Project acronym ARTIVISM
Project Art and Activism : Creativity and Performance as Subversive Forms of Political Expression in Super-Diverse Cities
Researcher (PI) Monika Salzbrunn
Host Institution (HI) UNIVERSITE DE LAUSANNE
Call Details Consolidator Grant (CoG), SH5, ERC-2015-CoG
Summary ARTIVISM aims at exploring new artistic forms of political expression under difficult, precarious and/or oppressive conditions. It asks how social actors create belonging and multiple forms of resistance when they use art in activism or activism in art. What kind of alliances do these two forms of social practices generate in super-diverse places, in times of crisis and in precarious situations? Thus, ARTIVISM seeks to understand how social actors engage artistically in order to bring about social, economic and political change. Going beyond former research in urban and migration studies, and beyond the anthropology of art, ARTIVISM focuses on a broad range of artistic tools, styles and means of expression, namely festive events and parades, cartoons and comics and street art. By articulating performance studies, street anthropology and the sociology of celebration with migration and diversity studies, the project challenges former concepts, which took stable social groups for granted and reified them with ethnic lenses. The applied methodology considerably renews the field by bringing together event-, actor- and condition-centred approaches and a multi-sensory framework. Besides its multidisciplinary design, the ground-breaking nature of ARTIVISM lies in the application of the core concepts of performativity and liminality, as well as in an examination of the way to advance and refine these concepts and to create new analytical tools to respond to recent social phenomena. We have developed and tested innovative methods that respond to a postmodern type of fluid and temporary social action: audio-visual ethnography, urban event ethnography, street ethnography, field-crossing, and sensory ethnography (apprenticeship). Therefore, ARTIVISM develops new methods and theories in order to introduce a multi-faceted trans-disciplinary approach to the study of an emerging field of social transformations that is of challenging significance to the social sciences.
Summary
ARTIVISM aims at exploring new artistic forms of political expression under difficult, precarious and/or oppressive conditions. It asks how social actors create belonging and multiple forms of resistance when they use art in activism or activism in art. What kind of alliances do these two forms of social practices generate in super-diverse places, in times of crisis and in precarious situations? Thus, ARTIVISM seeks to understand how social actors engage artistically in order to bring about social, economic and political change. Going beyond former research in urban and migration studies, and beyond the anthropology of art, ARTIVISM focuses on a broad range of artistic tools, styles and means of expression, namely festive events and parades, cartoons and comics and street art. By articulating performance studies, street anthropology and the sociology of celebration with migration and diversity studies, the project challenges former concepts, which took stable social groups for granted and reified them with ethnic lenses. The applied methodology considerably renews the field by bringing together event-, actor- and condition-centred approaches and a multi-sensory framework. Besides its multidisciplinary design, the ground-breaking nature of ARTIVISM lies in the application of the core concepts of performativity and liminality, as well as in an examination of the way to advance and refine these concepts and to create new analytical tools to respond to recent social phenomena. We have developed and tested innovative methods that respond to a postmodern type of fluid and temporary social action: audio-visual ethnography, urban event ethnography, street ethnography, field-crossing, and sensory ethnography (apprenticeship). Therefore, ARTIVISM develops new methods and theories in order to introduce a multi-faceted trans-disciplinary approach to the study of an emerging field of social transformations that is of challenging significance to the social sciences.
Max ERC Funding
1 999 287 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym BEAM-EDM
Project Unique Method for a Neutron Electric Dipole Moment Search using a Pulsed Beam
Researcher (PI) Florian Michael PIEGSA
Host Institution (HI) UNIVERSITAET BERN
Call Details Starting Grant (StG), PE2, ERC-2016-STG
Summary My research encompasses the application of novel methods and strategies in the field of low energy particle physics. The goal of the presented program is to lead an independent and highly competitive experiment to search for a CP violating neutron electric dipole moment (nEDM), as well as for new exotic interactions using highly sensitive neutron and proton spin resonance techniques.
The measurement of the nEDM is considered to be one of the most important fundamental physics experiments at low energy. It represents a promising route for finding new physics beyond the standard model (SM) and describes an important search for new sources of CP violation in order to understand the observed large baryon asymmetry in our universe. The main project will follow a novel concept based on my original idea, which plans to employ a pulsed neutron beam at high intensity instead of the established use of storable ultracold neutrons. This complementary and potentially ground-breaking method provides the possibility to distinguish between the signal due to a nEDM and previously limiting systematic effects, and should lead to an improved result compared to the present best nEDM beam experiment. The findings of these investigations will be of paramount importance and will form the cornerstone for the success of the full-scale experiment intended for the European Spallation Source. A second scientific question will be addressed by performing spin precession experiments searching for exotic short-range interactions and associated light bosons. This is a vivid field of research motivated by various extensions to the SM. The goal of these measurements, using neutrons and protons, is to search for additional interactions such new bosons mediate between ordinary particles.
Both topics describe ambitious and unique efforts. They use related techniques, address important questions in fundamental physics, and have the potential of substantial scientific implications and high-impact results.
Summary
My research encompasses the application of novel methods and strategies in the field of low energy particle physics. The goal of the presented program is to lead an independent and highly competitive experiment to search for a CP violating neutron electric dipole moment (nEDM), as well as for new exotic interactions using highly sensitive neutron and proton spin resonance techniques.
The measurement of the nEDM is considered to be one of the most important fundamental physics experiments at low energy. It represents a promising route for finding new physics beyond the standard model (SM) and describes an important search for new sources of CP violation in order to understand the observed large baryon asymmetry in our universe. The main project will follow a novel concept based on my original idea, which plans to employ a pulsed neutron beam at high intensity instead of the established use of storable ultracold neutrons. This complementary and potentially ground-breaking method provides the possibility to distinguish between the signal due to a nEDM and previously limiting systematic effects, and should lead to an improved result compared to the present best nEDM beam experiment. The findings of these investigations will be of paramount importance and will form the cornerstone for the success of the full-scale experiment intended for the European Spallation Source. A second scientific question will be addressed by performing spin precession experiments searching for exotic short-range interactions and associated light bosons. This is a vivid field of research motivated by various extensions to the SM. The goal of these measurements, using neutrons and protons, is to search for additional interactions such new bosons mediate between ordinary particles.
Both topics describe ambitious and unique efforts. They use related techniques, address important questions in fundamental physics, and have the potential of substantial scientific implications and high-impact results.
Max ERC Funding
1 404 062 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym BORDER
Project Towards a decentred history of the Middle East: Transborder spaces, circulations, frontier effects and state formation, 1920-1946
Researcher (PI) Jordi TEJEL GORGAS
Host Institution (HI) UNIVERSITE DE NEUCHATEL
Call Details Consolidator Grant (CoG), SH6, ERC-2016-COG
Summary While the crisis of the territorial nation-state in the Middle East has once again been brought to a head by the wars in Iraq and Syria, it cannot be simply understood as the logical consequence of an imported political construction. Based on two epistemological notions – borderlands as histoire-problème (history-as-problem) and the co-production of borders between state and society – this research project proposes to rethink the classical historical narrative about the emergence of the post-Ottoman Middle East. Taking its cue from trans-border phenomena and thus paying attention to the circulation of people, goods and ideas as well as to everyday encounters between local actors and state representatives, the project will be guided by four principle objectives to offer:
• A socio-historical analysis of state violence in the borderlands of the Middle East;
• An examination of the capacity of border populations to create the history of the borderlands, nation-states, and the region as a whole;
• A study of the frontier effects based around the notions of subjectivity, space and time, and involving various levels of observation (macro, meso and micro) in order to identify the ruptures and continuities evoked by the delineation of new borderlines; and
• A historical lens through which to make sense of current events in Syria and Iraq, and possibly orient conflict-resolution practitioners.
Through the exploitation of a wide range of sources (diplomatic, administrative and military records, missionary documents, newspapers) and by looking at the social construction of international frontiers at the borderlands located between Turkey, Iraq and Syria in the interwar era, the research project will provide a much more holistic yet finely-grained understanding of the formation of the territorial state in the region in the aftermath of the First World War as well as a historical perspective on the on-going armed conflicts.
Summary
While the crisis of the territorial nation-state in the Middle East has once again been brought to a head by the wars in Iraq and Syria, it cannot be simply understood as the logical consequence of an imported political construction. Based on two epistemological notions – borderlands as histoire-problème (history-as-problem) and the co-production of borders between state and society – this research project proposes to rethink the classical historical narrative about the emergence of the post-Ottoman Middle East. Taking its cue from trans-border phenomena and thus paying attention to the circulation of people, goods and ideas as well as to everyday encounters between local actors and state representatives, the project will be guided by four principle objectives to offer:
• A socio-historical analysis of state violence in the borderlands of the Middle East;
• An examination of the capacity of border populations to create the history of the borderlands, nation-states, and the region as a whole;
• A study of the frontier effects based around the notions of subjectivity, space and time, and involving various levels of observation (macro, meso and micro) in order to identify the ruptures and continuities evoked by the delineation of new borderlines; and
• A historical lens through which to make sense of current events in Syria and Iraq, and possibly orient conflict-resolution practitioners.
Through the exploitation of a wide range of sources (diplomatic, administrative and military records, missionary documents, newspapers) and by looking at the social construction of international frontiers at the borderlands located between Turkey, Iraq and Syria in the interwar era, the research project will provide a much more holistic yet finely-grained understanding of the formation of the territorial state in the region in the aftermath of the First World War as well as a historical perspective on the on-going armed conflicts.
Max ERC Funding
1 997 675 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym BRAINCODES
Project Brain networks controlling social decisions
Researcher (PI) Christian Carl RUFF
Host Institution (HI) UNIVERSITAT ZURICH
Call Details Consolidator Grant (CoG), SH4, ERC-2016-COG
Summary Successful social interactions require social decision making, the ability to guide our actions in line with the goals and expectations of the people around us. Disordered social decision making – e.g., associated with criminal activity or psychiatric illnesses – poses significant financial and personal challenges to society. However, the brain mechanisms that enable us to control our social behavior are far from being understood. Here I will take decisive steps towards a causal understanding of these mechanisms by elucidating the role of functional interactions in the brain networks responsible for steering strategic, prosocial, and norm-compliant behavior. I will employ a unique multi-method approach that integrates computational modeling of social decisions with new combinations of multimodal neuroimaging and brain stimulation methods. Using EEG-fMRI, I will first identify spatio-temporal patterns of functional interactions between brain areas that correlate with social decision processes as identified by computational modeling of behavior in different economic games. In combined brain stimulation-fMRI studies, I will then attempt to affect – and in fact enhance – these social decision-making processes by modulating the identified brain network patterns with novel, targeted brain stimulation protocols and measuring the resulting effects on behavior and brain activity. Finally, I will examine whether the identified brain network mechanisms are indeed related to disturbed social decisions in two psychiatric illnesses characterized by maladaptive social behavior (post-traumatic stress disorder and autism spectrum disorder). My proposed work plan will generate a causal understanding of the brain network mechanisms that allow humans to control their social decisions, thereby elucidating a biological basis for individual differences in social behavior and paving the way for new perspectives on how disordered social behavior may be identified and hopefully remedied.
Summary
Successful social interactions require social decision making, the ability to guide our actions in line with the goals and expectations of the people around us. Disordered social decision making – e.g., associated with criminal activity or psychiatric illnesses – poses significant financial and personal challenges to society. However, the brain mechanisms that enable us to control our social behavior are far from being understood. Here I will take decisive steps towards a causal understanding of these mechanisms by elucidating the role of functional interactions in the brain networks responsible for steering strategic, prosocial, and norm-compliant behavior. I will employ a unique multi-method approach that integrates computational modeling of social decisions with new combinations of multimodal neuroimaging and brain stimulation methods. Using EEG-fMRI, I will first identify spatio-temporal patterns of functional interactions between brain areas that correlate with social decision processes as identified by computational modeling of behavior in different economic games. In combined brain stimulation-fMRI studies, I will then attempt to affect – and in fact enhance – these social decision-making processes by modulating the identified brain network patterns with novel, targeted brain stimulation protocols and measuring the resulting effects on behavior and brain activity. Finally, I will examine whether the identified brain network mechanisms are indeed related to disturbed social decisions in two psychiatric illnesses characterized by maladaptive social behavior (post-traumatic stress disorder and autism spectrum disorder). My proposed work plan will generate a causal understanding of the brain network mechanisms that allow humans to control their social decisions, thereby elucidating a biological basis for individual differences in social behavior and paving the way for new perspectives on how disordered social behavior may be identified and hopefully remedied.
Max ERC Funding
1 999 991 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym BSMOXFORD
Project Physics Beyond the Standard Model at the LHC and with Atom Interferometers
Researcher (PI) Savas Dimopoulos
Host Institution (HI) EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
Call Details Advanced Grant (AdG), PE2, ERC-2008-AdG
Summary Elementary particle physics is entering a spectacular new era in which experiments at the Large Hadron Collider (LHC) at CERN will soon start probing some of the deepest questions in physics, such as: Why is gravity so weak? Do elementary particles have substructure? What is the origin of mass? Are there new dimensions? Can we produce black holes in the lab? Could there be other universes with different physical laws? While the LHC pushes the energy frontier, the unprecedented precision of Atom Interferometry, has pointed me to a new tool for fundamental physics. These experiments based on the quantum interference of atoms can test General Relativity on the surface of the Earth, detect gravity waves, and test short-distance gravity, charge quantization, and quantum mechanics with unprecedented precision in the next decade. This ERC Advanced grant proposal is aimed at setting up a world-leading European center for development of a deeper theory of fundamental physics. The next 10 years is the optimal time for such studies to benefit from the wealth of new data that will emerge from the LHC, astrophysical observations and atom interferometry. This is a once-in-a-generation opportunity for making ground-breaking progress, and will open up many new research horizons.
Summary
Elementary particle physics is entering a spectacular new era in which experiments at the Large Hadron Collider (LHC) at CERN will soon start probing some of the deepest questions in physics, such as: Why is gravity so weak? Do elementary particles have substructure? What is the origin of mass? Are there new dimensions? Can we produce black holes in the lab? Could there be other universes with different physical laws? While the LHC pushes the energy frontier, the unprecedented precision of Atom Interferometry, has pointed me to a new tool for fundamental physics. These experiments based on the quantum interference of atoms can test General Relativity on the surface of the Earth, detect gravity waves, and test short-distance gravity, charge quantization, and quantum mechanics with unprecedented precision in the next decade. This ERC Advanced grant proposal is aimed at setting up a world-leading European center for development of a deeper theory of fundamental physics. The next 10 years is the optimal time for such studies to benefit from the wealth of new data that will emerge from the LHC, astrophysical observations and atom interferometry. This is a once-in-a-generation opportunity for making ground-breaking progress, and will open up many new research horizons.
Max ERC Funding
2 200 000 €
Duration
Start date: 2009-05-01, End date: 2014-04-30
Project acronym DECCA
Project Devices, engines and circuits: quantum engineering with cold atoms
Researcher (PI) Jean-Philippe BRANTUT
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Starting Grant (StG), PE2, ERC-2016-STG
Summary Over the last decade, cold atomic gases have become one of the best controlled quantum system. This novel, synthetic material can be shaped at the microscopic level to mimic a wide range of models, and simulate the universal physics that these models describe. This project pioneers a new approach to quantum simulations, jumping from cold atoms materials into the realm of devices: systems carved out of cold gases, separated by interfaces, connected to each other and allowing for a controlled driving.
At the heart of this approach is the study of transport of atoms at the quantum level. Our devices will allow for the measurement of the universal conductance of quantum critical systems or other many-body states. They will feature interfaces and contacts where new types of localized states emerge, such as the one proposed to explain the long-standing question of the “0.7 anomaly” in quantum point contacts. They will also allow for a new type of engineering, where currents of particles, spin or entropy can be controlled and directed in order to perform operations such as cooling.
This research will be possible thanks to the development of a new apparatus, capable of detecting in a non-destructive way tiny atomic currents, such as the one driven through single mode quantum conductors. It will combine an optical cavity for high efficiency optical detection, and high optical resolution optics allowing for manipulations and patterning at the scale of the wave function of individual particles.
Summary
Over the last decade, cold atomic gases have become one of the best controlled quantum system. This novel, synthetic material can be shaped at the microscopic level to mimic a wide range of models, and simulate the universal physics that these models describe. This project pioneers a new approach to quantum simulations, jumping from cold atoms materials into the realm of devices: systems carved out of cold gases, separated by interfaces, connected to each other and allowing for a controlled driving.
At the heart of this approach is the study of transport of atoms at the quantum level. Our devices will allow for the measurement of the universal conductance of quantum critical systems or other many-body states. They will feature interfaces and contacts where new types of localized states emerge, such as the one proposed to explain the long-standing question of the “0.7 anomaly” in quantum point contacts. They will also allow for a new type of engineering, where currents of particles, spin or entropy can be controlled and directed in order to perform operations such as cooling.
This research will be possible thanks to the development of a new apparatus, capable of detecting in a non-destructive way tiny atomic currents, such as the one driven through single mode quantum conductors. It will combine an optical cavity for high efficiency optical detection, and high optical resolution optics allowing for manipulations and patterning at the scale of the wave function of individual particles.
Max ERC Funding
1 454 258 €
Duration
Start date: 2017-02-01, End date: 2022-01-31
Project acronym FMWK 1870-2008
Project The surfaces of cement and reinforced concrete. A history of the formworks and processing of the surface, 1870-2008
Researcher (PI) Roberto Gargiani
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Advanced Grant (AdG), SH5, ERC-2008-AdG
Summary Since the nineteenth century, the reinforced concrete has been generating a vast specialized litterature everywhere in the world. However, none of it has ever tried to make a first assessment of the evolution of one of the most fundamental element in the processing of the reinforced concrete: the formwork; nor have been reconstructed the various ways of processing the surfaces after removal of the formwork in order to get special effects of polished or rustic surface. Therefore, on the subject of manufacturing of the formworks and processing of the surface, there is a true gap in the studies on reinforced concrete that the research The surfaces of cement and reinforced concrete. A history of the formworks and processing of the surface, 1870-2008 intends to fill. Whether historical or operationnal, this gap lacks not only of the context of the evolution from the nineteenth century, but also of a comprehensive outline of the recent production. The purpose of the research is to provide the most comprehensive documentation and the most significant examples of the international architectural production on the subject of formworks and concrete surfaces within the time span considered. Drawing up the outline of the various types of building and processing of the surfaces will be extraordinarily useful for the historiography of architecture, which will hence have a scientific instrument to evaluate the works in terms of connections between form and material in relation to concrete, as well as for the modern formworks in which the technicial and artistical issues of reinforced concrete processing at sight still remain fundamental. The results of the research will be collected in a book with the caracteristics of an essay, consisting of an important written part and an extremely rich iconographic documentation (project drawings, photographs of building sites and tools, etc.); it will be structured as a synthesis between the technical manual and the historical critical essay.
Summary
Since the nineteenth century, the reinforced concrete has been generating a vast specialized litterature everywhere in the world. However, none of it has ever tried to make a first assessment of the evolution of one of the most fundamental element in the processing of the reinforced concrete: the formwork; nor have been reconstructed the various ways of processing the surfaces after removal of the formwork in order to get special effects of polished or rustic surface. Therefore, on the subject of manufacturing of the formworks and processing of the surface, there is a true gap in the studies on reinforced concrete that the research The surfaces of cement and reinforced concrete. A history of the formworks and processing of the surface, 1870-2008 intends to fill. Whether historical or operationnal, this gap lacks not only of the context of the evolution from the nineteenth century, but also of a comprehensive outline of the recent production. The purpose of the research is to provide the most comprehensive documentation and the most significant examples of the international architectural production on the subject of formworks and concrete surfaces within the time span considered. Drawing up the outline of the various types of building and processing of the surfaces will be extraordinarily useful for the historiography of architecture, which will hence have a scientific instrument to evaluate the works in terms of connections between form and material in relation to concrete, as well as for the modern formworks in which the technicial and artistical issues of reinforced concrete processing at sight still remain fundamental. The results of the research will be collected in a book with the caracteristics of an essay, consisting of an important written part and an extremely rich iconographic documentation (project drawings, photographs of building sites and tools, etc.); it will be structured as a synthesis between the technical manual and the historical critical essay.
Max ERC Funding
660 000 €
Duration
Start date: 2009-03-01, End date: 2015-02-28
Project acronym FOUR ACES
Project Future of upper atmospheric characterisation of exoplanets with spectroscopy
Researcher (PI) David René Bernard EHRENREICH
Host Institution (HI) UNIVERSITE DE GENEVE
Call Details Consolidator Grant (CoG), PE9, ERC-2016-COG
Summary This project will open a new path to characterise the atmospheres of exoplanets down to Earth-size objects, using the spatial extension of upper atmospheres as a magnifying glass to access the atmospheric properties. The tremendous energy received by exoplanets close to their stars leads to dramatic atmospheric expansion and escape, which could result in the formation of hot rocky super-Earths seen in recent years. While the escape mechanisms and evolutionary impact on planets and atmospheres remain debated, the atmospheric expansion gives rise to spectacular spectroscopic signatures in the UV, only detectable with the Hubble Space Telescope (HST). In 2015, I discovered a huge extended atmosphere escaping from a “warm Neptune”, which represents a milestone on the road to the atmospheres of lower-mass, more temperate planets. Using HARPS spectroscopy from the ground, I revealed the extreme conditions in the upper atmosphere of a “hot Jupiter”, probing the onset of atmospheric escape in the optical, linking the upper and lower atmospheres. I propose to consolidate these breakthroughs via a thorough exploitation of the vast amount of observations I obtained for ~20 planets (100+ hours on HST and 250+ hours on HARPS and HARPS-N) in the wake of my results. I will use those data to bind theories describing the lower and upper atmospheres of exoplanets, and determine how these are impacted by stellar activity. In a second step, I will build and deliver a legacy archive of UV observations by the end of HST in ~2020. In an era where new transit surveys will provide hundreds of easier-to-study exoplanets transiting bright stars, I will use my priviledged access to the reconnaissance capabilities of the ESA CHEOPS mission (2018–2022) to cherry-pick the very best planets for atmospheric characterisation. I will combine the space-borne and ground-based high-resolution spectroscopic follow-ups of these planets to deliver a novel, comprehensive view of exoplanetary atmospheres.
Summary
This project will open a new path to characterise the atmospheres of exoplanets down to Earth-size objects, using the spatial extension of upper atmospheres as a magnifying glass to access the atmospheric properties. The tremendous energy received by exoplanets close to their stars leads to dramatic atmospheric expansion and escape, which could result in the formation of hot rocky super-Earths seen in recent years. While the escape mechanisms and evolutionary impact on planets and atmospheres remain debated, the atmospheric expansion gives rise to spectacular spectroscopic signatures in the UV, only detectable with the Hubble Space Telescope (HST). In 2015, I discovered a huge extended atmosphere escaping from a “warm Neptune”, which represents a milestone on the road to the atmospheres of lower-mass, more temperate planets. Using HARPS spectroscopy from the ground, I revealed the extreme conditions in the upper atmosphere of a “hot Jupiter”, probing the onset of atmospheric escape in the optical, linking the upper and lower atmospheres. I propose to consolidate these breakthroughs via a thorough exploitation of the vast amount of observations I obtained for ~20 planets (100+ hours on HST and 250+ hours on HARPS and HARPS-N) in the wake of my results. I will use those data to bind theories describing the lower and upper atmospheres of exoplanets, and determine how these are impacted by stellar activity. In a second step, I will build and deliver a legacy archive of UV observations by the end of HST in ~2020. In an era where new transit surveys will provide hundreds of easier-to-study exoplanets transiting bright stars, I will use my priviledged access to the reconnaissance capabilities of the ESA CHEOPS mission (2018–2022) to cherry-pick the very best planets for atmospheric characterisation. I will combine the space-borne and ground-based high-resolution spectroscopic follow-ups of these planets to deliver a novel, comprehensive view of exoplanetary atmospheres.
Max ERC Funding
1 999 475 €
Duration
Start date: 2017-06-01, End date: 2022-05-31
Project acronym GeoViSense
Project GeoViSense: Towards a transdisciplinary human sensor science of human visuo-spatial decision making with geographic information displays
Researcher (PI) Sara Irina FABRIKANT
Host Institution (HI) UNIVERSITAT ZURICH
Call Details Advanced Grant (AdG), SH2, ERC-2016-ADG
Summary Well-designed mobile, human responsive geographic information technology could improve the lives of millions who daily need to make time critical and societally relevant decisions on the go. However, what are the basic processes with which humans make visuo-spatial decisions when guided by responsive geographic information displays? Visualization research todate has been driven by technical and computational advances to overcome data deluges, but we still have a poor understanding whether, how, and when visual displays support spatio-temporal decision making and action, and for which kinds of users. We will break new ground to overcome this transdisciplinary knowledge gap and aim to: (1) integrate fragmented human-visualization-environment research across the sciences including natural, social/behavioral, and the engineering sciences, all critical to tackle this interdisciplinary problem, (2) develop missing, empirically evaluated design guidelines for human-computer interfaces of current/emerging mobile geographic information technology to support affective, effective, and efficient spatio-temporal decision-making, (3) develop unconventional evaluation methods by critical examination of how perceptual, cognitive, psycho-physiological, and display design factors might influence visuo-spatio-temporal decision making across broad ranges of users and mobile use contexts, and (4) scale up empirical methods from to-date controlled behavioral lab paradigms towards a new in-situ mobile human sensor science. A paradigm shift from current lab-based neuro-cognitive and affective science towards a location-based, close human sensing science will radically change the way we study human behavior across science. In doing so, we can improve spatio-temporal every-day decision making with graphic displays, and facilitate sustainable solutions for the increasingly mobile digital information society having to mitigate environmental emergencies, human refugee crises, or terror attacks.
Summary
Well-designed mobile, human responsive geographic information technology could improve the lives of millions who daily need to make time critical and societally relevant decisions on the go. However, what are the basic processes with which humans make visuo-spatial decisions when guided by responsive geographic information displays? Visualization research todate has been driven by technical and computational advances to overcome data deluges, but we still have a poor understanding whether, how, and when visual displays support spatio-temporal decision making and action, and for which kinds of users. We will break new ground to overcome this transdisciplinary knowledge gap and aim to: (1) integrate fragmented human-visualization-environment research across the sciences including natural, social/behavioral, and the engineering sciences, all critical to tackle this interdisciplinary problem, (2) develop missing, empirically evaluated design guidelines for human-computer interfaces of current/emerging mobile geographic information technology to support affective, effective, and efficient spatio-temporal decision-making, (3) develop unconventional evaluation methods by critical examination of how perceptual, cognitive, psycho-physiological, and display design factors might influence visuo-spatio-temporal decision making across broad ranges of users and mobile use contexts, and (4) scale up empirical methods from to-date controlled behavioral lab paradigms towards a new in-situ mobile human sensor science. A paradigm shift from current lab-based neuro-cognitive and affective science towards a location-based, close human sensing science will radically change the way we study human behavior across science. In doing so, we can improve spatio-temporal every-day decision making with graphic displays, and facilitate sustainable solutions for the increasingly mobile digital information society having to mitigate environmental emergencies, human refugee crises, or terror attacks.
Max ERC Funding
2 500 000 €
Duration
Start date: 2017-11-01, End date: 2022-10-31
Project acronym GREinGC
Project General Relativistic Effect in Galaxy Clustering as a Novel Probe of Inflationary Cosmology
Researcher (PI) Jaiyul Yoo
Host Institution (HI) UNIVERSITAT ZURICH
Call Details Consolidator Grant (CoG), PE9, ERC-2015-CoG
Summary Substantial advances in cosmology over the past decades have firmly established the standard model of cosmology. However, the physical nature of the early Universe and dark energy (or inflationary cosmology) remains poorly understood. To resolve these issues, a large number of galaxy surveys are planned to measure millions of galaxies in the sky, promising precision measurements of galaxy clustering with enormous statistical power. Despite these advances in observation, the standard theoretical description of galaxy clustering is based on the Newtonian description, inadequate for measuring the relativistic effects from the early Universe and the deviations of modified gravity from general relativity. In recent years, the applicant, for the first time, developed the linear-order general relativistic description of galaxy clustering and showed that the relativistic effect in galaxy clustering is already measurable at a few-sigma level in current surveys like the Sloan survey
and significant detections (>10 sigma) are possible in upcoming surveys.
This research proposal will aim to use the subtle relativistic effect in galaxy clustering to develop novel probes of inflationary cosmology. In particular, the applicant will 1) formulate the higher-order relativistic description of galaxy clustering, an essential tool for computing the bispectrum, and 2) investigate the unique relativistic signatures (linear-order and higher-order) in galaxy clustering from the early Universe and dark energy to develop novel probes of isolating those signatures and to quantify their detectabilities in future galaxy surveys. Biases in cosmological parameter estimation, if the standard Newtonian description is used, will be quantified. A comprehensive understanding of inflationary cosmology will have far-reaching consequences, shedding light on new physics beyond the standard model.
Summary
Substantial advances in cosmology over the past decades have firmly established the standard model of cosmology. However, the physical nature of the early Universe and dark energy (or inflationary cosmology) remains poorly understood. To resolve these issues, a large number of galaxy surveys are planned to measure millions of galaxies in the sky, promising precision measurements of galaxy clustering with enormous statistical power. Despite these advances in observation, the standard theoretical description of galaxy clustering is based on the Newtonian description, inadequate for measuring the relativistic effects from the early Universe and the deviations of modified gravity from general relativity. In recent years, the applicant, for the first time, developed the linear-order general relativistic description of galaxy clustering and showed that the relativistic effect in galaxy clustering is already measurable at a few-sigma level in current surveys like the Sloan survey
and significant detections (>10 sigma) are possible in upcoming surveys.
This research proposal will aim to use the subtle relativistic effect in galaxy clustering to develop novel probes of inflationary cosmology. In particular, the applicant will 1) formulate the higher-order relativistic description of galaxy clustering, an essential tool for computing the bispectrum, and 2) investigate the unique relativistic signatures (linear-order and higher-order) in galaxy clustering from the early Universe and dark energy to develop novel probes of isolating those signatures and to quantify their detectabilities in future galaxy surveys. Biases in cosmological parameter estimation, if the standard Newtonian description is used, will be quantified. A comprehensive understanding of inflationary cosmology will have far-reaching consequences, shedding light on new physics beyond the standard model.
Max ERC Funding
1 991 721 €
Duration
Start date: 2016-03-01, End date: 2021-02-28
Project acronym HyperMu
Project Hyperfine splittings in muonic atoms and laser technology
Researcher (PI) Aldo Sady ANTOGNINI
Host Institution (HI) PAUL SCHERRER INSTITUT
Call Details Consolidator Grant (CoG), PE2, ERC-2016-COG
Summary The proton radius extracted from the measurements of the 2S-2P energy splitting in muonic hydrogen
(μp) has attracted great attention because of a 7σ discrepancy with the values extracted from
electron scattering and hydrogen (H) spectroscopy. Hundreds of publications have been devoted to the
so called “proton radius puzzle” ranging from studies of physics beyond the standard model, to reanalysis
of electron scattering data, refinements of bound-state QED calculations, new theories describing
the proton structure, and proposals for new scattering and H spectroscopy experiments.
As next step, I plan two new (i.e., never before attempted) measurements: the ground-state hyperfine
splitting (1S-HFS) in both μp and μ3He+ with 1 ppm relative accuracy by means of pulsed laser
spectroscopy. From these measurements the nuclear-structure contributions (two-photon-exchange)
can be extracted with a relative accuracy of 100 ppm which in turn can be used to extract the corresponding
Zemach radii (with a relative accuracy of 0.1%) and polarizability contributions. The Zemach radii
can provide magnetic radii when form-factor data or models are assumed.
These radii are benchmarks for lattice QCD and few-nucleon theories. With the polarizability contribution
they impact our models of the proton and of the 3He nucleus. Moreover, the μp measurement
can be used to solve the discrepancy between the magnetic radii values as extracted from polarized and
unpolarized electron scattering and to further test bound-state QED predictions of the 1S-HFS in H.
These two experiments require a muon beam line, a target with an optical cavity, detector, and laser
systems. As weak M1 transitions must be probed, large laser-pulse energies are needed, thus cutting-edge
laser technologies (mainly thin-disk laser and parametric down-conversion) need to be developed.
Laser schemes of potentially high industrial impact that I have just patented will be implemented and
refined.
Summary
The proton radius extracted from the measurements of the 2S-2P energy splitting in muonic hydrogen
(μp) has attracted great attention because of a 7σ discrepancy with the values extracted from
electron scattering and hydrogen (H) spectroscopy. Hundreds of publications have been devoted to the
so called “proton radius puzzle” ranging from studies of physics beyond the standard model, to reanalysis
of electron scattering data, refinements of bound-state QED calculations, new theories describing
the proton structure, and proposals for new scattering and H spectroscopy experiments.
As next step, I plan two new (i.e., never before attempted) measurements: the ground-state hyperfine
splitting (1S-HFS) in both μp and μ3He+ with 1 ppm relative accuracy by means of pulsed laser
spectroscopy. From these measurements the nuclear-structure contributions (two-photon-exchange)
can be extracted with a relative accuracy of 100 ppm which in turn can be used to extract the corresponding
Zemach radii (with a relative accuracy of 0.1%) and polarizability contributions. The Zemach radii
can provide magnetic radii when form-factor data or models are assumed.
These radii are benchmarks for lattice QCD and few-nucleon theories. With the polarizability contribution
they impact our models of the proton and of the 3He nucleus. Moreover, the μp measurement
can be used to solve the discrepancy between the magnetic radii values as extracted from polarized and
unpolarized electron scattering and to further test bound-state QED predictions of the 1S-HFS in H.
These two experiments require a muon beam line, a target with an optical cavity, detector, and laser
systems. As weak M1 transitions must be probed, large laser-pulse energies are needed, thus cutting-edge
laser technologies (mainly thin-disk laser and parametric down-conversion) need to be developed.
Laser schemes of potentially high industrial impact that I have just patented will be implemented and
refined.
Max ERC Funding
1 999 926 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym INCLUDE
Project Indigenous Communities, Land Use and Tropical Deforestation
Researcher (PI) Michele Graziano Ceddia
Host Institution (HI) UNIVERSITAET BERN
Call Details Consolidator Grant (CoG), SH3, ERC-2015-CoG
Summary Tropical deforestation is an important contributor to climate change, through the release of significant amounts of carbon in the atmosphere. The main proximate cause of deforestation in tropical regions is agricultural expansion, followed by timber extraction. The general objective of this research is to understand how the interaction of technological, environmental, economic and social factors influence land use dynamics, including household decisions, about agricultural expansion and resource extraction in sensitive tropical regions. More specific questions relate to the role of various governance structures, particularly those recognizing common property regimes of land tenure to indigenous and rural communities, and the deliberative evaluation about the opportunity of reforming such structures in order to reduce deforestation and forest degradation. Although such aspects have been addressed in a variety of contexts, the approach proposed here is novel as a) it explicitly models the interaction between institutional, environmental, technological and socio-economic factors at different spatio-temporal scales, b) it specifically focuses on the governance structures associated with different land tenure regimes through the lenses of Social Network Analysis (SNA), c) uses a Q-methodology framework to develop a participatory approach to study stakeholders’ perspectives and attitudes on the necessary governance interventions to prevent deforestation and forest degradation and d) it assesses the relationships between agricultural expansion, deforestation, governance structures and stakeholders’ attitudes, with particular attention to the sensitivity of household land use decisions and resource extraction. In order to meet the research objectives, this project will focus on the province of Salta in the dry Chaco in North-Western Argentina, a region characterized by high rates of land cover change and the presence of indigenous/rural communities.
Summary
Tropical deforestation is an important contributor to climate change, through the release of significant amounts of carbon in the atmosphere. The main proximate cause of deforestation in tropical regions is agricultural expansion, followed by timber extraction. The general objective of this research is to understand how the interaction of technological, environmental, economic and social factors influence land use dynamics, including household decisions, about agricultural expansion and resource extraction in sensitive tropical regions. More specific questions relate to the role of various governance structures, particularly those recognizing common property regimes of land tenure to indigenous and rural communities, and the deliberative evaluation about the opportunity of reforming such structures in order to reduce deforestation and forest degradation. Although such aspects have been addressed in a variety of contexts, the approach proposed here is novel as a) it explicitly models the interaction between institutional, environmental, technological and socio-economic factors at different spatio-temporal scales, b) it specifically focuses on the governance structures associated with different land tenure regimes through the lenses of Social Network Analysis (SNA), c) uses a Q-methodology framework to develop a participatory approach to study stakeholders’ perspectives and attitudes on the necessary governance interventions to prevent deforestation and forest degradation and d) it assesses the relationships between agricultural expansion, deforestation, governance structures and stakeholders’ attitudes, with particular attention to the sensitivity of household land use decisions and resource extraction. In order to meet the research objectives, this project will focus on the province of Salta in the dry Chaco in North-Western Argentina, a region characterized by high rates of land cover change and the presence of indigenous/rural communities.
Max ERC Funding
1 952 183 €
Duration
Start date: 2016-11-01, End date: 2021-10-31
Project acronym IPCDP
Project Institutions, Policy and Culture in the Development Process
Researcher (PI) Fabrizio Zilibotti
Host Institution (HI) UNIVERSITAT ZURICH
Call Details Advanced Grant (AdG), SH1, ERC-2008-AdG
Summary This project aims at developing theoretical and empirical research on the structural transformation that accompanies economic development and on the determinants of its success or failure. This transformation involves changes in policies, institutions, and even preferences and social hierarchies. The project consists of four subprojects. Since China represents the most spectacular ongoing episode of economic transition, four of them focus on the Chinese experience, while the remaining ones address general issues in growth and development. The first subproject analyses some puzzling features of China's recent growth experience, such as the coexistence of high growth with increasing capital export, and the falling labour share, with the aid of a theory which emphasises the efficiency gains associated with the reallocation between firms of different productivity. Since changes in income distribution are an important element, and a concern, of the Chinese transition, the three following subprojects focus, respectively, on the crisis of the system of old age insurance, the effects of the rise of the middle class, and the introduction of special economic zones in the 1980s. Two subprojects study different aspects of competition policy in development. The first one focuses on intellectual property right protection, emphasising the link between innovation, technology adoption and human capital accumulation. The second one studies the coordinating role of industrial policy and how its scope changes with development. The last two subprojects focus on culture. The diffusion of preferences and values that foster cooperation rather than conflict is no less important than incentives for technology adoption. Likewise, the rise of an "entrepreneurial spirit" is an engine of growth in the development transition. We plan to study the emergence and cultural transmission of preferences that are conducive to economic growth, and how they interact with the process of structural change.
Summary
This project aims at developing theoretical and empirical research on the structural transformation that accompanies economic development and on the determinants of its success or failure. This transformation involves changes in policies, institutions, and even preferences and social hierarchies. The project consists of four subprojects. Since China represents the most spectacular ongoing episode of economic transition, four of them focus on the Chinese experience, while the remaining ones address general issues in growth and development. The first subproject analyses some puzzling features of China's recent growth experience, such as the coexistence of high growth with increasing capital export, and the falling labour share, with the aid of a theory which emphasises the efficiency gains associated with the reallocation between firms of different productivity. Since changes in income distribution are an important element, and a concern, of the Chinese transition, the three following subprojects focus, respectively, on the crisis of the system of old age insurance, the effects of the rise of the middle class, and the introduction of special economic zones in the 1980s. Two subprojects study different aspects of competition policy in development. The first one focuses on intellectual property right protection, emphasising the link between innovation, technology adoption and human capital accumulation. The second one studies the coordinating role of industrial policy and how its scope changes with development. The last two subprojects focus on culture. The diffusion of preferences and values that foster cooperation rather than conflict is no less important than incentives for technology adoption. Likewise, the rise of an "entrepreneurial spirit" is an engine of growth in the development transition. We plan to study the emergence and cultural transmission of preferences that are conducive to economic growth, and how they interact with the process of structural change.
Max ERC Funding
1 599 996 €
Duration
Start date: 2009-01-01, End date: 2014-06-30
Project acronym lending
Project Drivers of Growth in Bank Lending and Financial Crises
Researcher (PI) Steven ONGENA
Host Institution (HI) UNIVERSITAT ZURICH
Call Details Advanced Grant (AdG), SH1, ERC-2016-ADG
Summary Banking crises are thought to be recurrent phenomena that generally come on the heels of strong credit growth. Their damaging real effects have generated a broad agreement among academics and policymakers that financial regulation needs to tighten and to obtain a macroprudential dimension that aims to lessen the negative externalities from the financial to the macro real sector.
Among the main ingredients that are often mentioned to have played a role in the explosive growth of credit in the run-up to the latest financial crisis are the financial innovations by financial institutions, in particular loan securitization, the boom in mortgage lending and prices of real estate, the lack of information about prospective borrowers, and the high leverage (and corresponding low capital ratios) of financial institutions.
Yet, despite the singling out of these ingredients by policymakers, decisive empirical evidence about their role and relevancy is lacking. However, given the magnitude and complexity of the global banking system and the lack of encompassing micro-level data, it is currently impossible to confidently study the impact of all ingredients jointly. This project therefore analyses pertinent settings where we can empirically identify the correspondence between the aforementioned individual ingredients and the credit granting by financial institutions.
The objective of the project is to advance identification and estimation of the impact of each respective factor on loan growth by combining the appropriate methodology with an exceptional set of micro-level datasets. When missing in the literature a theoretical framework will be provided. The project further aims to assess how potential combinations of these ingredients may have interacted in spurring credit growth. While the identification of the impact of each ingredient on credit growth is paramount, the individual setting of the studied datasets and employed methodologies will ensure maximum external validity.
Summary
Banking crises are thought to be recurrent phenomena that generally come on the heels of strong credit growth. Their damaging real effects have generated a broad agreement among academics and policymakers that financial regulation needs to tighten and to obtain a macroprudential dimension that aims to lessen the negative externalities from the financial to the macro real sector.
Among the main ingredients that are often mentioned to have played a role in the explosive growth of credit in the run-up to the latest financial crisis are the financial innovations by financial institutions, in particular loan securitization, the boom in mortgage lending and prices of real estate, the lack of information about prospective borrowers, and the high leverage (and corresponding low capital ratios) of financial institutions.
Yet, despite the singling out of these ingredients by policymakers, decisive empirical evidence about their role and relevancy is lacking. However, given the magnitude and complexity of the global banking system and the lack of encompassing micro-level data, it is currently impossible to confidently study the impact of all ingredients jointly. This project therefore analyses pertinent settings where we can empirically identify the correspondence between the aforementioned individual ingredients and the credit granting by financial institutions.
The objective of the project is to advance identification and estimation of the impact of each respective factor on loan growth by combining the appropriate methodology with an exceptional set of micro-level datasets. When missing in the literature a theoretical framework will be provided. The project further aims to assess how potential combinations of these ingredients may have interacted in spurring credit growth. While the identification of the impact of each ingredient on credit growth is paramount, the individual setting of the studied datasets and employed methodologies will ensure maximum external validity.
Max ERC Funding
2 103 440 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym Locus Ludi
Project Locus Ludi: The Cultural Fabric of Play and Games in Classical Antiquity
Researcher (PI) Veronique DASEN
Host Institution (HI) UNIVERSITE DE FRIBOURG
Call Details Advanced Grant (AdG), SH6, ERC-2016-ADG
Summary Play and games were ubiquitous in antiquity, among free men and slaves, men and women, adults and children, in town and country. Even gods played. Ludic culture created communities from early childhood to a ripe old age. Did these groups play together, or did they play different games, with distinct rules? And did they play similar games to us? This interdisciplinary project will provide the first comprehensive study of the evidence. Written, archaeological and iconographic sources are abundant, but forgotten in museums and libraries. This neglect is due to the modern Western view of games as children’s pastime, if not a waste of time. Ancient play and games reflect the gendered, religious, economic, and political fabric of a society, as much as they shape the lives of players by transmitting a cultural identity and an intangible heritage. Ludic culture evolves over time and this project intends to provide a benchmark by reconstructing this history in the Greek world, from the birth of the city-state, c. 800 BCE, to the Roman conquest in 146 BCE, and in the Roman world from the Republican age, c. 500 BCE, to the end of the Western Roman Empire, c. 500 CE.
Locus Ludi will identify, categorize, and reconstruct games and play thanks to close linguistic, historical, archaeological, typological, topographical, iconographic, and anthropological studies. Ludic culture also mirrors interactions between different populations, as in the romanisation process, and religious shifts. The research will be informed by theoretical studies of the past as well as by gender and education studies. It will generate a new vision of the cultural fabric of ancient society, provide models for training and research in related fields, as well as up-to-date material for schools, museums, and libraries. Understanding the educational, societal and integrative role of play in the past is important to understand the present and widen the debate on high tech toys and new forms of sociability.
Summary
Play and games were ubiquitous in antiquity, among free men and slaves, men and women, adults and children, in town and country. Even gods played. Ludic culture created communities from early childhood to a ripe old age. Did these groups play together, or did they play different games, with distinct rules? And did they play similar games to us? This interdisciplinary project will provide the first comprehensive study of the evidence. Written, archaeological and iconographic sources are abundant, but forgotten in museums and libraries. This neglect is due to the modern Western view of games as children’s pastime, if not a waste of time. Ancient play and games reflect the gendered, religious, economic, and political fabric of a society, as much as they shape the lives of players by transmitting a cultural identity and an intangible heritage. Ludic culture evolves over time and this project intends to provide a benchmark by reconstructing this history in the Greek world, from the birth of the city-state, c. 800 BCE, to the Roman conquest in 146 BCE, and in the Roman world from the Republican age, c. 500 BCE, to the end of the Western Roman Empire, c. 500 CE.
Locus Ludi will identify, categorize, and reconstruct games and play thanks to close linguistic, historical, archaeological, typological, topographical, iconographic, and anthropological studies. Ludic culture also mirrors interactions between different populations, as in the romanisation process, and religious shifts. The research will be informed by theoretical studies of the past as well as by gender and education studies. It will generate a new vision of the cultural fabric of ancient society, provide models for training and research in related fields, as well as up-to-date material for schools, museums, and libraries. Understanding the educational, societal and integrative role of play in the past is important to understand the present and widen the debate on high tech toys and new forms of sociability.
Max ERC Funding
2 495 930 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym MASSTEV
Project Mass hierarchy and particle physics at the TeV scale
Researcher (PI) Ignatios Antoniadis
Host Institution (HI) EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
Call Details Advanced Grant (AdG), PE2, ERC-2008-AdG
Summary The research goal of this proposal is the investigation of the most fundamental aspects of particle physics models and gravity at high energies, and establishing the connection between these findings and experiments. The main fundamental questions that will be addressed are: What is the origin of mass for the mediators of the weak interactions and its connection with the masses of quarks and leptons? Why this mass is hierarchically different from the Planck scale which makes gravity so weak compared to the other three known fundamental interactions described by the current Standard Model of particle physics? Why this enormous mass hierarchy is quantum mechanically stable? What is the theory that describes physical laws at TeV energies which will be explored in the near future by the Large Hadron Collider at CERN? These questions are at the very frontier of knowledge of theoretical particle physics and phenomenology and their intersection with gravity and string theory. All members of the proposed research team have made breakthrough contributions in putting forward and developing new ideas that dominated such a research during the past 10 years. Although there is a certain overlap in the interests, each member brings a different unique expertise to the research, which will strongly resonate with the other members activity. Obviously, this project is strongly correlated with LHC physics confronting theoretical predictions with observations and using experimental data for building new theories and correcting existing models. In such an intense dynamical process, participation of doctoral students and postdoctoral researchers will be absolutely crucial and their active involvement is an essential component of the project. The main funding required by the project from the EU is for hiring of 14 person-years of PhD students and 14 person-years of postdocs.
Summary
The research goal of this proposal is the investigation of the most fundamental aspects of particle physics models and gravity at high energies, and establishing the connection between these findings and experiments. The main fundamental questions that will be addressed are: What is the origin of mass for the mediators of the weak interactions and its connection with the masses of quarks and leptons? Why this mass is hierarchically different from the Planck scale which makes gravity so weak compared to the other three known fundamental interactions described by the current Standard Model of particle physics? Why this enormous mass hierarchy is quantum mechanically stable? What is the theory that describes physical laws at TeV energies which will be explored in the near future by the Large Hadron Collider at CERN? These questions are at the very frontier of knowledge of theoretical particle physics and phenomenology and their intersection with gravity and string theory. All members of the proposed research team have made breakthrough contributions in putting forward and developing new ideas that dominated such a research during the past 10 years. Although there is a certain overlap in the interests, each member brings a different unique expertise to the research, which will strongly resonate with the other members activity. Obviously, this project is strongly correlated with LHC physics confronting theoretical predictions with observations and using experimental data for building new theories and correcting existing models. In such an intense dynamical process, participation of doctoral students and postdoctoral researchers will be absolutely crucial and their active involvement is an essential component of the project. The main funding required by the project from the EU is for hiring of 14 person-years of PhD students and 14 person-years of postdocs.
Max ERC Funding
1 999 992 €
Duration
Start date: 2008-12-01, End date: 2014-08-31
Project acronym MemoSleep
Project Longing for a good night's sleep: A memory-based mechanism to improve sleep and cognitive functioning.
Researcher (PI) Björn Rasch
Host Institution (HI) UNIVERSITE DE FRIBOURG
Call Details Starting Grant (StG), SH4, ERC-2015-STG
Summary Sleep is critical for optimal cognitive functioning and health. Sleep disturbances are highly frequent in our society and strongly influenced by cognitive factors, e.g. rumination, expectations and thoughts. However, the mechanism of how cognition influences sleep architecture is not yet understood. To explain how cognition influences sleep, I propose the “Memories-of-Sleep” (MemoSleep)-Hypothesis. Based on the theory of embodied cognition and evidence that memories are reactivated during sleep, the MemoSleep-Hypothesis makes the following assumptions:
(1) Cognitions related to sleep/wake states are embodied. I will call them embodied sleep/wake memories. Embodied sleep/wake memories encompass not only their semantic meaning, but also their sensorimotor body representation. Thus, the mental representation of the word ‘wake’ is directly linked to our body sensation of wakefulness.
(2) If embodied sleep/wake memories are activated before sleep, they will have a higher probability of being reactivated during sleep.
(3) During sleep, increased reactivation of embodied sleep/wake memories activates associated body responses and thereby affects sleep architecture. Thus, increased reactivation of the mental representation of ‘wake’ will activate wake-related physiological responses and disrupt sleep.
Here I aim at empirically testing these assumptions using brain imaging (high-density EEG, EEG/fMRI) and cognitive testing in humans. I will show that activation of embodied sleep/wake memories before and during sleep influences sleep architecture and affects post-sleep cognitive performance. In addition, I will apply these findings to the elderly and patients with sleep disorders. The results will greatly enhance our theoretical understanding of how cognition influences sleep. Furthermore, they will provide a solid basis for the development of effective cognitive interventions for sleep disorders, with a high potential to improve sleep and cognition also in every-day life.
Summary
Sleep is critical for optimal cognitive functioning and health. Sleep disturbances are highly frequent in our society and strongly influenced by cognitive factors, e.g. rumination, expectations and thoughts. However, the mechanism of how cognition influences sleep architecture is not yet understood. To explain how cognition influences sleep, I propose the “Memories-of-Sleep” (MemoSleep)-Hypothesis. Based on the theory of embodied cognition and evidence that memories are reactivated during sleep, the MemoSleep-Hypothesis makes the following assumptions:
(1) Cognitions related to sleep/wake states are embodied. I will call them embodied sleep/wake memories. Embodied sleep/wake memories encompass not only their semantic meaning, but also their sensorimotor body representation. Thus, the mental representation of the word ‘wake’ is directly linked to our body sensation of wakefulness.
(2) If embodied sleep/wake memories are activated before sleep, they will have a higher probability of being reactivated during sleep.
(3) During sleep, increased reactivation of embodied sleep/wake memories activates associated body responses and thereby affects sleep architecture. Thus, increased reactivation of the mental representation of ‘wake’ will activate wake-related physiological responses and disrupt sleep.
Here I aim at empirically testing these assumptions using brain imaging (high-density EEG, EEG/fMRI) and cognitive testing in humans. I will show that activation of embodied sleep/wake memories before and during sleep influences sleep architecture and affects post-sleep cognitive performance. In addition, I will apply these findings to the elderly and patients with sleep disorders. The results will greatly enhance our theoretical understanding of how cognition influences sleep. Furthermore, they will provide a solid basis for the development of effective cognitive interventions for sleep disorders, with a high potential to improve sleep and cognition also in every-day life.
Max ERC Funding
1 499 565 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym MIRACLS
Project Multi Ion Reflection Apparatus for Collinear Laser Spectroscopy of radionuclides
Researcher (PI) Stephan Malbrunot
Host Institution (HI) EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
Call Details Starting Grant (StG), PE2, ERC-2015-STG
Summary Employing laser spectroscopy (LS) to study radionuclides is equally rich in its long tradition as it is manifold in its active pursuit today as virtually all radioactive ion beam (RIB) facilities do or are planning to host dedicated setups. Probing the hyperfine structure of an atom or ion with laser light is a powerful technique to infer nuclear properties such as a nuclide’s spin, charge radius, or electromagnetic moments. This information provides insight into a wide range of contemporary questions in nuclear physics such as the mechanism driving the emergence and disappearance of nuclear shells far away from stability.
In the last decade, LS has benefited from the advent of ion traps in rare isotope science. The bunched beams released from these traps have led to an increase in sensitivity by several orders of magnitude due to an improved signal-to-background ratio when gating on the passing ion bunch.
This present proposal is determined to introduce another type of ion trap, an Electrostatic Ion Beam Trap, which has the potential to enhance the sensitivity of collinear LS by another factor of 20-800. This is achieved by increasing the laser-interaction and observation time by trapping the ion bunch between two electrostatic mirrors while keeping its beam energy at 30 keV to minimize Doppler broadening.
Such a device promises to extend collinear LS to nuclides so far out of reach given their low yields of typically <1000 ions/s at RIB facilities. Among the accessible nuclides are 34Mg in the island of inversion, 20Mg at the neutron shell closure N=8, or Sn isotopes towards the doubly magic 100Sn. Their charge radii will benchmark modern theoretical models utilizing 3-body forces in their quest to understand the evolution of nuclear shells.
Ultimately, the setup can be further enhanced in sensitivity when combined with other single-particle detection methods or by utilizing its multi-reflection time-of-flight aspect to suppress disturbing isobaric contamination.
Summary
Employing laser spectroscopy (LS) to study radionuclides is equally rich in its long tradition as it is manifold in its active pursuit today as virtually all radioactive ion beam (RIB) facilities do or are planning to host dedicated setups. Probing the hyperfine structure of an atom or ion with laser light is a powerful technique to infer nuclear properties such as a nuclide’s spin, charge radius, or electromagnetic moments. This information provides insight into a wide range of contemporary questions in nuclear physics such as the mechanism driving the emergence and disappearance of nuclear shells far away from stability.
In the last decade, LS has benefited from the advent of ion traps in rare isotope science. The bunched beams released from these traps have led to an increase in sensitivity by several orders of magnitude due to an improved signal-to-background ratio when gating on the passing ion bunch.
This present proposal is determined to introduce another type of ion trap, an Electrostatic Ion Beam Trap, which has the potential to enhance the sensitivity of collinear LS by another factor of 20-800. This is achieved by increasing the laser-interaction and observation time by trapping the ion bunch between two electrostatic mirrors while keeping its beam energy at 30 keV to minimize Doppler broadening.
Such a device promises to extend collinear LS to nuclides so far out of reach given their low yields of typically <1000 ions/s at RIB facilities. Among the accessible nuclides are 34Mg in the island of inversion, 20Mg at the neutron shell closure N=8, or Sn isotopes towards the doubly magic 100Sn. Their charge radii will benchmark modern theoretical models utilizing 3-body forces in their quest to understand the evolution of nuclear shells.
Ultimately, the setup can be further enhanced in sensitivity when combined with other single-particle detection methods or by utilizing its multi-reflection time-of-flight aspect to suppress disturbing isobaric contamination.
Max ERC Funding
1 463 750 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym MODULAR
Project Modular mechanical-atomic quantum systems
Researcher (PI) Philipp Treutlein
Host Institution (HI) UNIVERSITAT BASEL
Call Details Starting Grant (StG), PE2, ERC-2015-STG
Summary Atomic ensembles are routinely prepared and manipulated in the quantum regime using the powerful techniques of laser cooling and trapping. To achieve similar control over the vibrations of nanofabricated mechanical oscillators is a goal that is vigorously pursued, which recently led to the first observations of ground-state cooling and quantum behavior in such systems.
In this project, we will explore the new conceptual and experimental possibilities offered by hybrid systems in which the vibrations of a mechanical oscillator are coupled to an ensemble of ultracold atoms. An optomechanics setup and an ultracold atom experiment will be connected by laser light to generate long-distance Hamiltonian interactions between the two systems. This modular approach avoids the technical complications of combining a cryogenic optomechanics experiment and a cold atom experiment into a highly integrated setup. At the same time, it allows to investigate intriguing conceptual questions associated with the remote control of quantum systems.
The coupled mechanical-atomic system will be used for a range of experiments on quantum control and quantum metrology of mechanical vibrations. We will implement new schemes for ground-state cooling of mechanical vibrations that overcome some of the limitations of existing techniques, explore coherent mechanical-atomic interactions and Einstein-Podolsky-Rosen entanglement, and use such entanglement for measurements of mechanical vibrations beyond the standard quantum limit. The extensive experience of the PI in atomic quantum metrology and hybrid optomechanics will be a valuable asset in this endeavor.
Besides the interesting perspective of observing quantum phenomena in engineered mechanical devices that are visible to the bare eye, the project will open up new avenues for quantum measurement of mechanical vibrations with potential impact on the development of mechanical quantum sensors and transducers for accelerations, forces and fields.
Summary
Atomic ensembles are routinely prepared and manipulated in the quantum regime using the powerful techniques of laser cooling and trapping. To achieve similar control over the vibrations of nanofabricated mechanical oscillators is a goal that is vigorously pursued, which recently led to the first observations of ground-state cooling and quantum behavior in such systems.
In this project, we will explore the new conceptual and experimental possibilities offered by hybrid systems in which the vibrations of a mechanical oscillator are coupled to an ensemble of ultracold atoms. An optomechanics setup and an ultracold atom experiment will be connected by laser light to generate long-distance Hamiltonian interactions between the two systems. This modular approach avoids the technical complications of combining a cryogenic optomechanics experiment and a cold atom experiment into a highly integrated setup. At the same time, it allows to investigate intriguing conceptual questions associated with the remote control of quantum systems.
The coupled mechanical-atomic system will be used for a range of experiments on quantum control and quantum metrology of mechanical vibrations. We will implement new schemes for ground-state cooling of mechanical vibrations that overcome some of the limitations of existing techniques, explore coherent mechanical-atomic interactions and Einstein-Podolsky-Rosen entanglement, and use such entanglement for measurements of mechanical vibrations beyond the standard quantum limit. The extensive experience of the PI in atomic quantum metrology and hybrid optomechanics will be a valuable asset in this endeavor.
Besides the interesting perspective of observing quantum phenomena in engineered mechanical devices that are visible to the bare eye, the project will open up new avenues for quantum measurement of mechanical vibrations with potential impact on the development of mechanical quantum sensors and transducers for accelerations, forces and fields.
Max ERC Funding
1 498 961 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym NuBSM
Project From Fermi to Planck : a bottom up approach
Researcher (PI) Mikhail SHAPOSHNIKOV
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Advanced Grant (AdG), PE2, ERC-2015-AdG
Summary The Standard Model of particle physics is a hugely successful theory that has been tested in experiments at ever increasing energies, culminating in the recent discovery of the Higgs boson. Nevertheless, some major riddles cannot be addressed by the Standard Model, such as neutrino oscillations, the existence of Dark Matter, the absence of antimatter in the Universe. New fundamental principles, interactions and unknown yet particles are required to address these questions. Much of the research done during the last three decades on physics ‘beyond the Standard Model’ (BSM) has been driven by attempts to find a ‘natural’ solution of the hierarchy problem: why the Planck and the electroweak scales are so different. The most popular approaches to this problem predict new particles with the masses right above the electroweak scale.
This project explores an alternative idea that the absence of new particles with masses between the electroweak and Planck scales, supplemented by extra symmetries (such as scale invariance) may itself explain why the mass of the Higgs boson is much smaller than the Planck mass. This calls for a solution of the BSM problems by extremely feebly interacting particles with masses below the electroweak scale. Along the same lines we also explore the possibility that cosmological inflation does not require a new field, but is driven by the Higgs field of the Standard Model.
The proposed model offers solutions for BSM puzzles and is among a few ones that can be tested with existing experimental technologies and are valid even if no evidence for new physics is found at the LHC.
Constructing such a theory requires consolidated efforts in domains of high-energy theory, particle physics phenomenology, physics of the early Universe, cosmology and astrophysics as well as analyses of the available data from previous experiments and from cosmology. We will make predictions and establish the sensitivity goals for future high intensity experiments.
Summary
The Standard Model of particle physics is a hugely successful theory that has been tested in experiments at ever increasing energies, culminating in the recent discovery of the Higgs boson. Nevertheless, some major riddles cannot be addressed by the Standard Model, such as neutrino oscillations, the existence of Dark Matter, the absence of antimatter in the Universe. New fundamental principles, interactions and unknown yet particles are required to address these questions. Much of the research done during the last three decades on physics ‘beyond the Standard Model’ (BSM) has been driven by attempts to find a ‘natural’ solution of the hierarchy problem: why the Planck and the electroweak scales are so different. The most popular approaches to this problem predict new particles with the masses right above the electroweak scale.
This project explores an alternative idea that the absence of new particles with masses between the electroweak and Planck scales, supplemented by extra symmetries (such as scale invariance) may itself explain why the mass of the Higgs boson is much smaller than the Planck mass. This calls for a solution of the BSM problems by extremely feebly interacting particles with masses below the electroweak scale. Along the same lines we also explore the possibility that cosmological inflation does not require a new field, but is driven by the Higgs field of the Standard Model.
The proposed model offers solutions for BSM puzzles and is among a few ones that can be tested with existing experimental technologies and are valid even if no evidence for new physics is found at the LHC.
Constructing such a theory requires consolidated efforts in domains of high-energy theory, particle physics phenomenology, physics of the early Universe, cosmology and astrophysics as well as analyses of the available data from previous experiments and from cosmology. We will make predictions and establish the sensitivity goals for future high intensity experiments.
Max ERC Funding
2 371 132 €
Duration
Start date: 2016-10-01, End date: 2021-09-30