strongly lensed galaxies at high redshift (1<z<5) selected in the fields of massive clusters, and compare them with the more luminous or lower redshift populations. We will develop novel techniques in this process, in order to improve the accuracy of strong-lensing models and precisely determine the mass content of these clusters. By performing a systematic modelling of the cluster sample we will look into the relative distribution of baryons and dark matter as well as the amount of substructure in cluster cores. Regarding the population of lensed galaxies, we will study their global properties through a multiwavelength analysis covering the optical to millimeter domains, including spectroscopic information from MUSE and KMOS on the VLT, and ALMA.
We will look for scaling relations between the stellar, gas and dust parameters, and compare them with known relations for lower redshift and more massive galaxy samples. For the most extended sources, we will be able to spatially resolve their inner properties, and compare the results of individual regions with predictions from simulations. We will look into key physical processes: star formation, gas accretion, inflows and outflows, in these distant sources.
Max ERC Funding
1 450 992 €
Duration
Start date: 2013-09-01, End date: 2019-08-31
Project acronym CAMAP
Project CAMAP: Computer Aided Modeling for Astrophysical Plasmas
Researcher (PI) Miguel-Ángel Aloy-Torás
Host Institution (HI) UNIVERSITAT DE VALENCIA
Call Details Starting Grant (StG), PE9, ERC-2010-StG_20091028
Summary This project will be aimed at obtaining a deeper insight into the physical processes taking place in astrophysical magnetized plasmas. To study these scenarios I will employ different numerical codes as virtual tools that enable me to experiment on computers (virtual labs) with distinct initial and boundary conditions. Among the kind of sources I am interested to consider, I outline the following: Gamma-Ray Bursts (GRBs), extragalactic jets from Active Galactic Nuclei (AGN), magnetars and collapsing stellar cores. A number of important questions are still open regarding the fundamental properties of these astrophysical sources (e.g., collimation, acceleration mechanism, composition, high-energy emission, gravitational wave signature). Additionally, there are analytical issues on the formalism in relativistic dynamics not resolved yet, e.g., the covariant extension of resistive magnetohydrodynamics (MHD). All these problems are so complex that only a computational approach is feasible. I plan to study them by means of relativistic and Newtonian MHD numerical simulations. A principal focus of the project will be to assess the relevance of magnetic fields in the generation, collimation and ulterior propagation of relativistic jets from the GRB progenitors and from AGNs. More generally, I will pursue the goal of understanding the process of amplification of seed magnetic fields until they become dynamically relevant, e.g., using semi-global and local simulations of representative boxes of collapsed stellar cores. A big emphasis will be put on including all the relevant microphysics (e.g. neutrino physics), non-ideal effects (particularly, reconnection physics) and energy transport due to neutrinos and photons to account for the relevant processes in the former systems. A milestone of this project will be to end up with a numerical tool that enables us to deal with General Relativistic Radiation Magnetohydrodynamics problems in Astrophysics.
Summary
This project will be aimed at obtaining a deeper insight into the physical processes taking place in astrophysical magnetized plasmas. To study these scenarios I will employ different numerical codes as virtual tools that enable me to experiment on computers (virtual labs) with distinct initial and boundary conditions. Among the kind of sources I am interested to consider, I outline the following: Gamma-Ray Bursts (GRBs), extragalactic jets from Active Galactic Nuclei (AGN), magnetars and collapsing stellar cores. A number of important questions are still open regarding the fundamental properties of these astrophysical sources (e.g., collimation, acceleration mechanism, composition, high-energy emission, gravitational wave signature). Additionally, there are analytical issues on the formalism in relativistic dynamics not resolved yet, e.g., the covariant extension of resistive magnetohydrodynamics (MHD). All these problems are so complex that only a computational approach is feasible. I plan to study them by means of relativistic and Newtonian MHD numerical simulations. A principal focus of the project will be to assess the relevance of magnetic fields in the generation, collimation and ulterior propagation of relativistic jets from the GRB progenitors and from AGNs. More generally, I will pursue the goal of understanding the process of amplification of seed magnetic fields until they become dynamically relevant, e.g., using semi-global and local simulations of representative boxes of collapsed stellar cores. A big emphasis will be put on including all the relevant microphysics (e.g. neutrino physics), non-ideal effects (particularly, reconnection physics) and energy transport due to neutrinos and photons to account for the relevant processes in the former systems. A milestone of this project will be to end up with a numerical tool that enables us to deal with General Relativistic Radiation Magnetohydrodynamics problems in Astrophysics.
Max ERC Funding
1 497 000 €
Duration
Start date: 2011-03-01, End date: 2017-02-28
Project acronym CAMBAT
Project Calcium and magnesium metal anode based batteries
Researcher (PI) Alexandre PONROUCH
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Starting Grant (StG), PE8, ERC-2016-STG
Summary Li-ion battery is ubiquitous and has emerged as the major contender to power electric vehicles, yet Li-ion is slowly but surely reaching its limits and controversial debates on lithium supply cannot be ignored. New sustainable battery chemistries must be developed and the most appealing alternatives are to use Ca or Mg metal anodes which would bring a breakthrough in terms of energy density relying on much more abundant elements. Since Mg and Ca do not appear to be plagued by dendrite formation like Li, metal anodes could thus safely be used. While standard electrolytes forming stable passivation layers at the electrode/electrolyte interfaces enabled the success of the Li-ion technology, the migration of divalent cations through a passivation layer was thought to be impossible. Thus, all research efforts to date have been devoted to the formulation of electrolytes that do not form such layer. This approach comes with complex electrolyte, highly corrosive and with narrow electrochemical stability window leading to incompatibility with high voltage cathodes thus penalizing energy density.
The applicant demonstrated that calcium can be reversibly plated and stripped through a stable passivation layer when transport properties within the electrolyte are tuned (decreasing ion pair formation). CAMBAT aims at developing new electrolytes forming stable passivation layers and allowing the migration of Ca2+ and Mg2+. Such a dramatic shift in the methodology would allow considering a completely new family of electrolytes enabling the evaluation of high voltage cathode materials that cannot be tested in the electrolytes available nowadays. 1Ah prototype cells will be assembled as proof of concept, targets for energy density and cost being ca. 300 Wh/kg and 250 $/kWh, respectively, thus doubling the energy density while dividing by at least a factor of 2 the price when compared to state of the art Li-ion batteries and having the potential for being SAFER (absence of dendrite).
Summary
Li-ion battery is ubiquitous and has emerged as the major contender to power electric vehicles, yet Li-ion is slowly but surely reaching its limits and controversial debates on lithium supply cannot be ignored. New sustainable battery chemistries must be developed and the most appealing alternatives are to use Ca or Mg metal anodes which would bring a breakthrough in terms of energy density relying on much more abundant elements. Since Mg and Ca do not appear to be plagued by dendrite formation like Li, metal anodes could thus safely be used. While standard electrolytes forming stable passivation layers at the electrode/electrolyte interfaces enabled the success of the Li-ion technology, the migration of divalent cations through a passivation layer was thought to be impossible. Thus, all research efforts to date have been devoted to the formulation of electrolytes that do not form such layer. This approach comes with complex electrolyte, highly corrosive and with narrow electrochemical stability window leading to incompatibility with high voltage cathodes thus penalizing energy density.
The applicant demonstrated that calcium can be reversibly plated and stripped through a stable passivation layer when transport properties within the electrolyte are tuned (decreasing ion pair formation). CAMBAT aims at developing new electrolytes forming stable passivation layers and allowing the migration of Ca2+ and Mg2+. Such a dramatic shift in the methodology would allow considering a completely new family of electrolytes enabling the evaluation of high voltage cathode materials that cannot be tested in the electrolytes available nowadays. 1Ah prototype cells will be assembled as proof of concept, targets for energy density and cost being ca. 300 Wh/kg and 250 $/kWh, respectively, thus doubling the energy density while dividing by at least a factor of 2 the price when compared to state of the art Li-ion batteries and having the potential for being SAFER (absence of dendrite).
Max ERC Funding
1 688 705 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym CapBed
Project Engineered Capillary Beds for Successful Prevascularization of Tissue Engineering Constructs
Researcher (PI) Rogério Pedro Lemos de Sousa Pirraco
Host Institution (HI) UNIVERSIDADE DO MINHO
Call Details Starting Grant (StG), PE8, ERC-2018-STG
Summary The demand for donated organs vastly outnumbers the supply, leading each year to the death of thousands of people and the suffering of millions more. Engineered tissues and organs following Tissue Engineering approaches are a possible solution to this problem. However, a prevascularization solution to irrigate complex engineered tissues and assure their survival after transplantation is currently elusive. In the human body, complex organs and tissues irrigation is achieved by a network of blood vessels termed capillary bed which suggests such a structure is needed in engineered tissues. Previous approaches to engineer capillary beds reached different levels of success but none yielded a fully functional one due to the inability in simultaneously addressing key elements such as correct angiogenic cell populations, a suitable matrix and dynamic conditions that mimic blood flow.
CapBed aims at proposing a new technology to fabricate in vitro capillary beds that include a vascular axis that can be anastomosed with a patient circulation. Such capillary beds could be used as prime tools to prevascularize in vitro engineered tissues and provide fast perfusion of those after transplantation to a patient. Cutting edge techniques will be for the first time integrated in a disruptive approach to address the requirements listed above. Angiogenic cell sheets of human Adipose-derived Stromal Vascular fraction cells will provide the cell populations that integrate the capillaries and manage its intricate formation, as well as the collagen required to build the matrix that will hold the capillary beds. Innovative fabrication technologies such as 3D printing and laser photoablation will be used for the fabrication of the micropatterned matrix that will allow fluid flow through microfluidics. The resulting functional capillary beds can be used with virtually every tissue engineering strategy rendering the proposed strategy with massive economical, scientific and medical potential
Summary
The demand for donated organs vastly outnumbers the supply, leading each year to the death of thousands of people and the suffering of millions more. Engineered tissues and organs following Tissue Engineering approaches are a possible solution to this problem. However, a prevascularization solution to irrigate complex engineered tissues and assure their survival after transplantation is currently elusive. In the human body, complex organs and tissues irrigation is achieved by a network of blood vessels termed capillary bed which suggests such a structure is needed in engineered tissues. Previous approaches to engineer capillary beds reached different levels of success but none yielded a fully functional one due to the inability in simultaneously addressing key elements such as correct angiogenic cell populations, a suitable matrix and dynamic conditions that mimic blood flow.
CapBed aims at proposing a new technology to fabricate in vitro capillary beds that include a vascular axis that can be anastomosed with a patient circulation. Such capillary beds could be used as prime tools to prevascularize in vitro engineered tissues and provide fast perfusion of those after transplantation to a patient. Cutting edge techniques will be for the first time integrated in a disruptive approach to address the requirements listed above. Angiogenic cell sheets of human Adipose-derived Stromal Vascular fraction cells will provide the cell populations that integrate the capillaries and manage its intricate formation, as well as the collagen required to build the matrix that will hold the capillary beds. Innovative fabrication technologies such as 3D printing and laser photoablation will be used for the fabrication of the micropatterned matrix that will allow fluid flow through microfluidics. The resulting functional capillary beds can be used with virtually every tissue engineering strategy rendering the proposed strategy with massive economical, scientific and medical potential
Max ERC Funding
1 499 940 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym CAPS
Project Capillary suspensions: a novel route for versatile, cost efficient and environmentally friendly material design
Researcher (PI) Erin Crystal Koos
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Starting Grant (StG), PE8, ERC-2013-StG
Summary A wide variety of materials including coatings and adhesives, emerging materials for nanotechnology products, as well as everyday food products are processed or delivered as suspensions. The flow properties of such suspensions must be finely adjusted according to the demands of the respective processing techniques, even for the feel of cosmetics and the perception of food products is highly influenced by their rheological properties. The recently developed capillary suspensions concept has the potential to revolutionize product formulations and material design. When a small amount (less than 1%) of a second immiscible liquid is added to the continuous phase of a suspension, the rheological properties of the mixture are dramatically altered from a fluid-like to a gel-like state or from a weak to a strong gel and the strength can be tuned in a wide range covering orders of magnitude. Capillary suspensions can be used to create smart, tunable fluids, stabilize mixtures that would otherwise phase separate, significantly reduce the amount organic or polymeric additives, and the strong particle network can be used as a precursor for the manufacturing of cost-efficient porous ceramics and foams with unprecedented properties.
This project will investigate the influence of factors determining capillary suspension formation, the strength of these admixtures as a function of these aspects, and how capillary suspensions depend on external forces. Only such a fundamental understanding of the network formation in capillary suspensions on both the micro- and macroscopic scale will allow for the design of sophisticated new materials. The main objectives of this proposal are to quantify and predict the strength of these admixtures and then use this information to design a variety of new materials in very different application areas including, e.g., porous materials, water-based coatings, ultra low fat foods, and conductive films.
Summary
A wide variety of materials including coatings and adhesives, emerging materials for nanotechnology products, as well as everyday food products are processed or delivered as suspensions. The flow properties of such suspensions must be finely adjusted according to the demands of the respective processing techniques, even for the feel of cosmetics and the perception of food products is highly influenced by their rheological properties. The recently developed capillary suspensions concept has the potential to revolutionize product formulations and material design. When a small amount (less than 1%) of a second immiscible liquid is added to the continuous phase of a suspension, the rheological properties of the mixture are dramatically altered from a fluid-like to a gel-like state or from a weak to a strong gel and the strength can be tuned in a wide range covering orders of magnitude. Capillary suspensions can be used to create smart, tunable fluids, stabilize mixtures that would otherwise phase separate, significantly reduce the amount organic or polymeric additives, and the strong particle network can be used as a precursor for the manufacturing of cost-efficient porous ceramics and foams with unprecedented properties.
This project will investigate the influence of factors determining capillary suspension formation, the strength of these admixtures as a function of these aspects, and how capillary suspensions depend on external forces. Only such a fundamental understanding of the network formation in capillary suspensions on both the micro- and macroscopic scale will allow for the design of sophisticated new materials. The main objectives of this proposal are to quantify and predict the strength of these admixtures and then use this information to design a variety of new materials in very different application areas including, e.g., porous materials, water-based coatings, ultra low fat foods, and conductive films.
Max ERC Funding
1 489 618 €
Duration
Start date: 2013-08-01, End date: 2018-07-31
Project acronym CARBENZYMES
Project Probing the relevance of carbene binding motifs in enzyme reactivity
Researcher (PI) Martin Albrecht
Host Institution (HI) UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN
Call Details Starting Grant (StG), PE4, ERC-2007-StG
Summary Histidine (His) is an ubiquitous ligand in the active site of metalloenzymes that is assumed by default to bind the metal center through one of its nitrogen atoms. However, protonation of His, which is likely to occur in locally slightly acidic environment, gives imidazolium sites that can bind a metal in a carbene-type structure as found in N-heterocyclic carbene complexes. Such carbene bonding has a dramatic effect on the properties of the metal center and may provide a rational for the mode of action of metalloenzymes that are still lacking a solid understanding. Up to now, the possibility of carbene bonding has been completely overlooked. Hence, any evidence for such His coordination via carbon will induce a shift of paradigm in classical peptide chemistry and will be directly included in basic textbooks. Moreover, this unprecedented bonding mode will provide access to unique and hitherto unknown reactivity patterns for artificial enzyme mimics. Undoubtedly, such a break-through will set a new stage in modern metalloenzyme research. A multicentered approach is proposed to identify for the first time carbene bonding in enzymes. This approach unconventionally combines the current frontiers of organometallic and biochemical knowledge and hence crosses traditional boarders. Specifically, we aim at probing carbene bonding of His by identifying reactivity patterns that are selective for metal-carbenes but not for metal-imine complexes. This will allow for efficient screening of large classes of metalloenzymes. In parallel, active site models will be constructed in which the His ligand is substituted by a heterocyclic carbene as a rigidly C-bonding His analog. For this purpose chemical synthesis will be considered as well as enzyme mutagenesis and subsequent carbene coordination. While such new bioorganometallic entities will be highly attractive to probe the influence of C-bound His on the metal site, they also provide conceputally new types of versatile catalysts.
Summary
Histidine (His) is an ubiquitous ligand in the active site of metalloenzymes that is assumed by default to bind the metal center through one of its nitrogen atoms. However, protonation of His, which is likely to occur in locally slightly acidic environment, gives imidazolium sites that can bind a metal in a carbene-type structure as found in N-heterocyclic carbene complexes. Such carbene bonding has a dramatic effect on the properties of the metal center and may provide a rational for the mode of action of metalloenzymes that are still lacking a solid understanding. Up to now, the possibility of carbene bonding has been completely overlooked. Hence, any evidence for such His coordination via carbon will induce a shift of paradigm in classical peptide chemistry and will be directly included in basic textbooks. Moreover, this unprecedented bonding mode will provide access to unique and hitherto unknown reactivity patterns for artificial enzyme mimics. Undoubtedly, such a break-through will set a new stage in modern metalloenzyme research. A multicentered approach is proposed to identify for the first time carbene bonding in enzymes. This approach unconventionally combines the current frontiers of organometallic and biochemical knowledge and hence crosses traditional boarders. Specifically, we aim at probing carbene bonding of His by identifying reactivity patterns that are selective for metal-carbenes but not for metal-imine complexes. This will allow for efficient screening of large classes of metalloenzymes. In parallel, active site models will be constructed in which the His ligand is substituted by a heterocyclic carbene as a rigidly C-bonding His analog. For this purpose chemical synthesis will be considered as well as enzyme mutagenesis and subsequent carbene coordination. While such new bioorganometallic entities will be highly attractive to probe the influence of C-bound His on the metal site, they also provide conceputally new types of versatile catalysts.
Max ERC Funding
1 249 808 €
Duration
Start date: 2008-07-01, End date: 2013-06-30
Project acronym CartographY
Project Mapping Stellar Helium
Researcher (PI) Guy DAVIES
Host Institution (HI) THE UNIVERSITY OF BIRMINGHAM
Call Details Starting Grant (StG), PE9, ERC-2018-STG
Summary In the epoch of Gaia, fundamental stellar properties will be made widely available for large numbers of stars. These properties are expected to unleash a new wave of discovery in the field of astrophysics. But while many properties of stars are measurable, meaningful Helium abundances (Y) remain elusive and as a result fundamental properties are not accurate.
Helium enrichment laws, which underpin most stellar properties, link initial Y to initial metallicity, but these relations are very uncertain with gradients (dY/dZ) spanning the range 1 to 3. This uncertainty is the initial Y problem and this is a bottleneck that must be overcome to unleash the true potential of Gaia.
Without measurements of initial Y for all stars we need to find alternative observables that trace out the evolution of initial Y. We will search for better tracers using the power of asteroseismology as a calibrator.
Asteroseismic measures of Helium will be used to construct a map from observable properties (fundamental, chemical or even dynamical) back to initial Helium. This is a challenge that can only be solved through the use of the latest asteroseismic techniques coupled to a rigorous yet flexible statistical scheme. I am uniquely qualified in the cutting edge methods of asteroseismology and the application of advanced multi-level statistical models. The intersection of these two skill sets will allow me to solve the initial Helium problem.
The motivation for a timely solution to this problem could not be stronger. We have just entered an age of large asteroseismic datasets, vast spectroscopic surveys, and the billion star program of Gaia. The next wave of scientific breakthroughs in stellar physics, exoplanetary science, and Galactic archeology will be held back unless accurate fundamental stellar properties are available. We can only produce these accurate properties with a reliable map of stellar Helium.
Summary
In the epoch of Gaia, fundamental stellar properties will be made widely available for large numbers of stars. These properties are expected to unleash a new wave of discovery in the field of astrophysics. But while many properties of stars are measurable, meaningful Helium abundances (Y) remain elusive and as a result fundamental properties are not accurate.
Helium enrichment laws, which underpin most stellar properties, link initial Y to initial metallicity, but these relations are very uncertain with gradients (dY/dZ) spanning the range 1 to 3. This uncertainty is the initial Y problem and this is a bottleneck that must be overcome to unleash the true potential of Gaia.
Without measurements of initial Y for all stars we need to find alternative observables that trace out the evolution of initial Y. We will search for better tracers using the power of asteroseismology as a calibrator.
Asteroseismic measures of Helium will be used to construct a map from observable properties (fundamental, chemical or even dynamical) back to initial Helium. This is a challenge that can only be solved through the use of the latest asteroseismic techniques coupled to a rigorous yet flexible statistical scheme. I am uniquely qualified in the cutting edge methods of asteroseismology and the application of advanced multi-level statistical models. The intersection of these two skill sets will allow me to solve the initial Helium problem.
The motivation for a timely solution to this problem could not be stronger. We have just entered an age of large asteroseismic datasets, vast spectroscopic surveys, and the billion star program of Gaia. The next wave of scientific breakthroughs in stellar physics, exoplanetary science, and Galactic archeology will be held back unless accurate fundamental stellar properties are available. We can only produce these accurate properties with a reliable map of stellar Helium.
Max ERC Funding
1 496 203 €
Duration
Start date: 2019-04-01, End date: 2024-03-31
Project acronym CAstRA
Project Comet and Asteroid Re-Shaping through Activity
Researcher (PI) Jessica AGARWAL
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), PE9, ERC-2017-STG
Summary The proposed project will significantly improve the insight in the processes that have changed a comet nucleus or asteroid since their formation. These processes typically go along with activity, the observable release of gas and/or dust. Understanding the evolutionary processes of comets and asteroids will allow us to answer the crucial question which aspects of these present-day bodies still provide essential clues to their formation in the protoplanetary disc of the early solar system.
Ground-breaking progress in understanding these fundamental questions can now be made thanks to the huge and unprecedented data set returned between 2014 and 2016 by the European Space Agency’s Rosetta mission to comet 67P/Churyumov-Gerasimenko, and by recent major advances in the observational study of active asteroids facilitated by the increased availability of sky surveys and follow-on observations with world-class telescopes.
The key aims of this proposal are to
- Obtain a unified quantitative picture of the different erosion processes active in comets and asteroids,
- Investigate how ice is stored in comets and asteroids,
- Characterize the ejected dust (size distribution, optical and thermal properties) and relate it to dust around other stars,
- Understand in which respects comet 67P can be considered as representative of a wider sample of comets or even asteroids.
We will follow a highly multi-disciplinary approach analyzing data from many Rosetta instruments, ground- and space-based telescopes, and connect these through numerical models of the dust dynamics and thermal properties.
Summary
The proposed project will significantly improve the insight in the processes that have changed a comet nucleus or asteroid since their formation. These processes typically go along with activity, the observable release of gas and/or dust. Understanding the evolutionary processes of comets and asteroids will allow us to answer the crucial question which aspects of these present-day bodies still provide essential clues to their formation in the protoplanetary disc of the early solar system.
Ground-breaking progress in understanding these fundamental questions can now be made thanks to the huge and unprecedented data set returned between 2014 and 2016 by the European Space Agency’s Rosetta mission to comet 67P/Churyumov-Gerasimenko, and by recent major advances in the observational study of active asteroids facilitated by the increased availability of sky surveys and follow-on observations with world-class telescopes.
The key aims of this proposal are to
- Obtain a unified quantitative picture of the different erosion processes active in comets and asteroids,
- Investigate how ice is stored in comets and asteroids,
- Characterize the ejected dust (size distribution, optical and thermal properties) and relate it to dust around other stars,
- Understand in which respects comet 67P can be considered as representative of a wider sample of comets or even asteroids.
We will follow a highly multi-disciplinary approach analyzing data from many Rosetta instruments, ground- and space-based telescopes, and connect these through numerical models of the dust dynamics and thermal properties.
Max ERC Funding
1 484 688 €
Duration
Start date: 2018-03-01, End date: 2023-02-28
Project acronym Cat-In-hAT
Project Catastrophic Interactions of Binary Stars and the Associated Transients
Researcher (PI) Ondrej PEJCHA
Host Institution (HI) UNIVERZITA KARLOVA
Call Details Starting Grant (StG), PE9, ERC-2018-STG
Summary "One of the crucial formation channels of compact object binaries, including sources of gravitational waves, critically depends on catastrophic binary interactions accompanied by the loss of mass, angular momentum, and energy (""common envelope"" evolution - CEE). Despite its importance, CEE is perhaps the least understood major phase of binary star evolution and progress in this area is urgently needed to interpret observations from the new facilities (gravitational wave detectors, time-domain surveys).
Recently, the dynamical phase of the CEE has been associated with a class of transient brightenings exhibiting slow expansion velocities and copious formation of dust and molecules (red transients - RT). A number of RT features, especially the long timescale of mass loss, challenge the existing CEE paradigm.
Motivated by RT, I will use a new variant of magnetohydrodynamics to comprehensively examine the 3D evolution of CEE from the moment when the mass loss commences to the remnant phase. I expect to resolve the long timescales observed in RT, characterize binary stability in 3D with detailed microphysics, illuminate the fundamental problem of how is orbital energy used to unbind the common envelope in a regime that was inaccessible before, and break new ground on the amplification of magnetic fields during CEE.
I will establish RT as an entirely new probe of the CEE physics by comparing my detailed theoretical predictions of light curves from different viewing angles, spectra, line profiles, and polarimetric signatures with observations of RT. I will accomplish this by coupling multi-dimensional moving mesh hydrodynamics with radiation, dust formation, and chemical reactions. Finally, I will examine the physical processes in RT remnants on timescales of years to centuries after the outburst to connect RT with the proposed merger products and to identify them in time-domain surveys.
"
Summary
"One of the crucial formation channels of compact object binaries, including sources of gravitational waves, critically depends on catastrophic binary interactions accompanied by the loss of mass, angular momentum, and energy (""common envelope"" evolution - CEE). Despite its importance, CEE is perhaps the least understood major phase of binary star evolution and progress in this area is urgently needed to interpret observations from the new facilities (gravitational wave detectors, time-domain surveys).
Recently, the dynamical phase of the CEE has been associated with a class of transient brightenings exhibiting slow expansion velocities and copious formation of dust and molecules (red transients - RT). A number of RT features, especially the long timescale of mass loss, challenge the existing CEE paradigm.
Motivated by RT, I will use a new variant of magnetohydrodynamics to comprehensively examine the 3D evolution of CEE from the moment when the mass loss commences to the remnant phase. I expect to resolve the long timescales observed in RT, characterize binary stability in 3D with detailed microphysics, illuminate the fundamental problem of how is orbital energy used to unbind the common envelope in a regime that was inaccessible before, and break new ground on the amplification of magnetic fields during CEE.
I will establish RT as an entirely new probe of the CEE physics by comparing my detailed theoretical predictions of light curves from different viewing angles, spectra, line profiles, and polarimetric signatures with observations of RT. I will accomplish this by coupling multi-dimensional moving mesh hydrodynamics with radiation, dust formation, and chemical reactions. Finally, I will examine the physical processes in RT remnants on timescales of years to centuries after the outburst to connect RT with the proposed merger products and to identify them in time-domain surveys.
"
Max ERC Funding
1 243 219 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym CATACOAT
Project Nanostructured catalyst overcoats for renewable chemical production from biomass
Researcher (PI) Jeremy Scott LUTERBACHER
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Starting Grant (StG), PE8, ERC-2017-STG
Summary In the CATACOAT project, we will develop layer-by-layer solution-processed catalyst overcoating methods, which will result in catalysts that have both targeted and broad impacts. We will produce highly active, stable and selective catalysts for the upgrading of lignin – the largest natural source of aromatic chemicals – into commodity chemicals, which will have an important targeted impact. The broader impact of our work will lie in the production of catalytic materials with unprecedented control over the active site architecture.
There is an urgent need to provide these cheap, stable, selective, and highly active catalysts for renewable molecule production. Thanks to its availability and relatively low cost, lignocellulosic biomass is an attractive source of renewable carbon. However, unlike petroleum, biomass-derived molecules are highly oxygenated, and often produced in dilute-aqueous streams. Heterogeneous catalysts – the workhorses of the petrochemical industry – are sensitive to water and contain many metals that easily sinter and leach in liquid-phase conditions. The production of renewable chemicals from biomass, especially valuable aromatics, often requires expensive platinum group metals and suffers from low selectivity.
Catalyst overcoating presents a potential solution to this problem. Recent breakthroughs using catalyst overcoating with atomic layer deposition (ALD) showed that base metal catalysts can be stabilized against sintering and leaching in liquid phase conditions. However, ALD creates dramatic drops in activity due to excessive coverage, and forms an overcoat that cannot be tuned.
Our materials will feature the controlled placement of metal sites (including single atoms), several oxide sites, and even molecular imprints with sub-nanometer precision within highly accessible nanocavities. We anticipate that such materials will create unprecedented opportunities for reducing cost and increasing sustainability in the chemical industry and beyond.
Summary
In the CATACOAT project, we will develop layer-by-layer solution-processed catalyst overcoating methods, which will result in catalysts that have both targeted and broad impacts. We will produce highly active, stable and selective catalysts for the upgrading of lignin – the largest natural source of aromatic chemicals – into commodity chemicals, which will have an important targeted impact. The broader impact of our work will lie in the production of catalytic materials with unprecedented control over the active site architecture.
There is an urgent need to provide these cheap, stable, selective, and highly active catalysts for renewable molecule production. Thanks to its availability and relatively low cost, lignocellulosic biomass is an attractive source of renewable carbon. However, unlike petroleum, biomass-derived molecules are highly oxygenated, and often produced in dilute-aqueous streams. Heterogeneous catalysts – the workhorses of the petrochemical industry – are sensitive to water and contain many metals that easily sinter and leach in liquid-phase conditions. The production of renewable chemicals from biomass, especially valuable aromatics, often requires expensive platinum group metals and suffers from low selectivity.
Catalyst overcoating presents a potential solution to this problem. Recent breakthroughs using catalyst overcoating with atomic layer deposition (ALD) showed that base metal catalysts can be stabilized against sintering and leaching in liquid phase conditions. However, ALD creates dramatic drops in activity due to excessive coverage, and forms an overcoat that cannot be tuned.
Our materials will feature the controlled placement of metal sites (including single atoms), several oxide sites, and even molecular imprints with sub-nanometer precision within highly accessible nanocavities. We anticipate that such materials will create unprecedented opportunities for reducing cost and increasing sustainability in the chemical industry and beyond.
Max ERC Funding
1 785 195 €
Duration
Start date: 2017-12-01, End date: 2022-11-30
Project acronym CATCIR
Project Catalytic Carbene Insertion Reactions; Creating Diversity in (Material) Synthesis
Researcher (PI) Bastiaan (Bas) De Bruin
Host Institution (HI) UNIVERSITEIT VAN AMSTERDAM
Call Details Starting Grant (StG), PE4, ERC-2007-StG
Summary With this proposal the PI capitalises on his recent breakthroughs in transition metal catalysed carbene (migratory) insertion reactions to build up a new research line for controlled catalytic preparation of a variety of new functionalised (co)polymers with expected special material properties. Metallo-carbenes are well-known intermediates in olefin cyclopropanation and olefin metathesis, but the PI recently discovered that their chemistry is far richer. He demonstrated for the first time that metallo-carbenoids can be used in transition metal catalysed insertion polymerisation to arrive at completely new types of stereoregular carbon-chain polymers functionalised at each carbon of the polymer backbone. Rhodium mediated polymerisation of carbenes provides the means to prepare new materials with yet unknown properties. It also provides a valuable alternative to prepare practically identical polymers as in the desirable (but still unachievable) highly stereo-selective (co)polymerisation of functionalised olefins, representing the ‘holey-grail’ in world-wide TM polymerisation catalysis research. The mechanism and scope of this remarkable new discovery will be investigated and new, improved catalysts will be developed for the preparation of novel materials based on homo- and copolymerisation of a variety of carbene precursors. Copolymerisation of carbenes and other reactive monomers will also be investigated and the properties of all new materials will be investigated. In addition the team will try to uncover new reactions in which carbene insertion reactions play a central role. DFT calculations suggest that the transition state (TS) of the new carbene polymerisation reaction is very similar to the TS’s of a variety of carbonyl insertion reactions. Based on this analogy, the team will investigate several new carbene insertion reactions, potentially leading to new, useful polymeric materials and new synthetic routes to prepare small functional organic molecules.
Summary
With this proposal the PI capitalises on his recent breakthroughs in transition metal catalysed carbene (migratory) insertion reactions to build up a new research line for controlled catalytic preparation of a variety of new functionalised (co)polymers with expected special material properties. Metallo-carbenes are well-known intermediates in olefin cyclopropanation and olefin metathesis, but the PI recently discovered that their chemistry is far richer. He demonstrated for the first time that metallo-carbenoids can be used in transition metal catalysed insertion polymerisation to arrive at completely new types of stereoregular carbon-chain polymers functionalised at each carbon of the polymer backbone. Rhodium mediated polymerisation of carbenes provides the means to prepare new materials with yet unknown properties. It also provides a valuable alternative to prepare practically identical polymers as in the desirable (but still unachievable) highly stereo-selective (co)polymerisation of functionalised olefins, representing the ‘holey-grail’ in world-wide TM polymerisation catalysis research. The mechanism and scope of this remarkable new discovery will be investigated and new, improved catalysts will be developed for the preparation of novel materials based on homo- and copolymerisation of a variety of carbene precursors. Copolymerisation of carbenes and other reactive monomers will also be investigated and the properties of all new materials will be investigated. In addition the team will try to uncover new reactions in which carbene insertion reactions play a central role. DFT calculations suggest that the transition state (TS) of the new carbene polymerisation reaction is very similar to the TS’s of a variety of carbonyl insertion reactions. Based on this analogy, the team will investigate several new carbene insertion reactions, potentially leading to new, useful polymeric materials and new synthetic routes to prepare small functional organic molecules.
Max ERC Funding
1 250 000 €
Duration
Start date: 2008-08-01, End date: 2013-07-31
Project acronym CCCAN
Project Characterizing and Controlling Carbon Nanomaterials
Researcher (PI) Janina Maultzsch
Host Institution (HI) TECHNISCHE UNIVERSITAT BERLIN
Call Details Starting Grant (StG), PE4, ERC-2010-StG_20091028
Summary The aim of this project is to understand and control the fundamental physical properties of novel carbon nanomaterials:
carbon nanotubes and graphene. By a combination of complementary methods, i.e. vibrational spectroscopy, scanning probe microscopy, and theoretical modelling, a comprehensive understanding of the electronic, vibrational, optical properties, and their connection with the material’s structure will be obtained. A diagnostics “toolbox” will be established on the materials in
their most unperturbed, ideal states. Taking the results as reference, the materials will be studied under conditions relevant when incorporated into devices. These include imperfections of the materials and interaction with different environments, with other carbon nanotubes/graphene, and with extrinsic materials introduced during device processing. The gained insight and understanding on a fundamental level will also advance technological routes for scaling up carbon-nanomaterial electronic device fabrication, which is still lacking sufficient control over selectivity towards the desired physical properties. Control over the electronic and optical properties will be sought through deliberately induced interactions and chemical functionalization
of the materials. The project benefits from close collaborations between experimental and theoretical physics, chemistry, and materials science.
Summary
The aim of this project is to understand and control the fundamental physical properties of novel carbon nanomaterials:
carbon nanotubes and graphene. By a combination of complementary methods, i.e. vibrational spectroscopy, scanning probe microscopy, and theoretical modelling, a comprehensive understanding of the electronic, vibrational, optical properties, and their connection with the material’s structure will be obtained. A diagnostics “toolbox” will be established on the materials in
their most unperturbed, ideal states. Taking the results as reference, the materials will be studied under conditions relevant when incorporated into devices. These include imperfections of the materials and interaction with different environments, with other carbon nanotubes/graphene, and with extrinsic materials introduced during device processing. The gained insight and understanding on a fundamental level will also advance technological routes for scaling up carbon-nanomaterial electronic device fabrication, which is still lacking sufficient control over selectivity towards the desired physical properties. Control over the electronic and optical properties will be sought through deliberately induced interactions and chemical functionalization
of the materials. The project benefits from close collaborations between experimental and theoretical physics, chemistry, and materials science.
Max ERC Funding
1 468 960 €
Duration
Start date: 2010-12-01, End date: 2015-11-30
Project acronym CELL HYBRIDGE
Project 3D Scaffolds as a Stem Cell Delivery System for Musculoskeletal Regenerative Medicine
Researcher (PI) Lorenzo Moroni
Host Institution (HI) UNIVERSITEIT MAASTRICHT
Call Details Starting Grant (StG), PE8, ERC-2014-STG
Summary Aging worldwide population demands new solutions to permanently restore damaged tissues, thus reducing healthcare costs. Regenerative medicine offers alternative therapies for tissue repair. Although first clinical trials revealed excellent initial response after implantation of these engineered tissues, long-term follow-ups demonstrated that degeneration and lack of integration with the surrounding tissues occur. Causes are related to insufficient cell-material interactions and loss of cell potency when cultured in two-dimensional substrates, among others.
Stem cells are a promising alternative due to their differentiation potential into multiple lineages. Yet, better control over cell-material interactions is necessary to maintain tissue engineered constructs in time. It is crucial to control stem cell quiescence, proliferation and differentiation in three-dimensional scaffolds while maintaining cells viable in situ. Stem cell activity is controlled by a complex cascade of signals called “niche”, where the extra-cellular matrix (ECM) surrounding the cells play a major role. Designing scaffolds inspired by this cellular niche and its ECM may lead to engineered tissues with instructive properties characterized by enhanced homeostasis, stability and integration with the surrounding milieu.
This research proposal aims at engineering constructs where scaffolds work as stem cell delivery systems actively controlling cell quiescence, proliferation, and differentiation. This challenge will be approached through a biomimetic design inspired by the mesenchymal stem cell niche. Three different scaffolds will be combined to achieve this purpose: (i) a scaffold designed to maintain cell quiescence; (ii) a scaffold designed to promote cell proliferation; and (iii) a scaffold designed to control cell differentiation. To prove the design criteria the evaluation of stem cell quiescence, proliferation, and differentiation will be assessed for musculoskeletal regenerative therapies.
Summary
Aging worldwide population demands new solutions to permanently restore damaged tissues, thus reducing healthcare costs. Regenerative medicine offers alternative therapies for tissue repair. Although first clinical trials revealed excellent initial response after implantation of these engineered tissues, long-term follow-ups demonstrated that degeneration and lack of integration with the surrounding tissues occur. Causes are related to insufficient cell-material interactions and loss of cell potency when cultured in two-dimensional substrates, among others.
Stem cells are a promising alternative due to their differentiation potential into multiple lineages. Yet, better control over cell-material interactions is necessary to maintain tissue engineered constructs in time. It is crucial to control stem cell quiescence, proliferation and differentiation in three-dimensional scaffolds while maintaining cells viable in situ. Stem cell activity is controlled by a complex cascade of signals called “niche”, where the extra-cellular matrix (ECM) surrounding the cells play a major role. Designing scaffolds inspired by this cellular niche and its ECM may lead to engineered tissues with instructive properties characterized by enhanced homeostasis, stability and integration with the surrounding milieu.
This research proposal aims at engineering constructs where scaffolds work as stem cell delivery systems actively controlling cell quiescence, proliferation, and differentiation. This challenge will be approached through a biomimetic design inspired by the mesenchymal stem cell niche. Three different scaffolds will be combined to achieve this purpose: (i) a scaffold designed to maintain cell quiescence; (ii) a scaffold designed to promote cell proliferation; and (iii) a scaffold designed to control cell differentiation. To prove the design criteria the evaluation of stem cell quiescence, proliferation, and differentiation will be assessed for musculoskeletal regenerative therapies.
Max ERC Funding
1 500 000 €
Duration
Start date: 2015-05-01, End date: 2020-04-30
Project acronym CEMOS
Project Crystal Engineering for Molecular Organic Semiconductors
Researcher (PI) Kevin Sivula
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Starting Grant (StG), PE8, ERC-2013-StG
Summary "The urgent need to develop inexpensive and ubiquitous solar energy conversion cannot be overstated. Solution processed organic semiconductors can enable this goal as they support drastically less expensive fabrication techniques compared to traditional semiconductors. Molecular organic semiconductors (MOSs) offer many advantages to their more-common pi-conjugated polymer counterparts, however a clear and fundamental challenge to enable the goal of high performance solution-processable molecular organic semiconductor devices is to develop the ability to control the crystal packing, crystalline domain size, and mixing ability (for multicomponent blends) in the thin-film device geometry. The CEMOS project will accomplish this by pioneering innovative methods of “bottom-up” crystal engineering for organic semiconductors. We will employ specifically tailored molecules designed to leverage both thermodynamic and kinetic aspects of molecular organic semiconductor systems to direct and control crystalline packing, promote crystallite nucleation, compatibilize disparate phases, and plasticize inelastic materials. We will demonstrate that our new classes of materials can enable the tuning of the charge carrier transport and morphology in MOS thin films, and we will evaluate their performance in actual thin-film transistor (TFT) and organic photovoltaic (OPV) devices. Our highly interdisciplinary approach, combining material synthesis and device fabrication/evaluation, will not only lead to improvements in the performance and stability of OPVs and TFTs but will also give deep insights into how the crystalline packing—independent from the molecular structure—affects the optoelectronic properties. The success of CEMOS will rapidly advance the performance of MOS devices by enabling reproducible and tuneable performance comparable to traditional semiconductors—but at radically lower processing costs."
Summary
"The urgent need to develop inexpensive and ubiquitous solar energy conversion cannot be overstated. Solution processed organic semiconductors can enable this goal as they support drastically less expensive fabrication techniques compared to traditional semiconductors. Molecular organic semiconductors (MOSs) offer many advantages to their more-common pi-conjugated polymer counterparts, however a clear and fundamental challenge to enable the goal of high performance solution-processable molecular organic semiconductor devices is to develop the ability to control the crystal packing, crystalline domain size, and mixing ability (for multicomponent blends) in the thin-film device geometry. The CEMOS project will accomplish this by pioneering innovative methods of “bottom-up” crystal engineering for organic semiconductors. We will employ specifically tailored molecules designed to leverage both thermodynamic and kinetic aspects of molecular organic semiconductor systems to direct and control crystalline packing, promote crystallite nucleation, compatibilize disparate phases, and plasticize inelastic materials. We will demonstrate that our new classes of materials can enable the tuning of the charge carrier transport and morphology in MOS thin films, and we will evaluate their performance in actual thin-film transistor (TFT) and organic photovoltaic (OPV) devices. Our highly interdisciplinary approach, combining material synthesis and device fabrication/evaluation, will not only lead to improvements in the performance and stability of OPVs and TFTs but will also give deep insights into how the crystalline packing—independent from the molecular structure—affects the optoelectronic properties. The success of CEMOS will rapidly advance the performance of MOS devices by enabling reproducible and tuneable performance comparable to traditional semiconductors—but at radically lower processing costs."
Max ERC Funding
1 477 472 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym CHANGE-POINT TESTS
Project New Results on Structural Change Tests: Theory and Applications
Researcher (PI) Elena Andreou
Host Institution (HI) UNIVERSITY OF CYPRUS
Call Details Starting Grant (StG), SH1, ERC-2007-StG
Summary The research project has two broad objectives and provides novel results in the literature of structural change or change-point tests. The first objective is to provide two new methods for restoring the non-monotone power problem of a large family of structural breaks tests that have been widely used in econometrics and statistics, as well as to show that these methods have additional contributions and can be extended to: (i) tests for a change in persistence, (ii) partial sums tests of cointegration and (iii) tests for changes in dynamic volatility models. The significance of these methods is demonstrated via the consistency of the long-run variance estimator which scales the change-point statistics, the asymptotic properties of the tests, their finite sample performance and their relevance in empirical applications and policy analysis. The second objective is threefold: First, to show that ignoring structural changes in financial time series yields biased and inconsistent risk management (Value at Risk, VaR and Excess Shortfall, ES) estimates and consequently leads to investment misallocations. Second, to propose methods for evaluating the stability of financial time series sequentially or on-line which can be used as a quality control procedure for financial risk management as well as to show that monitoring implied volatilities yields early warning indicators of a changing risk structure. Moreover we show that model averaging in the presence of structural breaks as well as other model uncertainties involved in risk management estimates, can provide robust estimates of VaR and ES. New results are derived on the optimal weights for model averaging in the context of dynamic volatility models and asymmetric loss functions. Third, we propose a novel way to construct prediction-based change-point statistics that reduce the detection delay of existing sequential tests and provide a probability about the likelihood of a structural change.
Summary
The research project has two broad objectives and provides novel results in the literature of structural change or change-point tests. The first objective is to provide two new methods for restoring the non-monotone power problem of a large family of structural breaks tests that have been widely used in econometrics and statistics, as well as to show that these methods have additional contributions and can be extended to: (i) tests for a change in persistence, (ii) partial sums tests of cointegration and (iii) tests for changes in dynamic volatility models. The significance of these methods is demonstrated via the consistency of the long-run variance estimator which scales the change-point statistics, the asymptotic properties of the tests, their finite sample performance and their relevance in empirical applications and policy analysis. The second objective is threefold: First, to show that ignoring structural changes in financial time series yields biased and inconsistent risk management (Value at Risk, VaR and Excess Shortfall, ES) estimates and consequently leads to investment misallocations. Second, to propose methods for evaluating the stability of financial time series sequentially or on-line which can be used as a quality control procedure for financial risk management as well as to show that monitoring implied volatilities yields early warning indicators of a changing risk structure. Moreover we show that model averaging in the presence of structural breaks as well as other model uncertainties involved in risk management estimates, can provide robust estimates of VaR and ES. New results are derived on the optimal weights for model averaging in the context of dynamic volatility models and asymmetric loss functions. Third, we propose a novel way to construct prediction-based change-point statistics that reduce the detection delay of existing sequential tests and provide a probability about the likelihood of a structural change.
Max ERC Funding
517 200 €
Duration
Start date: 2008-09-01, End date: 2013-08-31
Project acronym CHANGING FAMILIES
Project Changing Families: Causes, Consequences and Challenges for Public Policy
Researcher (PI) Nezih Guner
Host Institution (HI) FUNDACIÓ MARKETS, ORGANIZATIONS AND VOTES IN ECONOMICS
Call Details Starting Grant (StG), SH1, ERC-2010-StG_20091209
Summary The household and family structure in every major industrialized country changed in a fundamental way during the last couple of decades. First, marriage is less important today, as divorce, cohabitation, and single-motherhood are much more common. Second, female labor force participation has increased dramatically. As a result of these changes, today s households are very far from traditional breadwinner husband and housekeeper wife paradigm. These dramatic changes generated significant public interest and a large body of literature that tries to understand causes and consequences of these changes.
This project has two main goals. First, it studies changes in household and family structure. The particular questions that it tries to answer are: 1) What are economic factors behind the rise in premarital sex and its destigmatization? What determines parents incentives to socialize their children and affect their attitudes? 2) What are the causes and consequences of the recent rise in assortative mating and diverging marriage patterns by different educational groups? 3) Why are marriage patterns among blacks so different than whites in the U.S.?
The second aim of this project is to improve our understanding of income risk, the role of social insurance policies and labor market dynamics by building models that explicitly considers two-earner households. In particular, we ask the following set of questions: 1) What is the role of social insurance policies (income maintenance programs or progressive taxation) in an economy populated by two-earner households facing uninsurable idiosyncratic risk? 2) How does marriage and labor market dynamics interact and how important this interaction for our understanding of labor supply and marriage decisions?
Summary
The household and family structure in every major industrialized country changed in a fundamental way during the last couple of decades. First, marriage is less important today, as divorce, cohabitation, and single-motherhood are much more common. Second, female labor force participation has increased dramatically. As a result of these changes, today s households are very far from traditional breadwinner husband and housekeeper wife paradigm. These dramatic changes generated significant public interest and a large body of literature that tries to understand causes and consequences of these changes.
This project has two main goals. First, it studies changes in household and family structure. The particular questions that it tries to answer are: 1) What are economic factors behind the rise in premarital sex and its destigmatization? What determines parents incentives to socialize their children and affect their attitudes? 2) What are the causes and consequences of the recent rise in assortative mating and diverging marriage patterns by different educational groups? 3) Why are marriage patterns among blacks so different than whites in the U.S.?
The second aim of this project is to improve our understanding of income risk, the role of social insurance policies and labor market dynamics by building models that explicitly considers two-earner households. In particular, we ask the following set of questions: 1) What is the role of social insurance policies (income maintenance programs or progressive taxation) in an economy populated by two-earner households facing uninsurable idiosyncratic risk? 2) How does marriage and labor market dynamics interact and how important this interaction for our understanding of labor supply and marriage decisions?
Max ERC Funding
1 037 000 €
Duration
Start date: 2010-11-01, End date: 2015-10-31
Project acronym CHASM
Project Convective Heat Transport and Stellar Magnetism
Researcher (PI) Matthew Keith Morris Browning
Host Institution (HI) THE UNIVERSITY OF EXETER
Call Details Starting Grant (StG), PE9, ERC-2013-StG
Summary "Magnetism plays a profound role in stars and planets. In the Sun, magnetic fields are ultimately responsible for solar flares and coronal mass ejections that can impact our technological society. Earth's own magnetic field partly shields us from these events, but solar storms can still interrupt satellite communications, disrupt power grids, and pose a danger to astronauts on spacewalks. More generally, magnetic fields partly control the rotational evolution of stars, likely impact the habitability of extrasolar planets, and may modify the sizes and internal structures of
low-mass stars and gaseous planets. In all cases, the magnetism is generally thought to arise from a convective dynamo -- but a detailed theoretical understanding of this process, and its influence on the overall evolution of stars and planets, has remained elusive. Particularly fascinating observational puzzles have recently come from the study of low-mass M-dwarf stars: the most numerous type of stars in our galaxy and perhaps the most likely to host habitable planets.
We therefore propose to study how stars and sub-stellar objects build magnetic fields using 3-D magnetohydrodynamic simulations, and to quantify the effects of those fields on stellar structure and evolution. Using the Anelastic Spherical Harmonic (ASH) and Compressible Spherical Segment (CSS) codes, we will examine (a) how global magnetic field generation in these stars depends upon parameters like stellar mass, rotation rate, and the presence of a stable core, and (b) how the deep convection and magnetism imprints through (and is shaped by) the near-surface layers of these objects. We will (c) determine the impact of the resulting fields on the convective transport of heat and angular momentum, incorporate our results into state of the art 1-D evolutionary models of stars, and explore the consequences for stellar evolution. Separately, we will (d) develop and maintain a public database of 3-D convective dynamo models."
Summary
"Magnetism plays a profound role in stars and planets. In the Sun, magnetic fields are ultimately responsible for solar flares and coronal mass ejections that can impact our technological society. Earth's own magnetic field partly shields us from these events, but solar storms can still interrupt satellite communications, disrupt power grids, and pose a danger to astronauts on spacewalks. More generally, magnetic fields partly control the rotational evolution of stars, likely impact the habitability of extrasolar planets, and may modify the sizes and internal structures of
low-mass stars and gaseous planets. In all cases, the magnetism is generally thought to arise from a convective dynamo -- but a detailed theoretical understanding of this process, and its influence on the overall evolution of stars and planets, has remained elusive. Particularly fascinating observational puzzles have recently come from the study of low-mass M-dwarf stars: the most numerous type of stars in our galaxy and perhaps the most likely to host habitable planets.
We therefore propose to study how stars and sub-stellar objects build magnetic fields using 3-D magnetohydrodynamic simulations, and to quantify the effects of those fields on stellar structure and evolution. Using the Anelastic Spherical Harmonic (ASH) and Compressible Spherical Segment (CSS) codes, we will examine (a) how global magnetic field generation in these stars depends upon parameters like stellar mass, rotation rate, and the presence of a stable core, and (b) how the deep convection and magnetism imprints through (and is shaped by) the near-surface layers of these objects. We will (c) determine the impact of the resulting fields on the convective transport of heat and angular momentum, incorporate our results into state of the art 1-D evolutionary models of stars, and explore the consequences for stellar evolution. Separately, we will (d) develop and maintain a public database of 3-D convective dynamo models."
Max ERC Funding
1 469 070 €
Duration
Start date: 2013-12-01, End date: 2018-11-30
Project acronym CHEMBIOMECH
Project Exploring mechanism in chemical biology by high-throughput approaches
Researcher (PI) Florian Hollfelder
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Starting Grant (StG), PE4, ERC-2007-StG
Summary In the biomedical sciences, where endless combinatorial diversity of genes, proteins and synthetic molecules is involved, miniaturisation has not simply allowed an increase in the speed at which experiment can be performed: it has given birth to new areas such as combinatorial chemistry and biology, proteomics, genomics, and more recently, systems and synthetic biology. In all these areas, the synthesis, assay and analysis of large molecular ensembles has become the essence of experimental progress. However, it is the systematic analysis of the enormous amounts of data generated that will ultimately lead to an understanding of fundamental chemical and biological problems. This proposal deals with approaches in which libraries of molecules are employed to give such mechanistic insight – into how enzyme catalysis is brought about in proteins and polymeric enzyme models and into the molecular recognition and cell biology of drug delivery reagents. In each case considerable technical challenges are involved in the way diversity is brought about and probed: ranging from either using the tools of synthetic chemistry to using gene repertoires in emulsion microdroplet reactors with femtolitre volumes, handled in microfluidic devices.
Summary
In the biomedical sciences, where endless combinatorial diversity of genes, proteins and synthetic molecules is involved, miniaturisation has not simply allowed an increase in the speed at which experiment can be performed: it has given birth to new areas such as combinatorial chemistry and biology, proteomics, genomics, and more recently, systems and synthetic biology. In all these areas, the synthesis, assay and analysis of large molecular ensembles has become the essence of experimental progress. However, it is the systematic analysis of the enormous amounts of data generated that will ultimately lead to an understanding of fundamental chemical and biological problems. This proposal deals with approaches in which libraries of molecules are employed to give such mechanistic insight – into how enzyme catalysis is brought about in proteins and polymeric enzyme models and into the molecular recognition and cell biology of drug delivery reagents. In each case considerable technical challenges are involved in the way diversity is brought about and probed: ranging from either using the tools of synthetic chemistry to using gene repertoires in emulsion microdroplet reactors with femtolitre volumes, handled in microfluidic devices.
Max ERC Funding
563 848 €
Duration
Start date: 2008-09-01, End date: 2013-08-31
Project acronym CHEMHEAT
Project Chemical Control of Heating and Cooling in Molecular Junctions: Optimizing Function and Stability
Researcher (PI) Gemma Solomon
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), PE4, ERC-2010-StG_20091028
Summary Nanoscale systems binding single molecules, or small numbers of molecules, in conducting junctions show considerable promise for a range of technological applications, from photovoltaics to rectifiers to sensors. These environments differ significantly from the traditional domain of chemical studies involving molecules in solution and the gas phase, necessitating renewed efforts to understand the physical properties of these systems. The objective of this proposal concerns one particular class of physical processes: understanding and controlling local heating in molecular junctions in terms of excitation, dissipation and transfer.
Local heating and dissipation in molecular junctions has long been a concern due to the possibly detrimental impact on device stability and function. More recently there has been increased interest, as these processes underlie both spectroscopic techniques and potential technological applications. Together these issues make an investigation of ways to chemically control local heating in molecular junctions timely and important.
The proposal objective will be addressed through the investigation of three challenges:
- Developing chemical control of local heating in molecular junctions.
- Developing chemical control of heat dissipation in molecular junctions.
- Design of optimal thermoelectric materials.
These three challenges constitute distinct, yet complementary, avenues for investigation with progress in each area supporting the other two. All three challenges build on existing theoretical methods, with the important shift of focus to methods to achieve chemical control. The combination of state-of-the-art computational methods with careful chemical studies promises significant new developments for the area.
Summary
Nanoscale systems binding single molecules, or small numbers of molecules, in conducting junctions show considerable promise for a range of technological applications, from photovoltaics to rectifiers to sensors. These environments differ significantly from the traditional domain of chemical studies involving molecules in solution and the gas phase, necessitating renewed efforts to understand the physical properties of these systems. The objective of this proposal concerns one particular class of physical processes: understanding and controlling local heating in molecular junctions in terms of excitation, dissipation and transfer.
Local heating and dissipation in molecular junctions has long been a concern due to the possibly detrimental impact on device stability and function. More recently there has been increased interest, as these processes underlie both spectroscopic techniques and potential technological applications. Together these issues make an investigation of ways to chemically control local heating in molecular junctions timely and important.
The proposal objective will be addressed through the investigation of three challenges:
- Developing chemical control of local heating in molecular junctions.
- Developing chemical control of heat dissipation in molecular junctions.
- Design of optimal thermoelectric materials.
These three challenges constitute distinct, yet complementary, avenues for investigation with progress in each area supporting the other two. All three challenges build on existing theoretical methods, with the important shift of focus to methods to achieve chemical control. The combination of state-of-the-art computational methods with careful chemical studies promises significant new developments for the area.
Max ERC Funding
1 499 999 €
Duration
Start date: 2010-12-01, End date: 2015-11-30
Project acronym CHEMO-RISK
Project Chemometers for in situ risk assessment of mixtures of pollutants
Researcher (PI) Annika Jahnke Berger
Host Institution (HI) HELMHOLTZ-ZENTRUM FUR UMWELTFORSCHUNG GMBH - UFZ
Call Details Starting Grant (StG), PE4, ERC-2016-STG
Summary CHEMO-RISK aims for a novel scientifically sound chemical risk assessment paradigm that integrates exposure and effect assessment of a broad range of chemicals into a single procedure and provides information relevant to ecosystem and human health. The key innovation is polymer “chemometers” that will be equilibrated with their surroundings and deliver information on the pollutant’s chemical activity in the environment, biota, and humans. A chemometer functions analogously to a thermometer, but instead of the temperature, it yields a measure of chemical activity. Chemical activity in turn indicates the thermodynamic potential for, e.g., partitioning, biouptake and toxicity. CHEMO-RISK aims at breaking the current paradigm in environmental risk assessment of single chemicals that disregards bioavailability, ignores mixture effects, lacks site-specificity and is difficult to extrapolate to human health.
The chemometer extracts will be investigated using top-notch (a) GC and LC/Orbitrap chemical analysis to characterise the pollutant mixtures and (b) cell-based reporter gene bioassays to determine mixture effects covering baseline toxicity, specific (e.g., endocrine disruption) and reactive (e.g., genotoxicity) modes of toxic action and adaptive stress responses. Within CHEMO-RISK, the following important research questions will be tackled: (A) Which processes drive the enrichment of pollutants in aquatic biota on a thermodynamic basis? (B) How do pollutants distribute within an organism, and which effects do they elicit at the key target sites? (C) Can we apply everyday-life items such as eyeglass-nose pads to replace invasive sampling in human health risk assessment? (D) To which degree can non-target analysis of chemometer extracts explain the observed toxicity profiles across media? By combining all these research efforts, CHEMO-RISK will provide a unified risk assessment paradigm with risk-based trigger values distinguishing acceptable from unacceptable effects.
Summary
CHEMO-RISK aims for a novel scientifically sound chemical risk assessment paradigm that integrates exposure and effect assessment of a broad range of chemicals into a single procedure and provides information relevant to ecosystem and human health. The key innovation is polymer “chemometers” that will be equilibrated with their surroundings and deliver information on the pollutant’s chemical activity in the environment, biota, and humans. A chemometer functions analogously to a thermometer, but instead of the temperature, it yields a measure of chemical activity. Chemical activity in turn indicates the thermodynamic potential for, e.g., partitioning, biouptake and toxicity. CHEMO-RISK aims at breaking the current paradigm in environmental risk assessment of single chemicals that disregards bioavailability, ignores mixture effects, lacks site-specificity and is difficult to extrapolate to human health.
The chemometer extracts will be investigated using top-notch (a) GC and LC/Orbitrap chemical analysis to characterise the pollutant mixtures and (b) cell-based reporter gene bioassays to determine mixture effects covering baseline toxicity, specific (e.g., endocrine disruption) and reactive (e.g., genotoxicity) modes of toxic action and adaptive stress responses. Within CHEMO-RISK, the following important research questions will be tackled: (A) Which processes drive the enrichment of pollutants in aquatic biota on a thermodynamic basis? (B) How do pollutants distribute within an organism, and which effects do they elicit at the key target sites? (C) Can we apply everyday-life items such as eyeglass-nose pads to replace invasive sampling in human health risk assessment? (D) To which degree can non-target analysis of chemometer extracts explain the observed toxicity profiles across media? By combining all these research efforts, CHEMO-RISK will provide a unified risk assessment paradigm with risk-based trigger values distinguishing acceptable from unacceptable effects.
Max ERC Funding
1 496 030 €
Duration
Start date: 2017-05-01, End date: 2022-04-30
Project acronym CHINA
Project Trade, Productivity, and Firm Capabilities in China's Manufacturing Sector
Researcher (PI) Johannes Van Biesebroeck
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Starting Grant (StG), SH1, ERC-2009-StG
Summary China s economy has expanded at breakneck speed to become the 3rd largest trading country in the world and the largest recipient of foreign direct investment (FDI). Entry into the WTO in 2001 was a landmark event in this ongoing process and I propose to study several channels through which it spurred China s industrial development. Crucially, I will take an integrated view of the different ways in which Chinese and Western firms interact: through trade flows, as suppliers or competitors, FDI, or knowledge transfers. First, I investigate the existence and magnitude of a causal link from the trade reforms to productivity growth. Second, I look for evidence of capability upgrading, such as increased production efficiency, an ability to produce higher quality products, or introduce new products by innovating. Third, I study the mechanisms for the impact of trade and FDI on local firms, in particular assessing the relative importance of increased market competition and the transfer of know-how from foreign firms. For this analysis, I draw heavily on a unique data set. Information on the universe of Chinese manufacturing firms is being linked to the universe of Chinese trade transactions. These are unique research tools on their own, but as a linked data set, the only comparable one in the world is for the U.S. economy. The Chinese data has the advantage to contain detailed information on FDI, distinguishes between ordinary and processing trade, and contains information on innovation, such as R&D and sales of new goods. Answering the above questions is important for other developing countries wanting to learn from China s experience and for Western firms assessing how quickly Chinese firms will become viable suppliers of sophisticated inputs or direct competitors. By estimating models that are explicitly derived from new theories, I advance the literature at the interaction of international and development economics, industrial organization, economic geography.
Summary
China s economy has expanded at breakneck speed to become the 3rd largest trading country in the world and the largest recipient of foreign direct investment (FDI). Entry into the WTO in 2001 was a landmark event in this ongoing process and I propose to study several channels through which it spurred China s industrial development. Crucially, I will take an integrated view of the different ways in which Chinese and Western firms interact: through trade flows, as suppliers or competitors, FDI, or knowledge transfers. First, I investigate the existence and magnitude of a causal link from the trade reforms to productivity growth. Second, I look for evidence of capability upgrading, such as increased production efficiency, an ability to produce higher quality products, or introduce new products by innovating. Third, I study the mechanisms for the impact of trade and FDI on local firms, in particular assessing the relative importance of increased market competition and the transfer of know-how from foreign firms. For this analysis, I draw heavily on a unique data set. Information on the universe of Chinese manufacturing firms is being linked to the universe of Chinese trade transactions. These are unique research tools on their own, but as a linked data set, the only comparable one in the world is for the U.S. economy. The Chinese data has the advantage to contain detailed information on FDI, distinguishes between ordinary and processing trade, and contains information on innovation, such as R&D and sales of new goods. Answering the above questions is important for other developing countries wanting to learn from China s experience and for Western firms assessing how quickly Chinese firms will become viable suppliers of sophisticated inputs or direct competitors. By estimating models that are explicitly derived from new theories, I advance the literature at the interaction of international and development economics, industrial organization, economic geography.
Max ERC Funding
944 940 €
Duration
Start date: 2010-02-01, End date: 2016-01-31
Project acronym CHIRALMICROBOTS
Project Chiral Nanostructured Surfaces and Colloidal Microbots
Researcher (PI) Peer Fischer
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), PE4, ERC-2011-StG_20101014
Summary "From scientific publications to the popular media, there have been numerous speculations about wirelessly controlled microrobots (microbots) navigating the human body. Microbots have the potential to revolutionize analytics, targeted drug delivery, and microsurgery, but until now there has not been any untethered microscopic system that could be properly moved let alone controlled in fluidic environments. Using glancing angle (physical vapor deposition) we will grow billions of micron-sized colloidal screw-propellers on a wafer. These chiral mesoscopic screws can be magnetized and moved through solution under computer control. The screw-propellers resemble artificial flagella and are the only ‘microbots’ to date that can be fully controlled in solution at micron length scales. The proposed work will advance the fabrication so that active microbots can be applied in rheological measurements and analytics. We will use these novel probes in bio-microrheology with the potential to probe the viscoelastic properties of membranes and tissues, and to explore questions of micro-hydrodynamics. At the same time we will develop these structures as ""colloidal molecules"" and grow asymmetric mesoscopic particles with tailored shapes and properties. We propose experiments that allow the observation of fundamental effects, such as chiral Brownian motion, something that exist at the molecular scale, but has never been observed to date. Similarly, we will be able to demonstrate for the first time chiral separations based purely on physical fields. The proposed technical advances of the growth of nanostructured surfaces will at the same time permit wafer-scale 3-D nano-structuring for photonic and plasmonic applications, which we plan to demonstrate. We will develop a system for targeted drug delivery, study the interaction of swarms of microbots and devise techniques to control and image these swarms."
Summary
"From scientific publications to the popular media, there have been numerous speculations about wirelessly controlled microrobots (microbots) navigating the human body. Microbots have the potential to revolutionize analytics, targeted drug delivery, and microsurgery, but until now there has not been any untethered microscopic system that could be properly moved let alone controlled in fluidic environments. Using glancing angle (physical vapor deposition) we will grow billions of micron-sized colloidal screw-propellers on a wafer. These chiral mesoscopic screws can be magnetized and moved through solution under computer control. The screw-propellers resemble artificial flagella and are the only ‘microbots’ to date that can be fully controlled in solution at micron length scales. The proposed work will advance the fabrication so that active microbots can be applied in rheological measurements and analytics. We will use these novel probes in bio-microrheology with the potential to probe the viscoelastic properties of membranes and tissues, and to explore questions of micro-hydrodynamics. At the same time we will develop these structures as ""colloidal molecules"" and grow asymmetric mesoscopic particles with tailored shapes and properties. We propose experiments that allow the observation of fundamental effects, such as chiral Brownian motion, something that exist at the molecular scale, but has never been observed to date. Similarly, we will be able to demonstrate for the first time chiral separations based purely on physical fields. The proposed technical advances of the growth of nanostructured surfaces will at the same time permit wafer-scale 3-D nano-structuring for photonic and plasmonic applications, which we plan to demonstrate. We will develop a system for targeted drug delivery, study the interaction of swarms of microbots and devise techniques to control and image these swarms."
Max ERC Funding
1 479 760 €
Duration
Start date: 2012-02-01, End date: 2018-01-31
Project acronym CIDAM
Project Conflict, Identity and Markets
Researcher (PI) Eliana La Ferrara
Host Institution (HI) UNIVERSITA COMMERCIALE LUIGI BOCCONI
Call Details Starting Grant (StG), SH1, ERC-2007-StG
Summary The developing world has been plagued by many civil conflicts in the past thirty years. Understanding the roots and the consequences of these conflicts is crucial to fight poverty. This project will take an economic approach to investigate the interplay between cultural, political and economic determinants of conflict in poor countries. I will assess the role of domestic and international factors. Domestic factors include variables such as cultural identity, income inequality, resource endowments and geography. I will re-examine the role of ethnic diversity using original multi-dimensional indicators. These take into account that the salience of ethnic identity may depend on how much it overlaps with categories based on income, education, etc. I will also re-assess the role of natural resource abundance from a theoretical and empirical standpoint. I will develop a theory of how rebel groups are organized drawing on the theory of incentives and test it using detailed geographic information on the location of mineral deposits in Africa. I will also analyze the role of international players using a methodology based on financial markets’ reactions to news. This methodology will allow me to address questions such as: Which companies gain or lose from violent conflict? How can we detect violations of international embargoes? What are the private incentives of complying with international norms, i.e. can reputation costs be quantified? These are questions of paramount importance from a policy perspective and on which almost no academic research exists in economics. Overall, the project should help integrate economic, social and political explanations for the occurrence of conflict in developing countries. I expect that its outcome should comprise the creation of new datasets, propose new methodological tools and offer some insights for designing economic policies to prevent conflict and fight poverty.
Summary
The developing world has been plagued by many civil conflicts in the past thirty years. Understanding the roots and the consequences of these conflicts is crucial to fight poverty. This project will take an economic approach to investigate the interplay between cultural, political and economic determinants of conflict in poor countries. I will assess the role of domestic and international factors. Domestic factors include variables such as cultural identity, income inequality, resource endowments and geography. I will re-examine the role of ethnic diversity using original multi-dimensional indicators. These take into account that the salience of ethnic identity may depend on how much it overlaps with categories based on income, education, etc. I will also re-assess the role of natural resource abundance from a theoretical and empirical standpoint. I will develop a theory of how rebel groups are organized drawing on the theory of incentives and test it using detailed geographic information on the location of mineral deposits in Africa. I will also analyze the role of international players using a methodology based on financial markets’ reactions to news. This methodology will allow me to address questions such as: Which companies gain or lose from violent conflict? How can we detect violations of international embargoes? What are the private incentives of complying with international norms, i.e. can reputation costs be quantified? These are questions of paramount importance from a policy perspective and on which almost no academic research exists in economics. Overall, the project should help integrate economic, social and political explanations for the occurrence of conflict in developing countries. I expect that its outcome should comprise the creation of new datasets, propose new methodological tools and offer some insights for designing economic policies to prevent conflict and fight poverty.
Max ERC Funding
429 480 €
Duration
Start date: 2008-06-01, End date: 2013-05-31