Project acronym NanoSCAN
Project Developing multi-modality nanomedicines for targeted annotation of oncogenic signaling pathways
Researcher (PI) Jason Philip Holland
Host Institution (HI) UNIVERSITAT ZURICH
Call Details Starting Grant (StG), LS7, ERC-2015-STG
Summary Spatial and temporal changes in the underlying biochemistry of cancer control disease progression and response/resistance to treatment. Developing methods to detect changes in oncogenic signaling at an early stage is vital to further our understanding of cancer, and will advance the next generation of anti-cancer therapies. Nanomedicine is the medical application of nanotechnology to diagnose or treat disease. In light of the recent introduction of tools like Positron Emission Tomography/Magnetic Resonance Imaging (PET/MRI) scanners, there is now a new opportunity to develop hybrid imaging protocols that can simultaneously take advantage of the functional and anatomic information available from PET/MRI to address changes in oncogenic signaling pathways. The work outlined in this interdisciplinary ERC Project is designed to advance new chemistry and imaging methods to measure changes in oncogenic signaling in various cancers before, during and after treatment using PET/MRI. The long-term goals are to expand the scope and utility of radiolabelled nanomedicines as dual-modality PET/MRI probes for detecting changes in oncogenic signaling in various cancers and develop efficient methods for translating new technologies to the clinic. Successful completion of this ERC Project has the potential to transform personalised clinical management of cancer patients via advanced PET/MRI detection of oncogenic signaling processes.
Summary
Spatial and temporal changes in the underlying biochemistry of cancer control disease progression and response/resistance to treatment. Developing methods to detect changes in oncogenic signaling at an early stage is vital to further our understanding of cancer, and will advance the next generation of anti-cancer therapies. Nanomedicine is the medical application of nanotechnology to diagnose or treat disease. In light of the recent introduction of tools like Positron Emission Tomography/Magnetic Resonance Imaging (PET/MRI) scanners, there is now a new opportunity to develop hybrid imaging protocols that can simultaneously take advantage of the functional and anatomic information available from PET/MRI to address changes in oncogenic signaling pathways. The work outlined in this interdisciplinary ERC Project is designed to advance new chemistry and imaging methods to measure changes in oncogenic signaling in various cancers before, during and after treatment using PET/MRI. The long-term goals are to expand the scope and utility of radiolabelled nanomedicines as dual-modality PET/MRI probes for detecting changes in oncogenic signaling in various cancers and develop efficient methods for translating new technologies to the clinic. Successful completion of this ERC Project has the potential to transform personalised clinical management of cancer patients via advanced PET/MRI detection of oncogenic signaling processes.
Max ERC Funding
1 700 000 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym NEURALCHUNK
Project Neural bases of action chunking in basal ganglia subcircuits
Researcher (PI) Rui Manuel Marques Fernandes Da Costa
Host Institution (HI) FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD
Call Details Consolidator Grant (CoG), LS5, ERC-2013-CoG
Summary "Chunking allows the brain to efficiently organize memories and actions. Although basal ganglia circuits have been implicated in action chunking, little is known about how individual elements are concatenated into a behavioral unit at the neuronal level. Using a differential reinforcement procedure where mice learn to chunk rapid action sequences, we uncovered neuronal activity encoding entire sequences as single actions in basal ganglia circuits. Besides activity signaling sequence initiation (start), we found neurons with sustained or inhibited activity throughout the execution of an entire sequence. These findings clearly show that basal ganglia circuits display neural activity related to the execution of whole action sequences, rather than unitary elements. Neurons with start, sustained and inhibited sequence-related activity were observed throughout the basal ganglia, namely in the main input (striatum), and output (substantia nigra reticulata) nuclei of the basal ganglia. However, the basal ganglia have different cell types/subcircuits linking input to output, the so called direct ves. indirect pathways. Furthermore, basal ganglia output projects to different target areas. Here we will 1) determine if these correlates of motor concatenation are differentially expressed in direct versus indirect basal ganglia pathways by optogenetic identification of cell types in the striatum and in vivo imaging, 2) test the necessity and sufficiency of these two pathways in action sequence initiation and performance, and 3) test if different basal ganglia output circuits express and mediate different aspects of action chunking. These experiments will dissect with unprecedented spatial and temporal precision the role of basal ganglia subcircuits in the initiation and performance of action chunks."
Summary
"Chunking allows the brain to efficiently organize memories and actions. Although basal ganglia circuits have been implicated in action chunking, little is known about how individual elements are concatenated into a behavioral unit at the neuronal level. Using a differential reinforcement procedure where mice learn to chunk rapid action sequences, we uncovered neuronal activity encoding entire sequences as single actions in basal ganglia circuits. Besides activity signaling sequence initiation (start), we found neurons with sustained or inhibited activity throughout the execution of an entire sequence. These findings clearly show that basal ganglia circuits display neural activity related to the execution of whole action sequences, rather than unitary elements. Neurons with start, sustained and inhibited sequence-related activity were observed throughout the basal ganglia, namely in the main input (striatum), and output (substantia nigra reticulata) nuclei of the basal ganglia. However, the basal ganglia have different cell types/subcircuits linking input to output, the so called direct ves. indirect pathways. Furthermore, basal ganglia output projects to different target areas. Here we will 1) determine if these correlates of motor concatenation are differentially expressed in direct versus indirect basal ganglia pathways by optogenetic identification of cell types in the striatum and in vivo imaging, 2) test the necessity and sufficiency of these two pathways in action sequence initiation and performance, and 3) test if different basal ganglia output circuits express and mediate different aspects of action chunking. These experiments will dissect with unprecedented spatial and temporal precision the role of basal ganglia subcircuits in the initiation and performance of action chunks."
Max ERC Funding
1 998 600 €
Duration
Start date: 2014-11-01, End date: 2019-10-31
Project acronym NEUROCHEMS
Project From neurons to behavior: analysis of the mechanisms underlying sensory coding and plasticity in chemical senses
Researcher (PI) Alan, Jacques, Henri, Cyrus Carleton
Host Institution (HI) UNIVERSITE DE GENEVE
Call Details Starting Grant (StG), LS5, ERC-2009-StG
Summary How sensory processing is occurring into the brain and how to relate behavior to neuronal activities are key questions in modern neuroscience. Understanding the neural codes underlying brain function will be of great importance for future implementation of brain-machine interfaces. This research project proposes to study the cellular and network mechanisms controlling sensory perception. In particular, we would like to precise how sensory stimuli are coded by brain networks and how these representations may be influenced by experience or modulatory brain centers. In order to address these general questions, we propose to study olfaction as model sensory system. The olfactory system is central to the behavior of rodents (animal models that we study), is highly plastic and largely modulated by the neuromodulatory brain centers. We propose to use a combination of genetic, electrophysiological, imaging and behavioral methods to study how odor information is processed in the central nervous system as it moves from the periphery to higher areas of the brain. We showed in the past that sensory information can be contained in dynamic neural ensemble. We propose to show that ensemble dynamics may be the basis of odor coding in the olfactory bulb and to describe the mechanisms underlying cortical coding that would allow us to relate neuronal activity to behavior. In addition, we hope to show the existence of a novel form of plasticity in the olfactory bulb namely ensemble plasticity. We believe that the general questions addressed in the study of these sensory systems go beyond understanding olfactory sensory perception and could potentially be generalized to the function of many brain regions.
Summary
How sensory processing is occurring into the brain and how to relate behavior to neuronal activities are key questions in modern neuroscience. Understanding the neural codes underlying brain function will be of great importance for future implementation of brain-machine interfaces. This research project proposes to study the cellular and network mechanisms controlling sensory perception. In particular, we would like to precise how sensory stimuli are coded by brain networks and how these representations may be influenced by experience or modulatory brain centers. In order to address these general questions, we propose to study olfaction as model sensory system. The olfactory system is central to the behavior of rodents (animal models that we study), is highly plastic and largely modulated by the neuromodulatory brain centers. We propose to use a combination of genetic, electrophysiological, imaging and behavioral methods to study how odor information is processed in the central nervous system as it moves from the periphery to higher areas of the brain. We showed in the past that sensory information can be contained in dynamic neural ensemble. We propose to show that ensemble dynamics may be the basis of odor coding in the olfactory bulb and to describe the mechanisms underlying cortical coding that would allow us to relate neuronal activity to behavior. In addition, we hope to show the existence of a novel form of plasticity in the olfactory bulb namely ensemble plasticity. We believe that the general questions addressed in the study of these sensory systems go beyond understanding olfactory sensory perception and could potentially be generalized to the function of many brain regions.
Max ERC Funding
1 399 998 €
Duration
Start date: 2009-12-01, End date: 2014-11-30
Project acronym NEUROFISH
Project Whole-brain circuits controlling visuomotor behavior
Researcher (PI) Michael Brian ORGER
Host Institution (HI) FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD
Call Details Consolidator Grant (CoG), LS5, ERC-2017-COG
Summary Understanding how our brains extract relevant features of sensory input to select and guide appropriate actions is a fundamental goal of neuroscience. Yet even relatively simple sensorimotor reflexes can depend on activity within complex networks of neurons that are distributed across the brain, presenting a challenge for traditional neuroscience approaches.
Our recent work has demonstrated the capacity to image neural activity with single cell resolution throughout the small transparent brain of behaving zebrafish. Here we will trace, from sensory input to motor output, the neural circuits that allow zebrafish to select and execute distinct swimming patterns in response to varying visual input. Through comprehensive whole-brain functional imaging in combination with optical and genetic circuit tracing, we aim to determine the principles on which these sensorimotor circuits are organised and reveal how activity dynamics unfold throughout the whole brain during behaviour.
We will take a systematic approach to this problem, based on a thorough quantitative analysis of swim kinematics and the sensory stimuli that drive them. We will: 1) Use whole-brain functional imaging of genetically defined neural populations to reveal the neural circuit organization and activity dynamics during visuomotor behaviour. 2) Establish how motor commands are encoded at the single-cell and population level by brainstem reticulospinal neurons, through imaging and ablation studies and 3) Systematically map the functional organisation of retinal inputs into the brain.
Taken together, these experiments will provide an unprecedented, single-cell resolution view of the organization of complete circuits that transform retinal inputs to motor outputs in the vertebrate brain.
Summary
Understanding how our brains extract relevant features of sensory input to select and guide appropriate actions is a fundamental goal of neuroscience. Yet even relatively simple sensorimotor reflexes can depend on activity within complex networks of neurons that are distributed across the brain, presenting a challenge for traditional neuroscience approaches.
Our recent work has demonstrated the capacity to image neural activity with single cell resolution throughout the small transparent brain of behaving zebrafish. Here we will trace, from sensory input to motor output, the neural circuits that allow zebrafish to select and execute distinct swimming patterns in response to varying visual input. Through comprehensive whole-brain functional imaging in combination with optical and genetic circuit tracing, we aim to determine the principles on which these sensorimotor circuits are organised and reveal how activity dynamics unfold throughout the whole brain during behaviour.
We will take a systematic approach to this problem, based on a thorough quantitative analysis of swim kinematics and the sensory stimuli that drive them. We will: 1) Use whole-brain functional imaging of genetically defined neural populations to reveal the neural circuit organization and activity dynamics during visuomotor behaviour. 2) Establish how motor commands are encoded at the single-cell and population level by brainstem reticulospinal neurons, through imaging and ablation studies and 3) Systematically map the functional organisation of retinal inputs into the brain.
Taken together, these experiments will provide an unprecedented, single-cell resolution view of the organization of complete circuits that transform retinal inputs to motor outputs in the vertebrate brain.
Max ERC Funding
1 694 063 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym NEUROFLIES
Project Drosophila sechellia: a novel model to investigate nervous system and behavioral evolution
Researcher (PI) Richard Roland BENTON
Host Institution (HI) UNIVERSITE DE LAUSANNE
Call Details Advanced Grant (AdG), LS5, ERC-2018-ADG
Summary How animals’ extraordinarily diverse behaviors have evolved is unknown. Relating interspecific behavioral differences to anatomical or physiological distinctions in neural circuits, and causal genetic variation, offers a powerful approach to inform how nervous systems develop, function and change.
Understanding behavioral and nervous system evolution requires deep investment in select species. We propose to establish a new model neurogenetic system: Drosophila sechellia, an island endemic that is closely related to D. melanogaster and D. simulans. While D. sechellia retains global genomic and superficial morphological similarity to its cosmopolitan generalist cousins, this species has adapted to a unique ecological niche, using Morinda fruit as a sole host for feeding and breeding. The project has three aims:
Aim 1. Establishment of a D. sechellia (neuro)genetic toolkit: we will build essential genetic reagents for generation and maintenance of animals of desired genotypes, for neurogenetic manipulations, and for recombination mapping-based approaches.
Aim 2. Behavioral, neuroanatomical and molecular phenomics: systematic comparison of D. sechellia, D. simulans and D. melanogaster for their behaviors, their neuroanatomy and their neuro-molecular expression properties will reveal how D. sechellia has adapted to its niche, and will provide multiple entry-points to relate molecular, neuronal and behavioral differences between these species.
Aim 3. Defining the genetic basis and functional significance of a neuronal adaptation in D. sechellia: through high-resolution mapping and allele swap approaches, we will identify the causal genetic changes underlying a neural adaption in D. sechellia, and its physiological and behavioral significance.
This project will establish a powerful new model system for evolutionary neuroscience (and many other fields) and provide fundamental insights into the origins and mechanisms of nervous system and behavioral diversification.
Summary
How animals’ extraordinarily diverse behaviors have evolved is unknown. Relating interspecific behavioral differences to anatomical or physiological distinctions in neural circuits, and causal genetic variation, offers a powerful approach to inform how nervous systems develop, function and change.
Understanding behavioral and nervous system evolution requires deep investment in select species. We propose to establish a new model neurogenetic system: Drosophila sechellia, an island endemic that is closely related to D. melanogaster and D. simulans. While D. sechellia retains global genomic and superficial morphological similarity to its cosmopolitan generalist cousins, this species has adapted to a unique ecological niche, using Morinda fruit as a sole host for feeding and breeding. The project has three aims:
Aim 1. Establishment of a D. sechellia (neuro)genetic toolkit: we will build essential genetic reagents for generation and maintenance of animals of desired genotypes, for neurogenetic manipulations, and for recombination mapping-based approaches.
Aim 2. Behavioral, neuroanatomical and molecular phenomics: systematic comparison of D. sechellia, D. simulans and D. melanogaster for their behaviors, their neuroanatomy and their neuro-molecular expression properties will reveal how D. sechellia has adapted to its niche, and will provide multiple entry-points to relate molecular, neuronal and behavioral differences between these species.
Aim 3. Defining the genetic basis and functional significance of a neuronal adaptation in D. sechellia: through high-resolution mapping and allele swap approaches, we will identify the causal genetic changes underlying a neural adaption in D. sechellia, and its physiological and behavioral significance.
This project will establish a powerful new model system for evolutionary neuroscience (and many other fields) and provide fundamental insights into the origins and mechanisms of nervous system and behavioral diversification.
Max ERC Funding
2 327 547 €
Duration
Start date: 2019-10-01, End date: 2024-09-30
Project acronym NEUROHABIT
Project Neural mechanisms of action learning and action selection: from intent to habit
Researcher (PI) Rui Manuel Marques Fernandes Da Costa
Host Institution (HI) FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD
Call Details Starting Grant (StG), LS5, ERC-2009-StG
Summary In every day life, we constantly have to select the appropriate actions to obtain specific outcomes. Actions can be selected based on their consequences, for example when we press an elevator button to get to the particular floor where we live. This goal-directed behaviour is crucial to face the ever-changing environment but demands an effortful control and monitoring of the response; one way to balance the need for flexibility and efficiency is through automatization of recurring decision processes as a habit. Habitual responses no longer need the evaluation of their consequences, and can be elicited by particular situations or stimuli, for example when we press the button for our home floor in a building that we are visiting for the first time. There is growing evidence that the neural circuits underlying intentional or goal-directed actions are different from those underlying habits; associative corticostriatal circuits have been implicated in goal-directed actions, and sensorimotor circuits in habit formation. Dopamine (DA) has been implicated in both voluntary actions and habits. However, DA neurons from the VTA and the SNc project to different cortical and striatal regions, and the specific role of VTA and SNc DA in goal-directed actions and habits has not been clarified. We propose to: 1) use cell-type and region specific genetic manipulations to test if phasic firing in VTA or SNc DA neurons is necessary for goal-directed actions or habits, respectively, 2) generate cell-type specific channelrodhopsin transgenic mice to test if phasic DA neuron firing in these areas is sufficient to produce goal-directed actions or habits, and 3) selectively manipulate striatal neurons modulated by VTA or SNc phasic DA to test if they are necessary for goal-directed actions or habits. The dissection of the molecular and circuit mechanisms underlying goal-directed and habitual responses will be critical to understand decision-making, and the origins of compulsive behaviour.
Summary
In every day life, we constantly have to select the appropriate actions to obtain specific outcomes. Actions can be selected based on their consequences, for example when we press an elevator button to get to the particular floor where we live. This goal-directed behaviour is crucial to face the ever-changing environment but demands an effortful control and monitoring of the response; one way to balance the need for flexibility and efficiency is through automatization of recurring decision processes as a habit. Habitual responses no longer need the evaluation of their consequences, and can be elicited by particular situations or stimuli, for example when we press the button for our home floor in a building that we are visiting for the first time. There is growing evidence that the neural circuits underlying intentional or goal-directed actions are different from those underlying habits; associative corticostriatal circuits have been implicated in goal-directed actions, and sensorimotor circuits in habit formation. Dopamine (DA) has been implicated in both voluntary actions and habits. However, DA neurons from the VTA and the SNc project to different cortical and striatal regions, and the specific role of VTA and SNc DA in goal-directed actions and habits has not been clarified. We propose to: 1) use cell-type and region specific genetic manipulations to test if phasic firing in VTA or SNc DA neurons is necessary for goal-directed actions or habits, respectively, 2) generate cell-type specific channelrodhopsin transgenic mice to test if phasic DA neuron firing in these areas is sufficient to produce goal-directed actions or habits, and 3) selectively manipulate striatal neurons modulated by VTA or SNc phasic DA to test if they are necessary for goal-directed actions or habits. The dissection of the molecular and circuit mechanisms underlying goal-directed and habitual responses will be critical to understand decision-making, and the origins of compulsive behaviour.
Max ERC Funding
1 526 304 €
Duration
Start date: 2009-11-01, End date: 2014-10-31
Project acronym NeuroStemCircuit
Project Neural Circuit Regulation of Adult Brain Stem Cells
Researcher (PI) Fiona DOETSCH
Host Institution (HI) UNIVERSITAT BASEL
Call Details Advanced Grant (AdG), LS5, ERC-2017-ADG
Summary In the adult mammalian brain, neural stem cells (NSCs) residing in the ventricular-subventricular zone (V-SVZ), give rise to new olfactory bulb neurons and glia throughout life. Adult V-SVZ NSC are highly heterogeneous. Stem cells co-exist in quiescent and activated states and reside in regionally-distinct V-SVZ domains and produce different subtypes of olfactory bulb neurons and glia. However, whether this heterogeneity is due to intrinsic fate commitment or whether it is dynamically responsive to external changes is still debated. Moreover, the mechanisms that modulate the balance between activation and dormancy are largely unknown. It is emerging that physiological states modulate V-SVZ cell behaviour and impact adult neurogenesis. We propose to investigate whether physiologically distinct states result in the recruitment of regionally distinct pools of adult V-SVZ neural stem cells. In Aim 1, we will map the domains of stem cell activation and cell types generated in different states in male and female mice. In Aim 2, we will perform large-scale single cell sequencing to decode stem cell heterogeneity and develop novel fate mapping strategies to selectively target different stem cell populations. We will also define the connectivity of different populations of interneuron subtypes. In Aim 3, we will define how the choroid plexus and long- range innervation differentially affect V-SVZ stem cell recruitment in different states using approaches to manipulate neural circuit activity. Together these experiments will provide a conceptual breakthrough into illuminating the logic of adult neural stem cell heterogeneity, and how regionally distinct adult neural stem cells integrate long-range signals from remote brain areas to respond to signals for on-demand neurogenesis or gliogenesis.
Summary
In the adult mammalian brain, neural stem cells (NSCs) residing in the ventricular-subventricular zone (V-SVZ), give rise to new olfactory bulb neurons and glia throughout life. Adult V-SVZ NSC are highly heterogeneous. Stem cells co-exist in quiescent and activated states and reside in regionally-distinct V-SVZ domains and produce different subtypes of olfactory bulb neurons and glia. However, whether this heterogeneity is due to intrinsic fate commitment or whether it is dynamically responsive to external changes is still debated. Moreover, the mechanisms that modulate the balance between activation and dormancy are largely unknown. It is emerging that physiological states modulate V-SVZ cell behaviour and impact adult neurogenesis. We propose to investigate whether physiologically distinct states result in the recruitment of regionally distinct pools of adult V-SVZ neural stem cells. In Aim 1, we will map the domains of stem cell activation and cell types generated in different states in male and female mice. In Aim 2, we will perform large-scale single cell sequencing to decode stem cell heterogeneity and develop novel fate mapping strategies to selectively target different stem cell populations. We will also define the connectivity of different populations of interneuron subtypes. In Aim 3, we will define how the choroid plexus and long- range innervation differentially affect V-SVZ stem cell recruitment in different states using approaches to manipulate neural circuit activity. Together these experiments will provide a conceptual breakthrough into illuminating the logic of adult neural stem cell heterogeneity, and how regionally distinct adult neural stem cells integrate long-range signals from remote brain areas to respond to signals for on-demand neurogenesis or gliogenesis.
Max ERC Funding
2 499 833 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym NeuroVision
Project The organisation of functional microcircuits in visual cortex
Researcher (PI) Thomas Mrsic-Flogel
Host Institution (HI) UNIVERSITAT BASEL
Call Details Consolidator Grant (CoG), LS5, ERC-2013-CoG
Summary Determining how the organisation of neural circuitry gives rise to its function has been a major challenge for understanding the neural basis of perception and behaviour. In order to uncover how different regions of the neocortex process sensory information, it is necessary to understand how the pattern and properties of synaptic connections in a specific sensory circuit determine the computations it performs. I propose to establish the relationship between synaptic connectivity and neuronal function in primary visual cortex (V1) with the aim of revealing circuit-level mechanisms of sensory processing. To this end, my laboratory has developed a new method, by which visual response properties of neurons are first characterised with two-photon calcium imaging in vivo, and then synaptic connections between a subset of these neurons are assayed with multiple whole-cell recordings in slices of the same tissue. We will use this method to determine how connectivity, synaptic and intrinsic properties of different excitatory and inhibitory cell types relate to the emergence of their visual receptive fields (RFs). Specifically, we will test the dependence of connections on RF position, structure and other visual response properties, the specificity of connections between simple and complex cells, and the relative contribution of feedforward and recurrent excitation and inhibition towards shaping RFs. Morphological, physiological, connectional and functional data will be used to develop a biophysically realistic network model of this V1 circuit to examine the contribution of different circuit components to single-neuron and network function.
Summary
Determining how the organisation of neural circuitry gives rise to its function has been a major challenge for understanding the neural basis of perception and behaviour. In order to uncover how different regions of the neocortex process sensory information, it is necessary to understand how the pattern and properties of synaptic connections in a specific sensory circuit determine the computations it performs. I propose to establish the relationship between synaptic connectivity and neuronal function in primary visual cortex (V1) with the aim of revealing circuit-level mechanisms of sensory processing. To this end, my laboratory has developed a new method, by which visual response properties of neurons are first characterised with two-photon calcium imaging in vivo, and then synaptic connections between a subset of these neurons are assayed with multiple whole-cell recordings in slices of the same tissue. We will use this method to determine how connectivity, synaptic and intrinsic properties of different excitatory and inhibitory cell types relate to the emergence of their visual receptive fields (RFs). Specifically, we will test the dependence of connections on RF position, structure and other visual response properties, the specificity of connections between simple and complex cells, and the relative contribution of feedforward and recurrent excitation and inhibition towards shaping RFs. Morphological, physiological, connectional and functional data will be used to develop a biophysically realistic network model of this V1 circuit to examine the contribution of different circuit components to single-neuron and network function.
Max ERC Funding
1 983 289 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym NICH
Project Novel interactions and species’ responses to climate change
Researcher (PI) Jake Maximillian Alexander
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Starting Grant (StG), LS8, ERC-2015-STG
Summary A great ecological challenges is predicting the responses of species, communities and ecosystems to global climate change. Progress will hinge on our ability to predict how responses are shaped by evolution and species interactions, and especially by entirely novel interactions among species whose ranges don't yet overlap. To tackle this goal, I will combine cutting-edge experiments and process-based modeling to address three questions about the impact of novel competitors on responses to climate change in alpine plant communities:
(1) How will novel interactions impact species responses to climate change? I will test the ecological consequences of novel competitors for population persistence, and the potential for longer-term evolutionary responses, using a whole community transplant experiment that simulates future competitive scenarios faced by focal alpine plants.
(2) Do species traits predict the outcome of novel interactions? A mechanistic understanding of competitive effects is essential to predict impacts of novel interactions. I will test how climate affects the outcome of competition among pairs of species planted along an elevation climate gradient, and whether these effects can be predicted using species’ functional traits.
(3) What are the implications of novel competitive interactions for species’ ranges dynamics under climate change? I will use process-based species distribution models, parameterized with experimental demographic data, to explore the consequences of changing competitive interactions for range dynamics under climate change.
This project will advance our understanding of species’ responses to climate change, and provide tools to apply to a diversity of other systems. It also tackles fundamental questions in ecology, shedding light on the mechanisms shaping species distributions. By linking experimental community ecology and biogeography, it will push the limits of our ability to predict the dynamics of complex ecological systems.
Summary
A great ecological challenges is predicting the responses of species, communities and ecosystems to global climate change. Progress will hinge on our ability to predict how responses are shaped by evolution and species interactions, and especially by entirely novel interactions among species whose ranges don't yet overlap. To tackle this goal, I will combine cutting-edge experiments and process-based modeling to address three questions about the impact of novel competitors on responses to climate change in alpine plant communities:
(1) How will novel interactions impact species responses to climate change? I will test the ecological consequences of novel competitors for population persistence, and the potential for longer-term evolutionary responses, using a whole community transplant experiment that simulates future competitive scenarios faced by focal alpine plants.
(2) Do species traits predict the outcome of novel interactions? A mechanistic understanding of competitive effects is essential to predict impacts of novel interactions. I will test how climate affects the outcome of competition among pairs of species planted along an elevation climate gradient, and whether these effects can be predicted using species’ functional traits.
(3) What are the implications of novel competitive interactions for species’ ranges dynamics under climate change? I will use process-based species distribution models, parameterized with experimental demographic data, to explore the consequences of changing competitive interactions for range dynamics under climate change.
This project will advance our understanding of species’ responses to climate change, and provide tools to apply to a diversity of other systems. It also tackles fundamental questions in ecology, shedding light on the mechanisms shaping species distributions. By linking experimental community ecology and biogeography, it will push the limits of our ability to predict the dynamics of complex ecological systems.
Max ERC Funding
1 499 534 €
Duration
Start date: 2016-07-01, End date: 2021-06-30
Project acronym NOGORISE
Project The Nogo-A receptor complex after CNS injury and its role in the developing and adult nervous system
Researcher (PI) Martin Ernst Schwab
Host Institution (HI) UNIVERSITAT ZURICH
Call Details Advanced Grant (AdG), LS5, ERC-2011-ADG_20110310
Summary "Repulsive guidance cues for growing axons and factors inhibiting neurite growth are increasingly recognized as key players for nerve fiber growth and plasticity in the developing and adult nervous system. The first neurite growth inhibitory factor discovered in the context of axonal regeneration in the adult central nervous system (CNS) was the membrane protein Nogo-A. Inactivation of Nogo-A, e.g. by neutralizing antibodies, after spinal cord injury, brain injury or stroke leads to improved functional recovery in parallel with long distance regeneration of injured fibers and enhanced compensatory sprouting. The molecular mechanisms of action of Nogo-A is only partially known; a key element, the Nogo-A-specific receptor has remained undefined. We have recently found a membrane protein that binds to Nogo-A with high affinity; blockers of this new receptor neutralize many of the typical Nogo-A effects in vitro. The present proposal addresses new aspects of the mechanism of action and the in vivo roles of this novel Nogo-A receptor and its interactions with the known Nogo receptor components.
The new results will contribute to the molecular and physiological understanding of Nogo-A and related growth inhibitors in the nervous system. Together with the currently ongoing clinical trial to enhance recovery after spinal cord injury in patients by anti-Nogo-A antibodies, the results of the present project will form an important basis for further treatments in brain injury and stroke."
Summary
"Repulsive guidance cues for growing axons and factors inhibiting neurite growth are increasingly recognized as key players for nerve fiber growth and plasticity in the developing and adult nervous system. The first neurite growth inhibitory factor discovered in the context of axonal regeneration in the adult central nervous system (CNS) was the membrane protein Nogo-A. Inactivation of Nogo-A, e.g. by neutralizing antibodies, after spinal cord injury, brain injury or stroke leads to improved functional recovery in parallel with long distance regeneration of injured fibers and enhanced compensatory sprouting. The molecular mechanisms of action of Nogo-A is only partially known; a key element, the Nogo-A-specific receptor has remained undefined. We have recently found a membrane protein that binds to Nogo-A with high affinity; blockers of this new receptor neutralize many of the typical Nogo-A effects in vitro. The present proposal addresses new aspects of the mechanism of action and the in vivo roles of this novel Nogo-A receptor and its interactions with the known Nogo receptor components.
The new results will contribute to the molecular and physiological understanding of Nogo-A and related growth inhibitors in the nervous system. Together with the currently ongoing clinical trial to enhance recovery after spinal cord injury in patients by anti-Nogo-A antibodies, the results of the present project will form an important basis for further treatments in brain injury and stroke."
Max ERC Funding
2 500 000 €
Duration
Start date: 2012-06-01, End date: 2017-05-31
Project acronym NoiseRobustEvo
Project Noise and robustness in the evolution of novel protein phenotypes
Researcher (PI) Andreas Wagner
Host Institution (HI) UNIVERSITAT ZURICH
Call Details Advanced Grant (AdG), LS8, ERC-2016-ADG
Summary Living cells are constantly barraged by perturbations that originate within themselves. Especially abundant – far more than DNA mutations – are two kinds of such perturbations. The first is gene expression noise, pervasive stochastic variation of transcript and protein levels. The second is mistranslation noise, the misincorporation of amino acids by ribosomes during protein synthesis. Organisms and protein molecules can evolve robustness – the persistence of well-adapted phenotypes – to both kinds of noise. Theory predicts that noise and robustness can affect the adaptive evolution of new proteins, but we do not know whether they help or hinder adaptive evolution. We hypothesize that noise and robustness can accelerate protein evolution both separately and jointly. To validate this hypothesis, we will evolve light-emitting fluorescent proteins towards new color phenotypes via directed laboratory evolution in E.coli. During evolution, we will manipulate expression noise by driving FP expression from noisy or quiet promoters, and we will manipulate mistranslation via host strains with low and high mistranslation rates. We will manipulate protein robustness in three biologically important ways, chaperone overexpression, gene duplication, and stabilizing selection. We will study how fast FPs evolve new colors, and analyze protein evolutionary dynamics through a combination of high-throughput sequencing, engineering of selected adaptive mutations, and data-driven modeling. Our project will show how a ubiquitous but poorly understood source of phenotypic variation affects protein innovation. It will also help engineers discover new protein functions. Moreover, our work will help establish FPs as a major platform to study protein evolutionary dynamics. By revealing noise as a new and crucial factor in protein evolution, our observations have the potential to revolutionize molecular evolution research, much like earlier studies of noise have revolutionized cell biology.
Summary
Living cells are constantly barraged by perturbations that originate within themselves. Especially abundant – far more than DNA mutations – are two kinds of such perturbations. The first is gene expression noise, pervasive stochastic variation of transcript and protein levels. The second is mistranslation noise, the misincorporation of amino acids by ribosomes during protein synthesis. Organisms and protein molecules can evolve robustness – the persistence of well-adapted phenotypes – to both kinds of noise. Theory predicts that noise and robustness can affect the adaptive evolution of new proteins, but we do not know whether they help or hinder adaptive evolution. We hypothesize that noise and robustness can accelerate protein evolution both separately and jointly. To validate this hypothesis, we will evolve light-emitting fluorescent proteins towards new color phenotypes via directed laboratory evolution in E.coli. During evolution, we will manipulate expression noise by driving FP expression from noisy or quiet promoters, and we will manipulate mistranslation via host strains with low and high mistranslation rates. We will manipulate protein robustness in three biologically important ways, chaperone overexpression, gene duplication, and stabilizing selection. We will study how fast FPs evolve new colors, and analyze protein evolutionary dynamics through a combination of high-throughput sequencing, engineering of selected adaptive mutations, and data-driven modeling. Our project will show how a ubiquitous but poorly understood source of phenotypic variation affects protein innovation. It will also help engineers discover new protein functions. Moreover, our work will help establish FPs as a major platform to study protein evolutionary dynamics. By revealing noise as a new and crucial factor in protein evolution, our observations have the potential to revolutionize molecular evolution research, much like earlier studies of noise have revolutionized cell biology.
Max ERC Funding
2 383 444 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym NOVEL TOOLS IN PD
Project Novel tools for real time monitoring and quantification of protein aggregation in Parkinson s disease and related neurodegenerative disorders
Researcher (PI) Hilal Lashuel
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Starting Grant (StG), LS5, ERC-2009-StG
Summary To understand the molecular basis of any biological process, it is critical that one is not only able to visualize and monitor molecular events that underlie this process, but also to possess the tools to manipulate these events in a spatial and temporal fashion both in and out of the cell. The overall objective of this proposal is to apply chemical biology approaches to allow real time monitoring of protein aggregation and to dissect the role of specific disease-associated post-translational modifications, phosphorylation, nitration, and truncation on the structure, aggregation, and biochemical properties of monomeric a-syn in health and disease. To achieve these goals, we plan to use a combination of organic chemistry, molecular biology, proteomics, protein engineering, and semisynthetic strategies to facilitate site-specific introduction of post-translational modifications that can be masked and activated in a controllable manner, both inside and outside living cells. Modified synthetic ±-syn will be introduced into primary neurons and cellular models of synucleinopathies and the consequences of masking or activating specific modifications will be assessed using biochemical, immunofluorescence, and live imaging techniques (Specific Aim 1). The absence of specific molecular probes that allow in vivo monitoring and quantitative measurement of toxic misfolded and aggregation intermediates represents a major impediment to understanding the relationship among protein misfolding, post-translational modification, protein aggregation, neurodegeneration, and cell death in PD and other neurodegenerative disorders. To address this challenge, we plan to develop and characterize novel antibodies that target different species along the amyloid formation pathway of ±-syn (Specific Aim 2).
Summary
To understand the molecular basis of any biological process, it is critical that one is not only able to visualize and monitor molecular events that underlie this process, but also to possess the tools to manipulate these events in a spatial and temporal fashion both in and out of the cell. The overall objective of this proposal is to apply chemical biology approaches to allow real time monitoring of protein aggregation and to dissect the role of specific disease-associated post-translational modifications, phosphorylation, nitration, and truncation on the structure, aggregation, and biochemical properties of monomeric a-syn in health and disease. To achieve these goals, we plan to use a combination of organic chemistry, molecular biology, proteomics, protein engineering, and semisynthetic strategies to facilitate site-specific introduction of post-translational modifications that can be masked and activated in a controllable manner, both inside and outside living cells. Modified synthetic ±-syn will be introduced into primary neurons and cellular models of synucleinopathies and the consequences of masking or activating specific modifications will be assessed using biochemical, immunofluorescence, and live imaging techniques (Specific Aim 1). The absence of specific molecular probes that allow in vivo monitoring and quantitative measurement of toxic misfolded and aggregation intermediates represents a major impediment to understanding the relationship among protein misfolding, post-translational modification, protein aggregation, neurodegeneration, and cell death in PD and other neurodegenerative disorders. To address this challenge, we plan to develop and characterize novel antibodies that target different species along the amyloid formation pathway of ±-syn (Specific Aim 2).
Max ERC Funding
1 495 400 €
Duration
Start date: 2009-12-01, End date: 2014-11-30
Project acronym NucleolusChromatin
Project Analysis of the nucleolus in genome organization and function
Researcher (PI) Raffaella SANTORO
Host Institution (HI) UNIVERSITAT ZURICH
Call Details Advanced Grant (AdG), LS2, ERC-2017-ADG
Summary In eukaryotic cells, the higher-order organization of genomes is functionally important to ensure correct execution of gene expression programs. For instance, as cells differentiate into specialized cell types, chromosomes undergo diverse structural and organizational changes that affect gene expression and other cellular functions. However, how this process is achieved is still poorly understood. The elucidation of the mechanisms that control the spatial architecture of the genome and its contribution to gene regulation is a key open issue in molecular biology, relevant for physiological and pathological processes.
Increasing evidence indicated that large-scale folding of chromatin may affect gene expression by locating genes to specific nuclear subcompartments that are either stimulatory or inhibitory to transcription. Nuclear periphery (NP) and nucleolus are two important nuclear landmarks where repressive chromatin domains are often located. The interaction of chromosomes with NP and nucleolus is thought to contribute to a basal chromosome architecture and genome function. However, while the role of NP in genome organization has been well documented, the function of the nucleolus remains yet elusive.
To fully understand how genome organization regulates chromatin and gene expression states, it is necessary to obtain a comprehensive functional map of genome compartmentalization. However, so far, only domains associating with NP (LADs) have been identified and characterized while nucleolar-associated domains (NADs) remained under-investigated. The aim of this project is to fill this gap by developing methods to identify and characterize NADs and analyse the role of the nucleolus in genome organization, moving toward the obtainment of a comprehensive functional map of genome compartmentalization for each cell state and providing novel insights into basic principles of genome organization and its role in gene expression and cell function that yet remain elusive.
Summary
In eukaryotic cells, the higher-order organization of genomes is functionally important to ensure correct execution of gene expression programs. For instance, as cells differentiate into specialized cell types, chromosomes undergo diverse structural and organizational changes that affect gene expression and other cellular functions. However, how this process is achieved is still poorly understood. The elucidation of the mechanisms that control the spatial architecture of the genome and its contribution to gene regulation is a key open issue in molecular biology, relevant for physiological and pathological processes.
Increasing evidence indicated that large-scale folding of chromatin may affect gene expression by locating genes to specific nuclear subcompartments that are either stimulatory or inhibitory to transcription. Nuclear periphery (NP) and nucleolus are two important nuclear landmarks where repressive chromatin domains are often located. The interaction of chromosomes with NP and nucleolus is thought to contribute to a basal chromosome architecture and genome function. However, while the role of NP in genome organization has been well documented, the function of the nucleolus remains yet elusive.
To fully understand how genome organization regulates chromatin and gene expression states, it is necessary to obtain a comprehensive functional map of genome compartmentalization. However, so far, only domains associating with NP (LADs) have been identified and characterized while nucleolar-associated domains (NADs) remained under-investigated. The aim of this project is to fill this gap by developing methods to identify and characterize NADs and analyse the role of the nucleolus in genome organization, moving toward the obtainment of a comprehensive functional map of genome compartmentalization for each cell state and providing novel insights into basic principles of genome organization and its role in gene expression and cell function that yet remain elusive.
Max ERC Funding
2 500 000 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym OLFACTORYIGLURS
Project Olfactory perception in Drosophila: analysis of a novel iGluR-related family of odorant receptors
Researcher (PI) Richard Benton
Host Institution (HI) UNIVERSITE DE LAUSANNE
Call Details Starting Grant (StG), LS4, ERC-2007-StG
Summary Chemosensory systems permit organisms to perceive diverse chemicals in the environment signalling the presence of food, dangers, kin or mates. How a specific chemical stimulus is recognised and converted into neural activity that provokes the appropriate behaviour is a fundamental problem in neuroscience. I investigate this question in the olfactory system of the fruit fly, Drosophila melanogaster, which exhibits sophisticated odour-driven behaviours under the control of a simple and genetically accessible nervous system. I recently discovered a novel Drosophila olfactory receptor family, the Ionotropic Receptors (IRs). IRs are expressed in sensory neurons distinct from the previously described Odorant Receptor (OR) family. Strikingly, IRs are structurally similar to ionotropic glutamate receptors (iGluRs), a conserved family of ligand-gated ion channels present in animals, plants and bacteria. iGluRs are best characterised for their role in mediating synaptic communication in the mammalian brain as receptors for the neurotransmitter glutamate, but IRs have divergent ligand-binding domains. The proposed project investigates the function of the IRs and their sensory circuits in the recognition of, and behavioural responses to, olfactory stimuli through four specific aims. Aim 1: Defining the molecular basis of IR/odour interactions. Aim 2: Visualising the mechanisms of IR trafficking. Aim 3: Mapping IR sensory circuits in the brain. Aim 4: Exploring the behavioural responses mediated by IR olfactory pathways. By combining genetic, cell biological, electrophysiological and behavioural approaches, this project will provide an integrated understanding of the function and evolution of these novel olfactory receptors and circuits. This knowledge will be of significance to chemical detection mechanisms across diverse sensory systems in eukaryotes and prokaryotes, and of interest to chemical ecologists, neuroscientists, evolutionary biologists and biomedical researchers.
Summary
Chemosensory systems permit organisms to perceive diverse chemicals in the environment signalling the presence of food, dangers, kin or mates. How a specific chemical stimulus is recognised and converted into neural activity that provokes the appropriate behaviour is a fundamental problem in neuroscience. I investigate this question in the olfactory system of the fruit fly, Drosophila melanogaster, which exhibits sophisticated odour-driven behaviours under the control of a simple and genetically accessible nervous system. I recently discovered a novel Drosophila olfactory receptor family, the Ionotropic Receptors (IRs). IRs are expressed in sensory neurons distinct from the previously described Odorant Receptor (OR) family. Strikingly, IRs are structurally similar to ionotropic glutamate receptors (iGluRs), a conserved family of ligand-gated ion channels present in animals, plants and bacteria. iGluRs are best characterised for their role in mediating synaptic communication in the mammalian brain as receptors for the neurotransmitter glutamate, but IRs have divergent ligand-binding domains. The proposed project investigates the function of the IRs and their sensory circuits in the recognition of, and behavioural responses to, olfactory stimuli through four specific aims. Aim 1: Defining the molecular basis of IR/odour interactions. Aim 2: Visualising the mechanisms of IR trafficking. Aim 3: Mapping IR sensory circuits in the brain. Aim 4: Exploring the behavioural responses mediated by IR olfactory pathways. By combining genetic, cell biological, electrophysiological and behavioural approaches, this project will provide an integrated understanding of the function and evolution of these novel olfactory receptors and circuits. This knowledge will be of significance to chemical detection mechanisms across diverse sensory systems in eukaryotes and prokaryotes, and of interest to chemical ecologists, neuroscientists, evolutionary biologists and biomedical researchers.
Max ERC Funding
1 500 000 €
Duration
Start date: 2008-07-01, End date: 2013-06-30
Project acronym ONCOINTRABODY
Project Targeting common oncogenes with intracellular monobodies
Researcher (PI) Oliver Denis Hantschel
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Consolidator Grant (CoG), LS7, ERC-2015-CoG
Summary Oncogenic signalling networks display a remarkable degree of plasticity. Despite only a limited number of alterations in oncogenes and tumour suppressor genes in most tumours, the majority of targeted therapeutics (monoclonal antibodies and small-molecule kinase inhibitors) does not strongly improve the survival of cancer patients and suffers from the rapid development of resistance. The rising number of targeted drugs in clinical use inhibits only a very limited number of protein targets (largely kinases). Consequently, most intracellular non-kinase oncoproteins remain untargeted. We have previously established the use of small engineered antibody mimics, termed monobodies, to potently and specifically target intracellular protein-protein interactions mediated by the SH2 domains of oncogenic kinases and phosphatases. Expression of SH2-targeting monobodies resulted in the inhibition of signalling and oncogenesis of these oncoproteins. Here, we aim at developing monobody binders to 10 key intracellular oncoproteins for which no chemical inhibitors exist and testing their activity in cancer cells. To enable a possible clinical translation of monobody-based therapeutics, we will develop methods to deliver monobody proteins into cells, including cell-penetrating peptides, bacterial toxins and biocompatible nanocarriers. 'Mirror-image' monobodies, composed of D-amino acids, will be developed and tested to increase intracellular and plasma stability and to limit immunogenicity. The developed monobodies and delivery systems are planned to be tested in mouse cancer models. Our goal is to establish monobodies as novel class of intracellular protein-based therapeutics. We hope to kick off their use beyond basic research tools towards possible applications in cancer patients. This innovative endeavour uses state-of-the-art protein engineering techniques to address a central problem in cancer medicine and may provide a ground-breaking new approach to target cancer.
Summary
Oncogenic signalling networks display a remarkable degree of plasticity. Despite only a limited number of alterations in oncogenes and tumour suppressor genes in most tumours, the majority of targeted therapeutics (monoclonal antibodies and small-molecule kinase inhibitors) does not strongly improve the survival of cancer patients and suffers from the rapid development of resistance. The rising number of targeted drugs in clinical use inhibits only a very limited number of protein targets (largely kinases). Consequently, most intracellular non-kinase oncoproteins remain untargeted. We have previously established the use of small engineered antibody mimics, termed monobodies, to potently and specifically target intracellular protein-protein interactions mediated by the SH2 domains of oncogenic kinases and phosphatases. Expression of SH2-targeting monobodies resulted in the inhibition of signalling and oncogenesis of these oncoproteins. Here, we aim at developing monobody binders to 10 key intracellular oncoproteins for which no chemical inhibitors exist and testing their activity in cancer cells. To enable a possible clinical translation of monobody-based therapeutics, we will develop methods to deliver monobody proteins into cells, including cell-penetrating peptides, bacterial toxins and biocompatible nanocarriers. 'Mirror-image' monobodies, composed of D-amino acids, will be developed and tested to increase intracellular and plasma stability and to limit immunogenicity. The developed monobodies and delivery systems are planned to be tested in mouse cancer models. Our goal is to establish monobodies as novel class of intracellular protein-based therapeutics. We hope to kick off their use beyond basic research tools towards possible applications in cancer patients. This innovative endeavour uses state-of-the-art protein engineering techniques to address a central problem in cancer medicine and may provide a ground-breaking new approach to target cancer.
Max ERC Funding
1 996 055 €
Duration
Start date: 2016-08-01, End date: 2021-07-31
Project acronym ONIDDAC
Project Oncogene-Induced DNA Damage in Cancer
Researcher (PI) Athanassios Dimitrios (Thanos) Halazonetis
Host Institution (HI) UNIVERSITE DE GENEVE
Call Details Advanced Grant (AdG), LS4, ERC-2011-ADG_20110310
Summary I recently proposed a model that helps explain the presence of p53 mutations and genomic instability in human cancers (Nature, 2005; Nature 2006; Science 2008). The key features of this model are that oncogenes induce DNA replication stress, which in turn leads to DNA double-strand breaks, genomic instability and p53-induced senescence or apoptosis. This model is relevant for almost all cancer types and explains the spectrum of mutations being reported in thousands of human cancers by the cancer sequencing consortia.
In this project, I propose to take the next logical steps that follow from my discovery. Specifically, I propose the following objectives:
1. Elucidate the mechanisms by which oncogenes induce DNA replication stress. Oncogene-induced genomic deletions map within very large actively transcribed genes. Accordingly, I hypothesize that oncogenes and transcription synergistically disrupt pre-replicative complexes resulting in large genomic regions that have a low density of replication initiation events. To test this hypothesis, I propose to introduce by site-directed homologous recombination a transcription termination sequence at the beginning of very large gene and determine whether it remains sensitive to oncogene-induced genomic instability. Genome-wide transcription and DNA replication patterns will also be examined in cells that are sensitive to oncogene-induced DNA replication stress (most somatic cells and cell lines) and cells that are resistant (induced pluripotent stem cells).
2. Identify and characterize genes necessary for proliferation of cells with oncogene-induced DNA replication stress. Using high throughput siRNA screens we will identify genes, whose depletion inhibits proliferation of cells with oncogene-induced DNA replication stress, without affecting normal cells. We will explore the function of these genes using molecular biology, structural biology and genetic approaches. Some promising candidates have already been identified.
Summary
I recently proposed a model that helps explain the presence of p53 mutations and genomic instability in human cancers (Nature, 2005; Nature 2006; Science 2008). The key features of this model are that oncogenes induce DNA replication stress, which in turn leads to DNA double-strand breaks, genomic instability and p53-induced senescence or apoptosis. This model is relevant for almost all cancer types and explains the spectrum of mutations being reported in thousands of human cancers by the cancer sequencing consortia.
In this project, I propose to take the next logical steps that follow from my discovery. Specifically, I propose the following objectives:
1. Elucidate the mechanisms by which oncogenes induce DNA replication stress. Oncogene-induced genomic deletions map within very large actively transcribed genes. Accordingly, I hypothesize that oncogenes and transcription synergistically disrupt pre-replicative complexes resulting in large genomic regions that have a low density of replication initiation events. To test this hypothesis, I propose to introduce by site-directed homologous recombination a transcription termination sequence at the beginning of very large gene and determine whether it remains sensitive to oncogene-induced genomic instability. Genome-wide transcription and DNA replication patterns will also be examined in cells that are sensitive to oncogene-induced DNA replication stress (most somatic cells and cell lines) and cells that are resistant (induced pluripotent stem cells).
2. Identify and characterize genes necessary for proliferation of cells with oncogene-induced DNA replication stress. Using high throughput siRNA screens we will identify genes, whose depletion inhibits proliferation of cells with oncogene-induced DNA replication stress, without affecting normal cells. We will explore the function of these genes using molecular biology, structural biology and genetic approaches. Some promising candidates have already been identified.
Max ERC Funding
2 499 351 €
Duration
Start date: 2012-05-01, End date: 2018-04-30
Project acronym OPTIM
Project Optimized drug combinations for effective cancer treatment: a personalised approach.
Researcher (PI) Patrycja*Monika Nowak-Sliwinska
Host Institution (HI) UNIVERSITE DE GENEVE
Call Details Starting Grant (StG), LS7, ERC-2015-STG
Summary This project aims to improve the treatment of metastasized colorectal carcinoma (mCRC), as treatment options after first line chemotherapy are desperately needed. The key to improvement of cancer therapy resides in optimal combination of drugs. Optimally combining drugs is non-trivial due to the large number of possibilities, especially when more than two drugs are combined at various doses. In the current research program I propose to use a differential evolution guided stochastic search algorithm to guide the way in finding optimal combination therapies. In previous research I have applied this feedback system control (FSC) technique to navigate through the enormous parametric space of nine angiostatic drugs at four doses. The straightforward iterative approach of in vitro cell viability testing and algorithm-based analysis identified optimal synergistic low-dose drug combinations. In vivo translation by maintaining the drug dose ratio led to effective anti-cancer activity, without evidence of side-effects.
A new screen for optimal targeted combination treatment of advanced CRC will be performed. A series of 7 genetically different human CRC cell lines will be used in this screen, thus simulating personalized treatment. The optimized combinations will be ‘ratiometrically’ translated into orthotopic and metastasizing preclinical CRC mouse models and tested in parallel to standard chemotherapy regimens. Development of a method for a personalized screen using freshly isolated tumor cells will prepare the technology for application in the clinic.
Using an innovative strategy I previously identified a series of novel markers of the tumor endothelium. After validation of these targets, this project aims for the design of new drugs to be used in a screen for optimal combination therapy for mCRC. The translational and multidisciplinary nature of the current proposal aims for preparing an improved therapeutic combination regimen for testing in cancer patients.
Summary
This project aims to improve the treatment of metastasized colorectal carcinoma (mCRC), as treatment options after first line chemotherapy are desperately needed. The key to improvement of cancer therapy resides in optimal combination of drugs. Optimally combining drugs is non-trivial due to the large number of possibilities, especially when more than two drugs are combined at various doses. In the current research program I propose to use a differential evolution guided stochastic search algorithm to guide the way in finding optimal combination therapies. In previous research I have applied this feedback system control (FSC) technique to navigate through the enormous parametric space of nine angiostatic drugs at four doses. The straightforward iterative approach of in vitro cell viability testing and algorithm-based analysis identified optimal synergistic low-dose drug combinations. In vivo translation by maintaining the drug dose ratio led to effective anti-cancer activity, without evidence of side-effects.
A new screen for optimal targeted combination treatment of advanced CRC will be performed. A series of 7 genetically different human CRC cell lines will be used in this screen, thus simulating personalized treatment. The optimized combinations will be ‘ratiometrically’ translated into orthotopic and metastasizing preclinical CRC mouse models and tested in parallel to standard chemotherapy regimens. Development of a method for a personalized screen using freshly isolated tumor cells will prepare the technology for application in the clinic.
Using an innovative strategy I previously identified a series of novel markers of the tumor endothelium. After validation of these targets, this project aims for the design of new drugs to be used in a screen for optimal combination therapy for mCRC. The translational and multidisciplinary nature of the current proposal aims for preparing an improved therapeutic combination regimen for testing in cancer patients.
Max ERC Funding
1 199 436 €
Duration
Start date: 2016-05-01, End date: 2020-04-30
Project acronym Opto-Sleep
Project All-optical deconstruction of thalamic control of sleep-wake states.
Researcher (PI) Antoine Roger Adamantidis
Host Institution (HI) UNIVERSITAET BERN
Call Details Consolidator Grant (CoG), LS5, ERC-2016-COG
Summary While the functions of sleep are still a matter of debate and may include memory consolidation, brain clearance, anabolism and plasticity, the neural substrates of sleep and wake states are the subject of intense study. Successive sleep-wake cycles rely on an appropriate balance between sleep-promoting nuclei of the brain located in the anterior hypothalamus and, arousal-promoting nuclei from the posterior hypothalamus and the brainstem. My laboratory identified different subsets of hypothalamic cells that controls wakefulness and rapid-eye movement (also called paradoxical) sleep using optogenetics in combination with high-density electrophysiology in freely-behaving mice. We further identified their connections with (and functional modulation of) other sleep-wake circuits throughout the brain. Although we and others have dissected important subcortical and cortical sleep-wake circuits in the brain, the precise mechanism bridging sub-cortical circuits to thalamic and cortical networks remains unclear.
I hypothesizes that the thalamus represents a hub that integrates sleep-wake inputs of both subcortical and cortical origin into stable sleep-wake states, through topographically distinct sub-cortical inputs and temporally precise circuit dynamics (spiking pattern, coherence).
To test this hypothesis, my experimental objectives are divided into three specific aims:
1) Identify the simultaneous cellular dynamics of thalamo-cortical network activity across sleep-wake states (Observational approach; Year 1-3)
2) Characterize the subcortical modulation of thalamic structures across sleep-wake states (Perturbational approach; Year 2-4)
3) Study the role of TRN/CMT circuits in sleep homeostasis and consciousness
(Functional approach; Year 4-5)
Completion of this project will provide a mechanistic perspective on sub-cortical, thalamo-cortical and cortical control of sleep-wake states, sleep homeostasis and consciousness in the mammalian brain.
Summary
While the functions of sleep are still a matter of debate and may include memory consolidation, brain clearance, anabolism and plasticity, the neural substrates of sleep and wake states are the subject of intense study. Successive sleep-wake cycles rely on an appropriate balance between sleep-promoting nuclei of the brain located in the anterior hypothalamus and, arousal-promoting nuclei from the posterior hypothalamus and the brainstem. My laboratory identified different subsets of hypothalamic cells that controls wakefulness and rapid-eye movement (also called paradoxical) sleep using optogenetics in combination with high-density electrophysiology in freely-behaving mice. We further identified their connections with (and functional modulation of) other sleep-wake circuits throughout the brain. Although we and others have dissected important subcortical and cortical sleep-wake circuits in the brain, the precise mechanism bridging sub-cortical circuits to thalamic and cortical networks remains unclear.
I hypothesizes that the thalamus represents a hub that integrates sleep-wake inputs of both subcortical and cortical origin into stable sleep-wake states, through topographically distinct sub-cortical inputs and temporally precise circuit dynamics (spiking pattern, coherence).
To test this hypothesis, my experimental objectives are divided into three specific aims:
1) Identify the simultaneous cellular dynamics of thalamo-cortical network activity across sleep-wake states (Observational approach; Year 1-3)
2) Characterize the subcortical modulation of thalamic structures across sleep-wake states (Perturbational approach; Year 2-4)
3) Study the role of TRN/CMT circuits in sleep homeostasis and consciousness
(Functional approach; Year 4-5)
Completion of this project will provide a mechanistic perspective on sub-cortical, thalamo-cortical and cortical control of sleep-wake states, sleep homeostasis and consciousness in the mammalian brain.
Max ERC Funding
1 915 000 €
Duration
Start date: 2017-06-01, End date: 2022-05-31
Project acronym OPTOMOT
Project Optical dissection of cortical motor circuits
Researcher (PI) Daniel Andreas Huber
Host Institution (HI) UNIVERSITE DE GENEVE
Call Details Consolidator Grant (CoG), LS5, ERC-2013-CoG
Summary "The motor cortex plays a key role in learning and orchestrating fine voluntary movements, which dominate many aspects of our daily lives.
Despite decades of research, considerable controversy remains over the functional organization of this forebrain area and its role in goal directed action. In this project we will combine cutting edge in vivo two-photon imaging, decoding methods and optogenetic manipulations to study different motor related circuits with single cell resolution. This approach will provide us, literally, unprecedented insights into the activity dynamics of large cortical networks during goal directed action. We expect that these experiments in rodents will not only help us understand some of the basic neuronal circuit mechanisms that govern our own actions, but they can potentially pave the way towards more targeted strategies for neuroprosthetic devices."
Summary
"The motor cortex plays a key role in learning and orchestrating fine voluntary movements, which dominate many aspects of our daily lives.
Despite decades of research, considerable controversy remains over the functional organization of this forebrain area and its role in goal directed action. In this project we will combine cutting edge in vivo two-photon imaging, decoding methods and optogenetic manipulations to study different motor related circuits with single cell resolution. This approach will provide us, literally, unprecedented insights into the activity dynamics of large cortical networks during goal directed action. We expect that these experiments in rodents will not only help us understand some of the basic neuronal circuit mechanisms that govern our own actions, but they can potentially pave the way towards more targeted strategies for neuroprosthetic devices."
Max ERC Funding
1 997 671 €
Duration
Start date: 2014-06-01, End date: 2019-05-31
Project acronym ORGANELL
Project Organelle homeostasis: How are membrane fission and fusion machineries coordinated to regulate size and copy number of a lysosomal compartment?
Researcher (PI) Andreas Mayer
Host Institution (HI) UNIVERSITE DE LAUSANNE
Call Details Advanced Grant (AdG), LS3, ERC-2008-AdG
Summary Yeast vacuoles (lysosomes) will serve as an excellent model system: Vacuoles change copy number and size in the cell cycle and upon shifts of media; due to their large diameter (up to 5 µm) these changes can be assayed by fluorescence microscopy and are amenable to genetic screening. Moreover, an in vitro system for vacuole fusion exists and we recently succeeded in reconstituting also cell-free vacuole fission with purified organelles. We will first build an experimental toolkit for vacuole fission to characterize this reaction in detail. Several approaches will be combined: (1) Identification of fission proteins by mutant screening, as well as by candidate approaches, and their localization relative to the fission site; (2) further developing a system reconstituting in vitro fission and efficient methods to quantitate it. (3) creating organelle chips to synchronously study fission on multiple single vacuoles immobilized in a defined orientation. (4) time-resolved confocal microscopy of fission proteins in vivo and in vitro; (5) biochemical characterization of fission protein associations and their changes during fission. These approaches will identify the vacuolar fission apparatus and help to elucidate its functioning. In a second step we will explore how the fission apparatus physically and functionally interacts with the already well-defined vacuolar membrane fusion machinery. We will characterize the impact of cell cycle regulators and signaling pathways on these interactions. These studies will be pioneering in that they will lead us to a comprehensive description of an organelle fission process and of how membrane fission and fusion components are coordinated to control size and copy number of an organelle.
Summary
Yeast vacuoles (lysosomes) will serve as an excellent model system: Vacuoles change copy number and size in the cell cycle and upon shifts of media; due to their large diameter (up to 5 µm) these changes can be assayed by fluorescence microscopy and are amenable to genetic screening. Moreover, an in vitro system for vacuole fusion exists and we recently succeeded in reconstituting also cell-free vacuole fission with purified organelles. We will first build an experimental toolkit for vacuole fission to characterize this reaction in detail. Several approaches will be combined: (1) Identification of fission proteins by mutant screening, as well as by candidate approaches, and their localization relative to the fission site; (2) further developing a system reconstituting in vitro fission and efficient methods to quantitate it. (3) creating organelle chips to synchronously study fission on multiple single vacuoles immobilized in a defined orientation. (4) time-resolved confocal microscopy of fission proteins in vivo and in vitro; (5) biochemical characterization of fission protein associations and their changes during fission. These approaches will identify the vacuolar fission apparatus and help to elucidate its functioning. In a second step we will explore how the fission apparatus physically and functionally interacts with the already well-defined vacuolar membrane fusion machinery. We will characterize the impact of cell cycle regulators and signaling pathways on these interactions. These studies will be pioneering in that they will lead us to a comprehensive description of an organelle fission process and of how membrane fission and fusion components are coordinated to control size and copy number of an organelle.
Max ERC Funding
2 310 000 €
Duration
Start date: 2009-09-01, End date: 2015-08-31