Project acronym Agglomerates
Project Infinite Protein Self-Assembly in Health and Disease
Researcher (PI) Emmanuel Doram LEVY
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Consolidator Grant (CoG), LS2, ERC-2018-COG
Summary Understanding how proteins respond to mutations is of paramount importance to biology and disease. While protein stability and misfolding have been instrumental in rationalizing the impact of mutations, we recently discovered that an alternative route is also frequent, where mutations at the surface of symmetric proteins trigger novel self-interactions that lead to infinite self-assembly. This mechanism can be involved in disease, as in sickle-cell anemia, but may also serve in adaptation. Importantly, it differs fundamentally from aggregation, because misfolding does not drive it. Thus, we term it “agglomeration”. The ease with which agglomeration can occur, even by single point mutations, shifts the paradigm of how quickly new protein assemblies can emerge, both in health and disease. This prompts us to determine the basic principles of protein agglomeration and explore its implications in cell physiology and human disease.
We propose an interdisciplinary research program bridging atomic and cellular scales to explore agglomeration in three aims: (i) Map the landscape of protein agglomeration in response to mutation in endogenous yeast proteins; (ii) Characterize how yeast physiology impacts agglomeration by changes in gene expression or cell state, and, conversely, how protein agglomerates impact yeast fitness. (iii) Analyze agglomeration in relation to human disease via two approaches. First, by predicting single nucleotide polymorphisms that trigger agglomeration, prioritizing them using knowledge from Aims 1 & 2, and characterizing them experimentally. Second, by providing a proof-of-concept that agglomeration can be exploited in drug design, whereby drugs induce its formation, like mutations can do.
Overall, through this research, we aim to establish agglomeration as a paradigm for protein assembly, with implications for our understanding of evolution, physiology, and disease.
Summary
Understanding how proteins respond to mutations is of paramount importance to biology and disease. While protein stability and misfolding have been instrumental in rationalizing the impact of mutations, we recently discovered that an alternative route is also frequent, where mutations at the surface of symmetric proteins trigger novel self-interactions that lead to infinite self-assembly. This mechanism can be involved in disease, as in sickle-cell anemia, but may also serve in adaptation. Importantly, it differs fundamentally from aggregation, because misfolding does not drive it. Thus, we term it “agglomeration”. The ease with which agglomeration can occur, even by single point mutations, shifts the paradigm of how quickly new protein assemblies can emerge, both in health and disease. This prompts us to determine the basic principles of protein agglomeration and explore its implications in cell physiology and human disease.
We propose an interdisciplinary research program bridging atomic and cellular scales to explore agglomeration in three aims: (i) Map the landscape of protein agglomeration in response to mutation in endogenous yeast proteins; (ii) Characterize how yeast physiology impacts agglomeration by changes in gene expression or cell state, and, conversely, how protein agglomerates impact yeast fitness. (iii) Analyze agglomeration in relation to human disease via two approaches. First, by predicting single nucleotide polymorphisms that trigger agglomeration, prioritizing them using knowledge from Aims 1 & 2, and characterizing them experimentally. Second, by providing a proof-of-concept that agglomeration can be exploited in drug design, whereby drugs induce its formation, like mutations can do.
Overall, through this research, we aim to establish agglomeration as a paradigm for protein assembly, with implications for our understanding of evolution, physiology, and disease.
Max ERC Funding
2 574 819 €
Duration
Start date: 2019-04-01, End date: 2024-03-31
Project acronym ANTHROPOID
Project Great ape organoids to reconstruct uniquely human development
Researcher (PI) Jarrett CAMP
Host Institution (HI) INSTITUT FUR MOLEKULARE UND KLINISCHE OPHTHALMOLOGIE BASEL
Call Details Starting Grant (StG), LS2, ERC-2018-STG
Summary Humans diverged from our closest living relatives, chimpanzees and other great apes, 6-10 million years ago. Since this divergence, our ancestors acquired genetic changes that enhanced cognition, altered metabolism, and endowed our species with an adaptive capacity to colonize the entire planet and reshape the biosphere. Through genome comparisons between modern humans, Neandertals, chimpanzees and other apes we have identified genetic changes that likely contribute to innovations in human metabolic and cognitive physiology. However, it has been difficult to assess the functional effects of these genetic changes due to the lack of cell culture systems that recapitulate great ape organ complexity. Human and chimpanzee pluripotent stem cells (PSCs) can self-organize into three-dimensional (3D) tissues that recapitulate the morphology, function, and genetic programs controlling organ development. Our vision is to use organoids to study the changes that set modern humans apart from our closest evolutionary relatives as well as all other organisms on the planet. In ANTHROPOID we will generate a great ape developmental cell atlas using cortex, liver, and small intestine organoids. We will use single-cell transcriptomics and chromatin accessibility to identify cell type-specific features of transcriptome divergence at cellular resolution. We will dissect enhancer evolution using single-cell genomic screens and ancestralize human cells to resurrect pre-human cellular phenotypes. ANTHROPOID utilizes quantitative and state-of-the-art methods to explore exciting high-risk questions at multiple branches of the modern human lineage. This project is a ground breaking starting point to replay evolution and tackle the ancient question of what makes us uniquely human?
Summary
Humans diverged from our closest living relatives, chimpanzees and other great apes, 6-10 million years ago. Since this divergence, our ancestors acquired genetic changes that enhanced cognition, altered metabolism, and endowed our species with an adaptive capacity to colonize the entire planet and reshape the biosphere. Through genome comparisons between modern humans, Neandertals, chimpanzees and other apes we have identified genetic changes that likely contribute to innovations in human metabolic and cognitive physiology. However, it has been difficult to assess the functional effects of these genetic changes due to the lack of cell culture systems that recapitulate great ape organ complexity. Human and chimpanzee pluripotent stem cells (PSCs) can self-organize into three-dimensional (3D) tissues that recapitulate the morphology, function, and genetic programs controlling organ development. Our vision is to use organoids to study the changes that set modern humans apart from our closest evolutionary relatives as well as all other organisms on the planet. In ANTHROPOID we will generate a great ape developmental cell atlas using cortex, liver, and small intestine organoids. We will use single-cell transcriptomics and chromatin accessibility to identify cell type-specific features of transcriptome divergence at cellular resolution. We will dissect enhancer evolution using single-cell genomic screens and ancestralize human cells to resurrect pre-human cellular phenotypes. ANTHROPOID utilizes quantitative and state-of-the-art methods to explore exciting high-risk questions at multiple branches of the modern human lineage. This project is a ground breaking starting point to replay evolution and tackle the ancient question of what makes us uniquely human?
Max ERC Funding
1 500 000 €
Duration
Start date: 2019-06-01, End date: 2024-05-31
Project acronym BiomeRiskFactors
Project Discovering microbiome-based disease risk factors
Researcher (PI) Eran Segal
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Advanced Grant (AdG), LS2, ERC-2017-ADG
Summary Identifying risk factors for diseases that can be prevented or delayed by early intervention is of major importance, and numerous genetic, lifestyle, anthropometric and clinical risk factors were found for many different diseases. Another source of potentially pertinent disease risk factors is the human microbiome - the collective genome of trillions of bacteria, viruses, fungi, and parasites that reside in the human gut. However, very few microbiome disease markers were found to date.
Here, we aim to develop risk prediction tools based on the human microbiome that predict the likelihood of an individual to develop a particular condition or disease within 5-10 years. We will use a cohort of >2200 individuals that my group previously assembled, for whom we have clinical profiles, gut microbiome data, and banked blood and stool samples. We will invite people 5-10 years after their initial recruitment time, profile disease status and blood markers, and develop algorithms for predicting 5-10 year onset of Type 2 diabetes, cardiovascular disease, and obesity, using microbiome data from recruitment time.
To increase the likelihood of finding microbiome markers predictive of disease onset, we will develop novel experimental and computational methods for in-depth characterization of microbial gene function, the metabolites produced by the microbiome, the underexplored fungal microbiome members, and the interactions between the gut microbiota and the host adaptive immune system. We will then apply these methods to >2200 banked samples from cohort recruitment time and use the resulting data in devising our microbiome-based risk prediction tools. In themselves, these novel assays and their application to >2200 samples should greatly advance the microbiome field.
If successful, our proposal will identify new disease risk factors and risk prediction tools based on the microbiome, paving the way towards using the microbiome in early disease detection and prevention.
Summary
Identifying risk factors for diseases that can be prevented or delayed by early intervention is of major importance, and numerous genetic, lifestyle, anthropometric and clinical risk factors were found for many different diseases. Another source of potentially pertinent disease risk factors is the human microbiome - the collective genome of trillions of bacteria, viruses, fungi, and parasites that reside in the human gut. However, very few microbiome disease markers were found to date.
Here, we aim to develop risk prediction tools based on the human microbiome that predict the likelihood of an individual to develop a particular condition or disease within 5-10 years. We will use a cohort of >2200 individuals that my group previously assembled, for whom we have clinical profiles, gut microbiome data, and banked blood and stool samples. We will invite people 5-10 years after their initial recruitment time, profile disease status and blood markers, and develop algorithms for predicting 5-10 year onset of Type 2 diabetes, cardiovascular disease, and obesity, using microbiome data from recruitment time.
To increase the likelihood of finding microbiome markers predictive of disease onset, we will develop novel experimental and computational methods for in-depth characterization of microbial gene function, the metabolites produced by the microbiome, the underexplored fungal microbiome members, and the interactions between the gut microbiota and the host adaptive immune system. We will then apply these methods to >2200 banked samples from cohort recruitment time and use the resulting data in devising our microbiome-based risk prediction tools. In themselves, these novel assays and their application to >2200 samples should greatly advance the microbiome field.
If successful, our proposal will identify new disease risk factors and risk prediction tools based on the microbiome, paving the way towards using the microbiome in early disease detection and prevention.
Max ERC Funding
2 500 000 €
Duration
Start date: 2019-03-01, End date: 2024-02-29
Project acronym BioMeTRe
Project Biophysical mechanisms of long-range transcriptional regulation
Researcher (PI) Luca GIORGETTI
Host Institution (HI) FRIEDRICH MIESCHER INSTITUTE FOR BIOMEDICAL RESEARCH FONDATION
Call Details Starting Grant (StG), LS2, ERC-2017-STG
Summary In mammals, transcriptional control of many genes relies on cis-regulatory elements such as enhancers, which are often located tens to hundreds of kilobases away from their cognate promoters. Functional interactions between distal regulatory elements and target promoters require mutual physical proximity, which is linked to the three-dimensional structure of the chromatin fiber. Chromosome conformation capture studies revealed that chromosomes are partitioned into Topologically Associating Domains (TADs), sub-megabase domains of preferential physical interactions of the chromatin fiber. Genetic evidence showed that TAD boundaries restrict the genomic range of enhancer-promoter communication, and that interactions between regulatory sequences within TADs are further fine-tuned by smaller-scale structures. However, the mechanistic details of how physical interactions translate into transcriptional outputs are totally unknown. Here we propose to explore the biophysical mechanisms that link chromosome conformation and long-range transcriptional regulation using molecular biology, genetic engineering, single-cell experiments and physical modeling. We will measure chromosomal interactions in single cells and in time using a novel method that relies on an enzymatic process in vivo. Genetic engineering will be used to establish a cell system that allows quantitative measurement of how enhancer-promoter interactions relate to transcription at the population and single-cell levels, and to test the effects of perturbations without confounding effects. Finally, we will develop physical models of promoter operation in the presence of distal enhancers, which will be used to interpret the experimental data and formulate new testable predictions. With this integrated approach we aim at providing an entirely new layer of description of the general principles underlying transcriptional control, which could establish new paradigms for research in epigenetics and gene regulation.
Summary
In mammals, transcriptional control of many genes relies on cis-regulatory elements such as enhancers, which are often located tens to hundreds of kilobases away from their cognate promoters. Functional interactions between distal regulatory elements and target promoters require mutual physical proximity, which is linked to the three-dimensional structure of the chromatin fiber. Chromosome conformation capture studies revealed that chromosomes are partitioned into Topologically Associating Domains (TADs), sub-megabase domains of preferential physical interactions of the chromatin fiber. Genetic evidence showed that TAD boundaries restrict the genomic range of enhancer-promoter communication, and that interactions between regulatory sequences within TADs are further fine-tuned by smaller-scale structures. However, the mechanistic details of how physical interactions translate into transcriptional outputs are totally unknown. Here we propose to explore the biophysical mechanisms that link chromosome conformation and long-range transcriptional regulation using molecular biology, genetic engineering, single-cell experiments and physical modeling. We will measure chromosomal interactions in single cells and in time using a novel method that relies on an enzymatic process in vivo. Genetic engineering will be used to establish a cell system that allows quantitative measurement of how enhancer-promoter interactions relate to transcription at the population and single-cell levels, and to test the effects of perturbations without confounding effects. Finally, we will develop physical models of promoter operation in the presence of distal enhancers, which will be used to interpret the experimental data and formulate new testable predictions. With this integrated approach we aim at providing an entirely new layer of description of the general principles underlying transcriptional control, which could establish new paradigms for research in epigenetics and gene regulation.
Max ERC Funding
1 500 000 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym CancerFluxome
Project Cancer Cellular Metabolism across Space and Time
Researcher (PI) Tomer Shlomi
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Starting Grant (StG), LS2, ERC-2016-STG
Summary The metabolism of cancer cells is altered to meet cellular requirements for growth, providing novel means to selectively target tumorigenesis. While extensively studied, our current view of cancer cellular metabolism is fundamentally limited by lack of information on variability in metabolic activity between distinct subcellular compartments and cells.
We propose to develop a spatio-temporal fluxomics approach for quantifying metabolic fluxes in the cytoplasm vs. mitochondria as well as their cell-cycle dynamics, combining mass-spectrometry based isotope tracing with cell synchronization, rapid cellular fractionation, and computational metabolic network modelling.
Spatio-temporal fluxomics will be used to revisit and challenge our current understanding of central metabolism and its induced adaptation to oncogenic events – an important endeavour considering that mitochondrial bioenergetics and biosynthesis are required for tumorigenesis and accumulating evidences for metabolic alterations throughout the cell-cycle.
Our preliminary results show intriguing oscillations between oxidative and reductive TCA cycle flux throughout the cell-cycle. We will explore the extent to which cells adapt their metabolism to fulfil the changing energetic and anabolic demands throughout the cell-cycle, how metabolic oscillations are regulated, and their benefit to cells in terms of thermodynamic efficiency. Spatial flux analysis will be instrumental for investigating glutaminolysis - a ‘hallmark’ metabolic adaptation in cancer involving shuttling of metabolic intermediates and cofactors between mitochondria and cytoplasm.
On a clinical front, our spatio-temporal fluxomics analysis will enable to disentangle oncogene-induced flux alterations, having an important tumorigenic role, from artefacts originating from population averaging. A comprehensive view of how cells adapt their metabolism due to oncogenic mutations will reveal novel targets for anti-cancer drugs.
Summary
The metabolism of cancer cells is altered to meet cellular requirements for growth, providing novel means to selectively target tumorigenesis. While extensively studied, our current view of cancer cellular metabolism is fundamentally limited by lack of information on variability in metabolic activity between distinct subcellular compartments and cells.
We propose to develop a spatio-temporal fluxomics approach for quantifying metabolic fluxes in the cytoplasm vs. mitochondria as well as their cell-cycle dynamics, combining mass-spectrometry based isotope tracing with cell synchronization, rapid cellular fractionation, and computational metabolic network modelling.
Spatio-temporal fluxomics will be used to revisit and challenge our current understanding of central metabolism and its induced adaptation to oncogenic events – an important endeavour considering that mitochondrial bioenergetics and biosynthesis are required for tumorigenesis and accumulating evidences for metabolic alterations throughout the cell-cycle.
Our preliminary results show intriguing oscillations between oxidative and reductive TCA cycle flux throughout the cell-cycle. We will explore the extent to which cells adapt their metabolism to fulfil the changing energetic and anabolic demands throughout the cell-cycle, how metabolic oscillations are regulated, and their benefit to cells in terms of thermodynamic efficiency. Spatial flux analysis will be instrumental for investigating glutaminolysis - a ‘hallmark’ metabolic adaptation in cancer involving shuttling of metabolic intermediates and cofactors between mitochondria and cytoplasm.
On a clinical front, our spatio-temporal fluxomics analysis will enable to disentangle oncogene-induced flux alterations, having an important tumorigenic role, from artefacts originating from population averaging. A comprehensive view of how cells adapt their metabolism due to oncogenic mutations will reveal novel targets for anti-cancer drugs.
Max ERC Funding
1 481 250 €
Duration
Start date: 2017-02-01, End date: 2022-01-31
Project acronym CharFL
Project Characterizing the fitness landscape on population and global scales
Researcher (PI) Fyodor Kondrashov
Host Institution (HI) INSTITUTE OF SCIENCE AND TECHNOLOGYAUSTRIA
Call Details Consolidator Grant (CoG), LS2, ERC-2017-COG
Summary The fitness landscape, the representation of how the genotype manifests at the phenotypic (fitness) levels, may be among the most useful concepts in biology with impact on diverse fields, including quantitative genetics, emergence of pathogen resistance, synthetic biology and protein engineering. While progress in characterizing fitness landscapes has been made, three directions of research in the field remain virtually unexplored: the nature of the genotype to phenotype of standing variation (variation found in a natural population), the shape of the fitness landscape encompassing many genotypes and the modelling of complex genetic interactions in protein sequences.
The current proposal is designed to advance the study of fitness landscapes in these three directions using large-scale genomic experiments and experimental data from a model protein and theoretical work. The study of the fitness landscape of standing variation is aimed at the resolution of an outstanding question in quantitative genetics: the extent to which epistasis, non-additive genetic interactions, is shaping the phenotype. The second aim of characterizing the global fitness landscape will give us an understanding of how evolution proceeds along long evolutionary timescales, which can be directly applied to protein engineering and synthetic biology for the design of novel phenotypes. Finally, the third aim of modelling complex interactions will improve our ability to predict phenotypes from genotypes, such as the prediction of human disease mutations. In summary, the proposed study presents an opportunity to provide a unifying understanding of how phenotypes are shaped through genetic interactions. The consolidation of our empirical and theoretical work on different scales of the genotype to phenotype relationship will provide empirical data and novel context for several fields of biology.
Summary
The fitness landscape, the representation of how the genotype manifests at the phenotypic (fitness) levels, may be among the most useful concepts in biology with impact on diverse fields, including quantitative genetics, emergence of pathogen resistance, synthetic biology and protein engineering. While progress in characterizing fitness landscapes has been made, three directions of research in the field remain virtually unexplored: the nature of the genotype to phenotype of standing variation (variation found in a natural population), the shape of the fitness landscape encompassing many genotypes and the modelling of complex genetic interactions in protein sequences.
The current proposal is designed to advance the study of fitness landscapes in these three directions using large-scale genomic experiments and experimental data from a model protein and theoretical work. The study of the fitness landscape of standing variation is aimed at the resolution of an outstanding question in quantitative genetics: the extent to which epistasis, non-additive genetic interactions, is shaping the phenotype. The second aim of characterizing the global fitness landscape will give us an understanding of how evolution proceeds along long evolutionary timescales, which can be directly applied to protein engineering and synthetic biology for the design of novel phenotypes. Finally, the third aim of modelling complex interactions will improve our ability to predict phenotypes from genotypes, such as the prediction of human disease mutations. In summary, the proposed study presents an opportunity to provide a unifying understanding of how phenotypes are shaped through genetic interactions. The consolidation of our empirical and theoretical work on different scales of the genotype to phenotype relationship will provide empirical data and novel context for several fields of biology.
Max ERC Funding
1 998 280 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym CHROMATINMODWEB
Project Functional and regulatory protein networks of chromatin modifying enzymes
Researcher (PI) Antonis Kirmizis
Host Institution (HI) UNIVERSITY OF CYPRUS
Call Details Starting Grant (StG), LS2, ERC-2010-StG_20091118
Summary Proper and controlled expression of genes is essential for normal cell growth. Chromatin modifying enzymes play a
fundamental role in the control of gene expression and their deregulation is often linked to cancer. In recent years chromatin
modifiers have been considered key targets for cancer therapy and this demands a full understanding of their biological
functions. Previous biochemical and structural studies have focused on the identification of chromatin modifying enzymes
and characterization of their substrate specificities and catalytic mechanisms. However, a comprehensive view of the
biological processes, signaling pathways and regulatory circuits in which these enzymes participate is missing. Protein
arginine methyltransferases (PRMTs), which methylate histones and are evolutionarily conserved from yeast to human,
constitute an example of chromatin modifying enzymes whose functional and regulatory networks remain unexplored. I
propose to use complementary state-of-the-art genomic and proteomic approaches in order to identify the protein networks
and cellular pathways that are linked to PRMTs. In parallel, I will identify novel regulatory circuits and define the molecular
mechanisms that control methylation of specific histone arginine residues. I will utilize the yeast S. cerevisiae as a model
organism because it allows genetic, biochemical and genomic approaches to be combined. Most importantly, many of the
pathways and mechanisms in yeast are highly conserved and therefore, the findings from this study will be pertinent to
human and other eukaryotic organisms. Establishing a global cellular wiring diagram of PRMTs will serve as a paradigm for
other chromatin modifiers and is imperative for assessing the efficacy of these enzymes as therapeutic targets.
Summary
Proper and controlled expression of genes is essential for normal cell growth. Chromatin modifying enzymes play a
fundamental role in the control of gene expression and their deregulation is often linked to cancer. In recent years chromatin
modifiers have been considered key targets for cancer therapy and this demands a full understanding of their biological
functions. Previous biochemical and structural studies have focused on the identification of chromatin modifying enzymes
and characterization of their substrate specificities and catalytic mechanisms. However, a comprehensive view of the
biological processes, signaling pathways and regulatory circuits in which these enzymes participate is missing. Protein
arginine methyltransferases (PRMTs), which methylate histones and are evolutionarily conserved from yeast to human,
constitute an example of chromatin modifying enzymes whose functional and regulatory networks remain unexplored. I
propose to use complementary state-of-the-art genomic and proteomic approaches in order to identify the protein networks
and cellular pathways that are linked to PRMTs. In parallel, I will identify novel regulatory circuits and define the molecular
mechanisms that control methylation of specific histone arginine residues. I will utilize the yeast S. cerevisiae as a model
organism because it allows genetic, biochemical and genomic approaches to be combined. Most importantly, many of the
pathways and mechanisms in yeast are highly conserved and therefore, the findings from this study will be pertinent to
human and other eukaryotic organisms. Establishing a global cellular wiring diagram of PRMTs will serve as a paradigm for
other chromatin modifiers and is imperative for assessing the efficacy of these enzymes as therapeutic targets.
Max ERC Funding
1 498 279 €
Duration
Start date: 2011-01-01, End date: 2016-06-30
Project acronym CHROMATINSYS
Project Systematic Approach to Dissect the Interplay between Chromatin and Transcription
Researcher (PI) Nir Friedman
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Advanced Grant (AdG), LS2, ERC-2013-ADG
Summary Epigenetic mechanisms play an important role in regulating and maintaining the functionality of cells and have been implicated in a wide range of human diseases. Histone proteins that form the protein core of nucleosomes are subject to a bewildering array of covalent and structural modifications, which can repress, permit, or promote transcription. These modifications can be added and removed by specialized complexes that are recruited by other covalent modifications, by transcription factors, or by the transcriptional machinery. Advances in genomics led to comprehensive mapping of the ``epigenome'' in a range of tissues and organisms. These maps established the tight connection between histone modifications and transcription programs. These static charts, however, are less successful at uncovering the underlying mechanisms, logic, and function of histone modifications in establishing and maintaining transcriptional programs. Our premise is that we can answer these basic questions by observing the effect of genetic perturbations on the dynamics of both chromatin state and transcriptional activity. We aim to dissect the chromatin-transcription system in a systematic manner by building on our extensive experience in modeling and analysis, and a unique high-throughput experimental system we established in my lab.
We plan to use the budding yeast model organism, which allows for
efficient genetic and experimental manipulations. We will combine two technologies: (1) high-throughput measurements of single-cell
transcriptional output using fluorescence reporters; and (2) high-throughput immunoprecipitation sequencing assays to map chromatin state. Measuring with these the dynamics of response to stimuli under different genetic backgrounds and using advanced stochastic network models, we will chart detailed mechanisms that are opaque to current approaches and elucidate the general principles that govern the interplay between chromatin and transcription.
Summary
Epigenetic mechanisms play an important role in regulating and maintaining the functionality of cells and have been implicated in a wide range of human diseases. Histone proteins that form the protein core of nucleosomes are subject to a bewildering array of covalent and structural modifications, which can repress, permit, or promote transcription. These modifications can be added and removed by specialized complexes that are recruited by other covalent modifications, by transcription factors, or by the transcriptional machinery. Advances in genomics led to comprehensive mapping of the ``epigenome'' in a range of tissues and organisms. These maps established the tight connection between histone modifications and transcription programs. These static charts, however, are less successful at uncovering the underlying mechanisms, logic, and function of histone modifications in establishing and maintaining transcriptional programs. Our premise is that we can answer these basic questions by observing the effect of genetic perturbations on the dynamics of both chromatin state and transcriptional activity. We aim to dissect the chromatin-transcription system in a systematic manner by building on our extensive experience in modeling and analysis, and a unique high-throughput experimental system we established in my lab.
We plan to use the budding yeast model organism, which allows for
efficient genetic and experimental manipulations. We will combine two technologies: (1) high-throughput measurements of single-cell
transcriptional output using fluorescence reporters; and (2) high-throughput immunoprecipitation sequencing assays to map chromatin state. Measuring with these the dynamics of response to stimuli under different genetic backgrounds and using advanced stochastic network models, we will chart detailed mechanisms that are opaque to current approaches and elucidate the general principles that govern the interplay between chromatin and transcription.
Max ERC Funding
2 396 450 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym CNIDARIAMICRORNA
Project Elucidation of the evolution of post-transcriptional regulation by characterizing the cnidarian microRNA pathway
Researcher (PI) Yehu Moran
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Starting Grant (StG), LS2, ERC-2014-STG
Summary Over the past decade small RNAs such as microRNAs (miRNAs) and small interfering RNAs (siRNAs) have been shown to carry pivotal roles in post-transcriptional regulation and genome protection and to play an important part in various physiological processes in animals. miRNAs can be found in a very wide range of animals yet their functions were studied almost exclusively in members of the Bilateria such as insects, nematodes and vertebrates. Hence studying their function in representatives of non-bilaterian phyla such as Cnidaria (sea anemones, corals, hydras and jellyfish) is crucial for understanding the evolution of miRNAs in animals and can provide important insights into their roles in the ancient ancestor of Cnidaria and Bilateria. The sea anemone Nematostella vectensis is an excellent model for such a study since it can be grown in large numbers throughout its life cycle in the lab and because well-established genetic manipulation techniques are available for this species. Our preliminary results indicate that miRNAs in Nematostella frequently have a nearly perfect match to their messenger RNA (mRNA) targets, resulting in cleavage of the target. This mode of action is common for plant miRNAs, but is very rare in Bilateria. This finding together with my recent discovery of a Nematostella homolog of HYL1, a protein involved in miRNA biogenesis in plants, raises the exciting possibility that the miRNA pathway existed in the common ancestor of plants and animals. Here I suggest to bring together an array of advanced biochemical and genetic methods such as gene knockdown, transgenesis, high throughput sequencing and immunoprecipitation in order to obtain - for the first time - a deep understanding of the biogenesis and mechanism of action of small RNAs in Cnidaria. This will provide a novel way to understand the evolution of this important molecular pathway and to evaluate its age and ancestral form.
Summary
Over the past decade small RNAs such as microRNAs (miRNAs) and small interfering RNAs (siRNAs) have been shown to carry pivotal roles in post-transcriptional regulation and genome protection and to play an important part in various physiological processes in animals. miRNAs can be found in a very wide range of animals yet their functions were studied almost exclusively in members of the Bilateria such as insects, nematodes and vertebrates. Hence studying their function in representatives of non-bilaterian phyla such as Cnidaria (sea anemones, corals, hydras and jellyfish) is crucial for understanding the evolution of miRNAs in animals and can provide important insights into their roles in the ancient ancestor of Cnidaria and Bilateria. The sea anemone Nematostella vectensis is an excellent model for such a study since it can be grown in large numbers throughout its life cycle in the lab and because well-established genetic manipulation techniques are available for this species. Our preliminary results indicate that miRNAs in Nematostella frequently have a nearly perfect match to their messenger RNA (mRNA) targets, resulting in cleavage of the target. This mode of action is common for plant miRNAs, but is very rare in Bilateria. This finding together with my recent discovery of a Nematostella homolog of HYL1, a protein involved in miRNA biogenesis in plants, raises the exciting possibility that the miRNA pathway existed in the common ancestor of plants and animals. Here I suggest to bring together an array of advanced biochemical and genetic methods such as gene knockdown, transgenesis, high throughput sequencing and immunoprecipitation in order to obtain - for the first time - a deep understanding of the biogenesis and mechanism of action of small RNAs in Cnidaria. This will provide a novel way to understand the evolution of this important molecular pathway and to evaluate its age and ancestral form.
Max ERC Funding
1 499 587 €
Duration
Start date: 2015-05-01, End date: 2020-04-30
Project acronym CrackEpitranscriptom
Project Cracking the epitranscriptome
Researcher (PI) Schraga SCHWARTZ
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Starting Grant (StG), LS2, ERC-2016-STG
Summary Over 100 types of distinct modifications are catalyzed on RNA molecules post-transcriptionally. In an analogous manner to well-studied chemical modifications on proteins or DNA, modifications on RNA - and particularly on mRNA - harbor the exciting potential of regulating the complex and interlinked life cycle of these molecules. The most abundant modification in mammalian and yeast mRNA is N6-methyladenosine (m6A). We have pioneered approaches for mapping m6A in a transcriptome wide manner, and we and others have identified factors involved in encoding and decoding m6A. While experimental disruption of these factors is associated with severe phenotypes, the role of m6A remains enigmatic. No single methylated site has been shown to causally underlie any physiological or molecular function. This proposal aims to establish a framework for systematically deciphering the molecular function of a modification and its underlying mechanisms and to uncover the physiological role of the modification in regulation of a cellular response. We will apply this framework to m6A in the context of meiosis in budding yeast, as m6A dynamically accumulates on meiotic mRNAs and as the methyltransferase catalyzing m6A is essential for meiosis. We will (1) aim to elucidate the physiological targets of methylation governing entry into meiosis (2) seek to elucidate the function of m6A at the molecular level, and understand its impact on the various steps of the mRNA life cycle, (3) seek to understand the mechanisms underlying its effects. These aims will provide a comprehensive framework for understanding how the epitranscriptome, an emerging post-transcriptional layer of regulation, fine-tunes gene regulation and impacts cellular decision making in a dynamic response, and will set the stage towards dissecting the roles of m6A and of an expanding set of mRNA modifications in more complex and disease related systems.
Summary
Over 100 types of distinct modifications are catalyzed on RNA molecules post-transcriptionally. In an analogous manner to well-studied chemical modifications on proteins or DNA, modifications on RNA - and particularly on mRNA - harbor the exciting potential of regulating the complex and interlinked life cycle of these molecules. The most abundant modification in mammalian and yeast mRNA is N6-methyladenosine (m6A). We have pioneered approaches for mapping m6A in a transcriptome wide manner, and we and others have identified factors involved in encoding and decoding m6A. While experimental disruption of these factors is associated with severe phenotypes, the role of m6A remains enigmatic. No single methylated site has been shown to causally underlie any physiological or molecular function. This proposal aims to establish a framework for systematically deciphering the molecular function of a modification and its underlying mechanisms and to uncover the physiological role of the modification in regulation of a cellular response. We will apply this framework to m6A in the context of meiosis in budding yeast, as m6A dynamically accumulates on meiotic mRNAs and as the methyltransferase catalyzing m6A is essential for meiosis. We will (1) aim to elucidate the physiological targets of methylation governing entry into meiosis (2) seek to elucidate the function of m6A at the molecular level, and understand its impact on the various steps of the mRNA life cycle, (3) seek to understand the mechanisms underlying its effects. These aims will provide a comprehensive framework for understanding how the epitranscriptome, an emerging post-transcriptional layer of regulation, fine-tunes gene regulation and impacts cellular decision making in a dynamic response, and will set the stage towards dissecting the roles of m6A and of an expanding set of mRNA modifications in more complex and disease related systems.
Max ERC Funding
1 402 666 €
Duration
Start date: 2016-11-01, End date: 2021-10-31
Project acronym CRISPRsition
Project Developing CRISPR adaptation platforms for basic and applied research
Researcher (PI) Ehud Itzhak Qimron
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Consolidator Grant (CoG), LS2, ERC-2018-COG
Summary The CRISPR-Cas system has been extensively studied for its ability to cleave DNA. In contrast, studies of the ability of the system to acquire and integrate new DNA from invaders as a form of prokaryotic adaptive immunity, have lagged behind. This delay reflects the extreme enthusiasm surrounding the potential of using the system’s cleavage capabilities as a genome editing tool. However, the enormous potential of the adaptation process can and should arouse a similar degree of enthusiasm. My lab has pioneered studies on the CRISPR adaptation process by establishing new methodologies, and applying them to demonstrate the essential role of the proteins and DNA elements, as well as the molecular mechanisms, operating in this process. In this project, I will establish novel platforms for studying adaptation and develop them into biotechnological applications and research tools. These tools will allow me to identify the first natural and synthetic inhibitors of the adaptation process. This, in turn, will provide genetic tools to control adaptation, as well as advance the understanding of the arms race between bacteria and their invaders. I will also harness the adaptation process as a platform for diversifying genetic elements for phage display, and for extending phage recognition of a wide range of hosts. Lastly, I will provide the first evidence for an association between the CRISPR adaptation system and gene repression. This linkage will form the basis of a molecular scanner and recorder platform that I will develop and that can be used to identify crucial genetic elements in phage genomes as well as novel regulatory circuits in the bacterial genome. Together, my findings will represent a considerable leap in the understanding of CRISPR adaptation with respect to the process, potential applications, and the intriguing evolutionary significance.
Summary
The CRISPR-Cas system has been extensively studied for its ability to cleave DNA. In contrast, studies of the ability of the system to acquire and integrate new DNA from invaders as a form of prokaryotic adaptive immunity, have lagged behind. This delay reflects the extreme enthusiasm surrounding the potential of using the system’s cleavage capabilities as a genome editing tool. However, the enormous potential of the adaptation process can and should arouse a similar degree of enthusiasm. My lab has pioneered studies on the CRISPR adaptation process by establishing new methodologies, and applying them to demonstrate the essential role of the proteins and DNA elements, as well as the molecular mechanisms, operating in this process. In this project, I will establish novel platforms for studying adaptation and develop them into biotechnological applications and research tools. These tools will allow me to identify the first natural and synthetic inhibitors of the adaptation process. This, in turn, will provide genetic tools to control adaptation, as well as advance the understanding of the arms race between bacteria and their invaders. I will also harness the adaptation process as a platform for diversifying genetic elements for phage display, and for extending phage recognition of a wide range of hosts. Lastly, I will provide the first evidence for an association between the CRISPR adaptation system and gene repression. This linkage will form the basis of a molecular scanner and recorder platform that I will develop and that can be used to identify crucial genetic elements in phage genomes as well as novel regulatory circuits in the bacterial genome. Together, my findings will represent a considerable leap in the understanding of CRISPR adaptation with respect to the process, potential applications, and the intriguing evolutionary significance.
Max ERC Funding
2 000 000 €
Duration
Start date: 2019-12-01, End date: 2024-11-30
Project acronym DEPICT
Project Design principles and controllability of protein circuits
Researcher (PI) Uri Alon
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Advanced Grant (AdG), LS2, ERC-2009-AdG
Summary Cells use circuits of interacting proteins to respond to their environment. In the past decades, molecular biology has provided detailed knowledge on the proteins in these circuits and their interactions. To fully understand circuit function requires, in addition to molecular knowledge, new concepts that explain how multiple components work together to perform systems level functions. Our lab has been a leader in defining such concepts, based on combined experimental and theoretical study of well characterized circuits in bacteria and human cells. In this proposal we aim to find novel principles on how circuits resist fluctuations and errors, and how they can be controlled by drugs: (1) Why do key regulatory systems use bifunctional enzymes that catalyze antagonistic reactions (e.g. both kinase and phosphatase)? We will test the role of bifunctional enzymes in making circuits robust to variations in protein levels. (2) Why are some genes regulated by a repressor and others by an activator? We will test this in the context of reduction of errors in transcription control. (3) Are there principles that describe how drugs combine to affect protein dynamics in human cells? We will use a novel dynamic proteomics approach developed in our lab to explore how protein dynamics can be controlled by drug combinations. This research will define principles that unite our understanding of seemingly distinct biological systems, and explain their particular design in terms of systems-level functions. This understanding will help form the basis for a future medicine that rationally controls the state of the cell based on a detailed blueprint of their circuit design, and quantitative principles for the effects of drugs on this circuitry.
Summary
Cells use circuits of interacting proteins to respond to their environment. In the past decades, molecular biology has provided detailed knowledge on the proteins in these circuits and their interactions. To fully understand circuit function requires, in addition to molecular knowledge, new concepts that explain how multiple components work together to perform systems level functions. Our lab has been a leader in defining such concepts, based on combined experimental and theoretical study of well characterized circuits in bacteria and human cells. In this proposal we aim to find novel principles on how circuits resist fluctuations and errors, and how they can be controlled by drugs: (1) Why do key regulatory systems use bifunctional enzymes that catalyze antagonistic reactions (e.g. both kinase and phosphatase)? We will test the role of bifunctional enzymes in making circuits robust to variations in protein levels. (2) Why are some genes regulated by a repressor and others by an activator? We will test this in the context of reduction of errors in transcription control. (3) Are there principles that describe how drugs combine to affect protein dynamics in human cells? We will use a novel dynamic proteomics approach developed in our lab to explore how protein dynamics can be controlled by drug combinations. This research will define principles that unite our understanding of seemingly distinct biological systems, and explain their particular design in terms of systems-level functions. This understanding will help form the basis for a future medicine that rationally controls the state of the cell based on a detailed blueprint of their circuit design, and quantitative principles for the effects of drugs on this circuitry.
Max ERC Funding
2 261 440 €
Duration
Start date: 2010-03-01, End date: 2015-02-28
Project acronym DMR-CODE
Project Decoding the Mammalian transcriptional Regulatory code in development and stimulatory responses
Researcher (PI) Ido Amit
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Starting Grant (StG), LS2, ERC-2012-StG_20111109
Summary Transcription factors (TF) regulate genome function by controlling gene expression. Comprehensive characterization of the in vivo binding of TF to the DNA in relevant primary models is a critical step towards a global understanding of the human genome. Recent advances in high-throughput genomic technologies provide an extraordinary opportunity to develop and apply systematic approaches to learn the underline principles and mechanisms of mammalian transcriptional networks. The premise of this proposal is that a tractable set of rules govern how cells commit to a specific cell type or respond to the environment, and that these rules are coded in regulatory elements in the genome. Currently our understanding of the mammalian regulatory code is hampered by the difficulty of directly measuring in vivo binding of large numbers of TFs to DNA across multiple primary cell types and their natural response to physiological stimuli.
Here, we overcome this bottleneck by systematically exploring the genomic binding network of 1. All relevant TFs of key hematopoietic cells in both steady state and under relevant stimuli. 2. Follow the changes in TF networks as cells differentiate 3. Use these models to engineer cell states and responses. To achieve these goals, we developed a new method for automated high throughput ChIP coupled to sequencing (HT-ChIP-Seq). We used this method to measure binding of 40 TFs in 4 time points following stimulation of dendritic cells with pathogen components. We find that TFs vary substantially in their binding dynamics, genomic localization, number of binding events, and degree of interaction with other TFs. The analysis of this data suggests that the TF network is hierarchically organized, and composed of different types of TFs, cell differentiation factors, factors that prime for gene induction, and factors that bind more specifically and dynamically. This proposal revisits and challenges the current understanding of the mammalian regulatory code.
Summary
Transcription factors (TF) regulate genome function by controlling gene expression. Comprehensive characterization of the in vivo binding of TF to the DNA in relevant primary models is a critical step towards a global understanding of the human genome. Recent advances in high-throughput genomic technologies provide an extraordinary opportunity to develop and apply systematic approaches to learn the underline principles and mechanisms of mammalian transcriptional networks. The premise of this proposal is that a tractable set of rules govern how cells commit to a specific cell type or respond to the environment, and that these rules are coded in regulatory elements in the genome. Currently our understanding of the mammalian regulatory code is hampered by the difficulty of directly measuring in vivo binding of large numbers of TFs to DNA across multiple primary cell types and their natural response to physiological stimuli.
Here, we overcome this bottleneck by systematically exploring the genomic binding network of 1. All relevant TFs of key hematopoietic cells in both steady state and under relevant stimuli. 2. Follow the changes in TF networks as cells differentiate 3. Use these models to engineer cell states and responses. To achieve these goals, we developed a new method for automated high throughput ChIP coupled to sequencing (HT-ChIP-Seq). We used this method to measure binding of 40 TFs in 4 time points following stimulation of dendritic cells with pathogen components. We find that TFs vary substantially in their binding dynamics, genomic localization, number of binding events, and degree of interaction with other TFs. The analysis of this data suggests that the TF network is hierarchically organized, and composed of different types of TFs, cell differentiation factors, factors that prime for gene induction, and factors that bind more specifically and dynamically. This proposal revisits and challenges the current understanding of the mammalian regulatory code.
Max ERC Funding
1 500 000 €
Duration
Start date: 2012-10-01, End date: 2017-09-30
Project acronym DOGPSYCH
Project Canine models of human psychiatric disease: identifying novel anxiety genes with the help of man's best friend
Researcher (PI) Hannes Tapani Lohi
Host Institution (HI) HELSINGIN YLIOPISTO
Call Details Starting Grant (StG), LS2, ERC-2010-StG_20091118
Summary Anxiety disorders include different forms of pathological fear and anxiety and rank among the most common health concerns in human medicine. Millions of people become affected every year, and many of them do not respond to treatments. Anxiety disorders are heritable, but genetically complex. As a result, traditional gene mapping methods in the human population with prominent locus and allelic heterogeneity have not succeeded. Similarly, rodents have provided some insights into the circuitry of anxiety, but naturally occurring versions do not exist and gene deletion studies have not provided adequate models. To break through and identify new anxiety genes, I propose a novel and unique approach that resorts to man s best friend, dog. Taking advantage of the exaggerated genetic homogeneity characteristic of purebred dogs, recent genomics tools and the existence of naturally occurring heritable behaviour disorders in dogs can remedy the current lack of a suitable animal model of human psychiatric disorders. I propose to collect and perform a genome-wide association study in four breed-specific anxiety traits in dogs representing the three major forms of human anxiety: compulsive pacing and tail-chasing, noise phobia, and shyness corresponding to human OCD, panic disorder and social phobia, respectively. Canine anxiety disorders respond to human medications and other phenomenological studies suggest a share biological mechanism in both species. The proposed research has the potential to discover new genetic risk factors, which eventually will shed light on the biological basis of common neuropsychiatric disorders in both dog and human, provide insight into etiological mechanisms, enable identification of individuals at high-risk for adverse health outcomes, and facilitate development of tailored treatments.
Summary
Anxiety disorders include different forms of pathological fear and anxiety and rank among the most common health concerns in human medicine. Millions of people become affected every year, and many of them do not respond to treatments. Anxiety disorders are heritable, but genetically complex. As a result, traditional gene mapping methods in the human population with prominent locus and allelic heterogeneity have not succeeded. Similarly, rodents have provided some insights into the circuitry of anxiety, but naturally occurring versions do not exist and gene deletion studies have not provided adequate models. To break through and identify new anxiety genes, I propose a novel and unique approach that resorts to man s best friend, dog. Taking advantage of the exaggerated genetic homogeneity characteristic of purebred dogs, recent genomics tools and the existence of naturally occurring heritable behaviour disorders in dogs can remedy the current lack of a suitable animal model of human psychiatric disorders. I propose to collect and perform a genome-wide association study in four breed-specific anxiety traits in dogs representing the three major forms of human anxiety: compulsive pacing and tail-chasing, noise phobia, and shyness corresponding to human OCD, panic disorder and social phobia, respectively. Canine anxiety disorders respond to human medications and other phenomenological studies suggest a share biological mechanism in both species. The proposed research has the potential to discover new genetic risk factors, which eventually will shed light on the biological basis of common neuropsychiatric disorders in both dog and human, provide insight into etiological mechanisms, enable identification of individuals at high-risk for adverse health outcomes, and facilitate development of tailored treatments.
Max ERC Funding
1 381 807 €
Duration
Start date: 2010-10-01, End date: 2015-09-30
Project acronym DYNACLOCK
Project Dynamic protein-DNA interactomes and circadian transcription regulatory networks in mammals
Researcher (PI) Felix Naef
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Starting Grant (StG), LS2, ERC-2010-StG_20091118
Summary The aim of this project is to understand the dynamics of protein-DNA interactomes underlying circadian oscillators in mammals, and how these shape circadian transcriptional output programs. Specifically our goal is to solve a fundamental issue in circadian biology: the phase specificity problem underlying circadian gene expression. We have taken a challenging and original multi-disciplinary approach in which molecular biology experiments will be tightly interlinked with computational analyses and biophysical modeling. The approach will generate time resolved protein-DNA interactomes in mouse liver for several key circadian repressors at unprecedented resolution. These experiments will be complemented with chromosome conformation capture (3C) experiments to monitor how looping interactions and 3D genome structure rearrange during the circadian cycle, which will inform on how circadian transcription networks use long-range gene regulatory mechanisms. Novel computational algorithms based on biophysical principles will be developed and implemented to optimally analyze interactome and 3C datasets. For the latter, statistical models from polymer physics will be used to reconstruct the chromatin networks and interaction maps from the 3C data. At the detailed level of individual cells, we will investigate transcription bursts, and how those are involved in the control of circadian gene expression. In particular we will exploit high temporal resolution bioluminescence reporters using a biophysical model of transcription coupled with a Hidden Markov Model (HMM). Through our innovative approach, we expect that the data generated and state-of-the-art analyses performed will lead novel insight into the role and mechanics of circadian transcription in controlling circadian outputs in mammals.
Summary
The aim of this project is to understand the dynamics of protein-DNA interactomes underlying circadian oscillators in mammals, and how these shape circadian transcriptional output programs. Specifically our goal is to solve a fundamental issue in circadian biology: the phase specificity problem underlying circadian gene expression. We have taken a challenging and original multi-disciplinary approach in which molecular biology experiments will be tightly interlinked with computational analyses and biophysical modeling. The approach will generate time resolved protein-DNA interactomes in mouse liver for several key circadian repressors at unprecedented resolution. These experiments will be complemented with chromosome conformation capture (3C) experiments to monitor how looping interactions and 3D genome structure rearrange during the circadian cycle, which will inform on how circadian transcription networks use long-range gene regulatory mechanisms. Novel computational algorithms based on biophysical principles will be developed and implemented to optimally analyze interactome and 3C datasets. For the latter, statistical models from polymer physics will be used to reconstruct the chromatin networks and interaction maps from the 3C data. At the detailed level of individual cells, we will investigate transcription bursts, and how those are involved in the control of circadian gene expression. In particular we will exploit high temporal resolution bioluminescence reporters using a biophysical model of transcription coupled with a Hidden Markov Model (HMM). Through our innovative approach, we expect that the data generated and state-of-the-art analyses performed will lead novel insight into the role and mechanics of circadian transcription in controlling circadian outputs in mammals.
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-03-01, End date: 2016-02-29
Project acronym EASTFE3
Project Efficient and accurate simulation techniques for free energies, enthalpies and entropies
Researcher (PI) Bernard Christiaan Oostenbrink
Host Institution (HI) UNIVERSITAET FUER BODENKULTUR WIEN
Call Details Starting Grant (StG), LS2, ERC-2010-StG_20091118
Summary Computational, structure-based, drug design offers insight at an atomic resolution, which is commonly not attainable by experimental means. Detailed calculations on protein-ligand interactions help to rationalize and predict experimental findings. Accurate and efficient calculations of binding free energies is essential in this respect. In addition, knowledge concerning the enthalpic and entropic contributions are highly relevant to determine novel drug design strategies and to understand the underlying principles of ligand binding.
Currently available methods to address ligand affinity either do not include all relevant contributions to the binding free energy, or are too computationally demanding to be applied straightforwardly. In addition, calculations on enthalpy and entropy for drug design purposes are very rare, due to the difficulty in calculating these accurately. This proposal describes the research that leads the way to new, standard applications to be used in drug design processes in academia and industry. Furthermore, we propose to investigate the enthalpic and entropic contributions to ligand binding. We define a ligand-surroundings enthalpy and entropy, which conveys more information than the experimentally accessible enthalpy and entropy of ligand binding.
In support of this research, we will develop new enhanced sampling techniques which not only render the above calculations practically feasible, but which will also find their application in related research questions such as the protein folding problem or the elucidation of protein-protein interactions.
The methods described are highly relevant for the pharmaceutical industry, where currently available computational approaches are insufficient to answer the questions of todays drug discovery programmes.
Summary
Computational, structure-based, drug design offers insight at an atomic resolution, which is commonly not attainable by experimental means. Detailed calculations on protein-ligand interactions help to rationalize and predict experimental findings. Accurate and efficient calculations of binding free energies is essential in this respect. In addition, knowledge concerning the enthalpic and entropic contributions are highly relevant to determine novel drug design strategies and to understand the underlying principles of ligand binding.
Currently available methods to address ligand affinity either do not include all relevant contributions to the binding free energy, or are too computationally demanding to be applied straightforwardly. In addition, calculations on enthalpy and entropy for drug design purposes are very rare, due to the difficulty in calculating these accurately. This proposal describes the research that leads the way to new, standard applications to be used in drug design processes in academia and industry. Furthermore, we propose to investigate the enthalpic and entropic contributions to ligand binding. We define a ligand-surroundings enthalpy and entropy, which conveys more information than the experimentally accessible enthalpy and entropy of ligand binding.
In support of this research, we will develop new enhanced sampling techniques which not only render the above calculations practically feasible, but which will also find their application in related research questions such as the protein folding problem or the elucidation of protein-protein interactions.
The methods described are highly relevant for the pharmaceutical industry, where currently available computational approaches are insufficient to answer the questions of todays drug discovery programmes.
Max ERC Funding
1 485 615 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym EcCRISPR
Project Novel roles, components, and mechanisms of the Escherichia coli CRISPR/Cas system
Researcher (PI) Ehud Itzhak Qimron
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Starting Grant (StG), LS2, ERC-2013-StG
Summary A novel type of defense system was recently identified in bacteria: the CRISPR array and its associated gene products (Cas). The system inserts short DNA sequences, called spacers, derived from foreign nucleic acid molecules in between direct repeats, thus forming the CRISPR array. The transcribed spacers eventually serve as molecular guides for Cas proteins that monitor and destroy nucleic acids having sequences similar to those spacers. Thorough mapping of the functional components and regulators of the system in a single model organism will be extremely valuable for understanding its mechanism of action. Studying the interactions between bacteria and phages should highlight the evolutionary role of the system and its consequences for shaping ecological systems. These insights will lead to novel ways of exploiting the system to improve molecular biology tools, to protect fermenting bacteria from phage spoilage, to equip phages with anti-CRISPR warfare to fight bacteria, and to prevent horizontal gene transfer between pathogens. Here, I intend to systematically seek out new roles of the system and to identify fundamental mechanisms and components that allow the system to function efficiently. I will address fundamental questions such as how the system avoids sampling self DNA into the CRISPR array. In addition, I will pursue two revolutionary possibilities. One, that the CRISPR/Cas system is not merely an adaptive defense system against phages, but that one of its roles is to serve as molecular machinery for silencing specific harmful genes by generating small silencing RNAs without the need for Cas proteins. The other is to test the system’s ability to prevent horizontal gene transfer of antibiotic resistance genes in an effort to study the system’s ecological value, potentially for applicative uses. My proposed studies will allow deeper understanding of the system, and enable breakthroughs from both basic and applicative aspects of the CRISPR field studies.
Summary
A novel type of defense system was recently identified in bacteria: the CRISPR array and its associated gene products (Cas). The system inserts short DNA sequences, called spacers, derived from foreign nucleic acid molecules in between direct repeats, thus forming the CRISPR array. The transcribed spacers eventually serve as molecular guides for Cas proteins that monitor and destroy nucleic acids having sequences similar to those spacers. Thorough mapping of the functional components and regulators of the system in a single model organism will be extremely valuable for understanding its mechanism of action. Studying the interactions between bacteria and phages should highlight the evolutionary role of the system and its consequences for shaping ecological systems. These insights will lead to novel ways of exploiting the system to improve molecular biology tools, to protect fermenting bacteria from phage spoilage, to equip phages with anti-CRISPR warfare to fight bacteria, and to prevent horizontal gene transfer between pathogens. Here, I intend to systematically seek out new roles of the system and to identify fundamental mechanisms and components that allow the system to function efficiently. I will address fundamental questions such as how the system avoids sampling self DNA into the CRISPR array. In addition, I will pursue two revolutionary possibilities. One, that the CRISPR/Cas system is not merely an adaptive defense system against phages, but that one of its roles is to serve as molecular machinery for silencing specific harmful genes by generating small silencing RNAs without the need for Cas proteins. The other is to test the system’s ability to prevent horizontal gene transfer of antibiotic resistance genes in an effort to study the system’s ecological value, potentially for applicative uses. My proposed studies will allow deeper understanding of the system, and enable breakthroughs from both basic and applicative aspects of the CRISPR field studies.
Max ERC Funding
1 499 000 €
Duration
Start date: 2013-12-01, End date: 2018-11-30
Project acronym EFFECTOMICS
Project EFFECTOMICS- elucidating the toolbox of
biotrophic pathogens
Researcher (PI) Armin Djamei
Host Institution (HI) GREGOR MENDEL INSTITUT FUR MOLEKULARE PFLANZENBIOLOGIE GMBH
Call Details Starting Grant (StG), LS2, ERC-2013-StG
Summary "Our existence as human beings is based on plants and their products. Worldwide, crops are threatened by pests including biotrophic fungi. Therefore, it is of vital interest to develop new strategies to reduce crop losses and to improve crop plants for the growing world population. Biotrophic plant pathogens employ small secreted molecules, so-called effectors, to overcome plant defence systems and to establish biotrophy. The rapid increase in available genome sequences of biotrophic pathogens and in transcriptomic datasets of their biotrophic stages allow us to identify putative secreted proteinaceous effectors by bioinformatic means. However, our insight into the functions of these effectors is still very limited. In this proposal, the PI´s extensive experience on both the plant host side and the fungal pathogen side of the biotrophic interaction is exploited to develop a workflow for functional, partially robotic-based screens to fill this gap. The combination of screen-deduced functional information with the analysis of effector localisation and specific host interactors will provide the basis for formulating starting hypotheses of effector function. These will then be tested in individual case studies, employing the well established Ustilago maydis-Zea mays as well as the new Ustilago bromivora-Brachypodium distachyon model systems. The project will be conducted at the Max Planck Institute (MPI) for Terrestrial Microbiology in a highly stimulating scientific environment. Linking the dramatic morphological changes and underlying molecular events during biotrophy on the host side to the action of subsets or even single effector proteins will allow the creation of a synthetic effectome. The deep functional understanding of the manipulative toolbox of biotrophs has the potential to facilitate transgenic crop development and will open a new era in the development of sustainable antifungal plant protection strategies."
Summary
"Our existence as human beings is based on plants and their products. Worldwide, crops are threatened by pests including biotrophic fungi. Therefore, it is of vital interest to develop new strategies to reduce crop losses and to improve crop plants for the growing world population. Biotrophic plant pathogens employ small secreted molecules, so-called effectors, to overcome plant defence systems and to establish biotrophy. The rapid increase in available genome sequences of biotrophic pathogens and in transcriptomic datasets of their biotrophic stages allow us to identify putative secreted proteinaceous effectors by bioinformatic means. However, our insight into the functions of these effectors is still very limited. In this proposal, the PI´s extensive experience on both the plant host side and the fungal pathogen side of the biotrophic interaction is exploited to develop a workflow for functional, partially robotic-based screens to fill this gap. The combination of screen-deduced functional information with the analysis of effector localisation and specific host interactors will provide the basis for formulating starting hypotheses of effector function. These will then be tested in individual case studies, employing the well established Ustilago maydis-Zea mays as well as the new Ustilago bromivora-Brachypodium distachyon model systems. The project will be conducted at the Max Planck Institute (MPI) for Terrestrial Microbiology in a highly stimulating scientific environment. Linking the dramatic morphological changes and underlying molecular events during biotrophy on the host side to the action of subsets or even single effector proteins will allow the creation of a synthetic effectome. The deep functional understanding of the manipulative toolbox of biotrophs has the potential to facilitate transgenic crop development and will open a new era in the development of sustainable antifungal plant protection strategies."
Max ERC Funding
1 446 316 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym EINME
Project Systematic investigation of epistasis in molecular evolution
Researcher (PI) Fyodor Kondrashov
Host Institution (HI) INSTITUTE OF SCIENCE AND TECHNOLOGYAUSTRIA
Call Details Starting Grant (StG), LS2, ERC-2013-StG
Summary Why does a mutation have a deleterious effect when it occurs in one species but shows no apparent consequences on the phenotype when it occurs in another species? What are some of possible explanations on the molecular basis of this phenomenon? Are the computational predictions of the extent of this phenomenon in nature accurate? The present project aims to take a swing at answering, at least partially, these basic questions of epistasis in molecular evolution. Within our work we plan to address these issues using computational approaches, systematic fitness assays of engineered orthologous genotypes and experimental functional assays of specific cases of epistasis identified by evolutionary analysis. By tackling these goals and utilising this array of approaches the projects aims to create a synthesis between theory and experimentation under the confines of a single laboratory that will allow us to study this phenomenon in a systematic fashion on the interface of different fields and methodologies.
Summary
Why does a mutation have a deleterious effect when it occurs in one species but shows no apparent consequences on the phenotype when it occurs in another species? What are some of possible explanations on the molecular basis of this phenomenon? Are the computational predictions of the extent of this phenomenon in nature accurate? The present project aims to take a swing at answering, at least partially, these basic questions of epistasis in molecular evolution. Within our work we plan to address these issues using computational approaches, systematic fitness assays of engineered orthologous genotypes and experimental functional assays of specific cases of epistasis identified by evolutionary analysis. By tackling these goals and utilising this array of approaches the projects aims to create a synthesis between theory and experimentation under the confines of a single laboratory that will allow us to study this phenomenon in a systematic fashion on the interface of different fields and methodologies.
Max ERC Funding
1 461 576 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym ENCODE
Project Design Principles in Encoding Complex Noisy Environments
Researcher (PI) Alon Zaslaver
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Starting Grant (StG), LS2, ERC-2013-StG
Summary Animals constantly face complex environments consisted of multiple fluctuating cues. Accurate detection and efficient integration of such perplexing information are essential as animals’ fitness and consequently survival depend on making the right behavioral decisions. However, little is known about how multifaceted stimuli are integrated by neural systems, and how this information flows in the neural network in a single-neuron resolution.
Here we aim to address these fundamental questions using C. elegans worms as a model system. With a compact and fully-mapped neural network, C. elegans offers a unique opportunity of generating novel breakthroughs and significantly advance the field.
To study functional dynamics on a network-wide scale with an unprecedented single-neuron resolution, we will construct a comprehensive library of transgenic animals expressing state-of-the-art optogenetic tools and Calcium indicators in individual neurons. Moreover, we will study the entire encoding process, beginning with the sensory layer, through integration in the neural network, to behavioral outputs. At the sensory level, we aim to reveal how small sensory systems efficiently encode the complex external world. Next, we will decipher the design principles by which neural circuits integrate and process information. The optogenetic transgenic animals will allow us interrogating computational roles of various circuits by manipulating individual neurons in the network. At the end, we will integrate the gathered knowledge to study how encoding eventually translates to decision making behavioral outputs.
Throughout this project, we will use a combination of cutting-edge experimental techniques coupled with extensive computational analyses, modelling and theory. The aims of this interdisciplinary project together with the system-level approaches put it in the front line of research in the Systems Biology field.
Summary
Animals constantly face complex environments consisted of multiple fluctuating cues. Accurate detection and efficient integration of such perplexing information are essential as animals’ fitness and consequently survival depend on making the right behavioral decisions. However, little is known about how multifaceted stimuli are integrated by neural systems, and how this information flows in the neural network in a single-neuron resolution.
Here we aim to address these fundamental questions using C. elegans worms as a model system. With a compact and fully-mapped neural network, C. elegans offers a unique opportunity of generating novel breakthroughs and significantly advance the field.
To study functional dynamics on a network-wide scale with an unprecedented single-neuron resolution, we will construct a comprehensive library of transgenic animals expressing state-of-the-art optogenetic tools and Calcium indicators in individual neurons. Moreover, we will study the entire encoding process, beginning with the sensory layer, through integration in the neural network, to behavioral outputs. At the sensory level, we aim to reveal how small sensory systems efficiently encode the complex external world. Next, we will decipher the design principles by which neural circuits integrate and process information. The optogenetic transgenic animals will allow us interrogating computational roles of various circuits by manipulating individual neurons in the network. At the end, we will integrate the gathered knowledge to study how encoding eventually translates to decision making behavioral outputs.
Throughout this project, we will use a combination of cutting-edge experimental techniques coupled with extensive computational analyses, modelling and theory. The aims of this interdisciplinary project together with the system-level approaches put it in the front line of research in the Systems Biology field.
Max ERC Funding
1 498 400 €
Duration
Start date: 2014-02-01, End date: 2019-01-31