Project acronym A-FRO
Project Actively Frozen - contextual modulation of freezing and its neuronal basis
Researcher (PI) Marta de Aragão Pacheco Moita
Host Institution (HI) FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD
Call Details Consolidator Grant (CoG), LS5, ERC-2018-COG
Summary When faced with a threat, an animal must decide whether to freeze, reducing its chances of being noticed, or to flee to the safety of a refuge. Animals from fish to primates choose between these two alternatives when confronted by an attacking predator, a choice that largely depends on the context in which the threat occurs. Recent work has made strides identifying the pre-motor circuits, and their inputs, which control freezing behavior in rodents, but how contextual information is integrated to guide this choice is still far from understood. We recently found that fruit flies in response to visual looming stimuli, simulating a large object on collision course, make rapid freeze/flee choices that depend on the social and spatial environment, and the fly’s internal state. Further, identification of looming detector neurons was recently reported and we identified the descending command neurons, DNp09, responsible for freezing in the fly. Knowing the sensory input and descending output for looming-evoked freezing, two environmental factors that modulate its expression, and using a genetically tractable system affording the use of large sample sizes, places us in an unique position to understand how a information about a threat is integrated with cues from the environment to guide the choice of whether to freeze (our goal). To assess how social information impinges on the circuit for freezing, we will examine the sensory inputs and neuromodulators that mediate this process, mapping their connections to DNp09 neurons (Aim 1). We ask whether learning is required for the spatial modulation of freezing, which cues flies are using to discriminate different places and which brain circuits mediate this process (Aim 2). Finally, we will study how activity of DNp09 neurons drives freezing (Aim 3). This project will provide a comprehensive understanding of the mechanism of freezing and its modulation by the environment, from single neurons to behaviour.
Summary
When faced with a threat, an animal must decide whether to freeze, reducing its chances of being noticed, or to flee to the safety of a refuge. Animals from fish to primates choose between these two alternatives when confronted by an attacking predator, a choice that largely depends on the context in which the threat occurs. Recent work has made strides identifying the pre-motor circuits, and their inputs, which control freezing behavior in rodents, but how contextual information is integrated to guide this choice is still far from understood. We recently found that fruit flies in response to visual looming stimuli, simulating a large object on collision course, make rapid freeze/flee choices that depend on the social and spatial environment, and the fly’s internal state. Further, identification of looming detector neurons was recently reported and we identified the descending command neurons, DNp09, responsible for freezing in the fly. Knowing the sensory input and descending output for looming-evoked freezing, two environmental factors that modulate its expression, and using a genetically tractable system affording the use of large sample sizes, places us in an unique position to understand how a information about a threat is integrated with cues from the environment to guide the choice of whether to freeze (our goal). To assess how social information impinges on the circuit for freezing, we will examine the sensory inputs and neuromodulators that mediate this process, mapping their connections to DNp09 neurons (Aim 1). We ask whether learning is required for the spatial modulation of freezing, which cues flies are using to discriminate different places and which brain circuits mediate this process (Aim 2). Finally, we will study how activity of DNp09 neurons drives freezing (Aim 3). This project will provide a comprehensive understanding of the mechanism of freezing and its modulation by the environment, from single neurons to behaviour.
Max ERC Funding
1 969 750 €
Duration
Start date: 2019-02-01, End date: 2024-01-31
Project acronym FIT2GO
Project A toolbox for fitness landscapes in evolution
Researcher (PI) Claudia BANK
Host Institution (HI) FUNDACAO CALOUSTE GULBENKIAN
Call Details Starting Grant (StG), LS8, ERC-2018-STG
Summary A major challenge in evolutionary biology is to quantify the processes and mechanisms by which populations adapt to new environments. In particular, the role of epistasis, which is the genetic-background dependent effect of mutations, and the constraints it imposes on adaptation, has been contentious for decades. This question can be approached using the concept of a fitness landscape: a map of genotypes or phenotypes to fitness, which dictates the dynamics and the possible paths towards increased reproductive success. This analogy has inspired a large body of theoretical work, in which various models of fitness landscapes have been proposed and analysed. Only recently, novel experimental approaches and advances in sequencing technologies have provided us with large empirical fitness landscapes at impressive resolution, which call for the evaluation of the related theory.
The aim of this proposal is to build on the theory of fitness landscapes to quantify epistasis across levels of biological organization and across environments, and to study its impact on the population genetics of adaptation and hybridization. Each work package involves classical theoretical modelling, statistical inference and method development, and data analysis and interpretation; a combination of approaches for which my research group has strong expertise. In addition, we will perform experimental evolution in Escherichia coli and influenza to test hypotheses related to the change of fitness effects across environments, and to adaptation by means of highly epistatic mutations. We will specifically apply our methods to evaluate the potential for predicting routes to drug resistance in pathogens. The long-term goal lies in the development of a modeling and inference framework that utilizes fitness landscape theory to infer the ecological history of a genome, which may ultimately allow for a prediction of its future adaptive potential.
Summary
A major challenge in evolutionary biology is to quantify the processes and mechanisms by which populations adapt to new environments. In particular, the role of epistasis, which is the genetic-background dependent effect of mutations, and the constraints it imposes on adaptation, has been contentious for decades. This question can be approached using the concept of a fitness landscape: a map of genotypes or phenotypes to fitness, which dictates the dynamics and the possible paths towards increased reproductive success. This analogy has inspired a large body of theoretical work, in which various models of fitness landscapes have been proposed and analysed. Only recently, novel experimental approaches and advances in sequencing technologies have provided us with large empirical fitness landscapes at impressive resolution, which call for the evaluation of the related theory.
The aim of this proposal is to build on the theory of fitness landscapes to quantify epistasis across levels of biological organization and across environments, and to study its impact on the population genetics of adaptation and hybridization. Each work package involves classical theoretical modelling, statistical inference and method development, and data analysis and interpretation; a combination of approaches for which my research group has strong expertise. In addition, we will perform experimental evolution in Escherichia coli and influenza to test hypotheses related to the change of fitness effects across environments, and to adaptation by means of highly epistatic mutations. We will specifically apply our methods to evaluate the potential for predicting routes to drug resistance in pathogens. The long-term goal lies in the development of a modeling and inference framework that utilizes fitness landscape theory to infer the ecological history of a genome, which may ultimately allow for a prediction of its future adaptive potential.
Max ERC Funding
1 366 250 €
Duration
Start date: 2019-03-01, End date: 2024-02-29
Project acronym LIMBo
Project Zooming the link between diet and brain health: how phenolic metabolites modulate brain inflammation
Researcher (PI) Cláudia NUNES DOS SANTOS
Host Institution (HI) UNIVERSIDADE NOVA DE LISBOA
Call Details Starting Grant (StG), LS9, ERC-2018-STG
Summary Currently a big concern of our aging society is to efficiently delay the onset of neurodegenerative diseases which are progressively rising in incidence. The paradigm that a diet rich in the phenolics, prevalent e.g. in fruits, is beneficial to brain health has reached the public. However their mechanistic actions in brain functions remain to be seen, particularly since the nature of those acting in the brain remains overlooked. I wish to address this gap by identifying candidate compounds that can support development of effective strategies to delay neurodegeneration.
Specifically, I will be analysing the potential of dietary phenolics in both prevention and treatment (i.e delay) of neuroinflammation – key process shared in neurodegenerative diseases. To break down the current indeterminate status of “cause vs effect”, my vision is to focus my research on metabolites derived from dietary phenolics that reach the brain. I will be investigating their effects in both established and unknown response pathways of microglia cells - the innate immune cells of the central nervous system, either alone or when communicating with other brain cells. Ultimately, to attain an integrated view of their effects I will establish nutrition trials in mice. LIMBo considers both pro- and anti- inflammatory processes to preliminary validate the action of any promising metabolite in prevention and/or therapeutics.
LIMBo provides valuable scientific insights for future implementation of healthy brain diets. My group is in a unique position to address LIMBo objectives due to multidisciplinary expertise in organic synthesis, metabolomics and molecular and cellular biology, together with our previous data on novel neuroactive metabolites.
LIMBo also creates far-reaching opportunities by generating knowledge that impacts our fundamental understanding on the diversity of phenolic metabolites and their specific influences in neuroinflammation and potential use as prodrugs.
Summary
Currently a big concern of our aging society is to efficiently delay the onset of neurodegenerative diseases which are progressively rising in incidence. The paradigm that a diet rich in the phenolics, prevalent e.g. in fruits, is beneficial to brain health has reached the public. However their mechanistic actions in brain functions remain to be seen, particularly since the nature of those acting in the brain remains overlooked. I wish to address this gap by identifying candidate compounds that can support development of effective strategies to delay neurodegeneration.
Specifically, I will be analysing the potential of dietary phenolics in both prevention and treatment (i.e delay) of neuroinflammation – key process shared in neurodegenerative diseases. To break down the current indeterminate status of “cause vs effect”, my vision is to focus my research on metabolites derived from dietary phenolics that reach the brain. I will be investigating their effects in both established and unknown response pathways of microglia cells - the innate immune cells of the central nervous system, either alone or when communicating with other brain cells. Ultimately, to attain an integrated view of their effects I will establish nutrition trials in mice. LIMBo considers both pro- and anti- inflammatory processes to preliminary validate the action of any promising metabolite in prevention and/or therapeutics.
LIMBo provides valuable scientific insights for future implementation of healthy brain diets. My group is in a unique position to address LIMBo objectives due to multidisciplinary expertise in organic synthesis, metabolomics and molecular and cellular biology, together with our previous data on novel neuroactive metabolites.
LIMBo also creates far-reaching opportunities by generating knowledge that impacts our fundamental understanding on the diversity of phenolic metabolites and their specific influences in neuroinflammation and potential use as prodrugs.
Max ERC Funding
1 496 022 €
Duration
Start date: 2019-04-01, End date: 2024-03-31