Project acronym ANTHROPOID
Project Great ape organoids to reconstruct uniquely human development
Researcher (PI) Jarrett CAMP
Host Institution (HI) INSTITUT FUR MOLEKULARE UND KLINISCHE OPHTHALMOLOGIE BASEL
Call Details Starting Grant (StG), LS2, ERC-2018-STG
Summary Humans diverged from our closest living relatives, chimpanzees and other great apes, 6-10 million years ago. Since this divergence, our ancestors acquired genetic changes that enhanced cognition, altered metabolism, and endowed our species with an adaptive capacity to colonize the entire planet and reshape the biosphere. Through genome comparisons between modern humans, Neandertals, chimpanzees and other apes we have identified genetic changes that likely contribute to innovations in human metabolic and cognitive physiology. However, it has been difficult to assess the functional effects of these genetic changes due to the lack of cell culture systems that recapitulate great ape organ complexity. Human and chimpanzee pluripotent stem cells (PSCs) can self-organize into three-dimensional (3D) tissues that recapitulate the morphology, function, and genetic programs controlling organ development. Our vision is to use organoids to study the changes that set modern humans apart from our closest evolutionary relatives as well as all other organisms on the planet. In ANTHROPOID we will generate a great ape developmental cell atlas using cortex, liver, and small intestine organoids. We will use single-cell transcriptomics and chromatin accessibility to identify cell type-specific features of transcriptome divergence at cellular resolution. We will dissect enhancer evolution using single-cell genomic screens and ancestralize human cells to resurrect pre-human cellular phenotypes. ANTHROPOID utilizes quantitative and state-of-the-art methods to explore exciting high-risk questions at multiple branches of the modern human lineage. This project is a ground breaking starting point to replay evolution and tackle the ancient question of what makes us uniquely human?
Summary
Humans diverged from our closest living relatives, chimpanzees and other great apes, 6-10 million years ago. Since this divergence, our ancestors acquired genetic changes that enhanced cognition, altered metabolism, and endowed our species with an adaptive capacity to colonize the entire planet and reshape the biosphere. Through genome comparisons between modern humans, Neandertals, chimpanzees and other apes we have identified genetic changes that likely contribute to innovations in human metabolic and cognitive physiology. However, it has been difficult to assess the functional effects of these genetic changes due to the lack of cell culture systems that recapitulate great ape organ complexity. Human and chimpanzee pluripotent stem cells (PSCs) can self-organize into three-dimensional (3D) tissues that recapitulate the morphology, function, and genetic programs controlling organ development. Our vision is to use organoids to study the changes that set modern humans apart from our closest evolutionary relatives as well as all other organisms on the planet. In ANTHROPOID we will generate a great ape developmental cell atlas using cortex, liver, and small intestine organoids. We will use single-cell transcriptomics and chromatin accessibility to identify cell type-specific features of transcriptome divergence at cellular resolution. We will dissect enhancer evolution using single-cell genomic screens and ancestralize human cells to resurrect pre-human cellular phenotypes. ANTHROPOID utilizes quantitative and state-of-the-art methods to explore exciting high-risk questions at multiple branches of the modern human lineage. This project is a ground breaking starting point to replay evolution and tackle the ancient question of what makes us uniquely human?
Max ERC Funding
1 500 000 €
Duration
Start date: 2019-06-01, End date: 2024-05-31
Project acronym BioMeTRe
Project Biophysical mechanisms of long-range transcriptional regulation
Researcher (PI) Luca GIORGETTI
Host Institution (HI) FRIEDRICH MIESCHER INSTITUTE FOR BIOMEDICAL RESEARCH FONDATION
Call Details Starting Grant (StG), LS2, ERC-2017-STG
Summary In mammals, transcriptional control of many genes relies on cis-regulatory elements such as enhancers, which are often located tens to hundreds of kilobases away from their cognate promoters. Functional interactions between distal regulatory elements and target promoters require mutual physical proximity, which is linked to the three-dimensional structure of the chromatin fiber. Chromosome conformation capture studies revealed that chromosomes are partitioned into Topologically Associating Domains (TADs), sub-megabase domains of preferential physical interactions of the chromatin fiber. Genetic evidence showed that TAD boundaries restrict the genomic range of enhancer-promoter communication, and that interactions between regulatory sequences within TADs are further fine-tuned by smaller-scale structures. However, the mechanistic details of how physical interactions translate into transcriptional outputs are totally unknown. Here we propose to explore the biophysical mechanisms that link chromosome conformation and long-range transcriptional regulation using molecular biology, genetic engineering, single-cell experiments and physical modeling. We will measure chromosomal interactions in single cells and in time using a novel method that relies on an enzymatic process in vivo. Genetic engineering will be used to establish a cell system that allows quantitative measurement of how enhancer-promoter interactions relate to transcription at the population and single-cell levels, and to test the effects of perturbations without confounding effects. Finally, we will develop physical models of promoter operation in the presence of distal enhancers, which will be used to interpret the experimental data and formulate new testable predictions. With this integrated approach we aim at providing an entirely new layer of description of the general principles underlying transcriptional control, which could establish new paradigms for research in epigenetics and gene regulation.
Summary
In mammals, transcriptional control of many genes relies on cis-regulatory elements such as enhancers, which are often located tens to hundreds of kilobases away from their cognate promoters. Functional interactions between distal regulatory elements and target promoters require mutual physical proximity, which is linked to the three-dimensional structure of the chromatin fiber. Chromosome conformation capture studies revealed that chromosomes are partitioned into Topologically Associating Domains (TADs), sub-megabase domains of preferential physical interactions of the chromatin fiber. Genetic evidence showed that TAD boundaries restrict the genomic range of enhancer-promoter communication, and that interactions between regulatory sequences within TADs are further fine-tuned by smaller-scale structures. However, the mechanistic details of how physical interactions translate into transcriptional outputs are totally unknown. Here we propose to explore the biophysical mechanisms that link chromosome conformation and long-range transcriptional regulation using molecular biology, genetic engineering, single-cell experiments and physical modeling. We will measure chromosomal interactions in single cells and in time using a novel method that relies on an enzymatic process in vivo. Genetic engineering will be used to establish a cell system that allows quantitative measurement of how enhancer-promoter interactions relate to transcription at the population and single-cell levels, and to test the effects of perturbations without confounding effects. Finally, we will develop physical models of promoter operation in the presence of distal enhancers, which will be used to interpret the experimental data and formulate new testable predictions. With this integrated approach we aim at providing an entirely new layer of description of the general principles underlying transcriptional control, which could establish new paradigms for research in epigenetics and gene regulation.
Max ERC Funding
1 500 000 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym D-FENS
Project Dicer-Dependent Defense in Mammals
Researcher (PI) Petr Svoboda
Host Institution (HI) USTAV MOLEKULARNI GENETIKY AKADEMIE VED CESKE REPUBLIKY VEREJNA VYZKUMNA INSTITUCE
Call Details Consolidator Grant (CoG), LS2, ERC-2014-CoG
Summary Viral infection or retrotransposon expansion in the genome often result in production of double-stranded RNA (dsRNA). dsRNA can be intercepted by RNase III Dicer acting in the RNA interference (RNAi) pathway, an ancient eukaryotic defense mechanism. Notably, endogenous mammalian RNAi appears dormant while its common and unique physiological roles remain poorly understood. A factor underlying mammalian RNAi dormancy is inefficient processing of dsRNA by the full-length Dicer. Yet, a simple truncation of Dicer leads to hyperactive RNAi, which is naturally present in mouse oocytes.
The D-FENS project will use genetic animal models to define common, cell-specific and species-specific roles of mammalian RNAi. D-FENS has three complementary and synergizing objectives:
(1) Explore consequences of hyperactive RNAi in vivo. A mouse expressing a truncated Dicer will reveal at the organismal level any negative effect of hyperactive RNAi, the relationship between RNAi and mammalian immune system, and potential of RNAi to suppress viral infections in mammals.
(2) Define common and species-specific features of RNAi in the oocyte. Functional and bioinformatics analyses in mouse, bovine, and hamster oocytes will define rules and exceptions concerning endogenous RNAi roles, including RNAi contribution to maternal mRNA degradation and co-existence with the miRNA pathway.
(3) Uncover relationship between RNAi and piRNA pathways in suppression of retrotransposons. We hypothesize that hyperactive RNAi in mouse oocytes functionally complements the piRNA pathway, a Dicer-independent pathway suppressing retrotransposons in the germline. Using genetic models, we will explore unique and redundant roles of both pathways in the germline.
D-FENS will uncover physiological significance of the N-terminal part of Dicer, fundamentally improve understanding RNAi function in the germline, and provide a critical in vivo assessment of antiviral activity of RNAi with implications for human therapy.
Summary
Viral infection or retrotransposon expansion in the genome often result in production of double-stranded RNA (dsRNA). dsRNA can be intercepted by RNase III Dicer acting in the RNA interference (RNAi) pathway, an ancient eukaryotic defense mechanism. Notably, endogenous mammalian RNAi appears dormant while its common and unique physiological roles remain poorly understood. A factor underlying mammalian RNAi dormancy is inefficient processing of dsRNA by the full-length Dicer. Yet, a simple truncation of Dicer leads to hyperactive RNAi, which is naturally present in mouse oocytes.
The D-FENS project will use genetic animal models to define common, cell-specific and species-specific roles of mammalian RNAi. D-FENS has three complementary and synergizing objectives:
(1) Explore consequences of hyperactive RNAi in vivo. A mouse expressing a truncated Dicer will reveal at the organismal level any negative effect of hyperactive RNAi, the relationship between RNAi and mammalian immune system, and potential of RNAi to suppress viral infections in mammals.
(2) Define common and species-specific features of RNAi in the oocyte. Functional and bioinformatics analyses in mouse, bovine, and hamster oocytes will define rules and exceptions concerning endogenous RNAi roles, including RNAi contribution to maternal mRNA degradation and co-existence with the miRNA pathway.
(3) Uncover relationship between RNAi and piRNA pathways in suppression of retrotransposons. We hypothesize that hyperactive RNAi in mouse oocytes functionally complements the piRNA pathway, a Dicer-independent pathway suppressing retrotransposons in the germline. Using genetic models, we will explore unique and redundant roles of both pathways in the germline.
D-FENS will uncover physiological significance of the N-terminal part of Dicer, fundamentally improve understanding RNAi function in the germline, and provide a critical in vivo assessment of antiviral activity of RNAi with implications for human therapy.
Max ERC Funding
1 950 000 €
Duration
Start date: 2015-07-01, End date: 2020-06-30
Project acronym DYNACLOCK
Project Dynamic protein-DNA interactomes and circadian transcription regulatory networks in mammals
Researcher (PI) Felix Naef
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Starting Grant (StG), LS2, ERC-2010-StG_20091118
Summary The aim of this project is to understand the dynamics of protein-DNA interactomes underlying circadian oscillators in mammals, and how these shape circadian transcriptional output programs. Specifically our goal is to solve a fundamental issue in circadian biology: the phase specificity problem underlying circadian gene expression. We have taken a challenging and original multi-disciplinary approach in which molecular biology experiments will be tightly interlinked with computational analyses and biophysical modeling. The approach will generate time resolved protein-DNA interactomes in mouse liver for several key circadian repressors at unprecedented resolution. These experiments will be complemented with chromosome conformation capture (3C) experiments to monitor how looping interactions and 3D genome structure rearrange during the circadian cycle, which will inform on how circadian transcription networks use long-range gene regulatory mechanisms. Novel computational algorithms based on biophysical principles will be developed and implemented to optimally analyze interactome and 3C datasets. For the latter, statistical models from polymer physics will be used to reconstruct the chromatin networks and interaction maps from the 3C data. At the detailed level of individual cells, we will investigate transcription bursts, and how those are involved in the control of circadian gene expression. In particular we will exploit high temporal resolution bioluminescence reporters using a biophysical model of transcription coupled with a Hidden Markov Model (HMM). Through our innovative approach, we expect that the data generated and state-of-the-art analyses performed will lead novel insight into the role and mechanics of circadian transcription in controlling circadian outputs in mammals.
Summary
The aim of this project is to understand the dynamics of protein-DNA interactomes underlying circadian oscillators in mammals, and how these shape circadian transcriptional output programs. Specifically our goal is to solve a fundamental issue in circadian biology: the phase specificity problem underlying circadian gene expression. We have taken a challenging and original multi-disciplinary approach in which molecular biology experiments will be tightly interlinked with computational analyses and biophysical modeling. The approach will generate time resolved protein-DNA interactomes in mouse liver for several key circadian repressors at unprecedented resolution. These experiments will be complemented with chromosome conformation capture (3C) experiments to monitor how looping interactions and 3D genome structure rearrange during the circadian cycle, which will inform on how circadian transcription networks use long-range gene regulatory mechanisms. Novel computational algorithms based on biophysical principles will be developed and implemented to optimally analyze interactome and 3C datasets. For the latter, statistical models from polymer physics will be used to reconstruct the chromatin networks and interaction maps from the 3C data. At the detailed level of individual cells, we will investigate transcription bursts, and how those are involved in the control of circadian gene expression. In particular we will exploit high temporal resolution bioluminescence reporters using a biophysical model of transcription coupled with a Hidden Markov Model (HMM). Through our innovative approach, we expect that the data generated and state-of-the-art analyses performed will lead novel insight into the role and mechanics of circadian transcription in controlling circadian outputs in mammals.
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-03-01, End date: 2016-02-29
Project acronym EPICROP
Project Dissecting epistasis for enhanced crop productivity
Researcher (PI) Sebastian Soyk
Host Institution (HI) UNIVERSITE DE LAUSANNE
Call Details Starting Grant (StG), LS2, ERC-2018-STG
Summary A major goal in plant biology is to understand how naturally occurring genetic variation leads to quantitative differences in economically important traits. Efforts to navigate the genotype-to-phenotype map are often focused on linear genetic interactions. As a result, crop breeding is mainly driven by loci with predictable additive effects. However, it has become clear that quantitative trait variation often results from perturbations of complex genetic networks. Thus, understanding epistasis, or interactions between genes, is key for our ability to predictably improve crops. To meet this challenge, this project will reveal and dissect epistatic interactions in gene regulatory networks that guide stem cell differentiation in the model crop tomato. In the first aim, I will utilize exhaustive allelic series for epistatic MADS-box genes that quantitatively regulate flower and fruit production as an experimental model system to study fundamental principles of epistasis that can be applied to other genetic networks. Genome-wide transcript profiling will be used to reveal molecular signatures of epistasis and potential targets for predictable crop improvement by advanced CRISPR/Cas9 gene editing technology. Further, my preliminary data suggests that epistasis is widespread and important across major productivity traits in tomato. Thus, in a second aim, I will access this untapped resource of cryptic genetic variation by sensitizing a tomato diversity panel for weak epistatic effects from unknown natural modifier loci of stem cell differentiation using trans-acting CRISPR/Cas9 editing cassettes. This screen represents a new approach to mutagenesis in plants with potential to reveal cryptic variation in other system. The outcomes of this project will advance our knowledge in a fundamental area of plant genome biology, help uncover and understand the functional architecture of epistasis, and have potential to bring significant improvements to agriculture.
Summary
A major goal in plant biology is to understand how naturally occurring genetic variation leads to quantitative differences in economically important traits. Efforts to navigate the genotype-to-phenotype map are often focused on linear genetic interactions. As a result, crop breeding is mainly driven by loci with predictable additive effects. However, it has become clear that quantitative trait variation often results from perturbations of complex genetic networks. Thus, understanding epistasis, or interactions between genes, is key for our ability to predictably improve crops. To meet this challenge, this project will reveal and dissect epistatic interactions in gene regulatory networks that guide stem cell differentiation in the model crop tomato. In the first aim, I will utilize exhaustive allelic series for epistatic MADS-box genes that quantitatively regulate flower and fruit production as an experimental model system to study fundamental principles of epistasis that can be applied to other genetic networks. Genome-wide transcript profiling will be used to reveal molecular signatures of epistasis and potential targets for predictable crop improvement by advanced CRISPR/Cas9 gene editing technology. Further, my preliminary data suggests that epistasis is widespread and important across major productivity traits in tomato. Thus, in a second aim, I will access this untapped resource of cryptic genetic variation by sensitizing a tomato diversity panel for weak epistatic effects from unknown natural modifier loci of stem cell differentiation using trans-acting CRISPR/Cas9 editing cassettes. This screen represents a new approach to mutagenesis in plants with potential to reveal cryptic variation in other system. The outcomes of this project will advance our knowledge in a fundamental area of plant genome biology, help uncover and understand the functional architecture of epistasis, and have potential to bring significant improvements to agriculture.
Max ERC Funding
1 499 903 €
Duration
Start date: 2019-08-01, End date: 2024-07-31
Project acronym EPIGEPLAS
Project Epigenetic determinants of the genome that govern cellular plasticity
Researcher (PI) Dirk Schübeler
Host Institution (HI) FRIEDRICH MIESCHER INSTITUTE FOR BIOMEDICAL RESEARCH FONDATION
Call Details Starting Grant (StG), LS2, ERC-2007-StG
Summary Differentiation events in mammalian development involve stable resetting of transcriptional programs, which entails changes in the epigenetic state of target sequences defined by modifications of DNA and bound nucleosomes. These recently identified epigenetic layers modulate DNA accessibility in a positive and negative manner and thus could make genetic readouts context-dependent and dynamic. The proposed project aims to quantify the epigenetic contribution to cellular differentiation as a key event in development. By applying parallel genomic approaches we will comprehensively define the epigenome and its plasticity during cellular commitment of pluripotent murine stem cells into defined terminally differentiated cells. We will focus on DNA methylation and its interplay with several histone modifications as a way to achieve stable gene silencing. The resulting global profiles will gain insights into targeting principles and generate statistical, predictive models of regulation. From these mechanistic models will be derived and tested by genetically interfering with genetic and epigenetic regulatory pathways and by dissecting DNA sequence components involved in specifying targets. These experiments aim to unravel the crosstalk between epigenetic regulation and cell plasticity, the underlying molecular circuitry in pluripotent and unipotent cells and ultimately help to incorporate epigenetic regulation into current transcriptional regulatory models.
Summary
Differentiation events in mammalian development involve stable resetting of transcriptional programs, which entails changes in the epigenetic state of target sequences defined by modifications of DNA and bound nucleosomes. These recently identified epigenetic layers modulate DNA accessibility in a positive and negative manner and thus could make genetic readouts context-dependent and dynamic. The proposed project aims to quantify the epigenetic contribution to cellular differentiation as a key event in development. By applying parallel genomic approaches we will comprehensively define the epigenome and its plasticity during cellular commitment of pluripotent murine stem cells into defined terminally differentiated cells. We will focus on DNA methylation and its interplay with several histone modifications as a way to achieve stable gene silencing. The resulting global profiles will gain insights into targeting principles and generate statistical, predictive models of regulation. From these mechanistic models will be derived and tested by genetically interfering with genetic and epigenetic regulatory pathways and by dissecting DNA sequence components involved in specifying targets. These experiments aim to unravel the crosstalk between epigenetic regulation and cell plasticity, the underlying molecular circuitry in pluripotent and unipotent cells and ultimately help to incorporate epigenetic regulation into current transcriptional regulatory models.
Max ERC Funding
1 085 000 €
Duration
Start date: 2008-10-01, End date: 2013-09-30
Project acronym Epiherigans
Project Writing, reading and managing stress with H3K9me
Researcher (PI) Susan GASSER
Host Institution (HI) FRIEDRICH MIESCHER INSTITUTE FOR BIOMEDICAL RESEARCH FONDATION
Call Details Advanced Grant (AdG), LS2, ERC-2016-ADG
Summary Epigenetic inheritance is the transmission of information, generally in the form of DNA methylation or post-translational modifications on histones that regulate the availability of underlying genetic information for transcription. RNA itself feeds back to contribute to histone modification. Sequence accessibility is both a matter of folding the chromatin fibre to alter access to recognition motifs, and the local concentration of factors needed for efficient transcriptional initiation, elongation, termination or mRNA stability. In heterochromatin we find a subset of regulatory factors in carefully balanced concentrations that are maintained in part by the segregation of active and inactive domains. Histone H3 K9 methylation is key to this compartmentation.
C. elegans provides an ideal system in which to study chromatin-based gene repression. We have demonstrated that histone H3 K9 methylation is the essential signal for the sequestration of heterochromatin at the nuclear envelope in C. elegans. The recognition of H3K9me1/2/3 by an inner nuclear envelope-bound chromodomain protein, CEC-4, actively sequesters heterochromatin in embryos, and contributes redundantly in adult tissues.
Epiherigans has the ambitious goal to determine definitively what targets H3K9 methylation, and identify its physiological roles. We will examine how this mark contributes to the epigenetic recognition of repeat vs non-repeat sequence, and mediates a stress-induced response to oxidative damage. We will examine the link between these and the spatial clustering of heterochromatic domains. Epiherigans will develop an integrated approach to identify in vivo the factors that distinguish repeats from non-repeats, self from non-self within genomes and will examine how H3K9me contributes to a persistent ROS or DNA damage stress response. It represents a crucial step towards understanding of how our genomes use heterochromatin to modulate, stabilize and transmit chromatin organization.
Summary
Epigenetic inheritance is the transmission of information, generally in the form of DNA methylation or post-translational modifications on histones that regulate the availability of underlying genetic information for transcription. RNA itself feeds back to contribute to histone modification. Sequence accessibility is both a matter of folding the chromatin fibre to alter access to recognition motifs, and the local concentration of factors needed for efficient transcriptional initiation, elongation, termination or mRNA stability. In heterochromatin we find a subset of regulatory factors in carefully balanced concentrations that are maintained in part by the segregation of active and inactive domains. Histone H3 K9 methylation is key to this compartmentation.
C. elegans provides an ideal system in which to study chromatin-based gene repression. We have demonstrated that histone H3 K9 methylation is the essential signal for the sequestration of heterochromatin at the nuclear envelope in C. elegans. The recognition of H3K9me1/2/3 by an inner nuclear envelope-bound chromodomain protein, CEC-4, actively sequesters heterochromatin in embryos, and contributes redundantly in adult tissues.
Epiherigans has the ambitious goal to determine definitively what targets H3K9 methylation, and identify its physiological roles. We will examine how this mark contributes to the epigenetic recognition of repeat vs non-repeat sequence, and mediates a stress-induced response to oxidative damage. We will examine the link between these and the spatial clustering of heterochromatic domains. Epiherigans will develop an integrated approach to identify in vivo the factors that distinguish repeats from non-repeats, self from non-self within genomes and will examine how H3K9me contributes to a persistent ROS or DNA damage stress response. It represents a crucial step towards understanding of how our genomes use heterochromatin to modulate, stabilize and transmit chromatin organization.
Max ERC Funding
2 500 000 €
Duration
Start date: 2017-06-01, End date: 2022-05-31
Project acronym FRONTIERS OF RNAI-II
Project High resolution and chemical genetic approaches to RNA silencing mechanisms
Researcher (PI) Olivier Robert Georges Voinnet
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Advanced Grant (AdG), LS2, ERC-2012-ADG_20120314
Summary In eukaryotes, silencing small (s)RNAs, including micro (mi)RNAs and small interfering (si)RNAs, regulate many aspects of biology, including cell differentiation, development, hormonal responses, or defense. In particular, many plant and metazoan miRNAs play crucial roles in embryonic/post-embryonic development; the precise timing and localization of their expression is thus crucial to their action. Hence, specific miRNA repertoires underlie specific cell identities, and deviations from such repertoires often have deleterious consequences such as cancer. Many miRNAs also help organisms to adapt to stress, thus, given their importance in virtually all aspects of biology, understanding how, when and where miRNAs exert their actions is of paramount importance. To date, however, the few approaches to miRNA-mediated silencing in whole organisms have not taken into account the exquisite definition, in space and time, of their biogenesis and action, leading to an inaccurate view of the biology of these molecules at the systems level.
Using the root system of the model plant Arabidopsis thaliana, we propose to explore, at single-cell and subcellular resolution levels, the biology of the main miRNA effector protein, ARGONAUTE 1 (AGO1) in intact tissues. Using a combination of state-of the-art technologies for single-cell forward genetics, protein purification and RNA/polysome profiling, we will establish a functional spatiotemporal map of the root AGO1-sRNAome and identify cell-specific modifiers of sRNA biogenesis and action. As a complement to the above approaches, chemical genetics will isolate small molecules allowing direct and specific manipulation of AGO1-dependent sRNA pathways in planta. RNA silencing modifier compounds will also accelerate forward and reverse approaches of RNA silencing in plants with sensitized genetic backgrounds, and uncover novel connections between miRNA/siRNA and physiological or metabolic pathways.
Summary
In eukaryotes, silencing small (s)RNAs, including micro (mi)RNAs and small interfering (si)RNAs, regulate many aspects of biology, including cell differentiation, development, hormonal responses, or defense. In particular, many plant and metazoan miRNAs play crucial roles in embryonic/post-embryonic development; the precise timing and localization of their expression is thus crucial to their action. Hence, specific miRNA repertoires underlie specific cell identities, and deviations from such repertoires often have deleterious consequences such as cancer. Many miRNAs also help organisms to adapt to stress, thus, given their importance in virtually all aspects of biology, understanding how, when and where miRNAs exert their actions is of paramount importance. To date, however, the few approaches to miRNA-mediated silencing in whole organisms have not taken into account the exquisite definition, in space and time, of their biogenesis and action, leading to an inaccurate view of the biology of these molecules at the systems level.
Using the root system of the model plant Arabidopsis thaliana, we propose to explore, at single-cell and subcellular resolution levels, the biology of the main miRNA effector protein, ARGONAUTE 1 (AGO1) in intact tissues. Using a combination of state-of the-art technologies for single-cell forward genetics, protein purification and RNA/polysome profiling, we will establish a functional spatiotemporal map of the root AGO1-sRNAome and identify cell-specific modifiers of sRNA biogenesis and action. As a complement to the above approaches, chemical genetics will isolate small molecules allowing direct and specific manipulation of AGO1-dependent sRNA pathways in planta. RNA silencing modifier compounds will also accelerate forward and reverse approaches of RNA silencing in plants with sensitized genetic backgrounds, and uncover novel connections between miRNA/siRNA and physiological or metabolic pathways.
Max ERC Funding
2 251 600 €
Duration
Start date: 2013-07-01, End date: 2018-06-30
Project acronym HUCNC
Project Conserved Non-Coding Sequences; function, variability and phenotypic consequences
Researcher (PI) Stylianos Antonarakis
Host Institution (HI) UNIVERSITE DE GENEVE
Call Details Advanced Grant (AdG), LS2, ERC-2009-AdG
Summary Comparative genomics revealed that ~5% of the human genome is conserved among mammals. This fraction is likely functional, and could harbor pathogenic mutations. We have shown (Nature 2002, Science 2003) that more than half of the constrained fraction of the genome consists of Conserved Non-Coding sequences (CNCs). Model organisms provided evidence for enhancer activity for a fraction of CNCs; in addition another fraction is part of large non-coding RNAs (lincRNA). However, the function of the majority of CNCs is unknown. Importantly, a few pathogenic mutations in CNCs have been associated with genetic disorders. We propose to i) perform functional analysis of CNCs, and ii) identify the spectrum of pathogenic CNC mutations in recognizable human phenotypes. The aims are: 1. Functional genomic connectivity of CNCs 1a. Use 4C in CNCs in various cell types and determine their physical genomic interactions. 1b. Perform targeted disruption of CNCs in cells and assess the functional outcomes. 2. Pathogenic variation of CNCs 2a. Assess the common variation in CNCs: i) common deletion/insertions in 350 samples by aCGH of all human CNCs; ii) common SNP/small indels using DNA selection and High Throughput Sequencing (HTS) of CNCs in 100 samples. 2b. Identify likely pathogenic mutations in developmental syndromes. Search for i) large deletions and duplications of CNCs using aCGH in 1500 samples with malformation syndromes, 1000 from spontaneous abortions, and 500 with X-linked mental retardation; and ii) point mutations in these samples by targeted HTS. The distinction between pathogenic and non-pathogenic variants is difficult, and we propose approaches to meet the challenge. 3. Genetic control (cis and trans eQTLs) of expression variation of CNC lincRNAs, using 200 samples.
Summary
Comparative genomics revealed that ~5% of the human genome is conserved among mammals. This fraction is likely functional, and could harbor pathogenic mutations. We have shown (Nature 2002, Science 2003) that more than half of the constrained fraction of the genome consists of Conserved Non-Coding sequences (CNCs). Model organisms provided evidence for enhancer activity for a fraction of CNCs; in addition another fraction is part of large non-coding RNAs (lincRNA). However, the function of the majority of CNCs is unknown. Importantly, a few pathogenic mutations in CNCs have been associated with genetic disorders. We propose to i) perform functional analysis of CNCs, and ii) identify the spectrum of pathogenic CNC mutations in recognizable human phenotypes. The aims are: 1. Functional genomic connectivity of CNCs 1a. Use 4C in CNCs in various cell types and determine their physical genomic interactions. 1b. Perform targeted disruption of CNCs in cells and assess the functional outcomes. 2. Pathogenic variation of CNCs 2a. Assess the common variation in CNCs: i) common deletion/insertions in 350 samples by aCGH of all human CNCs; ii) common SNP/small indels using DNA selection and High Throughput Sequencing (HTS) of CNCs in 100 samples. 2b. Identify likely pathogenic mutations in developmental syndromes. Search for i) large deletions and duplications of CNCs using aCGH in 1500 samples with malformation syndromes, 1000 from spontaneous abortions, and 500 with X-linked mental retardation; and ii) point mutations in these samples by targeted HTS. The distinction between pathogenic and non-pathogenic variants is difficult, and we propose approaches to meet the challenge. 3. Genetic control (cis and trans eQTLs) of expression variation of CNC lincRNAs, using 200 samples.
Max ERC Funding
2 353 920 €
Duration
Start date: 2010-07-01, End date: 2015-06-30
Project acronym MEDEA
Project Mechanisms of Epigenetic regulation in Development, Evolution and Adaptation
Researcher (PI) Ulrich Grossniklaus
Host Institution (HI) UNIVERSITAT ZURICH
Call Details Advanced Grant (AdG), LS2, ERC-2009-AdG
Summary Over the last decade epigenetic gene regulation has become a major focus of scientific research as it was shown to play an important role in normal plant and animal development, but also in the ontogeny of human disease. A role of epigenetic processes in evolution, however, has found little general support to date. The goal of this project is to understand the complex interplay of epigenetic mechanisms in plant development and evolution. Many of the approaches we use rely on the recent advances in sequencing technologies, which allow the analysis of molecular characters at an unprecedented level and speed. To achieve our goal, we will focus on two epigenetic paradigms. In Program A, we will focus on dissecting the mechanisms of genomic imprinting at the MEDEA (MEA) locus in Arabidopsis, which we will investigate using genetic, molecular, and innovative biochemical approaches to gain a comprehensive picture of the complex interplay of various epigenetic pathways. In program B, we will analyze the role of epigenetic change in adaptation and evolution using (i) an experimental selection approach in Arabidopsis, where genome-wide analyses of epigenetic modifications have become possible, and (ii) a stable, heritable, epigenetic change occurring in Mimulus populations. In this system, an epigenetic switch of the pollinator syndrome leads to reproductive isolation and, therefore, has an effect on population structure and thus the evolutionary trajectory. These experimental systems each offer unique opportunities to shed light onto the underlying mechanisms controlling epigenetic states. In combination with the new methodologies used, these analyses promise to provide step change in our understanding of epigenetic processes at the level of genes, organisms, and populations.
Summary
Over the last decade epigenetic gene regulation has become a major focus of scientific research as it was shown to play an important role in normal plant and animal development, but also in the ontogeny of human disease. A role of epigenetic processes in evolution, however, has found little general support to date. The goal of this project is to understand the complex interplay of epigenetic mechanisms in plant development and evolution. Many of the approaches we use rely on the recent advances in sequencing technologies, which allow the analysis of molecular characters at an unprecedented level and speed. To achieve our goal, we will focus on two epigenetic paradigms. In Program A, we will focus on dissecting the mechanisms of genomic imprinting at the MEDEA (MEA) locus in Arabidopsis, which we will investigate using genetic, molecular, and innovative biochemical approaches to gain a comprehensive picture of the complex interplay of various epigenetic pathways. In program B, we will analyze the role of epigenetic change in adaptation and evolution using (i) an experimental selection approach in Arabidopsis, where genome-wide analyses of epigenetic modifications have become possible, and (ii) a stable, heritable, epigenetic change occurring in Mimulus populations. In this system, an epigenetic switch of the pollinator syndrome leads to reproductive isolation and, therefore, has an effect on population structure and thus the evolutionary trajectory. These experimental systems each offer unique opportunities to shed light onto the underlying mechanisms controlling epigenetic states. In combination with the new methodologies used, these analyses promise to provide step change in our understanding of epigenetic processes at the level of genes, organisms, and populations.
Max ERC Funding
2 496 641 €
Duration
Start date: 2010-04-01, End date: 2015-12-31
Project acronym MIRTURN
Project Mechanisms of microRNA biogenesis and turnover
Researcher (PI) Helge Grosshans
Host Institution (HI) FRIEDRICH MIESCHER INSTITUTE FOR BIOMEDICAL RESEARCH FONDATION
Call Details Starting Grant (StG), LS2, ERC-2009-StG
Summary MicroRNAs (miRNAs) are a novel class of genes, accounting for >1% of genes in a typical animal genome. They constitute an important layer of gene regulation that affects diverse processes such as cell differentiation, apoptosis, and metabolism. Despite such critical roles, deciphering the mechanism of action of miRNAs has been difficult, leading to multiple, partially contradictory, models of miRNA activity. Moreover, adding an additional layer of complexity, it is now emerging that miRNA activity is regulated by various mechanisms that we are only beginning to identify. Our objective is to understand how miRNAs are regulated under physiological conditions, in the roundworm Caenorhabditis elegans. We will focus on pathways of miRNA turnover, an issue of fundamental importance that has received little attention because miRNAs are widely held to be highly stable molecules. However, miRNA over-accumulation causes aberrant development and disease, prompting us to test rigorously whether degradation can antagonize miRNA activity and either identify the machinery involved, or confirm the dominance of other regulatory modalities, whose components we will identify. C. elegans is the organism in which miRNAs and many components of the miRNA machinery were discovered. However, previous studies emphasized genetics and cell biology approaches, limiting the degree of mechanistic insight that could be obtained. In addition to exploiting the traditional strengths of C. elegans, we will therefore develop and apply biochemical and genomic techniques to obtain a comprehensive understanding of miRNA regulation, enabling us to demonstrate both molecular mechanisms and physiological relevance. Given the importance of miRNAs in development and disease, identifying the regulators of these tiny gene regulators will be both of scientific interest and biomedical relevance.
Summary
MicroRNAs (miRNAs) are a novel class of genes, accounting for >1% of genes in a typical animal genome. They constitute an important layer of gene regulation that affects diverse processes such as cell differentiation, apoptosis, and metabolism. Despite such critical roles, deciphering the mechanism of action of miRNAs has been difficult, leading to multiple, partially contradictory, models of miRNA activity. Moreover, adding an additional layer of complexity, it is now emerging that miRNA activity is regulated by various mechanisms that we are only beginning to identify. Our objective is to understand how miRNAs are regulated under physiological conditions, in the roundworm Caenorhabditis elegans. We will focus on pathways of miRNA turnover, an issue of fundamental importance that has received little attention because miRNAs are widely held to be highly stable molecules. However, miRNA over-accumulation causes aberrant development and disease, prompting us to test rigorously whether degradation can antagonize miRNA activity and either identify the machinery involved, or confirm the dominance of other regulatory modalities, whose components we will identify. C. elegans is the organism in which miRNAs and many components of the miRNA machinery were discovered. However, previous studies emphasized genetics and cell biology approaches, limiting the degree of mechanistic insight that could be obtained. In addition to exploiting the traditional strengths of C. elegans, we will therefore develop and apply biochemical and genomic techniques to obtain a comprehensive understanding of miRNA regulation, enabling us to demonstrate both molecular mechanisms and physiological relevance. Given the importance of miRNAs in development and disease, identifying the regulators of these tiny gene regulators will be both of scientific interest and biomedical relevance.
Max ERC Funding
1 782 200 €
Duration
Start date: 2010-05-01, End date: 2015-04-30
Project acronym NucleolusChromatin
Project Analysis of the nucleolus in genome organization and function
Researcher (PI) Raffaella SANTORO
Host Institution (HI) UNIVERSITAT ZURICH
Call Details Advanced Grant (AdG), LS2, ERC-2017-ADG
Summary In eukaryotic cells, the higher-order organization of genomes is functionally important to ensure correct execution of gene expression programs. For instance, as cells differentiate into specialized cell types, chromosomes undergo diverse structural and organizational changes that affect gene expression and other cellular functions. However, how this process is achieved is still poorly understood. The elucidation of the mechanisms that control the spatial architecture of the genome and its contribution to gene regulation is a key open issue in molecular biology, relevant for physiological and pathological processes.
Increasing evidence indicated that large-scale folding of chromatin may affect gene expression by locating genes to specific nuclear subcompartments that are either stimulatory or inhibitory to transcription. Nuclear periphery (NP) and nucleolus are two important nuclear landmarks where repressive chromatin domains are often located. The interaction of chromosomes with NP and nucleolus is thought to contribute to a basal chromosome architecture and genome function. However, while the role of NP in genome organization has been well documented, the function of the nucleolus remains yet elusive.
To fully understand how genome organization regulates chromatin and gene expression states, it is necessary to obtain a comprehensive functional map of genome compartmentalization. However, so far, only domains associating with NP (LADs) have been identified and characterized while nucleolar-associated domains (NADs) remained under-investigated. The aim of this project is to fill this gap by developing methods to identify and characterize NADs and analyse the role of the nucleolus in genome organization, moving toward the obtainment of a comprehensive functional map of genome compartmentalization for each cell state and providing novel insights into basic principles of genome organization and its role in gene expression and cell function that yet remain elusive.
Summary
In eukaryotic cells, the higher-order organization of genomes is functionally important to ensure correct execution of gene expression programs. For instance, as cells differentiate into specialized cell types, chromosomes undergo diverse structural and organizational changes that affect gene expression and other cellular functions. However, how this process is achieved is still poorly understood. The elucidation of the mechanisms that control the spatial architecture of the genome and its contribution to gene regulation is a key open issue in molecular biology, relevant for physiological and pathological processes.
Increasing evidence indicated that large-scale folding of chromatin may affect gene expression by locating genes to specific nuclear subcompartments that are either stimulatory or inhibitory to transcription. Nuclear periphery (NP) and nucleolus are two important nuclear landmarks where repressive chromatin domains are often located. The interaction of chromosomes with NP and nucleolus is thought to contribute to a basal chromosome architecture and genome function. However, while the role of NP in genome organization has been well documented, the function of the nucleolus remains yet elusive.
To fully understand how genome organization regulates chromatin and gene expression states, it is necessary to obtain a comprehensive functional map of genome compartmentalization. However, so far, only domains associating with NP (LADs) have been identified and characterized while nucleolar-associated domains (NADs) remained under-investigated. The aim of this project is to fill this gap by developing methods to identify and characterize NADs and analyse the role of the nucleolus in genome organization, moving toward the obtainment of a comprehensive functional map of genome compartmentalization for each cell state and providing novel insights into basic principles of genome organization and its role in gene expression and cell function that yet remain elusive.
Max ERC Funding
2 500 000 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym POPRNASEQ
Project Population transcriptional genomics in humans using high throughput sequencing
Researcher (PI) Emmanouil Dermitzakis
Host Institution (HI) UNIVERSITE DE GENEVE
Call Details Starting Grant (StG), LS2, ERC-2010-StG_20091118
Summary Gene expression is one of the marks of cellular state and function. The relative abundance of transcripts defines and is a result of the differentiation status of a cell. Interrogation of gene expression levels and patterns in the human and other genomes can be informative about perturbations from the average pattern due to external stimuli or internal factors such as genetic variants. Gene expression profiles have been extensively used to assess developmental processes, pathways contributing to cell differentiation, and predicting the outcome of disease status.
Understanding the effects of genetic variation in basic cellular processes such as gene expression is key to the dissection of the genetic contributions to whole organism phenotypes.
We propose to interrogate the transcriptome of primary fibroblasts, primary T-cells and EBV-transformed B-cell (lymphoblastoid cell lines or LCLs) from umbilical cords of 200 individuals of European descent using next generation sequencing (mRNAseq). A subset will also be interrogated for transcriptionally engaged RNA polymerases (GROseq) and protein abundance. These data will be analyzed for the detection of eQTLs and other genetic effects associated with variation in alternative splicing and other properties of the transcripts and dissection of the genetic effects from primary transcription to protein and their tissue specific effects. These data will be integrated with genome-wide association studies and other efforts to dissect the genetic basis of complex traits and diseases in humans. In addition, we will develop bioinformatic models to understand the fine scale regulatory signals that are responsible for the regulatory patterns observed and how sequence variants have an effect on them.
Summary
Gene expression is one of the marks of cellular state and function. The relative abundance of transcripts defines and is a result of the differentiation status of a cell. Interrogation of gene expression levels and patterns in the human and other genomes can be informative about perturbations from the average pattern due to external stimuli or internal factors such as genetic variants. Gene expression profiles have been extensively used to assess developmental processes, pathways contributing to cell differentiation, and predicting the outcome of disease status.
Understanding the effects of genetic variation in basic cellular processes such as gene expression is key to the dissection of the genetic contributions to whole organism phenotypes.
We propose to interrogate the transcriptome of primary fibroblasts, primary T-cells and EBV-transformed B-cell (lymphoblastoid cell lines or LCLs) from umbilical cords of 200 individuals of European descent using next generation sequencing (mRNAseq). A subset will also be interrogated for transcriptionally engaged RNA polymerases (GROseq) and protein abundance. These data will be analyzed for the detection of eQTLs and other genetic effects associated with variation in alternative splicing and other properties of the transcripts and dissection of the genetic effects from primary transcription to protein and their tissue specific effects. These data will be integrated with genome-wide association studies and other efforts to dissect the genetic basis of complex traits and diseases in humans. In addition, we will develop bioinformatic models to understand the fine scale regulatory signals that are responsible for the regulatory patterns observed and how sequence variants have an effect on them.
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-05-01, End date: 2016-04-30
Project acronym PROTEOMICS V3.0
Project Proteomics v3.0: Development, Implementation and Dissemination of a Third Generation Proteomics Technology
Researcher (PI) Rudolf Aebersold
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Advanced Grant (AdG), LS2, ERC-2008-AdG
Summary Quantitative proteomics is a key technology for the life sciences in general and for systems biology in particular. So far, however, technical limitations have made it impossible to analyze the complete proteome of any species. It is the general goal of this proposal to develop, implement, apply and disseminate a new proteomic strategy that has the potential to generate quantitative proteomic datasets at an unprecedented depth, throughput, accuracy and robustness. Specifically, the new technology will identify and quantify every protein in a proteome. The title of the project Proteomics v3.0 was chosen to indicate the transformation of proteomics into its third phase, after 2D gel electrophoresis and LC-MS/MS based shotgun proteomics. Proteomics v3.0 is based on two sequential steps, emulating the strategy that has been immensely successful in the genomic sciences. In the first step the proteomic space is completely mapped out to generate a proteomic resource that is akin to the genomic sequence database. In the second step rapid and accurate assays will be developed to unambiguously identify and quantify any protein of the respective proteome in a multitude of samples. These assays will be made publicly accessible to support quantitative proteomic studies in the respective species. The strategy will first be implemented and tested in the yeast S. cerevisiae. In a later stage of the project it will be extended to the more complicated human proteome and include the development of assays that also probe the state of modification, splice forms and other types of protein variants generated by a specific open reading frame. Overall, the project will transform quantitative proteomics from a highly specialized technology practiced at a high level in a few laboratories worldwide into a commodity technology accessible, in principle to every group.
Summary
Quantitative proteomics is a key technology for the life sciences in general and for systems biology in particular. So far, however, technical limitations have made it impossible to analyze the complete proteome of any species. It is the general goal of this proposal to develop, implement, apply and disseminate a new proteomic strategy that has the potential to generate quantitative proteomic datasets at an unprecedented depth, throughput, accuracy and robustness. Specifically, the new technology will identify and quantify every protein in a proteome. The title of the project Proteomics v3.0 was chosen to indicate the transformation of proteomics into its third phase, after 2D gel electrophoresis and LC-MS/MS based shotgun proteomics. Proteomics v3.0 is based on two sequential steps, emulating the strategy that has been immensely successful in the genomic sciences. In the first step the proteomic space is completely mapped out to generate a proteomic resource that is akin to the genomic sequence database. In the second step rapid and accurate assays will be developed to unambiguously identify and quantify any protein of the respective proteome in a multitude of samples. These assays will be made publicly accessible to support quantitative proteomic studies in the respective species. The strategy will first be implemented and tested in the yeast S. cerevisiae. In a later stage of the project it will be extended to the more complicated human proteome and include the development of assays that also probe the state of modification, splice forms and other types of protein variants generated by a specific open reading frame. Overall, the project will transform quantitative proteomics from a highly specialized technology practiced at a high level in a few laboratories worldwide into a commodity technology accessible, in principle to every group.
Max ERC Funding
2 400 000 €
Duration
Start date: 2009-04-01, End date: 2014-03-31
Project acronym PROTEOMICS4D
Project Proteomics 4D: The proteome in context
Researcher (PI) Rudolf Aebersold
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Advanced Grant (AdG), LS2, ERC-2014-ADG
Summary Elements operating in the context of a system generate results that are different from the simple addition of the results of each element. This notion is one of the basic tenants of systems science. In systems biology/medicine complex (disease) phenotypes arise from multiple interacting factors, specifically proteins. Yet, the biochemical and mechanistic base of complex phenotypes remain elusive.
An array of powerful genomic technologies including GWAS, WGS, transcriptomics, epigenetic analyses and proteomics have identified numerous factors that contribute to complex phenotypes. It can be expected that over the next few years, genetic factors contributing to specific complex phenotypes will be comprehensively identified, while their interactions will remain elusive.
The project “Proteomics 4D: The proteome in context “explores the concept, that complex phenotypes arise from the perturbation of modules of interacting proteins and that these modules integrate seemingly independent genomic variants into a single biochemical response. We will develop and apply a generic technology to directly measure the composition, topology and structure of wild type and genetically perturbed protein modules and relate structural changes to their functional output.
This will be achieved by a the integration of quantitative proteomic and phosphoproteomic technologies determining molecular phenotypes, and hybrid structural methods consisting of chemical cross-linking and mass spectrometry, cryoEM and computational data integration to probe structural perturbations.
The project will focus initially on the structural and functional effects of cancer associated mutations in protein kinase modules and then generalize to study perturbed modules in any tissue and disease state. The resources supporting this technology will be disseminated to catalyze a broad transformation of biology and molecular medicine towards the analysis of the proteome as a modular entity, the proteome in context.
Summary
Elements operating in the context of a system generate results that are different from the simple addition of the results of each element. This notion is one of the basic tenants of systems science. In systems biology/medicine complex (disease) phenotypes arise from multiple interacting factors, specifically proteins. Yet, the biochemical and mechanistic base of complex phenotypes remain elusive.
An array of powerful genomic technologies including GWAS, WGS, transcriptomics, epigenetic analyses and proteomics have identified numerous factors that contribute to complex phenotypes. It can be expected that over the next few years, genetic factors contributing to specific complex phenotypes will be comprehensively identified, while their interactions will remain elusive.
The project “Proteomics 4D: The proteome in context “explores the concept, that complex phenotypes arise from the perturbation of modules of interacting proteins and that these modules integrate seemingly independent genomic variants into a single biochemical response. We will develop and apply a generic technology to directly measure the composition, topology and structure of wild type and genetically perturbed protein modules and relate structural changes to their functional output.
This will be achieved by a the integration of quantitative proteomic and phosphoproteomic technologies determining molecular phenotypes, and hybrid structural methods consisting of chemical cross-linking and mass spectrometry, cryoEM and computational data integration to probe structural perturbations.
The project will focus initially on the structural and functional effects of cancer associated mutations in protein kinase modules and then generalize to study perturbed modules in any tissue and disease state. The resources supporting this technology will be disseminated to catalyze a broad transformation of biology and molecular medicine towards the analysis of the proteome as a modular entity, the proteome in context.
Max ERC Funding
2 208 150 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym PROTEOTOXNET
Project Unraveling the cellular responses to aberrantly-folded and aggregated proteins
Researcher (PI) Paola Picotti
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Starting Grant (StG), LS2, ERC-2013-StG
Summary Protein aggregation diseases are associated with the intracellular accumulation of specific misfolded protein aggregates, that are directly implicated in cellular dysfunction. A range of human disorders of previously unknown nature now falls into this category. The mechanisms of aggregation-induced cell degeneration are however unclear, resulting in poor therapeutic strategies. In this project we will characterize the network of cellular responses to a set of disease-related aggregation-prone proteins (APPs) and determine how to efficiently modulate proteotoxicity. In a discovery phase, we will use proteome-wide screens to identify functional modules that sequentially respond to APP aggregation. A novel method to probe conformational changes of proteins in their biological matrix will be applied to quantify concomitant changes in APP conformation during the toxicity cascade. Our eminently quantitative approach will allow us to characterize the kinetics of intracellular aggregate formation and the resulting cellular responses. A set of biological markers for different functional modules and toxicity stages will be measured using a selected reaction monitoring-fingerprint assay, through a set of genetic and chemical modulators of proteotoxicity. This will unravel how modulators rewire or compensate for the deregulated networks and suggest their most efficient combinations. The multi-level information will be iteratively integrated with prior data and network structure. Emerging hypotheses will be tested using a combination of genetic and biochemical tools and targeted proteomic experiments. This project features novel concepts and methods and will allow us to unravel the molecular events accompanying the onset of proteinopathies and their modulation. It will positively impact biomedical research on protein aggregation diseases, guide identification of suitable therapeutic strategies and advance our understanding of the biology of protein aggregation.
Summary
Protein aggregation diseases are associated with the intracellular accumulation of specific misfolded protein aggregates, that are directly implicated in cellular dysfunction. A range of human disorders of previously unknown nature now falls into this category. The mechanisms of aggregation-induced cell degeneration are however unclear, resulting in poor therapeutic strategies. In this project we will characterize the network of cellular responses to a set of disease-related aggregation-prone proteins (APPs) and determine how to efficiently modulate proteotoxicity. In a discovery phase, we will use proteome-wide screens to identify functional modules that sequentially respond to APP aggregation. A novel method to probe conformational changes of proteins in their biological matrix will be applied to quantify concomitant changes in APP conformation during the toxicity cascade. Our eminently quantitative approach will allow us to characterize the kinetics of intracellular aggregate formation and the resulting cellular responses. A set of biological markers for different functional modules and toxicity stages will be measured using a selected reaction monitoring-fingerprint assay, through a set of genetic and chemical modulators of proteotoxicity. This will unravel how modulators rewire or compensate for the deregulated networks and suggest their most efficient combinations. The multi-level information will be iteratively integrated with prior data and network structure. Emerging hypotheses will be tested using a combination of genetic and biochemical tools and targeted proteomic experiments. This project features novel concepts and methods and will allow us to unravel the molecular events accompanying the onset of proteinopathies and their modulation. It will positively impact biomedical research on protein aggregation diseases, guide identification of suitable therapeutic strategies and advance our understanding of the biology of protein aggregation.
Max ERC Funding
1 500 000 €
Duration
Start date: 2014-03-01, End date: 2019-06-30
Project acronym ReaDMe
Project Readout of DNA methylation
Researcher (PI) Dirk Schubeler
Host Institution (HI) FRIEDRICH MIESCHER INSTITUTE FOR BIOMEDICAL RESEARCH FONDATION
Call Details Advanced Grant (AdG), LS2, ERC-2014-ADG
Summary DNA and chromatin modifications are essential for proper control of gene expression during development. How these marks alter transcriptional programs and modulate binding patterns of sequence specific transcription factors (TF) remains poorly understood. This currently limits our interpretation of epigenomic maps towards their incorporation into predictive models of gene regulation.
ReaDMe has the ambitious goal to systematically define the sensitivity of TFs to local levels of DNA methylation in vivo. We will use a combination of genomics, genome editing and proteomics tools to comprehensively identify transcriptional regulators that respond to DNA methylation. As a first approach, we will interrogate changes in the global TF binding landscape when DNA methylation is ablated from the genome. Using both embryonic stem cells and somatic cells, these experiments are aimed at identifying sites that are occupied by TFs in a DNA methylation dependent manner within different cellular context. Secondly, we will combine parallelized chromosomal insertions with targeted footprinting to determine the link between DNA sequence context, methylation density and TF binding. In a third approach we will define the global chromatin proteome as a function of DNA methylation. Through the use of a novel and orthogonal proteomics assay, we will characterize DNA methylation sensitive changes in the chromatin-bound proteome. Candidate factors predicted from all approaches will be validated and functionally characterized through direct genome-wide mapping as well as loss of function analysis.
ERC funding would enable ReaDMe to develop an integrated setup to in vivo identify and characterize where DNA methylation influences the cis-regulatory landscape by modulating binding profiles of trans-acting factors. This goal represents a crucial step towards comprehensive understanding of the genomic readout of DNA methylation and its impact on gene regulation.
Summary
DNA and chromatin modifications are essential for proper control of gene expression during development. How these marks alter transcriptional programs and modulate binding patterns of sequence specific transcription factors (TF) remains poorly understood. This currently limits our interpretation of epigenomic maps towards their incorporation into predictive models of gene regulation.
ReaDMe has the ambitious goal to systematically define the sensitivity of TFs to local levels of DNA methylation in vivo. We will use a combination of genomics, genome editing and proteomics tools to comprehensively identify transcriptional regulators that respond to DNA methylation. As a first approach, we will interrogate changes in the global TF binding landscape when DNA methylation is ablated from the genome. Using both embryonic stem cells and somatic cells, these experiments are aimed at identifying sites that are occupied by TFs in a DNA methylation dependent manner within different cellular context. Secondly, we will combine parallelized chromosomal insertions with targeted footprinting to determine the link between DNA sequence context, methylation density and TF binding. In a third approach we will define the global chromatin proteome as a function of DNA methylation. Through the use of a novel and orthogonal proteomics assay, we will characterize DNA methylation sensitive changes in the chromatin-bound proteome. Candidate factors predicted from all approaches will be validated and functionally characterized through direct genome-wide mapping as well as loss of function analysis.
ERC funding would enable ReaDMe to develop an integrated setup to in vivo identify and characterize where DNA methylation influences the cis-regulatory landscape by modulating binding profiles of trans-acting factors. This goal represents a crucial step towards comprehensive understanding of the genomic readout of DNA methylation and its impact on gene regulation.
Max ERC Funding
2 136 969 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym REpiReg
Project RNAi-mediated Epigenetic Gene Regulation
Researcher (PI) Marc Bühler
Host Institution (HI) FRIEDRICH MIESCHER INSTITUTE FOR BIOMEDICAL RESEARCH FONDATION
Call Details Consolidator Grant (CoG), LS2, ERC-2015-CoG
Summary RNAi refers to the ability of small RNAs to silence expression of homologous sequences. A surprising link between epigenetics and RNAi was discovered more than a decade ago, and I was fortunate enough to be involved in this exciting field of research from the beginning. It is now well established that endogenous small RNAs have a direct impact on the genome in various organisms. Yet, the initiation of chromatin modifications in trans by exogenously introduced small RNAs has been inherently difficult to achieve in all eukaryotic cells. This has sparked controversy about the importance and conservation of RNAi-mediated epigenome regulation and hampered systematic mechanistic dissection of this phenomenon.
Using fission yeast, we have discovered a counter-acting mechanism that impedes small RNA-directed formation of heterochromatin and constitutes the foundation of this proposal. Our goal is to close several knowledge gaps and test the intriguing possibility that the suppressive mechanism we discovered is conserved in mammalian cells. We will employ yeast and embryonic stem cells and use cutting-edge technologies (i.e., chemical mutagenesis combined with whole-genome sequencing, genome editing with engineered nucleases, and single-cell RNA sequencing) to address fundamental, as yet unanswered questions.
My proposal consists of four major aims. In aim 1, I propose to use proteomics approaches and to perform yeast genetic screens to define additional pathway components and regulatory factors. Aim 2 builds on our ability to finally trigger de novo formation of heterochromatin by synthetic siRNAs acting in trans, addressing many of the outstanding mechanistic questions that could not be addressed in the past. In Aims 3 and 4, experiments conducted in yeast and mouse cells will elucidate missing fragments critical to our understanding of the conserved principles behind RNAi-mediated epigenetic gene regulation.
Summary
RNAi refers to the ability of small RNAs to silence expression of homologous sequences. A surprising link between epigenetics and RNAi was discovered more than a decade ago, and I was fortunate enough to be involved in this exciting field of research from the beginning. It is now well established that endogenous small RNAs have a direct impact on the genome in various organisms. Yet, the initiation of chromatin modifications in trans by exogenously introduced small RNAs has been inherently difficult to achieve in all eukaryotic cells. This has sparked controversy about the importance and conservation of RNAi-mediated epigenome regulation and hampered systematic mechanistic dissection of this phenomenon.
Using fission yeast, we have discovered a counter-acting mechanism that impedes small RNA-directed formation of heterochromatin and constitutes the foundation of this proposal. Our goal is to close several knowledge gaps and test the intriguing possibility that the suppressive mechanism we discovered is conserved in mammalian cells. We will employ yeast and embryonic stem cells and use cutting-edge technologies (i.e., chemical mutagenesis combined with whole-genome sequencing, genome editing with engineered nucleases, and single-cell RNA sequencing) to address fundamental, as yet unanswered questions.
My proposal consists of four major aims. In aim 1, I propose to use proteomics approaches and to perform yeast genetic screens to define additional pathway components and regulatory factors. Aim 2 builds on our ability to finally trigger de novo formation of heterochromatin by synthetic siRNAs acting in trans, addressing many of the outstanding mechanistic questions that could not be addressed in the past. In Aims 3 and 4, experiments conducted in yeast and mouse cells will elucidate missing fragments critical to our understanding of the conserved principles behind RNAi-mediated epigenetic gene regulation.
Max ERC Funding
1 998 557 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym RNAiGenReg
Project RNAi-mediated genome regulation
Researcher (PI) Marc Bühler
Host Institution (HI) FRIEDRICH MIESCHER INSTITUTE FOR BIOMEDICAL RESEARCH FONDATION
Call Details Starting Grant (StG), LS2, ERC-2011-StG_20101109
Summary RNA interference (RNAi) is a highly conserved, sequence-specific gene regulatory mechanism among eukaryotes. It is critical for a variety of important biological functions and is being pursued as a promising new tool for the treatment of a variety of human maladies. A surprising link between heterochromatin and the RNAi pathway was discovered a few years ago in fission yeast and plants, and similar mechanisms have more recently been described in various eukaryotes. However, to what extent the mechanisms we have been studying in yeast are conserved up to humans remains unknown. The goal of this proposal is to further our understanding of RNAi-mediated heterochromatin assembly by using fission yeast as a model organism, but also to investigate to role of RNAi in the nucleus of human cells.
My proposal consists of three major aims. In aim 1 I propose to combine light and electron microscopy to address important and largely unanswered questions such as subcellular localization and temporal regulation of the RNAi pathway. Aim 2 builds on our recent discovery that RNAi factors physically associate with chromatin to control genome activity also outside constitutive heterochromatin. I am proposing experiments in fission yeast that aim at understanding the biological role of this new mode of genome regulation and its mechanistic dissection . However, we will also extend our analysis to human cells which will shed new light on the role of the RNAi pathway in the nucleus of higher eukaryotes. Finally, we are aiming at identifying the features a target locus in the S. pombe genome must have to become susceptible to RNAi-mediated silencing at the level of chromatin. Thus, the outcome of these experiments may substantially influence the developments of siRNA-based therapeutics.
Summary
RNA interference (RNAi) is a highly conserved, sequence-specific gene regulatory mechanism among eukaryotes. It is critical for a variety of important biological functions and is being pursued as a promising new tool for the treatment of a variety of human maladies. A surprising link between heterochromatin and the RNAi pathway was discovered a few years ago in fission yeast and plants, and similar mechanisms have more recently been described in various eukaryotes. However, to what extent the mechanisms we have been studying in yeast are conserved up to humans remains unknown. The goal of this proposal is to further our understanding of RNAi-mediated heterochromatin assembly by using fission yeast as a model organism, but also to investigate to role of RNAi in the nucleus of human cells.
My proposal consists of three major aims. In aim 1 I propose to combine light and electron microscopy to address important and largely unanswered questions such as subcellular localization and temporal regulation of the RNAi pathway. Aim 2 builds on our recent discovery that RNAi factors physically associate with chromatin to control genome activity also outside constitutive heterochromatin. I am proposing experiments in fission yeast that aim at understanding the biological role of this new mode of genome regulation and its mechanistic dissection . However, we will also extend our analysis to human cells which will shed new light on the role of the RNAi pathway in the nucleus of higher eukaryotes. Finally, we are aiming at identifying the features a target locus in the S. pombe genome must have to become susceptible to RNAi-mediated silencing at the level of chromatin. Thus, the outcome of these experiments may substantially influence the developments of siRNA-based therapeutics.
Max ERC Funding
1 599 992 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym SCIPER
Project Studying Cancer Individuality by Personal and Predictive Drug Screening and Differential OMICs
Researcher (PI) Berend SNIJDER
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Starting Grant (StG), LS2, ERC-2018-STG
Summary The cellular and molecular systems that determine drug responses in cancer are complex, highly individual, and incompletely understood. As a result, many cancer patients receive ineffective or even harmful therapies, which endangers lives, burdens healthcare systems, and prevents new therapies from reaching clinical approval.
To address this problem, we are developing a platform that measures hundreds of ex vivo drug responses from small patient biopsies by immunofluorescence, automated confocal microscopy, single-cell image analysis, and machine learning. We preserve cellular memory and maximize physiological relevance by not culturing or sorting cells prior to drug exposure. Sub-cellular, single-cell, and cell population-wide image analysis reveals on-target drug responses and disentangles multicellular ones. In a first interventional clinical trial, this phenotypic information alone led to strongly improved treatment of patients with aggressive hematologic malignancies.
Enabled by this high-throughput, predictive, and phenotypic information, I here propose to identify the molecular and cellular systems that govern treatment response individuality in cancer. (Aim 1) We will combine drug response profiling with RNA sequencing and proteomic measurements of malignant and healthy cells from the same biopsies. Critically, the patient-internal comparisons in both screening and OMICs allow neutralizing complex confounding factors. (Aim 2) New multiplexed immunofluorescence and convolutional neural network-based analyses will identify multiclass cell-types and -states, and quantify non-cell-autonomous responses. (Aim 3) Computational integration and causal inference will identify the molecular determinants and governing principles of drug response individuality in cancer, amenable to further validation. This proposal will thus improve our mechanistic understanding of cancer individuality and develop powerful new tools for OMICs-based precision medicine.
Summary
The cellular and molecular systems that determine drug responses in cancer are complex, highly individual, and incompletely understood. As a result, many cancer patients receive ineffective or even harmful therapies, which endangers lives, burdens healthcare systems, and prevents new therapies from reaching clinical approval.
To address this problem, we are developing a platform that measures hundreds of ex vivo drug responses from small patient biopsies by immunofluorescence, automated confocal microscopy, single-cell image analysis, and machine learning. We preserve cellular memory and maximize physiological relevance by not culturing or sorting cells prior to drug exposure. Sub-cellular, single-cell, and cell population-wide image analysis reveals on-target drug responses and disentangles multicellular ones. In a first interventional clinical trial, this phenotypic information alone led to strongly improved treatment of patients with aggressive hematologic malignancies.
Enabled by this high-throughput, predictive, and phenotypic information, I here propose to identify the molecular and cellular systems that govern treatment response individuality in cancer. (Aim 1) We will combine drug response profiling with RNA sequencing and proteomic measurements of malignant and healthy cells from the same biopsies. Critically, the patient-internal comparisons in both screening and OMICs allow neutralizing complex confounding factors. (Aim 2) New multiplexed immunofluorescence and convolutional neural network-based analyses will identify multiclass cell-types and -states, and quantify non-cell-autonomous responses. (Aim 3) Computational integration and causal inference will identify the molecular determinants and governing principles of drug response individuality in cancer, amenable to further validation. This proposal will thus improve our mechanistic understanding of cancer individuality and develop powerful new tools for OMICs-based precision medicine.
Max ERC Funding
1 500 000 €
Duration
Start date: 2018-11-01, End date: 2023-10-31