Project acronym BARRIERS
Project The evolution of barriers to gene exchange
Researcher (PI) Roger BUTLIN
Host Institution (HI) THE UNIVERSITY OF SHEFFIELD
Call Details Advanced Grant (AdG), LS8, ERC-2015-AdG
Summary Speciation is a central process in evolution that involves the origin of barriers to gene flow between populations. Species are typically isolated by several barriers and assembly of multiple barriers separating the same populations seems to be critical to the evolution of strong reproductive isolation. Barriers resulting from direct selection can become coincident through a process of coupling while reinforcement can add barrier traits that are not under direct selection. In the presence of gene flow, these processes are opposed by recombination. While recent research using the latest sequencing technologies has provided much increased knowledge of patterns of differentiation and the genetic basis of local adaptation, it has so far added little to understanding of the coupling and reinforcement processes.
In this project, I will focus on the accumulation of barriers to gene exchange and the processes underlying increasing reproductive isolation. I will use the power of natural contact zones, combined with novel manipulative experiments, to separate the processes that underlie patterns of differentiation and introgression. The Littorina saxatilis model system allows me to do this with both local replication and a contrast between distinct spatial contexts on a larger geographic scale. I will use modelling to determine how processes interact and to investigate the conditions most likely to promote coupling and reinforcement. Overall, the project will provide major new insights into the speciation process, particularly revealing the requirements for progress towards complete reproductive isolation.
Summary
Speciation is a central process in evolution that involves the origin of barriers to gene flow between populations. Species are typically isolated by several barriers and assembly of multiple barriers separating the same populations seems to be critical to the evolution of strong reproductive isolation. Barriers resulting from direct selection can become coincident through a process of coupling while reinforcement can add barrier traits that are not under direct selection. In the presence of gene flow, these processes are opposed by recombination. While recent research using the latest sequencing technologies has provided much increased knowledge of patterns of differentiation and the genetic basis of local adaptation, it has so far added little to understanding of the coupling and reinforcement processes.
In this project, I will focus on the accumulation of barriers to gene exchange and the processes underlying increasing reproductive isolation. I will use the power of natural contact zones, combined with novel manipulative experiments, to separate the processes that underlie patterns of differentiation and introgression. The Littorina saxatilis model system allows me to do this with both local replication and a contrast between distinct spatial contexts on a larger geographic scale. I will use modelling to determine how processes interact and to investigate the conditions most likely to promote coupling and reinforcement. Overall, the project will provide major new insights into the speciation process, particularly revealing the requirements for progress towards complete reproductive isolation.
Max ERC Funding
2 499 927 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym BIOTIME
Project Biological diversity in an inconstant world: temporal turnover in modified ecosystems
Researcher (PI) Anne Elizabeth Magurran
Host Institution (HI) THE UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS
Call Details Advanced Grant (AdG), LS8, ERC-2009-AdG
Summary This project addresses a key issue in fundamental research - one that has challenged ecologists ever since Darwin s time that is why some species are common, and others rare, and why, despite marked turnover at the level of individual species abundances, the structure of a community is generally conserved through time. Its aim is to examine the temporal dynamics of species abundance distributions (SADs), and to assess the capacity of these distributions to withstand change (resistance) and to recover from change (resilience). These are topical and important questions given the increasing impact that humans are having on the natural world. There are three components to the research. First, we will model SADs and predict responses to a range of events including climate change and the arrival of invasive species. A range of modeling approaches (including neutral, niche and statistical) will be adopted; by incorporating temporal turnover in hitherto static models we will advance the field. Second, we will test predictions concerning the resistance and resilience of SADs by a comparative analysis of existing data sets (that encompass communities in terrestrial, freshwater and marine environments for ecosystems extending from the poles to the tropics) and through a new field experiment that quantifies temporal turnover across a community (unicellular organisms to vertebrates) in relation to factors both natural (dispersal limitation) and anthropogenic (human disturbance) thought to shape SADs. In the final part of the project we will apply these new insights into the temporal dynamics of SADs to two important conservation challenges. These are 1) the conservation of biodiversity in a heavily utilized European landscape (Fife, Scotland) and 2) the conservation of biodiversity in Mamirauá and Amaña reserves in Amazonian flooded forest. Taken together this research will not only shed new light on the structure of ecological communities but will also aid conservation.
Summary
This project addresses a key issue in fundamental research - one that has challenged ecologists ever since Darwin s time that is why some species are common, and others rare, and why, despite marked turnover at the level of individual species abundances, the structure of a community is generally conserved through time. Its aim is to examine the temporal dynamics of species abundance distributions (SADs), and to assess the capacity of these distributions to withstand change (resistance) and to recover from change (resilience). These are topical and important questions given the increasing impact that humans are having on the natural world. There are three components to the research. First, we will model SADs and predict responses to a range of events including climate change and the arrival of invasive species. A range of modeling approaches (including neutral, niche and statistical) will be adopted; by incorporating temporal turnover in hitherto static models we will advance the field. Second, we will test predictions concerning the resistance and resilience of SADs by a comparative analysis of existing data sets (that encompass communities in terrestrial, freshwater and marine environments for ecosystems extending from the poles to the tropics) and through a new field experiment that quantifies temporal turnover across a community (unicellular organisms to vertebrates) in relation to factors both natural (dispersal limitation) and anthropogenic (human disturbance) thought to shape SADs. In the final part of the project we will apply these new insights into the temporal dynamics of SADs to two important conservation challenges. These are 1) the conservation of biodiversity in a heavily utilized European landscape (Fife, Scotland) and 2) the conservation of biodiversity in Mamirauá and Amaña reserves in Amazonian flooded forest. Taken together this research will not only shed new light on the structure of ecological communities but will also aid conservation.
Max ERC Funding
1 812 782 €
Duration
Start date: 2010-08-01, End date: 2016-01-31
Project acronym CASTECON
Project SHARING A GENOME: CASTE ANTAGONISM AND COADAPTATION IN SOCIAL INSECTS
Researcher (PI) Jeremy FIELD
Host Institution (HI) THE UNIVERSITY OF EXETER
Call Details Advanced Grant (AdG), LS8, ERC-2015-AdG
Summary Eusociality, in which workers sacrifice their own reproduction to rear the offspring of queens, is a major focus of interest in evolutionary biology. A key aim during recent decades has been to understand the conflicts of interest within eusocial groups. In contrast, however, little is known about the underlying genetic architecture. In this proposal, we will use a mixture of field experiments and transcriptomics to address novel questions about the evolutionary dynamics of queen-worker interactions. Borrowing concepts from the field of sexual conflict, we will investigate a new idea: that the productivity of social groups is limited because castes are constrained by inter-caste genetic correlations from simultaneously reaching their optimal (dimorphic) phenotypes. We will also quantify caste dimorphism across an environmental gradient, and investigate the plasticity of dimorphism using transplants and social manipulations. In addition, we will cross-foster individuals between nests to test for coadaptation between queens and workers. And we will test a long-standing hypothesis experimentally for the first time: that queens manipulate worker phenotype in their own interests.
The proposed research will force us to look at eusociality in a completely new way. How caste dimorphism can evolve, the possibility that its evolution could be limited by genetic constraints, and the processes that could resolve those constraints, are topics that have hardly been considered. Recent research has strongly emphasized conflict between queens and workers, but the coadaptation of complementary phenotypes may be just as important. Our approach will be multidisciplinary: we will capitalize on state-of-the-art transcriptomic technology in combination with innovative field methods, and use study systems that allow exceptional sample sizes to be obtained in the wild, where natural selection operates. The overall result will be a new and exciting perspective on queen-worker coevolution.
Summary
Eusociality, in which workers sacrifice their own reproduction to rear the offspring of queens, is a major focus of interest in evolutionary biology. A key aim during recent decades has been to understand the conflicts of interest within eusocial groups. In contrast, however, little is known about the underlying genetic architecture. In this proposal, we will use a mixture of field experiments and transcriptomics to address novel questions about the evolutionary dynamics of queen-worker interactions. Borrowing concepts from the field of sexual conflict, we will investigate a new idea: that the productivity of social groups is limited because castes are constrained by inter-caste genetic correlations from simultaneously reaching their optimal (dimorphic) phenotypes. We will also quantify caste dimorphism across an environmental gradient, and investigate the plasticity of dimorphism using transplants and social manipulations. In addition, we will cross-foster individuals between nests to test for coadaptation between queens and workers. And we will test a long-standing hypothesis experimentally for the first time: that queens manipulate worker phenotype in their own interests.
The proposed research will force us to look at eusociality in a completely new way. How caste dimorphism can evolve, the possibility that its evolution could be limited by genetic constraints, and the processes that could resolve those constraints, are topics that have hardly been considered. Recent research has strongly emphasized conflict between queens and workers, but the coadaptation of complementary phenotypes may be just as important. Our approach will be multidisciplinary: we will capitalize on state-of-the-art transcriptomic technology in combination with innovative field methods, and use study systems that allow exceptional sample sizes to be obtained in the wild, where natural selection operates. The overall result will be a new and exciting perspective on queen-worker coevolution.
Max ERC Funding
2 424 263 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym CDREG
Project Carbon dioxide regulation of Earth’s ecological weathering engine: from microorganisms to ecosystems
Researcher (PI) David Beerling
Host Institution (HI) THE UNIVERSITY OF SHEFFIELD
Call Details Advanced Grant (AdG), LS8, ERC-2012-ADG_20120314
Summary CDREG develops the major new Earth system science research hypothesis that tectonic-related variations in Earth’s atmospheric CO2 concentration ([CO2]a) drive negative ecological feedbacks on terrestrial silicate weathering rates that stabilise further [CO2]a change and regulate climate. This paradigm-changing hypothesis integrates ecological and abiotic controls on silicate weathering to understand how terrestrial ecosystems have shaped past Earth system dynamics. The proposed ecological feedbacks are mechanistically linked to the extent and activities of forested ecosystems and their symbiotic fungal partners as the primary engines of biological weathering.
CDREG’s core hypothesis establishes an exciting cross-disciplinary Research Programme that offers novel opportunities for major breakthroughs implemented through four linked hypothesis-driven work packages (WPs) employing experimental, geochemical and numerical modelling approaches. WP1 quantitatively characterises [CO2]a-driven tree/grass-fungal mineral weathering by coupling metabolic profiling with advanced nanometre scale surface metrological techniques for investigating hyphal-mineral interactions. WP2 quantifies the role [CO2]a-drought interactions on savanna tree mortality and C4 grass survivorship, plus symbiotic fungal-driven mineral weathering. WP3 exploits the past 8 Ma of marine sediment archives to investigate the links between forest to savanna transition, terrestrial weathering, fire, and climate in Africa. WP4 integrates findings from WP1-3 into a new Earth system modelling framework to rigorously investigate the biogeochemical feedbacks of [CO2]a-regulated ecological weathering on [CO2]a via marine carbonate deposition and organic C burial.
The ultimate goal is to provide a new synthesis in which the role of [CO2]a in regulating the ecological weathering engine across scales from root-associated microorganisms to terrestrial ecosystems is mechanistically understood and assessed.
Summary
CDREG develops the major new Earth system science research hypothesis that tectonic-related variations in Earth’s atmospheric CO2 concentration ([CO2]a) drive negative ecological feedbacks on terrestrial silicate weathering rates that stabilise further [CO2]a change and regulate climate. This paradigm-changing hypothesis integrates ecological and abiotic controls on silicate weathering to understand how terrestrial ecosystems have shaped past Earth system dynamics. The proposed ecological feedbacks are mechanistically linked to the extent and activities of forested ecosystems and their symbiotic fungal partners as the primary engines of biological weathering.
CDREG’s core hypothesis establishes an exciting cross-disciplinary Research Programme that offers novel opportunities for major breakthroughs implemented through four linked hypothesis-driven work packages (WPs) employing experimental, geochemical and numerical modelling approaches. WP1 quantitatively characterises [CO2]a-driven tree/grass-fungal mineral weathering by coupling metabolic profiling with advanced nanometre scale surface metrological techniques for investigating hyphal-mineral interactions. WP2 quantifies the role [CO2]a-drought interactions on savanna tree mortality and C4 grass survivorship, plus symbiotic fungal-driven mineral weathering. WP3 exploits the past 8 Ma of marine sediment archives to investigate the links between forest to savanna transition, terrestrial weathering, fire, and climate in Africa. WP4 integrates findings from WP1-3 into a new Earth system modelling framework to rigorously investigate the biogeochemical feedbacks of [CO2]a-regulated ecological weathering on [CO2]a via marine carbonate deposition and organic C burial.
The ultimate goal is to provide a new synthesis in which the role of [CO2]a in regulating the ecological weathering engine across scales from root-associated microorganisms to terrestrial ecosystems is mechanistically understood and assessed.
Max ERC Funding
2 271 980 €
Duration
Start date: 2013-06-01, End date: 2018-05-31
Project acronym CODEKILLER
Project Killer plasmids as drivers of genetic code changes during yeast evolution
Researcher (PI) Kenneth WOLFE
Host Institution (HI) UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN
Call Details Advanced Grant (AdG), LS8, ERC-2017-ADG
Summary The genetic code was established at a very early stage during the evolution of life on Earth and is nearly universal. In eukaryotic nuclear genes, the only known examples of a sense codon that underwent an evolutionary change of meaning, from one amino acid to another, occur in yeast species. The codon CUG is translated as Leu in the universal genetic code, but it has long been known to be translated as Ser in some Candida species. In recent work, we discovered that this switch is one of three parallel reassignments of CUG that occurred in three closely related clades of yeasts. CUG was reassigned once from Leu to Ala, and twice from Leu to Ser, in three separate events. The meaning of sense codons in the nuclear genetic code has otherwise remained completely stable during all of eukaryotic evolution, so why was CUG so unstable in yeasts? CODEKILLER will test a radical new hypothesis that the genetic code changes were caused by a killer toxin that specifically attacked the tRNA that translated CUG as Leu. The hypothesis implies that the reassignments of CUG were not driven by selection in favor of their effects on the proteome, as commonly assumed, but by selection against the existence of a particular tRNA. As well as searching for this killer toxin, we will study the detailed mechanism of genetic code change by engineering a reversal of a CUG-Ser species back to CUG-Leu translation, and investigate translation in some species that naturally contain both tRNA-Leu and tRNA-Ser molecules capable of decoding CUG.
Summary
The genetic code was established at a very early stage during the evolution of life on Earth and is nearly universal. In eukaryotic nuclear genes, the only known examples of a sense codon that underwent an evolutionary change of meaning, from one amino acid to another, occur in yeast species. The codon CUG is translated as Leu in the universal genetic code, but it has long been known to be translated as Ser in some Candida species. In recent work, we discovered that this switch is one of three parallel reassignments of CUG that occurred in three closely related clades of yeasts. CUG was reassigned once from Leu to Ala, and twice from Leu to Ser, in three separate events. The meaning of sense codons in the nuclear genetic code has otherwise remained completely stable during all of eukaryotic evolution, so why was CUG so unstable in yeasts? CODEKILLER will test a radical new hypothesis that the genetic code changes were caused by a killer toxin that specifically attacked the tRNA that translated CUG as Leu. The hypothesis implies that the reassignments of CUG were not driven by selection in favor of their effects on the proteome, as commonly assumed, but by selection against the existence of a particular tRNA. As well as searching for this killer toxin, we will study the detailed mechanism of genetic code change by engineering a reversal of a CUG-Ser species back to CUG-Leu translation, and investigate translation in some species that naturally contain both tRNA-Leu and tRNA-Ser molecules capable of decoding CUG.
Max ERC Funding
2 368 356 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym COOPERATION
Project Evolutionary explanations for cooperation: microbes to humans
Researcher (PI) Stuart West
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Advanced Grant (AdG), LS8, ERC-2008-AdG
Summary Cooperation poses a problem to evolutionary theory because it can be exploited by selfish individuals. Evolutionary biologists have developed a detailed theoretical overview of possible solutions to the problem of cooperation. In contrast to our theoretical understanding of potential solutions, however,, we have been relatively unsuccessful at applying theory to understand observations of cooperative behaviour nature. We present a novel and interdisciplinary programme of research to address this problem by empirically testing assumptions and predictions of several leading explanations for cooperation. We will develop theory to make explicit testable predictions for specific systems. We will exploit the advantage offered by different study systems: experiments with bacteria, comparative studies on cooperative breeding vertebrates, and experiments on humans. In addition to addressing specific hypotheses, we will show how evolutionary theory links and differentiates explanations for cooperation across various taxa and levels of biological organization.
Summary
Cooperation poses a problem to evolutionary theory because it can be exploited by selfish individuals. Evolutionary biologists have developed a detailed theoretical overview of possible solutions to the problem of cooperation. In contrast to our theoretical understanding of potential solutions, however,, we have been relatively unsuccessful at applying theory to understand observations of cooperative behaviour nature. We present a novel and interdisciplinary programme of research to address this problem by empirically testing assumptions and predictions of several leading explanations for cooperation. We will develop theory to make explicit testable predictions for specific systems. We will exploit the advantage offered by different study systems: experiments with bacteria, comparative studies on cooperative breeding vertebrates, and experiments on humans. In addition to addressing specific hypotheses, we will show how evolutionary theory links and differentiates explanations for cooperation across various taxa and levels of biological organization.
Max ERC Funding
1 200 000 €
Duration
Start date: 2009-10-01, End date: 2015-09-30
Project acronym DAWNDINOS
Project Testing the locomotor superiority hypothesis for early dinosaurs
Researcher (PI) John Richard HUTCHINSON
Host Institution (HI) THE ROYAL VETERINARY COLLEGE
Call Details Advanced Grant (AdG), LS8, ERC-2015-AdG
Summary I seek to unify evolutionary and biomechanical research by achieving a “functional synthesis” in evolution that causally links phenotypes (anatomy) to actual performance. Did early, bipedal dinosaurs evolve advantages in their locomotor performance over other Late Triassic archosaurs (“ruling reptiles”)? This “locomotor superiority” hypothesis was first proposed to explain what made dinosaurs distinct from other Triassic taxa, perhaps aiding their survival into the Jurassic. However, the hypothesis remains untested or unfairly dismissed. I will test this question for the first time, but first I need to develop the best tools to do so.
Extant archosaurs (crocodiles and birds) allow us to experimentally measure key factors (3D skeletal motions and limb forces; muscle activations) optimizing performance in walking, running, jumping, standing up, and turning. We will then use biomechanical simulations to estimate performance determinants we cannot measure; e.g. muscle forces/lengths. This will refine our simulations by testing major assumptions and validate them for studying extinct animals, overcoming the obstacle that has long limited researchers to qualitative, subjective morphological inferences of performance.
Next, we will use our simulation tools to predict how ten Late Triassic archosaurs may have moved, and to compare how their performance in the five behaviours related to locomotor traits, testing if the results fit expected patterns for “locomotor superiority.”
My proposal pushes the frontiers of experimental and computational analysis of movement by combining the best measurements of performance with the best digital tools, to predict how form and function are coordinated to optimize performance. Our rigorous, integrative analyses will revolutionize evolutionary biomechanics, enabling new inquiries into how behaviour relates to underlying traits or even palaeoecology, environments, biogeography, biotic diversity, disparity or other metrics.
Summary
I seek to unify evolutionary and biomechanical research by achieving a “functional synthesis” in evolution that causally links phenotypes (anatomy) to actual performance. Did early, bipedal dinosaurs evolve advantages in their locomotor performance over other Late Triassic archosaurs (“ruling reptiles”)? This “locomotor superiority” hypothesis was first proposed to explain what made dinosaurs distinct from other Triassic taxa, perhaps aiding their survival into the Jurassic. However, the hypothesis remains untested or unfairly dismissed. I will test this question for the first time, but first I need to develop the best tools to do so.
Extant archosaurs (crocodiles and birds) allow us to experimentally measure key factors (3D skeletal motions and limb forces; muscle activations) optimizing performance in walking, running, jumping, standing up, and turning. We will then use biomechanical simulations to estimate performance determinants we cannot measure; e.g. muscle forces/lengths. This will refine our simulations by testing major assumptions and validate them for studying extinct animals, overcoming the obstacle that has long limited researchers to qualitative, subjective morphological inferences of performance.
Next, we will use our simulation tools to predict how ten Late Triassic archosaurs may have moved, and to compare how their performance in the five behaviours related to locomotor traits, testing if the results fit expected patterns for “locomotor superiority.”
My proposal pushes the frontiers of experimental and computational analysis of movement by combining the best measurements of performance with the best digital tools, to predict how form and function are coordinated to optimize performance. Our rigorous, integrative analyses will revolutionize evolutionary biomechanics, enabling new inquiries into how behaviour relates to underlying traits or even palaeoecology, environments, biogeography, biotic diversity, disparity or other metrics.
Max ERC Funding
2 498 719 €
Duration
Start date: 2016-10-01, End date: 2021-09-30
Project acronym DENOVOMUT
Project An integrated approach to understanding the impact of de novo mutations on the mammalian genome
Researcher (PI) Peter David KEIGHTLEY
Host Institution (HI) THE UNIVERSITY OF EDINBURGH
Call Details Advanced Grant (AdG), LS8, ERC-2015-AdG
Summary Understanding the process of spontaneous mutation is fundamental for understanding the genetic basis of quantitative variation, the threat posed by declining population size in conservation biology and the distribution of nucleotide variation in the genome. I will address these and other unanswered questions concerning the evolutionary impact of spontaneous mutation using the house mouse as a model system. With the first, highly replicated mutation accumulation (MA) experiment in any vertebrate, I will study the impact of mutation accumulation on fitness and other quantitative traits and on genomic variation. I will pay particular attention to the effects of mutations in the heterozygous state, since this is important for resolving two important questions: 1. The threat posed by deleterious mutation accumulation in humans, where natural selection has weakened in many populations, and in endangered species, where declining effective population size has made selection less effective, and 2. The extent by which new mutations sustain response to artificial selection. By characterizing many thousands of mutation events by genome sequencing of MA lines and wild mice, I will determine the molecular spectrum and the factors explaining mutation rate variation across the genome. I will exploit this new knowledge to address the long-unanswered question of the causes of correlations between nucleotide diversity and the recombination rate and the density of conserved genomic elements. I will develop new approaches, incorporating the simultaneous action of mutation, selection, drift and recombination, to determine the contributions of background selection and selective sweeps to variation in nucleotide diversity, and to quantify the contributions of coding and noncoding mutations to fitness variation.
The project will lead to substantial advances in the understanding of the role of new mutations in explaining phenotypic and molecular diversity in mammals.
Summary
Understanding the process of spontaneous mutation is fundamental for understanding the genetic basis of quantitative variation, the threat posed by declining population size in conservation biology and the distribution of nucleotide variation in the genome. I will address these and other unanswered questions concerning the evolutionary impact of spontaneous mutation using the house mouse as a model system. With the first, highly replicated mutation accumulation (MA) experiment in any vertebrate, I will study the impact of mutation accumulation on fitness and other quantitative traits and on genomic variation. I will pay particular attention to the effects of mutations in the heterozygous state, since this is important for resolving two important questions: 1. The threat posed by deleterious mutation accumulation in humans, where natural selection has weakened in many populations, and in endangered species, where declining effective population size has made selection less effective, and 2. The extent by which new mutations sustain response to artificial selection. By characterizing many thousands of mutation events by genome sequencing of MA lines and wild mice, I will determine the molecular spectrum and the factors explaining mutation rate variation across the genome. I will exploit this new knowledge to address the long-unanswered question of the causes of correlations between nucleotide diversity and the recombination rate and the density of conserved genomic elements. I will develop new approaches, incorporating the simultaneous action of mutation, selection, drift and recombination, to determine the contributions of background selection and selective sweeps to variation in nucleotide diversity, and to quantify the contributions of coding and noncoding mutations to fitness variation.
The project will lead to substantial advances in the understanding of the role of new mutations in explaining phenotypic and molecular diversity in mammals.
Max ERC Funding
2 499 331 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym DIVERSITY
Project Evolution of Pathogen and Host Diversity
Researcher (PI) Sunetra Gupta
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Advanced Grant (AdG), LS8, ERC-2010-AdG_20100317
Summary The study of host-pathogen systems is of central importance to the control of infectious disease, but also provides unique opportunities to observe evolution in action. Many pathogen species have diversified under selection pressures from the host; conversely, genes that are important in host defence also exhibit high degrees of polymorphism. This proposal divides into two parts: (1) the evolution of pathogen diversity under host immune selection, and (2) the evolution of host diversity under pathogen selection. I have developed a body of theoretical work showing that discrete population structures can arise through immune selection rather than limitations on genetic exchange. The predictions of this framework concerning the structure and dynamics of antigenic, metabolic and virulence genes will be empirically tested using three different systems: the bacterial pathogen, Neisseira meningitidis, the influenza virus, and the malaria parasite, Plasmodium falciparum. The current theory will also be expanded and modified to address a number of outstanding questions such whether it can explain the occurrence of influenza pandemics. With regard to host diversity, we will be attempting to validate and extend a novel framework incoporating epistatic interactions between malaria-protective genetic disorders of haemoglobin to understand their intriguing geographical distribution and their mode of action against the malarial disease. We will also be exploring the potential of mechanisms that can organise pathogens into discrete strains to generate patterns among host genes responsible for pathogen recognition, such as the Major Histocompatibility Complex. The co-evolution of hosts and pathogens under immune selection thus forms the ultimate theme of this proposal.
Summary
The study of host-pathogen systems is of central importance to the control of infectious disease, but also provides unique opportunities to observe evolution in action. Many pathogen species have diversified under selection pressures from the host; conversely, genes that are important in host defence also exhibit high degrees of polymorphism. This proposal divides into two parts: (1) the evolution of pathogen diversity under host immune selection, and (2) the evolution of host diversity under pathogen selection. I have developed a body of theoretical work showing that discrete population structures can arise through immune selection rather than limitations on genetic exchange. The predictions of this framework concerning the structure and dynamics of antigenic, metabolic and virulence genes will be empirically tested using three different systems: the bacterial pathogen, Neisseira meningitidis, the influenza virus, and the malaria parasite, Plasmodium falciparum. The current theory will also be expanded and modified to address a number of outstanding questions such whether it can explain the occurrence of influenza pandemics. With regard to host diversity, we will be attempting to validate and extend a novel framework incoporating epistatic interactions between malaria-protective genetic disorders of haemoglobin to understand their intriguing geographical distribution and their mode of action against the malarial disease. We will also be exploring the potential of mechanisms that can organise pathogens into discrete strains to generate patterns among host genes responsible for pathogen recognition, such as the Major Histocompatibility Complex. The co-evolution of hosts and pathogens under immune selection thus forms the ultimate theme of this proposal.
Max ERC Funding
1 670 632 €
Duration
Start date: 2011-06-01, End date: 2017-05-31
Project acronym Division
Project Division of Labour and the Evolution of Complexity
Researcher (PI) Stuart WEST
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Advanced Grant (AdG), LS8, ERC-2018-ADG
Summary Division of labour is fundamental to the evolution of life on earth, allowing genes to work together to form genomes, cells to build organisms, pathogens to escape immune attack, and eusocial insect societies to achieve ecological dominance. Consequently, if we want to understand how life on earth evolved, we need to understand why division of labour does or, just as importantly, does not evolve. There are two major outstanding problems for our understanding of division of labour: First, how can we explain why division of labour has evolved with some traits, in some species, but not others? Given the potential benefits of dividing labour, why does it not arise more frequently in cooperative species? Second, in cases where division of labour has evolved, how can we explain the form that it takes? Why do factors such as the degree of specialisation, or mechanism used to produce different phenotypes, vary across species? I will combine my social evolution expertise with novel synthetic and genomic approaches to address these problems. I will explain the distribution and form of division of labour in the natural world, with an interdisciplinary research programme, divided into four work packages: (1) I will provide the first experimental test of the fundamental assumption that division of labour provides an efficiency benefit, by synthetically manipulating bacteria. (2) I will test how selection has acted for and against the evolution of division of labour in natural populations of bacteria, using novel genomic analysis techniques. (3) I will determine why division of labour evolved in some species, but not others, with an across species study on insects, and experimental evolution of bacteria. (4) I will establish a new field of research on why different species use different mechanisms to divide labour: genetic differences, environmental cues, or random assignment of roles. I will develop theory to explain this variation, and test this theory experimentally.
Summary
Division of labour is fundamental to the evolution of life on earth, allowing genes to work together to form genomes, cells to build organisms, pathogens to escape immune attack, and eusocial insect societies to achieve ecological dominance. Consequently, if we want to understand how life on earth evolved, we need to understand why division of labour does or, just as importantly, does not evolve. There are two major outstanding problems for our understanding of division of labour: First, how can we explain why division of labour has evolved with some traits, in some species, but not others? Given the potential benefits of dividing labour, why does it not arise more frequently in cooperative species? Second, in cases where division of labour has evolved, how can we explain the form that it takes? Why do factors such as the degree of specialisation, or mechanism used to produce different phenotypes, vary across species? I will combine my social evolution expertise with novel synthetic and genomic approaches to address these problems. I will explain the distribution and form of division of labour in the natural world, with an interdisciplinary research programme, divided into four work packages: (1) I will provide the first experimental test of the fundamental assumption that division of labour provides an efficiency benefit, by synthetically manipulating bacteria. (2) I will test how selection has acted for and against the evolution of division of labour in natural populations of bacteria, using novel genomic analysis techniques. (3) I will determine why division of labour evolved in some species, but not others, with an across species study on insects, and experimental evolution of bacteria. (4) I will establish a new field of research on why different species use different mechanisms to divide labour: genetic differences, environmental cues, or random assignment of roles. I will develop theory to explain this variation, and test this theory experimentally.
Max ERC Funding
2 491 766 €
Duration
Start date: 2020-01-01, End date: 2024-12-31
Project acronym ECOLIGHT
Project Ecological effects of light pollution
Researcher (PI) Kevin John Gaston
Host Institution (HI) THE UNIVERSITY OF EXETER
Call Details Advanced Grant (AdG), LS8, ERC-2010-AdG_20100317
Summary The last 100 years have seen the dramatic spread of an evolutionarily unprecedented environmental change. Across huge areas, the spatial patterns and temporal cycles of light and dark that have previously remained approximately constant have been disrupted by the introduction of artificial night-time lights. This raises major concerns, given that light and dark provide critical resources and environmental conditions for organisms and play key roles in their physiology, growth, behaviour and reproduction, including the entrainment of internal biological clocks to local time. Indeed, it has long been recognised that light pollution of the night is likely to have profound consequences for the structure and functioning of populations and communities. Nonetheless, empirical studies of these effects remain wanting. This project will bring about a step change in understanding of the ecological consequences of night-time light pollution, addressing the principal question: How does the experimental manipulation of artificial night-time light influence population abundance, species composition and community structure? This will be answered using linked experimental studies. The results will have wide ramifications for understanding of the influences of rapid environmental change on population and community structure and of measures by which these can best be ameliorated.
Summary
The last 100 years have seen the dramatic spread of an evolutionarily unprecedented environmental change. Across huge areas, the spatial patterns and temporal cycles of light and dark that have previously remained approximately constant have been disrupted by the introduction of artificial night-time lights. This raises major concerns, given that light and dark provide critical resources and environmental conditions for organisms and play key roles in their physiology, growth, behaviour and reproduction, including the entrainment of internal biological clocks to local time. Indeed, it has long been recognised that light pollution of the night is likely to have profound consequences for the structure and functioning of populations and communities. Nonetheless, empirical studies of these effects remain wanting. This project will bring about a step change in understanding of the ecological consequences of night-time light pollution, addressing the principal question: How does the experimental manipulation of artificial night-time light influence population abundance, species composition and community structure? This will be answered using linked experimental studies. The results will have wide ramifications for understanding of the influences of rapid environmental change on population and community structure and of measures by which these can best be ameliorated.
Max ERC Funding
1 600 000 €
Duration
Start date: 2011-05-01, End date: 2017-04-30
Project acronym ECOTELO
Project The ecological significance of telomere dynamics: environments, individuals and inheritance
Researcher (PI) Patricia Monaghan
Host Institution (HI) UNIVERSITY OF GLASGOW
Call Details Advanced Grant (AdG), LS8, ERC-2010-AdG_20100317
Summary The current pace of change is such that many organisms face ever more rapid and severe fluctuations in their physical and biotic environments. A major challenge for ecologists and evolutionary biologists is in understanding how this will influence individuals, populations and ecosystems, and over what time scale such effects will occur. There is now great interest in so called 'maternal effects', which can generate rapid phenotypic responses, with both positive and negative fitness consequences in an ecological timeframe. In this project, I propose to examine a hitherto unconsidered route whereby the state of the mother alters the DNA that her offspring inherit, with profound effects on offspring reproductive performance and potential lifespan. This route is the effect of maternal state on telomeres, the DNA sequences that cap chromosomes ends; changes in the length and loss rate of telomeres could affect the longevity and reproductive output of individuals, their offspring and even grand-offspring. We still know very little about what telomere loss measurable at the cellular level actually means for organismal level performance, how it is influenced by environmental factors and intergenerational maternal effects, and how telomere dynamics relate to Darwinian fitness parameters. We lack experimental studies that track telomere loss within individuals subjected to varying environmental circumstances and relate this to organismal level outcomes for parents and offspring. I plan to address this gap in our understanding in a novel and innovative experimental programme that tests the idea that the effects of environmental stressors on senescence rates and lifespan are linked to accelerated telomere loss and that, through this route, can affect more than one generation.
Summary
The current pace of change is such that many organisms face ever more rapid and severe fluctuations in their physical and biotic environments. A major challenge for ecologists and evolutionary biologists is in understanding how this will influence individuals, populations and ecosystems, and over what time scale such effects will occur. There is now great interest in so called 'maternal effects', which can generate rapid phenotypic responses, with both positive and negative fitness consequences in an ecological timeframe. In this project, I propose to examine a hitherto unconsidered route whereby the state of the mother alters the DNA that her offspring inherit, with profound effects on offspring reproductive performance and potential lifespan. This route is the effect of maternal state on telomeres, the DNA sequences that cap chromosomes ends; changes in the length and loss rate of telomeres could affect the longevity and reproductive output of individuals, their offspring and even grand-offspring. We still know very little about what telomere loss measurable at the cellular level actually means for organismal level performance, how it is influenced by environmental factors and intergenerational maternal effects, and how telomere dynamics relate to Darwinian fitness parameters. We lack experimental studies that track telomere loss within individuals subjected to varying environmental circumstances and relate this to organismal level outcomes for parents and offspring. I plan to address this gap in our understanding in a novel and innovative experimental programme that tests the idea that the effects of environmental stressors on senescence rates and lifespan are linked to accelerated telomere loss and that, through this route, can affect more than one generation.
Max ERC Funding
2 113 818 €
Duration
Start date: 2011-04-01, End date: 2016-07-31
Project acronym EMARES
Project Exploring Morphospaces in Adaptive Radiations to unravel Ecological Speciation
Researcher (PI) Paul Martin Brakefield
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Advanced Grant (AdG), LS8, ERC-2009-AdG
Summary 150 years from the Origin and we have yet to unravel how ecological speciation works, and how it leads to spectacular adaptive radiations. The process has two components: adaptation to ecological niches and production of new species. My aim is to make breakthroughs in understanding ecological speciation by the study of geographically parallel adaptive radiations in mycalesine butterflies that have yielded some 250 extant species in the Old World tropics. More empirical studies are needed because few radiations have been examined from many different perspectives (including in insects). It is not fully understood either how exactly radiation occurs or how exactly selection leads to speciation. This proposal provides a unique opportunity, outside a few vertebrate clades, to resolve this by fully integrating several lines of evidence and methodologies. My approach will be to study patterns of diversity and disparity in morphospace for several sets of key traits: 1) wing patterns, 2) larval host plant choice especially with respect to C3 and C4 photosynthesis, and 3) male secondary sexual traits and sex pheromones. We will collect phenotypic, genetic, developmental, and ecological data. Application of phylogenetic comparative methods to the relationships of all traits among all species will make inferences about the biological mechanisms that have driven diversification and speciation. The combination of surveys of morphospace, the use of comparative methods, and microevolutionary studies using laboratory models will provide a unique comprehensive view. Our analyses will distinguish among alternative patterns of adaptive radiations, test predictions from models, and move us forward in identifying the drivers of observed patterns.
Summary
150 years from the Origin and we have yet to unravel how ecological speciation works, and how it leads to spectacular adaptive radiations. The process has two components: adaptation to ecological niches and production of new species. My aim is to make breakthroughs in understanding ecological speciation by the study of geographically parallel adaptive radiations in mycalesine butterflies that have yielded some 250 extant species in the Old World tropics. More empirical studies are needed because few radiations have been examined from many different perspectives (including in insects). It is not fully understood either how exactly radiation occurs or how exactly selection leads to speciation. This proposal provides a unique opportunity, outside a few vertebrate clades, to resolve this by fully integrating several lines of evidence and methodologies. My approach will be to study patterns of diversity and disparity in morphospace for several sets of key traits: 1) wing patterns, 2) larval host plant choice especially with respect to C3 and C4 photosynthesis, and 3) male secondary sexual traits and sex pheromones. We will collect phenotypic, genetic, developmental, and ecological data. Application of phylogenetic comparative methods to the relationships of all traits among all species will make inferences about the biological mechanisms that have driven diversification and speciation. The combination of surveys of morphospace, the use of comparative methods, and microevolutionary studies using laboratory models will provide a unique comprehensive view. Our analyses will distinguish among alternative patterns of adaptive radiations, test predictions from models, and move us forward in identifying the drivers of observed patterns.
Max ERC Funding
2 474 128 €
Duration
Start date: 2010-10-01, End date: 2016-06-30
Project acronym EUKORIGINMIT
Project Eukaryotic genomic origins, parasites, and the essential nature of mitochondria
Researcher (PI) Thomas Martin Embley
Host Institution (HI) UNIVERSITY OF NEWCASTLE UPON TYNE
Call Details Advanced Grant (AdG), LS8, ERC-2010-AdG_20100317
Summary Understanding the origin and evolution of eukaryotes, their genomes and organelles, are among the most important and exciting challenges facing biology. However, determining ancient gene origins tests methods and data to their limits, and it is unrealistic to expect progress to be easy. A comparative cross-disciplinary approach involving sophisticated phylogenetics allied with mathematical understanding, offers the best hope of obtaining robust hypotheses for gene and genomic origins. It is also necessary to look beyond the narrow focus of a few model organisms, and to thoughtfully embrace a wider selection of eukaryotic diversity. Over the past few years, my lab has studied the genomes and mitochondrial homologues (mitosomes and hydrogenosomes) of parasitic protozoa that represent significant health hazards in both the developed and developing world. These microbial eukaryotes will provide the model systems for investigations which aim to deliver major progress in understanding the importance of lateral gene transfer for eukaryotic genome origins and flux, for understanding how parasites exploit their host cells, and for identifying the essential functions of organelles related to mitochondria, which now appear to be vital components of all eukaryotic cells.
Summary
Understanding the origin and evolution of eukaryotes, their genomes and organelles, are among the most important and exciting challenges facing biology. However, determining ancient gene origins tests methods and data to their limits, and it is unrealistic to expect progress to be easy. A comparative cross-disciplinary approach involving sophisticated phylogenetics allied with mathematical understanding, offers the best hope of obtaining robust hypotheses for gene and genomic origins. It is also necessary to look beyond the narrow focus of a few model organisms, and to thoughtfully embrace a wider selection of eukaryotic diversity. Over the past few years, my lab has studied the genomes and mitochondrial homologues (mitosomes and hydrogenosomes) of parasitic protozoa that represent significant health hazards in both the developed and developing world. These microbial eukaryotes will provide the model systems for investigations which aim to deliver major progress in understanding the importance of lateral gene transfer for eukaryotic genome origins and flux, for understanding how parasites exploit their host cells, and for identifying the essential functions of organelles related to mitochondria, which now appear to be vital components of all eukaryotic cells.
Max ERC Funding
1 998 703 €
Duration
Start date: 2011-03-01, End date: 2017-02-28
Project acronym EVOCULTURE
Project The Evolution of Culture
Researcher (PI) Kevin Neville Laland
Host Institution (HI) THE UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS
Call Details Advanced Grant (AdG), LS8, ERC-2008-AdG
Summary The capacity for culture is clearly a critical factor underlying the success of our species, but how and why did it evolve? What are the selection pressures that favoured the evolution of cultural capabilities (e.g. social learning, innovation, teaching), and how has selection fashioned these to operate efficiently? The study of such abilities is central to a broad range of disciplines, and significant progress in the scientific understanding of their origin and operation will ripple out to exert considerable influence, both within and outside academia. This project utilises a broad but integrated package of highly innovative empirical and theoretical techniques, including the development of novel analytical tools that allow behavioural researchers to identify social learning and predict the diffusion of innovations, application of potentially revolutionary statistical methods for inferring causal influences on the evolution of brain and culture from correlational data, and a new empirical system providing an unparalleled opportunity to investigate the evolution and biological basis of social learning. I will also organize international competitions to identify effective social learning rules ( tournaments ), in which entrants each propose learning strategies that are pitted against each other in computer simulation, and the most effective wins a prize. Collectively, the projects offer a major step forward in our understanding of human evolution, adaptation and culture and will stimulate considerable interdisciplinary exchange.
Summary
The capacity for culture is clearly a critical factor underlying the success of our species, but how and why did it evolve? What are the selection pressures that favoured the evolution of cultural capabilities (e.g. social learning, innovation, teaching), and how has selection fashioned these to operate efficiently? The study of such abilities is central to a broad range of disciplines, and significant progress in the scientific understanding of their origin and operation will ripple out to exert considerable influence, both within and outside academia. This project utilises a broad but integrated package of highly innovative empirical and theoretical techniques, including the development of novel analytical tools that allow behavioural researchers to identify social learning and predict the diffusion of innovations, application of potentially revolutionary statistical methods for inferring causal influences on the evolution of brain and culture from correlational data, and a new empirical system providing an unparalleled opportunity to investigate the evolution and biological basis of social learning. I will also organize international competitions to identify effective social learning rules ( tournaments ), in which entrants each propose learning strategies that are pitted against each other in computer simulation, and the most effective wins a prize. Collectively, the projects offer a major step forward in our understanding of human evolution, adaptation and culture and will stimulate considerable interdisciplinary exchange.
Max ERC Funding
2 128 195 €
Duration
Start date: 2009-04-01, End date: 2015-03-31
Project acronym EvoGenMed
Project Evolutionary genomics: new perspectives and novel medical applications
Researcher (PI) Laurence Hurst
Host Institution (HI) UNIVERSITY OF BATH
Call Details Advanced Grant (AdG), LS8, ERC-2014-ADG
Summary To make for better diagnostics and safer applications of genomics we need a better understanding of our genome and how it functions. Until recently we thought we knew: intergenic sequence must be largely “junk” and mutations that, for example, affect genes but not the protein (synonymous mutations) must be effectively neutral. This degenerate genome view accords with the nearly-neutral theory’s prediction that selection will be weaker when populations are small. But is this all there is to it? I shall investigate two new interrelated perspectives on genome evolution. First, I suggest that to mitigate errors, owing to our high error rates, our genome can be under stronger, not weaker, selection. Second, that errors might be a source of evolutionary novelty. Error mitigation, my team has shown, often involves selection on seemingly innocuous mutations such as synonymous changes. Remarkably, we discovered that selection to ensure error-proof splicing is possibly more prevalent on synonymous mutations when populations are small, making seemingly innocuous mutations stronger candidates for human diseases. I shall provide the first test of the new error-proofing perspective through comparative genomic analysis on synonymous site evolution. To investigate error as a source of novelty I shall consider whether expression piggy-backing (expression of a gene affecting its neighbors) forces rewiring of gene networks. Importantly, I shall translate our new understanding to enable better diagnostics and improved therapeutics. I shall develop a much-needed computer package to identify candidate disease-causing synonymous changes. In addition, knowing how synonymous sites modulate splicing will allow me to design better intronless transgenes. Transgenes must also be inserted in genomic regions immune to piggy-backing. I will examine transposable element related piggy-backing to characterize “safe” sites for therapeutic gene insertion and mammalian transgenesis more generally.
Summary
To make for better diagnostics and safer applications of genomics we need a better understanding of our genome and how it functions. Until recently we thought we knew: intergenic sequence must be largely “junk” and mutations that, for example, affect genes but not the protein (synonymous mutations) must be effectively neutral. This degenerate genome view accords with the nearly-neutral theory’s prediction that selection will be weaker when populations are small. But is this all there is to it? I shall investigate two new interrelated perspectives on genome evolution. First, I suggest that to mitigate errors, owing to our high error rates, our genome can be under stronger, not weaker, selection. Second, that errors might be a source of evolutionary novelty. Error mitigation, my team has shown, often involves selection on seemingly innocuous mutations such as synonymous changes. Remarkably, we discovered that selection to ensure error-proof splicing is possibly more prevalent on synonymous mutations when populations are small, making seemingly innocuous mutations stronger candidates for human diseases. I shall provide the first test of the new error-proofing perspective through comparative genomic analysis on synonymous site evolution. To investigate error as a source of novelty I shall consider whether expression piggy-backing (expression of a gene affecting its neighbors) forces rewiring of gene networks. Importantly, I shall translate our new understanding to enable better diagnostics and improved therapeutics. I shall develop a much-needed computer package to identify candidate disease-causing synonymous changes. In addition, knowing how synonymous sites modulate splicing will allow me to design better intronless transgenes. Transgenes must also be inserted in genomic regions immune to piggy-backing. I will examine transposable element related piggy-backing to characterize “safe” sites for therapeutic gene insertion and mammalian transgenesis more generally.
Max ERC Funding
2 497 996 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym EVOMECH
Project The evolution of mechanisms that control behaviour
Researcher (PI) Alasdair Iain Houston
Host Institution (HI) UNIVERSITY OF BRISTOL
Call Details Advanced Grant (AdG), LS8, ERC-2009-AdG
Summary The approach to animal behaviour adopted by behavioural ecology is based on the investigation of the adaptive function of behaviour. A common assumption is that the action of natural selection on behaviour can be predicted without reference to processes inside the organism. I believe that it is time to combine an analysis based on evolution with one based on mechanisms, where a mechanism might be psychological, physiological or a combination of both. Animals have mechanisms that need to perform well in changing and dangerous environments. In order to understand the evolution of mechanisms, we need a fundamental change in the sort of models that are analysed. Instead of building complex models of optimal behaviour in simple environments, we need to evolve simple mechanisms that perform well in complex environments. This approach can provide a novel and unified perspective on a range of issues involving decisions by animals, including humans. The main objective of the project is to provide a comprehensive view of behaviour that can account for both adaptive and non-adaptive actions. This involves developing a novel theoretical framework based on an understanding of the underlying information-processing rules, combined with an evolutionary perspective that explains how any such rule came into existence in the first place. The theme of coping with uncertain and dangerous environments is used to investigate various features of behaviour such as rationality and self-control. These topics lead to the broader issues of the organisation of thought and emotions. The project also explores the consequences of the evolved behaviour and the implications for conservation and animal welfare.
Summary
The approach to animal behaviour adopted by behavioural ecology is based on the investigation of the adaptive function of behaviour. A common assumption is that the action of natural selection on behaviour can be predicted without reference to processes inside the organism. I believe that it is time to combine an analysis based on evolution with one based on mechanisms, where a mechanism might be psychological, physiological or a combination of both. Animals have mechanisms that need to perform well in changing and dangerous environments. In order to understand the evolution of mechanisms, we need a fundamental change in the sort of models that are analysed. Instead of building complex models of optimal behaviour in simple environments, we need to evolve simple mechanisms that perform well in complex environments. This approach can provide a novel and unified perspective on a range of issues involving decisions by animals, including humans. The main objective of the project is to provide a comprehensive view of behaviour that can account for both adaptive and non-adaptive actions. This involves developing a novel theoretical framework based on an understanding of the underlying information-processing rules, combined with an evolutionary perspective that explains how any such rule came into existence in the first place. The theme of coping with uncertain and dangerous environments is used to investigate various features of behaviour such as rationality and self-control. These topics lead to the broader issues of the organisation of thought and emotions. The project also explores the consequences of the evolved behaviour and the implications for conservation and animal welfare.
Max ERC Funding
1 749 277 €
Duration
Start date: 2010-06-01, End date: 2015-05-31
Project acronym EVOSOM
Project Evolution of multicellularity and somatic cell specialization
Researcher (PI) Pauline Schaap
Host Institution (HI) UNIVERSITY OF DUNDEE
Call Details Advanced Grant (AdG), LS8, ERC-2016-ADG
Summary The evolution of multicellularity allowed specialization of cells into functions that support rather than cause propagation. While yielding immense gain of function, the organisation of these somatic cells into tissues and organs required novel cell-cell signalling systems. We seek to identify the genetic changes that caused transitions to multicellularity and enabled cell specialization. We use genetically tractable Dictyostelia with multicellular structures that contain from 1 to 5 cell-types to address these fundamental questions. Dictyostelia evolved from unicellular Amoebozoa and are subdivided into 4 major groups, with most novel cell-types appearing in group 4. We found that gene expression patterns changed most frequently at the transition between groups 3 and 4, and that across groups ~10% of genes were alternatively spliced in the 5’UTR, indicative of promoter elaboration. Among known genes essential for multicellular development, those involved in intracellular signal processing were mostly conserved between Dictyostelia and unicellular Amoebozoa, while those encoding exposed and secreted proteins (ESPs) were unique to Dictyostelia or groups within Dictyostelia. Starting from a hypothesis that diversification of ESPs and gene regulatory mechanisms are major drivers of multicellular evolution, we will place unicellular relatives of Dictyostelia under selection to induce multicellularity, establish which genes are most changed in evolved populations and whether this involves ESP families that are also most changed in Dictyostelia. We will overexpress altered genes in unicellular forms to assess whether this induces multicellularity. We will retrace evolution of cell specialization by lineage analysis and phenotyping and seek correlations between cell-type innovation and alternative splice events and with emergence of novel signalling genes. Causality will be assessed by replacement of genes or promoters with ancestral forms in evolved species and vice versa
Summary
The evolution of multicellularity allowed specialization of cells into functions that support rather than cause propagation. While yielding immense gain of function, the organisation of these somatic cells into tissues and organs required novel cell-cell signalling systems. We seek to identify the genetic changes that caused transitions to multicellularity and enabled cell specialization. We use genetically tractable Dictyostelia with multicellular structures that contain from 1 to 5 cell-types to address these fundamental questions. Dictyostelia evolved from unicellular Amoebozoa and are subdivided into 4 major groups, with most novel cell-types appearing in group 4. We found that gene expression patterns changed most frequently at the transition between groups 3 and 4, and that across groups ~10% of genes were alternatively spliced in the 5’UTR, indicative of promoter elaboration. Among known genes essential for multicellular development, those involved in intracellular signal processing were mostly conserved between Dictyostelia and unicellular Amoebozoa, while those encoding exposed and secreted proteins (ESPs) were unique to Dictyostelia or groups within Dictyostelia. Starting from a hypothesis that diversification of ESPs and gene regulatory mechanisms are major drivers of multicellular evolution, we will place unicellular relatives of Dictyostelia under selection to induce multicellularity, establish which genes are most changed in evolved populations and whether this involves ESP families that are also most changed in Dictyostelia. We will overexpress altered genes in unicellular forms to assess whether this induces multicellularity. We will retrace evolution of cell specialization by lineage analysis and phenotyping and seek correlations between cell-type innovation and alternative splice events and with emergence of novel signalling genes. Causality will be assessed by replacement of genes or promoters with ancestral forms in evolved species and vice versa
Max ERC Funding
2 128 602 €
Duration
Start date: 2017-05-01, End date: 2022-04-30
Project acronym Group-Dynamics-TCB
Project Effects of group dynamics on selection, development and demography in cooperative vertebrates
Researcher (PI) Timothy Hugh CLUTTON-BROCK
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Advanced Grant (AdG), LS8, ERC-2016-ADG
Summary In social animals, the characteristics and dynamics of groups affect the development of individuals, the selection pressures operating on them and the demography of populations. Using existing study populations of two social mammals (Kalahari meerkats and Damaraland mole-rats) that offer unique and complementary opportunities for research, we shall (1) explore the effects of variation in group size on growth, behaviour, hormonal status and gene regulation in both species and test suggestions that (i) increasing group size generates divergence in development among group members and the formation of incipient castes and (ii) that breeding extends female longevity rather than reducing it; (2) assess the extent and causes of variation in group longevity and in the frequency with which groups generate new breeding units, model the relative impact of selection operating at different levels on the evolution of cooperation, and investigate whether there is any indication that the behaviour of individuals is adapted to increasing group persistence or proliferation; (3) examine the effects of group size and group dynamics on the dynamics of populations and their responses to variation in rainfall, temperature and epidemic disease (TB), generalise these models to explore the population dynamics of cooperative breeders and explore their consequences for the evolution of cooperative breeding. Our work involves novel approaches to the measurement and analysis of development, communication and gene regulation in wild animals, and to modelling multi-level selection and the dynamics of hierarchically structured populations. It will provide insight into the social mechanisms affecting individual development, multi-level selection and the population dynamics and management of group-living animals.
Summary
In social animals, the characteristics and dynamics of groups affect the development of individuals, the selection pressures operating on them and the demography of populations. Using existing study populations of two social mammals (Kalahari meerkats and Damaraland mole-rats) that offer unique and complementary opportunities for research, we shall (1) explore the effects of variation in group size on growth, behaviour, hormonal status and gene regulation in both species and test suggestions that (i) increasing group size generates divergence in development among group members and the formation of incipient castes and (ii) that breeding extends female longevity rather than reducing it; (2) assess the extent and causes of variation in group longevity and in the frequency with which groups generate new breeding units, model the relative impact of selection operating at different levels on the evolution of cooperation, and investigate whether there is any indication that the behaviour of individuals is adapted to increasing group persistence or proliferation; (3) examine the effects of group size and group dynamics on the dynamics of populations and their responses to variation in rainfall, temperature and epidemic disease (TB), generalise these models to explore the population dynamics of cooperative breeders and explore their consequences for the evolution of cooperative breeding. Our work involves novel approaches to the measurement and analysis of development, communication and gene regulation in wild animals, and to modelling multi-level selection and the dynamics of hierarchically structured populations. It will provide insight into the social mechanisms affecting individual development, multi-level selection and the population dynamics and management of group-living animals.
Max ERC Funding
2 499 244 €
Duration
Start date: 2018-07-01, End date: 2023-06-30
Project acronym GUPPYSEX
Project Evolutionary genetics of guppy sex chromosomes
Researcher (PI) Deborah CHARLESWORTH
Host Institution (HI) THE UNIVERSITY OF EDINBURGH
Call Details Advanced Grant (AdG), LS8, ERC-2015-AdG
Summary I propose an integrated programme of molecular genetic studies to fill fundamental gaps in our knowledge of sex chromosome evolution. Specifically, I will use a fish, the guppy (Poecilia reticulata), to test the sexual antagonism (SA) hypothesis of sex chromosome evolution, which is plausible, but lacks direct evidence. SA mutations (that benefit one sex but lower fitness of the other) are proposed to arise in a partially sex-linked (pseudo-autosomal region, or PAR) gene, and establish polymorphisms. To reduce the conflict between the sexes, suppressed recombination between X and Y chromosomes then evolves (unless sex-specific expression evolves first). The guppy is ideal for studying this hypothesis because SA polymorphisms are well documented: male coloration phenotypes make males attractive to females, but also make them conspicuous to predators (while females gain no compensating benefit). Moreover, guppies have a recombination-suppressed sex-linked region that carries multiple coloration genes, yet is thought to have evolved recently. However, no non-Y-linked coloration factor has yet been mapped, and the genetics is complicated by modifers making some XX individuals male, and by male-specific expression of some phenotypes. I will map coloration genes and identify PAR genes using DNA-based markers to take account of these problems. I will test for the predicted lower coloration allele frequencies in natural populations with high versus low predation rates, and do population genetic analyses to test for closer linkage under high predation. I will also use X-Y sequence divergence to estimate the age of the guppy sex chromosome. The project tests predictions that emerge from well-documented differing selection regimes in natural guppy populations. I have therefore assembled a team of collaborators experienced with guppies who can provide behavioural and ecological genetic expertise to complement the strength of my own group in molecular evolutionary genetics.
Summary
I propose an integrated programme of molecular genetic studies to fill fundamental gaps in our knowledge of sex chromosome evolution. Specifically, I will use a fish, the guppy (Poecilia reticulata), to test the sexual antagonism (SA) hypothesis of sex chromosome evolution, which is plausible, but lacks direct evidence. SA mutations (that benefit one sex but lower fitness of the other) are proposed to arise in a partially sex-linked (pseudo-autosomal region, or PAR) gene, and establish polymorphisms. To reduce the conflict between the sexes, suppressed recombination between X and Y chromosomes then evolves (unless sex-specific expression evolves first). The guppy is ideal for studying this hypothesis because SA polymorphisms are well documented: male coloration phenotypes make males attractive to females, but also make them conspicuous to predators (while females gain no compensating benefit). Moreover, guppies have a recombination-suppressed sex-linked region that carries multiple coloration genes, yet is thought to have evolved recently. However, no non-Y-linked coloration factor has yet been mapped, and the genetics is complicated by modifers making some XX individuals male, and by male-specific expression of some phenotypes. I will map coloration genes and identify PAR genes using DNA-based markers to take account of these problems. I will test for the predicted lower coloration allele frequencies in natural populations with high versus low predation rates, and do population genetic analyses to test for closer linkage under high predation. I will also use X-Y sequence divergence to estimate the age of the guppy sex chromosome. The project tests predictions that emerge from well-documented differing selection regimes in natural guppy populations. I have therefore assembled a team of collaborators experienced with guppies who can provide behavioural and ecological genetic expertise to complement the strength of my own group in molecular evolutionary genetics.
Max ERC Funding
1 550 235 €
Duration
Start date: 2016-08-01, End date: 2020-07-31