Project acronym ABEP
Project Asset Bubbles and Economic Policy
Researcher (PI) Jaume Ventura Fontanet
Host Institution (HI) Centre de Recerca en Economia Internacional (CREI)
Call Details Advanced Grant (AdG), SH1, ERC-2009-AdG
Summary Advanced capitalist economies experience large and persistent movements in asset prices that are difficult to justify with economic fundamentals. The internet bubble of the 1990s and the real state market bubble of the 2000s are two recent examples. The predominant view is that these bubbles are a market failure, and are caused by some form of individual irrationality on the part of market participants. This project is based instead on the view that market participants are individually rational, although this does not preclude sometimes collectively sub-optimal outcomes. Bubbles are thus not a source of market failure by themselves but instead arise as a result of a pre-existing market failure, namely, the existence of pockets of dynamically inefficient investments. Under some conditions, bubbles partly solve this problem, increasing market efficiency and welfare. It is also possible however that bubbles do not solve the underlying problem and, in addition, create negative side-effects. The main objective of this project is to develop this view of asset bubbles, and produce an empirically-relevant macroeconomic framework that allows us to address the following questions: (i) What is the relationship between bubbles and financial market frictions? Special emphasis is given to how the globalization of financial markets and the development of new financial products affect the size and effects of bubbles. (ii) What is the relationship between bubbles, economic growth and unemployment? The theory suggests the presence of virtuous and vicious cycles, as economic growth creates the conditions for bubbles to pop up, while bubbles create incentives for economic growth to happen. (iii) What is the optimal policy to manage bubbles? We need to develop the tools that allow policy makers to sustain those bubbles that have positive effects and burst those that have negative effects.
Summary
Advanced capitalist economies experience large and persistent movements in asset prices that are difficult to justify with economic fundamentals. The internet bubble of the 1990s and the real state market bubble of the 2000s are two recent examples. The predominant view is that these bubbles are a market failure, and are caused by some form of individual irrationality on the part of market participants. This project is based instead on the view that market participants are individually rational, although this does not preclude sometimes collectively sub-optimal outcomes. Bubbles are thus not a source of market failure by themselves but instead arise as a result of a pre-existing market failure, namely, the existence of pockets of dynamically inefficient investments. Under some conditions, bubbles partly solve this problem, increasing market efficiency and welfare. It is also possible however that bubbles do not solve the underlying problem and, in addition, create negative side-effects. The main objective of this project is to develop this view of asset bubbles, and produce an empirically-relevant macroeconomic framework that allows us to address the following questions: (i) What is the relationship between bubbles and financial market frictions? Special emphasis is given to how the globalization of financial markets and the development of new financial products affect the size and effects of bubbles. (ii) What is the relationship between bubbles, economic growth and unemployment? The theory suggests the presence of virtuous and vicious cycles, as economic growth creates the conditions for bubbles to pop up, while bubbles create incentives for economic growth to happen. (iii) What is the optimal policy to manage bubbles? We need to develop the tools that allow policy makers to sustain those bubbles that have positive effects and burst those that have negative effects.
Max ERC Funding
1 000 000 €
Duration
Start date: 2010-04-01, End date: 2015-03-31
Project acronym ADIPODIF
Project Adipocyte Differentiation and Metabolic Functions in Obesity and Type 2 Diabetes
Researcher (PI) Christian Wolfrum
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Starting Grant (StG), LS6, ERC-2007-StG
Summary Obesity associated disorders such as T2D, hypertension and CVD, commonly referred to as the “metabolic syndrome”, are prevalent diseases of industrialized societies. Deranged adipose tissue proliferation and differentiation contribute significantly to the development of these metabolic disorders. Comparatively little however is known, about how these processes influence the development of metabolic disorders. Using a multidisciplinary approach, I plan to elucidate molecular mechanisms underlying the altered adipocyte differentiation and maturation in different models of obesity associated metabolic disorders. Special emphasis will be given to the analysis of gene expression, postranslational modifications and lipid molecular species composition. To achieve this goal, I am establishing several novel methods to isolate pure primary preadipocytes including a new animal model that will allow me to monitor preadipocytes, in vivo and track their cellular fate in the context of a complete organism. These systems will allow, for the first time to study preadipocyte biology, in an in vivo setting. By monitoring preadipocyte differentiation in vivo, I will also be able to answer the key questions regarding the development of preadipocytes and examine signals that induce or inhibit their differentiation. Using transplantation techniques, I will elucidate the genetic and environmental contributions to the progression of obesity and its associated metabolic disorders. Furthermore, these studies will integrate a lipidomics approach to systematically analyze lipid molecular species composition in different models of metabolic disorders. My studies will provide new insights into the mechanisms and dynamics underlying adipocyte differentiation and maturation, and relate them to metabolic disorders. Detailed knowledge of these mechanisms will facilitate development of novel therapeutic approaches for the treatment of obesity and associated metabolic disorders.
Summary
Obesity associated disorders such as T2D, hypertension and CVD, commonly referred to as the “metabolic syndrome”, are prevalent diseases of industrialized societies. Deranged adipose tissue proliferation and differentiation contribute significantly to the development of these metabolic disorders. Comparatively little however is known, about how these processes influence the development of metabolic disorders. Using a multidisciplinary approach, I plan to elucidate molecular mechanisms underlying the altered adipocyte differentiation and maturation in different models of obesity associated metabolic disorders. Special emphasis will be given to the analysis of gene expression, postranslational modifications and lipid molecular species composition. To achieve this goal, I am establishing several novel methods to isolate pure primary preadipocytes including a new animal model that will allow me to monitor preadipocytes, in vivo and track their cellular fate in the context of a complete organism. These systems will allow, for the first time to study preadipocyte biology, in an in vivo setting. By monitoring preadipocyte differentiation in vivo, I will also be able to answer the key questions regarding the development of preadipocytes and examine signals that induce or inhibit their differentiation. Using transplantation techniques, I will elucidate the genetic and environmental contributions to the progression of obesity and its associated metabolic disorders. Furthermore, these studies will integrate a lipidomics approach to systematically analyze lipid molecular species composition in different models of metabolic disorders. My studies will provide new insights into the mechanisms and dynamics underlying adipocyte differentiation and maturation, and relate them to metabolic disorders. Detailed knowledge of these mechanisms will facilitate development of novel therapeutic approaches for the treatment of obesity and associated metabolic disorders.
Max ERC Funding
1 607 105 €
Duration
Start date: 2008-07-01, End date: 2013-06-30
Project acronym AGRISCENTS
Project Scents and sensibility in agriculture: exploiting specificity in herbivore- and pathogen-induced plant volatiles for real-time crop monitoring
Researcher (PI) Theodoor Turlings
Host Institution (HI) UNIVERSITE DE NEUCHATEL
Call Details Advanced Grant (AdG), LS9, ERC-2017-ADG
Summary Plants typically release large quantities of volatiles in response to attack by herbivores or pathogens. I may claim to have contributed to various breakthroughs in this research field, including the discovery that the volatile blends induced by different attackers are astonishingly specific, resulting in characteristic, readily distinguishable odour blends. Using maize as our model plant, I wish to take several leaps forward in our understanding of this signal specificity and use this knowledge to develop sensors for the real-time detection of crop pests and diseases. For this, three interconnected work-packages will aim to:
• Develop chemical analytical techniques and statistical models to decipher the odorous vocabulary of plants, and to create a complete inventory of “odour-prints” for a wide range of herbivore-plant and pathogen-plant combinations, including simultaneous infestations.
• Develop and optimize nano-mechanical sensors for the detection of specific plant volatile mixtures. For this, we will initially adapt a prototype sensor that has been successfully developed for the detection of cancer-related volatiles in human breath.
• Genetically manipulate maize plants to release a unique blend of root-produced volatiles upon herbivory. For this, we will engineer gene cassettes that combine recently identified P450 (CYP) genes from poplar with inducible, root-specific promoters from maize. This will result in maize plants that, in response to pest attack, release easy-to-detect aldoximes and nitriles from their roots.
In short, by investigating and manipulating the specificity of inducible odour blends we will generate the necessary knowhow to develop a novel odour-detection device. The envisioned sensor technology will permit real-time monitoring of the pests and enable farmers to apply crop protection treatments at the right time and in the right place.
Summary
Plants typically release large quantities of volatiles in response to attack by herbivores or pathogens. I may claim to have contributed to various breakthroughs in this research field, including the discovery that the volatile blends induced by different attackers are astonishingly specific, resulting in characteristic, readily distinguishable odour blends. Using maize as our model plant, I wish to take several leaps forward in our understanding of this signal specificity and use this knowledge to develop sensors for the real-time detection of crop pests and diseases. For this, three interconnected work-packages will aim to:
• Develop chemical analytical techniques and statistical models to decipher the odorous vocabulary of plants, and to create a complete inventory of “odour-prints” for a wide range of herbivore-plant and pathogen-plant combinations, including simultaneous infestations.
• Develop and optimize nano-mechanical sensors for the detection of specific plant volatile mixtures. For this, we will initially adapt a prototype sensor that has been successfully developed for the detection of cancer-related volatiles in human breath.
• Genetically manipulate maize plants to release a unique blend of root-produced volatiles upon herbivory. For this, we will engineer gene cassettes that combine recently identified P450 (CYP) genes from poplar with inducible, root-specific promoters from maize. This will result in maize plants that, in response to pest attack, release easy-to-detect aldoximes and nitriles from their roots.
In short, by investigating and manipulating the specificity of inducible odour blends we will generate the necessary knowhow to develop a novel odour-detection device. The envisioned sensor technology will permit real-time monitoring of the pests and enable farmers to apply crop protection treatments at the right time and in the right place.
Max ERC Funding
2 498 086 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym APMPAL
Project Asset Prices and Macro Policy when Agents Learn
Researcher (PI) Albert Marcet Torrens
Host Institution (HI) FUNDACIÓ MARKETS, ORGANIZATIONS AND VOTES IN ECONOMICS
Call Details Advanced Grant (AdG), SH1, ERC-2012-ADG_20120411
Summary "A conventional assumption in dynamic models is that agents form their expectations in a very sophisticated manner. In particular, that they have Rational Expectations (RE). We develop some tools to relax this assumption while retaining fully optimal behaviour by agents. We study implications for asset pricing and macro policy.
We assume that agents have a consistent set of beliefs that is close, but not equal, to RE. Agents are ""Internally Rational"", that is, they behave rationally given their system of beliefs. Thus, it is conceptually a small deviation from RE. It provides microfoundations for models of adaptive learning, since the learning algorithm is determined by agents’ optimal behaviour. In previous work we have shown that this framework can match stock price and housing price fluctuations, and that policy implications are quite different.
In this project we intend to: i) develop further the foundations of internally rational (IR) learning, ii) apply this to explain observed asset price price behavior, such as stock prices, bond prices, inflation, commodity derivatives, and exchange rates, iii) extend the IR framework to the case when agents entertain various models, iv) optimal policy under IR learning and under private information when some hidden shocks are not revealed ex-post. Along the way we will address policy issues such as: effects of creating derivative markets, sovereign spread as a signal of sovereign default risk, tests of fiscal sustainability, fiscal policy when agents learn, monetary policy (more specifically, QE measures and interest rate policy), and the role of credibility in macro policy."
Summary
"A conventional assumption in dynamic models is that agents form their expectations in a very sophisticated manner. In particular, that they have Rational Expectations (RE). We develop some tools to relax this assumption while retaining fully optimal behaviour by agents. We study implications for asset pricing and macro policy.
We assume that agents have a consistent set of beliefs that is close, but not equal, to RE. Agents are ""Internally Rational"", that is, they behave rationally given their system of beliefs. Thus, it is conceptually a small deviation from RE. It provides microfoundations for models of adaptive learning, since the learning algorithm is determined by agents’ optimal behaviour. In previous work we have shown that this framework can match stock price and housing price fluctuations, and that policy implications are quite different.
In this project we intend to: i) develop further the foundations of internally rational (IR) learning, ii) apply this to explain observed asset price price behavior, such as stock prices, bond prices, inflation, commodity derivatives, and exchange rates, iii) extend the IR framework to the case when agents entertain various models, iv) optimal policy under IR learning and under private information when some hidden shocks are not revealed ex-post. Along the way we will address policy issues such as: effects of creating derivative markets, sovereign spread as a signal of sovereign default risk, tests of fiscal sustainability, fiscal policy when agents learn, monetary policy (more specifically, QE measures and interest rate policy), and the role of credibility in macro policy."
Max ERC Funding
1 970 260 €
Duration
Start date: 2013-06-01, End date: 2018-08-31
Project acronym APMPAL-HET
Project Asset Prices and Macro Policy when Agents Learn and are Heterogeneous
Researcher (PI) Albert MARCET TORRENS
Host Institution (HI) FUNDACIÓ MARKETS, ORGANIZATIONS AND VOTES IN ECONOMICS
Call Details Advanced Grant (AdG), SH1, ERC-2017-ADG
Summary Based on the APMPAL (ERC) project we continue to develop the frameworks of internal rationality (IR) and optimal signal extraction (OSE). Under IR investors/consumers behave rationally given their subjective beliefs about prices, these beliefs are compatible with data. Under OSE the government has partial information, it knows how policy influences observed variables and signal extraction.
We develop further the foundations of IR and OSE with an emphasis on heterogeneous agents. We study sovereign bond crisis and heterogeneity of beliefs in asset pricing models under IR, using survey data on expectations. Under IR the assets’ stochastic discount factor depends on the agents’ decision function and beliefs; this modifies some key asset pricing results. We extend OSE to models with state variables, forward-looking constraints and heterogeneity.
Under IR agents’ prior beliefs determine the effects of a policy reform. If the government does not observe prior beliefs it has partial information, thus OSE should be used to analyse policy reforms under IR.
If IR heterogeneous workers forecast their productivity either from their own wage or their neighbours’ in a network, low current wages discourage search and human capital accumulation, leading to low productivity. This can explain low development of a country or social exclusion of a group. Worker subsidies redistribute wealth and can increase productivity if they “teach” agents to exit a low-wage state.
We build DSGE models under IR for prediction and policy analysis. We develop time-series tools for predicting macro and asset market variables, using information available to the analyst, and we introduce non-linearities and survey expectations using insights from models under IR.
We study how IR and OSE change the view on macro policy issues such as tax smoothing, debt management, Taylor rule, level of inflation, fiscal/monetary policy coordination, factor taxation or redistribution.
Summary
Based on the APMPAL (ERC) project we continue to develop the frameworks of internal rationality (IR) and optimal signal extraction (OSE). Under IR investors/consumers behave rationally given their subjective beliefs about prices, these beliefs are compatible with data. Under OSE the government has partial information, it knows how policy influences observed variables and signal extraction.
We develop further the foundations of IR and OSE with an emphasis on heterogeneous agents. We study sovereign bond crisis and heterogeneity of beliefs in asset pricing models under IR, using survey data on expectations. Under IR the assets’ stochastic discount factor depends on the agents’ decision function and beliefs; this modifies some key asset pricing results. We extend OSE to models with state variables, forward-looking constraints and heterogeneity.
Under IR agents’ prior beliefs determine the effects of a policy reform. If the government does not observe prior beliefs it has partial information, thus OSE should be used to analyse policy reforms under IR.
If IR heterogeneous workers forecast their productivity either from their own wage or their neighbours’ in a network, low current wages discourage search and human capital accumulation, leading to low productivity. This can explain low development of a country or social exclusion of a group. Worker subsidies redistribute wealth and can increase productivity if they “teach” agents to exit a low-wage state.
We build DSGE models under IR for prediction and policy analysis. We develop time-series tools for predicting macro and asset market variables, using information available to the analyst, and we introduce non-linearities and survey expectations using insights from models under IR.
We study how IR and OSE change the view on macro policy issues such as tax smoothing, debt management, Taylor rule, level of inflation, fiscal/monetary policy coordination, factor taxation or redistribution.
Max ERC Funding
1 524 144 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym ARISYS
Project Engineering an artificial immune system with functional components assembled from prokaryotic parts and modules
Researcher (PI) Víctor De Lorenzo Prieto
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Advanced Grant (AdG), LS9, ERC-2012-ADG_20120314
Summary The objective of this project is to overcome current limitations for antibody production that are inherent to the extant immune system of vertebrates. This will be done by creating an all-in-one artificial/synthetic counterpart based exclusively on prokaryotic parts, devices and modules. To this end, ARISYS will exploit design concepts, construction hierarchies and standardization notions that stem from contemporary Synthetic Biology for the assembly and validation of (what we believe is) the most complex artificial biological system ventured thus far. This all-bacterial immune-like system will not only simplify and make affordable the manipulations necessary for antibody generation, but will also permit the application of such binders by themselves or displayed on bacterial cells to biotechnological challenges well beyond therapeutic and health-related uses. The work plan involves the assembly and validation of autonomous functional modules for [i] displaying antibody/affibody (AB) scaffolds attached to the surface of bacterial cells, [ii] conditional diversification of target-binding sequences of the ABs, [iii] contact-dependent activation of gene expression, [iv] reversible bi-stable switches, and [v] clonal selection and amplification of improved binders. These modules composed of stand-alone parts and bearing well defined input/output functions, will be assembled in the genomic chassis of streamlined Escherichia coli and Pseudomonas putida strains. The resulting molecular network will make the ABs expressed and displayed on the cell surface to proceed spontaneously (or at the user's decision) through subsequent cycles of affinity and specificity maturation towards antigens or other targets presented to the bacterial population. In this way, a single, easy-to-handle (albeit heavily engineered) strain will govern all operations that are typically scattered in a multitude of separate methods and apparatuses for AB production.
Summary
The objective of this project is to overcome current limitations for antibody production that are inherent to the extant immune system of vertebrates. This will be done by creating an all-in-one artificial/synthetic counterpart based exclusively on prokaryotic parts, devices and modules. To this end, ARISYS will exploit design concepts, construction hierarchies and standardization notions that stem from contemporary Synthetic Biology for the assembly and validation of (what we believe is) the most complex artificial biological system ventured thus far. This all-bacterial immune-like system will not only simplify and make affordable the manipulations necessary for antibody generation, but will also permit the application of such binders by themselves or displayed on bacterial cells to biotechnological challenges well beyond therapeutic and health-related uses. The work plan involves the assembly and validation of autonomous functional modules for [i] displaying antibody/affibody (AB) scaffolds attached to the surface of bacterial cells, [ii] conditional diversification of target-binding sequences of the ABs, [iii] contact-dependent activation of gene expression, [iv] reversible bi-stable switches, and [v] clonal selection and amplification of improved binders. These modules composed of stand-alone parts and bearing well defined input/output functions, will be assembled in the genomic chassis of streamlined Escherichia coli and Pseudomonas putida strains. The resulting molecular network will make the ABs expressed and displayed on the cell surface to proceed spontaneously (or at the user's decision) through subsequent cycles of affinity and specificity maturation towards antigens or other targets presented to the bacterial population. In this way, a single, easy-to-handle (albeit heavily engineered) strain will govern all operations that are typically scattered in a multitude of separate methods and apparatuses for AB production.
Max ERC Funding
2 422 271 €
Duration
Start date: 2013-05-01, End date: 2019-04-30
Project acronym AUTOMATION
Project AUTOMATION AND INCOME DISTRIBUTION: A QUANTITATIVE ASSESSMENT
Researcher (PI) David Hémous
Host Institution (HI) UNIVERSITAT ZURICH
Call Details Starting Grant (StG), SH1, ERC-2018-STG
Summary Since the invention of the spinning frame, automation has been one of the drivers of economic growth. Yet, workers, economist or the general public have been concerned that automation may destroy jobs or create inequality. This concern is particularly prevalent today with the sustained rise in economic inequality and fast technological progress in IT, robotics or self-driving cars. The empirical literature has showed the impact of automation on income distribution. Yet, the level of wages itself should also affect the incentives to undertake automation innovations. Understanding this feedback is key to assess the long-term effect of policies. My project aims to provide the first quantitative account of the two-way relationship between automation and the income distribution.
It is articulated around three parts. First, I will use patent data to study empirically the causal effect of wages on automation innovations. To do so, I will build firm-level variation in the wages of the customers of innovating firms by exploiting variations in firms’ exposure to international markets. Second, I will study empirically the causal effect of automation innovations on wages. There, I will focus on local labour market and use the patent data to build exogenous variations in local knowledge. Third, I will calibrate an endogenous growth model with firm dynamics and automation using Danish firm-level data. The model will replicate stylized facts on the labour share distribution across firms. It will be used to compute the contribution of automation to economic growth or the decline of the labour share. Moreover, as a whole, the project will use two different methods (regression analysis and calibrated model) and two different types of data, to answer questions of crucial policy importance such as: Taking into account the response of automation, what are the long-term effects on wages of an increase in the minimum wage, a reduction in labour costs, or a robot tax?
Summary
Since the invention of the spinning frame, automation has been one of the drivers of economic growth. Yet, workers, economist or the general public have been concerned that automation may destroy jobs or create inequality. This concern is particularly prevalent today with the sustained rise in economic inequality and fast technological progress in IT, robotics or self-driving cars. The empirical literature has showed the impact of automation on income distribution. Yet, the level of wages itself should also affect the incentives to undertake automation innovations. Understanding this feedback is key to assess the long-term effect of policies. My project aims to provide the first quantitative account of the two-way relationship between automation and the income distribution.
It is articulated around three parts. First, I will use patent data to study empirically the causal effect of wages on automation innovations. To do so, I will build firm-level variation in the wages of the customers of innovating firms by exploiting variations in firms’ exposure to international markets. Second, I will study empirically the causal effect of automation innovations on wages. There, I will focus on local labour market and use the patent data to build exogenous variations in local knowledge. Third, I will calibrate an endogenous growth model with firm dynamics and automation using Danish firm-level data. The model will replicate stylized facts on the labour share distribution across firms. It will be used to compute the contribution of automation to economic growth or the decline of the labour share. Moreover, as a whole, the project will use two different methods (regression analysis and calibrated model) and two different types of data, to answer questions of crucial policy importance such as: Taking into account the response of automation, what are the long-term effects on wages of an increase in the minimum wage, a reduction in labour costs, or a robot tax?
Max ERC Funding
1 295 890 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym B-INNATE
Project Innate signaling networks in B cell antibody production: new targets for vaccine development
Researcher (PI) Andrea Cerutti
Host Institution (HI) FUNDACIO INSTITUT MAR D INVESTIGACIONS MEDIQUES IMIM
Call Details Advanced Grant (AdG), LS6, ERC-2011-ADG_20110310
Summary The long-term goal of this proposal is to explore a novel immune pathway that involves an unexpected interplay between marginal zone (MZ) B cells and neutrophils. MZ B cells are strategically positioned at the interface between the immune system and the circulation and rapidly produce protective antibodies to blood-borne pathogens through a T cell-independent pathway that remains poorly understood. We recently found that the human spleen contains a novel subset of B cell helper neutrophils (NBH cells) with a phenotype and gene expression profile distinct from those of conventional circulating neutrophils (NC cells). In this proposal, we hypothesize that NC cells undergo splenic reprogramming into NBH cells through an IL-10-dependent pathway involving perifollicular sinusoidal endothelial cells. We contend that these unique endothelial cells release NC cell-attracting chemokines and IL-10 upon sensing blood-borne bacteria through Toll-like receptors. We also argue that IL-10 from sinusoidal endothelial cells stimulates NC cells to differentiate into NBH cells equipped with powerful MZ B cell-stimulating activity. The following three aims will be pursued. Aim 1 is to determine the mechanisms by which splenic sinusoidal endothelial cells induce reprogramming of NC cells into NBH cells upon sensing bacteria through Toll-like receptors. Aim 2 is to elucidate the mechanisms by which NBH cells induce IgM production, IgG and IgA class switching, and plasma cell differentiation in MZ B cells. Aim 3 is to evaluate the mechanisms by which NBH cells induce V(D)J gene somatic hypermutation and high-affinity antibody production in MZ B cells. These studies will uncover previously unknown facets of the immunological function of neutrophils by taking advantage of unique cells and tissues from patients with rare primary immunodeficiencies and by making use of selected mouse models. Results from these studies may also lead to the identification of novel vaccine strategies.
Summary
The long-term goal of this proposal is to explore a novel immune pathway that involves an unexpected interplay between marginal zone (MZ) B cells and neutrophils. MZ B cells are strategically positioned at the interface between the immune system and the circulation and rapidly produce protective antibodies to blood-borne pathogens through a T cell-independent pathway that remains poorly understood. We recently found that the human spleen contains a novel subset of B cell helper neutrophils (NBH cells) with a phenotype and gene expression profile distinct from those of conventional circulating neutrophils (NC cells). In this proposal, we hypothesize that NC cells undergo splenic reprogramming into NBH cells through an IL-10-dependent pathway involving perifollicular sinusoidal endothelial cells. We contend that these unique endothelial cells release NC cell-attracting chemokines and IL-10 upon sensing blood-borne bacteria through Toll-like receptors. We also argue that IL-10 from sinusoidal endothelial cells stimulates NC cells to differentiate into NBH cells equipped with powerful MZ B cell-stimulating activity. The following three aims will be pursued. Aim 1 is to determine the mechanisms by which splenic sinusoidal endothelial cells induce reprogramming of NC cells into NBH cells upon sensing bacteria through Toll-like receptors. Aim 2 is to elucidate the mechanisms by which NBH cells induce IgM production, IgG and IgA class switching, and plasma cell differentiation in MZ B cells. Aim 3 is to evaluate the mechanisms by which NBH cells induce V(D)J gene somatic hypermutation and high-affinity antibody production in MZ B cells. These studies will uncover previously unknown facets of the immunological function of neutrophils by taking advantage of unique cells and tissues from patients with rare primary immunodeficiencies and by making use of selected mouse models. Results from these studies may also lead to the identification of novel vaccine strategies.
Max ERC Funding
2 214 035 €
Duration
Start date: 2012-04-01, End date: 2017-09-30
Project acronym BacBio
Project Mechanistic and functional studies of Bacillus biofilms assembly on plants, and their impact in sustainable agriculture and food safety
Researcher (PI) Diego Francisco Romero Hinojosa
Host Institution (HI) UNIVERSIDAD DE MALAGA
Call Details Starting Grant (StG), LS9, ERC-2014-STG
Summary Sustainable agriculture is an ambitious concept conceived to improve productivity but minimizing side effects. Why the efficiency of a biocontrol agent is so variable? How can different therapies be efficiently exploited in a combined way to combat microbial diseases? These are questions that need investigation to convey with criteria of sustainability. What I present is an integral proposal aim to study the microbial ecology and specifically bacterial biofilms as a central axis of two differential but likely interconnected scenarios in plant health: i) the beneficial interaction of the biocontrol agent (BCA) Bacillus subtilis, and ii) the non-conventional interaction of the food-borne pathogen Bacillus cereus.
I will start working with B. subtilis, and reasons are: 1) Different isolates are promising BCAs and are commercialized for such purpose, 2) There exist vast information of the genetics circuitries that govern important aspects of B. subtilis physiology as antibiotic production, cell differentiation, and biofilm formation. In parallel I propose to study the way B. cereus, a food-borne pathogenic bacterium interacts with vegetables. I am planning to set up a multidisciplinary approach that will combine genetics, biochemistry, proteomics, cell biology and molecular biology to visualize how these bacterial population interacts, communicates with plants and other microorganisms, or how all these factors trigger or inhibit the developmental program ending in biofilm formation. I am also interested on knowing if structural components of the bacterial extracellular matrix (exopolysaccharides or amyloid proteins) are important for bacterial fitness. If this were the case, I will also investigate which external factors affect their expression and assembly in functional biofilms. The insights get on these studies are committed to impulse our knowledge on microbial ecology and their biotechnological applicability to sustainable agriculture and food safety.
Summary
Sustainable agriculture is an ambitious concept conceived to improve productivity but minimizing side effects. Why the efficiency of a biocontrol agent is so variable? How can different therapies be efficiently exploited in a combined way to combat microbial diseases? These are questions that need investigation to convey with criteria of sustainability. What I present is an integral proposal aim to study the microbial ecology and specifically bacterial biofilms as a central axis of two differential but likely interconnected scenarios in plant health: i) the beneficial interaction of the biocontrol agent (BCA) Bacillus subtilis, and ii) the non-conventional interaction of the food-borne pathogen Bacillus cereus.
I will start working with B. subtilis, and reasons are: 1) Different isolates are promising BCAs and are commercialized for such purpose, 2) There exist vast information of the genetics circuitries that govern important aspects of B. subtilis physiology as antibiotic production, cell differentiation, and biofilm formation. In parallel I propose to study the way B. cereus, a food-borne pathogenic bacterium interacts with vegetables. I am planning to set up a multidisciplinary approach that will combine genetics, biochemistry, proteomics, cell biology and molecular biology to visualize how these bacterial population interacts, communicates with plants and other microorganisms, or how all these factors trigger or inhibit the developmental program ending in biofilm formation. I am also interested on knowing if structural components of the bacterial extracellular matrix (exopolysaccharides or amyloid proteins) are important for bacterial fitness. If this were the case, I will also investigate which external factors affect their expression and assembly in functional biofilms. The insights get on these studies are committed to impulse our knowledge on microbial ecology and their biotechnological applicability to sustainable agriculture and food safety.
Max ERC Funding
1 453 563 €
Duration
Start date: 2015-03-01, End date: 2021-02-28
Project acronym BacRafts
Project Architecture of bacterial lipid rafts; inhibition of virulence and antibiotic resistance using raft-disassembling small molecules
Researcher (PI) Daniel López Serrano
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Starting Grant (StG), LS6, ERC-2013-StG
Summary Membranes of eukaryotic cells organize signal transduction proteins into microdomains or lipid rafts whose integrity is essential for numerous cellular processes. Lipid rafts has been considered a fundamental step to define the cellular complexity of eukaryotes, assuming that bacteria do not require such a sophisticated organization of their signaling networks. However, I have discovered that bacteria organize many signaling pathways in membrane microdomains similar to the eukaryotic lipid rafts. Perturbation of bacterial lipid rafts leads to a potent and simultaneous impairment of all raft-harbored signaling pathways. Consequently, the disassembly of lipid rafts in pathogens like Staphylococcus aureus generates a simultaneous inhibition of numerous infection-related processes that can be further explored to control bacterial infections. This unexpected sophistication in membrane organization is unprecedented in bacteria and hence, this proposal will explore the molecular basis of the assembly of bacterial lipid rafts and their role in the infection-related processes. These questions will be addressed in three main goals: First, I will elucidate the molecular components and the mechanism of assembly of bacterial lipid rafts using S. aureus as model organism. Second, I will dissect the molecular basis that links the functionality of the infection-related processes to the integrity of bacterial lipid rafts. Third, my collection of anti-raft small molecules that are able to disrupt lipid rafts will be tested as antimicrobial agents to prevent hospital-acquired infections, abrogate pre-existing infections and develop bacteria-free materials that can be used in clinical settings. I will use a number of molecular approaches in combination with cutting-edge techniques in flow cytometry, cell-imaging and transcriptomics to clarify the architecture and functionality of lipid rafts and demonstrate the feasibility of targeting lipid a new strategy for anti-microbial therapy.
Summary
Membranes of eukaryotic cells organize signal transduction proteins into microdomains or lipid rafts whose integrity is essential for numerous cellular processes. Lipid rafts has been considered a fundamental step to define the cellular complexity of eukaryotes, assuming that bacteria do not require such a sophisticated organization of their signaling networks. However, I have discovered that bacteria organize many signaling pathways in membrane microdomains similar to the eukaryotic lipid rafts. Perturbation of bacterial lipid rafts leads to a potent and simultaneous impairment of all raft-harbored signaling pathways. Consequently, the disassembly of lipid rafts in pathogens like Staphylococcus aureus generates a simultaneous inhibition of numerous infection-related processes that can be further explored to control bacterial infections. This unexpected sophistication in membrane organization is unprecedented in bacteria and hence, this proposal will explore the molecular basis of the assembly of bacterial lipid rafts and their role in the infection-related processes. These questions will be addressed in three main goals: First, I will elucidate the molecular components and the mechanism of assembly of bacterial lipid rafts using S. aureus as model organism. Second, I will dissect the molecular basis that links the functionality of the infection-related processes to the integrity of bacterial lipid rafts. Third, my collection of anti-raft small molecules that are able to disrupt lipid rafts will be tested as antimicrobial agents to prevent hospital-acquired infections, abrogate pre-existing infections and develop bacteria-free materials that can be used in clinical settings. I will use a number of molecular approaches in combination with cutting-edge techniques in flow cytometry, cell-imaging and transcriptomics to clarify the architecture and functionality of lipid rafts and demonstrate the feasibility of targeting lipid a new strategy for anti-microbial therapy.
Max ERC Funding
1 493 126 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym BAR2LEGAB
Project Women travelling to seek abortion care in Europe: the impact of barriers to legal abortion on women living in countries with ostensibly liberal abortion laws
Researcher (PI) Silvia De Zordo
Host Institution (HI) UNIVERSITAT DE BARCELONA
Call Details Starting Grant (StG), SH2, ERC-2015-STG
Summary In many European countries with ostensibly liberal abortion laws, women face legal restrictions to abortion beyond the first trimester of pregnancy, as well as other barriers to legal abortion, in particular shortages of providers willing and able to offer abortion due to poor training and to conscientious objection among physicians. The Council of Europe has recognized that conscientious objection can make access to safe abortion more difficult or impossible, particularly in rural areas and for low income women, who are forced to travel far to seek abortion care, including abroad. The WHO also highlights that delaying abortion care increases risks for women’s reproductive health. Despite the relevance of this topic from a public health and human rights perspective, the impact of procedural and social barriers to legal abortion on women in countries with ostensibly liberal abortion laws has not been studied by social scientists in Europe. This five-year research project is envisaged as a ground-breaking multi-disciplinary, mixed-methods investigation that will fill this gap, by capitalizing on previous, pioneer anthropological research of the PI on abortion and conscientious objection. It will contribute to the anthropology of reproduction in Europe, and particularly to the existing literature on abortion, conscientious objection and the medicalization of reproduction, and to the international debate on gender inequalities and citizenship, by exploring how barriers to legal abortion are constructed and how women embody and challenge them in different countries, by travelling or seeking illegal abortion, as well as their conceptualizations of abortion and their self perception as moral/political subjects. The project will be carried out in France, Italy and Spain, where the few existing studies show that women face several barriers to legal abortion as well as in the UK, the Netherlands and Spain, where Italian and French women travel to seek abortion care.
Summary
In many European countries with ostensibly liberal abortion laws, women face legal restrictions to abortion beyond the first trimester of pregnancy, as well as other barriers to legal abortion, in particular shortages of providers willing and able to offer abortion due to poor training and to conscientious objection among physicians. The Council of Europe has recognized that conscientious objection can make access to safe abortion more difficult or impossible, particularly in rural areas and for low income women, who are forced to travel far to seek abortion care, including abroad. The WHO also highlights that delaying abortion care increases risks for women’s reproductive health. Despite the relevance of this topic from a public health and human rights perspective, the impact of procedural and social barriers to legal abortion on women in countries with ostensibly liberal abortion laws has not been studied by social scientists in Europe. This five-year research project is envisaged as a ground-breaking multi-disciplinary, mixed-methods investigation that will fill this gap, by capitalizing on previous, pioneer anthropological research of the PI on abortion and conscientious objection. It will contribute to the anthropology of reproduction in Europe, and particularly to the existing literature on abortion, conscientious objection and the medicalization of reproduction, and to the international debate on gender inequalities and citizenship, by exploring how barriers to legal abortion are constructed and how women embody and challenge them in different countries, by travelling or seeking illegal abortion, as well as their conceptualizations of abortion and their self perception as moral/political subjects. The project will be carried out in France, Italy and Spain, where the few existing studies show that women face several barriers to legal abortion as well as in the UK, the Netherlands and Spain, where Italian and French women travel to seek abortion care.
Max ERC Funding
1 495 753 €
Duration
Start date: 2016-10-01, End date: 2021-09-30
Project acronym BEHAVFRICTIONS
Project Behavioral Implications of Information-Processing Frictions
Researcher (PI) Jakub STEINER
Host Institution (HI) NARODOHOSPODARSKY USTAV AKADEMIE VED CESKE REPUBLIKY VEREJNA VYZKUMNA INSTITUCE
Call Details Consolidator Grant (CoG), SH1, ERC-2017-COG
Summary BEHAVFRICTIONS will use novel models focussing on information-processing frictions to explain choice patterns described in behavioral economics and psychology. The proposed research will provide microfoundations that are essential for (i) identification of stable preferences, (ii) counterfactual predictions, and (iii) normative conclusions.
(i) Agents who face information-processing costs must trade the precision of choice against information costs. Their behavior thus reflects both their stable preferences and the context-dependent procedures that manage their errors stemming from imperfect information processing. In the absence of micro-founded models, the two drivers of the behavior are difficult to disentangle for outside observers. In some pillars of the proposal, the agents follow choice rules that closely resemble logit rules used in structural estimation. This will allow me to reinterpret the structural estimation fits to choice data and to make a distinction between the stable preferences and frictions.
(ii) Such a distinction is important in counterfactual policy analysis because the second-best decision procedures that manage the errors in choice are affected by the analysed policy. Incorporation of the information-processing frictions into existing empirical methods will improve our ability to predict effects of the policies.
(iii) My preliminary results suggest that when an agent is prone to committing errors, biases--such as overconfidence, confirmatory bias, or perception biases known from prospect theory--arise under second-best strategies. By providing the link between the agent's environment and the second-best distribution of the perception errors, my models will delineate environments in which these biases shield the agents from the most costly mistakes from environments in which the biases turn into maladaptations. The distinction will inform the normative debate on debiasing.
Summary
BEHAVFRICTIONS will use novel models focussing on information-processing frictions to explain choice patterns described in behavioral economics and psychology. The proposed research will provide microfoundations that are essential for (i) identification of stable preferences, (ii) counterfactual predictions, and (iii) normative conclusions.
(i) Agents who face information-processing costs must trade the precision of choice against information costs. Their behavior thus reflects both their stable preferences and the context-dependent procedures that manage their errors stemming from imperfect information processing. In the absence of micro-founded models, the two drivers of the behavior are difficult to disentangle for outside observers. In some pillars of the proposal, the agents follow choice rules that closely resemble logit rules used in structural estimation. This will allow me to reinterpret the structural estimation fits to choice data and to make a distinction between the stable preferences and frictions.
(ii) Such a distinction is important in counterfactual policy analysis because the second-best decision procedures that manage the errors in choice are affected by the analysed policy. Incorporation of the information-processing frictions into existing empirical methods will improve our ability to predict effects of the policies.
(iii) My preliminary results suggest that when an agent is prone to committing errors, biases--such as overconfidence, confirmatory bias, or perception biases known from prospect theory--arise under second-best strategies. By providing the link between the agent's environment and the second-best distribution of the perception errors, my models will delineate environments in which these biases shield the agents from the most costly mistakes from environments in which the biases turn into maladaptations. The distinction will inform the normative debate on debiasing.
Max ERC Funding
1 321 488 €
Duration
Start date: 2018-06-01, End date: 2023-05-31
Project acronym BINDING FIBRES
Project Soluble dietary fibre: unraveling how weak bonds have a strong impact on function
Researcher (PI) Laura Nyström
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Starting Grant (StG), LS9, ERC-2015-STG
Summary Dietary fibres are recognized for their health promoting properties; nevertheless, many of the physicochemical mechanisms behind these effects remain poorly understood. While it is understood that dietary fibres can associate with small molecules influencing, both positively or negatively their absorption, the molecular mechanism, by which these associations take place, have yet to be elucidated We propose a study of the binding in soluble dietary fibres at a molecular level to establish binding constants for various fibres and nutritionally relevant ligands. The interactions between fibres and target compounds may be quite weak, but still have a major impact on the bioavailability. To gain insight to the binding mechanisms at a level of detail that has not earlier been achieved, we will apply novel combinations of analytical techniques (MS, NMR, EPR) and both natural as well as synthetic probes to elucidate the associations in these complexes from macromolecular to atomic level. Glucans, xyloglucans and galactomannans will serve as model soluble fibres, representative of real food systems, allowing us to determine their binding constants with nutritionally relevant micronutrients, such as monosaccharides, bile acids, and metals. Furthermore, we will examine supramolecular interactions between fibre strands to evaluate possible contribution of several fibre strands to the micronutrient associations. At the atomic level, we will use complementary spectroscopies to identify the functional groups and atoms involved in the bonds between fibres and the ligands. The proposal describes a unique approach to quantify binding of small molecules by dietary fibres, which can be translated to polysaccharide interactions with ligands in a broad range of biological systems and disciplines. The findings from this study may further allow us to predictably utilize fibres in functional foods, which can have far-reaching consequences in human nutrition, and thereby also public health.
Summary
Dietary fibres are recognized for their health promoting properties; nevertheless, many of the physicochemical mechanisms behind these effects remain poorly understood. While it is understood that dietary fibres can associate with small molecules influencing, both positively or negatively their absorption, the molecular mechanism, by which these associations take place, have yet to be elucidated We propose a study of the binding in soluble dietary fibres at a molecular level to establish binding constants for various fibres and nutritionally relevant ligands. The interactions between fibres and target compounds may be quite weak, but still have a major impact on the bioavailability. To gain insight to the binding mechanisms at a level of detail that has not earlier been achieved, we will apply novel combinations of analytical techniques (MS, NMR, EPR) and both natural as well as synthetic probes to elucidate the associations in these complexes from macromolecular to atomic level. Glucans, xyloglucans and galactomannans will serve as model soluble fibres, representative of real food systems, allowing us to determine their binding constants with nutritionally relevant micronutrients, such as monosaccharides, bile acids, and metals. Furthermore, we will examine supramolecular interactions between fibre strands to evaluate possible contribution of several fibre strands to the micronutrient associations. At the atomic level, we will use complementary spectroscopies to identify the functional groups and atoms involved in the bonds between fibres and the ligands. The proposal describes a unique approach to quantify binding of small molecules by dietary fibres, which can be translated to polysaccharide interactions with ligands in a broad range of biological systems and disciplines. The findings from this study may further allow us to predictably utilize fibres in functional foods, which can have far-reaching consequences in human nutrition, and thereby also public health.
Max ERC Funding
1 500 000 €
Duration
Start date: 2016-04-01, End date: 2021-03-31
Project acronym BIOFORCE
Project Simultaneous multi-pathway engineering in crop plants through combinatorial genetic transformation: Creating nutritionally biofortified cereal grains for food security
Researcher (PI) Paul Christou
Host Institution (HI) UNIVERSIDAD DE LLEIDA
Call Details Advanced Grant (AdG), LS9, ERC-2008-AdG
Summary BIOFORCE has a highly ambitious applied objective: to create transgenic cereal plants that will provide a near-complete micronutrient complement (vitamins A, C, E, folate and essential minerals Ca, Fe, Se and Zn) for malnourished people in the developing world, as well as built-in resistance to insects and parasitic weeds. This in itself represents a striking advance over current efforts to address food insecurity using applied biotechnology in the developing world. We will also address fundamental mechanistic aspects of multi-gene/pathway engineering through transcriptome and metabolome profiling. Fundamental science and applied objectives will be achieved through the application of an exciting novel technology (combinatorial genetic transformation) developed and patented by my research group. This allows the simultaneous transfer of an unlimited number of transgenes into plants followed by library-based selection of plants with appropriate genotypes and phenotypes. All transgenes integrate into one locus ensuring expression stability over multiple generations. This proposal represents a new line of research in my laboratory, founded on incremental advances in the elucidation of transgene integration mechanisms in plants over the past two and a half decades. In addition to scientific issues, BIOFORCE address challenges such as intellectual property, regulatory and biosafety issues and crucially how the fruits of our work will be taken up through philanthropic initiatives in the developing world while creating exploitable opportunities elsewhere. BIOFORCE is comprehensive and it provides a complete package that stands to make an unprecedented contribution to food security in the developing world, while at the same time generating new knowledge to streamline and simplify multiplex gene transfer and the simultaneous modification of multiple complex plant metabolic pathways
Summary
BIOFORCE has a highly ambitious applied objective: to create transgenic cereal plants that will provide a near-complete micronutrient complement (vitamins A, C, E, folate and essential minerals Ca, Fe, Se and Zn) for malnourished people in the developing world, as well as built-in resistance to insects and parasitic weeds. This in itself represents a striking advance over current efforts to address food insecurity using applied biotechnology in the developing world. We will also address fundamental mechanistic aspects of multi-gene/pathway engineering through transcriptome and metabolome profiling. Fundamental science and applied objectives will be achieved through the application of an exciting novel technology (combinatorial genetic transformation) developed and patented by my research group. This allows the simultaneous transfer of an unlimited number of transgenes into plants followed by library-based selection of plants with appropriate genotypes and phenotypes. All transgenes integrate into one locus ensuring expression stability over multiple generations. This proposal represents a new line of research in my laboratory, founded on incremental advances in the elucidation of transgene integration mechanisms in plants over the past two and a half decades. In addition to scientific issues, BIOFORCE address challenges such as intellectual property, regulatory and biosafety issues and crucially how the fruits of our work will be taken up through philanthropic initiatives in the developing world while creating exploitable opportunities elsewhere. BIOFORCE is comprehensive and it provides a complete package that stands to make an unprecedented contribution to food security in the developing world, while at the same time generating new knowledge to streamline and simplify multiplex gene transfer and the simultaneous modification of multiple complex plant metabolic pathways
Max ERC Funding
2 290 046 €
Duration
Start date: 2009-04-01, End date: 2014-03-31
Project acronym BLOODCELLSCROSSTALK
Project The Crosstalk Between Red And White Blood Cells: The Case Of Fish
Researcher (PI) Maria del Mar Ortega-Villaizan Romo
Host Institution (HI) UNIVERSIDAD MIGUEL HERNANDEZ DE ELCHE
Call Details Starting Grant (StG), LS9, ERC-2014-STG
Summary Fish are the phylogenetically oldest vertebrate group with an immune system with clear similarities to the immune system of mammals. However, it is an actual matter of fact that the current knowledge of the fish immune system seems to lack the key piece to complete the puzzle.
In 1953 Nelson described a new role of human red blood cells (RBCs) which would go beyond the simple transport of O2 to the tissues. This new role, involved in the defence against microbes, described the antibody and complement-dependent binding of microbial immune complexes to RBCs. Regardless of the importance of this finding in the field of microbial infection, this phenomenon has been poorly evaluated. Just recently, a set of biological processes relevant to immunity have been described in the RBCs of a diverse group of organisms, which include: pathogen recognition, pathogen binding and clearance and cytokines production. Furthermore, it has been demonstrated that nucleated erythrocytes from fish and avian species develop specific responses to different pathogen associated molecular patterns and produce soluble factors that modulate leukocyte activity.
In the light of these pieces of evidences, and in an attempt to improve the knowledge of the immune mechanism(s) responsible for fish protection against viral infections, we raised the question: could nucleated fish erythrocytes be the key mediators of the antiviral responses? To answer this question we decided to focus our project on the evaluation of the crosstalk between red and white blood cells in the scenario of fish viral infections and prophylaxis. For that a working model composed of the rainbow trout and the viral haemorrhagic septicaemia virus (VHSV) was chosen, being the objectives of the project to evaluate: i) the implication trout RBCs (tRBCs) in the clearance of VHSV, and ii) the involvement of tRBCs in the blood transportation of the glycoprotein G of VHSV (GVHSV), the antigen encoded by the DNA vaccine.
Summary
Fish are the phylogenetically oldest vertebrate group with an immune system with clear similarities to the immune system of mammals. However, it is an actual matter of fact that the current knowledge of the fish immune system seems to lack the key piece to complete the puzzle.
In 1953 Nelson described a new role of human red blood cells (RBCs) which would go beyond the simple transport of O2 to the tissues. This new role, involved in the defence against microbes, described the antibody and complement-dependent binding of microbial immune complexes to RBCs. Regardless of the importance of this finding in the field of microbial infection, this phenomenon has been poorly evaluated. Just recently, a set of biological processes relevant to immunity have been described in the RBCs of a diverse group of organisms, which include: pathogen recognition, pathogen binding and clearance and cytokines production. Furthermore, it has been demonstrated that nucleated erythrocytes from fish and avian species develop specific responses to different pathogen associated molecular patterns and produce soluble factors that modulate leukocyte activity.
In the light of these pieces of evidences, and in an attempt to improve the knowledge of the immune mechanism(s) responsible for fish protection against viral infections, we raised the question: could nucleated fish erythrocytes be the key mediators of the antiviral responses? To answer this question we decided to focus our project on the evaluation of the crosstalk between red and white blood cells in the scenario of fish viral infections and prophylaxis. For that a working model composed of the rainbow trout and the viral haemorrhagic septicaemia virus (VHSV) was chosen, being the objectives of the project to evaluate: i) the implication trout RBCs (tRBCs) in the clearance of VHSV, and ii) the involvement of tRBCs in the blood transportation of the glycoprotein G of VHSV (GVHSV), the antigen encoded by the DNA vaccine.
Max ERC Funding
1 823 250 €
Duration
Start date: 2015-04-01, End date: 2020-03-31
Project acronym BROADimmune
Project Structural, genetic and functional analyses of broadly neutralizing antibodies against human pathogens
Researcher (PI) Antonio Lanzavecchia
Host Institution (HI) FONDAZIONE PER L ISTITUTO DI RICERCA IN BIOMEDICINA
Call Details Advanced Grant (AdG), LS6, ERC-2014-ADG
Summary The overall goal of this project is to understand the molecular mechanisms that lead to the generation of potent and broadly neutralizing antibodies against medically relevant pathogens, and to identify the factors that limit their production in response to infection or vaccination with current vaccines. We will use high-throughput cellular screens to isolate from immune donors clonally related antibodies to different sites of influenza hemagglutinin, which will be fully characterized and sequenced in order to reconstruct their developmental pathways. Using this approach, we will ask fundamental questions with regards to the role of somatic mutations in affinity maturation and intraclonal diversification, which in some cases may lead to the generation of autoantibodies. We will combine crystallography and long time-scale molecular dynamics simulation to understand how mutations can increase affinity and broaden antibody specificity. By mapping the B and T cell response to all sites and conformations of influenza hemagglutinin, we will uncover the factors, such as insufficient T cell help or the instability of the pre-fusion hemagglutinin, that may limit the generation of broadly neutralizing antibodies. We will also perform a broad analysis of the antibody response to erythrocytes infected by P. falciparum to identify conserved epitopes on the parasite and to unravel the role of an enigmatic V gene that appears to be involved in response to blood-stage parasites. The hypotheses tested are strongly supported by preliminary observations from our own laboratory. While these studies will contribute to our understanding of B cell biology, the results obtained will also have translational implications for the development of potent and broad-spectrum antibodies, for the definition of correlates of protection, and for improving vaccine design.
Summary
The overall goal of this project is to understand the molecular mechanisms that lead to the generation of potent and broadly neutralizing antibodies against medically relevant pathogens, and to identify the factors that limit their production in response to infection or vaccination with current vaccines. We will use high-throughput cellular screens to isolate from immune donors clonally related antibodies to different sites of influenza hemagglutinin, which will be fully characterized and sequenced in order to reconstruct their developmental pathways. Using this approach, we will ask fundamental questions with regards to the role of somatic mutations in affinity maturation and intraclonal diversification, which in some cases may lead to the generation of autoantibodies. We will combine crystallography and long time-scale molecular dynamics simulation to understand how mutations can increase affinity and broaden antibody specificity. By mapping the B and T cell response to all sites and conformations of influenza hemagglutinin, we will uncover the factors, such as insufficient T cell help or the instability of the pre-fusion hemagglutinin, that may limit the generation of broadly neutralizing antibodies. We will also perform a broad analysis of the antibody response to erythrocytes infected by P. falciparum to identify conserved epitopes on the parasite and to unravel the role of an enigmatic V gene that appears to be involved in response to blood-stage parasites. The hypotheses tested are strongly supported by preliminary observations from our own laboratory. While these studies will contribute to our understanding of B cell biology, the results obtained will also have translational implications for the development of potent and broad-spectrum antibodies, for the definition of correlates of protection, and for improving vaccine design.
Max ERC Funding
1 867 500 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym BUBPOL
Project Monetary Policy and Asset Price Bubbles
Researcher (PI) Jordi Galí Garreta
Host Institution (HI) Centre de Recerca en Economia Internacional (CREI)
Call Details Advanced Grant (AdG), SH1, ERC-2013-ADG
Summary "The proposed research project seeks to further our understanding on two important questions for the design of monetary policy:
(a) What are the effects of monetary policy interventions on asset price bubbles?
(b) How should monetary policy be conducted in the presence of asset price bubbles?
The first part of the project will focus on the development of a theoretical framework that can be used to analyze rigorously the implications of alternative monetary policy rules in the presence of asset price bubbles, and to characterize the optimal monetary policy. In particular, I plan to use such a framework to assess the merits of a “leaning against the wind” strategy, which calls for a systematic rise in interest rates in response to the development of a bubble.
The second part of the project will seek to produce evidence, both empirical and experimental, regarding the effects of monetary policy on asset price bubbles. The empirical evidence will seek to identify and estimate the sign and response of asset price bubbles to interest rate changes, exploiting the potential differences in the joint behavior of interest rates and asset prices during “bubbly” episodes, in comparison to “normal” times. In addition, I plan to conduct some lab experiments in order to shed some light on the link between monetary policy and bubbles. Participants will trade two assets, a one-period riskless asset and a long-lived stock, in an environment consistent with the existence of asset price bubbles in equilibrium. Monetary policy interventions will take the form of changes in the short-term interest rate, engineered by the experimenter. The experiments will allow us to evaluate some of the predictions of the theoretical models regarding the impact of monetary policy on the dynamics of bubbles, as well as the effectiveness of “leaning against the wind” policies."
Summary
"The proposed research project seeks to further our understanding on two important questions for the design of monetary policy:
(a) What are the effects of monetary policy interventions on asset price bubbles?
(b) How should monetary policy be conducted in the presence of asset price bubbles?
The first part of the project will focus on the development of a theoretical framework that can be used to analyze rigorously the implications of alternative monetary policy rules in the presence of asset price bubbles, and to characterize the optimal monetary policy. In particular, I plan to use such a framework to assess the merits of a “leaning against the wind” strategy, which calls for a systematic rise in interest rates in response to the development of a bubble.
The second part of the project will seek to produce evidence, both empirical and experimental, regarding the effects of monetary policy on asset price bubbles. The empirical evidence will seek to identify and estimate the sign and response of asset price bubbles to interest rate changes, exploiting the potential differences in the joint behavior of interest rates and asset prices during “bubbly” episodes, in comparison to “normal” times. In addition, I plan to conduct some lab experiments in order to shed some light on the link between monetary policy and bubbles. Participants will trade two assets, a one-period riskless asset and a long-lived stock, in an environment consistent with the existence of asset price bubbles in equilibrium. Monetary policy interventions will take the form of changes in the short-term interest rate, engineered by the experimenter. The experiments will allow us to evaluate some of the predictions of the theoretical models regarding the impact of monetary policy on the dynamics of bubbles, as well as the effectiveness of “leaning against the wind” policies."
Max ERC Funding
799 200 €
Duration
Start date: 2014-01-01, End date: 2017-12-31
Project acronym BUNGEE
Project Directed crop breeding using jumping genes
Researcher (PI) Etienne BUCHER
Host Institution (HI) EIDGENOESSISCHES DEPARTEMENT FUER WIRTSCHAFT, BILDUNG UND FORSCHUNG
Call Details Consolidator Grant (CoG), LS9, ERC-2016-COG
Summary The rapidly changing climate puts commonly used crop plants under strong pressure. It is therefore essential to develop novel breeding technologies to rapidly enhance crops to better withstand newly emerging stresses.
Interestingly, a clear link between transposable elements (TEs), crop improvement and varietal diversification exists. Furthermore, in recent years the importance of (TEs) in evolution and adaptation to stresses has been recognized. However the use of TEs in crop breeding is currently very limited because it is not possible to control TE mobility. My research group has identified a novel highly conserved epigenetic silencing mechanism that represses the activity of TEs in Arabidopsis. We also found drugs capable of inhibiting this mechanism. Because these drugs target highly conserved enzymes we were able to show that our drug treatment is also effective in rice. We are therefore able to produce TE bursts in a controlled manner in virtually any plant. We can thus, for the first time, generate and study TE bursts in crop plants in real time. More importantly, we found that the accumulation of novel insertions of a heat-stress inducible TE produced plants that, at a high frequency, were more resistant to heat stress. This suggests that the stress that was initially applied to activate a specific TE in the parent, lead to an improved tolerance to that specific stress in the progeny of that plant in a very straight-forward manner.
In this project I propose to accelerate plant breeding by testing and implementing a revolutionary TE-directed crop improvement technology. For that I plan to 1. Mobilize TEs in crop plants using selected stresses 2. Using these mobilized stress-responsive TEs breed novel crop plants resistant to those selected stresses and 3. Study the genetic and epigenetic impact of TE mobilization on host genomes. This project will have a broad impact on crop improvement and on the basic understanding of the evolutionary importance of TEs.
Summary
The rapidly changing climate puts commonly used crop plants under strong pressure. It is therefore essential to develop novel breeding technologies to rapidly enhance crops to better withstand newly emerging stresses.
Interestingly, a clear link between transposable elements (TEs), crop improvement and varietal diversification exists. Furthermore, in recent years the importance of (TEs) in evolution and adaptation to stresses has been recognized. However the use of TEs in crop breeding is currently very limited because it is not possible to control TE mobility. My research group has identified a novel highly conserved epigenetic silencing mechanism that represses the activity of TEs in Arabidopsis. We also found drugs capable of inhibiting this mechanism. Because these drugs target highly conserved enzymes we were able to show that our drug treatment is also effective in rice. We are therefore able to produce TE bursts in a controlled manner in virtually any plant. We can thus, for the first time, generate and study TE bursts in crop plants in real time. More importantly, we found that the accumulation of novel insertions of a heat-stress inducible TE produced plants that, at a high frequency, were more resistant to heat stress. This suggests that the stress that was initially applied to activate a specific TE in the parent, lead to an improved tolerance to that specific stress in the progeny of that plant in a very straight-forward manner.
In this project I propose to accelerate plant breeding by testing and implementing a revolutionary TE-directed crop improvement technology. For that I plan to 1. Mobilize TEs in crop plants using selected stresses 2. Using these mobilized stress-responsive TEs breed novel crop plants resistant to those selected stresses and 3. Study the genetic and epigenetic impact of TE mobilization on host genomes. This project will have a broad impact on crop improvement and on the basic understanding of the evolutionary importance of TEs.
Max ERC Funding
1 965 625 €
Duration
Start date: 2017-06-01, End date: 2022-05-31
Project acronym cdGMP
Project Time, space and speed: cdGMP signaling in cell behavior and reproduction
Researcher (PI) Urs Jenal
Host Institution (HI) UNIVERSITAT BASEL
Call Details Advanced Grant (AdG), LS6, ERC-2012-ADG_20120314
Summary Bacterial biofilms are the primary cause of chronic infections and of resulting infection relapses. To be able to interfere with bacterial persistence it is vital to understand the molecular details of biofilm formation and to define how motile planktonic cells transit into surface-grown communities. The nucleotide second messenger cyclic di-guanosinemonophosphate (cdGMP) has emerged as a central regulatory factor governing bacterial surface adaptation and biofilm formation. Although cdGMP signaling may well represent the Achilles heel of bacterial communities, cdGMP networks in bacterial pathogens are exquisitely complex and an integrated cellular system to uncover the details of cdGMP dynamics is missing.
To quantitatively describe cdGMP signaling we propose to exploit Caulobacter crescentus, an organism with a simple bimodal life-style that integrates the sessile-motile switch into its asymmetric division cycle. We aim to: 1) identify the role and regulation of all diguanylate cyclases and phosphodiesterases that contribute to the asymmetric cellular program with the goal to model the temporal and spatial distribution of cdGMP during development; 2) identify and characterize cdGMP effectors, their downstream targets and cellular pathways; 3) elucidate how cdGMP coordinates cell differentiation with cell growth and propagation; 4) unravel the role of cdGMP as an allosteric regulator in mechanosensation and in rapid adaptation of bacteria to growth on surfaces; 5) develop novel tools to quantitatively describe cdGMP network dynamics as the basis for mathematical modeling that provides the predictive power to experimentally test and refine important network parameters. We propose a multidisciplinary research program at the forefront of bacterial signal transduction that will provide the molecular and conceptual framework for a rapidly growing research field of second messenger signaling in pathogenic bacteria.
Summary
Bacterial biofilms are the primary cause of chronic infections and of resulting infection relapses. To be able to interfere with bacterial persistence it is vital to understand the molecular details of biofilm formation and to define how motile planktonic cells transit into surface-grown communities. The nucleotide second messenger cyclic di-guanosinemonophosphate (cdGMP) has emerged as a central regulatory factor governing bacterial surface adaptation and biofilm formation. Although cdGMP signaling may well represent the Achilles heel of bacterial communities, cdGMP networks in bacterial pathogens are exquisitely complex and an integrated cellular system to uncover the details of cdGMP dynamics is missing.
To quantitatively describe cdGMP signaling we propose to exploit Caulobacter crescentus, an organism with a simple bimodal life-style that integrates the sessile-motile switch into its asymmetric division cycle. We aim to: 1) identify the role and regulation of all diguanylate cyclases and phosphodiesterases that contribute to the asymmetric cellular program with the goal to model the temporal and spatial distribution of cdGMP during development; 2) identify and characterize cdGMP effectors, their downstream targets and cellular pathways; 3) elucidate how cdGMP coordinates cell differentiation with cell growth and propagation; 4) unravel the role of cdGMP as an allosteric regulator in mechanosensation and in rapid adaptation of bacteria to growth on surfaces; 5) develop novel tools to quantitatively describe cdGMP network dynamics as the basis for mathematical modeling that provides the predictive power to experimentally test and refine important network parameters. We propose a multidisciplinary research program at the forefront of bacterial signal transduction that will provide the molecular and conceptual framework for a rapidly growing research field of second messenger signaling in pathogenic bacteria.
Max ERC Funding
2 496 000 €
Duration
Start date: 2013-05-01, End date: 2018-04-30
Project acronym CELLCONTROL
Project Synthetic regulatory circuits for programmable control of cell physiology
Researcher (PI) Yaakov Benenson
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Starting Grant (StG), LS9, ERC-2011-StG_20101109
Summary The newly emerging discipline of Synthetic Biology holds the promise of radically changing the way we probe, control and augment living matter from single cells to entire organisms, and revolutionize basic biological research, biotechnology, and medicine. However, practical work toward these important goals is still in its infancy, in part because concrete approaches to achieve rational control of cell physiology are currently lacking. In order to advance this vision, here we propose a detailed strategy toward engineered regulatory circuits that read out complex cellular states based on multiple biological signals, and convert this information into a desired action based on pre-programmed signal integration. If successful, our strategy will enable unprecedented level of rational intervention with the cell.
Specifically, we suggest to read out cellular information as relayed by expression and activity of cell’s transcription factors, proteins that control gene expression and serve as major regulators of cell fate and cell response to transient stimuli. The readout will be accomplished with the help of specially-designed sensor promoters that will in turn drive the expression of engineered microRNA molecules. Those molecules in turn will converge on a small number of response elements in engineered downstream transcripts, implementing highly-flexible and programmable logic integration of the original transcription factor signals (Rinaudo et al, Nature Biotechnology, 2007 and Leisner et al, Nature Nanotechnology, 2010).
We propose a stepwise bottom-up construction strategy whereby we first design, test and optimize sensor promoters for individual TFs, next we integrate them into large networks, and finally we show how to utilize these networks as prototype selective anti-cancer therapies. To validate our approaches, we will use human cancer cell lines as a model system.
Summary
The newly emerging discipline of Synthetic Biology holds the promise of radically changing the way we probe, control and augment living matter from single cells to entire organisms, and revolutionize basic biological research, biotechnology, and medicine. However, practical work toward these important goals is still in its infancy, in part because concrete approaches to achieve rational control of cell physiology are currently lacking. In order to advance this vision, here we propose a detailed strategy toward engineered regulatory circuits that read out complex cellular states based on multiple biological signals, and convert this information into a desired action based on pre-programmed signal integration. If successful, our strategy will enable unprecedented level of rational intervention with the cell.
Specifically, we suggest to read out cellular information as relayed by expression and activity of cell’s transcription factors, proteins that control gene expression and serve as major regulators of cell fate and cell response to transient stimuli. The readout will be accomplished with the help of specially-designed sensor promoters that will in turn drive the expression of engineered microRNA molecules. Those molecules in turn will converge on a small number of response elements in engineered downstream transcripts, implementing highly-flexible and programmable logic integration of the original transcription factor signals (Rinaudo et al, Nature Biotechnology, 2007 and Leisner et al, Nature Nanotechnology, 2010).
We propose a stepwise bottom-up construction strategy whereby we first design, test and optimize sensor promoters for individual TFs, next we integrate them into large networks, and finally we show how to utilize these networks as prototype selective anti-cancer therapies. To validate our approaches, we will use human cancer cell lines as a model system.
Max ERC Funding
1 479 009 €
Duration
Start date: 2011-10-01, End date: 2017-09-30