Project acronym BEAM-EDM
Project Unique Method for a Neutron Electric Dipole Moment Search using a Pulsed Beam
Researcher (PI) Florian Michael PIEGSA
Host Institution (HI) UNIVERSITAET BERN
Call Details Starting Grant (StG), PE2, ERC-2016-STG
Summary My research encompasses the application of novel methods and strategies in the field of low energy particle physics. The goal of the presented program is to lead an independent and highly competitive experiment to search for a CP violating neutron electric dipole moment (nEDM), as well as for new exotic interactions using highly sensitive neutron and proton spin resonance techniques.
The measurement of the nEDM is considered to be one of the most important fundamental physics experiments at low energy. It represents a promising route for finding new physics beyond the standard model (SM) and describes an important search for new sources of CP violation in order to understand the observed large baryon asymmetry in our universe. The main project will follow a novel concept based on my original idea, which plans to employ a pulsed neutron beam at high intensity instead of the established use of storable ultracold neutrons. This complementary and potentially ground-breaking method provides the possibility to distinguish between the signal due to a nEDM and previously limiting systematic effects, and should lead to an improved result compared to the present best nEDM beam experiment. The findings of these investigations will be of paramount importance and will form the cornerstone for the success of the full-scale experiment intended for the European Spallation Source. A second scientific question will be addressed by performing spin precession experiments searching for exotic short-range interactions and associated light bosons. This is a vivid field of research motivated by various extensions to the SM. The goal of these measurements, using neutrons and protons, is to search for additional interactions such new bosons mediate between ordinary particles.
Both topics describe ambitious and unique efforts. They use related techniques, address important questions in fundamental physics, and have the potential of substantial scientific implications and high-impact results.
Summary
My research encompasses the application of novel methods and strategies in the field of low energy particle physics. The goal of the presented program is to lead an independent and highly competitive experiment to search for a CP violating neutron electric dipole moment (nEDM), as well as for new exotic interactions using highly sensitive neutron and proton spin resonance techniques.
The measurement of the nEDM is considered to be one of the most important fundamental physics experiments at low energy. It represents a promising route for finding new physics beyond the standard model (SM) and describes an important search for new sources of CP violation in order to understand the observed large baryon asymmetry in our universe. The main project will follow a novel concept based on my original idea, which plans to employ a pulsed neutron beam at high intensity instead of the established use of storable ultracold neutrons. This complementary and potentially ground-breaking method provides the possibility to distinguish between the signal due to a nEDM and previously limiting systematic effects, and should lead to an improved result compared to the present best nEDM beam experiment. The findings of these investigations will be of paramount importance and will form the cornerstone for the success of the full-scale experiment intended for the European Spallation Source. A second scientific question will be addressed by performing spin precession experiments searching for exotic short-range interactions and associated light bosons. This is a vivid field of research motivated by various extensions to the SM. The goal of these measurements, using neutrons and protons, is to search for additional interactions such new bosons mediate between ordinary particles.
Both topics describe ambitious and unique efforts. They use related techniques, address important questions in fundamental physics, and have the potential of substantial scientific implications and high-impact results.
Max ERC Funding
1 404 062 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym BSMOXFORD
Project Physics Beyond the Standard Model at the LHC and with Atom Interferometers
Researcher (PI) Savas Dimopoulos
Host Institution (HI) EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
Call Details Advanced Grant (AdG), PE2, ERC-2008-AdG
Summary Elementary particle physics is entering a spectacular new era in which experiments at the Large Hadron Collider (LHC) at CERN will soon start probing some of the deepest questions in physics, such as: Why is gravity so weak? Do elementary particles have substructure? What is the origin of mass? Are there new dimensions? Can we produce black holes in the lab? Could there be other universes with different physical laws? While the LHC pushes the energy frontier, the unprecedented precision of Atom Interferometry, has pointed me to a new tool for fundamental physics. These experiments based on the quantum interference of atoms can test General Relativity on the surface of the Earth, detect gravity waves, and test short-distance gravity, charge quantization, and quantum mechanics with unprecedented precision in the next decade. This ERC Advanced grant proposal is aimed at setting up a world-leading European center for development of a deeper theory of fundamental physics. The next 10 years is the optimal time for such studies to benefit from the wealth of new data that will emerge from the LHC, astrophysical observations and atom interferometry. This is a once-in-a-generation opportunity for making ground-breaking progress, and will open up many new research horizons.
Summary
Elementary particle physics is entering a spectacular new era in which experiments at the Large Hadron Collider (LHC) at CERN will soon start probing some of the deepest questions in physics, such as: Why is gravity so weak? Do elementary particles have substructure? What is the origin of mass? Are there new dimensions? Can we produce black holes in the lab? Could there be other universes with different physical laws? While the LHC pushes the energy frontier, the unprecedented precision of Atom Interferometry, has pointed me to a new tool for fundamental physics. These experiments based on the quantum interference of atoms can test General Relativity on the surface of the Earth, detect gravity waves, and test short-distance gravity, charge quantization, and quantum mechanics with unprecedented precision in the next decade. This ERC Advanced grant proposal is aimed at setting up a world-leading European center for development of a deeper theory of fundamental physics. The next 10 years is the optimal time for such studies to benefit from the wealth of new data that will emerge from the LHC, astrophysical observations and atom interferometry. This is a once-in-a-generation opportunity for making ground-breaking progress, and will open up many new research horizons.
Max ERC Funding
2 200 000 €
Duration
Start date: 2009-05-01, End date: 2014-04-30
Project acronym DECCA
Project Devices, engines and circuits: quantum engineering with cold atoms
Researcher (PI) Jean-Philippe BRANTUT
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Starting Grant (StG), PE2, ERC-2016-STG
Summary Over the last decade, cold atomic gases have become one of the best controlled quantum system. This novel, synthetic material can be shaped at the microscopic level to mimic a wide range of models, and simulate the universal physics that these models describe. This project pioneers a new approach to quantum simulations, jumping from cold atoms materials into the realm of devices: systems carved out of cold gases, separated by interfaces, connected to each other and allowing for a controlled driving.
At the heart of this approach is the study of transport of atoms at the quantum level. Our devices will allow for the measurement of the universal conductance of quantum critical systems or other many-body states. They will feature interfaces and contacts where new types of localized states emerge, such as the one proposed to explain the long-standing question of the “0.7 anomaly” in quantum point contacts. They will also allow for a new type of engineering, where currents of particles, spin or entropy can be controlled and directed in order to perform operations such as cooling.
This research will be possible thanks to the development of a new apparatus, capable of detecting in a non-destructive way tiny atomic currents, such as the one driven through single mode quantum conductors. It will combine an optical cavity for high efficiency optical detection, and high optical resolution optics allowing for manipulations and patterning at the scale of the wave function of individual particles.
Summary
Over the last decade, cold atomic gases have become one of the best controlled quantum system. This novel, synthetic material can be shaped at the microscopic level to mimic a wide range of models, and simulate the universal physics that these models describe. This project pioneers a new approach to quantum simulations, jumping from cold atoms materials into the realm of devices: systems carved out of cold gases, separated by interfaces, connected to each other and allowing for a controlled driving.
At the heart of this approach is the study of transport of atoms at the quantum level. Our devices will allow for the measurement of the universal conductance of quantum critical systems or other many-body states. They will feature interfaces and contacts where new types of localized states emerge, such as the one proposed to explain the long-standing question of the “0.7 anomaly” in quantum point contacts. They will also allow for a new type of engineering, where currents of particles, spin or entropy can be controlled and directed in order to perform operations such as cooling.
This research will be possible thanks to the development of a new apparatus, capable of detecting in a non-destructive way tiny atomic currents, such as the one driven through single mode quantum conductors. It will combine an optical cavity for high efficiency optical detection, and high optical resolution optics allowing for manipulations and patterning at the scale of the wave function of individual particles.
Max ERC Funding
1 454 258 €
Duration
Start date: 2017-02-01, End date: 2022-01-31
Project acronym Epiherigans
Project Writing, reading and managing stress with H3K9me
Researcher (PI) Susan GASSER
Host Institution (HI) FRIEDRICH MIESCHER INSTITUTE FOR BIOMEDICAL RESEARCH FONDATION
Call Details Advanced Grant (AdG), LS2, ERC-2016-ADG
Summary Epigenetic inheritance is the transmission of information, generally in the form of DNA methylation or post-translational modifications on histones that regulate the availability of underlying genetic information for transcription. RNA itself feeds back to contribute to histone modification. Sequence accessibility is both a matter of folding the chromatin fibre to alter access to recognition motifs, and the local concentration of factors needed for efficient transcriptional initiation, elongation, termination or mRNA stability. In heterochromatin we find a subset of regulatory factors in carefully balanced concentrations that are maintained in part by the segregation of active and inactive domains. Histone H3 K9 methylation is key to this compartmentation.
C. elegans provides an ideal system in which to study chromatin-based gene repression. We have demonstrated that histone H3 K9 methylation is the essential signal for the sequestration of heterochromatin at the nuclear envelope in C. elegans. The recognition of H3K9me1/2/3 by an inner nuclear envelope-bound chromodomain protein, CEC-4, actively sequesters heterochromatin in embryos, and contributes redundantly in adult tissues.
Epiherigans has the ambitious goal to determine definitively what targets H3K9 methylation, and identify its physiological roles. We will examine how this mark contributes to the epigenetic recognition of repeat vs non-repeat sequence, and mediates a stress-induced response to oxidative damage. We will examine the link between these and the spatial clustering of heterochromatic domains. Epiherigans will develop an integrated approach to identify in vivo the factors that distinguish repeats from non-repeats, self from non-self within genomes and will examine how H3K9me contributes to a persistent ROS or DNA damage stress response. It represents a crucial step towards understanding of how our genomes use heterochromatin to modulate, stabilize and transmit chromatin organization.
Summary
Epigenetic inheritance is the transmission of information, generally in the form of DNA methylation or post-translational modifications on histones that regulate the availability of underlying genetic information for transcription. RNA itself feeds back to contribute to histone modification. Sequence accessibility is both a matter of folding the chromatin fibre to alter access to recognition motifs, and the local concentration of factors needed for efficient transcriptional initiation, elongation, termination or mRNA stability. In heterochromatin we find a subset of regulatory factors in carefully balanced concentrations that are maintained in part by the segregation of active and inactive domains. Histone H3 K9 methylation is key to this compartmentation.
C. elegans provides an ideal system in which to study chromatin-based gene repression. We have demonstrated that histone H3 K9 methylation is the essential signal for the sequestration of heterochromatin at the nuclear envelope in C. elegans. The recognition of H3K9me1/2/3 by an inner nuclear envelope-bound chromodomain protein, CEC-4, actively sequesters heterochromatin in embryos, and contributes redundantly in adult tissues.
Epiherigans has the ambitious goal to determine definitively what targets H3K9 methylation, and identify its physiological roles. We will examine how this mark contributes to the epigenetic recognition of repeat vs non-repeat sequence, and mediates a stress-induced response to oxidative damage. We will examine the link between these and the spatial clustering of heterochromatic domains. Epiherigans will develop an integrated approach to identify in vivo the factors that distinguish repeats from non-repeats, self from non-self within genomes and will examine how H3K9me contributes to a persistent ROS or DNA damage stress response. It represents a crucial step towards understanding of how our genomes use heterochromatin to modulate, stabilize and transmit chromatin organization.
Max ERC Funding
2 500 000 €
Duration
Start date: 2017-06-01, End date: 2022-05-31
Project acronym HyperMu
Project Hyperfine splittings in muonic atoms and laser technology
Researcher (PI) Aldo Sady ANTOGNINI
Host Institution (HI) PAUL SCHERRER INSTITUT
Call Details Consolidator Grant (CoG), PE2, ERC-2016-COG
Summary The proton radius extracted from the measurements of the 2S-2P energy splitting in muonic hydrogen
(μp) has attracted great attention because of a 7σ discrepancy with the values extracted from
electron scattering and hydrogen (H) spectroscopy. Hundreds of publications have been devoted to the
so called “proton radius puzzle” ranging from studies of physics beyond the standard model, to reanalysis
of electron scattering data, refinements of bound-state QED calculations, new theories describing
the proton structure, and proposals for new scattering and H spectroscopy experiments.
As next step, I plan two new (i.e., never before attempted) measurements: the ground-state hyperfine
splitting (1S-HFS) in both μp and μ3He+ with 1 ppm relative accuracy by means of pulsed laser
spectroscopy. From these measurements the nuclear-structure contributions (two-photon-exchange)
can be extracted with a relative accuracy of 100 ppm which in turn can be used to extract the corresponding
Zemach radii (with a relative accuracy of 0.1%) and polarizability contributions. The Zemach radii
can provide magnetic radii when form-factor data or models are assumed.
These radii are benchmarks for lattice QCD and few-nucleon theories. With the polarizability contribution
they impact our models of the proton and of the 3He nucleus. Moreover, the μp measurement
can be used to solve the discrepancy between the magnetic radii values as extracted from polarized and
unpolarized electron scattering and to further test bound-state QED predictions of the 1S-HFS in H.
These two experiments require a muon beam line, a target with an optical cavity, detector, and laser
systems. As weak M1 transitions must be probed, large laser-pulse energies are needed, thus cutting-edge
laser technologies (mainly thin-disk laser and parametric down-conversion) need to be developed.
Laser schemes of potentially high industrial impact that I have just patented will be implemented and
refined.
Summary
The proton radius extracted from the measurements of the 2S-2P energy splitting in muonic hydrogen
(μp) has attracted great attention because of a 7σ discrepancy with the values extracted from
electron scattering and hydrogen (H) spectroscopy. Hundreds of publications have been devoted to the
so called “proton radius puzzle” ranging from studies of physics beyond the standard model, to reanalysis
of electron scattering data, refinements of bound-state QED calculations, new theories describing
the proton structure, and proposals for new scattering and H spectroscopy experiments.
As next step, I plan two new (i.e., never before attempted) measurements: the ground-state hyperfine
splitting (1S-HFS) in both μp and μ3He+ with 1 ppm relative accuracy by means of pulsed laser
spectroscopy. From these measurements the nuclear-structure contributions (two-photon-exchange)
can be extracted with a relative accuracy of 100 ppm which in turn can be used to extract the corresponding
Zemach radii (with a relative accuracy of 0.1%) and polarizability contributions. The Zemach radii
can provide magnetic radii when form-factor data or models are assumed.
These radii are benchmarks for lattice QCD and few-nucleon theories. With the polarizability contribution
they impact our models of the proton and of the 3He nucleus. Moreover, the μp measurement
can be used to solve the discrepancy between the magnetic radii values as extracted from polarized and
unpolarized electron scattering and to further test bound-state QED predictions of the 1S-HFS in H.
These two experiments require a muon beam line, a target with an optical cavity, detector, and laser
systems. As weak M1 transitions must be probed, large laser-pulse energies are needed, thus cutting-edge
laser technologies (mainly thin-disk laser and parametric down-conversion) need to be developed.
Laser schemes of potentially high industrial impact that I have just patented will be implemented and
refined.
Max ERC Funding
1 999 926 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym HyperQC
Project Hyper Quantum Criticality
Researcher (PI) Christian Rueegg
Host Institution (HI) PAUL SCHERRER INSTITUT
Call Details Consolidator Grant (CoG), PE3, ERC-2015-CoG
Summary Hyper Quantum Criticality – HyperQC is a major initiative with the aim of generating and controlling novel phases of correlated magnetic quantum matter, and of exploring them in high-precision experiments. A combination of new capabilities enabled by the development of instrumentation, pioneering ultra-fast studies and experiments on magnetic model materials will allow both the exploration of fundamental Hamiltonians and fully quantitative tests of quantum criticality in hyper-parameter space: temperature, magnetic field, pressure, energy, momentum and time.
HyperQC - Challenge. Direct control of the dimensionality, symmetry, chemical potential and interactions in magnetic materials is achieved by a new experimental set-up combining high magnetic fields and pressures with ultra-low temperatures, which will be installed on neutron scattering instruments at the Swiss Spallation Neutron Source SINQ. Experiments on a number of magnetic model materials allow the realization and high-precision measurements of the multi-dimensional quantum critical properties of systems including magnon Bose-Einstein Condensates, spin Luttinger liquids and renormalized classical ordered phases, as well as of other many-body phenomena in quantum spin systems.
HyperQC – Vision. Experiments on the time-dependent, non-equilibrium properties of quantum magnets and quantum critical points are new. Ultra-short laser and X-ray pulses are able to alter and measure the lattice, spin, orbital and electronic properties of solids, which has been demonstrated in recent experiments on multiferroic materials and superconductors. The effects of such pulses on a number of well-characterized model quantum magnets will be investigated with the aim of studying the time-dependent dynamics of quantum critical systems for the first time.
Summary
Hyper Quantum Criticality – HyperQC is a major initiative with the aim of generating and controlling novel phases of correlated magnetic quantum matter, and of exploring them in high-precision experiments. A combination of new capabilities enabled by the development of instrumentation, pioneering ultra-fast studies and experiments on magnetic model materials will allow both the exploration of fundamental Hamiltonians and fully quantitative tests of quantum criticality in hyper-parameter space: temperature, magnetic field, pressure, energy, momentum and time.
HyperQC - Challenge. Direct control of the dimensionality, symmetry, chemical potential and interactions in magnetic materials is achieved by a new experimental set-up combining high magnetic fields and pressures with ultra-low temperatures, which will be installed on neutron scattering instruments at the Swiss Spallation Neutron Source SINQ. Experiments on a number of magnetic model materials allow the realization and high-precision measurements of the multi-dimensional quantum critical properties of systems including magnon Bose-Einstein Condensates, spin Luttinger liquids and renormalized classical ordered phases, as well as of other many-body phenomena in quantum spin systems.
HyperQC – Vision. Experiments on the time-dependent, non-equilibrium properties of quantum magnets and quantum critical points are new. Ultra-short laser and X-ray pulses are able to alter and measure the lattice, spin, orbital and electronic properties of solids, which has been demonstrated in recent experiments on multiferroic materials and superconductors. The effects of such pulses on a number of well-characterized model quantum magnets will be investigated with the aim of studying the time-dependent dynamics of quantum critical systems for the first time.
Max ERC Funding
2 328 649 €
Duration
Start date: 2016-12-01, End date: 2021-11-30
Project acronym INSEETO
Project In-situ second harmonic generation for emergent electronics in transition-metal oxides
Researcher (PI) Manfred FIEBIG
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Advanced Grant (AdG), PE3, ERC-2015-AdG
Summary Since transition-metal oxides heterostructures can be grown by pulsed laser deposition (PLD) with semiconductor-like accuracy, fascinating phases and functionalities derived from their spin-charge correlations have been discovered. So far, reflection high-energy electron diffraction is the only widely established technique for monitoring the structure and homogeneity of multilayers in-situ, while they are growing, and provide direct feedback information on how to optimise the growth process. With our proposal we will introduce second harmonic generation (SHG) as new in-situ technique that allows us to track spin-and charge-related phenomena such as ferroelectricity, (anti-) ferromagnetism, insulator-metal transitions, domain coupling effects or interface states in a non-invasive way throughout the deposition process. With this we are pursuing two goals: first, to establish SHG as new in-situ characterization technique in PLD which monitors strong spin-charge correlation effects while they emerge during growth; second, to apply in-situ SHG for tailoring novel functionalities in exemplary chosen types of transition-metal-oxide heterostructures of great current interest. These model systems are (i) proper ferroelectrics tuned to high-k dielectric response and improper ferroelectrics whose behaviour is determined by the unusual nature of the polar state; (ii) compounds in which the interplay of strain and defects leads to novel and reversibly tuneable states of matter; (iii) heterostructures with functionalities originating from the interaction across interfaces. In-situ SHG as new, property-monitoring tool in PLD has an immense potential to uncover new states of matter and functionalities. We are convinced that this will play an essential role in the leap towards the next generation of functional oxide heterostructures.
Summary
Since transition-metal oxides heterostructures can be grown by pulsed laser deposition (PLD) with semiconductor-like accuracy, fascinating phases and functionalities derived from their spin-charge correlations have been discovered. So far, reflection high-energy electron diffraction is the only widely established technique for monitoring the structure and homogeneity of multilayers in-situ, while they are growing, and provide direct feedback information on how to optimise the growth process. With our proposal we will introduce second harmonic generation (SHG) as new in-situ technique that allows us to track spin-and charge-related phenomena such as ferroelectricity, (anti-) ferromagnetism, insulator-metal transitions, domain coupling effects or interface states in a non-invasive way throughout the deposition process. With this we are pursuing two goals: first, to establish SHG as new in-situ characterization technique in PLD which monitors strong spin-charge correlation effects while they emerge during growth; second, to apply in-situ SHG for tailoring novel functionalities in exemplary chosen types of transition-metal-oxide heterostructures of great current interest. These model systems are (i) proper ferroelectrics tuned to high-k dielectric response and improper ferroelectrics whose behaviour is determined by the unusual nature of the polar state; (ii) compounds in which the interplay of strain and defects leads to novel and reversibly tuneable states of matter; (iii) heterostructures with functionalities originating from the interaction across interfaces. In-situ SHG as new, property-monitoring tool in PLD has an immense potential to uncover new states of matter and functionalities. We are convinced that this will play an essential role in the leap towards the next generation of functional oxide heterostructures.
Max ERC Funding
2 498 714 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym MASSTEV
Project Mass hierarchy and particle physics at the TeV scale
Researcher (PI) Ignatios Antoniadis
Host Institution (HI) EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
Call Details Advanced Grant (AdG), PE2, ERC-2008-AdG
Summary The research goal of this proposal is the investigation of the most fundamental aspects of particle physics models and gravity at high energies, and establishing the connection between these findings and experiments. The main fundamental questions that will be addressed are: What is the origin of mass for the mediators of the weak interactions and its connection with the masses of quarks and leptons? Why this mass is hierarchically different from the Planck scale which makes gravity so weak compared to the other three known fundamental interactions described by the current Standard Model of particle physics? Why this enormous mass hierarchy is quantum mechanically stable? What is the theory that describes physical laws at TeV energies which will be explored in the near future by the Large Hadron Collider at CERN? These questions are at the very frontier of knowledge of theoretical particle physics and phenomenology and their intersection with gravity and string theory. All members of the proposed research team have made breakthrough contributions in putting forward and developing new ideas that dominated such a research during the past 10 years. Although there is a certain overlap in the interests, each member brings a different unique expertise to the research, which will strongly resonate with the other members activity. Obviously, this project is strongly correlated with LHC physics confronting theoretical predictions with observations and using experimental data for building new theories and correcting existing models. In such an intense dynamical process, participation of doctoral students and postdoctoral researchers will be absolutely crucial and their active involvement is an essential component of the project. The main funding required by the project from the EU is for hiring of 14 person-years of PhD students and 14 person-years of postdocs.
Summary
The research goal of this proposal is the investigation of the most fundamental aspects of particle physics models and gravity at high energies, and establishing the connection between these findings and experiments. The main fundamental questions that will be addressed are: What is the origin of mass for the mediators of the weak interactions and its connection with the masses of quarks and leptons? Why this mass is hierarchically different from the Planck scale which makes gravity so weak compared to the other three known fundamental interactions described by the current Standard Model of particle physics? Why this enormous mass hierarchy is quantum mechanically stable? What is the theory that describes physical laws at TeV energies which will be explored in the near future by the Large Hadron Collider at CERN? These questions are at the very frontier of knowledge of theoretical particle physics and phenomenology and their intersection with gravity and string theory. All members of the proposed research team have made breakthrough contributions in putting forward and developing new ideas that dominated such a research during the past 10 years. Although there is a certain overlap in the interests, each member brings a different unique expertise to the research, which will strongly resonate with the other members activity. Obviously, this project is strongly correlated with LHC physics confronting theoretical predictions with observations and using experimental data for building new theories and correcting existing models. In such an intense dynamical process, participation of doctoral students and postdoctoral researchers will be absolutely crucial and their active involvement is an essential component of the project. The main funding required by the project from the EU is for hiring of 14 person-years of PhD students and 14 person-years of postdocs.
Max ERC Funding
1 999 992 €
Duration
Start date: 2008-12-01, End date: 2014-08-31
Project acronym MIRACLS
Project Multi Ion Reflection Apparatus for Collinear Laser Spectroscopy of radionuclides
Researcher (PI) Stephan Malbrunot
Host Institution (HI) EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
Call Details Starting Grant (StG), PE2, ERC-2015-STG
Summary Employing laser spectroscopy (LS) to study radionuclides is equally rich in its long tradition as it is manifold in its active pursuit today as virtually all radioactive ion beam (RIB) facilities do or are planning to host dedicated setups. Probing the hyperfine structure of an atom or ion with laser light is a powerful technique to infer nuclear properties such as a nuclide’s spin, charge radius, or electromagnetic moments. This information provides insight into a wide range of contemporary questions in nuclear physics such as the mechanism driving the emergence and disappearance of nuclear shells far away from stability.
In the last decade, LS has benefited from the advent of ion traps in rare isotope science. The bunched beams released from these traps have led to an increase in sensitivity by several orders of magnitude due to an improved signal-to-background ratio when gating on the passing ion bunch.
This present proposal is determined to introduce another type of ion trap, an Electrostatic Ion Beam Trap, which has the potential to enhance the sensitivity of collinear LS by another factor of 20-800. This is achieved by increasing the laser-interaction and observation time by trapping the ion bunch between two electrostatic mirrors while keeping its beam energy at 30 keV to minimize Doppler broadening.
Such a device promises to extend collinear LS to nuclides so far out of reach given their low yields of typically <1000 ions/s at RIB facilities. Among the accessible nuclides are 34Mg in the island of inversion, 20Mg at the neutron shell closure N=8, or Sn isotopes towards the doubly magic 100Sn. Their charge radii will benchmark modern theoretical models utilizing 3-body forces in their quest to understand the evolution of nuclear shells.
Ultimately, the setup can be further enhanced in sensitivity when combined with other single-particle detection methods or by utilizing its multi-reflection time-of-flight aspect to suppress disturbing isobaric contamination.
Summary
Employing laser spectroscopy (LS) to study radionuclides is equally rich in its long tradition as it is manifold in its active pursuit today as virtually all radioactive ion beam (RIB) facilities do or are planning to host dedicated setups. Probing the hyperfine structure of an atom or ion with laser light is a powerful technique to infer nuclear properties such as a nuclide’s spin, charge radius, or electromagnetic moments. This information provides insight into a wide range of contemporary questions in nuclear physics such as the mechanism driving the emergence and disappearance of nuclear shells far away from stability.
In the last decade, LS has benefited from the advent of ion traps in rare isotope science. The bunched beams released from these traps have led to an increase in sensitivity by several orders of magnitude due to an improved signal-to-background ratio when gating on the passing ion bunch.
This present proposal is determined to introduce another type of ion trap, an Electrostatic Ion Beam Trap, which has the potential to enhance the sensitivity of collinear LS by another factor of 20-800. This is achieved by increasing the laser-interaction and observation time by trapping the ion bunch between two electrostatic mirrors while keeping its beam energy at 30 keV to minimize Doppler broadening.
Such a device promises to extend collinear LS to nuclides so far out of reach given their low yields of typically <1000 ions/s at RIB facilities. Among the accessible nuclides are 34Mg in the island of inversion, 20Mg at the neutron shell closure N=8, or Sn isotopes towards the doubly magic 100Sn. Their charge radii will benchmark modern theoretical models utilizing 3-body forces in their quest to understand the evolution of nuclear shells.
Ultimately, the setup can be further enhanced in sensitivity when combined with other single-particle detection methods or by utilizing its multi-reflection time-of-flight aspect to suppress disturbing isobaric contamination.
Max ERC Funding
1 463 750 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym MiTopMat
Project Microstructured Topological Materials: A novel route towards topological electronics
Researcher (PI) Philip MOLL
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Starting Grant (StG), PE3, ERC-2016-STG
Summary Topological semi-metals such as Cd3As2 or TaAs are characterized by two bands crossing at isolated points in momentum space and a linear electronic dispersion around these crossing points. This linear dispersion can be mapped onto the Dirac- or Weyl-Hamiltonian, describing relativistic massless fermions, and thus relativistic phenomena from high-energy physics may appear in these materials. For example, the chirality, χ=±1, is a conserved quantity for massless fermions, separating the electrons into two distinct chiral species. A new class of topological electronics has been proposed based on chirality imbalance and chiral currents taking the role of charge imbalance and charge currents in electronics. Such devices promise technological advances in speed, energy efficiency, and quantum coherent processes at elevated temperatures.
We will research the basic physical phenomena on which topological electronics is based: 1) The ability to interact electrically with the chiral states in a topological semi-metal is an essential prerequisite for their application. We will investigate whether currents in the Fermi arc surface states can be induced by charge currents and selectively detected by voltage measurements. 2) Weyl materials are more robust against defects and therefore of interest for industrial fabrication. We will experimentally test this topological protection in high-field transport experiments in a wide range of Weyl materials. 3) Recently, topological processes leading to fast, tuneable and efficient voltage inversion were predicted. We will investigate the phenomenon, fabricate and characterize such inverters, and assess their performance. MiTopMat thus aims to build the first prototype of a topological voltage inverter.
These goals are challenging but achievable: MiTopMat’s research plan is based on Focused Ion Beam microfabrication, which we have successfully shown to be a promising route to fabricate chiral devices.
Summary
Topological semi-metals such as Cd3As2 or TaAs are characterized by two bands crossing at isolated points in momentum space and a linear electronic dispersion around these crossing points. This linear dispersion can be mapped onto the Dirac- or Weyl-Hamiltonian, describing relativistic massless fermions, and thus relativistic phenomena from high-energy physics may appear in these materials. For example, the chirality, χ=±1, is a conserved quantity for massless fermions, separating the electrons into two distinct chiral species. A new class of topological electronics has been proposed based on chirality imbalance and chiral currents taking the role of charge imbalance and charge currents in electronics. Such devices promise technological advances in speed, energy efficiency, and quantum coherent processes at elevated temperatures.
We will research the basic physical phenomena on which topological electronics is based: 1) The ability to interact electrically with the chiral states in a topological semi-metal is an essential prerequisite for their application. We will investigate whether currents in the Fermi arc surface states can be induced by charge currents and selectively detected by voltage measurements. 2) Weyl materials are more robust against defects and therefore of interest for industrial fabrication. We will experimentally test this topological protection in high-field transport experiments in a wide range of Weyl materials. 3) Recently, topological processes leading to fast, tuneable and efficient voltage inversion were predicted. We will investigate the phenomenon, fabricate and characterize such inverters, and assess their performance. MiTopMat thus aims to build the first prototype of a topological voltage inverter.
These goals are challenging but achievable: MiTopMat’s research plan is based on Focused Ion Beam microfabrication, which we have successfully shown to be a promising route to fabricate chiral devices.
Max ERC Funding
1 836 070 €
Duration
Start date: 2017-12-01, End date: 2022-11-30
Project acronym MODMAT
Project Nonequilibrium dynamical mean-field theory: From models to materials
Researcher (PI) Philipp WERNER
Host Institution (HI) UNIVERSITE DE FRIBOURG
Call Details Consolidator Grant (CoG), PE3, ERC-2016-COG
Summary Pump-probe techniques are a powerful experimental tool for the study of strongly correlated electron systems. The strategy is to drive a material out of its equilibrium state by a laser pulse, and to measure the subsequent dynamics on the intrinsic timescale of the electron, spin and lattice degrees of freedom. This allows to disentangle competing low-energy processes along the time axis and to gain new insights into correlation phenomena. Pump-probe experiments have also shown that external stimulation can induce novel transient states, which raises the exciting prospect of nonequilibrium control of material properties.
The ab-initio simulation of correlated materials is challenging, and the prediction of a material's behavior under nonequilibrium conditions is an even more ambitious task. In the equilibrium context, a significant recent advance is the implementation of dynamical mean field theory (DMFT) schemes capable of treating dynamically screened interactions. These techniques have enabled the combination of the GW ab-initio method and DMFT in realistic contexts. Another recent development is the nonequilibrium extension of DMFT, which has been established as a flexible tool for the simulation of time-dependent phenomena in correlated lattice systems.
The goal of this research project is to combine these two recently developed computational techniques into a GW and nonequilibrium DMFT based ab-initio framework capable of delivering quantitative and material-specific predictions of the nonequilibrium properties of correlated compounds. The new formalism will be used to study photoinduced phasetransitions, unconventional superconductors with driven phonons, and strongly correlated devices such as Mott insulating solar cells.
Summary
Pump-probe techniques are a powerful experimental tool for the study of strongly correlated electron systems. The strategy is to drive a material out of its equilibrium state by a laser pulse, and to measure the subsequent dynamics on the intrinsic timescale of the electron, spin and lattice degrees of freedom. This allows to disentangle competing low-energy processes along the time axis and to gain new insights into correlation phenomena. Pump-probe experiments have also shown that external stimulation can induce novel transient states, which raises the exciting prospect of nonequilibrium control of material properties.
The ab-initio simulation of correlated materials is challenging, and the prediction of a material's behavior under nonequilibrium conditions is an even more ambitious task. In the equilibrium context, a significant recent advance is the implementation of dynamical mean field theory (DMFT) schemes capable of treating dynamically screened interactions. These techniques have enabled the combination of the GW ab-initio method and DMFT in realistic contexts. Another recent development is the nonequilibrium extension of DMFT, which has been established as a flexible tool for the simulation of time-dependent phenomena in correlated lattice systems.
The goal of this research project is to combine these two recently developed computational techniques into a GW and nonequilibrium DMFT based ab-initio framework capable of delivering quantitative and material-specific predictions of the nonequilibrium properties of correlated compounds. The new formalism will be used to study photoinduced phasetransitions, unconventional superconductors with driven phonons, and strongly correlated devices such as Mott insulating solar cells.
Max ERC Funding
1 854 321 €
Duration
Start date: 2017-05-01, End date: 2022-04-30
Project acronym MODULAR
Project Modular mechanical-atomic quantum systems
Researcher (PI) Philipp Treutlein
Host Institution (HI) UNIVERSITAT BASEL
Call Details Starting Grant (StG), PE2, ERC-2015-STG
Summary Atomic ensembles are routinely prepared and manipulated in the quantum regime using the powerful techniques of laser cooling and trapping. To achieve similar control over the vibrations of nanofabricated mechanical oscillators is a goal that is vigorously pursued, which recently led to the first observations of ground-state cooling and quantum behavior in such systems.
In this project, we will explore the new conceptual and experimental possibilities offered by hybrid systems in which the vibrations of a mechanical oscillator are coupled to an ensemble of ultracold atoms. An optomechanics setup and an ultracold atom experiment will be connected by laser light to generate long-distance Hamiltonian interactions between the two systems. This modular approach avoids the technical complications of combining a cryogenic optomechanics experiment and a cold atom experiment into a highly integrated setup. At the same time, it allows to investigate intriguing conceptual questions associated with the remote control of quantum systems.
The coupled mechanical-atomic system will be used for a range of experiments on quantum control and quantum metrology of mechanical vibrations. We will implement new schemes for ground-state cooling of mechanical vibrations that overcome some of the limitations of existing techniques, explore coherent mechanical-atomic interactions and Einstein-Podolsky-Rosen entanglement, and use such entanglement for measurements of mechanical vibrations beyond the standard quantum limit. The extensive experience of the PI in atomic quantum metrology and hybrid optomechanics will be a valuable asset in this endeavor.
Besides the interesting perspective of observing quantum phenomena in engineered mechanical devices that are visible to the bare eye, the project will open up new avenues for quantum measurement of mechanical vibrations with potential impact on the development of mechanical quantum sensors and transducers for accelerations, forces and fields.
Summary
Atomic ensembles are routinely prepared and manipulated in the quantum regime using the powerful techniques of laser cooling and trapping. To achieve similar control over the vibrations of nanofabricated mechanical oscillators is a goal that is vigorously pursued, which recently led to the first observations of ground-state cooling and quantum behavior in such systems.
In this project, we will explore the new conceptual and experimental possibilities offered by hybrid systems in which the vibrations of a mechanical oscillator are coupled to an ensemble of ultracold atoms. An optomechanics setup and an ultracold atom experiment will be connected by laser light to generate long-distance Hamiltonian interactions between the two systems. This modular approach avoids the technical complications of combining a cryogenic optomechanics experiment and a cold atom experiment into a highly integrated setup. At the same time, it allows to investigate intriguing conceptual questions associated with the remote control of quantum systems.
The coupled mechanical-atomic system will be used for a range of experiments on quantum control and quantum metrology of mechanical vibrations. We will implement new schemes for ground-state cooling of mechanical vibrations that overcome some of the limitations of existing techniques, explore coherent mechanical-atomic interactions and Einstein-Podolsky-Rosen entanglement, and use such entanglement for measurements of mechanical vibrations beyond the standard quantum limit. The extensive experience of the PI in atomic quantum metrology and hybrid optomechanics will be a valuable asset in this endeavor.
Besides the interesting perspective of observing quantum phenomena in engineered mechanical devices that are visible to the bare eye, the project will open up new avenues for quantum measurement of mechanical vibrations with potential impact on the development of mechanical quantum sensors and transducers for accelerations, forces and fields.
Max ERC Funding
1 498 961 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym NuBSM
Project From Fermi to Planck : a bottom up approach
Researcher (PI) Mikhail SHAPOSHNIKOV
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Advanced Grant (AdG), PE2, ERC-2015-AdG
Summary The Standard Model of particle physics is a hugely successful theory that has been tested in experiments at ever increasing energies, culminating in the recent discovery of the Higgs boson. Nevertheless, some major riddles cannot be addressed by the Standard Model, such as neutrino oscillations, the existence of Dark Matter, the absence of antimatter in the Universe. New fundamental principles, interactions and unknown yet particles are required to address these questions. Much of the research done during the last three decades on physics ‘beyond the Standard Model’ (BSM) has been driven by attempts to find a ‘natural’ solution of the hierarchy problem: why the Planck and the electroweak scales are so different. The most popular approaches to this problem predict new particles with the masses right above the electroweak scale.
This project explores an alternative idea that the absence of new particles with masses between the electroweak and Planck scales, supplemented by extra symmetries (such as scale invariance) may itself explain why the mass of the Higgs boson is much smaller than the Planck mass. This calls for a solution of the BSM problems by extremely feebly interacting particles with masses below the electroweak scale. Along the same lines we also explore the possibility that cosmological inflation does not require a new field, but is driven by the Higgs field of the Standard Model.
The proposed model offers solutions for BSM puzzles and is among a few ones that can be tested with existing experimental technologies and are valid even if no evidence for new physics is found at the LHC.
Constructing such a theory requires consolidated efforts in domains of high-energy theory, particle physics phenomenology, physics of the early Universe, cosmology and astrophysics as well as analyses of the available data from previous experiments and from cosmology. We will make predictions and establish the sensitivity goals for future high intensity experiments.
Summary
The Standard Model of particle physics is a hugely successful theory that has been tested in experiments at ever increasing energies, culminating in the recent discovery of the Higgs boson. Nevertheless, some major riddles cannot be addressed by the Standard Model, such as neutrino oscillations, the existence of Dark Matter, the absence of antimatter in the Universe. New fundamental principles, interactions and unknown yet particles are required to address these questions. Much of the research done during the last three decades on physics ‘beyond the Standard Model’ (BSM) has been driven by attempts to find a ‘natural’ solution of the hierarchy problem: why the Planck and the electroweak scales are so different. The most popular approaches to this problem predict new particles with the masses right above the electroweak scale.
This project explores an alternative idea that the absence of new particles with masses between the electroweak and Planck scales, supplemented by extra symmetries (such as scale invariance) may itself explain why the mass of the Higgs boson is much smaller than the Planck mass. This calls for a solution of the BSM problems by extremely feebly interacting particles with masses below the electroweak scale. Along the same lines we also explore the possibility that cosmological inflation does not require a new field, but is driven by the Higgs field of the Standard Model.
The proposed model offers solutions for BSM puzzles and is among a few ones that can be tested with existing experimental technologies and are valid even if no evidence for new physics is found at the LHC.
Constructing such a theory requires consolidated efforts in domains of high-energy theory, particle physics phenomenology, physics of the early Universe, cosmology and astrophysics as well as analyses of the available data from previous experiments and from cosmology. We will make predictions and establish the sensitivity goals for future high intensity experiments.
Max ERC Funding
2 371 132 €
Duration
Start date: 2016-10-01, End date: 2021-09-30
Project acronym PertQCD
Project Automatization of perturbative QCD at very high orders.
Researcher (PI) Charalampos ANASTASIOU
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Advanced Grant (AdG), PE2, ERC-2015-AdG
Summary In recent months, we broke new ground in perturbative Quantum Chromodynamics computing for the first time a physical cross-section of a hadron collider process - Higgs production - at the fourth order in the strong coupling constant expansion. This breakthrough improved the perturbative precision of a fundamental cross-section by a factor of four, paving the way for a very precise testing of the Standard Model theory against LHC data.
The aim of our proposal is to fully automate all calculations which are needed for LHC and future collider physics at similarly high perturbative orders. Our work will improve the precision of theoretical predictions across the spectrum of LHC phenomenology, matching or superseding the accuracy of
experimental measurements. In turn, we will be able to draw firm conclusions about the validity of theories which aspire to describe nature at TeV energies and search confidently for signals of new physics through precision measurements at the LHC.
Summary
In recent months, we broke new ground in perturbative Quantum Chromodynamics computing for the first time a physical cross-section of a hadron collider process - Higgs production - at the fourth order in the strong coupling constant expansion. This breakthrough improved the perturbative precision of a fundamental cross-section by a factor of four, paving the way for a very precise testing of the Standard Model theory against LHC data.
The aim of our proposal is to fully automate all calculations which are needed for LHC and future collider physics at similarly high perturbative orders. Our work will improve the precision of theoretical predictions across the spectrum of LHC phenomenology, matching or superseding the accuracy of
experimental measurements. In turn, we will be able to draw firm conclusions about the validity of theories which aspire to describe nature at TeV energies and search confidently for signals of new physics through precision measurements at the LHC.
Max ERC Funding
2 045 095 €
Duration
Start date: 2016-10-01, End date: 2021-09-30
Project acronym PROTEOMICS V3.0
Project Proteomics v3.0: Development, Implementation and Dissemination of a Third Generation Proteomics Technology
Researcher (PI) Rudolf Aebersold
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Advanced Grant (AdG), LS2, ERC-2008-AdG
Summary Quantitative proteomics is a key technology for the life sciences in general and for systems biology in particular. So far, however, technical limitations have made it impossible to analyze the complete proteome of any species. It is the general goal of this proposal to develop, implement, apply and disseminate a new proteomic strategy that has the potential to generate quantitative proteomic datasets at an unprecedented depth, throughput, accuracy and robustness. Specifically, the new technology will identify and quantify every protein in a proteome. The title of the project Proteomics v3.0 was chosen to indicate the transformation of proteomics into its third phase, after 2D gel electrophoresis and LC-MS/MS based shotgun proteomics. Proteomics v3.0 is based on two sequential steps, emulating the strategy that has been immensely successful in the genomic sciences. In the first step the proteomic space is completely mapped out to generate a proteomic resource that is akin to the genomic sequence database. In the second step rapid and accurate assays will be developed to unambiguously identify and quantify any protein of the respective proteome in a multitude of samples. These assays will be made publicly accessible to support quantitative proteomic studies in the respective species. The strategy will first be implemented and tested in the yeast S. cerevisiae. In a later stage of the project it will be extended to the more complicated human proteome and include the development of assays that also probe the state of modification, splice forms and other types of protein variants generated by a specific open reading frame. Overall, the project will transform quantitative proteomics from a highly specialized technology practiced at a high level in a few laboratories worldwide into a commodity technology accessible, in principle to every group.
Summary
Quantitative proteomics is a key technology for the life sciences in general and for systems biology in particular. So far, however, technical limitations have made it impossible to analyze the complete proteome of any species. It is the general goal of this proposal to develop, implement, apply and disseminate a new proteomic strategy that has the potential to generate quantitative proteomic datasets at an unprecedented depth, throughput, accuracy and robustness. Specifically, the new technology will identify and quantify every protein in a proteome. The title of the project Proteomics v3.0 was chosen to indicate the transformation of proteomics into its third phase, after 2D gel electrophoresis and LC-MS/MS based shotgun proteomics. Proteomics v3.0 is based on two sequential steps, emulating the strategy that has been immensely successful in the genomic sciences. In the first step the proteomic space is completely mapped out to generate a proteomic resource that is akin to the genomic sequence database. In the second step rapid and accurate assays will be developed to unambiguously identify and quantify any protein of the respective proteome in a multitude of samples. These assays will be made publicly accessible to support quantitative proteomic studies in the respective species. The strategy will first be implemented and tested in the yeast S. cerevisiae. In a later stage of the project it will be extended to the more complicated human proteome and include the development of assays that also probe the state of modification, splice forms and other types of protein variants generated by a specific open reading frame. Overall, the project will transform quantitative proteomics from a highly specialized technology practiced at a high level in a few laboratories worldwide into a commodity technology accessible, in principle to every group.
Max ERC Funding
2 400 000 €
Duration
Start date: 2009-04-01, End date: 2014-03-31
Project acronym QON
Project Quantum optics using nanostructures: from many-body physics to quantum information processing
Researcher (PI) Atac Imamoglu
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Advanced Grant (AdG), PE3, ERC-2008-AdG
Summary Spins in nanostructures have emerged as a new paradigm for studying quantum optical phenomena in the solid-state. Motivated by potential applications in quantum information processing, the research in this field has focused on isolating a single confined spin from its environment and implementing coherent manipulation. On the other hand, it has been realized that the principal decoherence mechanisms for confined spins, stemming from interactions with nuclear or electron spin reservoirs, are intimately linked to fascinating many-body condensed-matter physics. We propose to use quantum optical techniques to investigate physics of nanostructures in two opposite but equally interesting regimes, where reservoir couplings are either suppressed to facilitate coherent control or enhanced to promote many body effects. The principal focus of our investigation of many-body phenomena will be on the first observation of optical signatures of the Kondo effect arising from exchange coupling between a confined spin and an electron spin reservoir. In addition, we propose to study nonequilibrium dynamics of quantum dot nuclear spins as well as strongly correlated system of interacting polaritons in coupled nano-cavities. To minimize spin decoherence and to implement quantum control, we propose to use nano-cavity assisted optical manipulation of two-electron spin states in double quantum dots; thanks to its resilience against spin decoherence, this system should allow us to realize elementary quantum information tasks such as spin-polarization conversion and spin entanglement. In addition to indium/gallium arsenide based structures, we propose to study semiconducting carbon nanotubes where hyperfine interactions that lead to spin decoherence can be avoided. Our nanotube experiments will focus on understanding the elementary quantum optical properties, with the ultimate goal of demonstrating coherent optical spin manipulation.
Summary
Spins in nanostructures have emerged as a new paradigm for studying quantum optical phenomena in the solid-state. Motivated by potential applications in quantum information processing, the research in this field has focused on isolating a single confined spin from its environment and implementing coherent manipulation. On the other hand, it has been realized that the principal decoherence mechanisms for confined spins, stemming from interactions with nuclear or electron spin reservoirs, are intimately linked to fascinating many-body condensed-matter physics. We propose to use quantum optical techniques to investigate physics of nanostructures in two opposite but equally interesting regimes, where reservoir couplings are either suppressed to facilitate coherent control or enhanced to promote many body effects. The principal focus of our investigation of many-body phenomena will be on the first observation of optical signatures of the Kondo effect arising from exchange coupling between a confined spin and an electron spin reservoir. In addition, we propose to study nonequilibrium dynamics of quantum dot nuclear spins as well as strongly correlated system of interacting polaritons in coupled nano-cavities. To minimize spin decoherence and to implement quantum control, we propose to use nano-cavity assisted optical manipulation of two-electron spin states in double quantum dots; thanks to its resilience against spin decoherence, this system should allow us to realize elementary quantum information tasks such as spin-polarization conversion and spin entanglement. In addition to indium/gallium arsenide based structures, we propose to study semiconducting carbon nanotubes where hyperfine interactions that lead to spin decoherence can be avoided. Our nanotube experiments will focus on understanding the elementary quantum optical properties, with the ultimate goal of demonstrating coherent optical spin manipulation.
Max ERC Funding
2 300 000 €
Duration
Start date: 2008-11-01, End date: 2013-10-31
Project acronym QORE
Project Quantum Correlations
Researcher (PI) Nicolas Gisin
Host Institution (HI) UNIVERSITE DE GENEVE
Call Details Advanced Grant (AdG), PE2, ERC-2008-AdG
Summary In all sciences one observes correlations and develops and tests theoretical models describing them. Quantum correlations are produced by measurements on entangled quantum states. Since they may violate some Bell inequality even when the different parties are space-like separated, they can t be described with the usual tools: common causes and communication. Violation of a Bell inequality is the signature of quantumness: all other entanglement witnesses depend on assumptions about the dimension of the relevant Hilbert spaces. The vision of this project is that nonlocal quantum correlations provide new resources without any equivalence in other sciences. The core objectives are to better understand, manipulate and exploit nonlocal quantum correlations. This project covers aspects in theoretical, experimental and applied physics, with an emphasis on fundamental questions. The goal is to improve our understanding of quantum nonlocality as a resource (different from entanglement) and to improve our ability to harness entanglement over long distances, both for intellectual and applied motivations. The tools are the conceptual nonlocal box borrowed from theoretical computer science, quantum optics at telecom wavelengths and rare-earth ion doped crystals as atomic ensemble based quantum memories. The expected outcomes are findings about the minimal resources required to simulate quantum correlations and decisive steps towards a Word Wide Quantum Web.
Summary
In all sciences one observes correlations and develops and tests theoretical models describing them. Quantum correlations are produced by measurements on entangled quantum states. Since they may violate some Bell inequality even when the different parties are space-like separated, they can t be described with the usual tools: common causes and communication. Violation of a Bell inequality is the signature of quantumness: all other entanglement witnesses depend on assumptions about the dimension of the relevant Hilbert spaces. The vision of this project is that nonlocal quantum correlations provide new resources without any equivalence in other sciences. The core objectives are to better understand, manipulate and exploit nonlocal quantum correlations. This project covers aspects in theoretical, experimental and applied physics, with an emphasis on fundamental questions. The goal is to improve our understanding of quantum nonlocality as a resource (different from entanglement) and to improve our ability to harness entanglement over long distances, both for intellectual and applied motivations. The tools are the conceptual nonlocal box borrowed from theoretical computer science, quantum optics at telecom wavelengths and rare-earth ion doped crystals as atomic ensemble based quantum memories. The expected outcomes are findings about the minimal resources required to simulate quantum correlations and decisive steps towards a Word Wide Quantum Web.
Max ERC Funding
2 049 600 €
Duration
Start date: 2009-01-01, End date: 2013-12-31
Project acronym REpiReg
Project RNAi-mediated Epigenetic Gene Regulation
Researcher (PI) Marc Bühler
Host Institution (HI) FRIEDRICH MIESCHER INSTITUTE FOR BIOMEDICAL RESEARCH FONDATION
Call Details Consolidator Grant (CoG), LS2, ERC-2015-CoG
Summary RNAi refers to the ability of small RNAs to silence expression of homologous sequences. A surprising link between epigenetics and RNAi was discovered more than a decade ago, and I was fortunate enough to be involved in this exciting field of research from the beginning. It is now well established that endogenous small RNAs have a direct impact on the genome in various organisms. Yet, the initiation of chromatin modifications in trans by exogenously introduced small RNAs has been inherently difficult to achieve in all eukaryotic cells. This has sparked controversy about the importance and conservation of RNAi-mediated epigenome regulation and hampered systematic mechanistic dissection of this phenomenon.
Using fission yeast, we have discovered a counter-acting mechanism that impedes small RNA-directed formation of heterochromatin and constitutes the foundation of this proposal. Our goal is to close several knowledge gaps and test the intriguing possibility that the suppressive mechanism we discovered is conserved in mammalian cells. We will employ yeast and embryonic stem cells and use cutting-edge technologies (i.e., chemical mutagenesis combined with whole-genome sequencing, genome editing with engineered nucleases, and single-cell RNA sequencing) to address fundamental, as yet unanswered questions.
My proposal consists of four major aims. In aim 1, I propose to use proteomics approaches and to perform yeast genetic screens to define additional pathway components and regulatory factors. Aim 2 builds on our ability to finally trigger de novo formation of heterochromatin by synthetic siRNAs acting in trans, addressing many of the outstanding mechanistic questions that could not be addressed in the past. In Aims 3 and 4, experiments conducted in yeast and mouse cells will elucidate missing fragments critical to our understanding of the conserved principles behind RNAi-mediated epigenetic gene regulation.
Summary
RNAi refers to the ability of small RNAs to silence expression of homologous sequences. A surprising link between epigenetics and RNAi was discovered more than a decade ago, and I was fortunate enough to be involved in this exciting field of research from the beginning. It is now well established that endogenous small RNAs have a direct impact on the genome in various organisms. Yet, the initiation of chromatin modifications in trans by exogenously introduced small RNAs has been inherently difficult to achieve in all eukaryotic cells. This has sparked controversy about the importance and conservation of RNAi-mediated epigenome regulation and hampered systematic mechanistic dissection of this phenomenon.
Using fission yeast, we have discovered a counter-acting mechanism that impedes small RNA-directed formation of heterochromatin and constitutes the foundation of this proposal. Our goal is to close several knowledge gaps and test the intriguing possibility that the suppressive mechanism we discovered is conserved in mammalian cells. We will employ yeast and embryonic stem cells and use cutting-edge technologies (i.e., chemical mutagenesis combined with whole-genome sequencing, genome editing with engineered nucleases, and single-cell RNA sequencing) to address fundamental, as yet unanswered questions.
My proposal consists of four major aims. In aim 1, I propose to use proteomics approaches and to perform yeast genetic screens to define additional pathway components and regulatory factors. Aim 2 builds on our ability to finally trigger de novo formation of heterochromatin by synthetic siRNAs acting in trans, addressing many of the outstanding mechanistic questions that could not be addressed in the past. In Aims 3 and 4, experiments conducted in yeast and mouse cells will elucidate missing fragments critical to our understanding of the conserved principles behind RNAi-mediated epigenetic gene regulation.
Max ERC Funding
1 998 557 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym SUPERFIELDS
Project SUPERSYMMETRY, QUANTUM GRAVITY AND GAUGE FIELDS
Researcher (PI) Sergio Ferrara
Host Institution (HI) EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
Call Details Advanced Grant (AdG), PE2, ERC-2008-AdG
Summary This project aims at investigating some crucial issues in globally supersymmetric and Supergravity theories. Firstly, it focuses on perturbative and non-perturbative sources of Supersymmetry Breaking in the low-energy effective Supergravity description of Superstrings and M-theory. These include Gaugings and Fluxes in compactifications from higher dimensions, Gaugino Condensation and other non-perturbative effects generated by (unoriented) D-brane instantons. Secondly, it explores the physics of extremal Black Holes by means of the Attractor Mechanism, that relates their Entropy to the extrema of an Effective Potential. The tantalizing analogy with moduli stabilization in flux compactifications is considered in detail. Moreover, the deep connection between the Entropy-Formula and certain topological string partition functions is exploited to improve the connection between macroscopic and microscopic interpretations. The holographic (AdS/CFT) correspondence conjectured by Maldacena between (super)conformal Yang-Mills theories and certain (super)gravity theories in Anti De Sitter spaces is analyzed in view of the attractive nature of universal horizon geometries and in relation to Higher-Spin Symmetries, that may be associated with bulk duals of certain gauge-invariant composite operators on the boundary. The project also addresses the possible link between higher-spin theories and an unbroken phase of Superstring or M-theory. The project will be carried out through the abilities and the skills of the PI and of the team members, with their complementary expertise on different but interrelated topics in the holographic approach to modern theories of quantum gravity. Supersymmetry and gauge principles will serve as basic tools for their research.
Summary
This project aims at investigating some crucial issues in globally supersymmetric and Supergravity theories. Firstly, it focuses on perturbative and non-perturbative sources of Supersymmetry Breaking in the low-energy effective Supergravity description of Superstrings and M-theory. These include Gaugings and Fluxes in compactifications from higher dimensions, Gaugino Condensation and other non-perturbative effects generated by (unoriented) D-brane instantons. Secondly, it explores the physics of extremal Black Holes by means of the Attractor Mechanism, that relates their Entropy to the extrema of an Effective Potential. The tantalizing analogy with moduli stabilization in flux compactifications is considered in detail. Moreover, the deep connection between the Entropy-Formula and certain topological string partition functions is exploited to improve the connection between macroscopic and microscopic interpretations. The holographic (AdS/CFT) correspondence conjectured by Maldacena between (super)conformal Yang-Mills theories and certain (super)gravity theories in Anti De Sitter spaces is analyzed in view of the attractive nature of universal horizon geometries and in relation to Higher-Spin Symmetries, that may be associated with bulk duals of certain gauge-invariant composite operators on the boundary. The project also addresses the possible link between higher-spin theories and an unbroken phase of Superstring or M-theory. The project will be carried out through the abilities and the skills of the PI and of the team members, with their complementary expertise on different but interrelated topics in the holographic approach to modern theories of quantum gravity. Supersymmetry and gauge principles will serve as basic tools for their research.
Max ERC Funding
1 700 000 €
Duration
Start date: 2009-06-01, End date: 2014-12-31
Project acronym TRANSPOS-X
Project Transposable elements, their controllers and the genesis of human-specific transcriptional networks
Researcher (PI) Didier Trono
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Advanced Grant (AdG), LS2, ERC-2015-AdG
Summary Transposable elements (TEs) account for more than two thirds of the human genome. They can inactivate
genes, provide novel coding functions, sprinkle chromosomes with recombination-prone repetitive
sequences, and modulate cellular gene expression through a wide variety of transcriptional and
posttranscriptional influences. As a consequence, TEs are considered as essential motors of evolution yet
they are occasionally associated with disease, causing about one hundred Mendelian disorders and possibly
contributing to several human cancers. As expected for such genomic threats, TEs are subjected to tight
epigenetic control imposed from the very first days of embryogenesis, in part owing to their recognition by
sequence-specific RNA- and protein-based repressors. It is generally considered that the evolutionary
selection of these TE controllers reflects a simple host-pathogen arms race, and that their action results in the
early and permanent silencing of their targets. We have recently uncovered new evolutionary evidence and
obtained genomic and functional data that invalidate this dual assumption, and suggest instead that
transposable elements and their epigenetic controllers establish species-specific transcriptional networks that
play critical roles in human development and physiology. The general objective of the present proposal is to
explore the breadth of this phenomenon, to decipher its mechanisms, to unveil its functional implications,
and to probe how this knowledge could be exploited for basic research, biotechnology and clinical medicine.
Summary
Transposable elements (TEs) account for more than two thirds of the human genome. They can inactivate
genes, provide novel coding functions, sprinkle chromosomes with recombination-prone repetitive
sequences, and modulate cellular gene expression through a wide variety of transcriptional and
posttranscriptional influences. As a consequence, TEs are considered as essential motors of evolution yet
they are occasionally associated with disease, causing about one hundred Mendelian disorders and possibly
contributing to several human cancers. As expected for such genomic threats, TEs are subjected to tight
epigenetic control imposed from the very first days of embryogenesis, in part owing to their recognition by
sequence-specific RNA- and protein-based repressors. It is generally considered that the evolutionary
selection of these TE controllers reflects a simple host-pathogen arms race, and that their action results in the
early and permanent silencing of their targets. We have recently uncovered new evolutionary evidence and
obtained genomic and functional data that invalidate this dual assumption, and suggest instead that
transposable elements and their epigenetic controllers establish species-specific transcriptional networks that
play critical roles in human development and physiology. The general objective of the present proposal is to
explore the breadth of this phenomenon, to decipher its mechanisms, to unveil its functional implications,
and to probe how this knowledge could be exploited for basic research, biotechnology and clinical medicine.
Max ERC Funding
2 500 000 €
Duration
Start date: 2017-01-01, End date: 2021-12-31