Project acronym ABINITIODGA
Project Ab initio Dynamical Vertex Approximation
Researcher (PI) Karsten Held
Host Institution (HI) TECHNISCHE UNIVERSITAET WIEN
Call Details Starting Grant (StG), PE3, ERC-2012-StG_20111012
Summary Some of the most fascinating physical phenomena are experimentally observed in strongly correlated electron systems and, on the theoretical side, only poorly understood hitherto. The aim of the ERC project AbinitioDGA is the development, implementation and application of a new, 21th century method for the ab initio calculation of materials with such strong electronic correlations. AbinitioDGA includes strong electronic correlations on all time and length scales and hence is a big step beyond the state-of-the-art methods, such as the local density approximation, dynamical mean field theory, and the GW approach (Green function G times screened interaction W). It has the potential for an extraordinary high impact not only in the field of computational materials science but also for a better understanding of quantum critical heavy fermion systems, high-temperature superconductors, and transport through nano- and heterostructures. These four physical problems and related materials will be studied within the ERC project, besides the methodological development.
On the technical side, AbinitioDGA realizes Hedin's idea to include vertex corrections beyond the GW approximation. All vertex corrections which can be traced back to a fully irreducible local vertex and the bare non-local Coulomb interaction are included. This way, AbinitioDGA does not only contain the GW physics of screened exchange and the strong local correlations of dynamical mean field theory but also non-local correlations beyond on all length scales. Through the latter, AbinitioDGA can prospectively describe phenomena such as quantum criticality, spin-fluctuation mediated superconductivity, and weak localization corrections to the conductivity. Nonetheless, the computational effort is still manageable even for realistic materials calculations, making the considerable effort to implement AbinitioDGA worthwhile.
Summary
Some of the most fascinating physical phenomena are experimentally observed in strongly correlated electron systems and, on the theoretical side, only poorly understood hitherto. The aim of the ERC project AbinitioDGA is the development, implementation and application of a new, 21th century method for the ab initio calculation of materials with such strong electronic correlations. AbinitioDGA includes strong electronic correlations on all time and length scales and hence is a big step beyond the state-of-the-art methods, such as the local density approximation, dynamical mean field theory, and the GW approach (Green function G times screened interaction W). It has the potential for an extraordinary high impact not only in the field of computational materials science but also for a better understanding of quantum critical heavy fermion systems, high-temperature superconductors, and transport through nano- and heterostructures. These four physical problems and related materials will be studied within the ERC project, besides the methodological development.
On the technical side, AbinitioDGA realizes Hedin's idea to include vertex corrections beyond the GW approximation. All vertex corrections which can be traced back to a fully irreducible local vertex and the bare non-local Coulomb interaction are included. This way, AbinitioDGA does not only contain the GW physics of screened exchange and the strong local correlations of dynamical mean field theory but also non-local correlations beyond on all length scales. Through the latter, AbinitioDGA can prospectively describe phenomena such as quantum criticality, spin-fluctuation mediated superconductivity, and weak localization corrections to the conductivity. Nonetheless, the computational effort is still manageable even for realistic materials calculations, making the considerable effort to implement AbinitioDGA worthwhile.
Max ERC Funding
1 491 090 €
Duration
Start date: 2013-01-01, End date: 2018-07-31
Project acronym ACTIVENP
Project Active and low loss nano photonics (ActiveNP)
Researcher (PI) Thomas Arno Klar
Host Institution (HI) UNIVERSITAT LINZ
Call Details Starting Grant (StG), PE3, ERC-2010-StG_20091028
Summary This project aims at designing novel hybrid nanophotonic devices comprising metallic nanostructures and active elements such as dye molecules or colloidal quantum dots. Three core objectives, each going far beyond the state of the art, shall be tackled: (i) Metamaterials containing gain materials: Metamaterials introduce magnetism to the optical frequency range and hold promise to create entirely novel devices for light manipulation. Since present day metamaterials are extremely absorptive, it is of utmost importance to fight losses. The ground-breaking approach of this proposal is to incorporate fluorescing species into the nanoscale metallic metastructures in order to compensate losses by stimulated emission. (ii) The second objective exceeds the ansatz of compensating losses and will reach out for lasing action. Individual metallic nanostructures such as pairs of nanoparticles will form novel and unusual nanometre sized resonators for laser action. State of the art microresonators still have a volume of at least half of the wavelength cubed. Noble metal nanoparticle resonators scale down this volume by a factor of thousand allowing for truly nanoscale coherent light sources. (iii) A third objective concerns a substantial improvement of nonlinear effects. This will be accomplished by drastically sharpened resonances of nanoplasmonic devices surrounded by active gain materials. An interdisciplinary team of PhD students and a PostDoc will be assembled, each scientist being uniquely qualified to cover one of the expertise fields: Design, spectroscopy, and simulation. The project s outcome is twofold: A substantial expansion of fundamental understanding of nanophotonics and practical devices such as nanoscopic lasers and low loss metamaterials.
Summary
This project aims at designing novel hybrid nanophotonic devices comprising metallic nanostructures and active elements such as dye molecules or colloidal quantum dots. Three core objectives, each going far beyond the state of the art, shall be tackled: (i) Metamaterials containing gain materials: Metamaterials introduce magnetism to the optical frequency range and hold promise to create entirely novel devices for light manipulation. Since present day metamaterials are extremely absorptive, it is of utmost importance to fight losses. The ground-breaking approach of this proposal is to incorporate fluorescing species into the nanoscale metallic metastructures in order to compensate losses by stimulated emission. (ii) The second objective exceeds the ansatz of compensating losses and will reach out for lasing action. Individual metallic nanostructures such as pairs of nanoparticles will form novel and unusual nanometre sized resonators for laser action. State of the art microresonators still have a volume of at least half of the wavelength cubed. Noble metal nanoparticle resonators scale down this volume by a factor of thousand allowing for truly nanoscale coherent light sources. (iii) A third objective concerns a substantial improvement of nonlinear effects. This will be accomplished by drastically sharpened resonances of nanoplasmonic devices surrounded by active gain materials. An interdisciplinary team of PhD students and a PostDoc will be assembled, each scientist being uniquely qualified to cover one of the expertise fields: Design, spectroscopy, and simulation. The project s outcome is twofold: A substantial expansion of fundamental understanding of nanophotonics and practical devices such as nanoscopic lasers and low loss metamaterials.
Max ERC Funding
1 494 756 €
Duration
Start date: 2010-10-01, End date: 2015-09-30
Project acronym Agglomerates
Project Infinite Protein Self-Assembly in Health and Disease
Researcher (PI) Emmanuel Doram LEVY
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Consolidator Grant (CoG), LS2, ERC-2018-COG
Summary Understanding how proteins respond to mutations is of paramount importance to biology and disease. While protein stability and misfolding have been instrumental in rationalizing the impact of mutations, we recently discovered that an alternative route is also frequent, where mutations at the surface of symmetric proteins trigger novel self-interactions that lead to infinite self-assembly. This mechanism can be involved in disease, as in sickle-cell anemia, but may also serve in adaptation. Importantly, it differs fundamentally from aggregation, because misfolding does not drive it. Thus, we term it “agglomeration”. The ease with which agglomeration can occur, even by single point mutations, shifts the paradigm of how quickly new protein assemblies can emerge, both in health and disease. This prompts us to determine the basic principles of protein agglomeration and explore its implications in cell physiology and human disease.
We propose an interdisciplinary research program bridging atomic and cellular scales to explore agglomeration in three aims: (i) Map the landscape of protein agglomeration in response to mutation in endogenous yeast proteins; (ii) Characterize how yeast physiology impacts agglomeration by changes in gene expression or cell state, and, conversely, how protein agglomerates impact yeast fitness. (iii) Analyze agglomeration in relation to human disease via two approaches. First, by predicting single nucleotide polymorphisms that trigger agglomeration, prioritizing them using knowledge from Aims 1 & 2, and characterizing them experimentally. Second, by providing a proof-of-concept that agglomeration can be exploited in drug design, whereby drugs induce its formation, like mutations can do.
Overall, through this research, we aim to establish agglomeration as a paradigm for protein assembly, with implications for our understanding of evolution, physiology, and disease.
Summary
Understanding how proteins respond to mutations is of paramount importance to biology and disease. While protein stability and misfolding have been instrumental in rationalizing the impact of mutations, we recently discovered that an alternative route is also frequent, where mutations at the surface of symmetric proteins trigger novel self-interactions that lead to infinite self-assembly. This mechanism can be involved in disease, as in sickle-cell anemia, but may also serve in adaptation. Importantly, it differs fundamentally from aggregation, because misfolding does not drive it. Thus, we term it “agglomeration”. The ease with which agglomeration can occur, even by single point mutations, shifts the paradigm of how quickly new protein assemblies can emerge, both in health and disease. This prompts us to determine the basic principles of protein agglomeration and explore its implications in cell physiology and human disease.
We propose an interdisciplinary research program bridging atomic and cellular scales to explore agglomeration in three aims: (i) Map the landscape of protein agglomeration in response to mutation in endogenous yeast proteins; (ii) Characterize how yeast physiology impacts agglomeration by changes in gene expression or cell state, and, conversely, how protein agglomerates impact yeast fitness. (iii) Analyze agglomeration in relation to human disease via two approaches. First, by predicting single nucleotide polymorphisms that trigger agglomeration, prioritizing them using knowledge from Aims 1 & 2, and characterizing them experimentally. Second, by providing a proof-of-concept that agglomeration can be exploited in drug design, whereby drugs induce its formation, like mutations can do.
Overall, through this research, we aim to establish agglomeration as a paradigm for protein assembly, with implications for our understanding of evolution, physiology, and disease.
Max ERC Funding
2 574 819 €
Duration
Start date: 2019-04-01, End date: 2024-03-31
Project acronym ANGULON
Project Angulon: physics and applications of a new quasiparticle
Researcher (PI) Mikhail Lemeshko
Host Institution (HI) INSTITUTE OF SCIENCE AND TECHNOLOGYAUSTRIA
Call Details Starting Grant (StG), PE3, ERC-2018-STG
Summary This project aims to develop a universal approach to angular momentum in quantum many-body systems based on the angulon quasiparticle recently discovered by the PI. We will establish a general theory of angulons in and out of equilibrium, and apply it to a variety of experimentally studied problems, ranging from chemical dynamics in solvents to solid-state systems (e.g. angular momentum transfer in the Einstein-de Haas effect and ultrafast magnetism).
The concept of angular momentum is ubiquitous across physics, whether one deals with nuclear collisions, chemical reactions, or formation of galaxies. In the microscopic world, quantum rotations are described by non-commuting operators. This makes the angular momentum theory extremely involved, even for systems consisting of only a few interacting particles, such as gas-phase atoms or molecules.
Furthermore, in most experiments the behavior of quantum particles is inevitably altered by a many-body environment of some kind. For example, molecular rotation – and therefore reactivity – depends on the presence of a solvent, electronic angular momentum in solids is coupled to lattice phonons, highly excited atomic levels can be perturbed by a surrounding ultracold gas. If approached in a brute-force fashion, understanding angular momentum in such systems is an impossible task, since a macroscopic number of particles is involved.
Recently, the PI and his team have shown that this challenge can be met by introducing a new quasiparticle – the angulon. In 2017, the PI has demonstrated the existence of angulons by comparing his theory with 20 years of measurements on molecules rotating in superfluids. Most importantly, the angulon concept allows one to gain analytical insights inaccessible to the state-of-the-art techniques of condensed matter and chemical physics. The angulon approach holds the promise of opening up a new interdisciplinary research area with applications reaching far beyond what is proposed here.
Summary
This project aims to develop a universal approach to angular momentum in quantum many-body systems based on the angulon quasiparticle recently discovered by the PI. We will establish a general theory of angulons in and out of equilibrium, and apply it to a variety of experimentally studied problems, ranging from chemical dynamics in solvents to solid-state systems (e.g. angular momentum transfer in the Einstein-de Haas effect and ultrafast magnetism).
The concept of angular momentum is ubiquitous across physics, whether one deals with nuclear collisions, chemical reactions, or formation of galaxies. In the microscopic world, quantum rotations are described by non-commuting operators. This makes the angular momentum theory extremely involved, even for systems consisting of only a few interacting particles, such as gas-phase atoms or molecules.
Furthermore, in most experiments the behavior of quantum particles is inevitably altered by a many-body environment of some kind. For example, molecular rotation – and therefore reactivity – depends on the presence of a solvent, electronic angular momentum in solids is coupled to lattice phonons, highly excited atomic levels can be perturbed by a surrounding ultracold gas. If approached in a brute-force fashion, understanding angular momentum in such systems is an impossible task, since a macroscopic number of particles is involved.
Recently, the PI and his team have shown that this challenge can be met by introducing a new quasiparticle – the angulon. In 2017, the PI has demonstrated the existence of angulons by comparing his theory with 20 years of measurements on molecules rotating in superfluids. Most importantly, the angulon concept allows one to gain analytical insights inaccessible to the state-of-the-art techniques of condensed matter and chemical physics. The angulon approach holds the promise of opening up a new interdisciplinary research area with applications reaching far beyond what is proposed here.
Max ERC Funding
1 499 588 €
Duration
Start date: 2019-02-01, End date: 2024-01-31
Project acronym ANTHROPOID
Project Great ape organoids to reconstruct uniquely human development
Researcher (PI) Jarrett CAMP
Host Institution (HI) INSTITUT FUR MOLEKULARE UND KLINISCHE OPHTHALMOLOGIE BASEL
Call Details Starting Grant (StG), LS2, ERC-2018-STG
Summary Humans diverged from our closest living relatives, chimpanzees and other great apes, 6-10 million years ago. Since this divergence, our ancestors acquired genetic changes that enhanced cognition, altered metabolism, and endowed our species with an adaptive capacity to colonize the entire planet and reshape the biosphere. Through genome comparisons between modern humans, Neandertals, chimpanzees and other apes we have identified genetic changes that likely contribute to innovations in human metabolic and cognitive physiology. However, it has been difficult to assess the functional effects of these genetic changes due to the lack of cell culture systems that recapitulate great ape organ complexity. Human and chimpanzee pluripotent stem cells (PSCs) can self-organize into three-dimensional (3D) tissues that recapitulate the morphology, function, and genetic programs controlling organ development. Our vision is to use organoids to study the changes that set modern humans apart from our closest evolutionary relatives as well as all other organisms on the planet. In ANTHROPOID we will generate a great ape developmental cell atlas using cortex, liver, and small intestine organoids. We will use single-cell transcriptomics and chromatin accessibility to identify cell type-specific features of transcriptome divergence at cellular resolution. We will dissect enhancer evolution using single-cell genomic screens and ancestralize human cells to resurrect pre-human cellular phenotypes. ANTHROPOID utilizes quantitative and state-of-the-art methods to explore exciting high-risk questions at multiple branches of the modern human lineage. This project is a ground breaking starting point to replay evolution and tackle the ancient question of what makes us uniquely human?
Summary
Humans diverged from our closest living relatives, chimpanzees and other great apes, 6-10 million years ago. Since this divergence, our ancestors acquired genetic changes that enhanced cognition, altered metabolism, and endowed our species with an adaptive capacity to colonize the entire planet and reshape the biosphere. Through genome comparisons between modern humans, Neandertals, chimpanzees and other apes we have identified genetic changes that likely contribute to innovations in human metabolic and cognitive physiology. However, it has been difficult to assess the functional effects of these genetic changes due to the lack of cell culture systems that recapitulate great ape organ complexity. Human and chimpanzee pluripotent stem cells (PSCs) can self-organize into three-dimensional (3D) tissues that recapitulate the morphology, function, and genetic programs controlling organ development. Our vision is to use organoids to study the changes that set modern humans apart from our closest evolutionary relatives as well as all other organisms on the planet. In ANTHROPOID we will generate a great ape developmental cell atlas using cortex, liver, and small intestine organoids. We will use single-cell transcriptomics and chromatin accessibility to identify cell type-specific features of transcriptome divergence at cellular resolution. We will dissect enhancer evolution using single-cell genomic screens and ancestralize human cells to resurrect pre-human cellular phenotypes. ANTHROPOID utilizes quantitative and state-of-the-art methods to explore exciting high-risk questions at multiple branches of the modern human lineage. This project is a ground breaking starting point to replay evolution and tackle the ancient question of what makes us uniquely human?
Max ERC Funding
1 500 000 €
Duration
Start date: 2019-06-01, End date: 2024-05-31
Project acronym ANYONIC
Project Statistics of Exotic Fractional Hall States
Researcher (PI) Mordehai HEIBLUM
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Advanced Grant (AdG), PE3, ERC-2018-ADG
Summary Since their discovery, Quantum Hall Effects have unfolded intriguing avenues of research, exhibiting a multitude of unexpected exotic states: accurate quantized conductance states; particle-like and hole-conjugate fractional states; counter-propagating charge and neutral edge modes; and fractionally charged quasiparticles - abelian and (predicted) non-abelian. Since the sought-after anyonic statistics of fractional states is yet to be verified, I propose to launch a thorough search for it employing new means. I believe that our studies will serve the expanding field of the emerging family of topological materials.
Our on-going attempts to observe quasiparticles (qp’s) interference, in order to uncover their exchange statistics (under ERC), taught us that spontaneous, non-topological, ‘neutral edge modes’ are the main culprit responsible for qp’s dephasing. In an effort to quench the neutral modes, we plan to develop a new class of micro-size interferometers, based on synthetically engineered fractional modes. Flowing away from the fixed physical edge, their local environment can be controlled, making it less hospitable for the neutral modes.
Having at hand our synthetized helical-type fractional modes, it is highly tempting to employ them to form localize para-fermions, which will extend the family of exotic states. This can be done by proximitizing them to a superconductor, or gapping them via inter-mode coupling.
The less familiar thermal conductance measurements, which we recently developed (under ERC), will be applied throughout our work to identify ‘topological orders’ of exotic states; namely, distinguishing between abelian and non-abelian fractional states.
The proposal is based on an intensive and continuous MBE effort, aimed at developing extremely high purity, GaAs based, structures. Among them, structures that support our new synthetic modes that are amenable to manipulation, and others that host rare exotic states, such as v=5/2, 12/5, 19/8, and 35/16.
Summary
Since their discovery, Quantum Hall Effects have unfolded intriguing avenues of research, exhibiting a multitude of unexpected exotic states: accurate quantized conductance states; particle-like and hole-conjugate fractional states; counter-propagating charge and neutral edge modes; and fractionally charged quasiparticles - abelian and (predicted) non-abelian. Since the sought-after anyonic statistics of fractional states is yet to be verified, I propose to launch a thorough search for it employing new means. I believe that our studies will serve the expanding field of the emerging family of topological materials.
Our on-going attempts to observe quasiparticles (qp’s) interference, in order to uncover their exchange statistics (under ERC), taught us that spontaneous, non-topological, ‘neutral edge modes’ are the main culprit responsible for qp’s dephasing. In an effort to quench the neutral modes, we plan to develop a new class of micro-size interferometers, based on synthetically engineered fractional modes. Flowing away from the fixed physical edge, their local environment can be controlled, making it less hospitable for the neutral modes.
Having at hand our synthetized helical-type fractional modes, it is highly tempting to employ them to form localize para-fermions, which will extend the family of exotic states. This can be done by proximitizing them to a superconductor, or gapping them via inter-mode coupling.
The less familiar thermal conductance measurements, which we recently developed (under ERC), will be applied throughout our work to identify ‘topological orders’ of exotic states; namely, distinguishing between abelian and non-abelian fractional states.
The proposal is based on an intensive and continuous MBE effort, aimed at developing extremely high purity, GaAs based, structures. Among them, structures that support our new synthetic modes that are amenable to manipulation, and others that host rare exotic states, such as v=5/2, 12/5, 19/8, and 35/16.
Max ERC Funding
1 801 094 €
Duration
Start date: 2019-05-01, End date: 2024-04-30
Project acronym AQSuS
Project Analog Quantum Simulation using Superconducting Qubits
Researcher (PI) Gerhard KIRCHMAIR
Host Institution (HI) UNIVERSITAET INNSBRUCK
Call Details Starting Grant (StG), PE3, ERC-2016-STG
Summary AQSuS aims at experimentally implementing analogue quantum simulation of interacting spin models in two-dimensional geometries. The proposed experimental approach paves the way to investigate a broad range of currently inaccessible quantum phenomena, for which existing analytical and numerical methods reach their limitations. Developing precisely controlled interacting quantum systems in 2D is an important current goal well beyond the field of quantum simulation and has applications in e.g. solid state physics, computing and metrology.
To access these models, I propose to develop a novel circuit quantum-electrodynamics (cQED) platform based on the 3D transmon qubit architecture. This platform utilizes the highly engineerable properties and long coherence times of these qubits. A central novel idea behind AQSuS is to exploit the spatial dependence of the naturally occurring dipolar interactions between the qubits to engineer the desired spin-spin interactions. This approach avoids the complicated wiring, typical for other cQED experiments and reduces the complexity of the experimental setup. The scheme is therefore directly scalable to larger systems. The experimental goals are:
1) Demonstrate analogue quantum simulation of an interacting spin system in 1D & 2D.
2) Establish methods to precisely initialize the state of the system, control the interactions and readout single qubit states and multi-qubit correlations.
3) Investigate unobserved quantum phenomena on 2D geometries e.g. kagome and triangular lattices.
4) Study open system dynamics with interacting spin systems.
AQSuS builds on my backgrounds in both superconducting qubits and quantum simulation with trapped-ions. With theory collaborators my young research group and I have recently published an article in PRB [9] describing and analysing the proposed platform. The ERC starting grant would allow me to open a big new research direction and capitalize on the foundations established over the last two years.
Summary
AQSuS aims at experimentally implementing analogue quantum simulation of interacting spin models in two-dimensional geometries. The proposed experimental approach paves the way to investigate a broad range of currently inaccessible quantum phenomena, for which existing analytical and numerical methods reach their limitations. Developing precisely controlled interacting quantum systems in 2D is an important current goal well beyond the field of quantum simulation and has applications in e.g. solid state physics, computing and metrology.
To access these models, I propose to develop a novel circuit quantum-electrodynamics (cQED) platform based on the 3D transmon qubit architecture. This platform utilizes the highly engineerable properties and long coherence times of these qubits. A central novel idea behind AQSuS is to exploit the spatial dependence of the naturally occurring dipolar interactions between the qubits to engineer the desired spin-spin interactions. This approach avoids the complicated wiring, typical for other cQED experiments and reduces the complexity of the experimental setup. The scheme is therefore directly scalable to larger systems. The experimental goals are:
1) Demonstrate analogue quantum simulation of an interacting spin system in 1D & 2D.
2) Establish methods to precisely initialize the state of the system, control the interactions and readout single qubit states and multi-qubit correlations.
3) Investigate unobserved quantum phenomena on 2D geometries e.g. kagome and triangular lattices.
4) Study open system dynamics with interacting spin systems.
AQSuS builds on my backgrounds in both superconducting qubits and quantum simulation with trapped-ions. With theory collaborators my young research group and I have recently published an article in PRB [9] describing and analysing the proposed platform. The ERC starting grant would allow me to open a big new research direction and capitalize on the foundations established over the last two years.
Max ERC Funding
1 498 515 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym BiomeRiskFactors
Project Discovering microbiome-based disease risk factors
Researcher (PI) Eran Segal
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Advanced Grant (AdG), LS2, ERC-2017-ADG
Summary Identifying risk factors for diseases that can be prevented or delayed by early intervention is of major importance, and numerous genetic, lifestyle, anthropometric and clinical risk factors were found for many different diseases. Another source of potentially pertinent disease risk factors is the human microbiome - the collective genome of trillions of bacteria, viruses, fungi, and parasites that reside in the human gut. However, very few microbiome disease markers were found to date.
Here, we aim to develop risk prediction tools based on the human microbiome that predict the likelihood of an individual to develop a particular condition or disease within 5-10 years. We will use a cohort of >2200 individuals that my group previously assembled, for whom we have clinical profiles, gut microbiome data, and banked blood and stool samples. We will invite people 5-10 years after their initial recruitment time, profile disease status and blood markers, and develop algorithms for predicting 5-10 year onset of Type 2 diabetes, cardiovascular disease, and obesity, using microbiome data from recruitment time.
To increase the likelihood of finding microbiome markers predictive of disease onset, we will develop novel experimental and computational methods for in-depth characterization of microbial gene function, the metabolites produced by the microbiome, the underexplored fungal microbiome members, and the interactions between the gut microbiota and the host adaptive immune system. We will then apply these methods to >2200 banked samples from cohort recruitment time and use the resulting data in devising our microbiome-based risk prediction tools. In themselves, these novel assays and their application to >2200 samples should greatly advance the microbiome field.
If successful, our proposal will identify new disease risk factors and risk prediction tools based on the microbiome, paving the way towards using the microbiome in early disease detection and prevention.
Summary
Identifying risk factors for diseases that can be prevented or delayed by early intervention is of major importance, and numerous genetic, lifestyle, anthropometric and clinical risk factors were found for many different diseases. Another source of potentially pertinent disease risk factors is the human microbiome - the collective genome of trillions of bacteria, viruses, fungi, and parasites that reside in the human gut. However, very few microbiome disease markers were found to date.
Here, we aim to develop risk prediction tools based on the human microbiome that predict the likelihood of an individual to develop a particular condition or disease within 5-10 years. We will use a cohort of >2200 individuals that my group previously assembled, for whom we have clinical profiles, gut microbiome data, and banked blood and stool samples. We will invite people 5-10 years after their initial recruitment time, profile disease status and blood markers, and develop algorithms for predicting 5-10 year onset of Type 2 diabetes, cardiovascular disease, and obesity, using microbiome data from recruitment time.
To increase the likelihood of finding microbiome markers predictive of disease onset, we will develop novel experimental and computational methods for in-depth characterization of microbial gene function, the metabolites produced by the microbiome, the underexplored fungal microbiome members, and the interactions between the gut microbiota and the host adaptive immune system. We will then apply these methods to >2200 banked samples from cohort recruitment time and use the resulting data in devising our microbiome-based risk prediction tools. In themselves, these novel assays and their application to >2200 samples should greatly advance the microbiome field.
If successful, our proposal will identify new disease risk factors and risk prediction tools based on the microbiome, paving the way towards using the microbiome in early disease detection and prevention.
Max ERC Funding
2 500 000 €
Duration
Start date: 2019-03-01, End date: 2024-02-29
Project acronym BioMeTRe
Project Biophysical mechanisms of long-range transcriptional regulation
Researcher (PI) Luca GIORGETTI
Host Institution (HI) FRIEDRICH MIESCHER INSTITUTE FOR BIOMEDICAL RESEARCH FONDATION
Call Details Starting Grant (StG), LS2, ERC-2017-STG
Summary In mammals, transcriptional control of many genes relies on cis-regulatory elements such as enhancers, which are often located tens to hundreds of kilobases away from their cognate promoters. Functional interactions between distal regulatory elements and target promoters require mutual physical proximity, which is linked to the three-dimensional structure of the chromatin fiber. Chromosome conformation capture studies revealed that chromosomes are partitioned into Topologically Associating Domains (TADs), sub-megabase domains of preferential physical interactions of the chromatin fiber. Genetic evidence showed that TAD boundaries restrict the genomic range of enhancer-promoter communication, and that interactions between regulatory sequences within TADs are further fine-tuned by smaller-scale structures. However, the mechanistic details of how physical interactions translate into transcriptional outputs are totally unknown. Here we propose to explore the biophysical mechanisms that link chromosome conformation and long-range transcriptional regulation using molecular biology, genetic engineering, single-cell experiments and physical modeling. We will measure chromosomal interactions in single cells and in time using a novel method that relies on an enzymatic process in vivo. Genetic engineering will be used to establish a cell system that allows quantitative measurement of how enhancer-promoter interactions relate to transcription at the population and single-cell levels, and to test the effects of perturbations without confounding effects. Finally, we will develop physical models of promoter operation in the presence of distal enhancers, which will be used to interpret the experimental data and formulate new testable predictions. With this integrated approach we aim at providing an entirely new layer of description of the general principles underlying transcriptional control, which could establish new paradigms for research in epigenetics and gene regulation.
Summary
In mammals, transcriptional control of many genes relies on cis-regulatory elements such as enhancers, which are often located tens to hundreds of kilobases away from their cognate promoters. Functional interactions between distal regulatory elements and target promoters require mutual physical proximity, which is linked to the three-dimensional structure of the chromatin fiber. Chromosome conformation capture studies revealed that chromosomes are partitioned into Topologically Associating Domains (TADs), sub-megabase domains of preferential physical interactions of the chromatin fiber. Genetic evidence showed that TAD boundaries restrict the genomic range of enhancer-promoter communication, and that interactions between regulatory sequences within TADs are further fine-tuned by smaller-scale structures. However, the mechanistic details of how physical interactions translate into transcriptional outputs are totally unknown. Here we propose to explore the biophysical mechanisms that link chromosome conformation and long-range transcriptional regulation using molecular biology, genetic engineering, single-cell experiments and physical modeling. We will measure chromosomal interactions in single cells and in time using a novel method that relies on an enzymatic process in vivo. Genetic engineering will be used to establish a cell system that allows quantitative measurement of how enhancer-promoter interactions relate to transcription at the population and single-cell levels, and to test the effects of perturbations without confounding effects. Finally, we will develop physical models of promoter operation in the presence of distal enhancers, which will be used to interpret the experimental data and formulate new testable predictions. With this integrated approach we aim at providing an entirely new layer of description of the general principles underlying transcriptional control, which could establish new paradigms for research in epigenetics and gene regulation.
Max ERC Funding
1 500 000 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym BIOSELFORGANIZATION
Project Biophysical aspects of self-organization in actin-based cell motility
Researcher (PI) Kinneret Magda Keren
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Starting Grant (StG), PE3, ERC-2007-StG
Summary Cell motility is a fascinating dynamic process crucial for a wide variety of biological phenomena including defense against injury or infection, embryogenesis and cancer metastasis. A spatially extended, self-organized, mechanochemical machine consisting of numerous actin polymers, accessory proteins and molecular motors drives this process. This impressive assembly self-organizes over several orders of magnitude in both the temporal and spatial domains bridging from the fast dynamics of individual molecular-sized building blocks to the persistent motion of whole cells over minutes and hours. The molecular players involved in the process and the basic biochemical mechanisms are largely known. However, the principles governing the assembly of the motility apparatus, which involve an intricate interplay between biophysical processes and biochemical reactions, are still poorly understood. The proposed research is focused on investigating the biophysical aspects of the self-organization processes underlying cell motility and trying to adapt these processes to instill motility in artificial cells. Important biophysical characteristics of moving cells such as the intracellular fluid flow and membrane tension will be measured and their effect on the motility process will be examined, using fish epithelial keratocytes as a model system. The dynamics of the system will be further investigated by quantitatively analyzing the morphological and kinematic variation displayed by a population of cells and by an individual cell through time. Such measurements will feed into and direct the development of quantitative theoretical models. In parallel, I will work toward the development of a synthetic physical model system for cell motility by encapsulating the actin machinery in a cell-sized compartment. This synthetic system will allow cell motility to be studied in a simplified and controlled environment, detached from the complexity of the living cell.
Summary
Cell motility is a fascinating dynamic process crucial for a wide variety of biological phenomena including defense against injury or infection, embryogenesis and cancer metastasis. A spatially extended, self-organized, mechanochemical machine consisting of numerous actin polymers, accessory proteins and molecular motors drives this process. This impressive assembly self-organizes over several orders of magnitude in both the temporal and spatial domains bridging from the fast dynamics of individual molecular-sized building blocks to the persistent motion of whole cells over minutes and hours. The molecular players involved in the process and the basic biochemical mechanisms are largely known. However, the principles governing the assembly of the motility apparatus, which involve an intricate interplay between biophysical processes and biochemical reactions, are still poorly understood. The proposed research is focused on investigating the biophysical aspects of the self-organization processes underlying cell motility and trying to adapt these processes to instill motility in artificial cells. Important biophysical characteristics of moving cells such as the intracellular fluid flow and membrane tension will be measured and their effect on the motility process will be examined, using fish epithelial keratocytes as a model system. The dynamics of the system will be further investigated by quantitatively analyzing the morphological and kinematic variation displayed by a population of cells and by an individual cell through time. Such measurements will feed into and direct the development of quantitative theoretical models. In parallel, I will work toward the development of a synthetic physical model system for cell motility by encapsulating the actin machinery in a cell-sized compartment. This synthetic system will allow cell motility to be studied in a simplified and controlled environment, detached from the complexity of the living cell.
Max ERC Funding
900 000 €
Duration
Start date: 2008-08-01, End date: 2013-07-31
Project acronym CancerFluxome
Project Cancer Cellular Metabolism across Space and Time
Researcher (PI) Tomer Shlomi
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Starting Grant (StG), LS2, ERC-2016-STG
Summary The metabolism of cancer cells is altered to meet cellular requirements for growth, providing novel means to selectively target tumorigenesis. While extensively studied, our current view of cancer cellular metabolism is fundamentally limited by lack of information on variability in metabolic activity between distinct subcellular compartments and cells.
We propose to develop a spatio-temporal fluxomics approach for quantifying metabolic fluxes in the cytoplasm vs. mitochondria as well as their cell-cycle dynamics, combining mass-spectrometry based isotope tracing with cell synchronization, rapid cellular fractionation, and computational metabolic network modelling.
Spatio-temporal fluxomics will be used to revisit and challenge our current understanding of central metabolism and its induced adaptation to oncogenic events – an important endeavour considering that mitochondrial bioenergetics and biosynthesis are required for tumorigenesis and accumulating evidences for metabolic alterations throughout the cell-cycle.
Our preliminary results show intriguing oscillations between oxidative and reductive TCA cycle flux throughout the cell-cycle. We will explore the extent to which cells adapt their metabolism to fulfil the changing energetic and anabolic demands throughout the cell-cycle, how metabolic oscillations are regulated, and their benefit to cells in terms of thermodynamic efficiency. Spatial flux analysis will be instrumental for investigating glutaminolysis - a ‘hallmark’ metabolic adaptation in cancer involving shuttling of metabolic intermediates and cofactors between mitochondria and cytoplasm.
On a clinical front, our spatio-temporal fluxomics analysis will enable to disentangle oncogene-induced flux alterations, having an important tumorigenic role, from artefacts originating from population averaging. A comprehensive view of how cells adapt their metabolism due to oncogenic mutations will reveal novel targets for anti-cancer drugs.
Summary
The metabolism of cancer cells is altered to meet cellular requirements for growth, providing novel means to selectively target tumorigenesis. While extensively studied, our current view of cancer cellular metabolism is fundamentally limited by lack of information on variability in metabolic activity between distinct subcellular compartments and cells.
We propose to develop a spatio-temporal fluxomics approach for quantifying metabolic fluxes in the cytoplasm vs. mitochondria as well as their cell-cycle dynamics, combining mass-spectrometry based isotope tracing with cell synchronization, rapid cellular fractionation, and computational metabolic network modelling.
Spatio-temporal fluxomics will be used to revisit and challenge our current understanding of central metabolism and its induced adaptation to oncogenic events – an important endeavour considering that mitochondrial bioenergetics and biosynthesis are required for tumorigenesis and accumulating evidences for metabolic alterations throughout the cell-cycle.
Our preliminary results show intriguing oscillations between oxidative and reductive TCA cycle flux throughout the cell-cycle. We will explore the extent to which cells adapt their metabolism to fulfil the changing energetic and anabolic demands throughout the cell-cycle, how metabolic oscillations are regulated, and their benefit to cells in terms of thermodynamic efficiency. Spatial flux analysis will be instrumental for investigating glutaminolysis - a ‘hallmark’ metabolic adaptation in cancer involving shuttling of metabolic intermediates and cofactors between mitochondria and cytoplasm.
On a clinical front, our spatio-temporal fluxomics analysis will enable to disentangle oncogene-induced flux alterations, having an important tumorigenic role, from artefacts originating from population averaging. A comprehensive view of how cells adapt their metabolism due to oncogenic mutations will reveal novel targets for anti-cancer drugs.
Max ERC Funding
1 481 250 €
Duration
Start date: 2017-02-01, End date: 2022-01-31
Project acronym CC4SOL
Project Towards chemical accuracy in computational materials science
Researcher (PI) Andreas GRÜNEIS
Host Institution (HI) TECHNISCHE UNIVERSITAET WIEN
Call Details Starting Grant (StG), PE3, ERC-2016-STG
Summary This project aims at the development of a novel toolbox of ab-initio methods that approximate the true many-electron wavefunction using systematically improvable perturbation and coupled-cluster theories. The demand and prospects for these methods are excellent given that the highly-accurate coupled-cluster theories can predict atomization- and reaction energies in a wide range of solids and molecules with chemical accuracy (≈43 meV). However, the computational cost involved inhibits their widespread use in the field of materials science so far. A multitude of suggested developments in the present proposal hold the promise to reduce the computational cost beyond what is currently considered possible by the community. These include explicit correlation methods that augment the conventional wavefunction expansion with terms that depend on the electron pair correlation factors. In contrast to the widely-used homogeneous correlation factors, this proposal aims at the investigation of inhomogeneous correlation factors that can also capture van der Waals interactions. Furthermore this proposal seeks to employ a recently developed combination of atom-centered basis functions and plane wave basis sets, maximizing the compactness in the wavefunction expansion. The combination of these ideas bears the potential to reduce the computational cost of coupled-cluster calculations in solids by three orders of magnitude, leading to a breakthrough in the field of highly-accurate ab-initio simulations. As such the study of challenging solid state physics and chemistry problems forms an important part of this proposal. We seek to investigate molecular adsorption and reactions in zeolites and on surfaces, pressure-driven solid-solid phase transitions of two dimensional layered materials and defects in solids. These problems are paradigmatic for van der Waals interactions and strong correlation, and methods that describe their electronic structure accurately are highly sought after.
Summary
This project aims at the development of a novel toolbox of ab-initio methods that approximate the true many-electron wavefunction using systematically improvable perturbation and coupled-cluster theories. The demand and prospects for these methods are excellent given that the highly-accurate coupled-cluster theories can predict atomization- and reaction energies in a wide range of solids and molecules with chemical accuracy (≈43 meV). However, the computational cost involved inhibits their widespread use in the field of materials science so far. A multitude of suggested developments in the present proposal hold the promise to reduce the computational cost beyond what is currently considered possible by the community. These include explicit correlation methods that augment the conventional wavefunction expansion with terms that depend on the electron pair correlation factors. In contrast to the widely-used homogeneous correlation factors, this proposal aims at the investigation of inhomogeneous correlation factors that can also capture van der Waals interactions. Furthermore this proposal seeks to employ a recently developed combination of atom-centered basis functions and plane wave basis sets, maximizing the compactness in the wavefunction expansion. The combination of these ideas bears the potential to reduce the computational cost of coupled-cluster calculations in solids by three orders of magnitude, leading to a breakthrough in the field of highly-accurate ab-initio simulations. As such the study of challenging solid state physics and chemistry problems forms an important part of this proposal. We seek to investigate molecular adsorption and reactions in zeolites and on surfaces, pressure-driven solid-solid phase transitions of two dimensional layered materials and defects in solids. These problems are paradigmatic for van der Waals interactions and strong correlation, and methods that describe their electronic structure accurately are highly sought after.
Max ERC Funding
1 460 826 €
Duration
Start date: 2017-07-01, End date: 2022-06-30
Project acronym CCICO
Project Coupled and Competing Instabilities in Complex Oxides
Researcher (PI) Nicola Ann Spaldin
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Advanced Grant (AdG), PE3, ERC-2011-ADG_20110209
Summary "The CCICO project will build a comprehensive understanding of how proximity to previously unexplored combinations of instabilities, as well as previously unidentified types of ordering, manifest in novel behaviors, and will develop design guidelines for practical realization of new materials with such behaviors. Taking transition-metal oxides as our model systems, we will develop and apply first-principles electronic structure theory methods to explore an extensive array of new combinations of orderings, with a focus on interactions between the electronic -- Jahn-Teller, orbital and charge -- and structural -- rotations, ferroelectric and other distortions -- degrees of freedom. Our goal is to spawn a new field of study based on a novel combination of orderings in the same way that the field of multiferroics was jump-started ten years ago by our work understanding the coexistence of ferroelectricity and magnetism. Conversely, we will apply the computational tools developed in our history of studying multiferroics, particularly descriptions of proximity to structural and magnetic phase transitions, to characterizing observed behaviors such as exotic superconductivity in existing materials. In the process we will search for and characterize elusive or poorly characterized forms of order in solids, with a focus on ferrotoroidicity and emergent local dipoles. A final application is to create designer materials for solid-state experiments relevant to high-energy physics and cosmology. Promising compounds that are amenable to bulk synthesis will be made in our new oxide single-crystal growth laboratory; materials that require thin-film routes will be pursued in collaboration with colleagues."
Summary
"The CCICO project will build a comprehensive understanding of how proximity to previously unexplored combinations of instabilities, as well as previously unidentified types of ordering, manifest in novel behaviors, and will develop design guidelines for practical realization of new materials with such behaviors. Taking transition-metal oxides as our model systems, we will develop and apply first-principles electronic structure theory methods to explore an extensive array of new combinations of orderings, with a focus on interactions between the electronic -- Jahn-Teller, orbital and charge -- and structural -- rotations, ferroelectric and other distortions -- degrees of freedom. Our goal is to spawn a new field of study based on a novel combination of orderings in the same way that the field of multiferroics was jump-started ten years ago by our work understanding the coexistence of ferroelectricity and magnetism. Conversely, we will apply the computational tools developed in our history of studying multiferroics, particularly descriptions of proximity to structural and magnetic phase transitions, to characterizing observed behaviors such as exotic superconductivity in existing materials. In the process we will search for and characterize elusive or poorly characterized forms of order in solids, with a focus on ferrotoroidicity and emergent local dipoles. A final application is to create designer materials for solid-state experiments relevant to high-energy physics and cosmology. Promising compounds that are amenable to bulk synthesis will be made in our new oxide single-crystal growth laboratory; materials that require thin-film routes will be pursued in collaboration with colleagues."
Max ERC Funding
2 000 000 €
Duration
Start date: 2012-03-01, End date: 2017-02-28
Project acronym CEMAS
Project Controlling and Exploring Molecular Systems at the Atomic Scale with Atomic Force Microscopy
Researcher (PI) Gerhard Meyer
Host Institution (HI) IBM RESEARCH GMBH
Call Details Advanced Grant (AdG), PE3, ERC-2011-ADG_20110209
Summary The objective of this project is to advance and use Atomic Force Microscopy (AFM) to explore the physical and chemical properties of single molecules and molecular systems with unprecedented spatial resolution. We will use AFM to develop atomically resolved molecular imaging with structural and chemical identification and investigate charge distribution and transfer in molecular systems. The AFM will allow the extension of seminal Scanning Tunneling Microscopy (STM) work on atoms/molecules on ultra-thin insulating films to thick insulating films, to control and explore single molecule chemistry processes in utmost detail. The whole work will be significantly based on the development and exploitation of novel atomic and molecular manipulation processes to control matter at the atomic scale, both for fabricating novel complex molecular nanostructures with atomic scale precision and understanding these systems, as well as for probe-tip functionalization to tailor tip-substrate interaction. Instrumental enhancements will focus on fabricating novel AFM sensors for simultaneous lateral and vertical force measurement and on developing a new original approach to increase the time resolution in AFM measurements. Due to the fundamental nature of this work we expect the long term impact of this work to be in surface science, chemistry, molecular electronics and life sciences. In the short term we expect to develop the AFM into a practical tool for chemical structure determination of unknown molecules and we will employ atomic manipulation and high resolution AFM imaging to image, modify and functionalize graphene edge structures with atomic scale precision with the prospect of exploring and developing novel molecular devices.
Summary
The objective of this project is to advance and use Atomic Force Microscopy (AFM) to explore the physical and chemical properties of single molecules and molecular systems with unprecedented spatial resolution. We will use AFM to develop atomically resolved molecular imaging with structural and chemical identification and investigate charge distribution and transfer in molecular systems. The AFM will allow the extension of seminal Scanning Tunneling Microscopy (STM) work on atoms/molecules on ultra-thin insulating films to thick insulating films, to control and explore single molecule chemistry processes in utmost detail. The whole work will be significantly based on the development and exploitation of novel atomic and molecular manipulation processes to control matter at the atomic scale, both for fabricating novel complex molecular nanostructures with atomic scale precision and understanding these systems, as well as for probe-tip functionalization to tailor tip-substrate interaction. Instrumental enhancements will focus on fabricating novel AFM sensors for simultaneous lateral and vertical force measurement and on developing a new original approach to increase the time resolution in AFM measurements. Due to the fundamental nature of this work we expect the long term impact of this work to be in surface science, chemistry, molecular electronics and life sciences. In the short term we expect to develop the AFM into a practical tool for chemical structure determination of unknown molecules and we will employ atomic manipulation and high resolution AFM imaging to image, modify and functionalize graphene edge structures with atomic scale precision with the prospect of exploring and developing novel molecular devices.
Max ERC Funding
2 496 720 €
Duration
Start date: 2011-12-01, End date: 2016-11-30
Project acronym CharFL
Project Characterizing the fitness landscape on population and global scales
Researcher (PI) Fyodor Kondrashov
Host Institution (HI) INSTITUTE OF SCIENCE AND TECHNOLOGYAUSTRIA
Call Details Consolidator Grant (CoG), LS2, ERC-2017-COG
Summary The fitness landscape, the representation of how the genotype manifests at the phenotypic (fitness) levels, may be among the most useful concepts in biology with impact on diverse fields, including quantitative genetics, emergence of pathogen resistance, synthetic biology and protein engineering. While progress in characterizing fitness landscapes has been made, three directions of research in the field remain virtually unexplored: the nature of the genotype to phenotype of standing variation (variation found in a natural population), the shape of the fitness landscape encompassing many genotypes and the modelling of complex genetic interactions in protein sequences.
The current proposal is designed to advance the study of fitness landscapes in these three directions using large-scale genomic experiments and experimental data from a model protein and theoretical work. The study of the fitness landscape of standing variation is aimed at the resolution of an outstanding question in quantitative genetics: the extent to which epistasis, non-additive genetic interactions, is shaping the phenotype. The second aim of characterizing the global fitness landscape will give us an understanding of how evolution proceeds along long evolutionary timescales, which can be directly applied to protein engineering and synthetic biology for the design of novel phenotypes. Finally, the third aim of modelling complex interactions will improve our ability to predict phenotypes from genotypes, such as the prediction of human disease mutations. In summary, the proposed study presents an opportunity to provide a unifying understanding of how phenotypes are shaped through genetic interactions. The consolidation of our empirical and theoretical work on different scales of the genotype to phenotype relationship will provide empirical data and novel context for several fields of biology.
Summary
The fitness landscape, the representation of how the genotype manifests at the phenotypic (fitness) levels, may be among the most useful concepts in biology with impact on diverse fields, including quantitative genetics, emergence of pathogen resistance, synthetic biology and protein engineering. While progress in characterizing fitness landscapes has been made, three directions of research in the field remain virtually unexplored: the nature of the genotype to phenotype of standing variation (variation found in a natural population), the shape of the fitness landscape encompassing many genotypes and the modelling of complex genetic interactions in protein sequences.
The current proposal is designed to advance the study of fitness landscapes in these three directions using large-scale genomic experiments and experimental data from a model protein and theoretical work. The study of the fitness landscape of standing variation is aimed at the resolution of an outstanding question in quantitative genetics: the extent to which epistasis, non-additive genetic interactions, is shaping the phenotype. The second aim of characterizing the global fitness landscape will give us an understanding of how evolution proceeds along long evolutionary timescales, which can be directly applied to protein engineering and synthetic biology for the design of novel phenotypes. Finally, the third aim of modelling complex interactions will improve our ability to predict phenotypes from genotypes, such as the prediction of human disease mutations. In summary, the proposed study presents an opportunity to provide a unifying understanding of how phenotypes are shaped through genetic interactions. The consolidation of our empirical and theoretical work on different scales of the genotype to phenotype relationship will provide empirical data and novel context for several fields of biology.
Max ERC Funding
1 998 280 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym CHROMATINMODWEB
Project Functional and regulatory protein networks of chromatin modifying enzymes
Researcher (PI) Antonis Kirmizis
Host Institution (HI) UNIVERSITY OF CYPRUS
Call Details Starting Grant (StG), LS2, ERC-2010-StG_20091118
Summary Proper and controlled expression of genes is essential for normal cell growth. Chromatin modifying enzymes play a
fundamental role in the control of gene expression and their deregulation is often linked to cancer. In recent years chromatin
modifiers have been considered key targets for cancer therapy and this demands a full understanding of their biological
functions. Previous biochemical and structural studies have focused on the identification of chromatin modifying enzymes
and characterization of their substrate specificities and catalytic mechanisms. However, a comprehensive view of the
biological processes, signaling pathways and regulatory circuits in which these enzymes participate is missing. Protein
arginine methyltransferases (PRMTs), which methylate histones and are evolutionarily conserved from yeast to human,
constitute an example of chromatin modifying enzymes whose functional and regulatory networks remain unexplored. I
propose to use complementary state-of-the-art genomic and proteomic approaches in order to identify the protein networks
and cellular pathways that are linked to PRMTs. In parallel, I will identify novel regulatory circuits and define the molecular
mechanisms that control methylation of specific histone arginine residues. I will utilize the yeast S. cerevisiae as a model
organism because it allows genetic, biochemical and genomic approaches to be combined. Most importantly, many of the
pathways and mechanisms in yeast are highly conserved and therefore, the findings from this study will be pertinent to
human and other eukaryotic organisms. Establishing a global cellular wiring diagram of PRMTs will serve as a paradigm for
other chromatin modifiers and is imperative for assessing the efficacy of these enzymes as therapeutic targets.
Summary
Proper and controlled expression of genes is essential for normal cell growth. Chromatin modifying enzymes play a
fundamental role in the control of gene expression and their deregulation is often linked to cancer. In recent years chromatin
modifiers have been considered key targets for cancer therapy and this demands a full understanding of their biological
functions. Previous biochemical and structural studies have focused on the identification of chromatin modifying enzymes
and characterization of their substrate specificities and catalytic mechanisms. However, a comprehensive view of the
biological processes, signaling pathways and regulatory circuits in which these enzymes participate is missing. Protein
arginine methyltransferases (PRMTs), which methylate histones and are evolutionarily conserved from yeast to human,
constitute an example of chromatin modifying enzymes whose functional and regulatory networks remain unexplored. I
propose to use complementary state-of-the-art genomic and proteomic approaches in order to identify the protein networks
and cellular pathways that are linked to PRMTs. In parallel, I will identify novel regulatory circuits and define the molecular
mechanisms that control methylation of specific histone arginine residues. I will utilize the yeast S. cerevisiae as a model
organism because it allows genetic, biochemical and genomic approaches to be combined. Most importantly, many of the
pathways and mechanisms in yeast are highly conserved and therefore, the findings from this study will be pertinent to
human and other eukaryotic organisms. Establishing a global cellular wiring diagram of PRMTs will serve as a paradigm for
other chromatin modifiers and is imperative for assessing the efficacy of these enzymes as therapeutic targets.
Max ERC Funding
1 498 279 €
Duration
Start date: 2011-01-01, End date: 2016-06-30
Project acronym CHROMATINSYS
Project Systematic Approach to Dissect the Interplay between Chromatin and Transcription
Researcher (PI) Nir Friedman
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Advanced Grant (AdG), LS2, ERC-2013-ADG
Summary Epigenetic mechanisms play an important role in regulating and maintaining the functionality of cells and have been implicated in a wide range of human diseases. Histone proteins that form the protein core of nucleosomes are subject to a bewildering array of covalent and structural modifications, which can repress, permit, or promote transcription. These modifications can be added and removed by specialized complexes that are recruited by other covalent modifications, by transcription factors, or by the transcriptional machinery. Advances in genomics led to comprehensive mapping of the ``epigenome'' in a range of tissues and organisms. These maps established the tight connection between histone modifications and transcription programs. These static charts, however, are less successful at uncovering the underlying mechanisms, logic, and function of histone modifications in establishing and maintaining transcriptional programs. Our premise is that we can answer these basic questions by observing the effect of genetic perturbations on the dynamics of both chromatin state and transcriptional activity. We aim to dissect the chromatin-transcription system in a systematic manner by building on our extensive experience in modeling and analysis, and a unique high-throughput experimental system we established in my lab.
We plan to use the budding yeast model organism, which allows for
efficient genetic and experimental manipulations. We will combine two technologies: (1) high-throughput measurements of single-cell
transcriptional output using fluorescence reporters; and (2) high-throughput immunoprecipitation sequencing assays to map chromatin state. Measuring with these the dynamics of response to stimuli under different genetic backgrounds and using advanced stochastic network models, we will chart detailed mechanisms that are opaque to current approaches and elucidate the general principles that govern the interplay between chromatin and transcription.
Summary
Epigenetic mechanisms play an important role in regulating and maintaining the functionality of cells and have been implicated in a wide range of human diseases. Histone proteins that form the protein core of nucleosomes are subject to a bewildering array of covalent and structural modifications, which can repress, permit, or promote transcription. These modifications can be added and removed by specialized complexes that are recruited by other covalent modifications, by transcription factors, or by the transcriptional machinery. Advances in genomics led to comprehensive mapping of the ``epigenome'' in a range of tissues and organisms. These maps established the tight connection between histone modifications and transcription programs. These static charts, however, are less successful at uncovering the underlying mechanisms, logic, and function of histone modifications in establishing and maintaining transcriptional programs. Our premise is that we can answer these basic questions by observing the effect of genetic perturbations on the dynamics of both chromatin state and transcriptional activity. We aim to dissect the chromatin-transcription system in a systematic manner by building on our extensive experience in modeling and analysis, and a unique high-throughput experimental system we established in my lab.
We plan to use the budding yeast model organism, which allows for
efficient genetic and experimental manipulations. We will combine two technologies: (1) high-throughput measurements of single-cell
transcriptional output using fluorescence reporters; and (2) high-throughput immunoprecipitation sequencing assays to map chromatin state. Measuring with these the dynamics of response to stimuli under different genetic backgrounds and using advanced stochastic network models, we will chart detailed mechanisms that are opaque to current approaches and elucidate the general principles that govern the interplay between chromatin and transcription.
Max ERC Funding
2 396 450 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym CNIDARIAMICRORNA
Project Elucidation of the evolution of post-transcriptional regulation by characterizing the cnidarian microRNA pathway
Researcher (PI) Yehu Moran
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Starting Grant (StG), LS2, ERC-2014-STG
Summary Over the past decade small RNAs such as microRNAs (miRNAs) and small interfering RNAs (siRNAs) have been shown to carry pivotal roles in post-transcriptional regulation and genome protection and to play an important part in various physiological processes in animals. miRNAs can be found in a very wide range of animals yet their functions were studied almost exclusively in members of the Bilateria such as insects, nematodes and vertebrates. Hence studying their function in representatives of non-bilaterian phyla such as Cnidaria (sea anemones, corals, hydras and jellyfish) is crucial for understanding the evolution of miRNAs in animals and can provide important insights into their roles in the ancient ancestor of Cnidaria and Bilateria. The sea anemone Nematostella vectensis is an excellent model for such a study since it can be grown in large numbers throughout its life cycle in the lab and because well-established genetic manipulation techniques are available for this species. Our preliminary results indicate that miRNAs in Nematostella frequently have a nearly perfect match to their messenger RNA (mRNA) targets, resulting in cleavage of the target. This mode of action is common for plant miRNAs, but is very rare in Bilateria. This finding together with my recent discovery of a Nematostella homolog of HYL1, a protein involved in miRNA biogenesis in plants, raises the exciting possibility that the miRNA pathway existed in the common ancestor of plants and animals. Here I suggest to bring together an array of advanced biochemical and genetic methods such as gene knockdown, transgenesis, high throughput sequencing and immunoprecipitation in order to obtain - for the first time - a deep understanding of the biogenesis and mechanism of action of small RNAs in Cnidaria. This will provide a novel way to understand the evolution of this important molecular pathway and to evaluate its age and ancestral form.
Summary
Over the past decade small RNAs such as microRNAs (miRNAs) and small interfering RNAs (siRNAs) have been shown to carry pivotal roles in post-transcriptional regulation and genome protection and to play an important part in various physiological processes in animals. miRNAs can be found in a very wide range of animals yet their functions were studied almost exclusively in members of the Bilateria such as insects, nematodes and vertebrates. Hence studying their function in representatives of non-bilaterian phyla such as Cnidaria (sea anemones, corals, hydras and jellyfish) is crucial for understanding the evolution of miRNAs in animals and can provide important insights into their roles in the ancient ancestor of Cnidaria and Bilateria. The sea anemone Nematostella vectensis is an excellent model for such a study since it can be grown in large numbers throughout its life cycle in the lab and because well-established genetic manipulation techniques are available for this species. Our preliminary results indicate that miRNAs in Nematostella frequently have a nearly perfect match to their messenger RNA (mRNA) targets, resulting in cleavage of the target. This mode of action is common for plant miRNAs, but is very rare in Bilateria. This finding together with my recent discovery of a Nematostella homolog of HYL1, a protein involved in miRNA biogenesis in plants, raises the exciting possibility that the miRNA pathway existed in the common ancestor of plants and animals. Here I suggest to bring together an array of advanced biochemical and genetic methods such as gene knockdown, transgenesis, high throughput sequencing and immunoprecipitation in order to obtain - for the first time - a deep understanding of the biogenesis and mechanism of action of small RNAs in Cnidaria. This will provide a novel way to understand the evolution of this important molecular pathway and to evaluate its age and ancestral form.
Max ERC Funding
1 499 587 €
Duration
Start date: 2015-05-01, End date: 2020-04-30
Project acronym CONQUEST
Project Controlled quantum effects and spin technology
- from non-equilibrium physics to functional magnetics
Researcher (PI) Henrik Ronnow
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Starting Grant (StG), PE3, ERC-2010-StG_20091028
Summary The technology of the 20th century was dominated by a single material class: The semiconductors, whose properties can be tuned between those of metals and insulators all of which describable by single-electron effects. In contrast, quantum magnets and strongly correlated electron systems offer a full palette of quantum mechanical many-electron states. CONQUEST aim to discover, understand and demonstrate control over such quantum states. A new experimental approach, building on established powerful laboratory and neutron scattering techniques combined with dynamical control-perturbations, will be developed to study correlated quantum effects in magnetic materials. The immediate goal is to open a new field of non-equilibrium and time dependent studies in solid state physics. The long-term vision is that the approach might nurture the materials of the 21st century.
Summary
The technology of the 20th century was dominated by a single material class: The semiconductors, whose properties can be tuned between those of metals and insulators all of which describable by single-electron effects. In contrast, quantum magnets and strongly correlated electron systems offer a full palette of quantum mechanical many-electron states. CONQUEST aim to discover, understand and demonstrate control over such quantum states. A new experimental approach, building on established powerful laboratory and neutron scattering techniques combined with dynamical control-perturbations, will be developed to study correlated quantum effects in magnetic materials. The immediate goal is to open a new field of non-equilibrium and time dependent studies in solid state physics. The long-term vision is that the approach might nurture the materials of the 21st century.
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-04-01, End date: 2016-03-31
Project acronym COSPSENA
Project Coherence of Spins in Semiconductor Nanostructures
Researcher (PI) Dominik Max Zumbühl
Host Institution (HI) UNIVERSITAT BASEL
Call Details Starting Grant (StG), PE3, ERC-2007-StG
Summary Macroscopic control of quantum states is a major theme in much of modern physics because quantum coherence enables study of fundamental physics and has promising applications for quantum information processing. The potential significance of quantum computing is recognized well beyond the physics community. For electron spins in GaAs quantum dots, it has become clear that decoherence caused by interactions with the nuclear spins is a major challenge. We propose to investigate and reduce hyperfine induced decoherence with two complementary approaches: nuclear spin state narrowing and nuclear spin polarization. We propose a new projective state narrowing technique: a large, Coulomb blockaded dot measures the qubit nuclear ensemble, resulting in enhanced spin coherence times. Further, mediated by an interacting 2D electron gas via hyperfine interaction, a low temperature nuclear ferromagnetic spin state was predicted, which we propose to investigate using a quantum point contact as a nuclear polarization detector. Estimates indicate that the nuclear ferromagnetic transition occurs in the sub-Millikelvin range, well below already hard to reach temperatures around 10 mK. However, the exciting combination of interacting electron and nuclear spin physics as well as applications in spin qubits give ample incentive to strive for sub-Millikelvin temperatures in nanostructures. We propose to build a novel type of nuclear demagnetization refrigerator aiming to reach electron temperatures of 0.1 mK in semiconductor nanostructures. This interdisciplinary project combines Microkelvin and nanophysics, going well beyond the status quo. It is a challenging project that could be the beginning of a new era of coherent spin physics with unprecedented quantum control. This project requires a several year commitment and a team of two graduate students plus one postdoctoral fellow.
Summary
Macroscopic control of quantum states is a major theme in much of modern physics because quantum coherence enables study of fundamental physics and has promising applications for quantum information processing. The potential significance of quantum computing is recognized well beyond the physics community. For electron spins in GaAs quantum dots, it has become clear that decoherence caused by interactions with the nuclear spins is a major challenge. We propose to investigate and reduce hyperfine induced decoherence with two complementary approaches: nuclear spin state narrowing and nuclear spin polarization. We propose a new projective state narrowing technique: a large, Coulomb blockaded dot measures the qubit nuclear ensemble, resulting in enhanced spin coherence times. Further, mediated by an interacting 2D electron gas via hyperfine interaction, a low temperature nuclear ferromagnetic spin state was predicted, which we propose to investigate using a quantum point contact as a nuclear polarization detector. Estimates indicate that the nuclear ferromagnetic transition occurs in the sub-Millikelvin range, well below already hard to reach temperatures around 10 mK. However, the exciting combination of interacting electron and nuclear spin physics as well as applications in spin qubits give ample incentive to strive for sub-Millikelvin temperatures in nanostructures. We propose to build a novel type of nuclear demagnetization refrigerator aiming to reach electron temperatures of 0.1 mK in semiconductor nanostructures. This interdisciplinary project combines Microkelvin and nanophysics, going well beyond the status quo. It is a challenging project that could be the beginning of a new era of coherent spin physics with unprecedented quantum control. This project requires a several year commitment and a team of two graduate students plus one postdoctoral fellow.
Max ERC Funding
1 377 000 €
Duration
Start date: 2008-06-01, End date: 2013-05-31