Project acronym ECOADAPT
Project Microbial adaptation within ecosystems
Researcher (PI) Isabel Antunes Mendes Gordo
Host Institution (HI) FUNDACAO CALOUSTE GULBENKIAN
Call Details Starting Grant (StG), LS8, ERC-2010-StG_20091118
Summary All natural populations are constantly subject to new mutations, and frequently face new environments, to which they adapt. Knowledge of the genetics of adaptation should provide the centerpiece of a unified theory of evolution. Despite its extreme importance, the process of adaptation is far from being understood. How does the shape of distribution of fitness effects of mutations depend on the environment? What is the importance of epistasis in adaptive evolution? are still open questions. While empirical observations on advantageous mutations are extremely difficult, recent technical advances allow us to start tackling these questions with an unprecedented accuracy. Here we will combine different methods in a novel powerful marker system to track adaptive mutations as they become incorporated into bacterial populations adapting to different environments and as they fix. Interestingly theory suggest that some generalities may underlie the process of adaptation and that ecology may be important in the dynamics and statistical laws of adaptation. Experimental evolution with bacteria presents us with the opportunity to directly measure key parameters and to test theoretical predictions about the genetic basis of adaptive evolution in increasingly complex ecosystems. As Dobzansky pointed out The greater the diversity of inhabitants in a territory, the more adaptive opportunities exist in it. The main goal of this research project is to measure rates and effects of adaptive mutations, as well as patterns of epistasis amongst beneficial mutations in environments with different strengths of abiotic versus biotic interactions.
Summary
All natural populations are constantly subject to new mutations, and frequently face new environments, to which they adapt. Knowledge of the genetics of adaptation should provide the centerpiece of a unified theory of evolution. Despite its extreme importance, the process of adaptation is far from being understood. How does the shape of distribution of fitness effects of mutations depend on the environment? What is the importance of epistasis in adaptive evolution? are still open questions. While empirical observations on advantageous mutations are extremely difficult, recent technical advances allow us to start tackling these questions with an unprecedented accuracy. Here we will combine different methods in a novel powerful marker system to track adaptive mutations as they become incorporated into bacterial populations adapting to different environments and as they fix. Interestingly theory suggest that some generalities may underlie the process of adaptation and that ecology may be important in the dynamics and statistical laws of adaptation. Experimental evolution with bacteria presents us with the opportunity to directly measure key parameters and to test theoretical predictions about the genetic basis of adaptive evolution in increasingly complex ecosystems. As Dobzansky pointed out The greater the diversity of inhabitants in a territory, the more adaptive opportunities exist in it. The main goal of this research project is to measure rates and effects of adaptive mutations, as well as patterns of epistasis amongst beneficial mutations in environments with different strengths of abiotic versus biotic interactions.
Max ERC Funding
1 167 600 €
Duration
Start date: 2010-12-01, End date: 2015-11-30
Project acronym FIT2GO
Project A toolbox for fitness landscapes in evolution
Researcher (PI) Claudia BANK
Host Institution (HI) FUNDACAO CALOUSTE GULBENKIAN
Call Details Starting Grant (StG), LS8, ERC-2018-STG
Summary A major challenge in evolutionary biology is to quantify the processes and mechanisms by which populations adapt to new environments. In particular, the role of epistasis, which is the genetic-background dependent effect of mutations, and the constraints it imposes on adaptation, has been contentious for decades. This question can be approached using the concept of a fitness landscape: a map of genotypes or phenotypes to fitness, which dictates the dynamics and the possible paths towards increased reproductive success. This analogy has inspired a large body of theoretical work, in which various models of fitness landscapes have been proposed and analysed. Only recently, novel experimental approaches and advances in sequencing technologies have provided us with large empirical fitness landscapes at impressive resolution, which call for the evaluation of the related theory.
The aim of this proposal is to build on the theory of fitness landscapes to quantify epistasis across levels of biological organization and across environments, and to study its impact on the population genetics of adaptation and hybridization. Each work package involves classical theoretical modelling, statistical inference and method development, and data analysis and interpretation; a combination of approaches for which my research group has strong expertise. In addition, we will perform experimental evolution in Escherichia coli and influenza to test hypotheses related to the change of fitness effects across environments, and to adaptation by means of highly epistatic mutations. We will specifically apply our methods to evaluate the potential for predicting routes to drug resistance in pathogens. The long-term goal lies in the development of a modeling and inference framework that utilizes fitness landscape theory to infer the ecological history of a genome, which may ultimately allow for a prediction of its future adaptive potential.
Summary
A major challenge in evolutionary biology is to quantify the processes and mechanisms by which populations adapt to new environments. In particular, the role of epistasis, which is the genetic-background dependent effect of mutations, and the constraints it imposes on adaptation, has been contentious for decades. This question can be approached using the concept of a fitness landscape: a map of genotypes or phenotypes to fitness, which dictates the dynamics and the possible paths towards increased reproductive success. This analogy has inspired a large body of theoretical work, in which various models of fitness landscapes have been proposed and analysed. Only recently, novel experimental approaches and advances in sequencing technologies have provided us with large empirical fitness landscapes at impressive resolution, which call for the evaluation of the related theory.
The aim of this proposal is to build on the theory of fitness landscapes to quantify epistasis across levels of biological organization and across environments, and to study its impact on the population genetics of adaptation and hybridization. Each work package involves classical theoretical modelling, statistical inference and method development, and data analysis and interpretation; a combination of approaches for which my research group has strong expertise. In addition, we will perform experimental evolution in Escherichia coli and influenza to test hypotheses related to the change of fitness effects across environments, and to adaptation by means of highly epistatic mutations. We will specifically apply our methods to evaluate the potential for predicting routes to drug resistance in pathogens. The long-term goal lies in the development of a modeling and inference framework that utilizes fitness landscape theory to infer the ecological history of a genome, which may ultimately allow for a prediction of its future adaptive potential.
Max ERC Funding
1 366 250 €
Duration
Start date: 2019-03-01, End date: 2024-02-29