Project acronym 4D IMAGING
Project Towards 4D Imaging of Fundamental Processes on the Atomic and Sub-Atomic Scale
Researcher (PI) Ferenc Krausz
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Call Details Advanced Grant (AdG), PE2, ERC-2009-AdG
Summary State-of-the-art microscopy and diffraction imaging provides insight into the atomic and sub-atomic structure of matter. They permit determination of the positions of atoms in a crystal lattice or in a molecule as well as the distribution of electrons inside atoms. State-of-the-art time-resolved spectroscopy with femtosecond and attosecond resolution provides access to dynamic changes in the atomic and electronic structure of matter. Our proposal aims at combining these two frontier techniques of XXI century science to make a long-standing dream of scientist come true: the direct observation of atoms and electrons in their natural state: in motion. Shifts in the atoms positions by tens to hundreds of picometers can make chemical bonds break apart or newly form, changing the structure and/or chemical composition of matter. Electronic motion on similar scales may result in the emission of light, or the initiation of processes that lead to a change in physical or chemical properties, or biological function. These motions happen within femtoseconds and attoseconds, respectively. To make them observable, we need a 4-dimensional (4D) imaging technique capable of recording freeze-frame snapshots of microscopic systems with picometer spatial resolution and femtosecond to attosecond exposure time. The motion can then be visualized by slow-motion replay of the freeze-frame shots. The goal of this project is to develop a 4D imaging technique that will ultimately offer picometer resolution is space and attosecond resolution in time.
Summary
State-of-the-art microscopy and diffraction imaging provides insight into the atomic and sub-atomic structure of matter. They permit determination of the positions of atoms in a crystal lattice or in a molecule as well as the distribution of electrons inside atoms. State-of-the-art time-resolved spectroscopy with femtosecond and attosecond resolution provides access to dynamic changes in the atomic and electronic structure of matter. Our proposal aims at combining these two frontier techniques of XXI century science to make a long-standing dream of scientist come true: the direct observation of atoms and electrons in their natural state: in motion. Shifts in the atoms positions by tens to hundreds of picometers can make chemical bonds break apart or newly form, changing the structure and/or chemical composition of matter. Electronic motion on similar scales may result in the emission of light, or the initiation of processes that lead to a change in physical or chemical properties, or biological function. These motions happen within femtoseconds and attoseconds, respectively. To make them observable, we need a 4-dimensional (4D) imaging technique capable of recording freeze-frame snapshots of microscopic systems with picometer spatial resolution and femtosecond to attosecond exposure time. The motion can then be visualized by slow-motion replay of the freeze-frame shots. The goal of this project is to develop a 4D imaging technique that will ultimately offer picometer resolution is space and attosecond resolution in time.
Max ERC Funding
2 500 000 €
Duration
Start date: 2010-03-01, End date: 2015-02-28
Project acronym ADONIS
Project Attosecond Dynamics On Interfaces and Solids
Researcher (PI) Reinhard Kienberger
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), PE2, ERC-2007-StG
Summary New insight into ever smaller microscopic units of matter as well as in ever faster evolving chemical, physical or atomic processes pushes the frontiers in many fields in science. Pump/probe experiments turned out to be the most direct approach to time-domain investigations of fast-evolving microscopic processes. Accessing atomic and molecular inner-shell processes directly in the time-domain requires a combination of short wavelengths in the few hundred eV range and sub-femtosecond pulse duration. The concept of light-field-controlled XUV photoemission employs an XUV pulse achieved by High-order Harmonic Generation (HHG) as a pump and the light pulse as a probe or vice versa. The basic prerequisite, namely the generation and measurement of isolated sub-femtosecond XUV pulses synchronized to a strong few-cycle light pulse with attosecond precision, opens up a route to time-resolved inner-shell atomic and molecular spectroscopy with present day sources. Studies of attosecond electronic motion (1 as = 10-18 s) in solids and on surfaces and interfaces have until now remained out of reach. The unprecedented time resolution of the aforementioned technique will enable for the first time monitoring of sub-fs dynamics of such systems in the time domain. These dynamics – of electronic excitation, relaxation, and wave packet motion – are of broad scientific interest and pertinent to the development of many modern technologies including semiconductor and molecular electronics, optoelectronics, information processing, photovoltaics, and optical nano-structuring. The purpose of this project is to investigate phenomena like the temporal evolution of direct photoemission, interference effects in resonant photoemission, fast adsorbate-substrate charge transfer, and electronic dynamics in supramolecular assemblies, in a series of experiments in order to overcome the temporal limits of measurements in solid state physics and to better understand processes in microcosm.
Summary
New insight into ever smaller microscopic units of matter as well as in ever faster evolving chemical, physical or atomic processes pushes the frontiers in many fields in science. Pump/probe experiments turned out to be the most direct approach to time-domain investigations of fast-evolving microscopic processes. Accessing atomic and molecular inner-shell processes directly in the time-domain requires a combination of short wavelengths in the few hundred eV range and sub-femtosecond pulse duration. The concept of light-field-controlled XUV photoemission employs an XUV pulse achieved by High-order Harmonic Generation (HHG) as a pump and the light pulse as a probe or vice versa. The basic prerequisite, namely the generation and measurement of isolated sub-femtosecond XUV pulses synchronized to a strong few-cycle light pulse with attosecond precision, opens up a route to time-resolved inner-shell atomic and molecular spectroscopy with present day sources. Studies of attosecond electronic motion (1 as = 10-18 s) in solids and on surfaces and interfaces have until now remained out of reach. The unprecedented time resolution of the aforementioned technique will enable for the first time monitoring of sub-fs dynamics of such systems in the time domain. These dynamics – of electronic excitation, relaxation, and wave packet motion – are of broad scientific interest and pertinent to the development of many modern technologies including semiconductor and molecular electronics, optoelectronics, information processing, photovoltaics, and optical nano-structuring. The purpose of this project is to investigate phenomena like the temporal evolution of direct photoemission, interference effects in resonant photoemission, fast adsorbate-substrate charge transfer, and electronic dynamics in supramolecular assemblies, in a series of experiments in order to overcome the temporal limits of measurements in solid state physics and to better understand processes in microcosm.
Max ERC Funding
1 296 000 €
Duration
Start date: 2008-10-01, End date: 2013-09-30
Project acronym ATOMION
Project Exploring hybrid quantum systems of ultracold atoms and ions
Researcher (PI) Michael Karl Koehl
Host Institution (HI) RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITAT BONN
Call Details Starting Grant (StG), PE2, ERC-2009-StG
Summary We propose to investigate hybrid quantum systems composed of ultracold atoms and ions. The mutual interaction of the cold neutral atoms and the trapped ion offers a wealth of interesting new physical problems. They span from ultracold quantum chemistry over new concepts for quantum information processing to genuine quantum many-body physics. We plan to explore aspects of quantum chemistry with ultracold atoms and ions to obtain a full understanding of the interactions in this hybrid system. We will investigate the regime of low energy collisions and search for Feshbach resonances to tune the interaction strength between atoms and ions. Moreover, we will study collective effects in chemical reactions between a Bose-Einstein condensate and a single ion. Taking advantage of the extraordinary properties of the atom-ion mixture quantum information processing with hybrid systems will be performed. In particular, we plan to realize sympathetic ground state cooling of the ion with a Bose-Einstein condensate. When the ion is immersed into the ultracold neutral atom environment the nature of the decoherence will be tailored by tuning properties of the environment: A dissipative quantum phase transition is predicted when the ion is coupled to a one-dimensional Bose gas. Moreover, we plan to realize a scalable hybrid quantum processor composed of a single ion and an array of neutral atoms in an optical lattice. The third direction we will pursue is related to impurity effects in quantum many-body physics. We plan to study transport through a single impurity or atomic quantum dot with the goal of realizing a single atom transistor. A single atom transistor transfers the quantum state of the impurity coherently to a macroscopic neutral atom current. Finally, we plan to observe Anderson s orthogonality catastrophe in which the presence of a single impurity in a quantum gas orthogonalizes the quantum many-body function of a quantum state with respect to the unperturbed one.
Summary
We propose to investigate hybrid quantum systems composed of ultracold atoms and ions. The mutual interaction of the cold neutral atoms and the trapped ion offers a wealth of interesting new physical problems. They span from ultracold quantum chemistry over new concepts for quantum information processing to genuine quantum many-body physics. We plan to explore aspects of quantum chemistry with ultracold atoms and ions to obtain a full understanding of the interactions in this hybrid system. We will investigate the regime of low energy collisions and search for Feshbach resonances to tune the interaction strength between atoms and ions. Moreover, we will study collective effects in chemical reactions between a Bose-Einstein condensate and a single ion. Taking advantage of the extraordinary properties of the atom-ion mixture quantum information processing with hybrid systems will be performed. In particular, we plan to realize sympathetic ground state cooling of the ion with a Bose-Einstein condensate. When the ion is immersed into the ultracold neutral atom environment the nature of the decoherence will be tailored by tuning properties of the environment: A dissipative quantum phase transition is predicted when the ion is coupled to a one-dimensional Bose gas. Moreover, we plan to realize a scalable hybrid quantum processor composed of a single ion and an array of neutral atoms in an optical lattice. The third direction we will pursue is related to impurity effects in quantum many-body physics. We plan to study transport through a single impurity or atomic quantum dot with the goal of realizing a single atom transistor. A single atom transistor transfers the quantum state of the impurity coherently to a macroscopic neutral atom current. Finally, we plan to observe Anderson s orthogonality catastrophe in which the presence of a single impurity in a quantum gas orthogonalizes the quantum many-body function of a quantum state with respect to the unperturbed one.
Max ERC Funding
1 405 000 €
Duration
Start date: 2009-10-01, End date: 2014-09-30
Project acronym ATOMPHOTONLOQIP
Project Experimental Linear Optics Quantum Information Processing with Atoms and Photons
Researcher (PI) Jian-Wei Pan
Host Institution (HI) RUPRECHT-KARLS-UNIVERSITAET HEIDELBERG
Call Details Starting Grant (StG), PE2, ERC-2007-StG
Summary Quantum information science and atom optics are among the most active fields in modern physics. In recent years, many theoretical efforts have been made to combine these two fields. Recent experimental progresses have shown the in-principle possibility to perform scalable quantum information processing (QIP) with linear optics and atomic ensembles. The main purpose of the present project is to use atomic qubits as quantum memory and exploit photonic qubits for information transfer and processing to achieve efficient linear optics QIP. On the one hand, utilizing the interaction between laser pulses and atomic ensembles we will experimentally investigate the potentials of atomic ensembles in the gas phase to build quantum repeaters for long-distance quantum communication, that is, to develop a new technological solution for quantum repeaters making use of the effective qubit-type entanglement of two cold atomic ensembles by a projective measurement of individual photons by spontaneous Raman processes. On this basis, we will further investigate the advantages of cold atoms in an optical trap to enhance the coherence time of atomic qubits beyond the threshold for scalable realization of quantum repeaters. Moreover, building on our long experience in research on multi-photon entanglement, we also plan to perform a number of significant experiments in the field of QIP with particular emphasis on fault-tolerant quantum computation, photon-loss-tolerant quantum computation and cluster-state based quantum simulation. Finally, by combining the techniques developed in the above quantum memory and multi-photon interference experiments, we will further experimentally investigate the possibility to achieve quantum teleportation between photonic and atomic qubits, quantum teleportation between remote atomic qubits and efficient entanglement generation via classical feed-forward. The techniques that will be developed in the present project will lay the basis for future large scale
Summary
Quantum information science and atom optics are among the most active fields in modern physics. In recent years, many theoretical efforts have been made to combine these two fields. Recent experimental progresses have shown the in-principle possibility to perform scalable quantum information processing (QIP) with linear optics and atomic ensembles. The main purpose of the present project is to use atomic qubits as quantum memory and exploit photonic qubits for information transfer and processing to achieve efficient linear optics QIP. On the one hand, utilizing the interaction between laser pulses and atomic ensembles we will experimentally investigate the potentials of atomic ensembles in the gas phase to build quantum repeaters for long-distance quantum communication, that is, to develop a new technological solution for quantum repeaters making use of the effective qubit-type entanglement of two cold atomic ensembles by a projective measurement of individual photons by spontaneous Raman processes. On this basis, we will further investigate the advantages of cold atoms in an optical trap to enhance the coherence time of atomic qubits beyond the threshold for scalable realization of quantum repeaters. Moreover, building on our long experience in research on multi-photon entanglement, we also plan to perform a number of significant experiments in the field of QIP with particular emphasis on fault-tolerant quantum computation, photon-loss-tolerant quantum computation and cluster-state based quantum simulation. Finally, by combining the techniques developed in the above quantum memory and multi-photon interference experiments, we will further experimentally investigate the possibility to achieve quantum teleportation between photonic and atomic qubits, quantum teleportation between remote atomic qubits and efficient entanglement generation via classical feed-forward. The techniques that will be developed in the present project will lay the basis for future large scale
Max ERC Funding
1 435 000 €
Duration
Start date: 2008-07-01, End date: 2013-12-31
Project acronym CILIARYDISEASE
Project Deciphering mechanisms of ciliary disease
Researcher (PI) Heiko Lickert
Host Institution (HI) HELMHOLTZ ZENTRUM MUENCHEN DEUTSCHES FORSCHUNGSZENTRUM FUER GESUNDHEIT UND UMWELT GMBH
Call Details Starting Grant (StG), LS3, ERC-2009-StG
Summary Ciliopathies are pleiotropic diseases with a wide spectrum of human phenotypes. These include cyst formation in the liver and pancreas, respiratory disorders and a predisposition to diabetes and cancer. The pleiotropic nature of these disorders may reflect the many roles cilia play in physiology and signalling, highlighting the clinical importance of understanding their function in organ development and homeostasis. Despite the biological importance of cilia and decades of research, many aspects of cilia assembly and disassembly remain elusive. The earliest steps of cilia assembly involve conversion of the centrosome into a basal body, which anchors the cilia to the plasma membrane. Odf2 is one of the only proteins known to be important for this process, thus Ofd2 mutant cells lack cilia. During cell cycle re-entry primary cilia disassemble, the basal body dislodges from the plasma membrane and duplicates to serve as the mitotic centrosome. We recently identified Pitchfork, which functions in basal body-to-centrosome conversion and regulates embryonic patterning. The overall aim of this proposal is to better understand the cellular and bio-molecular mechanisms underlying ciliary disease. We will conditionally delete Odf2 and Pitchfork during embryogenesis and organogenesis. This will reveal the different requirements for the process of cilia assembly and disassembly in embryonic development, organ formation and homeostasis. The phenotypes will be analyzed at all levels of complexity. Subcellular imaging and identification of protein interaction partners will uncover the molecular basis of cilia assembly and disassembly. In summary, this project will decipher mechanisms underlying a wide spectrum of human ciliary disease and will open new avenues of clinical research.
Summary
Ciliopathies are pleiotropic diseases with a wide spectrum of human phenotypes. These include cyst formation in the liver and pancreas, respiratory disorders and a predisposition to diabetes and cancer. The pleiotropic nature of these disorders may reflect the many roles cilia play in physiology and signalling, highlighting the clinical importance of understanding their function in organ development and homeostasis. Despite the biological importance of cilia and decades of research, many aspects of cilia assembly and disassembly remain elusive. The earliest steps of cilia assembly involve conversion of the centrosome into a basal body, which anchors the cilia to the plasma membrane. Odf2 is one of the only proteins known to be important for this process, thus Ofd2 mutant cells lack cilia. During cell cycle re-entry primary cilia disassemble, the basal body dislodges from the plasma membrane and duplicates to serve as the mitotic centrosome. We recently identified Pitchfork, which functions in basal body-to-centrosome conversion and regulates embryonic patterning. The overall aim of this proposal is to better understand the cellular and bio-molecular mechanisms underlying ciliary disease. We will conditionally delete Odf2 and Pitchfork during embryogenesis and organogenesis. This will reveal the different requirements for the process of cilia assembly and disassembly in embryonic development, organ formation and homeostasis. The phenotypes will be analyzed at all levels of complexity. Subcellular imaging and identification of protein interaction partners will uncover the molecular basis of cilia assembly and disassembly. In summary, this project will decipher mechanisms underlying a wide spectrum of human ciliary disease and will open new avenues of clinical research.
Max ERC Funding
1 449 640 €
Duration
Start date: 2010-02-01, End date: 2015-01-31
Project acronym DNADEMETHYLASE
Project Functions and mechanism of active DNA demethylation
Researcher (PI) Heinz Christof Niehrs
Host Institution (HI) INSTITUT FUR MOLEKULARE BIOLOGIE GGMBH
Call Details Advanced Grant (AdG), LS3, ERC-2009-AdG
Summary Epigenetic gene regulation is of central importance for development and disease. Despite dramatic progress in epigenetics during the past decade, DNA demethylation remains one of the last big frontiers and very little is known about it. DNA demethylation is a widespread phenomenon and occurs in plants as well as in animals, during development, in the adult, and during somatic cell reprogramming of pluripotency genes. The molecular identity of the DNA demethylase in animal cells remained unresolved and has hampered progress in the field for decades. In 2007 we published that Growth Arrest and DNA Damage 45 a (Gadd45a) is a key player in active DNA demethylation, which opened new avenues in the study of this elusive process. The goal of this project is to further analyze the mechanism of DNA demethylation as well as the role played by Gadd45 in development. Given the many unresolved questions in this burgeoning field, our work promises to be ground-breaking and therefore have a profound impact in unraveling one of the least understood processes of gene regulation. Specifically we will address the following points. I) The biological role of Gadd45 mediated DNA demethylation in mouse embryos and adults is unknown. We have obtained mouse mutants for Gadd45a,b, and g and we will analyze them for developmental defects and dissect the methylation regulation of relevant genes. II) The targeting mechanism by which Gadd45 is binding to and demethylating specific sites in the genome is a central unresolved issue. We have identified a candidate DNA binding protein interacting with Gadd45 and we will analyze its role in site specific targeting of DNA demethylation in vitro and in mouse. III) We found that Gadd45 is an RNA binding protein and we will therefore analyze how non-coding RNAs are involved in targeting and/or activating Gadd45 during DNA demethylation.
Summary
Epigenetic gene regulation is of central importance for development and disease. Despite dramatic progress in epigenetics during the past decade, DNA demethylation remains one of the last big frontiers and very little is known about it. DNA demethylation is a widespread phenomenon and occurs in plants as well as in animals, during development, in the adult, and during somatic cell reprogramming of pluripotency genes. The molecular identity of the DNA demethylase in animal cells remained unresolved and has hampered progress in the field for decades. In 2007 we published that Growth Arrest and DNA Damage 45 a (Gadd45a) is a key player in active DNA demethylation, which opened new avenues in the study of this elusive process. The goal of this project is to further analyze the mechanism of DNA demethylation as well as the role played by Gadd45 in development. Given the many unresolved questions in this burgeoning field, our work promises to be ground-breaking and therefore have a profound impact in unraveling one of the least understood processes of gene regulation. Specifically we will address the following points. I) The biological role of Gadd45 mediated DNA demethylation in mouse embryos and adults is unknown. We have obtained mouse mutants for Gadd45a,b, and g and we will analyze them for developmental defects and dissect the methylation regulation of relevant genes. II) The targeting mechanism by which Gadd45 is binding to and demethylating specific sites in the genome is a central unresolved issue. We have identified a candidate DNA binding protein interacting with Gadd45 and we will analyze its role in site specific targeting of DNA demethylation in vitro and in mouse. III) We found that Gadd45 is an RNA binding protein and we will therefore analyze how non-coding RNAs are involved in targeting and/or activating Gadd45 during DNA demethylation.
Max ERC Funding
2 376 000 €
Duration
Start date: 2010-06-01, End date: 2015-05-31
Project acronym FPMICROGLIA
Project Towards a dynamic quantitative understanding of neuronal microglial interactions
Researcher (PI) Francesca Peri
Host Institution (HI) EUROPEAN MOLECULAR BIOLOGY LABORATORY
Call Details Starting Grant (StG), LS3, ERC-2009-StG
Summary A significant proportion of neurons in the brain undergo programmed cell death. In order to prevent the diffusion of damaging degradation products, dying neurons are quickly collected by microglia, specialised phagocytes that are resident in the brain. Despite the importance of these cells in several neuronal pathologies, many fundamental questions concerning microglial-neuronal interactions remain unaddressed. How these cells collectively ensure that the entire brain is surveyed and how they react to damage with high precision is still entirely unknown. Recent findings suggest that diffusible molecules such as lipids and nucleotides could attract microglia in response to neuronal apoptosis and injury, respectively. While these molecules can trigger dynamic changes in microglia motility in vitro, elucidating how their activity is controlled within the intact brain, both in space and time, remains the most important challenge in understanding this fascinating biological problem. We aim to further exploit the massive imaging potential of the transparent zebrafish embryo for studying microglial biology in vivo. By combining forward and reverse genetic approaches with quantitative imaging technology, we will directly address the mechanisms underlying the attraction of microglia towards apoptotic, sick and injured neurons. For the first time, we will define the collective behaviour of an entire microglial network within an intact brain under both physiological and pathological conditions.
Summary
A significant proportion of neurons in the brain undergo programmed cell death. In order to prevent the diffusion of damaging degradation products, dying neurons are quickly collected by microglia, specialised phagocytes that are resident in the brain. Despite the importance of these cells in several neuronal pathologies, many fundamental questions concerning microglial-neuronal interactions remain unaddressed. How these cells collectively ensure that the entire brain is surveyed and how they react to damage with high precision is still entirely unknown. Recent findings suggest that diffusible molecules such as lipids and nucleotides could attract microglia in response to neuronal apoptosis and injury, respectively. While these molecules can trigger dynamic changes in microglia motility in vitro, elucidating how their activity is controlled within the intact brain, both in space and time, remains the most important challenge in understanding this fascinating biological problem. We aim to further exploit the massive imaging potential of the transparent zebrafish embryo for studying microglial biology in vivo. By combining forward and reverse genetic approaches with quantitative imaging technology, we will directly address the mechanisms underlying the attraction of microglia towards apoptotic, sick and injured neurons. For the first time, we will define the collective behaviour of an entire microglial network within an intact brain under both physiological and pathological conditions.
Max ERC Funding
663 090 €
Duration
Start date: 2010-03-01, End date: 2014-08-31
Project acronym KINSIGN
Project Guarding Genome Stability: Dynamic Control of Chromosome Segregation by Kinetochore Signalling Pathways
Researcher (PI) Geert Johannes Petrus Lambertus Kops
Host Institution (HI) UNIVERSITAIR MEDISCH CENTRUM UTRECHT
Call Details Starting Grant (StG), LS3, ERC-2009-StG
Summary Equal segregation of chromosomes during cell division is vital to all life. Using a unique combination of cell biological and biochemical techniques, I will show how an essential set of enzymes promotes error-free chromosome segregation. During each cell division, genetically identical daughter cells are generated by accurate partitioning of the duplicated chromosomes. This relies on proper spatio-temporal execution of various highly dynamic processes. The activity of a small group of enzymes is crucial for at least two of these processes: correct chromosome positioning on the cell's equator prior to cell division and the ability to prevent cell division until every chromosome is thus positioned. The molecular fundamentals of signalling to and from these enzymes will be uncovered by chemical genetics, quantitative (phospho)proteomics, rapid affinity purifications and live-cell deconvolution microscopy. The resulting insights will open research avenues that will ultimately contribute to comprehensive models of how biochemical networks manage to prevent chromosome mis-segregation.
Summary
Equal segregation of chromosomes during cell division is vital to all life. Using a unique combination of cell biological and biochemical techniques, I will show how an essential set of enzymes promotes error-free chromosome segregation. During each cell division, genetically identical daughter cells are generated by accurate partitioning of the duplicated chromosomes. This relies on proper spatio-temporal execution of various highly dynamic processes. The activity of a small group of enzymes is crucial for at least two of these processes: correct chromosome positioning on the cell's equator prior to cell division and the ability to prevent cell division until every chromosome is thus positioned. The molecular fundamentals of signalling to and from these enzymes will be uncovered by chemical genetics, quantitative (phospho)proteomics, rapid affinity purifications and live-cell deconvolution microscopy. The resulting insights will open research avenues that will ultimately contribute to comprehensive models of how biochemical networks manage to prevent chromosome mis-segregation.
Max ERC Funding
1 572 000 €
Duration
Start date: 2009-11-01, End date: 2014-10-31
Project acronym MANITOP
Project Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology
Researcher (PI) Werner Rodejohann
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), PE2, ERC-2007-StG
Summary The aim of the proposed project is to shed light on the theoretical origin of neutrino masses and to explore the phenomenological consequences of the model predictions and of possible mechanisms giving rise to neutrino mass. The results of many upcoming experiments in the neutrino sector and beyond will be a crucial discriminator for models and will have to be followed closely. Apart from the usual neutrino oscillation observables, there are more model-dependent implications of neutrino mass models, for instance lepton flavor violating decays and electric dipole moments in the charged lepton sector, or processes involving new particles at colliders such as the LHC. The connection to the baryon asymmetry of the Universe, to dark matter and to proton decay will also be studied. Phenomenology will also be focussed on: in particular, the implications of upcoming (precision) experiments on the neutrino mass and mixing parameters or the neutrino mass matrix will be investigated. The prospects of using high energy neutrino cosmic rays, neutrinoless double beta decay (including analogous processes) and new experimental ideas to probe the parameters of neutrino physics will also be explored.
Summary
The aim of the proposed project is to shed light on the theoretical origin of neutrino masses and to explore the phenomenological consequences of the model predictions and of possible mechanisms giving rise to neutrino mass. The results of many upcoming experiments in the neutrino sector and beyond will be a crucial discriminator for models and will have to be followed closely. Apart from the usual neutrino oscillation observables, there are more model-dependent implications of neutrino mass models, for instance lepton flavor violating decays and electric dipole moments in the charged lepton sector, or processes involving new particles at colliders such as the LHC. The connection to the baryon asymmetry of the Universe, to dark matter and to proton decay will also be studied. Phenomenology will also be focussed on: in particular, the implications of upcoming (precision) experiments on the neutrino mass and mixing parameters or the neutrino mass matrix will be investigated. The prospects of using high energy neutrino cosmic rays, neutrinoless double beta decay (including analogous processes) and new experimental ideas to probe the parameters of neutrino physics will also be explored.
Max ERC Funding
790 800 €
Duration
Start date: 2008-09-01, End date: 2012-08-31
Project acronym MECHWNTSIGNALS
Project Mechanisms of Wnt Signaling Initiation
Researcher (PI) Madelon Maria Maurice
Host Institution (HI) UNIVERSITAIR MEDISCH CENTRUM UTRECHT
Call Details Starting Grant (StG), LS3, ERC-2009-StG
Summary Wnt proteins dictate critical cell growth and lineage decisions during development and in adult tissue homeostasis. Inappropriate activation of Wnt signalling is a frequent cause of cancer. The earliest events that occur after Wnts bind their receptors at the cell surface, such as receptor endocytosis and recruitment of cytoplasmic effectors, are decisive for downstream gene activation but the underlying mechanisms by which these events process and tune the Wnt signal remain poorly understood. The key objective of this proposal is to resolve critical molecular events that drive initiation of the Wnt cascade by focusing on two central questions: How does protein trafficking control Wnt signalling initiation? What molecular mechanisms underlie Wnt-induced formation and activation of multiprotein complexes? I will take a unique approach combining advanced live cell imaging and high resolution immuno-electron microscopy with sophisticated peptide chemistry, gene silencing and biochemistry to dissect early Wnt signalling events at the level of isolated molecules, in cultured cells and in complex tissues of living animals. With the proposed interdisciplinary work I expect to uncover where key Wnt signalling steps occur, which proteins are involved, how they direct protein complex assembly, trafficking and turnover and how these events control transmission of the Wnt signal. Mechanistic insight in how Wnt signals are transmitted is vital to understand how pathway specificity and sensitivity is controlled. Basic insight in these processes will be of utmost importance for the design of strategies to interfere with Wnt signalling in cancer.
Summary
Wnt proteins dictate critical cell growth and lineage decisions during development and in adult tissue homeostasis. Inappropriate activation of Wnt signalling is a frequent cause of cancer. The earliest events that occur after Wnts bind their receptors at the cell surface, such as receptor endocytosis and recruitment of cytoplasmic effectors, are decisive for downstream gene activation but the underlying mechanisms by which these events process and tune the Wnt signal remain poorly understood. The key objective of this proposal is to resolve critical molecular events that drive initiation of the Wnt cascade by focusing on two central questions: How does protein trafficking control Wnt signalling initiation? What molecular mechanisms underlie Wnt-induced formation and activation of multiprotein complexes? I will take a unique approach combining advanced live cell imaging and high resolution immuno-electron microscopy with sophisticated peptide chemistry, gene silencing and biochemistry to dissect early Wnt signalling events at the level of isolated molecules, in cultured cells and in complex tissues of living animals. With the proposed interdisciplinary work I expect to uncover where key Wnt signalling steps occur, which proteins are involved, how they direct protein complex assembly, trafficking and turnover and how these events control transmission of the Wnt signal. Mechanistic insight in how Wnt signals are transmitted is vital to understand how pathway specificity and sensitivity is controlled. Basic insight in these processes will be of utmost importance for the design of strategies to interfere with Wnt signalling in cancer.
Max ERC Funding
1 513 800 €
Duration
Start date: 2009-12-01, End date: 2014-11-30
Project acronym MICROFLEX
Project Microbiology of Dehalococcoides-like Chloroflexi
Researcher (PI) Lorenz Adrian
Host Institution (HI) HELMHOLTZ-ZENTRUM FUR UMWELTFORSCHUNG GMBH - UFZ
Call Details Starting Grant (StG), LS3, ERC-2007-StG
Summary I propose to initiate research on a specific group of bacteria, here denominated as the “Dehalococcoides-like Chloroflexi”. This group of bacteria is formed by several cultivated strains of the genus Dehalococcoides and many sequences of uncultivated organisms mostly from marine sediment or subsurface locations. All together form one subphylum of the Chloroflexi. Bacteria of the Dehalococcoides-like Chloroflexi are of particular importance for two independent reasons: first, the subphylum contains all bacteria known to transform under anaerobic conditions toxic and persistent halogenated compounds such as chlorinated dioxins, benzenes, biphenyls, vinyl chloride or brominated biphenylethers; secondly, massive amounts of Dehalococcoides-like Chloroflexi have recently been detected in marine organic-rich deep sediments dominating the populations with up to 80% of the total cell counts. However, many aspects of the physiology of Dehalococcoides species are unclear and almost nothing is known about Chloroflexi in deep sediments. I have worked for many years on the microbiology, biochemistry and genomics of Dehalococcoides species. With the proposed group I plan to focus on the physiological links between Chloroflexi in contaminated aquifers and those in marine sediments. Initially, cultures of marine sediment-Chloroflexi will be established in our lab and compared with pure Dehalococcoides strains. Objectives of our research towards marine Chloroflexi will be the description of the physiology, of the biochemistry of energy conservation and of key genes encoded in the genomes. It is anticipated that the research leads to a substantiated hypothesis on the mode of energy fixation in marine deep-sediments and an initial description of the role of Dehalococcoides-like Chloroflexi in biogeochemical cycles. We also expect to find insights into Chloroflexi evolution and their role in earth history by comparing genomes between Dehalococcoides species and marine Chloroflexi.
Summary
I propose to initiate research on a specific group of bacteria, here denominated as the “Dehalococcoides-like Chloroflexi”. This group of bacteria is formed by several cultivated strains of the genus Dehalococcoides and many sequences of uncultivated organisms mostly from marine sediment or subsurface locations. All together form one subphylum of the Chloroflexi. Bacteria of the Dehalococcoides-like Chloroflexi are of particular importance for two independent reasons: first, the subphylum contains all bacteria known to transform under anaerobic conditions toxic and persistent halogenated compounds such as chlorinated dioxins, benzenes, biphenyls, vinyl chloride or brominated biphenylethers; secondly, massive amounts of Dehalococcoides-like Chloroflexi have recently been detected in marine organic-rich deep sediments dominating the populations with up to 80% of the total cell counts. However, many aspects of the physiology of Dehalococcoides species are unclear and almost nothing is known about Chloroflexi in deep sediments. I have worked for many years on the microbiology, biochemistry and genomics of Dehalococcoides species. With the proposed group I plan to focus on the physiological links between Chloroflexi in contaminated aquifers and those in marine sediments. Initially, cultures of marine sediment-Chloroflexi will be established in our lab and compared with pure Dehalococcoides strains. Objectives of our research towards marine Chloroflexi will be the description of the physiology, of the biochemistry of energy conservation and of key genes encoded in the genomes. It is anticipated that the research leads to a substantiated hypothesis on the mode of energy fixation in marine deep-sediments and an initial description of the role of Dehalococcoides-like Chloroflexi in biogeochemical cycles. We also expect to find insights into Chloroflexi evolution and their role in earth history by comparing genomes between Dehalococcoides species and marine Chloroflexi.
Max ERC Funding
1 287 258 €
Duration
Start date: 2008-06-01, End date: 2013-12-31
Project acronym MOLFOUNTAIN
Project Precision measurements on cold molecules in a fountain
Researcher (PI) Hendrick Lucas Bethlem
Host Institution (HI) STICHTING VU
Call Details Starting Grant (StG), PE2, ERC-2007-StG
Summary In a recent series of experiments, it has been shown that polar molecules can be decelerated, bunched, cooled, and trapped using time-varying electric fields. These experiments demonstrate an unprecedented level of control over molecules, which enables a variety of applications of great scientific interest. Here, I propose to use these techniques to create a molecular fountain. In this fountain, the first of its kind, polar molecules are decelerated, cooled, and subsequently launched upwards some 10-50 cm before falling back under gravity, thereby passing a microwave cavity or laser beam twice – as they fly up and as they fall back down. The effective interrogation time in such a Ramsey type measurement scheme includes the entire flight time between the two traversals through the driving field, which can be up to a second. This long interrogation time will allow for extreme precision measurements on molecular structure to a level at which fundamental physics theories can be tested. I will use the inversion frequency in ammonia around 23 GHz as a test case. This transition is very well studied and was used in the first ‘atomic’ clock and the first demonstration of a MASER. The fountain should make it possible to measure the inversion frequency with a relative accuracy of 10^{-12}–10^{-14}; that is more than a thousand fold improvement as compared to the best previous measurement. Besides serving as a proof-of-principle, this measurement may be used as a test of the time-variation of fundamental constants – an issue that has profound implications on how we understand the universe. The inversion frequency in ammonia is determined by the tunneling rate of the protons through the barrier between the two equivalent configurations of the molecule, and is exponentially dependent on the proton mass. By monitoring the inversion frequency over a period of a few years, a possible variation of the proton-electron mass ratio can be constrained or measured.
Summary
In a recent series of experiments, it has been shown that polar molecules can be decelerated, bunched, cooled, and trapped using time-varying electric fields. These experiments demonstrate an unprecedented level of control over molecules, which enables a variety of applications of great scientific interest. Here, I propose to use these techniques to create a molecular fountain. In this fountain, the first of its kind, polar molecules are decelerated, cooled, and subsequently launched upwards some 10-50 cm before falling back under gravity, thereby passing a microwave cavity or laser beam twice – as they fly up and as they fall back down. The effective interrogation time in such a Ramsey type measurement scheme includes the entire flight time between the two traversals through the driving field, which can be up to a second. This long interrogation time will allow for extreme precision measurements on molecular structure to a level at which fundamental physics theories can be tested. I will use the inversion frequency in ammonia around 23 GHz as a test case. This transition is very well studied and was used in the first ‘atomic’ clock and the first demonstration of a MASER. The fountain should make it possible to measure the inversion frequency with a relative accuracy of 10^{-12}–10^{-14}; that is more than a thousand fold improvement as compared to the best previous measurement. Besides serving as a proof-of-principle, this measurement may be used as a test of the time-variation of fundamental constants – an issue that has profound implications on how we understand the universe. The inversion frequency in ammonia is determined by the tunneling rate of the protons through the barrier between the two equivalent configurations of the molecule, and is exponentially dependent on the proton mass. By monitoring the inversion frequency over a period of a few years, a possible variation of the proton-electron mass ratio can be constrained or measured.
Max ERC Funding
1 100 000 €
Duration
Start date: 2008-08-01, End date: 2013-07-31
Project acronym NANOTRANS
Project Biomolecular Motor Systems: From Cellular Function to Nanotechnological Applications
Researcher (PI) Stefan Diez
Host Institution (HI) TECHNISCHE UNIVERSITAET DRESDEN
Call Details Starting Grant (StG), LS3, ERC-2009-StG
Summary This interdisciplinary project aims (i) to understand intracellular transport processes on a molecular level using novel nano-optical imaging tools and (ii) to use the insight from cellular systems to operate biomolecular motor systems in engineered environments for the fulfillment of complex nanotechnological tasks. Building on experience in optical microscopy and single molecule biophysics the research group will develop and apply nanotechnology-based tools to study the dynamical functioning of microtubule-based motor proteins in vitro and in vivo with nanometer resolution in three dimensions. These studies are expected to broaden the general knowledge about the design principles of molecular machines as well as the principles by which they interact with each other. This knowledge will - in return - pave the road for applications of these highly evolved transport machineries for a wide range of self-organizing nanofunctions in engineered environments. In contrast to conventional "macroscopic" top-down or "atomic" bottom-up approaches, a driving factor for this research is the capability of cellular machines to work in parallel, thus enabling the efficient fabrication and detection of nanostructures. The project will be strongly focussing on the interface between molecular cell biology and nanotechnology. With respect to the applied ERC funding, the project goals can be described by: Goal 1: Single-molecule studies on motor proteins using optical 3D-nanometer imaging, Goal 2: Investigation of cooperative effects in multi-motor transport, Goal 3: External control over transport systems in engineered environments, and Goal 4: Application of motor systems for nano-manipulation and nano-detection. Regarding the long-term goal, it is envisioned to let smart nanomaterials fulfill biological functions in cellular systems and to efficiently operate biomolecular machines in engineered environments.
Summary
This interdisciplinary project aims (i) to understand intracellular transport processes on a molecular level using novel nano-optical imaging tools and (ii) to use the insight from cellular systems to operate biomolecular motor systems in engineered environments for the fulfillment of complex nanotechnological tasks. Building on experience in optical microscopy and single molecule biophysics the research group will develop and apply nanotechnology-based tools to study the dynamical functioning of microtubule-based motor proteins in vitro and in vivo with nanometer resolution in three dimensions. These studies are expected to broaden the general knowledge about the design principles of molecular machines as well as the principles by which they interact with each other. This knowledge will - in return - pave the road for applications of these highly evolved transport machineries for a wide range of self-organizing nanofunctions in engineered environments. In contrast to conventional "macroscopic" top-down or "atomic" bottom-up approaches, a driving factor for this research is the capability of cellular machines to work in parallel, thus enabling the efficient fabrication and detection of nanostructures. The project will be strongly focussing on the interface between molecular cell biology and nanotechnology. With respect to the applied ERC funding, the project goals can be described by: Goal 1: Single-molecule studies on motor proteins using optical 3D-nanometer imaging, Goal 2: Investigation of cooperative effects in multi-motor transport, Goal 3: External control over transport systems in engineered environments, and Goal 4: Application of motor systems for nano-manipulation and nano-detection. Regarding the long-term goal, it is envisioned to let smart nanomaterials fulfill biological functions in cellular systems and to efficiently operate biomolecular machines in engineered environments.
Max ERC Funding
1 956 000 €
Duration
Start date: 2009-11-01, End date: 2015-10-31
Project acronym POLPBAR
Project Production of Polarized Antiprotons
Researcher (PI) Hans Ströher
Host Institution (HI) FORSCHUNGSZENTRUM JULICH GMBH
Call Details Advanced Grant (AdG), PE2, ERC-2009-AdG
Summary Hadrons, the building blocks of all matter in Nature, are not fundamental but composed of quarks and gluons. Up to now we do not know HOW NATURE MAKES HADRONS one of the most important questions of contemporary structure-of-matter physics. Major breakthroughs are to be expected with new experimental facilities such as FAIR. Most studies in hadron physics at HESR/FAIR will employ beams of unpolarized antiprotons, but the most spectacular opportunities will arise for polarized antiprotons the physics case is exceptional. The flag-ship experiment, Drell-Yan production in double polarized proton-antiproton scattering, gives direct access to transversity , the terra incognita of nucleon spin structure. The provision of such beams presents enormous scientific / technological challenges and has never been achieved with intensities sufficient for the crucial experiments. State-of-the-art techniques are capable of producing intensities less than ~10^5 s-1, which cannot be efficiently accumulated. It is the aim of this project to develop an efficient method for POLARIZING ANTIPROTON BEAMS by in-situ build-up in a storage ring. The only viable method to do this effectively is through "spin-filtering" by the repeated interaction of an antiproton beam with a polarized hydrogen gas target in a cooler storage ring. This technique works with protons, but it is not clear how the polarization build-up happens in detail. Spin-filtering needs to be optimized and, in particular, it must be extended to antiprotons. Within the framework of this project, the aim is to provide polarized antiproton beams in a storage ring with at least WITH 10 ORDERS OF MAGNITUDE higher intensity than previously possible. A very experienced team of scientists and engineers is needed, and this is available within my group. We will also strongly benefit from our collaboration partners. Thus, it is a "now or never" opportunity. If successful, a new era will open with fascinating experiments.
Summary
Hadrons, the building blocks of all matter in Nature, are not fundamental but composed of quarks and gluons. Up to now we do not know HOW NATURE MAKES HADRONS one of the most important questions of contemporary structure-of-matter physics. Major breakthroughs are to be expected with new experimental facilities such as FAIR. Most studies in hadron physics at HESR/FAIR will employ beams of unpolarized antiprotons, but the most spectacular opportunities will arise for polarized antiprotons the physics case is exceptional. The flag-ship experiment, Drell-Yan production in double polarized proton-antiproton scattering, gives direct access to transversity , the terra incognita of nucleon spin structure. The provision of such beams presents enormous scientific / technological challenges and has never been achieved with intensities sufficient for the crucial experiments. State-of-the-art techniques are capable of producing intensities less than ~10^5 s-1, which cannot be efficiently accumulated. It is the aim of this project to develop an efficient method for POLARIZING ANTIPROTON BEAMS by in-situ build-up in a storage ring. The only viable method to do this effectively is through "spin-filtering" by the repeated interaction of an antiproton beam with a polarized hydrogen gas target in a cooler storage ring. This technique works with protons, but it is not clear how the polarization build-up happens in detail. Spin-filtering needs to be optimized and, in particular, it must be extended to antiprotons. Within the framework of this project, the aim is to provide polarized antiproton beams in a storage ring with at least WITH 10 ORDERS OF MAGNITUDE higher intensity than previously possible. A very experienced team of scientists and engineers is needed, and this is available within my group. We will also strongly benefit from our collaboration partners. Thus, it is a "now or never" opportunity. If successful, a new era will open with fascinating experiments.
Max ERC Funding
2 448 376 €
Duration
Start date: 2010-05-01, End date: 2016-04-30
Project acronym QGP
Project Characterisation of a novel state of matter: The Quark-Gluon Plasma
Researcher (PI) Andre Mischke
Host Institution (HI) UNIVERSITEIT UTRECHT
Call Details Starting Grant (StG), PE2, ERC-2007-StG
Summary I propose to explore the properties of a novel state of matter, the Quark-Gluon Plasma (QGP), created by colliding atomic nuclei at the highest energy ever reached using triggered particle correlations. The QGP is predicted by the fundamental theory of strong interactions and is characterized by an equilibrated system of free quarks and gluons that are the constituents of atomic nuclei. My investigation of the QGP properties will give unique insights into the development of the early universe and the properties of matter under extreme conditions. Among other results, particle correlation measurements have revealed first compelling evidence for the existence of the QGP state. Due to the limited sensitivity of the used probes, the conclusions are to some extent qualitative rather than quantitative. To get a deeper understanding of the mechanisms at work I propose to study heavy-quark correlations and their in-medium modification in collisions of heavy nuclei by combining the information from different detection systems. I have verified the feasibility of this measurement at lower energies. I am currently one of the world’s experts in measuring heavy-quark correlations and I propose to perform such a measurement at the forefront particle accelerator, the Large Hadron Collider, located at the European Laboratory for Particle Physics CERN. My investigation will be done utilizing the dedicated ALICE (A Large Ion Collider Experiment) detector, which is most suited for measurements in heavy-ion collisions. I would like to do my project with one Postdoc and one Ph.D. student during a period of five years. My research team will be embedded in one of the leading institutes in the field of heavy-ion physics which provided a crucial hardware component to the ALICE experiment. My expertise and the outstanding working environment will guarantee high quality in performing my key measurement. The ALICE experiment will be the place of new discoveries.
Summary
I propose to explore the properties of a novel state of matter, the Quark-Gluon Plasma (QGP), created by colliding atomic nuclei at the highest energy ever reached using triggered particle correlations. The QGP is predicted by the fundamental theory of strong interactions and is characterized by an equilibrated system of free quarks and gluons that are the constituents of atomic nuclei. My investigation of the QGP properties will give unique insights into the development of the early universe and the properties of matter under extreme conditions. Among other results, particle correlation measurements have revealed first compelling evidence for the existence of the QGP state. Due to the limited sensitivity of the used probes, the conclusions are to some extent qualitative rather than quantitative. To get a deeper understanding of the mechanisms at work I propose to study heavy-quark correlations and their in-medium modification in collisions of heavy nuclei by combining the information from different detection systems. I have verified the feasibility of this measurement at lower energies. I am currently one of the world’s experts in measuring heavy-quark correlations and I propose to perform such a measurement at the forefront particle accelerator, the Large Hadron Collider, located at the European Laboratory for Particle Physics CERN. My investigation will be done utilizing the dedicated ALICE (A Large Ion Collider Experiment) detector, which is most suited for measurements in heavy-ion collisions. I would like to do my project with one Postdoc and one Ph.D. student during a period of five years. My research team will be embedded in one of the leading institutes in the field of heavy-ion physics which provided a crucial hardware component to the ALICE experiment. My expertise and the outstanding working environment will guarantee high quality in performing my key measurement. The ALICE experiment will be the place of new discoveries.
Max ERC Funding
850 000 €
Duration
Start date: 2008-09-01, End date: 2013-08-31
Project acronym SUSY
Project SUPERSYMMETRY: a window to non-perturbative physics
Researcher (PI) Bernardus Quirinus Petrus Joseph De Wit
Host Institution (HI) STICHTING NEDERLANDSE WETENSCHAPPELIJK ONDERZOEK INSTITUTEN
Call Details Advanced Grant (AdG), PE2, ERC-2009-AdG
Summary Supersymmetry provides an invaluable tool for quantitatively exploring a large variety of non-perturbative phenomena arising in gauge theories and gravitation. This proposal intends to exploit this fact to make significant progress on three important topics in theoretical physics, namely, black holes, strongly-coupled gauge fields, and instantons and supersymmetry breaking. Besides supersymmetry, there is a variety of cross-links between these topics, as well as joint applications. The specific objectives of the proposal are as follows. The first objective concerns the determination of supersymmetric black hole entropy for finite electric and magnetic charges, improving our understanding of critical aspects of the field-theoretic description of the entropy, in direct confrontation with the results based on the counting of microscopic states. The second objective is a construction of the exact spectrum of quantum strings moving in an anti-de Sitter space-time, which, according to the gauge-string correspondence, yields the spectrum of a corresponding dual supersymmetric gauge theory. Deforming the anti-de Sitter space will then lead to stringy descriptions of non-perturbative phenomena in a generic gauge theory with a confining phase. The third objective pertains to instantons and their implications for phenomenologically viable string compactifications on spaces with generalized geometries, which include background electric and magnetic fields. An instanton calculus will be developed to improve the understanding of non-perturbative string theory and its implication for moduli stabilization and supersymmetry breaking.
Summary
Supersymmetry provides an invaluable tool for quantitatively exploring a large variety of non-perturbative phenomena arising in gauge theories and gravitation. This proposal intends to exploit this fact to make significant progress on three important topics in theoretical physics, namely, black holes, strongly-coupled gauge fields, and instantons and supersymmetry breaking. Besides supersymmetry, there is a variety of cross-links between these topics, as well as joint applications. The specific objectives of the proposal are as follows. The first objective concerns the determination of supersymmetric black hole entropy for finite electric and magnetic charges, improving our understanding of critical aspects of the field-theoretic description of the entropy, in direct confrontation with the results based on the counting of microscopic states. The second objective is a construction of the exact spectrum of quantum strings moving in an anti-de Sitter space-time, which, according to the gauge-string correspondence, yields the spectrum of a corresponding dual supersymmetric gauge theory. Deforming the anti-de Sitter space will then lead to stringy descriptions of non-perturbative phenomena in a generic gauge theory with a confining phase. The third objective pertains to instantons and their implications for phenomenologically viable string compactifications on spaces with generalized geometries, which include background electric and magnetic fields. An instanton calculus will be developed to improve the understanding of non-perturbative string theory and its implication for moduli stabilization and supersymmetry breaking.
Max ERC Funding
1 910 093 €
Duration
Start date: 2010-09-01, End date: 2016-08-31
Project acronym WING MORPHOGENESIS
Project A physical basis for wing morphogenesis and planar cell polarity
Researcher (PI) Suzanne Eaton
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Advanced Grant (AdG), LS3, ERC-2009-AdG
Summary During development, physical forces are generated in precise patterns and produce elegant choreography of cell movements that determine tissue shape. The function of many tissues depends not only on their shape, but on the correct alignment of planar cell polarity within the tissue. Remarkably, recent evidence from my lab has suggested that physical forces not only shape the wing, but also align the planar polarity of its constituent cells with the proximal distal wing axis. The wing blade is remodeled at pupal stages by proximal-distal stretching caused by contraction of the wing hinge. Hinge contraction produces precise patterns of oriented cell rearrangements and cell divisions in the wing blade that lengthen it proximo-distally and refine its shape. The polarity of cell rearrangements also re-orients intracellularly polarized complexes of Planar Cell Polarity (PCP) proteins to face the distal side of the wing. This occurs because these complexes turn over very slowly, compared with the rate of cell rearrangement. We will investigate three problems defined by this work. First, how does polarized cell stretching cause epithelial remodeling? The pupal wing is the first in vivo example of this process in a genetically and physically accessible model. Second, what are the genetic, cellular, and physical mechanisms that specify the pattern of cellular flow occuring in the wing blade? Third, what signals orient PCP during early wing development? This previously undescribed early polarity is oriented roughly perpendicular to the final direction, is a critical starting point for the later development of proximal-distal polarity. This work will provide important insight into genetic, cellular and physical mechansisms that shape and polarize tissues.
Summary
During development, physical forces are generated in precise patterns and produce elegant choreography of cell movements that determine tissue shape. The function of many tissues depends not only on their shape, but on the correct alignment of planar cell polarity within the tissue. Remarkably, recent evidence from my lab has suggested that physical forces not only shape the wing, but also align the planar polarity of its constituent cells with the proximal distal wing axis. The wing blade is remodeled at pupal stages by proximal-distal stretching caused by contraction of the wing hinge. Hinge contraction produces precise patterns of oriented cell rearrangements and cell divisions in the wing blade that lengthen it proximo-distally and refine its shape. The polarity of cell rearrangements also re-orients intracellularly polarized complexes of Planar Cell Polarity (PCP) proteins to face the distal side of the wing. This occurs because these complexes turn over very slowly, compared with the rate of cell rearrangement. We will investigate three problems defined by this work. First, how does polarized cell stretching cause epithelial remodeling? The pupal wing is the first in vivo example of this process in a genetically and physically accessible model. Second, what are the genetic, cellular, and physical mechanisms that specify the pattern of cellular flow occuring in the wing blade? Third, what signals orient PCP during early wing development? This previously undescribed early polarity is oriented roughly perpendicular to the final direction, is a critical starting point for the later development of proximal-distal polarity. This work will provide important insight into genetic, cellular and physical mechansisms that shape and polarize tissues.
Max ERC Funding
1 531 200 €
Duration
Start date: 2010-03-01, End date: 2015-05-31