Project acronym AgeingStemCellFate
Project The Role of Ectopic Adipocyte Progenitors in Age-related Stem Cell Dysfunction, Systemic Inflammation, and Metabolic Disease
Researcher (PI) Tim Julius Schulz
Host Institution (HI) DEUTSCHES INSTITUT FUER ERNAEHRUNGSFORSCHUNG POTSDAM REHBRUECKE
Call Details Starting Grant (StG), LS4, ERC-2012-StG_20111109
Summary Ageing is accompanied by ectopic white adipose tissue depositions in skeletal muscle and other anatomical locations, such as brown adipose tissue and the bone marrow. Ectopic fat accrual contributes to organ dysfunction, systemic insulin resistance, and other perturbations that have been implicated in metabolic diseases.
This research proposal aims to identify the regulatory cues that control the development of ectopic progenitor cells that give rise to this type of fat. It is hypothesized that an age-related dysfunction of the stem cell niche leads to an imbalance between (1) tissue-specific stem cells and (2) fibroblast-like, primarily adipogenic progenitors that reside within many tissues. Novel methodologies that assess stem/progenitor cell characteristics on the single cell level will be combined with animal models of lineage tracing to determine the developmental origin of these adipogenic progenitors and processes that regulate their function.
Notch signalling is a key signalling pathway that relies on direct physical interaction to control stem cell fate. It is proposed that impaired Notch activity contributes to the phenotypical shift of precursor cell distribution in aged tissues.
Lastly, the role of the stem cell niche in ectopic adipocyte progenitor formation will be analyzed. External signals originating from the surrounding niche cells regulate the developmental fate of stem cells. Secreted factors and their role in the formation of ectopic adipocyte precursors during senescence will be identified using a combination of biochemical and systems biology approaches.
Accomplishment of these studies will help to understand the basic processes of stem cell ageing and identify mechanisms of age-related functional decline in tissue regeneration. By targeting the population of tissue-resident adipogenic progenitor cells, therapeutic strategies could be developed to counteract metabolic complications associated with the ageing process.
Summary
Ageing is accompanied by ectopic white adipose tissue depositions in skeletal muscle and other anatomical locations, such as brown adipose tissue and the bone marrow. Ectopic fat accrual contributes to organ dysfunction, systemic insulin resistance, and other perturbations that have been implicated in metabolic diseases.
This research proposal aims to identify the regulatory cues that control the development of ectopic progenitor cells that give rise to this type of fat. It is hypothesized that an age-related dysfunction of the stem cell niche leads to an imbalance between (1) tissue-specific stem cells and (2) fibroblast-like, primarily adipogenic progenitors that reside within many tissues. Novel methodologies that assess stem/progenitor cell characteristics on the single cell level will be combined with animal models of lineage tracing to determine the developmental origin of these adipogenic progenitors and processes that regulate their function.
Notch signalling is a key signalling pathway that relies on direct physical interaction to control stem cell fate. It is proposed that impaired Notch activity contributes to the phenotypical shift of precursor cell distribution in aged tissues.
Lastly, the role of the stem cell niche in ectopic adipocyte progenitor formation will be analyzed. External signals originating from the surrounding niche cells regulate the developmental fate of stem cells. Secreted factors and their role in the formation of ectopic adipocyte precursors during senescence will be identified using a combination of biochemical and systems biology approaches.
Accomplishment of these studies will help to understand the basic processes of stem cell ageing and identify mechanisms of age-related functional decline in tissue regeneration. By targeting the population of tissue-resident adipogenic progenitor cells, therapeutic strategies could be developed to counteract metabolic complications associated with the ageing process.
Max ERC Funding
1 496 444 €
Duration
Start date: 2013-03-01, End date: 2018-02-28
Project acronym AN07AT
Project Understanding computational roles of new neurons generated in the adult hippocampus
Researcher (PI) Ayumu Tashiro
Host Institution (HI) NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET NTNU
Call Details Starting Grant (StG), LS4, ERC-2007-StG
Summary New neurons are continuously generated in certain regions of adult mammalian brain. One of those regions is the dentate gyrus, a subregion of hippocampus, which is essential for memory formation. Although these new neurons in the adult dentate gyrus are thought to have an important role in learning and memory, it is largely unclear how new neurons are involved in information processing and storage underlying memory. Because new neurons constitute a minor portion of intermingled local neuronal population, simple application of conventional techniques such as multi-unit extracellular recording and pharmacological lesion are not suitable for the functional analysis of new neurons. In this proposed research program, I will combine multi-unit recording and behavioral analysis with virus mediated, cell-type-specific genetic manipulation of neuronal activity, to investigate computational roles of new neurons in learning and memory. Specifically, I will determine: 1) specific memory processes that require new neurons, 2) dynamic patterns of activity that new neurons express during memory-related behavior, 3) influence of new neurons on their downstream structure. Further, based on the information obtained by these three lines of studies, we will establish causal relationship between specific memory-related behavior and specific pattern of activity in new neurons. Solving these issues will cooperatively provide important insight into the understanding of computational roles performed by adult neurogenesis. The information on the function of new neurons in normal brain could contribute to future development of efficient therapeutic strategy for a variety of brain disorders.
Summary
New neurons are continuously generated in certain regions of adult mammalian brain. One of those regions is the dentate gyrus, a subregion of hippocampus, which is essential for memory formation. Although these new neurons in the adult dentate gyrus are thought to have an important role in learning and memory, it is largely unclear how new neurons are involved in information processing and storage underlying memory. Because new neurons constitute a minor portion of intermingled local neuronal population, simple application of conventional techniques such as multi-unit extracellular recording and pharmacological lesion are not suitable for the functional analysis of new neurons. In this proposed research program, I will combine multi-unit recording and behavioral analysis with virus mediated, cell-type-specific genetic manipulation of neuronal activity, to investigate computational roles of new neurons in learning and memory. Specifically, I will determine: 1) specific memory processes that require new neurons, 2) dynamic patterns of activity that new neurons express during memory-related behavior, 3) influence of new neurons on their downstream structure. Further, based on the information obtained by these three lines of studies, we will establish causal relationship between specific memory-related behavior and specific pattern of activity in new neurons. Solving these issues will cooperatively provide important insight into the understanding of computational roles performed by adult neurogenesis. The information on the function of new neurons in normal brain could contribute to future development of efficient therapeutic strategy for a variety of brain disorders.
Max ERC Funding
1 991 743 €
Duration
Start date: 2009-01-01, End date: 2013-12-31
Project acronym Angiolnc
Project Endothelial long non-coding RNAs
Researcher (PI) Stefanie Dimmeler
Host Institution (HI) JOHANN WOLFGANG GOETHE-UNIVERSITATFRANKFURT AM MAIN
Call Details Advanced Grant (AdG), LS4, ERC-2014-ADG
Summary Endothelial cells comprise the inner cellular cover of the vasculature, which delivers metabolites and oxygen to the tissue. Dysfunction of endothelial cells as it occurs during aging or metabolic syndromes can result in atherosclerosis, which can lead to myocardial infarction or stroke, whereas pathological angiogenesis contributes to tumor growth and diabetic retinopathy. Thus, endothelial cells play central roles in pathophysiological processes of many diseases including cardiovascular diseases and cancer. Many studies explored the regulation of endothelial cell functions by growth factors, but the impact of epigenetic mechanisms and particularly the role of novel non-coding RNAs is largely unknown. More than 70 % of the human genome encodes for non-coding RNAs (ncRNAs) and increasing evidence suggests that a significant portion of these ncRNAs are functionally active as RNA molecules. Angiolnc aims to explore the function of long ncRNAs (lncRNAs) and particular circular RNAs (circRNAs) in the endothelium. LncRNAs comprise a heterogenic class of RNAs with a length of > 200 nucleotides and circRNAs are generated by back splicing.
Angiolnc is based on the discovery of novel endothelial hypoxia-regulated lncRNAs and circRNAs by next generation sequencing. To begin to understand the potential functions of lncRNAs in the endothelium, we will study two lncRNAs, named Angiolnc1 und Angiolnc2, as prototypical examples of endothelial cell-enriched lncRNAs that are regulated by oxygen levels. We will further dissect the epigenetic mechanisms, by which these lncRNAs regulate endothelial cell function. In the second part of the application, we will determine the regulation and function of circRNAs, which may act as molecular sponges in the cytoplasm. Finally, we will study the function of identified lncRNAs and circRNAs in mouse models and measure their expression in human specimens in order to determine their role as therapeutic targets or diagnostic tools.
Summary
Endothelial cells comprise the inner cellular cover of the vasculature, which delivers metabolites and oxygen to the tissue. Dysfunction of endothelial cells as it occurs during aging or metabolic syndromes can result in atherosclerosis, which can lead to myocardial infarction or stroke, whereas pathological angiogenesis contributes to tumor growth and diabetic retinopathy. Thus, endothelial cells play central roles in pathophysiological processes of many diseases including cardiovascular diseases and cancer. Many studies explored the regulation of endothelial cell functions by growth factors, but the impact of epigenetic mechanisms and particularly the role of novel non-coding RNAs is largely unknown. More than 70 % of the human genome encodes for non-coding RNAs (ncRNAs) and increasing evidence suggests that a significant portion of these ncRNAs are functionally active as RNA molecules. Angiolnc aims to explore the function of long ncRNAs (lncRNAs) and particular circular RNAs (circRNAs) in the endothelium. LncRNAs comprise a heterogenic class of RNAs with a length of > 200 nucleotides and circRNAs are generated by back splicing.
Angiolnc is based on the discovery of novel endothelial hypoxia-regulated lncRNAs and circRNAs by next generation sequencing. To begin to understand the potential functions of lncRNAs in the endothelium, we will study two lncRNAs, named Angiolnc1 und Angiolnc2, as prototypical examples of endothelial cell-enriched lncRNAs that are regulated by oxygen levels. We will further dissect the epigenetic mechanisms, by which these lncRNAs regulate endothelial cell function. In the second part of the application, we will determine the regulation and function of circRNAs, which may act as molecular sponges in the cytoplasm. Finally, we will study the function of identified lncRNAs and circRNAs in mouse models and measure their expression in human specimens in order to determine their role as therapeutic targets or diagnostic tools.
Max ERC Funding
2 497 398 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym AngioMature
Project Mechanisms of vascular maturation and quiescence during development, homeostasis and aging
Researcher (PI) Hellmut AUGUSTIN
Host Institution (HI) RUPRECHT-KARLS-UNIVERSITAET HEIDELBERG
Call Details Advanced Grant (AdG), LS4, ERC-2017-ADG
Summary Angiogenesis research has focused on the sprouting of new capillaries. The mechanisms of vessel maturation are much less well understood. Yet, the maintenance of a mature, quiescent, and organotypically-differentiated layer of endothelial cells (ECs) lining the inside of all blood vessels is vital for human health. The goal of ANGIOMATURE is to identify, validate, and implement novel mechanisms of vascular maturation and organotypic EC differentiation that are active during development, maintenance of vascular stability in adults, and undergo changes in aging. We recently identified previously unrecognized gene expression signatures of vascular maturation in a genome-wide screen of ECs isolated from newborn and adult mice. Epigenetic mechanisms were identified that control the EC transcriptome through gain and loss of DNA methylation as well as EC differentiation and signaling specification. These findings pave the way for groundbreaking novel opportunities to study vascular maturation. By characterizing functionally diverse types of blood vessels, including continuous ECs in lung and brain and sinusoidal ECs in liver and bone marrow, the ANGIOMATURE project will (1) determine up to single cell resolution the transcriptional and epigenetic program(s) of vascular maturation and organotypic differentiation during adolescence, (2) analyze the functional consequences of such program(s) in differentiated ECs and their adaptation to challenge, and (3) study changes of maturation and differentiation program(s) and vascular responses during aging. We will towards this end employ an interdisciplinary matrix of approaches involving omics, systems biology, conditional gene targeting, organoid cell culture, and experimental pathology to create a high-resolution structural and functional organotypic angioarchitectural map. The project will thereby yield transformative mechanistic insights into vital biological processes that are most important for human health and healthy aging.
Summary
Angiogenesis research has focused on the sprouting of new capillaries. The mechanisms of vessel maturation are much less well understood. Yet, the maintenance of a mature, quiescent, and organotypically-differentiated layer of endothelial cells (ECs) lining the inside of all blood vessels is vital for human health. The goal of ANGIOMATURE is to identify, validate, and implement novel mechanisms of vascular maturation and organotypic EC differentiation that are active during development, maintenance of vascular stability in adults, and undergo changes in aging. We recently identified previously unrecognized gene expression signatures of vascular maturation in a genome-wide screen of ECs isolated from newborn and adult mice. Epigenetic mechanisms were identified that control the EC transcriptome through gain and loss of DNA methylation as well as EC differentiation and signaling specification. These findings pave the way for groundbreaking novel opportunities to study vascular maturation. By characterizing functionally diverse types of blood vessels, including continuous ECs in lung and brain and sinusoidal ECs in liver and bone marrow, the ANGIOMATURE project will (1) determine up to single cell resolution the transcriptional and epigenetic program(s) of vascular maturation and organotypic differentiation during adolescence, (2) analyze the functional consequences of such program(s) in differentiated ECs and their adaptation to challenge, and (3) study changes of maturation and differentiation program(s) and vascular responses during aging. We will towards this end employ an interdisciplinary matrix of approaches involving omics, systems biology, conditional gene targeting, organoid cell culture, and experimental pathology to create a high-resolution structural and functional organotypic angioarchitectural map. The project will thereby yield transformative mechanistic insights into vital biological processes that are most important for human health and healthy aging.
Max ERC Funding
2 338 918 €
Duration
Start date: 2018-08-01, End date: 2023-07-31
Project acronym ANGIOMET
Project Angiogenesis-metabolism crosstalk in vascular homeostasis and disease
Researcher (PI) Michael Potente
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), LS4, ERC-2012-StG_20111109
Summary "Blood vessels pervade all tissues in the body to supply nutrients and oxygen. Aberrant vessel growth and function are hallmarks of cancer and cardiovascular diseases and they contribute to disease pathogenesis. Antiangiogenic therapeutics have reached the clinic, but limited efficacy and resistance raise unresolved challenges. The current limitations of angiogenic medicine call for a more integrated understanding of the angiogenic process that focuses not only on the instigators of vessel branching but also on mechanisms that sustain vessel growth. Recent insights into fundamental aspects of cell growth move metabolism into spotlight and establish how proliferating cells reprogram their metabolism to provide energy and building blocks for cell replication. During angiogenesis, endothelial cells (ECs) also convert between growth states: although mostly quiescent in adult tissues, ECs divide and migrate rapidly upon angiogenic stimulation. To allow growth of new vessel branches, ECs therefore need to adjust their metabolism to increase energy production and biosynthetic activity. However, the molecular mechanisms that coordinate EC metabolism with angiogenic signalling are not known to date. In this proposal, we put forth the hypothesis that metabolic regulation is a key component of the endothelial angiogenic machinery that is required to sustain vessel growth. Thus, this proposal aims (I) to define transcriptional circuits that link EC growth with metabolism, (II) to explore the regulation of these transcriptional networks by lysine acetylation, a nutrient-regulated protein modification with key functions in metabolism, and (III) to assess the role of sirtuin deacetylases for sensing endothelial energetics during vascular growth. Understanding the principles of angiogenesis-metabolism crosstalk will not only yield novel insights into the basic mechanisms of vessel formation but will also provide unprecedented opportunities for future drug development."
Summary
"Blood vessels pervade all tissues in the body to supply nutrients and oxygen. Aberrant vessel growth and function are hallmarks of cancer and cardiovascular diseases and they contribute to disease pathogenesis. Antiangiogenic therapeutics have reached the clinic, but limited efficacy and resistance raise unresolved challenges. The current limitations of angiogenic medicine call for a more integrated understanding of the angiogenic process that focuses not only on the instigators of vessel branching but also on mechanisms that sustain vessel growth. Recent insights into fundamental aspects of cell growth move metabolism into spotlight and establish how proliferating cells reprogram their metabolism to provide energy and building blocks for cell replication. During angiogenesis, endothelial cells (ECs) also convert between growth states: although mostly quiescent in adult tissues, ECs divide and migrate rapidly upon angiogenic stimulation. To allow growth of new vessel branches, ECs therefore need to adjust their metabolism to increase energy production and biosynthetic activity. However, the molecular mechanisms that coordinate EC metabolism with angiogenic signalling are not known to date. In this proposal, we put forth the hypothesis that metabolic regulation is a key component of the endothelial angiogenic machinery that is required to sustain vessel growth. Thus, this proposal aims (I) to define transcriptional circuits that link EC growth with metabolism, (II) to explore the regulation of these transcriptional networks by lysine acetylation, a nutrient-regulated protein modification with key functions in metabolism, and (III) to assess the role of sirtuin deacetylases for sensing endothelial energetics during vascular growth. Understanding the principles of angiogenesis-metabolism crosstalk will not only yield novel insights into the basic mechanisms of vessel formation but will also provide unprecedented opportunities for future drug development."
Max ERC Funding
1 487 920 €
Duration
Start date: 2012-09-01, End date: 2017-08-31
Project acronym ANGIOMIRS
Project microRNAs in vascular homeostasis
Researcher (PI) Stefanie Dimmeler
Host Institution (HI) JOHANN WOLFGANG GOETHE-UNIVERSITATFRANKFURT AM MAIN
Call Details Advanced Grant (AdG), LS4, ERC-2008-AdG
Summary Despite improved therapy, cardiovascular diseases remain the most prevalent diseases in the European Union and the incidence is rising due to increased obesity and ageing. The fine-tuned regulation of vascular functions is essential not only for preventing atherosclerotic diseases, but also after tissue injury, where the coordinated growth and maturation of new blood vessels provides oxygen and nutrient supply. On the other hand, excessive vessel growth or the generation of immature, leaky vessels contributes to pathological angiogenesis. Thus, the regulation of the complex processes governing vessel growth and maturation has broad impacts for several diseases ranging from tumor angiogenesis, diabetic retinopathy, to ischemic cardiovascular diseases. MicroRNAs (miRs) are small noncoding RNAs, which play a crucial role in embryonic development and tissue homeostasis. However, only limited information is available regarding the role of miRs in the vasculature. MiRs regulate gene expression by binding to the target mRNA leading either to degradation or to translational repression. Because miRs control patterns of target genes, miRs represent an attractive and promising therapeutic target to interfere with complex processes such as neovascularization and repair of ischemic tissues. Therefore, the present application aims to identify miRs in the vasculature, which regulate vessel growth and vessel remodelling and may, thus, serve as therapeutic targets in ischemic diseases. Since ageing critically impairs endothelial function, neovascularization and vascular repair, we will specifically identify miRs, which are dysregulated during ageing in endothelial cells and pro-angiogenic progenitor cells, in order to develop novel strategies to rescue age-induced impairment of neovascularization. Beyond the specific scope of the present application, the principle findings may have impact for other diseases, where deregulated vessel growth causes or accelerates disease states.
Summary
Despite improved therapy, cardiovascular diseases remain the most prevalent diseases in the European Union and the incidence is rising due to increased obesity and ageing. The fine-tuned regulation of vascular functions is essential not only for preventing atherosclerotic diseases, but also after tissue injury, where the coordinated growth and maturation of new blood vessels provides oxygen and nutrient supply. On the other hand, excessive vessel growth or the generation of immature, leaky vessels contributes to pathological angiogenesis. Thus, the regulation of the complex processes governing vessel growth and maturation has broad impacts for several diseases ranging from tumor angiogenesis, diabetic retinopathy, to ischemic cardiovascular diseases. MicroRNAs (miRs) are small noncoding RNAs, which play a crucial role in embryonic development and tissue homeostasis. However, only limited information is available regarding the role of miRs in the vasculature. MiRs regulate gene expression by binding to the target mRNA leading either to degradation or to translational repression. Because miRs control patterns of target genes, miRs represent an attractive and promising therapeutic target to interfere with complex processes such as neovascularization and repair of ischemic tissues. Therefore, the present application aims to identify miRs in the vasculature, which regulate vessel growth and vessel remodelling and may, thus, serve as therapeutic targets in ischemic diseases. Since ageing critically impairs endothelial function, neovascularization and vascular repair, we will specifically identify miRs, which are dysregulated during ageing in endothelial cells and pro-angiogenic progenitor cells, in order to develop novel strategies to rescue age-induced impairment of neovascularization. Beyond the specific scope of the present application, the principle findings may have impact for other diseases, where deregulated vessel growth causes or accelerates disease states.
Max ERC Funding
2 375 394 €
Duration
Start date: 2009-03-01, End date: 2014-02-28
Project acronym ApoptoMDS
Project Hematopoietic stem cell Apoptosis in bone marrow failure and MyeloDysplastic Syndromes: Friend or foe?
Researcher (PI) Miriam Erlacher
Host Institution (HI) UNIVERSITAETSKLINIKUM FREIBURG
Call Details Starting Grant (StG), LS4, ERC-2014-STG
Summary Deregulated apoptotic signaling in hematopoietic stem and progenitor cells (HSPCs) strongly contributes to the pathogenesis and phenotypes of congenital bone marrow failure and myelodysplastic syndromes (MDS) and their progression to acute myeloid leukemia (AML). HSPCs are highly susceptible to apoptosis during bone marrow failure and early MDS, but AML evolution selects for apoptosis resistance. Little is known about the main apoptotic players and their regulators. ApoptoMDS will investigate the impact of apoptotic deregulation for pathogenesis, correlate apoptotic susceptibility with the kinetics of disease progression and characterize the mechanism by which apoptotic susceptibility turns into resistance. ApoptoMDS will draw on a large collection of patient-derived samples and genetically engineered mouse models to investigate disease progression in serially transplanted and xenotransplanted mice. How activated DNA damage checkpoint signaling contributes to syndrome phenotypes and HSPC hypersusceptibility to apoptosis will be assessed. Checkpoint activation confers a competitive disadvantage, and HSPCs undergoing malignant transformation are under high selective pressure to inactivate it. Checkpoint abrogation mitigates the hematological phenotype, but increases the risk of AML evolution. ApoptoMDS aims to analyze if inhibiting apoptosis in HSPCs from bone marrow failure and early-stage MDS can overcome the dilemma of checkpoint abrogation. Whether inhibiting apoptosis is sufficient to improve HSPC function will be tested on several levels and validated in patient-derived samples. How inhibiting apoptosis in the presence of functional checkpoint signaling influences malignant transformation kinetics will be assessed. If, as hypothesized, inhibiting apoptosis both mitigates hematological symptoms and delays AML evolution, ApoptoMDS will pave the way for novel therapeutic approaches to expand the less severe symptomatic period for patients with these syndromes.
Summary
Deregulated apoptotic signaling in hematopoietic stem and progenitor cells (HSPCs) strongly contributes to the pathogenesis and phenotypes of congenital bone marrow failure and myelodysplastic syndromes (MDS) and their progression to acute myeloid leukemia (AML). HSPCs are highly susceptible to apoptosis during bone marrow failure and early MDS, but AML evolution selects for apoptosis resistance. Little is known about the main apoptotic players and their regulators. ApoptoMDS will investigate the impact of apoptotic deregulation for pathogenesis, correlate apoptotic susceptibility with the kinetics of disease progression and characterize the mechanism by which apoptotic susceptibility turns into resistance. ApoptoMDS will draw on a large collection of patient-derived samples and genetically engineered mouse models to investigate disease progression in serially transplanted and xenotransplanted mice. How activated DNA damage checkpoint signaling contributes to syndrome phenotypes and HSPC hypersusceptibility to apoptosis will be assessed. Checkpoint activation confers a competitive disadvantage, and HSPCs undergoing malignant transformation are under high selective pressure to inactivate it. Checkpoint abrogation mitigates the hematological phenotype, but increases the risk of AML evolution. ApoptoMDS aims to analyze if inhibiting apoptosis in HSPCs from bone marrow failure and early-stage MDS can overcome the dilemma of checkpoint abrogation. Whether inhibiting apoptosis is sufficient to improve HSPC function will be tested on several levels and validated in patient-derived samples. How inhibiting apoptosis in the presence of functional checkpoint signaling influences malignant transformation kinetics will be assessed. If, as hypothesized, inhibiting apoptosis both mitigates hematological symptoms and delays AML evolution, ApoptoMDS will pave the way for novel therapeutic approaches to expand the less severe symptomatic period for patients with these syndromes.
Max ERC Funding
1 372 525 €
Duration
Start date: 2015-06-01, End date: 2020-05-31
Project acronym ATHEROPROTECT
Project Structure-Function Analysis of the Chemokine Interactome for Therapeutic Targeting and Imaging in Atherosclerosis
Researcher (PI) Christian Weber
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Call Details Advanced Grant (AdG), LS4, ERC-2009-AdG
Summary Atherosclerosis is characterized by chronic inflammation of the arterial wall. Mononuclear cell recruitment is driven by chemokines that can be deposited e.g. by activated platelets on inflamed endothelium. Chemokines require oligomerization and immobilization for efficient function, and recent evidence supports the notion that heterodimer formation between chemokines constitutes a new regulatory principle amplifying specific chemokine activities while suppressing others. Although crucial to inflammatory disease, this has been difficult to prove in vivo, primarily as chemokine heterodimers exist in equilibrium with their homodimer counterparts. We introduce the paradigm that heteromerization of chemokines provides the combinatorial diversity for functional plasticity and fine-tuning, coining this interactome. Given the relevance of chemokine heteromers in vivo, we aim to exploit this in an anti-inflammatory approach to selectively target vascular disease. In a multidisciplinary project, we plan to generate covalently-linked heterodimers to establish their biological significance. Obligate heterodimers of CC and CXC chemokines will be designed using computer-assisted modeling, chemically synthesized and cross-linked, structurally assessed using NMR spectroscopy and crystallography, and subjected to functional characterization in vitro and reconstitution in vivo. Conversely, we will develop cyclic beta-sheet-based peptides binding chemokines to specifically disrupt heteromers and we will generate mice with conditional deletion or knock-in of chemokine mutants with defects in heteromerization or proteoglycan binding to be analyzed in models of atherosclerosis. Peptides will be used for molecular imaging and chemokine heteromers will be quantified in cardiovascular patients.
Summary
Atherosclerosis is characterized by chronic inflammation of the arterial wall. Mononuclear cell recruitment is driven by chemokines that can be deposited e.g. by activated platelets on inflamed endothelium. Chemokines require oligomerization and immobilization for efficient function, and recent evidence supports the notion that heterodimer formation between chemokines constitutes a new regulatory principle amplifying specific chemokine activities while suppressing others. Although crucial to inflammatory disease, this has been difficult to prove in vivo, primarily as chemokine heterodimers exist in equilibrium with their homodimer counterparts. We introduce the paradigm that heteromerization of chemokines provides the combinatorial diversity for functional plasticity and fine-tuning, coining this interactome. Given the relevance of chemokine heteromers in vivo, we aim to exploit this in an anti-inflammatory approach to selectively target vascular disease. In a multidisciplinary project, we plan to generate covalently-linked heterodimers to establish their biological significance. Obligate heterodimers of CC and CXC chemokines will be designed using computer-assisted modeling, chemically synthesized and cross-linked, structurally assessed using NMR spectroscopy and crystallography, and subjected to functional characterization in vitro and reconstitution in vivo. Conversely, we will develop cyclic beta-sheet-based peptides binding chemokines to specifically disrupt heteromers and we will generate mice with conditional deletion or knock-in of chemokine mutants with defects in heteromerization or proteoglycan binding to be analyzed in models of atherosclerosis. Peptides will be used for molecular imaging and chemokine heteromers will be quantified in cardiovascular patients.
Max ERC Funding
2 500 000 €
Duration
Start date: 2010-04-01, End date: 2016-03-31
Project acronym AUROMYC
Project N-Myc and Aurora A: From Protein Stability to Chromosome TopologyN-Myc and Aurora A: From Protein Stability to Chromosome TopologyMyc and Aurora A: From Protein Stability to Chromosome Topology
Researcher (PI) Martin Eilers
Host Institution (HI) JULIUS-MAXIMILIANS-UNIVERSITAT WURZBURG
Call Details Advanced Grant (AdG), LS4, ERC-2014-ADG
Summary There is an intense interest in the function of human Myc proteins that stems from their pervasive role in the genesis of human tumors. A large body of evidence has established that expression levels of one of three closely related Myc proteins are enhanced in the majority of all human tumors and that multiple tumor entities depend on elevated Myc function, arguing that targeting Myc will have significant therapeutic efficacy. This hope awaits clinical confirmation, since the strategies that are currently under investigation to target Myc function or expression have yet to enter the clinic. Myc proteins are global regulators of transcription, but their mechanism of action is poorly understood.
Myc proteins are highly unstable in normal cells and rapidly turned over by the ubiquitin/proteasome system. In contrast, they are stabilized in tumor cells. Work by us and by others has shown that stabilization of Myc is required for tumorigenesis and has identified strategies to destabilize Myc for tumor therapy. This work has also led to the surprising observation that the N-Myc protein, which drives neuroendocrine tumorigenesis, is stabilized by association with the Aurora-A kinase and that clinically available Aurora-A inhibitors can dissociate the complex and destabilize N-Myc. Aurora-A has not previously been implicated in transcription, prompting us to use protein crystallography, proteomics and shRNA screening to understand its interaction with N-Myc. We have now identified a novel protein complex of N-Myc and Aurora-A that provides an unexpected and potentially groundbreaking insight into Myc function. We have also solved the crystal structure of the N-Myc/Aurora-A complex. Collectively, both findings open new strategies to target Myc function for tumor therapy.
Summary
There is an intense interest in the function of human Myc proteins that stems from their pervasive role in the genesis of human tumors. A large body of evidence has established that expression levels of one of three closely related Myc proteins are enhanced in the majority of all human tumors and that multiple tumor entities depend on elevated Myc function, arguing that targeting Myc will have significant therapeutic efficacy. This hope awaits clinical confirmation, since the strategies that are currently under investigation to target Myc function or expression have yet to enter the clinic. Myc proteins are global regulators of transcription, but their mechanism of action is poorly understood.
Myc proteins are highly unstable in normal cells and rapidly turned over by the ubiquitin/proteasome system. In contrast, they are stabilized in tumor cells. Work by us and by others has shown that stabilization of Myc is required for tumorigenesis and has identified strategies to destabilize Myc for tumor therapy. This work has also led to the surprising observation that the N-Myc protein, which drives neuroendocrine tumorigenesis, is stabilized by association with the Aurora-A kinase and that clinically available Aurora-A inhibitors can dissociate the complex and destabilize N-Myc. Aurora-A has not previously been implicated in transcription, prompting us to use protein crystallography, proteomics and shRNA screening to understand its interaction with N-Myc. We have now identified a novel protein complex of N-Myc and Aurora-A that provides an unexpected and potentially groundbreaking insight into Myc function. We have also solved the crystal structure of the N-Myc/Aurora-A complex. Collectively, both findings open new strategies to target Myc function for tumor therapy.
Max ERC Funding
2 455 180 €
Duration
Start date: 2015-08-01, End date: 2020-07-31
Project acronym BCM-UPS
Project Dissecting the role of the ubiquitin proteasome system in the pathogenesis and therapy of B-cell malignancies
Researcher (PI) Florian Christoph Bassermann
Host Institution (HI) KLINIKUM RECHTS DER ISAR DER TECHNISCHEN UNIVERSITAT MUNCHEN
Call Details Consolidator Grant (CoG), LS4, ERC-2015-CoG
Summary B-cell malignancies are characterized by high levels of genomic instability, which critically contribute to their pathogenesis and evolution. Recently, the fundamental role of the ubiquitin proteasome system (UPS) in maintaining genome integrity has been appreciated. Two major new therapeutic modalities in B-cell malignancies, proteasome inhibitors and imunomodulatory drugs (IMiDs), target the UPS and demonstrate particular efficacy in multiple myeloma (MM) and mantle cell lymphoma (MCL), two incurable entities with poor prognosis. This suggests the presence of aberrant ubiquitylation events, whose identities have however remained mostly elusive.
Our recent studies identify fundamental roles of orphan ubiquitin ligases of the Cullin Ring ligase family (CRLs) and their counterparts, the deubiquitylating enzymes (DUBs) in the cellular DNA damage response machinery, and characterize these candidates as novel oncogenes or tumour suppressors in MM and MCL. These findings provide the foundation for our hypothesis that deregulated ubiquitylation events involving CRLs and DUBs have a far reaching impact on the pathogenesis of B-cell malignancies and can serve as new therapeutic targets and biomarkers.
We therefore propose a multistep strategy in which we will (1) characterize previously orphan CRLs and DUBs, which we have distinguished as candidate oncogenes and tumour suppressors in MM (FBXO3, USP24), MCL (FBXO25), or MM and MCL (CRBN), respectively; (2) decipher the global role of CRLs and DUBs in MM and MCL using defined genetic screens; (3) identify relevant substrates of CRLs/DUBs discovered in (2) using mass spectrometry; and (4) validate CRL/DUB candidates in preclinical mouse models and defined patient cohorts as to their disease relevance.
We expect that our interdisciplinary approach will unravel the overall role of the UPS in the pathophysiology, evolution and treatment of B-cell malignancies.
Summary
B-cell malignancies are characterized by high levels of genomic instability, which critically contribute to their pathogenesis and evolution. Recently, the fundamental role of the ubiquitin proteasome system (UPS) in maintaining genome integrity has been appreciated. Two major new therapeutic modalities in B-cell malignancies, proteasome inhibitors and imunomodulatory drugs (IMiDs), target the UPS and demonstrate particular efficacy in multiple myeloma (MM) and mantle cell lymphoma (MCL), two incurable entities with poor prognosis. This suggests the presence of aberrant ubiquitylation events, whose identities have however remained mostly elusive.
Our recent studies identify fundamental roles of orphan ubiquitin ligases of the Cullin Ring ligase family (CRLs) and their counterparts, the deubiquitylating enzymes (DUBs) in the cellular DNA damage response machinery, and characterize these candidates as novel oncogenes or tumour suppressors in MM and MCL. These findings provide the foundation for our hypothesis that deregulated ubiquitylation events involving CRLs and DUBs have a far reaching impact on the pathogenesis of B-cell malignancies and can serve as new therapeutic targets and biomarkers.
We therefore propose a multistep strategy in which we will (1) characterize previously orphan CRLs and DUBs, which we have distinguished as candidate oncogenes and tumour suppressors in MM (FBXO3, USP24), MCL (FBXO25), or MM and MCL (CRBN), respectively; (2) decipher the global role of CRLs and DUBs in MM and MCL using defined genetic screens; (3) identify relevant substrates of CRLs/DUBs discovered in (2) using mass spectrometry; and (4) validate CRL/DUB candidates in preclinical mouse models and defined patient cohorts as to their disease relevance.
We expect that our interdisciplinary approach will unravel the overall role of the UPS in the pathophysiology, evolution and treatment of B-cell malignancies.
Max ERC Funding
1 973 255 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym BEYOND
Project METABOLIC BASIS OF NEURODEGENERATIVE DISEASE
Researcher (PI) Thomas Franz Erich Willnow
Host Institution (HI) MAX DELBRUECK CENTRUM FUER MOLEKULARE MEDIZIN IN DER HELMHOLTZ-GEMEINSCHAFT (MDC)
Call Details Advanced Grant (AdG), LS4, ERC-2013-ADG
Summary Alzheimer disease (AD) is the most common form of age-related dementia affecting millions of patients worldwide. Disturbingly, disorders of lipid and glucose metabolism emerge as major risk factors for onset and progression of neurodegeneration in the human population. Thus, an increasing life expectance combined with an observable rise in metabolic disturbances is expected to turn AD into one of the most serious health problems for future generations. Still, the molecular mechanisms whereby dysregulation of glucose and lipid homeostasis elicits noxious insults to the brain remain poorly understood. We characterized a novel class of intracellular sorting receptors, termed VPS10P domain receptors with dual roles in regulation of neuronal viability and function, but also in modulation of glucose and lipid homeostasis. Our proposal aims at elucidating an important yet poorly understood link between metabolism and neurodegeneration that converges on these receptors. Our approach is unique and novel in several ways. Thematically, our studies focus on a novel class of receptors previously not considered. Based on the receptors’ ability to act as sorting proteins, we propose faulty protein trafficking as a major unifying concept underlying neurodegenerative and metabolic disorders. Conceptually, our approach relies on the interdisciplinary effort of neuroscientists and metabolism researchers working jointly on pathophysiological pathways converging on these receptors. Through this effort, we are confident to gain important insights into the crosstalk between brain and peripheral tissues, and to elucidate pathways common to metabolic disturbances and dementia, two prevailing degenerative disorders inflicting our societies.
Summary
Alzheimer disease (AD) is the most common form of age-related dementia affecting millions of patients worldwide. Disturbingly, disorders of lipid and glucose metabolism emerge as major risk factors for onset and progression of neurodegeneration in the human population. Thus, an increasing life expectance combined with an observable rise in metabolic disturbances is expected to turn AD into one of the most serious health problems for future generations. Still, the molecular mechanisms whereby dysregulation of glucose and lipid homeostasis elicits noxious insults to the brain remain poorly understood. We characterized a novel class of intracellular sorting receptors, termed VPS10P domain receptors with dual roles in regulation of neuronal viability and function, but also in modulation of glucose and lipid homeostasis. Our proposal aims at elucidating an important yet poorly understood link between metabolism and neurodegeneration that converges on these receptors. Our approach is unique and novel in several ways. Thematically, our studies focus on a novel class of receptors previously not considered. Based on the receptors’ ability to act as sorting proteins, we propose faulty protein trafficking as a major unifying concept underlying neurodegenerative and metabolic disorders. Conceptually, our approach relies on the interdisciplinary effort of neuroscientists and metabolism researchers working jointly on pathophysiological pathways converging on these receptors. Through this effort, we are confident to gain important insights into the crosstalk between brain and peripheral tissues, and to elucidate pathways common to metabolic disturbances and dementia, two prevailing degenerative disorders inflicting our societies.
Max ERC Funding
2 415 229 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym BIOCARD
Project Deep BIOmodeling of human CARDiogenesis
Researcher (PI) Alessandra MORETTI
Host Institution (HI) KLINIKUM RECHTS DER ISAR DER TECHNISCHEN UNIVERSITAT MUNCHEN
Call Details Advanced Grant (AdG), LS4, ERC-2017-ADG
Summary The heart is one of the first and most complex organs formed during human embryogenesis. While its anatomy and physiology have been extensively studied over centuries, the normal development of human heart and dysregulation in disease still remain poorly understood at the molecular/cellular level. Stem cell technologies hold promise for modelling development, analysing disease mechanisms, and developing potential therapies. By combining multidisciplinary approaches centred on human induced pluripotent stem cells (hiPSCs), BIOCARD aims at decoding the cellular and molecular principles of human cardiogenesis and developing advanced inter-chimeric human-pig models of cardiac development and disease. State-of-the-art genetic modification techniques and functional genomics will be used to establish a molecular atlas of cell type intermediates of human cardiogenesis in vitro and unravel how their proliferation, differentiation and lineage choice are regulated in health and disease. This in vitro approach will be complemented by detailed analyses of how distinct hiPSC-derived cardiac progenitor populations commit and contribute to specific cardiac compartments in interspecies chimeric hearts in vivo. Finally, we will capitalize on the novel concept that combinations of different well-defined hiPSC-derived cardiac progenitor pools with timely-matched, native extracellular matrix from embryonic hearts will accomplish for the first time the realization of human heart organoids as 3D culture systems of developing heart structures. Clearly, BIOCARD will open game-changing opportunities for devising novel biomedical applications, such as human heart chamber-specific disease modelling, large-scale drug testing in appropriate human 3D cardiac bio-mimics, and regenerative cell therapies based on functional ventricular-muscle patches and direct cell conversion in vivo.
Summary
The heart is one of the first and most complex organs formed during human embryogenesis. While its anatomy and physiology have been extensively studied over centuries, the normal development of human heart and dysregulation in disease still remain poorly understood at the molecular/cellular level. Stem cell technologies hold promise for modelling development, analysing disease mechanisms, and developing potential therapies. By combining multidisciplinary approaches centred on human induced pluripotent stem cells (hiPSCs), BIOCARD aims at decoding the cellular and molecular principles of human cardiogenesis and developing advanced inter-chimeric human-pig models of cardiac development and disease. State-of-the-art genetic modification techniques and functional genomics will be used to establish a molecular atlas of cell type intermediates of human cardiogenesis in vitro and unravel how their proliferation, differentiation and lineage choice are regulated in health and disease. This in vitro approach will be complemented by detailed analyses of how distinct hiPSC-derived cardiac progenitor populations commit and contribute to specific cardiac compartments in interspecies chimeric hearts in vivo. Finally, we will capitalize on the novel concept that combinations of different well-defined hiPSC-derived cardiac progenitor pools with timely-matched, native extracellular matrix from embryonic hearts will accomplish for the first time the realization of human heart organoids as 3D culture systems of developing heart structures. Clearly, BIOCARD will open game-changing opportunities for devising novel biomedical applications, such as human heart chamber-specific disease modelling, large-scale drug testing in appropriate human 3D cardiac bio-mimics, and regenerative cell therapies based on functional ventricular-muscle patches and direct cell conversion in vivo.
Max ERC Funding
2 285 625 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym BRITE
Project Elucidating the molecular mechanisms underlying brite adipocyte specification and activation
Researcher (PI) Ferdinand VON MEYENN
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Starting Grant (StG), LS4, ERC-2018-STG
Summary Brown adipocytes can dissipate energy in a process called adaptive thermogenesis. Whilst the classical brown adipose tissue (BAT) depots disappear during early life in humans, cold exposure can promote the appearance of brown-like adipocytes within the white adipose tissue (WAT), termed brite (brown-in-white). Increased BAT activity results in increased energy expenditure and has been correlated with leanness in humans. Hence, recruitment of brite adipocytes may constitute a promising therapeutic strategy to treat obesity and its associated metabolic diseases. Despite the beneficial metabolic properties of brown and brite adipocytes, little is known about the molecular mechanisms underlying their specification and activation in vivo. This proposal focuses on understanding the complex biology of thermogenic adipocyte biology by studying the epigenetic and transcriptional aspects of WAT britening and BAT recruitment in vivo to identify pathways of therapeutic relevance and to better define the brite precursor cells. Specific aims are to 1) investigate epigenetic and transcriptional states and heterogeneity in human and mouse adipose tissue; 2) develop a novel time-resolved method to correlate preceding chromatin states and cell fate decisions during adipose tissue remodelling; 3) identify and validate key (drugable) epigenetic and transcriptional regulators involved in brite adipocyte specification. Experimentally, I will use adipose tissue samples from human donors and mouse models, to asses at the single-cell level cellular heterogeneity, transcriptional and epigenetic states, to identify subpopulations, and to define the adaptive responses to cold or β-adrenergic stimulation. Using computational methods and in vitro and in vivo validation experiments, I will define epigenetic and transcriptional networks that control WAT britening, and develop a model of the molecular events underlying adipocyte tissue plasticity.
Summary
Brown adipocytes can dissipate energy in a process called adaptive thermogenesis. Whilst the classical brown adipose tissue (BAT) depots disappear during early life in humans, cold exposure can promote the appearance of brown-like adipocytes within the white adipose tissue (WAT), termed brite (brown-in-white). Increased BAT activity results in increased energy expenditure and has been correlated with leanness in humans. Hence, recruitment of brite adipocytes may constitute a promising therapeutic strategy to treat obesity and its associated metabolic diseases. Despite the beneficial metabolic properties of brown and brite adipocytes, little is known about the molecular mechanisms underlying their specification and activation in vivo. This proposal focuses on understanding the complex biology of thermogenic adipocyte biology by studying the epigenetic and transcriptional aspects of WAT britening and BAT recruitment in vivo to identify pathways of therapeutic relevance and to better define the brite precursor cells. Specific aims are to 1) investigate epigenetic and transcriptional states and heterogeneity in human and mouse adipose tissue; 2) develop a novel time-resolved method to correlate preceding chromatin states and cell fate decisions during adipose tissue remodelling; 3) identify and validate key (drugable) epigenetic and transcriptional regulators involved in brite adipocyte specification. Experimentally, I will use adipose tissue samples from human donors and mouse models, to asses at the single-cell level cellular heterogeneity, transcriptional and epigenetic states, to identify subpopulations, and to define the adaptive responses to cold or β-adrenergic stimulation. Using computational methods and in vitro and in vivo validation experiments, I will define epigenetic and transcriptional networks that control WAT britening, and develop a model of the molecular events underlying adipocyte tissue plasticity.
Max ERC Funding
1 552 620 €
Duration
Start date: 2019-03-01, End date: 2024-02-29
Project acronym CARDIONECT
Project Cardiac Connective Tissue: Beat-by-Beat Relevance for Heart Function in Health and Disease
Researcher (PI) Peter Kohl
Host Institution (HI) UNIVERSITAETSKLINIKUM FREIBURG
Call Details Advanced Grant (AdG), LS4, ERC-2012-ADG_20120314
Summary Cardiac connective tissue is regarded as passive in terms of cardiac electro-mechanics. However, recent evidence confirms that fibroblasts interact directly with cardiac muscle cells in a way that is likely to affect their beat-by-beat activity.
To overcome limitations of traditional approaches to exploring these interactions in native tissue, we will build and explore murine models that express functional reporters (membrane potential, Vm; calcium concentration, [Ca2+]i) in fibroblasts, to identify how they are functionally integrated in native heart (myocyte => fibroblast effects). Next, we will express light-gated ion channels in murine fibroblast, to selectively interfere with their Vm (fibroblast => myocyte effects). Fibroblast-specific observation and interference will be conducted in normal and pathologically remodelled tissue, to characterise fibroblast relevance for heart function in health & disease.
Based on these studies, we will generate 2 transgenic rabbits (fibroblast Vm reporting / interfering). Rabbit cardiac structure-function is more amenable to translational work, e.g. to study fibroblast involvement in normal origin & spread of excitation across the heart, in pathological settings such as arrhythmogenicity of post-infarct scars (a leading causes of sudden death), or as a determinant of therapeutic outcomes such as in healing of atrial ablation lines (interfering with a key interventions to treat atrial fibrillation).
The final ‘blue-skies’ study will assess whether modulation of cardiac activity, from ‘tuning’ of biological pacemaker rates to ‘unpinning’ / termination of re-entrant excitation waves, can be achieved by targeting not myocytes, but fibroblasts.
The study integrates basic-science-driven discovery research into mechanisms and dynamics of biophysical myocyte-fibroblast interactions, generation of novel transgenic models useful for a broad range of studies, and elucidation of conceptually new approaches to heart rhythm management.
Summary
Cardiac connective tissue is regarded as passive in terms of cardiac electro-mechanics. However, recent evidence confirms that fibroblasts interact directly with cardiac muscle cells in a way that is likely to affect their beat-by-beat activity.
To overcome limitations of traditional approaches to exploring these interactions in native tissue, we will build and explore murine models that express functional reporters (membrane potential, Vm; calcium concentration, [Ca2+]i) in fibroblasts, to identify how they are functionally integrated in native heart (myocyte => fibroblast effects). Next, we will express light-gated ion channels in murine fibroblast, to selectively interfere with their Vm (fibroblast => myocyte effects). Fibroblast-specific observation and interference will be conducted in normal and pathologically remodelled tissue, to characterise fibroblast relevance for heart function in health & disease.
Based on these studies, we will generate 2 transgenic rabbits (fibroblast Vm reporting / interfering). Rabbit cardiac structure-function is more amenable to translational work, e.g. to study fibroblast involvement in normal origin & spread of excitation across the heart, in pathological settings such as arrhythmogenicity of post-infarct scars (a leading causes of sudden death), or as a determinant of therapeutic outcomes such as in healing of atrial ablation lines (interfering with a key interventions to treat atrial fibrillation).
The final ‘blue-skies’ study will assess whether modulation of cardiac activity, from ‘tuning’ of biological pacemaker rates to ‘unpinning’ / termination of re-entrant excitation waves, can be achieved by targeting not myocytes, but fibroblasts.
The study integrates basic-science-driven discovery research into mechanisms and dynamics of biophysical myocyte-fibroblast interactions, generation of novel transgenic models useful for a broad range of studies, and elucidation of conceptually new approaches to heart rhythm management.
Max ERC Funding
2 498 612 €
Duration
Start date: 2013-07-01, End date: 2019-06-30
Project acronym CARDIOSPLICE
Project A systems and targeted approach to alternative splicing in the developing and diseased heart: Translating basic cell biology to improved cardiac function
Researcher (PI) Michael Gotthardt
Host Institution (HI) MAX DELBRUECK CENTRUM FUER MOLEKULARE MEDIZIN IN DER HELMHOLTZ-GEMEINSCHAFT (MDC)
Call Details Starting Grant (StG), LS4, ERC-2011-StG_20101109
Summary Cardiovascular disease keeps the top spot in mortality statistics in Europe with 2 million deaths annually and although prevention and therapy have continuously been improved, the prevalence of heart failure continues to rise. While contractile (systolic) dysfunction is readily accessible to pharmacological treatment, there is a lack of therapeutic options for reduced ventricular filling (diastolic dysfunction). The diastolic properties of the heart are largely determined by the giant sarcomeric protein titin, which is alternatively spliced to adjust the elastic properties of the cardiomyocyte. We have recently identified a titin splice factor that plays a parallel role in cardiac disease and postnatal development. It targets a subset of genes that concertedly affect biomechanics, electrical activity, and signal transduction and suggests alternative splicing as a novel therapeutic target in heart disease. Here we will build on the titin splice factor to identify regulatory principles and cofactors that adjust cardiac isoform expression. In a complementary approach we will investigate titin mRNA binding proteins to provide a comprehensive analysis of factors governing titin’s differential splicing in cardiac development, health, and disease. Based on its distinctive role in ventricular filling we will evaluate titin splicing as a therapeutic target in diastolic heart failure and use a titin based reporter assay to identify small molecules to interfere with titin isoform expression. Finally, we will evaluate the effects of altered alternative splicing on diastolic dysfunction in vivo utilizing the splice deficient mutant and our available animal models for diastolic dysfunction.
The overall scientific goal of the proposed work is to investigate the regulation of cardiac alternative splicing in development and disease and to evaluate if splice directed therapy can be used to improve diastolic function and specifically the elastic properties of the heart.
Summary
Cardiovascular disease keeps the top spot in mortality statistics in Europe with 2 million deaths annually and although prevention and therapy have continuously been improved, the prevalence of heart failure continues to rise. While contractile (systolic) dysfunction is readily accessible to pharmacological treatment, there is a lack of therapeutic options for reduced ventricular filling (diastolic dysfunction). The diastolic properties of the heart are largely determined by the giant sarcomeric protein titin, which is alternatively spliced to adjust the elastic properties of the cardiomyocyte. We have recently identified a titin splice factor that plays a parallel role in cardiac disease and postnatal development. It targets a subset of genes that concertedly affect biomechanics, electrical activity, and signal transduction and suggests alternative splicing as a novel therapeutic target in heart disease. Here we will build on the titin splice factor to identify regulatory principles and cofactors that adjust cardiac isoform expression. In a complementary approach we will investigate titin mRNA binding proteins to provide a comprehensive analysis of factors governing titin’s differential splicing in cardiac development, health, and disease. Based on its distinctive role in ventricular filling we will evaluate titin splicing as a therapeutic target in diastolic heart failure and use a titin based reporter assay to identify small molecules to interfere with titin isoform expression. Finally, we will evaluate the effects of altered alternative splicing on diastolic dysfunction in vivo utilizing the splice deficient mutant and our available animal models for diastolic dysfunction.
The overall scientific goal of the proposed work is to investigate the regulation of cardiac alternative splicing in development and disease and to evaluate if splice directed therapy can be used to improve diastolic function and specifically the elastic properties of the heart.
Max ERC Funding
1 499 191 €
Duration
Start date: 2012-01-01, End date: 2017-06-30
Project acronym CARDYADS
Project Controlling Cardiomyocyte Dyadic Structure
Researcher (PI) William Edward Louch
Host Institution (HI) UNIVERSITETET I OSLO
Call Details Consolidator Grant (CoG), LS4, ERC-2014-CoG
Summary Contraction and relaxation of cardiac myocytes, and thus the whole heart, are critically dependent on dyads. These functional junctions between t-tubules, which are invaginations of the surface membrane, and the sarcoplasmic reticulum allow efficient control of calcium release into the cytosol, and also its removal. Dyads are formed gradually during development and break down during disease. However, the precise nature of dyadic structure is unclear, even in healthy adult cardiac myocytes, as are the triggers and consequences of altering dyadic integrity. In this proposal, my group will investigate the precise 3-dimensional arrangement of dyads and their proteins during development, adulthood, and heart failure by employing CLEM imaging (PALM and EM tomography). This will be accomplished by developing transgenic mice with fluorescent labels on four dyadic proteins (L-type calcium channel, ryanodine receptor, sodium-calcium exchanger, SERCA), and by imaging tissue from explanted normal and failing human hearts. The signals responsible for controlling dyadic formation, maintenance, and disruption will be determined by performing high-throughput sequencing to identify novel genes involved with these processes in several established model systems. Particular focus will be given to investigating left ventricular wall stress and stretch-dependent gene regulation as controllers of dyadic integrity. Candidate genes will be manipulated in cell models and transgenic animals to promote dyadic formation and maintenance, and reverse dyadic disruption in heart failure. The consequences of dyadic structure for function will be tested experimentally and with mathematical modeling to examine effects on cardiac myocyte calcium homeostasis and whole-heart function. The results of this project are anticipated to yield unprecedented insight into dyadic structure, regulation, and function, and to identify novel therapeutic targets for heart disease patients.
Summary
Contraction and relaxation of cardiac myocytes, and thus the whole heart, are critically dependent on dyads. These functional junctions between t-tubules, which are invaginations of the surface membrane, and the sarcoplasmic reticulum allow efficient control of calcium release into the cytosol, and also its removal. Dyads are formed gradually during development and break down during disease. However, the precise nature of dyadic structure is unclear, even in healthy adult cardiac myocytes, as are the triggers and consequences of altering dyadic integrity. In this proposal, my group will investigate the precise 3-dimensional arrangement of dyads and their proteins during development, adulthood, and heart failure by employing CLEM imaging (PALM and EM tomography). This will be accomplished by developing transgenic mice with fluorescent labels on four dyadic proteins (L-type calcium channel, ryanodine receptor, sodium-calcium exchanger, SERCA), and by imaging tissue from explanted normal and failing human hearts. The signals responsible for controlling dyadic formation, maintenance, and disruption will be determined by performing high-throughput sequencing to identify novel genes involved with these processes in several established model systems. Particular focus will be given to investigating left ventricular wall stress and stretch-dependent gene regulation as controllers of dyadic integrity. Candidate genes will be manipulated in cell models and transgenic animals to promote dyadic formation and maintenance, and reverse dyadic disruption in heart failure. The consequences of dyadic structure for function will be tested experimentally and with mathematical modeling to examine effects on cardiac myocyte calcium homeostasis and whole-heart function. The results of this project are anticipated to yield unprecedented insight into dyadic structure, regulation, and function, and to identify novel therapeutic targets for heart disease patients.
Max ERC Funding
2 000 000 €
Duration
Start date: 2015-07-01, End date: 2020-06-30
Project acronym CESYDE
Project Ceramide Synthases in Diabetic Beta Cell Demise
Researcher (PI) Bengt-Frederik BELGARDT
Host Institution (HI) DEUTSCHE DIABETES FORSCHUNGSGESELLSCHAFT EV
Call Details Starting Grant (StG), LS4, ERC-2017-STG
Summary Sphingolipids including ceramides are building blocks of cell membranes, but also act as regulated intracellular messenger molecules. Emerging data indicate that sphingolipids are dynamically regulated by nutrients, and in turn control systemic metabolism, for example, by modulating insulin secretion, proliferation and cell death of pancreatic beta cells. Dysfunction and death of beta cells are key events during the development of diabetes, from which more than 400 million patients suffer worldwide. While pharmacological inhibition of general ceramide biosynthesis is protective against diabetes in animal studies, side effects of total loss of ceramides prevent medical implementation. The de novo synthesis of ceramides is fully dependent on six ceramide synthase enzymes (CerS 1-6), which are expressed in a tissue specific manner, and generate ceramides with different chain lengths. Currently, the functional roles and regulatory modulators of each CerS are unknown in pancreatic beta cells. Importantly, the downstream mechanisms by which ceramides impair beta cell function and eventually cause diabetes are not defined. Here, I propose to combine genomics, proteomics and lipidomics to assess the function of ceramide synthases expressed in mouse and human beta cells. Furthermore, both the subcellular localisation and the post-translational modifications of CerS will be determined. The ceramide-interacting proteins mediating the deleterious effects of ceramides will be identified by lipid-protein crosslinking and functionally tested. Finally, in a translational approach, we will test the ability of recently generated novel specific CerS inhibitors with improved specificity to ameliorate beta cell stress, and improve insulin secretion in mouse and human beta cells. In sum, we will identify, characterize, validate and target ceramide synthases involved in beta cell biology and development of diabetes.
Summary
Sphingolipids including ceramides are building blocks of cell membranes, but also act as regulated intracellular messenger molecules. Emerging data indicate that sphingolipids are dynamically regulated by nutrients, and in turn control systemic metabolism, for example, by modulating insulin secretion, proliferation and cell death of pancreatic beta cells. Dysfunction and death of beta cells are key events during the development of diabetes, from which more than 400 million patients suffer worldwide. While pharmacological inhibition of general ceramide biosynthesis is protective against diabetes in animal studies, side effects of total loss of ceramides prevent medical implementation. The de novo synthesis of ceramides is fully dependent on six ceramide synthase enzymes (CerS 1-6), which are expressed in a tissue specific manner, and generate ceramides with different chain lengths. Currently, the functional roles and regulatory modulators of each CerS are unknown in pancreatic beta cells. Importantly, the downstream mechanisms by which ceramides impair beta cell function and eventually cause diabetes are not defined. Here, I propose to combine genomics, proteomics and lipidomics to assess the function of ceramide synthases expressed in mouse and human beta cells. Furthermore, both the subcellular localisation and the post-translational modifications of CerS will be determined. The ceramide-interacting proteins mediating the deleterious effects of ceramides will be identified by lipid-protein crosslinking and functionally tested. Finally, in a translational approach, we will test the ability of recently generated novel specific CerS inhibitors with improved specificity to ameliorate beta cell stress, and improve insulin secretion in mouse and human beta cells. In sum, we will identify, characterize, validate and target ceramide synthases involved in beta cell biology and development of diabetes.
Max ERC Funding
1 492 314 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym CHD-IPS
Project Modeling congenital heart disease (CHD) in ISL1+ cardiovascular progenitors from patient-specific iPS cells
Researcher (PI) Karl-Ludwig Laugwitz
Host Institution (HI) KLINIKUM RECHTS DER ISAR DER TECHNISCHEN UNIVERSITAT MUNCHEN
Call Details Starting Grant (StG), LS4, ERC-2010-StG_20091118
Summary Tetralogy of Fallot (TOF) is the most common congenital heart disease (CHD) occurring 1 in 3000 births. Genetic studies have identified numerous genes that are responsible for inherited and sporadic forms of TOF, most of which encode key molecules that are part of regulatory networks controlling heart development. The identification of two populations of cardiac precursors, one exclusively forming the left ventricle and the second the outflow tract, the right ventricle and the atria, has suggested a new approach to interpret CHDs, in particular in TOF, not as a defect in a specific gene, but rather as a defect in the formation, expansion, and differentiation of defined subsets of embryonic cardiac precursors. The LIM-homeodomain transcription factor ISL1 marks the second population of cardiac progenitors, but little is known about its downstream targets, and how causative genes of CHDs affect cell-fate decisions in the ISL1 lineage. The main goals of this research program are: (1) to decipher the functional role of Isl1 downstream targets identified by a genome-wide ChIP-Seq approach; (2) to generate induced pluripotent stem (iPS) cells from controls and patients affected by severe forms of TOF characterized by defects in heart compartments known to derive from ISL1 cardiac progenitors; (3) to direct these iPS cells to ISL1+ cardiovascular precursors and identify cell-surface makers enabling their antibody-based purification; and (4) to use TOF-iPS-derived ISL1+ progenitors as an unique in vitro model system for deciphering molecular mechanisms that govern the fates and differentiation of this progenitor lineage and determine the pathological phenotype seen in TOF. This work will shed light on the molecular mechanisms of ISL1+ cardiac progenitor lineage specification and will give important new insights into the mechanisms of how alterations in transcriptional and epigenetic programs translate to a distinct structural defect during cardiogenesis.
Summary
Tetralogy of Fallot (TOF) is the most common congenital heart disease (CHD) occurring 1 in 3000 births. Genetic studies have identified numerous genes that are responsible for inherited and sporadic forms of TOF, most of which encode key molecules that are part of regulatory networks controlling heart development. The identification of two populations of cardiac precursors, one exclusively forming the left ventricle and the second the outflow tract, the right ventricle and the atria, has suggested a new approach to interpret CHDs, in particular in TOF, not as a defect in a specific gene, but rather as a defect in the formation, expansion, and differentiation of defined subsets of embryonic cardiac precursors. The LIM-homeodomain transcription factor ISL1 marks the second population of cardiac progenitors, but little is known about its downstream targets, and how causative genes of CHDs affect cell-fate decisions in the ISL1 lineage. The main goals of this research program are: (1) to decipher the functional role of Isl1 downstream targets identified by a genome-wide ChIP-Seq approach; (2) to generate induced pluripotent stem (iPS) cells from controls and patients affected by severe forms of TOF characterized by defects in heart compartments known to derive from ISL1 cardiac progenitors; (3) to direct these iPS cells to ISL1+ cardiovascular precursors and identify cell-surface makers enabling their antibody-based purification; and (4) to use TOF-iPS-derived ISL1+ progenitors as an unique in vitro model system for deciphering molecular mechanisms that govern the fates and differentiation of this progenitor lineage and determine the pathological phenotype seen in TOF. This work will shed light on the molecular mechanisms of ISL1+ cardiac progenitor lineage specification and will give important new insights into the mechanisms of how alterations in transcriptional and epigenetic programs translate to a distinct structural defect during cardiogenesis.
Max ERC Funding
1 499 996 €
Duration
Start date: 2011-03-01, End date: 2017-02-28
Project acronym CholangioConcept
Project Functional in vivo analysis of cholangiocarcinoma development, progression and metastasis.
Researcher (PI) Lars Zender
Host Institution (HI) EBERHARD KARLS UNIVERSITAET TUEBINGEN
Call Details Consolidator Grant (CoG), LS4, ERC-2014-CoG
Summary Genetic heterogeneity and complexity are hallmarks of metastatic solid tumors and therapy resistance inevitably develops upon treatment with cytotoxic drugs or molecular targeted therapies. Cholangiocarcinoma (CCC, or bile duct cancer) represents the second most frequent primary liver tumor and has emerged as a health problem with sharply increasing incidence rates, in particular of intrahepatic CCC (ICC). The reason for increased CCC incidence remains unclear, but influences of western lifestyle and a resulting altered hepatic metabolism have been discussed. Surgical resection represents the only curative option for the treatment of CCC, however, many tumors are irresectable at the time of diagnosis. CCC represents a highly aggressive and metastatic tumor type and currently no effective systemic therapy regimen exists. The overall molecular mechanisms driving CCC formation and progression remain poorly characterized and it thus becomes clear that a detailed molecular characterization of cholangiocarcinogenesis and the identification of robust therapeutic targets for CCC treatment are urgently needed. Taking advantage of our strong expertises in chimaeric (mosaic) liver cancer mouse models and stable in vivo shRNA technology, we here propose a comprehensive and innovative approach to i) dissect molecular mechanisms of cholangiocarcinogenesis, with a particular emphasis on Kras driven ICC development from adult hepatocytes and oncogenomic profiling of ICC metastasis, ii) to employ direct in vivo shRNA screening to functionally identify new therapeutic targets for CCC treatment and iii) to characterize the role of the gut microbiome for CCC progression and metastasis. We envision this ERC-funded project will yield important new insights into the molecular mechanisms of CCC development, progression and metastasis. As our work comprises direct and functional strategies to identify new vulnerabilities in CCC, the obtained data harbor a very high translational potential.
Summary
Genetic heterogeneity and complexity are hallmarks of metastatic solid tumors and therapy resistance inevitably develops upon treatment with cytotoxic drugs or molecular targeted therapies. Cholangiocarcinoma (CCC, or bile duct cancer) represents the second most frequent primary liver tumor and has emerged as a health problem with sharply increasing incidence rates, in particular of intrahepatic CCC (ICC). The reason for increased CCC incidence remains unclear, but influences of western lifestyle and a resulting altered hepatic metabolism have been discussed. Surgical resection represents the only curative option for the treatment of CCC, however, many tumors are irresectable at the time of diagnosis. CCC represents a highly aggressive and metastatic tumor type and currently no effective systemic therapy regimen exists. The overall molecular mechanisms driving CCC formation and progression remain poorly characterized and it thus becomes clear that a detailed molecular characterization of cholangiocarcinogenesis and the identification of robust therapeutic targets for CCC treatment are urgently needed. Taking advantage of our strong expertises in chimaeric (mosaic) liver cancer mouse models and stable in vivo shRNA technology, we here propose a comprehensive and innovative approach to i) dissect molecular mechanisms of cholangiocarcinogenesis, with a particular emphasis on Kras driven ICC development from adult hepatocytes and oncogenomic profiling of ICC metastasis, ii) to employ direct in vivo shRNA screening to functionally identify new therapeutic targets for CCC treatment and iii) to characterize the role of the gut microbiome for CCC progression and metastasis. We envision this ERC-funded project will yield important new insights into the molecular mechanisms of CCC development, progression and metastasis. As our work comprises direct and functional strategies to identify new vulnerabilities in CCC, the obtained data harbor a very high translational potential.
Max ERC Funding
1 998 898 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym CodingHeart
Project Novel Coding Factors in Heart Disease
Researcher (PI) Norbert HUBNER
Host Institution (HI) MAX DELBRUECK CENTRUM FUER MOLEKULARE MEDIZIN IN DER HELMHOLTZ-GEMEINSCHAFT (MDC)
Call Details Advanced Grant (AdG), LS4, ERC-2017-ADG
Summary Heart failure has become a worldwide epidemic with more than 23 million people affected resulting in devastating consequences for patients and an enormous burden on health care systems. One in five heart failure patients dies within a year of diagnosis and survival estimates after diagnosis are 50% and 10% at 5 and 10 years, respectively. Despite intensive investigation, the molecular mechanisms leading to heart failure remain poorly understood. We will narrow this critical gap in knowledge by proposing a previously unattainable, comprehensive approach to define the genomic architecture and functional consequences of newly identified micropeptides from multiple classes of RNAs that previously were classified to be non-coding in cardiac biology and heart failure. Our approach is unique and novel in several ways. Thematically, our studies focus on novel classes of orphan peptides and their role in heart failure that have not been discovered previously. Our approach relies on innovative interdisciplinary efforts of scientists working in molecular genetics, genomics, computational biology, and cardiovascular research to identify and characterize pathophysiological pathways that converge on these novel peptides. We will identify these short peptides by using genome-wide measures of active translation and will harness unique clinical resources to ensure human relevance. Analysis of animal and cell models coupled with state-of-the-art biochemical and genetic tools will elucidate the function of newly identified micropeptides within the molecular and cellular pathways of cardiac biology and failure. Through these efforts we will discern fundamental causes of maladaptive responses in the heart and strategies to monitor and limit these.
Summary
Heart failure has become a worldwide epidemic with more than 23 million people affected resulting in devastating consequences for patients and an enormous burden on health care systems. One in five heart failure patients dies within a year of diagnosis and survival estimates after diagnosis are 50% and 10% at 5 and 10 years, respectively. Despite intensive investigation, the molecular mechanisms leading to heart failure remain poorly understood. We will narrow this critical gap in knowledge by proposing a previously unattainable, comprehensive approach to define the genomic architecture and functional consequences of newly identified micropeptides from multiple classes of RNAs that previously were classified to be non-coding in cardiac biology and heart failure. Our approach is unique and novel in several ways. Thematically, our studies focus on novel classes of orphan peptides and their role in heart failure that have not been discovered previously. Our approach relies on innovative interdisciplinary efforts of scientists working in molecular genetics, genomics, computational biology, and cardiovascular research to identify and characterize pathophysiological pathways that converge on these novel peptides. We will identify these short peptides by using genome-wide measures of active translation and will harness unique clinical resources to ensure human relevance. Analysis of animal and cell models coupled with state-of-the-art biochemical and genetic tools will elucidate the function of newly identified micropeptides within the molecular and cellular pathways of cardiac biology and failure. Through these efforts we will discern fundamental causes of maladaptive responses in the heart and strategies to monitor and limit these.
Max ERC Funding
2 319 514 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym CureCKDHeart
Project Targeting perivascular myofibroblast progenitors to treat cardiac fibrosis and heart failure in chronic kidney disease
Researcher (PI) Rafael Johannes Thomas Kramann
Host Institution (HI) UNIVERSITAETSKLINIKUM AACHEN
Call Details Starting Grant (StG), LS4, ERC-2015-STG
Summary Chronic kidney disease (CKD) is a growing public health problem with a massively increased cardiovascular mortality. Patients with advanced CKD mostly die from sudden cardiac death and recurrent heart failure due to premature cardiac aging with hypertrophy, fibrosis, and capillary rarefaction. I have recently identified the long sought key cardiac myofibroblast progenitor population, an emerging breakthrough that carries the potential to develop novel targeted therapeutics. Genetic ablation of these Gli1+ perivascular progenitors ameliorates fibrosis, cardiac hypertrophy and rescues left-ventricular function. I propose that Gli1+ cells are critically involved in all major pathophysiologic changes in cardiac aging and uremic cardiomyopathy including fibrosis, hypertrophy and capillary rarefaction. I will perform state of the art genetic fate tracing, ablation and in vivo CRISPR/Cas9 genome editing experiments to untangle their complex mechanism of activation and communication with endothelial cells and cardiomyocytes promoting fibrosis, capillary rarefaction, cardiac hypertrophy and heart failure. To identify novel druggable targets I will utilize new mouse models that allow comparative transcript and proteasome profiling assays of these critical myofibroblast precusors in homeostasis, aging and premature aging in CKD. Novel assays with immortalized cardiac Gli1+ cells will allow high throughput screens to identify uremia associated factors of cell activation and inhibitory compounds to facilitate the development of novel therapeutics.
This ambitious interdisciplinary project requires the expertise of chemists, physiologists, biomedical researchers and physician scientists to develop novel targeted therapies in cardiac remodeling during aging and CKD. The passion that drives this project results from a simple emerging hypothesis: It is possible to treat heart failure and sudden cardiac death in aging and CKD by targeting perivascular myofibroblast progenitors.
Summary
Chronic kidney disease (CKD) is a growing public health problem with a massively increased cardiovascular mortality. Patients with advanced CKD mostly die from sudden cardiac death and recurrent heart failure due to premature cardiac aging with hypertrophy, fibrosis, and capillary rarefaction. I have recently identified the long sought key cardiac myofibroblast progenitor population, an emerging breakthrough that carries the potential to develop novel targeted therapeutics. Genetic ablation of these Gli1+ perivascular progenitors ameliorates fibrosis, cardiac hypertrophy and rescues left-ventricular function. I propose that Gli1+ cells are critically involved in all major pathophysiologic changes in cardiac aging and uremic cardiomyopathy including fibrosis, hypertrophy and capillary rarefaction. I will perform state of the art genetic fate tracing, ablation and in vivo CRISPR/Cas9 genome editing experiments to untangle their complex mechanism of activation and communication with endothelial cells and cardiomyocytes promoting fibrosis, capillary rarefaction, cardiac hypertrophy and heart failure. To identify novel druggable targets I will utilize new mouse models that allow comparative transcript and proteasome profiling assays of these critical myofibroblast precusors in homeostasis, aging and premature aging in CKD. Novel assays with immortalized cardiac Gli1+ cells will allow high throughput screens to identify uremia associated factors of cell activation and inhibitory compounds to facilitate the development of novel therapeutics.
This ambitious interdisciplinary project requires the expertise of chemists, physiologists, biomedical researchers and physician scientists to develop novel targeted therapies in cardiac remodeling during aging and CKD. The passion that drives this project results from a simple emerging hypothesis: It is possible to treat heart failure and sudden cardiac death in aging and CKD by targeting perivascular myofibroblast progenitors.
Max ERC Funding
1 497 888 €
Duration
Start date: 2016-05-01, End date: 2021-04-30
Project acronym CYTOVOLION
Project Ion homeostasis and volume regulation of cells and organelles
Researcher (PI) Thomas Jürgen Jentsch
Host Institution (HI) FORSCHUNGSVERBUND BERLIN EV
Call Details Advanced Grant (AdG), LS4, ERC-2011-ADG_20110310
Summary The regulation of ion concentrations in the cytoplasm and in the lumen of intracellular vesicles provides suitable environments for biochemical reactions, gradients for signal transduction, and generates osmotic gradients for the regulation of the volume of cells and intracellular organelles. Changes in the ion homeostasis and volume of cells and organelles may in turn influence processes like cell division and migration or the budding of vesicles from cellular membranes. Volume changes of cells, and possibly also of intracellular organelles, in turn regulate ion transport across their membranes. Whereas several swelling-activated plasma membrane ion transporters and channels are known, the molecular identity of a key player, the swelling-activated anion channel VRAC, and its impact on cellular functions remain elusive. Only sketchy information is available on ion homeostasis and volume regulation of intracellular organelles like endosomes and lysosomes, in spite of their importance for several diseases.
We propose to perform a genome-wide RNAi screen to finally identify the long-sought swelling-activated Cl- channel VRAC at the molecular level. This screen will also identify genes involved in the regulation of VRAC. The network involved in cell volume regulation will be investigated at the structural, biochemical and cellular level as well as with genetically modified mice. In parallel we will examine the ion homeostasis of endosomes and lysosomes. Until recently only the regulation of luminal H+ and Ca++ concentration was studied, but our recent work demonstrated a crucial role of luminal Cl- and hinted at an important role of cations. A combination of proteomics, siRNA screens, candidate approaches, and mouse models will be used to elucidate the ion homeostasis of endosomes/lysosomes and the impact on organellar function and associated pathologies. We expect that our work will break new ground in ion transport physiology, pathology, and cell biology.
Summary
The regulation of ion concentrations in the cytoplasm and in the lumen of intracellular vesicles provides suitable environments for biochemical reactions, gradients for signal transduction, and generates osmotic gradients for the regulation of the volume of cells and intracellular organelles. Changes in the ion homeostasis and volume of cells and organelles may in turn influence processes like cell division and migration or the budding of vesicles from cellular membranes. Volume changes of cells, and possibly also of intracellular organelles, in turn regulate ion transport across their membranes. Whereas several swelling-activated plasma membrane ion transporters and channels are known, the molecular identity of a key player, the swelling-activated anion channel VRAC, and its impact on cellular functions remain elusive. Only sketchy information is available on ion homeostasis and volume regulation of intracellular organelles like endosomes and lysosomes, in spite of their importance for several diseases.
We propose to perform a genome-wide RNAi screen to finally identify the long-sought swelling-activated Cl- channel VRAC at the molecular level. This screen will also identify genes involved in the regulation of VRAC. The network involved in cell volume regulation will be investigated at the structural, biochemical and cellular level as well as with genetically modified mice. In parallel we will examine the ion homeostasis of endosomes and lysosomes. Until recently only the regulation of luminal H+ and Ca++ concentration was studied, but our recent work demonstrated a crucial role of luminal Cl- and hinted at an important role of cations. A combination of proteomics, siRNA screens, candidate approaches, and mouse models will be used to elucidate the ion homeostasis of endosomes/lysosomes and the impact on organellar function and associated pathologies. We expect that our work will break new ground in ion transport physiology, pathology, and cell biology.
Max ERC Funding
2 499 600 €
Duration
Start date: 2012-04-01, End date: 2017-03-31
Project acronym DEMETINL
Project Decisions in metabolic inflammation of the liver: Adhesive interactions involved in leukocyte retention and resolution of inflammation in metabolic-inflammatory liver disease
Researcher (PI) Triantafyllos Chavakis
Host Institution (HI) TECHNISCHE UNIVERSITAET DRESDEN
Call Details Consolidator Grant (CoG), LS4, ERC-2015-CoG
Summary Resolution of acute inflammation, involving limiting further leukocyte recruitment, apoptosis and clearance
of inflammatory cells via macrophages as well as egress of the inflammatory cells, is operative in acute
inflammation but dysfunctional in chronic inflammatory disease. In the latter scenario, the retention and
activation of leukocytes in the inflamed tissue linked with failure to resolve inflammation contributes to
perpetuation of organ damage and loss of homeostasis. Interestingly, persistent inflammation in insulintarget
organs, such as the adipose tissue and the liver in the context of obesity significantly contributes to
development of insulin resistance (IR), diabetes and non-alcoholic fatty liver disease (NAFLD). So far,
investigations have mainly addressed obesity-related inflammatory mechanisms in the AT and rather less in
other metabolic organs, e.g. the liver. Therefore, the aims of this proposal are: (i) To characterize in the
context of obesity-related metabolic disease novel processes mediating inflammatory cell retention,
especially in the liver. In this context, we will also address the novel hypothesis that adhesive interactions of
inflammatory cells (with e.g. parenchymal cells) in the metabolically challenged environment of obese
organs may activate them via alterations in their cellular metabolism, thereby contributing to perpetuation of
inflammation. (ii) To understand resolution of inflammation including inflammatory cell egress from
metabolic organs, especially from the liver in metabolic-inflammatory disease. To this end, we will also
utilize models of acute inflammation, which is capable to resolve, in order to understand resolution principles
and apply them to non-resolving metabolic-inflammatory disease. In this regard, we will also assess the
therapeutic potential of novel inflammation-modulating factors identified by our lab.
Summary
Resolution of acute inflammation, involving limiting further leukocyte recruitment, apoptosis and clearance
of inflammatory cells via macrophages as well as egress of the inflammatory cells, is operative in acute
inflammation but dysfunctional in chronic inflammatory disease. In the latter scenario, the retention and
activation of leukocytes in the inflamed tissue linked with failure to resolve inflammation contributes to
perpetuation of organ damage and loss of homeostasis. Interestingly, persistent inflammation in insulintarget
organs, such as the adipose tissue and the liver in the context of obesity significantly contributes to
development of insulin resistance (IR), diabetes and non-alcoholic fatty liver disease (NAFLD). So far,
investigations have mainly addressed obesity-related inflammatory mechanisms in the AT and rather less in
other metabolic organs, e.g. the liver. Therefore, the aims of this proposal are: (i) To characterize in the
context of obesity-related metabolic disease novel processes mediating inflammatory cell retention,
especially in the liver. In this context, we will also address the novel hypothesis that adhesive interactions of
inflammatory cells (with e.g. parenchymal cells) in the metabolically challenged environment of obese
organs may activate them via alterations in their cellular metabolism, thereby contributing to perpetuation of
inflammation. (ii) To understand resolution of inflammation including inflammatory cell egress from
metabolic organs, especially from the liver in metabolic-inflammatory disease. To this end, we will also
utilize models of acute inflammation, which is capable to resolve, in order to understand resolution principles
and apply them to non-resolving metabolic-inflammatory disease. In this regard, we will also assess the
therapeutic potential of novel inflammation-modulating factors identified by our lab.
Max ERC Funding
1 953 250 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym DismantlingNoise
Project Dissecting the (epi)genetic origins of phenotypic variation and metabolic disease susceptibility
Researcher (PI) John Andrew Pospisilik
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Consolidator Grant (CoG), LS4, ERC-2015-CoG
Summary Current estimates place the prevalence of obesity beyond 1 billion by the year 2030. As a critical risk factor for heart disease, diabetes and stroke, obesity represents one of the chief socio-economic challenges of our day. While studies have mapped a genetic framework for understanding obesity, the etiological contribution of several regulatory layers, and in particular epigenetic regulation, remain poorly understood. A perfect example, we know that isogenic C57Bl6/J mice can vary by as much as 100% in body weight upon high fat feeding; currently, we have no mechanistic explanation for the emergence of such phenotypic variation. Here, I propose three aims dedicated towards understanding the (epi)genetic control of phenotypic variation and disease susceptibility. First, we will catalogue epigenome and phenome variation to an unprecedented depth and resolution in the isogenic context. Next, we will examine two completely novel models of epigenetically sensitized bi-stable obesity and thus begin a mechanistic dissection of phenotypic variation. Finally, we will map a series of gene-gene and gene-environment epistasis interactions including eight models of developmental plasticity and approximately a dozen chromatin regulator mutants. The latter epistasis matrix will identify the molecular mechanisms that trigger, amplify and buffer phenotypic variation and stochastic obesity in mice. The functional (epi)phenomics approach is unique. It builds the first unbiased framework against which to understand developmental plasticity and phenotypic variation, and at the same time generates powerful resources for disease researchers worldwide.
Summary
Current estimates place the prevalence of obesity beyond 1 billion by the year 2030. As a critical risk factor for heart disease, diabetes and stroke, obesity represents one of the chief socio-economic challenges of our day. While studies have mapped a genetic framework for understanding obesity, the etiological contribution of several regulatory layers, and in particular epigenetic regulation, remain poorly understood. A perfect example, we know that isogenic C57Bl6/J mice can vary by as much as 100% in body weight upon high fat feeding; currently, we have no mechanistic explanation for the emergence of such phenotypic variation. Here, I propose three aims dedicated towards understanding the (epi)genetic control of phenotypic variation and disease susceptibility. First, we will catalogue epigenome and phenome variation to an unprecedented depth and resolution in the isogenic context. Next, we will examine two completely novel models of epigenetically sensitized bi-stable obesity and thus begin a mechanistic dissection of phenotypic variation. Finally, we will map a series of gene-gene and gene-environment epistasis interactions including eight models of developmental plasticity and approximately a dozen chromatin regulator mutants. The latter epistasis matrix will identify the molecular mechanisms that trigger, amplify and buffer phenotypic variation and stochastic obesity in mice. The functional (epi)phenomics approach is unique. It builds the first unbiased framework against which to understand developmental plasticity and phenotypic variation, and at the same time generates powerful resources for disease researchers worldwide.
Max ERC Funding
1 997 853 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym DISSECT
Project Disseminating tumor cells as novel biomarkers: Dissecting the metastatic cascade in cancer patients
Researcher (PI) Klaus Pantel
Host Institution (HI) UNIVERSITAETSKLINIKUM HAMBURG-EPPENDORF
Call Details Advanced Grant (AdG), LS4, ERC-2010-AdG_20100317
Summary Breast, prostate, lung and colorectal cancer as solid tumours derived from epithelial tissues are responsible for 90% of all new cancers in Europe. Present tumour staging is mainly based on local tumour extension, metastatic lymph node involvement and evidence of overt distant metastasis obtained by imaging technologies. However, these staging procedures are not sensitive enough to detect early tumour cell dissemination as a key event in tumour progression. Our team has therefore focused on the development of ultrasensitive assays that allow the specific detection and molecular characterization of single tumour cells in bone marrow (DTC) and blood (CTC) of cancer patients. These methods allow the direct assessment of disseminating tumour cells including the detection of therapeutic targets and mechanisms of resistance in patients undergoing therapy. Based on our established network of clinical collaborations, the DISSECT project will detect and characterize DTC/CTC in patients with the four most frequent tumour entities in the EU by high resolution methods. We will investigate representative clinical studies for current interventions that may have an impact on tumour cell dissemination, including diagnostic biopsies, surgical resection of the primary tumour, radiotherapy, chemotherapy and in particular targeted therapies. The technologies for DTC/CTC analyses previously developed by our team will be complemented by cutting-edge technologies and adapted to the analysis to decisive molecular processes underlying the particular intervention. The results obtained in the DISSECT project will provide unique insights into the biology of tumour cell spread in humans and these insights might lead to improved concepts in the clinical management of cancer patients.
Summary
Breast, prostate, lung and colorectal cancer as solid tumours derived from epithelial tissues are responsible for 90% of all new cancers in Europe. Present tumour staging is mainly based on local tumour extension, metastatic lymph node involvement and evidence of overt distant metastasis obtained by imaging technologies. However, these staging procedures are not sensitive enough to detect early tumour cell dissemination as a key event in tumour progression. Our team has therefore focused on the development of ultrasensitive assays that allow the specific detection and molecular characterization of single tumour cells in bone marrow (DTC) and blood (CTC) of cancer patients. These methods allow the direct assessment of disseminating tumour cells including the detection of therapeutic targets and mechanisms of resistance in patients undergoing therapy. Based on our established network of clinical collaborations, the DISSECT project will detect and characterize DTC/CTC in patients with the four most frequent tumour entities in the EU by high resolution methods. We will investigate representative clinical studies for current interventions that may have an impact on tumour cell dissemination, including diagnostic biopsies, surgical resection of the primary tumour, radiotherapy, chemotherapy and in particular targeted therapies. The technologies for DTC/CTC analyses previously developed by our team will be complemented by cutting-edge technologies and adapted to the analysis to decisive molecular processes underlying the particular intervention. The results obtained in the DISSECT project will provide unique insights into the biology of tumour cell spread in humans and these insights might lead to improved concepts in the clinical management of cancer patients.
Max ERC Funding
2 499 000 €
Duration
Start date: 2011-08-01, End date: 2016-07-31
Project acronym DNCURE
Project Dynamic signalling networks in Diabetic Nephropathy (DN)
– New avenues to a personalized therapy.-
Researcher (PI) Tobias Georg Bruno Maria Huber
Host Institution (HI) UNIVERSITAETSKLINIKUM HAMBURG-EPPENDORF
Call Details Consolidator Grant (CoG), LS4, ERC-2013-CoG
Summary Dynamic signalling networks in Diabetic Nephropathy (DN) – New avenues to a personalized therapy.-
We have developed an exquisite experimental platform that facilitates the systematic unravelling of the signalling
networks leading to (1) the initiation, (2) the progression and (3) the potential regeneration of podocytes in
DN, paving the way to novel therapeutic strategies:
(1) DN initiation: Identification of signalling cascades leading to microalbuminuria: Molecular
By combining transgenic Drosophila lines carrying secreted fluorescent proteins to monitor the barrier function
in vivo with a genome-wide siRNA screen we will establish a unique system to directly identify gene
networks contributing to microalbuminuria.
(2a) DN progression: Molecular fingerprinting of podocyte degeneration: Based on a transgenic
fluorescent mouse model, we have pioneered a highly efficient podocyte purification method from type1 and
type 2 diabetic mice allowing us to develop a precise molecular genetic, quantitative proteomic and micro
RNA fingerprint from freshly isolated podocytes from diabetic and non-diabetic mice.
(2b) DN progression: We established a proteomic approach to measure site-specific phosphorylation dynamics in
primary podocyte cultures originating from transgenic mice that are TORC1 deficient, TORC2 deficient or
TORC1 hyperactive (TSC1 KO) solely in the podocytes.
(3) Potential role of podocyte regeneration in DN: Finally, to target mechanisms that could potentially
reverse the disease process (by repopulating lost podocytes), we invented a strategy to quantitatively monitor
podocyte turnover from different stem cell niches allowing us to precisely assess and potentially
manipulating the capacity of podocyte regeneration in DN.
Summary
Dynamic signalling networks in Diabetic Nephropathy (DN) – New avenues to a personalized therapy.-
We have developed an exquisite experimental platform that facilitates the systematic unravelling of the signalling
networks leading to (1) the initiation, (2) the progression and (3) the potential regeneration of podocytes in
DN, paving the way to novel therapeutic strategies:
(1) DN initiation: Identification of signalling cascades leading to microalbuminuria: Molecular
By combining transgenic Drosophila lines carrying secreted fluorescent proteins to monitor the barrier function
in vivo with a genome-wide siRNA screen we will establish a unique system to directly identify gene
networks contributing to microalbuminuria.
(2a) DN progression: Molecular fingerprinting of podocyte degeneration: Based on a transgenic
fluorescent mouse model, we have pioneered a highly efficient podocyte purification method from type1 and
type 2 diabetic mice allowing us to develop a precise molecular genetic, quantitative proteomic and micro
RNA fingerprint from freshly isolated podocytes from diabetic and non-diabetic mice.
(2b) DN progression: We established a proteomic approach to measure site-specific phosphorylation dynamics in
primary podocyte cultures originating from transgenic mice that are TORC1 deficient, TORC2 deficient or
TORC1 hyperactive (TSC1 KO) solely in the podocytes.
(3) Potential role of podocyte regeneration in DN: Finally, to target mechanisms that could potentially
reverse the disease process (by repopulating lost podocytes), we invented a strategy to quantitatively monitor
podocyte turnover from different stem cell niches allowing us to precisely assess and potentially
manipulating the capacity of podocyte regeneration in DN.
Max ERC Funding
1 999 920 €
Duration
Start date: 2014-06-01, End date: 2019-05-31
Project acronym ECAP
Project Genetic/epigenetic basis of ethnic differences in cancer predisposition
Researcher (PI) Gian-Paolo Dotto
Host Institution (HI) UNIVERSITE DE LAUSANNE
Call Details Advanced Grant (AdG), LS4, ERC-2013-ADG
Summary "Integration of large scale genetic and epigenetic analysis needs to be coupled with well defined biological hypotheses that can be experimentally tested. This project is aimed at developing a novel integrated approach to understand genetic and epigenetic predisposition to cancer with skin as model system.
The Caucasian (West European) and Asian (East Asian) populations differ substantially in their predisposition to skin cancer, specifically Squamous Cell Carcinoma (SCC). The underlying mechanisms are poorly understood. As in other organs, skin SCC results from changes in both epithelial and mesenchymal compartments. We will be focusing on two key gene regulatory networks of cells of the two compartments (keratinocytes and dermal fibroblasts), with a key role in skin SCC. The ""keratinocyte network"" has Notch/p53/p63 as key nodes, while the ""dermal fibroblast network"" had Notch and AP1 family members. We will pursue two main goals :
1) We will test the hypothesis that a linkage can be established between specific genetic and epigenetic marks in the Caucasian versus Asian populations and differences in expression and function of ""keratinocyte and/or dermal fibroblast network genes"".
2) We will test the hypothesis that keratinocytes and/or dermal fibroblasts of Caucasian versus Asian individuals differ in their tumor yielding capability, and that these differences in cancer forming capability are due to differences in either ""keratinocyte or dermal fibroblast network genes"".
The applicant is a world leader in epithelial signaling and cancer biology, and is heading interdisciplinary research efforts that bridge the basic and clinical sciences. Together with his bioinformatician and clinician collaborators, he is in an excellent position to attain the high goals of the proposal. The approach has not been attempted before, is only possible within the frame of an advanced ERC grant, and has substantial basic as well as translational/clinical implications."
Summary
"Integration of large scale genetic and epigenetic analysis needs to be coupled with well defined biological hypotheses that can be experimentally tested. This project is aimed at developing a novel integrated approach to understand genetic and epigenetic predisposition to cancer with skin as model system.
The Caucasian (West European) and Asian (East Asian) populations differ substantially in their predisposition to skin cancer, specifically Squamous Cell Carcinoma (SCC). The underlying mechanisms are poorly understood. As in other organs, skin SCC results from changes in both epithelial and mesenchymal compartments. We will be focusing on two key gene regulatory networks of cells of the two compartments (keratinocytes and dermal fibroblasts), with a key role in skin SCC. The ""keratinocyte network"" has Notch/p53/p63 as key nodes, while the ""dermal fibroblast network"" had Notch and AP1 family members. We will pursue two main goals :
1) We will test the hypothesis that a linkage can be established between specific genetic and epigenetic marks in the Caucasian versus Asian populations and differences in expression and function of ""keratinocyte and/or dermal fibroblast network genes"".
2) We will test the hypothesis that keratinocytes and/or dermal fibroblasts of Caucasian versus Asian individuals differ in their tumor yielding capability, and that these differences in cancer forming capability are due to differences in either ""keratinocyte or dermal fibroblast network genes"".
The applicant is a world leader in epithelial signaling and cancer biology, and is heading interdisciplinary research efforts that bridge the basic and clinical sciences. Together with his bioinformatician and clinician collaborators, he is in an excellent position to attain the high goals of the proposal. The approach has not been attempted before, is only possible within the frame of an advanced ERC grant, and has substantial basic as well as translational/clinical implications."
Max ERC Funding
2 495 425 €
Duration
Start date: 2014-02-01, End date: 2020-01-31
Project acronym ELIMINATE
Project Development of strategies to eliminate cancer cells from the bone marrow
Researcher (PI) Sonja Loges
Host Institution (HI) UNIVERSITAETSKLINIKUM HAMBURG-EPPENDORF
Call Details Starting Grant (StG), LS4, ERC-2017-STG
Summary The bone marrow (BM) represents the prime location in which cancer cells survive aggressive treatments. This poses a major health challenge because the mortality rate of patients with curable cancer doubles if tumor cells persist in the BM. One unresolved question is why the immune system fails to eradicate cancer cells from this microenvironment even though it represents a lymphatic organ. Surprisingly, despite the ongoing revolution in immune oncology, the regulation and potential therapeutic activation of the immune response in the BM still remains largely unexplored. In this grant application a new line of research is proposed with the overall objective of understanding the cellular and molecular mechanisms, which control anti-cancer immune responses in the BM. The originality of this proposal relates to the hypothesis that innate and adaptive immune cells are suppressed by stroma cells in the BM. Therefore, we will conduct a comprehensive phenotypic and functional profiling of immune and stroma cells in the BM of cancer patients with and without persisting tumor cells. Based on these insights we will develop novel strategies to harness the immune system to eliminate malignant cells from the BM. The ground-breaking nature of the project is that it will shed light on the unappreciated immune microenvironment in the BM. Its specific strength lies in the multidisciplinary design encompassing informative patient cohorts, state-of-the-art mouse models and cutting-edge technologies including Next-Generation-Sequencing as well as innovative drug candidates. Hereby I can build on my internationally recognized expertise in the BM microenvironment field, which has already led to the successful development of a clinical-stage drug. Novel strategies to eliminate malignant cells from the bone marrow are of utmost medical importance because they would increase the cure rate of cancer patients.
Summary
The bone marrow (BM) represents the prime location in which cancer cells survive aggressive treatments. This poses a major health challenge because the mortality rate of patients with curable cancer doubles if tumor cells persist in the BM. One unresolved question is why the immune system fails to eradicate cancer cells from this microenvironment even though it represents a lymphatic organ. Surprisingly, despite the ongoing revolution in immune oncology, the regulation and potential therapeutic activation of the immune response in the BM still remains largely unexplored. In this grant application a new line of research is proposed with the overall objective of understanding the cellular and molecular mechanisms, which control anti-cancer immune responses in the BM. The originality of this proposal relates to the hypothesis that innate and adaptive immune cells are suppressed by stroma cells in the BM. Therefore, we will conduct a comprehensive phenotypic and functional profiling of immune and stroma cells in the BM of cancer patients with and without persisting tumor cells. Based on these insights we will develop novel strategies to harness the immune system to eliminate malignant cells from the BM. The ground-breaking nature of the project is that it will shed light on the unappreciated immune microenvironment in the BM. Its specific strength lies in the multidisciplinary design encompassing informative patient cohorts, state-of-the-art mouse models and cutting-edge technologies including Next-Generation-Sequencing as well as innovative drug candidates. Hereby I can build on my internationally recognized expertise in the BM microenvironment field, which has already led to the successful development of a clinical-stage drug. Novel strategies to eliminate malignant cells from the bone marrow are of utmost medical importance because they would increase the cure rate of cancer patients.
Max ERC Funding
1 490 825 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym EMERGE
Project Epigenetic and metabolic regulation of endothelial heterogeneity
Researcher (PI) Michael POTENTE
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Consolidator Grant (CoG), LS4, ERC-2017-COG
Summary Heterogeneity within the endothelium is increasingly recognized in both normal and disease conditions, influencing vascular architecture, structure, and function. The diverse phenotypes that endothelial cells (ECs) adopt suggest substantial plasticity and indicate that heterogeneity is a core property that enables ECs to fulfill their tissue-specific tasks. However, the molecular basis for tissue-specific endothelial differentiation and heterogeneity remains largely unknown. In this project, we will study the impact of environmental context on endothelial specialization and focus on the emerging relationship between metabolism, epigenetics, and cellular differentiation. We hypothesize that organ-specific differences in endothelial metabolic state, through altered epigenetics, promote specialization and thereby contribute to heterogeneity within the vascular system. The proposal rests on the notion that many of the enzymes that erase epigenetic modifications (from DNA and histones) are exquisitely sensitive to changes in metabolism as they utilize cosubstrates that are generated by cellular metabolism. Using a combination of state-of-the-art genetics, high-resolution imaging, metabolomics, and biochemistry, we will study the role of these epigenetic mechanisms for general and organ-specific blood vessel formation (Objective I) and determine their regulation by metabolic and vascular differentiation signals (Objective II). Moreover, we will explore whether metabolic changes during obesity and aging impact the maintenance of endothelial specialization, and assess whether deregulation of metabolic-epigenetic signalling leads to endothelial malfunction and organ failure (Objective III). We trust that the knowledge gained through this project will provide a conceptual framework for understanding how environmental context can drive vascular heterogeneity and, more generally, how alterations in metabolism and nutrition might contribute to vascular-related diseases.
Summary
Heterogeneity within the endothelium is increasingly recognized in both normal and disease conditions, influencing vascular architecture, structure, and function. The diverse phenotypes that endothelial cells (ECs) adopt suggest substantial plasticity and indicate that heterogeneity is a core property that enables ECs to fulfill their tissue-specific tasks. However, the molecular basis for tissue-specific endothelial differentiation and heterogeneity remains largely unknown. In this project, we will study the impact of environmental context on endothelial specialization and focus on the emerging relationship between metabolism, epigenetics, and cellular differentiation. We hypothesize that organ-specific differences in endothelial metabolic state, through altered epigenetics, promote specialization and thereby contribute to heterogeneity within the vascular system. The proposal rests on the notion that many of the enzymes that erase epigenetic modifications (from DNA and histones) are exquisitely sensitive to changes in metabolism as they utilize cosubstrates that are generated by cellular metabolism. Using a combination of state-of-the-art genetics, high-resolution imaging, metabolomics, and biochemistry, we will study the role of these epigenetic mechanisms for general and organ-specific blood vessel formation (Objective I) and determine their regulation by metabolic and vascular differentiation signals (Objective II). Moreover, we will explore whether metabolic changes during obesity and aging impact the maintenance of endothelial specialization, and assess whether deregulation of metabolic-epigenetic signalling leads to endothelial malfunction and organ failure (Objective III). We trust that the knowledge gained through this project will provide a conceptual framework for understanding how environmental context can drive vascular heterogeneity and, more generally, how alterations in metabolism and nutrition might contribute to vascular-related diseases.
Max ERC Funding
1 998 750 €
Duration
Start date: 2018-03-01, End date: 2023-02-28
Project acronym EMPATHICBRAIN
Project Plasticity of the Empathic Brain: Structural and Functional MRI Studies on the Effect of Empathy Training on the Human Brain and Prosocial Behaviour
Researcher (PI) Tania Singer
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), LS4, ERC-2007-StG
Summary Social neuroscientists study the neural mechanisms underlying our capacity to understand our own and other people’s feelings. Despite neuroscientists’ advances in plasticity research and empathy research, little is known about cortical and behavioural plasticity in emotion understanding and empathy. Clearly, in today’s world, acquiring the capacity to effectively enhance empathy and prosocial behaviour is of the utmost importance. In the present project, we will investigate the malleability of empathy via training. We will adopt a multimethod and interdisciplinary approach, combining techniques and paradigms from the fields of neuroscience, (bio-)psychology, and economics. Studies 1-3 will provide a cross-sectional look at structural and functional differences in the brains of individuals scoring high vs. low on empathy, of those with pathological deficits in empathy (psychopaths, alexithymics), and of individuals starting vs. finishing a three-year training program in Carl Rogers’ person-centred therapy, which aims to increase emotional capacity and empathy. Study 4 will examine brain plasticity using real-time fMRI: Participants will learn to self-regulate brain activity through the use of immediate feedback from emotion-related brain areas while practicing certain mental techniques. In Study 5, a small-scale longitudinal study, healthy individuals will receive extensive training by professional instructors in either empathy- or memory-enhancing techniques previously developed in the East and the West. We will measure training-related changes in brain structure and functioning, in hormone levels, and in behaviour. Evidence for emotional brain plasticity in adults and children would not only have important implications for the implementation of scientifically validated, effective training programs for schools and for economic and political organizations, but also for the treatment of the marked social deficits in autistic and psychopathic populations.
Summary
Social neuroscientists study the neural mechanisms underlying our capacity to understand our own and other people’s feelings. Despite neuroscientists’ advances in plasticity research and empathy research, little is known about cortical and behavioural plasticity in emotion understanding and empathy. Clearly, in today’s world, acquiring the capacity to effectively enhance empathy and prosocial behaviour is of the utmost importance. In the present project, we will investigate the malleability of empathy via training. We will adopt a multimethod and interdisciplinary approach, combining techniques and paradigms from the fields of neuroscience, (bio-)psychology, and economics. Studies 1-3 will provide a cross-sectional look at structural and functional differences in the brains of individuals scoring high vs. low on empathy, of those with pathological deficits in empathy (psychopaths, alexithymics), and of individuals starting vs. finishing a three-year training program in Carl Rogers’ person-centred therapy, which aims to increase emotional capacity and empathy. Study 4 will examine brain plasticity using real-time fMRI: Participants will learn to self-regulate brain activity through the use of immediate feedback from emotion-related brain areas while practicing certain mental techniques. In Study 5, a small-scale longitudinal study, healthy individuals will receive extensive training by professional instructors in either empathy- or memory-enhancing techniques previously developed in the East and the West. We will measure training-related changes in brain structure and functioning, in hormone levels, and in behaviour. Evidence for emotional brain plasticity in adults and children would not only have important implications for the implementation of scientifically validated, effective training programs for schools and for economic and political organizations, but also for the treatment of the marked social deficits in autistic and psychopathic populations.
Max ERC Funding
1 499 821 €
Duration
Start date: 2008-09-01, End date: 2014-08-31
Project acronym ENDHOMRET
Project Endothelial homeostasis and dysfunction in metabolic-vascular retina disease: The role of endothelial cell-intrinsic and endothelial cell extrinsic inflammatory pathways
Researcher (PI) Triantafyllos Chavakis
Host Institution (HI) TECHNISCHE UNIVERSITAET DRESDEN
Call Details Starting Grant (StG), LS4, ERC-2011-StG_20101109
Summary Diabetic retinopathy (DR) is a major cause of blindness in adults and the underlying pathophysiology includes endothelial dysfunction. Endothelial dysfunction is a perturbation of endothelial homeostasis including changes in endothelial barrier integrity, alterations of the endothelial cell surface, which becomes proinflammatory and mediates increased leukocyte adhesion and changes in endothelial survival functions. Endothelial dysfunction is regulated by an intimate crosstalk of the endothelium with leukocytes and inflammatory pathways of the innate immunity (endothelial-extrinsic pathways), which are activated in the diabetic vasculature affecting the endothelial barrier and leukocyte adhesiveness, and by endothelial cell-intrinsic pathways affecting endothelial survival that are regulated by specific components of the diabetic microenvironement, e.g. hypoxia. The aims of the present proposal are (i) to assess how leukocyte-endothelial interactions (here a particular emphasis will be laid on novel components of the leukocyte adhesion cascade, such as Developmental endothelial locus-1 or Junctional Adhesion Molecule-C, recently identified by the group of the applicant), as well as how macrophage activation/polarization in the local retinal microenvironment affect endothelial homeostasis and dysfunction in the course of DR, and (ii) to investigate pathways regulating survival functions of the endothelium particularly under hypoxic/ischemic conditions in the diabetic retina. The proposal is highly innovative, since the knowledge about these pathways in the context of endothelial dysfunction in DR is scarce. Understanding the molecular contribution of endothelial cell-extrinsic inflammatory pathways and endothelial-cell intrinsic, survival-regulating pathways in the context of DR will have a high impact as it will provide the platform for developing novel specific therapeutic approaches for this major diabetic complication.
Summary
Diabetic retinopathy (DR) is a major cause of blindness in adults and the underlying pathophysiology includes endothelial dysfunction. Endothelial dysfunction is a perturbation of endothelial homeostasis including changes in endothelial barrier integrity, alterations of the endothelial cell surface, which becomes proinflammatory and mediates increased leukocyte adhesion and changes in endothelial survival functions. Endothelial dysfunction is regulated by an intimate crosstalk of the endothelium with leukocytes and inflammatory pathways of the innate immunity (endothelial-extrinsic pathways), which are activated in the diabetic vasculature affecting the endothelial barrier and leukocyte adhesiveness, and by endothelial cell-intrinsic pathways affecting endothelial survival that are regulated by specific components of the diabetic microenvironement, e.g. hypoxia. The aims of the present proposal are (i) to assess how leukocyte-endothelial interactions (here a particular emphasis will be laid on novel components of the leukocyte adhesion cascade, such as Developmental endothelial locus-1 or Junctional Adhesion Molecule-C, recently identified by the group of the applicant), as well as how macrophage activation/polarization in the local retinal microenvironment affect endothelial homeostasis and dysfunction in the course of DR, and (ii) to investigate pathways regulating survival functions of the endothelium particularly under hypoxic/ischemic conditions in the diabetic retina. The proposal is highly innovative, since the knowledge about these pathways in the context of endothelial dysfunction in DR is scarce. Understanding the molecular contribution of endothelial cell-extrinsic inflammatory pathways and endothelial-cell intrinsic, survival-regulating pathways in the context of DR will have a high impact as it will provide the platform for developing novel specific therapeutic approaches for this major diabetic complication.
Max ERC Funding
1 488 480 €
Duration
Start date: 2011-11-01, End date: 2016-12-31
Project acronym ERA
Project Experimental Research into Ageing
Researcher (PI) Linda Partridge
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Advanced Grant (AdG), LS4, ERC-2010-AdG_20100317
Summary The diseases of older age are a major challenge to human societies. Despite the complexity of ageing, both reduced food intake (dietary restriction) and simple genetic alterations can greatly increase lifespan and provide broad-spectrum protection against diseases of ageing in laboratory animals. Furthermore, there is strong evolutionary conservation of mechanisms. For instance the nutrient-sensing insulin/IGF and TOR signalling network modulates lifespan in yeast, invertebrates and rodents. There is thus a major scientific opportunity to use model organisms to discover how to ameliorate ageing and hence to protect against ageing-related disease in humans. Our recent findings on dietary amino acid balance in the fruit fly Drosophila imply that consumption of nutrients irrelevant to metabolism is life-shortening. Using a novel genomic approach, we shall determine if the same is true in mice and measure the role of dietary imbalance in extension of lifespan by dietary restriction. Late life dietary restriction in invertebrates can increase future survival as much as permanent restriction, implying that chemical mimetics administered late in life could also be fully effective. We shall determine if dietary restriction in mice has similarly acute effects, and use dietary switches to identify candidate mechanisms of increased health and lifespan. Recent evidence has pointed to particular components of nutrient-sensing pathways as promising drug targets for prevention of age-related disease, and we shall investigate two candidates. The work will break new ground in understanding how ageing is modulated by diet and signaling pathways and point to interventions that could protect against the effects of ageing to reduce the burden of ageing-related disease in humans.
Summary
The diseases of older age are a major challenge to human societies. Despite the complexity of ageing, both reduced food intake (dietary restriction) and simple genetic alterations can greatly increase lifespan and provide broad-spectrum protection against diseases of ageing in laboratory animals. Furthermore, there is strong evolutionary conservation of mechanisms. For instance the nutrient-sensing insulin/IGF and TOR signalling network modulates lifespan in yeast, invertebrates and rodents. There is thus a major scientific opportunity to use model organisms to discover how to ameliorate ageing and hence to protect against ageing-related disease in humans. Our recent findings on dietary amino acid balance in the fruit fly Drosophila imply that consumption of nutrients irrelevant to metabolism is life-shortening. Using a novel genomic approach, we shall determine if the same is true in mice and measure the role of dietary imbalance in extension of lifespan by dietary restriction. Late life dietary restriction in invertebrates can increase future survival as much as permanent restriction, implying that chemical mimetics administered late in life could also be fully effective. We shall determine if dietary restriction in mice has similarly acute effects, and use dietary switches to identify candidate mechanisms of increased health and lifespan. Recent evidence has pointed to particular components of nutrient-sensing pathways as promising drug targets for prevention of age-related disease, and we shall investigate two candidates. The work will break new ground in understanding how ageing is modulated by diet and signaling pathways and point to interventions that could protect against the effects of ageing to reduce the burden of ageing-related disease in humans.
Max ERC Funding
2 489 200 €
Duration
Start date: 2011-06-01, End date: 2016-05-31
Project acronym EVI1inCancer
Project Overcoming the epigenetic and therapeutic barrier of EVI1-overexpressing cancers
Researcher (PI) Stefan Gröschel
Host Institution (HI) DEUTSCHES KREBSFORSCHUNGSZENTRUM HEIDELBERG
Call Details Starting Grant (StG), LS4, ERC-2015-STG
Summary Deregulation of the EVI1 oncogene is a key transforming event in the development of many malignancies, most prominently very high-risk acute myeloid leukemia (AML), ovarian, colon, breast, non-small cell lung cancer, and soft-tissue sarcoma. For decades, both EVI1 function and the mechanism underlying its deregulation have been poorly understood. The consequent lack of a targeted therapy against EVI1 establishes a pressing medical need. In a recent study investigating a distinct category of EVI1-driven AML with inv(3) or t(3;3), we characterized the regulatory domain of EVI1 and identified a master regulatory element of the stemness factor GATA2 to be rearranged to EVI1, thereby deregulating both genes. Applying functional genomics and genome-editing, we found that the rearranged enhancer element adopted novel features, such as superloading of the epigenetic reader and chromatin regulator BRD4, allowing its inhibition with BET/bromodomain inhibitors with relative EVI1 specificity. Interference with EVI1-regulatory mechanisms thus has potential therapeutic value in EVI1-transformed tumors. To pave the way for epigenetic targeting of other EVI1-expressing malignancies, we aim to identify genomic enhancer sequences and protein components of the EVI1 regulatory domain by systematic epigenetic and proteomic profiling. Specifically, we seek to achieve the following experimental goals: (1) Identification of the mechanism underlying EVI1 deregulation in non-3q-rearranged AML and solid tumors; (2) Addressing the role of breakpoint-associated transpos-able retroelements; (3) Characterization of the transcription factor complex regulating EVI1; (4) Identification of epigenetic resistance mechanisms in EVI1+ AML by using an in vivo model and a genome-editing approach. The proposed experiments will provide insight into the epigenetic landscape of EVI1+ malignancies and help reveal new targets and genetic interactions amenable to future therapies in these high-risk malignancies.
Summary
Deregulation of the EVI1 oncogene is a key transforming event in the development of many malignancies, most prominently very high-risk acute myeloid leukemia (AML), ovarian, colon, breast, non-small cell lung cancer, and soft-tissue sarcoma. For decades, both EVI1 function and the mechanism underlying its deregulation have been poorly understood. The consequent lack of a targeted therapy against EVI1 establishes a pressing medical need. In a recent study investigating a distinct category of EVI1-driven AML with inv(3) or t(3;3), we characterized the regulatory domain of EVI1 and identified a master regulatory element of the stemness factor GATA2 to be rearranged to EVI1, thereby deregulating both genes. Applying functional genomics and genome-editing, we found that the rearranged enhancer element adopted novel features, such as superloading of the epigenetic reader and chromatin regulator BRD4, allowing its inhibition with BET/bromodomain inhibitors with relative EVI1 specificity. Interference with EVI1-regulatory mechanisms thus has potential therapeutic value in EVI1-transformed tumors. To pave the way for epigenetic targeting of other EVI1-expressing malignancies, we aim to identify genomic enhancer sequences and protein components of the EVI1 regulatory domain by systematic epigenetic and proteomic profiling. Specifically, we seek to achieve the following experimental goals: (1) Identification of the mechanism underlying EVI1 deregulation in non-3q-rearranged AML and solid tumors; (2) Addressing the role of breakpoint-associated transpos-able retroelements; (3) Characterization of the transcription factor complex regulating EVI1; (4) Identification of epigenetic resistance mechanisms in EVI1+ AML by using an in vivo model and a genome-editing approach. The proposed experiments will provide insight into the epigenetic landscape of EVI1+ malignancies and help reveal new targets and genetic interactions amenable to future therapies in these high-risk malignancies.
Max ERC Funding
1 499 094 €
Duration
Start date: 2016-06-01, End date: 2021-05-31
Project acronym H3.3CANCER
Project The histone H3.3 variant in brain cancer pathogenesis
Researcher (PI) Paolo Salomoni
Host Institution (HI) DEUTSCHES ZENTRUM FUR NEURODEGENERATIVE ERKRANKUNGEN EV
Call Details Consolidator Grant (CoG), LS4, ERC-2013-CoG
Summary Epigenetic reprogramming is a hallmark of brain cancer. Remarkably, driver mutations of the histone H3.3 variant and its loading machinery have been recently found in paediatric glioblastoma multiforme (GBM), a devastating neoplasm originating from transformed neural precursors. Thus, the very basic building blocks of chromatin can be mutated in cancer.
The present challenge is to define at which level altered H3.3 loading influences GBM pathogenesis and provide clues into the underlying mechanisms. Based on work from our group and others, we hypothesise that alterations of H3.3 function/deposition would lead to epigenetic changes, deregulated transcription at bivalent loci and other genomic regions, and alterations of telomere maintenance mechanisms, in turn contributing to tumourigenesis.
The main objectives of this proposal are to:
1. Examine the impact of H3.3 mutations on brain cancer pathogenesis, by determining the effect of mutant H3.3 expression on neural precursor cell transformation (A), and tumour maintenance (B).
2. Define the molecular changes caused by incorporation of H3.3 mutants into the genome and their involvement in tumourigenesis, by A. determining the genome-wide distribution of WT and mutant H3.3 proteins, B. identifying mutant H3.3-driven transcriptional and epigenetic changes, C. defining effects on telomere maintenance mechanisms, and D. connecting mutant H3.3-driven molecular changes to the biological phenotypes.
The discovery of mutations in histones and their loading machinery represents a paradigm change in the field of cancer epigenetics. We anticipate this study to provide key insights into the role of these alterations in chromatin regulation and cancer pathogenesis. More broadly, this work will increase our understanding of the fundamental mechanisms governing chromatin modification in mammalian cells.
Summary
Epigenetic reprogramming is a hallmark of brain cancer. Remarkably, driver mutations of the histone H3.3 variant and its loading machinery have been recently found in paediatric glioblastoma multiforme (GBM), a devastating neoplasm originating from transformed neural precursors. Thus, the very basic building blocks of chromatin can be mutated in cancer.
The present challenge is to define at which level altered H3.3 loading influences GBM pathogenesis and provide clues into the underlying mechanisms. Based on work from our group and others, we hypothesise that alterations of H3.3 function/deposition would lead to epigenetic changes, deregulated transcription at bivalent loci and other genomic regions, and alterations of telomere maintenance mechanisms, in turn contributing to tumourigenesis.
The main objectives of this proposal are to:
1. Examine the impact of H3.3 mutations on brain cancer pathogenesis, by determining the effect of mutant H3.3 expression on neural precursor cell transformation (A), and tumour maintenance (B).
2. Define the molecular changes caused by incorporation of H3.3 mutants into the genome and their involvement in tumourigenesis, by A. determining the genome-wide distribution of WT and mutant H3.3 proteins, B. identifying mutant H3.3-driven transcriptional and epigenetic changes, C. defining effects on telomere maintenance mechanisms, and D. connecting mutant H3.3-driven molecular changes to the biological phenotypes.
The discovery of mutations in histones and their loading machinery represents a paradigm change in the field of cancer epigenetics. We anticipate this study to provide key insights into the role of these alterations in chromatin regulation and cancer pathogenesis. More broadly, this work will increase our understanding of the fundamental mechanisms governing chromatin modification in mammalian cells.
Max ERC Funding
1 999 998 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym Hallmarks-to-Therapy
Project Intersecting hallmarks of cancer: mechanisms of and interplay between invasion and angiogenesis, guiding new strategies for cancer therapy
Researcher (PI) Douglas Hanahan
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Advanced Grant (AdG), LS4, ERC-2012-ADG_20120314
Summary Acquisition of the hallmark capability for invasion and in turn metastasis is for most human cancers the defining event in progression to life threatening disease. Its determinants are remarkably complex. Genetically engineered mice can model human cancers, with tumors arising in specific organs, reflecting onco-genomic and histopathological features of particular tumor types. This project will use four mouse models to characterize newly implicated determinants of invasive tumor growth. We have observed that genetic polymorphisms can govern predisposition to invasive cancer. Additionally, therapeutic targeting of another hallmark capability – tumor angiogenesis – has revealed adaptive resistance, whereby late-stage tumors, faced with the inability to grow en masse supported by angiogenesis, switch instead to grow diffusively, by invading adjacent tissue; this phenomenon may underlay the limited benefit seen with anti-angiogenic therapies in the clinic. There are three interconnected goals:
(1) Polymorphic regulation of tumor invasion. We will investigate the mechanisms and functional importance of candidate genes resident within a genetic modifier locus on mouse Chr 17 that can alternatively suppress or facilitate invasive tumor growth dependent on constitutional genetic background.
(2) Adaptive induction of invasion. We will elucidate the determinants of the invasive growth capability that is induced in response to potent inhibition of angiogenesis.
(3) Testing mechanism-based therapeutic co-targeting of the capabilities for invasion and angiogenesis.
We will use functional genetic, genomic profiling, and pharmacological approaches to assess these two new modes of regulating invasive growth, and then apply the knowledge in preclinical trials aiming to lay the groundwork for future clinical trials in which these intersecting hallmark capabilities are coordinately disrupted, with promise for more enduring therapeutic responses and benefit to cancer patients.
Summary
Acquisition of the hallmark capability for invasion and in turn metastasis is for most human cancers the defining event in progression to life threatening disease. Its determinants are remarkably complex. Genetically engineered mice can model human cancers, with tumors arising in specific organs, reflecting onco-genomic and histopathological features of particular tumor types. This project will use four mouse models to characterize newly implicated determinants of invasive tumor growth. We have observed that genetic polymorphisms can govern predisposition to invasive cancer. Additionally, therapeutic targeting of another hallmark capability – tumor angiogenesis – has revealed adaptive resistance, whereby late-stage tumors, faced with the inability to grow en masse supported by angiogenesis, switch instead to grow diffusively, by invading adjacent tissue; this phenomenon may underlay the limited benefit seen with anti-angiogenic therapies in the clinic. There are three interconnected goals:
(1) Polymorphic regulation of tumor invasion. We will investigate the mechanisms and functional importance of candidate genes resident within a genetic modifier locus on mouse Chr 17 that can alternatively suppress or facilitate invasive tumor growth dependent on constitutional genetic background.
(2) Adaptive induction of invasion. We will elucidate the determinants of the invasive growth capability that is induced in response to potent inhibition of angiogenesis.
(3) Testing mechanism-based therapeutic co-targeting of the capabilities for invasion and angiogenesis.
We will use functional genetic, genomic profiling, and pharmacological approaches to assess these two new modes of regulating invasive growth, and then apply the knowledge in preclinical trials aiming to lay the groundwork for future clinical trials in which these intersecting hallmark capabilities are coordinately disrupted, with promise for more enduring therapeutic responses and benefit to cancer patients.
Max ERC Funding
2 500 000 €
Duration
Start date: 2013-09-01, End date: 2018-08-31
Project acronym Healthybiota
Project Microbiota-host interactions for integrative metabolic health reprogramming
Researcher (PI) Mirko TRAJKOVSKI
Host Institution (HI) UNIVERSITE DE GENEVE
Call Details Consolidator Grant (CoG), LS4, ERC-2018-COG
Summary Obesity is a metabolic disorder leading to various health risks and reduced life expectancy. Insulin resistance is a major obesity related disorder, and a main cause for the onset of type 2 diabetes. During cold exposure or caloric restriction (CR), brown adipocytes emerge within the white fat (known as “beige” cells). This process, referred to as fat browning, increases the metabolic capacity of the adipose tissues to combust energy and is seen as promising anti-obesity and anti-diabetic strategy. The intestinal microbiota co-develops with the host; microbiota depletion, or cold-induced shift of its composition are sufficient to improve insulin sensitivity and glucose metabolism, in part mediated by the innate immune system-mediated fat browning. The microbial signals and composition, critical for our understanding of the microbiota-host mutualism and metabolic improvements during cold and CR, remain unclear.
By integrating expertise from several areas including physiology, bioinformatics, immunology, microbiology and developmental biology; and by developing computational approaches for comparing the metagenomics, metabolomics and transcriptomics data from the CR- and the cold-exposed mice with cohorts of human subjects, we will establish the microbiota role in orchestrating the CR-induced metabolic improvements and innate immune response, and provide mechanistic explanations on the microbiota-host mutualism during CR and cold. Finally, by using lineage-tracing studies and developing transgenic mouse models, we will determine the importance of the beige fat in the CR-induced beneficial effects on the host, and the importance of the microbiota in mediating this process. Manipulating the gut microbiota and exploiting the mechanistic links revealed by this study would be of conceptual importance for our understanding of microbiota-host mutualism in the metabolic homeostasis, and could lead to development of novel therapeutics for improving metabolic health.
Summary
Obesity is a metabolic disorder leading to various health risks and reduced life expectancy. Insulin resistance is a major obesity related disorder, and a main cause for the onset of type 2 diabetes. During cold exposure or caloric restriction (CR), brown adipocytes emerge within the white fat (known as “beige” cells). This process, referred to as fat browning, increases the metabolic capacity of the adipose tissues to combust energy and is seen as promising anti-obesity and anti-diabetic strategy. The intestinal microbiota co-develops with the host; microbiota depletion, or cold-induced shift of its composition are sufficient to improve insulin sensitivity and glucose metabolism, in part mediated by the innate immune system-mediated fat browning. The microbial signals and composition, critical for our understanding of the microbiota-host mutualism and metabolic improvements during cold and CR, remain unclear.
By integrating expertise from several areas including physiology, bioinformatics, immunology, microbiology and developmental biology; and by developing computational approaches for comparing the metagenomics, metabolomics and transcriptomics data from the CR- and the cold-exposed mice with cohorts of human subjects, we will establish the microbiota role in orchestrating the CR-induced metabolic improvements and innate immune response, and provide mechanistic explanations on the microbiota-host mutualism during CR and cold. Finally, by using lineage-tracing studies and developing transgenic mouse models, we will determine the importance of the beige fat in the CR-induced beneficial effects on the host, and the importance of the microbiota in mediating this process. Manipulating the gut microbiota and exploiting the mechanistic links revealed by this study would be of conceptual importance for our understanding of microbiota-host mutualism in the metabolic homeostasis, and could lead to development of novel therapeutics for improving metabolic health.
Max ERC Funding
1 999 999 €
Duration
Start date: 2019-06-01, End date: 2024-05-31
Project acronym HemNichMDS
Project Functional and Molecular Analyses of the Interplay between Hematopoietic and Mesenchymal Niche Cells in Human Myelodysplastic Syndromes.
Researcher (PI) Hind Medyouf
Host Institution (HI) CHEMOTHERAPEUTISCHES FORSCHUNGSINSTITUT GEORG-SPEYER-HAUS STIFTUNG
Call Details Starting Grant (StG), LS4, ERC-2014-STG
Summary Myelodysplastic syndromes (MDS) are heterogeneous clonal hematopoietic stem cell diseases mainly affecting the elderly (45/100,000 in >70 years). The prevalence of MDS is expected to rise mainly as a result of an aging population. MDS is characterized by ineffective production of mature blood cells with peripheral cytopenias and the propensity to evolve to acute myeloid leukemia. Most MDS patients rely on continuous blood transfusions resulting in significant costs to healthcare systems and, most importantly, secondary effects leading to complications and patient deaths. The only potential curative treatment for MDS is hematopoietic stem cells (HSC) transplantation, which is limited to younger patients with suitable donors (<10% of MDS patients).
Increasing evidence indicates that myeloid neoplasms can be triggered by abnormal functional properties of the bone marrow microenvironment in mice. However, it remains to be seen whether this also applies to human hematopoietic neoplasms. Our work revealed that patient-derived mesenchymal niche cells are essential to propagate human MDS HSCs in vivo, thus highlighting the crucial role of the niche in human MDS. Moreover, our data indicate that human MDS hematopoietic cells may “educate” their niche environment into a self-reinforcing one.
The goal of our proposal is to decipher the interplay between hematopoietic and mesenchymal niche cells in human MDS, and to assess innovative means by which we could target diseased cells to improve MDS patient outcomes.
We will perform a comprehensive molecular characterization of highly purified primary mesenchymal niche cells to define new prognostic/therapeutic niche factors in MDS. More importantly, we will take advantage of our unique xenograft model of MDS to translate our findings into groundbreaking novel therapeutic strategies for MDS patients, by disrupting essential niche/MDS stem cell interactions.
Summary
Myelodysplastic syndromes (MDS) are heterogeneous clonal hematopoietic stem cell diseases mainly affecting the elderly (45/100,000 in >70 years). The prevalence of MDS is expected to rise mainly as a result of an aging population. MDS is characterized by ineffective production of mature blood cells with peripheral cytopenias and the propensity to evolve to acute myeloid leukemia. Most MDS patients rely on continuous blood transfusions resulting in significant costs to healthcare systems and, most importantly, secondary effects leading to complications and patient deaths. The only potential curative treatment for MDS is hematopoietic stem cells (HSC) transplantation, which is limited to younger patients with suitable donors (<10% of MDS patients).
Increasing evidence indicates that myeloid neoplasms can be triggered by abnormal functional properties of the bone marrow microenvironment in mice. However, it remains to be seen whether this also applies to human hematopoietic neoplasms. Our work revealed that patient-derived mesenchymal niche cells are essential to propagate human MDS HSCs in vivo, thus highlighting the crucial role of the niche in human MDS. Moreover, our data indicate that human MDS hematopoietic cells may “educate” their niche environment into a self-reinforcing one.
The goal of our proposal is to decipher the interplay between hematopoietic and mesenchymal niche cells in human MDS, and to assess innovative means by which we could target diseased cells to improve MDS patient outcomes.
We will perform a comprehensive molecular characterization of highly purified primary mesenchymal niche cells to define new prognostic/therapeutic niche factors in MDS. More importantly, we will take advantage of our unique xenograft model of MDS to translate our findings into groundbreaking novel therapeutic strategies for MDS patients, by disrupting essential niche/MDS stem cell interactions.
Max ERC Funding
1 500 000 €
Duration
Start date: 2015-08-01, End date: 2020-07-31
Project acronym HepatoMetaboPath
Project Cellular and molecular mechanisms of metabolic immune activation triggering non-alcoholic steatohepatitis (NASH) and HCC
Researcher (PI) Mathias Florian Heikenwälder
Host Institution (HI) HELMHOLTZ ZENTRUM MUENCHEN DEUTSCHES FORSCHUNGSZENTRUM FUER GESUNDHEIT UND UMWELT GMBH
Call Details Consolidator Grant (CoG), LS4, ERC-2015-CoG
Summary Overweight and metabolic syndrome are reaching pandemic dimensions in industrialized countries and are rising in developing countries. Clinically these diseases can manifest in non-alcoholic fatty liver disease (NAFLD), the most frequent liver disease world-wide. A significant number of NAFLD patients develop non-alcoholic steatohepatitis (NASH), fibrosis and hepatocellular carcinoma (HCC), making NASH-driven HCC the most rapidly increasing cancer in the USA, with a similar trend in Europe. While HCC is the second most common cause of cancer related death, the mechanisms triggering NASH and subsequent HCC are poorly understood and efficacious therapies are lacking. My group has strong expertise in inflammation-driven HCC (e.g. by Hepatitis B, C viruses). Recently, we have established a mouse model of NASH-driven HCC recapitulating human pathology in the context of metabolic syndrome. We demonstrated for the first time that CD8+ T- and natural killer T (NKT)-cells become activated during metabolic syndrome, cross-talk with hepatocytes and alter hepatic lipid metabolism causing NASH and HCC. We found an identical profile of CD8+T and NKT-cell activation in human NASH underlining the clinical relevance of our model. As the mechanisms of immune cell activation in NASH and transition to HCC remain unknown, this research proposal aims to (1) Identify the priming cell types in metabolic CD8+ T-, NKT-cell activation and the molecular mechanisms of immune cell-hepatocyte crosstalk. (2) Determine the role of antigen recognition and danger- or pathogen-associated molecular patterns in NASH/HCC. (3) Identify the environmental and genetic determinants of NASH to HCC transition. Our findings will enhance the understanding of NASH and HCC development by identifying the underlying mechanisms of immune cell activation. We will identify genetic changes facilitating NASH to HCC transition and whether metabolic normalization of former NASH patients suffices to significantly reduce HCC.
Summary
Overweight and metabolic syndrome are reaching pandemic dimensions in industrialized countries and are rising in developing countries. Clinically these diseases can manifest in non-alcoholic fatty liver disease (NAFLD), the most frequent liver disease world-wide. A significant number of NAFLD patients develop non-alcoholic steatohepatitis (NASH), fibrosis and hepatocellular carcinoma (HCC), making NASH-driven HCC the most rapidly increasing cancer in the USA, with a similar trend in Europe. While HCC is the second most common cause of cancer related death, the mechanisms triggering NASH and subsequent HCC are poorly understood and efficacious therapies are lacking. My group has strong expertise in inflammation-driven HCC (e.g. by Hepatitis B, C viruses). Recently, we have established a mouse model of NASH-driven HCC recapitulating human pathology in the context of metabolic syndrome. We demonstrated for the first time that CD8+ T- and natural killer T (NKT)-cells become activated during metabolic syndrome, cross-talk with hepatocytes and alter hepatic lipid metabolism causing NASH and HCC. We found an identical profile of CD8+T and NKT-cell activation in human NASH underlining the clinical relevance of our model. As the mechanisms of immune cell activation in NASH and transition to HCC remain unknown, this research proposal aims to (1) Identify the priming cell types in metabolic CD8+ T-, NKT-cell activation and the molecular mechanisms of immune cell-hepatocyte crosstalk. (2) Determine the role of antigen recognition and danger- or pathogen-associated molecular patterns in NASH/HCC. (3) Identify the environmental and genetic determinants of NASH to HCC transition. Our findings will enhance the understanding of NASH and HCC development by identifying the underlying mechanisms of immune cell activation. We will identify genetic changes facilitating NASH to HCC transition and whether metabolic normalization of former NASH patients suffices to significantly reduce HCC.
Max ERC Funding
1 995 860 €
Duration
Start date: 2016-07-01, End date: 2021-06-30
Project acronym HOLDING-HANDS
Project Holding hands: cell-cell junctions in breast cancer metastasis and resistance to therapy
Researcher (PI) Nicola Aceto
Host Institution (HI) UNIVERSITAT BASEL
Call Details Starting Grant (StG), LS4, ERC-2015-STG
Summary Breast cancer is the most common cancer in women, resulting in as many as 500000 deaths per year worldwide. Patients with breast cancer die unequivocally because of the development of incurable distant metastases and not because of symptoms related to the primary site. Understanding the complex, yet fundamental mechanisms driving breast cancer metastasis is critical to develop therapies tailored to this disease.
The current understanding of how metastasis occurs is derived primarily from mouse models and largely dominated by the notion that single migratory cancer cells within the primary tumor can actively disseminate to distant sites and develop as metastatic deposits. Unexpectedly, our very recent study on patient blood samples has shown that cancer cell groupings, held together through strong cell-cell junctions, can break off the primary tumor and form a metastatic lesion up to 50 times more efficiently than single migratory cancer cells (Aceto et al, Cell, 2014). These findings lead to new open questions, yet highlight a previously unappreciated and targetable mechanism of cancer dissemination.
Our preliminary data suggest that, among all types of cell-cell junctions, desmosomes and tight junctions are involved in this process, and therefore represent unprecedented options for developing a metastasis-tailored therapy for breast cancer.
The two predominant goals of this proposal are: first, to define the role of specific desmosome (DSG2) and tight junction (CLDN3 and TJP2) components in the development of metastasis. Second, to address their involvement in cellular signaling and response to therapy. These studies will not only use our first-of-a-kind in vivo models developed from patients with breast cancer metastases, but also cross the boundaries between basic science and clinical applications.
Our research has the long-term ambition to lead to a novel class of therapeutic agents tailored to block cell-cell junctions and prevent metastatic spread of cancer.
Summary
Breast cancer is the most common cancer in women, resulting in as many as 500000 deaths per year worldwide. Patients with breast cancer die unequivocally because of the development of incurable distant metastases and not because of symptoms related to the primary site. Understanding the complex, yet fundamental mechanisms driving breast cancer metastasis is critical to develop therapies tailored to this disease.
The current understanding of how metastasis occurs is derived primarily from mouse models and largely dominated by the notion that single migratory cancer cells within the primary tumor can actively disseminate to distant sites and develop as metastatic deposits. Unexpectedly, our very recent study on patient blood samples has shown that cancer cell groupings, held together through strong cell-cell junctions, can break off the primary tumor and form a metastatic lesion up to 50 times more efficiently than single migratory cancer cells (Aceto et al, Cell, 2014). These findings lead to new open questions, yet highlight a previously unappreciated and targetable mechanism of cancer dissemination.
Our preliminary data suggest that, among all types of cell-cell junctions, desmosomes and tight junctions are involved in this process, and therefore represent unprecedented options for developing a metastasis-tailored therapy for breast cancer.
The two predominant goals of this proposal are: first, to define the role of specific desmosome (DSG2) and tight junction (CLDN3 and TJP2) components in the development of metastasis. Second, to address their involvement in cellular signaling and response to therapy. These studies will not only use our first-of-a-kind in vivo models developed from patients with breast cancer metastases, but also cross the boundaries between basic science and clinical applications.
Our research has the long-term ambition to lead to a novel class of therapeutic agents tailored to block cell-cell junctions and prevent metastatic spread of cancer.
Max ERC Funding
1 744 921 €
Duration
Start date: 2016-03-01, End date: 2021-02-28
Project acronym HypoFlam
Project Targeting hypothalamic inflammation in obesity and diabetes
Researcher (PI) Matthias TSCHOEP
Host Institution (HI) HELMHOLTZ ZENTRUM MUENCHEN DEUTSCHES FORSCHUNGSZENTRUM FUER GESUNDHEIT UND UMWELT GMBH
Call Details Advanced Grant (AdG), LS4, ERC-2015-AdG
Summary Despite educational, political and biomedical research efforts, obesity, type 2 diabetes and related metabolic diseases are increasing worldwide at an alarming rate. Failure to deliver efficient and safe medical therapies is a result of our incomplete understanding of the pathogenesis of the metabolic syndrome. Current knowledge implicates impaired CNS control over appetite, body weight and systemic metabolism as a key pathogenic process leading to obesity and type 2 diabetes. Yet, years of intense study focused on neuronal signalling have produced no transformative breakthroughs. Control centers located in the hypothalamic arcuate nucleus (ARC) serve as primary targets of afferent hormone signals regulating systemic control of body weight and metabolism and appear to be most affected by high fat high sugar (HFHS) diets. Recently, we discovered that in the early stages of the metabolic syndrome induced by consumption of a HFHS diet, significant changes beyond neuronal pathologies occur in hypothalamic nuclei responsible for metabolic control, such as the ARC. Specifically, we observe in hypothalami of mice, rats and humans increased reactive microgliosis and astrocytosis as well as a decline in regulatory T-cell presence. We hypothesize that hypothalamic inflammatory processes triggered by hypercaloric environments impair hormone sensing, disrupt glial homeostasis and incapacitate these hypothalamic control centers, ultimately contributing to development of obesity and diabetes. Building on a considerable body of preliminary data, we will apply an array of advanced technologies to A) develop a functional understanding of the pathophysiology of diet-induced hypothalamic inflammation, B) test if hypothalamic inflammation plays a critical role in the development of the metabolic syndrome, and C) attempt to target these novel pathogenic processes for the first time using novel targeted therapeutic approaches.
Summary
Despite educational, political and biomedical research efforts, obesity, type 2 diabetes and related metabolic diseases are increasing worldwide at an alarming rate. Failure to deliver efficient and safe medical therapies is a result of our incomplete understanding of the pathogenesis of the metabolic syndrome. Current knowledge implicates impaired CNS control over appetite, body weight and systemic metabolism as a key pathogenic process leading to obesity and type 2 diabetes. Yet, years of intense study focused on neuronal signalling have produced no transformative breakthroughs. Control centers located in the hypothalamic arcuate nucleus (ARC) serve as primary targets of afferent hormone signals regulating systemic control of body weight and metabolism and appear to be most affected by high fat high sugar (HFHS) diets. Recently, we discovered that in the early stages of the metabolic syndrome induced by consumption of a HFHS diet, significant changes beyond neuronal pathologies occur in hypothalamic nuclei responsible for metabolic control, such as the ARC. Specifically, we observe in hypothalami of mice, rats and humans increased reactive microgliosis and astrocytosis as well as a decline in regulatory T-cell presence. We hypothesize that hypothalamic inflammatory processes triggered by hypercaloric environments impair hormone sensing, disrupt glial homeostasis and incapacitate these hypothalamic control centers, ultimately contributing to development of obesity and diabetes. Building on a considerable body of preliminary data, we will apply an array of advanced technologies to A) develop a functional understanding of the pathophysiology of diet-induced hypothalamic inflammation, B) test if hypothalamic inflammation plays a critical role in the development of the metabolic syndrome, and C) attempt to target these novel pathogenic processes for the first time using novel targeted therapeutic approaches.
Max ERC Funding
2 402 280 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym iGBMavatars
Project Glioblastoma Subtype Avatar models for Target Discovery and Biology
Researcher (PI) Gaetano GARGIULO
Host Institution (HI) MAX DELBRUECK CENTRUM FUER MOLEKULARE MEDIZIN IN DER HELMHOLTZ-GEMEINSCHAFT (MDC)
Call Details Starting Grant (StG), LS4, ERC-2016-STG
Summary The Glioblastoma Multiforme (GBM) is the most common primary brain tumor and it is incurable. Two major challenges affect GBM clinical management: its heterogeneity (which treatment will best fit this very patient?) and its resistance to available treatments (will the patient benefit in any way from the chosen therapy?). Here we approach these questions with a personalized entry point. First, we aim to create “humanized” experimental models of GBM accurately reflecting patients at molecular level. These GBM Subtype Avatars models (GSA) will be exploited as “targeted patients” in personalized biology and intervention studies. Since GBM exists as molecular subtypes with similar histopathology but mutually exclusive genetic lesions and molecular features, we will generate GSA by targeting mutations recurrently associated with Proneural, Classical or Mesenchymal GBM subtypes into adult human neural stem cells (NSC). Evidence supports that these cells can give rise to high-grade gliomas when engineered with the appropriate genetic lesions. Next, engineered NSC will be orthotopically implanted into immunocompromised rats and the resulting tumors profiled for gene expression, DNA methylation and copy number aberrations. These profiles will be compared to those generated in patient-derived xenografts and biopsies. Second, to identify drug targets favoring patients’ response to the current standard of care, we will exploit GSA for state-of-art genetic screens in vivo. Specifically, we will seek for synthetic lethal interactions between DNA damaging agents and the GSA transcriptome using an in vivo CRISPRi screening approach. Third, to investigate the molecular basis of GBM heterogeneity in GSA models, we will combine genetic and immunophenotypic tracing with gene expression and epigenomic profiling. Identifying tumor-specific vulnerabilities in a dismal disease urging for effective therapies and its molecular fingerprinting convey conceivably rapid Translation in Oncology.
Summary
The Glioblastoma Multiforme (GBM) is the most common primary brain tumor and it is incurable. Two major challenges affect GBM clinical management: its heterogeneity (which treatment will best fit this very patient?) and its resistance to available treatments (will the patient benefit in any way from the chosen therapy?). Here we approach these questions with a personalized entry point. First, we aim to create “humanized” experimental models of GBM accurately reflecting patients at molecular level. These GBM Subtype Avatars models (GSA) will be exploited as “targeted patients” in personalized biology and intervention studies. Since GBM exists as molecular subtypes with similar histopathology but mutually exclusive genetic lesions and molecular features, we will generate GSA by targeting mutations recurrently associated with Proneural, Classical or Mesenchymal GBM subtypes into adult human neural stem cells (NSC). Evidence supports that these cells can give rise to high-grade gliomas when engineered with the appropriate genetic lesions. Next, engineered NSC will be orthotopically implanted into immunocompromised rats and the resulting tumors profiled for gene expression, DNA methylation and copy number aberrations. These profiles will be compared to those generated in patient-derived xenografts and biopsies. Second, to identify drug targets favoring patients’ response to the current standard of care, we will exploit GSA for state-of-art genetic screens in vivo. Specifically, we will seek for synthetic lethal interactions between DNA damaging agents and the GSA transcriptome using an in vivo CRISPRi screening approach. Third, to investigate the molecular basis of GBM heterogeneity in GSA models, we will combine genetic and immunophenotypic tracing with gene expression and epigenomic profiling. Identifying tumor-specific vulnerabilities in a dismal disease urging for effective therapies and its molecular fingerprinting convey conceivably rapid Translation in Oncology.
Max ERC Funding
1 500 000 €
Duration
Start date: 2017-07-01, End date: 2022-06-30
Project acronym Immune-senescence
Project Dual targeting of senescence and tumor immunity for cancer therapy
Researcher (PI) Andrea Alimonti
Host Institution (HI) FONDAZIONE PER L'ISTITUTO ONCOLOGICO DI RICERCA (IOR)
Call Details Consolidator Grant (CoG), LS4, ERC-2015-CoG
Summary We have previously demonstrated that cellular senescence opposes tumorigenesis thereby opening up new potential opportunities for cancer treatment. Senescence and tumor immunity in cancer are tightly interconnected. Tumor-infiltrating immune cells promote the clearance of senescent tumor cells thereby contributing to the tumor suppressive function of senescence. Moreover, T lymphocytes can drive senescence in cancers by secreting different cytokines in the tumor microenvironment. We have also recently reported that GR1+ myeloid cells antagonize treatment-induced senescence (TIS) and that compounds that block the tumor recruitment of GR1+ cells enhance TIS. Major objective of this proposal is to characterize the immune landscape of different prostate cancer mouse models in order to develop novel treatment modalities that combine pro-senescence compounds with immunotherapy. Using proteomics and bioinformatics approaches, we will assess how the genetic background of prostate tumors, shapes the tumor microenvironment and immune response during TIS. Next, we will define the mechanisms that regulate the recruitment and activation of myeloid derived suppressive cells, macrophages and B-lymphocytes in Pten deficient prostate tumors by focusing on a novel class of secreted factors identified in these tumors. We will also assess in vivo whether the secretome of tumor cells can transmit senescence to TILs and compounds that interfere with the secretome can prevent immunosenescence. Finally, we will develop monoclonal antibodies directed towards senescent tumors cells that we will use as diagnostic and therapeutic tools. These antibodies will be used as biomarkers to detect senescent tumor cells in prostate cancers and will be tested in pre-clinical trials to assess whether they improve tumor clearance during TIS. Our findings will form the basis for future clinical trials in prostate cancer patients.
Summary
We have previously demonstrated that cellular senescence opposes tumorigenesis thereby opening up new potential opportunities for cancer treatment. Senescence and tumor immunity in cancer are tightly interconnected. Tumor-infiltrating immune cells promote the clearance of senescent tumor cells thereby contributing to the tumor suppressive function of senescence. Moreover, T lymphocytes can drive senescence in cancers by secreting different cytokines in the tumor microenvironment. We have also recently reported that GR1+ myeloid cells antagonize treatment-induced senescence (TIS) and that compounds that block the tumor recruitment of GR1+ cells enhance TIS. Major objective of this proposal is to characterize the immune landscape of different prostate cancer mouse models in order to develop novel treatment modalities that combine pro-senescence compounds with immunotherapy. Using proteomics and bioinformatics approaches, we will assess how the genetic background of prostate tumors, shapes the tumor microenvironment and immune response during TIS. Next, we will define the mechanisms that regulate the recruitment and activation of myeloid derived suppressive cells, macrophages and B-lymphocytes in Pten deficient prostate tumors by focusing on a novel class of secreted factors identified in these tumors. We will also assess in vivo whether the secretome of tumor cells can transmit senescence to TILs and compounds that interfere with the secretome can prevent immunosenescence. Finally, we will develop monoclonal antibodies directed towards senescent tumors cells that we will use as diagnostic and therapeutic tools. These antibodies will be used as biomarkers to detect senescent tumor cells in prostate cancers and will be tested in pre-clinical trials to assess whether they improve tumor clearance during TIS. Our findings will form the basis for future clinical trials in prostate cancer patients.
Max ERC Funding
2 000 000 €
Duration
Start date: 2016-07-01, End date: 2021-06-30
Project acronym IMMUNOTHROMBOSIS
Project Cross-talk between platelets and immunity - implications for host homeostasis and defense
Researcher (PI) Steffen MASSBERG
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Call Details Advanced Grant (AdG), LS4, ERC-2018-ADG
Summary The overall aim of the IMMUNOTHROMBOSIS project is to clarify the mechanisms underlying the recently identified synergism between thrombosis and inflammation. Thrombus formation and inflammation are vital host responses that ensure homeostasis, but can also drive cardiovascular disease, including myocardial infarction and stroke, the major causes of death in Europe. My group and others discovered, that thrombosis and inflammation are not to be considered separate processes. They are tightly interrelated and synergize in immune defence, but also in inflammatory and thrombotic diseases in a process we termed immunothrombosis. Targeting this synergism has great potential to identify innovative and unconventional strategies to more specifically prevent undesired activation of thrombotic and inflammatory pathways. However, this requires a deeper mechanistic understanding of immunothrombosis. I recently identified two ground-breaking novel immunothrombotic principles: I discovered that platelets have the ability to migrate autonomously, which assists immune cells in fighting pathogens. Further, I revealed that immune cells play a central role in controlling the production of platelets from their megakaryocyte precursors. The physiological and pathophysiological relevance of both processes is unclear. This is the starting point and focus of the IMMUNOTHROMBOSIS project. My aim is to define how platelets use their ability to migrate to support immune cells in protection of vascular integrity (objective 1) and to identify the contribution of platelet migration to different cardiovascular diseases involving immunothrombotic tissue damage (objective 2). Finally, I will clarify how inflammatory responses feedback to the production of thrombotic effectors and dissect inflammatory mechanisms that control platelet production (objective 3). IMMUNOTHROMBOSIS will identify new options for specific prevention or treatment of thrombotic and inflammatory cardiovascular diseases.
Summary
The overall aim of the IMMUNOTHROMBOSIS project is to clarify the mechanisms underlying the recently identified synergism between thrombosis and inflammation. Thrombus formation and inflammation are vital host responses that ensure homeostasis, but can also drive cardiovascular disease, including myocardial infarction and stroke, the major causes of death in Europe. My group and others discovered, that thrombosis and inflammation are not to be considered separate processes. They are tightly interrelated and synergize in immune defence, but also in inflammatory and thrombotic diseases in a process we termed immunothrombosis. Targeting this synergism has great potential to identify innovative and unconventional strategies to more specifically prevent undesired activation of thrombotic and inflammatory pathways. However, this requires a deeper mechanistic understanding of immunothrombosis. I recently identified two ground-breaking novel immunothrombotic principles: I discovered that platelets have the ability to migrate autonomously, which assists immune cells in fighting pathogens. Further, I revealed that immune cells play a central role in controlling the production of platelets from their megakaryocyte precursors. The physiological and pathophysiological relevance of both processes is unclear. This is the starting point and focus of the IMMUNOTHROMBOSIS project. My aim is to define how platelets use their ability to migrate to support immune cells in protection of vascular integrity (objective 1) and to identify the contribution of platelet migration to different cardiovascular diseases involving immunothrombotic tissue damage (objective 2). Finally, I will clarify how inflammatory responses feedback to the production of thrombotic effectors and dissect inflammatory mechanisms that control platelet production (objective 3). IMMUNOTHROMBOSIS will identify new options for specific prevention or treatment of thrombotic and inflammatory cardiovascular diseases.
Max ERC Funding
2 321 416 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym INSIGHT
Project An Integrated Network of Glucose Sensing Cells in Glucose Homeostasis
Researcher (PI) Bernard Marie Thorens
Host Institution (HI) UNIVERSITE DE LAUSANNE
Call Details Advanced Grant (AdG), LS4, ERC-2010-AdG_20100317
Summary Glucose sensing cells constantly monitor glucose absorption from food and variations in blood glycemic levels. They control the secretion of GLP-1, insulin and glucagon, and the activity of the autonomic nervous system. These hormonal and nervous signals coordinate glucose utilization by liver, fat and muscle, and endogenous glucose production as well as feeding and energy expenditure. Type 2 diabetes, a disease that afflicts an increasing proportion of the world population, is characterized by insufficient insulin production by pancreatic beta-cells, abnormal secretion of GLP-1 and glucagon, and is often associated with imbalance between feeding and energy expenditure. Type 2 diabetes can thus be considered a disease of glucose sensing. Here, I propose a research program using cell biological, genetic, genomic and physiology techniques to investigate three aspects of this integrated glucose sensing network:
1. The identification of novel molecular pathways activated by GLP-1 and that control adult beta-cell proliferation, glucose competence and apoptosis in order to maintain sufficient insulin secretion capacity.
2. The identification and molecular characterization of brain glucose sensors, which share functional similarities with pancreatic beta-cells, and which control glucose homeostasis and pancreatic islet mass and function.
3. The discovery by unbiased genetic-genomic analysis of loci, genes, and gene networks involved in central hypoglycemia detection and the secretion of glucagon, a process whose deregulation is a major limitation in insulin treatment of both type 1 and type 2 diabetes.
Together these investigations will bring new knowledge on the integrated control of glucose homeostasis that may lead to novel strategies to control diabetes.
Summary
Glucose sensing cells constantly monitor glucose absorption from food and variations in blood glycemic levels. They control the secretion of GLP-1, insulin and glucagon, and the activity of the autonomic nervous system. These hormonal and nervous signals coordinate glucose utilization by liver, fat and muscle, and endogenous glucose production as well as feeding and energy expenditure. Type 2 diabetes, a disease that afflicts an increasing proportion of the world population, is characterized by insufficient insulin production by pancreatic beta-cells, abnormal secretion of GLP-1 and glucagon, and is often associated with imbalance between feeding and energy expenditure. Type 2 diabetes can thus be considered a disease of glucose sensing. Here, I propose a research program using cell biological, genetic, genomic and physiology techniques to investigate three aspects of this integrated glucose sensing network:
1. The identification of novel molecular pathways activated by GLP-1 and that control adult beta-cell proliferation, glucose competence and apoptosis in order to maintain sufficient insulin secretion capacity.
2. The identification and molecular characterization of brain glucose sensors, which share functional similarities with pancreatic beta-cells, and which control glucose homeostasis and pancreatic islet mass and function.
3. The discovery by unbiased genetic-genomic analysis of loci, genes, and gene networks involved in central hypoglycemia detection and the secretion of glucagon, a process whose deregulation is a major limitation in insulin treatment of both type 1 and type 2 diabetes.
Together these investigations will bring new knowledge on the integrated control of glucose homeostasis that may lead to novel strategies to control diabetes.
Max ERC Funding
2 499 421 €
Duration
Start date: 2011-08-01, End date: 2016-07-31
Project acronym INTEGRATE
Project Central integration of metabolic and hedonic cues in metabolic health
Researcher (PI) Bernard Marie Thorens
Host Institution (HI) UNIVERSITE DE LAUSANNE
Call Details Advanced Grant (AdG), LS4, ERC-2015-AdG
Summary During evolution the brain has selected glucose as a main source of metabolic energy. This has imposed homeostatic and behavioral constraints. First, the glycemic levels must be maintained at a minimum of ~5 mM to ensure constant energy supply to the brain. Second, a high reward value has to be attributed to glucose-containing foods to increase the motivation to obtain them. These homeostatic and hedonic regulations depend on glucose sensing cells and neuronal circuits in the central nervous system. These cells and circuits regulate the activity of the sympathetic and parasympathetic nerves, which control the function of peripheral organs (liver, fat, muscles) and the secretion of glucagon and insulin by pancreatic islet cells. They also attribute a reward value to glucose-containing foods to control food-seeking behavior, a process that involves the mesolimbic dopaminergic system. Here, we will focus on three interrelated aims:
1. Identify the physiological role of glucose sensing neurons of the ventromedial hypothalamic nucleus (VMN, a key feeding and glucoregulatory center) in glucose homeostasis and food preference; identify their cellular diversity and their molecular make-up; and characterize their deregulations in metabolic diseases.
2. Characterize the molecular physiology of glucose sensing neurons of the paraventricular thalamus, which modulate the activity of the mesolimbic dopaminergic system to control motivated sucrose-seeking behavior; determine their control by other interoceptive signals, including from glucose sensing cells of the VMN.
3. Establish new molecular approaches to characterize, at the molecular and functional levels, the impact of early postnatal nutrition on the development and function of central glucose sensing cells in the control of adult animal physiology.
These studies will open-up new perspectives in the understanding of homeostatic and hedonic regulatory pathways, which preserve metabolic health over a lifetime.
Summary
During evolution the brain has selected glucose as a main source of metabolic energy. This has imposed homeostatic and behavioral constraints. First, the glycemic levels must be maintained at a minimum of ~5 mM to ensure constant energy supply to the brain. Second, a high reward value has to be attributed to glucose-containing foods to increase the motivation to obtain them. These homeostatic and hedonic regulations depend on glucose sensing cells and neuronal circuits in the central nervous system. These cells and circuits regulate the activity of the sympathetic and parasympathetic nerves, which control the function of peripheral organs (liver, fat, muscles) and the secretion of glucagon and insulin by pancreatic islet cells. They also attribute a reward value to glucose-containing foods to control food-seeking behavior, a process that involves the mesolimbic dopaminergic system. Here, we will focus on three interrelated aims:
1. Identify the physiological role of glucose sensing neurons of the ventromedial hypothalamic nucleus (VMN, a key feeding and glucoregulatory center) in glucose homeostasis and food preference; identify their cellular diversity and their molecular make-up; and characterize their deregulations in metabolic diseases.
2. Characterize the molecular physiology of glucose sensing neurons of the paraventricular thalamus, which modulate the activity of the mesolimbic dopaminergic system to control motivated sucrose-seeking behavior; determine their control by other interoceptive signals, including from glucose sensing cells of the VMN.
3. Establish new molecular approaches to characterize, at the molecular and functional levels, the impact of early postnatal nutrition on the development and function of central glucose sensing cells in the control of adult animal physiology.
These studies will open-up new perspectives in the understanding of homeostatic and hedonic regulatory pathways, which preserve metabolic health over a lifetime.
Max ERC Funding
2 499 714 €
Duration
Start date: 2016-10-01, End date: 2021-09-30
Project acronym ISLETVASC
Project Molecular Mechanisms Regulating Pancreatic Islet Vascularization
Researcher (PI) Matthew Poy
Host Institution (HI) MAX DELBRUECK CENTRUM FUER MOLEKULARE MEDIZIN IN DER HELMHOLTZ-GEMEINSCHAFT (MDC)
Call Details Starting Grant (StG), LS4, ERC-2010-StG_20091118
Summary Many reports indicate the number of people with diabetes will exceed 350 million by the year 2030. Both type 1 and type 2 diabetes are characterized by the deterioration and impaired function of pancreatic b-cells. While transplantation is a promising strategy to replace lost tissue, several obstacles remain in the pathway to its clinical application. Whether b-cells are derived from patient samples or differentiated from embryonic stem cells, a major concern facing these strategies is how a recipient will respond to transplanted foreign tissue. Since the native environment for pancreatic islets is comprised of neural and vascular networks, successful integration may depend upon signals received from these neighboring cell types. Using a multidisciplinary approach, the principal investigator plans to elucidate molecular mechanisms underlying the interactions between pancreatic islet cells and their neighboring endothelial cells. Developing an understanding of how these interactions change during the pathogenesis of disease will provide insight into how islet growth and insulin release is dependent upon signals received from adjacent cell types. Emphasis will be placed on genetic mouse models to measure changes in gene expression in both isolated pancreatic b-cells and endothelial cells to identify genes that mediate the interaction between these cell types. In addition, it is of great interest to identify secreted factors that may constitute autocrine or paracrine signalling mechanisms that influence growth and function between these cell types. Furthermore, it will be determined whether current protocols for the differentiation of mouse stem cells into insulin producing cells are improved by restoring the expression of genes which facilitate communication to endothelial cells. This project aims to identify genes essential to the vascular context of pancreatic b-cells to improve transplantation protocols and facilitate the development of therapeutic strategies for diabetes.
Summary
Many reports indicate the number of people with diabetes will exceed 350 million by the year 2030. Both type 1 and type 2 diabetes are characterized by the deterioration and impaired function of pancreatic b-cells. While transplantation is a promising strategy to replace lost tissue, several obstacles remain in the pathway to its clinical application. Whether b-cells are derived from patient samples or differentiated from embryonic stem cells, a major concern facing these strategies is how a recipient will respond to transplanted foreign tissue. Since the native environment for pancreatic islets is comprised of neural and vascular networks, successful integration may depend upon signals received from these neighboring cell types. Using a multidisciplinary approach, the principal investigator plans to elucidate molecular mechanisms underlying the interactions between pancreatic islet cells and their neighboring endothelial cells. Developing an understanding of how these interactions change during the pathogenesis of disease will provide insight into how islet growth and insulin release is dependent upon signals received from adjacent cell types. Emphasis will be placed on genetic mouse models to measure changes in gene expression in both isolated pancreatic b-cells and endothelial cells to identify genes that mediate the interaction between these cell types. In addition, it is of great interest to identify secreted factors that may constitute autocrine or paracrine signalling mechanisms that influence growth and function between these cell types. Furthermore, it will be determined whether current protocols for the differentiation of mouse stem cells into insulin producing cells are improved by restoring the expression of genes which facilitate communication to endothelial cells. This project aims to identify genes essential to the vascular context of pancreatic b-cells to improve transplantation protocols and facilitate the development of therapeutic strategies for diabetes.
Max ERC Funding
1 496 257 €
Duration
Start date: 2010-11-01, End date: 2015-10-31
Project acronym KIDNEY CANCER
Project Molecular mechanisms underlying control of renal epithelial proliferative homeostasis
Researcher (PI) Ian James Frew
Host Institution (HI) UNIVERSITAT ZURICH
Call Details Starting Grant (StG), LS4, ERC-2010-StG_20091118
Summary This research grant has two major aspects. The first seeks to understand the molecular and cellular basis of the evolution of clear cell renal cell carcinoma(ccRCC), the most frequent form of kidney cancer. We will utilise an integrated approach based on mouse genetics, the use of primary kidney epithelial cell culture systems, genetic screening approaches using RNA interference libraries and analysis of the genetic and molecular changes that arise in human kidney tumours. The rationale behind these studies is that by better understanding the molecular causes of ccRCC it will be possible to identify new molecules or signaling pathways that could serve as appropriate therapeutic targets. The second aspect of this grant relates to the development of a flexible experimental platform that will allow the rapid and simultaneous up- and down-regulation of gene expression in the mouse kidney in a manner in which the affected cells are marked by a luminescent marker. This system will be based on the injection of modified lentiviral gene overexpression and gene knockdown vectors, allowing us to exploit recently-developed genome-wide cDNA libraries and RNA interference libraries. This experimental system should be equally applicable to other organ systems and will allow for the first time a systematic approach to the manipulation of gene expression in living mice, additionally bypassing the time limitations associated with conventional mouse genetic approaches. We aim to develop this system within the biological context of this grant and will combine it with live-animal imaging approaches to generate a series of mouse models of ccRCC. These will ultimately serve as invaluable tools for testing novel therapeutic approaches against this currently untreatable disease.
Summary
This research grant has two major aspects. The first seeks to understand the molecular and cellular basis of the evolution of clear cell renal cell carcinoma(ccRCC), the most frequent form of kidney cancer. We will utilise an integrated approach based on mouse genetics, the use of primary kidney epithelial cell culture systems, genetic screening approaches using RNA interference libraries and analysis of the genetic and molecular changes that arise in human kidney tumours. The rationale behind these studies is that by better understanding the molecular causes of ccRCC it will be possible to identify new molecules or signaling pathways that could serve as appropriate therapeutic targets. The second aspect of this grant relates to the development of a flexible experimental platform that will allow the rapid and simultaneous up- and down-regulation of gene expression in the mouse kidney in a manner in which the affected cells are marked by a luminescent marker. This system will be based on the injection of modified lentiviral gene overexpression and gene knockdown vectors, allowing us to exploit recently-developed genome-wide cDNA libraries and RNA interference libraries. This experimental system should be equally applicable to other organ systems and will allow for the first time a systematic approach to the manipulation of gene expression in living mice, additionally bypassing the time limitations associated with conventional mouse genetic approaches. We aim to develop this system within the biological context of this grant and will combine it with live-animal imaging approaches to generate a series of mouse models of ccRCC. These will ultimately serve as invaluable tools for testing novel therapeutic approaches against this currently untreatable disease.
Max ERC Funding
1 500 000 €
Duration
Start date: 2010-12-01, End date: 2015-11-30
Project acronym KRABNKAP
Project KRAB/KAP1-mediated gene regulation in mammalian physiology and human diseases
Researcher (PI) Didier Trono
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Advanced Grant (AdG), LS4, ERC-2010-AdG_20100317
Summary This project aims at exploring the roles or KRAB/KAP1-mediated gene regulation in mammalian physiology and the possible impact of its dysfunctions on human health. The proper control of gene expression is paramount to all biological events, and is orchestrated through a sophisticated balance of activating and repressing influences. The mouse and human genomes contain around four hundred genes encoding KRAB-containing zinc finger proteins (KRAB-ZFPs), a family of tetrapod-restricted sequence-specific DNA-binding transcriptional repressors. Even though these KRAB-ZFPs represent the single largest group of transcriptional regulators encoded by higher vertebrates, their functions remain largely unknown. Nevertheless, it has been established that they share an essential cofactor, the histone methyltransferase- and histone deacetylase-recruiting KAP1, and act by triggering the formation of heterochromatin. KAP1 is ubiquitous, and KRAB-ZFPs are present in most if not all cells, albeit along distinctly cell type-, stage- and state-specific patterns, suggesting that KRAB/KAP1 gene regulation influences a very large number of physiological events. A few years ago, we launched a program aimed at addressing this hypothesis through a combination of genetic, functional and molecular studies focused on two paradigmatic organs, the lympho-hematopoietic system and the liver. Our preliminary results confirm that KRAB/KAP1-mediated transcriptional control is a master regulator of mammalian homeostasis. Accordingly, we now propose to dissect the regulatory networks orchestrated by KAP1 and KRAB-ZFPs in these two systems, to identify their gene targets and the mechanisms of their control, and to probe their possible implication in human pathologies targeting these organs.
Summary
This project aims at exploring the roles or KRAB/KAP1-mediated gene regulation in mammalian physiology and the possible impact of its dysfunctions on human health. The proper control of gene expression is paramount to all biological events, and is orchestrated through a sophisticated balance of activating and repressing influences. The mouse and human genomes contain around four hundred genes encoding KRAB-containing zinc finger proteins (KRAB-ZFPs), a family of tetrapod-restricted sequence-specific DNA-binding transcriptional repressors. Even though these KRAB-ZFPs represent the single largest group of transcriptional regulators encoded by higher vertebrates, their functions remain largely unknown. Nevertheless, it has been established that they share an essential cofactor, the histone methyltransferase- and histone deacetylase-recruiting KAP1, and act by triggering the formation of heterochromatin. KAP1 is ubiquitous, and KRAB-ZFPs are present in most if not all cells, albeit along distinctly cell type-, stage- and state-specific patterns, suggesting that KRAB/KAP1 gene regulation influences a very large number of physiological events. A few years ago, we launched a program aimed at addressing this hypothesis through a combination of genetic, functional and molecular studies focused on two paradigmatic organs, the lympho-hematopoietic system and the liver. Our preliminary results confirm that KRAB/KAP1-mediated transcriptional control is a master regulator of mammalian homeostasis. Accordingly, we now propose to dissect the regulatory networks orchestrated by KAP1 and KRAB-ZFPs in these two systems, to identify their gene targets and the mechanisms of their control, and to probe their possible implication in human pathologies targeting these organs.
Max ERC Funding
2 499 996 €
Duration
Start date: 2011-04-01, End date: 2016-03-31
Project acronym LifeWithoutInsulin
Project Metabolic actions of brain leptin receptors signaling in type 1 diabetes
Researcher (PI) Roberto Coppari
Host Institution (HI) UNIVERSITE DE GENEVE
Call Details Consolidator Grant (CoG), LS4, ERC-2013-CoG
Summary An established dogma is that insulin is absolutely required for survival. This notion has been supported by the fact that the sole life-saving intervention available to the millions affected by type 1 diabetes mellitus (T1DM; an illness caused by pancreatic β-cell loss and hence insulin deficiency) is insulin therapy. This treatment however does not restore normal metabolic homeostasis. In fact, the life-expectancy and -quality of T1DM people is worse compared to normal subjects. In part, this is due to challenging morbidities of T1DM, as for example heart disease and hypoglycemia, both of which are thought to be caused by insulin therapy itself. Indeed, owing to insulin’s lipogenic actions, this treatment likely contributes to the ectopic lipid deposition (i.e.: in non-adipose tissues) and extremely high incidence of coronary artery disease seen in T1DM subjects. Also, due to insulin’s potent, fast-acting, glycemia-lowering action, this therapy significantly increases the risk of hypoglycemia; a disabling and life threatening event. Because insulin therapy does not restore metabolic homeostasis in T1DM subjects, better intervention is urgently needed. To these ends, we and others have shown that the hyperglycemic and lethal consequences of insulin deficiency can be rescued by administration of the adipocyte-secreted hormone leptin. Not only these results challenge an established view, they also raise a fundamental biological and medical question: what are the mechanisms by which leptin improves hyperglycemia and permits survival in the context of insulin deficiency? This proposal aims at identifying the critical cellular and molecular components underlying the beneficial effects of leptin in the context of insulin deficiency. Once identified, manipulation of these components has the potential to improve life-expectancy and -quality of the millions affected by insulin deficiency (e.g.: T1DM and also some late-stage type 2 diabetics).
Summary
An established dogma is that insulin is absolutely required for survival. This notion has been supported by the fact that the sole life-saving intervention available to the millions affected by type 1 diabetes mellitus (T1DM; an illness caused by pancreatic β-cell loss and hence insulin deficiency) is insulin therapy. This treatment however does not restore normal metabolic homeostasis. In fact, the life-expectancy and -quality of T1DM people is worse compared to normal subjects. In part, this is due to challenging morbidities of T1DM, as for example heart disease and hypoglycemia, both of which are thought to be caused by insulin therapy itself. Indeed, owing to insulin’s lipogenic actions, this treatment likely contributes to the ectopic lipid deposition (i.e.: in non-adipose tissues) and extremely high incidence of coronary artery disease seen in T1DM subjects. Also, due to insulin’s potent, fast-acting, glycemia-lowering action, this therapy significantly increases the risk of hypoglycemia; a disabling and life threatening event. Because insulin therapy does not restore metabolic homeostasis in T1DM subjects, better intervention is urgently needed. To these ends, we and others have shown that the hyperglycemic and lethal consequences of insulin deficiency can be rescued by administration of the adipocyte-secreted hormone leptin. Not only these results challenge an established view, they also raise a fundamental biological and medical question: what are the mechanisms by which leptin improves hyperglycemia and permits survival in the context of insulin deficiency? This proposal aims at identifying the critical cellular and molecular components underlying the beneficial effects of leptin in the context of insulin deficiency. Once identified, manipulation of these components has the potential to improve life-expectancy and -quality of the millions affected by insulin deficiency (e.g.: T1DM and also some late-stage type 2 diabetics).
Max ERC Funding
1 999 500 €
Duration
Start date: 2014-06-01, End date: 2019-05-31
Project acronym LIVERCANCERMECHANISM
Project Uncovering the mechanisms of inflammation induced liver tissue destruction and carcinogenesis
Researcher (PI) Mathias Heikenwaelder
Host Institution (HI) HELMHOLTZ ZENTRUM MUENCHEN DEUTSCHES FORSCHUNGSZENTRUM FUER GESUNDHEIT UND UMWELT GMBH
Call Details Starting Grant (StG), LS4, ERC-2010-StG_20091118
Summary Hepatocellular carcinoma (HCC) is caused by chronic hepatitis and is the third most common cause of cancer-related death worldwide, with a rising incidence in first world countries. To date no effective therapies other than liver transplantation are available for this disease.
Previous studies have provided evidence that inflammatory signalling pathways (e.g. the NF-b pathway) are crucial modulators of liver cancer development. However, the exact mechanisms driving hepatitis-induced liver damage and cancer formation remain elusive. Among others, aberrant expression of cytotoxic cytokines is thought to be critically involved.
We have recently shown that the inflammatory cytokines lymphotoxin (LT) and are specifically upregulated in livers of patients suffering from hepatitis C and B virus-induced liver inflammation or HCC and that liver specific expression of LT and in mice (AlbLT) suffices to induce inflammation-induced liver cancer development. We could further demonstrate that this depended on the presence of functional lymphocytes.
My proposal is pillared by three main approaches that all aim to elucidate the exact cellular and molecular mechanisms underlying chronic liver damage and HCC development in humans as well as in mouse models of inflammation- or carcinogen-induced liver cancer.
First, we will identify the particular immune cell type(s) (e.g. B- or T-lymphocytes; macrophages; NK-T cells) involved in HCC development. Although inflammatory signalling and immune cells appear to be important in HCC development it remains elusive, which immune cell type(s) contribute to inflammation induced liver cancer development.
Secondly, we will investigate how inflammatory signalling pathways induce chromosomal aberrations. It is known that inflammatory signalling cascades cause chromosomal aberrations; however, the detailed mechanisms by which this occurs are not fully understood. Additionally, we will determine how inflammatory signalling influences the pathways involved in DNA repair, replication and chromosomal segregation culminating in chromosomal aberrations and cancer.
Finally, we will examine the role of oval cells in liver cancer formation. Oval cells, which are putative liver-cancer stem cells, differentiate into either hepatocytes or cholangiocytes, proliferate under inflammatory conditions, and are found within HCC. However, their exact functional role in liver carcinogenesis is unknown. We will biochemically characterize proliferating and HCC-associated ovals cells in mouse models of inflammation-induced HCC and in diseased human liver tissues. This will pave the way for the development of the first genetic tools to deplete or express genes in an oval cell-specific manner.
The new scientific knowledge gained by these studies investigating how immune cells and inflammatory signalling induce chronic liver damage and cancer on a mechanistic level, and how oval cells contribute to HCC will provide the basis for future novel pharmacological approaches to treating inflammatory liver diseases and HCC in humans.
Summary
Hepatocellular carcinoma (HCC) is caused by chronic hepatitis and is the third most common cause of cancer-related death worldwide, with a rising incidence in first world countries. To date no effective therapies other than liver transplantation are available for this disease.
Previous studies have provided evidence that inflammatory signalling pathways (e.g. the NF-b pathway) are crucial modulators of liver cancer development. However, the exact mechanisms driving hepatitis-induced liver damage and cancer formation remain elusive. Among others, aberrant expression of cytotoxic cytokines is thought to be critically involved.
We have recently shown that the inflammatory cytokines lymphotoxin (LT) and are specifically upregulated in livers of patients suffering from hepatitis C and B virus-induced liver inflammation or HCC and that liver specific expression of LT and in mice (AlbLT) suffices to induce inflammation-induced liver cancer development. We could further demonstrate that this depended on the presence of functional lymphocytes.
My proposal is pillared by three main approaches that all aim to elucidate the exact cellular and molecular mechanisms underlying chronic liver damage and HCC development in humans as well as in mouse models of inflammation- or carcinogen-induced liver cancer.
First, we will identify the particular immune cell type(s) (e.g. B- or T-lymphocytes; macrophages; NK-T cells) involved in HCC development. Although inflammatory signalling and immune cells appear to be important in HCC development it remains elusive, which immune cell type(s) contribute to inflammation induced liver cancer development.
Secondly, we will investigate how inflammatory signalling pathways induce chromosomal aberrations. It is known that inflammatory signalling cascades cause chromosomal aberrations; however, the detailed mechanisms by which this occurs are not fully understood. Additionally, we will determine how inflammatory signalling influences the pathways involved in DNA repair, replication and chromosomal segregation culminating in chromosomal aberrations and cancer.
Finally, we will examine the role of oval cells in liver cancer formation. Oval cells, which are putative liver-cancer stem cells, differentiate into either hepatocytes or cholangiocytes, proliferate under inflammatory conditions, and are found within HCC. However, their exact functional role in liver carcinogenesis is unknown. We will biochemically characterize proliferating and HCC-associated ovals cells in mouse models of inflammation-induced HCC and in diseased human liver tissues. This will pave the way for the development of the first genetic tools to deplete or express genes in an oval cell-specific manner.
The new scientific knowledge gained by these studies investigating how immune cells and inflammatory signalling induce chronic liver damage and cancer on a mechanistic level, and how oval cells contribute to HCC will provide the basis for future novel pharmacological approaches to treating inflammatory liver diseases and HCC in humans.
Max ERC Funding
1 212 190 €
Duration
Start date: 2010-10-01, End date: 2015-09-30
Project acronym LONGHEART
Project Exploring selected long non-coding RNAs as diagnostics and therapeutic targets for heart failure
Researcher (PI) Thomas Thum
Host Institution (HI) MEDIZINISCHE HOCHSCHULE HANNOVER
Call Details Consolidator Grant (CoG), LS4, ERC-2014-CoG
Summary Despite clinical advances, diseases of the cardiovascular system are the most common cause of morbidity and mortality in the EU with currently 50 million people suffering from heart failure. These important challenges call for a better understanding of underlying mechanisms to enable development of innovative, effective diagnostic and therapeutic strategies for heart failure. Cardiac stress such as myocardial infarction or hypertension leads to cellular “remodeling” of the left ventricle resulting in heart failure. Protein-coding genes originate from only 1.5% of the genome, whereas the larger remaining portion is often transcribed to non-coding RNAs, of which functional importance is still ill understood. We pioneered a role of small microRNAs as diagnostics and therapeutic targets for heart failure (Nature, 2008; Nature Comm, 2012, J Clin Invest, 2014). We now will focus on the larger fraction of long non-coding RNAs (lncRNAs) and their functional roles, as well as diagnostic and therapeutic use in heart failure. The proposal has the following interconnected objectives: a) identify novel functional relevant cardiac remodeling-associated lncRNAs; b) characterise key lncRNA cardiac targetomes; c) investigate lncRNA-paracrine mechanisms and the diagnostic and prognostic potential of cardiac-derived extracellular lncRNAs using large clinical cohorts; and d) discover their therapeutic potential to prevent cardiac remodeling in clinically relevant animal models. Innovative molecular and cell-based methods, a unique lncRNA-shRNA library, genetic animal models and availability of large clinical biobanks will form the basis for a successful strategy. LONGHEART will lead to ground-breaking new insight into the role of lncRNAs in the heart. These findings will firmly establish lncRNA-based mechanisms to identify fundamentally novel diagnostic and therapeutic entry points for a most serious clinical important disorder in dire need for new diagnostic and therapeutic paradigms.
Summary
Despite clinical advances, diseases of the cardiovascular system are the most common cause of morbidity and mortality in the EU with currently 50 million people suffering from heart failure. These important challenges call for a better understanding of underlying mechanisms to enable development of innovative, effective diagnostic and therapeutic strategies for heart failure. Cardiac stress such as myocardial infarction or hypertension leads to cellular “remodeling” of the left ventricle resulting in heart failure. Protein-coding genes originate from only 1.5% of the genome, whereas the larger remaining portion is often transcribed to non-coding RNAs, of which functional importance is still ill understood. We pioneered a role of small microRNAs as diagnostics and therapeutic targets for heart failure (Nature, 2008; Nature Comm, 2012, J Clin Invest, 2014). We now will focus on the larger fraction of long non-coding RNAs (lncRNAs) and their functional roles, as well as diagnostic and therapeutic use in heart failure. The proposal has the following interconnected objectives: a) identify novel functional relevant cardiac remodeling-associated lncRNAs; b) characterise key lncRNA cardiac targetomes; c) investigate lncRNA-paracrine mechanisms and the diagnostic and prognostic potential of cardiac-derived extracellular lncRNAs using large clinical cohorts; and d) discover their therapeutic potential to prevent cardiac remodeling in clinically relevant animal models. Innovative molecular and cell-based methods, a unique lncRNA-shRNA library, genetic animal models and availability of large clinical biobanks will form the basis for a successful strategy. LONGHEART will lead to ground-breaking new insight into the role of lncRNAs in the heart. These findings will firmly establish lncRNA-based mechanisms to identify fundamentally novel diagnostic and therapeutic entry points for a most serious clinical important disorder in dire need for new diagnostic and therapeutic paradigms.
Max ERC Funding
1 816 250 €
Duration
Start date: 2015-06-01, End date: 2020-05-31
Project acronym LSD1
Project The lysine-specific demethylase1 (LSD1) in physiology and pathology
Researcher (PI) Roland Schuele
Host Institution (HI) UNIVERSITAETSKLINIKUM FREIBURG
Call Details Advanced Grant (AdG), LS4, ERC-2012-ADG_20120314
Summary "The identification of the first histone demethylase lysine-specific demethylase 1 (LSD1) established not only the concept of reversible histone methylation in epigenetic regulation but also translated this fundamentally novel biological observation into understanding the molecular mechanisms regulation stemness, differentiation, proliferation, and pathological growth. To unravel in an unbiased and comprehensive manner the biological function of LSD1 in physiology and pathology, we developed LSD1-deficient and LSD1-transgenic mouse models. LSD1-transgenic animals develop prostate tumours demonstrating that increased expression of LSD1 suffices for oncogenic growth in vivo. In addition, LSD1-transgenic animals exhibit a metabolic shift towards overt obesity in adulthood. LSD1-deficiency causes early embryonic lethality around day 7.5 of development. However, deletion of LSD1 is not essential for the development of the embryo proper until the onset of gastrulation, suggesting that the early embryonic lethality is caused by trophoblast defects. Indeed, our data demonstrate that LSD1 is crucial for maintaining trophoblast stem cells in their niche and required for the specification of trophoblast stem cell fate during initial steps of differentiation. To identify the underlying mechanisms that allow LSD1 to control a wide range of biological systems such as trophoblast stem cell fate in the early embryo, obesity, and prostate tumourigenesis in the adult, we propose to a) identify LSD1-associated protein complexes and b) LSD1 target genes establishing these phenotypes in the mouse. In addition, we shall uncover c) signalling pathways that modify LSD1 in these phenotypes allowing us to explore the therapeutic potential of targeting these signalling pathways."
Summary
"The identification of the first histone demethylase lysine-specific demethylase 1 (LSD1) established not only the concept of reversible histone methylation in epigenetic regulation but also translated this fundamentally novel biological observation into understanding the molecular mechanisms regulation stemness, differentiation, proliferation, and pathological growth. To unravel in an unbiased and comprehensive manner the biological function of LSD1 in physiology and pathology, we developed LSD1-deficient and LSD1-transgenic mouse models. LSD1-transgenic animals develop prostate tumours demonstrating that increased expression of LSD1 suffices for oncogenic growth in vivo. In addition, LSD1-transgenic animals exhibit a metabolic shift towards overt obesity in adulthood. LSD1-deficiency causes early embryonic lethality around day 7.5 of development. However, deletion of LSD1 is not essential for the development of the embryo proper until the onset of gastrulation, suggesting that the early embryonic lethality is caused by trophoblast defects. Indeed, our data demonstrate that LSD1 is crucial for maintaining trophoblast stem cells in their niche and required for the specification of trophoblast stem cell fate during initial steps of differentiation. To identify the underlying mechanisms that allow LSD1 to control a wide range of biological systems such as trophoblast stem cell fate in the early embryo, obesity, and prostate tumourigenesis in the adult, we propose to a) identify LSD1-associated protein complexes and b) LSD1 target genes establishing these phenotypes in the mouse. In addition, we shall uncover c) signalling pathways that modify LSD1 in these phenotypes allowing us to explore the therapeutic potential of targeting these signalling pathways."
Max ERC Funding
2 488 800 €
Duration
Start date: 2013-04-01, End date: 2018-03-31
Project acronym LYMPHIMMUNE
Project Flow in the tumor microenvironment: Linking mechanobiology with immunology
Researcher (PI) Melody Ann Swartz
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Advanced Grant (AdG), LS4, ERC-2012-ADG_20120314
Summary Tumors often engage the lymphatic system to invade and metastasize. The tumor-draining lymph node (dLN) may be an immune privileged site that protects the tumor from host immunity, and lymph flow draining tumors is often increased, enhancing communication between the tumor and the sentinel node. In addition to increasing transport of tumor antigens and regulatory cytokines to the lymph node, increased lymph flow in the tumor margin causes mechanical stress-induced changes in stromal cells that stiffen the matrix and alter the immune microenvironment of the tumor. In this proposed project, we will investigate the interplay between lymphatic drainage and flow-induced mechanotransduction in the tumor stroma that may synergize to promote tumor immune escape by appropriating lymphatic mechanisms of peripheral tolerance. We will address the hypothesis that lymphatic drainage and flow-induced mechanotransduction in the tumor stroma synergistically promote tumor immune escape by altering the immune microenvironment, and that targeting lymphatic drainage from the tumor may represent a new avenue for tumor immunotherapy. For the latter, we will develop strategies to limit or block lymphatic flow in the tumor microenvironment and characterize their ability to improve the efficacy of tumor immunotherapy by dampening local immunosuppression in the tumor stroma and tumor-draining lymph node (dLN). We will combine in vivo mouse models and intravital imaging with engineered in vitro microenvironments and nanoparticle-based targeting strategies in three broad aims designed to constitute several PhD and postdoctoral projects.
Summary
Tumors often engage the lymphatic system to invade and metastasize. The tumor-draining lymph node (dLN) may be an immune privileged site that protects the tumor from host immunity, and lymph flow draining tumors is often increased, enhancing communication between the tumor and the sentinel node. In addition to increasing transport of tumor antigens and regulatory cytokines to the lymph node, increased lymph flow in the tumor margin causes mechanical stress-induced changes in stromal cells that stiffen the matrix and alter the immune microenvironment of the tumor. In this proposed project, we will investigate the interplay between lymphatic drainage and flow-induced mechanotransduction in the tumor stroma that may synergize to promote tumor immune escape by appropriating lymphatic mechanisms of peripheral tolerance. We will address the hypothesis that lymphatic drainage and flow-induced mechanotransduction in the tumor stroma synergistically promote tumor immune escape by altering the immune microenvironment, and that targeting lymphatic drainage from the tumor may represent a new avenue for tumor immunotherapy. For the latter, we will develop strategies to limit or block lymphatic flow in the tumor microenvironment and characterize their ability to improve the efficacy of tumor immunotherapy by dampening local immunosuppression in the tumor stroma and tumor-draining lymph node (dLN). We will combine in vivo mouse models and intravital imaging with engineered in vitro microenvironments and nanoparticle-based targeting strategies in three broad aims designed to constitute several PhD and postdoctoral projects.
Max ERC Funding
2 217 582 €
Duration
Start date: 2013-05-01, End date: 2016-12-31
Project acronym LYVICAM
Project Lymphatic Vessels in Inflammation and Cancer Metastasis
Researcher (PI) Michael Johannes Detmar
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Advanced Grant (AdG), LS4, ERC-2010-AdG_20100317
Summary Primary cancers can induce lymphatic vessel growth (lymphangiogenesis), enhancing metastasis to draining lymph nodes (LNs). We found that tumors also induce lymphangiogenesis in draining LNs, leading to increased cancer spread to distal LNs and beyond. Very recently, we found that lymphatic vessel activation in peripheral tissues and draining LNs also plays a previously unanticipated role in the control of chronic inflammatory diseases. This proposal aims at a comprehensive characterization of the function of lymphatic vessels in inflammation, using a variety of genetic mouse models for enhanced or reduced lymphatic function, novel quantitative techniques for the in vivo imaging of lymphatic function, and a miniaturized 3-dimensional in vitro platform for the high-throughput phenotypic screening of libraries of small, drug-like molecules for modulators of lymphatic function. A genome-wide analysis of the gene expression profile shall be made from lymphatic vessels isolated by high-speed cell sorting and by immuno-laser capture microdissection from tumors and their lymph node metastases, inflamed tissue and its draining lymph nodes, and normal tissues, followed by functional characterization of potential therapeutic targets and diagnostic markers. Finally, we will establish novel genetically fluorescent mouse models for the in vivo real-time imaging of lymphatic activation, and we will develop an innovative approach for the in vivo detection of early micrometastases, using antibody-based PET and near-infrared imaging of tumor-induced stromal changes. These studies will improve our understanding of lymphatic involvement in inflammation and cancer metastasis, and will provide the basis for completely novel approaches to treat and detect inflammation and cancer metastasis.
Summary
Primary cancers can induce lymphatic vessel growth (lymphangiogenesis), enhancing metastasis to draining lymph nodes (LNs). We found that tumors also induce lymphangiogenesis in draining LNs, leading to increased cancer spread to distal LNs and beyond. Very recently, we found that lymphatic vessel activation in peripheral tissues and draining LNs also plays a previously unanticipated role in the control of chronic inflammatory diseases. This proposal aims at a comprehensive characterization of the function of lymphatic vessels in inflammation, using a variety of genetic mouse models for enhanced or reduced lymphatic function, novel quantitative techniques for the in vivo imaging of lymphatic function, and a miniaturized 3-dimensional in vitro platform for the high-throughput phenotypic screening of libraries of small, drug-like molecules for modulators of lymphatic function. A genome-wide analysis of the gene expression profile shall be made from lymphatic vessels isolated by high-speed cell sorting and by immuno-laser capture microdissection from tumors and their lymph node metastases, inflamed tissue and its draining lymph nodes, and normal tissues, followed by functional characterization of potential therapeutic targets and diagnostic markers. Finally, we will establish novel genetically fluorescent mouse models for the in vivo real-time imaging of lymphatic activation, and we will develop an innovative approach for the in vivo detection of early micrometastases, using antibody-based PET and near-infrared imaging of tumor-induced stromal changes. These studies will improve our understanding of lymphatic involvement in inflammation and cancer metastasis, and will provide the basis for completely novel approaches to treat and detect inflammation and cancer metastasis.
Max ERC Funding
2 493 300 €
Duration
Start date: 2011-05-01, End date: 2016-04-30
Project acronym MADCIN
Project Defining the Impact of Chromosome Instability in Tumor Initiation, Maintenance and Relapse
Researcher (PI) Rocio Sotillo Roman
Host Institution (HI) DEUTSCHES KREBSFORSCHUNGSZENTRUM HEIDELBERG
Call Details Starting Grant (StG), LS4, ERC-2011-StG_20101109
Summary Chromosomal instability (CIN), the inability to correctly segregate sister chromatids during mitosis, is a hallmark of cancer cells. Overexpression of the mitotic checkpoint protein Mad2, commonly found in human tumors, leads to CIN and the development of aneuploid tumors in mouse models. However, recent observations from various laboratories suggest that aneuploidy can promote or suppress tumorigenesis. Therefore understanding the relationship between aneuploidy and tumor formation, identifying in what context aneuploidy acts oncogenically and those in which it acts as a tumor suppressor, is thus vital if we want to make progress in battling cancer. We propose to generate regulatable mouse models that recapitulate the aneuploidy state of human tumors, using state-of–the–art mouse genetic strategies, to investigate the role of CIN in promoting or suppressing tumorigenesis.
Moreover, CIN has been shown to facilitate escape from oncogene addiction (the dependence of tumor cells on their initiating lesion for survival) and may be responsible for tumor relapse after targeted therapies. Due to the clinical relevance of these findings, this proposal aims to investigate how CIN potentiates oncogene independence. It is possible that some CIN cells in the primary tumor are already independent of the initiating oncogene prior to treatment. Alternatively, CIN cells are more susceptible of acquiring additional mutations and evolve to become independent of the initiating lesion. We propose to develop a highly innovative three-dimensional in vitro culture system to isolate and characterize these surviving cells to further eliminate them.
It is necessary to understand the molecular mechanisms that lead to CIN and the consequences it has in tumor initiation, suppression and relapse, hoping that the genes or proteins identified could be targeted therapeutically. We believe that answers to these specific aims will have important consequences for the treatment of human tumors.
Summary
Chromosomal instability (CIN), the inability to correctly segregate sister chromatids during mitosis, is a hallmark of cancer cells. Overexpression of the mitotic checkpoint protein Mad2, commonly found in human tumors, leads to CIN and the development of aneuploid tumors in mouse models. However, recent observations from various laboratories suggest that aneuploidy can promote or suppress tumorigenesis. Therefore understanding the relationship between aneuploidy and tumor formation, identifying in what context aneuploidy acts oncogenically and those in which it acts as a tumor suppressor, is thus vital if we want to make progress in battling cancer. We propose to generate regulatable mouse models that recapitulate the aneuploidy state of human tumors, using state-of–the–art mouse genetic strategies, to investigate the role of CIN in promoting or suppressing tumorigenesis.
Moreover, CIN has been shown to facilitate escape from oncogene addiction (the dependence of tumor cells on their initiating lesion for survival) and may be responsible for tumor relapse after targeted therapies. Due to the clinical relevance of these findings, this proposal aims to investigate how CIN potentiates oncogene independence. It is possible that some CIN cells in the primary tumor are already independent of the initiating oncogene prior to treatment. Alternatively, CIN cells are more susceptible of acquiring additional mutations and evolve to become independent of the initiating lesion. We propose to develop a highly innovative three-dimensional in vitro culture system to isolate and characterize these surviving cells to further eliminate them.
It is necessary to understand the molecular mechanisms that lead to CIN and the consequences it has in tumor initiation, suppression and relapse, hoping that the genes or proteins identified could be targeted therapeutically. We believe that answers to these specific aims will have important consequences for the treatment of human tumors.
Max ERC Funding
1 500 000 €
Duration
Start date: 2012-02-01, End date: 2018-01-31
Project acronym MetabolicPolycombics
Project Polycomb/Trithorax: Functional EpiGenomics Integrators for Metabolic Disease
Researcher (PI) John Andrew Pospisilik
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), LS4, ERC-2011-StG_20101109
Summary The last decade has seen an explosion of research into the epigenetic regulation of cell biology. Indeed, great efforts have been made to elucidate epigenetic regulation in stem cell biology, development, and within the plastic states of cancer. Current estimates place the prevalence of obesity in the range of 300 million to beyond 1 billion by the year 2030. As a critical risk factor for heart disease, diabetes and stroke, obesity currently represents one of the world’s chief economic and health care challenges. While studies have established a genetic framework for our current understanding of obesity, the contribution of several critical regulatory layers, in particular epigenetic regulation, remains poorly understood.
We recently performed the first genome-wide RNAi screen for obesity regulators in the adult fly. Intriguingly, developmental regulators scored among the most enriched pathways (Pospisilik, Cell 2010). Systematic interrogation of the 500 candidate obesity genes by tissue-specific knockdown has now identified the Polycomb-Trithorax system (PcG-Trx) as the most enriched obesity-altering pathway. Here, we propose to translate these findings to the mammalian context through completion of three aims: i. generation and characterization of 8 PcG conditional knockout mouse lines, ii. dissection of the functional roles of PcG in adipose tissue differentiation, function and disease, and iii. building of a functionally interrogated unbiased epigenetic map of the PcG-system for murine and human obesity. To achieve these goals we will combine targeted mouse genetics, complex phenotyping and state-of-the-art integrative bioinformatics.
Using this unique functional-genetics-to-epigenomics approach we will provide an unprecedented functionally validated genomics resource for obesity research worldwide, unravel an entire regulatory niveau in obesity, and if we are lucky, highlight novel therapeutic strategies for metabolic disease.
Summary
The last decade has seen an explosion of research into the epigenetic regulation of cell biology. Indeed, great efforts have been made to elucidate epigenetic regulation in stem cell biology, development, and within the plastic states of cancer. Current estimates place the prevalence of obesity in the range of 300 million to beyond 1 billion by the year 2030. As a critical risk factor for heart disease, diabetes and stroke, obesity currently represents one of the world’s chief economic and health care challenges. While studies have established a genetic framework for our current understanding of obesity, the contribution of several critical regulatory layers, in particular epigenetic regulation, remains poorly understood.
We recently performed the first genome-wide RNAi screen for obesity regulators in the adult fly. Intriguingly, developmental regulators scored among the most enriched pathways (Pospisilik, Cell 2010). Systematic interrogation of the 500 candidate obesity genes by tissue-specific knockdown has now identified the Polycomb-Trithorax system (PcG-Trx) as the most enriched obesity-altering pathway. Here, we propose to translate these findings to the mammalian context through completion of three aims: i. generation and characterization of 8 PcG conditional knockout mouse lines, ii. dissection of the functional roles of PcG in adipose tissue differentiation, function and disease, and iii. building of a functionally interrogated unbiased epigenetic map of the PcG-system for murine and human obesity. To achieve these goals we will combine targeted mouse genetics, complex phenotyping and state-of-the-art integrative bioinformatics.
Using this unique functional-genetics-to-epigenomics approach we will provide an unprecedented functionally validated genomics resource for obesity research worldwide, unravel an entire regulatory niveau in obesity, and if we are lucky, highlight novel therapeutic strategies for metabolic disease.
Max ERC Funding
1 654 430 €
Duration
Start date: 2011-12-01, End date: 2016-11-30
Project acronym METABOLOMIRS
Project Elucidation of MicroRNAs as Regulators of Metabolism and Targets for Therapeutic Intervention
Researcher (PI) Markus Stoffel
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Advanced Grant (AdG), LS4, ERC-2009-AdG
Summary Small RNA-mediated regulation of gene expression is a recent addition to fundamental gene regulatory mechanisms that directly or indirectly affect possibly every gene of a eukaryotic genome. The predominant sources of small RNA in somatic tissues are microRNA genes that encode short dsRNA hairpins of evolutionary conserved sequence. Disorders of metabolism, such as obesity and type 2 diabetes are poorly understood at a molecular level. In this application we propose to explore if miRNA regulatory networks play a role in these diseases. We will employ state of the art methods for identification of small RNAs and their regulated targets and use biochemical, cell and animal model systems to study the detailed molecular mechanisms of metabolic gene regulation by miRNAs. In addition, we will investigate the underlying principles of how RNAs are taken up by cells and develop methods that will improve delivery of miRNA mimetics or inhibitors through cell-specific uptake. The specific aims of this study are: Aim 1: To define the small regulatory miRNA content of liver, muscle and adipose tissue that are associated with abnormal glucose and lipid homeostasis and to dissect the underlying molecular pathways that govern their expression. Aim 2: To characterize the functions of miRNAs in insulin resistance, glucose uptake and production, fatty acid oxidation and lipogenesis. Aim 3: To identify factors and dissect the pathways that regulate RNA uptake by cells and to develop novel pharmacological treatment strategies to manipulate miRNA-expression. Together, this proposal will shed light on the function that miRNA regulatory networks play in metabolism and in the pathophysiology of obesity/type 2 diabetes. In addition, these studies will contribute to the development of new RNA delivery technologies that are urgently needed as experimental tools as well as for novel therapeutic strategies.
Summary
Small RNA-mediated regulation of gene expression is a recent addition to fundamental gene regulatory mechanisms that directly or indirectly affect possibly every gene of a eukaryotic genome. The predominant sources of small RNA in somatic tissues are microRNA genes that encode short dsRNA hairpins of evolutionary conserved sequence. Disorders of metabolism, such as obesity and type 2 diabetes are poorly understood at a molecular level. In this application we propose to explore if miRNA regulatory networks play a role in these diseases. We will employ state of the art methods for identification of small RNAs and their regulated targets and use biochemical, cell and animal model systems to study the detailed molecular mechanisms of metabolic gene regulation by miRNAs. In addition, we will investigate the underlying principles of how RNAs are taken up by cells and develop methods that will improve delivery of miRNA mimetics or inhibitors through cell-specific uptake. The specific aims of this study are: Aim 1: To define the small regulatory miRNA content of liver, muscle and adipose tissue that are associated with abnormal glucose and lipid homeostasis and to dissect the underlying molecular pathways that govern their expression. Aim 2: To characterize the functions of miRNAs in insulin resistance, glucose uptake and production, fatty acid oxidation and lipogenesis. Aim 3: To identify factors and dissect the pathways that regulate RNA uptake by cells and to develop novel pharmacological treatment strategies to manipulate miRNA-expression. Together, this proposal will shed light on the function that miRNA regulatory networks play in metabolism and in the pathophysiology of obesity/type 2 diabetes. In addition, these studies will contribute to the development of new RNA delivery technologies that are urgently needed as experimental tools as well as for novel therapeutic strategies.
Max ERC Funding
2 021 235 €
Duration
Start date: 2010-07-01, End date: 2015-06-30
Project acronym MetAGEn
Project Metabolic and Genetic Regulation of Ageing
Researcher (PI) Martin Denzel
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), LS4, ERC-2014-STG
Summary Ageing is a complex physiological process that affects almost all species, including humans. Despite its importance for all of us, the biology of ageing is insufficiently understood. To uncover the molecular underpinnings of ageing, I propose an interdisciplinary research program that will identify and investigate metabolic and genetic regulators of ageing.
Progressive loss of cellular homeostasis causes ageing and an age-associated decline in protein quality control has been implicated in numerous diseases, including neurodegeneration. Seeking for ways to improve protein quality, I have identified a novel longevity pathway in Caenorhabditis elegans. In a forward genetic screen, I found a link between metabolites in the hexosamine pathway and cellular protein quality control. Hexosamine pathway activation extends C. elegans lifespan, suggesting modulation of ageing by endogenous molecules.
In a first step, I will explore the mechanism by which hexosamine metabolites improve protein quality control in mammals, using cultured mammalian cells and a mouse model for neurodegeneration. Preliminary data show that hexosamine pathway metabolites enhance proteolytic capacity in cells and reduce protein aggregation, suggesting conservation. Second, I will investigate molecular mechanisms that activate the hexosamine pathway to promote protein homeostasis and counter ageing. Third, I will perform a direct forward genetic screen for modulators of ageing in C. elegans. For the first time, mutagenesis and next generation sequencing can be paired in forward genetic screens to interrogate the whole genome for lifespan-extending mutations in a truly unbiased manner. This innovative approach has the potential to reveal novel modulators of the ageing process.
Taken together, this work aims to understand molecular mechanisms that maintain cellular homeostasis to slow the ageing process, and to develop a new technology to identify yet unknown genetic modulators of ageing.
Summary
Ageing is a complex physiological process that affects almost all species, including humans. Despite its importance for all of us, the biology of ageing is insufficiently understood. To uncover the molecular underpinnings of ageing, I propose an interdisciplinary research program that will identify and investigate metabolic and genetic regulators of ageing.
Progressive loss of cellular homeostasis causes ageing and an age-associated decline in protein quality control has been implicated in numerous diseases, including neurodegeneration. Seeking for ways to improve protein quality, I have identified a novel longevity pathway in Caenorhabditis elegans. In a forward genetic screen, I found a link between metabolites in the hexosamine pathway and cellular protein quality control. Hexosamine pathway activation extends C. elegans lifespan, suggesting modulation of ageing by endogenous molecules.
In a first step, I will explore the mechanism by which hexosamine metabolites improve protein quality control in mammals, using cultured mammalian cells and a mouse model for neurodegeneration. Preliminary data show that hexosamine pathway metabolites enhance proteolytic capacity in cells and reduce protein aggregation, suggesting conservation. Second, I will investigate molecular mechanisms that activate the hexosamine pathway to promote protein homeostasis and counter ageing. Third, I will perform a direct forward genetic screen for modulators of ageing in C. elegans. For the first time, mutagenesis and next generation sequencing can be paired in forward genetic screens to interrogate the whole genome for lifespan-extending mutations in a truly unbiased manner. This innovative approach has the potential to reveal novel modulators of the ageing process.
Taken together, this work aims to understand molecular mechanisms that maintain cellular homeostasis to slow the ageing process, and to develop a new technology to identify yet unknown genetic modulators of ageing.
Max ERC Funding
1 500 000 €
Duration
Start date: 2015-08-01, End date: 2020-07-31
Project acronym MetaMeta
Project Metastability of proteins during tumor metastasis
Researcher (PI) Ramunas Martynas Vabulas
Host Institution (HI) JOHANN WOLFGANG GOETHE-UNIVERSITATFRANKFURT AM MAIN
Call Details Starting Grant (StG), LS4, ERC-2012-StG_20111109
Summary Mutational heterogeneity bestows tumors with the phenotypic plasticity and adaptability required for expansion. On the other hand, mutations destabilize proteins – lower stability (metastability) of the tumor proteome must be the inevitable consequence. We set out to systematically investigate this biochemical aspect of metastasis aiming to uncover and therapeutically exploit specific vulnerabilities resulting from protein destabilization. We will approach this goal by cataloging associations between metastasis-promoting proteins and molecular chaperones. Chaperones are obvious candidates to stabilize the proteome, therefore we will prepare a BAC-based mouse model of metastasis, where the contribution of 63 chaperones, comprising the entire murine HSP70 superfamily, to metastasis development will be individually investigated. The role of metastasis-relevant chaperones at the molecular level will be elucidated using mass spectrometry, complemented by next-generation sequencing of metastatic exome. In parallel, a novel proteomics-based method to evaluate aberrant complex formation in tumor cells will be established.
Because of the high heterogeneity of cancer, molecularly tailored and combined therapies are needed. To this end, we will capitalize on insights regarding the role of chaperones in metastasis by identifying proteasomal degradation activators able to support or replace the activity of individual chaperones from the HSP70 superfamily. Finally, we will validate the potential of combined, yet specific manipulation of the folding and degradation machineries to suppress metastasis development.
Summary
Mutational heterogeneity bestows tumors with the phenotypic plasticity and adaptability required for expansion. On the other hand, mutations destabilize proteins – lower stability (metastability) of the tumor proteome must be the inevitable consequence. We set out to systematically investigate this biochemical aspect of metastasis aiming to uncover and therapeutically exploit specific vulnerabilities resulting from protein destabilization. We will approach this goal by cataloging associations between metastasis-promoting proteins and molecular chaperones. Chaperones are obvious candidates to stabilize the proteome, therefore we will prepare a BAC-based mouse model of metastasis, where the contribution of 63 chaperones, comprising the entire murine HSP70 superfamily, to metastasis development will be individually investigated. The role of metastasis-relevant chaperones at the molecular level will be elucidated using mass spectrometry, complemented by next-generation sequencing of metastatic exome. In parallel, a novel proteomics-based method to evaluate aberrant complex formation in tumor cells will be established.
Because of the high heterogeneity of cancer, molecularly tailored and combined therapies are needed. To this end, we will capitalize on insights regarding the role of chaperones in metastasis by identifying proteasomal degradation activators able to support or replace the activity of individual chaperones from the HSP70 superfamily. Finally, we will validate the potential of combined, yet specific manipulation of the folding and degradation machineries to suppress metastasis development.
Max ERC Funding
1 366 800 €
Duration
Start date: 2013-03-01, End date: 2018-02-28
Project acronym MIRBATWAT
Project Role of miRNAs in brown and white adipose tissue differentiation and function
Researcher (PI) Mirko Trajkovski
Host Institution (HI) UNIVERSITE DE GENEVE
Call Details Starting Grant (StG), LS4, ERC-2013-StG
Summary "Mammals have two types of fat: brown and white, with opposing functions. The white adipose tissue (WAT) is an important regulator of the whole body homeostasis that also serves to store energy in form of triglycerides (TGs). The main function of the brown adipose tissue (BAT) is to catabolize lipids in order to produce heat, a function that can be induced by cold exposure or diet. Disruption of the normal differentiation or development of the WAT causes ectopic lipid storage and severe pathology in both humans and experimental animals. Increased BAT development leads to increased energy expenditure without causing dysfunction in other tissues, and is associated with a lean and healthy phenotype, outlining the manipulation of the fat stores as an obvious therapeutic objective. With the proposed research we will identify miRNAs and other factors that regulate BAT and WAT differentiation and function. We will distinguish the miRNAs that specifically regulate brown or white adipogenesis and are expressed in the respective precursors, and establish them as signatures for either cell type. We will also identify the molecular mechanisms of action of the identified miRNAs in regulation of adipose tissue differentiation and metabolism. Using in vitro and in vivo systems, linage tracing studies, transgenic animals, as well as cohorts of human patients, we will determine the origin of the beige cells within the SAT, establish their importance in the regulation of metabolism in vivo, and develop novel strategies to induce the brown fat differentiation and function. Finally, we will discover ways to exclusively silence miRNAs in the brown fat will that will allow us not only to investigate the miRNAs function specifically in the brown fat, but also to develop new strategies for treatment of dyslipedaemia, diabetes and obesity."
Summary
"Mammals have two types of fat: brown and white, with opposing functions. The white adipose tissue (WAT) is an important regulator of the whole body homeostasis that also serves to store energy in form of triglycerides (TGs). The main function of the brown adipose tissue (BAT) is to catabolize lipids in order to produce heat, a function that can be induced by cold exposure or diet. Disruption of the normal differentiation or development of the WAT causes ectopic lipid storage and severe pathology in both humans and experimental animals. Increased BAT development leads to increased energy expenditure without causing dysfunction in other tissues, and is associated with a lean and healthy phenotype, outlining the manipulation of the fat stores as an obvious therapeutic objective. With the proposed research we will identify miRNAs and other factors that regulate BAT and WAT differentiation and function. We will distinguish the miRNAs that specifically regulate brown or white adipogenesis and are expressed in the respective precursors, and establish them as signatures for either cell type. We will also identify the molecular mechanisms of action of the identified miRNAs in regulation of adipose tissue differentiation and metabolism. Using in vitro and in vivo systems, linage tracing studies, transgenic animals, as well as cohorts of human patients, we will determine the origin of the beige cells within the SAT, establish their importance in the regulation of metabolism in vivo, and develop novel strategies to induce the brown fat differentiation and function. Finally, we will discover ways to exclusively silence miRNAs in the brown fat will that will allow us not only to investigate the miRNAs function specifically in the brown fat, but also to develop new strategies for treatment of dyslipedaemia, diabetes and obesity."
Max ERC Funding
1 400 014 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym MITOPEXLYSONETWORK
Project "Mitochondria, Peroxisomes and Lysosomes - the ""menage a trois"" of cellular metabolism"
Researcher (PI) Nuno Filipe Viegas Das Neves Raimundo
Host Institution (HI) UNIVERSITAETSMEDIZIN GOETTINGEN - GEORG-AUGUST-UNIVERSITAET GOETTINGEN - STIFTUNG OEFFENTLICHEN RECHTS
Call Details Starting Grant (StG), LS4, ERC-2013-StG
Summary The metabolic roles of mitochondria, peroxisomes and lysosomes are well established. Numerous genetic defects affecting the function of these organelles result in a wide spectrum of metabolic diseases. The involvement of these organelles in signalling pathways is receiving increasing attention. Furthermore, interactions between them and other cellular components have been elucidated. Evidence is now emerging that dysfunction in mitochondria, peroxisomes or lysosomes causes secondary perturbations in the other two organelles. The fundamental hypothesis presiding to this proposal is that mitochondria, peroxisomes and lysosomes form an interdependent network (MytoPexLyso), which is likely to have fundamental roles in cell biology, metabolism and metabolic diseases.
To test this hypothesis and elucidate the role of the MitoPexLyso network in physiology and disease, we will employ state-of-the-art imaging and systems biology approaches. First, we will uncover how dysfunction of each MitoPexLyso organelle affects the network. We will test if mitochondrial dysfunction can trigger lysosome biogenesis, and also systematically address how perturbations in one organelle affect the other two. Second, we will identify signalling pathways sensing perturbations on the MytoPexLyso network, and elucidate their pathologic significance, both in cell lines and in animal models of metabolic diseases. Third, we will test a novel strategy to cure mitochondrial diseases: enhanced removal of damaged mitochondria through increased lysosomal autophagic capacity. We will generate a novel mouse model with higher lysosomal capacity in the skeletal muscle, and use a mouse model of mitochondrial myopathy, to test this premise in vivo.
This proposal addresses key questions in cell biology and metabolism, and will lay the foundation for a new field of “organelle networks” which will profoundly impact our understanding of metabolism and metabolic diseases and drive future research endeavours.
Summary
The metabolic roles of mitochondria, peroxisomes and lysosomes are well established. Numerous genetic defects affecting the function of these organelles result in a wide spectrum of metabolic diseases. The involvement of these organelles in signalling pathways is receiving increasing attention. Furthermore, interactions between them and other cellular components have been elucidated. Evidence is now emerging that dysfunction in mitochondria, peroxisomes or lysosomes causes secondary perturbations in the other two organelles. The fundamental hypothesis presiding to this proposal is that mitochondria, peroxisomes and lysosomes form an interdependent network (MytoPexLyso), which is likely to have fundamental roles in cell biology, metabolism and metabolic diseases.
To test this hypothesis and elucidate the role of the MitoPexLyso network in physiology and disease, we will employ state-of-the-art imaging and systems biology approaches. First, we will uncover how dysfunction of each MitoPexLyso organelle affects the network. We will test if mitochondrial dysfunction can trigger lysosome biogenesis, and also systematically address how perturbations in one organelle affect the other two. Second, we will identify signalling pathways sensing perturbations on the MytoPexLyso network, and elucidate their pathologic significance, both in cell lines and in animal models of metabolic diseases. Third, we will test a novel strategy to cure mitochondrial diseases: enhanced removal of damaged mitochondria through increased lysosomal autophagic capacity. We will generate a novel mouse model with higher lysosomal capacity in the skeletal muscle, and use a mouse model of mitochondrial myopathy, to test this premise in vivo.
This proposal addresses key questions in cell biology and metabolism, and will lay the foundation for a new field of “organelle networks” which will profoundly impact our understanding of metabolism and metabolic diseases and drive future research endeavours.
Max ERC Funding
1 345 200 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym MITOUPR
Project Mitochondrial unfolded protein response and the role in ageing
Researcher (PI) Aleksandra Trifunovic
Host Institution (HI) KLINIKUM DER UNIVERSITAET ZU KOELN
Call Details Starting Grant (StG), LS4, ERC-2012-StG_20111109
Summary "Cells use sensor pathways compartmentalized in subcellular organelles to recognize stress conditions, including aberrant protein folding, and in response activate gene expression programs aimed at maintaining cell survival and restoring homeostasis. Fine-tuning of the protein-folding environment in organelles like mitochondria is important for adaptive homeostasis and may participate in development of human diseases and ageing. Work in cultured mammalian cells and more recently in Caenorhabditis elegans has highlighted the importance of mechanisms linking perturbations in the protein-folding environment in the mitochondrial matrix to the expression of nuclear genes encoding mitochondrial proteins. This mitochondrial stress pathway is named mitochondrial unfolded protein response. Much of our knowledge regarding the organelle unfolded protein response (UPR) signalling comes from studies of the endoplasmatic reticulum stress response machinery. In contrast, a potential role of mitochondria in UPR pathway is far less defined, and physiologic regulators of this pathway have not been defined.
Here I propose three complementary strategies to identify molecular mechanisms and signalling pathways of the mitochondrial unfolded protein response (UPRmt) under different stress conditions and during ageing. My laboratory has experience in using transgenic mice and C. elegans as experimental tools and both of these powerful model systems will be used in this project.
Specific aims of this proposal are:
Aim 1. To identify specific substrates of UPRmt
Aim 2. To define mechanisms regulating mammalian UPRmt
Aim 3. To elucidate the role of UPRmt signalling in ageing"
Summary
"Cells use sensor pathways compartmentalized in subcellular organelles to recognize stress conditions, including aberrant protein folding, and in response activate gene expression programs aimed at maintaining cell survival and restoring homeostasis. Fine-tuning of the protein-folding environment in organelles like mitochondria is important for adaptive homeostasis and may participate in development of human diseases and ageing. Work in cultured mammalian cells and more recently in Caenorhabditis elegans has highlighted the importance of mechanisms linking perturbations in the protein-folding environment in the mitochondrial matrix to the expression of nuclear genes encoding mitochondrial proteins. This mitochondrial stress pathway is named mitochondrial unfolded protein response. Much of our knowledge regarding the organelle unfolded protein response (UPR) signalling comes from studies of the endoplasmatic reticulum stress response machinery. In contrast, a potential role of mitochondria in UPR pathway is far less defined, and physiologic regulators of this pathway have not been defined.
Here I propose three complementary strategies to identify molecular mechanisms and signalling pathways of the mitochondrial unfolded protein response (UPRmt) under different stress conditions and during ageing. My laboratory has experience in using transgenic mice and C. elegans as experimental tools and both of these powerful model systems will be used in this project.
Specific aims of this proposal are:
Aim 1. To identify specific substrates of UPRmt
Aim 2. To define mechanisms regulating mammalian UPRmt
Aim 3. To elucidate the role of UPRmt signalling in ageing"
Max ERC Funding
1 500 000 €
Duration
Start date: 2013-01-01, End date: 2017-12-31
Project acronym MUSCLE-NET
Project Coactivator-controlled transcriptional networks regulating skeletal muscle cell plasticity
Researcher (PI) Christoph Handschin
Host Institution (HI) UNIVERSITAT BASEL
Call Details Consolidator Grant (CoG), LS4, ERC-2013-CoG
Summary "Regular physical activity is linked to improved health and increased life expectancy. Inversely, a sedentary life-style is a strong and independent risk factor for many chronic diseases, including obesity, type 2 diabetes or cardiovascular disorders, as well as certain types of cancer or neurodegeneration. Interestingly however, the molecular mechanisms that mediate the health beneficial effects of exercise, or those that trigger the pathological changes in diseases, are largely unknown.
The transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is one of the major regulatory hubs of muscle adaptation to endurance training. Accordingly, elevated expression of PGC-1α in muscle is sufficient to induce a trained phenotype in mice. Inversely, mice lacking a functional PGC-1α gene in skeletal muscle exhibit many signs of pathological inactivity. Finally, PGC-1α expression is dysregulated in pathological contexts in human muscle, including type 2 diabetes and aging. Therefore, the study of the regulation and function of PGC-1α in muscle has the potential to yield important insights into the molecular mechanisms that control muscle health.
Unfortunately, the characterization of PGC-1α is drastically hampered by the high complexity of the transcriptional network controlled by this coactivator protein, which binds to many different transcription factor binding partners in a cell context-specific manner. Moreover, PGC-1α seems to directly couple transcription to RNA processing, thereby further complicating the analysis of PGC-1α-controlled biological programs. Our proposal combines novel innovative experimental and biocomputational approaches with the physiological study of healthy and diseased muscle cells ex vivo and in different animal models targeted on PGC-1α. Together, our findings will reveal novel insights on muscle function and may substantially shape the development of exercise mimetic-based therapies."
Summary
"Regular physical activity is linked to improved health and increased life expectancy. Inversely, a sedentary life-style is a strong and independent risk factor for many chronic diseases, including obesity, type 2 diabetes or cardiovascular disorders, as well as certain types of cancer or neurodegeneration. Interestingly however, the molecular mechanisms that mediate the health beneficial effects of exercise, or those that trigger the pathological changes in diseases, are largely unknown.
The transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is one of the major regulatory hubs of muscle adaptation to endurance training. Accordingly, elevated expression of PGC-1α in muscle is sufficient to induce a trained phenotype in mice. Inversely, mice lacking a functional PGC-1α gene in skeletal muscle exhibit many signs of pathological inactivity. Finally, PGC-1α expression is dysregulated in pathological contexts in human muscle, including type 2 diabetes and aging. Therefore, the study of the regulation and function of PGC-1α in muscle has the potential to yield important insights into the molecular mechanisms that control muscle health.
Unfortunately, the characterization of PGC-1α is drastically hampered by the high complexity of the transcriptional network controlled by this coactivator protein, which binds to many different transcription factor binding partners in a cell context-specific manner. Moreover, PGC-1α seems to directly couple transcription to RNA processing, thereby further complicating the analysis of PGC-1α-controlled biological programs. Our proposal combines novel innovative experimental and biocomputational approaches with the physiological study of healthy and diseased muscle cells ex vivo and in different animal models targeted on PGC-1α. Together, our findings will reveal novel insights on muscle function and may substantially shape the development of exercise mimetic-based therapies."
Max ERC Funding
1 999 397 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym MusEC
Project UNDERSTANDING THE METABOLIC CROSSTALK BETWEEN THE MUSCLE AND THE ENDOTHELIUM: IMPLICATIONS FOR EXERCISE TRAINING AND INSULIN RESISTANCE
Researcher (PI) Katrien DE BOCK
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Starting Grant (StG), LS4, ERC-2016-STG
Summary Obesity has become a leading medical disorder, which is associated with life threatening conditions such as glucose intolerance, insulin resistance (IR) and type 2 diabetes (T2D). In the maintenance of glucose homeostasis, muscle is a critical organ and current health recommendations include regular physical activity as a cornerstone in the prevention and treatment of IR/T2D. The development of exercise mimetics has been proposed as a novel therapeutic strategy, but this has failed so far. This is because we still do not completely understand the etiology of glucose intolerance and how exercise improves glucose tolerance. In particular, angiogenesis – the growth of new blood vessels from existing ones – is an early adaptive event following exercise training, but the role of the muscle vasculature in the regulation of muscle metabolism and glucose tolerance has been largely overlooked.
In this project, I will investigate the metabolic crosstalk between the vasculature and the muscle to increase our understanding on how the endothelium contributes to muscle metabolism and glucose homeostasis. First, I will evaluate whether and how vessels need to reprogram their metabolism to promote angiogenesis following exercise training. Second, I will explore whether this metabolic reprogramming that results into enhanced angiogenesis is required for the muscle to allow training adaptations. I pose the novel and unexplored hypothesis that endothelial cells and the muscle intensely communicate to ensure optimal muscle function and to orchestrate muscle adaptations to exercise training via metabolic signaling. I will combine in vitro, ex vivo, and in vivo techniques using targeted and untargeted approaches to answer these exciting questions. Ultimately, I will investigate whether this communication is affected during the development of T2D. And if so, whether this interaction can be exploited to prevent IR/T2D.
Summary
Obesity has become a leading medical disorder, which is associated with life threatening conditions such as glucose intolerance, insulin resistance (IR) and type 2 diabetes (T2D). In the maintenance of glucose homeostasis, muscle is a critical organ and current health recommendations include regular physical activity as a cornerstone in the prevention and treatment of IR/T2D. The development of exercise mimetics has been proposed as a novel therapeutic strategy, but this has failed so far. This is because we still do not completely understand the etiology of glucose intolerance and how exercise improves glucose tolerance. In particular, angiogenesis – the growth of new blood vessels from existing ones – is an early adaptive event following exercise training, but the role of the muscle vasculature in the regulation of muscle metabolism and glucose tolerance has been largely overlooked.
In this project, I will investigate the metabolic crosstalk between the vasculature and the muscle to increase our understanding on how the endothelium contributes to muscle metabolism and glucose homeostasis. First, I will evaluate whether and how vessels need to reprogram their metabolism to promote angiogenesis following exercise training. Second, I will explore whether this metabolic reprogramming that results into enhanced angiogenesis is required for the muscle to allow training adaptations. I pose the novel and unexplored hypothesis that endothelial cells and the muscle intensely communicate to ensure optimal muscle function and to orchestrate muscle adaptations to exercise training via metabolic signaling. I will combine in vitro, ex vivo, and in vivo techniques using targeted and untargeted approaches to answer these exciting questions. Ultimately, I will investigate whether this communication is affected during the development of T2D. And if so, whether this interaction can be exploited to prevent IR/T2D.
Max ERC Funding
1 498 823 €
Duration
Start date: 2017-06-01, End date: 2022-05-31
Project acronym MYELIN
Project Mechanisms of myelin biogenesis and repair
Researcher (PI) Mikael Simons
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), LS4, ERC-2007-StG
Summary During the development of the central nervous system, specialized glia, oligodendrocytes, extend and wrap their plasma membrane around axons to form tightly packed membrane stacks that provide electrical insulation. Axonal insulation by myelin facilitates rapid nerve conduction and is essential for neuronal metabolism. Damage to the myelin sheath as it for example occurs in multiple sclerosis results in severe neurological disability not only by slowing down nerve conduction, but also as a result of neurodegeneration. Our main goal is to develop strategies to promote remyelination in demyelinating diseases. To realize this goal we need to understand how myelin is formed during normal development. The focus of this project will therefore be on the molecular mechanism of myelination and in particular on the role of neuron-glia communication in this process. We plan to study the mechanisms of myelin membrane growth and test a novel model of membrane extension. We hypothesize that the myelin membrane grows by the lateral diffusion of plasma membrane driven by a tension gradient that is formed by membrane trafficking events. We propose that neurons control this process by regulating the balance of exo- and endocytosis in oligodendrocytes. Furthermore, we would like to test a novel model of myelin membrane assembly, in which we suggest that myelin is formed after a gradual maturation of the plasma membrane that is regulated by neurons and require MBP. We will also investigate the signalling from oligodendrocytes to neurons by analyzing the function of small membrane vesicles, exosomes that we have recently found to be released by oligodendrocytes. Our goal is to understand how these signalling systems act on the cellular machinery that generates myelin. We hope that this approach will not only provide key insights into the development of myelin, but also help us to find new druggable targets for demyelinating diseases.
Summary
During the development of the central nervous system, specialized glia, oligodendrocytes, extend and wrap their plasma membrane around axons to form tightly packed membrane stacks that provide electrical insulation. Axonal insulation by myelin facilitates rapid nerve conduction and is essential for neuronal metabolism. Damage to the myelin sheath as it for example occurs in multiple sclerosis results in severe neurological disability not only by slowing down nerve conduction, but also as a result of neurodegeneration. Our main goal is to develop strategies to promote remyelination in demyelinating diseases. To realize this goal we need to understand how myelin is formed during normal development. The focus of this project will therefore be on the molecular mechanism of myelination and in particular on the role of neuron-glia communication in this process. We plan to study the mechanisms of myelin membrane growth and test a novel model of membrane extension. We hypothesize that the myelin membrane grows by the lateral diffusion of plasma membrane driven by a tension gradient that is formed by membrane trafficking events. We propose that neurons control this process by regulating the balance of exo- and endocytosis in oligodendrocytes. Furthermore, we would like to test a novel model of myelin membrane assembly, in which we suggest that myelin is formed after a gradual maturation of the plasma membrane that is regulated by neurons and require MBP. We will also investigate the signalling from oligodendrocytes to neurons by analyzing the function of small membrane vesicles, exosomes that we have recently found to be released by oligodendrocytes. Our goal is to understand how these signalling systems act on the cellular machinery that generates myelin. We hope that this approach will not only provide key insights into the development of myelin, but also help us to find new druggable targets for demyelinating diseases.
Max ERC Funding
1 290 000 €
Duration
Start date: 2009-01-01, End date: 2012-12-31
Project acronym NANOMAP
Project The Synapse Nanomap
Researcher (PI) Silvio Olivier Rizzoli
Host Institution (HI) UNIVERSITAETSMEDIZIN GOETTINGEN - GEORG-AUGUST-UNIVERSITAET GOETTINGEN - STIFTUNG OEFFENTLICHEN RECHTS
Call Details Starting Grant (StG), LS4, ERC-2007-StG
Summary Stimulated Emission Depletion (STED) microscopy is one of the most important recent developments in light microscopy (Willig et al., 2006, Nature 440:935-9). STED allows for imaging cellular elements with diffraction-unlimited resolution; in practical terms, the resolution (normally limited to ~200-300 nm) is improved down to 30-60 nm. Together with the development of two-color STED microscopy (Donnert et al., 2007, Biophys J. 92:L67-9), this technique allows experimenters to pinpoint the position of various cellular elements with nanometer precision. Obtaining a cellular nanomap is not feasible with conventional light microscopy, due to its low resolution. Electron microscopy cannot be applied, as its labeling efficiency it too low. I propose here to use STED microscopy to characterize the positions of the major components of the synapse. The preparation will be cultured hippocampal neurons, which have numerous small (about one micron in diameter) synaptic nerve terminals. I will determine the locations of synaptic proteins involved in neurotransmitter release, in membrane retrieval and in pre- and post-synaptic active zone structure. Less specialized elements such as the cytoskeleton, mitochondria and endosomes of the synapse will also be investigated. The work will provide answers for a number of questions in the neuroscience field, such as how and where the synaptic vesicles get retrieved, how pre- and post-synaptic active zone elements correlate, and what the role of cytoskeletal elements is in synaptic transmission. The small size and relatively low complexity (compared to whole cells) of the synaptic boutons will allows the work to be completed within a reasonable timeframe. Successful completion of the project will encourage researchers to perform larger scale cellular nano-maps, which would eventually replace the largely erroneous cellular fractionation techniques currently used nowadays to determine the location of various proteins.
Summary
Stimulated Emission Depletion (STED) microscopy is one of the most important recent developments in light microscopy (Willig et al., 2006, Nature 440:935-9). STED allows for imaging cellular elements with diffraction-unlimited resolution; in practical terms, the resolution (normally limited to ~200-300 nm) is improved down to 30-60 nm. Together with the development of two-color STED microscopy (Donnert et al., 2007, Biophys J. 92:L67-9), this technique allows experimenters to pinpoint the position of various cellular elements with nanometer precision. Obtaining a cellular nanomap is not feasible with conventional light microscopy, due to its low resolution. Electron microscopy cannot be applied, as its labeling efficiency it too low. I propose here to use STED microscopy to characterize the positions of the major components of the synapse. The preparation will be cultured hippocampal neurons, which have numerous small (about one micron in diameter) synaptic nerve terminals. I will determine the locations of synaptic proteins involved in neurotransmitter release, in membrane retrieval and in pre- and post-synaptic active zone structure. Less specialized elements such as the cytoskeleton, mitochondria and endosomes of the synapse will also be investigated. The work will provide answers for a number of questions in the neuroscience field, such as how and where the synaptic vesicles get retrieved, how pre- and post-synaptic active zone elements correlate, and what the role of cytoskeletal elements is in synaptic transmission. The small size and relatively low complexity (compared to whole cells) of the synaptic boutons will allows the work to be completed within a reasonable timeframe. Successful completion of the project will encourage researchers to perform larger scale cellular nano-maps, which would eventually replace the largely erroneous cellular fractionation techniques currently used nowadays to determine the location of various proteins.
Max ERC Funding
1 670 000 €
Duration
Start date: 2008-09-01, End date: 2013-08-31
Project acronym NUAGE
Project Nucleolar regulation of longevity
Researcher (PI) Adam Antebi
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Advanced Grant (AdG), LS4, ERC-2018-ADG
Summary Research over the last few decades has revealed that animal life span is malleable and regulated by conserved metabolic signaling pathways, including reduced insulin/IGF signaling, mTOR, mitochondrial function, dietary restriction, and signals from the reproductive system. Whether these various pathways converge on common processes, however, has remained elusive.
We recently discovered the nucleolus to be a crucial focal point of regulation in all these pathways. The nucleolus is a subnuclear organelle dedicated to rRNA production and ribogenesis, but also controls assembly of other ribonucleoprotein complexes including spliceosomes, signal recognition particle, small RNA processing, stress granules, and responds to growth and stress signaling. Remarkably we found that small nucleoli are a cellular hallmark of longevity in diverse species, and a correlate of metabolic health in humans. At the molecular level, long-lived animals show reduced levels of the nucleolar ribosomal RNA methylase, fibrillarin (FIB-1), and knockdown of C. elegans FIB-1 reduces nucleolar size, extends life span, and enhances innate immunity. Conversely, knockout of NCL-1/TRIM2 expands nucleolar size, suppresses life extension of major longevity pathways, and renders animals pathogen sensitive, revealing key regulators of nucleolargenesis, immunity and longevity.
Here I propose to (Aim 1) clarify the mechanism of action of NCL-1, FIB-1 and interacting molecules (2) perform novel genetic screens for nucleolargenesis in C. elegans (3) uncover global transcriptomic and proteomic changes induced by NCL-1 and FIB-1 and survey several candidate nucleolar processes in regulating longevity and immunity (4) probe NCL-1/TRIM2 regulation of longevity in the short-lived killifish, Notobranchius furzeri, and develop nucleolar biomarkers of metabolic health in humans. These groundbreaking studies should illuminate how conserved signaling pathways work through the nucleolus to regulate health and life span.
Summary
Research over the last few decades has revealed that animal life span is malleable and regulated by conserved metabolic signaling pathways, including reduced insulin/IGF signaling, mTOR, mitochondrial function, dietary restriction, and signals from the reproductive system. Whether these various pathways converge on common processes, however, has remained elusive.
We recently discovered the nucleolus to be a crucial focal point of regulation in all these pathways. The nucleolus is a subnuclear organelle dedicated to rRNA production and ribogenesis, but also controls assembly of other ribonucleoprotein complexes including spliceosomes, signal recognition particle, small RNA processing, stress granules, and responds to growth and stress signaling. Remarkably we found that small nucleoli are a cellular hallmark of longevity in diverse species, and a correlate of metabolic health in humans. At the molecular level, long-lived animals show reduced levels of the nucleolar ribosomal RNA methylase, fibrillarin (FIB-1), and knockdown of C. elegans FIB-1 reduces nucleolar size, extends life span, and enhances innate immunity. Conversely, knockout of NCL-1/TRIM2 expands nucleolar size, suppresses life extension of major longevity pathways, and renders animals pathogen sensitive, revealing key regulators of nucleolargenesis, immunity and longevity.
Here I propose to (Aim 1) clarify the mechanism of action of NCL-1, FIB-1 and interacting molecules (2) perform novel genetic screens for nucleolargenesis in C. elegans (3) uncover global transcriptomic and proteomic changes induced by NCL-1 and FIB-1 and survey several candidate nucleolar processes in regulating longevity and immunity (4) probe NCL-1/TRIM2 regulation of longevity in the short-lived killifish, Notobranchius furzeri, and develop nucleolar biomarkers of metabolic health in humans. These groundbreaking studies should illuminate how conserved signaling pathways work through the nucleolus to regulate health and life span.
Max ERC Funding
2 500 000 €
Duration
Start date: 2020-01-01, End date: 2024-12-31
Project acronym OLFACTORYIGLURS
Project Olfactory perception in Drosophila: analysis of a novel iGluR-related family of odorant receptors
Researcher (PI) Richard Benton
Host Institution (HI) UNIVERSITE DE LAUSANNE
Call Details Starting Grant (StG), LS4, ERC-2007-StG
Summary Chemosensory systems permit organisms to perceive diverse chemicals in the environment signalling the presence of food, dangers, kin or mates. How a specific chemical stimulus is recognised and converted into neural activity that provokes the appropriate behaviour is a fundamental problem in neuroscience. I investigate this question in the olfactory system of the fruit fly, Drosophila melanogaster, which exhibits sophisticated odour-driven behaviours under the control of a simple and genetically accessible nervous system. I recently discovered a novel Drosophila olfactory receptor family, the Ionotropic Receptors (IRs). IRs are expressed in sensory neurons distinct from the previously described Odorant Receptor (OR) family. Strikingly, IRs are structurally similar to ionotropic glutamate receptors (iGluRs), a conserved family of ligand-gated ion channels present in animals, plants and bacteria. iGluRs are best characterised for their role in mediating synaptic communication in the mammalian brain as receptors for the neurotransmitter glutamate, but IRs have divergent ligand-binding domains. The proposed project investigates the function of the IRs and their sensory circuits in the recognition of, and behavioural responses to, olfactory stimuli through four specific aims. Aim 1: Defining the molecular basis of IR/odour interactions. Aim 2: Visualising the mechanisms of IR trafficking. Aim 3: Mapping IR sensory circuits in the brain. Aim 4: Exploring the behavioural responses mediated by IR olfactory pathways. By combining genetic, cell biological, electrophysiological and behavioural approaches, this project will provide an integrated understanding of the function and evolution of these novel olfactory receptors and circuits. This knowledge will be of significance to chemical detection mechanisms across diverse sensory systems in eukaryotes and prokaryotes, and of interest to chemical ecologists, neuroscientists, evolutionary biologists and biomedical researchers.
Summary
Chemosensory systems permit organisms to perceive diverse chemicals in the environment signalling the presence of food, dangers, kin or mates. How a specific chemical stimulus is recognised and converted into neural activity that provokes the appropriate behaviour is a fundamental problem in neuroscience. I investigate this question in the olfactory system of the fruit fly, Drosophila melanogaster, which exhibits sophisticated odour-driven behaviours under the control of a simple and genetically accessible nervous system. I recently discovered a novel Drosophila olfactory receptor family, the Ionotropic Receptors (IRs). IRs are expressed in sensory neurons distinct from the previously described Odorant Receptor (OR) family. Strikingly, IRs are structurally similar to ionotropic glutamate receptors (iGluRs), a conserved family of ligand-gated ion channels present in animals, plants and bacteria. iGluRs are best characterised for their role in mediating synaptic communication in the mammalian brain as receptors for the neurotransmitter glutamate, but IRs have divergent ligand-binding domains. The proposed project investigates the function of the IRs and their sensory circuits in the recognition of, and behavioural responses to, olfactory stimuli through four specific aims. Aim 1: Defining the molecular basis of IR/odour interactions. Aim 2: Visualising the mechanisms of IR trafficking. Aim 3: Mapping IR sensory circuits in the brain. Aim 4: Exploring the behavioural responses mediated by IR olfactory pathways. By combining genetic, cell biological, electrophysiological and behavioural approaches, this project will provide an integrated understanding of the function and evolution of these novel olfactory receptors and circuits. This knowledge will be of significance to chemical detection mechanisms across diverse sensory systems in eukaryotes and prokaryotes, and of interest to chemical ecologists, neuroscientists, evolutionary biologists and biomedical researchers.
Max ERC Funding
1 500 000 €
Duration
Start date: 2008-07-01, End date: 2013-06-30
Project acronym ONIDDAC
Project Oncogene-Induced DNA Damage in Cancer
Researcher (PI) Athanassios Dimitrios (Thanos) Halazonetis
Host Institution (HI) UNIVERSITE DE GENEVE
Call Details Advanced Grant (AdG), LS4, ERC-2011-ADG_20110310
Summary I recently proposed a model that helps explain the presence of p53 mutations and genomic instability in human cancers (Nature, 2005; Nature 2006; Science 2008). The key features of this model are that oncogenes induce DNA replication stress, which in turn leads to DNA double-strand breaks, genomic instability and p53-induced senescence or apoptosis. This model is relevant for almost all cancer types and explains the spectrum of mutations being reported in thousands of human cancers by the cancer sequencing consortia.
In this project, I propose to take the next logical steps that follow from my discovery. Specifically, I propose the following objectives:
1. Elucidate the mechanisms by which oncogenes induce DNA replication stress. Oncogene-induced genomic deletions map within very large actively transcribed genes. Accordingly, I hypothesize that oncogenes and transcription synergistically disrupt pre-replicative complexes resulting in large genomic regions that have a low density of replication initiation events. To test this hypothesis, I propose to introduce by site-directed homologous recombination a transcription termination sequence at the beginning of very large gene and determine whether it remains sensitive to oncogene-induced genomic instability. Genome-wide transcription and DNA replication patterns will also be examined in cells that are sensitive to oncogene-induced DNA replication stress (most somatic cells and cell lines) and cells that are resistant (induced pluripotent stem cells).
2. Identify and characterize genes necessary for proliferation of cells with oncogene-induced DNA replication stress. Using high throughput siRNA screens we will identify genes, whose depletion inhibits proliferation of cells with oncogene-induced DNA replication stress, without affecting normal cells. We will explore the function of these genes using molecular biology, structural biology and genetic approaches. Some promising candidates have already been identified.
Summary
I recently proposed a model that helps explain the presence of p53 mutations and genomic instability in human cancers (Nature, 2005; Nature 2006; Science 2008). The key features of this model are that oncogenes induce DNA replication stress, which in turn leads to DNA double-strand breaks, genomic instability and p53-induced senescence or apoptosis. This model is relevant for almost all cancer types and explains the spectrum of mutations being reported in thousands of human cancers by the cancer sequencing consortia.
In this project, I propose to take the next logical steps that follow from my discovery. Specifically, I propose the following objectives:
1. Elucidate the mechanisms by which oncogenes induce DNA replication stress. Oncogene-induced genomic deletions map within very large actively transcribed genes. Accordingly, I hypothesize that oncogenes and transcription synergistically disrupt pre-replicative complexes resulting in large genomic regions that have a low density of replication initiation events. To test this hypothesis, I propose to introduce by site-directed homologous recombination a transcription termination sequence at the beginning of very large gene and determine whether it remains sensitive to oncogene-induced genomic instability. Genome-wide transcription and DNA replication patterns will also be examined in cells that are sensitive to oncogene-induced DNA replication stress (most somatic cells and cell lines) and cells that are resistant (induced pluripotent stem cells).
2. Identify and characterize genes necessary for proliferation of cells with oncogene-induced DNA replication stress. Using high throughput siRNA screens we will identify genes, whose depletion inhibits proliferation of cells with oncogene-induced DNA replication stress, without affecting normal cells. We will explore the function of these genes using molecular biology, structural biology and genetic approaches. Some promising candidates have already been identified.
Max ERC Funding
2 499 351 €
Duration
Start date: 2012-05-01, End date: 2018-04-30
Project acronym P73CANCER
Project p73 dependence in cancer: from molecular mechanisms to therapeutic targeting
Researcher (PI) Thorsten Stiewe
Host Institution (HI) PHILIPPS UNIVERSITAET MARBURG
Call Details Starting Grant (StG), LS4, ERC-2010-StG_20091118
Summary p73 is a transcription factor of the p53 tumor suppressor family. In approximately 50% of all cancer patients
the tumor suppressor function of p53 is irreversibly disabled by point mutations, which makes p53 one of the
most frequently mutated genes in cancer. This is entirely different for p73 and much of my previous work in
this field has been devoted to research on the role of p73 in cancer.
In sharp contrast to p53, p73 is often highly expressed in its wild-type form in solid tumors compared to
the surrounding normal tissue. This suggests the rather challenging hypothesis that p73 has oncogenic
functions in cancer cells, which promote tumor progression and therapy resistance. This concept is supported
by clinical data demonstrating p73 overexpression to be correlated with advanced tumor stage, metastasis,
therapy resistance and poor overall survival in multiple tumor entities including the ‘major killers’: breast,
lung and colorectal cancer. When p73 is depleted from cancer cell lines, tumor cell proliferation and
tumorigenicity are reduced, indicating that tumor cells with high p73 expression are p73-dependent. This
places p73 in line with oncogenes like Myc or mutant Ras, which are similarly essential for the tumorigenic
phenotype. However, tumor cells are not only addicted to a particular oncogene but in many cases codependent
on other cellular factors - a phenomenon termed ‘non-oncogene addiction’. Since p73 also has
tumor suppressive functions, p73-dependent tumor cells are likely to be critically dependent on cooperating
factors, which keep the proapoptotic and tumor suppressive functions of p73 in check. Inhibition of these
factors would be ‘synthetically lethal’ with overexpression of p73. From a clinical point-of-view it would be
extremely valuable, if we knew these factors and were able to block them in order to reactivate p73’s tumor
suppressor activity and trigger growth inhibition or cell death. This approach promises to be specifically
effective in the therapeutically challenging p73-dependent tumors with little or no side effects in normal
tissues with low p73 expression.
The goal of this project is therefore the identification and validation of such synthetic lethal interactions
with p73 using different functional genomics approaches. In the first part of the project we will characterize
the impact of p73-dependence on gene expression using genome-wide expression and global chromatin state
profiling. This will enhance our molecular understanding why cancer cells rely on high-level expression of
p73. In addition, this will pinpoint genes and pathways, which are co-expressed and activated together with
p73 and which are therefore candidate genes for therapeutic targeting of p73-dependent cancer cells. In the
second part of the project we will use RNAi screening techniques on a genome-wide scale to identify in an
unbiased manner cellular factors, which enable cancer cells to tolerate high-level expression of p73. These
genes are essential for long-term proliferation and survival in the context of p73 overexpression and could be
ideal drug targets for a tumor-selective therapy of the prognostically dismal class of p73-dependent tumors
Summary
p73 is a transcription factor of the p53 tumor suppressor family. In approximately 50% of all cancer patients
the tumor suppressor function of p53 is irreversibly disabled by point mutations, which makes p53 one of the
most frequently mutated genes in cancer. This is entirely different for p73 and much of my previous work in
this field has been devoted to research on the role of p73 in cancer.
In sharp contrast to p53, p73 is often highly expressed in its wild-type form in solid tumors compared to
the surrounding normal tissue. This suggests the rather challenging hypothesis that p73 has oncogenic
functions in cancer cells, which promote tumor progression and therapy resistance. This concept is supported
by clinical data demonstrating p73 overexpression to be correlated with advanced tumor stage, metastasis,
therapy resistance and poor overall survival in multiple tumor entities including the ‘major killers’: breast,
lung and colorectal cancer. When p73 is depleted from cancer cell lines, tumor cell proliferation and
tumorigenicity are reduced, indicating that tumor cells with high p73 expression are p73-dependent. This
places p73 in line with oncogenes like Myc or mutant Ras, which are similarly essential for the tumorigenic
phenotype. However, tumor cells are not only addicted to a particular oncogene but in many cases codependent
on other cellular factors - a phenomenon termed ‘non-oncogene addiction’. Since p73 also has
tumor suppressive functions, p73-dependent tumor cells are likely to be critically dependent on cooperating
factors, which keep the proapoptotic and tumor suppressive functions of p73 in check. Inhibition of these
factors would be ‘synthetically lethal’ with overexpression of p73. From a clinical point-of-view it would be
extremely valuable, if we knew these factors and were able to block them in order to reactivate p73’s tumor
suppressor activity and trigger growth inhibition or cell death. This approach promises to be specifically
effective in the therapeutically challenging p73-dependent tumors with little or no side effects in normal
tissues with low p73 expression.
The goal of this project is therefore the identification and validation of such synthetic lethal interactions
with p73 using different functional genomics approaches. In the first part of the project we will characterize
the impact of p73-dependence on gene expression using genome-wide expression and global chromatin state
profiling. This will enhance our molecular understanding why cancer cells rely on high-level expression of
p73. In addition, this will pinpoint genes and pathways, which are co-expressed and activated together with
p73 and which are therefore candidate genes for therapeutic targeting of p73-dependent cancer cells. In the
second part of the project we will use RNAi screening techniques on a genome-wide scale to identify in an
unbiased manner cellular factors, which enable cancer cells to tolerate high-level expression of p73. These
genes are essential for long-term proliferation and survival in the context of p73 overexpression and could be
ideal drug targets for a tumor-selective therapy of the prognostically dismal class of p73-dependent tumors
Max ERC Funding
1 499 040 €
Duration
Start date: 2010-10-01, End date: 2016-09-30
Project acronym PACA-MET
Project Genome-wide surveys and functional analysis of pancreatic cancer metastasis drivers
Researcher (PI) Roland RAD
Host Institution (HI) KLINIKUM RECHTS DER ISAR DER TECHNISCHEN UNIVERSITAT MUNCHEN
Call Details Consolidator Grant (CoG), LS4, ERC-2018-COG
Summary Metastasis is the major cause of death in pancreatic ductal adenocarcinoma (PDAC). International sequencing efforts on >800 human primaries gave comprehensive insights into PDAC genetics. In contrast, equivalent studies for “metastasis genetics” were not possible, largely because of a lack of metastatic tissue resources, particularly of treatment-naive ones. Another bottleneck is the scarcity of adequate experimental models recapitulating the multi-step nature of metastasis. As a consequence, the molecular basis of metastasis remains poorly understood.
We developed unique resources and tools for metastasis research and propose to use them at three levels to systematically interrogate the molecular underpinnings of PDAC metastasis.
We will first perform complementary genome-scale surveys for genes and pathways driving metastasis and metastatic organotropism. We will (i) sequence our unique, largely unpublished resource of 1200 metastatic mouse PDAC, (ii) will perform genome-wide in vivo metastasis screens using transposon tools and approaches, which we pioneered in mice, and (iii) will perturb the human metastasis transcriptome and epigenome.
Second, we will validate newly discovered genes using human PDAC cohorts, and through functional studies in mice. We will deploy next-generation metastasis models based on advanced somatic genome engineering. They allow rapid functional studies at an organismal level, thus capturing the complexity of the metastatic cascade.
Third, building on our recent discovery of two prototype PDAC metastasis drivers, we will perform in depth mechanistic studies to identify underlying molecular networks and vulnerabilities.
This work will unravel - for the first time - comprehensive genetic and functional landscapes of PDAC metastasis. PACA-MET thus promises to uncover fundamental novel biological principles and identify therapeutic targets for one of biggest challenges in medicine.
Summary
Metastasis is the major cause of death in pancreatic ductal adenocarcinoma (PDAC). International sequencing efforts on >800 human primaries gave comprehensive insights into PDAC genetics. In contrast, equivalent studies for “metastasis genetics” were not possible, largely because of a lack of metastatic tissue resources, particularly of treatment-naive ones. Another bottleneck is the scarcity of adequate experimental models recapitulating the multi-step nature of metastasis. As a consequence, the molecular basis of metastasis remains poorly understood.
We developed unique resources and tools for metastasis research and propose to use them at three levels to systematically interrogate the molecular underpinnings of PDAC metastasis.
We will first perform complementary genome-scale surveys for genes and pathways driving metastasis and metastatic organotropism. We will (i) sequence our unique, largely unpublished resource of 1200 metastatic mouse PDAC, (ii) will perform genome-wide in vivo metastasis screens using transposon tools and approaches, which we pioneered in mice, and (iii) will perturb the human metastasis transcriptome and epigenome.
Second, we will validate newly discovered genes using human PDAC cohorts, and through functional studies in mice. We will deploy next-generation metastasis models based on advanced somatic genome engineering. They allow rapid functional studies at an organismal level, thus capturing the complexity of the metastatic cascade.
Third, building on our recent discovery of two prototype PDAC metastasis drivers, we will perform in depth mechanistic studies to identify underlying molecular networks and vulnerabilities.
This work will unravel - for the first time - comprehensive genetic and functional landscapes of PDAC metastasis. PACA-MET thus promises to uncover fundamental novel biological principles and identify therapeutic targets for one of biggest challenges in medicine.
Max ERC Funding
1 995 875 €
Duration
Start date: 2019-11-01, End date: 2024-10-31
Project acronym PanCaT
Project Next-generation in vivo models for improved pancreatic cancer therapies
Researcher (PI) Dieter Karl Maximilian Saur
Host Institution (HI) KLINIKUM RECHTS DER ISAR DER TECHNISCHEN UNIVERSITAT MUNCHEN
Call Details Consolidator Grant (CoG), LS4, ERC-2014-CoG
Summary Maintenance and drug resistance of pancreatic ductal adenocarcioma (PDAC) depends on cancer cell intrinsic mechanisms and a stroma that supports tumor growth. Mouse models of human PDAC have provided important insights into the evolution of this highly lethal tumor, but there are no models that allow secondary genetic manipulation of autochthonous tumors, the tumor microenvironment or the metastatic host niche once the tumor has formed.
We generated an inducible dual-recombinase system by combining Flp/frt and Cre/loxP. This novel PDAC model permits spatial and temporal control of gene expression enabling unbiased genetic approaches to study the role of tumor cell-autonomous and non-autonomous functions in endogenous cancers. This tool provides unparalleled access to the native biology of cancer cells and their hosting stroma, and rigorous genetic validation of candidate therapeutic targets. We performed tumor cell-autonomous and non-autonomous targeting, uncovered hallmarks of human multistep carcinogenesis, validated genetic tumor therapy, and showed that mast cells in the tumor microenvironment, which had been thought to be key oncogenic players, are in fact dispensable for tumor formation.
In the proposed research program, we will 1) develop and further improve next-generation PDAC models, 2) deploy these systems to identify and target key features of PDAC maintenance in tumor cells and their microenvironment, and 3) discover mechanisms of treatment resistance. The application of cutting edge genetic engineering and screening technologies will allow us to address biological questions that could not be addressed before. The PanCaT project will open new horizons for the functional understanding of pancreatic cancer biology with a strong impact on clinical management and prognosis of PDAC patients. It will also produce a unique set of highly versatile and widely applicable genetic tools that will facilitate the study of PDAC at an organismal level.
Summary
Maintenance and drug resistance of pancreatic ductal adenocarcioma (PDAC) depends on cancer cell intrinsic mechanisms and a stroma that supports tumor growth. Mouse models of human PDAC have provided important insights into the evolution of this highly lethal tumor, but there are no models that allow secondary genetic manipulation of autochthonous tumors, the tumor microenvironment or the metastatic host niche once the tumor has formed.
We generated an inducible dual-recombinase system by combining Flp/frt and Cre/loxP. This novel PDAC model permits spatial and temporal control of gene expression enabling unbiased genetic approaches to study the role of tumor cell-autonomous and non-autonomous functions in endogenous cancers. This tool provides unparalleled access to the native biology of cancer cells and their hosting stroma, and rigorous genetic validation of candidate therapeutic targets. We performed tumor cell-autonomous and non-autonomous targeting, uncovered hallmarks of human multistep carcinogenesis, validated genetic tumor therapy, and showed that mast cells in the tumor microenvironment, which had been thought to be key oncogenic players, are in fact dispensable for tumor formation.
In the proposed research program, we will 1) develop and further improve next-generation PDAC models, 2) deploy these systems to identify and target key features of PDAC maintenance in tumor cells and their microenvironment, and 3) discover mechanisms of treatment resistance. The application of cutting edge genetic engineering and screening technologies will allow us to address biological questions that could not be addressed before. The PanCaT project will open new horizons for the functional understanding of pancreatic cancer biology with a strong impact on clinical management and prognosis of PDAC patients. It will also produce a unique set of highly versatile and widely applicable genetic tools that will facilitate the study of PDAC at an organismal level.
Max ERC Funding
2 440 275 €
Duration
Start date: 2016-02-01, End date: 2021-01-31
Project acronym PAPA
Project Pathophysiology of Primary Aldosteronism
Researcher (PI) Martin REINCKE
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Call Details Advanced Grant (AdG), LS4, ERC-2015-AdG
Summary Arterial hypertension is a major cardiovascular risk factor that affects between 10-40% of the population. Primary aldosteronism (PA) due to adrenal excess production of aldosterone is the most common secondary form of hypertension affecting 4-12% of hypertensives. Given the severe cardiovascular adverse effects of aldosterone excess early detection and individualized treatment of PA has important impact on clinical outcome and survival. However, the pathophysiology of PA is not well understood: While we recently identified specific genes underlying aldosterone producing adenoma, the most prevalent form of PA, bilateral adrenal hyperplasia, has remained enigmatic. It is the first hypothesis of this proposal that the pathophysiology of PA is a process based on two ‘hits’: agonistic angiotensin II type 1 receptor (AT1R) autoantibodies (proliferation, nodular hyperplasia) and somatic mutations (adenoma formation). It is the second hypothesis, that together, both factors induce not only aldosterone but also marked glucocorticoid excess.
1.) I will analyze prevalence and binding characteristics of AT1R autoantibodies as a pathophysiologic basis of PA. 2.) I will determine the effect of AT1R antibodies and genetic factors on cellular adrenal cortex models in vitro. 3.) I will extend these studies to specific in vivo genetic rodent models of PA. 4.) I will quantify aldosterone and glucocorticoid excess as disease effectors of AT1R autoantibodies and somatic mutations using liquid chromatography–mass spectrometry in PA. 5.) Using the generated data I will develop a pathophysiology-based concept of PA.
This groundbreaking approach using innovative in vitro and in vivo models, state-of-the art genetic, immunologic and steroidobolomic techniques will uniquely open new avenues to the pathophysiologic understanding of PA. It will change our current understanding of PA, has high health impact and, thus, will pave the way to novel concepts of aldosterone excess and hypertension.
Summary
Arterial hypertension is a major cardiovascular risk factor that affects between 10-40% of the population. Primary aldosteronism (PA) due to adrenal excess production of aldosterone is the most common secondary form of hypertension affecting 4-12% of hypertensives. Given the severe cardiovascular adverse effects of aldosterone excess early detection and individualized treatment of PA has important impact on clinical outcome and survival. However, the pathophysiology of PA is not well understood: While we recently identified specific genes underlying aldosterone producing adenoma, the most prevalent form of PA, bilateral adrenal hyperplasia, has remained enigmatic. It is the first hypothesis of this proposal that the pathophysiology of PA is a process based on two ‘hits’: agonistic angiotensin II type 1 receptor (AT1R) autoantibodies (proliferation, nodular hyperplasia) and somatic mutations (adenoma formation). It is the second hypothesis, that together, both factors induce not only aldosterone but also marked glucocorticoid excess.
1.) I will analyze prevalence and binding characteristics of AT1R autoantibodies as a pathophysiologic basis of PA. 2.) I will determine the effect of AT1R antibodies and genetic factors on cellular adrenal cortex models in vitro. 3.) I will extend these studies to specific in vivo genetic rodent models of PA. 4.) I will quantify aldosterone and glucocorticoid excess as disease effectors of AT1R autoantibodies and somatic mutations using liquid chromatography–mass spectrometry in PA. 5.) Using the generated data I will develop a pathophysiology-based concept of PA.
This groundbreaking approach using innovative in vitro and in vivo models, state-of-the art genetic, immunologic and steroidobolomic techniques will uniquely open new avenues to the pathophysiologic understanding of PA. It will change our current understanding of PA, has high health impact and, thus, will pave the way to novel concepts of aldosterone excess and hypertension.
Max ERC Funding
2 496 875 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym PedSarc
Project Targeting genetic and epigenetic mechanisms in pediatric sarcomas.
Researcher (PI) Ana BANITO
Host Institution (HI) DEUTSCHES KREBSFORSCHUNGSZENTRUM HEIDELBERG
Call Details Starting Grant (StG), LS4, ERC-2018-STG
Summary Sarcomas are an extremely heterogeneous group of mesenchymal tumors that arise in a multitude of tissues from many different cell types. Several genetic events have been identified in different sarcoma sub-types, but very few models were developed to study their role in tumorigenesis aiming at exploiting them as therapeutic vulnerabilities. As a result, the treatment of sarcoma has extremely limited advancement in therapeutic options compared to other cancers. Therefore, the generation of faithful in vitro and in vivo models for sarcoma research is urgently needed to provide insights into the pathobiology of these tumors and discover novel vulnerabilities in these lethal but yet understudied disease. Many types of soft tissue sarcomas arising in children and young adults have a unifying underlying genetic mechanism, where chromosomal translocations generate fusion oncoproteins that serve as drivers of the disease. Exploiting this genetic simplicity provides an exceptional opportunity to develop effective and specific therapies. My past research has applied cutting edge technology to define epigenetic vulnerabilities associated with the SS18-SSX gene fusion, the defining event in synovial sarcoma (one subgroup of pediatric sarcomas), and to study its chromatin occupancy genome-wide. In this proposal my team will combine a toolbox consisting of CRISPR/Cas9, RNAi technology and expertise in mouse models to systematically elucidate key genetic and epigenetic mechanisms in the pathobiology of pediatric sarcomas. This work will help to understand key players in epigenetic deregulation in pediatric sarcomas, generate new sarcoma models to assist clinical translation, and identify new therapeutic targets for these deadly diseases.
Summary
Sarcomas are an extremely heterogeneous group of mesenchymal tumors that arise in a multitude of tissues from many different cell types. Several genetic events have been identified in different sarcoma sub-types, but very few models were developed to study their role in tumorigenesis aiming at exploiting them as therapeutic vulnerabilities. As a result, the treatment of sarcoma has extremely limited advancement in therapeutic options compared to other cancers. Therefore, the generation of faithful in vitro and in vivo models for sarcoma research is urgently needed to provide insights into the pathobiology of these tumors and discover novel vulnerabilities in these lethal but yet understudied disease. Many types of soft tissue sarcomas arising in children and young adults have a unifying underlying genetic mechanism, where chromosomal translocations generate fusion oncoproteins that serve as drivers of the disease. Exploiting this genetic simplicity provides an exceptional opportunity to develop effective and specific therapies. My past research has applied cutting edge technology to define epigenetic vulnerabilities associated with the SS18-SSX gene fusion, the defining event in synovial sarcoma (one subgroup of pediatric sarcomas), and to study its chromatin occupancy genome-wide. In this proposal my team will combine a toolbox consisting of CRISPR/Cas9, RNAi technology and expertise in mouse models to systematically elucidate key genetic and epigenetic mechanisms in the pathobiology of pediatric sarcomas. This work will help to understand key players in epigenetic deregulation in pediatric sarcomas, generate new sarcoma models to assist clinical translation, and identify new therapeutic targets for these deadly diseases.
Max ERC Funding
1 499 375 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym PhaseControl
Project How cellular suicide programmes control phase transitions in fatty liver disease and liver cancer
Researcher (PI) Tom LUEDDE
Host Institution (HI) UNIVERSITAETSKLINIKUM AACHEN
Call Details Consolidator Grant (CoG), LS4, ERC-2017-COG
Summary The progression from a healthy liver towards non-alcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC) serves as a model for chronic diseases in a solid organ, demonstrating how an initially stable stage undergoes critical transitions along several defined phases. Defining the molecular drivers of these phase transitions will open the road for the definition of warning signs, risk prediction approaches and prevention of disease decompensation in human liver disease. We recently made several ground-breaking findings indicating that the molecules RIPK3 and MLKL – which regulate a novel form of programmed cell death called necroptosis – are crucial mediators of these phase transitions, but they might have unexpected and cell-death-independent functions. Therefore, PhaseControl aims at exploring the specific functions of these molecules at the critical phase transitions towards NASH/HCC. Specifically, I propose to apply a systematic approach and innovative methods to
1) explore cell-type specific RIPK3- and MLKL-dependent regulatory networks in white adipose tissue (WAT), hepatocytes and myeloid cells in murine NASH development and define cell-death independent functions of MLKL in metabolic regulation;
2) explore how inflammatory pathways in hepatocytes modulate the reactivity and specific responses towards necroptosis at the transition towards hepatocellular carcinoma (HCC);
3) examine apoptosis- and necroptosis-specific genetic alterations and driver mutations that mediate the transition from chronic inflammation to HCC;
4) evaluate in a cohort of human patients if these newly discovered pathways can be used for risk-prediction approaches and might be chemoprevention targets against HCC.
The expected results will establish a novel concept how programmed cell death, inflammation and metabolic pathways functionally interact in hepatocarcinogenesis with fundamental relevance for risk prediction and chemoprevention of human liver cancer.
Summary
The progression from a healthy liver towards non-alcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC) serves as a model for chronic diseases in a solid organ, demonstrating how an initially stable stage undergoes critical transitions along several defined phases. Defining the molecular drivers of these phase transitions will open the road for the definition of warning signs, risk prediction approaches and prevention of disease decompensation in human liver disease. We recently made several ground-breaking findings indicating that the molecules RIPK3 and MLKL – which regulate a novel form of programmed cell death called necroptosis – are crucial mediators of these phase transitions, but they might have unexpected and cell-death-independent functions. Therefore, PhaseControl aims at exploring the specific functions of these molecules at the critical phase transitions towards NASH/HCC. Specifically, I propose to apply a systematic approach and innovative methods to
1) explore cell-type specific RIPK3- and MLKL-dependent regulatory networks in white adipose tissue (WAT), hepatocytes and myeloid cells in murine NASH development and define cell-death independent functions of MLKL in metabolic regulation;
2) explore how inflammatory pathways in hepatocytes modulate the reactivity and specific responses towards necroptosis at the transition towards hepatocellular carcinoma (HCC);
3) examine apoptosis- and necroptosis-specific genetic alterations and driver mutations that mediate the transition from chronic inflammation to HCC;
4) evaluate in a cohort of human patients if these newly discovered pathways can be used for risk-prediction approaches and might be chemoprevention targets against HCC.
The expected results will establish a novel concept how programmed cell death, inflammation and metabolic pathways functionally interact in hepatocarcinogenesis with fundamental relevance for risk prediction and chemoprevention of human liver cancer.
Max ERC Funding
1 997 840 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym PRiSM
Project Programming Sensory regulation of Metabolism
Researcher (PI) Sophie Marie Francine STECULORUM
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), LS4, ERC-2018-STG
Summary Sensory perception has recently emerged as a master regulator of integrative physiology and behavior, including feeding, by controlling fundamental and pleiotropic regulatory processes of energy and glucose homeostasis. Further, sensory perception is altered in obesity and type 2 diabetes, and childhood obesity correlates with early sensory deficit. Along this line, the discovery of the developmental origins of health and diseases revealed that metabolic diseases have recognized roots in the very early stages of life and can be predisposed to by changes in the perinatal hormonal and nutritional environments, such as occur in cases of maternal obesity and unhealthy diet. In this context, an accumulating body of evidence suggests that maternal health and nutrition could negatively impinge on the development of sensory perception, and subsequently, on the lifelong regulation of sensory-dependent control of metabolic, physiological, and behavioral regulatory processes. This innovative research program consists of four autonomous but complementary projects aimed at (1) deciphering the exact central regulatory processes mediating sensory control of feeding behavior and glucose homeostasis, (2) uncovering the influence of maternal health and nutrition on lifelong sensory regulation of metabolism, and (3) & (4) investigating two independent, yet synergistic, mechanisms that could mediate developmental programming of sensory metabolic regulation. This research program will employ a technology framework of physiological, behavioral, and developmental analyses in mice in concert with state-of-the-art systems neuroscience approaches, including optogenetics, chemogenetics, and in vivo calcium imaging. Collectively, the overarching goals of this research program are to provide new insights into the precise regulatory processes of sensory metabolic regulation and to shed light on critical basic mechanisms underlying the developmental programming of metabolic diseases.
Summary
Sensory perception has recently emerged as a master regulator of integrative physiology and behavior, including feeding, by controlling fundamental and pleiotropic regulatory processes of energy and glucose homeostasis. Further, sensory perception is altered in obesity and type 2 diabetes, and childhood obesity correlates with early sensory deficit. Along this line, the discovery of the developmental origins of health and diseases revealed that metabolic diseases have recognized roots in the very early stages of life and can be predisposed to by changes in the perinatal hormonal and nutritional environments, such as occur in cases of maternal obesity and unhealthy diet. In this context, an accumulating body of evidence suggests that maternal health and nutrition could negatively impinge on the development of sensory perception, and subsequently, on the lifelong regulation of sensory-dependent control of metabolic, physiological, and behavioral regulatory processes. This innovative research program consists of four autonomous but complementary projects aimed at (1) deciphering the exact central regulatory processes mediating sensory control of feeding behavior and glucose homeostasis, (2) uncovering the influence of maternal health and nutrition on lifelong sensory regulation of metabolism, and (3) & (4) investigating two independent, yet synergistic, mechanisms that could mediate developmental programming of sensory metabolic regulation. This research program will employ a technology framework of physiological, behavioral, and developmental analyses in mice in concert with state-of-the-art systems neuroscience approaches, including optogenetics, chemogenetics, and in vivo calcium imaging. Collectively, the overarching goals of this research program are to provide new insights into the precise regulatory processes of sensory metabolic regulation and to shed light on critical basic mechanisms underlying the developmental programming of metabolic diseases.
Max ERC Funding
1 500 000 €
Duration
Start date: 2019-06-01, End date: 2024-05-31
Project acronym PROVASC
Project Cell-specific vascular protection by CXCL12/CXCR4
Researcher (PI) Christian WEBER
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Call Details Advanced Grant (AdG), LS4, ERC-2015-AdG
Summary Cardiovascular disease including coronary heart disease remains the leading cause of death worldwide. Atherosclerosis as the underlying pathology is a lipid-driven inflammatory disease of arteries giving rise to vulnerable lesions prone to rupture and thrombotic occlusion. Lesions develop at predilection sites with disturbed flow, where endothelial damage promotes intimal retention of lipoproteins and inflammatory leukocyte recruitment. Past research has largely focused on atherogenic factors and their inhibition but not on boosting a counterbalance by protective mechanisms. We have recently found that the CXCL12/CXCR4 chemokine-receptor axis protects against atherosclerosis by controlling neutrophil homeostasis and facilitating endothelial regeneration in mice. This is supported by genome-wide association studies, identifying genetic variants near CXCL12 associated with the risk of coronary heart disease. The protective regulation of endothelial repair by microRNAs also involves CXCL12/CXCR4. However, the causal and cell-specific impact of this axis remains unclear.
To balance the ongoing expansion of genetic risk variants, PROVASC aims to discover/elucidate novel mechanisms for protective cell homeostasis and regeneration counteracting atherosclerosis in depth. To this end, we will dissect cell-specific effects of the CXCR4-CXCL12 axis using an array of mouse lines for conditional deletion and bone marrow chimeras to compare resident versus hemato-poietic cell compartments. We will validate a role of coding and non-coding genetic risk variants affecting CXCL12/CXCR4 in different cell types and humanized mouse models. By identifying relevant microRNAs targeting CXCL12/CXCR4, we will unravel a regulation of this axis by cell type-specific microRNAs. Given the ubiquitous relevance of CXCL12/CXCR4, we expect that the impact of such new mechanisms will extend to other chronic inflammatory diseases, allowing for tailored strategies of tissue protection and regeneration.
Summary
Cardiovascular disease including coronary heart disease remains the leading cause of death worldwide. Atherosclerosis as the underlying pathology is a lipid-driven inflammatory disease of arteries giving rise to vulnerable lesions prone to rupture and thrombotic occlusion. Lesions develop at predilection sites with disturbed flow, where endothelial damage promotes intimal retention of lipoproteins and inflammatory leukocyte recruitment. Past research has largely focused on atherogenic factors and their inhibition but not on boosting a counterbalance by protective mechanisms. We have recently found that the CXCL12/CXCR4 chemokine-receptor axis protects against atherosclerosis by controlling neutrophil homeostasis and facilitating endothelial regeneration in mice. This is supported by genome-wide association studies, identifying genetic variants near CXCL12 associated with the risk of coronary heart disease. The protective regulation of endothelial repair by microRNAs also involves CXCL12/CXCR4. However, the causal and cell-specific impact of this axis remains unclear.
To balance the ongoing expansion of genetic risk variants, PROVASC aims to discover/elucidate novel mechanisms for protective cell homeostasis and regeneration counteracting atherosclerosis in depth. To this end, we will dissect cell-specific effects of the CXCR4-CXCL12 axis using an array of mouse lines for conditional deletion and bone marrow chimeras to compare resident versus hemato-poietic cell compartments. We will validate a role of coding and non-coding genetic risk variants affecting CXCL12/CXCR4 in different cell types and humanized mouse models. By identifying relevant microRNAs targeting CXCL12/CXCR4, we will unravel a regulation of this axis by cell type-specific microRNAs. Given the ubiquitous relevance of CXCL12/CXCR4, we expect that the impact of such new mechanisms will extend to other chronic inflammatory diseases, allowing for tailored strategies of tissue protection and regeneration.
Max ERC Funding
2 498 250 €
Duration
Start date: 2016-10-01, End date: 2021-09-30
Project acronym PROVEC
Project Promoting Osteogenesis through Vascular Endothelial Cells
Researcher (PI) Ralf Heinrich ADAMS
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Advanced Grant (AdG), LS4, ERC-2017-ADG
Summary The skeletal system and its vasculature form a functional unit with great relevance in health, regeneration, and disease. Our recent work has provided fundamental insights into the organization of the bone vasculature in mouse, its changes during aging, the heterogeneity and functional specialization of bone capillaries and endothelial cells, the regulation of these properties by Notch and hypoxia-inducible factor signaling, and the crosstalk with osteoblast lineage cells. Most importantly, we found that the manipulation of ECs in the aging animal can trigger the expansion of osteoprogenitors and thereby induce bone formation.
PROVEC will now systemically identify and characterize endothelial cell subpopulations, their gene expression and functional properties in the healthy, aging, diseased and regenerating skeletal system. Preclinical models will establish whether endothelial cells are involved in the response to therapeutic treatments aiming at osteoblasts or osteoclasts, or if the modulation of ECs alone is sufficient to generate beneficial effects. Finally, PROVEC will investigate whether cultured mouse and human ECs can be endowed with beneficial properties to enhance bone formation in 3D organoid cultures and after transplantation into mice, which will be monitored by imaging in living animals.
To achieve its ambitions aims, PROVEC will use a powerful combination of mouse genetics, disease models, genetic fate mapping, RNA-seq and single cell sequencing, computational biology, confocal and 2-photon microscopy, micro-CT imaging, pharmacological treatments, and cell biology methods to establish if and how vascular endothelial cells can be used to increase bone mineral density in preclinical models.
The successful completion of PROVEC would be highly relevant for diseases such as osteoporosis, which affects around 27.5 million patients in the EU, generates annual costs of about 37 billion Euros, and for which we currently lack appropriate treatments.
Summary
The skeletal system and its vasculature form a functional unit with great relevance in health, regeneration, and disease. Our recent work has provided fundamental insights into the organization of the bone vasculature in mouse, its changes during aging, the heterogeneity and functional specialization of bone capillaries and endothelial cells, the regulation of these properties by Notch and hypoxia-inducible factor signaling, and the crosstalk with osteoblast lineage cells. Most importantly, we found that the manipulation of ECs in the aging animal can trigger the expansion of osteoprogenitors and thereby induce bone formation.
PROVEC will now systemically identify and characterize endothelial cell subpopulations, their gene expression and functional properties in the healthy, aging, diseased and regenerating skeletal system. Preclinical models will establish whether endothelial cells are involved in the response to therapeutic treatments aiming at osteoblasts or osteoclasts, or if the modulation of ECs alone is sufficient to generate beneficial effects. Finally, PROVEC will investigate whether cultured mouse and human ECs can be endowed with beneficial properties to enhance bone formation in 3D organoid cultures and after transplantation into mice, which will be monitored by imaging in living animals.
To achieve its ambitions aims, PROVEC will use a powerful combination of mouse genetics, disease models, genetic fate mapping, RNA-seq and single cell sequencing, computational biology, confocal and 2-photon microscopy, micro-CT imaging, pharmacological treatments, and cell biology methods to establish if and how vascular endothelial cells can be used to increase bone mineral density in preclinical models.
The successful completion of PROVEC would be highly relevant for diseases such as osteoporosis, which affects around 27.5 million patients in the EU, generates annual costs of about 37 billion Euros, and for which we currently lack appropriate treatments.
Max ERC Funding
2 205 875 €
Duration
Start date: 2019-02-01, End date: 2024-01-31
Project acronym PTPSBDC
Project The role of protein-tyrosine phosphatases in breast development and cancer
Researcher (PI) Mohamed Bentires-Alj
Host Institution (HI) FRIEDRICH MIESCHER INSTITUTE FOR BIOMEDICAL RESEARCH FONDATION
Call Details Starting Grant (StG), LS4, ERC-2009-StG
Summary Each year 1.1 million new cases of breast cancer will occur among women worldwide and 400,000 women will die from this disease. Although progress has been made in understanding breast tumor biology, most of the relevant molecules and pathways remain undefined. Their delineation is critical to a rational approach to breast cancer therapy. This proposal focuses on the role of the under-explored family of protein-tyrosine phosphatases (PTPs) in the normal and neoplastic breast. Virtually all cell signaling pathways are modulated by reversible protein tyrosine phosphorylation, which is regulated by two classes of enzymes: protein-tyrosine kinases (PTKs) and PTPs. Not surprisingly, tyrosine phosphorylation has an important role in breast development and cancer. Whereas the role of specific PTKs, like the HER2 receptor, in breast cancer is well studied, almost nothing is known about the function of specific PTPs in this disease. Our preliminary data suggest that PTP1B has an important role in breast differentiation and that both PTP1B and SHP2 play positive roles in breast cancer. The two predominant goals of this proposal are: First, to delineate the role of PTP1B and other PTPs in normal breast development and differentiation; second, to address the roles of PTP1B and other PTPs in the maintenance of breast cancer and metastasis and to assess their merits as drug targets. These studies not only use state-of-the-art ex vivo and in vivo models for studying breast pathophysiology, but also cross the boundaries between the developmental and cancer research fields and between basic science and clinical applications. Our research should ultimately lead to the rational design of targeted therapies that will improve the clinical management of patients with breast cancer.
Summary
Each year 1.1 million new cases of breast cancer will occur among women worldwide and 400,000 women will die from this disease. Although progress has been made in understanding breast tumor biology, most of the relevant molecules and pathways remain undefined. Their delineation is critical to a rational approach to breast cancer therapy. This proposal focuses on the role of the under-explored family of protein-tyrosine phosphatases (PTPs) in the normal and neoplastic breast. Virtually all cell signaling pathways are modulated by reversible protein tyrosine phosphorylation, which is regulated by two classes of enzymes: protein-tyrosine kinases (PTKs) and PTPs. Not surprisingly, tyrosine phosphorylation has an important role in breast development and cancer. Whereas the role of specific PTKs, like the HER2 receptor, in breast cancer is well studied, almost nothing is known about the function of specific PTPs in this disease. Our preliminary data suggest that PTP1B has an important role in breast differentiation and that both PTP1B and SHP2 play positive roles in breast cancer. The two predominant goals of this proposal are: First, to delineate the role of PTP1B and other PTPs in normal breast development and differentiation; second, to address the roles of PTP1B and other PTPs in the maintenance of breast cancer and metastasis and to assess their merits as drug targets. These studies not only use state-of-the-art ex vivo and in vivo models for studying breast pathophysiology, but also cross the boundaries between the developmental and cancer research fields and between basic science and clinical applications. Our research should ultimately lead to the rational design of targeted therapies that will improve the clinical management of patients with breast cancer.
Max ERC Funding
1 571 365 €
Duration
Start date: 2010-02-01, End date: 2015-01-31
Project acronym ROSCAN
Project The role of ROS/RNS during inflammation-associated and sporadic carcinogenesis
Researcher (PI) Florian Greten
Host Institution (HI) CHEMOTHERAPEUTISCHES FORSCHUNGSINSTITUT GEORG-SPEYER-HAUS STIFTUNG
Call Details Starting Grant (StG), LS4, ERC-2011-StG_20101109
Summary "A link between inflammation and cancer has been suspected over a long period of time and in recent years genetic evidence supporting such notion could be obtained. Several signaling pathways, such as NF-κB and STAT3, could be identified by our group as well as other groups to play important roles during tumor promotion and progression. Chronic inflammation leads to the formation of reactive oxygen and nitrogen species, which are known to cause DNA damage and inactivation of DNA repair mechanisms, thereby presumably inducing tumor-initiating mutations. On the other hand, oxidative stress has been documented to trigger apoptosis and cellular senescence. However, in vivo evidence demonstrating the consequences of increased oxidative stress on tumor development in a distinct genetic model is lacking. Selenoproteins of the glutathione peroxidase and thioredoxin reductase family are important anti-oxidant scavenger systems. Using cell type specific inactivation (epithelial cells an myeloid cells) of several of these family members in various well established and relevant models of inflammation-associated and sporadic colon tumorigenesis we will directly examine the role of these anti-oxidant systems. These models will allow us to genetically determine the outcome of increased lipid peroxidation and accumulation of reactive oxygen species in each cell type and to address whether cancer development is supported or inhibited under such conditions and will help to identify which phase of tumor development is affected. Furthermore, we expect to obtain results that will determine whether increased levels of ROS/RNS found during chronic inflammation are capable of initiating tumorigenesis. Our proposed experiments are supposed to provide fundamental insight into the molecular changes in the tumor microenvironment, which will ultimately help to identify novel strategies to prevent and treat colorectal cancer."
Summary
"A link between inflammation and cancer has been suspected over a long period of time and in recent years genetic evidence supporting such notion could be obtained. Several signaling pathways, such as NF-κB and STAT3, could be identified by our group as well as other groups to play important roles during tumor promotion and progression. Chronic inflammation leads to the formation of reactive oxygen and nitrogen species, which are known to cause DNA damage and inactivation of DNA repair mechanisms, thereby presumably inducing tumor-initiating mutations. On the other hand, oxidative stress has been documented to trigger apoptosis and cellular senescence. However, in vivo evidence demonstrating the consequences of increased oxidative stress on tumor development in a distinct genetic model is lacking. Selenoproteins of the glutathione peroxidase and thioredoxin reductase family are important anti-oxidant scavenger systems. Using cell type specific inactivation (epithelial cells an myeloid cells) of several of these family members in various well established and relevant models of inflammation-associated and sporadic colon tumorigenesis we will directly examine the role of these anti-oxidant systems. These models will allow us to genetically determine the outcome of increased lipid peroxidation and accumulation of reactive oxygen species in each cell type and to address whether cancer development is supported or inhibited under such conditions and will help to identify which phase of tumor development is affected. Furthermore, we expect to obtain results that will determine whether increased levels of ROS/RNS found during chronic inflammation are capable of initiating tumorigenesis. Our proposed experiments are supposed to provide fundamental insight into the molecular changes in the tumor microenvironment, which will ultimately help to identify novel strategies to prevent and treat colorectal cancer."
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-10-01, End date: 2016-09-30
Project acronym ScarLessWorld
Project A WORLD WITHOUT SCARS: Regenerating wounded skin rather than patching with scars
Researcher (PI) Yuval Rinkevich
Host Institution (HI) HELMHOLTZ ZENTRUM MUENCHEN DEUTSCHES FORSCHUNGSZENTRUM FUER GESUNDHEIT UND UMWELT GMBH
Call Details Consolidator Grant (CoG), LS4, ERC-2018-COG
Summary Scars are a mystery. They rarely develop in lower vertebrates, where the norm is a complete regeneration of damaged tissues, but are frequent in mammals including humans. Scar phenotypes depend on different injury types, anatomic locations, age, gender and species. The natural diversity of scars includes rare cases, where damaged tissues regenerate without scarring. The scar/regeneration decision remains unresolved and scar prevention is a clinical challenge.
Current research has been held up by conceptual and operational bottlenecks. The current conceptual notion comes from experiments showing that scarring depends on the internal environment of the injured organ. I challenged this notion by uncovering specialized fibroblast cell lineages that regenerate connective tissues without scars, anywhere, anytime. My hypothesis is that the decision to scar/regenerate lies in the compositions of specific fibroblast types. To further study this theory I had to resolve a second bottleneck, the current lack of assays that display the full complexity of scarring and regeneration. I have thus developed innovative technological approaches (four novel tools) that allow whole-animal live imaging, tracking and gene modification of fibroblasts.
Building on these innovative tools and my expertise in cell lineages as linchpins of this proposal, I aim to: (1) catalogue the repertoires of dermal fibroblast lineages, (2) image their dynamics during scarring/regeneration (3) identify the decision-making genes for scarring/regeneration in actual skin tissues, and finally (4) translate our findings from mouse to human skin. This new notion that specialized fibroblast lineages drive scarring/regeneration, combined with the technology breakthroughs, will greatly advance our current understanding of scar formation, which is a significant worldwide biomedical problem, creating new research avenues for regenerative medicine far beyond the current state-of-the-art.
Summary
Scars are a mystery. They rarely develop in lower vertebrates, where the norm is a complete regeneration of damaged tissues, but are frequent in mammals including humans. Scar phenotypes depend on different injury types, anatomic locations, age, gender and species. The natural diversity of scars includes rare cases, where damaged tissues regenerate without scarring. The scar/regeneration decision remains unresolved and scar prevention is a clinical challenge.
Current research has been held up by conceptual and operational bottlenecks. The current conceptual notion comes from experiments showing that scarring depends on the internal environment of the injured organ. I challenged this notion by uncovering specialized fibroblast cell lineages that regenerate connective tissues without scars, anywhere, anytime. My hypothesis is that the decision to scar/regenerate lies in the compositions of specific fibroblast types. To further study this theory I had to resolve a second bottleneck, the current lack of assays that display the full complexity of scarring and regeneration. I have thus developed innovative technological approaches (four novel tools) that allow whole-animal live imaging, tracking and gene modification of fibroblasts.
Building on these innovative tools and my expertise in cell lineages as linchpins of this proposal, I aim to: (1) catalogue the repertoires of dermal fibroblast lineages, (2) image their dynamics during scarring/regeneration (3) identify the decision-making genes for scarring/regeneration in actual skin tissues, and finally (4) translate our findings from mouse to human skin. This new notion that specialized fibroblast lineages drive scarring/regeneration, combined with the technology breakthroughs, will greatly advance our current understanding of scar formation, which is a significant worldwide biomedical problem, creating new research avenues for regenerative medicine far beyond the current state-of-the-art.
Max ERC Funding
1 997 890 €
Duration
Start date: 2019-04-01, End date: 2024-03-31
Project acronym SENSORINEURAL
Project Elaboration and refinement of sensorineural dendritic architecture
Researcher (PI) Hernán López-Schier
Host Institution (HI) HELMHOLTZ ZENTRUM MUENCHEN DEUTSCHES FORSCHUNGSZENTRUM FUER GESUNDHEIT UND UMWELT GMBH
Call Details Starting Grant (StG), LS4, ERC-2007-StG
Summary Vertebrate sensory perception and integration depend on the formation of ordered connections between sensory neurons and their target cells that occur along several steps: a- establishment of cellular identity, b- neuronal axon growth, arborization and dendritogenesis, c- somatodendritic contact and synaptic refinement. Although there is a wealth of information about the molecular mechanisms controlling neuronal cell-fate determination and synaptogenesis during embryonic development, very few studies have analyzed the long-term dynamics of sensorineural circuitry in adult animals. We are employing the zebrafish lateral-line system to understand the mechanisms that govern the formation, homeostasis and regeneration of a mechanosensory organ. We have obtained evidence that intrinsic and activity-dependent mechanisms cooperate during the elaboration and refinement of the organ’s innervation. The goal of this research proposal is twofold: to characterize the mechanisms of sensorineural dendritic elaboration and remodeling, and to analyze how sensory organs reinnervate to recover function after damage. The first aim is to perform an exhaustive analysis of the cellular and molecular events leading to the formation of neuronal topography and the kinetics of target recognition. The second aim is to characterize the contribution of sensory function to dendrite arborization, asking whether epigenetic mechanisms shape sensorineural synaptic fields in the periphery. Finally we shall analyze how the architecture of the sensory epithelium relates to dendrite arborization. Achieving these goals will help us understand how animals maintain sensory abilities throughout their entire lives. It may also provide a framework for the development of strategies of regenerative medicine aimed at ameliorating the negative effects of age-related loss of sensory function, peripheral neuropathies, or cerebral stroke in humans.
Summary
Vertebrate sensory perception and integration depend on the formation of ordered connections between sensory neurons and their target cells that occur along several steps: a- establishment of cellular identity, b- neuronal axon growth, arborization and dendritogenesis, c- somatodendritic contact and synaptic refinement. Although there is a wealth of information about the molecular mechanisms controlling neuronal cell-fate determination and synaptogenesis during embryonic development, very few studies have analyzed the long-term dynamics of sensorineural circuitry in adult animals. We are employing the zebrafish lateral-line system to understand the mechanisms that govern the formation, homeostasis and regeneration of a mechanosensory organ. We have obtained evidence that intrinsic and activity-dependent mechanisms cooperate during the elaboration and refinement of the organ’s innervation. The goal of this research proposal is twofold: to characterize the mechanisms of sensorineural dendritic elaboration and remodeling, and to analyze how sensory organs reinnervate to recover function after damage. The first aim is to perform an exhaustive analysis of the cellular and molecular events leading to the formation of neuronal topography and the kinetics of target recognition. The second aim is to characterize the contribution of sensory function to dendrite arborization, asking whether epigenetic mechanisms shape sensorineural synaptic fields in the periphery. Finally we shall analyze how the architecture of the sensory epithelium relates to dendrite arborization. Achieving these goals will help us understand how animals maintain sensory abilities throughout their entire lives. It may also provide a framework for the development of strategies of regenerative medicine aimed at ameliorating the negative effects of age-related loss of sensory function, peripheral neuropathies, or cerebral stroke in humans.
Max ERC Funding
1 100 000 €
Duration
Start date: 2008-09-01, End date: 2014-02-28
Project acronym SIADIA
Project Siglecs as mediators of the pancreatic cellular crosstalk in diabetes
Researcher (PI) Kathrin Ulrike Maedler
Host Institution (HI) UNIVERSITAET BREMEN
Call Details Starting Grant (StG), LS4, ERC-2010-StG_20091118
Summary The mechanisms of the immune and endocrine cell interaction within the islet and resulting β-cell death are
highly complex and largely unknown. To investigate the cellular crosstalk in the pancreas and how its
disturbance leads to insufficient insulin production is important to understand the pathology of the disease. This
is the major goal of this project.
Activation of inflammation is not only a trigger for β-cell destruction, but also a major factor for the metabolic
syndrome, including insulin resistance and complications of diabetes.
Signalling and activation of immune cells is facilitated by secreted pro-inflammatory stimulators and via cell-cell
interactions. I propose that a group of adhesion and signalling molecules, the Siglecs (sialic acid–binding
immunoglobulin (Ig)-like lectins) mediate such interactions. They are responsible for immune system activation
and have been initially found in cells of hematopoietic origin. I made the groundbreaking observation of cell
type specific Siglec expression in the human pancreas: Siglecs were differentially expressed in glucagon
producing α-cells, and in insulin producing β-cells. A diabetic milieu had an inductive effect on Siglec
expression in the α-cells, but lead to decreased β-cell specific Siglecs. This loss of Siglecs in the β-cell could be
detrimental and result in an excessive cytokine release and in turn switches on Siglec responses in neighbouring
cells. In my proposed studies I will investigate the role of Siglecs in the cellular network in islets and in the
circulation to probe whether changes in Siglec expression are causative in the development of diabetes.
My project is a pioneer and multidisciplinary study combining the current knowledge of glycobiochemistry
and β-cell biology in diabetes. The project uses multi-model cell systems of healthy and diseased human
pancreatic tissue, isolated human islets, isolated human β-cells as well as diabetic mouse models, all of them
being absolutely novel and high-risk to a large extend.
Summary
The mechanisms of the immune and endocrine cell interaction within the islet and resulting β-cell death are
highly complex and largely unknown. To investigate the cellular crosstalk in the pancreas and how its
disturbance leads to insufficient insulin production is important to understand the pathology of the disease. This
is the major goal of this project.
Activation of inflammation is not only a trigger for β-cell destruction, but also a major factor for the metabolic
syndrome, including insulin resistance and complications of diabetes.
Signalling and activation of immune cells is facilitated by secreted pro-inflammatory stimulators and via cell-cell
interactions. I propose that a group of adhesion and signalling molecules, the Siglecs (sialic acid–binding
immunoglobulin (Ig)-like lectins) mediate such interactions. They are responsible for immune system activation
and have been initially found in cells of hematopoietic origin. I made the groundbreaking observation of cell
type specific Siglec expression in the human pancreas: Siglecs were differentially expressed in glucagon
producing α-cells, and in insulin producing β-cells. A diabetic milieu had an inductive effect on Siglec
expression in the α-cells, but lead to decreased β-cell specific Siglecs. This loss of Siglecs in the β-cell could be
detrimental and result in an excessive cytokine release and in turn switches on Siglec responses in neighbouring
cells. In my proposed studies I will investigate the role of Siglecs in the cellular network in islets and in the
circulation to probe whether changes in Siglec expression are causative in the development of diabetes.
My project is a pioneer and multidisciplinary study combining the current knowledge of glycobiochemistry
and β-cell biology in diabetes. The project uses multi-model cell systems of healthy and diseased human
pancreatic tissue, isolated human islets, isolated human β-cells as well as diabetic mouse models, all of them
being absolutely novel and high-risk to a large extend.
Max ERC Funding
1 363 847 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym SiCMetabol
Project Signaling Cascades in Metabolic Diseases
Researcher (PI) Grzegorz Piotr Sumara
Host Institution (HI) JULIUS-MAXIMILIANS-UNIVERSITAT WURZBURG
Call Details Starting Grant (StG), LS4, ERC-2015-STG
Summary Over 380 million people suffer from diabetes worldwide, with majority of cases being attributed to type 2 diabetes (T2D). Obesity is a major risk factor predisposing to the development of this disease. T2D is characterized by peripheral insulin resistance in combination with relative insulin deficiency that results in hyperglycemia and hyperlipidemia. Liver and adipose tissue are central for regulation of glucose and lipids levels. However, during T2D the hepatic glucose uptake is reduced while rates of gluconeogenesis and lipogenesis are increased. In the adipose tissue, T2D leads to decreased glucose uptake, perturbations in secretion of adipokines and increased lipolysis. Importantly, dysfunction of the liver and the adipose tissue during T2D is caused by defective phosphorylation signaling cascades and normalization of these pathways was shown to attenuate the course of T2D. However, the specific roles of different classes of signaling molecules in these organs remain poorly characterized. We hypothesize that the cross-talk of different classes of signaling molecules determines regulation of metabolism.
Thus, we aim to identify the signaling networks regulating metabolism. The results generated in my own laboratory suggest that the Pkd family kinases are the crucial regulators of metabolic homeostasis. Specifically, Pkd1 and Pkd2 promote obesity and diabetes while Pkd3 controls liver function. Thus, we plan to characterize the molecular mechanisms controlling Pkds signaling. In parallel, we will utilize screening approaches to identify novel, non-canonical signaling modules (phosphatases and components of the ubiquitin system) regulating abundance, localization and phosphorylation of targets of Pkds and, in the long term, also other kinases implicated in T2D.
By identifying and characterizing the essential signaling networks in liver and adipose tissue the project will contribute to more targeted pharmacological strategies for the treatment of T2D.
Summary
Over 380 million people suffer from diabetes worldwide, with majority of cases being attributed to type 2 diabetes (T2D). Obesity is a major risk factor predisposing to the development of this disease. T2D is characterized by peripheral insulin resistance in combination with relative insulin deficiency that results in hyperglycemia and hyperlipidemia. Liver and adipose tissue are central for regulation of glucose and lipids levels. However, during T2D the hepatic glucose uptake is reduced while rates of gluconeogenesis and lipogenesis are increased. In the adipose tissue, T2D leads to decreased glucose uptake, perturbations in secretion of adipokines and increased lipolysis. Importantly, dysfunction of the liver and the adipose tissue during T2D is caused by defective phosphorylation signaling cascades and normalization of these pathways was shown to attenuate the course of T2D. However, the specific roles of different classes of signaling molecules in these organs remain poorly characterized. We hypothesize that the cross-talk of different classes of signaling molecules determines regulation of metabolism.
Thus, we aim to identify the signaling networks regulating metabolism. The results generated in my own laboratory suggest that the Pkd family kinases are the crucial regulators of metabolic homeostasis. Specifically, Pkd1 and Pkd2 promote obesity and diabetes while Pkd3 controls liver function. Thus, we plan to characterize the molecular mechanisms controlling Pkds signaling. In parallel, we will utilize screening approaches to identify novel, non-canonical signaling modules (phosphatases and components of the ubiquitin system) regulating abundance, localization and phosphorylation of targets of Pkds and, in the long term, also other kinases implicated in T2D.
By identifying and characterizing the essential signaling networks in liver and adipose tissue the project will contribute to more targeted pharmacological strategies for the treatment of T2D.
Max ERC Funding
1 499 128 €
Duration
Start date: 2016-06-01, End date: 2021-05-31
Project acronym SILENCE
Project Mechanisms of Gene Silencing by the Glucocorticoid Receptor
Researcher (PI) Henriette Uhlenhaut
Host Institution (HI) HELMHOLTZ ZENTRUM MUENCHEN DEUTSCHES FORSCHUNGSZENTRUM FUER GESUNDHEIT UND UMWELT GMBH
Call Details Starting Grant (StG), LS4, ERC-2014-STG
Summary I propose to decipher the unresolved molecular paradox of positive versus negative gene regulation by the Glucocorticoid Receptor (GR). GR is one of the most potent anti-inflammatory drug targets in clinical use today, and one of the most powerful metabolic regulators. Unfortunately, its unique ability to efficiently shut off inflammatory gene expression is accompanied by serious side effects. These undesired effects are attributed to the transcriptional activation of its metabolic target genes and limit its therapeutic use.
SILENCE uses cutting-edge genome-wide approaches to identify the molecular mechanisms underlying the transcriptional repression, or silencing, of inflammatory genes by GR. The general, open question I want to address is how one transcription factor can simultaneously both activate and repress transcription.
GR is a member of the nuclear hormone receptor family of ligand-gated transcription factors. Upon hormone binding, GR can regulate gene expression both positively and negatively, but the mechanism governing this choice is unknown. I have previously shown that classical models and existing paradigms are insufficient to explain GR-mediated gene silencing. Therefore, I postulate the existence of unknown coregulator proteins, cis-regulatory DNA sequences, noncoding RNAs, or combinations thereof. To test these hypotheses, I plan 1. a large scale RNAi screen to identify those cofactors that specify repression versus activation, 2. ChIP-exo experiments to map genomic GR binding sites at an unprecedented resolution, and 3. GRO-Seq studies to define the role of noncoding RNAs during the silencing of inflammatory genes.
Inflammation is known to contribute to the pathogenesis of numerous human illnesses, including cancer, autoimmune diseases, diabetes and cardiovascular disease. Understanding the specific mechanisms involved in the silencing of inflammatory gene expression carries transformative potential for novel therapies and safer drugs.
Summary
I propose to decipher the unresolved molecular paradox of positive versus negative gene regulation by the Glucocorticoid Receptor (GR). GR is one of the most potent anti-inflammatory drug targets in clinical use today, and one of the most powerful metabolic regulators. Unfortunately, its unique ability to efficiently shut off inflammatory gene expression is accompanied by serious side effects. These undesired effects are attributed to the transcriptional activation of its metabolic target genes and limit its therapeutic use.
SILENCE uses cutting-edge genome-wide approaches to identify the molecular mechanisms underlying the transcriptional repression, or silencing, of inflammatory genes by GR. The general, open question I want to address is how one transcription factor can simultaneously both activate and repress transcription.
GR is a member of the nuclear hormone receptor family of ligand-gated transcription factors. Upon hormone binding, GR can regulate gene expression both positively and negatively, but the mechanism governing this choice is unknown. I have previously shown that classical models and existing paradigms are insufficient to explain GR-mediated gene silencing. Therefore, I postulate the existence of unknown coregulator proteins, cis-regulatory DNA sequences, noncoding RNAs, or combinations thereof. To test these hypotheses, I plan 1. a large scale RNAi screen to identify those cofactors that specify repression versus activation, 2. ChIP-exo experiments to map genomic GR binding sites at an unprecedented resolution, and 3. GRO-Seq studies to define the role of noncoding RNAs during the silencing of inflammatory genes.
Inflammation is known to contribute to the pathogenesis of numerous human illnesses, including cancer, autoimmune diseases, diabetes and cardiovascular disease. Understanding the specific mechanisms involved in the silencing of inflammatory gene expression carries transformative potential for novel therapies and safer drugs.
Max ERC Funding
1 496 275 €
Duration
Start date: 2015-08-01, End date: 2020-07-31
Project acronym SIRTUINS
Project Phenogenomics of sirtuin corepressor family
Researcher (PI) Johan Auwerx
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Advanced Grant (AdG), LS4, ERC-2008-AdG
Summary By modulating the activity of transcription factors, cofactors influence cellular and organismal metabolic pathways. Recently the role of the sirtuin cofactor gene family received a lot of attention in this context, as their beneficial impact on longevity was linked to effects on metabolic control. Most sirtuins catalyze deacetylation reactions that are tightly linked to cellular energy (NAD+) levels. To ascertain the tissue-specific contributions of sirtuins in metabolism, we propose here to: 1) identify novel deacetylation targets for the sirtuins; 2) generate and characterize genetically engineered mouse models (GEMMs) with somatic mutations in the 7 sirtuin genes in liver, muscle and adipose tissue, key metabolic tissues; 3) study mouse models with natural genetic variation in sirtuin expression, such as found in genetic reference populations (GRPs), like the BxD recombinant inbred mouse lines; and 4) validate the relevance of sirtuin signaling for human metabolism through clinical genetic studies. As the goal is to progress towards the treatment and prevention of metabolic diseases in humans, GEMMs are optimized to study the actions of isolated genetic loci and are thus insufficient to characterize polygenic networks and genetic interactions. Moreover environmental factors can impact on the manifestations of the genotype or phenocopy the genetically produced phenotype. Thus, to dissect complex genetic traits, experimental models, like GRPs, that imitate the genetic structure of human populations provide complimentary information to that obtained from GEMMs. As we will combine data generated using directional genetic strategies in GEMMs with a high-throughput phenogenomic analysis of GRPs, our approach merges the benefits of clear-cut results of single gene perturbations in a given tissue with subtle alterations that result from natural innumerable allelic variants. This will ultimately favor the definition of the role of the sirtuins in metabolic homeostasis.
Summary
By modulating the activity of transcription factors, cofactors influence cellular and organismal metabolic pathways. Recently the role of the sirtuin cofactor gene family received a lot of attention in this context, as their beneficial impact on longevity was linked to effects on metabolic control. Most sirtuins catalyze deacetylation reactions that are tightly linked to cellular energy (NAD+) levels. To ascertain the tissue-specific contributions of sirtuins in metabolism, we propose here to: 1) identify novel deacetylation targets for the sirtuins; 2) generate and characterize genetically engineered mouse models (GEMMs) with somatic mutations in the 7 sirtuin genes in liver, muscle and adipose tissue, key metabolic tissues; 3) study mouse models with natural genetic variation in sirtuin expression, such as found in genetic reference populations (GRPs), like the BxD recombinant inbred mouse lines; and 4) validate the relevance of sirtuin signaling for human metabolism through clinical genetic studies. As the goal is to progress towards the treatment and prevention of metabolic diseases in humans, GEMMs are optimized to study the actions of isolated genetic loci and are thus insufficient to characterize polygenic networks and genetic interactions. Moreover environmental factors can impact on the manifestations of the genotype or phenocopy the genetically produced phenotype. Thus, to dissect complex genetic traits, experimental models, like GRPs, that imitate the genetic structure of human populations provide complimentary information to that obtained from GEMMs. As we will combine data generated using directional genetic strategies in GEMMs with a high-throughput phenogenomic analysis of GRPs, our approach merges the benefits of clear-cut results of single gene perturbations in a given tissue with subtle alterations that result from natural innumerable allelic variants. This will ultimately favor the definition of the role of the sirtuins in metabolic homeostasis.
Max ERC Funding
2 485 000 €
Duration
Start date: 2009-02-01, End date: 2014-01-31
Project acronym STEM-BCPC
Project Signal Transduction and Epigenetic Mechanisms of Breast Cell Plasticity and Cancer
Researcher (PI) Mohamed BENTIRES-ALJ
Host Institution (HI) UNIVERSITAT BASEL
Call Details Advanced Grant (AdG), LS4, ERC-2015-AdG
Summary Breast cancer is diagnosed in ~1.4 million women worldwide and ~500,000 lives are lost to the disease annually. Patients may do well after surgery and initial treatment, but drug resistant and fatal metastases often develop. Improved treatment options are urgently needed. The connecting thread of this project is the identification of epigenetic drivers of breast cell fate, tumor heterogeneity and metastasis.
Tumor heterogeneity impinges on prognosis, response to therapy, and metastasis and is one of the most important and clinically relevant areas of cancer research. Tumor heterogeneity results from genetic and epigenetic alterations that enhance the plasticity and fitness of cancer cells in the face of hurdles like the metastatic cascade and anti-cancer therapies. Unfortunately, the driving molecular mechanisms remain unclear, particularly the potential interplay between signalling pathways and epigenetic programs.
This interdisciplinary project uses pathophysiologically relevant models and state-of-the-art technologies to identify molecular mechanisms underlying crosstalk between key signalling pathways and epigenetic programs in the normal and neoplastic breast. We hypothesize that interfering with these programs will decrease tumor heterogeneity.
We will address the effects of:
- SHP2/ERK signalling on the epigenetic programs of tumor-initiating cells (Aim 1)
- PI3K pathway hyperactivation on the epigenetic programs underpinning cell plasticity (Aim 2)
- Epigenetic regulators on normal mammary cell self-renewal and on metastasis (Aim 3)
By investigating the integrated effects of key signalling pathways and epigenetic programs in normal and neoplastic breast, this multipronged project will identify and validate mechanisms of cell plasticity. The derived mechanistic understanding will generate means to interfere with tumor heterogeneity and thus improve the efficacy of anti-cancer therapies and ultimately the clinical outcome for patients with breast cancer.
Summary
Breast cancer is diagnosed in ~1.4 million women worldwide and ~500,000 lives are lost to the disease annually. Patients may do well after surgery and initial treatment, but drug resistant and fatal metastases often develop. Improved treatment options are urgently needed. The connecting thread of this project is the identification of epigenetic drivers of breast cell fate, tumor heterogeneity and metastasis.
Tumor heterogeneity impinges on prognosis, response to therapy, and metastasis and is one of the most important and clinically relevant areas of cancer research. Tumor heterogeneity results from genetic and epigenetic alterations that enhance the plasticity and fitness of cancer cells in the face of hurdles like the metastatic cascade and anti-cancer therapies. Unfortunately, the driving molecular mechanisms remain unclear, particularly the potential interplay between signalling pathways and epigenetic programs.
This interdisciplinary project uses pathophysiologically relevant models and state-of-the-art technologies to identify molecular mechanisms underlying crosstalk between key signalling pathways and epigenetic programs in the normal and neoplastic breast. We hypothesize that interfering with these programs will decrease tumor heterogeneity.
We will address the effects of:
- SHP2/ERK signalling on the epigenetic programs of tumor-initiating cells (Aim 1)
- PI3K pathway hyperactivation on the epigenetic programs underpinning cell plasticity (Aim 2)
- Epigenetic regulators on normal mammary cell self-renewal and on metastasis (Aim 3)
By investigating the integrated effects of key signalling pathways and epigenetic programs in normal and neoplastic breast, this multipronged project will identify and validate mechanisms of cell plasticity. The derived mechanistic understanding will generate means to interfere with tumor heterogeneity and thus improve the efficacy of anti-cancer therapies and ultimately the clinical outcome for patients with breast cancer.
Max ERC Funding
2 499 250 €
Duration
Start date: 2016-10-01, End date: 2021-09-30
Project acronym StemCellGerontoGenes
Project Longevity and aging associated genes that control self-renewal and function of adult stem cells during aging
Researcher (PI) Karl Lenhard Rudolph
Host Institution (HI) LEIBNIZ-INSTITUT FUR ALTERNSFORSCHUNG - FRITZ-LIPMANN-INSTITUT EV (FLI) LEIBNIZ INSTITUTE ON AGING - FRITZ LIPMANN INSTITUTE EV (FLI)
Call Details Advanced Grant (AdG), LS4, ERC-2012-ADG_20120314
Summary Adult stem cells are essential for the lifelong maintenance and regeneration of various organs and tissues. Experimental and clinical data indicate that the functional capacity of adult stem cells in organ regeneration declines during aging. Molecular mechanisms that cause impairments in stem cell function during aging remain to be delineated. Genetic analyses identified a growing number of genes and genetic loci that are associated with longevity and aging in model organisms and humans. For most of these associations the molecular mechanisms and its functional relevance for mammalian aging remain unknown. In many cases of genetic loci associations, the responsible genes have not even been identified. A bottleneck in our understanding of aging remains to identify functionally relevant genes and molecular mechanisms from this growing list of genetic association with aging. Emerging experimental data indicate that aging/longevity-associated genes influence the functional reserve of adult stem cells. Here, I propose to develop and lead a research program analyzing longevity and aging associated genes and gene loci by reverse genetic approaches. In vivo and ex vivo RNAi will identify genes and molecular mechanisms that affect the function of stem cells in aging mice or genetically engineered mice modeling accelerated accumulation of molecular damages and stem cell dysfunction. Analysis of primary human stem cells from young vs. old donors will delineate whether the identified genes and mechanisms are conserved in humans. Reverse genetic approaches of aging/longevity-associated genes have not been conducted in adult mammalian stem cells. Our group gained significant expertise in analyzing molecular mechanisms of stem cell maintenance and function as well as in conducting RNAi screens in different murine stem cell compartments. Our studies will delineate novel mechanisms of stem cell aging and its implication for defects in organ homeostasis and regeneration during aging.
Summary
Adult stem cells are essential for the lifelong maintenance and regeneration of various organs and tissues. Experimental and clinical data indicate that the functional capacity of adult stem cells in organ regeneration declines during aging. Molecular mechanisms that cause impairments in stem cell function during aging remain to be delineated. Genetic analyses identified a growing number of genes and genetic loci that are associated with longevity and aging in model organisms and humans. For most of these associations the molecular mechanisms and its functional relevance for mammalian aging remain unknown. In many cases of genetic loci associations, the responsible genes have not even been identified. A bottleneck in our understanding of aging remains to identify functionally relevant genes and molecular mechanisms from this growing list of genetic association with aging. Emerging experimental data indicate that aging/longevity-associated genes influence the functional reserve of adult stem cells. Here, I propose to develop and lead a research program analyzing longevity and aging associated genes and gene loci by reverse genetic approaches. In vivo and ex vivo RNAi will identify genes and molecular mechanisms that affect the function of stem cells in aging mice or genetically engineered mice modeling accelerated accumulation of molecular damages and stem cell dysfunction. Analysis of primary human stem cells from young vs. old donors will delineate whether the identified genes and mechanisms are conserved in humans. Reverse genetic approaches of aging/longevity-associated genes have not been conducted in adult mammalian stem cells. Our group gained significant expertise in analyzing molecular mechanisms of stem cell maintenance and function as well as in conducting RNAi screens in different murine stem cell compartments. Our studies will delineate novel mechanisms of stem cell aging and its implication for defects in organ homeostasis and regeneration during aging.
Max ERC Funding
2 498 400 €
Duration
Start date: 2013-07-01, End date: 2018-06-30
Project acronym StemProteostasis
Project Mediation of stem cell identity and aging by proteostasis
Researcher (PI) David Vilchez Guerrero
Host Institution (HI) UNIVERSITAET ZU KOELN
Call Details Starting Grant (StG), LS4, ERC-2015-STG
Summary By 2050, the global population over the age of 80 will triple. Thus, research for improving the quality of life at older age can be of enormous benefit for our ever-aging society. To address this challenge we propose an innovative approach based on a combination of stem cell research with genetic experiments in C. elegans. Mechanisms that promote protein homeostasis (proteostasis) slow down aging and decrease the incidence of age-related diseases. Since human embryonic stem cells (hESCs) replicate continuously in the absence of senescence, we hypothesize that they can provide a novel paradigm to study proteostasis and its demise in aging. We have found that hESCs exhibit increased proteasome activity. Moreover, we have uncovered that the proteasome subunit RPN-6 is required for this activity and sufficient to extend healtshpan in C. elegans. However, the mechanisms by which the proteasome regulates hESC function remain unknown. Our first aim is to define how the proteasome regulates not only hESC identity but also aging and the onset of age-related diseases. Moreover, one of the next challenges is to define how other proteostasis pathways impinge upon hESC function. We hypothesize that, in addition to the proteasome, hESCs differentially regulate other subcellular stress response pathways designed to protect them from disequilibrium in the folding and degradation of their proteome. We will perform a comprehensive study of proteostasis of hESCs and mimic this network in somatic cells to alleviate age-related diseases. Finally, we will determine whether loss of proteostasis promotes somatic stem cell (SC) exhaustion, which is one of the most obvious characteristics of the aging process and contributes to tissue degeneration. By using mouse models we will examine whether sustained proteostasis delays neural SC exhaustion. Our research will have an impact in several fields such as stem cell research, neurogenesis, proteostasis, aging and age-related diseases.
Summary
By 2050, the global population over the age of 80 will triple. Thus, research for improving the quality of life at older age can be of enormous benefit for our ever-aging society. To address this challenge we propose an innovative approach based on a combination of stem cell research with genetic experiments in C. elegans. Mechanisms that promote protein homeostasis (proteostasis) slow down aging and decrease the incidence of age-related diseases. Since human embryonic stem cells (hESCs) replicate continuously in the absence of senescence, we hypothesize that they can provide a novel paradigm to study proteostasis and its demise in aging. We have found that hESCs exhibit increased proteasome activity. Moreover, we have uncovered that the proteasome subunit RPN-6 is required for this activity and sufficient to extend healtshpan in C. elegans. However, the mechanisms by which the proteasome regulates hESC function remain unknown. Our first aim is to define how the proteasome regulates not only hESC identity but also aging and the onset of age-related diseases. Moreover, one of the next challenges is to define how other proteostasis pathways impinge upon hESC function. We hypothesize that, in addition to the proteasome, hESCs differentially regulate other subcellular stress response pathways designed to protect them from disequilibrium in the folding and degradation of their proteome. We will perform a comprehensive study of proteostasis of hESCs and mimic this network in somatic cells to alleviate age-related diseases. Finally, we will determine whether loss of proteostasis promotes somatic stem cell (SC) exhaustion, which is one of the most obvious characteristics of the aging process and contributes to tissue degeneration. By using mouse models we will examine whether sustained proteostasis delays neural SC exhaustion. Our research will have an impact in several fields such as stem cell research, neurogenesis, proteostasis, aging and age-related diseases.
Max ERC Funding
1 500 000 €
Duration
Start date: 2016-07-01, End date: 2021-06-30
Project acronym TRANSREG
Project Dissecting the role of Translational Regulation in Tumorigenesis
Researcher (PI) Ataman SENDÖL
Host Institution (HI) UNIVERSITAT ZURICH
Call Details Starting Grant (StG), LS4, ERC-2017-STG
Summary The control of translation is a key determinant of protein abundance, which in turn defines cellular states. The impact of translational regulation may be even greater during the transition from homeostasis to malignancy, as revealed by the surprisingly low correlations between mRNA and protein levels in human cancer databases. This raises the intriguing possibility that through an ability to generate aberrant downstream networks of translational regulators, oncogenic drivers might impose altered protein synthesis programs that become the driving force for tumor formation and malignant progression.
We recently unveiled a hitherto unappreciated role for upstream open reading frame (uORF) translation in tumorigenesis and unearthed a novel switch from conventional EIF2 initiation factor-mediated to alternative EIF2A-mediated uORF translation. These observations suggest that uORFs constitute an exciting new frontier in the field of translational regulation with the potential to fundamentally impact cellular fate.
Here, I propose to systematically analyze the function of uORFs during tumorigenesis. First, we will conduct an in vivo CRISPR/CAS9-based screen in mice to elucidate the role of thousands of uORFs in development, differentiation and upon oncogenic transformation. Second, focusing on select uORFs surfacing in the screen, we will document their role during tumor initiation and progression. Third, we will develop novel tools to detect uORF translation in vivo, exploit them to monitor uORF translation during different stages of tumorigenesis, gain mechanistic insight into their function and finally test the relevance of these findings in human cancer. Collectively, these approaches will provide unprecedented and comprehensive insight into the function of uORFs, unravel new paradigms in the control of gene expression and expose novel strategies for cancer diagnostics and treatment.
Summary
The control of translation is a key determinant of protein abundance, which in turn defines cellular states. The impact of translational regulation may be even greater during the transition from homeostasis to malignancy, as revealed by the surprisingly low correlations between mRNA and protein levels in human cancer databases. This raises the intriguing possibility that through an ability to generate aberrant downstream networks of translational regulators, oncogenic drivers might impose altered protein synthesis programs that become the driving force for tumor formation and malignant progression.
We recently unveiled a hitherto unappreciated role for upstream open reading frame (uORF) translation in tumorigenesis and unearthed a novel switch from conventional EIF2 initiation factor-mediated to alternative EIF2A-mediated uORF translation. These observations suggest that uORFs constitute an exciting new frontier in the field of translational regulation with the potential to fundamentally impact cellular fate.
Here, I propose to systematically analyze the function of uORFs during tumorigenesis. First, we will conduct an in vivo CRISPR/CAS9-based screen in mice to elucidate the role of thousands of uORFs in development, differentiation and upon oncogenic transformation. Second, focusing on select uORFs surfacing in the screen, we will document their role during tumor initiation and progression. Third, we will develop novel tools to detect uORF translation in vivo, exploit them to monitor uORF translation during different stages of tumorigenesis, gain mechanistic insight into their function and finally test the relevance of these findings in human cancer. Collectively, these approaches will provide unprecedented and comprehensive insight into the function of uORFs, unravel new paradigms in the control of gene expression and expose novel strategies for cancer diagnostics and treatment.
Max ERC Funding
1 977 148 €
Duration
Start date: 2018-08-01, End date: 2023-10-31
Project acronym TransReg
Project Transgenerational epigenetic inheritance of cardiac regenerative capacity in the zebrafish
Researcher (PI) Nadia MERCADER HUBER
Host Institution (HI) UNIVERSITAET BERN
Call Details Consolidator Grant (CoG), LS4, ERC-2018-COG
Summary While myocardial infarction leads to adverse ventricular remodeling ultimately causing heart failure in humans, some animals, including zebrafish can regenerate the injured heart. We recently revealed a high degree of plasticity in cardiomyocyte subpopulations involved in the reconstruction of the injured heart. The gene regulatory network involved in heart regeneration is starting to be elucidated and epigenetic remodeling has been suggested to play a pivotal role during this process. Similarly it is known that the environment can influence the regenerative capacity but whether such an effect can be transmitted from one generation to the next has not been addressed. This mechanism is called transgenerational epigenetic inheritance (TEI) and describes the transfer of experiences from parents to their offspring through the gametes, independent on changes in DNA sequence. TEI has also been described in humans: starvation suffered by grandparents affects the metabolism of grandchildren. TEI is also relevant to organ injury: in rats, offspring from parents exposed to liver toxicants revealed reduced hepatic fibrosis in response to the same injury. Changes in DNA methylation, histone modifications and non-coding RNAs have been associated to TEI. We aim to describe for the first time epigenetic inheritance of organ regeneration and unravel its underlying mechanism using the zebrafish model. We will assess whether cardiac injury elicits epigenetic modifications in sperm and determine if offspring from injured parental fish reveal altered heart regeneration. Genetic models will be developed for functional assessment of identified modifications. We will also further analyze cell plasticity during heart regeneration and address whether hearts regenerated from different progenitors respond equally well to further injuries. Our expected findings will constitute a paradigm shift on the origins of cardiovascular disease and define epigenetic priming as a basis for regeneration.
Summary
While myocardial infarction leads to adverse ventricular remodeling ultimately causing heart failure in humans, some animals, including zebrafish can regenerate the injured heart. We recently revealed a high degree of plasticity in cardiomyocyte subpopulations involved in the reconstruction of the injured heart. The gene regulatory network involved in heart regeneration is starting to be elucidated and epigenetic remodeling has been suggested to play a pivotal role during this process. Similarly it is known that the environment can influence the regenerative capacity but whether such an effect can be transmitted from one generation to the next has not been addressed. This mechanism is called transgenerational epigenetic inheritance (TEI) and describes the transfer of experiences from parents to their offspring through the gametes, independent on changes in DNA sequence. TEI has also been described in humans: starvation suffered by grandparents affects the metabolism of grandchildren. TEI is also relevant to organ injury: in rats, offspring from parents exposed to liver toxicants revealed reduced hepatic fibrosis in response to the same injury. Changes in DNA methylation, histone modifications and non-coding RNAs have been associated to TEI. We aim to describe for the first time epigenetic inheritance of organ regeneration and unravel its underlying mechanism using the zebrafish model. We will assess whether cardiac injury elicits epigenetic modifications in sperm and determine if offspring from injured parental fish reveal altered heart regeneration. Genetic models will be developed for functional assessment of identified modifications. We will also further analyze cell plasticity during heart regeneration and address whether hearts regenerated from different progenitors respond equally well to further injuries. Our expected findings will constitute a paradigm shift on the origins of cardiovascular disease and define epigenetic priming as a basis for regeneration.
Max ERC Funding
1 999 125 €
Duration
Start date: 2019-08-01, End date: 2024-07-31
Project acronym VOLSIGNAL
Project Volume regulation and extracellular signalling by anion channels
Researcher (PI) Thomas JENTSCH
Host Institution (HI) FORSCHUNGSVERBUND BERLIN EV
Call Details Advanced Grant (AdG), LS4, ERC-2016-ADG
Summary Cells must regulate their volume in response to changes in osmolarity and during cell division, migration, apoptosis, and transepithelial transport. Regulated membrane transport of ions and metabolites creates osmotic gradients that secondarily drive water across the membrane. Organic ‘osmolytes’ such as glutamate also serve in extracellular signalling and volume-regulatory ion transporters are often used for other purposes, putting volume regulation into the context of diverse organismal functions.
Research on cell volume regulation stagnated because the identity of a key player, the Volume-Regulated Anion Channel VRAC, remained unknown. Very recently we identified LRRC8 heteromers as VRAC components and discovered that VRACs are a heterogeneous group of channels. Their remarkable ability to transport not only Cl-, but also signalling molecules or drugs, depends on their LRRC8 subunit composition.
This breakthrough now allows us to search for functionally relevant interactors and to dissect the physiological roles of different VRACs using mouse models. Whereas disruption of Lrrc8a abolishes VRAC function, abrogating other Lrrc8 genes (in total five) will change its transport properties. Conditional KO mice will first focus on epithelia which faces large osmolarity changes, on the brain where VRAC-released signalling molecules are supposed to play important roles in physiology and pathology, and on VRAC’s assumed role in vesicle exocytosis. We expect to discover many surprising novel roles of VRACs.
Emboldened by our identification of VRAC, we will use genome-wide siRNA screens to identify two other ‘missing’ ion channels, which have been known physiologically for many years and may have widespread roles in signalling and other physiological processes. Once identified, these channels will be studied at a structural, cellular and organismal level.
These projects will break new ground in physiology, cell biology, signalling and pathology.
Summary
Cells must regulate their volume in response to changes in osmolarity and during cell division, migration, apoptosis, and transepithelial transport. Regulated membrane transport of ions and metabolites creates osmotic gradients that secondarily drive water across the membrane. Organic ‘osmolytes’ such as glutamate also serve in extracellular signalling and volume-regulatory ion transporters are often used for other purposes, putting volume regulation into the context of diverse organismal functions.
Research on cell volume regulation stagnated because the identity of a key player, the Volume-Regulated Anion Channel VRAC, remained unknown. Very recently we identified LRRC8 heteromers as VRAC components and discovered that VRACs are a heterogeneous group of channels. Their remarkable ability to transport not only Cl-, but also signalling molecules or drugs, depends on their LRRC8 subunit composition.
This breakthrough now allows us to search for functionally relevant interactors and to dissect the physiological roles of different VRACs using mouse models. Whereas disruption of Lrrc8a abolishes VRAC function, abrogating other Lrrc8 genes (in total five) will change its transport properties. Conditional KO mice will first focus on epithelia which faces large osmolarity changes, on the brain where VRAC-released signalling molecules are supposed to play important roles in physiology and pathology, and on VRAC’s assumed role in vesicle exocytosis. We expect to discover many surprising novel roles of VRACs.
Emboldened by our identification of VRAC, we will use genome-wide siRNA screens to identify two other ‘missing’ ion channels, which have been known physiologically for many years and may have widespread roles in signalling and other physiological processes. Once identified, these channels will be studied at a structural, cellular and organismal level.
These projects will break new ground in physiology, cell biology, signalling and pathology.
Max ERC Funding
2 499 991 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym zebraHeart
Project Novel insights into cardiac regeneration through studies in the zebrafish
Researcher (PI) Nadia Isabel Mercader Huber
Host Institution (HI) UNIVERSITAET BERN
Call Details Starting Grant (StG), LS4, ERC-2013-StG
Summary Myocardial infarction (MI) leads to cardiomyocyte death and accumulation of myofibroblasts (MFs) at the site of injury, which produce large amounts of extracellular matrix (ECM), generating a scar. Initially, cardiac fibrosis protects from ventricular wall rupture, but subsequent myocardial remodelling causes heart failure, representing a leading cause of death in Europe. While MFs play a central role in cardiac fibrosis, there is confusion on their origin, a lack of specific markers and the existence of a unique MF type is debatable. Different MF might reveal distinct characteristics regarding ECM production, contractility, and autophagy, making them more or less pernicious. While in humans cardiac fibrosis is irreversible, other vertebrates have a remarkable capacity to regenerate damaged tissue. We recently established a zebrafish MI model and found that cardiac fibrosis is reversible and occurs as an intermediate step during regeneration. Here, the endogenous mechanisms of MFs and ECM regression will be explored. In addition, MF origin, types and fate will be characterized and manipulated to improve regeneration. As in mammals, cardiac injury elicits an inflammatory response in the zebrafish. The regenerative capacity of a species has been directly linked to features of its immune system, but surprisingly little is known on zebrafish leukocyte subtypes. We will study the role of macrophages and particularly analyse a subtype, which accumulates in the outer mesothelial layer of the heart, the epicardium. Epicardial derived cells play a key role as a trophic factor and progenitor cell source, and a first step towards regeneration includes the reestablishment of the epicardial layer. The zebrafish will offer a screening platform for small molecules triggering its activation. In sum, the project will increase the knowledge on the molecular and cellular basis of fibrosis regression, provide novel MF markers and identify new drugs to enhance cardiac regeneration.
Summary
Myocardial infarction (MI) leads to cardiomyocyte death and accumulation of myofibroblasts (MFs) at the site of injury, which produce large amounts of extracellular matrix (ECM), generating a scar. Initially, cardiac fibrosis protects from ventricular wall rupture, but subsequent myocardial remodelling causes heart failure, representing a leading cause of death in Europe. While MFs play a central role in cardiac fibrosis, there is confusion on their origin, a lack of specific markers and the existence of a unique MF type is debatable. Different MF might reveal distinct characteristics regarding ECM production, contractility, and autophagy, making them more or less pernicious. While in humans cardiac fibrosis is irreversible, other vertebrates have a remarkable capacity to regenerate damaged tissue. We recently established a zebrafish MI model and found that cardiac fibrosis is reversible and occurs as an intermediate step during regeneration. Here, the endogenous mechanisms of MFs and ECM regression will be explored. In addition, MF origin, types and fate will be characterized and manipulated to improve regeneration. As in mammals, cardiac injury elicits an inflammatory response in the zebrafish. The regenerative capacity of a species has been directly linked to features of its immune system, but surprisingly little is known on zebrafish leukocyte subtypes. We will study the role of macrophages and particularly analyse a subtype, which accumulates in the outer mesothelial layer of the heart, the epicardium. Epicardial derived cells play a key role as a trophic factor and progenitor cell source, and a first step towards regeneration includes the reestablishment of the epicardial layer. The zebrafish will offer a screening platform for small molecules triggering its activation. In sum, the project will increase the knowledge on the molecular and cellular basis of fibrosis regression, provide novel MF markers and identify new drugs to enhance cardiac regeneration.
Max ERC Funding
1 499 215 €
Duration
Start date: 2014-02-01, End date: 2019-01-31